Business in Real-Time
Using Azure loT and
Cortana Intelligence
Suite

Driving Your Digital Transformation

Bob Familiar
Jeff Barnes

Apress’

http://www.allitebooks.org

Business in Real-Time
Using Azure loT and
Cortana Intelligence Suite

Bob Familiar

Jeff Barnes

Apress-

[vww allitebooks.cond

http://www.allitebooks.org

Business in Real-Time Using Azure IoT and Cortana Intelligence Suite: Driving Your Digital
Transformation

Bob Familiar Jeff Barnes
Sudbury, Massachusetts, USA Miami, Florida, USA
ISBN-13 (pbk): 978-1-4842-2649-0 ISBN-13 (electronic): 978-1-4842-2650-6

DOI110.1007/978-1-4842-2650-6
Library of Congress Control Number: 2017943349
Copyright © 2017 by Bob Familiar and Jeff Barnes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Technical Reviewers: Alina Stanciu and Jim O’Neil
Copy Editor: Kezia Endsley

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2649-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-2649-0
http://www.apress.com/source-code
http://www.allitebooks.org

This book is dedicated to all those who seek to “live life in the fast lane”
by exploiting technology to help drive digital disruption and positively transform
their businesses so they may truly operate at Internet speed.

To my incredible wife, Mandy, who is a continuous stream
of inspiration, and to my children, Ariana and Bobby, who never cease to
amaze me with their talent, insight, and intelligence.
—Bob Familiar
This book is the culmination of many long, sacrificed nights and weekends.
To that end, I would like to thank my wife Susan, and my children, Ryan,

Brooke, and Nicholas, for their constant love, support, and encouragement.

—Jeff Barnes

[vww allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

About the AUthOrS.........ccssiemmsmms s ————————_———__ XV
About the Technical REVIEWErSccsssssmssssssmsssmsssmssssssssssssssmsssssssssssssssnsssssssnsnes Xvii
AcknOowIedgmENtS......cccuerrmssssssssnnsnsnmssssssssssssssssssssssssssssssnnssssssssssssnnnnnnnssssssssssnnnnnns Xix
INtroductioncccuvemnmmim s ——————————_——— XXi
Chapter OVEIVIEW .uuuccuussssssssssssmmmssssssssssssssssssssssssssssnnsssssssssssssssnnnsnssssssssssssnnnnnnnnnsss XXiii
Chapter 1: Business in Real-TIMEecuuuuimmmmssssssmmmmmmmmmssssssssssssssssssssssssssssssssssnns 1
Chapter 2: DevOps Using PowerShell, ARM, and VSTScccccnmmmssmsnsnssnnnnsssssnes 21
Chapter 3: Device Management Using 10T Hub..........cccccnrminsmmmnssnssnssssssssssnnnes 95
Chapter 4: Sensors, Devices, and Gateways.......ccccuummsssssssnnmmssmmsssssssssnssesssnns 127
Chapter 5: Real-Time Processing Using Azure Stream AnalyticS........cccrusssnnnnns 169
Chapter 6: Batch Processing with Data Factory and Data Lake Store............... 227
Chapter 7: Advanced Analytics with Azure Data Lake AnalyticS.......ccceurrrrssssnns 291
Chapter 8: Advanced Analytics Using Machine Learning and R...........c.ccusueennne 351
Chapter 9: Data Visualizations, Alerts, and Notifications with Power BI........... 397
Chapter 10: Security and Identity..........cccivrnnnmmmmmnnnmnmmnsesnmmmsssnssss———" 475
Chapter 11: EPIlOQUEccuuririiinssnmmmsmmmmmsssssssssssssssmsssssssssssssssssssssssssssnsnnnsssssssnns 517
INA@X.ciiieiiesrimssis s s s s —————————————————_ 519
v

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AULNOLS......ccoueeeeiiireeniirreserrrnnesr s nnsa s nn s s annnnsssnnnnnnssnnnnnnns XV

About the Technical REVIEWETSccourrrrmmmmmssssssssmmsssssssssssssssssssssssssssssssssssssssnsssssss XV

AcknOWIedgmENtS.......cuuurimmmsssssssnsnnmmmmssssssssssssssssssssssssssssnnnsssssssssssssnnnnnnssssssssssnnnnnns XiX
INtroductioncccvvemnmmim s ——————————_—_—_—— Xxi
Chapter OVEIVIEW .uuuccuussssssssssssssmsssssssssssssssssssssssssssssnsssssssssssssssnnnnnssssssssssssnnnnnnnnnsss XXiii
Chapter 1: Business in Real-TIMEecccccernmssssssssssnmmmssssssssssssssnssssssssssssssssnsssssssssnns 1
A PIatform APPrO@CHccueeeeeiieccrere e sa e e sa e a e sr e sa e sa e na e a e a e nn e n e 1
Real-Time BusSiness PIAtOrm ... sssssssssens 2
Internet of Things (10T) @and Big Data..........cccourvimrnimnsss s 5
Real-Time Business Reference ArchiteCture..........coocvivsnncnniss s 8
DBVICES ..ueuisisiiiiiisi st s 9
DEVICE HUD ...ttt s 9
SIrEAM PrOCESSING ..c.viviuecrirrrieieririsse et se st a s b e e e st e et b b e e ee b e et b e e e e e b e s 10

Data Management, Storage, and MeSSAgiNg.......cccceerrrriererernnneserssnsesesssssse s sss s sesesssssesssssseaes 10
AdVANCEA ANAIYEICS.....cceceereececirer e s e s ae e e Re e R e R e e Rennnns 10
Microservices and APl GAIEWAYS........cccccvirererinnnresisns e se s sas s s sss s s sss s sessssssess 10
Visualization, Alerts, and NOtifiCations.........cccucviiiiiininniinr s 11
JUBNEITY....eceece e E e R R e e Re e e RenRnaeas 1
AULOMALION ..o —————— 11
L1) OO RR 12

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Microsoft Azure loT and Cortana Intelligence SUitec.ccocvceeenricnnseresssese e 12
LT 0] 1 L0 T 13
SECUNtY AN IUEBNTILY.......ccceeeeeeceereer e 13
DBVICES ..t 13
DEVICE HUD ... 14
SIRAM PrOCESSINGvoveueecerreeeesirieseeseresse e e s s e e s e e e ss s se s ss s se s e e e s s s e se e e s s se s e e nse s e e nsannaes 14
Data Management, Storage, and MeSSAGINGccecerrrrerererereseseressesesesesseesesessssssesesssssesessssssssssssssaes 14
AdVANCEA ANAIYTICS.....covrveeeerererreesesesre e e s e s s e s s s s e e se e e nnns 14
Microservices and APl GATEWAYccccerererererrsnssesersesesesss e sssss s s sesssssssssssssssssssssssssnes 14
Visualization, Alerts, and NOtifiCationsS.........cccvvevrrrinrnrr s se e sas s s 15

Worker Health and Safety: A Reference Implementationcccoevvrvrvrvrvncncenieninnns 15
2T T Y (0] OSSR 15
SOIULION AFCRITECIUTE ...t ——— 15
Downloading the REPOSITOrY.........cvviiirrmninssii s 18

BT 111 1= SRR 19

Chapter 2: DevOps Using PowerShell, ARM, and VSTSccccunemmmmnssssnnnmssssnnnns 21

PEOPIE ... —————————————————— 22

g (0167 22
INFraStruCUrE @S COUEcoceeeeecceeeree e 23
ContiNUOUS INTEGIALIONcocevieeeererie e e e r s 23
CONLINUOUS DEIVETY.....cceeeeeieeeee e 24

TOOIS 1.ttt ———————————————————————— 24

DEVOPS ANA AZUIEeoerercrerer s r s n s n s n e n e nn e nn s nn e nnnnnnnas 24
POWEISREIL......cciiiiiiciii s 25
AZUIE POWEISNEIL ... 28
AZUre RESOUICE MANAGETcocoueeeerecesererese e se s se s se s se st esas e sesn et nrnnns 29
DL LT 110 L (=TS 30
Visual Studio TEAM SErVICES.........ceciiiriintiisc bbb 34

SUMMEAIY ...t e s s ae e s a e ae e s e ea e e s ae e s e nnennnnnas 93

viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: Device Management Using 10T Hub..........cccccunnemmmmnnsssnnnmnssssssnnssssssnns 95
The Device Management LIifECYCIE........c.ccuerrrrerrersensesses s sss e s snesnnnns 95
PlANNING....c.eieeteccecice e s s s e e e R e R e e Re R e Re R e e R e e Re e Re e eRenananas 97

Lo (01 1T 11 T OSSPSR 98
Configuring and MONITONINGcccveciecrerr e s r e r e 104
RELIMING oot R e e e R AR e R e AR R e R e e 112
1T PP 126
Chapter 4: Sensors, Devices, and GateWays........cuseuresssnsrsssnsssssnsssssnsssssssssssansnss 127
R3] 1 0] £ PSR 127
Programmable LOGiC CONTFOIIEISccceererreiecririrecstrise e se s eens 128
DBVICESeeucurrerueeresse e rese e e e e e e e sa e R R e R e nan e s 130
GSIM IMOUBIMS ... e 130
RFID c.vvvooeveeessseeeesssseseessssssesssssssssesssssssesessssssesessssessessssssesesssssssssssssssessssssssesssesssssssssssssssesssssssnssssss 133
BIUGLOOth BEACONS.......cccovieciiiccit e 135
6T 00311 - 136
MicrocONTroller SOFtWATE..........ccceiererrrecrere s 138
EAQE GAIBWAYSccceveeieecirerir e e st p e s p s b p e e n e e ne e s aenp e r e e 140
1111 11 SRS 168
Chapter 5: Real-Time Processing Using Azure Stream Analytics......cc.cccurisnnnens 169
The Lambda ArChitECIUNEcouvcereercr e 169
What Is Streaming ANalYEiCS?.......cccvvrvrierrerrrrer e 171
Real-Time AN@IYLICS........ccccverrerrerserersesse s s se e sn e sr e sn e nn s nnenn e nnnnnns 171
Streaming Implementations and Time-Series Analysis.........ccccecvrrvrrrsrsnsersessensennens 172
Predicting Outcomes for Competitive Advantage..........cccovvrrervrnrsnsssensessessessessensenns 174
Stream Processing: Implementation Options in AZureccceeeeevecevcscscesses s sennens 174
Choosing a Managed Streaming Analytics Engine in AZUreccocueeeeeensernnsessesensenns 176
Streaming Technology Choice: Decision Considerations...........ccceevvrversersessensensensenens 178
Pain Points with Other Streaming SOIULIONSccccvcrcrcrcrrr e 178
ix

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Reference Implementation Choice: Azure Streaming Analytics..........cccoevrererenserennennes 178
Advantages of Azure Streaming ANAIYEICScoveererereieserrre e snns 178
Development and Debugging Experience Through Azure Portalcccovveeeenenncsenenenesescsessseenns 180
Scheduling and Monitoring BUilt=IN ... s 180

Why Are Customers Using Azure Stream AnalyticS?ccccvvrvervrrnsersensensessessessessennns 181

Key Vertical Scenarios to Explore for Azure Stream Analytics..........ocovvienernicnernicnnns 181

Our Solution: Leveraging Azure Streaming Analyticsccvrvrrrrernsesessssessssessesensenns 182
Streaming Analytics Jobs: INPUT definitions.........coveieernniescsinnescsinne e sessssenes 182
Streaming Analytics Jobs: OUTPUT Definitions.........ccccocevreiencrnnescnirnesesesssee e ssesessssenes 184
Planning Streaming AnalytiCS QULPULSceceecrerereserirreere s 185

Streaming Analytics Jobs: Data Transformations via SQL QUeries.......cceocvrerervereereraens 186
Azure Streaming Analytics SQL: Developer Friendly.........ccvccveverererererserenseressersesessesesesessessssessesesaes 187

Azure Streaming Analytics (ASA): SQL Query Dialect Features..........ccceevvvrerrerrerrensenne 187
SQL QUETY LANGUAGEceeerueueererseueeresssssesessssssesessssssssessssssssssesssssssssssssssssssssssssssssssnssssssssssssssssnsaes 187
SUPPOIEd DAta TYPES....c.cccerecerrerirerirerie s e s s b e e e e e s s a et re e ene e e nenennnns 187
Data TYPE CONVEISIONS........ccceereruecereereeseresssesesesssss e se s e e s s s sesas s e e sasse e e s sae s e e sns e e sesnsnnnnas 188
Temporal Semantic FUNCHIONALILYccoeeererrrccr e 188
Built-In Operators and FUNCHIONS.........ccoiviiene e sa e saesaesa e sa e sa e sa e sn e sa e nne s 188
User Defined Functions: Azure Machine Learning Integration..........c.ccoevnvnninnnnnccnssnccsnsennnenn 189
Event Delivery Guarantees Provided in Azure Stream AnalytiCs.........ccovevnverriennscnesnssenesesenenenns 189
Time Management FUNCLIONS ..o sn s sr s s r e e sn e 190
Azure Stream Analytics: Unified Programming Model...........ccocorrienrennicnnncne et sennas 191

Azure Stream Analytics: Examples of the SQL Programming Model..........c.ccccocerunnenee. 191
The SimpPIESt EXAMPIEcccovreeeeerirecriris e p s nn s 191
Tumbling Windows: A 10-Second TUmbIing WINAOWccovreirmrnencnerneesesesese e sesesenns 191
Hopping Windows: A 10-Second Hopping Window with a
5=SECONU “HOP” ...t se e R e e n e e e e nnnn s 191
Sliding Windows: A 10-Second Sliding WinAOWcccovrriencnnnnencnisnesesessesesesesss s sssesessssenes 192
J0inNing MUItIPIE SIFEAMS.......ccoceereeecrer e s 192
Detecting the ADSENCE OF EVENTS........cccceeiriccrirresesirne e e 192

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

The Reference Implementationccccvvrvrvrcnsnsscr s 193
BUSINESS USE CASE SCENANIOc.ccuereeeeeeeerereee e 193
SUMMAIY ..ttt s 226
Chapter 6: Batch Processing with Data Factory and Data Lake Store............... 227
Azure Data Factory OVEIVIEWcccvererereereereersessssssssssssssssssssssssssssasssssssssssssssssasssnaes 227
Pipelings and ACHIVITIES.cccvurrereerereerererereresserseserseseraesessesassesaesessesessesesassasaesassesaesesassesassassesassesseneres 228
LINKEA SEIVICEScuviriiisissisissss i bbb 230
DAASEES.....cccii i ——————————————————————— 230
0T 231
Scheduling and EXECULIONccovceverrereererererereresesesss e rsesesaesessesessesassessssesssssssessssessssesssnssssssssesansens 231
Pipeline Copy Activity ENd-t0-ENd SCENATIOcccevereveerererereresrereesereesersesessesasessesessesessssessesassessesenes 231
Monitoring and Managing Data Factory PiPeliNeS..........cccvrvererrereerereserereseressessesessesessesessesessessesenes 236
Data Factory Activity and Performance TUNING.........ccvevrrereriererrereesersesessesesessssessesessesessssessessssessenenes 239
Azure Data Lake STOre.........cccvvevverieiier e sae s sn e s ss s s sae s s sae s 241
HAAOOD ACCESSveuereerierirerin st s e s e s b e e e R e A et R e e R e e Re e e Re e e e R e e ns 241

LT oINS 241
Implementing Data Factory and Data Lake Store in the Reference Implementation....... 243
31111 P2 7S 290
Chapter 7: Advanced Analytics with Azure Data Lake AnalyticS.......cccerrrrrssanns 291
Azure Data Lake ANAIYTICS.......cocvrererereerersesse e seessssssssssasssesssssessssassassasssssassssssssasssnses 292
Getting Started with Azure Data Lake AN@IYLICSccceevrereriererrereerereerereseseresersesessesessesessesassessssenes 294
Implementing ADLA in the Reference Implementation...........cccoeoeeeievecececscescennns 319
Reference Implementation SUMMAry.........ccoc s 348
SUMMEAIY ...ttt a s s ae e e r e s n e e ne e s nnnnnnnnas 348
Handles Virtually All TYPES Of Data.........ccccorevererrrrnenerirnesesess e sessssesssesasssssssnens 348
Productive from DAY ONE........cceeeceerereererirreesesesss s sssss e e ssssssssssssssssssssssssssssssssasnns 349

NO LimitS 10 SCAIE......cccoereeicrerereeeeeee e 349
ENEEIPriSE GIadR.......coeevreeeecerisreees e e e n s ae e se s ne e e e sn e s e 349
Reference IMpIementationco e 349
Just ScratChing the SUMTACEcccceeeericrcrrr e 350

xi

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 8: Advanced Analytics Using Machine Learning and R............cccoss00ee0e 351

What Is Machine Learning?..........cceovvrniniennicssssne e sesesssssssesessessssessessssesssnsssens 351
Understanding Maching Learning...........ccuccevverenerenesennesnsessssessesessesesssssssessssessssesssssssssssssssssesssnenns 351
Brief History of Maching Learning..........ccccevvevencrennenncsinsessscsss s sesss e sesssssssessssessssenns 355
Industry Applications of Maching Learningc.c.uvvvnnnmninmnsnnsnnnsssssssssssss s 355

Overview of Azure Maching Learning.........ceceeeeeeerresessessssssssesssssssssssssssssssssssssssssssenns 357
The Traditional Data SCIENCE LaNUSCAPE........cccvvreeerererreercririne s ssesessns 358
Democratizing Maching LEarning..........ccocevererererrnsesesesssesesesssessesesssssessssssssssssssssssssssssssssssssssssssnns 358
Azure Machine Learning STUAI0..........covrrereririrererinisrisssse s seees 359

MicroSoft R SErver OVEIVIBW..........ccuccmrerereressssssssess s sssssssssssssssesens 364
Processing limitations of OPen SOUICE Rcocorerererrerererer s re e e saesesaesesaesesaesassesassenes 364
Enter MiCroSOft R SEIVE ... 365
Extend Machine Learning Experiments with the R Language Modulecccceccvevererererercrererenenns 366
R T00IS fOr ViSUal SUTI0oceecririiriiirisisissinisissss s ssens 367

Implementing Azure Machine Learning and R in the Reference Implementation 367
Business Case for Machine Learningccc.ccevcerevienniesnsessscse s sesssssssessssessssessssesssssssessssesssnenns 367
Reference Implementation: ASSUMPLIONS ..o 368
Choosing a Machine Learning Algorithm ... s 368

1111 11 SRS 396

Chapter 9: Data Visualizations, Alerts, and Notifications with Power BI........... 397

The Modern Reporting LAnGSCAPEcccvveererreererreerierseesesseesesssessesssessssssessssssesnessees 397

Overview of POWEN Bl..........ccovnnnss s 399
The POWET Bl SEIVICEccciriiriisiiniissssisss s s sssns 399
POWET Bl DESKIOP ...cuveveeecieciertecte et r s r e s s sa e sn e s n e s n e sn e s r e r e a e a e n e r e e e sn e nn e nnenn e s 399
POWET Bl MODIIE......coiviiirirriisss s 404
Power Bl EMDEAUEM ... sssns 405
POWET Bl REST APIScoceivtiiisssiiss bbb 406
Power Bl CUSTOM VISUAISccouuiriusiississisisssssssissssssssssssssssisss s sss s sss s sssssssens 406
Power Bl Natural Language QUETY.........cccvceruerereerereerereerereresersssessesessesessessssesssessesesssssssssessessssersenees 407
Power Bl Cortana INtegration............ccveeerererrerererenerrsererereressessesessesessesessesassessssessssessssessesassessssenes 408
Cloud Reporting Cost ArChitECIUIES.........ccceverrereerereerere s rer e s rse s se e rae e e s ae e ae e saesesaesassenaesenes 409

xii

CONTENTS

Alerts and NOTIfiCAtIONSccovcererrceres e 410
AZUIE EVENT HUD ... 411
Streaming Analytics: Qutput t0 EVENt HUD..........ccommreee s 413
Fv AT =l T T 0] 414

Reference IMplementation...........cccccvvevirienniinies s sss e sssesaesssesnes 417
IMPIEMENtAtioN OVEIVIBW.........coveereeere st erre e rae s raere s e ra s sae e ae e sassasaesa s e saesesae e saesasaesanaesannenes 417

BT 111 12 SRS 472

Chapter 10: Security and ldentity.........ccccunmmmemmmmmmmmmmmmsssss—————————- 475

Threat MOUEIINGcoceeirecr e n e s 475

Threat Modeling Zones and [0Tcccevierernierennnernse e ses e snnnens 476
00 70 3 476
DBVICE ZONE ... e 477
ClOUA GAIBWAY ZONE.......veeecereereeesesseeesessssesesesss s se s s s e sss s s sssss s e sesssssssssssssessssssssessssssssnsnsssns 478
ClOUT SEIVICES ZONE......cceeeeeeeeeeseese e e 479
SECUNTY PrOTOCOIS.ceveeeererieecrtsieese e st ne s s e se s s s e s s 481
AZUIE SECUNLY CBNTET ...t e p e e s e nn s 481
Data ENCIYPEON ...t ssne e e se e e 482
KEY ManagEMENL...........ccoiiririerrcrcsir et r e e et a e e e s sa s e s e e e 482

(01T 1 (]SSR 483
Authentication and AUtNOFZALION ... ——————— 483
T LT 1 T 483

BT 111 112 SRS 516

Chapter 11: EPIlOQUEcucvisemmmmmsssnnnmmsssssssmmsssssssssssssssnssssssssnssssssnnnssssssnnssssssnnnnns 517

INA@X.ciiieiiresrinsssansssas s s s s s rn s n s s n e 519

xiii

About the Authors

Bob Familiar is the National Practice Director for Application Services at
BlueMetal, an Insight company. As National Director, Bob leads a team of
seasoned principal architects who are responsible for industry research
and development, rapid prototyping and outreach to the technology
community, and providing strategy and guidance to BlueMetal clients on
their most important and challenging projects. Bob is an accomplished
software professional, evangelist, and author. Bob has been working in the
software industry for over 30 years and holds a patent in object relational
architecture and technology and is the author of Microservices, IoT, and
Azure, available from Apress.

Jeff Barnes is a Cloud Solution Architect on the Microsoft Partner
Enterprise Architect Team (PEAT), where he helps global Microsoft
partners with pre-sales Azure architecture technical support. Jeff has been
in the IT industry for over 30 years and has been with Microsoft for the last
(18+) years. During that time, he has held several key software architect
roles at Microsoft, including consulting, evangelism, and partner divisions.
Prior to Microsoft, Jeff worked for several Fortune 500 financial,
manufacturing, and retail companies. Jeff holds a Bachelor’s degree in
Management Information Systems from Florida State University and is the
author of Microsoft Azure Essentials: Azure Machine Learning by Microsoft
Press.

XV

About the Technical Reviewers

Alina Stanciu is a senior program manager of the Microsoft Azure IoT team,
where she drives deep engagements with Microsoft partners worldwide

to accelerate their migration path to Azure IoT services. Alina works

directly with customers and top-tier partners to get product feedback for
continuous innovation of the Azure IoT platform. Her support of the Azure
IoT community ranges from training, to workshops and hackathons, to
deep architectural reviews. She not only leads training sessions for internal
events, such as Microsoft MVP Summit, Microsoft TechReady, and Microsoft
C+E University, but she also participates in external events, such as the
Microsoft Worldwide Partner Conference or IoT Solutions World Congress.
Before joining the Azure IoT team, Alina worked for the Microsoft Cloud
Infrastructure Operations, where she delivered hyper-scale operations
management platform for Microsoft Data Centers.

Jim O’Neil has over 25 years of experience in the software industry,
spanning the disciplines of software prototyping, military and commercial
software development, technical support, and developer evangelism. Jim’s
current passion is the intersection of devices (mobile and IoT) with cloud
infrastructure, focusing on agility, scalability, and reliability. Jim joined
BlueMetal, an Insight Company, in January 2014 after six years in the
Microsoft Developer Evangelism organization where he hosted
workshops, hackathons, and conferences to bring new technologies to a
wide developer audience. In his spare time, Jim is the cofounder of New
England GiveCamp, an annual hackathon supporting non-profits in the
New England region; a perennial facilitator at National Junior Classical
League Conventions; and the de facto family genealogist.

xvii

Acknowledgments

We would like to thank Kevin Miller, Alina Stanciu, and Nayana Singh, for their guidance and support and
the Azure IoT engineering team, for their in-depth technical reviews and highly constructive feedback.

A warm and heartfelt thank you to Jim O’Neil for his thorough review covering both the technical
content as well as educating us on the proper use of the Oxford comma.

The following people, all members of the BlueMetal team, have been instrumental in making this book
possible through their support and technical expertise—Michael Griffin, Raheel Retiwalla, Ron Bokleman,
Mike Shir, Scott Jamison, Matt Jackson, Priya Gore, and Rich Woodbury.

A big thank you to the team at Apress for their awesome support and guidance on this journey.

Xix

Introduction

It is often said that change is the only constant in the modern business world. In fact, this idea has been with
us for centuries. In 1531, writing in his Discourses on Livy, Niccolo Machiavelli observed that, “Whosoever
desires constant success must change his conduct with the times.”

It is, in my view, too early for us to determine if the Internet of Things (IoT) will come to be seen as
the harbinger of another great evolution of human productivity, rivaling those spurred by the industrial
revolution in the 18th and 19th centuries, or by the move to computer automation and information
technology (IT) in the 20th. However, it is already clear that IoT is a disruptive technology, and with any
disruption comes both challenge and opportunity.

Like many advances in technology, IoT is a new name for a collection of ideas that have been
developing for many years. The central enabling technologies of IoT solutions—sensors, telemetry streams,
data storage and analysis, and system-level command and control—have existed for decades. Certainly, the
systems of the NASA space program in the mid-20th century were IoT systems without that name. What has
changed is that maturing technologies have been matched by dramatic economic changes, and together
these have increased capabilities while simultaneously driving down costs. Today IoT solutions can be built
which would have been economically infeasible only a short time ago.

At this point, the potential impact of IoT solutions includes most areas of human endeavor—industrial
systems; logistics and manufacturing; smart homes, buildings, and cities; autonomous vehicles; efficient
and personalized healthcare; tailored retail experiences; and many others, including systems that enrich
fans’ experiences in following their favorite sports figures. Bob and Jeff have been early practitioners of IoT
solutions in many of these areas, and what they have learned along the way informs and enriches this book.

IoT solutions typically connect devices, provide analysis of the data from those devices (usually paired
with data from other data repositories), and then operationalize the insights derived from that analysis
to act. That action could be sending command and control messages back to the connected devices, or
initiating workflows in existing business systems. Very often IoT solutions connect systems that have not
previously been connected, and machine learning on this newly visible data can create not only new
efficiencies in existing environments, but also transformed understanding of what is possible.

Many business leaders have adopted a “disrupt or be disrupted” approach to 10T, leveraging the deeper
understanding IoT solutions provide to lead a digital transformation of their organizations and position
them for future success.

At Microsoft, our ongoing goal for Azure IoT is to simplify the creation of solutions that provide
compelling customer value. This book explains how businesses can leverage our platform to realize their
own digital transformations.

In this book, Bob and Jeff illustrate how solutions come together across the landscape of devices,
sensors, device management, real-time analytics, and predictive analytics. They also provide a needed focus
on how to create actionable intelligence from the system, exposed in this case via mobile dashboards and
real-time text and e-mail alerts. They have created a cookbook for creating a complete solution based on a
wide variety of Azure platform services, and they share with the reader all the individual recipes that make
up the solution along the way. I'm delighted that they have chosen to share their expertise in this way.

April 2017 Kevin Miller
Principal Program Manager, Azure IoT
Microsoft Corporation

xxi

Chapter Overview

Chapter 1: Business in Real-Time

This chapter provides a business context for the technical topics covered in the book. What business
conditions are driving the need for real-time data? What is the impact on the organization if these new
mission-critical applications, big data stores and advanced analytics are deployed to the cloud? How will
they be managed and maintained? Is there a logical approach and a technology roadmap that will point
the way to a successful transformation to a real-time business? A principled approach and reference
architecture are introduced that provide the roadmap on how to design and implement a highly scalable,
secure IoT and advanced analytics SaaS solution on Azure.

Chapter 2: DevOps Using PowerShell, ARM, and VSTS

DevOps is best summed up as the union of people, process, and tools. It’s an alignment of the development
and operations teams, the automation of development, test, and release processes, and the selection of a
consistent set of tools used to facilitate automation of the build, test, and release cycles. The goal of adopting
a DevOps approach is to create a streamlined product development lifecycle that removes, to the greatest
degree possible, errors that are introduced through manual steps. This chapter details how you can use
Azure PowerShell, Azure Resource Manager (ARM) templates, and Visual Studio Team Services to automate
the provision, build, and deploy steps of Azure hosted services.

Chapter 3: Device Management Using loT Hub

Connecting people, places, and things to the cloud, while not trivial, may be one of the easier aspects of
IoT as the techniques and protocols are very well defined. The real work begins when you have thousands
of devices connected to the cloud and you need to manage the day-to-day operations of this extremely
distributed system. In addition to monitoring and managing the cloud services that are providing analytics,
storage, dashboards, alerts, and notifications, you also need to monitor and manage your beacons, devices,
and edge gateways. This chapter examines the Device Management features of Azure IoT Hub that support
command and control, device twin, and direct methods.

Chapter 4: Sensors, Devices, and Gateways

This chapter provides a glimpse into the world of sensors and devices. It touches on some of the more
common sensor and device scenarios that you will encounter and how they relate and work together to
create a consistent, reliable network of connected things. Patterns for the implementation of device firmware
are covered.

xxiii

http://dx.doi.org/10.1007/978-1-4842-2650-6_1
http://dx.doi.org/10.1007/978-1-4842-2650-6_2
http://dx.doi.org/10.1007/978-1-4842-2650-6_3
http://dx.doi.org/10.1007/978-1-4842-2650-6_4

CHAPTER OVERVIEW

Chapter 5: Real-Time Processing Using Azure Stream
Analytics

In this chapter, we examine the use of Microsoft Azure Streaming Analytics to create jobs to process our
incoming data streams from our various sensors, perform data transformations and enrichment, and finally,
provide output results in various data formats.

Chapter 6: Batch Processing with Data Factory and Data
Lake Store

In this chapter, we examine the use of Azure Data Factory and Azure Data Lake and where, why, and how
these technologies fit within the capabilities of a modern business running at Internet speed. We first cover
the basic technical aspects and capabilities of Azure Data Factory and Azure Data Lake. Following that, we
detail three major pieces of functionality for our reference implementation—how to leverage reference data
in our Stream analytics jobs, how to retrain an Azure machine learning model, and how to move to data from
Azure blob storage to Azure Data Lake.

Chapter 7: Advanced Analytics with Azure Data Lake
Analytics

The Data Lake analytics tools and capabilities help make it easier and more efficient to solve today’s modern
business analysis and reporting problems. It is more efficient because it offers virtually unlimited storage,
with immediate access to that storage for running analytical operations on top of it. Data Lake offers the
ability to persist the raw data in its native form and then run transformational and analytical jobs to create
new analysis, summarizations, and predictions across structured and unstructured data. This analysis is
always based on the original data. All this adds up to a “faster-time-to-value” for a modern business seeking
to maximize its true potential. In this chapter, we examine the use of Azure Data Lake Analytics (ADLA),
which is Microsoft’s new “big data” toolset that runs on top of Azure Data Lake.

Chapter 8: Advanced Analytics Using Machine Learning and R

We are truly living in exciting times as three major trends are converging in the IT industry today—big data
and the Internet of Things (IoT), cloud computing and cheap cloud-based storage, and business intelligence
capabilities. Some would say that the combination of these forces is helping to usher in the fourth Industrial
Revolution. It has been predicted that artificial intelligence (Al) and machine learning (ML) capabilities

will be incorporated into an ever-increasing number of platforms, applications, and software services as we
approach the next year. These new Al and ML capabilities will enable a new generation of business and it
professionals to take advantage of artificial intelligence and machine learning capabilities without having to
understand exactly how they work. In this chapter, we explore the exciting new world of machine learning
and predictive analytics using Azure Machine Learning and the R programming language.

XXiv

http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_6
http://dx.doi.org/10.1007/978-1-4842-2650-6_7
http://dx.doi.org/10.1007/978-1-4842-2650-6_8

CHAPTER OVERVIEW

Chapter 9: Data Visualizations, Alerts, and Notifications
with Power Bl

In this chapter, we explore the use of data visualizations, alerts, and notifications to help today’s modern
business provide useful communications to their employees and customers to successfully manage their
operations in real time. We start the chapter with a brief look at today’s modern reporting landscape, then
take a look at how Microsoft technologies like Power BI and Azure Functions can help provide quick and
easy solutions. We then demonstrate enabling these technologies as part of our reference implementation
scenario. We conclude the chapter by demonstrating the use of a C# .NET “SIMULATOR” application to
automatically generate thousands of sample test data transactions through our Azure Cloud applications.
The simulated data will be processed in real time using Azure Streaming Analytics. We also implement a
Power BI dashboard that provides outputs for our new Lambda cloud architecture. Lambda architectures
are designed to handle massive quantities of data by taking advantage of both batch and stream-processing
methods. Our new Power BI dashboard will display outputs for all three “temperatures” of the Lambda
architecture processing model and provide visualizations for our cold, warm, and hot data paths.

Chapter 10: Security and Identity

Cybercrime and IoT security have been front and center in the news this past year. Deploying an IoT solution
using public cloud platforms requires an understanding of the surface areas of vulnerability and the attack
vectors that cyber criminals might leverage to define your security strategy. Security is a not a solution; it is
an ongoing process that requires discipline and constant analysis, review, and action. Identity is all about
who can access your applications, APIs, and the underlying data that’s at the heart of your IoT solution. You
will want the ability to provide users some level of self-service for registration, password management, and
profile updates while maintaining restrictive protocols for application capabilities and access to data. This
chapter outlines a framework for analyzing potential threat vectors and the tools and protocols that Azure
provides to mitigate these threats. We also examine how to implement a multi-tenant application using
Azure Active Directory B2C.

Chapter 11: Epilogue

In this chapter, we reflect on each of the topics covered in the book and provide some advice on how you can
get started down the path to your digital transformation.

XXV

http://dx.doi.org/10.1007/978-1-4842-2650-6_9
http://dx.doi.org/10.1007/978-1-4842-2650-6_10
http://dx.doi.org/10.1007/978-1-4842-2650-6_11

CHAPTER 1

Business in Real-Time

Every business today is going through a digital transformation due to disruptive forces in the market, from
born-in-the-cloud competitors to the increasing demands of customers, partners, and employees to engage
through modern digital experiences. They are evolving from relying only on historical data to learning to
use both historical and real-time data to drive innovation, evolve business strategy, and automate critical
business processes.

As businesses evolve and transform to take advantage of real-time data, they will drive impact through
operational efficiencies as well as create new revenue opportunities. For example, a product manufacturer
can gather information about how their products in remote locations are performing and automate the
scheduling of field service engineers only as needed. Retail outlets can provide real-time inventory to drive
an Omni-channel shopping experience for their customers. Companies that have a need to increase worker
safety can track environmental conditions such as temperature, humidity, and wind speed along with
employee biometrics such as heart rate, body temperature, and breathing rate to be able to determine if an
employee’s physical condition would create a worker safety issue.

In each of these scenarios, companies are finding that to stay competitive, improve operational efficiencies,
and engage their customers more deeply, they must learn to leverage modern software development patterns
and practices. They are transforming to become Software-as-a-Service (SaaS) providers skilled in the dark arts
of data science and the Internet of Things (IoT). They are learning to create applications that connect people,
places, and things. They are providing real-time data visualization, alerts, and notifications. They are integrating
these connected products with existing line-of-business systems and providing seamless authentication for
customers, partners and employees through immersive, beautiful experiences that work on any device and are
available 24/7. They are transforming to become a Real-Time Business.

A Platform Approach

To maximize the investment in transforming to a Real-Time Business, it is necessary to increase reuse of
common business and technology capabilities. This is most effectively achieved by leveraging a platform
approach. A platform approach seeks to create a common underlying set of capabilities that are accessed
through managed APIs so that many verticalized applications can be built on this common substrate, as
depicted in Figure 1-1.

© Bob Familiar and Jeff Barnes 2017 1
B. Familiar and J. Barnes, Business in Real-Time Using Azure loT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_1

CHAPTER 1~ BUSINESS IN REAL-TIME

Operations Multi-Tenant FIEIdI\;Z;T:;'Oan Executive X-Factor
Dashboard Customer Portal e Dashboard Applications
Application

o

Modern Data Architecture Managed APls Security & Identity

loT & Advanced Analytics Platform

Figure 1-1. IoT and the Advanced Analytics Platform model

Regardless of vertical industry, there are a set of common, reusable components that you need to
operationalize an IoT solution. Once those capabilities are in place, a business can build many applications
that target different types of users and different vertical markets. One of the huge benefits of this approach is
that all the data from all those vertical markets ends up in a common advanced analytics sub-system where
cross-business insights can be drawn. These insights result in what we call X-Factor applications, those new
revenue opportunities that were undiscoverable due to the siloed nature of the previous business model.

Real-Time Business Platform

Transforming to a Real-Time Business requires an investment in people, process, and tools. To meet the
expectations of your customers and provide the business with a platform for driving impact at velocity,
anew approach is required in the design, development, and deployment of your software products.
Real-Time Business solutions are SaaS applications that support frequent release cycles, work on any device,
and provide a multi-tenant authentication scheme and secure access to the underlying information for
customers, partners, and employees.

A Real-Time Business implies that you are adopting the latest sensor, beacon, and smart device
technologies for connecting products, physical environments, and people to generate real-time data. It
implies that you are leveraging advanced analytics techniques such as stream processing, map reduce, and
machine learning to perform real-time analytics on the constant stream of data flowing into the system.
Through that analysis, you will be able to provide visual and system level alerts and notifications and high-
value data visualization for consumers of the information. In addition, you will be able to integrate with
existing lines of business systems to automate critical business processes.

As depicted in Figure 1-2, to be successful on this journey, organizations must apply a set of unwavering
principles that provide the guideposts and rules that are used to influence each product decision along the way.

CHAPTER 1 * BUSINESS IN REAL-TIME

o
oaa @ = Cp

Methodology Process Architecture Platform

Figure 1-2. Methodology, Process, Architecture, Platform

These principles include a well-defined software development methodology, a standard software
development process that includes not only development but also operations, the adoption of software
architecture patterns that provide scalability, elasticity, and agility, and a software platform that provides the
foundational services for modern software.

Methodology: Lean Engineering

Lean engineering has its root in manufacturing where the primary concept is to maximize customer

value while minimizing waste, i.e., creating more value for customers with fewer resources. Applied to the

software development lifecycle, the product team engages customers early in the development process

by operationalizing a minimal-viable-product (MVP) and asking for feedback. Using this approach, the

software product team can more easily adjust or even course-correct and thus increase product quality.
The lean engineering lifecycle, as depicted in Figure 1-3, is called Build-Measure-Learn and promotes

continuous delivery, continuous analytics, and continuous feedback.

Continuous Feedback Continuous Delivery

- Split Testing - Minimal-Viable-Product
- Surveys - Continuous Integration
- Interviews - Automation

Continuous Analytics
- Real-Time Monitoring
- Instrumentation
- Reporting

Figure 1-3. Lean engineering cycle

CHAPTER 1 * BUSINESS IN REAL-TIME

The Build phase represents the development and deployment activities; the Measure phase focuses on
monitoring and reporting on the health of the software; Learn is all about engaging the customer to gather
feedback that then is used to drive the next iteration of the product development lifecycle. The creation of
dashboards, either custom or provided by third-party tools, provide the real-time and historical analytics
from which you can derive insights quickly and steer the product development effort in the direction that
meets your customer’s needs.

Process: DevOps

The term DevOps is a mashup of development and operations. The mashup implies a deeper, more
collaborative relationship between development and operations organizations. The goal of that collaboration
is to define how people, process, and tools combine to automate a software development lifecycle.

DevOps, as depicted in Figure 1-4, implies the creation of cross-functional teams, combining
developers, testers, and architects along with operations who together own the entire deployment pipeline
from build through test to staging through to production.

o >
E0®

People Process Tools

Figure 1-4. DevOps framework

It requires that these teams work collaboratively to adopt common processes and tools. This simple
explanation has massive implications to an organization. It does not happen overnight and should be
approached in a phased manner using small teams that adopt the new methods and best practices and then
transition to become subject matter experts, transferring their knowledge to the rest of the staff.

CHAPTER 1 * BUSINESS IN REAL-TIME

Architecture: Microservices
The key attributes of microservices are:

e Autonomous and Isolated: Microservices are self-contained units of functionally with
loosely coupled dependencies on other services and are designed, developed, tested,
and released independently.

e Reusable, Fault Tolerant, and Responsive: Microservices must be able to scale
appropriately depending on the usage scenario. They must be fault-tolerant and
provide a reasonable timeframe for recovery if something does go awry. Finally, they
need to be responsive, providing reasonable performance given the execution scenario.

e Programmable: Microservices rely on APIs and data contracts to define how
interaction with the service is achieved. The API defines a set of network-visible
endpoints, and the data contract defines the structure of the message that is either
sent or returned.

e Configurable: Microservices are configurable. To be both reusable and able
to address the needs of each system that chooses to employ its capabilities, a
microservice must provide a means by which it can be appropriately molded to the
usage scenario.

e Automated: The lifecycle of a microservice should be fully automated, from design
all the way through deployment.

Microservice architecture has become a popular pattern in the development of highly scalable, fault-
tolerant Saa$ applications as it provides a more robust application architecture, supports a high velocity
release cycle, and places an emphasis on managed APIs as the means to access the underlying data,
analytics, and business operations. One of the benefits of this approach is that the APIs have the potential to
become a new revenue channel for the business.

Platform: Cloud

Modern applications require an infrastructure and software platform that can provide high availability, fault
tolerance, elastic scale, on-demand storage and compute, APIs, and tools to fully automate every interaction
with the platform. The cloud platforms must also provide the foundational building block services that span
IoT, big data, and predictive analytics.

Internet of Things (IoT) and Big Data

IoT is not new. The ability to connect devices to networks, gather telemetry, and display that information to
garner insight and act has been around for some time. NASA pioneered the concept of data being collected
by sensors and sent across space and time to be analyzed in near-real-time so that status could be visualized,
insights gleaned, and action taken in an emergency (see Figure 1-5).

CHAPTER 1 © BUSINESS IN REAL-TIME

Figure 1-5. Neil Armstrong (image credit NASA)

NASA’s Mission Control, seen in Figure 1-6, consisted of hundreds of people, each with his own
collection of monitors providing data visualization of key metrics coming from the command module or an
astronaut’s suit. That data was an immediate measure of mission status and safety. Truly amazing when you
think about what that organization accomplished given the state of technology at the time.

CHAPTER 1 * BUSINESS IN REAL-TIME

Figure 1-6. NASA's Mission Control (image credit NASA)

The Tipping Point

The one thing that NASA had that made them unique was a budget. Billions of dollars enabled NASA to put
humans on the moon and, in the process, define IoT for the rest of us.

It is not likely that you have a NASA-sized budget, but you are in luck. It is no longer necessary to break
the bank to IoT-enable your products and connect them to the cloud to gather telemetry, transform and
store the data, gather insight, and act. Sensors and miniature microprocessor boards are inexpensive and
getting cheaper and more powerful all the time. The ability to develop the code to gather sensor readings,
connect to a secure cloud endpoint, and send messages has never been easier.

What is driving this thirst for IoT is data. This data will reveal the quality of the product and how it is
used by customers, as well as give you the ability to calculate mean time to failure for its components and
provide immediate business value through the automation of scheduled preventive maintenance. Using
predictive and prescriptive analytics, you can provide an enhanced customer experience, increase product
quality, and create a competitive advantage.

Big Data

What you learn very quickly with IoT is that once you have sensor-enabled people, places, and things, then it
becomes all about the data. There are approximately 2 billion PCs on the planet in 2017 and about 10 billion
mobile devices. By 2020, it is projected there will be over 50 billion connected devices driving Exabytes of
data into the cloud.

How are we going to be able to ingest, transform, store, and analyze this data, and even more
importantly, how are going to query and visualize the data so that we can quickly draw insights and act? We
need to learn new skills and leverage new cloud capabilities to deal with this influx of massive amounts data.

CHAPTER 1 © BUSINESS IN REAL-TIME

Advanced Analytics

If data is the ore, then knowledge is the gold. One of the goals of collecting all this data is to be able to mine
insight from real-time data visualizations that improve business value and automate critical business
processes. A typical IoT data processing pattern is to set up cold, warm, and hot path routes for the data
where the cold path provides long-term storage, the warm path provides storage for real-time dashboards,
fast batch and slow batch processing, and the hot path delivers the messages via a queue to a microservice
that provides real-time notification services for alerts and alarms.

Predictive analytics is a popular choice for real-time solutions because it is a data-mining process
focused on predicting a future state. Data models are created from historical or sample data. These models
are used along with statistical algorithms to examine real-time data streams and make a prediction.
Manufacturing companies can use predictive analytics to determine when component parts of their
products are about to fail and use that to automate the process of scheduling a field service engineer to visit
and perform maintenance. A medical clinic may use predictive analytics to examine genomic data to see if a
population is predestined for a medical condition. A retail outlet may use this approach applied to real-time
inventory levels to predict when it will run out of a popular product.

Real-Time Business Reference Architecture

To realize the benefits a Real-Time Business solution requires a set of business and technical capabilities that
define the process by which you ingest device events, perform advanced analytics, gather insight, and act.

The business will need to develop a model that demonstrates how processes will be improved to reduce
cost and what new revenue channels will be identified and leveraged to increase profit. For example, a
manufacturer can reduce costs by only sending field technicians to perform maintenance when needed.
That same manufacturer may find that they can offer more flexible service contracts and thus increase sales
and monthly service contract revenue.

A product development team who is responsible for supporting this new business model will need
areference architecture that provides a roadmap for how they can construct a real-time system from
connected devices and cloud services.

Figure 1-7 depicts a reference architecture for Real-Time Business. Each component of the architecture
represents the combination of foundational cloud services for implementing a real-time data pipeline,
advanced analytics, big data storage, APIs, and the supporting automation scripts and security protocols.
Together these components provide the technical capabilities of a Real-Time Business platform.

CHAPTER 1 * BUSINESS IN REAL-TIME

On-premises Cloud
L : = \ /

. . : ¢ N ~ -
i e NS

| @9 o= Q%

. . Stream Advanced Microservices Visualization,

1 ! : \ ¢ Alerts &

Devices Device Hub Processing Analytics & API Gateway NSRS cL.

Data Management, Storage & 6 8

S dentity

'\\
Automation Q’:@

Security

Figure 1-7. Real-Time Business reference architecture

Devices

Each IoT scenario requires analysis and strategy on how best to sensor-enable the product, the environment,
or the people to efficiently and securely gather the data needed to drive the business case. This may involve
RFID tags for location and product identification; environmental sensors for temperature, humidity, or
wind speed; mechanical sensors for tracking gear revolutions or hydraulic pump iterations; or in the case of
people, biometric sensors for heart rate, skin temperature, or blood glucose.

In addition to the sensors, you will need devices with an embedded operating system such as Linux or
Windows 10 IoT, to host the code that manages the connectivity to sensors and the physical environments
in which the device is deployed, secure connectivity via wired, wireless and/or cellular network, secure
authentication to the cloud, device-to-cloud messaging such as heartbeat and telemetry, and cloud-to-device
messaging for command and control and device management. Advanced scenarios may add analytics,
filtering, business rules and alerts, and notification at the edge. The device will also participate in the device-
management protocols for managing device state, firmware upgrades, and other remote control operations.

Device Hub

A device hub is a cloud-hosted service that provides secure device connectivity, telemetry ingestion,

and remote command and control. This service should provide these capabilities at scale so that, as the
number of connected devices grows, the service never fails. This service may provide a transient store for
all incoming messages. This transient store allows real-time analytics of the message events, analysis of
messages over short periods of time, as well as the ability to go back in time to reassess the events.

CHAPTER 1 © BUSINESS IN REAL-TIME

Device management is typically incorporated into the device hub service. Device management provides
the ability to register devices using their unique identifier such as serial number. Once registered, the device will
be able to connect securely to the device hub for communication purposes. Device management may leverage
the concept of a device twin, which is a digital representation of the state of the device kept synchronized with
physical devices. The device twin provides the ability to synchronize property values of the device in the cloud
with the devices in the field, essentially performing desired state configuration (DSC) at scale.

Stream Processing

Stream processing is a cloud-hosted service that provides real-time analytics on incoming telemetry. The
service allows you to query across the incoming messages in real time, select messages of a certain type
or that contain certain values, apply aggregation and calculations over time (windowing), transform the
messages, identify alarm conditions, and then act on the result of the analytics. In most cases, this service
routes the resulting message to a storage location, API, or message queue for further processing.

Data Management, Storage, and Messaging

To get the most out of the real-time data now coursing through the cloud, you will want to provide various
types of storage and data management, each optimized for the next step in the data processing pipeline.

e Blob Storage: Blob storage is typically used for event archival.

e Store and Forward Messaging: To provide integration with event-driven
microservices or on-premises line-of-business systems, queues and pub/sub
mechanisms provide loosely coupled messaging.

¢ NoSQL and Relational Databases: For time-based query capabilities and integration
with traditional applications and modern dashboards, you can leverage relational or
NoSQL storage services.

e Data Lake: A Hadoop Distributed File System (HDFS) that provides big data storage
and cross-language query access and can be used with advanced analytics engines.

e Extract, Transform, and Load: You may look to use an ETL service to perform data
integration and transformation operations.

Advanced Analytics

Advanced analytics is a catch phrase for all the possible big data analytics you may look to perform on

your real-time data. This may involve combining the real-time data with historical and reference data and
leveraging the distributed query capabilities of a Hadoop engine, using ETL tools to integrate into a data
warehouse or train a predictive model to automate preventive maintenance. It is also possible to use the
latest advances in Azure Cognitive APIs and artificial intelligence bots along with this real-time data to create
new immersive, conversational experiences for your customers.

Microservices and API Gateways

A microservice provides a business or platform capability through a well-defined API, data contract,
configuration, and an underlying data storage necessary to function. It provides this function and only
this function. It does one thing and it does it well. Microservices represent business capabilities defined

10

CHAPTER 1 * BUSINESS IN REAL-TIME

using domain-driven design, implemented using object-oriented best practices, tested at each step in the
deployment pipeline, and deployed through automation as autonomous, isolated, highly scalable, resilient
services in a distributed cloud infrastructure. An IoT solution may have three types of microservices:

e Transactional: Transactional microservices are responsible for writing messages to
an appropriate store.

e FEvent Driven: Event-driven microservices listen on message queues and act on the
event of a message arriving on the queue. These microservices are typically used
to drive alert and notification business processes or integrate with other lines of
business systems that require special message handling.

e API Contracts: These microservices leverage ReST endpoints and JSON data models
and provide the cross-cutting concerns and business capabilities that you want
exposed to any consuming application.

API gateways provide secure API proxies that wrap your ReST APIs, organize APIs into products, provide
restricted access to API products via the definition of developer groups, provide a subscription capability,
provide policy injection, throttling, quotas, etc., and provide analytics at the product, API, and operation
levels. API gateways provide the ability to segregate your APIs into private, semi-private (partner access), or
public access and then monetize the APIs to create a new revenue channel.

Visualization, Alerts, and Notifications

Now that you can ingest, analyze, and store your real-time data, you will want to create customer-, partner-,
and employee-facing applications that provide impactful data visualizations, visual and device-centric alerts
and notifications using your APIs and event-driven microservices. You may leverage third-party services
such as Twilio and Send Grid to provide text, voice, and e-mail notifications. In addition, you may look to use
cloud-hosted mobile notification services for real-time updates on mobile devices.

Identity

You will want to provide access to the applications you create to your customers, partners, and employees.
The identify service provides a single sign-on or a multi-tenant authentication and authorization
mechanism such that the person logging into your application can only see the data and application
functionality that their role provides. The identity service can provide these features in both a Business-
to-Consumer (B2C) and Business-to-Business (B2B) model, including integration with your company’s
directory services.

Automation

Designing, developing, deploying, and operationalizing an IoT solution requires the adoption of an
automated approach to the software product lifecycle. The popular term for this today is DevOps. DevOps
implies that you are organized into a software product team model that places an emphasis on product
quality as the code moves through an automated deployment pipeline. The team has a well-defined process
and uses a set of tools to automate its work, reducing errors and improving quality. The team leverages the
cloud platform to automate the provisioning of cloud infrastructure, performing build, test, and release
management, and the monitoring and gathering of runtime health metrics.

11

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © BUSINESS IN REAL-TIME

Security

IoT solutions have four security zones; local, device, cloud gateway, and cloud service. The local zone is the
physical environment that the device is deployed into. The device zone represents the IoT device, how it is
configured with the local zone and its internal workings, the operating system and applications. The cloud
gateway zone represents the public facing endpoints that devices connect and communicate with. Finally,
the cloud service zone provides access to the incoming messages to internal cloud-hosted services that
provide data ingestion, stream processing, storage, advanced analytics, and application integration.

Here are a few things to keep in mind with respect to securing an IoT and advanced analytics solution:

e Secure the wired/wireless network that your devices are running on.

e Make sure the embedded operating systems that are running your devices are up to
date and remotely patchable through an automated firmware upgrade process.

e Use TLS to secure the connection from the smart device and/or edge gateway to the
cloud.

e Encrypt messages at rest and in fight.

e Make sure your public cloud endpoints are secured using SSL and you are using
some form of authentication and authorization such as Basic, OAuth, managed
certificates, or Shared Access Policies.

e Leverage an identify service for access to your applications.

e Leverage a key management service to provide governance and limited secure
access to your certificates.

Microsoft Azure loT and Cortana Intelligence Suite

Microsoft provides a feature-rich and complete set of IoT and advanced analytics resources on which you
can build your Real-Time Business platform. For each of the capabilities in the reference architecture, there
are one or more Azure services that provide that function through a scalable, configurable finished service.
The key is knowing how to bring them all together using a combination of code, configuration, and best
practices (see Figure 1-8).

12

CHAPTER 1 * BUSINESS IN REAL-TIME

On-premises Cloud
. p > I 1r 'i
L S & G- 27 Dy
| ¢ @ == — -/ L
L L] Machine Learning APl Management App Services Xamal'in
!\ Linux 10T Hub & Stream Analytics & HDInsight A.]-' rj
- loT Suite dab spa ﬁ:{ < > ,J}.—-l! 'll'

PowerBl Notification

Cognitive APIs & Functions AP| Apps Hub
St Spark
. " ream - Microservices & AFI Visualization, Alerts &
Devices Device Hub Processing Advanced Analytics intiieny etk
- —— o '!? _. —— / :9.\\,
3} [b | - W\
B @ L l W
SQLDB DocDB Service Bus Blob Data Factory Data Lake Azure.AD

Automation M ?

Visual Studic Team Services PowerShell App Insights

s o Security E © O

AMOF, MQTT, HTTPS Managed Certs 55LEnd Points Key Vault

Figure 1-8. Reference architecture and Azure mapping

Automation

Azure provides complete support for a continuous integration and continuous delivery process using
PowerShell, Azure Resource Manager (ARM) Templates, and Visual Studio Team Services (VSTS). Open
source and third-party tools are also supported providing a rich and diverse ecosystem of automation tools
and utilities regardless of your choice of operating system or programming language. See Chapter 2 for more
detail on automation using PowerShell, ARM Templates, and VSTS.

Security and Identity

Security is a key concern with any distributed system and with the introduction of devices, sensors, beacons,
edge gateways, and new networking protocols, we must be diligent in defining the security threats to the
system and design the solution from the start with security in mind. Azure provides foundational services for
self-service managing of end user’s identity that, combined with a model for subscription management and
customer and organization identification, you can provide create a seamless experience for your customers,
partners, and employees. See Chapter 10 for details on security and identity using Azure AD B2C.

Devices

Microsoft provides the IoT Gateway SDK, an open source, cross-platform library that provides the
infrastructure and plug-and-play modules to create IoT gateway solutions. Using the SDK, you can develop
applications that enable devices to communicate with Azure IoT Hub. The SDK provides a collection of
modules that can perform operations such as message aggregation and transformation, mathematical
analytics, local storage, local alerts and notification, and so on. The modules communicate in a pipeline
fashion and pass messages along via a message broker. You can extend the SDK by developing your own
modules. See Chapter 4 for details on devices.

13

http://dx.doi.org/10.1007/978-1-4842-2650-6_2
http://dx.doi.org/10.1007/978-1-4842-2650-6_10
http://dx.doi.org/10.1007/978-1-4842-2650-6_4

CHAPTER 1 © BUSINESS IN REAL-TIME

Device Hub

IoT Hub is the Azure service that provides device registration, device management, telemetry ingestion,

and command and control. IoT Hub provides reliable device-to-cloud and cloud-to-device messaging at
scale, enables secure communications using per-device security credentials and authentication, includes
extensive monitoring of device connectivity and properties through the device twin, and provides access via
a set of language-specific SDKs including C, C#, Java, Node, and Python. See Chapter 3 for coverage of Azure
IoT Hub and device management.

Stream Processing

On Azure, this capability is called Azure Stream Analytics or ASA. ASA lets you rapidly develop and deploy
small grained microservices that define inputs, outputs, and a query that selects subsets of messages for
analytical processing. The analytical processing can leverage windowing, aggregating messages over time,
application of rules against values in the messages, and external calls to Azure Functions or Machine
Learning APIs to determine where to route the message for the step in the data analytics pipeline. Chapter 5
covers Stream Analytics in detail.

Data Management, Storage, and Messaging

There are many storage options on Azure including but not limited to blob storage, SQL Database, Cosmos DB,
and Data Lake, a Hadoop Distributed File System as a service capability that allows you to manage large volumes
of data and file sizes in the petabyte range. Azure provides Data Factory for performing ETL operations on data
that is stored in Azure or moving in and out of on-premises storage locations. And finally, Azure provides Service
Bus for store and forward messaging, pub/sub scenarios, and high-volume data ingestions using Event Hubs.
See Chapters 6 and 7 for details on Data Factory and Data Lake.

Advanced Analytics

Azure provides a rich set of fully managed analytics capabilities including HDInsight, Microsoft’'s Hadoop

as a Service, machine learning for predictive analytics, and Data Lake analytics for large-scale distributed
analytics that leverage Yarn and U-SQL. Microsoft also provides a set of cognitive APIs that provide advanced
machine learning intelligence for language understanding, facial recognition, sentiment analytics, and
more. See Chapter 8 for coverage of Azure Machine Learning and the R programming language.

Microservices and API Gateway

As you build out your solution on Azure and its foundational services, you will want to leverage a
microservice architecture to optimize your use of the on-demand features of Azure and to be able to support
a continuous delivery development pipeline and high-velocity release cycle. You have several choices in
how you package and deploy your microservices on Azure including App Services, Service Fabric, Azure
Container Services (ACS), and Docker.

For those microservices that expose ReST APIs, Azure provides API Management to publish your APIs
using the subscription model for both internal as well as external developers. They can apply policies,
gather statistics, and provide security to protect them from abuse. Chapter 2 provides details on Azure API
Management.

14

http://dx.doi.org/10.1007/978-1-4842-2650-6_3
http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_6
http://dx.doi.org/10.1007/978-1-4842-2650-6_7
http://dx.doi.org/10.1007/978-1-4842-2650-6_8
http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 1 * BUSINESS IN REAL-TIME

Visualization, Alerts, and Notifications

A key feature of Real-Time Business solutions is the real-time data visualization provided through self-
updating dashboards, alerts, and notifications that are provided through dashboards and mobile devices as
well as through system integration, which could include cloud-hosted applications such as Dynamics CRM
and on-premises line-of-business applications such as SAP.

There are a myriad of technologies that allow you to create these types of user experiences, from
responsive web using Node.JS, Angular.JS, D3, and other popular JavaScript libraries to native or cross-
platform mobile frameworks such as Xamarin and off-the-shelf data visualization products like PowerBI.
Chapter 9 demonstrates how to implement alerts and notifications using Azure functions and data
visualization using PowerBI.

Worker Health and Safety: A Reference Implementation

As you navigate through the chapters of this book, we will cover each of components in the reference
architecture. We have provided a reference implementation to demonstrate the patterns and practices
leveraging Azure IoT and Cortana Intelligence Suite. The solution is called Worker Health and Safety. The
repository has been designed to support a linear progression through the book as each chapter builds on the
previous chapters.

To follow along with the exercises in this book, you need an Azure account. Be aware that, by following
the exercises, you will incur a cost for the Azure services that you provision and run.

Note You can sign up for an Azure account by visiting http://azure.net.

Backstory

The solution scenario is that you provide a SaaS solution that allows your customers to connect their
employees who work in dangerous conditions using sensor-enabled clothing and wearables. The sensors
provide a rich set of biometric data that is collected in real time and is used to feed a predictive analytics
engine that will raise alerts before an employee reaches a level of exhaustion or stress.

Three fictitious companies have been defined that present your customers. Each company has 15
employees who are being monitored.

e WigiTech: A technology firm that wants to monitor factory floor employees who work
in dangerous conditions

e Tall Towers: A utilities service company whose employees perform maintenance on
communications towers that sit atop skyscrapers

e The Complicated Badger: A trucking company that specializes in moving heavy
equipment in and out of mining and logging sites wants to monitor their employees
to make sure they are fit to handle to the difficult driving conditions

Solution Architecture
The solution architecture is best depicted as three cooperating sub-systems (see Figures 1-9, 1-10, and 1-11):

e JoT Sub-System: The services necessary to provide device connectivity, two-way
communication, and device management

15

http://dx.doi.org/10.1007/978-1-4842-2650-6_9
http://azure.net/

CHAPTER 1~ BUSINESS IN REAL-TIME

e Analytics Sub-System: The services necessary to perform real-time analytics and
event routing, big data storage and data management, and predictive analytics

e Application Services Sub-System: The services necessary to provide secure access
to applications, APIs, and the underlying data as well as the tools that provide
automation for provision, build, test, deployment, and monitoring

Local Device Zone Cloud Gateway Zone

Azpire
Active Qirectory

Authenticate & Authorize

Opeftions
Dashpoard
Call Device API
Devices
¢ =3 el
; Pﬂ_—ca" Device AP . Device .m—pl'_&ji {1
(5 [yl j
APl Management Devige APl Manifest
&1 Command & Control
AR} M > -+ Device Twin
L Direct Methods
loT Hub

]
I
I
I
1
I
I
]
1
I
I
]
]
]
L
]
I
I
]
I
I
]
]
I
]
I
]
I
I
]
I
I
I
]
! Stream Analytics
I

1

|

loT Sub-System

Figure 1-9. IoT sub-system

16

CHAPTER 1 * BUSINESS IN REAL-TIME

Cloud Services Zone — Data Pipeline and Storage and Analytics

—&)

Agure S0L
database WigiTech
f—
S - Roadk L
a—Y Le—7 | - N
ASA Cold Path Blob Storage Data Factory . Aaure SOL
Data Lake Store kb dotabase Toll Towers
Train Model
\\‘;fj‘.‘\ e N A 20 el L |
& e,
ASA Wikm Path Telemetry Azure SQL
A database The Complicated
Badger

Machine Learning

Operationalize
Reference Data Machine Learning
Moadel
(&l |
Predictive
Analytics APl

<Y i :Q\t},

ASA Hot Path Notification
Message
Backplane

Analytics Sub-System

Figure 1-10. Analytics sub-system

17

CHAPTER 1~ BUSINESS IN REAL-TIME

I Cloud Services Zone = APIs and Applications

B &8 & B B B O

|U[;.L.|J:’L-\‘,.Ji,-.y-> Manifest Alarms Subscription Organization Profile Entity Dataset Configuration

wwrigg.gwwwww
1

(e [s |yl Gl G

Telemliry AP Delice Motifilation Acclunt Custhmer Heglstry Refolence Simifation Appligation
Al APl AP APl AP AP il
SendGrid /L\
Sore Nosation - @

¥ \9_3 -+ -
APl Management Multi fenant
Poftal
Ernail Al Authenticate & Authorize

Notiflation

Fundtion
bearibe to notficat G

Twilio Subscribe Azure
Active Directory

MNotification I
Message Visual Studio Team

Backplane Services
DevOps Automation

[l
T NS / Voice Alert by
'

®

Application Sub-System

Figure 1-11. Application services sub-system

Downloading the Repository

If you would like to leverage the hands-on exercises in each of the chapters, we have provided a reference
implementation code repository as a starting point. The repository is located here:

https://github.com/brtbook/brt

Clone the repository to your local environment. The exercises in Chapter 2 will detail the setup and
configuration of your development environment. Note that an Azure subscription is required and that you
will incur costs for the services that you provision in your Azure environment.

18

https://github.com/brtbook/brt
http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 1 * BUSINESS IN REAL-TIME

Summary

In this chapter, we introduced the concept of a Real-Time Business, the challenges as well as the benefits.
We provided an overview of the core tenants of modern software development, lean engineering, DevOps,
microservices, and the cloud.

We introduced the Real-Time Business reference architecture, which provides a roadmap for how you
can design a highly scalable SaaS IoT and advanced analytics solution. Finally, we mapped the reference
architecture to the foundational resources on Azure that we will need to bring our solution to market at
velocity.

Each subsequent chapter will cover an area of the reference architecture along with the relevant Azure
services that map to that area. We will use the reference implementation for Worker Health and Safety to
demonstrate the patterns and practices.

19

CHAPTER 2

DevOps Using PowerShell, ARM,
and VSTS

DevOps is best summed up as the union of people, processes, and tools (see Figure 2-1), an alignment of
the development and operations teams, the automation of development, test and release processes and the
selection of a consistent set of tools to facilitate automating the provision, build, test and release cycles. The
goal of adopting a DevOps approach is to create a streamlined product development lifecycle that removes,
to the greatest degree possible, errors that are introduced through manual steps, i.e., errors introduced
through human error.

Figure 2-1. DevOps framework

© Bob Familiar and Jeff Barnes 2017 21
B. Familiar and J. Barnes, Business in Real-Time Using Azure loT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_2

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Through a combination of empirical studies and firsthand experience, software professionals
have come to realize that small, cross-functional teams are optimal for the creation of modern software
applications. Lean Engineering, Agile, Scrum, et al. have grown in popularity to fill the methodology and
process void, and the tools have evolved to promote automation to a first-class citizen in the engineering
domain.

Every organization must find its own path to DevOps. How a company measures success will differ
based on where they are experiencing the most pain. The metrics used to measure success therefore will be
different for each organization. Some common metrics include more frequent deployments, faster recovery
from failures, lower failure rates and time to market. Determining the metrics that are most important to
your organization will require some self-reflection and collaboration between all the teams that would be
affected by the inherent change.

People

When introducing DevOps into your organization, the people aspect can be the most challenging.
Introducing impactful change into an organization is difficult without the support from leadership and
buy-in from the engineering staff. To facilitate this change, your company may need to introduce new
organizational structures and new teaming models, breaking down the walls between development and
operations. The engineering staff may need to learn new skills, change their daily habits, and learn to work
more collaboratively. You may need to hire new skills, retrain staff, and, my favorite, hire professional
services firms to assist in these transitions.

Process

Process is defined as a series of actions or steps taken to achieve an outcome. The goal in having a well-
defined product development lifecycle is to deliver high quality, valuable software in an efficient, fast, and
reliable manner, enabling a frequent release cycle that delivers on business and customer desires.

There are three key stages to a DevOps process—Infrastructure as Code, Continuous Integration, and
Continuous Delivery—as shown in Figure 2-2.

22

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Provision, Configure
& Report

Package, Deploy &
Monitor

Continuous Infrastructure
Delivery as Code

Continuous
Integration

Build, Test & Report

Figure 2-2. DevOps process

Infrastructure as Code

Infrastructure as Code is the process of defining Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service
(PaaS) configurations consisting of networks, virtual machines, and software services using templates and
then orchestrating their creation via automation scripts and utilities. Using this approach, it is possible to
instantiate and configure all the compute, storage, and software services needed for sophisticated, on-
demand distributed systems.

Continuous Integration

Continuous integration is the process by which code is developed and checked in to the source code
repository triggering an automatic run of unit and functional tests. If tests fail, developers are informed
through the automation of work items that are added to their individual backlog.

Continuous integration provides fast feedback to developers on the quality of their code. Code is only
accepted into the master branch if it passes through these quality checks. If the build fails, fixing the build
becomes the highest priority. This process should be running “continuously,” hence the name, as this
process lays the foundation for continuous delivery, making sure that the current software build is stable and
deployable throughout its lifecycle.

23

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Continuous Delivery

Continuous delivery is the process by which software is packaged and deployed into the cloud environment.
It is critical that if there is ever any issue with these steps, fixing it takes priority over delivering new product
features. The steps that a continuous delivery process would be responsible for are:

e Packaging: The process by which software is packaged for deployment. This can be
as simple as creating a ZIP file that used by the deployment process to use container
technologies such as Docker and Azure Container Services.

e Deployment: The process by which the packaged software is deployed to the cloud.
This may involve copying packages or container images on-premises to the cloud or
from one cloud location to another.

e Monitoring: The process by which the team can monitor the running software to
determine that the deployment is healthy and functional.

Since we are leveraging Azure to host this solution, we can use Azure to provision on-demand
infrastructure for building, testing, packaging, and deploying the software.

Tools

An entire industry has grown up around continuous integration and continuous delivery. There is a myriad
of products and tools both from independent software vendors as well as the open source community.
These tools provide capabilities across the entire software product development lifecycle including source
code management, building automation, testing frameworks and testing automation, project management
tools, bug tracking, Integrated Development Environments (IDEs), packaging and deployment process
automation, desired state configuration, and the list goes on.

Your choice of tools will depend on your development frameworks, cloud platform, language skills
and likely existing investments in tooling by your company. To increase the quality of your continuous
integration and continuous delivery processes, tool integration will be a major factor. The recommendation
is to focus on how each of the frameworks, languages, automation tools and platforms you use allows you
to eliminate manual steps and provide reporting and visibility into the health of your build and runtime
environments.

DevOps and Azure

Azure provides a rich set of SDKs, APIs, tools, frameworks, and command-line utilities for managing Azure
resources and defining and managing your continuous integration and continuous delivery processes. Azure
has evolved to provide not only support for Microsoft’s traditional development tools and languages, i.e.
Visual Studio, .NET Framework, and C#, but also provides full support for teams that want to leverage *nix,
Java, node.js, Docker, Jenkins, Octopus, Chef, Puppet, Jira, CA Rally or just about any other open source or
ISV Continuous Integration/Continuous Deliver (CICD) product. Whether you develop in .NET, Java, Ruby,
Python, PHP or Node, the same level of capability is available for creating an automated continuous delivery
process.

It would be impossible to cover all the possible combinations, so for our purposes, we will focus on
using PowerShell and Visual Studio Team Services along with Azure Resource Manager Templates to
implement a fully automated CICD process that provides the provisioning, build, and deploy steps for our
solution.

24

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

PowerShell

Windows PowerShell is an object-oriented task automation and configuration management framework
from Microsoft consisting of a command-line shell and associated scripting language built on the .NET
Framework. PowerShell has been migrated to .NET Core and has been open sourced as of August 2016,
making it a viable automation tool on Mac and Linux.

The PowerShell Console (see Figure 2-3) is the command-line utility that you can use to execute
PowerShell scripts. When using PowerShell to administer Azure from a desktop, it is recommended that you
run this utility as an administrator.

- a *
microservices
models
scripts
utils

2 2581 .gitattributes
2016 3663 .gitignore
-a=-=== 0/2016 127 init.cmd
a 8/2816 81 init.psi
16/20/2016 1244 nuget.config
PS C:\users\bob\source\repos\whx> $PSVersionTable
Name Value
PSVersion 5.1.14393.266
PSEdition Desktop
PSCompatibleVersions { 2
BuildVe n
CLRVersion 4.8.38319.42000
WSManStackVersion 3.8
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.8.1
PS C:\users\bob\source\repos\whx> -

Figure 2-3. PowerShell Console

Tip Pin this utility to your taskbar, bring up the Property dialog box for the application, and click on the
Advanced Properties button. On the Advanced Properties dialog box, check Run as Administrator (see Figure 2-4).

25

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Y windc
Colors Security Details Previous Versions . - L N
m— Shortcut Optiona Fom e Advanced Properties
q Windows FowerShell -
L Choose the advanced properties you want for this shortcut.

Targettype: Application

Target location: v1.0 -
Run as administrator

Target: stem i i1 0p exe
This option allows you to run this shortcut as an administrator,
Start in: %HOMEDRIVE%%HOMEPATH% while protecting your computer from unauthorized activity.

Shortcut key: | None

Fun: Ll - Run in separate memory space
Comment: Performs object-based (command-line) functions
Open File Location Change lcen... Advanced...
0K Cancel
oK Cancel Apply

Figure 2-4. Configure to run as administrator

To develop PowerShell scripts, you can use Visual Studio, Visual Studio Code (see Figure 2-5) or your
favorite text editor. Visual Studio Code is a cross-platform tool that provides syntax coloring, Git integration,
and debugging support for PowerShell as well as other programming languages such as Node.js. For running
PowerShell scripts, it is recommended to use the PowerShell console.

26

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

01 Provition. SharedSenvicespat - bet - Vieusl Stscho Code - =] b4
Fle fdt View Go Help

LnGh Col 23 Spaces:d UTES CRIF Powershell @

Figure 2-5. Visual Studio Code

Script Constructs

The PowerShell scripts provided in the accompanying Git repo uses a few standard PowerShell techniques.
The first technique is that most scripts will take a standard set of input parameters so that they are reusable.
At the top of each script, there is a param section that defines five standard parameters:

param(
[string]$Subscription, # Azure subscription
[string]$ResourceGroup, # resource group
[string]$Azurelocation, # region, i.e. East US, Japan
[string]$Prefix, # the prefix for naming services
[string]$Suffix # the suffix for naming services

Here is an example of passing these parameters to a script from the command line:

PS C:\> .\somescript.psi
-subscription bobs-azure
-resourcegroup devool
-azurelocation "East US"
-prefix bob
-suffix dev

The PowerShell scripts reside in the code repository. At times the scripts will need to reference files
located in the repository. To reference files throughout the repository, the the current path location is
captured and then used to construct paths to other files.

27

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

$Path
$Path

Split-Path -parent $PSCommandPath
Split-Path -parent $Path

A PowerShell variable is a name that starts with $. To declare a variable, you use this syntax:

$storageAccountName = $Prefix + "blobstorage" + $Suffix
$storageAccountType = "Standard LRS"

Note the use of the $Prefix and $Suffix common parameters. These parameters are used to make
sure unique names are created for each of the Azure resources. At the start of each script, the error cache is
cleared and the start time is recorded so the runtime of the script can be calculated and reported at the end
of the script.

$Error.Clear()

Mark the start time.
$StartTime = Get-Date

$ErrorActionPreference = "Stop"

Mark the finish time.
$FinishTime = Get-Date

#Console output
$TotalTime = ($FinishTime - $StartTime).TotalSeconds
Write-Verbose -Message "Elapse Time (Seconds): $TotalTime" -Verbose

Azure PowerShell

Azure PowerShell is a scripting environment that you can use to control and automate the creation,
configuration, and management of Azure resources as well as your custom code and configuration in
Azure. Azure PowerShell provides cmdlets (PowerShell commands) that encapsulate Azure’s ReST APIs.
To configure the Azure PowerShell environment, download and run the Azure SDK installation.

Tip Toinstall PowerShell and the Azure PowerShell extensions, visit https://azure.microsoft.com/
en-us/downloads.

After installation is complete, run the PowerShell console as administrator and execute the following
commands.

PS C:\> Set-ExecutionPolicy Unrestricted

28

https://azure.microsoft.com/en-us/downloads
https://azure.microsoft.com/en-us/downloads

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Install the Azure Resource Manager Modules:

PS C:\> Install-Module AzureRM
PS C:\> Import-Module AzureRM

Install the Azure Classic Modules:

PS C:\> Install-Module Azure
PS C:\> Import-Module Azure

Invoking Azure Cmdlets

Azure PowerShell cmdlets wrap the Azure ReST APIs and make it straightforward to apply Azure Resource
Manager (ARM) templates and invoke commands to configure and manage existing services. Azure
Resource Templates are covered in more detail later in this chapter. For example, to select an Azure
subscription, you would use the Set-AzureRmContext cmdlet:

Set-AzureRmContext -SubscriptionName $Subscription;
This next bit of code will check to see if a resource group exists, and if it does not exist, it will create it:

$rg = Get-AzureRmResourceGroup
-Name $ResourceGroup
-ErrorAction SilentlyContinue

if(1$rg)
{

New-AzureRmResourceGroup
-Name $ResourceGroup
-Location $Azurelocation

}

Else

{
}

Write-Verbose"Using existing resource group"

Azure Resource Manager

The reference implementation comprises many cooperating software services and components. Azure
Resource Manager (ARM) is the construct in Azure to organize and relate the resources for your solution and
provide the ability to create, configure, update, and delete them as a single unit. Let’s define the terminology:

® Resource: A manageable item that is available through Azure. Some common
resources are a virtual machine, storage account, web app, database, a virtual
network, etc.

e Resource Group: A named collection of related resources for an Azure solution. The
resource group can include all the resources for the solution, or only those resources
that you want to manage as a group. You decide how you want to allocate resources
to resource groups based on what makes the most sense for your organization. It
is not uncommon to designate resource groups for development, test, staging, and
production through a naming convention.

29

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

e Resource Provider: A service that supplies the resources you can deploy and
manage through a resource manager. Each resource provider offers operations for
working with the resources that are deployed. Some common resource providers
are Microsoft.Compute, which supplies the virtual machine resource, Microsoft.
Storage, which supplies the storage account resource, and Microsoft.Web, which
supplies resources related to web apps.

e Resource Manager Template: A resource manager template, also referred to as
an ARM template, is a JavaScript Object Notation (JSON) file that defines one or
more resources to deploy to a resource group. It also defines the dependencies
between the deployed resources. The template can be used to deploy the resources
consistently and repeatedly.

There are many benefits to defining your Azure environments using JSON templates rather than
implementing it all in script.

e The templates can be versioned, added to your code repository, and kept in sync
with the code that implements the solution.

e You can leverage these templates repeatedly and consistently throughout the
lifecycle of your continuous delivery process.

e You can apply role-based access control on the deployed resources to define who
can access which capabilities in the environment.

¢ You can apply tags to individual Azure resources. Querying your Azure environment
for tagged resources provides you views that span across resource groups. This can
be helpful if you want to create a billing view for all the resources that are associated
with test or with accounting as an example.

ARM Templates

ARM templates are JSON files that define the resources to be provisioned and configured in a resource
group. The ARM template file has six sections.

Part 1. $schema

Location of the JSON schema file that describes the version of the template language.

"$schema": https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#

Part 2. Content Version

The version of the template (such as 1.0.0.0).

"contentVersion": "1.0.0.0"

30

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Part 3. Parameters

Defines the input parameters to the template. Good use of input parameters makes your script reusable and
dynamic. Here we are defining input parameters for Azure location, storage account name, and so on. These
input parameters make the script dynamic and reusable. The values can be accessed in other areas of the
template using this notation: [parameters('param-name")].

"parameters": {
"azurelocation": {"type": "string"},
"storageAccountName": {"type": "string"},
"servicebusNamespace": {"type": "string"},
"docDbAccount": {"type": "string"},

Part 4. Variables

Reusable JSON script fragments that provide common settings or simplification of complex code
constructs. These named variables can be accessed in other areas of the template using the notation:
[variables('variable-name')].

"variables": {
"iotHubResourcelId":
"[resourceld(
'Microsoft.Devices/Iothubs',parameters('iotHubName'))]",
"iotHubKeyName": "iothubowner",

Part 5. Resources

This part of the template lists the resources that you want provisioned in Azure, such as an instance of
DocumentDB, a service bus namespace, or a web site. To identify the type of resource, use the resource
provider syntax, for example:

'Microsoft.Storage/storageAccounts’
or
'Microsoft.DocumentDb/databaseAccounts’.
Here is a snippet of a resources section in an ARM template:

"resources": [

{
"type": "Microsoft.Storage/storageAccounts",
"name": "[parameters('storageAccountName')]",
"apiVersion": "2015-06-15",
"location": "[parameters('azurelLocation')]",
"properties": {"accountType":

"[parameters('storageAccountType')]"}

b

31

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Part 6. Outputs

The outputs section allows you to request settings that result from the creation of Azure resources so that you
can reuse them with other scripts and templates. These values are typically items such as connection strings
and are shared access policy keys.

"outputs": {
"iotHubHostName": {
"type": "string",
"value": "[reference(
variables('iotHubResourceld')).hostName]"
by

"iotHubKey": {
"type": "string",
"value": "[listkeys(
variables('iotHubKeyResource'),
variables('iotHubVersion')).primaryKey]"

}

To execute a template, you need to first create a matching parameters JSON file that contains the input
parameters as defined by the template. The following PowerShell code will generate a JSON file that contains
the input parameters for an ARM template and then passes that file along with the template to the New-
AzureRMResourceGroupDeployment cmdlet. When the command completes, the output parameters are
written to a file with the name provision-[ResourceGroupName]-output.json.

Try
{
$JSON = @"
{
"$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.
json#",
"contentVersion": "1.0.0.0",
"parameters": {
"azurelocation": {"value": "$AzurelLocation"},
"storageAccountName": {"value": "$storageAccountName"},
"storageAccountType": {"value": "$storageAccountType"},
"servicebusNamespace": {"value":
"$servicebusNamespace"},

"docDbAccount”: {"value": "$databaseAccount”},
"iotHubName": {"value": "$iotHubName"},
"prefix":{"value":"$Prefix"},
"suffix":{"value":"$Suffix"},

}
}
"@
$ParamsPath = $Path
+ "\Automation\Templates\whx-arm-template-params.json"
32

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

write the parameters file to disk
$JSON | Set-Content -Path $ParamsPath

$TemplatePath = $Path

+ "\Automation\Templates\whx-arm-template.json"
$OutputPath = $Path

+ "\Automation\provision-$ResourceGroup-output.json"”

validate the template files

Test-AzureRmResourceGroupDeployment
-ResourceGroupName $ResourceGroup
-TemplateFile $TemplatePath
-TemplateParameterFile $ParamsPath

perform the deployment
New-AzureRmResourceGroupDeployment
-ResourceGroupName $ResourceGroup
-TemplateFile $TemplatePath
-TemplateParameterFile $ParamsPath
| ConvertTo-Json
| Out-File "$OutputPath"

}
Catch
{
Write-Verbose -Message $Error[0].Exception.Message
Write-Verbose
-Message "Exiting due to exception: ARM Template Failed."
}

The output file will contain both the input parameters to the template as well as each of the requested
output settings as requested by the template. By saving the output as a JSON file, any other script in the
provisioning, build, and deployment processes can parse the file and access the stored values.

To provide this parsing capability for the other PowerShell scripts in our solution, you can create a
PowerShell script that loads the output JSON file and initializes a PowerShell object to make it easy to access
the settings.

$provisionOutputPath = $Path

+ "\automation\provision-$ResourceGroup-output.json"”
$provisionInfo = ConvertFrom-Json

-InputObject (Gc $provisionOutputPath -Raw)

To include this script in another file, you can use this PowerShell command:

$includePath = $Path + "\Automation\EnvironmentVariables.ps1"
."$includePath”

33

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

To access one of the input parameters or output values from the execution of the ARM template, you
use the $provisionInfo object as follows:

$iotHubHostName = $provisionInfo.Outputs.iotHubHostName.Value
$iotHubKey = $provisionInfo.Outputs.iotHubKey.Value
$iotHubConnectionString =
$provisionInfo.Outputs.iotHubConnectionString.Value
$iotHubname = $provisionInfo.Parameters.iotHubname.Value

Tip Useful Azure ARM Template Resources
Azure Resource Manager Template Best Practices

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-template-
best-practices

Using Azure PowerShell with Azure Resource Manager
https://github.com/Azure/azure-content/blob/master/articles/powershell-azure-resource-manager.md

Azure Quick Start ARM Templates

https://github.com/Azure/azure-quickstart-templates

Now that you have a handle on how Azure PowerShell cmdlets and ARM templates are used, the next
part of this chapter will take you through a series of exercises that will use the Git repo together with Visual
Studio Team Services to orchestrate a provisioning, build, and deployment CICD process.

Visual Studio Team Services

Visual Studio Team Services (VSTS) is a source code control, project management, continuous integration,
and continuous delivery Software-as-a-Services (SaaS) offering in Azure.

To get started with VSTS, you simply instantiate an instance in your Azure subscription, providing a
unique name for the instance.

CREATE AN INSTANCE OF VISUAL STUDIO TEAM SERVICES

In the Azure Portal, select New » Developer Tools » Team Project and fill out the form with your
instance name, version control, and process template (see Figure 2-6).

34

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-template-best-practices
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-template-best-practices
https://github.com/Azure/azure-content/blob/master/articles/powershell-azure-resource-manager.md
https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

v New » Developertools >

New Team Project - 0O X

I bobsvstsl

* Account S
bobsvsts

* Version Control S
Git

* Process Template S
Scrum

* Resource Group S
VS-bobsvsts-Group

* Subscription S
azurepass-bobf

* Location

>

South Central US

Figure 2-6. New Visual Studio Team Services instance

Once this process completes, you can navigate to your VSTS instance at the URL http://[your-vsts-
hostname].visualstudio.com and start to configure your team development environment.

35

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

ADDING TEAM MEMBERS TO VSTS

Once your instance is provisioned, you can provide access to VSTS for your teammates by selecting the
Users option from the VSTS account home page (see Figure 2-7).

Good afternoon, Bob Familiar

Projects Favarites Work items Pull requests | &

Projects er projects a i 7

Recent

B brt

Al

Figure 2-7. VSTS account home page

By clicking the ellipsis (...) in the menu, you can access the Users page. You can register users with
this instance of VSTS on this page. Once users are registered with the service, they can be added to
individual projects.

VSTS provides five free Basic user accounts and an unlimited number of MSDN developer accounts. You
can also add an unlimited number of stakeholder accounts; stakeholders are users who do not perform
development tasks but access the reporting features of the service (see Figure 2-8).

Al Users All Users feveitied gusncriber
Visusl Stuis Eraerprive

Browse extensions
o Asd i Bpotuses (& Search users ol

deme 5 Acoess Lev —
. Baob Familiar Visual Studio Enterprite subscription 104
Bass
- jbarmes 1 Vitual Studio/MSDN Subscriber Subseription will be validated at signin e
0ot § assigned)

Paid

et extensions

®
Buy Te
An

Figure 2-8. Managing VSTS users

If you require additional Basic users, you can purchase licenses for a monthly fee.

36

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

CREATING VSTS PROJECTS

Once you log in, you are presented with the Welcome screen and can begin creating project
repositories, clone those repositories to your local development environment, add source files, and
commit those changes back to the repository. When you are creating projects, you also have the option
of using a Team Foundation Server (TFS) repository format and choosing what type of process template
you prefer—Agile, Scrum, or CMMI (see Figure 2-9).

X
Create team project i
{
)]
Project name
| 1
Description
I
]
Process template
Agile 2
This template is flexible and will work great for most teams using Agile planning
methods, including those practicing Scrum.
Version control
Git b

Git is a Distributed Version Control Systemn (DVCS) that uses a local repository to
track and version files. Changes are shared with other developers by pushing
and pulling changes through a remote, shared repository.

Cancel

Figure 2-9. Create a project in Visual Studio Team Services

After you create a project, you need to add users to the project team. From the project home page, click
on the gear icon in the toolbar to get to the project configuration page (see Figure 2-10).

37

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Dashboards Code Work Build & Release Test

brt v

Git

4 brt / READMEmd

Introduction

Worler Health & Saftey is a S2a$ loT & Advanced Analytics solution that provides real-time analytics of worker biometrics
in order to identify fatigue and stress.

Figure 2-10. VSTS project home page

From here you can add teammates to the project (see Figure 2-11).

B bt bet Team o Code Work Bulld & Rolease

Edi

Members (5)

Activity 7 Days

Code

43 190k0
Commits Pul requests Pull requests

by 1 suthars created = completed

Build & Release Set up Release

& 97%

Builds succeeded

Overview Work Security Alerts Version Control Agent queues Sendce Hooks Services Test Felease

«

Team Profile brt Team
Members
E — ©
Display Name
; Il sou Famitir babf@blusmetalcom
i I oormes jbarnes 1E@hetmailcom

The default project team.

Bob FamikardX

Add

Figure 2-11. Add project team members

sinership dineet

CONFIGURE YOUR GIT REPO

If you click on the Code menu option, you will be brought to the code repository configuration page. You
can access the endpoint for the repository for cloning, download Git for Windows, import an existing
repository, and download plugins for your IDE (see Figure 2-12). Once you have configured your repo,
you can use Git commands or other Git tools to clone the repo to your local environment and begin

coding.

38

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

© brt v Files History Branches Pull Requests

brt is empty. Add some code!

Clone in your favorite IDE

41 Clone in Visual Studioc

Download Visual Studio

Command line or another Git client
Clone URL

HTTPS|SSH https.//bmcp.visualstudio.com/_git/brt Iy

Generate Git credentials

Download Git for Windows

Import repository

T Import repository

Plug-ins and credential managers

These provide the best experience with single sign in, multi-factor auth, and integration with pull requests.

82 ®» S &

Intelli)

IDEA Android Studio Eclipse Windows command line

Figure 2-12. Git configuration page for new VSTS project

There are plugins for many popular IDEs including Eclipse, IntelliJ, Android Studio, Visual Studio, Visual
Studio Code, and others (see Figure 2-13).

39

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Visual Studio Visual Studio Code

Visual Stisdes Team Services Subseriptions. Build your awn

Extensions for the Visual Studio family of products
Search Visual Studio Team Services extensions

Featured
X = v/ ;
—/4 g
TFS Timetracker HockeyApp Octopus Deploy Buil Agile Cards. WhiteSource Slack Integration
Besichthans S0 A3sE | Mcresoft AT Cetopus Deploy 17 | Spanes e whiesource L crosoft
&k PaD kkkkd FREE koo o FREE ok ok PAID deokdokok FREE dekodk ook
Most Popular See more @
. == X g
>
Code Search Test & Feedback Package Manageme Wark tem Visualizat Folder M. TFS Tii k
Microsoft L203€ | Microsaft L83 Microsoft X Microso Devt L Micioso: Dt Lask Berichihaus So L
dekk ok FREE ek ok *k ok PREVIEW ek ok ok PREVIEW dekeokoked rree *kedok PaID
Recently Added See more @
-% -% ﬁn& «@r .% .%
>
Build VS Installer Send Email elmah.io Deploymen PlatformPaint edaak Remaove Folder Hiers Update versions ancd
utchiborks By L1 eimabio &3 Platforr=Sgint Duschiwerkz BV a2 wachWorks B &1
FREE FREE FREE FREE FREE
Build and release See moce @

A = IR e (™)

Figure 2-13. Visual Studio Marketplace

There is a marketplace of extensions that provide integration with Octopus, Git Hub, Slack, Trello, and
many more. You can also build your own extensions.

40

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

CONFIGURE A PACKAGE FEED

VSTS has a package management extension that allows you to set up an Azure-hosted repository
feed that can be used to enable continuous delivery workflows. The service can host components and
packages and make them available to your builds and releases. At the time of this writing, the Package

Management extension supports NuGet, and there are plans to support additional package types such
as Docker, Maven, and others in the future (see Figure 2-14).

Dq brt / brt Team v Home Code Work Build & Release Test | €53
Builds Releases Task Groups Packages Explorer

(D This is a preview version of Package Management. Refer to our documentation for more information.

£

Welcome to Package Management!

Create a feed to get started. Learn more.

+ New feed E e

4 Feeds

Mo items in this folder.

Figure 2-14. Visual Studio Team Services package feed

Tip To install the Package Management extension, visit https://marketplace.visualstudio.com/
items?itemName=ms.feed.

After the Package Management extension has been installed, visit the Packages page and click New

Feed to create your NuGet feed. Set the name, add a description, and specify who can contribute
packages (see Figure 2-15).

41

https://marketplace.visualstudio.com/items?itemName=ms.feed
https://marketplace.visualstudio.com/items?itemName=ms.feed

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Create new feed

Feed name
brt
Description

The Business in Real-Time Package Feed

Wheo can read
® Only brt Team members can view packages
() Ewveryone in your account can view packages

Who can contribute

brt Team members can add packages
Project Collection Build Service can add packages

Figure 2-15. Create a new package feed

Note Make sure to check “Project Collection Build Service Can Add Packages” so that build tasks can
publish packages to the feed.

Once you create the feed, you will be able to access the connection details. Click the Connect to Feed
button to display the Connect to Feed dialog box. Here you will see the package source URL as well as
download the VSTS credential provider (see Figure 2-16).

42

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

X
Connect to feed
e Get packages using Visual Studio
Package source URL
https.//birt.pkgs.visualstudio.com/_packaging/brt/nuget/v3/index json My

How do | set up this package source in Visual Studio?
Push packages using NuGet.exe

Get the tools

J Download NuGet + VSTS Credential Provider
Add this feed

nuget.exe sources Add -Name "brt" -Source "https://birt.pkgs.visualstudi iy
o.com/_packaging/brt/nuget/v3/index.json"

Push a package
nuget.exe push -Source "brt" -ApiKey VSTS my_package.nupkg [B

Mlaad fa iea MifZat 7 w7

Close

Figure 2-16. Connect to a feed

This is required to enable the local development environment to authenticate to the feed. Each member
of the development team will need to do this in his or her own environment.

CONFIGURE THE NUGET PACKAGE FEED

To authenticate to the package feed, you will need to create a personal access token and set up a
NuGet . config for the solution. From the VSTS Account home page, click on your account in the toolbar
and select Security. Select Personal Access Tokens and then click Add. Give your token a name and click
Create Token (see Figure 2-17).

43

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

hd Home Users Rooms Load test

Security Usage

<

Personal access tokens

Create a personal access token

Alternate authentication credentials Applications that work outside the browser may require access (o your projects, Generate personal access tokens for applications that require a usemnar

OaAuth authorizations

$SH public keys

Descriptien [8RT pAT
Expires In | 90 days
Accounts i birt

Authorized Scopes
® &l scopes
(O selected scopes
[Agent Pools (read:
O

[Code (read, write, and manage)

d (read)

[Entitlements (Read)
[Extensions (read and manage)

[Load test (read and write]

[Marketplace (a

[Packaging (read and write)

[] Project and team (read and
wite)

[] Release (read)

[Team dashboards (manage)

[[] Team rooms (read, write, and
manage)

[User profile (read)

[J Agent Pools (read, manage)
[Code [read and write)

[Code (status)

[] Extension data {read and write)
[Extensions (read)

[Load test (read)

] Marketplace (manage)

[Packaging (read)

] Project and team (read)

[Release (read, write and execute]

[Team dashboards (read)

|

t management (read and

] User profile {write)

[J Build (read and execute)
[code (read)

[Connected Server

] Extension data (read)

] Identity (read)

read, write, execute ar

[Team rooms (read and write

] Test management (read)

] Work items (read and write)

[Work items (read)

Create Token Cancel

Figure 2-17. Create a personal access token

Copy the generated token and set it aside as you will use it in a subsequent step. Using the PowerShell
console, navigate to the top-level folder of your repo and execute this command:

PS C\:> Invoke-WebRequest https://dist.nuget.org/win-x86-commandline/latest/nuget.exe
-OutFile nuget.exe

This command will download a copy of NuGet . exe. Add a NuGet . config file to the root of your repo.
Here is a basic NuGet. config file you can use. Save this to the root of your repo.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<packageSources>
<clear />
<add key="vss-package-management"
value="https://www.myget.org/F/vss-package-
management/api/v2" />

44

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

<add key="nuget.org"
value="https://api.nuget.org/v3/index.json" />
</packageSources>
<activePackageSource>
<add key="All" value="(Aggregate source)" />
</activePackageSource>
</configuration>

Next, execute the following command to add your feed to the NuGet . config file and to store your feed
authentication credentials:

PS C:\> .\nuget.exe sources add -name {your feed name}
-source {your feed URL}

You will be promoted for a username. This can be anything. Next you are promoted for a password. Copy
and paste your personal access token and press Enter. Your feed will be added to the NuGet. config file

and your development environment will be automatically authenticated to the feed for downloading and

publishing packages. Finally, remove the copy of NuGet. exe from your current directory.

PS C:\> rm nuget.exe

To add this feed to Visual Studio, from the menu click Tools » NuGet Package Manager » Package
Manager Settings. Click the + sign to add a package source and paste the package source URL into the
Source field. Give it a friendly name (see Figure 2-18).

Options ? X
Search Options (Ctrl+E) P Available package sources: + Xt ¥
& Debugging -~

] nuget.o
I Performance Tooks hngs:#:;_ A oS
Analysis Services Tabular Designers peirORNEget oMY Ve InCe)

: Azure Data Lake BRT NuGet Feed
© Business Intelligence Designers https://birt.pkgs.visualstudio.com/_packaging/brt/nuget/v3/index....

I Database Tools

& GitHub for Visual Studio
[* Graphics Diagnostics

4 NuGet Package Manager

See Machine-wide package

Package Sources
© Powershell Tools [Microsoft and NET Lo’
& ReSharper Ultimate https://wwawv.nuget.org/api/v2/curated-feeds/microseftdotnet/
> SQU Server Tools [Microsoft Visual Studio Offline Packages

& Text Templating
I Web

& Web Forms Designer Name: |BRT NuGet Feed
 Web Performance Test Tools

& Windows Forms Designer . Source: dio.com/_packaging/brt/nuget/v3/indexjson ..
OK Cancel

C\Program Files (x86)\Microsoft SDKs\NuGetPackages), 4%

Figure 2-18. Package Manager settings

Package feeds provide a single source of versioned NuGet packages for your team, thus promoting
reuse and collaboration. In the next exercise, you will build the NuGet packages and publish them to this
newly configured feed.

45

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

CREATING A BUILD DEFINITION

46

Now that your development environment is configured, you can get down to the work of creating the
automation definitions that will define the continuous integration and continuous delivery processes.

The reference implementation Git repository can be cloned using this URL:

https://github.com/bobfamiliar/brt.git

The repo has the following folders:

Automation: PowerShell scripts and ARM templates

Dashboards: Customer and employee dashboard and operations dashboard
Devices: Device simulators

Libraries: Common libraries for ReST and DocumentDB

Microservices: Solution and cross-cutting services

Models: Data models used by devices and microservices

Utilities: Utility applications

The first task will be to create the automation definitions that build the Library and Model NuGet
packages. The build definition will execute against the source code that has been committed to the repo
and will leverage auto-provisioned compute resources in Azure to run the build steps.

Click Build & Release in the top menu bar of VSTS and then click New Definition (see Figure 2-19).

https://github.com/bobfamiliar/brt.git

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Create new build definition

Select a template
Build Deployment

Ant

B

Build your Java projects and run tests with Apache Ant. This template requires Ant to be
installed on the build agent.

ASP.NET build (PREVIEW)
Build ASP.NET web applications

Azure Service Fabric Application

2 &

Build and package an Azure Service Fabric application.

Gradle

©

Build your Java projects and run tests with Gradle using a Gradle wrapper seript.

Jenkins

&

Queue a Jenkins job and download its artifacts.

V4 Maven

Empty
Start with a definition that has no steps.

Figure 2-19. Create new build definition template list

VSTS has several built-in templates. For this scenario, select the empty template and click the Next
button.

On the next page of the wizard, take the default settings but check the box to turn on continuous
integration (see Figure 2-20).

47

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

X
Create new build definition
Settings
Repository source
& ® [
Bpg Q} —
brt Team Project GitHub Remate Git Subversion
| Repository
Repository
© brt ~
Default branch
master ~

Continuous integration (build whenever this branch is updated)

Default agent queue | manage queues [4
Hosted ~ C

Select folder

\ ~ Choose folder...

< Previous Create Cancel

Figure 2-20. Create new build definition settings

Click Add Build step. The resulting task catalog contains build, utility, test, packaging and deployment
tasks that you can use in combination to define a build (see Figure 2-21).

48

Task catalog

Ant
Q_ + Build with Apache Ant

®

CMake
Utility A Build with the CMake cross-platform build system
Test
Package ;‘ Gradle
Build using a Gradle wrapper script
Deploy

Grunt
ﬁ The JavaScript Task Runner

Gulp
Node js streaming task based build system

= Index Sources & Publish Symbols
.11 ndex your source code and publish symbols to a file

share

Jenkins Queue Job
Q Queue a job on a Jenkins server

Maven

/ Build with Apache Maven

J MsBuild
L2l Build with MSBuild

(i) Don't see what you need? Check out our Marketplace, 2

CHAPTER 2

Add

Add

Add

Add

Add
Add

Add

DEVOPS USING POWERSHELL, ARM, AND VSTS

Figure 2-21. Task catalog

This build definition requires four tasks. You can select each of the four tasks while on this dialog box

and add them to the build definition.

e Select the Package category and add the NuGet Installer Task
e Select the Build category and add the MSBuild Task
e Select the Package category and add the NuGet Packager Task

e Add the NuGet Publisher Task

e (lick the Close button

When you return, your build definition should look as depicted in Figure 2-22.

49

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Home Code Work

Build & Release Test | @&

Builds Releases Task Groups Packages

Explorer

tions / *

Buitd |

. NuGet restore */* sin x
- o priein

Build solution **/*5in

&
E5s Mo

HisGet Packager
0 NuGiet Packages

a NuGet Pubslisher
A+ NuGet Publisher * + Advanced

4+ Control Options

U Summary ¥ Quevenewbuild O Security @ Help

NuGet restore **/*.sin #

ysin

® Restore O Install

0 More Information £

Figure 2-22. Build definition under development

Each task has a collection of settings. Fill out the settings for each task as shown in Table 2-1 to define
a build for the wire library. The build definition will produce a NuGet package that is published to the
package feed you created earlier. Note that some settings are hidden and you need to click on the

Advanced button to expose additional settings.

Table 2-1. Build Wire NuGet Package Build Definition

NuGet Installer Settings
Path to Solution

Path to NuGet.Config
NuGet Arguments
MSBuild Settings

Path to Solution
Configuration

NuGet Packager

Path to CSProj

Package Folder

Include Referenced Projects
Configuration to Package
NuGet Publisher

Path to NuPkg

Feed Type

Internal Feed URL

libraries/Wire/Wire.sln
nuget.config

-outputdirectory packages

libraries/Wire/Wire.sln

debug

libraries/Wire/Wire/Wire.csproj
nugets

Yes (checked)

debug

nugets/wire*.nupkg
Internal

[URL to your package feed]

50

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Click Save and provide a name such as Build Wire NuGet Package. To test the build definition, click
the Queue New Build link in the upper-left side of the screen. The build request will be queued and will
execute when a build agent becomes available. A build agent is an Azure-hosted virtual machine that is
provisioned on demand to execute your build definition.

The build definition will queue up and start the build process once a build agent becomes available.
If there are build errors, you can use the console output to debug any issues with the task settings
(see Figure 2-23). The supplied build log files are also provided.

Build & Release

Builds Releases Task Groups Packages Explorer

kage / Build 5 / Build
" Build 5
4 o Build ¥ Queue rew buld 4 Downioad all logs as zip.
o Initialize Agent Build Succeeded
Gt Sources
il
+ Nubet restere Rbraries/Wire/Wire.sln IIIII Euld
Ran for 51 seconds (Hosted Agent), completed 3 seconds ago
 Build solution libraies/Wire/Wire.sin
 Neutiet Packager Console logs Codecoverage’ Tests &
o MuGet Publishes
€1\ Mindows\systen32\chea. con 65001
 Pest Job Cleansp Active cods page: §508
g Detected WAGAt version 3.3.9.212 / 1.3.9
T R SYSTER/SSCONNECTION wxists trum
+ Report build status save nuget.config to tesp config file
;g Prasaring bo sat credeatiala 40 intat contis

Adch-afcf 1, 22\node_modules \owget-task- coman\BUCety], 3. 0\HUGet exe ssurces Remove -Konlateractive -Hamo
Huget' tompanGet 5. contig
{3} matchirg rame: internalfesd.

Tiaairent “ConfigFile.
Uratile to find any package 3
Setting credentials in NuGet
C31a0_tasks\iuGetPublisnr_I33110d 4341 4063 afcF-bIIASCOEAIENN. 3. 22\ node moduLes | et - task-common\NAGET\3 . 3. 0\NUGEY. exe Tearces Add Mennteractive -Kase
T phge . visalitudio, con/_packaging/Bot/nuget/vi/inden. Jicn -Utername Veilettionloken -Pagpuord Teteetts Confighile Cilawa

Source with Mame: Enternalfesd added succossfull
€ m tasks\iuGetPublisher_113k11bd-d341-4009-afcf- bIzd5cac25EN0.2. r ncde -ow]u \neget - tazk-comon\NuGet\3, 3, 0\NuGet . exe push -NonInteractive C:la\l

Aa\mugets\Wire. 2.0, 6142, 6715 nupkg -Source kttps://birt.pkes sl ging/ .5on -Apivey VETS -ConfigFile C€:\a\1\Muget)tesphulet 5. cenfig
Using credantials from ceafig, Usarkama: VeiSessionToken
Pushing Wire 2.8.6141.6715 to "hTtps://birt.pegs. com/_packaging/ 41469308, .

Vemr package was pushed.

Fimishing: Nulet Publisner

Starting: Post dob Cleawp

Clearing any coched credestial from repository: bet (Git)
Eit remcte set-url origin https://birt.visuslstudio, con/_git/bet
Fit remote set.url --push origin https://birt.visualstudio.con/_git/brt

Finishing: Post Job Clesrws

Finishing: Build

Figure 2-23. Build success

Your package feed now contains the Wire NuGet package, as shown in Figure 2-24.

51

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Work Bulld & Release

Builds Rekases Task Groups Packages Explorer

(T3 This is preview versice of Packsge Maragement. Refer to our documentatan for mare infermation. ps
‘

. m
+ Hewied S X B " G
Foads 10

Filter P | Wire Uniist 3 Dwietepackage & Download
- ba 2061415715 pushed 3 mins ago

‘g Wire

Version 2061416715 Buehetsl Microserve CommanWre

Install Wire

Run tha following command in the NuGet Packags Maragar Contchs,

py Install-Package Wirs 1studie. con/ ging/ore/muget /v Iy
Bfince. fron” -Vers

O ruin the Raliowing in & Wisdlows command prompt

€\ muget.exe install Wire -Source “HTtps://birt,pkgs.visualstudioc.coa/ packaging/bri/nuget/ My

w3/index. J500" -Version 2.8.6141.6715

Authors

BusMetal

Versions
Wirs 20061416715 (ihis varsion)

Dependencies

Figure 2-24. Wire NuGet package is published

VSTS provides a templating facility so that you can design build definitions once and reuse them for
similar build steps.

On the Build Definition page, click the ellipsis ... next to the Build Wire NuGet Package build definition
to display the menu and select Save As a template.... Give the template a name such as Build NuGet
Package Template and click OK.

Next click the + New button and click on Custom in the toolbar of the dialog box. You will see your newly
created template. Select the template and click Next and then click Create (see Figure 2-25).

52

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Create new build definition

Select a template

Build Deployment Custom

Build NuGet Package Template

Delete

Empty
Start with a definition that has no steps.

Figure 2-25. Create new build definition from a custom template

Update the settings to point to the Store library in the libraries/store folder. Save the definition and
queue the build to publish the Store NuGet Package. Add a build definition for the Reference model,
which is in the models/reference folder. This will create the NuGet package that represents the data
model for the Reference microservice.

Once you complete this exercise, you should have three NuGet packages in your feed—Wire, Store, and
Reference.

53

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

CREATE A PROVISIONING BUILD DEFINITION

The provisioning build definitions use PowerShell scripts and ARM templates to create and configure the
foundational Azure resources that our solution requires.

For this exercise, we create a build definition that executes the script creating our resource group and
provisions these shared services:

e Service bus namespace
e Storage account

¢ DocumentDB

e SQOL database

® |oT Hub

Before creating this build definition, you will need to configure a service endpoint from your VSTS
environment to your Azure subscription so that the build definitions can connect to that subscription and
execute PowerShell and ARM templates.

Hover over the gear icon in the toolbar and select Services from the drop-down menu. Click + Add New
Service endpoint and select Azure Resource Manager from the list (see Figure 2-26).

X
Add Azure Resource Manager Service Endpoint

Connection Name bn;] %

Subscription

A new Azure Service Principal will be created and assigned with "Contributor” role, having access to all
the resources in the selected subscription.

If your subscription is not listed above try sign-out and sign-in from a new browser instance or to
specify an existing Service Principal click here

Figure 2-26. Add Azure Resource Manager Service Endpoint

54

Select your subscription from the drop-down and provide a friendly name. Click OK.

This build definition will generate an output file that contains the connection strings and keys to the
shared services. Check this file into the repo so that it can be used by subsequent build definition
scripts. To do that, give the Build Agent permission to contribute to the repository.

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Click on Version Control in the menu bar and then the name of your Git repo. Select the Project
Collection Build Service and allow the following permissions, then save your changes (see Figure 2-27).

e Branch creation: Allow
e Contribute: Allow
e Read: Inherited allow

e Tag Creation: Inherited allow

Dq brt / brt Team b Code Work Build & Release Test &

Overview Work Security Alerts Version Control Agent queues Service Hooks Services Test Release

<

Repositories Security for brt repository

New repository To manage the security and policies for a branch, go to the Branches page and select "Branch security” or "Branch policies” in the context menu,
Security Options
Git repositories
® it rapouitai ACCESS CONTROL SUMMARY
. © bt = Add..~ Inheritance ¥ Shows information about the permissions being granted to this identity
Search + Tinister Not set
~ VSTS Groups Branc Allow
: = = Ce Allow
H Project Collection Administrators
Exe y enforcement Not set
E Project Collection Build Service Accounts
MNe Nat set
E Project Collection Service Accounts
Allow
H Build Administrators Rewrite and destroy history (force push} Not sat
B contributors Tag creation Allow
X Project Administrators
Clear explicit permissions
H Readers
Remove
~ Users

’ H Project Collection Build Service (birt)

Figure 2-27. Configure security on the repository

Create an Empty build definition template. Click the + Add build step... button and add four tasks to the
definition (see Figure 2-28).

e Select the Deploy category and add two tasks of type Azure PowerShell
e Select the Utility category and add three tasks of the type command line

¢ Move the command-line tasks between the two Azure PowerShell tasks, as depicted in
Figure 2-28

55

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

ns/ Provision Shared Services not built f summary 3 Queue newbuild O Security @ Help

Build Triggers

+ Add build step.

Azure hell seript: ion/01-Provision-SharedServices.ps1 #
Azure PowerShell script: ion/01-Provision-SharedServiey R Azure Resource Manager v
X e rowershet
brt v Manage
Run git it Path
7_ - A automation/01-P . iServices.ps1
Run git TPt AgLment -subscription ${subscription) -resourcegroup $lrescurcegroup) -a
Bl Command Ling
Run git 4 Control Options
L.
Enabled =
Azure PowerShell seript: automation/02-Update-SOLDatabase.p .
&L e rowershet

0 More Information @

Figure 2-28. Provision Build definition tasks

On the Options tab, check the option Allow Scripts to Access OAuth Token (see Figure 2-29).

[v] Allow Scripts to Access OAuth Token

Enables scripts and other processes launched during the build to access the OAuth Token via the System.AccessToken variable

Figure 2-29. Allow Scripts to Access OAuth Token

Before defining the settings for each of the tasks, we need to configure the variables. Variables allow
you to create friendly names for values that can be changed when you run the build.

Each build definition can have its own set of variables. The PowerShell scripts, as you may recall, take
a set of command-line parameters. You will use the variables to provide these parameter values at
runtime. Click on Variables in the menu and add the variable definitions listed in Table 2-2 and depicted
in Figure 2-30.

Table 2-2. Variable Definitions for Provision Build Definition

Name Value Allow at Q Time
subscription [your-subscription-name] Yes
resourcegroup [resource-group-name] Yes
azurelocation [azure-region] Yes
prefix [prefix] Yes
suffix [suffix] Yes
System.prefergit True No

56

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

DQ brt / brt Team v Home Code Work Build & Release Test | &

Builds Releases Task Groups Packages Explorer

Build Definitions / Provision Shared Services not built B Summary & Queue new build
Build Options Repository Variables Triggers General Retention History
-]

List of predefined variakles
Name Value Allow at Queue Time

ystenm.c

sllectionld 37b4d691-af38-4203-Bed6-dTb40649041 =

system.teamProject brt &

system.definitionld 2 a
X system.debug false =)
X subscription azurepass-bobf =)
X resourcegroup briwhdey 55|
X azurelocation East US =]
X prefix brt 1
X suffix dev
X system.prefergit true O
<= Add variable

Figure 2-30. Build definition variables

Click on Build in the menu and fill out the settings for the Azure PowerShell and command-line tasks.

The first PowerShell script will apply the ARM templates that were reviewed early in this chapter. The
script and template provision the shared services and then generate an output file that contains the
connection strings and keys for the shared services.

The command-line tasks execute Git commands to add the generated file to the repository and
commit it.

Finally, we will run a PowerShell script that generates the relational tables in the SQL database. We will
use the variables to pass dynamic parameters to the scripts.

Fill out the settings for each of the build tasks outlined in Table 2-3.

57

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Table 2-3. Provision Shared Services Build Definition

Task 1: Azure PowerShell Task Settings

Azure Connection Type
Azure RM Subscription
Script Path

Script Arguments

Task 2: Command-Line Task Settings
Tool

Arguments

Working Folder (Advanced)

Fail on Standard Error

Task 3: Command-Line Task Settings
Tool

Arguments

Working Folder (Advanced)

Fail on Standard Error

Task 4: Command-Line Task Settings
Tool

Arguments

Working Folder (Advanced)

Fail on Standard Error

Continue Error

Task 5: Azure PowerShell Task Settings

Azure Connection Type
Azure RM Subscription
Script Path

Script Arguments

Azure Resource Manager
[your-subscription-name]
automation/01-Provision-SharedServices.ps1

-subscription $(subscription) -resourcegroup
$(resourcegroup) -azurelocation '$(azurelocation)’
-Prefix $(prefix) -Suffix $(suffix) -verbose

Git

add provision-$(resourcegroup)-output.json
automation

Yes

Git

commit -m "commit provision output"”
automation

Yes

Git

push origin HEAD:master

automation

No

Yes

Azure Resource Manager
[your-subscription-name]
automation/02-Update-SQLDatabase.ps1

-subscription $(subscription) -resourcegroup
$(resourcegroup) -azurelocation '$(azurelocation)’
-Prefix $(prefix) -Suffix $(suffix) -verbose

Save the definition by providing a name such as Provision Shared Services and queue the build.

When this script completes you will have created a resource group in your subscription that contains the
shared services; generated an output file that contains the connection strings and keys for other build
definitions; and checked that new file into the Git repo (see Figure 2-31).

58

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Y brtwhdev

+ Add =Z Columns [Delete O Refresh =3 Move

2 Search (Ctri+/) Essentials ~

Subscription name Subscription 1D
@) Overview bot your-subscription-id]

nent Location

B Activity log 10/24/2016 (Succeeded) East US
M Access control (IAM) Fifter items...
& Tags

NAME TYPE LOCATION
SETTINGS - A

;_-}l, brtiothubdev loT Hub East US
di Quickstart =

(8] brtdocdbdev DocumentDB... East US
(& Resource costs —— _ -

I.Zn brtservicebusnsdevd8fed Service Bus East US
gm Deployments -

E:: brisqlserverdev SOL server East US
= Properties -

E telemetry SQL database East US
8 Llocks —

brtblobstoragedev Storage accou... EastUS

Bl Automation script

Figure 2-31. Resource group with provisioned shared services

PROVISION USING AZURE CLASSIC COMMANDS

There are a few operations that require the PowerShell script to execute in what is called Azure Classic
mode (meaning that they do not work within the ARM context). These commands relate to creating blob
storage containers and accessing and saving the service bus connection string. The commands reside
in a file called 03-Provision-ClassicOps.ps1 in the automation folder. Let’s review the code.

get the path
$Path = Split-Path -parent $PSCommandPath
$Path = Split-Path -parent $Path

pull in the environment variables
$includePath = $Path +

"\Automation\EnvironmentVariables.ps1"
."$includePath”

get the storage key and context

$storageKey = (Get-AzureRmStorageAccountKey -AccountName
$storageAccountName -ResourceGroupName
$ResourceGroup)[0]

59

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

$StorageContext = New-AzureStorageContext
-StorageAccountName $storageAccountName
-StorageAccountKey $storageKey.Value

create the storage containers
New-AzureStorageContainer -Context $StorageContext
-Name $ArchiveContainerName -Permission Off

-ErrorAction SilentlyContinue
New-AzureStorageContainer -Context $StorageContext
-Name $RefDataContainerName -Permission Off

-ErrorAction SilentlyContinue

New-AzureStorageContainer -Context $StorageContext
-Name $ImageContainerName -Permission Off
-ErrorAction SilentlyContinue

Upload the rules file to the reference data container

$refdata = $path +
"\automation\deploy\rules\$TempSensorRulesFilename"

Set-AzureStorageBlobContent -Context $StorageContext
-Container $RefDataContainerName -File $refdata
-Force

Upload the image files to the image container

$.mode -match "-a---" scans the data directory

and only fetches the files, filtering out directories
$imagedir = $path + "\automation\deploy\images"

$files = Get-ChildItem $imagedir -force| Where-Object {$.mode -match "-a---"}

iterate through all the files and start uploading data
foreach ($file in $files)
{

#fq name represents fully qualified name

$fgName = $imagedir + "\" + $file.Name

#upload the current file to the blob
Set-AzureStorageBlobContent -Blob $file.Name
-Context $StorageContext
-Container $ImageContainerName
-File $fgName -Force

}

save the service bus connection string
$sbr = Get-AzureSBAuthorizationRule -Namespace $serviceBusNamespace

$ISON =@"
{

"ServiceBusConnectionString":
"$sbr.ConnectionString",

60

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

$ServiceBusInfo = $Path + "\automation\servicebus-$resourcegroup-output.json”
$JSON | Set-Content -Path $ServiceBusInfo

Before you can create a build definition to run this provisioning script, you need to create a connection

between the build environment and the Azure subscription for executing Azure Classic commands.

Navigate to the Services Configuration page, add an endpoint of type Azure Classic, and fill out the form
(see Figure 2-32).

Add new Azure Classic Connection

Connection Nam brt-classic

Azure Cloud ~ O

https://management.core windows.net/
Subscription Name azurepass-bobf
semame bobf@bluemetal com
assword .c'-ovcol'vcol

For certificate: download publish settings file. For Service Frincipal: refer to link. Learn More

Figure 2-32. Configure Azure Classic connection

Create an empty build definition and add a Deploy task of type Azure PowerShell Script and then three
utility tasks of type command line. Configure the settings shown in Table 2-4.

61

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Table 2-4. Provision Classic Resources Build Definition

Task 1: Azure PowerShell Task Settings

Azure Connection Type
Azure Classic Subscription
Script Path

Script Arguments

Task 2: Command-Line Task Settings
Command

Arguments

Working Folder

File on Standard Error

Task 3: Command-Line Task Settings
Command

Arguments

Working Folder

File on Standard Error

Task 4: Command-Line Task Settings
Command

Arguments

Working Folder

File on Standard Error

Continue on Error

Azure Classic
[your-classic-subscription-connection-name]
automation/03-Provision-ClassicOps.psl

-subscription $(subscription) -resourcegroup
$(resourcegroup) -verbose

Git

add servicebus-$(resourcegroup)-output.json
automation

Yes

Git

commit -m "commit provision output"”
automation

Yes

Git

push origin HEAD:master

automation

No

Yes

Define the variables for this build definition as shown in Table 2-5.

Table 2-5. Variable Definitions for Provision Classic Resources Build Definition

Name Value Seta Q Time
subscription [your-subscription-name] Yes
resourcegroup [resource-group-name] Yes

To validate the script, navigate to your storage account and examine the blob storage containers.
You should see that several image files have been uploaded to the images container. These are the
employee headshots (see Figure 2-33).

62

" A

v e O @ @8 % - 8 8@ 080 &

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Figure 2-33. Image container created and files uploaded

There is also now a new file in the automation folder called servicebus-[resource-group-name]-
output. json that contains the service bus connection string. This file has also been checked into the
repository.

CREATE A DEPLOYMENT BUILD DEFINITION

In this exercise, you will create a deployment build definition for the microservice Reference API that will
execute the following steps:

Build and package the Reference microservice

Create the Reference database and Entity collection in Document DB
Upload a sample set of reference data to DocumentDB

Provision an App Service Plan and App Service in the resource group
Deploy the Reference API package to the App Service

Configure the App Service settings with the connection info for DocumentDB

Since you have created a new NuGet feed with new versions of the NuGet packages that the
microservice project requires, you will need to open the Reference API solution, which is in the
microservices/reference folder, and build the solution. Performing a local build will update the NuGet
references. Once complete, check in the updates to the repository.

63

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Create a new build definition using an empty template and define the variables as shown in Table 2-6.

Table 2-6. Variable Definitions for Deploy Reference API Build Definition

Name Value Set at Q Time
BuildPlatform Any CPU Yes
BuildConfiguration [debug | release] Yes
Subscription [your-subscription-name] Yes
Resourcegroup [resource-group-name] Yes
Azurelocation [azure-region] Yes
Prefix [project-code] Yes
Suffix [dev | tst | prd] Yes
ServiceName ReferenceAPI No
ServicePlan AppServicePlan No
Database Reference No
Collection Entity No
DeployData false Yes

Add the tasks to the build definition as shown in Table 2-7.

Table 2-7. Tasks for the Deploy Reference API Build Definition

Category Task

Package NuGet Installer

Build Visual Studio Build

Deploy Azure PowerShell

Deploy Azure App Service Deployment ARM
Deploy Azure PowerShell

Configure each build step as shown in Table 2-8.

64

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Table 2-8. Deploy Reference API Build Definition

Task 1: NuGet Installer Task Settings

Path to solution
Path to nuget.config
NuGet Arguments

microservices/Reference/ReferenceAPI.sln
nuget.config

-outputdirectory packages

Task 2: Visual Studio Build Task Settings

Solution

MSBuild Arguments

Platform

Configuration

microservices/Reference/ReferenceAPI.sln

/p:DeployOnBuild=true;DefaultPackageFilename=ReferenceAPI.
zip /p:PublishUrl=$(Build.StagingDirectory)/ReferenceAPI

$(BuildPlatform)
$(BuildConfiguration)

Task 3: Azure PowerShell Task Settings

Azure Connection Type
Azure RM Subscription
Script Path

Script Arguments

Azure Resource Manager

[your-subscription-connection-name]
automation/05-Publish-AppService.ps1

-Subscription $(Subscription) -ResourceGroup
$(ResourceGroup) -Azurelocation '$(Azurelocation)' -Prefix
$(Prefix) -Suffix $(Suffix) -ServiceName $(ServiceName)

-ServicePlan $(ServicePlan) -Database $(Database)
-Collection $(Collection) -DeployData:$$(DeployData)

Task 4: Azure App Service Deployment ARM Task Settings

Azure RM Subscription
App Service Name

Package Folder Name

Publish Using Web Deploy

Remove Additional Files

[your-subscription-connection-name]
$(Prefix)ReferenceApi($Suffix)

microservices/reference/ReferenceAPI/obj/Debug/Package/
ReferenceAPI.zip

Yes
Yes

Task 5: Azure PowerShell Task Settings

Azure Connection Type
Azure RM Subscription
Script Path

Script Arguments

Azure Resource Manager
[your-subscription-connection-name]
automation/06-Publish-AppSettings.ps1

-Subscription $(Subscription) -ResourceGroup
$(ResourceGroup) -Azurelocation '$(AzurelLocation)' -Prefix
$(Prefix) -Suffix $(Suffix) -ServiceName $(ServiceName)
-Database $(Database) -Collection $(Collection)

Save the build definition providing a name such as Deploy Reference Microservice and queue the

build.

Set the Deploy Data variable to true. This will trigger the creation of the Reference Database and Entity
Collection as well as upload sample reference data into the DocumentDB collection.

65

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Once the build completes, you will see both an App Service Plan and the Reference API App Service
listed in your resource group. The App Service Plan defines the scale up and scale out settings for any
App Services that are associated with the plan (see Figure 2-34).

Essontize ~

o

P srtppsenicettunde

S BetheterrecrAPidey

@
L]
L]
= L
=] £ betaciubder
- [
® B brtservicebusmadend042
+ B betsahserverder
Py [seermecry
] betbisbstongeder
L
L
o

EastUS

i

1T bub

HeSQL ora...

Senice D
QU verver

U datatase
$4araqe sciow
App Service Bl

App Service

wocanon

East U5

Rast s

Last s

Bast U5

tast i

[

Lot

Ra 1t

o Acoess conu (W)

& waagps
B Cuem domsim
O S50 certificates.

Hetreng

4 Scabe up tApp Sendce phary

] fpe i prod b 18P anreneStte
Moritoring

Roequests. and #aror

Figure 2-34. Reference microservice deployment

If you click on application settings, you will see that the runtime settings this service requires have

been configured by the deployment definition (see Figure 2-35). The values for these settings are pulled
from the file that was generated by the provisioning build definition and injected dynamically when this
service is built and deployed.

App settings
collection
database

ocdburi
apiss
ocdbkey

Key

Figure 2-35. Dynamic application settings

66

Entity

Reference

https://brtdocdbdev.docum...

810ecd57-e305-43ec-89ad-...

NB8ZLwHK5SE8zogBRCF6IVZ...

Value

Slot setting

Slot setting

Slot setting

Slot setting

Slot setting

Slot setting

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

You can test the Reference microservice by clicking on the URL on the Overview screen. The service will
spin up and take you to the default home page of the API application (see Figure 2-36).

ASP.NET

ASP_NET is a free web framework for building great Web sites and Web applications using HTML, CSS, and
JavaScript,

Leam more »

Getting started Get more libraries Web Hosting

ASPNET Web AP s a frame

NuGet is ree Visual Studo extension that makes it i sasly find a web hesting company that offees e

2018 - My ASP NET Applcation

Figure 2-36. Reference Microservice default home page

In the next exercise, you’ll provision APl management and configure the API proxy. Once that is
complete, we can smoke test the API and validate that the database and collection in DocumentDB has
been properly initialized.

CREATE THE PROVISION APIM BUILD DEFINITION

API management is an Azure service for publishing APIs to developers. You use APl management to
define a proxy endpoint for which you can track analytics, define security access, engage a subscription
model, inject policies such as throttling or custom headers, and more.

Once APl management is provisioned, you will have both an Administrator Portal and a Developer Portal.
The Administrator Portal is used to manage APIs, developer groups, and API products and policies, as
well as review the analytics reports. The Developer Portal provides developers the ability to register

and subscribe to APIs that they have been given access to. Once subscribed, the developer receives a
subscription key that must be used on every call to an API. The portal also supplies a console page for
each APl where the developer can access documentation and test the API to see how it functions.

To create a build definition for provisioning APl management, start with an empty build definition and
add a single build task from the Deploy category, adding an Azure PowerShell build task with the
settings shown in Table 2-9.

67

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Table 2-9. Provision APIM Build Definition

Task 1: Azure PowerShell Task Settings

Azure Connection Type Azure Resource Manager

Azure RM Subscription [your-subscription-connection-name]
Script Path automation/04-Provision-APIManagement.psi
Script Arguments -subscription $(subscription) -resourcegroup $(resourcegroup)

-azurelocation '$(azurelocation)' -Prefix $(prefix) -Suffix
$(suffix) -Organization '$(organization)' -APIServiceName
$(apiservicename) -APIAdminEmail $(APIAdminEmail) -verbose

Define the variables shown in Table 2-10.

Table 2-10. Variable Definitions for Provision APIM Build Definition

Name Value Set at Q Time
Subscription [your-subscription-name] Yes
ResourceGroup [resource-group-name] Yes
AzureLocation [azure-region] Yes
Prefix [project-code] Yes
Suffix [dev | tst | prd] Yes
Organization [your company name] Yes
APIServiceName [project-code] Yes
APIAdminEmail [your-email] Yes

Note The default build time for the free VSTS Build Agent is 30 minutes. It may take more than 30 minutes
to provision API management. This will result in the build reporting a failure. Even though the build reports
failure, the provisioning process is still running and will most likely complete successfully.

If you do encounter an issue, you can also run the provisioning script from your laptop using the PowerShell
console. Execute these commands from the automation folder.

PS C:\> .\00-Login.ps1
PS C:\> .\04-Provision-APIManagement.ps1

After the provisioning process has completed, you should see an instance of API management in your
resource group, as shown in Figure 2-37.

68

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Q) brwhaev

+ Add EE Columns I Delete O Refresh =3 Move

B2 Search (Ctrf+/) Essentials ~

Subscription 1D

&) Overview &
Location

B Activity log East US
s Access control (IAM) Filter items.
' Tags

NAME TYPE LOCATION
SETTINGS

&> birt APl Managem... EastUS
#i Quickstart -

.'_:}'L, brtiothubdev loT Hub East US
(' Resource costs

[#] brtdocdbdev NoSQL (Docu... East US
e Deployments —

l‘“’il brtservicebusnsdev98424 Service Bus East US
i= Properties -

E'- brisqlserverdev SQL server East US
ﬂ Locks -

E telemetry SQL database East US
EX Automation script =

| brtblobstoragedev Storage accou... East US

MONITORING P brtAppServicePlandev App Service pl... East US
ilil Metrics iﬁ.‘j brtReferenceAPldev App Service East US

Figure 2-37. API management provisioned
Click on the service name in the resource group to navigate to the APl Management blade. From

there you can launch the Publisher Portal or the Developer Portal. Launch the Publisher Portal
(see Figure 2-38).

69

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

birt

APl MANAGEMENT Dashboa r‘d

Dashboard

APls

Products

Policies

Analytics

Users

Groups

Motifications

Security

Properties

APls © ApD AP @) IMPORTAPI Today Yesterday Last7Days Last 30 Days

Echo API Issues

*) VIEW DETAILS =+ VIEW ALL
Products O

Starter Unlimited
subscribers 1 || subscribe

DEVELOPER PORTAL

Applications

Content

Blogs

Media Library

Widgets

MNavigation

Settings

) VIEW DETAILS +) VIEW DETAILS
Applications

Submitted Accepted

new V] total 0
) VIEW DETAILS =) VIEW ALL

Figure 2-38. APIM Publisher Portal

Last 90 Days

DD PRODUCT

The Publisher Portal provides access to all the APl management settings and functions. Let’s examine
the publisher features:

70

Dashboard: The Dashboard provides a summary overview of products, groups, and API
activity.

Products: Products are an organizational construct for APIS. By organizing APIs into
products, you can control who can access the APIs.

Groups: Groups provide an organizational construct for memberships. For example,
you can create developer groups that represent different teams, internal and external
developers, operations, etc. The groups are then assigned to products, which limits
access to only the APIs that are published as part of those products.

Users: Users provide the administrator visibility to developer subscriptions. You can add
developers and invite developers to the service.

APIs: An API defines a API proxy, including documentation, operations, and security
settings.

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

e Policies: Policies provide a mechanism by which you can inject operations on both
inbound requests and outbound responses such as injecting a header, setting quotas,
configuring CORS, and so on.

e Analytics: Analytics provides usage and health reports for each of the API’s operations,
bandwidth usage and visibility into which users are calling which APIs.

e MNotifications: Administrator alerts are reported here.

e Security. Security allows you to configure the security settings for the APl Management
service including Active Directory integration and access to the Management API.

e Properties: Property values are strings that may contain secrets and can be referenced
from policies. Use properties to re-use values across policies and avoid specifying
secrets within policies.

e Developer Portal: The Developer Portal section of the Administrator Portal gives you the
ability to customize the Developer Portal.

In these next exercises, you will configure the APIM environment and define the proxy for the
Reference API.

ADD APIM GROUPS

Click Groups in the Publisher Portal navigation menu and click Add Group. Provide the name and
description BRT Developers and click Save. Create a second group called BRT Operators
(see Figure 2-39).

Add group

Name)
Unique name of the group.
BRT Developers

Description

BRT Developers]
members.

Description of the group's purpose and its

oo | e |

Figure 2-39. Create an APIM group

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

ADD APIM PRODUCTS

Click on Products and then Add Product. Provide the title and a description BRT.DEV and BRT Developer
APIs, respectively.

Since you are provisioning the developer environment, we recommend using a naming convention that
makes it clear that these APIs are part of that environment. By default, the APIs require a subscription.

You have the option of requiring administrator approval for access to the APIs in this product. Click
Save and then create a second product called BRT.0PS with the description BRT Operations APIs
(see Figure 2-40).

Add new product

Title
BRT.DEV Display name of the product as it would appear
on the developer and admin portals.

Description

BRT Developer APIsI Product descriptions usually explain product's
purpose and highlight included APIs.

[Require subscription Developers will be required to subscribe to the
product and use subscription key to access APls
included in it.

[0 Require subscription approval All subscription requests will be subject to
approval. Configure subscription request email
notifications on the Notifications page.

[0 Allow multiple simultaneous subscriptions Allow developers to have multiple subscriptions

on the same product.

Figure 2-40. Create a product

Click the name of the product and select the Visibility tab. This is where you can control which groups
have visibility to the product. Assign the BRT Developers group to the BRT.DEV product and the BRT
Operators group to the BRT.OPS product.

72

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

DEFINE AN API PROXY

To streamline the process of defining the API proxies, we will import Swagger definitions. Swagger is
standard JSON format for defining ReST APIs. Here is Swagger fragment for the reference API:

{
"swagger": "2.0",
"info": {
"title": "Reference.Dev",
"version": "1.0"
by
"host": "[prefix]referenceapi[suffix].azurewebsites.net",
"basePath": "/reference",
"schemes": [
"https"
1,
"paths": {
"/entities/domain/{domain}": {
"get": {
"operationId": "Get Entities by Domain",
"parameters": [
{
"name": "domain",
"in": "path",
"description": "",
"required": true,
"type": "string"

"name": "Ocp-Apim-Subscription-Key",
"in": "header",
"description": "subscription key in header",
"type": "string"
}
1,

"responses": {}
}
b

Swagger definitions have been provided for each of the microservices. You can find them in the
automation/swagger folder. You will need to update these files to point to your deployed services in
Azure.

Update the Reference. Swagger.json and Reference.Adminstration. Swagger. json files by
replacing the [prefix] and [suffix] placeholders with the values you used during deployment.

Click APIs and then Import API.

Select From File and Swagger format, navigate to the automation/swagger directory, and select the
Reference.Swagger.json

73

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Select New API and enter the URI suffix dev/vi/reference. This creates a new endpoint for the API that
provides additional environment and versioning. Finally, add the API to the BRT.DEV group and click Save

(see Figure 2-41).

Import API
From clipboard Specification document path Specification format
IC:\Usvers\bob\Scurce\Repo Browse... O wabL
@® Swagger
From URL O WSDL (Preview)

® New APl O Existing API

Web API URL suffix Last part of the API's public URL. This URL will be used by
/dev/vi/reference API consumers for sending requests to the web service.

Web API URL scheme
[J HTTP [HTTPs

This is what the URL is going to look like:

https://birt.azure-api.net/dev/v1/reference

Products (optional) Add this API to one or more existing products.

BRT.DEV

Figure 2-41. Import reference API

Repeat these steps using the swagger file Reference.Adminstration.Swagger.json.

This API endpoint is provided by the same running service, Reference API, but administration operations
are only available to the operations team. Enter the URI suffix dev/vi/reference/admin, add the API to
the BRT.OPS group, and click Save (see Figure 2-42).

74

Import API

From clipboard

From URL

® New APl O Existing API

Web API URL suffix
/dev/v1/reference/admin

Web APl URL scheme
[HTTP [HTTPs

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Specification document path Specification format
IC:\Users\bob\Source\Repc Browse... O wabL
@® Swagger

O WSDL (Preview)

Last part of the API's public URL. This URL will be used by
API consumers for sending requests to the web service.

This is what the URL is going to look like:

https://birt.azure-api.net/dev/v1/reference/admin

Products (optional)

Add this APl to one or more existing products.

BRT.OPS

Figure 2-42. Import reference administration API

For registered developers and operators to have visibility to the APIs, the API products need to be

published.

Click Products and then click the product name and then the Publish button. Do this for the BRT.DEV and
BRT.OPS products (see Figure 2-43).

75

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Product - BRT.DEV

Summary Settings Visibility Subscribers

BRT Developer APIs

Not published
Subscription approvals not required

& PuBLISH

<) DELETE

APls

The following APIs are part of your product:
© ADD API TO PRODUCT

Reference.Dev
https://birt.azure-api.net/dev/v1/reference

Figure 2-43. Publish a product

DELETE

CREATE APIM PROPERTIES

There are several ways to secure ReST APIs including OAuth, managed certs, and other techniques. This

application will use a combination of the subscription key provided by APl management and a shared

secret that is known only to the API service and APl management. To set up a shared secret mechanism,

you will use a combination of APl management properties and policies.

As you can see in Figure 2-44, if an application tries to call the API Proxy without the subscription key,
access is denied. If an application tries to go around APl management and call the API directly without

the shared secret, access is denied. In either case, if the call is not made using SSL, the invocation will

fail (see Figure 2-44).

76

App trying to invoke
API Proxy directly
without subscription
key

App using published
API Proxy
and Subscription Key

Allowed

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

App trying to call API
directly without
shared secret

API Proxy
injects Shared Secret
for trusted call

Reference API

Allowed

Figure 2-44. Securing APIs with subscription keys and shared secrets

Properties are used to define the secrets in the policy definitions. The API configuration for this
application requires SSL and that a shared secret be passed into the service in a header called apiss.
If the header is not present or the value in the header does not match the shared secret value known to

the AP, access will be denied.

A default shared secret value is provided in the file EnvironmentVariables.ps1 in the automation
folder. You should update the value in this file using the GenSharedSecret console utility that can be

found in the utility folder.

Once you have your new shared secret value, click Properties in the Publisher Portal and then Add
Property. Create a property with the name SSHeaderName and set the value to apiss. Check the This Is
a Secret check box. Repeat these steps and create a property with the name SSHeaderValue. Set the
value to your generated shared secret (see Figure 2-45).

Add property Add property

Mame Alphanument siring used for referenceg the Hume Alghanumesi siing used for referersing e

SSHeadestiarne property in the pokoes. SSHeaderVae Feoperty in the poboer

Valus A ST OF 3N SEIINON MERRESEATNG EOperty Ve A 1NN oF 80 EEONEISoN representing property

s ke [your=shared-secret value] value.

This i a s When checked, it means that the property value [Thiks s a sec: When chiecked, it mean that the property vakee

contans a secrel contand a secret

Tags Tags. when peovided, can b used to e the Tags Tags, when peovided, can be used to flter the
property bt peoperty st

Figure 2-45. Create a property

o] -]

Note
updated with the new shared secret value.

If you update the shared secret, remember to redeploy your APIs so that the application settings are

77

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

DEFINE AN APIM POLICY

Now that you defined the properties, you can use a Set Header policy on inbound requests to inject the
shared secret making APl management a trusted caller of the microservices.

Click Policies, select the BRT.DEV product, and then the Reference.DEV API.

Click Add Policy in the editor and place your cursor just after the <inbound> tag (see Figure 2-46).

Policy scope
Product AP| of BRT.DEV
BRT.DEV ~ | Reference.Dev

Operations of Reference.Dev

Select operation...

Policy definition

BRT.DEV Reference.Dev

© FULL SCREEN

1 <l=--

2 IMPORTANT:

3 - Policy elements can appear only within the <inbound>, <outbound>, <I o
4 - Only the <forward-request> policy element can appear within the <bas

5 - To apply a policy to the incoming request (before is forwarded t¢

6 - To apply a policy to the outgoing response (before s sent back 1 o
7 - To add a policy position the cursor at the desired insertion point i

B8 - To remove a policy, delete the corresponding policy statement from 1 o
2 - Position the <base> element within a section element to inherit all

1@ - Remove the <base> element to prevent inheriting policies from the cf o
11 - Policies are applied in the order of their appearance, from the top

A7 ~=>

13~ <policies> o
14 ~ <inbound>

15

16 <base /> o
17

18 </inbound> o
19~ <backend>

20 (]
21

View effective policy for selected scope

Figure 2-46. Policy Editor

78

Policy statements

Allow cross domain calls
Authenticate with Basic
Authenticate with client certificate
Check HTTP header

Control flow

Convert JSON to XML

Convert XML to JSON

CORS

Find and replace string in body

Scroll down the list of policies and inject the Set Header policy into the policy document. Modify the

header using the property syntax.

To reference the shared secret header name, use {{SSHeaderName}}, and to reference the value use
{{SSHeaderValue}}. Set exists-action to override. Click Save (see Figure 2-47).

<set-header name="{{SSHeaderName}}" exists-action="override">
<value>{{SSHeaderValue}}</value>
</set-header>

CHAPTER 2
Policy scope
Product AP| of BRT.DEV
BRT.DEV ~ | Reference.Dev

Operations of Reference.Dev

Select operation...

BRT.DEV Reference.Dev

Policy definition © FULL SCREEN
1 <!-- -
2 IMPORTANT:

3 - Policy elements can appear only within the <inbound>, <outbound>, <I
4 - Only the <forward-request> policy element can appear within the <bas
5 - To apply a policy to the incoming request (before forwarded t¢
6
7
8

- To apply a policy to the outgoing response (before i sent back 7
- To add a policy position the cursor at the desired insertion point {
- To remove a policy, delete the corresponding policy statement from 1
9 - Position the <base> element within a section element to inherit all

1@ the <base> element to prevent inheriting policies from the c¢
11 are applied in the order of their appearance, from the top
L2 -~

13~ <policies>

14 ~ <inbound>

15~ <set-header name="{{SSHeaderName}}" exists-action="override">

16 <value>{{SSHeadervalue}}</value>

17 </set-header>

18

19 <base />

2e

21

View effective policy for selected scope

Figure 2-47. Set the header policy using property reference syntax

Repeat these steps for the Reference.Administration.Dev API.

DEVOPS USING POWERSHELL, ARM, AND VSTS

Policy statements
Send request

Set backend service

Set body

Set context variable

Set HTTP header

Set query string parameter
Set request method

Set status code

000000000

Set usage quota per key

TEST THE REFERENCE APIS

From the Administrator Portal, navigate to the APl Management Developer Portal (see Figure 2-48). This
portal is auto-generated and provides a self-service portal for developers to access your APIs. When

developers visit this portal the first time, they will be asked to register. The administrator will receive an
e-mail notification and will also see a notification in the Notifications area of the Publisher Portal. Once

membership has been approved, the developer will be able to see the published products. Since you are

the API management administrator, you already have direct access.

79

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Business in Real Time API

APPLICATIONS

Welcome to the developer portal!

Administrators can manage the APIs and customize the content in this portal. Learn more

Developers can discover and learn about Business in Real Time API. Just sign up for an APl key and start consuming this
sample API right away!

Sign up

API Documentation Developer Support

Check out the automatically generated AP| Documentation that describes how to use the API publishers can engage directly with their APl community, keeping them up to date via
APls and includes code samples in multiple languages. The APl Consale allows you to the integrated blag. Developers can log and discuss issues and even submit their

directly interact with the API right here in the developer portal. applications to the application gallery.

Figure 2-48. The Developer Portal

Click on APIs to see the list of published APIs. Select the Reference.DEV API. You will see the list of
operations. The operation pages provide the request URL and code samples as well as the ability to
invoke the API to learn how it works. Select the Get Reference Entities by Domain operation and then
click Try It (see Figure 2-49).

80

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Business in Real Time AP]

HOME AFIS PRODUCTS APPLICATIONS IS5UES ADMINISTRATOR =

Get Entities by Code Value

Request UR

https://birtazure-api.net/dev/v1/reference/entities/codevalue/{codevalue}

codevalue string

Reguest headers

Ocp-Apim-Subscription-Key string Subscription key which provides access to this APL. Found in your Pr

Curl
BECHD OFF

eurl -v -X GET “https://birt.azure-api.net/dev/vl/reference/entities/codevalue/{codevalue}”
-H “Dep-Apim-Subseription-Key: {subscription key}"

Figure 2-49. Reference API operations

Reference data is information that is common to many applications like lists of states, country codes,
ZIP codes, language codes, and so on. You do not want to allow just any application to modify this data
and corrupt the lookup lists; therefore, the Reference operations have been partitioned into a read-only
public API (Reference API) and an API with update capabilities (Reference Administration API). Earlier,
we configured the Reference API to be visible to developers and the Reference Administration API to be
visible only to operators.

The “Get Reference Entities by Domain” operation takes an entity domain, States for example, and
returns all the entities that are part of that domain. Enter States in the domain field and then click the
Send button (see Figure 2-50).

81

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Response Tra

Response status
200 OK

Response latency
731 ms

Response content

Pragma: no-cache

Ocp-Apim-Trace-Locatien: https://apimgmtst3ghpmngpmdnjvef.blob.core.windows.net/apiinspectorcontainer/yqTdEFksNypllExsrzuGga2-3?
sv=2015-87-88ksr=bisig=5Zi0s1qZYijFnZdGpkDwllZM%2BualzoTLBwqOX2BREdefgX3DEse=2016-11-01TOORIASTRIASELksp=r&traceld=bf79f08e79154
9529899e883158dF88b

Cache-Control: ne-cache

Date: Mon, 31 Oct 2816 88:57:59 GMT

Set-Cookie: ARRAffinity=elc9f2959b97bd8al6b9f8bae2cbc2edaes28b3chbdBceelaebedscS116eddada;Path=/;0omain=brtreferenceapidev.azurew
ebsites.net

X-AspNet-Version: 4.8.308319

X-Powered-By: ASP.NET

Content-Length: 14289

Content-Type: application/json; charset=utf-8

Expires: -1
{
"list": [
{

"domain": "States”,
“"code": "AL",
“codevalue”: “Alabama”,
"link": "Us",

"sequence": @,
“attributes”: [
{
I‘key- : ".’api‘t‘n'l I‘)

"val™: "Montgomery”

"key": "Population”,
“val®: "4779738"

b
{
"key": "Sgquare Miles",
"wal®: "5241%"
}
1.

Figure 2-50. Response from the reference API

RETRIEVE THE PRODUCT SUBSCRIPTION KEYS

To retrieve the subscription keys for the published products, navigate to the Profile page on the
Developer Portal (see Figure 2-51). You will see that there are two sets of keys for the BRT.DEV Product
and BRT.OPS products. Each product provides two keys, a primary and secondary. Whenever you are
presented with keys in Azure, you are always provided two so that you can keep the primary private
and hand out the secondary. If security issues arise, you can always use the primary key to access the
service and regenerate the secondary to prevent additional access by users of the previous key.

82

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Business in Real Time API

HOME APIS PRODUCTS APPLICATIONS ISSUES ADMINISTRATOR =

P ro fl |€ A Change account infarmation
Email bobf@bluemetal.com
Organization name Business in Real Time
Notifications sender email apimgmt-noreply @mail windowsazure.com
Your subscriptions oh Analytis reports
Subscription details Product State Action
Subscription name BRT.DEV {default) Rer BRT.DE Active X Canc
Started on 10/20/2016
Primary key ROCUCCOUOUDUOOUOU O
Secendary k?)" 2000C OO 0N
Subscription name BRT.OPS [default) Rena BRT.OPS Active ® 0
Started on 10/30/2016
Primary key HOCOCOOOOOCNNCONCC NN t | Re:
Secondary key OCOCCOCOUCNNCNN OO OO - | Regenerate
Your applications #+ Register application
Name

Category State

No results found

Figure 2-51. Developer Portal profile page

Make a note of the secondary keys for both products, as you will use them to access the APIs in
subsequent steps.

COMPLETE THE DEPLOYMENT

To complete the deployment, you need to create build definitions for the remaining models and
microservices.

Recall that you can save existing build definitions as templates so you do not have to start from scratch
when creating new definitions. Use this feature to create a template for microservice deployments
based on the Deploy Reference Microservice build definition.

Create and queue build definitions for the NuGet packages listed in Table 2-11. The complete NuGet
feed is depicted in Figure 2-52.

83

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Table 2-11. Business in Real-Time NuGets

Project Name Location

Account Model models/account
Application Model models/application
Customer Model models/customer
Device ModelNet4 models/device/net4/
Message ModelNet4 models/message/net4
Registry Model models/registry
Simulation Model models/simulation

thekd S X B

“Frets ke P Accourthodals T ey —

[re—

'e AccouniMacels
'B ApghcationModels
'e Customentodels

'B DeskeetedelsNetd

'e MessageModelibetd

‘6 Relerencebiodels

[Joctivead
'a S"d-u.lsl nlwels
B e
B

Figure 2-52. Complete package feed

To associate the microservice solutions with your NuGet feed, you will need to open each one in Visual

Studio and perform a local build and check in the updated solutions.
Next, create the following deployment build definitions:

e Deploy Account Microservice

e Deploy Application Microservice

e Deploy Customer Microservices

e Deploy Device Microservice

e Deploy Registry Microservice

e Deploy Simulation Microservice

When you run these builds the first time, set the DeployData input parameter to true so that the

DocumentDB database and collection are created.

84

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

The database and collection names for each of the microservices are shown in Table 2-12.

Table 2-12. Databases and Collections

Account Database Account
Collection Subscription
Application Database Application
Collection Configuration
Customer Database Customer
Collection Organization
Device Database Device
Collection Manifest
Registry Database Registry
Collection Profile
Simulation Database Simulation
Collection DataSet

Update and import the Swagger definitions and configure the shared secret policy for the following APIs:
e Account API
e Application API
e Application Administration API
e Customer API
e Device API
e Registry API
e Simulation API

As shown in Figure 2-53, the microservice deployment and configuration is now complete. In the next
exercise, you will bootstrap the deployment with sample data and provision a set of loT simulated
devices.

85

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

Business in Real Time API

HOME PRODUCTS APPLICATIONS ISSUES ADMINISTRATOR =

APIs

Figure 2-53. Complete set of APIs

BOOTSTRAP THE DEPLOYMENT

Once you have completed the provisioning and deployment process and configured your managed APIs,
you can use the Bootstrap utility to initialize the environment with sample data and provision a set of
simulated devices.

The Bootstrap utility can be found in the utilities\bootstrap folder. The utility will perform the
following operations.

1. Create Registry Profiles: Create three faux company profiles and 16 employee
profiles per company. The faux companies are:

a. WigiTech: Manufacturer of high-tech components and products

b. Tall Towers: Utility services firm that specializes in servicing radio towers on
skyscrapers

c. The Complicated Badger. A trucking firm that specializes in moving heavy
equipment

2. Create Customer Organizations: Define a set of three teams per company where
each team is made up of five employees. The 16th employee per company
represents management.

3. Create Account Subscriptions: Define three customer accounts for the three
companies and define their subscription levels.

86

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

4. Create Application Configurations: Since each company is using the same multi-
tenant solution, this information represents the customization of the solution
for that company. Some simple examples of this are logo, colors, etc., but can
expand to more sophisticated customizations that may require access to advanced
modules.

5. Create Device Manifests: Create a device registration and associated manifest for
each employee. Each device is associated with an employee and represents the set
of sensors that collect the biometric data.

These operations need to be run in order, as each step of the sample data generation process builds on
the previous step.

To use the Bootstrap utility, you need to update the application so that it can use your managed APIs.

Load the solution in Visual Studio and open the app.config file. Update the App Settings adding your
subscription keys from APl management and the APl management hostname for each of the APIs.

<add key="DevSubKey"
value="subscription-key=[your-dev-key]" />
<add key="0OpsSubKey"
value="subscription-key=[your-dev-key]" />
<add key="ProfileAPI"
value="https://[your-apim-host].azure-api.net/dev/vi/registry"/>
<add key="AccountAPI"
value="https://[your-apim-host].azure-api.net/dev/vi/account"/>
<add key="ApplicationAPI"
value="https://[your-apim-host].azure-api.net/dev/vi/application"/>
<add key="CustomerAPI"
value="https://[your-apim-host].azure-api.net/dev/vi/customer"/>
<add key="DeviceAPI"
value="https://[your-apim-host].azure-api.net/dev/vi/device"/>

Note The Bootstrap utility uses the Microsoft Access Database Engine to read the profile sample data from
Excel.

If your development environment does not have this runtime installed, the utility will throw an exception. Install
the Access Database Engine from this location:

https://waw.microsoft.com/en-us/download/details.aspx?id=13255

Build and run the utility (see Figure 2-54). You will be presented with the menu. Select option 1 and
press Enter.

87

https://www.microsoft.com/en-us/download/details.aspx?id=13255

CHAPTER 2 © DEVOPS USING POWERSHELL, ARM, AND VSTS

files///C:/Users/bob/Source/Repos/brt/utilities/Bootstrap/Bootstrap/bin/Debug/Bootstrap EXE -]

T e T P T T
BUSINESS IN REAL-TIME BOOTSTRAP
L FEEEFFEEEFEEERFF R R R

Execute these steps in the specified order.

Select an operation from the menu and press [Enter]

Create Registry Profiles

Create Customer Oganizations
Create Account Subscriptions
Create Application Configurations
Create Device Manifests

Exit

[I TR

Choice [@-5]:

Figure 2-54. Bootstrap utility

You will return to the main menu after the completion of each step. Continue through menu options 2
through 5 to complete the sample data generation process. If you run into any issues, it is likely related
to API configuration settings. Review your managed API settings and test within the Developer Portal to
make sure your APIs are functioning properly.

LOAD SIMULATION DATA

88

To load the simulation data, you will use the DocumentDB Data Migration Tool (DT). This is a free utility
from Microsoft that provides both a command-line and GUI application version. The command-line
version of DT is used by the deployment PowerShell scripts to create the DocumentDB databases and
collections as well as upload the sample reference data. Since the simulation data is significantly larger
in size than the reference data, we will perform this operation from our development environment.

The simulation data is provided as a collection gzip’ed JSON documents in the automation\simdata\
gzip folder. There are ~64KB documents of simulation data where each document represents a
collection of biometrics readings from 1 of 15 teammates.

The DT desktop utility is in the automation\Tools\dt\dt-1.7 folder and is called DTUI.EXE. Run the
utility and configure the source to be the gzip folder. Check the Decompress Data box (see Figure 2-55).

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

[] DocumentDB Data Migration Tool = O X

Source Information

Welcome

Specify source information
| Source Information]

Target Information @ Import from:

' Advanced | JSON file(s) v
Summary | Add Files || Add Folder ~ || Add URL(s) | | Add BLOB(s) | | Remov |
Results

ChUsers\bob\Source\Repos\bri\automation\SimData\gziph™.*

Decompress data €

Previous | | Next

Figure 2-55. DocumentDB data migration utility

Click Next and add the connection string to your instance of DocumentDB. Append the name of the
database, Simulation, to the end of the connection using the syntax Database=Simulation;. Set the
collection name to be DataSet (see Figure 2-56).

89

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

] DocumentDB Data Migration Tool — O X

Target Information

I i i i
Welcome Specify target information

Source Information

Target Information) Dportito:
Advanced DocumentDB - Sequential record import (partitioned collection) b |
Summary Connection String @
Results |2FhQSMAVrk2CSXX105VIaNC2ZuhvDGENEvXBBKAhxgWOKPGFfKfZITA= = Database =Simulation|
Collection
|DataSetI |
Partition Key €

Collection Throughput €
11000
Id Field

@ Advanced Options

Previous | | Next

Figure 2-56. Provide the connection string, database, and collection names

Click Next until you get to the last screen and run the import operation. The utility will decompress the
data files and upload them to DocumentDB.

Once the process completes, you can validate the process by testing the simulation APl using API
management. Navigate to the Developer Portal and select the Get Simulation Dataset by Name endpoint,
click Try It, and then provide the name teammate1 as the parameter. Click Send. If the data import
succeeded, you will receive a 200 response code and the JSON will be displayed in the output window
(see Figure 2-57).

90

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Business in Real Time API

HOME PR TS ONS ADMINIS

Query parameters

ol teammate1
ation + Add
ilation Headers
Decp-Apim-Trace true ® Remove header

Ocp-Apim-Subscription-Key

ssssssssesssnnsnet @

Authorization

ation Subscription key

Primary-fbéa. LA

Request URL

https://birt.azure-api.nat/dev/vl/sisulation/datasets/name/ 1

HTTP request

GET https://birt.azure-api.net/dev/vl/simulation/datasets/name/teammatel HTTP/1.1
Host: birt. arure-api.net
Ocp-Apim-Trace: true
Ocp-Apim-Subscription-Key: ssessssss

Figure 2-57. Test the simulation API

91

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Response Trace

Response status
200 OK

Response latency
46739 ms

Response content

Pragma: no-cache

Ocp-Apim-Trace-Location: https://apimgmtst3ghpmngpmdnjvef.blob.core.windows.net/apiinspectorcontainer/yqTdEFksNypllExsrzuGgh2-47
5v=2015-87-08&sr=b&sig=gletsuQLo22uydo0F g1 infnIDbDy%2Bh8wal0aLAN2BFfEga%3Dase=2016-11-03T23%3A49%3A23Z8sp=ratraceId=8f57a73457aa4
72fb3a2bsbff2aSect?

Cache-Control: no-cache

Date: Wed, 92 Nov 2016 23:50:89 GMT

Set-Cookie: ARRAffinity=56646929c62d@@5e2f4eBced726ccclbfese992d29e86ca36cedelbaledsd768;Path=/;Domain=brtsimulationapidey.azure
websites.net

X-AspNet-Version: 4.8.39319

X-Powered-By: ASP.NET

Content-Length: 1563886

Content-Type: application/json; charset=utf-g8

Expires: -1

{

“name”: "teammatel”,

"rows": [
"664da22f-12cd-406e-a@3a-8332a597dbb2",
"4Bae828e-8cdc-4d58-8297-331cb68ca920",
"3985e739-95a7-417b-84aa-351c418d81ed"”,
"ge6efelc-67dd-4d78-9917-fcd4fB85092bc”,
"28bd1c58-1b95-4446-9765-F22925e13afe",
"29¢61la3B-c7el-467a-abB8-Tedatbcebalf",
"1476Fb96-29f4-4c83-b961-2837b85718be",
"geeb?47e-fefo-4f3d-aff4-b685b1fad56",
"af8dc477-8448-44c8-8413-5a1587cadces”,
"cec5e302f-1led2-44a8-91ee-57f1ae3Tch?b",
"d792976d-4937-4364-966F -cc5fa7dedfef",
"4752deed-2869-4bfa-befa-cl69csbafsif",
"d12382cc-610856-48bc-aeal-fobddc7772Fb",
"24e18d53-6d06-4dd6-88Fb-d72f4cblb7a6",
"cf3ff920-fcd9-40826-5F4b-bdl8eedaTedc”,
"4@4d4e5b-b521-4cb3-blef-aec6e0282d34",
"458a4511-6843-4F1f-9735-cd2256e681de",
"acc5e856-08c2-4cde-bB29-1487232b4a5e",
"8b63e603-1687-4452-b815-cbd7a5b01463",
"ace33ccl-2b95-47c9-%aca-63c252fBc3cT",
"bbaffe65-495f-4786-8798-5e1a475c0e5c",
"35afesbl-8809-425e-bd7b-Beec2biaseee"”,
"agdedSac-5d7b-4287-83@6-6be559e81bE8",
"c616ebl7-8958-4258-8dfb-d74fb54df11e",

Figure 2-57. (continued)

92

CHAPTER 2 * DEVOPS USING POWERSHELL, ARM, AND VSTS

Summary

DevOps is all about people, processes, and tools. It implies the creation of cross-functional teams,
combining developers, testers, and architects along with operations personnel who together own the entire
deployment pipeline, from build through test to staging and production. It requires that these teams work
collaboratively to adopt common processes and tools. Your ability to deliver modern software that leverages
microservice architecture and cloud platforms is rooted in your ability to organize teams, define continuous
processes, and use the right set of tools and technologies to automate your software product lifecycle.

In this chapter, we examined how one could use PowerShell, Azure resource management templates,
and Visual Studio Team Services to create automation definitions that handle provisioning Azure
services, building software packages and services and deploying software builds to Azure. Every step of
the continuous integration and continuous delivery process was executed in Azure, providing a seamless
experience for the DevOps team. In addition, the scripts were designed so that these operations can
be performed against a development, test, or production environment simply by modifying the input
parameters.

If you have successfully completed the exercises in this chapter, you are well positioned to maximize
your learning from subsequent chapters as we continue to build on this newly provisioned IoT and
advanced analytics solution.

93

CHAPTER 3

Device Management Using loT Hub/

Connecting people, places, and things to the cloud, while not trivial, may be one of the easier aspects of
IoT as the techniques and protocols are very well defined. The real work begins when you have thousands,
possibly millions, of devices connected to the cloud and you need to manage the day-to-day operations

of this extremely distributed system. In addition to monitoring and managing the cloud services that are
providing analytics, storage, dashboards, alerts, and notifications, you also need to monitor and manage
your beacons, devices, and edge gateways.

What is my device inventory? Are the devices powered on and connected? Are they taking sensor
readings? Are they sending telemetry messages? Are any devices reporting errors? Do they need to be
rebooted or reconfigured? What version of firmware are they running, and do we need to upgrade any
devices to the new firmware revision?

These device conditions need to be diagnosed and managed remotely and securely by the operations
team using a set of software services accessed through an intelligent Device Management dashboard.

The Device Management Lifecycle

The operations team will require a set of software tools that support a well-defined process for managing a
device throughout its entire life, from provisioning and configuration through to retirement (see Figure 3-1).

© Bob Familiar and Jeff Barnes 2017 95
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_3

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Decommission, remove,
refurbish

Inventory, health, activity,
alerts, notifications, error
codes, firmware version

Figure 3-1. Device management lifecycle

Select hardware, sensors,
configure network,
installation plan...

Create manifest, register
with cloud, perform
physical installation

Configure

Firmware upgrade, sensor
configurations, reset,
reboot

This chapter will take you through each of the device management lifecycle phases. At the close of
the chapter is a collection of exercises that demonstrate common device management patterns including
reboot, firmware upgrade, and sensor configuration.

The Real-Time Business sample provides an operations dashboard, a managed device API, and device
simulators that work in conjunction with Azure IoT Hub to demonstrate device management software

services (see Figure 3-2).

96

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

=
Devices invoke Device API at " ‘ The Operations Dashboard
startup to get their manifest and .~ provides an easy to use interface
use Hub and Key values to for provisioning new devices and
connect to loT Hub Operations configuring existing devices
Dashboard
Devices
S A
!—O < — APl Management
(Ve e
I Device API provides manifest
management and encapsulates
Device API interaction with loT Hub device

=2 management features
.- L
L - -

—

loT Hub

Manifests

Figure 3-2. Device management lifecycle software services

Planning

When planning an IoT device strategy, there are several areas of research, design, and process that need to
be considered. Each IoT solution has its own unique challenges given the environments where the devices
are deployed. As is true with any project, the planning phase is critical to success. The goal is to eliminate
assumptions and reduce risk.

Here are a few examples of questions that, when answered, will help eliminate assumptions and reduce
risk leading to a well-defined device management strategy:

e Hardware and Software Platform: Will you use an off-the-shelf IoT device and
edge gateway or do you require a custom-built enclosure? How will it be powered?
What are the environmental conditions where the device and edge gateways will
be deployed? Temperature? Humidity? Dust? What is the expected lifetime of the
hardware? What operating system will be installed?

e Communications: What communication mechanism do you require? Cellular,
wireless, wired, or some combination?

e Sensors: What sensors will be used? What are the power requirements? How will
these be connected to the hardware platform? Direct connect, sensor gateway,
Modbus, BACnet, CAN bus, or other? What are the ranges of readings that define
normal, warning, and alerts conditions for each sensor? How often are messages
sent for each type of reading, and what data do those messages contain?

97

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

e Analytics: Do you require analytics at the edge? If so, what mathematical operations
or Machine Learning analyses need to be performed? How many readings need to
be aggregated before applying these operations? What filtering, if any, needs to be
applied?

e Local Storage: Do you require some level of local storage for edge analysis or on-
premises review?

e Local Alerts and Alarms: Based on edge analytics, will you need to generate
alerts and alarm notifications from the device or edge gateway? How will that be
performed?

e Network Configuration: How will the device and edge gateways be networked? Are
they additional devices on the existing network? On their own segment? What are
the firewall requirements? How is the network managed locally?

e Security: How will the devices and edge gateways be secured physically as well as
digitally? How do devices and edge gateways communicate locally? How will data be
encrypted in flight and at rest?

e Hardware Installation Process: Who is responsible for the setup and configuration
of the devices and gateways? Does it require network and security skills, or can an
individual with no knowledge of networks and security set up the environment?
What documentation and training materials need to be produced and provided?
Are these made available as hardcopy or digitally through an intelligent mobile
application?

e Device Grouping: How do you group devices and control access according to your
organization’s needs?

Developing a comprehensive device management strategy is foundational to a successful IoT solution.
It requires collaboration among operations and software and hardware engineers to design a secure and
manageable approach to the provisioning, deployment, and operating processes that will scale to tens of
thousands, possibly millions, of devices.

Provisioning

Provisioning is the process by which the operating system and firmware is installed, unique device IDs are
generated, devices are registered with the cloud, and a digital document (a manifest) is created to store and
track device details throughout its life.

The task of generating unique identifiers may involve integrating with line-of-business systems or
Enterprise Resource Planning (ERP) systems such as SAP. ERP systems are often used to supply master data
for product codes, track inventory, and provide asset reporting services. CRM systems can provide customer
information such as the physical address of the company, what product and services have been purchased
by the customer, and the location where the devices and gateways will be installed. In addition, information
such as geolocation coordinates and details such as building, floor, and room numbers may be provided.

Device metadata will provides the software services the necessary details to orchestrate a
comprehensive device management process. Let’s examine how this information is used by the Device API
and Azure IoT Hub software services.

98

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Azure loT Hub

Azure IoT Hub is a fully managed service that provides secure communication and management services for
your devices. These include:

e Device-to-cloud and cloud-to-device communication for secure two-way
communication as well as file transfer using asynchronous command and control
messages and synchronous request and reply methods

e Ahighly scalable event hub based transient store providing storage of messages
from one to seven days and a cursor based access to the event stream providing state
management and synchronization

e Secure communication using WebSockets on port 443, AMQP, MQTT, or HTTPS
protocols

e Monitoring device connectivity, the event stream, and identity management events
e SDKs for many popular languages and operating systems
e Device management capabilities

e Built-in declarative message routing to other Azure services

Note This chapter focuses on the device management features of loT Hub. If you need additional detail on
loT Hub, refer to the loT Hub documentation and download the loT Reference Architecture PDF.

https://docs.microsoft.com/en-us/azure/iot-hub/

http://download.microsoft.com/download/A/4/D/A4DAD253-BC21-41D3-B9D9-87D2AE6F0719/Microsoft_
Azure IoT_Reference_Architecture.pdf

Azure IoT Hub provides a rich set of device management capabilities including Device Registration,
Device Twin, Direct Methods, Jobs, and Queries. Before we dive into Azure IoT Hub, let’s examine the device
microservice, a managed ReST API that encapsulates the calls to IoT Hub as well as manages a document
repository that tracks each device’s metadata throughout its lifetime.

The Device API and the Device Manifest

The Business in Real Time reference implementation provides a managed API called Device that is used to
create and manage the metadata about each device as well as encapsulate operations that use the IoT Hub
device management features.

Note The source code for the Device API can be found in the microservices/device folder of the code
repository.

If you performed the exercises in Chapter 2, you will have a fully deployed managed instance of the
Device API, as shown in Figure 3-3.

99

http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Business in Real Time API

HOME APIS ODUCTS APPLICATIONS ISSUES

o R Device.Dev & API definition

e A Get All Device Manifests
38 Get a Device Manife
: . Request URL

hitps://birtazure-api.net/dev/v1/device/manifests

EEE et A Device
Manifests Request headers

E et Device Twir Ocp-Apim-Subscription Key string Subscription key which provides access to this API. Found in your Fr

ammate Ic Request body

Curl C av JavaScript ObjC Python

@ECHO CFF

curl =v =X GET “https://birt.azure-api.net/dev/vl/device/manifests"”
=H "Ocp-Apim-Subscri n-Key: {subscription key}"”

B8 Update Device Twin --data-ascii "{body}"

Figure 3-3. Managed device API

The Device API provides operations to create, update, and query a JSON document called the Manifest.
The manifest is created at the start of the provisioning process and initialized with the information an
organization requires to track the device throughout its lifecycle. Each time the device is configured,
updated, or de-provisioned, the manifest is updated, thus providing an historical record (see Figure 3-4).

100

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

f9-1c09c68c7597

O Refresh EE Properties
1q
2 “Created": "2016-11-25T@5:1@:29.5924996Z",
3 "Modified": "2@16-11-25T05:1@:29.5924996Z",
4 "Type": 1,
5 "Key": {
6 "PrimaryKey": [»
7 "secondarykey”: [
8 }a
9 "Extensions": [
18 {
11 "Key": "heartbeat",
12 "val": "3eeee"
13 },
14 {
15 "Key": "telemetry",
16 "val": "leeee"
17 },
18 {
19 "Key": "customerId”,
20 *val":
21 Y,
22 {
23 "Key": "teammateId",
24 "val": " —
25 }
%],
27 "Longitude”: -71.216035,
28 "Latitude": 42.221322,
29 "Hub": " [. 2zure-devices .net",
32 "DeviceDescription": "WigiTech Worker Health Simulator",
31 "FirmwareVersion": "1.8.0.8",
32 "HardwareVersion": "1.8.6.8",
33 "Manufacturer”: "WigiTech",
34 "ModelNumber": "WT-SIM-@@1",
35 "SerialNumber": | ,
36 "Timezone": "EST",
37 "Utcoffset": "UTC-5:00",
38 “id": [,
39 "cachettl": 1@
492 }

Figure 3-4. Device manifest JSON document

The device manifest provides a collection of useful properties such as:
e Created: The date/time the manifest document was created.
e Modified: The date/time the manifest document was last updated.
e Type: The type of device; simulator, smart device, edge gateway, mobile phone, etc.

e Serial Number: The unique ID for the device. This value is used to register with Azure
IoT Hub and to uniquely identify messages.

101

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

e Longitude/Latitude: The geolocation of the device. This value can be set at
provisioning time and then dynamically updated if the device has GPS capabilities.
This is especially useful for devices that are on the move or scenarios where you want
to map the location of devices.

® Manufacturer/Model Number: The manufacturer and model number of the physical
device.

e Firmware Version/Hardware Version: Details of the version of firmware installed on
the device and the version of the hardware.

e Extensions: A key/value pair list that can be used to extend the data model. Our
implementation uses the extensions collection to hold the heartbeat and telemetry
cadence, the customer profile ID, and the teammate profile ID associated with the
device.

e Hub and Key: The IoT Hub hostname and security key.

The Device API provides a Create Manifest operation that will register the device with IoT Hub and store

the manifest in DocumentDB.

Here is a C# code sample that creates a manifest for a simulated device and calls the Device API to

perform the registration. The manifest is passed as the payload to the ReST call.

// initialize a new device manifest

var manifest = new Manifest

{
Latitude = [latitude-value],
Longitude = [longitude-value],
SerialNumber = [unique-device-id],
Manufacturer = "[hardware-manufacturer-name]",
ModelNumber = "[hardware-model-number]",
FirmwareVersion = "[firmware-version]",
HardwareVersion = "[hardware-version]",
DeviceDescription = "simulator",
Type = DeviceTypeEnum.Simulator,
Timezone = "EST",
Utcoffset = "UTC-5:00"

};

// add property extensions
manifest.Extensions.Add(

new DeviceProperty("heartbeat", "30000"));
manifest.Extensions.Add(

new DeviceProperty("birthdate", "10000"));
manifest.Extensions.Add(

new DeviceProperty("customerId", customerProfile.id));
manifest.Extensions.Add(

new DeviceProperty("teammateId", teammate.id));

// invoke the Create Manifest operation on the Device API

var uri = @"https://[apim-host].azure-
api.net/dev/vi/device/manifests"”;

102

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

var uriBuilder = new UriBuilder(uri)

{
};

Query = "subscription-key=[dev-key]

var json = JsonConvert.SerializeObject(manifest);
Rest.Post(uriBuilder.Uri, json);

The API call will register the device with IoT Hub, add the IoT Hub hostname and symmetric key to the
manifest, and store the manifest in DocumentDB.

Tip The Bootstrap utility used in Chapter 2 to initialize the deployment of the Business in Real Time
reference implementation is a good example of how an application can use the Device API to register devices.
The Bootstrap utility can be found in the utility/bootstrap folder of the code repository.

To connect to IoT Hub, a device needs three pieces of information: (1) unique device ID, (2) IoT Hub
hostname, and (3) the symmetric key generated when the device was registered. You can embed these
values in the firmware. If any of these details change, however, a firmware update is required to refresh the
device with the new information.

Another technique is to use a no-touch deployment technique where the IoT device calls an API at
startup to retreive metadata. The only information that is embedded in the firmware is the unique device ID
and the endpoint to the API that returns the device manifest.

Our implementation uses this no-touch API technique. Devices call the Device API at startup to
retrieve their manifest. The manifest will have the additional two pieces of information—the hostname and
symmetric key. This approach provides flexibility in that the IoT Hub location could be changed and the
device, upon reboot or through a remote command, would reload its manifest and connect to the new IoT
Hub instance without modification to the firmware.

Here is a Node.js code sample for a device that uses this startup process:

'use strict';

// refence the Azure IoT Hub SDK
var Client = require('azure-iot-device').Client;
var Protocol = require('azure-iot-device-mqtt').Mqtt;

var Manifest;
var Profile;
var DeviceClient;

// Add your unique device Id
var Deviceld = '[unique-device-id]';

var startup

{

function()

var uri = 'https://[apim-host].azure-
api.net/dev/vi/device/manifests/id/' + Deviceld;

103

http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

ReST(uri, 'GET', function(data)

{

Manifest = data;

// create the IoT Hub connection string
var connectionString = 'HostName=' + Manifest.Hub + ";" +

"Deviceld=" + Manifest.SerialNumber + ";" +
"SharedAccessKey=" + Manifest.Key.PrimaryKey

// connect to IoT Hub
DeviceClient = Client.fromConnectionString(

connectionString, Protocol);

DeviceClient.open(function(err)

{

1

if (err) {

console.error('could not connect ' + err);

} else {

console.log('client connected to IoT Hub');

// start sending telemetry
sendTelemetry();

}
};

Configuring and Monitoring

Once the devices are registered and connected, the operations team will need the ability to adjust device
configuration at the OS, firmware, and application levels and perform these operations remotely through a
common operations dashboard.

To support ongoing configuration operations across your device ecosystem, IoT Hub provides these
device management features:

104

Device Twin: A virtual digital representation of the devices in the cloud that is kept
synchronized with the physical device

Tags: Properties of the device twin that allow you to set meta-information on devices
so that devices can be queried by tag value and operations performed on the
selected devices

Direct Methods: The ability for cloud-hosted services to request device-level
operations, such as reboot or firmware update, be performed using a request/
response pattern

Queries: Select a subset of devices or jobs based on device twin properties and tag
values

Jobs: As Device Twin, Tag, and Direct Method operations are performed across
multiple devices, jobs track the progress and report status

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Device Twin

A device twin is a JSON document that holds meta and configuration data. The twins are kept synchronized
with connected physical devices. Twin metadata is used to perform queries and support long-running
configuration operations such as firmware upgrades. Twins are managed by IoT Hub and are limited in size to
8K per property collection—Tags, Desired, and Reported—for a total of 24KB per twin. Device twins contain:

e Tags: Metadata attributes that can be used to drive device queries, e.g., “select all
devices in building 3, floor 27”. These values can only be read or written by the
backend.

e Desired Properties: Properties that are used to make configuration requests by the
backend.

e Reported Properties: Configuration properties as reported by the device.

Desired and reported properties are used together to communicate desired states by the backend and
actual state by the device (see Figure 3-5).

Device Device Twin

Tags Read, Write

Properties
Read,
Receive Change . .
Notifications Desired Read, Write
Read, Write Reported Read

Figure 3-5. Device twin model

Tags

Tags are used to logically group devices based on organizational needs. To add a tag to a device twin, you
create a JSON fragment with the following format:

var tags =
{ "tags":
{ "tag-collection-name" :
{ "tag-name" : "tag-value", ... }
}
}I

105

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

For example:

var tags =
{ Iltagsll:
{ "location" :
{ "building" : "23", "floor" : "7" }
}

}l

To use the IoT Hub Service SDK, you reference the Microsoft.Azure.Devices NuGet package. You can
use the RegistryManager object to retrieve the twin and apply the update:

using Microsoft.Azure.Devices;

var _registryManager =
RegistryManager.CreateFromConnectionString(iothubconnstr);

// get the twin
var twin = await _registryManager.GetTwinAsync(myDeviceld);

// update the twin with new tags
_registryManager.UpdateTwinAsync(myDeviceld, tags, twin.ETag));

Desired and Reported Properties

Desired and reported properties can also be used to configure devices. Instead of sending specific
commands or using direct methods, the backend can set a desired property. The device is notified that there
is a new desired property and can act when appropriate. The device is in control of how and when it applies
the configuration change.

To set a desired property, you create a JSON fragment with this format:

var property = '
{ "properties”:
{ "desired" :
{ "propertyCollectionName" :
{ "property" : "value" , ... }
}

}
s

For example:

var properties = '
{ "properties":

{ "desired" :
{ "tempSensorConfig" :
{
"configId" : "1",
"cadence" : "10000"
}
}
}

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

This fragment defines a request to set the telemetry send message cadence for the temperature sensor
to every 10 seconds. The backend service can update the device twin with this new desired property using
the RegistryManager

// get the twin
var twin = await _registryManager.GetTwinAsync(myDeviceld);

// update the twin's desired properties
_registryManager.UpdateTwinAsync(
myDeviceld, properties, twin.ETag));

The device can use the device twin to report current property values and configure event handlers
for property changes. This Node.js fragment would execute on the device to retrieve the device twin and
updated a reported property.

client.getTwin(function(err, twin) {
if (err) {
console.error('could not get twin');
} else {

console.log('retrieved device twin');

// reported temp sensor cadence
twin.properties.reported.tempSensorConfig = {
configld : "o",
cadence : "30000",

}

// if a desired property is updated...
twin.on('properties.desired’, function(desiredChange) {
console.log("received change");
var currentTempSensorConfig=
twin.properties.reported. tempSensorConfig ;

// if the update is different than reported...
if (desiredChange.tempSensorConfig.configld !==
currentTempSensorConfig.configld) {

// make the configuration change
initConfigChange(twin);
}
D;
}

var initConfigChange = function(twin) {
// get the reported configuration for temp sensor

var currentTempSensorConfig =
twin.properties.reported.tempSensorConfig;

// get the pending change

currentTempSensorConfig.pendingConfig =
twin.properties.desired.tempSensorConfig;

107

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

// report status
currentTempSensorConfig.status = "Pending";

var patch = {
tempSensorConfig: currentTempSensorConfig
};

// report that an update is pending...
twin.properties.reported.update(patch, function(err) {
if (err) {
console.log('Could not report properties');
} else {
console.log('Reported pending config change');

setTimeout(function() {

// complete the property update
completeConfigChange(twin);}, 60000);
}
bs
}

var completeConfigChange = function(twin) {

var currentTempSensorConfig =
twin.properties.reported.tempSensorConfig;

currentTempSensorConfig.configld =
currentTempSensorConfig.pendingConfig.configld;

currentTempSensorConfig.cadence =
currentTempSensorConfig.pendingConfig.cadence;

currentTempSensorConfig.status = "Success";

delete currentTempSensorConfig.pendingConfig;

var patch = {
tempSensorConfig: currentTempSensorConfig
};

patch.telemetryConfig.pendingConfig = null;

// complete the property update
twin.properties.reported.update(patch, function(err) {
if (err) {

console.error('Error reporting properties:
} else {

console.log('Reported completed config change');

}
s
};
};

108

+ err);

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Direct Methods

IoT Hub provides a command and control messaging mechanism that uses a store-and-forward pattern.
Messages can be queued by the backend through IoT Hub. The device, if connected and listening, will
receive the message asynchronously and can act on it when received. The sender of the message will be
notified through a callback mechanism that the message arrived or failed to be delivered. The time-to-live
on these command and control messages is from 1 to 48 hours and is configurable by the sender.

Direct methods provide a cloud application the ability to make a call to a device using a synchronous
request/response pattern. These calls will either succeed or fail immediately. Direct methods
leverage the ServiceClient objectin the Microsoft.Azure.Devices NuGet package along with the
CloudToDeviceMethod class, which provides the function name that the device will recognize and a timeout
for request/response interaction.

For example, this code sample will send a reboot request to a device with a 30 second timeout:

using Microsoft.Azure.Devices;
ServiceClient _serviceClient;

_serviceClient = ServiceClient.CreateFromConnectionString(
iothubconnstr);

var method = new CloudToDeviceMethod(“reboot”)

{
};

ResponseTimeout = TimeSpan.FromSeconds(30)

_serviceClient.InvokeDeviceMethodAsync(myDeviceld, method));

In the following Node.js sample, we use the DeviceClient object to register the onReboot function to
be called when the direct method named reboot is invoked. The onReboot function will send a response
immediately, update the device twin with a reboot status, and then perform the reboot. The device updates
the device twin so the backend can query for status of the reboot operation.

'use strict';
var Client = require('azure-iot-device').Client;

// register the reboot handler
DeviceClient.onDeviceMethod('reboot', onReboot);

// called when the reboot direct method is called
var onReboot = function(request, response) {

// Respond to the cloud app that invoked the direct method
response.send(200, 'Reboot started', function(err) {

if (lerr) {
console.error('An error occurred ' + err.toString());
} else {
console.log('Response to method sent successfully.');
}
D;

109

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

// Report the reboot before the physical restart
var date = new Date();

var patch = {
iothubDM : {
reboot : {
lastReboot : date.toISOString(),
}
}
};

// Get device Twin
DeviceClient.getTwin(function(err, twin) {
if (err) {
console.error('could not get twin');
} else {
console.log('twin acquired');

// update the twin's reported properties

twin.properties.reported.update(patch, function(err) {
if (err) throw err;

console.log('Device reboot twin state reported')

b
}
};

// Add your device's reboot API for physical restart.
console.log('Rebooting!");

};

Queries

IoT Hub supports a SQL-like query language for retrieving collections of device twins and jobs. The IoT Hub
device twin collection is called devices. For example, to select all device twins, you would use this query:

select * from devices
This next query will return all device twins for devices in building 23:
select * from devices where tags.location.building = '23'

It's also possible to query across tags and reported and desired properties. For example:

select * from devices where tags.location.region = 'US' and
properties.reported.connectivity IN ['Wi-Fi', 'Wired']

You can also define queries that return status for monitoring long-running operations. For example:
select properties.reported.firmwareUpgrade.status AS status,
count() AS numberOfDevices

from devices
group by properties.reported.firmwareUpgrade.status

110

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

This query returns the following JSON:

{
"status": "Success",
"numberOfDevices": 3
b
{
"status": "Pending",
"numberOfDevices": 2
b
{
"status": "Error",
"numberOfDevices": 1
}

]
To execute a query, use the RegistryManager class:

var query = registryManager.CreateQuery(
"select * from devices", 100);

while (query.HasMoreResults)
var page = await query.GetNextAsTwinAsync();
foreach (var twin in page)

{
}

// perform configuration operation

The second argument to CreateQuery() is the page size. The operations loop can cycle through the
device twins a page at a time.

Johs

Jobs can be used to update desired properties, update tags, and invoke direct methods. They can be
executed on a single device or on a collection of devices. IoT Hub keeps track of all the job that have been or
are being performed.

To schedule a job, the IoT Hub Service SDK provides the JobClient. You can use this object in
conjunction with the definition of a direct method to kick off a job:

CloudToDeviceMethod directMethod = new
CloudToDeviceMethod("reboot", TimeSpan.FromSeconds(5),
TimeSpan.FromSeconds(5));

JobResponse result = await

jobClient.ScheduleDeviceMethodAsync(jobId,
"deviceIld="myDeviceld'", directMethod, DateTime.Now, 10);

111

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

You can use the query mechanism to query the status of jobs. Consider this query:

select * from devices.jobs
where devices.jobs.deviceld = 'myDeviceld'
and devices.jobs.jobType = 'firmwareUpgrade'
and devices.jobs.status = 'completed'
and devices.jobs.createdTimeUtc > '2016-09-01'

It will return all firmware upgrade jobs that completed successfully for the device with the unique ID
myDeviceld.

Retiring

The process of retiring a device or collection of devices involves both the removal from the physical
environment as well as the updates to the backend software services to either delete or archive the device
metadata. The Real-Time Business reference implementation provides a delete function that removes the
metadata from IoT Hub as well as from the DocumentDB collection as a feature of the Bootstrap utility. It
uses the Device API to perform the operation across all registered devices.

EXERCISE SETUP

These exercises leverage the Azure services and microservices deployed in Chapter 2. In the following
exercises, you configure a Device Management dashboard and a device simulator that implements the
device management patterns covered in this chapter.

Both the dashboard and the device are built using Node.js. To run and test the device management
features, you use Visual Studio, Visual Studio Code, and a utility called Device Explorer, which is part of
the Azure loT SDK.

Tip The Device Explorer can be found in the C# IoT SDK azure-iot-sdk-csharp\tools\DeviceExplorer
folder.

To perform these operations, your development environment will require the following additions:
1. Download and install Node.js v6.9.x:
https://nodejs.oxrg/en/

2. Using a command shell window, navigate to the devices/device-node folder and
run these commands to install the node packages for the device solution:

C:> npm install azure-iot-device --save
C:> npm install azure-iot-device-mqtt --save

112

http://dx.doi.org/10.1007/978-1-4842-2650-6_2
https://nodejs.org/en/

3. Download and install the Visual Studio Node.js tools:

https://visualstudio.com/vs/node-js/

4. Download and install the Visual Studio code:

https://code.visualstudio.com

CHAPTER 3

DEVICE MANAGEMENT USING 10T HUB

DEVICE MANAGEMENT DASHBOARD

Open the dm. s1n solution in the folder dashboards/dm. This Visual Studio project is built using the Visual
Studio Node.js Express 4 template, as shown in Figure 3-6, and leverages Jade, a high-performance
HTML template engine, and Node to define an HTTP server that serves up the HTML-CSS-JavaScript

based UL.
New Project ? X
I Recent NET Framework 452 ~ Sort by: Default -l = Search Installed Templates (Ctrl+E) L~
4 |nstalled =
- O Azure Cloud Service JavaScript Typa:ilavascipt
b !\;ure Data Lake = A basic Node.js Express 4 application.
ey 0'] From Existing Node js code JavaScript
Build Accelerator J5
I ; v : .
Garra ﬁ Blank Mode.js Console Application JavaScript
Python q 195 5
Blank Modejs Web Applicat JavaSc
Visual F# ank Mode.js Web Application avaScript
P Visual Basic 2]
! . @ Starter Node.js Express 3 Application JavaScript
4 JavaScript
Apache Cordova A 5 : : e s
T Basic Node s Express 4 Application JavaSeript Exp ress
Node.js
P Windows . - G 5
Blank Azure Mode.js Web Application JavaScript
b Visual Co+ EJ J PP P Welcome to Express
s
Ak Senver EJ Starter Azure Node.js Express 3 Application JavaScript
FowerShell -
) s
P TypeScript EJ Basic Azure Node.js Express 4 Application JavaScript

I Cther Project Types

Samples
] »
b Online
Mame: ExpressAppd
Location:
Sclution:

Sclution name: ExpressAppd

Click here to go online and find templates,

CAUsers\bob\Documents\Visual Studio 2015\Projects),

Create new solution

| =

[¥] Create directory for solution
[] Create new Git repository

Figure 3-6.

Visual Studio Node.js project templates

113

https://visualstudio.com/vs/node-js/
https://code.visualstudio.com/

CHA

PTER 3 © DEVICE MANAGEMENT USING 10T HUB

The Jade layout code is found in the views/layout.jade and views/home.jade file. The JavaScript
that executes on the client is found in the public/javascripts/home. js file (see Figure 3-7).

E@ Solution 'dm’ (1 project)

A

aJs| dm
p =B npm
p bin
P " node_modules
b iliobj
4 public
images
- javascripts
a LT homejs

4 stylesheets

A routes
5L homeRoute js

b typings
A views

i) errorjade
[homejade
a[layoutjade
aLJ appjs
ad] packagejson
&3 READMEmd
alJ typings.json
59 Web.config
a¢_) Web.Debug.config

Figure 3-7. DM solution explorer

114

To configure the application to work in your environment, open the home. js file and update the two
variables at the top of the file with the subscription key and APl Management hostname from your
environment.

var devKey = '[your-dev-key]';
var apimHost = 'https://[your-apim-host].azure-api.net’;

Run the application. The first JavaScript function to be called is GetAllCompanies(), and it's found in
the home. js file. The code dynamically generates the HTML SELECT element by calling the Registry API
and requesting all profiles of type organization (i.e., type = 1).

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

function GetAllCompanies()
{

var selectContent =
'<option value="">Select a company</option>';

$.getISON(
apimHost +
'/dev/vi/xegistry/profiles/type/1?subscription-key=" +
devKey,
function (data) {

$.each(data.list, function ()
{

selectContent +=

'<option value=""' +

this.id + '">" +
this.companyname + '</option>';

1;

$('#companylList select').html(selectContent);
$(document.getElementById(
"companylList').selectedIndex = 0);

B;
}

Select the WigiTech company and you will be presented with the devices that are registered to WigiTech
employees (see Figure 3-8). The devices in our scenario are attached to employee’s bodies and

provide continuous biometric readings. The device heartbeat and telemetry message cadence settings
are presented as editable fields, and there are command buttons for executing the Reboot, Update
Firmware, and Configure Cadence commands.

Business in Real-Time

Manage Your Connected Team

WigiTach v

Serial Number Maodel Heartbeat Telemetry Reboot Upgrade Configure
fh57elad-d3f7-443¢-af10-310c7109¢ccha WT-SIM-001 30000 10000 Rsboot Devica Update Firnwace Configurs Cadence
21d5d6ca-9632-4a79-0caa-632c0ccT 8032 WT-SIM-001 30000 10000 Reboot Deviea Upsdato Firmware Cenfigure Cadencs
0f6a3116-6309-4ac2-9961-2 1068460767 WT-5IM-001 30000 10000 Rueboot Devica Update Firmwars Configure Cadence
T1abbd52-986f-44cb-aBdec-dBd0Tfee3222 WT-SIM-001 30000 10000 Reboot Deviea Update Firmwars Confgure Cadence
10dd5745-11a7-48a2-9262-d7e220537eTe WT-5IM-001 30000 10000 Faboot Devien Updato Firmwara Canfigurs Cadencs
T51c6d0¢-2031-4112-bTe7-TTITleb0eb3 WT-SIM-001 30000 10000 Reboot Device Update Firmwars Canfigurs Cadence
4bOf2d4b-2012-43ch-B262-66a5356Tbe WT-SIM-001 30000 10000 Reboot Devica Update Firmwars Confgure Cadence
4a061209-84ab-49ad-800-13507b932580 WT-5IM-001 30000 10000 Raboot Devica \pdata Firmware Configurs Cadencs
4abfT0b7-e04d-4cbb-ae6-B053916a6672 WT-3IM-001 30000 10000 Reboot Device LUipdae Firmwans Configure Cadence
54cc5c03-eb06-495d-ba2b-405beTIe6204 WT-SIM-001 30000 10000 Fsboot Deviea Update Firmwars Contguro Cadence
cHaeTcd5-d24c-4239-b4d8-aBa9 1741043 WT-SIM-001 30000 10000 Reboot Device Update Firmware Configury Cadence
4Tae5112-50b-4a36-aa%-ScaealB08cdd WT-SIM-001 306000 10000 Rsboot Device Lipdate Firmwanm Configur Cadence
caaldB850-2312-494a-a02e-684cTadb884c WT-SIM-001 30000 10000 Reboot Davice Update Firmware Configury Cadence
5a3600ca-ad6b-470e-9f21-cdab1c1608d8 WT-SIM-001 20000 10000 Reboot Device Updats Firmware Confgure Cadence
9b16c815-230e-4d8d-93e7-a4 1860846008 WT-SIM-001 26000 10000 Rsboot Device Update Firmwans Configurn Cadence
1920decT-a82b-4e40-b124-a88bcefSfaTa WT-SIM-001 30000 10000 Reboot Device Updats Firmware Configure Cadence
dia41edb-2600-4d83-98b7-dd7 34578821 WT-SIM-001 30000 10000 Reboot Device Update Firmware Configure Cadence

Figure 3-8. Device management dashboard

115

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

116

The Reboot and Update Firmware operations use the direct method mechanism to communicate with
the device. Configure Cadence uses desired properties to request a configuration change to the device.

The data used to create this table comes from the manifests for each of the registered devices. When
you select a company from the drop-down, the function GetDevices() is called. This function calls the
“Get Manifests by Customer ID” API, returning a list of manifests that are associated with the company
identified by customerId

function GetDevices(select)

{

var uri = apimHost +
' /dev/vi/device/manifests/customer/’ +
select.value + '?subscription-key=" + devKey;

$.getISON(uri, function (data) {
manifests = data.list;

The remainder of the code in this function goes on to dynamically build the device table using the
manifest collection.

When you click the Reboot, Update Firmware, or Configure Cadence buttons, the associated JavaScript
function is called. These functions call the Device API endpoints for performing device management and
configuration tasks.

Let’s examine the Reboot function. The function is passed the serial number of the device to be
rebooted. It builds a JSON fragment for a JSON object called twinPropertyRequest. This class is
passed to the Device APl methods and contains the serial number, the name of the direct method, and a
list of any parameters. The reboot direct method does not take any parameters, so the JSON fragment is
only initialized with the serial number and the direct method name, as follows:

function Reboot(serialNumber)

{
var command = {
Deviceld: serialNumber,
Name: 'reboot',
Properties: []

};

Next, the function calls the Device API endpoint for invoking a direct method passing in the
twinPropertyRequest JSON.

var twinPropertyRequest = JSON.stringify(command);

var uri = apimHost +
'/dev/vi/device/tuwin/properties/direct’;

$.ajax({
url: uri,
type: "PUT",

data: twinPropertyRequest,

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

headers: {
"Ocp-Apim-Trace": "true",
"Ocp-Apim-Subscription-Key": devKey,

"Content-Type":"application/json"

b
success: function ()
{
alert("success");
1
error: function (xhr, status, error)
{

var err = eval("(" + xhr.responseText + ")");
alert(status + ": " + err.Message);

}
1

The Device APl accesses the TwinPropertyRequest from the request body and sets up a call to the
direct method using the CloudToDeviceMethod and ServiceClient objects.

public void UpdateTwinPropertiesDirect(
TwinPropertyRequest twinPropertyRequest)
{

// Update Twin Properties using a Direct Method

var method = new CloudToDeviceMethod(
twinPropertyRequest.Name)

{ ResponseTimeout = TimeSpan.FromSeconds(30) };

_serviceClient.InvokeDeviceMethodAsync(
twinPropertyRequest.Deviceld, method));

Note To review the complete implementation of the Device API, see the DeviceAPI solution in the
microservices/device folder.

The UpdateFirmware() function also uses the direct method technique, but in addition to the firmware
update command, it passes in a parameter that is the URI to the firmware image file.

function UpdateFirmware(serialNumber)
{
var command = {
Deviceld: serialNumber,
Name: 'firmwareUpdate',
Properties: [

Key: 'fwPackageUri',
Val: 'https://[uri-to-firmware]’

};
117

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

118

var twinPropertyRequest = JSON.stringify(command);

var uri = apimHost +
'/dev/vi/device/twin/properties/direct’;

$.ajax({

url: uri,

type: "PUT",

data: twinPropertyRequest,

headers: {
"Ocp-Apim-Trace": "true",
"Ocp-Apim-Subscription-Key": devKey,
"Content-Type": "application/json"

b
success: function ()
{
alert("success");
b
error: function (xhr, status, error)
{

var err = eval("(" + xhr.responseText + ")");
alert(status + ": " + err.Message);

}
};
}

It is common for devices to send heartbeat messages to signal that they are still working and able to
communicate. The heartbeat cadence defines how long the device waits between sending heartbeat
messages. Similarly, the telemetry cadence defines how long the device waits between sending
telemetry messages.

The default settings for these values, 30 seconds for heartbeat and 10 seconds for telemetry, are stored
in the device manifest and are used to initialize devices on startup. Through the Device Management
application, we can update these settings while the device is running by sending a Device Twin Desired
Property request change.

The Configure() function leverages the Desired Property technique to request a configuration change
to the heartbeat and telemetry cadence settings. It uses the same TwinPropertyRequest data structure
to pass in new values for the heartbeat and telemetry cadence settings.

function Configure(serialNumber, inputId) {

var hbInputId = 'hb' + String(inputId);
var tlInputId = "t1' + String(inputId);

var heartbeat;
var telemetry;

$(heartbeat =

document.getElementById(hbInputId).value);
$(telemetry =

document.getElementById(t1lInputId).value);

CHAPTER 3

var request = {

};

Deviceld: serialNumber,
Name: 'cadenceConfig',
Properties: [

Key: 'heartbeat',
Val: heartbeat

1

{
Key: 'telemetry',
Val: telemetry

}

var twinPropertyRequest = JSON.stringify(request);

var uri = apimHost +

'/dev/vi/device/twin/properties’;

$.ajax({

};

url: uri,

type: "PUT",

data: twinPropertyRequest,

headers: {
"Ocp-Apim-Trace": "true",
"Ocp-Apim-Subscription-Key": devKey,
"Content-Type": "application/json"

}
success: function ()
{
alert("success");
b
error: function (xhr, status, error)
{

var err = eval("(" + xhr.responseText + ")");
alert(status + ": " + err.Message);

}

DEVICE MANAGEMENT USING 10T HUB

In the next exercise, you define a device simulator to receive the direct method calls and desired
property events.

Copy the serial number from the web page for the first device in the list and set it aside as you will need
that to update the device simulator that will receive the commands coming from the console.

119

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

DEVICE SIMULATOR

To fully test the device management software services, you need a device. In this exercise, you modify
the code for a device and, using the Device Management dashboard, test the Reboot, Firmware
Upgrade, and Cadence Configuration commands.

Start Visual Studio Code and, using the open folder feature, open the root folder of the reference
implementation code repository (see Figure 3-9).

Gmaster G Q0AD

Figure 3-9. Visual Studio code

The device project is in devices/device-node. Navigate to that folder and open the device. js file.

Update the three variables at the top of the file with your API Management hostname, your API
Management developer key, and the Device ID (serial number) that you copied from the Device
Management dashboard in the previous exercise (see Figure 3-10).

120

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

5 » devicejs - brt - Visual Studio Code
File Edit View Go Help

EXP device js

4 OPEN EDITORS 1

® device,js dev

Client = require(’

* Protocol = require

Figure 3-10. Update the ApiHost, ApiKey, and Deviceld variables

The device. js file is organized into the following sections:
e Message Classes: Define heartbeat and telemetry messages
e Helper Functions: Helper routines
* Reboot Handler: Code called when a reboot command is issued to the device

e firmware Update Handler: Code called when the update firmware command is issued
to the device

e Desired Property Handler: Code called when a desired property change event is
received

e Main: Controller functions for each of the primary device operations

Let’s first examine the main() function. This routine gives you control over each of the device’s primary
operations. These operations include:

e getDeviceManifest(): Calls Device APl using device unique ID to retrieve the manifest

e getUserProfile(): Calls the Registry API to retrieve the user profile associated with
this device

e connectIoTHub(): Connects to loT Hub
® setRebootHandler(): Sets up the reboot direct method event handler

® setFirmwareUpdateHandler(): Sets up the firmware update direct method event
handler

121

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

® setDesiredPropetyChangeHandler(): Sets up the twin desired property changed
event handler

® sendHeartbeat(): Sends heartbeat messages
® sendTelemetry(): Sends telemetry messages

Most of the calls are commented out so that you can bring them online one at a time. Before you do
that, let’s set up Visual Studio Code for debugging.

Click the debug icon in the left-side gutter and then click the gear icon in the menu bar. Make sure that
the program setting in the 1aunch. json file points to the device. js file (see Figure 3-11).

4 VARIABLES

4 CALL STACK

Ln3, Col11 Spaces4 UTF-8 LF JsoN @

Figure 3-11. Set up Launch.Json file for debugging

122

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Click the run button in the menu bar. Note the debugger controls along the top of the IDE. The device will
retrieve its manifest, look up the user profile for the user assigned this device, and connect to loT Hub
(see Figure 3-12). The code uses the console.log() function of Node to output trace information to the
debug console window.

B Laumeh i - bet - Vinal Studie Code - =] b4
Fle (dt View Go Help

Lunch * 1 d launchjson X

4 VARIABLES

4 WATCH

4 CALL STACK

Qmasterr G 0040

Figure 3-12. Launch the debugger

123

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

Stop the debugger. Modify the main() function so that the setRebootHandler () function will be called
the next time you run the application (see Figure 3-13).

4 VARIABLES

4 WATCH

4 CALL STACK

4 BREANPOINTS

iy
G masterr S O0AD Ln 377,Col 16 Spaces4 UTF-8 CRLF JavaSeript @

Figure 3-13. Activate the setRebootHandler() call

Since we are going to activate the reboot event handler, you will also want to have the Device
Management console application running so that you can test the reboot direct method.

The setRebootHandler () function uses the DeviceClient object to set up a direct method event
handler. When the direct method called reboot is invoked, the callback function named onReboot () will
be called.

var setRebootHandler = function (callback)

{
callback();
console.log('setHandlers --> reboot');
DeviceClient.onDeviceMethod('reboot', onReboot);
}

As discussed earlier in this chapter, the function onReboot () will send an immediate response to the
caller so that the cloud application knows whether the call succeeded. Next it updates the device twin
with the reboot status and then starts the reboot process.

Run the application in the debugger. The debug console output will document that the setRebootHandler ()
is active. Using the Device Management dashboard, click the Reboot button for the device. The debug
console will document that the direct method was successfully invoked (see Figure 3-14).

124

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

a79-9caa-¢€

client connected to IoT Hub

‘reboot’ sent successfully.

twin acquired
Device reboot twin state reported

Figure 3-14. Reboot direct method success

Stop the debugger.

Uncomment the setFirmwareUpdateHandler() and run the device application again. Using the Device
Management dashboard, click the Update Firmware button. Check the debug console output in Visual
Studio Code to see that the direct method event was handled. Note how the device twin is updated as
each step of the firmware update process is applied (see Figure 3-15).

manifest

Figure 3-15. Firmware update direct method success

In this final test, uncomment the remainder of the main() function so that the desired property event
handler is activated and the device will start sending heartbeat and telemetry messages.

Run the device application and, using the Device Management dashboard, change the heartbeat and
telemetry cadence settings to 15000 and 5000, respectively (see Figure 3-16). The debug console will
document:

e Messages are sent using the original cadence settings

e The desired property is received

125

CHAPTER 3 * DEVICE MANAGEMENT USING 10T HUB

e The device twin’s reported properties are updated using the settings from the desired
properties

e The device starts sending heartbeat and telemetry messages using the new cadence
values

Figure 3-16. Cadence properties applied

Summary

Device management is a key component of an end-to-end IoT and advanced analysis solution. Device
management provides complete lifecycle support for your device ecosystem through a set of cooperating
software services for planning, provisioning, configuring, monitoring, and finally retiring deployed devices.

126

CHAPTER 4

Sensors, Devices, and Gateways W,

Chapters 2 and 3 focused on the core processes that must in place when embarking on an IoT and advanced
analytics digital transformation journey, namely DevOps and Device Management. This chapter looks at the
world of sensors, devices, and gateways. Although we won'’t be able to cover all the possible permutations
of hardware and software, we will touch upon some of the more common scenarios we encounter and how
they relate and work together to create a consistent, secure, and reliable network of connected things.

Sensors

The purpose of a sensor is to measure. Sensors take a measurement of a physical parameter and turn it
into a value that can be read electrically using analog or digital circuitry. The physical shape, construction
materials, and electronics are dependent on the application. There are many classes of sensors that are
differentiated by accuracy, environmental resilience, range, resolution detail, ability to calibrate, and cost
(see Figure 4-1).

i — Q §

Temperature Pressure Heart Rate

Figure 4-1. Different types of sensors

There is a robust industry of sensor manufacturers that provide sensor hardware solutions for collecting
measurable qualities, including but not limited to:

e Position, proximity, dimension, distance, inclination, and motion

e Air quality, air pollution, levels of carbon dioxide, hydrocarbon, hydrogen, methane,
and oxygen

e Electrical current, eddy current, electrical field, magnetic field, and voltage

e Weather conditions including temperature, humidity, dew point, heat flow, and
smoke

© Bob Familiar and Jeff Barnes 2017 127
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_4

http://dx.doi.org/10.1007/978-1-4842-2650-6_2
http://dx.doi.org/10.1007/978-1-4842-2650-6_3

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

e Human and animal blood flow, blood glucose level, blood pressure, body
temperature, and heart rate

e Acoustic parameters such as loudness, noise, resonance, ultrasound, and direction
e Fluid measurements including gauge pressure, mass, volume flow, bulk, and level

e vision and identification including image sensors, code detection, and object
detection

e Optical and luminosity including radiation, light, turbidity, UV, and visible light

This list could go on and on. The key point is that the world of sensors is rich and wonderful, and the
cost of these sensors along with the analog to digital converters and microprocessor hardware to connect
and communicate has made IoT a ubiquitous commodity. We can measure anything and turn it into a
floating-point number.

Tip When planning your loT solution, document the properties and capabilities of each of the sensors, as
those values have direct impact on your canonical message format and downstream analytics.

If you are using a Single-Board Computer (SBC) such as a Raspberry Pi, you can connect analog sensors
using Analog-to-Digital (ADC) adapter shields. These adapters read the voltage coming from the analog
sensor and turn that into a digital value. You can communicate with sensors through the UART, 12C, and
GPIO interfaces as well.

It is not uncommon to connect your SBC to an intermediary device such as a Programmable Logic
Controller (PLC). Sensors may be attached directly to the PLC, or the PLC may gather readings from sensor
enabled hardware that is attached to the PLC. PLCs and single-board computers communicate using a
serial interface or Ethernet. The SBC software uses a library such as Modbus or Ethernet/IP to communicate
with the PLC.

Note Modbus is a serial communications protocol originally published by Schneider Electric in 1979
for use with its PLC products. Due to its ease of use and popularity, Modbus has become a de facto standard
protocol for communicating with PLCs. Ethernet/IP is an industrial network protocol that adapts the Common
Industrial Protocol (CIP) to standard Ethernet, and CIP is another popular protocol for industrial automation
applications.

Programmable Logic Controllers

Programmable Logic Controllers (PLCs) play an important role in industrial IoT. PLCs are ruggedized
computers that are used to provide a programmable interface to industrial machinery, cameras and sensors.
A PLC may be used, for example, to control a valve on a chemical storage tank; it monitors the fluid level
using a sensor and opens a valve to dispense when the sensor is triggered.

PLCs use special programming languages to customize how they control the machinery and attached
sensors. There are five PLC programming approaches that are in use today:

¢ Function block diagram

e Ladder logic diagram

128

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

e Structured text
e Instruction list
e Sequential function chart

Here is an example of a PLC program that increments a counter each time a pulse generator fires
(see Figure 4-2).

instruction list
LD SM 0.1 On for One Scan
MOVW #0 , VWI00 Put 0 in address VW100
MOVW # 10, VWI10 Put 10 in address VW110

LD SM 0.4 Pulse generator
EU Raising edge
INCW VWI00 Increment VW100
DECW VWI110 Decrement VW110
End programming
MEND
ladder diagram
swo.1 MOV_W
— | e VW100
0 ouT,
-1 IN
MOV_W
EN Vw110
10 ouT
—N
SMo4 oy [incw o
—1 H I o ouT
vwi100 | IN
smo4 ., [DEC_W e
— }—{ |—{ en our]
VWﬁ IN

Figure 4-2. Example PLC program from plcmanual.com

PLCs are often used to connect light to heavy industrial equipment to a Supervisory Control And Data
Acquisition (SCADA) system, a solution that provides process control for plants and factories. We encounter
PLCs when working with clients who are looking to take advantage of IoT to connect their remote products,
plants, and factories to the cloud to take advantage of predictive analytics to calculate mean-time-to-failure
of their remote systems (see Figure 4-3). If you can predict mean-time-to-failure, you can reduce operating
costs by optimizing scheduled maintenance.

129

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

an sapperie

R
.“:Ea;:ﬂ-w
e if—g!

Schneider Electric ABB Horner

Figure 4-3. Examples of light and heavy industrial PLCs

PLCs are not IoT-enabled by default. While it is common today to use an SBC to provide cloud
connectivity and communication, GSM modems have been handling these duties for many years. Let’s
venture now into the world of devices by first looking at early versions of network capable devices and how
they have evolved to what we now call smart devices.

Devices

As stated in Chapter 1, IoT is not new. For certain industries, the ability to track and communicate has been
central to their businesses such as the shipping container, vending machine, and trucking industries. Before
today’s explosion of connected “things” that leverage the latest advancements in microprocessor technology
and low-power wireless technology, the use of cellular modems had been in wide use to provide machine-
to-machine (M2M) communication. It is common for companies to look to take advantage of the public
cloud while also supporting their legacy M2M ecosystem using the same IoT infrastructure.

GSM Modems

GSM modems are cellular capable devices. They can accept a SIM card and host-embedded software and
connect to a cellular provider such as ATT or Verizon. They use an RS232, R§485, or R§422 serial port to
connect to a PLC that provides the data to be transmitted (see Figure 4-4). Once connected to the carrier,
the embedded software uses a VPN connection to a corporate network to connect to a known IP address—a
server—that accepts incoming data and provides responses. The connection from the carrier through the
VPN to the server and the transmission of data is not continuous, as we have come to expect in our world of
ubiquitous networking and connected things. The cadence is usually a few times a day and in some cases
less often to control costs.

130

http://dx.doi.org/10.1007/978-1-4842-2650-6_1

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Figure 4-4. Elementz engineers guild GSM modem

To integrate a GSM modem with our Azure-hosted IoT sub-system, we need to provide a proxy that
sits between the GSM modem and Azure IoT Hub. This proxy presents itself to the GSM modem as an IP
addressable server sitting behind a secure VPN network and manages the interactions with the cloud.
We refer to this proxy as a protocol gateway as its job is to translate from the legacy data formats and GSM
modem commands supported by the modem’s embedded software to the canonical message formats
expected by our services.

Protocol Gateway

A protocol gateway is a cloud service deployed in the context of a VPN and made IP-addressable through
cloud configuration. The protocol gateway provides a message and command-and-control translation layer
between the GSM modem and Azure IoT Hub. The protocol gateway acts as a device management proxy as
well, invoking the device startup process as outlined in Chapter 3, leveraging the device API to look up the
device manifest and use that information to connect to IoT Hub on behalf of the GSM modem.

131

http://dx.doi.org/10.1007/978-1-4842-2650-6_3

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Microsoft provides the Azure Protocol Gateway as a starting point for a protocol gateway
implementation. The Azure Protocol Gateway is a framework that enables bidirectional communication with
Azure IoT Hub. The protocol gateway programming model also allows you to plug in custom components
for specialized processing such as authentication, message transformations, compression, decompression,
and encryption and decryption of traffic between the remote devices and IoT Hub. Since GSM modems
are occasionally connected, this feature could be used to add a plugin for caching device management
commands that are applied the next time the modem dials in (see Figure 4-5).

Protocol [Gateway

z . 69.89.31.xx

APl Management

Figure 4-5. GSM modem integration using a protocol gateway

Note For additional information on the Azure Protocol Gateway, see https://github.com/Azure/azure-
iot-protocol-gateway.

GSM Modems and SMS

Since a GSM modem is essentially a mobile phone without the keyboard, screen, speakers, and headphone
jack (is that still a thing?), and it can use Short Message Service (SMS) to send and receive messages. While
this is not the most reliable communication option, it can still play a role in communicating small pieces of
information for occasionally connected scenarios in a cost-effective way.

To support SMS communication, we can use a service such as Twilio to provide two-way
communication with the GSM modem. To complete the communication chain, we can add an additional
ReST service that provides an endpoint for Twilio and provides the protocol translation between the SMS
messages coming from Twilio and our services. Let’s call this service the SMS Gateway API.

The GSM modem sends SMS messages to Twilio which in turn forwards that message to the SMS
Gateway APL The SMS Gateway follows the device startup process outlined in Chapter 3, invoking the
device API to retrieve the manifest for the GSM modem and using that information to connect to IoT Hub
(see Figure 4-6).

132

https://github.com/Azure/azure-iot-protocol-gateway
https://github.com/Azure/azure-iot-protocol-gateway
http://dx.doi.org/10.1007/978-1-4842-2650-6_3

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

t"‘
&
Operations
Dashboard

API Manannmom{_{,’
_&

SMS Gateway API

Device API
T - o™
M CS e [E] PR
s - 5
EEERER — L
N loT Hub
Manifests

Sensor

o~
>

Figure 4-6. GMS modem integration using Twilio and a custom SMS Gateway API

RFID

Radio Frequency Identification (RFID) is a system that uses tags that are attached to or embedded in things.
The tag can be passive or active. Active tags are battery powered and are activated when an RFID reader is
within proximity. Tags contain a unique ID, a serial number, and application-specific data. For example,

if the RFID tag were attached to a piece of clothing in a retail store, the tag would contain its unique serial
number along with the product details for the clothing such as SKU number, name, coloy, size, etc.

To communicate with tags, two-way radio RFID readers send signals to the tags and receive the stored
data in response (see Figure 4-7). Tags may be read-only or writable, i.e., the RFID readers can update the
contents of the tag. RFID reader systems have a transmit/receive range anywhere from 1 to 2,000 feet. The
range can be calibrated so that RFID tags are only read when they are within a well-defined zone around the
reader. This is useful, for instance, if you want to set up a zone on a conveyor belt so that tags are read when
they pass underneath the reader.

133

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

-1

={=h
R R

BY MIEROELEXTRONSA

RFID Tag RFID Reader by MikroElektronika

Figure 4-7. RFID tags and readers

When used in IoT scenarios, RFID tags and RFID readers are used in conjunction with smart devices
that communicate to the cloud as well as transform, filter, and aggregate the RFID data.

For example, a clothing store could RFID tag all the merchandise and mount RFID readers in the ceiling
to continually communicate with the RFID tags to track product location and SKU information. Using
this information, you would be able to construct a real-time view of store inventory and product location
using IoT services. While some retailers are using RFID, they are tracking inventory manually using RFID
handheld devices and they are not coordinating the store inventory data with the inventory levels advertised
on their web sites. A solution that provides real-time inventory and product location visualized through web
and mobile applications for store management, employees, and customers would be transformative in the
retail industry.

The smart device, in this scenario, would provide data filtering and transformation in addition to
handling communication with the cloud services (see Figure 4-8).

~
Bae

Operations

Dashboard

Clothing Store with RRID Tagged Merchandise

Device API

APl Management r"j

B
O E Manifests

(B |
e @

L®°
loT Hub

Figure 4-8. Clothing store using RFID to track real-time inventory and product location

134

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Bluetooth Beacons

Bluetooth is a wireless technology standard for exchanging data over short distances. Bluetooth beacons
are small, battery powered devices that can be attached to or embedded in things. Any Bluetooth enabled
receiver such as a mobile phone or smart device with the Bluetooth stack installed can connect to and
communicate with beacons when they are within range. Ranges vary by class of device from less than a
meter to upwards of 100 meters (see Figure 4-9).

\

NS 10 O

-

Figure 4-9. A deconstructed Bluetooth beacon

A common scenario is to use Bluetooth beacons positioned within a building along with a mobile
phone application to provide location awareness. It is possible to use multiple Bluetooth beacons to perform
triangulation and determine not only 2D coordinates within a space but also calculate height providing
a 3D location (see Figure 4-10). In an assisted living space, this could be used to determine if someone is
standing or lying down on the floor possibly needing assistance. An IoT solution could automatically alert
first responders, turn off appliances, and unlock the door when first responders arrive.

i

>

[e.]

Q0|

5 —mie

5 e

Manifests

i

e "l
@

L
L®®

i
I
I.
i

loT Hub

Figure 4-10. Bluetooth beacons and mobile phone used for location awareness

135

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Get Smart

Both RFID and Bluetooth beacons are only useful when combined with a smart device. So, what is a smart
device? Hollywood has done the bulk of visionary work in this field. One need only look to popular movies
and TV to find the early prototypes of devices and technology we now use every day. Don Adams, who
starred in the hit TV series Get Smart from 1965 to 1970, can be seen in Figure 4-11 demonstrating early
versions of smart devices we now use every day.

The Mobile Phone The Smart Watch Skype for Business

Figure 4-11. Visionary prototypes of smart devices (General Artists Corporation-GAC-management.
Transferred from en.wikipedia to commons.)

A smart device, such as a Single-Board Computer (SBC), consists of a credit-card sized microprocessor
board with a powerful chipset, memory, storage, and I/0 capabilities. It can connect to and read sensors
using technologies such as Modbus for PLCs, radio signals for RFID tags, and Bluetooth for beacons. It can
also use the I/0 channels on the motherboard to communicate with attached sensors. It may use wired,
wireless, or a cellular modem to connect to a local network or carrier and onto the public cloud. It can run
applications that process the sensor data, apply mathematical operations, and handle all the interactions
with the cloud and APIs. In other words, a smart device can be as smart as you program it to be.

It’s important to note that a mobile phone is a smart device and is frequently used in IoT scenarios as
described earlier. The phone itself has embedded sensors such as GPS and accelerometers. It can also run
applications that use Bluetooth to connect to Bluetooth beacons when in proximity.

Single-Board Computers

The Raspberry Pi, Qualcomm DragonBoard, and Intel Edison are examples of small, inexpensive, yet
powerful SBCs that can run embedded operating systems such as Linux and Windows 10 IoT. They can be
customized using shields (add-on boards), sensors, and LCD displays that attach using pins or cables. These
microprocessor boards also support connecting HDMI displays, MicroSD cards, and USB devices

(see Figure 4-12).

136

https://en.wikipedia.org/

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Raspberry Pi Intel Edison Qualcomm DragonBoard

Figure 4-12. Example SBCs with shields and sensor kits

SBCs can be used to prototype your IoT hardware solution and even become the foundation of your
device ecosystem. You may need to enclose your SBC in light to heavy industrial materials depending on the
environmental conditions into which the device will be deployed (see Figure 4-13). Is the device indoors or
outdoors or exposed to extreme heat or cold, dust, humidity, or vibration? This needs to be considered when
designing your hardware solution.

e Plastic ¢ Plastic and e Metal
Enclosure Metal Enclosure Enclosure

Figure 4-13. Examples of Raspberry Pi enclosures

To develop the embedded microcontroller software, Microsoft provides IoT Device SDKs across several
different programming languages, including Python, Node.js, Java, C, C++, and C#.

Note For detailed information on the Azure loT SDKs, see https://github.com/Azure/azure-iot-sdks.

Azure IoT Device SDKs can be used with a broad range of operating system (OS) platforms and devices.
The minimum requirements are that the device platform:

e Becapable of establishing an IP connection: Only IP-capable devices can
communicate directly with Azure IoT Hub.

e Support Transport Layer Security (TLS): Required to establish a secure
communication channel with Azure IoT Hub.

137

https://github.com/Azure/azure-iot-sdks

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

e Support SHA-256: Necessary to generate the secure token for authenticating the
device with the service.

e Have a Real-Time Clock or Implement Code to Connect to a Network Time Protocol
(NTP) Server: Necessary for establishing the TLS connection and for generating the
secure token for authentication.

e Have at Least 64KB of RAM: The memory footprint of the SDK depends on the SDK
and protocol used as well as the platform targeted. The smallest footprint is achieved
using the C SDK targeting microcontrollers.

You can find an exhaustive list of the OS platforms the various SDKs have been tested against in the
Azure Certified for IoT device catalog (see Figure 4-14). Note that you might still be able to use the SDKs on
OS and hardware platforms that are not listed. All the SDKs are open source and designed to be portable.
The Azure-Certified IoT Device Catalog is located at https://catalog.azureiotsuite.com/.

Microsoft
Azure

Find your loT device
Certified for loT devices tailored to your needs

0

Register Devices Learn More

Industry NISESD AAEOMN BOXER-5614 AAEON ACP-1104 AREON GENE-BTOS CPS 200
Device Type
Tested Compatible Sensars

Tested Built-in Sensors
S —— A

Connectivity x'—ﬁ o

10 Hardware Interfaces m‘_@m ASEON" AAEON" BAEON" m

Chip Manufacturers SN AL aase. o = RIS mizec. oo,

Programming Languages

AREON-UP AAEOMN PICC-BTON NISE SOW MNISE 50C-H NISE 50C
¢ Industry Protocols

* Industry Certification n

¢ Kit Available

» Geo Availability i A i=zwT

Figure 4-14. Azure-certified IoT device catalog

Microcontroller Software

Now that you have a small compact device that is running a modern, secure, embedded operating system,
and full networking stack, you can leverage that power to implement the controller software that will read
sensor data and integrate directly with IoT Hub and the ReST APIs.

138

https://catalog.azureiotsuite.com/

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

There are three core messaging patterns employed by smart devices:
e Heartbeat: Send an occasional ping message at regular intervals
e Telemetry: Send telemetry at regular intervals often
e Command and Control: Receive incoming commands and data

As covered in Chapter 3, IoT Hub provides two additional message patterns that are variations of
command and control:

e Device Twin Events: Receive device property change events
e Direct Methods: Provide function handlers for remote request/response invocations

Each of these operations is handled asynchronously, ensuring that the device is performant and no
single operation blocks the others.

In addition to the device client SDK, we want to invoke our Device API to retrieve the device manifest.
If you recall, the device manifest contains the URI to your instance of IoT Hub and the symmetric key for the
device to authenticate. The following C# example demonstrates what the startup sequence would be for a
device running Windows 10 IoT.

// reference the Azure Devices Client SDK
using Microsoft.Azure.Devices.Client;

// device constants; Id, Device API and Dev Key
private const string DeviceSerialNumber = "[your-device-id]";
private const string DeviceApi =
"https://[your-apim-host].azure-
api.net/dev/vi/device/manifests/id/" + DeviceSerialNumber;
private const string SubscriptionKey =
"subscription-key=[your-apim-devkey]";

// properties for manifest and IoT Hub client
private static Manifest _deviceManifest;
private static DeviceClient _deviceClient;

// invoke the Device API to retrieve the device manifest
_deviceManifest = await GetDeviceManifest();
// connect to IoT Hub
_deviceClient = DeviceClient.Create(
_deviceManifest.Hub,
AuthenticationMethodFactory.
CreateAuthenticationWithRegistrySymmetricKey(
_deviceManifest.SerialNumber,
_deviceManifest.Key.PrimaryKey),
TransportType.Amqp);

These few lines of code provide secure integration with your cloud services (see Figure 4-15). We

examine this code in more detail later in this chapter as you create your own smart device-embedded
software.

139

http://dx.doi.org/10.1007/978-1-4842-2650-6_3

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Local Network

- G
o

S

Operations

____________________ Dashboard

i

SBC H
: Device API
i APl Management]j
l 4
- i . L
| A &
I
1
1
1
I
: Manifests

;
1

s

ol H

1
PREER | ‘..l
Sensors : loT Hub

i
1
1
1
1
1
I
1

Figure 4-15. Smart device integration to the cloud services

Edge Gateways

Edge gateways are powerful smart devices that act as intermediaries between an ecosystem of devices and
the cloud. By introducing this intermediary, you can apply more advanced operations on the sensor data
locally before it is sent to the cloud. These local operations include but are not limited to:

140

Aggregation: Build a collection of sensor readings
Logging: Provide a transient store of the most recent events, collections, alerts, etc.

Analytics: Apply mathematical operations to a collection of sensor readings such as
average, standard deviation, Fast Fourier Transform, linear regression, etc.

Filtering: Apply a filter to a collection of sensor readings

Rules: Apply business rules defined by upper and lower thresholds defined by the
sensor properties

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

e Alerts: Identify out-of-bounds readings and signal alerts using physical notifications
such as flashing lights and whirring sirens or leveraging cellular capabilities to send
text and voice messages

e Windowing: Collect telemetry and/or alert conditions over a defined period of time
and only report when a windowing threshold has been exceeded, e.g., perform an
alert when there are more than five errors every minute

The microcontroller software running on an edge gateway device defines a data pipeline for each type
of telemetry it is responsible for. The data pipeline is made up of one or more modules that act on the data
flowing through the pipeline. The order of operations matters, and you also want to be able to configure the
modules at runtime.

Microsoft provides the Azure IoT Gateway SDK to assist in the development of edge gateways. This
SDK provides a framework for defining pluggable modules that communicate through a message broker
backbone. Each module you define and configure performs its operation on the oncoming message(s) and
writes a possibly transformed message back to the broker for the next module.

Module Module Module

Protocol A : Send to

- : Filter —

ingestion cloud
Message 1 Message 1 Message 2 Message 2
{key, value), (key, value), (key, value), (key, value),
(key, value) (key,value) (key,value) (key,value)

Content Content Content Contert
Broker

Figure 4-16. Azure IoT gateway architecture

Note For more information on the Azure 10T Gateway SDK, see https://azure.microsoft.com/en-us/
services/iot-hub/iot-gateway-sdk/.

In the following exercises, you learn how to create a simple smart device and deploy an application to
an SBC. In addition, you will update the device simulator that is used to generate the biometric data for the
IoT solution.

141

https://azure.microsoft.com/en-us/services/iot-hub/iot-gateway-sdk/
https://azure.microsoft.com/en-us/services/iot-hub/iot-gateway-sdk/
https://azure.microsoft.com/en-us/services/iot-hub/iot-gateway-sdk/

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

CREATE A SMART DEVICE

In this exercise, you create a basic smart device using the C# language and the Universal Windows
Application (UWP) template. By using this template, the solution can run locally on your desktop
providing you a simulator, and it can be deployed to an SBC running Windows 10 IoT.

Requirements for this exercise:

Windows 10 Operating System

Visual Studio 2015 with Update 3

Windows 10 SDK

Windows 10 Core loT Visual Studio Templates
Azure loT SDK

Note You can clone the Azure loT SDK from https://github.com/Azure/azure-iot-sdks.

Before we dive into the device project, you need to create UWP versions of two key libraries so that you
can leverage them in your microcontroller software: DeviceModels and MessageModels. If you have
completed the exercises in Chapter 2, you will have a version of these libraries that target .NET 4.6 and
are used by the cloud-hosted services. The code for the UWP versions of these libraries is already part
of the code repository. These next steps will create the build definitions and allow you to add them to
your NuGet package feed.

1.

142

Create a new build definition using the Build NuGet Package template you
created in Chapter 2 (see Figure 4-17).

https://github.com/Azure/azure-iot-sdks
http://dx.doi.org/10.1007/978-1-4842-2650-6_2
http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Create new build definition

Select a template

Build Deployment Custom

Build NuGet Package Template
Delete

Deploy Microservice

Delete

Empty
Start with a definition that has no steps.

Figure 4-17. Create a build definition from the template

2. Fill out the build definition settings for the MessageModelUWP solution as shown in
Table 4-1. This solution has been provided as part of the reference implementation repo.

Table 4-1. Build MessageModelUWP NuGet Package Build Definition

NuGet Installer Settings

Path to solution Models/Message/UWP/MessageModels.sln
Path to NuGet.Config nuget.config

NuGet arguments -outputdirectory packages

NuGet version 3.5

MSBuild Settings

Path to solution models/Message/UWNP/MessageModels.sln

Configuration debug

(continued)

143

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Table 4-1. (continued)

NuGet Packager

Path to CSProj models\Message\UWP\MessageModels\MessageModels.csproj
Package Folder nugets

Include referenced projects Yes (checked)

Configuration to package debug

NuGet Publisher

Path to NuPkg nugets/Message*.nupkg

Feed type Internal

Internal feed URL [URL to your package feed]

NuGet Version 3.5

3. Save the build definition. Create another build definition for the DeviceModelsUWP
solution using the same settings. Queue the two new build definitions to add these
NuGet packages to your feed.

4. Create a project in Visual Studio called SmartDevice using the Blank App (Universal
Windows) template (see Figure 4-18).

1 New Project
b Recent
|
4 Installed]
| SN
4 Templates co
¥ Business Intelligence T‘gi!
4 Visual C# cs
4 Windows E.‘Lil!
Universal ca
b Windows & E-I
Classic Desktop c=
Windows loT Core E
Web 1
.NET Core ﬁ
Android
I Clowd
Cross-Flatform
Extensibility
I QS
LightSwitch

-

Office SharePoint
Office/SharePoint

| Ranartinn -
|

NET Framework 4.5.2

~ Sort by: Default

Blank App (Universal Windows)

Class Library (Universal Windows)

Windows Runtime Companent (Universal Windows)
Unit Test App (Universal Windows)

Coded Ul Test Project (Universal Windows - Phone)

Coded Ul Test Project (Universal Windows)

Click here to go online and find templates.

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

| 4 L3
b Cnline
Name: Sma rtDevice!
Location:

Sclution name: SmartDevice

ChUsers\bobfa\Source\Repos\brtidevices\SmartDevice\,

? x
Search Installed Templates (Ctri+E

Type: Visual C#

A project for a single-page Universal
Windows Platform app that has no
predefined controls or layout.

[V Create directory for solution
[[] Create new Git repository

OK [Cancel

Figure 4-18. Create a Windows universal app project

144

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

You will be presented with a dialog box that informs you the target version and minimum version of
Windows 10 that will be supported by the project (see Figure 4-19). Select the defaults.

New Universal Windows Project X

Choose the target and minimum platform versions that your Universal Windows application will
support.

Target Version Windows 10 Anniversary Edition (10.0; Build 14393) &
Minimum Version Windows 10 (10.0; Build 10586) b

Which version should | choose?

OK Cancel

Figure 4-19. New universal Windows project

5. After the project has finished initializing, right-click on the References node in the
Solution Explorer and select Manage NuGet Packages from the menu.

Select NuGet.org as the package source location and search for Azure.Devices. Add a reference to
the Microsoft.Azure.Devices.Client NuGet package. Also add a reference to the Newtonsoft.Json
NuGet package.

Select your NuGet feed as the package source and add a reference to the DeviceModelUWP and
MessagesModelUWP NuGet packages that you just created. When complete, your solution references
should appear as depicted in Figure 4-20.

145

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Solution Explorer v 0 x
@ ©-5SCaBE o pf=
Search Solution Explorer (Ctrl+;) P~

itg] Solution 'SmartDevice' (1 project)
4 5[c#] SmartDevice (Universal Windows)
b &/ Properties
4 u-B References
6" Analyzers
'@ DeviceModelsUWP
'@ MessageModelsUWP
' Microsoft Azure.Devices.Client
'B Microsoft. NETCore.UniversalWindowsPlatform
=B Universal Windows
b Assets
b

-

) App.xaml
4 5[} MainPage.xaml
ilZ] Package.appxmanifest
29) project.json
fZ1 SmartDevice_TemporaryKey.pfx

Figure 4-20. SmartDevice references

6. Open the MainPage.xaml.cs file and add these using statements at the top.

using Microsoft.Azure.Devices.Client;
using brt.Models.Message;

using brt.Models.Device;

using Newtonsoft.JSON;

You will need a unique ID for your smart device. We registered several devices using the Bootstrap
utility in Chapter 2. You can use the Device Explorer utility that is part of the Azure loT SDK to look up a

registered device Id in loT Hub to use for your smart device.

Tip The Device Explorer can be found in the C# loT SDK azure-iot-sdk-csharp\tools\DeviceExplorer

folder.

146

http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

7. Open the Device Explorer solution in another instance of Visual Studio and run the
app (see Figure 4-21).

us! Device Explorer Twin

Configuration Management Dats Messages To Device Call Method on Device

Connection Information
loT Hub Connection String:

Protocol Gateway HostName:

Update

Shared Access Signature
Key Name gthubowner
Key Value |hiDnQoGminkk6w/Y ToloDUmN9d00yxnrcFYmpZJKiug=
Target |priothubtst azure-devices.net

TTL (Days) 365 o . Generate SAS

Figure 4-21. Device Explorer

Enter the connection string to your instance of loT Hub on the Configuration tab and click the Update
button. Navigate to the Management tab and click List (see Figure 4-22).

147

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

8! Device Explorer Twin - O X

Configuration Management Data Messages To Device Call Method on Device

Actions
Create Refresh Update Delete SAS Token... Twin Props.

Devices

Total: 51
Id PrimaryKey SecondaryKey PrimaryThumbl SecondaryThur ConnectionStrir Connectiol *

» 03c4cc22-956... EiLG3Qo2Ju.. 0J8IhSPFGA.. HostName=b...
I093b0-493-89_.. uo3AbeAZL3.. | eZ+9RheCBB.. HostName=b... IDisconnecl
|0d141d32-26f.. | SWOr1P6SPB... |hAWhOUtO... HostName=b... | Disconnecl
|Oe7c5ble-db... 0OK2ZG4EL.. |74TQbQWP... HostName=b... | Disconneci
|0f6a3116-63b... | 6gzeJxjUbts0j... |fLI/CoZYhuS2.. HostName=b... | Disconnec
|11a28023-52c... | Z6bPqiWOfa... |2155q5hqeot... HostName=b... | Disconnecl
|1920dcc7-a9... | 3WS+5tsFrS.. |fAZiblB4wSs.. HostName=b... | Disconnecl
I2‘Id5d6ca-96_.. YiB0O7uYZV.. |ECNgJzAhOu... HostName=b... IDisconnacI
I24cd551e-9{]___ 61eqb/tpbel).. |pqgiTxwUJvb.. HostName=b... IDisconnecI
257b8b85-71... |sVEW/LP1Z.. |9AjjRgVVE38,... HostName=b... | Disconnecl
:Zaadbm}fa_.. ui+ZyLuArizG... |0cg2DQQ+9.. HostName=b... | Disconnecl
|3a5dab26-¢1... |ssdA5s7C2Qr... | 7p9TT80Ibe... HostName=b... | Disconneci
|3cc0abba-adf.. m+aPFeYCm.. |VenHi2LleJR... | 'HostName=b... | Disconnecl
|472e5112-/50... | bdeBrvHIet/N... | ZLafUbdWOA... HostName=b... | Disconnec
|4912f79a-ab7... | rOSGFAOIEK7I... |UDsV4Q+cB... | |HostName=b... | Disconnecl
I4a'06‘l209-84_.. | S1ChfjO0e8N... |2Gng+GF6ao... HostName=b... IDisconnec_I
I4abf70b7—eﬂ4.., | JATWTFADBp... |syOmWE-AY.. HostName=b... IDisconnecI
I4b9f2d4b-eD1... x9QIFsalJ7H... | O4FVWKIWY ... HostName=b... IDisconnecI
|5178f6a4-740... |BcflIZXNmnes... |W|TEPIAfSs... HostName=b... | Disconnecl ¥

< >

Figure 4-22. Device Explorer listing devices in IoT Hub

Select a device and then right-click and choose to copy the data for the selected device. Paste that
information into Notepad so that you can access the unique ID to use as the smart device serial number.

You will also need your API Management hostname and developer key to initialize the properties that
define device identity. You can retrieve those settings from the APl Management Developer portal.

8. Add the following class variables to the MainPage class in your UWP solution. Use
the device ID that you copied from the Device Explorer to use as the device serial
number. Update the API URIs to use your APIM hostname and subscription key.

// Device Identity

private const string DeviceSerialNumber = "[device-id]";

private const string DeviceApi = "https://[your-apim-
host].azure-api.net/dev/vi/device/manifests/id/" + DeviceSerialNumber;

148

10.

11.

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

private const string SubscriptionKey =
"subscription-key=[your-apim-devkey] ";

private static Manifest _deviceManifest;

private static DeviceClient _deviceClient;

// Thread Management
private static Task _heartbeatTask;
private static Task _telemetryTask;

Open the MainPage.xaml file and add a MainPage_OnLoaded() event handler to
the <Page> element. The handler is defined in the XAML file and the function is
generated in the MainPage.xaml.cs file.

<Page

o Loaded="MainPage_OnLoaded">

;}éage>

Add the async keyword to the method signature of MainPage OnLoaded().

private async void MainPage OnLoaded(
object sender, RoutedEventArgs e)
{
throw new System.NotImplementedException();

}
In the Mainpage. Xaml file, replace the <Grid> element section with this XAML code:

<Grid Background="{ ThemeResource
ApplicationPageBackgroundThemeBrush}">
<Grid.RowDefinitions>
<RowDefinition Height="50*"/>
<RowDefinition Height="50*"/>
</Grid.RowDefinitions>

<TextBlock Grid.Row="0"
HorizontalAlignment="Center"
VerticalAlignment="Center"
FontSize="24">
Windows 10 IoT Device
</TextBlock>
<StackPanel Grid.Row="1" Margin="10,10,10,10">
<TextBox x:Name="Status"
Margin="10"
IsReadOnly="True"
TextAlignment="Center" />
</StackPanel>
</Grid>

149

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

150

12.

13.

14.

Add two private static method stubs for the code that will handle the
background messaging threads.

private static void StartHeartbeat()

{
}

private static void StartTelemetry()

{
}

Add a private static method called GetDeviceManifest() that invokes the
Device API to retrieve the device manifest.

private static async Task<Manifest> GetDeviceManifest()
{
var client = new HttpClient();
var uriBuilder = new UriBuilder(DeviceApi)
{
Query = SubscriptionKey

};

var json = await client.GetStringAsync(uriBuilder.Uri);
var deviceManifest =
JsonConvert.DeserializeObject<Manifesty(json);

return deviceManifest;

}
Replace the body of the MainPage OnLoaded() event handler with this code.
Status.Text = "Main Page Loaded";

// get the device manifest
_deviceManifest = await GetDeviceManifest();

try
{
// connect to IoT Hub
_deviceClient = DeviceClient.Create(
_deviceManifest.Hub,
AuthenticationMethodFactory
.CreateAuthenticationWithRegistrySymmetricKey(
_deviceManifest.SerialNumber,
_deviceManifest.Key.PrimaryKey),
TransportType.Amqp);

Status.Text = $"{ deviceManifest.SerialNumber}
Connected to Azure IoT Hub";

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

catch (Exception connectionErr)

{
}

StartHeartbeat();
StartTelemetry();

Status.Text = connectionErr.Message;

This code will invoke the Device API to retrieve the device manifest and connect to loT Hub using properties
of the device manifest. If successful, a status message is displayed on the application user interface.

To implement the heartbeat message pattern, we will start a background task and within that task
continuously send heartbeat messages based on the cadence setting, which is defined as an extension
property in the device manifest. The heartbeat message is defined in the MessageModelsUWP library.

It is a simple message that contains an acknowledgement string, the device serial number, and the
longitude and latitude of the device.

15.

Add the following code to the body of the StartHeartbeat () method.

var cadence = Convert.ToInt32(
_deviceManifest.Extensions["heartbeat"]);

_heartbeatTask = Task.Factory.StartNew(async () =>

{
while (true)

{
// create a heartbeat message
var heartbeat = new Heartbeat

{
Ack =

$"{_deviceManifest.SerialNumber} is functioning"”,
Longitude = _deviceManifest.Longitude,

Latitude = _deviceManifest.Latitude,
Deviceld = deviceManifest.SerialNumber

};
var json = JsonConvert.SerializeObject(heartbeat);

var message = new Message(
Encoding.ASCII.GetBytes(json));

await _deviceClient.SendEventAsync(message);
await Task.Delay(cadence);

}
B;

151

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

16. To test your smart device, start the Device Explorer utility, select the Data tab, and

begin monitoring for messages arriving from your device by selecting its ID from
the drop-down.

Start your Smart Device application. It will begin sending a heartbeat message every 30 seconds
(see Figure 4-23).

Comgunton Management Dila Messsges ToDevice ColMamod on Dwics

Moo

Eventbiph |SfcPubist

Windows 10 loT Device G Tima: [R0 1214 _J

Event b Data

[Fracaiving svents

122600 16101659 AN Device [03cdee 2295634 5uar HOH Sti TIO07964], Dt ["Aci™ *03c4cc 229563 -450a SOREIITILO TG s
fanctioning”. " BEILAE55 0590 43:6- oS 4dc4 1685000 Tevceld" Tichec 22 9 0¥

L TIRATIA" M “Lastude™41 °T

03c4ec22-9563-45ea-540f-45d27 3007964 Conrectad to Azure loT Hub

2016-12-26 T D606 204225060077
= TIBOTA

P v S
* Mesaage Type' 1 "Longiude”- 87. 891584 12 26TI-T7-28.5777318 05.00)]
1Z/Z6201 101759 AM> Dovice [03o4ceZ 95634500 SH-4502T: i 229561 2500 S5 TIO0TIE &
enctoning” " eSaEMET-Ccb44378-0102 5 Davicwd sEea i

£ AYTILAPE4" MessageTypa™ 1 Longiude® 87 A1584 | aitude™ 41 538691 *Timestamn” ~2016-12-26TH) 1758 BEEAMB.08 0T

T

Figure 4-23. Smart device sending heartbeat messages

At this point we do not have any connected sensors. We will simulate taking a temperature with an
expected range of values between 60 and 70. These readings will be sent more often than heartbeat
messages. We will use the SimpleSensorReading class as defined in the MessageModelsUWP library.
Like the heartbeat message, it will contain the device serial number and the longitude and latitude. In
addition, it will contain a floating point reading for the simulated temperature.

17. Add the following code to the StartTelemetry() method.

var cadence = Convert.ToInt32(
_deviceManifest.Extensions["telemetry"]);

var random = new Random();
_telemetryTask = Task.Factory.StartNew(async () =>
{

while (true)

// the temperature will be simulated
// it will be a value between 60 and 70

152

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

var sensorReading = new SimpleSensorReading

{

Longitude = _deviceManifest.Longitude,
Latitude = _deviceManifest.Latitude,
Deviceld = _deviceManifest.SerialNumber,

Reading = random.Next(60, 70)
};

var json =

JsonConvert.SerializeObject(sensorReading);

var message = new Message(
Encoding.ASCII.CGetBytes(json));

await _deviceClient.SendEventAsync(message);

await Task.Delay(cadence);

}
B;

18. Run the Smart Device application and review the incoming messages in loT Hub
using the Device Explorer. You should see multiple telemetry messages arriving and

an occasional heartbeat (see Figure 4-24).

I Smanlevice - o x -

Event Hub. | Dricubist

Sua Ties:

Windows 10 loT Device

Consumar Group.

s

EvertHuo Dam

mert 093 Messages Tol

Devicor: ITRCRCER GG

Device CallMuthod on Devics

4500 HOH LR TIROTHA

tw-ra’ W
ST
122620

03¢4ccd2-9563-450a-9101-45d273007564 Connected to Azure loT Hub

e T000a"

wm ‘\Muﬂhm :pm
L5353 AM> Device: Iﬂk‘u??'S
2aF15403647 "Dovicels- Dedsedd EEI A5
(E7.201554."L pthecte™ 41 304651 Timassamp
[12/26/2016 110203 AM> Davic

12257 1059 37 SM0TES00])

o 7891584, L nbtude” $1 3‘}-6\1. mevamp® -m-,mems:mwr O8.00°]]
W52 TRATEA]. Dot [(Feadeg” 660 " BlaeSit-57e14120-00F
964" Mesoge T ype” 3 Leagiude™

v DSt TR 4585 S5 MO TRTIR] O [Reacing 60104 771450 AIBTTS b0S2:
[Eelechibie” “Deviced" Tlobcid 4553 -45ea S0HGDTIO TG Message Tyne" 1 Longitude”
7RG 1584, Lottede™ 41 354650, Timestamp™ 2016 12-26T 110002 1265082-05.00°])
12262016 110013 AM> Device: [03e4ce22- 9563450 - M543 TI007564], Duta [Resdng” 66 0,907 1906 7- TaMo-460-2a 1 5-
“Drrvicekd” e fec 25034 500 W2 S0 TIOTHL" "Meviage Type™ 1 L osgitds”

7801504 Latiede™ 41 004630 Time stamp" 2016-12-26T 110812 4470005007
127262016 11 0023 AM> Device: [U3cS0c22 95654500 Nlbﬂ?.’m."*ll Dot | {"Ack™ TleocZ2 5631500 F0-SAQ TR0 A 8

sage Typs™ 1 Longh.
122620151 FORTSALS ek [O3e4ciz2 9553 S50 OH45027RA736+]. Dot |

Davicolr
cda 6T 291554 "L ncte”™ 41 334653 Tir

Figure 4-24. Heartbeat and telemetry arriving in IoT Hub

TEG1684. Lm usanas] mestamp™3016-12-26T11,0022 §06513-05007))

mp" 161226711 0022 321 234405.00°)]
ding” 620901 a2 L2 14-4Bed Bed

pe™ 3 Leagruda™-

153

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

DEPLOY YOUR SMART DEVICE APP TO AN SBC

Now that we have a functioning Smart Device simulator application, we can deploy it to an SBC. In this
exercise, you will update your Smart Device app to use a temperature sensor attached to a Qualcomm
DragonBoard. Note that this exercise is not a requirement for going through the other exercises in the
book. It is provided here for completeness.

Note To do this exercise, you need a Qualcomm DragonBoard and the 96Boards Linker Starter Kit.

To purchase a Qualcomm DragonBoard, visit https: //www.arrow.com/en/products/
dragonboard410ciotsdk/arrow-development-tools.

To purchase the 96Board Linker Starter Kit, visit https://www.arrow.com/en/products/96boards-starter-
kit/linksprite-technologies-inc.

The requirements for this exercise are as follows:
e DragonBoard 410c
e 96Boards Linker Starter Kit
e DragonBoard Update Utility for Windows 10 loT
e Windows 10 loT Core OS for DragonBoard
e USB mouse
e USB keyboard
e HDMI display and cable
e Mini-USB to USB cable

Note Download the DragonBoard Update utility at https://developer.qualcomm.com/hardware/
dragonboard-410c/tools.

Download Windows 10 loT Core for DragonBoard at https://www.microsoft.com/en-us/download/details.
aspx?id=50038.

To enable your PC for device development, you need to configure Developer Mode. Follow the instructions at
https://msdn.microsoft.com/windows/uwp/get-started/enable-your-device-for-development to
configure your PC.

The DragonBoard 410c is a single-board computer built around a Qualcomm® Snapdragon™ 400 series
processor. It features advanced processing power, Wi-Fi, Bluetooth, and GPS, all packed into a board the
size of a credit card. Based on the 64-bit capable Snapdragon 410E processor, the DragonBoard 410c is
designed to support Linux- or Windows-based software development (see Figure 4-25).

154

https://www.arrow.com/en/products/dragonboard410ciotsdk/arrow-development-tools
https://www.arrow.com/en/products/dragonboard410ciotsdk/arrow-development-tools
https://www.arrow.com/en/products/96boards-starter-kit/linksprite-technologies-inc
https://www.arrow.com/en/products/96boards-starter-kit/linksprite-technologies-inc
https://developer.qualcomm.com/hardware/dragonboard-410c/tools
https://developer.qualcomm.com/hardware/dragonboard-410c/tools
https://www.microsoft.com/en-us/download/details.aspx?id=50038
https://www.microsoft.com/en-us/download/details.aspx?id=50038
https://msdn.microsoft.com/windows/uwp/get-started/enable-your-device-for-development

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

DragonBoard 410c Overview

A wide array of expansion capability
1% 40 pin Low Speed (LS) expansion connector Analog expansion connector 1x 60 pin High Speed (HS) expansion connector
= UART, 5P|, I25, 12C x2, GPIO x12, DC power * Headset, Speaker, FM antenna 4L-MIPI DS, USB, 12C x2, 2L+4LMIPI CSI
Powerful Processing and
Multimedia Capabilitie
Snapdragon 410

* Quad-core ARM® Cortex™ A53
at up to 1.4 GHz per core
= Adreno 306 400MHz PC-class
graphics, with support for DXT1 : . 3 Integrated Connectivity
. i’o:;le‘;l:léon:ge:ment _— N - . Wi-Fi, BT, FM, GPS
On-board Wi-Fi/GPS antennas

Memory and Storage

1GB LPDDR3, 4GB eMMC 4.5
Micro SD card slot

et
;'fﬂ l:z:l:rlw:::tor 1x USE 20 micro B (device mode only)

(1080pHD @ 30fps) 2x USB 2.0 type A (host mode only)
I1/O Interfaces

Figure 4-25. DragonBoard 410c overview
1. Set up your hardware as depicted in Figure 4-26. The DragonBoard is connected to
an HDMI display and to your development laptop using a mini-USB cable. There is
also a USB mouse and USB keyboard attached to the DragonBoard.

e

Figure 4-26. DragonBoard setup

Note It is recommended that whenever you make changes to the hardware configuration of the board, that
you power down the DragonBoard and remove the power cable.

155

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

2. Flash the DragonBoard with the Windows 10 Core loT operating system.
e Plug the HDMI adapter, the USB keyboard, and mouse into the DragonBoard.
e Use the mini-USB to USB adapter to connect the board to your PC.

Note The detailed instructions on how to flash the DragonBoard using the DragonBoard Update Utility
and Windows 10 loT Core are located at https://developer.microsoft.com/en-us/windows/iot/Docs/
GetStarted/dragonboard/GetStartedStep1.htm.

Once the device has been flashed and connected to your wireless network, you can manage the device
using the Windows Device portal. The Windows Device portal is an application that is part of Windows
10 loT Core and is running locally on the DragonBoard. This application is accessible from your PC by
using a browser and navigating to the home page of the application running on the device. You will need
the IP address of your device on you network. The DragonBoard home screen will display the device IP
address, as shown in Figure 4-27.

11:08 AM

Device name
Network
IP address

105 Version

to start developing

Connected devices

NETWORK INFORMATION
Ethernet
IPvE

1Pvd

Status

Figure 4-27. DragonBoard home screen

3. Using a browser, navigate to http://[deviceIP]:8080 and log in to the device
portal using the default username and password:

Username: Administrator
Password: p@ssword.

156

https://developer.microsoft.com/en-us/windows/iot/Docs/GetStarted/dragonboard/GetStartedStep1.htm
https://developer.microsoft.com/en-us/windows/iot/Docs/GetStarted/dragonboard/GetStartedStep1.htm

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Using this application, you can manage the device name, administrator password, and many
other features of the device by navigating through the menu on the left side of the user interface
(see Figure 4-28).

€ C ® 192188123

Home ol e = s

€ Device information

Device Name: bobsdragonboard
Device Model: SBC
OS Version: 10.0.10588

& Preferences

2 Change your device name

s Change your password

Figure 4-28. Windows device portal

All the Linker kit sensors can be added to the DragonBoard through the Linker mezzanine card. The
Linker mezzanine card has eight connectors supporting Analog, UART, I12C, and GPIO, and two channels
of analog input using the MCP3004 ADC chip. There are bidirectional voltage-level translators, which
allow for low-voltage bidirectional translation between any of the 1.2-V,1.5-V, 1.8-V, 2.5-V, 3.3-V, and
5-V voltage nodes. It is compatible with 3.3V or 5V modules and makes connecting peripherals easy.
You can select the appropriate voltage by placing a jumper on the JP9 voltage selector. We will be using
the mezzanine in 5-V mode as that is what is required by the sensors we are going to attach.

4. Power down the device and remove the keyboard and mouse. Set the voltage to 5V
using the JP9 jumper, as shown in Figure 4-29.

157

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Figure 4-29. Set the voltage jumper to 5V

5. Stack the mezzanine board on top of the DragonBoard and carefully insert the
general-purpose 1/0 (GPIO) prongs into the GPIO connectors on the DragonBoard
(see Figure 4-30).

Figure 4-30. Before and after stacking the mezzanine

158

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

6. Attach the red LED sensor and the thermal sensor as shown in Figure 4-31.

e Using an adapter cable, attach one end to the red LED module and the other to the
connector labeled DC2 on the Linker mezzanine.

e Using a second adapter cable, attach one end to the thermal sensor and the other
to the connector labeled ADC1 on the Linker mezzanine.

Figure 4-31. Sensors attached

7. Attach the keyboard, mouse, and HDMI monitor to the power cable. You are now
ready to test the full hardware configuration.

8. Add a reference to the Windows loT Extensions for UNP to your Smart Device
solution. This library will provide high-level classes for working with single-board
computers.

Right-click on the References node in the Solution Explorer and select Add Reference. Select Universal
Windows » Extensions in the left menu. Check the box next to the Windows loT Extensions for the UWP
for version 10.0.14393 and then click OK (see Figure 4-32).

159

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

-

P Assemblies

b Projects

Core
Extensions
Recent

P Browse

Reference Manager - SmartDevice

Shared Projects

4 Universal Windows

Filtered to: SDKs applicable to SmartDevice

Name
Behaviors SDK [XAML)

Microsoft General MIDI DLS for Universal...
Microsoft General MIDI DLS for Universal...
Microsoft General MIDI DLS for Universal...

Microsoft Universal CRT Debug Runtime
Microsoft Universal CRT Debug Runtime
Microsoft Universal CRT Debug Runtime
Microsoft Universal CRT Debug Runtime

Microsoft Visual C++ 2013 Runtime Packag...
Microsoft Visual C++ 2013 Runtime Packag...

Microsoft Visual C++ Runtime Package
Microsoft Visual Studio Test Core
Microsoft Visual Studio Test Core
MSTest for Managed Projects

M5STest for Managed Projects

Visual C++ 2015 Runtime for Universal Wi...

Windows Desktop Extensions for the UWP
Windows Desktop Extensions for the UWP
Windows Desktop Extensions for the UWP

Windows loT Extensions for the UWP
Windows loT Extensions for the UWP
Windows loT Extensions for the UWFP
Windows Mobile Extensions for the UWP
Windows Mobile Extensions for the UNP
Windows Mobile Extensions for the UWNP

Version

120
10.0.14393.0
10.0.10586.0
10.0.10240.0
10.0.10586.0
10.0.14393.0
10.0.10240.0
10.0.10150.0
120
14.0
11.0
14.0
14.0
14.0
14.0
14.0
10.0.14393.0
10.0.10586.0
10.0.10240.0
10.0.14393.0
10.0.10586.0
10.0.10240.0
10.0.14393.0
10.0.10586.0
10.0.10240.0

? X
Search Universal Windows (C 2 =

Name:

Windows loT Extensions for the
uwp

Version:

10.0.14393.0

Targets:

UAP 10.0.14393.0

More Information

Cancel

Figure 4-32. Add a reference to the Windows IoT extensions

160

9.

10.

Add the following using statements at the top of the MainPage.xaml.cs file:

using Windows.Devices.Gpio;
using Windows.Devices.Spi;
using Windows.Devices.Enumeration;

Add the following private variables to the MainPage class. These are used to
connect and communicate with the general-purpose I/0 (GPIO) interface and the
serial peripheral interface (SPI) bus.

// GPIO
private
private
private

// SPI

private
new

private
new

static GpioPinValue _value;
const int LedPin = 13;
static GpioPin _led;

static byte[] _readBuffer =

byte[3] { 0x00, 0x00, 0x00 };
static byte[] writeBuffer =
byte[3] { ox01, 0x80, 0x00 };

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

private const string SpiControllerName = "SPIO";
private const int SpiChipSelectlLine = 0;
private static SpiDevice _spiDisplay;

11. Add a private static method to initialize the GPIO. The GPIO interface will be
used to turn the red LED on and off.

private static void InitGPIO()

{
_led = GpioController.GetDefault().OpenPin(LedPin);

_led.Write(GpioPinValue.Low);
_led.SetDriveMode(GpioPinDriveMode.Output);

}

12. Add an asynchronous private static method to turn the LED on and off. This is
done by setting the value of the LED pin location to high (on), sleeping for some
number of milliseconds, and then setting the pin to low (off). This will cause the LED
light to blink on and then off.

public static async void BlinkLED(int duration)

{
_led.Write(GpioPinValue.High);
await Task.Delay(duration);
_led.Write(GpioPinValue.Low);

}

13. Add a private static method to initialize the SPI. The SPI will be used to
communicate with the temperature sensor using the analog-to-digital converter on
the mezzanine board.

private static async void InitSPI()
{
try
{
var settings =
new SpiConnectionSettings(SpiChipSelectline)
{
ClockFrequency = 500000,
Mode = SpiMode.Mode0
};

var spiAqs = SpiDevice.GetDeviceSelector(
SpiControllerName);

var deviceInfo = await
DeviceInformation.FindAllAsync(spiAqgs);

_spiDisplay = await SpiDevice.FromIdAsync(
deviceInfo[0].Id, settings);

161

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

162

14.

15.

16.

17.

catch (Exception ex)

{
throw new Exception("SPI Initialization Failed", ex);
}
}

Add a private static helper method to convert the byte array returned from the
sensor into a floating-point value.

public static double ConvertToDouble(byte[] data)
{
int result = 0;
int 1 = Convert.ToInt32("1100000000", 2);
result = (data[1] << 8) & i;
result |= (data[2] & oxff);
return result;

}

Update the StartTelemetry() method to use the SPI interface to read the
temperature sensor and set that as the temperature reading of the simple sensor
message. This replaces the use of the random number generator.

// get the temperature setting from the sensor
_spiDisplay.TransferFullDuplex(
_writeBuffer, _readBuffer);

// convert the value to Fahrenheit
var temperature = ConvertToDouble(_readBuffer);
temperature = (((temperature * 5.0) /

(1023 - 0.5)) * 100);

var sensorReading = new SimpleSensorReading
{
Longitude = _deviceManifest.Longitude,
Latitude = deviceManifest.Latitude,
Deviceld = _deviceManifest.SerialNumber,
Reading = temperature

};

Add a call to the BLinkLED() method right after sending the temperature message
to loT Hub. Pass in a value of 500ms for the duration of the blink.

await deviceClient.SendEventAsync(message);
BlinkLED(500);

Update the start of the MainPage OnLoaded() method to call the GPI0Init() and
SPIInit() methods.

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Status.Text
InitGPIO();
Status.Text = "GPIO Initialized";
InitSPI();

Status.Text

"Main Page Loaded";

"SPI Initialized";

That’s it. We are now ready to test our smart device.

18. To deploy the application to the device, set the Build Target to ARM and then select
Remote Machine, as shown in Figure 4-33.

o e Pwvicn - Micsenoft Viial Stucks g P - 8 x 1
Fie BSt Vew Pejet Buld Debug Tesw Tood Tenl RuShaper Anshe Whadow Halp b famiar - I
0-0 H-LEAW ?- Debug - ARM BN 5. =T 5T M : .
§ vaengens [ITCVINCITRY " O | Souton rpere ~ax
£ (5 smariowicr Renta Machine r—— -1 %, StarTelemetng ® B-sce® op "F
i 4 Daviee 1’ n Seterion Exglorer (£l p- 8
3 Dewriasd torw Exulstorn 3 - =
1 1 s _teles miosd b et prtNew{async () =»] Soluton ‘Smaleace’ (1 prosect; F
1 4 +fi%] SmartDuvice (Universal Windom]
1 while (true) b 8 Properies
1 { 4 V8 Raterercer
117 /f get the temparature setting from the sensor F anwyzen
118 _spiDisplay.TransferFul lDuplex(_writeBuffer, _readBuffer); fu' Dol we
119 P Mesmgabloehlg
] /f convert the value to farenheight L "‘""”‘I‘;*:"":’“""""‘
var temperature = ConvertTeDouble(readBuffer); : o g
temperature = (([temperature * 5.8) / (1823 - 0.5)) * 180); ' Urivarsal Windens
% i % Windows ko1 Istensions: for the LW
var sensorfieading = new Simpl b s
{ b 8DY Appaam
Longitude = _deviceManifest.Longitude, # +T} Mainage.cam
Latitude = _deviceManifest.Llatitude, ¥ D) MaiPage xamies
8 Deviceld = _deviceManifest.SerialNumber, '!_; Fackageappamantent
Reaging = Temperature bl ot
1; . - — *[E) SearDevice Temgcreryiey b
var json = JsonConvert.Serializeobject(sensorfeading);
134 var message = new Message(Encoding.ASCIT.GetBytes(ison));
awalt _deviceClient,SendEventasync(message);
138 awalt Task.Delay(cadence);
S }
b+
1 ' Tabuias Mociel Soleton D, Toam Exclor
Propanies B x
private static async Taskemanifest> GetDeviceManifest() ey
{ o s

Figure 4-33. Configure Visual Studio to build and deploy a solution to a remote device

The first time you do this Visual Studio will request the IP address of the device. Provide the IP address
from the DragonBoard home screen, as shown in Figure 4-34, and click Select.

163

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Remote Connections

Filter

Found 0 connections

@ Manual Configuration

Address: 192.168.1.23) |

w

Authentication Mode: | Universal (Unencrypted Protocol)

| Select]

® Auto Detected

Not all devices can be auto detected. If you do not see a device you
are expecting directly enter the IP address using ‘Manual
Configuration’

Learn more about Remote Diagnostics

Figure 4-34. Setting the IP address of your SBC in Visual Studio

19. Run the application using the Visual Studio debugger. The applications will be built
and deployed to your DragonBoard. You will see the Ul on your HDMI display and
you can track the incoming heartbeat and temperature messages on your PC using

the Device Explorer utility, as shown in Figure 4-35.

164

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

a5 Device Explorer Twin

Configuration Management Data Messages To Device Call Method on Device

Monitoring

EventHub: |briiothubtst

Device ID: 03c4cc22-9563-45ea-9f0f-45d273b07964

15:10:34

Start Time: | 12/26/2016 15:10:34 D*‘

Consumer Group: $Default [J Enable

Event Hub Data

12/26/2016 3:21:26 PM> Device: [03cdcc22-9563-45ea-9f0f-45d273b07964), Data: A
[{"Reading™72.371638141809285,"Id"-"ec2923a6-6 1b6-44ea-ab84-72644ceb71f" "Deviceld" "03c4cc22-9563-45ea-910f
45d273b07964"."MessageType™3."Longitude"-87.891584."Latitude":41.894693." Timestamp":"2016-12- L-
26T15:21:13.5303849-05:00"}]

12/26/2016 3:21:26 PM> Device: [03c4cc22-9563-45ea-90f-45d273b07964), Data:[{"Ack""03c4cc22-9563-45ea-9f0f
45d273b07964 is functioning"."ld"."97e76685-34e5-45e2-88b2-16f7ab1de4a3"."Deviceld":"03c4cc22-9563-45e3-90f
45d273b07964" "Message Type":1."Longitude":-87.891584."Latitude":41.894693." Timestamp":"2016-12-
26T15:21:13.5303849-05:00"}]

12/26/2016 3:21:36 PM> Device: [03c4cc22-9563-45ea-9f0f-45d273b07964). Data:
[{"Reading™72.371638141509255,"Id"."7da239d3-8e1f-4191-a96a-29c0be 7a75d9","Deviceld"."03c4cc22-9563-45¢ea-
9f0f-45d273b07964" "Message Type":3."Longitude"-87 891584, "L atitude"41.894693 " Timestamp®"2016-12-
26715:21:36.2950284-05:00"}]

12/26/2016 3:21:46 PM> Device: [03c4cc22-9563-45ea-9f0f-45d273b07964), Data:
[{"Reading™71.882640586797066."Id"."7a862f1c-Be 79-43b1-ad62-18a934c32a3c" . "Deviceld" . "03c4cc22-9563-45ea-9f0f
45d273b07964" "MessageType".3."Longitude"-87.891584."Latitude":41.894693." Timestamp":"2016-12-
26T15:21:46.4167919-05:00"}]

12/26/2016 3:21:56 PM> Device: [03c4cc22-9563-45ea-9f0f-45d273b07964], Data:[{"Ack":"03c4cc22-9563-45ea-9f0f v

Figure 4-35. DragonBoard sending heartbeat and temperature sensor messages to IoT Hub

Note You can use Visual Studio to set breakpoints and do remote debugging using this configuration.

MODIFY THE TEAM SIMULATORS

The Real-Time Business reference implementation is a multi-tenant solution. It provides a common set
of platform services that can be used by many customers at the same time, providing secure access to
data for each customer.

In our scenario, each company has defined groups of employees called teams, where each member
of the team is connected to the cloud using a sensor-enabled vest. Companies can monitor biometric
readings from individual employees, which are then routed to advanced analytics services to identify
exhaustion and stress levels and provide real-time data visualization, alerts, and notifications.

165

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

The reference implementation provides three console applications for simulating the teams. Each
application simulates a connected team of 15 employees from these pseudo-companies:

e WigiTech. A Massachusetts-based technology company that sensor-enables its factory
floor workers who work in and around dangerous machinery.

e Tall Towers: A utility services company that sensor-enables its field engineers to
monitor for exhaustion and stress as they climb towers atop skyscrapers in downtown
New York.

e The Complicated Badger. A Chicago-based trucking company that specializes in
moving large, dangerous cargo and monitors its drivers for aleriness.

The reference implementation includes a microservice called Simulation that provides data to drive the
analytics. The sample data is made up of 4200 biometric reading records (containing several biometric
sensor readings) for each of 15 individuals resulting in a total of 63K data records. Each simulator
application uses this same data set. Therefore, if you run all three simulators at the same time, you will
be simulating a total of 45 employees from three different companies.

Each simulator upon startup uses the Registry APl and the Device API to retrieve a profile and a device
manifest for each teammate. Next it starts a background thread for each teammate. Within that thread,
it retrieves a simulation data record and, using the user profile, manifest, and simulation data record,
constructs a message and sends it to the Azure loT Hub. The fields in the message are outlined in the
following code snippet.

UserId = teammate.Profile.id,

Deviceld = teammate.Manifest.SerialNumber,
Longitude = teammate.Manifest.Longitude,
Latitude = teammate.Manifest.Latitude,

Status = SensorStatus.Normal,

Timestamp = DateTime.Now,

Age = teammate.Profile.biometrics.age,

Weight = teammate.Profile.biometrics.weight,
Height = teammate.Profile.biometrics.height,
BreathingRate = datarow.columns[0].dataValue,
Ventilation = datarow.columns[1].dataValue,
Activity = datarow.columns[2].dataValue,
HeartRateBPM = datarow.columns[3].dataValue,
Cadence = datarow.columns[4].dataValue,

Velocity = datarow.columns[5].dataValue,

Speed = datarow.columns[6].dataValue,

HIB = datarow.columns[7].dataValue,
HeartrateRedZone = datarow.columns[8].dataValue,
HeartrateVariability = datarow.columns[9].dataValue,
Temperature = datarow.columns[10].dataValue

To use the simulators, you need to make some minor updates to each of the three simulator
applications so that they use the managed APIs that you deployed using the exercises in Chapter 2. The
team simulators are in the devices/device-teamsim folder. There you will find a simulator for each
pseudo-company.

166

http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

1. Navigate to the devices/device-teamsim/wigitech folder and open the
WigiTechSim solution.

2. Open the App.config file and update the following configuration settings:

<add key="DeviceAPI" value="https://[your-apim-host].azure-api.net/
dev/vi/device/manifests" />

<add key="RegistryAPI" value="https://[youxr-apim-host].azure-api.net/
dev/vi/registry/profiles" />

<add key="SimulationAPI" value="https://[your-apim-host].azure-api.net/
dev/vl/simulation/datasets" />

<add key="SubscriptionKey" value="subscription-key=[your-dev-key]" />

3. Do this for each of the other simulator applications as well.

4. Start the Device Explorer and each of the three simulator applications. Once they
are connected to loT Hub and are sending data, you can use the Device Explorer
to check the messages coming from the devices associated with each of the
simulators (see Figure 4-36).

Figure 4-36. Three simulators and the Device Explorer

Each of the device serial numbers is displayed in the console window so that you can easily correlate
them to the Device Explorer.

167

CHAPTER 4 © SENSORS, DEVICES, AND GATEWAYS

Summary

This chapter examined the rich and wonderful world of sensors and devices and the various ways
different configurations can connect to Azure IoT Hub. It examined GSM modems, single-board computer
smart devices, and edge gateways. You learned about the Protocol Gateway SDK and how you can use

that to provide a translation layer between legacy devices and the new cloud services. You examined

the architecture of edge gateways and the IoT Gateway SDK and how to use these devices to provide
aggregation, filtering, and analytics at the edge.

Through the exercises, you learned how to implement the microcontroller software that runs on your
remote devices, reads sensors, and sends messages to [oT Hub. Finally, you configured the team simulators
so you can drive a feature-rich set of advanced analytics provided by the reference implementation.

The next set of chapters turns to those advanced analytics and leverages the data coming from the
simulators. They cover stream analytics, data factory, data lake, and Machine Learning.

168

CHAPTER 5

Real-Time Processing Using
Azure Stream Analytics

This chapter examines the use of Microsoft Azure Streaming Analytics to create jobs to process the incoming
data streams from various sensors, perform data transformations and enrichment, and finally, to provide
output results into various data formats.

It has been said that the cloud represents a once-in-a-generation technology transformation. Certainly,
one of the cornerstones of this key transformation is the ability to efficiently ingest, process, and report on
massive amounts of data at scale.

The Lambda Architecture

In today’s modern data analytics, a new stream processing strategy has been proposed—the “Lambda”
architecture—and has been widely attributed to Nathan Marz, the creator of Apache Storm.

The fundamental essence of the Lambda architecture is that it’s designed to ingest massive quantities of
incoming data by taking advantage of batch and stream processing methodologies. Additional attributes of
the Lambda architecture include the following:

e Ability to process a vast array of workloads and scenarios.

e High throughput characterized by low-latency reads with frequent writes and
updates.

e Retaining the incoming data in the original format. This is the notion of a “data lake”.

¢ Modeling data transformations as a series of materialized stages from the
original data.

e Highly scalable, nearly linear, scale-out infrastructure to provide scale up/down.

Figure 5-1 depicts the Lambda architecture.

© Bob Familiar and Jeff Barnes 2017 169
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_5

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Batch Layer Serving Layer

B«::l‘tch
Master Miew
Dataset Batch

View

Speed Layer

Real-time View Real-time View

Figure 5-1. The Lambda architecture

By merging batch and stream processing in the same architecture, the result is an optimized data
analytics engine that is capable of not just processing the data, but also of delivering the right data at the
right time.

It should be noted that this new just-in-time (JIT) data that can now be surfaced with streaming
analytics (via the Lambda architecture) can often become the source of many types of competitive
advantages for a business or enterprise that knows how to exploit this type of information across a wide
array of use cases.

The real magic comes in knowing how to recognize the hidden opportunities buried deep inside
the data and from there take action to explore, develop, fail-fast, and finally succeed in evoking true
transformational changes in a business or industry. This is basically the essence of this book and the guiding
light for our own reference implementation.

Microsoft has recognized the need for streaming analytics at scale as part of today’s modern Internet-of-
Things (IoT) solutions and has incorporated streaming capabilities into several popular architectures, such
as Cortana Analytics along with the IoT Suite offerings shown in Figure 5-2.

170

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Azure loT Suite Architecture

2l 2] Device and Event Processing Presentation
Data Sources Transport

IP capable Provisioning API Solutlon Portal
devices »
S Identity & Registry Stores
Device State Store
f.f:,tg? s " - g Stream Event Processor 5
Agent E E L
— i Gateway | _ — | Analytics/
H — i [’ Machine
T _ Storage Learning
Low power |) Data
devices e
Control System Worker Role Visualization &

Presentation

Figure 5-2. Azure IoT suite architecture

What Is Streaming Analytics?

One of the real advantages of a great streaming analytics engine is the ability to provide real-time analytics
and outputs so that data becomes actionable with a minimum of delay.

To provide context to the challenges involved in developing streaming analytics solution, the best
canonical example is a scenario of counting the number of red cars in a parking lot versus counting the
number of red cars that pass by any major freeway (assuming it’s not rush hour) for every 10 minute interval
in a one-hour period (see Figure 5-3).

Figure 5-3. Challenges of streaming analytics

The essence of this scenario is “data in motion” versus “data at rest”. The key difference here is the
element of “time” and the ability to capture and analyze periodic “slices” of data across potentially millions
of events in order to detect patterns and anomalies in the massive amounts of streaming data.

Real-Time Analytics

Real-time analytics is all about the ability to process data coming from literally millions of connected devices
or applications, with the inherent ability to ingest and process potentially millions of events per second.

A key component of this scenario is integration with a highly-scalable publish/subscribe pattern. Another
key requirement is for simplified processing capabilities on continuous streams of data that allow a solution

to transform, augment, correlate, and perform temporal (time-based) operations. 171

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Correlating streaming data with reference data is also a core requirement in many cases, as the
incoming data often needs to be matched with a corresponding host record.

Streaming Implementations and Time-Series Analysis

Today’s modern businesses are demanding analytics in real-time to obtain a competitive advantage; they
have moved beyond the “old school” method of hourly, daily, weekly, and monthly reporting cadences to
now relying on data that is only seconds old.

In order to make streaming analytics and reporting all the more relevant, support for time-window
calculations becomes even more imperative. To this end, a set of time-series windows are beneficial such as:

o Tumbling Windows: A series of fixed-sized, non-overlapping and contiguous time
intervals. The diagram in Figure 5-4 illustrates a stream with a series of events and
how they are mapped into ten-second tumbling windows.

A 10-second Tumbling Window

0 5 10 15 20 25 30

Figure 5-4. An example of tumbling windows in streaming analytics

e Hopping Windows: Model scheduled overlapping windows. A hopping window
specification consist of these parameters:

e Atime unit.
e A window size, how long each window lasts
e Ahop size, how much each window moves forward relative to the previous one

e <Optional> Offset size, an optional fourth parameter.

172

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The illustration in Figure 5-5 shows a stream with a series of events. Each box represents a hopping
window and the events that are counted as part of that window, assuming that the hop is 5, and the size is 10.

A 10-second Hopping Window with a 5-second “"Hop”

0 5 10 15 20 25 30

® ® o @ L 2

Figure 5-5. An example of hopping windows in streaming analytics

e Sliding Windows: When using a sliding window, the system is asked to logically
consider all possible windows of a given length and output events only for those
points in time when the content of the window actually changes, in other words
when an event entered or exists the window. Figure 5-6 illustrates a sliding window.

173

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

A 10-second Sliding Window

Time
» (seconds)

Figure 5-6. Sample sliding window in streaming analytics

Predicting Outcomes for Competitive Advantage

In addition to detecting patterns and anomalies in the data, another key element to running a business at
Internet speed is the ability to shape new business outcomes by predicting what may happen in the future.
This is exactly the problem domain for predictive analytics and Machine Learning, which can use historical
data combined with modern data science algorithms to predict a future outcome.

One of the key methods to accelerating business and building a competitive advantage is the ability to
automate, supplement, or accelerate key business decision-making processes through the use of predictive
analytics and Machine Learning. In today’s business world, decisions are made every day, often without all
the facts and data, so any additional insights can often result in a huge competitive advantage.

Across many industries and verticals, many bottlenecks can be found today where there is lack of
actionable data. This is a key area where Azure Stream Analytics and Machine Learning can help reduce
friction and accelerate results.

A recent new feature of Azure Streaming Analytics is the ability to directly invoke Azure Machine
Learning Web Services as streaming data is processed in order to enrich the incoming data stream or predict
outcomes that might in turn, require triggering a notification or alert. This is certainly a key feature and
capability and so we will cover this in all in detail in Chapter 8.

Stream Processing: Implementation Options in Azure

When using Microsoft Azure, there are several choices available for implementing a Stream Processing layer,
as illustrated in Figure 5-7 with an IoT architecture.

174

http://dx.doi.org/10.1007/978-1-4842-2650-6_8

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Device Conne

IF capahle \
devices |

<+ Personal
s
Mp——’' } olution U¥ devices
; 5 an LK .

 SET—
Existing loT
devices \k

T 2 e s !
—

Integration

and

Gateway Connectors
Gateway(s)
c !)

Business

Low power
devices

A1
—
1

£,

—+ Data Path
T _ 1 Optional solution component

B -zuce 157 solution companent

Figure 5-7. Stream processing layer in an IoT architecture

With Microsoft Azure, there are many options available for creating a steam processing layer. The
choices range from using Open Source Software (OSS) packages on Linux Virtual Machines to leveraging
fully managed Platform-as-a-Service, such as Azure HDInsight.

Here are the basic options for running a stream processing engine in Azure:

Streaming Options: Virtual Machines - (Infrastructure-as-a-Service):

¢ Virtual machines (running Windows or Linux)
e Open Source Software Distributions:
e Hortonworks
¢ C(Cloudera

e Roll your own: Apache Storm/Spark, Apache Samza, Twitter Heron, Kafka
Streams, Apache Flink, Apache Beam (data processing workflows), Apache
Mesos (project myriad).

e Note that these options will also work for on-premise stream processing
applications.

Azure Managed Services (Platform-as-a-Services - PaaS) Options:
e Azure HDInsight: Managed Spark / Storm
e Essentially managed 100% compatible Hadoop in Azure.
e HBase as a columnar NoSQL transactional database running on Azure blobs.
e Apache Storm as a streaming service for near real-time processing.
e Hadoop 2.4 support for 100x query gains on Hive queries.
e Mahout support for Machine Learning and Hadoop.

e Graphical user interface for hive queries.

175

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e Azure Streaming Analytics

e Processreal-time data in Azure using a simple SQL language.

e Consumes millions of real-time events from IoT or Event Hubs collected from

devices, sensors, infrastructure, and applications.

e Performs time-sensitive analysis using SQL-like language against multiple
real-time streams and reference data.

e Outputs to persistent stores, dashboards, or back to devices.

Choosing a Managed Streaming Analytics Engine in Azure

With the availability of Apache Storm and Spark Streaming capabilities on HDInsight, along with Azure
Streaming Analytics, Microsoft has made available multiple options for both proprietary and open source
technologies for implementing a streaming analytics solution.
It should be noted that both Azure managed analytics platforms provide the benefits of a managed PaaS
solution, however, there are a few key distinct capabilities that differentiate them and should be considered
when determining your final streaming architecture solution.
Ultimately, the final choice will be narrowed down to a few key considerations, which are highlighted in

Table 5-1.

Table 5-1. Comparison Between Azure Streaming Analytics and HDInsight

Feature

Azure Stream Analytics

HDInsight Apache Storm

Input Data formats

SQL Query Language

Temporal Operators

Custom Code
Extensibility

Support for UDFs
(User Defined
Functions)

Pricing

Business Continuity
/ High Availability
Services with
guaranteed SLAs

Supported input formats are Avro,
JSON, and CSV.

An easy-to-use SQL language support
is available with the same syntax as
ANSI SQL.

Windowed aggregates and temporal
joins are supported out-of-the-box.

Available via JavaScript user-defined
functions.

UDFs can be written in JavaScript and
invoked as part of a real-time stream
processing query.

Stream Analytics is priced by the number
of streaming units required. A unit

is a blend of compute, memory and
throughput.

SLA 0f 99.9% uptime.

Auto-recovery from failures.

Recovery of state-full temporal operators
is built-in.

Any format may be implemented via
custom code.

No, users must write code in Java C# or
use Trident APIs.

Temporal operators must be
implemented via custom code.

Yes, there is availability to write custom
code in C#, Java, or other supported
languages on Storm.

UDFs can be written in C#, Java, or the
language of your choice.

For Apache Storm on HDInsight, the

unit of purchase is cluster-based, and is
charged based on the time the cluster is
running, independent of jobs deployed.

SLA of 99.9% uptime of the Storm
cluster. Apache Storm is a fault-tolerant
streaming platform. Customers'
responsibility to ensure their streaming
jobs run uninterrupted.

176

(continued)

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Table 5-1. (continued)

Feature Azure Stream Analytics HDInsight Apache Storm

Reference data Reference data available from Azure No limits on data size. Connectors
Blobs with max size of 100MB of in- available for HBase, DocumentDB,
memory lookup cache. Refreshing of SQL Server and Azure. Unsupported

reference data is managed by the service. ~connectors may be implemented via
custom code. Refreshing of reference
data must be handled by custom code.

Integration with Via configuration of published Azure Available through Storm Bolts.
Machine Learning Machine Learning models as functions

during Azure Streaming Analytics job

creation.

Note Refer to the following link for additional information regarding choosing a managed streaming
analytics platform in Azure:

Choosing a streaming analytics platform: Apache Storm comparison to Azure Stream Analytics:

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-comparison-storm

It should be noted that HDInsight supports both Apache Storm and Apache Spark Streaming. Each of
these frameworks provide streaming capabilities and these capabilities may be worthy of further analysis
depending on your specific implementation requirements.

See the following link for additional information:

Apache Spark for Azure HDInsight; https://azure.microsoft.com/en-us/services/hdinsight/apache-
spark/

Here is an additional comparison of the three managed streaming implementations (via HDI and ASA)
that are possible on Microsoft Azure:

Feature Storm on HDI SparkStreaming on HDI Azure Streaming Analytics
Programming Model Java, C# Scala, Python, Java SQL Query Language
Delivery Guarantee At-least-once Exactly Once. At least once

(Exactly once w/ Trident)
State Management Yes Yes Yes
Processing Model Event at-a-time Micro-batching Real-time event processing
Scaling Manual Manual Automatic
Open Source Yes Yes NA

177

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-comparison-storm/
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark/
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Streaming Technology Choice: Decision Considerations

When evaluating a managed streaming analytics platform in Azure, additional consideration should be
given to the factors in order to make a better educated decision regarding your choice of Azure managed
streaming platforms:

¢ Development team expertise and background

e Expertise in writing SQL queries versus writing code

e Required skill levels: Analyst versus a developer for queries
e Development effort and velocity

e Using OOB connectors versus using OSS components

e Troubleshooting and diagnostics

e Custom logging, Azure operation logs

e Scalability, adjustability, and pricing

Pain Points with Other Streaming Solutions

Regardless of your choice of managed streaming analytics platforms in Azure, there are many advantages to
choosing a platform that runs in Azure versus a one-off solution.

The implementation options with other streaming analytics engines can leave a lot to be desired when
it comes to providing a holistic and easily managed solution. A few key points are listed here that should
be taken into consideration when evaluating a streaming analytics platform for your solution, include the
following:

e Depth and breadth: Levels of development skills required.
e Completeness: Typically not end-to-end solutions.
e Expertise: Need for special skills to set up and maintain.

e Costs: Development, testing, and production environments and licensing.

Reference Implementation Choice: Azure Streaming
Analytics

In our reference implementation and throughout the remaining chapters of this book, we will be using Azure
Streaming Analytics to implement the reference solution. Azure Streaming Analytics is a fully managed
cloud service for real-time analytics on streams of data using a SQL-like query language with built-in
temporal semantics. It’s a perfect “fit” for the solution requirements.

Advantages of Azure Streaming Analytics

Choosing the right streaming analytics platform is a critical decision that will have major impacts on the
overall performance, reliability, scalability, and overall operation of your solution.

For that reason, it is helpful to document the specific reasons for choosing Microsoft Azure Streaming
Analytics and share these for future solution architecture considerations.

178

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

No Challenges with Deployment

Azure Streaming Analytics is a fully managed PaaS service in the cloud, so you can quickly configure and
deploy from the Azure Portal or via PowerShell deployment scripts.

e No hardware acquisition and maintenance

e Bypasses requirements for deployment expertise

e Up and running in a few clicks (and within minutes)
e No software provisioning or maintenance

e Easily expand your business globally

Mission Critical Reliability

e Achieve mission-critical reliability and scale with Azure Streaming Analytics

e Exactly once delivery guarantee up to the output adapter that writes the output
events

e State management for auto recovery
e Guaranteed not to lose events or incorrect output
e Preserves event order on per-device basis

e Guaranteed 99.9% availability SLA

See the following link for additional details:

Event Delivery Guarantees (Azure Stream Analytics)
https://msdn.microsoft.com/en-us/library/azure/mt721300.aspx
How to achieve exactly-once delivery for SQL output:

https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-
delivery-for-sql-output/

Business Continuity

e Stream Analytics processes data at a high throughput with predictable results and no
data loss

e Guaranteed uptime (three nines of availability)
e Auto-recovery from failures

e Built-in state management for fast recovery

179

https://msdn.microsoft.com/en-us/library/azure/mt721300.aspx
https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-delivery-for-sql-output/
https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-delivery-for-sql-output/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

No Challenges with Scale:
Scale to any volume of data while still achieving high throughput, low-latency, and guaranteed resiliency.
e Elasticity of the cloud for scale up or scale down
e Spin up any number of resources on demand
e Scale from small to large when required
e Distributed, scale-out architecture

e Scale using slider in Azure Portal and not writing code

Low Startup Costs

Azure Stream Analytics lets you rapidly develop and deploy low-cost solutions to gain real-time insights
from devices, sensors, infrastructure, and applications.

e Provision and run streaming solutions for as low as $25/month
e Pay only for the resources you use
e Ability to incrementally add resources

¢ Reduce costs when business needs change

Rapid Development

Reduce friction and complexity and use fewer lines of code when developing analytic functions for scale-out
of distributed systems. Describe the desired transformation with SQL-based syntax, and Stream Analytics
automatically distributes it for scale, performance, and resiliency.

e Decrease bar to create stream processing solutions via SQL-like Language

e Easily filter, project, aggregate, join streams, add static data with streaming data, and
detect patterns or lack of patterns with a few lines of SQL

¢ Built-in temporal semantics

Development and Debugging Experience Through Azure Portal

Queries in Azure Stream Analytics are expressed in a SQL-like query language. In Azure Stream Analytics,
operational logging messages can be used for debugging purposes such as viewing job status, job progress,
and failure messages to track the progress of a job over time; from start to processing, to output.

e Manage out-of-order events and actions on late arriving events via configurations

Scheduling and Monitoring Built-In

The Azure Management Portal and Azure Portal both surface key performance metrics that can be used to
monitor and troubleshoot your query and job performance.

e Built-in monitoring
e View your system’s performance at a glance

e Help you find the cost-optimal way of deployment
180

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Why Are Customers Using Azure Stream Analytics?

The previous section outlines some of the key advantages of utilizing Azure Streaming Analytics. By
leveraging Microsoft Azure Streaming Analytics for quick infrastructure provisioning along with the
low-maintenance aspects of running on a completely managed streaming analytics platform, you can avoid
the usual complications listed next:

¢ Monitoring and troubleshooting the solution.
e Develop solutions and infrastructure that can scale at pace with business growth.

e Develop solutions to manage resiliency, such as infrastructure failures and
geo-redundancy.

e Develop solutions to integrate with other components like Machine Learning, BI, etc.

e Develop solution (code) for ingestion, temporal processing, and hot/cold egress
operations.

e Infrastructure procurement: avoid long hardware delays and provision in minutes.

Focus on building solutions, not on the solution infrastructure, and get the applications developed and
deployed faster so you can truly work at Internet speed.

It should be noted that in addition to the many benefits outlined for individual Azure customers, Azure
Streaming Analytics is also a core technology that makes up several other Microsoft Azure-based solution
offerings, such as:

e Azure IoT Suite: Microsoft provides Azure IoT Suite as part of its preconfigured IoT
solutions built on the Azure platform and makes it easy to connect devices securely
and ingest events at scale.

e Cortana Intelligence Suite: A fully managed Big Data and advanced analytics suite to
transform your data into intelligent action.

Key Vertical Scenarios to Explore for Azure Stream Analytics

There are many use cases for leveraging streaming analytics across industry verticals. Some of the more
popular applications are listed here:

¢ Financial Services:
e Fraud detection
e Assettracking
e Healthcare:
e Patient monitoring
e Government:
e Surveillance and monitoring
e Infrastructure, Energy, and Utilities:
e Operations management in oil and gas

e Smart buildings

181

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e Manufacturing:
e Predictive maintenance
e Remote monitoring
e Retail:
e Real-time customer engagement and marketing
e Inventory optimization
e Telco/IT:
e IT Infrastructure and cellular network monitoring
e Location-based awareness
¢ Transportation and Logistics:
e Container monitoring

e Perishables shipment tracking

Our Solution: Leveraging Azure Streaming Analytics

In our reference solution, we use Azure Stream Analytics, which is a fully managed, cost effective, real-time,
event processing engine that can help us unlock deep insights from our data. Azure Stream Analytics makes
it easy to set up real-time analytic computations on data streaming from devices, sensors, web sites, social
media, applications, infrastructure systems, and more. It’s perfect for our solution.

Before we begin the walk-through of our specific reference architecture implementation, we will
explore the overall workflow of creating Streaming Analytics jobs in Microsoft Azure. Stream Analytics
leverages years of Microsoft Research work in developing highly tuned streaming engines for time-sensitive
processing, as well as SQL language integration for intuitive specifications of streaming jobs.

With a few clicks in the Azure Portal, you can author a Stream Analytics job specifying the three major
components of an Azure Streaming Analytics Solution. These three components are inputs, outputs, and
U-SQL queries.

Streaming Analytics Jobs: INPUT definitions

The first task in setting up an Azure Streaming Analytics job is to define the inputs for the new streaming job.
The input definitions are related to the source of the incoming streaming data.
Note that, at the time of this writing, there are only two data format types supported:

e JSON: Streaming message payloads in the JavaScript-Object-Notation format.

e CSV:Streaming data in the Comma-Separated-Value text format. Header rows
are also supported (and recommended) to provide additional column naming
functionality.

182

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

When specifying data stream inputs, there are two definition types—Data Streams and Reference Data:

e Data Streams: A data stream is denoted as an unbounded series of events flowing
over time. Stream Analytics jobs must include at least one data stream input to be
consumed and transformed by the job. Stream Analytics jobs must include at least
one data stream input to be consumed and transformed by the job. The supported
data stream input sources include the following input types: (at the time of this
writing):

e IoT Hub Streams:

e Azure IoT Hub is a highly scalable publish-subscribe event ingestion
platform optimized for IoT scenarios.

e Used for device-to-cloud and cloud-to-device messaging streams.
e Optimized to support millions of simultaneously connected devices.

e (Can be used to send inbound and outbound messages to IoT devices.

e Event Hub Streams:

e Enables inbound (only) event message streams for device-to-cloud
scenarios.

e Supports a more limited number of simultaneous connections.
e Event Hubs enables you to specify the partition for each message sent for

increased scalability.

e Blob Storage: Used as an input source for ingesting bulk data as a stream. For
scenarios with large amounts of unstructured data to store in the cloud, blob
storage offers a cost-effective and scalable solution.

Note See the following link for more information concerning the differences between Azure loT Hubs and
Event Hubs:

Comparison of loT Hub and Event Hubs:

https://azure.microsoft.com/en-us/documentation/articles/iot-hub-compare-event-hubs

e Reference Data: Stream Analytics supports a second type of auxiliary input called
reference data. As opposed to data in motion, reference data is static or slowing
changing.

e Itis typically used for performing lookups and correlations with other data
streams to enrich a dataset.

e Atthe time of this writing, Azure blob storage is currently the only supported
input source for reference data. Reference data source blobs are currently
limited to 100MB in size.

183

https://azure.microsoft.com/en-us/documentation/articles/iot-hub-compare-event-hubs/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Streaming Analytics Jobs: OUTPUT Definitions

We have defined our input sources for a new Azure Streaming Analytics job, so the next step is to define the
output formats for the job. In order to enable a variety of application patterns, Azure Stream Analytics has
different options for storing output and viewing analysis results. This makes it easy to view job outputs and
provides flexibility in the consumption and storage of the job output for data warehousing and other purposes.
Note that any output configured in the job must exist before the job is started and events start flowing.
For example, if you use blob storage as an output, the job will not create a storage account automatically.
It needs to be provisioned by the user before the Streaming Analytics job is started.
The Output formats for Azure Streaming Analytics include the following storage options (at the time of
this writing):

e SQL Database: Azure SQL Database can be used as an output for data that is
relational in nature or for applications that depend on content being hosted in a
relational database. The one requirement for this Stream Analytics output option is
that the destination be an existing table in an Azure SQL Database. Consequently,
the table schema must exactly match the fields and their types being output from the
streaming analytics job.

e Azure SQL Data Warehouse: Note that an Azure SQL Data Warehouse can also be
specified as an output via the SQL Database output option. This feature is currently
in preview mode at the time of this writing.

e Blob Storage: Blob storage offers a cost-effective and scalable solution for storing
large amounts of unstructured data in the cloud.

e Event Hubs: A highly scalable publish-subscribe event ingestion construct. Event
Hubs are highly scalable and can handle ingestion of millions of events per second.
Note that a key reason for using an Event Hub as an Output of a Stream Analytics job
is so that the data can become the input of another streaming job. In this way, you
can “chain” multiple streaming jobs together to complete an application scenario,
such as providing real-time alerts and notifications.

o Table Storage: A NoSQL key/attribute store that can be leveraged for structured data
with minimal schema constraints. Table storage provides highly available, massively
scalable storage, so that an application can automatically scale to meet user demand.

e Service Bus Queue: Provides a First-In, First-Out (FIFO) message delivery to one
or more consumers. Messages are then set up to be received and processed by the
receivers in the date/time order in which they were added to the queue, and each
message is received and processed by only one message consumer.

e Service Bus Topic: While service bus queues provide a one-to-one communication
pattern from sender to receiver, service bus topics provide a one-to-many form of
communication where many applications can subscribe to a topic.

e DocumentDB: A fully-managed NoSQL document database service that offers query
and transactions over schema-free data, predictable, and reliable performance, as
well as rapid development.

e Power BI: Can be used as an output for a Stream Analytics job to provide for rich
visualizations for analytical results. This capability can be used for operational
dashboards, report generation, and metric driven reporting.

e Data Lake Store: This output option enables you to store data of any size, type and
ingestion speed for operational and exploratory analytics. At this time, creation and
configuration of Data Lake Store outputs is supported only in the Azure Classic Portal.

184

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Planning Streaming Analytics Outputs

The output stage of the streaming analytics process requires a little upfront, advanced planning, as some
thought must be given to how the data will be delivered and consumed. This is where the real value of the
modern Lambda architecture comes into play with the notion of “hot’, “warm’; and “cold” data paths.

Proper analysis and exploitation of these key reporting capabilities can mean the difference between
creating a true competitive advantage and just creating a noisy data overload scenario. The fortunes of many
businesses can rise and fall on the timeliness and accuracy of key operational data. Choose your outputs
carefully.

Hot Path

The processing pathway for urgent data, for example, data that is sent from field devices to an IoT system.
This data typically requires immediate analysis. It is frequently used for raising alerts and other critical
notifications. The “hot path” output option(s) for Azure Streaming Analytics include:

e Power BI For real-time streaming integration along with rich, visual dashboards.

e Event Hubs: For integrating with other Streaming Analytics jobs and outbound
Notification hubs.

e Service Bus Queues: For integration with other publisher/subscriber notification
systems.

e Service Bus Topics: For integration with one-to-many notification scenarios.

Warm Path

The processing path for device data that is not urgent but typically has a limited lifetime before it becomes
stale. This data should be considered to have an “expiration date” and consequently should be processed in
a specified period of time.

This data can also be used to augment the results generated by hot path processing to provide
additional context. Examples of warm path data include diagnostic information for performance analysis,
troubleshooting, or A/B testing. The data may need to be held in storage that is relatively quick to access
(and therefore possibly more expensive than that required for the cold path), but the storage capacity is
likely to be much less, as this data has a limited life span and is unlikely to be retained for an extended
period.

The “warm path” output option(s) for Azure Streaming Analytics include:

e Azure SQL Database: For near-real-time, relational data queries

e DocumentDB: For near-real-time, NOSQL data queries

Cold Path

The processing pathway for data that is stored and processed later. For example, this data can be pulled from
storage for processing at a later time in batch mode. The data can be held in relatively cheap, high capacity,
storage due to its potential high volume and historical nature. The data is commonly used to provide
statistical information, to generate analytical reports, and for auditing purposes.

185

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The “cold path” output option(s) for Azure Streaming Analytics include:
e Blob Storage: For low cost, high-scale, generic data storage
e Table Storage: For low cost, high-scale, key-value-pair data storage

e Data Lake Store: For unlimited, low cost, high-scale, historical data storage platform
with deep analytical processing capabilities.

e Power BI For real-time streaming integration along with rich, visual dashboards.

e FEvent Hubs: For integrating with other Streaming Analytics jobs and outbound
Notification hubs.

e Service Bus Queues: For integration with other publisher/subscriber notification
systems.

e Service Bus Topics: For integration with one-to-many notification scenarios.

Power BI for Real-Time Visualizations

Power BI can be used as an output for a Stream Analytics job to provide for a real-time, rich visualization
experience of analysis results. This capability can be used for operational dashboards, dynamic report
generation, and other forms of real-time, metric-driven reporting and analysis.

Note See the following link for more information on specifying Streaming Analytics Outputs:

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-define-outputs

Streaming Analytics Jobs: Data Transformations via SQL
Queries

After the Azure Streaming Analytics job input and output definitions have been created, the next task is
creating the data transformations. This is where all the pieces start to come together and a complete solution
can finally be configured based on the previously defined inputs and outputs.

Azure Stream Analytics offers a SQL-like query language for performing transformations and
computations over incoming streams of event data. Stream Analytics query language is a subset of the
standard Transaction-SQL (T-SQL) syntax for performing simple and complex streaming analytics
computations.

186

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-define-outputs/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Azure Streaming Analytics SQL: Developer Friendly

Since most developers today may already possess a good working knowledge of T-SQL, this feature makes it
very approachable to become very productive in a very short amount of time when using Azure Streaming
Analytics.

This portion of the Streaming Analytics job setup is where the actual processing will occur and we will
map, enrich, and transform the incoming streaming data input into one or more pre-defined streaming
outputs. Note that it is possible in a single Streaming Analytics job to send processed data from a single input
to multiple output destinations by chaining the SQL statements together in the job.

Azure Streaming Analytics (ASA): SQL Query Dialect
Features

The SQL language in ASA is very similar to T-SQL, which is the primary database language for modern SQL
database application engines such as Microsoft SQL Server, IBM DB2, and Oracle Database server.

It should be noted that Azure Streaming Analytics (ASA) SQL also contains a superset of functions
that support advanced analytics capabilities as “temporal” (date/time) operations such as applying sliding,
hopping, or tumbling time windows to the event stream in order to get time-boxed, summarized data
directly from the incoming event stream.

All this is accomplished eloquently and effortlessly using familiar T-SQL statements. To assist you in
further understanding the features of the ASA SQL Query language, the following is a short synopsis of the
primary capabilities available with the Azure Streaming Analytics SQL Query language.

SQL Query Language

e All data transformation jobs are written declaratively as a series of T-SQL-like query
language statements.

e There is no additional programming required and no code compilation required.

e The SQL scripts are easy to author and deploy.

Supported Data Types
The following data types are supported in the ASA SQL language:

e Bigint: Integers in the range -2/63 (-9,223,372,036,854,775,808) to 2/63-1
(9,223,372,036,854,775,807).

e Float: Floating-point numbers in the range - 1.79E+308 to -2.23E-308, 0, and 2.23E-
308 to 1.79E+308.

e Datetime: Defines a date that is combined with a time of day with fractional seconds
that is based on a 24-hour clock and relative to UTC (time zone offset 0).

e nwarchar (max): Text values made up of Unicode characters.
e record: A set of name/value pairs. Values must be of supported data type.

e array: An ordered collection of values. Values must be of supported data type.

187

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Data Type Conversions
CAST

Data type conversions in types in Stream Analytics query language are accomplished via the CAST function.
This function converts an expression of one data type to another data type in the supported types in Stream
Analytics query language.

Proper care should be taken when using the CAST function over inconsistent data streams, as a failure
will cause the streaming analytics job to stop if the conversion cannot be performed.

As a good example of what not to do—the ASA SQL statement in Listing 5-1 will result in an Azure
Streaming Analytics job failure.

Listing 5-1. An Example of the CAST Operator Usage That Will Result in a Job Failure in an ASA SQL
Statement

CAST ('Test-String' AS bigint)

TRY_CAST

To avoid a catastrophic job failures due to a data type conversion failure, it is highly recommended that the
TRY_CAST SQL operation be used instead. This version returns either a value cast to the specified data type if
the cast succeeds or else, the call returns null.

The SQL transformation job will gracefully continue no matter the result of the TRY_CAST call.
Listing 5-2 illustrates the TRY_CAST call.
Listing 5-2. An Example of the TRY_CAST Operator in an ASA SQL Statement

SELECT TweetId, TweetTime
FROM Input
WHERE TRY_CAST(TweetTime AS datetime) IS NOT NULL

Temporal Semantic Functionality

All ASA SQL operators are compatible with the temporal properties of event streams. Additional
functionality is added to the ASA SQL language via new operators such as:

e TumblingWindow
e HoppingWindow
e SlidingWindow

Built-In Operators and Functions

e The ASA SQL language supports other key T-SQL constructs such as filters,
projections, joins, windowed (temporal) aggregates, and text and date manipulation
functionality.

e Advanced event stream queries can be composed via these powerful query
extensions.

188

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

User Defined Functions: Azure Machine Learning Integration

e The ASA SQL language now supports direct calls to Azure Machine Learning (ML)
via user defined functions.

e User-defined functions provide an extensible way for a streaming job to transform
input data to output data using an externally defined function and accessed as part
of the SQL query.

e A Machine Learning function in stream analytics can be used like a regular function
call in the stream analytics query language.

e This functionality provides the ability to score individual events of streaming data
by leveraging a Machine Learning model hosted in Azure and accessed via a web
service call.

e Atthe time of this writing, Azure Machine Learning Request-Response Service (RRS)
is the only supported UDF framework and is in currently in “preview” mode.

e This capability allows you easily build applications for scenarios such as real-time
Twitter sentiment analytics, as illustrated in Listing 5-3. The Azure Machine Learning
user-defined function named sentiment is easily incorporated into an ASA SQL
query. This capability provides a powerful mechanism to leverage predictive analytics
to enrich the incoming event stream data and turn it into actionable data.

Listing 5-3. Example of an Azure Machine Learning User-Defined Function
WITH subquery AS (
SELECT text, sentiment(text) as result from input
)

SELECT text, result.[Scored Labels]
INTO output
FROM subquery

Event Delivery Guarantees Provided in Azure Stream Analytics

The Azure Stream Analytics query language provides extensions to the T-SQL syntax to enable complex
computations over incoming streams of events. With Azure Streaming Analytics, the following concepts
related to event delivery are noteworthy to review:

e Exactly once delivery

e Duplicate records

Exactly Once Delivery

An “exactly once” delivery guarantee means all input events are processed exactly once by the streaming
analytics system. In this way, the results are also guaranteed to be complete with no duplicate outputs. In

terms of Azure Service Level Agreements (SLAs), Azure Stream Analytics guarantees exactly once delivery

up to the output adapter that writes the output events.

189

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Duplicate Records

When a Stream Analytics job is running, duplicate records may occasionally occur within the output data.
These duplicate records are expected, due to the fact that Azure Stream Analytics output adapters do not
write the output events in a complete transactional manner.

See the following link for more information:
How to achieve exactly-once delivery for SQL output:

https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-
delivery-for-sql-output/

Time Management Functions

The Azure Stream Analytics SQL query language extends the T-SQL syntax to enable complex computations
over streams of events. Stream Analytics provides language constructs to deal with the temporal aspects of
the data. For example, it is possible to assign custom timestamps to the stream events, specify time window
for aggregations, specify allowed time difference between two streams of data for JOIN operation, etc.

o System.Timestamp: A system property that can be used to retrieve an event’s
timestamp.

e Time Skew Policies: Provides policies for out-of-order and late arrival events.

e Aggregate Functions: Used to perform a calculation on a set of values from a time
window and return a single value.

e DATEDIFF: Allowed in the JOIN predicate and allows the specification of time
boundaries for JOIN operations.

e Date and Time Functions: Azure Stream Analytics provides a variety of date and time
functions for use in creating time-sensitive streaming analytics queries.

e TIMESTAMP BY: Allows specifying custom timestamp values.

The Importance of the TIMESTAMP BY Clause

In Azure Streaming Analytics, all incoming events have a well-defined timestamp. If a solution is required to
use the application time, they can use the TIMESTAMP BY keyword to specify the column in the payload which
should be used to timestamp every incoming event to perform any temporal computation like windowing
functions (Hopping, Tumbling, Sliding), Temporal JOINS, etc.

Note that it is recommended to use the TIMESTAMP BY clause over an “arrival time” as a best practice
since the TIMESTAMP BY clause can be used on any column of type “datetime” and all ISO 8601 formats are
supported. In comparison, the System.timestamp value can only be used in the SELECT clause.

Listing 5-4 illustrates a TIMESTAMP BY example that uses the TweetTime column as the application time
for all incoming events.

Listing 5-4. The TIMESTAMP BY Clause

SELECT TweetId, TweetTime
FROM TweetInput
TIMESTAMP BY TweetTime

190

https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-delivery-for-sql-output/
https://blogs.msdn.microsoft.com/streamanalytics/2017/01/13/how-to-achieve-exactly-once-delivery-for-sql-output/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Azure Stream Analytics: Unified Programming Model

As we have seen in the previous sections covering the superset of features, functions, and capabilities
that extend the Azure Streaming Analytics SQL dialect, the end result is an extremely powerful, yet easily
approachable, SQL-based programming model that brings together event streams, reference data, and
Machine Learning extensions to create a comprehensive solution.

Azure Stream Analytics: Examples of the SQL Programming
Model

The Simplest Example

Listing 5-5 is a very simple example of a streaming SQL Query that will copy all the fields in the input named
iothub-input into an output named blob-output.

Listing 5-5. The Simplest ASA SQL Query Possible

select * into blob-output from iothub-input

In many cases, the Azure Streaming Analytics SQL queries will be more complex and will usually
incorporate various temporal semantics in order to surface the data related to the sliding, hopping, or
tumbling timeframe windows from the event stream. As mentioned previously, this is where the real power
of Azure Streaming Analytics really shines, as it is very easy to accomplish via the superset of functionality
that Microsoft has added to the familiar T-SQL dialect.

To illustrate, the following temporal window examples will make the assumption that we are reading
from an input stream of tweets from Twitter.

Tumbling Windows: A 10-Second Tumbling Window

Tumbling windows can be defined as a series of fixed-sized, non-overlapping, and contiguous time intervals
taken from a data stream. The ASA SQL in Listing 5-6 seeks to answer the following question:
“Tell me the count of tweets per time zone every 10 seconds”

Listing 5-6. Sample Tumbling Window SQL Statement

SELECT TimeZone, COUNT(*) AS Count
FROM TwitterStream TIMESTAMP BY CreatedAt
GROUP BY TimeZone, TumblingWindow(second,10)

Hopping Windows: A 10-Second Hopping Window with a
5-Second “Hop”

Hopping windows are designed to model scheduled overlapping windows. The ASA SQL in Listing 5-7 seeks
to answer the following question:
“Every 5 seconds give me the count of tweets over the last 10 seconds”

191

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Listing 5-7. Sample Hopping Window SQL Statement

SELECT Topic, COUNT(*) AS TotalTweets
FROM TwitterStream TIMESTAMP BY CreatedAt
GROUP BY Topic, HoppingWindow(second, 10 , 5)

Sliding Windows: A 10-Second Sliding Window

With a sliding window, the system is asked to logically consider all possible windows of a given length and
output events for cases when the content of the window actually changes, for example, when an event was
detected that entered or existed the window. The ASA SQL in Listing 5-8 seeks to answer the following
question:

“Give me the count of tweets for all topics which are tweeted more than 10 times in the last 10
seconds”

Listing 5-8. A Sample Sliding Window SQL Statement

SELECT Topic, COUNT(*) FROM TwitterStream
TIMESTAMP BY CreatedAt

GROUP BY Topic, SlidingWindow(second, 10)
HAVING COUNT(*) > 10

Joining Multiple Streams

Similar to standard T-SQL language, the JOIN clause in the Azure Stream Analytics query language is used to
combine records from two or more input sources. However, the JOIN clause in Azure Stream Analytics SQL
are temporal in nature. This means that each JOIN must provide limits on how far the matching rows can be
separated in time. The ASA SQL in Listing 5-9 seeks to answer the following question:

“List all users and the topics on which they switched their sentiment within a minute“

Listing 5-9. JOINing Multiple Streams in ASA SQL

SELECT TS1.UserName, TS1.Topic

FROM TwitterStream TS1 TIMESTAMP BY CreatedAt

JOIN TwitterStream TS2 TIMESTAMP BY CreatedAt
ON TS1.UserName = TS2.UserName AND TS1.Topic = TS2.Topic
AND DateDiff(second, TS1, TS2) BETWEEN 1 AND 60

WHERE TS1.SentimentScore != TS2.SentimentScore

Detecting the Absence of Events

This SQL query pattern can be extremely useful as it will provide the ability to determine if a stream has no
value that matches a certain criteria. For example, Listing 5-10 is a sample ASA SQL query that will seek to
provide the real-time answers for the question.

“Show me if a topic is not tweeted for 10 seconds since it was last tweeted.”

192

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Listing 5-10. Detecting the Absence of Data in ASA SQL

SELECT TS1.CreatedAt, TS1.Topic

FROM TwitterStream TS1 TIMESTAMP BY CreatedAt

LEFT OUTER JOIN TwitterStream TS2 TIMESTAMP BY CreatedAt
ON TS1.Topic = TS2.Topic

AND DATEDIFF(second, TS1, TS2) BETWEEN 1 AND 10

WHERE TS2.Topic IS NULL

Note The following link provides guidance for common Stream Analytics Usage Patterns:
Query examples for common Stream Analytics usage patterns:

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-stream-analytics-
query-patterns

The Reference Implementation

Now that we have covered all the basics related to the configuration and setup of Azure Streaming Analytics,
itis time to walk through the actual configuration steps for our reference implementation solution. In this
next section, we walk through the configuration of our streaming analytics job via the Azure Portal in order
to implement various data pathways for our incoming IoT data streams. As part of the configuration, we will
create and configure the following artifacts in Azure:

e Azure Streaming Analytics Job.

e Inputs: For our Azure Streaming Analytics Job. In this case, we will be using
two inputs. The first one is for the incoming data stream from the IoT Hub, the
second input is for reference data. In this example, we will read from a reference
.CSV file in Azure blob storage to match a team member’s personal health
information with their real-time health sensor information readings.

e Functions: Consisting of references to Azure Machine Learning Web Services. To
help enrich the data with predictive analytics. In this example, we will check to
see if a team member is fatigued to the point of exhaustion.

e Outputs: For output of results from the Azure Streaming Analytics Job into
various storage formats: Hot, Warm, and Cold (from the Lambda architecture).

e ASA SQL Query Language: Will combine all of the previous configurations to
process the incoming data streams and send computed results to various output
destinations.

Business Use Case Scenario

As you may recall, the use case scenario for our reference implementation involves monitoring workers
health during strenuous activities. To that end, IoT sensors are being worn and by the members of the
various work teams and their sensor readings are being transmitted to the Azure cloud via an IoT Hub
configuration.

193

https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-stream-analytics-query-patterns/
https://azure.microsoft.com/en-us/documentation/articles/stream-analytics-stream-analytics-query-patterns/

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The next critical step in the process is where Azure Streaming Analytics is utilized to quickly and
efficiently process the incoming data streams. Figure 5-8 denotes the use of Azure Streaming Analytics as the
primary ingestion processing engine in the overall architecture.

(> [>e
@ @ M

Operations Manager Visual Studio
Dashboard Dashboard Customer App Team Service
DevOps
APl
Management
Worker Health Platform API
Worker Health
Simulation APl Telemetry APl Device APl Registry APl Account APl Application APl Customer APl Reference API Prediction API

e R TR R T

L &
Data Sets Sensor Readings Manifests Profiles Subscriptions Configurations Organizations Entities
o ®g e =
1 B— e — Blob Storage

LY g

.TEd_'.“ 16T Hub Stream 4) by I
Simulator Analytics i
r Azure AD

Identity Management

Data Lake Data Factory Machine Learning

Figure 5-8. Worker Health and Safety Reference solution

AZURE SETUP: CREATE AZURE STREAMING ANALYTICS JOB

The first step in the process is to create a new Azure Streaming Analytics job. To do this, we will assume
that you have an Azure subscription and have already deployed the Azure loT suite infrastructure
components covered in Chapters 1-4 of this book.

194

http://dx.doi.org/10.1007/978-1-4842-2650-6_1-4

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Start by adding a new resource to your existing Azure resource group and searching for Stream
Analytics Job, as depicted in Figure 5-9.

& Everything - Microsoft
[O - azure.com

v Niresources > Everything ,O Search resources

Everything

Y fier

NAME i PFUBLISHIR & CATEGORY

Figure 5-9. Adding a stream analytics job to an Azure resource group

After clicking on Stream Analytics job, you will be asked to fill in the parameters for creating the Azure
Stream Analytics job, as shown in Figure 5-10.

195

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

@& New Stream Analytics J» X /4 Experiments - Microsoft A

< > 0 8 azure.com

Stream Analytics job >

New Stream AnalyticsJ... — O X

* Job name

brtwhdevstr (’dmmgjobi

* Subscription

v
* Resource group @
OcCreate new @ use existing
brtwhdev v
* Location
East US v

Figure 5-10. Adding Stream Analytics job parameters

Fill in your parameter choices for the corresponding values:
e Job Name
e Subscription
e Resource Group
e Location

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Streaming Analytics job will be created after a brief period of time. It took
less than one minute via the portal.

196

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Once you have configured an Azure Streaming Analytics job, you can add and configure additional
components of the job, such as the following:

e Inputs: For defining incoming data streams and reference data in our Azure Streaming
Analytics Job.

e functions: For defining references to Azure Machine Learning Web Service calls. In our
example, we will check to see if a team member is fatigued to the point of exhaustion.

e Qutputs: For defining the output of results from our Azure Streaming Analytics Job into
various storage formats and delivery platforms: Hot, Warm, and Cold (from the Lambda
architecture).

e SQL Query. Will combine all of the previously defined inputs, functions, and outputs in
a series of SQL statements to process the incoming data stream and send computed
results to various output destinations and delivery/notification methods.

Figure 5-11 displays a screen capture of a newly created Streaming Analytics job and the corresponding
inputs, query, and outputs.

& tetebdentieamngeb < [Dpeoments - Maosolt Az | [Web Services Maragement | [Web Services Management | @ brobprocessiothubdats B ¢4 Ovigo - Ocom +

&« (@] - aruwe com g

= P
u ey — ;
- e Qw
* b Top
= - .
= - 0= -~ 0
. = -
c
3 -
. @ o]
g [v
(o]
B «
- -
[2 brtabue & e I L
Q. sen
EEEEE———S—S——

Figure 5-11. Stream Analytics job: add input(s), function(s), query(s), and output(s)

197

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

AZURE SETUP: STREAMING ANALYTICS JOB AND INPUT IOT HUB

DATA STREAM

Let’s start with configuring the input definition for describing our incoming data stream, which arrives
via an loT Hub configuration in Azure.

loT Hub is an event processing service that enables event and telemetry ingress to the cloud at massive
scale, with low latency and high reliability.

Start by clicking on the inputs image and then + Add, as shown in Figure 5-12.

Figure 5-12. Stream Analytics job, add parameters for input from IoT Hub

Fill in your parameter choices for the corresponding values:

198

Input Alias: This will be the primary name used in any SQL Queries to refer to this input
stream.

Source Type: Set to Data Stream. Note the additional option for Reference Data.
Source: Detected input sources that are Data Streams.

Subscription: Azure Subscription for this input source.

loT Hub: Select the appropriate choice for your environment.

Endpoint. Select Messaging. Other option includes Operations Monitoring.

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e Shared Access Policy Name: For delegated and shared access to resources.

e Consumer Group: All event consumers read the event stream through partitions in a
consumer group.

e FEvent Serialization Format. Specify JSON. Other options include Avro and CSV.
e Encoding: Specify UTF-8.

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Streaming Analytics input definition will be created after a brief period
of time.

AZURE SETUP: STREAMING ANALYTICS JOB INPUT REFERENCE
DATA

After we have configured the primary input data path from the loT Hub, we will next define a secondary
type of input definition that will be used for reference data.

Reference data is defined as more static or slower changing data, which can often be refreshed on
longer time intervals. A prerequisite for this step is to have a reference data file uploaded into an Azure
blob storage container in CSV, JSON, or Avro format.

For our reference implementation, we will upload a .CSV formatted file that contains team member
reference data with more static attributes like name, height, weight, gender, e-mail, etc.

This reference data can then be used in JOIN statements in the Azure Streaming Analytics SQL Query
language to enrich the data output and provide more meaningful and actionable business results.

Reference data is stored in Azure blob storage and is modeled as a sequence of blobs in ascending
date/time order. It only supports adding to the end of the sequence by using a date/time greater than
the one specified by the last blob in the sequence.

Currently, Azure Stream Analytics jobs look for the blob refresh only when the machine time advances to
the time encoded in the blob name.

For example, our job will look for our pattern named TeamReferenceData{date}{time}.csv. It will then
find this file: TeamReferenceData2016-11-1217-30.csv and will process it as soon as possible but no
earlier than 5:30 PM on November 13th 2016 UTC time zone. It will never look for a file with an encoded
time earlier than the last one that is discovered.

Note See the following link for more information about refreshing reference data for Azure Streaming
Analytics jobs using Azure Data Factory:

Refreshing reference data with Azure Data Factory for Azure Stream Analytics Jobs

https://azure.microsoft.com/en-us/blog/refreshing-reference-data-with-azure-data-factory-
for-azure-stream-analytics-jobs-3

199

https://azure.microsoft.com/en-us/blog/refreshing-reference-data-with-azure-data-factory-for-azure-stream-analytics-jobs-3
https://azure.microsoft.com/en-us/blog/refreshing-reference-data-with-azure-data-factory-for-azure-stream-analytics-jobs-3

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The inclusion of reference data as a potential input for a streaming analytics job means that you can
utilize a SQL JOIN (INNER or LEFT OUTER) between streams and reference data sources to enrich your
incoming data model.

Note that “reference” data appears as just another input in the ASA SQL query in Listing 5-11.

Listing 5-11. SQL JOIN of Reference Data with Incoming Streaming Data

SELECT myRefData.Name, myStream.Value
FROM myStream
JOIN myRefData

ON myStream.myKey = myRefData.myKey

To get started, navigate to your Streaming Analytics job in the Azure Portal that was previously defined
in this chapter and select the Inputs option on the left-side navigation pane.

Click + Add at the top of the page to add a new input definition. You will need to provide configuration
options for the following parameters:

Input Alias: A unique name to reference this input definition.

Source Type: Select Reference Data.

Subscription: Azure subscription for this input source.

Storage account. Your storage account (brtblobstoragedev in this case).
Storage account key. Copied from subscription

Container. ref-data-team

Path pattern: TeamReferenceData{date}{time}.csv

Date format. YYY-MM-DD.

Time format. HH-mm.

Event Serialization Format. Specify CSV. Other options include JSON and Avro.
Delimiter Comma (,).

Encoding. Specify UTF-8.

Click on the Create button at the bottom of the screen to create the input definition.

The screenshot in Figure 5-13 denotes the input parameters for the input reference definition.

200

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

* Source Type ©
Reference data v
* Subscription

Use blob storage from current subscription v

* Storage account

brtblobstoragedev v
Storage account key

0000000000000000000000000000000808
* Container

refdata-team v
Path pattern @

TeamReferenceDataldate}{time).csv

Date format

YYYY-MM-DD v
Time format
HH-mm v
* Event serialization format ®
Ccsv v
Delimiter @
comma (,) e
oding &

Figure 5-13. Stream Analytics job: add parameters for input for Reference data

After the new input for our reference data is created and tested (this process takes only about one
minute), you can then use this new input definition as part of the SQL query to J0IN the “reference
data” with the incoming sensor data from the loT Hub.

Typically, loT sensor data is transformed to be very “lean” when transmitted over networks, so no
additional information other than what is the minimal necessary to keep packet sizes small and
transmission costs efficient.

By matching the incoming data streams with more complete profile data from our reference data, we
can provide more complete data profiles for the various entities being measured. This capability also
allows for finer-grained decision support mechanisms, as additional meaningful attributes may now
unlocked and utilized to predict better outcomes.

201

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

AZURE SETUP: STREAMING ANALYTICS JOB, FUNCTIONS TO CALL
AZURE ML WEB SERVICES

The next step is to define an alias for an Azure Machine Learning Web Service. The Web Service will
be used to call out from the processing SQL script and is used to check to see if a team member may
displaying symptoms that he/she may be near physical exhaustion.

The Azure Machine Learning predictive model is based on a series of physical stress tests that each
team member must undergo each quarter (every three months).

The purpose of the stress tests is to track all the same sensor readings that a team member generate
while working, but in a simulated, stress-test, environment that can quickly simulate unfavorable
working conditions to induce physical fatigue and mental exhaustion.

At any point that a team member feels that they cannot continue or complete the stress test tasks at
hand safely, they simply press a Fatigued button on their vest to stop the test and register their physical
attributes at the point of exhaustion.

In this way, key physical sensor readings are correlated with the teammate’s “fatigue” response to the
stress tests.

This allows us to create a predictive analytics “training” model, which can be trained using a “binary
classification” Machine Learning algorithm in order to predict future outcomes based upon certain
attributes such as breathing, heart rate, speed, velocity, temperature, pulse, etc.

It should also be noted that there is another distinct advantage to using a simulated “stress test”
environment as training data to create the Machine Learning model.

This is due to the fact that the team members have financial incentives to keep working long hours
under adverse conditions in order to attain financial rewards and increased compensation.

For this reason, team members may be disinclined to signal fatigue while working on the real
production-line jobs in order to maximize their financial compensation. However, by measuring the
team’s stress test responses outside of the production work environment—uwhere there are no financial
incentives involved—more accurate results can be obtained.

202

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The key to success is to obtain unbiased and accurate training data that more closely resembles the key
indicators of fatigue and stress that can be measured, recorded, and utilized to train the Azure Machine
Learning Model.

To get started, navigate to your Streaming Analytics job in the Azure Portal that was previously defined
in this chapter and select the Functions option on the left-side navigation pane.

Click the + Add at the top of the page to add a new function definition. You will need to provide the
following:

Function Alias: A unique name to reference this function definition.

Function Type: Defaults to Azure ML. Note: the function option is currently restricted
to only refer to Azure Machine Learning Web Service definitions. It is anticipated that
Microsoft may open-up this capability to reference “Azure Functions” in the near
future. This new functionality would dramatically expand the capabilities of the Azure
Streaming Analytics SQL Query language by incorporating function callouts to custom
code modules.

Subscription: The Azure subscription to be used for the function definition.
URL.: Refers to the Azure Machine Learning Web Service deployment name.

Key: The security key for access to the Azure Machine Learning Web Service
deployment.

Click on the Create button at the bottom of the screen to create the function definition. The screenshot
in Figure 5-14 denotes the function definition parameters for the reference implementation.

203

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

\ brtwhdevstreamingjob - Fun

New function

_ The selected resource and the
e stream analytics job are located in
d different regions. You will be billed
to move data between regions.

* Function Alias

ChkTeamHealth Y,

* Function Type

Azure ML v

* Subscription

Select from the same subscription v
* URL

CheckTeamHealth v
* Key

G000 OIOOOOBODOOOOBOOOOOOOOOOOS

Figure 5-14. Add parameters to the streaming job for function reference to desired Azure Machine Learning
Web Service

After the function is created and tested (this process takes only about 1 minute), we can then use this
new function definition as part of our SQL Query to call our Azure Machine Learning Web Service to
predict whether a team member is at risk of being physically exhausted to the point that it could cause
an unsafe work environment.

The screenshot in Figure 5-15 depicts the newly defined function that we created.

204

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

B+ 4 .

Figure 5-15. Stream Analytics job: function parameters for Calling Azure ML Web Service CheckTeamHealth

Also shown is the function signature, which shows all 13 parameters and various field types that must
be configured correctly in order to make the function call from the Streaming Analytics SQL query.

We will cover the implementation details of the Azure Machine Learning Web Service called
CheckTeamHealth in Chapter 8.

As part of the Chapter 8 background, we cover the creation of an Azure ML training model based on
stress test results and utilize a “Binary Classification” algorithm to create a predictive model that can
correctly determine if a team member is nearing the point of physical exhaustion. We will also cover the
mechanics of deploying, testing, and managing the Azure ML Web Service.

AZURE SETUP: STREAMING ANALYTICS JOB OUTPUTS

Now that we have created the inputs and functions for our Azure Streaming Analytics job, it is time to
create the various outputs for our streaming job.

This is a critical step in the process, as we will be creating multiple outputs from a single input stream
coming from the loT Hub.

205

http://dx.doi.org/10.1007/978-1-4842-2650-6_8
http://dx.doi.org/10.1007/978-1-4842-2650-6_8

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

One key set of decisions around defining the streaming job outputs is the notion of the Lambda
architecture that we reviewed earlier in the chapter. Azure Streaming Analytics provides the ability to
define various output formats and storage options that can directly relate to the notion of Hot, Warm,
and Cold data paths:

® Hot Path: for surfacing critical, real-time, actionable information, such as alerts and
notifications. Typically, Power Bl is used as the visualization tool to create real-time
dashboards and visualizations for critical business data.

e Warm Path: Typically slower than Hot Path options, yet provides relatively quick access
to critical data via technologies such as DocumentDB and Azure SQL database via
canned or ad hoc user queries.

e (old Path: This is usually the lowest cost and slowest storage option. Typical use case
scenarios would be to provide an archive capability or storage that would act as a
system of record for all transactions. Typically, Azure blob storage or Azure Data Lake is
used for these implementations.

Our reference implementation will seek to implement all three of the Lambda data pathways.

We will be using Azure blob storage for our “cold path” output option. A prerequisite for this step is to
create an Azure Storage account and a container in the storage account to hold our data.

Note Refer to the following link for more information:
About Azure storage accounts

https://azure.microsoft.com/en-us/documentation/articles/storage-create-storage-account

A handy tool for navigating Azure Storage is the “Azure Storage Explorer,” which can be downloaded
from http://azurestorageexplorer.codeplex.com. Since it is on CodePlex, it’s also great to have
the source code, to see how the Azure Storage API’s are called from .NET.

Once you have created an Azure Storage Account and a container in the storage account, you will need
the storage account access keys for the next step.

To get started with our first output definition, navigate (via the Azure Portal) to the Azure Streaming
Analytics job we defined earlier in the chapter:

206

https://azure.microsoft.com/en-us/documentation/articles/storage-create-storage-account/
http://azurestorageexplorer.codeplex.com/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Select Outputs:

Click on the + Add to add a new output definition.

Under the Sink parameter, select Blob Storage from the drop-down list. This action will
properly set the remaining fields for you to populate:

Output Alias: A name for this output definition that will be used in our SQL query.
Sink: Refers to the selected output destination; in this case, select blob storage.
Subscription: The Azure subscription to be used for this output definition.

Storage Account: The name of the Azure Storage account that was created as a
prerequisite for this output definition.

Storage Account Key: The corresponding Account key for the storage account.

Container: The name of the storage account repository or folder that will contain our
output data.

Path Pattern: Denotes the file path used to locate your blobs within the specified
container. Within the path pattern definition, you can choose to use the keywords
{date} and {time} to help create a logical representation of the data output. For our
implementation, we will use [date]/[time] to keep the data separated by date and
time. This will provide a file structure within the blob container similar to the path
“year/month/day/time”.

Date Format: The default format is YYYY/MM/DD. Accept the default.
Time Format: The default format is HH. Accept the default.

Event Serialization Format: The choices are JSON, CSV, and Avro. We will use JSON for
our output definition, especially since the incoming data stream is in the same format
(JSON).

The screenshot in Figure 5-16 depicts the parameter options for defining an output definition for blob

storage.

207

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

v brtwhdevstreamingjob >

New output - 0O X

The selected resource and the

I"‘ 0 stream analytics job are located in
: different regions. You will be billed

to move data between regions.

* Qutput alias

output-blob

* Sink @

Blob storage hd

* Subscription

Use blob storage from current subscription v

* Storage account

brtamistorage v

Storage account key

OB 0NOONNOONEOON0OREDROOORRRRRRE

* Container

azuremlassetscontainer v

Path pattern @

[date]/[time]

Date format

v
Time format
b4
* Event serialization format @
JSON v

Figure 5-16. Stream Analytics job: cold path output definition parameters using blob storage

Once you have entered all the required parameters, click on the Create button at the bottom of the screen
and the new output definition will be quickly tested and added to the Azure Streaming Analytics job.

208

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

For our “warm path” we will be using Azure SQL database for our output option. A mandatory
prerequisite for this step is to create an Azure database server, an Azure database, and an Azure table to
store the data.

Note Refer to the following link for more information on creating an Azure SQL database:
SQL Database tutorial: Create a SQL database in minutes by using the Azure portal:

https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/

Listing 5-12 is a Transact-SQL script that will create an Azure SQL database table named
IotHubSensorReadings

Listing 5-12. SQL Table Definition for [lotHubSensorReadings]

CREATE TABLE [dbo].[IotHubSensorReadings](
[UserId] [char](256) NOT NULL,
[Age] [float] NOT NULL,
[Height] [float] NOT NULL,
[Weight] [float] NOT NULL,
[HeartRateBPM] [float] NOT NULL,
[BreathingRate] [float] NOT NULL,
[Temperature] [float] NOT NULL,
[Steps] [float] NOT NULL,
[Velocity] [float] NOT NULL,
[Altitude] [float] NOT NULL,
[Ventilization] [float] NOT NULL,
[Activity] [float] NOT NULL,
[Cadence] [float] NOT NULL,
[Speed] [float] NOT NULL,
[HIB] [float] NOT NULL,
[HeartRateRedZone] [float] NOT NULL,
[HeartrateVariability] [float] NOT NULL,
[Status] [int] NOT NULL,
[1d] [char](256) NOT NULL,
[Deviceld] [char](256) NOT NULL,
[MessageType] [int] NOT NULL,
[Longitude] [float] NOT NULL,
[Latitude] [float] NOT NULL,
[Timestamp] [datetime2](7) NOT NULL,
[EventProcessedUtcTime] [datetime2](7) NOT NULL,
[PartitionId] [int] NOT NULL,
[EventEnqueuedUtcTime] [datetime2](7) NOT NULL

209

https://azure.microsoft.com/en-us/documentation/articles/sql-database-get-started/

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

210

Note that the column names in the IotHubSensorReadings table exactly match the column names of
our input data stream. This is not a necessary step, but as you will soon see, this helps make it very
easy when it comes time to write the SQL query statements. To fix any column name mismatches,
we can simply use the T-SQL AS clause to rename an incoming column to a destination column in our
SELECT statements.

Once the prerequisite Azure SQL Database artifacts (Server, Database, and Table) have been created,
you will need to gather the credentials for the database (username and password) for the next step in
the configuration process—creating the streaming job output definition.

To create the Azure Streaming Analytics job output definition for the “warm” data path, start by
navigating (via the Azure Portal) to the previously defined streaming job definition and selecting Outputs.

Click on + Add to add a new output definition:

e Under the Sink parameter, select SQL database from the drop-down list. This action will
properly set the remaining fields for you to populate:

e Qutput Alias: A name for this output definition that will be used in our SQL query.
e Sink: Refers to the selected output destination; in this case, select SQL database.
e Subscription: The Azure subscription to be used for this output definition.

e Database: The name of the Azure SQL database we created as a prerequisite earlier in
the chapter.

e Server Name: The name of the Azure SQL Server we created as a prerequisite earlier in
the chapter. Note that the naming convention should follow the following format:

® <Your Server Name>.database.windows.net
e Username: The username credential for the Azure SQL database server.
e Password: The password credential for the Azure SQL database server.

e Table: The name of the Azure SQL database table we created as a prerequisite
earlier in the chapter. Our reference implementation example used the table named
IotHubSensorReadings.

The screenshot shown in Figure 5-17 depicts the parameter options for defining an output definition for
a SQL database.

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

New output

* Qutput alias

output sqldbl

* Sink @
SQL database v

* Subscription

Use SQL database from current subscription v

* Database

iothubtelemetry v

Server name

* Username

brtAdmindev

* password

sscsscssssee v

* Table

lotHubSensorReadings

Figure 5-17. Stream Analytics job for warm path output definition parameters using SQL database

Once you have entered all the required parameters, click on the Create button at the bottom of the screen
and the new output definition will be quickly tested and added to the Azure Streaming Analytics job.

Streaming Analytics Job: Hot Path OUTPUT Power Bl

For our “hot path” we will be using Power Bl for our output option. As stated previously, Power Bl is a
rich data visualization tool that allows you to create rich, real-time, dashboards and visualizations for
critical business data.

211

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Power Bl displays dashboards that are interactive and can be created and updated from many different
data sources in real time. In a later chapter of this book, we will be using Power Bl as a real-time
operational dashboard just like a dashboard in an automobile. It displays critical information about
vehicles, such as its speed, its fuel level, or oil temperature. In our reference application, we will be
monitoring team member’s health and activity data in real time.

A mandatory prerequisite for this step is to have set up and configured an Azure Active Directory user
that we can use to authenticate against Power Bl during the output definition process.

Azure Active Directory is a foundational piece of Power Bl Authentication process and stores the users,
groups, and domains in addition to other settings and configuration options.

Power Bl apps are integrated with Azure Active Directory (AAD) to provide secure sign in and
authorization for your Power Bl applications. In order to integrate a Power Bl application with Azure
Active Directory, you would need to register the application details with Azure AAD via the Azure
Management Portal.

To sign up for the Power Bl service, your Azure Active Directory must have at least one organizational
user. See the following link for details about creating an Azure Active Directory tenant;

Create an Azure Active Directory tenant for a Power Bl app:

https://powerbi.microsoft.com/en-us/documentation/powerbi-developer-create-an-azure-active-

directory-tenant

Once a tenant and a user within that tenant have been created, you can use that new organizational
user to sign up for the Power BI service at the following link:

Sign up for the Power BI service:

https://powerbi.microsoft.com/en-us/documentation/powerbi-admin-free-with-custom-azure-

directory

See the following link for more information about Azure Active Directory:

Azure Active Directory: http://azure.microsoft.com/en-us/services/active-directory

Once the prerequisites for the Power Bl Output option have been configured (Azure Active Directory
user/password and registration on the Power BI site), the next step is start the creation of the Power Bl
output option.

212

https://powerbi.microsoft.com/en-us/documentation/powerbi-developer-create-an-azure-active-directory-tenant
https://powerbi.microsoft.com/en-us/documentation/powerbi-developer-create-an-azure-active-directory-tenant
https://powerbi.microsoft.com/en-us/documentation/powerbi-admin-free-with-custom-azure-directory
https://powerbi.microsoft.com/en-us/documentation/powerbi-admin-free-with-custom-azure-directory
http://azure.microsoft.com/en-us/services/active-directory

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

The creation of a Power Bl output option is basically a two-step process:

1. Authenticate against Power BIl. While doing this step, Azure Streaming Analytics is
generating and saving those credentials for when the job is running and pushing
real-time data to your Power Bl dashboard applications.

2. Provide the necessary details for the output definition.

To create the Azure Streaming Analytics job output definition for the “hot” data path, start by navigating
(via the Azure Portal) to the previously defined streaming job definition. Select Outputs.

Click on + Add to add a new output definition:

e Under the Sink Parameter. Select Power Bl from the drop-down list. This action will
properly set the remaining fields for you to populate.

e Qutput Alias: A name for this output definition that will be used in our SQL Query.
e Sink: Refers to the selected output destination; in this case, select Power BI.

e Authorize Connection: By clicking on the Authorize button, you will be presented with an
authorization screen for you to authenticate against the Power Bl service.

As mentioned previously, these credentials are cached and used for real-time access to push new data
into your Power Bl dashboard.

Figure 5-18 displays a screenshot of the required parameters for the first step.

213

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

New output

* Output alias

output-powerbi

* Sink @

Power Bl v

Authorize Connection
You'll need to authorize with Power Bl to
configure your output settings.

Authorize

Don't have a Microsoft Power Bl account yet?

21gn Up

Note: You are granting this output
permanent access to your Power Bl
dashboard. Should you need to

revoke this access in the future you

ﬁ can do one of the following:

1. Change the user account
password.

2. Delete this output.

3. Delete this job.

Figure 5-18. Stream Analytics job: hot path output definition parameters, Power Bl authentication

After clicking on the Authorize button, you will see a screen similar to the one in Figure 5-19 for you to
enter your Power BI credentials.

214

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Microsoft Azure

Cloud optimize I
your business

O Keep me signed in

Szgn:n

Can't access your account?

© 2016 Microsoft B Microsoft

Terms of use Privacy & Cooldes

Figure 5-19. Stream Analytics job: hot path output definition parameters Power BI AAD Authentication
screen

After you have authenticated against Power Bl with your AAD credentials, you will then gain access to
the remaining configuration parameters required to complete the output definition.

e (Qutput Alias: A name for this output definition that will be used in our SQL query.
e Sink: Refers to the selected output destination; in this case, select Power BI.

» Group Workspace: Refers to a workspace in your Azure Power Bl tenant under which
the output dataset will be created.

e Dataset Name: A descriptive dataset name for the Power Bl output that will be used to
reference when creating Power Bl dashboards and visualizations.

e Table Name: A descriptive table name in a dataset for the Power Bl output that will be
used to reference when creating Power Bl dashboards and visualizations.

Figure 5-20 depicts the additional configuration parameters that are visible once the Power Bl
connection has been authenticated.

215

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

New output

* Qutput alias

ocutput-powerbi v
* Sink @
Power Bl v

Group Workspace
My Workspace v

* Dataset Name

iothubdata v

If the dataset or table already exists in yo...
A Microsoft Power Bl subscription, it will be
overwritten.

* Table Name

iotsensordata

Currently authorized as

Figure 5-20. Stream Analytics job: hot path output definition parameters Power Bl additional parameters
after authentication

Once you have entered all the required parameters, click on the Create button at the bottom of the screen
and the new output definition will be quickly tested and added to the Azure Streaming Analytics job.

We will explore in greater detail the use of Power Bl in Chapter 9.

Azure Streaming Analytics Job: Inputs and Outputs

At this point, you have created the following components of the Azure Streaming Analytics job:
e [nputs:
e |oT Hub

e Reference data

216

http://dx.doi.org/10.1007/978-1-4842-2650-6_9

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e Functions:
e Azure ML Web Service — ChkTeamHealth()
e (Outputs:
e Blob storage
e Azure SQL database
e Power Bl
At this point, your Azure Streaming Analytics job should look like the screenshot in Figure 5-21.

Job Topology

Inputs Query Outputs

2 = 3
input-iothub output-blob

input-refdata-team output-powerbi

Figure 5-21. Stream Analytics job: two input definitions and three output definitions

AZURE SETUP: STREAMING ANALYTICS JOB SQL QUERY

Now that we have created the inputs, functions, and outputs for our Azure Streaming Analytics job, it is
time to pull it all together using the ASA SQL Query language.

In the reference implementation, we will make use of most of the options and features available with
Azure Streaming Analytics in order to help illustrate how easy it becomes to put together a high-
performance ingestion engine that can easily be enhanced to add capabilities to turn massive volumes
of data into real-time, actionable data.

The SQL queries that you will implement will allow you to combine the two input definitions along with
the Azure ML function definition and then populate three separate output data path destinations for our
streaming data. The three paths will correlate to our Lambda architecture guidance for Hot, Warm, and
Cold data paths:

® Hot Path: We defined an output definition using Power BI, which will allow us to update
real-time dashboards and visualizations with the sensor data plus the results of the
Azure Machine Learning Web Service calls via the function definition.

e Warm Path: We will target Azure SQL database which will allow us to add, update, and
query data from many clients.

217

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e (Cold Path: We will use Azure blob storage to archive the data in its original format plus
the additional results of the JOIN on the INPUT with the reference data definition for
team member reference health data.

To create the Azure Streaming Analytics job SQL Query definition, start by navigating (via the Azure
Portal) to the previously defined streaming job definition. Select Query.

¢ You will be presented with a SQL Query Editor window.

e Enter the SQL Query text as shown in Figure 5-14 to implement the “hot path” output
to Power BI. Note the call to ChkTeamHealth(). This calls the Azure ML Web Service to
predict the team member’s exhaustion level.

Listing 5-13. ASA SQL Query That Implements a Function Call to an Azure Machine Learning Web Service

- kskokokskskokkskokok sk skok sk sk skok sk sk skok ok >k

-- * HOTPATH

-- * Invoke Machine Learning As a Function "ChkTeamHealth()"

-- * Via ASA SQL Subquery

-- * then output to Power BI (Hot) & BLOB Storage (COLD) Storage

3k ok 3k ok ok ok 3k >k 5k ok 5k >k ok >k sk >k sk ok k >k k kk

WITH [subquery] AS

SELECT UserId, ChkTeamHealth(
Userld,
BreathingRate,
Temperature,
Ventilization,
Activity,
HeartRateBPM,
Cadence,
Velocity,
Speed,
HIB,
HeartrateRedZone,
HeartrateVariability,
lINll)
as result from [input-iothub]
TIMESTAMP BY [Timestamp]

)

SELECT UserId,
result.[BreathingRate],
result.[Temperature],
result.[Ventilization],
result.[Activity],
result.[HeartRateBPM],
result.[Cadence],
result.[Velocity],
result.[Speed],

218

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

result.[HIB],
result.[HeartrateRedZone],
result.[HeartrateVariability],
result.[Scored labels],
result.[Scored Probabilities],
result.[Timestamp]

INTO [output-powerbi]

FROM subquery

Note If there are no red squiggly lines, you can click on the Save button in the top-left navigation pane in
the Azure Portal to save the SQL query.

It is highly recommended that you resolve any grammatical errors in your SQL script before progressing. The
most common issues are misspellings between your input/function/output definitions and the ones in the
reference implementation scripts provided as sample code with this book.

Enter the SQL query text as shown in Listing 5-14 to implement the “warm path” output to Azure SQL
database.

Note The field names in the SQL table definition were matched to the incoming JSON column names to
expedite development efforts.

Listing 5-14. ASA SQL Query that Outputs to Azure SQL Database

—Rskokskokokokoskok skook kook skook sk ok skok sk ok skok kok sk ok k

-- * WARM Path

-- * QUTPUT to Azure SQL DB
ok kK kKR Kok Kk Kk Kok kK kKR Kok

SELECT
Userld,
Age,
Height,
Weight,
HeartRateBPM,
BreathingRate,
Temperature,
Steps,
Velocity,
Altitude,
Ventilization,
Activity,
Cadence,
Speed,

219

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

HIB,
HeartRateRedZone,
HeartrateVariability,
Status,

Id,

Deviceld,
MessageType,
Longitude,

Latitude,
[Timestamp],
EventProcessedUtcTime,
PartitionId,
EventEnqueuedUtcTime

INTO [output-sqldb]

FROM [input-iothub]
TIMESTAMP BY [Timestamp]

Enter the SQL Query text shown in Listing 5-15 to implement the “cold path” output to Azure blob
storage.

Note The incoming sensor data from loT Hub is JOINed with the team member’s reference data.

Listing 5-15. ASA SQL Query that JOINS with Reference Data and Outputs to Azure Blob Storage

- kskokokskskokkskskok sk skok ok kskok sk kskok ok >k

-- * COLD Path
-- * OUTPUT ALL incoming fields into to Azure BLOB Storage

-- * JOIN on Reference Data
keokeoke ok sk sk 3k >k >k 3k 3k >k sk sk sk sk sk sk sk sk sk sk kook

SELECT

IH.UserId,
IH.Age,
IH.Height,
IH.Weight,
IH.HeartRateBPM,
IH.BreathingRate,
IH.Temperature,
IH.Steps,
IH.Velocity,
IH.Altitude,
IH.Ventilization,
IH.Activity,
IH.Cadence,

220

IH.
IH.

IH

IH

IH

IH

RF

INTO

CHAPTER 5

Speed,
HIB,

.HeartRateRedZone,
IH.
IH.
IH.

HeartrateVariability,
Status,
Id,

.Deviceld,
IH.
IH.
IH.

MessageType,
Longitude,
Latitude,

. [Timestamp],
TH.
IH.

EventProcessedUtcTime,
Partitionld,

.EventEnqueuedUtcTime,
RF.
RF.
RF.

healthInformation__age,
healthInformation__height,
healthInformation_ weight,

.healthInformation_gender,
RF.

healthInformation_ race

[output-blob]

FROM

[input-iothub] IH
TIMESTAMP BY [Timestamp]

JOIN

[input-

ON

refdata-team] RF
IH.UserId = RF.id

REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Click on the Save button in the top-left navigation pane in the Azure Portal to save the SQL query.

AZURE SETUP: STREAMING ANALYTICS JOB, START JOB

Now that the last remaining step to completing the Azure Streaming Analytics job has been completed,
it is time to start our streaming Analytics job and view the expected output results.

Navigate to the streaming analytics job you created previously and click on the I> Start button on the
top-center of the Azure Portal, as shown in Figure 5-22.

221

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

v brtwhdevstreamingjob /0 Search resources

2% brtwhdevstreamingjob

LF Settings | P> Start | W St

B SearchCi+)) © Sstopped
. Essentials A
) S Overview
Send feedbadk
) B Activity log & UsetVoice
- Status Created
- M Access control (IAM) Stopped Tuesday, November 8, 2016 4:43:48 PM
L]
Lecation Started
ﬁ @ Tags EastUS Sunday, November 13, 2016 3:01:50 PM
8 Subicripbion name Last output
PR—— az & Sunday, November 13, 2016 3:07:08 PM
B Subscription 1D
8 ods ba3e3785-1064-4¢12-203¢-163c42ab3e53
e
Topology
q. JOB TOPOLOGY Job Topo
e Inputs Query Qutputs
— . Inputs
=
B functions 2 = 3 -,
0 * Query input-iothub cutput-blob
=+ Outputs input-refdata-team output-powerbi
e See More
CONRIGURE
W Monitoring
4 Scale
(0} InputEvents, OutputEvents and one more metric past hour
& Locale
.
- =+ Event ordering
> @ Error policy

GENERAL

No available data.

Figure 5-22. Start the Stream Analytics job

This step will normally take a few minutes (three to five) for the Azure Streaming Analytics job to fully start.

Once the Azure streaming job is running, you can run the C# Device Simulator code from the GitHub
repository to test the Azure Streaming Analytics job.

Once downloaded, you will find a Visual Studio Solution in the \brt\devices\Simulator folder. This is
a simple C# .NET Console application that creates a comprehensive dataset of sensor information and
sends it into the Azure loT Hub connection.

222

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Once you locate the solution in the repository, you can then load, build, and run the solution
(Simulator.sln). You will see a console window similar to the one in Figure 5-23.

Simulating teammatel

Profile Id : 058d7760-e868-434e-aald

Device Id : 339810bc-e868-4ff7-b648-
Simulating teammate?

Profile Id : c3ec?2fed-6189-4d3e-8446

Device Id : 9369763c-39a8-4ebb-9795-
Simulating teammated

Profile Id : 663d1c24-9afd-4550-8d57

Device Id : 94697898-627F-447f-93fF7
Simulating teammated

Profile Id : 1809cfad-5cch-bcel-9ca

Device Id 5421805c-e2fa-454e-9e50
Simulating tedunateS

Profile Id : 2d49b721-el57-4dcd-bab0

Device Id : db6aBaeel-0bh95-
Simulating teammatef

Profile Id : 8b3ac2c9-807b-4470-9611

Device Id 59ba9390-ac3e-4512-a2b3-
Simulating teamnate?

Profile Id : 42105a24-00f7-4f5a-aca3-

Device Id 8d9a836a-96f1-4960-a009-
Smuhlmgtmmmt8

Profile Id : aalc0209-d542-4535-81F5-

Device Id : c48al162-501d-bcde-bea9-

Simulating teammate9
Profile Id
Device Id

Simulating teammatell
Profile Id
Device Id : e8f3e93b-568e-468b-alab

Simulating teammatell
Profile Id : 0f15ad8d-272e-4981-9829-
Device Id 87995524 -1cf-420e-albf -

Simulating iednldiel?

Profile Id
Device Id
Simulating teammatel3d
Profile Id
Device Id b2uac61c Idd7-435d-ae 19~

Simulating teunuute
Profile Id : cel77590-df50-43f4-bfcO-
Device Id : 7002b8a9-5317-4d6e-950f-

Simulating teammateld
Profile Id
Device Id

: 698607de-a022-bed?-9458~
: 67226a07-7490-4cf8-b13d-

: 82923b70-34cf-476c-aBbs-
~9371464F52Fc2

: 870ad05d-996d-41d0-bO74-
: 130879df-8cae-40c2-940f -

. a87l4lef-ebab-4b3f-a9bl-

. d7940971-ddce-4535-b738-
: 963cc9bd-al61-499f-8362-

bbcé38d5ebb6
12eelal61695

852856cel25¢
5683b62938al

-1d869b0918ca

bSSal6edfae9
dbed?61a8e94

-33428F Fd5a30

4de?f0323489
43ba-a6b63-

~1ec362250654

d0116dbcb2f6

eh 181abf 763d

-3001aalbeb?S
6edch2adfeed

ec90d0316935
f36062f4e701

Beelb6adb9144
eec8d653call

dclbed?f17c6
b34a286a526a
f9%c6felbfbe

fIffafbbcchl
1bc682¢806c9

0889299a9219
~65b76bc36f0e

1c54¢53ba%e9
3574695¢2¢cad

3d94b00d2b24
78511fe959a3

Figure 5-23. C#.NET Console Device Simulator output

You should also start to see the data flowing into the various output destinations as defined in the Azure

Streaming Analytics job.

Verify the Azure Streaming Analytics job Output: Azure Blob Storage

You can easily check and verify the Azure blob output destination using tools like the Cloud Explorer in
Visual Studio 2015 or by using the “Azure Storage Explorer,” which can be downloaded from
http://azurestorageexplorer.codeplex.com.

223

http://azurestorageexplorer.codeplex.com/

CHAPTER 5 * REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Figure 5-24 provides an example screenshot of the Azure blob output results when viewed with the
Visual Studio Cloud Explorer tool.

S Microsoft Azure

& telemetry

« A D

B streamingmidata
v [0 Queves

v [Tabies

B brlustomerAPider

B briDevicediide

B, bridocdbdey

@ briiothubder

@ bripobproceimothubadats
& betilebererceAiides

& briRegntryAPider

@ brivericeburndedtdld
6 brtSemulatondiidey

B brtsgherveder

@ brtwhdentreamingob
@ CheckTeamHeslth

B othubtelemetry

8 cpndash

0_a10646bI0I240.. THELM 3426 Tjson 8 & X
Schoma «No Scherra Selected »
“Bbr *17.0, “tesce

8, “tenge
1744929079,
17.44929379,°
17.44929379,°
117, 3872044, "¢ v
“:17. 3872044, " temperature”
“:17.3872044, “temperature” 1 96. 8098167929844, "
17. 3872044, " temperature” 196, 576805318043014,
re”196.947415656851004,

o” 196, 43194597001 7438, "5
196, 6544714683605, "5t '

ture” 196. 4350761256344, “step
96.874660398752738,
96.15294370915755,
96.421785664009761,
196, 9MATTTINTNTETA,

96. 1258058348125, "1t
196, 60)931467330047
Ti9E.126552502485045
"1 96, GOPR 020643048, "
CI9E.MATEOGATATIRLLE, “ut
9. THETOTTISTETRIL, "
< 196.999922766267758, 5t
“ 196, TTAS489TRANY
96.1728595915124,
P6. 0548724680615, "
196.92932699803697, " 5%
“:96.91951248558216, "1t

@ oage | [iogRequests | B vietual Machinss | Q Extersions | 38 Remowve ol completed

Decrgptaon Satus St Tirw

() Download blob 0 _a 1060006247 Tl I 1) Completed 1112016 41948 PM

Figure 5-24. Visual Studio 2015 Cloud Explorer Tool to verify Azure blob output results from THE Streaming

Analytics job

Verify the Azure Streaming Analytics job Output: Azure SQL Database

To verify the Azure SQL database output results from the Azure Streaming Analytics job, YOU can use
tools like SQL Server Management Studio (SSMS). You can download it from the following link:

Download SQL Server Management Studio (SSMS)

https://msdn.microsoft.com/en-us/library/mt238290.aspx

Figure 5-25 provides an example screenshot of the Azure SQL database output results when a SELECT
statement is executed against the output SQL table and viewed within the SQL Server Management
Studio Query window.

224

https://msdn.microsoft.com/en-us/library/mt238290.aspx

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

e (ot Yow Quwy Domd Qebvg Jook Wndow Ly

10 -S| oy GG & 08900 Llad) Bl = ank
8 2] — T . e
B || othubtelermatry Sl tmote b Detg 8 00 & | TRQCQIT 2 S
osisee oo« CHe——
Comect 3/ 81 m 1 7.5 +
s brtsciuerver ey dataturne mrkows et (5] ;";' (fothubtelemetry]
 Databuriars
& 2 Syvtern Databanes SELEeT 14)
§ b beberratry E. 1
= Tebles L [Height)
2 Syrten Labiey [weight)
3 dibo dotHubSermorfaadegn . [HeartRateliv]
& 8 Vi . [BreathingRate)
P . [Tesperature]
4 Priuy averabilty J[steps)
+ 1 Extersded [verts < [velscity]
+22 Saorage [A1edtude)
Conu [Vestilization]
= Secur
d [Activity]
o L) opadandy [Cosence]
o L) teberratry [Speed)
» L Secunty . [HI8)
. [HeartRatekedlona)
. [Heartratevarisbility)
s -
3 Pt) Messages
WM fesatwegiiste Tevgots Sepn Velly Abbai Verdhrston Aty Catewn Speed HEB HesTtefed ow HesbsbeVrs A
1 M0 W INTIEN O o 0 M1 01000 o ') o ® ;
ki 17 304 0 NS00 V3.7 08 -] -] o o
3 17 M0 80 10O ME0A O o o o "
)) 9 P00 1 00 © FIeSeeI M8 13558 o [
) 0 THI T GTI 20 O 184 1T o F
* 0 ARSI ¢ 0 MR o ¢
? o 1) [1G0T © o o
L} 0 00N O A 0008 N0 - -] [
¥ 00 2¥s00E08 O AwSuTonre [0
w 0 0005155805040 LTI 'y o
n 0 SN O (] 0 q
w MMsINIIY2 0 WO T2 © (] [
it} 80 1000 O e 0 o o
1 0 000ENNN 0 AT © o o o
] LR 0 0 2004 AW O o -]
»w 0 1 PR [0N TS © O MES00Ts @ o
" b0 0 000N O RAR s e M 4 0
1 W0 0MasIM O 1) SN TN e T] oM 4 L] [(] 3 -
- »
< 3 |9 Crorry emcutod sascconshuly [v chatabs Adirinches (105 Rk y 000002 35 rows

Figure 5-25. Using SQL Server Management Studio to verify Azure SQL database output results from THE
Streaming Analytics job

Verify the Azure Streaming Analytics job Output: Power Bl

To verify the Streaming Analytics job output to Power BI, you can sign in to THE Power Bl web site at the
following link using your Azure Active Directory organizational ID: https://powerbi.microsoft.com/en-us.

Once you have signed in to the Power Bl Web Portal, you can navigate down the left-side navigation
pane to the topic area named Datasets and select the option for Streaming Datasets.

After clicking on the link, you should see a list of available streaming datasets. Look for one named
iothubdata, which represents the output from THE Azure Streaming Analytics job, as shown in
Figure 5-26.

225

https://powerbi.microsoft.com/en-us

CHAPTER 5 © REAL-TIME PROCESSING USING AZURE STREAM ANALYTICS

Strearming data
|
Figure 5-26. Working with the “hot path” output streaming dataset for Power BI to verify the output results

from the Streaming Analytics job

For more in-depth coverage of Power Bl as the output path for Azure Streaming Analytics, see
Chapter 9.

Summary

This chapter covered the all of the basic fundamental capabilities of Azure Streaming Analytics. You learned
how you can easily create streaming analytics jobs that allow you to leverage all of the positive attributes that
amodern, Lambda data architecture should possess, including “hot’;, “warm’, and “cold” data pathways to
deliver maximum business results.

You also examined the benefits of using a fully managed PaaS service like Azure Streaming Analytics,
versus building your own virtualized environment in Azure using Virtual Machine Linux images and the
combination of many open source tools and utilities.

Finally, you applied knowledge of Azure Streaming Analytics to the reference IoT Architecture and
created two input definitions—one for the IoT Hub events and the second for reference data for team
members health-related information. Next, we created a FUNCTION definition to represent an Azure Machine
Learning Web Service call that we used in our ASA SQL Query.

We then created three output definitions representing Hot, Warm, and Cold data paths using output
definition parameters to update corresponding Azure data platforms—Power BI for “Hot’, Azure SQL
Database for “Warm’; and Azure blob STORAGE for “Cold” storage.

As can easily be seen from this chapter, Azure Streaming Analytics can play a key role in the ingestion,
organization, and orchestration of IoT sensor transactions. The environment makes it easy to get started
yet is extremely powerful and flexible and can easily scale to handle millions of transactions per second.

A powerful stream analytics engine is critical to success for the modern enterprise seeking to operate a
business at Internet speed.

226

http://dx.doi.org/10.1007/978-1-4842-2650-6_9

CHAPTER 6

Batch Processing with Data
Factory and Data Lake Store

This chapter examines the use of Azure Data Factory and Azure Data Lake, including where, why, and how
these technologies fit in the capabilities of a modern business running at Internet speed. It first covers the
basic technical aspects and capabilities of Azure Data Factory and Azure Data Lake. Following that, the
chapter implements three major pieces of functionality for the reference implementation:

Update reference data that we used for the Azure Stream Analytics job. As you may
recall, we used the reference data in an ASA SQL JOIN query for gathering extended
team member health data.

Re-train the Azure Machine Learning Model for predicting team member health and
exhaustion levels. This data will be based on updated medical stress tests that are
administered to team members on a periodic basis.

Move data from Azure blob storage to Azure Data Lake. This step prepares the
reference implementation Data Lake analytics, which is the topic of Chapter 7.

Azure Data Factory Overview

Azure Data Factory fulfills a critical need in any modern Big Data processing environment. It can be seen
as the backbone of any data operation, as Data Factory provides the critical core capabilities required to
perform enterprise data transformation functions. This includes:

Data Ingestion and Preparation: From multiple sources; any combination of
on-premise and cloud-based data sources.

Transformation and Analysis: Schedule, orchestrate, and manage the data
transformation and analysis processes.

Publish and Consumption: Ability to transform raw data into finished data that is
ready for consumption by BI tools or mobile applications.

Monitoring and Management: Visualize, monitor, and manage data movement
and processing pipelines to quickly identify issues and take intelligent action.
Alert capabilities to monitor overall data processing service health.

Efficient Resource Management: Saves you time and money by automating data
transformation pipelines with on-demand cloud resources and management.

© Bob Familiar and Jeff Barnes 2017
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_6

227

http://dx.doi.org/10.1007/978-1-4842-2650-6_7

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Azure Data Factory is a cloud-based data integration service that orchestrates and automates the
movement and transformation of data. You can create data integration solutions using Azure Data Factory
that can ingest data from various data stores (handles both on-premise and cloud-based), transform and
process the data, and then publish the processing results to various output data stores.

The Azure Data Factory service is a fully managed cloud-based service that allows you to create data
processing “pipelines” that can move and transform data. Data Factory has the capability to perform highly
advanced and customizable ETL (Extract-Transform-Load) functions on the data as it moves through the
various stages in a processing pipeline.

These data processing “pipelines” can then be run either on a specified schedule (such as hourly, daily,
weekly, etc.) or on-demand to provide a rich batch processing capability for data movement and analytics at
enterprise scale.

Azure Data Factory also provides rich visualizations to display the history, versions, and dependencies
between your data pipelines, as well as monitor all your data pipelines from a single unified view. This
allows you to easily detect and pinpoint any processing issues and set up appropriate monitoring alerts.

Figure 6-1 provides an illustration of the various data processing operations performed by Azure Data
Factory, such as data ingestion, preparation, transformation, analysis, and finally publication. This data can
be easily consumed by the key users of the data.

5 lean)

= %
Sgl - I
i DATA SOURCES *-;» b :
& o @,

h O O

m "2 DATA CONSUMPTION

¢+n

Figure 6-1. Azure Data Factory can ingest data from various data sources

Pipelines and Activities

In a normal Azure Data Factory solution, one or more data processing pipelines are typically utilized. A
Data Factory pipeline is a logical grouping of activities. It’s used to group activities into a unit that together
performs a single task.

Activities

Azure Data Factory activities define the actions to perform on your data. For example, you may use a copy activity
to copy data from one data store to another. Similarly, you may use a hive activity, which runs a hive query on an
Azure HDInsight cluster to transform or analyze your data. Data Factory supports two types of activities:

e Data Movement Activities: This includes the copy activity, which copies data from a
source data store to a sink data store. Data Factory supports the following data stores:

e Azure:
e Azure blob storage
e Azure Data Lake Store
e Azure SQL database
228

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

e Azure SQL data warehouse
e Azure table storage
e Azure DocumentDB
e Azure Search Index
e Databases:
e SQL Server*
e Oracle*
e MySQL*
. DB2*
e Teradata*
e PostgreSQL*
e Sybase*
e (Cassandra*
e MongoDB*
e Amazon Redshift
e File Systems:
e File System*
e HDFS*
e AmazonS3
. FTP
e Other Systems:
e Salesforce
e Generic ODBC*
e Generic OData
e Web Table (table from HTML)
e GE Historian*

e Note: Data stores denoted with a * can exist either on-premises or on an
Azure Virtual Machine (IaaS). This option requires that you install the Data
Management Gateway on either an on-premises or Azure Virtual Machine.

Note See the following link for more information on the Data Management Gateway.

Move data between on-premises sources and the cloud with Data Management Gateway: https://docs.
microsoft.com/en-us/azure/data-factory/data-factory-move-data-between-onprem-and-cloud.

229

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-move-data-between-onprem-and-cloud
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-move-data-between-onprem-and-cloud

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

e Data Transformation Activities: Azure Data Factory supports the following
transformation activities that either can be added to pipelines individually or
chained together with another activity.

Data Transformation Activity Compute Environment

Environment

Hive HDInsight [Hadoop]

Pig HDInsight [Hadoop]

MapReduce HDInsight [Hadoop]

Hadoop Streaming HDInsight [Hadoop]

Machine Learning activities Azure VM

Stored Procedure Azure SQL, Azure SQL Data Warehouse, or SQL Server in VM

Data Lake Analytics U-SQL Azure Data Lake Analytics
Dot Net HDInsight [Hadoop] or Azure Batch

If you need to move data to or from a data store that the Azure Data Factory Copy Activity doesn’t
support, or you need to transform data using custom logic, you can always create a custom .NET activity.

Note For details on creating and using a custom activity, see the “Use custom activities in an Azure Data
Factory pipeline” link at https://docs.microsoft.com/en-us/azure/data-factory/data-factory-use-
custom-activities.

Linked Services

Linked services define the information needed for Azure Data Factory to connect to external data resources
(for example: on-premises SQL Server, Azure Storage, and HDInsight running in Azure). Linked services are
used for two primary purposes in Azure Data Factory:

. To represent a data store: Such as an on-premise SQL Server, Oracle database, file
share, or an Azure blob storage account.

e To represent a compute resource: One that can host the execution of an activity. As an
example, the HDInsight hive activity runs on an HDInsight Hadoop cluster and can
be used to perform data transformations.

Datasets

In the larger scheme of things, linked services link the data stores to an Azure Data Factory job. Datasets
represent data structures within those data stores.

As an example, an “Azure SQL linked service” might provide connection information for an Azure SQL
database. An Azure SQL dataset would then specify the specific table that would contain the data for Azure
Data Factory to process.

230

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-use-custom-activities
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-use-custom-activities

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Additionally, an “Azure storage linked service” would provide connection information for Azure Data
Factory to be able to connect to an Azure Storage account. From there, an Azure blob dataset would specify
the container for the blob and the folder in the Azure Storage account from which the pipeline should read
the incoming data.

Pipelines

An Azure Data Factory pipeline is a grouping of logically related activities. A pipeline is used to group
activities into a logical unit that performs a task.

Activities define the specific actions to perform on the data. Each pipeline activity can take zero or more
datasets as an input and can produce one or more datasets as output.

For example, a copy activity can be used to copy data from one Azure data store to another data store.
Alternatively, one could use an HDInsight hive activity to run a hive query on an Azure HDInsight cluster in
order to transform the data stream.

Azure Data Factory provides a wide range of data ingestion, movement, and transformation activities.
Developers also have the freedom to choose to create a custom .NET activity to run their own custom code
in an Azure Data Factory pipeline.

Scheduling and Execution

At this point, we have examined what Data Factory pipelines and activities are and how they are composed
to create holistic data processing work streams in Azure Data Factory. We will now examine the scheduling
and execution engine in Azure Data Factory.

It is important to note that an Azure Data Factory pipeline is active only between its start time and end
time. Consequently, it is not executed before the start time or after the end time. If the pipeline is in the
“paused” state, it will not get executed at all, no matter how the start and end times are set.

Note that it is not the pipeline that gets actually gets executed. Rather, it is the set of activities within
the Data Factory pipeline that actually get executed. However, they do so in the overall context of the Data
Factory pipeline.

The Azure Data Factory service allows you to create data pipelines that move and transform data, and
then run those pipelines on a specified operational schedule (hourly, daily, weekly, etc.).

Data Factory also provides rich visualizations to display the history, version, and dependencies between
data pipelines, and allows you to monitor all your data pipelines from a single unified view. This provides an
easy management tool to help pinpoint issues and set up monitoring alerts.

Pipeline Copy Activity End-to-End Scenario

In this section, we examine a complete end-to-end example of creating an Azure Data Factory pipeline
to copy data from Azure blob storage to an Azure SQL database. Along the way, we emphasize the
major features and capabilities that you can exploit to make the most out of Azure Data Factory for your
requirements.

Note See this link for detailed steps to accomplish this Data Factory scenario:

Copy data from blob storage to SQL database using Data Factory: https://docs.microsoft.com/en-us/
azure/data-factory/data-factory-copy-data-from-azure-blob-storage-to-sql-database

231

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-data-from-azure-blob-storage-to-sql-database
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-data-from-azure-blob-storage-to-sql-database

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Scenario Prerequisites
Before you can create an Azure Data Factory pipeline or activities, you need the following:

e Azure Subscription: If you don’t already have a subscription, you can start for free at
https://azure.microsoft.com/en-us/free/?b=16.46.

e Azure Storage Account: You use the blob storage as a “source” data store in this
scenario.

e Azure SQL Database: You use an Azure SQL database as a destination data store in
this tutorial.

e SQL Server Management Studio or Visual Studio: You use these tools to create a
sample database and destination table, and to view the resultant data in the database
table.

JSON Definition

If you have walked through the Azure Data Factory link to “Copy Data from Blob Storage to SQL Database
Using Data Factory,” you may have noticed that there are a variety of tools that you can use to define an
Azure Data Factory pipeline or activity:

e Copy Wizard

e Azure Portal

e Visual Studio

e PowerShell

e Azure Resource Manager template
e ReSTAPI

e .NETAPI

No matter what the tool is used to create the initial Azure Data Factory job, ultimately, Azure Data
Factory utilizes JavaScript Object Notation (JSON) to define and persist the definitions that you create via the
tools.

JSON is a lightweight data-interchange format that makes it easy for humans to read and write as well
as easy for machines to parse and generate. One distinct advantage of this approach is that the specific
JSON configuration parameters can be finely tweaked and tuned for the scenario at hand in order to provide
complete control over the configuration and run options for the Data Factory job.

To get started, navigate (via the Azure Portal) to your Azure Data Factory job created in the link and click
on the Author and Deploy option, as shown in Figure 6-2.

232

https://azure.microsoft.com/en-us/free/?b=16.46

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

2 4
W Author and '1 Copy data Monitor &
¥ deploy :Lcl (PREVIEW) /' Manage
= e s = : /" Metrics and
}BQ Sample pipelines =25 Diagram I I II At

Figure 6-2. Azure Portal Data Factory: Author and Deploy options

Once you have clicked on the Author and Deploy option, you will see a screen similar to the one in
Figure 6-3, where you can navigate thru each step of a Data Factory pipeline job that was created and see the
corresponding JSON for each step of the process.

{

¥ Linked services

“name”: “"Source-BlobStorage-7an”,
Destination-SOLAzure-Tan “properties®: {
Source-BlobStarage-Tan “hubName": “jbadftuterial_hub”,

“type™: “"AzureStorage”,
"typeProperties”: {
“connectionString™: “DefaultEndpointsProt l=https;A tblobstoragedev; AccountKeys**ssssssss=

* Datasets
InputDiataset-Tan
OutputDataset-Tan ¥

¥ Pipelines }

}

CepyPipelineBlob2SOLTable
* Data Gateways
Mo data gateways in this data factory.

Drafts

Figure 6-3. Data Factory: Author and Deploy JSON options

Let’s take a look at the JSON that was generated for the sample Copy Activity workflow for the Copy link.
The starting point is to define the incoming and outgoing data sources for the job. In this case, we are using
Azure blob storage for the input in the form of a file named EmpData. txt, which is a comma-separated value
(CSV) formatted input file.

Note the two JSON code segments in Listing 6-1 that describe the Azure blob storage connection and
the corresponding dataset definition for the input source.

233

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Listing 6-1. JSON Description of INPUT Data Source for Copy Activity Definition

JSON - BLOB Storage Input Definition
{
"name": "Source-BlobStorage-7an",
"properties": {
"hubName": "jbadftutorial_hub",
"type": "AzureStorage",
"typeProperties": {
"connectionString": "DefaultEndpointsProtocol=https;AccountName=brtblobstoragedev;
AccountKey=**********"

}

JSON - Data Definition:
{
"name": "InputDataset-7an",
"properties”: {
"structure": [
{ n n
name
lltype n

"Columno",
"String"

}s
{

"Column1",
"String"

}
1,
"published": false,
"type": "AzureBlob",
"linkedServiceName": "Source-BlobStorage-7an”,
"typeProperties": {
"fileName": "EmpData.txt",
"folderPath": "adftutorial”,
"format": {
"type": "TextFormat",
"columnDelimiter": ","
}
}5
"availability": {
"frequency": "Day",
"interval": 1
}s

"external": true,
"policy": {}

Note in the two JSON code segments that these two definitions completely describe the data input
source even down to the field definitions within the CSV text file in Azure blob storage. This interface in the
Azure Portal also allows you to easily override the standard parameters by simply editing the JSON directly.

234

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Listing 6-2 shows sample JSON output for a Data Factory Copy Operation.

Listing 6-2. Data Factory Copy Operation JSON Parameters

Data Factory - JSON Copy Pipeline Operations
{
"name": "CopyPipelineBlob2SQLTable",
"properties”: {
"description": "CopyPipelineBlob2SQLTable",
"activities": [

{
“type": "Copy",
"typeProperties”: {
"source": {
"type": "BlobSource",
"recursive": false
3
"sink": {
"type": "SqlSink",
"writeBatchSize": o,
"writeBatchTimeout": "00:00:00"
1,
"translator": {
"type": "TabularTranslator",
"columnMappings": "ColumnoO:FirstName,Columni:LastName"
}
1
"inputs": [
{
"name": "InputDataset-7an"
}
1,
"outputs": [
{
"name": "OutputDataset-7an"
}
1,
"policy": {
"timeout": "1.00:00:00",
"concurrency": 1,
"executionPriorityOrder": "NewestFirst",
"style": "StartOfInterval”,
"retry": 3,
"longRetry": o,
"longRetryInterval”: "00:00:00"
}5
"scheduler”: {
"frequency": "Day",
"interval": 1
}s
"name": "Blobpathadftutorial->dbo_emp"
}

235

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

1,
"start": "2016-11-22T15:06:22.806Z",

"end": "2099-12-31T05:00:00Z",
"isPaused": false,

"hubName": "jbadftutorial_hub",
"pipelineMode”: "Scheduled"

The JSON definition in Listing 6-2 allows you to have full control over the parameters, the mapping
between the CSV file and the SQL table, and run behavior of this pipeline Copy job.

Additionally, note that within the scheduler section of the activity JSON code sample, you can specify
a recurring schedule for a pipeline activity. For example, you can schedule a Data Factory pipeline copy
activity to run every hour by modifying the JSON as follows:

JSON Code Fragment - Scheduler
"scheduler": {
"frequency": "Hour",
"interval": 1

1

Note See the following link for a complete overview of the JSON options for a Data Factory pipeline Copy
operation:

Move data to and from Azure blob using Azure Data Factory: https://docs.microsoft.com/en-us/azure/
data-factory/data-factory-azure-blob-connector#azure-storage-linked-service.

As can be seen from the composable architecture that the JSON definitions provided, Azure Data
Factory is an extremely powerful and flexible tool to help manage all the critical aspects of managing
Big Data in the cloud. Aspects such as data ingestion (either on-premise or in Azure), preparation,
transformation, movement, and scheduling are all required features for running an enterprise-grade data
management platform.

Monitoring and Managing Data Factory Pipelines

The Azure Data Factory service provides a rich monitoring dashboard capability that helps to perform the
following tasks:

e Assess pipeline health data from end-to-end
e Identify and fix any pipeline processing issues
e Track the history and ancestry of your data

e Viewrelationships between data sources

e View full historical accounting of job execution, system health, and job
dependencies

236

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector#azure-storage-linked-service
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-blob-connector#azure-storage-linked-service

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

You can easily monitor the state of an Azure Data Factory pipeline job by navigating to your Data
Factory job in the Azure Portal and then clicking on the Diagram option, as shown in Figure 6-4.

Actions

2 4
E Author and '1 Copy data @ Monitor &
P deploy EL! (PREVIEW) Manage

Metrics and
operations

2

'hg Sample pipelines == Diagram

=

Figure 6-4. Azure Portal: Data Factory job, diagram view

Next, you will see a visual diagram of your Data Factory pipeline job, as shown in Figure 6-5. By clicking
on either one of the Input or Output definitions, you can see the history and status of each “slice” of data that
was created, along with what is scheduled to occur next.

- R ENa% Last edited by Juff Barmes Viestecday 1058 AM local

CopyPipeineBlob 250 Table lg) Table source

Ingut Datasel-Tan

© P |

E Tabls schema

T wcsises

Monitering

Recently updated shices

LASTUPDATETIME SUICH START TimE susct tup T status
. ESENE 1200 A @ Ready
NRAR016 12004 © Ready

01612004 O Ready
V200 1200 A @ Pending exscution

1A 1200 A

12/30/2099 1200 A

122072093 1200 A @ Pending execution

/232006 03904 12/27/2099 1200 A 122072099 1200 A @ Pending execution

Figure 6-5. Monitoring an Azure Data Factory job by viewing the output segment history

237

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Note that the status for each pipeline activity in Azure Data Factory can cycle among many potential
execution states, as follows:

e Skip

e Waiting

e In-Progress

e In-Progress (Validating)
e Ready

e Failed

Figure 6-6 represents the various states of execution that can occur when an Azure Data Factory
pipeline job is active.

Skip

Waiting

In-Progress

In-Progress
(Validating)

Figure 6-6. Data Factory pipeline job state transition flow

Azure Data Factory “slices” are the intervals in which the pipeline job is executed within the period
defined in the start and end properties of the pipeline. For example, if you set the start time and end time to
occur in a single day, and you set the frequency to be one hour, then the activity will be executed 24 times. In
this case, you will have 24 slices, all using the same data source.

Normally, in Azure Data Factory, the data slices start in a Waiting state for pre-conditions to be met
before executing. Then, the activity starts executing and the slice goes into the In-Progress state. The
activity execution may succeed or fail. The slice is marked as Ready or Failed based on the result of the
execution.

You can reset the slice to go back from Ready or Failed state to a Waiting state. You can also mark the
slice state to Skip, which prevents the activity from executing and will not process the slice.

238

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Note See this link for more information: “Monitor and Manage Azure Data Factory Pipelines”:
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-pipelines.

Data Factory Activity and Performance Tuning

Another key set of factors to consider when choosing a cloud data analytics processing system is
performance and scalability. Azure Data Factory provides a secure, reliable, and high-performance, data
ingestion, and transformation platform that can run at massive scale. Azure Data Factory can enable
enterprise scenarios where multiple terabytes of data are moved and transformed across a rich variety of
data stores, both on-premise and in Azure.

The Azure Data Factory copy activity offers a highly optimized data loading experience that is easy to
install and configure. Within just a single pipeline copy activity, you can achieve load speeds similar to the
following:

¢ Load datainto Azure SQL data warehouse at 1.2 GB per second.
e Load data into Azure blob storage at 1.0 GB per second.

e Load data into Azure Data Lake Store at 1.0 GB per second.

Parallel Copy

Azure Data Factory also has the ability to run copy activities from a source or write data to a destination
in parallel operations executed in a Copy Activity run. This feature can have a dramatic impact on the
throughput of a copy operation and can also reduce the time it takes to perform data transformation and
movement functions.

You can use the JSON “parallel copies” property to indicate the parallelism that you want copy activity
to use. You can think of this property as the maximum number of threads in the copy activity that can read
from your source or write to your sink data stores in parallel.

Listing 6-3. JSON Snippet of Pipeline Copy Activity Showing the parallelCopies Property

JSON Pipeline Copy Activity - "parallelCopies” Property
"activities":[

{
"name": "Sample copy activity",
"description": "",
“type": "Copy",
"inputs": [{ "name": "InputDataset" }],
"outputs": [{ "name": "OutputDataset" }],
"typeProperties”: {
"source": {
"type": "BlobSource",
}
"sink": {
"type": "AzureDatalakeStoreSink"
)
"parallelCopies": 8
}
}

239

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-monitor-manage-pipelines

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

For each copy activity run, Azure Data Factory determines the number of parallel copies to utilize to
copy data from the source data store to the destination data store. The default number of parallel copies that
are used is dependent on the type of data source and the data sink that is used.

Cloud Data Movement Units (DMUs)

A Cloud data Movement Unit (DMU) is a Data Factory measurement that represents the relative power
(a combination of CPU, memory, and network resource allocation) of a single unit in Azure Data Factory.
A DMU might be used in a cloud-to-cloud copy operation, but not in a hybrid copy from an on-premise
data store.

By default, Azure Data Factory uses a cloud DMU to perform a single pipeline copy activity execution.
To override the default, specify a value for the cloudDataMovementUnits property, as shown in the code
segment in Listing 6-4.

Listing 6-4. Sample JSON snippet showing the cloudDataMovementUnits Property

Data Factory - JSON Property for "cloudDataMovementUnits"
"activities":[

{
"name": "Sample copy activity",
"description": "",
“type": "Copy",
"inputs": [{ "name": "InputDataset" }],
"outputs": [{ "name": "OutputDataset" }],
"typeProperties": {
"source": {
"type": "BlobSource",
)
"sink": {
"type": "AzureDatalakeStoreSink"
)
"cloudDataMovementUnits": 4
}
}

Note that you can achieve higher throughput by leveraging more data movement units (DMUs) than the
default maximum DMUs, which is eight for a cloud-to-cloud copy activity run. As an example, you can copy
data from Azure blob to Azure Data Lake Store at the rate of 1 gigabyte per second if you are set to use (100)
DMUs. In order to request more DMUs than the default of eight for your subscription, you need to submit a
support request via the Azure Portal.

Note For more detailed information concerning performance and tuning for Azure Data Factory jobs, visit
the “Copy Activity Performance and Tuning Guide” at https://docs.microsoft.com/en-us/azure/data-
factory/data-factory-copy-activity-performance.

240

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-copy-activity-performance

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Azure Data Lake Store

Azure Data Lake Store is a hyper-scale repository and processing environment for today’s modern Big Data
analytical workloads.

Azure Data Lake enables you to persist data of any size, data type, and ingestion speed, in a single
location, for use in operational and data analytics research.

Hadoop Access

Azure Data Lake Store can be accessed from Hadoop and Azure HDInsight using the WebHDFS-compatible
ReST APIs. The hadoop-azure-datalake module provides support for integration with the Azure Data Lake
Store. The JAR file is named azure-datalake-store. jar.

Note For Hadoop Azure Data Lake Support, visit https://hadoop.apache.org/docs/r3.0.0-alpha1/
hadoop-azure-datalake/index.html.

Note that there is a distinction to be made around the meaning of the term Azure Data Lake. There are
potentially two different meanings in Microsoft Azure. It is typically used to refer to a storage subsystem in
Azure more commonly referred to as “Azure Data Lake Store” or “ADLS’”.

The other variation of the term is “Azure Data Lake Analytics” or “ADLA,” which is an Azure-based
analytics service where you can easily develop and run massively parallel data transformation and
processing programs in a variety of languages such as U-SQL, R, Python, and .NET. Azure Data Lake
Analytics are covered in detail in Chapter 7. For now, we will cover the basics of Azure Data Lake Store.

ADLS is specifically designed to enable analytics on the data stored in Azure Data Lake. The Data Lake
storage subsystem is fine-tuned specifically for high performance for data analytics scenarios.

As a completely managed service offering from Microsoft, Azure Data Lake Store includes all the
enterprise-grade capabilities one would expect from a cloud-based repository with massive scalability. The
key “abilities” provided by Azure Data Lake Store include: security, manageability, scalability, reliability, and
availability. All of the characteristics are essential for real-world enterprise use cases.

With Azure Data Lake Store, you can now explore and harvest value from all your unstructured, semi-
structured, and structured enterprise data by running massively parallel analytics over literally any amount
of data. Azure Data Lake Store has no artificial constraints on the amount of data, number of files, or the size
of individual files that can be stored. At the time of this writing, ADLS can store individual files that can be as
large as petabytes in size, which is at least 200x larger than any other cloud storage service available today.

Security Layers

Azure Data Lake Store has security features that are “built-in” from the ground up. As can be seen in
Figure 6-7, Azure Data Lake Store has a number of Azure security features and capabilities layered in to help
provide the highest confidence in the security of the data, whether the data is at rest or in transit.

241

https://hadoop.apache.org/docs/r3.0.0-alpha1/hadoop-azure-datalake/index.html
https://hadoop.apache.org/docs/r3.0.0-alpha1/hadoop-azure-datalake/index.html
http://dx.doi.org/10.1007/978-1-4842-2650-6_7

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

-> Restrict Access by IP Range

—

Auditing:
-> Azure Audit Logs

Authentication:
-» Azure Active Directory _-

Azure Data Lake
Store

Data Encryption:
-> In-Transit:
-» At-Rest via:
- User-managed Keys

Authorization:
- or Azure Managed Keys

-> Role-Based Access Control (RBAC)
-> Access Control Lists (ACL's)

Figure 6-7. Layered security in Azure Data Lake Store

Figure 6-7 illustrates the various security layers involved in protecting your data in the Azure Data Lake
Store. Here is a quick re-cap of these “built-in” security features:

e Network Isolation: Azure Data Lake Store allows you to establish firewalls and define
an IP address range for your trusted clients. With an IP address range, only clients
that have an IP in the defined range can connect to Azure Data Lake Store.

e Authentication: Azure Data Lake Store has Azure Active Directory (AAD) natively
integrated to help manage users and group access and permissions. AAD also
provides full lifecycle management for millions of identities, integration with on-
premise Active Directory, single sign-on support, multi-factor authentication, and
support for industry standard open authentication protocols such as OAuth.

e Authorization: Azure Data Lake Store (ADLS) provides Role-Based Access Control
(RBAC) capabilities via Access Control Lists (ACLs) for managing access to the data
files in the Data Lake store. These capabilities provide fine-grained control over file
access and permissions (at scale) to all data stored in an Azure Data Lake.

e Auditing: Azure Data Lake Store provides rich auditing capabilities to help meet
today’s modern security and regulatory compliance requirements. Auditing is turned
on by default for all account management and data access activities. Audit logs from
Azure Data Lake Store can be easily parsed as they are persisted in JSON format.
Additionally, since the audit logs are in an easy-to-consume format such as JSON,
you can you a wide variety of Business Intelligence (BI) tools to help analyze and
report on ADLS activities.

e Encryption: Azure Data Lake Store provides built-in encryption for both “at-rest” and
“in-transit” scenarios. For data at-rest scenarios, Azure administrators can specify
whether to let Azure to manage your Master Encryption Keys (MEKSs) or you can use
bring-your-own MEKs. In either case, the MEKs will be stored and managed securely
in Azure Key Vault, which can utilize FIPS 140-2 Level 2 validated HSMs (Hardware
Security Modules). For data in-transit scenarios, the Azure Data Lake Store data is
always encrypted, by using the HTTPS (HTTP over Secure Sockets Layer) protocol.

242

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Note that in Azure Data Lake Store, you can choose to have your data encrypted or have no encryption
at all. If you choose encryption, all data stored in the Azure Data Lake Store is encrypted prior to persisting
the data in the store. Alternately, ADLS will decrypt the data prior to retrieval by the client. From a client
perspective, the encryption is transparent and seamless. Consequently, there are no code changes required
on the client side to view or encrypt/decrypt the data.

ADLS Encryption Key Management

For encryption key management, Azure Data Lake Store provides two modes for managing your Master
Encryption Keys (MEKSs). These keys are required for encrypting and decrypting any data that is stored in the
Azure Data Lake Store.

You can either let Data Lake Store manage the master encryption keys for you or choose to retain
ownership of the MEKs using your Azure Key Vault account. You can specify the mode of key management
while creating a new Azure Data Lake Store account.

Tip Get started with Azure Data Lake Analytics using the Azure Portal: https://docs.microsoft.com/
en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal.

Implementing Data Factory and Data Lake Store in the
Reference Implementation

Now that you have a solid background of the features and capabilities in Azure Data Factory and Azure Data
Lake Store, you will put your knowledge to use by implementing a few more key pieces of the reference
implementation in the remainder of this chapter. As a quick refresher, you will implement the following
three pieces of functionality that are required for the reference implementation:

e Update Reference data that you used for the Azure Stream Analytics job. You will
use an Azure Data Factory copy job to copy team members’ profile data from Azure
DocumentDB to a text-based CSV file in Azure Blob storage. As you may recall, you
used this reference data in an ASA SQL JOIN query for gathering extended team
member health data. We want to make sure that this reference data is updated
periodically via a scheduled copy job.

e Re-train the Azure Machine Learning model for predicting team member health
and exhaustion levels. We implemented a function in Chapter 5 (StreamAnalytics)
to call an Azure Machine Learning Web Service. We want to update the predictive
model that runs behind this service using updated medical stress data from tests that
are administered to team members on a periodic basis.

e Move data from Azure blob storage to Azure Data Lake. This job will copy the data
that originally came from the IoT Hub and was saved into Azure blob storage by the
Azure Stream Analytics job in Chapter 5. We want to move this data from Azure blob
Storage to Azure Data Lake Store.

243

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal
http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

UPDATE REFERENCE DATA INPUT FILE FOR AZURE STREAM
ANALYTICS JOBS

In this section, we walk through the steps necessary to create an Azure Data Factory copy pipeline
job that will copy data from an Azure DocumentDB “NoSQL’ database to a text-based CSV file that is
persisted in Azure blob storage.

Note that the CSV file will implement a specific file naming convention so that the Azure Stream
Analytics job knows to utilize the latest version of the file for use in stream analytics jobs that require
this reference data. Figure 6-8 illustrates the INPUT REFERENCE DATA parameter for the Azure Stream
Analytics job that describes the file naming convention.

Path pattern @

TeamReferenceData{date}{time}.csv

Figure 6-8. Stream Analytics reference data file naming convention

By utilizing this file naming convention, the reference data used as input in Azure Stream Analytics job
will always reflect the most recent version of the data. Another advantage of using this approach is that
future reference data updates can be easily made without adversely impacting any stream analytics
jobs currently in process.

The next job that runs simply locates and ingests the latest reference data file that exists in Azure
blob storage, based on the file naming convention. In this simple, but very effective, way, the stream
analytics job will always use the latest version of the reference data at runtime.

To get started, navigate to the resource group for your deployment via the Azure Portal. Click on
the + Add button and search for Data Factory, as shown in Figure 6-9.

Everything G = |
Y Filter
I L3 Data Factory x I
Results

NAME s PUBLISHER L CATEGORY 5
m Data Factory Microsoft VM Extensions

Figure 6-9. Searching and adding a Data Factory job to a resource group

244

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

After selecting Azure Data Factory, click on the next screen to create the new job, as shown in Figure 6-10.

Figure 6-10. Create Data Factory job

The next screen allows you to enter the specific parameters for creating a new Azure Data Factory job,
as shown in Figure 6-11.

Vo« Everything > DataF
New data factory - 0 X

* Name @

RefreshReferenceData v

* Subscription

v
* Resource Group @
O Create new ® Use existing
brtwhdev v
* Location @
EastUS b 4

Figure 6-11. Data Factory create job parameters 245

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Fill in your choices for the corresponding parameter values:

e Name: Enter a unique name for your new Data Factory. Note that the name of the Azure
Data Factory must be globally unique.

e Subscription: The Azure subscription to use for this job.
e Resource Group: The Azure Resource Group to create this service in.
e [ocation: The Azure Data Center location.

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Data Factory job will be created after a brief period of time. It should take
less than one minute via the Azure Portal.

After your job has been provisioned, navigate to the new Data Factory via the Azure Portal and select the
Copy Data (PREVIEW) option, as shown in Figure 6-12.

Actions
4 _ £«
Author and Copy data s\ Monitor &
I oL -
deploy) (PREVIEW) Manage
= : Metrics and
MO Sample pipelines %5 Diagram /\/I etrics an
I i operations

Figure 6-12. Data Factory: Copy Data Wizard

This will invoke the Azure Data Factory Copy Data Wizard to launch and will walk you through the steps
necessary to create a basic copy pipeline. Behind the scenes, Azure Data Factory is generating JSON
files to reflect your choices in the Copy Wizard.

246

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Figure 6-13 depicts the first screen of the Copy Data Wizard and allows you to specify the properties for

the copy job.

i
(4) Summary

Properties

Enter name and description for the copy data task and specify how often you want to run the

task.

Task name (required)

CopyFipeline-cdw

Task description

Enter description here

Task cadence (or) Task schedule
O Run once now
@® Run regularly on schedule

Recurring pattern

Daily

Start date time (UTC)
11/28/2016 03:20 am

End date time (UTC)
12/31/2099 05:00 am

Figure 6-13. Data Factory Copy Data Wizard: specify properties

b every 1 v day

247

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

For this example, enter a task name of CopyReferenceData and keep the remaining defaults for the
schedule, stat, and end dates. Click Next to advance to the next step.

Figure 6-14 depicts the Source Data screen, where you select Azure DocumentDB for the reference
implementation scenario.

B Properties Source data store

Sp
{or

can use an existing data store connection

ar the copy task. ¥

e. Click HERE to sugge

ce d

NEW COpY SOUrCes of give

@ Source
o Connecticn

Dataset

FROM EXISTING CONNECTIONS COMMNECT TO A DATA STORE

S —

Amazen Redshift Amazon 53 Azure Blob Storage Azure Data Lake Store

{ } @ :”zn@ =

Azure DocumentDB Azure SQL Database Azure SQL Data Warehouse Azure Table Storage

Figure 6-14. Data Factory Copy Data Wizard: specify source data store of Azure DocumentDB

After selecting Azure DocumentDB, you will then see a detailed screen similar to Figure 6-15, where you
can specify the parameters for your DocumentDB instance to pull the reference data from.

248

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Copy Data

B Properties Specify DocumentDB (NoSQL) connection

@ Sou rce Connection name (required) 0

Source-DocumentDb
O Connection

Account selection method (required)

Dataset
From Azure subscriptions v
Azure subscription (required) o
'
DocumentDB account name (required)
brtdocdbdev -

Database name (required)

Registry v

Figure 6-15. Data Factory Copy Data Wizard: specify Azure DocumentDB parameters

Click the Next button after entering the DocumentDB parameters. You will see a screen similar to
Figure 6-16.

B Properties Select tables from which to copy the data (or) use a custom query.

You can select multiple tables, or Yyou can provide ‘.ll‘-_(,!k.‘ custom query
@ Source

Connection w USE QUERY
O pataset Filter by table name
tination O (select all)
O profile

Figure 6-16. Data Factory Copy Data Wizard: specify copy from tables or query

249

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Click on the option to Use Query instead of the existing tables. You want to dynamically select the fields
you need from the DocumentDB table. You will see a screen similar to Figure 6-17.

Select tables from which to copy the data (or) use a custom query.

You can selec tiple tables, or you can provide single custom query

@ Source

Connection

O Dataset

EXISTING TABLES USE QUERY

Query @

SELECT
c.authid,
c.companynarme,

Profile

Validate Query

Figure 6-17. Data Factory Copy Data Wizard: specify query parameters

In the Query window, type in the following SQL statement:

SELECT
.authid,
.companyname,
.firstname,
.lastname,
.username,
.imageUrl,
-type,
.address.
.address.
.address.
.address.city,
.address.state,
.address.zip,
.address.country,
.social.phone,
.social.email,
.social.linkedin,
.social.facebook,
.social.twitter,
.social.blog,
.healthInformation
.healthInformation
.healthInformation

addressi,
address2,
address3,

.age,
.height,
.weight,

.healthInformation
.healthInformation

O N N0 NN NN NN NN N0 NN nNN0 NN NN N NN

250

.gender,
.race,

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

c.location.longitude,
c.location.latitude,
c.id,

c.cachettl,

c._rid,

c._self,
c._etag,
c._attachments,
c._ts

FROM

C

WHERE

c.type <> 1

For the table name, select Profile. Then click on Validate Query to test your SQL syntax. If there are no
errors, the button will transition from Validating. .. back to Validate Query.

Click on the Next button to advance to the next screen where you will specify the destination data store,
as shown in Figure 6-18.

Destination data store

@ Destination FROM EXISTING CONNECTIONS ~ CONNECT TO A DATA STORE

O Connection

Dataset

Azure Blob Storage Azure Data Lake Store Azure DocumentDB

Figure 6-18. Data Factory Copy Data Wizard: specify destination data store

Select Azure Blob Storage and then click on the Next button to advance to the next screen. The next will
ask for your Azure blob storage account specifics, as shown in Figure 6-19.

251

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Copy Data

D) Properties Specify the Azure Blob storage account

Connection name (required) o

Destination-BlobStorage

@ Destination Account selection method (required) o
O Connection From Azure subscriptions v
Dataset
Azure subscription (required) 0

azurepass-bobf (ba3e3785-1e64-4e12-a03e-16.

Storage account name (required)

brtblobstoragedev v

Figure 6-19. Data Factory Copy Data Wizard: specify Azure blob storage account properties

Enter your Azure blob storage account specifics and then click on the Next button to advance to the next
screen, as shown in Figure 6-20. This is where you specify the folder and file names for the destination
in Azure blob storage.

D) Properties Choose the output file or folder

Specify a folder that will contain output files (or) a specific output file in the destination data
store
2 Source
I Folder path refdata-team
@ Destination
Connection Filename TeamReferenceData.csv
O Dataset You can use variables in the folder path to copy data from a folder that is determined at runtime. Make sure that

you select a folder with that structure using the Browse button first. The supported variables are: {year}, {month],
{day}, thour}, {minute} and {custom}. See Data Movement Activities article for details about these variables.
Example: inputfolder/{year}/{monthl/{day}.

ormance

Figure 6-20. Data Factory Copy Data Wizard: specify output file or folder properties

252

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Enter refdata-team as the folder path and TeamReferenceData.csv as the file name for the
destination outputs. Then click on the Next button to advance to the next screen, as shown in
Figure 6-21, where you will specify the file format settings.

Copy Data

1 Properties File format settings

File format (i]
Text format v
@ Destination
Column delimiter o
Connection Comma () v
O Dataset [use custom delimiter
s Row delimiter o
_4) Performance
= Carriage Return + Line feed (\r\n) v

Y

>) Summary
e :

D Use custom delimiter

™% Add header to file €

v Advanced settings

Figure 6-21. Data Factory Copy Data Wizard: specify file format settings

253

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Keep the defaults for the file format settings options, but be sure to check the option for Add Header to
File so that the column names are preserved.

Click on the Next button to advance to the next screen, performance settings, as shown in Figure 6-22.

Copy Data

1 Properties Performance settings

Performance improvement options

2 Source

~ Advanced settings

3 Destination

Parallel copy @

@ Performance Cloud units

Auto v

Figure 6-22. Data Factory Copy Data Wizard: specify performance settings

For the performance settings, keep the defaults and click the Next button. At this point, you will see
a summary page that recaps all of the properties and settings you specified for this new copy job, as
shown in Figure 6-23.

254

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Properties SU m mar}'

You are running scheduled pipeline to copy data from Azure DocumentDB to Azure Blob
Storage
Source
" Azure DocumentDB Copy Run Time Reglon: eastus Azure Blob Storage
Destination 1table(s) @ : » refdata-team
Region: eastus Region: eastus
Performance
Properties o
Task name CopyReferenceData
Task description CopyReferenceData
Task cadence Daily, every 1 day between Mon, 28 Nov 2016 03:20:30 GMT and Thu, 31 Dec 2099 05:00.00 G...
Source far
Connection Account: brtdecdbdev
Connection name Source-DocumentDb
Dataset name InputDataset-cdw
DocumentDB 1table(s) @
Region easlus
Minimum rows
Incremental updates Mot enabled
Data delay 00:00:00
Maximum retry
Figure 6-23. Data Factory Copy Data Wizard summary page
If all of the settings look good, click on the Finish button. The new Data Factory copy job will be
validated and deployed. When that’s complete, you will see a screen similar to Figure 6-24.
Properties
% Azure DocumentDB Copy Run Time Region: _eastus Azure Blob Storage
{ } 1tablefs) @ > refdata-team
Source Region: eastus Region: eastus

Destination

Deployment complete

Performance
~ Registering Connections @
~ Creating Datasets @

Summary
Creating Pipelines @

Dep[oyment Click here to monitor copy pipeline

Figure 6-24. Data Factory Copy Data Wizard, deployment complete
255

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

At this point, you have created the basic Azure Data Factory copy pipeline job for the reference
implementation to refresh the reference data used in the Stream Analytics job in Chapter 5. This copy
pipeline will select data from of the Azure DocumentDB database (via a SQL query statement) and then
write it out to a CSV file in Azure blob storage.

The only minor change left is to tweak the JSON output parameters to create the output file name in
Azure blob storage using a file naming convention pattern as the one shown;

TeamReferenceDatayyyy-MM-ddhh-mm.csv

Note the following the date/time naming format:

* yyyy=VYear
e MM = Month
e dd=Day

e hh =Hour

e mm = Minute

This naming convention change is crucial to ensure that you don’t try to update the file while it is in use
and may be locked. It also allows you to build a historical inventory of the previous versions.

To make the change, you need to the JSON of the new Azure Data Factory pipeline job, navigate to the
new pipeline job via the Azure Portal, and select the Author and Deploy option, as shown in Figure 6-25.

2 4
W Author and "l Copy data 2\ Monitor &
¥ deploy :! J (PREVIEW) ! Manage
= : Metrics and
WO Sample pipelines % = Diagram /\',i :
I i operations

Figure 6-25. Data Factory, Author and Deploy option

256

http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

After you select this option, you will see a screen similar to Figure 6-26. Here, you can click on each of
the components of the pipeline and expand the parameters underneath each section.

RefreshReferenceData

E New data store

Datasets/OutputDataset-cdw

¥ Linked services
Destination-BlobStorage
Source-DocumentDb

¥ Datasets
InputDataset-cdw

OutputDataset-cdw

¥ Pipelines
CopyReferenceData
¥ Data Gateways
Mo data gateways in this data factory.
Drafts

|:'|-|Clr;~ne
{
"name”: "_self",
"type": "S‘tr‘:i.ng"
¥
{
"name": "_etag"”,
"type": "String”
})
{
"name": "_attachments”,
"type": "String"
}J
{
"name": "_ts",
"type": "Inte4"
}

]J
"published": false,

"type": "AzureBlob",

"linkedServiceName": "Destination-BlobStorage”,
"typeProperties”: {
“fileName": "TeamReferenceData.csv",
"folderPath": "refdata-team",
"format": {
"type": "TextFormat",
“columnDelimiter": ","
"firstRowAsHeader": true
}
}J
"availability”: {
“frequency": "Day",
"interval™: 1
Y

"external”: false,
"policy": {}

Figure 6-26. Data Factory, view data factory components

257

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

As you click on each section, you will see the corresponding JSON template and parameters on the right
side of the Azure Portal web page.

Click on the outputDataset-cdw under the Datasets section to see the corresponding JSON. Scroll all
the way down to the bottom and you should see a section of code similar to Figure 6-27.

"typeProperties": {

"fileName": "TeamReferenceData.csv",
"folderPath": "refdata-team”,
"format": {

"type": "TextFormat",

"columnDelimiter™: ",",

"firstRowAsHeader": true

¥

Figure 6-27. Data Factory: default output file naming in JSON

Note the fileName parameter, which is set to the value of TeamReferenceData.csv. This will be the
section of JSON code you will modify to meet the file naming convention of TeamReferenceData" +
"yyyy-MM-ddhh-mm.csv". To do this, find and replace the previous JSON code with the following JSON
code:

"typeProperties”: {

"fileName": "TeamReferenceData{slice}.csv",

"folderPath": "refdata-team",

"format": {
"type": "TextFormat",
"columnDelimiter": ",",
"firstRowAsHeader": true

b

"partitionedBy": [

"name": "slice",

"value": {
"type": "DateTime",
"date": "SliceStart",
"format": "yyyy-MM-ddhh-mm"

]
1

Note that the JSON code you replaced will use a dynamic file naming convention based on the Date and
Time attributes for the specific processing slice that is created from the Data Factory pipeline job.

258

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

After you make this update to the JSON, the Deploy option will become available, as shown in
Figure 6-28.

Datasets/OutputDataset-cdw

£ Add activity M Encrypt |:|'--I Clone X Discard 1" Deploy

Figure 6-28. Data Factory: deploy updated JSON

After selecting the option to deploy your updated pipeline JSON data to Azure, the JSON will be saved,
validated, and then deployed to the Azure Data Factory service.

To run this new Azure Data Factory pipeline job, navigate to the job via the Azure Portal and select the
Monitor & Manage option, as shown in Figure 6-29.

Actions
4 4
W Author and '1 Copy data (- Monitor &
P deploy E! J (PREVIEW) ./ Manage
Metrics and
]) Sample pipelines "y > Diagram m opeefr:t?OBnZ

Figure 6-29. Data Factory’s Monitor & Manage option

After selecting this option, a new tab will open in your browser. The Data Factory Resource Explorer App
will open and display your Data Factory jobs and their corresponding pipeline definitions and activities,
as shown in Figure 6-30.

259

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

RESOURCE EXPLORER X | @ RefreshReferenceData
4 Data Factories [2oz060mian] od l:
=il teruns the selected ty windows. E
4 Pipelin
O | Dy
g Pipeline Activity Window St.. Window En.. Status Type Last Attem... Last Attem... Duration Retry Atte...
CopyRefere... Profile->Te.. T/30/2016.. 12/01/2016.. & Ready 12/0120M6... 12/0/2016.
d CopyRefere... Profile->Te.. 1/29/2016.. 11/30/2016... @ Ready Copy 1/30/2016... 11/30/2016. 00:02:38 1
Destination-BlobStor. CopyRefere... Profile->Te.. 11/28/2016.. 11/29/2016.. @ Ready Copy 11/29/2016... 11/29/2016.. 000106 1

Source-DocumentDb

Gateways
Figure 6-30. Data Factory, re-run job activity

To run this updated copy pipeline job “on demand,” do the following:
e Select the latest pipeline activity.
e (lick on the Rerun icon, as highlighted in red in Figure 6-30.

e Choose either Rerun or Rerun with Upstream Data.

Note When you select the Rerun with Upstream in Pipeline option, it reruns all upstream activity windows
as well.

After a few minutes, the copy pipeline job will run to completion. At this point, you can check the Azure
blob output destination container refdata-team and look for a file with a naming convention that
follows TeamReferenceDatayyyy-MM-ddhh-mm. csv. The screenshot in Figure 6-31 displays successful
output of several Team Reference Data CSV files over a period of three days using the Visual Studio
Cloud Explorer tool to view the output blob container.

refdata-team [Container] = 3

= Microsoft Azure Pz Fxem

- RO

Resource Groups

b @ (Local
+ M aurepass-bobl (bames_1@hotmail.com)
« [0) briwhdev
+ [E] briblobstoragedey
4 |F Blob Containers
asdbftutonial
[ami-retrain-cata
B images
B messages
B refdata
=] cidata o)

Name

Q. TeamReferenceData2016-12-0212-00.csw
Q. TeamReferenceData2016-12-0112-00uesv
Q. TeamReferanceData2016-11-3012-00.v

Size Last Modified (UTC)
189 KB 127372016 120259 AM
1B9KE 127272016 120139 AM
1B9KB 12/1/2016 43835 AM

Content Type URL
applicatic htp: 3 <0...
ctet-stream it bobae
sreal httg 0

Figure 6-31. Data Factory: successful daily outputs of team reference data CSV output files

To summarize this exercise, you just walked through all the steps necessary to update the reference
data that you used for the Azure Stream Analytics job in Chapter 5.

260

http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

IMPLEMENTING THE DATA FACTORY AZURE ML UPDATE
RESOURCE ACTIVITY

In this next section, we tackle the second objective for the Azure Data Factory pipeline tasks, which is
to re-train the Azure Machine Learning model via an Azure Data Factory pipeline job. The updates to the
Azure Machine Learning model will come from the results of medical stress tests that are administered
to team members on a periodic basis and then uploaded into Azure blob storage for re-training the
model.

We cover the detailed specifics of implementing the Azure Machine Learning model and associated Web
Services in Chapter 9.

For this exercise, we assume that the Azure ML predictive model has already been extended with an
additional web service endpoint. The additional endpoint will allow for re-training the model (in batch
mode) based on recently updated training data.

At a high level, we are going to create a Data Factory pipeline job that will accomplish two objectives in
order to fully re-train our Azure ML model:

1. Process the updated Machine Learning training data and produce an
.Learner ML output file. This file then becomes the input to the Update
Resource activity in the next step.

2. Add a second Update Resource Activity to the pipeline to update the existing
Azure ML Web Service with the updated trained model via the .iLearner ML
output file.

To get started, navigate to the resource group for your deployment via the Azure Portal. Click on the +
Add button and search for Data Factory, as shown in Figure 6-32.

Everything G = |
Y Filter
I L3 Data Factory x I
Results

NAME “ PUBLISHER “~ CATEGORY s

m Data Factory Microsoft VM Extensions

Figure 6-32. Searching for and adding a Data Factory job to a resource group
261

http://dx.doi.org/10.1007/978-1-4842-2650-6_9

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

After selecting Azure Data Factory, you will see a Data Lake overview screen. Click on the Create button
to create the new Data Factory job.

The next screen allows you to enter the specific parameters for creating a new Azure Data Factory job,
as shown in Figure 6-33.

ft Azure « brtwhdev > Everything >

New data factory - 8 X

* Name @

| ReTrainMLModel

* Subscription

* Resource Group @
O Create new ® Use existing
brtwhdev v

* Location @

East US v

Figure 6-33. Data Factory create job parameters

Fill in your choices for the corresponding parameter values:

e Name: Enter a unique name for your new Data Factory. Note that the name of the Azure
Data Factory must be globally unique. We use ReTrainMLModel.

e Subscription: The Azure subscription to use for this job.
e Resource Group: The Azure Resource Group to create this service in.
e [ocation: The Azure Data Center location.

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Data Factory job will be created after a brief period of time.

After your job has been provisioned, navigate to the new Data Factory via the Azure Portal and select the
Author and Deploy option, as shown in Figure 6-34.

262

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

2 2
W Author and "l Copy data r 2\ Monitor &
> deploy :! J} (PREVIEW) _/ Manage
NP o -) 2\ Metrics and
#EL2 Sample pipelines " 3 Diagram I II e

Figure 6-34. Data Factory Author and Deploy option

Next, you are going to build the Data Factory pipeline components using just JSON to define the
individual elements of the Data Factory Azure ML re-training pipeline job.

To define the Linked Service for Azure Storage, click on the New Data Store icon in the top navigation
bar and then select Azure Storage, as shown in Figure 6-35.

L« ReTrainMLModel » Linke

ReTrainMLModel X

&3 New data store

Azure Storage
Azure Storage SAS

Azure Data Lake Store

Figure 6-35. Data Factory: add a new data store

After your new linked service has been created, replace the default JSON with the JSON code shown
here. Note that you need to have your specific Azure blob storage credentials to fill in.

263

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

"name": "AzureStoragelLinkedService",
"properties”: {
"description": "",
"hubName": "retrainmlmodel_hub",
"type": "AzureStorage",
"typeProperties": {
"connectionString": "DefaultEndpointsProtocol=https;AccountName=<YourAccoun
tName> ; AccountKey=<YourAccountKey>"

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed.

To define a new dataset, click on the ...More icon and then click on the New Dataset icon, as shown in
Figure 6-36.

ReTrainMLModel > ReTrain
ReTrainMLModel

E New data store
a New compute
I¥: BB New dataset

= New pipeline

&8 New data gateway

Figure 6-36. Data Factory: add new dataset, training data

264

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Next, select the option for Azure Blob Storage, as shown in Figure 6-37.

t Azure ReTrainMLModel > ReTrain

ReTrainMLModel

E New data store ««« More

a New compute

R New dataset

Figure 6-37. Data Factory: add new dataset, Azure blob storage option

After your new dataset has been created, replace the default JSON with the JSON code shown here.

{
"name": "trainingData",
"properties": {
"published": false,
"type": "AzureBlob",
"linkedServiceName": "AzureStoragelinkedService",
"typeProperties": {
"fileName": "RETRAIN Teammates AML Training Data.csv",
"folderPath": "aml-retrain-data",
"format": {
"type": "TextFormat"

1,

"availability": {
"frequency": "Week",
"interval": 1

15
"external": true,
"policy": {

"externalData": {
"retryInterval": "00:01:00",
"retryTimeout": "00:10:00",
"maximumRetry": 3

}

}

265

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Make sure the fileName and folderPath parameters are set for your environment. Note that the
frequency will be once per week.

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed to the Data Factory definition.

This dataset definition will represent the output .iLearner file from the Azure ML training web service.
The Azure ML Batch Execution Activity produces this dataset. This dataset will also serve as the input
file for the Azure ML Update Resource activity.

Create an additional dataset for our Data Factory job by following the same instructions to create a new
dataset and summarized here:

e (lick on the ...More icon and then click on the New Dataset icon.
e Select the option for Azure Blob Storage.

After your new dataset has been created, replace the default JSON with the JSON code shown here.

{

"name": "trainedModelBlob",
"properties": {
"published": false,
"type": "AzureBlob",
"linkedServiceName": "AzureStoragelinkedService",
"typeProperties": {
"fileName": "model.ilearner",
"folderPath": "aml-retrain-data",
"format": {
"type": "TextFormat"
}
1,

"availability": {
"frequency": "Week",
"interval": 1

Make sure the folderPath parameter is set correctly for your environment.

When finished, click on the Deploy icon in the top navigation bar and your JSON will be uploaded,
validated, and deployed to the Data Factory definition.

266

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Next, you will create a linked service that points to the default endpoint of the Azure ML training web
service.

To get started, click on the ...More icon and then click on the New Compute icon. Then select the Azure
ML option, as shown in Figure 6-38.

ReTrainMLModel > ReTrainM
ReTrainMLModel

E New data store

a New compute

On demand HDInsight cluster

HDInsight cluster

Azure Data Lake And Azure ML

Azure ML

Azure Batch

Figure 6-38. Data Factory: add new compute Azure blob storage option

After your new linked service has been created, replace the default JSON with the JSON code shown
here. Note that you will need to have your specific Azure ML URL endpoint and API key to fill in the
parameters:

{
"name": "trainingEndpoint",
"properties": {
"hubName": "retrainmlmodel_hub",
"type": "AzureML",
"typeProperties": {
"mlEndpoint": "<YourEndPointURL>",
"apiKey": "<YourAPIKey>"
}
P
}

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed.

267

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Next, you will create a linked service that defines an Azure Machine Learning linked service that points
to the non-default updatable endpoint of the scoring Azure ML Web Service.

Note Before creating and deploying an Azure ML linked service, follow the steps in this link to create a
second (non-default and updatable) endpoint for the Azure ML Scoring Web Service.

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-create-endpoint.

To get started, click on the ...More icon and then click on the New Compute icon. Then select the Azure
ML option, as shown in Figure 6-38.

After your new linked service has been created, replace the default JSON with the JSON code shown
here. Note that you will need to have your specific Azure ML URL endpoint and API key to fill in the
parameters:

{

"name": "updatableScoringEndpoint2",
"properties”: {
"hubName": "retrainmlmodel_hub",
"type": "AzureML",
"typeProperties": {
"mlEndpoint": "<YourMLRetrainingEndpoint>",
"apiKey": "<YourMLRetrainingAPIKey>",
"updateResourceEndpoint": "<YourMLRetrainingURLEndpoint>"

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed.

At the time of this writing, when you include an Azure ML Update resource activity in a Data Factory
pipeline job, it does not generate any output.

However, Azure Data Factory requires an output dataset in order to drive the schedule of a pipeline.
Therefore, we will implement a dummy/placeholder Azure blob dataset to handle this use case.

To define a new Dataset, click on the ...More icon and then click on the New Dataset icon, as shown in
Figure 6-39.

268

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-create-endpoint

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

ReTrainMLModel > ReTrain
ReTrainMLModel

a New data store

a New compute

I¥: BB New dataset
= New pipeline

&8 New data gateway

Figure 6-39. Data Factory: add new dataset, dummy output data

Next, select the option for Azure Blob Storage, as shown in Figure 6-40.

ReTrainMLModel » ReTrain
ReTrainMLModel

E New data store ««« More

a New compute

R New dataset

Figure 6-40. Data Factory: add new dataset, Azure blob storage option

After your new dataset has been created, replace the default JSON with the JSON code shown here.

{

"name": "DummyPlaceholderBlob",
"properties”: {
"published": false,
"type": "AzureBlob",
"linkedServiceName": "AzureStoragelinkedService",
"typeProperties": {

269

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

"fileName": "dummyfile.csv",
"folderPath": "aml-retrain-data",
"format": {

"type": "TextFormat"

1,

"availability": {
"frequency": "Week",
"interval": 1

Make sure the fileName and folderPath parameters are set for your environment. Note that the
frequency will be once per week.

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed to the Data Factory definition.

Now, you will combine all the previously defined linked services and dataset definitions as you define a
new Data Factory pipeline job.

The new Data Factory pipeline job will have two activities defined:

e AzureMLBatchExecution: The Azure ML Batch Execution activity takes the updated team
health training data from Azure blob storage as input, and then produces an .iLearner
file as an output.

e AzureMLUpdateResource: This activity takes the .iLearner file as input and then sends it
to the Azure ML Training web service to update the ML model.

Note: The placeholderBlob is just a dummy output dataset that is required by the Azure Data Factory
service to run the pipeline.

To define the new pipeline, right-click on the Pipelines section of the left navigation bar of the Authoring
pane and then select New Pipeline, as shown in Figure 6-41.

270

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

ReTrainMLModel > ReTrai

ReTrainMLModel X

a New data store

Linked services
AzureStoragelinkedService
trainingEndpoint
updatableScoringEndpoint2

¥ Datasets

DummyPlaceholderBlob
trainedModelBlob
trainingData

* Pipeliner

retrai New pipeline

¥ Data Ga
New data gateway
Nod
Delete
Drafts

Figure 6-41. Data Factory: add new pipeline

After your new pipeline has been created, replace the default JSON with the JSON code shown here.

{
"name": "retrainmlpipeline"”,
"properties": {
"activities": [
{
"type": "AzureMLBatchExecution",
"typeProperties": {
"webServiceInput": "trainingData",
"webServiceOutputs": {
"output1": "trainedModelBlob"
15
"webServiceInputs": {},
"globalParameters": {}

1,
"inputs": [
{
"name": "trainingData"
}
1,
"outputs": [
{

"name": "trainedModelBlob"

271

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

}

1,

"policy": {
"timeout": "02:00:00",
"concurrency": 1,
"executionPriorityOrder": "NewestFirst",
"retry": 1

1,

"scheduler": {
"frequency": "Week",
"interval": 1
1,
"name": "retraining",
"linkedServiceName": "trainingEndpoint"

}s
{
"type": "AzureMLUpdateResource",
"typeProperties": {
"trainedModelDatasetName": "trainedModelBlob",
"trainedModelName": "Training Exp for ADF ML [trained model]"
1
"inputs": [
{
"name": "trainedModelBlob"
}
I
"outputs": [
{
"name": "DummyplaceholderBlob"
}
I
"policy": {
"timeout": "01:00:00",
"concurrency": 1,
"retry": 3
b
"scheduler": {
"frequency": "Week",
"interval": 1
b
"name": "AzureML Update Resource",
"linkedServiceName": "updatableScoringEndpoint2"
}

1,

"start": "2016-02-13T00:00:00Z",
"end": "2016-02-14T00:00:00Z",
"isPaused": false,

"hubName": "retrainmlmodel hub",
"pipelineMode": "Scheduled"

272

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Make sure the fileName and folderPath parameters are set for your environment. Note that the
frequency will be once per week.

Next, click on the Deploy icon in the top navigation bar and your JSON will be uploaded, validated, and
deployed to the Data Factory definition.

At this point, you have manually created a complete Data Factory pipeline job (described via JSON) to
update the Azure ML training service.

The Data Factory pipeline is composed of the following components, as shown in Figure 6-42.
e Three linked services
e Three datasets

e One pipeline

yft AZure Resource groups » brtwhdev

ReTrainMLModel — (=] 23

&3 New data store +++ More

¥ Linked services
AzureStoragelinkedService
trainingEndpoint
updatableScoringEndpoint2

¥ Datasets
DummyPlaceholderBlob
trainedModelBlob
trainingData

* Pipelines
retrainmlpipeline

» Data Gateways

Drafts

Figure 6-42. Data Factory pipeline components

In order to get a visual representation of the Azure Data Factory and components you have created,
navigate to your Data Factory job in the Azure Portal and select the Diagram option, as shown in
Figure 6-43.

273

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Actions
A [
m" Author and '1 Copy data /“= Monitor &
P deploy :! 3 (PREVIEW) _/ Manage
-) Metrics and
!' O S | " I, - Di =
- s i i 1 ll operations

Figure 6-43. Data Factory Diagram view

After clicking on the Diagram icon, you will see a representation of your Data Factory pipeline, as shown
in Figure 6-44.

Data factory + - R & ¥ a ?z
retrainmlpipeline

trainingData = DummyPlaceholderBlob

(V] A B STORA i 0
2 activities Open pipeline

Figure 6-44. Data Factory diagram, open pipeline option

However, you will notice that this view is still collapsed, as the pipeline icon states it has two activities.
To expand the pipeline, right-click on the pipeline icon and select Open Pipeline, as shown in
Figure 6-44.

When you click on the Open Pipeline option, the screen will expand to auto-fit the viewing window in
order to reveal the entire pipeline. Figure 6-45 illustrates the new view.

274

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Figure 6-45. Data Factory diagram, open pipeline view

Note that this view is extremely helpful when assembling multi-step pipeline jobs using Azure Data
Factory. You can also adjust the zoom levels and drill down into individual components.

To summarize, in this section, you created a new Data Factory pipeline job to automatically update the
Machine Learning Web Service using the following JSON definitions:

e Linked Service: Azure Storage

e Linked Service: Azure ML Training Endpoint

e Linked Service: Azure ML Updatable Scoring Endpoint
e Input Dataset. Updated Azure ML Training Data

e (utput Dataset. Updated Azure ML Training Model

e Qutput Dataset. Dummy Azure Blob Output

e Data Factory Pipeline Job: With two Activities

This piece of the reference implementation provides a completely automated method of retraining the
Azure Machine Learning Web Service.

The updates are based on updated team health data that is generated from periodic stress test results
administered to team members. This creates a “full lifecycle” solution to maintaining an updated Azure
ML training models based on physical data updates.

Note See the following link for more details about configuring an Azure Data Factory pipeline job to retain
an Azure ML Web Service:

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-ml-batch-execution-
activity#updating-azure-ml-models-using-the-update-resource-activity.

275

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-ml-batch-execution-activity#updating-azure-ml-models-using-the-update-resource-activity
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-ml-batch-execution-activity#updating-azure-ml-models-using-the-update-resource-activity

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

MOVE DATA FROM BLOB STORAGE TO DATA LAKE

The third and last Data Factory job we will implement in this chapter focuses on moving data from Azure
blob storage to Azure Data Lake.

This Data Factory will prepare the reference implementation data for the next subject covered in
Chapter 7.

As a refresher, the data in Azure blob storage that you will move to Azure Data Lake was created as an
output result of the Azure Stream analytics job created in Chapter 5.

You will move this data to Azure Data Lake for several reasons, including the following:

e Data Archival. Keep the data in its original form as when it was received from the
loT Hub.

e Deep Analytics: Azure Data Lake is both a powerful storage and powerful analytics
platform, as we will explore more in Chapter 7.

* Regression Analysis. Oftentimes, there is value in being able to re-run Big Data analysis
over historical data to evaluate alternative outcomes or make other make other
(historical) improvements.

Before you can copy your data from Azure blob storage to Azure Data Lake, you need to create an Azure
Data Lake Store account.

To get started, navigate to the resource group for your deployment via the Azure Portal. Click on the +
Add button and search for Data Lake, as shown in Figure 6-46.

Resource groups » brtwhdev > Everything __,O Search resources
Everything AN T EIEX
Y Filter
£ data lake store x
o Results
L NAME ~ PUBLISHER ~ CATEGORY o
-
K j=u]
- DataLake Store Microsoft Storage

Figure 6-46. Searching for and adding a Data Lake Store to a resource group

Next, you will see an overview page about Azure Data Lake Store. Click on the Create button to advance
to the next screen.

276

http://dx.doi.org/10.1007/978-1-4842-2650-6_7
http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_7

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

New Data Lake Store

Name

brtadls v

brtadls.azuredatalakestore.net
* Subscription

v
* Resource Group @
O Createnew ® uUse existing
brtwhdev v
* Location
East US 2 v
Pricing @
. a
Pay-As-You-Go
Encryption Settings S

Enabled

Figure 6-47. Parameters for creating a new Data Lake Store

Fill in your choices for the corresponding parameter values:
e Name: Enter a unique name for your new Data Lake Store.
e Subscription: The Azure subscription to use for this job.
e Resource Group: The Azure Resource Group to provision this resource in.
e [ocation: The Azure Data Center location.

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Data Lake Store will be created in a few minutes at most.

To get started, navigate to the resource group for your deployment via the Azure Portal. Click on the +
Add button and search for Data Factory, as shown in Figure 6-48.

277

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Everything

Y Filter

I,-‘D' Data Factory x]
Results
NAME it PUBLISHER L CATEGORY b
m Data Factory Microsoft VM Extensions

Figure 6-48. Searching for and adding a Data Factory job to a resource group

After selecting Azure Data Factory, click on the Create button to create the new job.

The next screen will allow you to enter the specific parameters for creating a new Azure Data Factory
job, as shown in Figure 6-49.

New data factory

* Name @

CopyFromBlobToDatalake

* Subscription

v
* Resource Group @
O Create new @ Use existing
brtwhdev v
* Location @
East US v

Figure 6-49. Data Factory create job parameters

278

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Fill in your choices for the corresponding parameter values:

e Name: Enter a unique name for your new Data Factory job. Note that the name of the
Azure Data Factory must be globally unique.

e Subscription: The Azure subscription to use for this job.
e Resource Group: The Azure Resource Group to create this service in.
e [ocation: The Azure Data Center location.

Once you are done, click on the Create button at the bottom of the screen. Your input will then be
validated and the new Azure Data Factory job will be created after a brief period of time. It should take
less than one minute via the Azure Portal.

After your job has been provisioned, navigate to the new Data Factory via the Azure Portal and select the
Copy Data (PREVIEW) option, as shown in Figure 6-50.

Actions
2 _ Z
0~ Author and m] Copydata =\ Monitor &
¥ deploy :! J (PREVIEW) Manage
= : Metrics and
MO Sample pipelines %5 Diagram m opeerr;tionr;

Figure 6-50. Data Factory Copy Data Wizard

This will invoke the Azure Data Factory Copy Data Wizard to launch and will walk you through the steps
necessary to create a basic copy pipeline. Behind the scenes, Azure Data Factory is generating JSON
files to reflect your choices in the Copy Wizard.

Figure 6-51 depicts the first screen of the Copy Data Wizard and allows you to specify the properties for
the copy job.

279

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

@ Properties Properties

Enter name and description for the copy data task and specify how often you want to run the
i S task.
(;) Source

Task name (required) 0

CopyPipeline-77h

Summary
Task deseription

Enter description here

Task cadence {or) Task schedule

O Run once now

® Run regularly on schedule
Recurring pattern

Daily v every 1 v | day

Start date time (UTC)
12/04/2016 03:11 am

End date time {UTC)
12/31/2099 05:00 am

Figure 6-51. Data Factory Copy Data Wizard: specify properties

For this example, enter a task name of CopyBlobToDatalLake and keep the remaining defaults for the
schedule, stat, and end dates. Click Next to advance to the next step.

Figure 6-52 depicts the Source Data screen, where you should select Azure Blob Storage for the
reference implementation scenario.

280

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Source data store

(or) specify a new
@ Source

O Connection

ata store for the copy task. You can use an

. Click HERE to suggest new copy sources or give comments.

FROM EXISTING CONNECTIONS CONNECT TO A DATA STORE

Dataset

| Com
v —

Amazon Redshift Amazon 53 Azure Blob Storage

Figure 6-52. Data Factory Copy Data Wizard: specify source data store for Azure blob storage

Next, specify the Source Data Store properties for Azure blob storage, as shown in Figure 6-53.

Copy Data

1 Properties Specify the Azure Blob storage account

@ Source Connection name (required) 6

Source-BlobStorage-gd5
O Connection

Dataset Account selection method (required) O
From Azure subscriptions v
Destination
Azure subscription (required) 6
v

Storage account name (required)

brtblobstoragedev v

Figure 6-53. Data Factory Copy Data Wizard: specify source data store for Azure blob storage properties

Next, choose the folder in Azure blob storage that will contain the source dataset, as shown in
Figure 6-54.

281

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

B Froperties Choose the input file or folder
Sp a folder with input fie: ' nput file that contains data to be copied to the
- estination data 50re
Connection
File or folder Browse
O Dataset

[adfruterial
[aml-retrain-data

[images

[messages
[refdata

[refdata-team

Previous

Figure 6-54. Data Factory Copy Data Wizard: specify a source folder in blob storage

After selecting the streamingdata folder and clicking on Choose, click on the Next button. You will see
the screen in Figure 6-55.

B Froperties Choose the input file or folder
Specity o f th imput s (21) 3 input file that contains data to be copied ¢
@ R destinati
Connection
File o folder streamingdaty Browse:
O Dataser

¥ou can use variables

e fokder path to copy data from a folder that is determined 2t nartime. Ml sune that
¥ —

Figure 6-55. Data Factory Copy Data Wizard: specify a source folder and an option for copying files recursively
282

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Select the option to Copy Files Recursively, as shown in Figure 6-55, then click on the Next button.

At this point, the Data Factory Copy Wizard will attempt to connect to the Azure blob storage folder and
automatically detect the file format of the files in blob storage, as shown in Figure 6-56.

File format settings

File format o

Teaxt format

~ Advanced settings

PREVIEW SCHEMA

usarid a0 haight weight i steps velocity altitude ventilization activity cadence speed hib heartrateredzone

O42dTRéD.
e68-434e-

[[51 7 96EE00AIREIIIGAA O (] o 2000 o o o o0 4
aatd-

Previcus

Figure 6-56. Data Factory Copy Data Wizard: file format settings

If the settings do not match, you may need to review the Azure blob storage output from the Stream
Analytics job defined in Chapter 5.

If the file format settings match your expected inputs, click on the Next button to select the destination
data store, as shown in Figure 6-57.

283

http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Destination data store

Specify the destination data store for the copy task. You can use an existing data store

1 (or) specify a new data store. Click HERE to suggest new copy destinations or give

comments

@ Destination FROM EXISTING CONNECTIONS CONNECT TO A DATA STORE

O Connection

Dataset

]
v

Azure Blob Storage Azure Data Lake Store Azure DocumentDEB

Figure 6-57. Data Factory Copy Data Wizard: select Data Lake destination

Click on the Azure Data Lake Store icon and then click on the Next button to select Data Lake as the
output destination.

The next option you’ll define in the Copy Activity Wizard is for the destination Azure Data Lake Store
account, as shown in Figure 6-58.

Copy Data

1 Properties Specify Data Lake Store connection

2 Source Connection name (required) 0

Destination-DatalakeStore-d6én

@ Destination Azure subscription (required) 0

O Connection

Dataset :
Data Lake store account name (required)

brtadls v

Performance

Figure 6-58. Data Factory Copy Data Wizard: select Data Lake destination
284

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Select your Azure subscription and Azure Data Lake Store Name and then click on the Next button.

The next screen in the Copy Wizard will allow you to select the output destination folder and file path for
the destination data in Azure Data Lake.

Set the Filename parameter to the value of inputfolder/{year}/{month}/{day}, as shown in
Figure 6-59.

Copy Data

B Properties Choose the output file or folder

Specif

y a folder that will contain output files (or) a specific output file in the destination data

4 . Folder path streamingdata/
@ Destination 9
Connection Filename inputfolder/{year}/{month}/{day}
O Dataset You can use variables in the folder path to copy data from a folder that is determined at runtime. Make sure that

you select a folder with that structure using the Browse button first. The supported variables are: {year], {monthj,
{dayl, {hour), [minute} and [custom]. See Data Movement Activities article for details about these variables.
Example: inputfolder/{yearl/{month/{dayl.

year ¥y ~
Summary
month MM R
day dd ~
Copy behavior 0
Merge files

Figure 6-59. Data Factory Copy Data Wizard: select a Data Lake Destination folder and file name values

Click on the Next button to advance to the next screen in the Copy Wizard. Here, you will see options for
specifying the file format settings. Select the option for Add Header to File, as shown in Figure 6-60.

285

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Copy Data

1 Properties File format settings

2 Source File format ©
' Text format v
@ Destination
Column delimiter o
Connection Comma (,) v
O Dataset [use custom delimiter
=N = Row delimiter 0
I\ 4 /] Performance
S~ 5 Carriage Return + Line feed (\r\n) W
l:’ﬂ> Summa ry [use custom delimiter

- Add header to file @

v Advanced settings

Figure 6-60. Data Factory Copy Data Wizard: specify Data Lake destination file format values
Next, you will see a screen where you can adjust the performance settings for the copy job. Accept

the default values of Auto for Cloud Units and Parallel Copies and click on the Next icon, as shown in
Figure 6-61.

286

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Copy Data

1 Properties Performance settings

Performance improvement options
2 Source

~ Advanced settings

3 Destination

Parallel copy @

Cloud units

Auto v

7\
l\;) Summary

Parallel copies

Auto v

Figure 6-61. Data Factory Copy Data Wizard: specify Data Lake destination file format values

The last screen in the Copy Wizard is the summary screen, as shown in Figure 6-62.

287

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Properties Summar}’

You are running scheduled pipeline to copy data from Azure Blob Storage to Azure Data Lake
Store
Source
Azure Blob Storage ; i — Azure Data Lake Store
. . g Copy Run Time Region: =astus/
Destination streamingdat.. @ > * streamingdat.. @
Region: tus Region: eastus?

Performance

Data Lake authorization

Linked service Destination-Dat. Authorize

Properties EL

Task name CopyPipeline-dén

Task description <no description has been provided»

Task cadence Daily, every 1 day between Sun, 04 Dec 2016 03:51:29 GMT and Thu, 31 Dec 2099 05:00:00 GMT
Source b
Connection Account: briblobstoragedev

Connection name Source-BlobStorage-dén

Dataset name InputDataset-dén

streamingdat.. @

eastus

Figure 6-62. Summary screen of the Data Factory Copy Data Wizard

First, click on the Authorize button, as shown in Figure 6-62 so that you can sign in to the Azure
subscription again and the copy job can capture the credentials.

Finally, click on the Finish button to create the new Data Factory pipeline job.

After a brief period of time, the new Data Factory copy job will be registered and deployed, as shown in
Figure 6-63.

288

CHAPTER 6 * BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

Properties
Azure Blob Storage . . — Azure Data Lake Store
Copy Run Time Region: eastus2
streamingdat.. @ _ » * streamingdat.. @
Source Region: eastus Region: eastus2

Destination

Deployment complete

Performance
~ Registering Connections @
* Creating Datasets (]

Summary

~ Creating Pipelines @

Deployment Click here to monitor copy pipeline
Figure 6-63. Deployment complete

After your new pipeline job has been deployed, it will run and you can check for the output in your
destination Azure Data Lake Store.

Figure 6-64 depicts an example of the updated Data Lake Store copy results using the Visual Studio
Cloud Explorer to view the destination output in the Data Lake Store folder.

il <5 Microsoft Azure 2 File Information
Resouce Govps = | B O ot 2
o) Modified: 12/4/2006 11:23:32 Pm
- s Filo Sizw $.495 bytes
+ @ lLoal) Pat adufbitadh . : C 161204
+ & anurepas-bobt Games 1@hetmaden”
+ [0 briwhdey Tep 16 rows in file 4.
adiorial
230_ Delimiter: | At = Quoting At v frcoding | Unicode WTF-8) = | || Inchude colurme beader | Preview in fxoel Sorve s Cow File
+ [y bru-reference-data-updane Column 0 Column_1 Column 2 Columa 3 Columa_ 4 Columa,5 Columa 6 Colume 7 Colume 8 Colma 9 Cokmn 10
: ::f: 1 uewid ape height weight aveby eattinguate heps wekscity abitudde ventdaation
2 058dT760-eBGH 0 0 0 51 7 9666009385333 O 0 [000
) it 3 cleciled 67898 0]] 53 7 9612580503403 0 [0 2000
¢ [twrlionge 4 6G3dNc4-ald-4 0 0 o 51 7 9660393146733 0 0 o 2000
[BripptSanioatursie 5 7009ciad-Socd-& 0 0) 59 7 96.12655253248¢ 0 [[2000
+ [tethlobbirageces 5 204507211574 0 0 0 58 7 96.60903020464: 0 o o 2000
» B, brtdocdbdey 7 SbascORIE40 0 v 56 7 FEITRO6ATATE D 0 [200
@ brilothubder B 42905624-00074 0 o L] 50 7 FTIETOTTIEE: O]] 2000
@ bruiothubtst 0 aale0206.dsezd O o o 49 7 SE990922T6626% O a] 200
@ brijobpeocessicthubdata W0 698607 de-a022-4 O o o 50 7 9477454507843 0 [o 2000
© ortsonvicobuinadevidsz 11 B2023LT0-T4c4 O o 'y 51 7 9617285050151 0 o (] 2000
B brtsglsorvdey 12 0f15adid-272e4 0 0 0 5 7 9665647345836 0 o [2000
@ brtwhdestreamingjch 13 B70ad054-995d -« O 1]] 54 7 9692932699003, 0 o o 2000
@ ChackTeambisalth 14 ce17T500-I504 10 o o 5 7 S6.91951748558; O o [2000
» [CopyFromBlobToDutalake 15 a7 T4Tel-ebab-2 0 o o 57 7 SLA4E9ICOT6H O o o 2000
B othubtelemetry MY 6 drMmTI-ddor 0 (] (] 55 7 9643194597001 O (] 0 2000
2 i - . .
Acions Propirtes
a Opanin ol Tk St Progress Detsils Paused
— wianed [t1 12 Qo
B Open File Bxplorer Previes 61204 F Firished at 12/4/2016 112820 PM. ek 0
) Refresh
q v

Figure 6-64. Visual Studio Cloud Explorer: view Data Lake Store

289

CHAPTER 6 © BATCH PROCESSING WITH DATA FACTORY AND DATA LAKE STORE

At this point, you have now completed the third and final Data Factory use case scenario for the
reference implementation.

Note See the following link for more detailed information.

“Move Data to and from Azure Data Lake Store Using Azure Data Factory”: https://docs.microsoft.com/en-
us/azure/data-factory/data-factory-azure-datalake-connector.

Summary

This chapter provided a high-level overview of Azure Data Factory and Azure Data Lake Store. You
implemented three Data Factory jobs to accomplish the corresponding use case scenarios for the reference
implementation:

e Update reference data
e Re-train the Azure Machine Learning model
e Move data from Azure blob storage to Azure Data Lake Store

It should now be very apparent that Azure Data Factory is the primary tool for accomplishing what is
known in the Business Intelligence field as ETL (Extract, Transform, and Load) operations in Azure.

You also saw how Data Factory jobs can be edited using pure JSON to gain fine control over the
execution aspects of a Data Factory job. You used parameters in Data Factory to create scheduled jobs to
automate the data movement operations on a recurring, weekly, basis.

Data Lake Store is a robust and virtually limitless data store that we will explore more fully in the next
chapter when we examine Data Lake analytics.

290

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-datalake-connector
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-azure-datalake-connector

CHAPTER 7

Advanced Analytics with Azure
Data Lake Analytics

This chapter examines the use of Azure Data Lake Analytics (ADLA), which is Microsoft’s new “Big Data”
toolset that runs on top of Azure Data Lake.

The ADLA tools and capabilities help make it easier and more efficient to solve today’s modern
business analysis and reporting problems than with traditional, on-premise solutions. It is more efficient
because it offers virtually unlimited storage, with immediate access to that storage for running analytical
operations directly on top of it. There is no need for additional provisioning or acquisition; the resources are
immediately available on-demand.

Data Lake offers the ability to persist the raw data in its native form and then run transformational
and analytical jobs to create new analyses, summarizations, and predictions—across structured and
un-structured data—all based on the original data. All this adds up to a “faster time-to-value” for a modern
business seeking to maximize its true potential.

The key advantage is that you do not need to perform any ETL (Extract-Transform-Load) operations on
the data in Azure Data Lake to run the analytical operations. This offers a huge advantage when dealing with
large amounts of data, particularly when historical and regression analysis requirements come into play.

The ADLA service can handle jobs of virtually any scale instantly; you simply specify how much
compute power you need when you submit your job. You can specify both the job’s priority and the number
of Analytical Units (AU) for your job. AU’sallow you to specify how many computational resources your job
can use. A single AU is roughly equivalent to two CPU cores and 6 GB of RAM. You only pay for your job
while it is running, making it more cost-effective than with traditional on-premise approaches, where you
must pay for the infrastructure whether it is utilized or not.

In this chapter, we begin by providing a wide-angle view of the features and capabilities of ADLA.

We then apply this knowledge to the reference implementation and put all the pieces together as we walk
through building the complete working solution. Figure 7-1 illustrates the role that ADLA plays in the
reference implementation.

© Bob Familiar and Jeff Barnes 2017 291
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_7

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

g b3 B

Stream Analytics Machine Learning

Asure SOL
database
' R B
10 > Gt i
§ -’E : I
Data Lake Data Factory Azure SOL H
storage bloh Data Factory A i : database i
& @\
Azure S0

database i

—

Data Lake Store

& &

Azure Resource

subscription group

@ ©

Security
Azure Key Vault Center

Figure 7-1. Azure Data Lake Analytics in the reference implementation architecture

We draw upon our key lessons from Chapter 5 (Stream Analytics) and Chapter 6 (Data Factory) to
continue with the data movement activities in this chapter.

Specifically, we process the data that was moved to Azure Data Lake from Azure Blob storage (via
Data Factory); that data represents the incoming IoT streaming data. We then join this raw, IoT data with
the results of the Azure Machine Learning Web Service calls that were made “real-time” during the Stream
Analytics ingestion job and then persist the data to Azure storage. Let’s get started with a brief technical
overview of Azure ADLA capabilities and features.

Azure Data Lake Analytics

ADLA is a recent new Microsoft Azure distributed analytics service built on top of Apache YARN. YARN
stands for “Yet Another Resource Negotiator” and is a cluster management technology for Apache Hadoop.
ADLA was built with the primary goal of making Big Data analytics easy and more efficient. ADLA lets you
focus on writing, running, and managing analytical jobs, rather than operating distributed computing
infrastructure.

292

http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_6

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Some of the core capabilities of the ADLA service include the following:

Dynamic Scaling: ADLA has been architected at its core for cloud scale and
performance. ADLA can dynamically provision resources and will allow you do
analytics on extremely large datasets, such as terabytes or even exabytes of data.
When a job completes, it winds down resources automatically, and you pay only

for the processing power used for your job run. As you increase or decrease the size
of data stored or the amount of compute used, you don’t have to rewrite any code.
This lets you focus on your business logic only and not on how you process and store
large datasets.

U-SQL: ADLA includes U-SQL, a query language that combines a familiar SQL-like
declarative language with the extensibility and programmability provided by C#, for
creating custom processors and reducers. U-SQL also provides the ability to query
and combine data from a variety of data sources, including Azure Data Lake Storage,
Azure Blob Storage, Azure SQL DB, Azure SQL Data Warehouse, and SQL Server
instances running in Azure Virtual Machines.

Develop, Debug, and Optimize Faster Using Visual Studio: ADLA has deep
integration with Visual Studio, so that you can use familiar tools to run, debug, and
tune your analytics job code. Additionally, ADLA provides handy visualizations of
your U-SQL jobs. These visualizations allow you to examine how your code runs at
scale, which makes it easier to identify performance bottlenecks early and thereby
optimize performance (and costs).

Big Data Analytics for the Masses: ADLA provides the tooling and framework so
that even new developers can easily develop and run massively parallel data
transformation and processing programs in U-SQL, R, Python, and .Net over
petabytes of data. All your data can be analyzed with ADLA and U-SQL including
unstructured, semi-structured, and structured data.

Integration with Existing IT Investments: ADLA can use your existing IT investments
for identity, management, security, and data warehousing. ADLA is integrated with
Azure Active Directory for user management and permissions. It also comes with
built-in monitoring and auditing capabilities.

Cost Effective: ADLA becomes a very cost-effective solution for running Big

Data workloads when you look at the details of how it is priced and scaled. With
ADLA, you pay on a “per-job” basis only when your data is processed. The system
automatically scales up or down as the job starts and completes, so you never pay
for more than what you need. No additional hardware, licenses, or service-specific
support agreements are required.

Optimized for Data Lake: It should be noted that ADLA is specifically designed and
optimized to work together with Azure Data Lake Store to provide the highest levels
of performance, throughput, and parallelization for your most demanding Big Data
workloads.

Simplified Management and Administration: ADLA can be easily managed via the
Azure Portal. Additionally, PowerShell can be used to automate analytics jobs and
perform related ADLA tasks. The Azure Portal blades for ADLA also offer the ability
to secure your analytics environment with Role-Based Access Control (RBAC) tools
that are integrated with Azure Active Directory. Monitoring and alerting capabilities
are also built into the Azure Portal for fulfilling operations and administration
requirements.

293

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Getting Started with Azure Data Lake Analytics

It is easy to get started with ADLA. There is a three-step process to get up and running:

1. Create an ADLA account in your Azure Subscription/Resource group. This is
a one-time setup and allows you to start exploring your data along with running
analytics jobs on that data.

2. Write and submit an ADLA job with U-SQL. You can create, submit, and monitor
jobs from many different sources, such as the Azure Portal, Visual Studio, and
PowerShell commands.

3. Examine the job results. At their core, ADLA jobs basically read and write data
from storage in a highly distributed and massively parallel manner. For easy
access, the storage sources can be from many various locations such as Data
Lake Store, Azure blob storage, or data from other SQL servers on other platforms
or services. And all the data can be analyzed “in-place” without any delay for
extraction, preparation, or loading.

Next, we walk through these steps in more detail so that you can see how easy it is to get started with
processing Big Data using ADLA.

Create an ADLA Account

To get started, in the Azure Portal navigate to the resource group for your deployment. Click on the + Add
button and search for Data Lake Analytics, as shown in Figure 7-2.

Resource groups > briwhdev > Everything _,D Search resources

Everything

Y Filter
HH £ Data Lake Analytics X
o Results
o NAME o PUBLISHER # CATEGORY
-
b 3.

E Data Lake Analytics Micresoft Intelligence + analytics

Figure 7-2. Adding Data Lake Analytics to a resource group

294

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

After selecting the option for Data Lake Analytics, click on the next screen to create the new Data Lake
Analytics account, as shown in Figure 7-3.

Data Lake Analytics

. Mi

The Azure Data Lake Analytics service was architected from the ground up for cloud scale and
performance. It takes away the complexities normally associated with big data in the cloud and
ensures that Data Lake Analytics will meet your current and future business needs.

Highlights:

Analyze any kind of data of any size

Only pay for the processing power that you use
Develop faster, debug and optimize smarter
Introducing U-SQL: simple, familiar, and extensible
Managed and supported with an enterprise-grade SLA
Dynamically scales to match your business priorities
Built on YARN, designed for the cloud

Proven at Microsoft with more than 10,000 developers

vRifin}ly 3 Qo

I“” " itligl
LTI
9

l200 l10 5" == " 3 I360 lio I3

£

— e

534, 1325

Figure 7-3. Creating a new Azure Data Lake Analytics account

295

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

The next screen allows you to enter the specific parameters for creating a new ADLA account, as shown
in Figure 7-4.

New Data Lake Analytic.. — O X Select Data Lake Store

Name Subscription§: _~Don'tseea
subscription? 3

brtadla v

brtadla.azuredatalakeanalytics.net
* Subscription

M ' + Create New Data Lake Store
* Resource Group @
O Create new @ use existing m brtadls
briwhdev v L4 East US 2

* Location @

* Data Lake Store @
brtadls

Pricing Tier @
Pay-As-You-Go

Figure 7-4. Creating a new Azure Data Lake Analytics account

Fill in your choices for the corresponding parameter values:

e Name: Enter a unique name for your new ADLA account. Note that the name of the
ADLA must be globally unique.

e Subscription: The Azure subscription to use for this job.
e Resource Group: The Azure Resource Group to create this service in.
e Location: The Azure Data Center location.

e Data Lake Store: The Azure Data Lake Store that will be the primary location for
analyzing your data. Note that each ADLA account has a dependent Data Lake Store
account. The ADLA account and the dependent Data Lake Store account must be
located in the same Azure data center.

296

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Once you are done, click on the Create button at the bottom of the screen. Your input will then be

validated and the new Azure Data Lake account will be created after a brief period of time (typically less than
one minute).

After your new ADLA account has been provisioned, navigate to the account via the Azure Portal. Your
ADLA screen should appear similar to Figure 7-5.

brtadla ie oy =] 8x
== NewJob [SampleScripts [) Data Explorer [Delete +++ More
B Search (Ctrl+) Essentials ~
Resource group (change) Pricing tier
(7} Overview rtwhdev Pay-As-You-Go
Status Default Data Lake Store
BH Activity log Running brtadls
Location Learn
sma Access control (IAM) East US 2

Explore sample scripts
Subscription name (change)

Getting Started

' Tags Explore interactn
Subscription ID

K Diagnose and solve problems ba3e3785-1e64-4e12-a03e-163e4aab3e53

SETTINGS

* Data Sources Data Sources

- : 122
I Properties i,

n Locks |

Add User Wizard

4

-| Ex brtadls (default)

Automation script

GETTING STARTED

. Jobs

pa Add User Wizard
100

EE Quick Start

Sample Scripts

%% Interactive Tutorials

DQ Tools
DATA LAKE ANALYTICS

1210 1240 12110 1710 1310 1310

Figure 7-5. Azure Data Lake Analytics web page blade

297

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

When working with ADLA via the Azure Portal, note that you will primarily use two of the navigation
options shown at the top of the screen in Figure 7-5:

e+ New Job: Allows you to create, submit, and monitor your ADLA jobs. This option
allows you to create, upload, and download U-SQL scripts. When you are ready, you
can submit them to run and monitor their progress.

e Data Explorer: Allows you to quickly and easily navigate your data in both Data Lake
Storage and ADLA database structures that contain tables and schemas.

Sample Scripts: Create, Submit, and Monitor Jobs

One of the best ways to quickly get acquainted with ADLA is to run through the sample scripts that you see
in the Azure Portal after you create an analytics account.

The first time that you first provision a new Data Lake Store along with a new Data Lake Analytics
account, you will be presented with an option to install the sample data. It is highly recommended that you
do so, especially since the sample scripts have a dependency on the sample data being present on your
system.

After you click on the Sample Scripts icon in the top navigation bar, a new blade will appear similar to
Figure 7-6.

Sample Scripts

* Copy Sample... I_h Install U-SQLE...

= Create Database and Table >

Populate Table >

p Query Table >

Figure 7-6. Sample script options

Click on the Query a TSV File option, as shown in Figure 7-6, and the New U-SQL Job window will
appear, as shown in Figure 7-7.

298

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

New U-SQL Job

P Submit Job @ Data Explorer ; Open File ! Save As

* Job Name @ Priority @ AUs @

Nuery a TSV file 1000 1
[ey 1

1 //Define schema of file, must map all columns
2 (@searchlog =

3
4
5
6
7
8
9

1e
11
12

EXTRACT UserlId int,
Start DateTime,
Region string,
Query string,
Duration int,
Urls string,
ClickedUrls string

FROM @"/Samples/Data/SearchLog.tsv"
USING Extractors.Tsv();

13 OUTPUT @searchlog

14
15

Figure 7-7.

TO @"/Samples/Output/SearchLog_output.tsv"
USING Outputters.Tsv();

Sample U-SQL script to read and write TSV files

From this initial sample script, you can identify several key aspects of the U-SQL language and

operations:

U-SQL queries can be expressed in familiar SQL syntax.

Extractors and outputters are the keys to working with semi-structured and
unstructured data.

U-SQL can easily extract tab-separated-value data from one flat file and then write it
out to another flat file.

Values read from flat files can be assigned to different variable types.

Click on the Submit Job icon, as shown in the top-left side of Figure 7-7. Next, you will see a Job
Summary screen similar to one shown in Figure 7-8.

299

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Query a TSV file
Jo Is

’ Resubmit O Refresh DFI Duplicate Script “ancel Jok

Job Summary
Preparing Queued Running Finalizing %L | Progress N 2 D 0 05
@ @ O o
165 185 23 =] SearchLog.tsv
3.18 KB
Succeeded
57s
jbarnes_1@hotmail.com
12/12/2016 3:43:14 PM SVIE ~
xtract
W
232 1 vertex 2]R:3.18 KB
Input | Output ©1s [Zw:279KB
MAME — 23 rows
100%
[Z] SearchLog.tsv 318 K8

SV2 PodAggregate

i 1 vertex =|R: 2.79KB
L os [Zw:35kK8
— 23 rows

100%

\’/

SearchLog_output.tsv

Figure 7-8. Azure Data Lake Analytics: sample job results

This screen provides information as the job goes through the four stages of ADLA job execution:
Preparing, Queued, Running, and Finalizing. Note that you can (and often will) use the Refresh command to
manually refresh the screen to see an updated status of your job real-time in the dashboard.

Note that you can also browse both the input and the output files related to the analytics job execution,
as shown on the left side of Figure 7-8.

The right side of the screen provides information pertaining to the execution details of the job. Figure 7-8
illustrates graphs that are provided to help visualize the job’s execution information: Progress, Data Read, Data
Written, Execution Time, Average Execution Time per Node, Input Throughput, and Output Throughput.

By leveraging this rich job execution information, you can tune and tweak your Big Data analytical
queries to optimize both your results and your costs. Note that you can also click on Replay (arrow icon) in
the top navigation bar to visually replay your job (logically without actually running the job) and see how it
consumes resources as it runs. See Figure 7-9 for the Replay button.

300

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

ﬁ Progress v ’ D 0 Os

D SearchlLog.tsv
3.18 KB

Figure 7-9. The Azure Data Lake Analytics Replay button helps you visualize your job after it runs

Close this blade and you will return to the job submission blade, where you can click on the Data
Explorer option in the top navigation bar (see Figure 7-10).

brtwhdev > brtadla > Sample Scripts > New U-SQL Job

P SubmitJob [2) DataExplorer AN OpenFile ¥ Save As

* Job Name @ Priority @ AUs @
HH Query a TSV file 1000 D 1
e 1 //Define schema of file, must map all columns
2 [@searchlog =
[3 EXTRACT UserId int,
4 Start DateTime,

Figure 7-10. Data Explorer icon

Next, you will see a view of the Data Explorer screen similar to the one shown in Figure 7-11.

A Upload
[Storage accounts R “,
3 briadls (default)
»
HAME size LAST MODIFIED
»
’ Are catalog 12/10/2016 5:38:01 PM
» ystem
Samples 12/10/2016 61113 PM
b saflext
¥ IS Catalog streamingdata 12/4/2016 11:23:32 FM
= (3] briadia
12/10/2016 5:38:02 PM
» [master Y- d
» B SampleDBTutorials usglext 12/7/2016 9:34:00 PM

Figure 7-11. The Data Lake Analytics Data Explorer view

301

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

A few items are noteworthy in Figure 7-11:

e Top-left of the screen: You will see that you have a view into the contents of your Azure
Data Lake Store. The contents appear as a file system with folders and files. This is
the location where you will primarily work with any kind of unstructured data or
“flat files”

e Bottom-Left of the screen: Includes the “Catalog” which represents a “structured”
view of your data in ADLA, similar to a SQL Server database store. This catalog is
used to hold structured data and code so that they can both be shared by U-SQL
scripts. Each catalog can contain one or more additional databases.

A U-SQL database contains the following:
e Assemblies: Share .NET code among U-SQL scripts.
e Table-Values functions: Share U-SQL code among U-SQL scripts.
e Tables: Share data among U-SQL scripts.

e Schemas: Share table schemas among U-SQL scripts.

The next sample script explores this concept further, as you will create a database and a table in U-SQL
script.

Navigate back to the Sample Scripts blade in the Azure Portal and select the second option, called
Create Database and Table, as shown in Figure 7-12.

Sample Scripts New U-SQL Job
A Copy Sample... A Install U- P submitlob [S) Data Explorer AN OpenFile ¥ Save As
* Job Name @ Priority @ Als @
| Query a T file > [Ereate Database and Table 1000 rl 1
1 //Create Database SampleDBTutorials
Create Database and Table > 2 CREATE DATABASE IF NOT EXISTS SampleDBTutorials;

3
4 f/Create Table OlympicAthletes

& Populate Table > 5 CREATE TABLE IF NOT EXISTS SampleDBTutorials.dbo.SearchlLog
5
7 //Define schema of table

H% Query Table 2 8 UserId int,
9 Start DateTime,
1@ Region string,
11 Query string,
12 Duration int,
13 Urls string,
14 Clickedurls string,
15 INDEX idx1 //Name of index
16 CLUSTERED (Region ASC) //Column to cluster by
17 PARTITIONED BY HASH (Region) //Column to partition by

18);

Figure 7-12. Data Lake sample scripts create database and table

Here, you see familiar SQL-like syntax statements that allow you to easily declare a new ADLA database
and corresponding table. Additionally, we have declared a clustered index partitioned by a hash on the
region. This could potentially provide a huge performance boost when dealing with large numbers of
records.

302

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Another observation is that the ADLA environment allows for an optimized mixture of storage and SQL
commands that summarize, aggregate, transform, extract, and output meaningful business data at scale.

Click on the Submit Job icon in the top navigation bar and your job will be placed in the queue to
eventually create a new database and table.

By now, it should be clear that there are many similarities in ADLA to the manner in which older
generation “legacy” computer systems were designed to run. Batch environments have always been most
efficient at dividing up computational workloads, running the workloads on distributed nodes, monitoring
and gathering the results, and finally producing an output.

This next section demonstrates the U-SQL capabilities in action as you populate the sample database
using the sample CSV input file.

Navigate back to the Sample Scripts blade and select the third option to populate the table, as shown in
Figure 7-13.

Sample Scripts - 0 X New U-5SQL Job
; Copy Sample... ; Install U-SQL E... ’ Submit Job H Data Explorer ; Open File * Save As
* Job Name © Friority @ Als@
Query a TSV file > Populate Table 1000 H
1 //Read some data
Create Database and Table > 2 @searchlog =
3 EXTRACT UserId int,
4 Start DateTime,
& Populate Table > 5 Region string,
6 Query string,
7 Duration int,
JSF Query Table > 8 Urls string,
9 Clickedurls string
1@ FROM @"/Samples/Data/SearchlLog.tsv"
11 USING Extractors.Tsv();

13 //Insert it into a previeusly created table
14 INSERT INTO SampleDBTutorials.dbo.SearchLog
15 SELECT *

16 FROM @searchlog;

Figure 7-13. Sample script to populate SQL table

This SQL script will read from the (semi-structured) .TSV file named SearchlLog.tsv as the input source.
It will then output the results into a new SQL table that you created with the previous script. Click on Submit
Job and run the job to populate the new SQL table.

The last sample script step allows you to verify the results of the previous script by outputting the data
from the SQL table you just populated back into a .TSV file.

Navigate back to the Sample Scripts blade and select the fourth and last option called Query Table, as
shown in Figure 7-14.

303

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Sample Scripts - O X New U-SQL Job
A Copy Sample... A Install U-SOLE... P submitlob [S) Data Explorer 48 Open File
* Job Name @ Priority @ Als @
Query a TSV file > Query Table < [1000 [:| 1

1 //Read from SearchLog table
@athletes =
SELECT *
FROM SampleDBTutorials.dbo.SearchLog;

v

Create Database and Table

6? Populate Table >

7 OUTPUT @2athletes
TO @"/Samples/Output/SearchlLog_output.tsv”
USING Outputters.Tsv();

2

3

4

5

6 [/Write it to a file so we can look at it
£ Query Table > 8
9

11 //Alternatively, we can output the whole table to a file without using SELECT
12 OUTPUT SampleDBTutorials.dbo.SearchLog

13 TO @"/Samples/Output/SearchLog_output_direct.tsv"

14 USING Outputters.Tsv(',l;l

Figure 7-14. Sample script to query a SQL table and output results to a .TSV file

Click on Submit Job to run this job, which will query the new SQL table and then output the results to a
TSV file. As you have seen previously, after submitting the job you can easily monitor and view its progress
through the stages of execution.

To verify the results of the Query Table script from the Data Lake Storage point of view, click on the
Data Explorer icon in the top navigation bar and traverse the file folders to the folder Samples/Output, as
illustrated in Figure 7-15.

O NewFolder A8 Upboad & Rename Folder 1= Folder Properti W Delete Folder) Refresh
W _f"”‘-"'“" o bitadls b Samples b Oulput v
= 8 betadls {default)
» catalog
NAME SIZE LAST MOGIFIED
- Samples
b [Data Searchlog output tsy 35K 12/12/2016 5:57:14 PM
Output
¥ I stroamingdats Searchlog output_direct tev I5KB 12/12/2016 55714 PM
» syslem
» usglext
= [Catalag
= [+] brtadla

P [master

b W SampleDBTutorials

Figure 7-15. Verify SQL-to-File job output files using the Data Explorer

You can click on each file to see the contents and verify that they originated from the file that you used
to populate the Data Lake SQL table in Sample Script #3 (Populate Table).

Note that there is currently no way to interactively query or view the results of ADLA SQL query. That is
due to the fact that ADLA is primarily based on a batch processing architecture.

To account for this reality, the easiest way to verify the contents of SQL queries is to declare an output
file and write to that destination, as shown in Figure 7-14. Then you can use the Data Explorer to verify the
results.

304

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

By running through the sample U-SQL scripts that come with ADLA, you have explored some of the
more commonly used capabilities and features of the service. Although everything you accomplished in this
quick tour of the samples was via the Azure Portal, Microsoft also provides additional tools for working with
U-SQL in Visual Studio.

Tip When developing ADLA scripts in the Azure Portal, it is often a good idea to have multiple browser tabs
or windows open. One window would normally contain the Data Explorer view, and the other window would be
used for editing scripts and submitting analytics jobs.

Azure Data Lake Tools for Visual Studio

Azure Data Lake Tools for Visual Studio is a free plug-in that works with Visual Studio (2015/2017) to enable
easy authoring, debugging, and tuning of ADLA U-SQL scripts and queries.

In addition to handling all the basic operations available via the Azure Portal such as authoring,
submitting, and monitoring ADLA jobs, there are many additional tools, utilities, and functionality you can
leverage with Azure Data Lake Tools for Visual Studio, such as:

e Unit Tests: Visual Studio Tools includes a new project template for creating U-SQL
unit test scripts. This is invaluable for being able to run automated testing and
regression scenarios.

e IntelliSense: For help with prompting for Data Lake catalog entities such as
databases, schemas, tables, User Defined Objects (UDOs), etc. Since you can only
have one master catalog per ADLA account, the entities are all related to your
specific compute account.

e Auto-Formatting: When creating ADLA jobs, Visual Studio makes it easier to visual
your U-SQL code and thereby improve readability and maintain-ability. All the
formatting rules are configurable under Tools » Options » Text Editor »

SIP » Formatting.

¢ Go-To Definition and Find All References: These help you pinpoint code segments
and determine code paths.

e Heat Map: The VS Data Lake Tools provide user-selectable, color overlays on the
job view to indicate: Progress, Data I/O, Execution time, and I/O throughput of each
stage. This feature allows users to determine potential issues and distribution of job
properties visually and intuitively.

e Run U-SQL Locally: This capability alone with Data Lake Tools for Visual Studio
can provide a U-SQL developer a huge boost in productivity. These tools allow
developers to take advantage of all of the following rich development capabilities, all
locally:

e RunU-SQL scripts, along with C# assemblies.

e Debug scripts and C# assemblies. Create/delete/view local databases,
assemblies, schemas, and tables in Server Explorer, in exactly the same manner
as you would do for an ADLA service.

305

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

The combination of the Visual Studio tools and tooling on top of the Azure Data Lake Store and
Analytics provides a rich and powerful environment to develop, run, and mange a Big Data analytics
environment.

A deeper detailed discussion of the features and capabilities of Data Lake Tools for Visual Studio is
beyond the scope of this book. You are strongly advised to refer to the following links and resources for
additional information.

Note Download Azure Data Lake Tools for Visual Studio: https://www.microsoft.com/en-us/download/
details.aspx?id=49504.

Tip Develop U-SQL scripts using Data Lake Tools for Visual Studio: https://docs.microsoft.com/en-
us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started.

ADLA U-SQL Features and Benefits

Regardless of whether you are creating U-SQL jobs using the Azure Portal or using the Data Lake Tools for
Visual Studio, there are some huge benefits in leveraging this service for your Big Data processing needs.

U-SQL is a new language from Microsoft for processing Big Data jobs in Azure. U-SQL combines the
familiar syntax of SQL with the expressiveness of custom code written in C#, on top of a scale-out runtime
that can handle virtually any size of data. Some of the many features and benefits of leveraging U-SQL
include the following:

e Handles all types of data: unstructured, semi-structured, and structured.
e Allows you to declare and use domain-specific, user-defined types using C#.
¢ You canrun U-SQL queries over Data Lake Store and Azure blobs.

e You can also run federated queries over operational and data warehouse SQL stores,
reducing the complexity of ETL operations.

e Allows developers to leverage their existing skills with SQL and .NET. U-SQL
developers are productive from day one.

e Easyto scale and performance tune without the need to manually configure the
environment.

e Easyto use built-in connectors for common data formats.

e Simple and rich extensibility model for adding customer-specific data
transformations.

e No limits on scale. Scales on-demand with no changes required to the code.
e Automatically parallelizes U-SQL queries and custom code.
e Designed to process petabytes of data.

e Built-in aggregation functions that can be extended with custom C# aggregation
functions.

306

https://www.microsoft.com/en-us/download/details.aspx?id=49504
https://www.microsoft.com/en-us/download/details.aspx?id=49504
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Uses built-in extractors to read CSV and TSV files or create custom extractors for
different data file formats.

Enterprise grade tools and execution environment.

Includes tools for managing, securing, sharing, and discovery of familiar data and
code objects (tables, functions etc.)

Provides role-based authorization of catalogs and storage accounts using Azure
Active Directory (AAD) security.

Provides auditing for catalog objects such as databases, tables, etc.
Sample SQL Table DDL (Data Definition Language) commands:

e CREATE TABLE

e CREATE CLUSTERED INDEX

e CREATE TABLE w/ CLUSTERED INDEX

U INSERT

U TRUNCATE

U DROP

e Tables are registered in the metadata catalog and are discoverable by others via
the catalog/metadata APIs.

Note

You can insert data into a table only if it has a clustered index.

Types of U-SQL User-Defined Operators

The U-SQL language allows for the following User-Defined Operators (UDOs) that can be extended:

Extractors (called with Extract syntax)
Processors (called with Process syntax)
Appliers (called with Apply syntax)
Combiners (called with Combine syntax)
Reducers (called with Reduce syntax)

Outputters (called with Output syntax)

See the following link for more detailed information:

U-SQL programmability guide: https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-
lake-analytics-u-sql-programmability-guidef#fuse-user-defined-extractors.

307

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide#use-user-defined-extractors
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-u-sql-programmability-guide#use-user-defined-extractors

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

As of this writing, ADLA comes out-of-the-box with three extractors:
e Comma-Separated-Value (CSV) delimited text
e Tab-Separated-Value (TSV) delimited text
e General-purpose extractor for delimited text

See the following link for U-SQL samples, libraries, and tools for extending U-SQL.

Note The U-SQL GitHub Repository is found at https://github.com/Azure/usql.

See the following link for a more detailed walkthrough of using Azure Data Analytics from the Azure
Portal.

Tip Get started with Azure Data Lake Analytics using Azure Portal: https://docs.microsoft.com/en-us/
azure/data-lake-analytics/data-lake-analytics-get-started-portal.

U-SQL Windowing Functions

U-SQL contains a powerful construct called “windowing functions,” which are defined by the use of the OVER
clause and represent those values that are computed from multiple rows instead of just the current row.
U-SQL adopts a subset of the ANSI Standard SQL Window functions that were introduced into the language
in 2003.

The window functions are categorized into the following general areas:

e Reporting Aggregation Functions: Includes SUM and AVG.
® Ranking Functions: Includes DENSE_RANK, ROW_NUMBER, NTILE, and RANK.

e Analytic Functions: Includes cumulative distribution or percentiles and accessing
data from a previous row (in the same result set) without using a self-join.

Asyoulearned in Chapter 5, these types of aggregates can be especially crucial to the analysis of
real-time streaming data over a period of time. In addition to the obvious benefits of gathering aggregates in
real-time over fast moving data streams, there can also be value in performing these same types of aggregate
analysis over historical datasets for “what-if” analyses and regression testing scenarios.

308

https://github.com/Azure/usql
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-get-started-portal
http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Figure 7-16 presents a sample U-SQL script that demonstrates the use of the OVER keyword with
the PARTITION BY clause to refine the “window” to list all the employees, the department, and the total
salary for the department. Note that the PARTITION BY clause is added to the OVER clause to create this
summarization effect.

@employees =
SELECT * FROM (VALUES
(1, "Nick", ™"IT Department", 1@, 16ee9),
(2, "Sheryl","IT Department", 100, 20000),
(3, "Iim", "IT Department", 1@, 300€0),
(4, "Claire","Human Resources",200, 100600),
(5, "Jason", "Human Resources",200, 10000),
(6, "Becky", "Human Resources",200, 10000),
(7, "Scott"™, "Exec Management", 300, 5eeee),
(8, "Anna", "Sales & Marketing", 400, 15600),
(9, "Eric", "Sales & Marketing", 400, 100€0))
AS T(EmpID, EmpName, DeptName, DeptID, Salary);

@results=
SELECT

EmpName, DeptName,

SUM(Salary) OVER(PARTITION BY DeptName) AS SalaryByDept
FROM @employees;

OUTPUT (@result TO "/DepartmentSummary.csv"
USING Outputters.Csv();

Figure 7-16. Sample U-SQL script demonstrating the windowing capabilities of ADLA using OVER and
PARTITION BY

309

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Note that in Figure 7-16 the sample input data stream for employees was created entirely in code rather
than read from a file or SQL table. Because we are working with a batch service, we still need to output
our results to a CSV file (DepartSummary. csv) using the built-in CSV outputter format option. Figure 7-17
depicts that output.

File Preview

Departn nmar

ﬂ Format W Download # Renamefile B Access := Properties (D SetExpiry [Delete File

0 1 2

Scott Exec Management 50000
Claire Human Resources 30000
Jason Human Resources 30000
Becky Human Resources 30000
Nick IT Department 60000
Sheryl IT Department 60000
Jim IT Department 60000
Anna Sales & Marketing 25000
Eric Sales & Marketing 25000

Figure 7-17. Results of the sample U-SQL script demonstrating the windowing capabilities

Each row of the output results also contains the total salary for each department (the pre-aggregated
sum of all salaries in that department) and is broken down by department.

Reporting Aggregation Functions

ADLA window functions support the following aggregates as part of the U-SQL language:

e COUNT
e SUM
e MIN
e MAX
e AVG
e STDEV
e VAR

310

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Ranking Functions
ADLA window functions support the following ranking functions as part of the U-SQL language:
e RANK
e DENSE_RANK
e NTILE
e ROW_NUMBER

Analytical Functions
ADLA window functions support the following analytical functions as part of the U-SQL language:
e CUME_DIST
e PERCENT_RANK
e PERCENTILE_CONT
e PERCENTILE_DISC

See the following link for a more detailed walkthrough of using Azure Data Analytics window functions:

Note Visit “Using U-SQL window functions for Azure Data Lake Analytics Jobs” at https://docs.
microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-use-window-functions.

ADLA Federated Queries: Querying the Data Where It Lives

One of the most powerful features of ADLA is that it allows you to easily query data residing in multiple
Azure data stores, with the added benefit of not having to first move the data into a single data store before
executing the query.

There are many additional benefits to the approach of querying the data from “where it lives”; here are
just a few:

e Avoids moving large amounts of data across the network between data stores. This
can result in drastically reduced bandwidth and latency issues over the network.

e Provides a single view of data without regard to the underlying physical location of
the remote data store. Reference or master data can now live in its “natural habitat”
where it normally resides.

e Minimizes data proliferation issues caused by maintaining multiple copies. This
was yesterday’s IT solution to handling the master data problem. It was usually
accomplished by attempting to centralize the data stores, and that usually meant
making multiple copies of the data.

e Utilizes a single query language (U-SQL) for all data queries. In addition to being
a “unifying” and “singular” programming language, it is also the most familiar to
developers and therefore fastest to adopt and leverage based on existing skillsets.
This can amount to a huge advantage in terms of developer productivity, code
maintainability, and agility.

311

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-use-window-functions
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-use-window-functions

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

e Each data store can maintain its own sovereignty. Because the data can reside in
its original location, it can be queried “in-place” and with only a subset (the query
results) returned over the network to the ADLA query results. This allows the data to
always reside in its home location and thereby adhere to all the rules governing the
domain and movement of the data.

There is one important point to make when it comes to the implementation of this feature. When you
specify a U-SQL query to work with data from other external sources in Azure, such as Azure SQL database
or SQL data warehouse, you will need to specify the following information as part of the query statement:

e DATA SOURCE: Represents a remote data source such as Azure SQL Database.
Requires that you specify all the details (connection string, credentials, etc.) required
to connect and issue SQL statements.

e EXTERNAL TABLE: Alocal ADLA SQL table, with columns defined as C# data types,
that redirects queries issued against it to the remote table that it is based on. U-SQL
handles the data type conversions automatically.

e ADLA’s implementation of external tables allows you impose a specific schema
against the remote data, which would help to shield you from remote schema
changes. This capability allows you to issue queries that join external tables with
local tables, allowing for some creative Big Data processing scenarios.

e PASS THROUGH Queries: The U-SQL queries are issued directly against the
remote data source in the syntax of the remote data source. An example would be
that Transact SQL would be issued against the remote data source for Azure SQL
database queries.

e REMOTABLE_TYPES: For every external data source, you have to specify the list of
“remoteable types” This list constrains the types of queries that will be remoted. Ex:
REMOTABLE_TYPES = (bool, byte, short, ushort, int, decimal).

e LAZY METADATA LOADING: Here the remote data is schematized only when the
query is actually issue to the remote data source. Your program must be able to deal
with remote schema changes.

These implementation requirements result in a few key lessons that are worthy of a deeper technical
walkthrough. This is necessary to fully demystify for the reader how this feature is implemented in Azure
Data Lake Analytics.

Federated Queries: Overview of Steps Required to Query External Tables

It is important to note that there are several steps required to successfully implement an ADLA Federated
query. We walk through each of the steps required starting with the prerequisites.

Confirm U-SQL Federated Query: Prerequisites Installed and Configured

Note that most of the prerequisites are required and will cause significant connectivity and access issues
that can be difficult to diagnose.

e Azure Subscription
e Azure Data Lake Store (ADLS) account
e Azure Data Lake Analytics (ADLA) account

e Azure SQL Database or Azure SQL Data warehouse with SQL login/password
credentials

312

CHAPTER 7 ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS
e Visual Studio 2015 (Optional). To create and execute U-SQL queries. U-SQL scripts
can also be developed and deployed via the Azure Portal.

e Azure Data Lake Tools for Visual Studio 2015. (Optional) works with Visual
Studio 2015.

e Download: https://www.microsoft.com/en-us/download/details.
aspx?1d=49504

e Azure PowerShell (Optional)
e Download: http://aka.ms/webpi-azps

Verify “Read/Execute” Permissions on Your Azure Data Lake Store Account

This is required to create the catalog secret via a PowerShell command in a later step. To verify your
permissions:

1. Navigate to your ADLS account in Azure Portal.

2.
3.
4,

The screenshot in Figure 7-18 illustrates the proper permissions for an authorized user.

Click on the Data Explorer icon in the top navigation bar.
Click on the Access icon in the top navigation bar.

Validate you have Read/Execute permissions.

Advanced

Your Permissions

<Your User ID> s effective permissions on this folder are: Read,Write Execute.

You have superuser privileges on this account.

Owners Read Write Execute

R <Your User ID> v v v

Figure 7-18. Azure Data Lake Store: user permissions view via the Azure Portal

313

https://www.microsoft.com/en-us/download/details.aspx?id=49504
https://www.microsoft.com/en-us/download/details.aspx?id=49504
http://aka.ms/webpi-azps

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Configure Access to the Remote Azure SQL Database: Allow IP Range in the SQL Server Firewall for
the ADLA Services That Execute the U-SQL Queries

This step grants access to the ADLA service to access your Azure SQL Server and its related Azure SQL
databases.

Navigate to the targeted Azure SQL Database Server instance via the Azure Portal:

1. Click on the SQL Server icon to get to the settings page.
Click on the Firewall icon on the left navigation blade.

Create a new rule with range 25.66.0.0 to 25.66.255.255.

> e n

Click on the Save icon on the top navigation bar to save these changes.

The screenshot in Figure 7-19 depicts the Azure SQL Server Firewall configuration screen and a new
firewall rule added for ADLA access.

S

Resource groups » brtwhdev > brtsqlserverdev - Firewall ,O Search resources

<Your SQL Server> Firewall

H save M Discard =f= Add client IP

f = Connections from the IPs specified below provides access to all the databases in
brtsqlserverdey.

) B, Overview

s B Activity log Allow access to Azure services m OFF

s Access control (1AM)

= Client IP address 108.209.169.74
‘ Tags
*3 RULE NAME START IP END IP
,(Diagnose and solve problems
I SETHNGS Data Lake Analytics Access 25.66.0.0 25.66.255.255

Figure 7-19. Adding a new SQL Server firewall rule for allowing remote access via the Azure Data Lake
Analytics service

314

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Create a New ADLA SQL Database and SQL table via U-SQL Query

The next step is to create an ADLA SQL Database and SQL table. To do this, navigate to your ADLA
account via the Azure Portal and then select the +New Job icon to submit a new U-SQL job. Enter this U-SQL
code to create an ADLA SQL database and table:

//Create Table
CREATE DATABASE IF NOT EXISTS SearchMaster;

//Create Table
CREATE TABLE IF NOT EXISTS SearchMaster.dbo.SearchlLog

(
//Define schema of table
UserId int,
Start DateTime,
Region string,
Query string,
Duration int,
Urls string,
ClickedUrls string,
INDEX idx1 //Name of index
CLUSTERED (Region ASC) //Column to cluster by
PARTITIONED BY HASH (Region) //Column to partition by
)

Use PowerShell to Create a New Catalog Secret in the ADLA Database
This secret contains the password for the SQL login and connection string for the Azure SQL database.:

#login (Microsoft Azure Login screen will appear):
Login-AzureRmAccount

#Show your available Azure Subscriptions:
Get-AzureRmSubscription

#Connect to Azure Subscription that contains the ADLA Database:
Set-AzureRMContext -SubscriptionId 00000000-0000-0000-0000-000000000000

New-AzureRmDatalakeAnalyticsCatalogCredential -AccountName "ContosoADLAAccount" °
-DatabaseName "ContosoADLADB" ~

-CredentialName "ContosoAzureSQLDB_Secret" °

-Credential (Get-Credential) °

-DatabaseHost "ContosoSQLSVR.database.windows.net" -Port 1433

You can verify that these PowerShell commands created a new credential object in your ADLA SQL

database by navigating to your SQL database using the ADLA Data Explorer. Start by expanding the node for
your database and then expanding the Credentials node, as shown in Figure 7-20.

315

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Data Explorer : SearchMasterDB Se... # — 0O X

ntia

jbadla

jbadla.SearchMaster.SearchMasterDB_Se

v Storage accounts
- cret
» 3 brtadls (default)
< i DATABASE
Catalog SearchMaster
~ [#}jbadla
' USER NAME
» B master \NotUserName
» B SalesMaster
. . IDENTITY
» W SampleDBTutorials FE29ED8FACTAF2A7C299083754309E68267F538F(
¥ [SearchMaster
» Tables
Views
» Table Valued Functions
» Procedures
4 Assemblies

bt Credentials

SearchMasterDB_Secret

» External Data Sources

Figure 7-20. Viewing the Azure Data Lake Analytics SQL database credentials created by PowerShell

Create a CREDENTIAL with an IDENTITY that matches the
AzureRmDataLakeAnalyticsCatalogCredential Name

This is used in the PowerShell script (ContosoAzureSQLDB_Secret) in the ADLA Database using this
U-SQL query:

//Connect to ADLA Database

USE DATABASE YourADLADatabaseName;

//Create CREDENTIAL

//IDENTITY: ADLA SOL Catalog Secret, MUST MATCH name chosen in prior PowerShell script -»>
"ContosoAzureSQLDB_Secret"

CREATE CREDENTIAL IF NOT EXISTS [ContosoAzureSQLDB Secret] WITH USER_NAME = "
YourAzureSQLDB_Username ", IDENTITY = " YourAzureSQLDB_ Secret";

316

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Create Data Source in ADLA Database with a Reference to the Azure SQL Database
Use this U-SQL query:

// Create External Data Source on ADLA SQL DB
CREATE DATA SOURCE IF NOT EXISTS [ASQL_YOURDB]
FROM AZURESQLDB
WITH (PROVIDER STRING = "Initial Catalog= YourASQLDB;Trusted Connection=False;Encrypt=True",
CREDENTIAL = [ContosoAzureSQLDB Secret],
REMOTABLE_TYPES = (bool, byte, sbyte, short, ushort, int, uint, long, ulong, decimal,
float, double, string, DateTime)

)

Create an External Table in ADLA SQL Database Based on the Remote Data Source
Use this U-SQL query. Note that the ADLA SQL table schema needs to match the remote table schema
with corresponding field types.

// CREATE EXTERNAL TABLE in ADLA SQL database to represent the remote database table.

CREATE EXTERNAL TABLE DailySales (
OrderID int?,
SalesDate DateTime?,
Customer string,

Street string,
City string,
Region string,
State string,
Zip string,

SubTotal decimal?,
SalesTax decimal?,
SalesTotal decimal?
) FROM [ASQL_YOURDB] LOCATION "dbo.DailySales";

Query the New Federated External Azure SQL Database Table
Output the results to a text (.CSV) file using this U-SQL query statement:

@query = SELECT * FROM DailySales;

OUTPUT @query
TO "/Output/TestFederatedfile.csv"
USING Outputters.Csv();

At this point, you have successfully configured your environment according to the setup procedures and
prerequisites. You should now be able to issue U-SQL job queries against the remote external data store (an
Azure SQL database in this case) .

The ADLA Federated Query capability offers a huge advantage in productivity as it allows you to query
and compute remote data that lives virtually anywhere and then join that data with multiple additional
cloud sources.

317

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

At the time of this writing, the following external data sources are allowed in an ADLA Federated Query:

e AZURESQLDB: Specifies that the external source is a Microsoft Azure SQL Database
instance.

e AZURESQLDW: Specifies that the external source is a Microsoft Azure SQL Data
warehouse instance.

e SQLSERVER: Specifies that the external source is a Microsoft SQL Server instance
running in an accessible Microsoft Azure VM. Only SQL Server 2012 and newer
versions are supported.

Combining Row Sets

The Azure Data Lake U-SQL language provides a number of operators to combine row sets from various data
sources. Here are the current operators supported in the ADLA U-SQL programming language:

e LEFT OUTER JOIN
e LEFT INNER JOIN
e RIGHT INNER JOIN
e RIGHT OUTER JOIN
e FULL OUTER JOIN
e (CROSS JOIN

e LEFT SEMI JOIN

e RIGHT SEMI JOIN
e EXCEPT ALL

e EXCEPT DISTINCT
e INTERSECT ALL

e INTERSECT DISTINCT
e UNION ALL

e UNIONDISTINCT

Azure Portal Integration

Asyou have seen in this brief overview of ADLA, there are many tasks that can be accomplished right in the
Azure Portal. For example, you can accomplish all of these tasks right from the Azure Portal in order to be
(immediately) highly productive:

e Create a New ADLA account.

e Author U-SQL scripts. Open/Save.

e Submit U-SQL jobs.

e Cancel running jobs.

e Provision users who can submit ADLA jobs.
e Visualize usage statistics (compute hours).
e Visualize job management charts.

318

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

These tasks comprise the full lifecycle of U-SQL job execution from creation, to submission, to
monitoring, and finally to analyzing job results.

Of course, for the hard-core ADLA developers, Visual Studio and the Data Lake Tools for Visual Studio
may be a better fit. To get an idea of the capabilities of the Data Lake Tools for Visual Studio, take a look at the
following link.

Note Develop U-SQL scripts using Data Lake Tools for Visual Studio at this link: https://docs.
microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-
started

Big Data Jobs: Simplified Management and Administration

In addition to the web-based management capabilities available in the Azure Portal, there are additional
management and monitoring capabilities available for Azure Data Lake Store and Analytics.

e Task Automation via PowerShell Scripts: They enable you to create a highly
automated, Big Data data processing environment.

e Role-Based Access Control (RBAC) with Azure Active Directory (AAD): Provides
seamless user authentication and authorization integration services.

e Monitoring for Service Operations and Activity

e Job Management: The total number of jobs submitted as well as the number that
succeeded, failed, or were cancelled

e Job Compute Usage: The number of compute hours consumed by the jobs

U-SQL: Optimization Is Built-In

The ADLA U-SQL language is truly unique in that it has the following powerful optimization capabilities
built-in:

e Automatic “in-lining” of U-SQL expressions, which means that the whole U-SQL
script leads to a single execution model.

e Execution plan that is optimized “out-of-the-box” and without any user intervention
required.

e Automatic per-job and user-driven parallelization optimizations.

e Detailed visibility into the U-SQL job execution steps, for debugging and
optimization purposes.

¢ Heat map functionality to help identify performance bottlenecks.

Implementing ADLA in the Reference Implementation

Now that you have a solid background of the features and capabilities of ADLA and the U-SQL programming
language, you will put this knowledge to use by implementing a few more key pieces of the reference
implementation.

319

https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started
https://docs.microsoft.com/en-us/azure/data-lake-analytics/data-lake-analytics-data-lake-tools-get-started

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

As a quick refresher, Figure 7-21 illustrates the “big picture” when it comes to the reference
implementation and the role that ADLA plays in the implementation of this architecture.

| 10T Hub

v
[~
==

Stream Analytics

“ @&

ibseription group

Figure 7-21. Data Lake Analytics role in the reference implementation architecture

As can be seen in Figure 7-21, you'll draw upon our key lessons from Chapter 6 (Data Factory) and
Chapter 7 (Data Lake Analytics) to continue with the data movement and transformation activities for the
reference application in this chapter.

Specifically, in this next section, you will be processing the data that was moved to the Azure Data Lake
Store from Azure Blob storage (via an Azure Data Factory job), which represents the incoming IoT streaming
data.

You will then join this raw, incoming, IoT data with the results of the Azure Machine Learning Web
service calls that were made real-time during the Stream Analytics ingestion job and then persisted to Azure
Blob storage. This is the persisted copy of the “hot” data path that checked the team member’s health. The
“hot” output path destination defined in Chapter 5 was for Power BI; we also persisted the output to Azure
blob Storage for a more permanent record of the real-time streaming results that were processed with
Machine Learning Web Service calls.

PLANNING THE DATA SOURCES IN AZURE DATA LAKE

The goal in this section is to identify the input files (.CSV) necessary to create a consolidated SQL Azure
Data Lake Analytics (ADLA) table that combines the following data sources:

1. Historical loT Hub Streaming Data.

a. JOIN Keys: userid, timestamp.

320

http://dx.doi.org/10.1007/978-1-4842-2650-6_6
http://dx.doi.org/10.1007/978-1-4842-2650-6_7
http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

2. Historical loT Hub Machine Learning Web Service Call Results.
a. JOIN Keys: userid, timestamp.

3. Reference Data Team Member Company Affiliation.
a. JOIN Keys: userid, id.

In the existing reference implementation, all three of these files were created in Chapters 5 and 6 when
we covered the topics of Azure Stream Analytics and Azure Data Factory.

The JOIN Keys under each file represent the keys that we will use to create logical JOINs between these
two tables of data in order to combine the records together and thereby enrich and enhance the data by
combining these data sources together.

The JOIN with the reference data is critical so that we can match the records (by user ID) with the
appropriate business entity based on the contents of the “companyname” column. We will then use this
data to create individual outputs that will, in turn, be used to populate individual Azure SQL Databases
by business entity.

By exposing the data as an Azure SQL database to each Business Entity, we can fully enable a
“self-service” Business Intelligence (Bl) experience. An additional benefit is that the Azure SQL database
data is completely separated and can be further secured to reduce the legal risks of accidental data
exposure to other Business Entities.

Note that in this scenario, our goal is to create a very “wide” data record that is highly denormalized to
help improve the read performance. This can also enable a much easier and richer reporting experience,
as there is no need for many joins on supplemental tables.

The first two files (Historical IOT Hub*.csv) were created as the result of the Stream Analytics job
that persisted the incoming data streams into hot, warm, and cold data output storage paths.

The Historical loT Hub Streaming Data files were captured as part of the “cold path” that output all of
the sensor event messages sent to the loT Hub in real time. The Stream Analytics job persisted this
output directly to files in an Azure blob storage container.

The Historical loT Hub Machine Learning Web Service Call results files were generated as part of the
“hot path” that also populated a Power Bl dataset for exposing real-time dashboard monitoring of team
members health while on the job. This data contains all of the input parameters and associated Machine
Learning (ML) Web Service Call results that were returned in real time, as each team member’s sensor
data was being processed by the Azure Stream Analytics job.

The purpose of the Machine Learning Web Service calls is to predict (in real-time) if a team member
was at a point of physical exhaustion or fatigue that could result in a higher chance of a work-related
accident. We cover the details behind developing the Machine Learning model and exposing it as an
easily consumable web service in the next chapter.

The Reference Data files were created as the result of the Azure Data Factory Job to update the
Reference data, which, in turn, was used by the Azure Stream Analytics job as an “input” for reference
data that could be joined to the incoming streaming data.

321

http://dx.doi.org/10.1007/978-1-4842-2650-6_5
http://dx.doi.org/10.1007/978-1-4842-2650-6_6

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

OVERVIEW OF TASKS TO ACCOMPLISH

In this section, we outline the tasks that you will need to accomplish. The goal is to populate an
individual Azure SQL Database (by Business Entity) with the combined information from the previous
files. These data represent the historical view of all of the sensor data recorded for a business entity’s
individual team members along with the results of Machine Learning Web Service calls.

The data could be used for several purposes, including:

e Enhance Team Member Feedback: Provide historical analysis to help create an
additional feedback loop (based on the physical sensor readings) to help infer and
correlate “causality” surrounding daily events. Positive outcomes include noting any
health-related improvement plans or behavior modifications.

» (Operations Auditing: As a means of providing further operational, legal, or medical
background and analysis. This data could be considered highly critical and would be
analogous to a “black box” recorder: in the unlikely event that an incident should occur.

e Prediction Model Enhancement. To help provide a feedback loop to further enhance the
Machine Learning prediction model for future model refinements and enhancements
based on real-world data updates.

The tasks you will accomplish in the next section include the following:

1. Modify Data Factory job called CopyFromBlobToDatalLake to include the three
files to be moved into Data Lake.

2. Create and test new Azure Data Lake CSV Extract Scripts. Test extraction logic
for all three files for proper field parsing and field type assignments.

e Test Extract 1: 10T Hub streaming data

e Test Extract 2: 10T Hub streaming Machine Learning Web Service
results data

e Test Extract 3: Team reference data

3. Create a new Azure Data Lake Analytics (ADLA) database and table. Populate a
new table based on JOIN results from the three extract files.

4. Create separate extract files (one for each business entity) to hold the data
extracted from the newly populated ADLA Database table.

5. Create separate Azure SQL databases (one for each business entity) to hold
the data extracted from the ADLA database.

6. Create an Azure Data Factory job to automatically populate the Azure SQL
databases based on SQL extracts (by business entity) from the ADLA database.

Now that we have outlined the plan, it's time to get started.

322

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

MODIFY AZURE DATA FACTORY JOB:
“COPYFROMBLOBTODATALAKE”

In this section, we walk through modifying the existing Data Factory pipeline named
CopyFromBlobToDataLake.

Basically, we need to add two more copy activities to the pipeline in order to move these two files to
Azure Data Lake:

e Historical lIoT Hub Streaming Data Machine Learning Web Service Call Results from
“hot” path.

e Team Member Reference Data Team Member Company Affiliation.

The easiest way to do this is to navigate to the existing Azure Data Factory Job, called
CopyFromBlobToDatalake, and then select the option for Copy Data (PREVIEW) as shown in
Figure 7-22.

Actions
e e
W Author and '1 Copy data =2\ Monitor &
¥ deploy ':! D (PREVIEW) _/ Manage
A : Metrics and
b &/ Sample pipelines % » Diagram m apétations
i

Figure 7-22. Azure Data Factory Copy Data option

Selecting this option will allow you to easily add copy functionality to the existing Data Factory Pipeline
Copy job.

Walk through the steps in the Azure data Factory Copy Data PREVIEW Wizard to create the copy job for
the first additional file we need—the Historical loT Hub Streaming Data Machine Learning Web Service
Call Results. Here is a high-level outline of the input and outputs that are required to create this new
copy pipeline.

323

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

New Copy Job: Historical loT Hub Streaming Data Machine Learning Web Service Call Results:
¢ INPUT Dataset (Blob):

e These files will be found in a Blob container named streamingmldata and will be
generated under a folder structure of Year/Month/Day/Hour.

e OUTPUT Dataset (Data Lake):

e Set the output data set to point to the file name of the form StreamingMLResults
DataFile{year}{month}{day}{hour}.csv.

Next, add another copy job to the existing Azure Data Factory Pipeline job to copy the second data file,
the Team Member Reference Data .CSV file.

Again, we will use the Copy Data Wizard to make it fast and easy. Refer to the following input and output
dataset guidance for locating and replicating your data according to the reference implementation.

Here is a high-level outline of the input and outputs that are required to create this new “copy” pipeline.
New Copy Job: Team Member Reference Data:
e INPUT Dataset (Blob):

e These files will be found in a Blob container named refdata-team and will be
generated under a file named "TeamReferenceData" + "{year}{month}{day}

{hour}"+ ".csv".

¢ Note that the file generations will include the extension of {year}{month}{day}
{hour} to the file name.

e OUTPUT Dataset (Data Lake):

e Set the output data set to point to the folder named streamingmldata.
The file name will be "TeamReferenceData" + "{year}{month}{day}

{hour}" + ".csv".

At this point, we have successfully modified our Azure Data Factory Pipeline job to copy two additional
files into Azure Data Lake for building the master historical Machine Learning Analysis ADLA SQL table.

The last step is to run the updated Data Factory Copy jobs and actually move the data files from Azure
Blob Storage to Azure Data Lake.

CREATE AND TEST NEW AZURE DATA LAKE CSV EXTRACT SCRIPTS
FOR THREE INPUT FILES

This section focuses on reading the three .CSV files we copied into Azure Data Lake from Azure Blob
Storage.

In order to simplify the development experience, we will create a separate ADLA job for individually
testing the extraction of each of the three files. For each file, we will simply test our parsing logic by
simply reading the file and then outputting it.

To get started, navigate to your Azure Data Lake Account in the Azure Portal, and then click on the +
New Job icon.

324

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

At this point, you can name your new job “TEST EXTRACT of STREAMING DATA CSV File” and then paste

the contents of this code into that file.

@streamingdata =
EXTRACT
userid string,
age int,
height int,
weight int,

heartratebpm int,

breathingrate double,

temperature double,
steps int,
velocity double,
altitude int,

ventilization double,

activity double,

cadence double,
speed int,

hib double,
heartrateredzone
heartratevariability
status int,

id string,

deviceid string,
messagetype int,

longitude double,
latitude double,
timestamp string,

eventprocessedutctime

partitionid int,

eventenqueuedutctime string,

firstname string,
lastname string,
username string,

utype int,
phone string,
email string,
gender int,
race int

double,

string,

FROM "/streamingdata/2016/StreamingResultsDailyFile{*}.csv"

USING Extractors.Csv();

OUTPUT @streamingdata

TO "/output/TESTStreamingResultsDailyFile20161222.csv"

USING Outputters.Csv();

325

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Note that the purpose of this script is for testing purposes only; it's okay if some aspects are hard-
coded. Select Save As to download a copy locally and save the script. Submit the job and check for the
expected outputs. Correct any errors and re-submit the job until you have success.

When working with ADLA U-SQL scripts, it is often better to break things up into smaller chunks of code,
rather than attempt to debug a larger and often more complicated script.

Make sure the first file extract is working correctly before advancing to coding the next two file extractions.

Tip Depending on how your environment is configured, you may notice quite a few .CSV files that are
uniquely generated and stored under recursive folder structures.

The key to processing this type of scenario is to use a “wildcard” extension when naming the input file. In
ADLA U-SQL scripts that is accomplished by using the {*} notation. For example, you can use the file name of
DailySales{*}.csv to include allfiles that start with the name DailySales and end with a .CSV file extension.

At this point, you can rename your existing job “TEST EXTRACT of STREAMING ML DATA CSV File” and
then paste this code into the file.

// @streamingMLdata
@streamingmldata =
EXTRACT

userid string,
timestamp string,
eventprocessedutctime string,
partitionid int,
eventenqueuedutctime string,
breathingrate double,
temperature double,
ventilization string,
activity double,
cadence double,
heartratebpm int,
velocity double,
speed int,
hib double,
heartrateredzone double,
heartratevariability double,
scored_labels string,
scored_prob double

FROM "/streamingmldata/2016/StreamingMLResultsDataFile{*}.csv"
USING Extractors.Csv();

OUTPUT @streamingmldata
TO "/output/TESTStreamingMLResultsDataFile20161222.csv"
USING Outputters.Csv();

326

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Select Save As to download a copy locally and save the script. When you are ready, submit the job and
check for the expected output results. Correct any errors and re-submit the job until you can generate a

complete output file.

For this job, you can rename your existing job “TEST EXTRACT of TEAM REFERENCE DATA CSV File” and
then paste this code into the new file.

// @ refdatateamdata
@refdatateamdata =
EXTRACT

authid
companyname
firstname
lastname
username
imageUrl
utype
addressi1
address?2
address3
city
state
zip
country
phone
email
linkedin
facebook
twitter
blog
age
height
weight
gender
race
longitude
latitude
id
cachettl
_rid
_self
_etag
_attachments
_ts

string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
string,
int,
double,
double,
int,
int,
double,
double,
string,
string,
string,
string,
string,
string,
string

FROM "/refdata-team/TeamReferenceData{*}.csv"

USING Extractors.Csv();

327

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

OUTPUT @refdatateamdata
TO "/output/TESTTeamReferenceData20161222.csv"
USING Outputters.Csv();

Select Save As to download a copy locally and save the script. When you are ready, submit the job and
check for the expected output results. Correct any errors and re-submit the job until you can generate a
complete output file.

At this point, you have successfully verified the three input files, and you are now ready to JOIN them to
populate an ADLA database and table.

CREATE NEW AZURE DATA LAKE ANALYTICS (ADLA) DATABASE
AND POPULATE NEW TABLE BASED ON JOIN RESULTS FROM
THE THREE EXTRACTED FILES

This step involves creating a new U-SQL job that will combine the three test extract scripts you created
in the previous step to create a series of JOINs among the datasets. The job will then create an Azure
Data Lake database, and then you will then automatically populate a new ADLA SQL table with the
results of the JOIN operations.

Note that at the time of this writing, there is no UPDATE or MERGE support available in the ADLA U-SQL
language for updating SQL tables. Therefore, you will usually issue DROP and CREATE U-SQL commands
against your ADLA SQL tables in order to accomplish UPDATE and MERGE operations.

Note also that U-SQL provides common join operators such as INNER JOIN, LEFT/RIGHT/FULL OUTER
JOIN, and SEMI JOIN to join not only ADLA SQL tables but also any row sets (even those produced from
files) or external federated data sources.

For reference purposes, here are the most common types of JOIN operations and the underlying logic
for matching records that they employ:

e [EFT JOIN: Return all rows from the left table and the matched rows from the right
table.

e RIGHT JOIN: Return all rows from the right table and the matched rows from the left
table.

e INNER JOIN: Return all rows when there is at least one match in both tables.
e FULL JOIN: Return all rows when there is a match in one of the tables.

For this job, you can rename your existing job to “EXTRACT All 3 Files and JOIN into ADLA Table”.
This task results in a rather long script.

You'll start by consolidating the three previous U-SQL extract scripts into a single script.

You will then paste the following code to implement the JOIN operations, create the ADLA database, and
then output the JOIN into a new ADLA SQL table.

328

//(1) JOIN the streaming data with the ML Results data

@joindatal =
SELECT

S =SS 0L nNnnNnNnnnNnnNnNnnnNnnnnnunn»nnn»nnnon

.userid,

.age,

.height,

.weight,
.heartratebpm,
.breathingrate,
.temperature,
.steps,

.velocity,
.altitude,
.ventilization,
.activity,
.cadence,

.speed,

.hib,
.heartrateredzone,
.heartratevariability,
.status,

.id,

.deviceid,
.messagetype,
.longitude,
.latitude,
.timestamp,
.eventprocessedutctime,
.partitionid,
.eventenqueuedutctime,
.firstname,
.lastname,
.username,

.utype,

.phone,

.email,

.gender,

.Tace,

.mluserid,
.mltimestamp,
.scoredlabels,
.scoredprob

FROM @streamingdata AS s
LEFT JOIN @streamingmldata AS m

ON s.timestamp ==

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

m.mltimestamp

AND s.userid == m.mluserid;

329

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

//(2) JOIN the NEW streaming data + ML data by USER to GET the Associated COMPANY
@joindata2 =

SELECT
.userid,
.age,
.height,
.weight,
.heartratebpm,
.breathingrate,
.temperature,
.steps,
.velocity,
.altitude,
.ventilization,
.activity,
.cadence,
.speed,
.hib,
.heartrateredzone,
.heartratevariability,
.status,
.id,
.deviceid,
.messagetype,
.longitude,
.latitude,
.timestamp,
.eventprocessedutctime,
.partitionid,
.eventenqueuedutctime,
.firstname,
.lastname,
.username,
.utype,
.phone,
.email,
.gender,
.mluserid,
.mltimestamp,
.scoredlabels,
.scoredprob,
.Tace,
.companyname,
.rid

Lo S o SO G PRy G PRy G PRy G PRy G Ay G PRy S PRy G PRy G PRy G PRy G Ay G Ay G PRy G PRy G PRy G PRy G Ry G Ay G PRy G PRy G Py G PRy G Ay G Ay G PRy G PRy G PRy G Ay G Py G Ay B PRl G P G Py G P G P S Py G PR G P G Py

FROM @joindatal AS j
LEFT JOIN @refdatateamdata AS r
ON j.userid == r.rid;

OUTPUT @joindata2
TO "/output/SQLJoinTestResults.csv"
USING Outputters.Csv();

330

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

DROP DATABASE IF EXISTS IOTStreamingDataMLHistoryDB;
CREATE DATABASE IOTStreamingDataMLHistoryDB;
USE DATABASE IOTStreamingDataMLHistoryDB;

CREATE TABLE StreamingDataMLHistory(
INDEX sl idx CLUSTERED (userid ASC)
PARTITIONED BY HASH (userid))
AS SELECT * FROM @joindata2 AS S; // Note: Automatic Table Schema
generation

As before, select Save As to download a copy of the U-SQL script locally and then save the script.

When you are ready, submit the job and check for the expected output results in the ADLA SQL
database. Correct any errors and re-submit the job until you can generate a successfully populated
ADLA SQL table.

Note that the last statement in the U-SQL script issues a CREATE TABLE command that is populated
from a SELECT statement.

The huge benefit here is that the ADLA Table Schema is implicitly inferred (column names and types)
from the prior U-SQL .csv data file extraction code. This negates the need to predefine the ADLA SQL
table layout before it is populated.

CREATE SEPARATE EXTRACT FILES (ONE FOR EACH BUSINESS
ENTITY) TO HOLD THE DATA EXTRACTED FROM THE NEWLY
POPULATED AZURE DATA LAKE ANALYTICS DATABASE TABLE

In this step, you simply create separate .CSV file exports (one per business entity) from the newly
populated ADLA database table.

To get started, navigate to your Azure Data Lake account in the Azure Portal, click on the +New Job
icon, and then paste this code into the new job window:

//EXPORT data from ADLA Database Table to .CSV files by Business Entity

// Export #1 - WigiTech
@table1l = SELECT * FROM [IOTStreamingDataMLHistoryDB].[dbo].[StreamingDataMLHistory]
WHERE companyname =="WigiTech";

OUTPUT @table1l
TO "/output/StreamingDataMLHistory-WigiTech.Csv"
USING Outputters.Csv();

// Export #2 - Tall Towers

@table2 = SELECT * FROM [IOTStreamingDataMLHistoryDB].[dbo].[StreamingDataMLHistory]
WHERE companyname =="Tall Towers";

331

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

OUTPUT @table2
TO "/output/StreamingDataMLHistory-Tall-Towers.Csv"
USING Outputters.Csv();

// Export #3 - The Complicated Badger
@table3 = SELECT * FROM [IOTStreamingDataMLHistoryDB].[dbo].[StreamingDataMLHistory]
WHERE companyname =="The Complicated Badger";

OUTPUT @table3
TO "/output/StreamingDataMLHistory-The-Complicated-Badger.Csv"
USING Outputters.Csv();

Click on the Save As icon to save the U-SQL script. Then submit the job and check for the creation of the
.CSV output result files.

CREATE AZURE SQL DATABASES AND TABLES (ONE FOR EACH
BUSINESS ENTITY) TO HOLD THE DATA EXTRACTED FROM THE
ADLA DATABASE TABLE

The next step is to create a new Azure SQL database and SQL table to hold the information that we will
extract from the ADLA SQL table that we populated from these three CSV text files:

e Historical loT Hub Streaming Data
e Historical IoT Hub Machine Learning Web Service Call Results
e Reference Data Team Member Company Affiliation

In this exercise, you’ll perform a one-time creation of a new Azure SQL database and a new SQL table
for each of the three business entities in the reference implementation.

Each of these databases will contain the merged dataset results (for one of the business entities), where
you merged the three files into an ADLA SQL table.

To complete this task, you need the following prerequisites:

e Azure SQL Server Database information, such as server, user, and password
credentials.

e Azure SQL Server firewall ports opened-up to allow your client IP address to
information.

e SQL Server Management Studio (SSMS) or Visual Studio Server Explorer to run the
Transact-SQL scripts to create the three Azure SQL databases and tables.

Note Download SQL Server Management Studio (SSMS): https://msdn.microsoft.com/en-us/library/
mt238290.aspx.

332

https://msdn.microsoft.com/en-us/library/mt238290.aspx
https://msdn.microsoft.com/en-us/library/mt238290.aspx

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Once you have established connectivity to your Azure SQL Server database using either SQL Server
Management Studio or Visual Studio Server Explorer, open a new Query window and enter this SQL
script:

USE [master]
G0

DROP DATABASE IF EXISTS [IOTDataMLHistory-WigiTech]
GO

CREATE DATABASE [IOTDataMLHistory-WigiTech]
GO

USE [IOTDataMLHistory-WigiTech]
GO

DROP TABLE IF EXISTS [dbo].[IOTDataMLHistory]
GO

CREATE TABLE [dbo].[IOTDataMLHistory](
[UserId] [char](256) NOT NULL,
[Age] [float] NOT NULL,
[Height] [float] NOT NULL,
[Weight] [float] NOT NULL,
[HeartRateBPM] [float] NOT NULL,
[BreathingRate] [float] NOT NULL,
[Temperature] [float] NOT NULL,
[Steps] [float] NOT NULL,
[Velocity] [float] NOT NULL,
[Altitude] [float] NOT NULL,
[Ventilization] [float] NOT NULL,
[Activity] [float] NOT NULL,
[Cadence] [float] NOT NULL,
[Speed] [float] NOT NULL,
[HIB] [float] NOT NULL,
[HeartRateRedZone] [float] NOT NULL,
[HeartrateVariability] [float] NOT NULL,
[Status] [int] NOT NULL,
[1d] [char](256) NOT NULL,
[Deviceld] [char](256) NOT NULL,
[MessageType] [int] NOT NULL,
[Longitude] [float] NOT NULL,
[Latitude] [float] NOT NULL,
[Timestamp] [datetime2](7) NOT NULL,
[EventProcessedUtcTime] [datetime2](7) NOT NULL,
[PartitionId] [int] NOT NULL,
[EventEnqueuedUtcTime] [datetime2](7) NOT NULL,
[FirstName] [char](256) NOT NULL,
[LastName] [char](256) NOT NULL,
[UserName] [char](256) NOT NULL,
[UType] [char](256) NOT NULL,

333

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

[Phone] [char](256) NOT NULL,
[Email] [char](256) NOT NULL,
[Gender] [char](256) NOT NULL,
[MLUserid] [char](256) NOT NULL,
[MLTimestamp] [char](256) NOT NULL,
[ScoredLabels] [char](256) NOT NULL,
[ScoredProb] [float] NOT NULL,
[Race] [int] NOT NULL,
[CompanyName] [char](256) NOT NULL,
[Rid] [char](256) NOT NULL

)
GO

After running this script three times (modifying it to reflect each business entity), you will be ready to
populate the Azure SQL database tables by using an Azure Data Factory job.

CREATE AZURE DATA FACTORY JOB TO AUTOMATICALLY POPULATE
THE AZURE SQL DATABASES (BY BUSINESS ENTITY) USING THE SQL
QUERY EXTRACTIONS FROM THE AZURE DATA LAKE DATABASE

This last step will complete the data analysis and reporting journey by exposing the historical loT sensor
data and associated Machine Learning Web Service call results for consumption by the business entities
in the reference implementation scenario.

At this point, all the hard work has already been completed, and all you have to do is create an Azure
Data Factory job to select the data out of the ADLA SQL database, filter the results by business entity,
and then insert the data into the individual Azure SQL databases you created in the last step.

To get started via the Azure Portal, first navigate to your existing Azure resource group. Search for Data
Factory and then add a new Data Factory job, as shown in Figure 7-23.

Everything
Y Filter

O Data Factory x
Results

NAME £~ PUBLISHER e CATEGORY o
m Data Factory Microsoft VM Extensions

Figure 7-23. Adding a new Azure Data Factory job to a resource group

334

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Next, complete the Azure Data Factory Job configuration parameters, as shown in Figure 7-24.

New data factory

* Name @

PopulateAzureSQLDBs v

* Subscription

v
* Resource Group @
O Create new @ Use existing
brtwhdev v
* Location @
East US v

Figure 7-24. Azure Data Factory job parameters

Click on the Create icon, and then the new Data Factory job will be provisioned into your Azure Resource
Group after a few minutes.

After the new Data Factory job has been provisioned into your environment, navigate to the new Data
Factory job and select the Copy Data (PREVIEW) icon to launch the Copy Wizard.

Actions

m" Author and "I Copy data (% Monitor &
P deploy :!_i (PREVIEW) _/ Manage

g <\ Metrics and

) _[@] Sample pipelines =5 Diagram
@ PePP - 9 operations

Figure 7-25. Data Factory Copy Data Wizard

335

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Next, walk through the Copy Data Wizard to create a Data Factory pipeline job that will copy the data
from each individual .CSV file (one for each entity) to the appropriate Azure SQL database (which
varies by business entity). The SQL table name and scheme in each database is the same across all
databases.

Here are code fragments from a sample Azure Data Factory job to populate an Azure SQL Database for
WigiTech, based on a .CSV file exported from the Azure Data Lake Store.

"name": "Source-DatalakeStore-fog",
"properties": {
"hubName": "populateazuresqldbs hub",
"type": "AzureDatalakeStore",
"typeProperties”: {
"datalakeStoreUri": "https://brtadls.azuredatalakestore.net/webhdfs/v1",
"authorization": "FF¥xridkkkn
"SGSSiOnId" o Ikskskokokokskokokok ! ,
"subscriptionId": "<Your Subscription ID>",
"resourceGroupName": "brtwhdev"

"name": "Destination-SQLAzure-fog",
"properties": {
"hubName": "populateazuresqldbs_hub",
"type": "AzureSqlDatabase",
"typeProperties": {
"connectionString": "Data Source=brtsqlserverdev.database.
windows.net;Initial Catalog=I0TDataMLHistory-WigiTech;Integrated
Security=False;User ID=<Your User ID>;Password=<Your Password>;
Connect Timeout=30;Encrypt=True"

336

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

"name": "InputDataset-fog",
"properties": {
"structure": [

{

b

"name" :
"type":

"name" :
"type":

"name":
"type":

"name" :
“type" :

"name":
"type":

"name" :
"type":

"name" :

type":

"name" :
"type":

"name":
"type":

"name":
lltypell :

"name" :
"type":

"Columno",
"String"

"Column1",
"Int64"

"Column2",
"Int64"

"Column3",
||Int64n

"Columng",
"Int64"

"Columns",
"Double"

"Columné",
"Double”

"Column7",
"Int64"

"Column8",
"Double”

"Column9",
lIInt64ll

"Columni0",
"Double"

337

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

{
"name": "Columni1",
"type": "Double"

b

{
"name": "Columni2",
"type": "Int64"

1

{
"name": "Columni3",
"type": "Int64"

}

{
"name": "Columni4",
"type": "Int64"

1

{
"name": "Columnis",
"type": "Int64"

1

{
"name": "Columni6",
"type": "Int64"

b

{
"name": "Columni7",
"type": "Int64"

1

{
"name": "Columni8",
"type": "String"

I8

{
"name": "Column19",
"type": "String"

b

{
"name": "Column20",
"type": "Int64"

1

{
"name": "Column21",
"type": "Double"

b

{
"name": "Column22",
"type": "Double"

b

{
"name": "Column23",
"type": "Datetime"

}

338

b

"name" :
"type":

"name" :
lltypell :

"name" :
"type":

"name" :
"type":

"name":

"type":

"name" :
“type" :

"name" :
"type":

"name" :
"type":

"name" :

type":

"name" :
"type":

"name" :
"type":

"name":
lltypell :

"name" :
"type":

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

"Column24",
"Datetime"

"Column2s",
lIInt64ll

"Column26",
"Datetime"

"Column27",
"String"

"Column28",
"String"

"Column29",
"String"

"Column30"”,
"Int64"

"Column31",
"Int64"

"Column32",
"String"

"Column33",
"Int64"

"Column34"”,
"String"

"Column3s",
"Datetime"

"Column36",
"String"

339

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

{
"name": "Column37",
"type": "Double"

b

{
"name": "Column38",
"type": "Int64"

b

{
"name": "Column39",
"type": "String"

b

{

"name": "Column40",
"type": "String"

1,
"published": false,
"type": "AzureDatalakeStore",
"linkedServiceName": "Source-DatalakeStore-fog",
"typeProperties”: {
"fileName": "StreamingDataMLHistory-WigiTech.Csv",
"folderPath": "output/",
"format": {
"type": "TextFormat",
"columnDelimiter": ",",
"quoteChar": "\""
}
1,
"availability": {
"frequency": "Day",
"interval": 1

}s
"external": true,
"policy": {}

340

"name": "OutputDataset-fog",
"properties": {
"structure": [

{

b

"name" :
"type":

"name" :
"type":

"name":
"type":

"name" :
“type" :

"name":
"type":

"name" :
"type":

"name" :

type":

"name" :
"type":

"name":
"type":

"name":
lltypell :

"name" :
"type":

"UserId",
"String"

"Age",
"Double"

"Height",
"Double"

"Weight",
"Double"

"HeartRateBPM",
"Double"

"BreathingRate",

"Double"

"Temperature",
"Double"

"Steps”,
"Double”

"Velocity",
"Double"

"Altitude",
"Double”

"Ventilization",

"Double"”

CHAPTER 7

ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

341

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

{
"name": "Activity",
"type": "Double"

15

{
"name": "Cadence",
"type": "Double"

1

{
"name": "Speed",
"type": "Double"

1

{
"name": "HIB",
"type": "Double"

1

{
"name": "HeartRateRedZone",
"type": "Double"

1

{
"name": "HeartrateVariability",
"type": "Double"

}

{
"name": "Status",
"type": "Int32"

1

{
"name": "Id",
"type": "String"

}5

{
"name": "Deviceld",
"type": "String"

1

{
"name": "MessageType",
"type": "Int32"

1

{
"name": "Longitude",
"type": "Double"

15

{
"name": "Latitude",
"type": "Double"

1

{
"name": "Timestamp",
"type": "Datetime"

b

342

b

"name" :
"type":

"name" :
lltypell :

"name" :
"type":

"name" :
"type":

"name":
"type":

"name" :
“type" :

"name" :
"type":

"name" :
"type":

"name" :

type":

"name" :
"type":

"name" :
"type":

"name":
lltypell :

"name" :
"type":

CHAPTER 7

"EventProcessedUtcTime",
"Datetime"

"PartitionId",
llInt32u

"EventEnqueuedUtcTime",
"Datetime"”

"FirstName",
"String"

"LastName",
"String"

"UserName",
"String"

"UType",
"String"

"Phone",
"String"

"Email",
"String"

"Gender",
"String"

"MLUserid",
"String"

"MLTimestamp",
"String"

"ScoredLabels",
"String"

ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

343

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

{
"name": "ScoredProb",
"type": "Double"

}s

{
"name": "Race",
"type": "Int32"

b

{
"name": "CompanyName",
"type": "String"

b

{

"name": "Rid",
"type": "String"

1,
"published": false,

"type": "AzureSqlTable",
"linkedServiceName": "Destination-SQLAzure-fog",
"typeProperties”: {
"tableName": "[dbo].[IOTDataMLHistory]"
3

"availability": {
"frequency": "Day",
"interval": 1

I8
"external": false,
"policy": {}
}
}
{

"name": "CopyPipeline-fog",
"properties": {
"activities": [
{
"type": "Copy",
"typeProperties": {
"source": {
"type": "AzureDatalakeStoreSource",
"recursive": true

b

"sink": {
"type": "SqlSink",
"writeBatchSize": o,
"writeBatchTimeout": "00:00:00"

b

344

1,

}

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

"translator": {
"type": "TabularTranslator",
"columnMappings": "ColumnO:UserId,Columni:Age,Column2:Height,
Column3:Weight,Column4:HeartRateBPM,Column5:BreathingRate, Col
umn6: Temperature, Column7:Steps,Column8:Velocity,Column9:Altit
ude,Column10:Ventilization,Columni1:Activity,Columni2:Cadence,
Column13:Speed,Column14:HIB,Column15:HeartRateRedZone,Column
16:HeartrateVariability,Column17:Status,Column18:Id,Column19:
Deviceld,Column20:MessageType,Column21:Longitude,Column22:Lat
itude,Column23:Timestamp,Column24:EventProcessedUtcTime,Colum
n25:PartitionId,Column26:EventEnqueuedUtcTime,Column27:First
Name,Column28:LastName,Column29:UserName,Column30:UType,Colum
n31:Phone,Column32:Email,Column33:Gender,Column34:MLUserid, Co
lumn35:MLTimestamp,Column36:ScoredLabels,Column37:ScoredProb,
Column38:Race,Column39:CompanyName, Column40:Rid"

}
1
"inputs": [
{
"name": "InputDataset-fog"
}
1,
"outputs": [
{
"name": "OutputDataset-fog"
}
1,
"policy": {
"timeout": "1.00:00:00",
"concurrency": 1,
"executionPriorityOrder": "NewestFirst",
"style": "StartOfInterval”,
"retry": 3,
"longRetry": o,
"longRetryInterval”: "00:00:00"
)5

"scheduler": {
"frequency": "Day",
"interval": 1

1
"name": "Activity-0-Data lake path_ output_->[dbo] [IOTDataMLHistory]"

"start": "2016-12-23703:32:59.874Z",
"end": "2099-12-31T05:00:00Z",
"isPaused": false,

"hubName": "populateazuresqldbs hub",
"pipelineMode": "Scheduled"

345

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Once you have finished creating the new Azure Data Factory job to copy the CSV file data into the Azure

SQL databases, you can easily verify the output. Open SQL Server Management Studio or Visual Studio

Server Explorer and run a SQL query over the newly populated SQL table. Figure 7-26 illustrates the
results of a SQL query against the I0TDataMLHistory SQL table.

Ot Exploes:
Connect- % % m 704

3 Dotabases
713 Systemn Dstebrses
= Tables
23 Syvten Tablies
73 b JOTDataMLHistory
3 Views
£ 2 Synonyms
3 Programmabity
1 Extended Events
£ 3 Storsge
 C Socurity
0 iothuibteleenetry
11§ opsdash
4 (3 telematry
i Ca Seouriny

- B x

= s brtsglsenverdow databasewndows. net (504

e lETE T B R R TR el CHEATE ATURE SOL rtadminder (1001 -
USE [IOTDataMLMistory-WigiTech] *
a0 =
SELECT [Userld)

«[age]

< [Height]

o [Weight]

» [HeartRateBPd]
-[BresthingRate]
+[Terperature)
«[Steps)
[velocity]
SlAlvitude]
«[ventilization]
o[activity]
[Cagence]

< [Speed]

+[HIB]

. [HeartRateRedZone]
»[Heartratavarisbility]
»[Status]

0% -

2 Resats 3 Mastages
Liserts Age Mgl Wegh! HesdPaeBPM BrosthingRaty Tempeaiue Soaps Velaty A Speed HIB HesdRakl o

1 [eoMcifaass0AT Fst01Am [0 0 B m 1ISTMIIST AGATOXISIIMD @ MOCSTMWITISMT O TBBI000848 0 1400TEIED 3 5 0 o

7 EEMNHONOS0IEIAEERIEE 0 0 O 5 7 WHWIETIN 0 O] 00 [[] [I

3 EOMICHMOMGASSDIETIER0R0N 0 0 O 51 7 WO 0 O] 000]] o0 0

4 BAMICHMOMU4SSDANTIMMMONAE O O O =] MW 0 O [2000 [] o 0 o

5 EEMMCIAOMOASSDEETACIER0NIED O 0 O 5 7 WM 0 O] 000 [] LI

& SOMMCMOMIASSD ST T3 0 0 o Bl 7 FIE0TIN 0 [o 00y o [Ll L

T AN Oa4SSOMITTRBMNONEE 0 0 O i T MW 0 O o 2000 [[o 0 0

& EEMIMKIOMGASSOBIETHBEN0NRS O D O 5 7 WEWIETIN 0 O] 000 (]] o 00

& BOMMCMGMASS0 ST Fe0ER0I2s 0 O e 5 7 S3E004ETIIN 0 o L] 000 L @ o LI

0 AN LaLSSOAISTRANONAD O 0 O L} T M 0 o o 2000 o [o 0 o

1 SEMIKIMAN0ASS0 SNT MBI 0 0 @ 5 T PEEONINETIIN 0 o L] 000 o L o L

12 E63M-GadS50-0ET Fenbitid i 0 0 o 5 7 WENNETIIN ¢ L L] nm L] L L] L

10 ML AIT RMN00S O 0 O il T MAEIMTIN 0 O o 3000 o o b 0 0

T ESIIN-GNASS0 BT MBRIES 0 0 O il 7 WERIETIN 0 O] 00]] [

15 G634 -Gaid4550-005] Fenbitidlda 0 0 L] 5 7 WEWNETIIN 0 L] L] wnm L] L] L] L]

16 SAMICH-Gatda S50 AT ReBbRONA O O L] Ll T SA80MWITIIN O L L] 000 L [o LI

17 GIOMIMGASS0 NI HBROUIBS 0 0 O il 7 W 0 O] 00]] ° 00

18 G634 -Gald4550-005T- Fenbitta1da 0 0 o # ’ PEWNTIIN O L] L] wnm o L] o L »

< »

& Query eaouted successfully. L B K Wigilech 000025 16909 rows

Figure 7-26. Verify import Azure SQL database using a SQL query in SQL Server Management Studio

At this point, you have completed all the tasks necessary to implement the Azure architecture for the
reference implementation, as illustrated in Figure 7-27.

346

CHAPTER 7 * ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

E :
[5
loT Hub

[
=

A —8,

i Stream Analytics Machine Learning

ml) &
Azure SQL H -
. database
| —d 4
! 10 . > B > y
5 B % : |ll|

il

Data Lake
Analytics

Data Factory fl\Jc“ul;TjiL

—8

Azure SQL
database

Storage blob Data Factory

Data Lake Store

! S0l Stretch

Database

WS ® O

Azure Resource Azure Security
subscription group Active Directory Azure Key Vault Canter

Figure 7-27. Azure architecture for the reference implementation

A final step in this process for a full production implementation would be to “lock down” the security
aspects of this solution by restricting users and user access to the Azure Data Lake Store and Azure SQL
databases via the Azure Portal.

Note See this link for more information: Security in Azure Data Lake Store: https://docs.microsoft.
com/en-us/azure/data-lake-store/data-lake-store-security-overview.

347

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Reference Implementation Summary

At this point in the construction of the reference implementation, we have successfully introduced the use of
Azure Data Lake and ADLA to provide additional large-scale, batch data processing and analysis capabilities.
One of the more unique and enabling aspects of ADLA applications, built as truly cloud-based
solutions, is that you only pay for the resources you consume. It is a pure “consumption-model” approach.
In the case of the reference implementation, the incremental Azure billing costs amount to just the costs
for the Data Lake Storage (storage consumed) and the ADLA (per job run) costs. This means you can just
focus on building and refining the data applications at hand and leave all the infrastructure provisioning, job
scheduling, deployment, scaling, and monitoring tasks to Microsoft Azure.
To summarize the progress so far, we provided data capture, analysis, and reporting capabilities by
business entity to help achieve the following goals:

e Provided a historical team health monitoring archival and analysis solution using
Azure Data Lake.

e Established a comprehensive, historical Machine Learning analysis dataset for
creating and refining team health predictions based upon actual or simulated
real-time sensor data.

e Enabled full regression analysis scenarios for analyzing and “re-playing” historical
events.

e Created the ability to repeat and fine-tune Machine Learning algorithms over the
historical data.

e Provided secure, individualized, “self-serve business intelligence” capabilities to
each business entity to connect, view, and extract their data. Power BI makes it easy
to automatically publish to the web or any mobile device. Chapter 9 explores this
topic further.

Summary

This chapter provided a high-level overview of Azure Data Lake Store (ADLS) and Azure Data Lake Analytics
(ADLA) and explored the rich set of complementary capabilities offered by both services.

The primary focus of these two cloud services is clearly handling Big Data at scale. One of the more
interesting aspects is the flexible and open-ended architecture that enables ingesting all types of data via
custom or out-of-the-box data extractors and output formatters.

Some of the key value propositions are discussed in the following sections.

Handles Virtually All Types of Data

U-SQL is the language of choice for creating ADLA and it can handle virtually all data ingestion scenarios.
e Unstructured, semi-structured, or structured data.
e Domain-specific user defined types using C#.
e U-SQL queries over Data Lake and Azure blobs.

e Federated Queries over Operational SQL stores and SQL DW, removing the
complexity and processing time requirements of traditional Extract-Transform-Load
(ETL) operations.

348

http://dx.doi.org/10.1007/978-1-4842-2650-6_9

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

Productive from Day One

The combination of Azure Data Lake Store, ADLA, and U-SQL make it super easy to become instantly
productive in the environment.

e Provides effortless scale and performance without the need to manually tune or
configure the environment.

e Provides one of best developer experiences throughout the development lifecycle for
both novices and experts.

e Allows developers to easily leverage existing skill sets with SQL and .NET.

e ADLA provides easy and powerful data extraction, preparation, and reporting
capabilities.

e Easyto use, built-in, text-based connectors for ingesting the most common data
formats like tab and comma-delimited text files.

e Simple and rich extensibility model for adding customer-specific data
transformations.

No Limits to Scale

Azure Data Lake Store offers virtually limitless storage capacity and the ADLA environment was built from
the ground up to handle some of the largest and complex distributed data processing scenarios in the
industry today.

e Scales on demand with no code changes required.
e Automatically parallelizes U-SQL and custom code jobs.

e Designed to process literally petabytes of data.

Enterprise Grade

Microsoft Azure leverages other common cloud services such as Azure Active Directory (AAD) to help create
a secure, integrated, and easily manageable Big Data cloud environment.

e Azure Data Lake Store offers virtually limitless storage capacity and the Azure
Managing, securing, sharing, and discovery of familiar data and code objects
(tables, functions, etc.)

e Role-based Authorization capabilities for ADLA SQL catalogs and storage accounts
using Azure Active Directory (AAD) integrated security.

e Auditing capabilities are exposed for monitoring of ADLA Catalog objects
(databases, tables, etc.).

Reference Implementation

This chapter demonstrates how easy it is to provision, prepare, develop, and publish large datasets that were
generated by IoT front-end applications.

349

CHAPTER 7 © ADVANCED ANALYTICS WITH AZURE DATA LAKE ANALYTICS

You saw how most tasks are accomplished via simple Azure service “configuration activities” vs. the
legacy method of doing things, which usually required a dedicated hardware environment, along with all of
the additional costs, maintenance, and overhead.

Just Scratching the Surface

It is important to note that we have really only just scratched the surface in terms of the coverage of ADLA
features and capabilities. There are many deeper additional topics to explore concerning the functionality
and features that are built-in and extensible to the U-SQL programming language and surrounding ADLA
services.

Suffice it to say that there are many use case scenarios can easily be implemented via the constructs
provided by this set of services for truly handling Big Data in the Azure cloud.

350

CHAPTER 8

Advanced Analytics Using
Machine Learning and R

This chapter explores the exciting new world of Machine Learning and predictive analytics. Machine
Learning is currently one of the most exciting technology topics in the IT industry today. With very good
reason, as it being used across almost every major industry segment and vertical today.

We are truly living in exciting times as three major trends are converging in the IT industry:

e BigData and the Internet of Things (IoT)
¢ Cloud computing and inexpensive cloud-based storage
e Business intelligence capabilities

Some would say that the combination of these forces are helping to usher in the fourth Industrial
Revolution. It has been predicted that artificial intelligence and Machine Learning (ML) capabilities
will be incorporated into an ever-increasing number of platforms, applications, and software services as
we approach the new few years. These new capabilities will enable a new generation of business and IT
professionals to take advantage of artificial intelligence and Machine Learning capabilities, all without
having to understand exactly how they work.

This creates an enormous opportunity for today’s developers and data scientists to help enable these
deep integration scenarios and capabilities with current and future software application offerings.

What Is Machine Learning?

Machine Learning can be defined simply as, “Computing systems that improve with experience”. There is an
old adage which captures the essence quite eloquently and succinctly—“The Past Predicts the Future” As we
explore the four major areas of Machine Learning algorithms, you will notice that three of them are based on
historical data, lending credence to this quote.

Understanding Machine Learning

To understand how Machine Learning works, it helps to compare and contrast it to a traditional approach
and highlight the differences. Figure 8-1 illustrates the difference between traditional and Machine Learning
approaches.

© Bob Familiar and Jeff Barnes 2017 351
B. Familiar and J. Barnes, Business in Real-Time Using Azure loT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_8

CHAPTER 8 * ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Traditional Programming:

Data —)
msmmms) Qutput
Program msss)

Machine Learning:

Data —)
=) Program

Outputs =)

Figure 8-1. Traditional programming versus Machine Learning programming models

In the world of traditional programming, developers supply data and develop computer programs in
order to produce a desired output. In this new world of Machine Learning, the focus is on supplying the
data, but also on enriching the data with the known outputs already defined. The computer then calculates
a program or Machine Learning “model” that can predict the outcome, within a range of certainty, based on
the input data.

One of the key points to emphasize here is the criticality of data input requirements for successful
Machine Learning algorithm development. The phrase “Data Equals Experience” is the new operating
mantra in the world of Machine Learning. More data is always better, and the rise of the cloud, inexpensive
storage, Big Data, and ubiquitous computing power, make this period in history truly empowering for
Machine Learning technologies at scale.

This leads us to a discussion of the two main types of Machine Learning algorithms:

e Supervised Learning: In this case, known outcomes are part of the computer training
datasets. When developing the model, the algorithms know exactly what the right
predictions should be, since those known outcomes are part of the input provided.

e Unsupervised Learning: In this case, the computer is only provided the data to
analyze, and the Machine Learning algorithms then attempt to find patterns,
associations, logical groupings, and relationships in the data.

These concepts are reinforced by the four major categories of Machine Learning algorithms:

e Classification: Relates to predicting whether an input data element fits into a
discrete category or type of thing. Typically a string or label is predicted. A common
application of this technique is binary classification, where the outcome is one of two
values, for instance, hot or cold, on or off, etc.

e This represents the classic “learn by example” method of teaching.

e Anexample is predicting what season a particular date of the year falls into
(spring, summer, fall, winter).

352

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

e Binary classification refers to predicting a result with only two potential
outcomes.

e Anexample is predicting whether something is Hot/Cold or On/Off.

e Stay tuned, as we will be using a variation of this algorithm in the reference
implementation later in the chapter.

Regression: Refers to predicting a continuous-valued outcome (a “real number”)
based on various attributes (known as “features”) that are provided as inputs.

e Agreat example of this algorithm is model that predicts the price of a new car
based on the make, model, and features.

Recommenders: This is one of the most common types of Machine Learning
algorithms in use today. Such algorithms provide a recommendation based on
known history, attributes, or feature similarities.

e Afew common examples of this type of algorithm are:

e The Amazon.comweb site and the personalized recommendations provided
as you shop and place items in the cart. The items displayed under the
section entitled “People who browsed this item also browsed these
items...” is a very powerful sales tool and accounts for 5-15% of their overall
web sales.

e Netflix is another great example of a popular recommender Machine
Learning algorithm implementation. By analyzing the prior video
viewing history, genre preferences, member recommendations,
online video services such as Netflix can provide a personalized movie
recommendation list that is highly accurate.

Clustering: These types of algorithms can analyze vast quantities of data and
summarily provide logical groupings, segmentation analysis, infer patterns, and
mark delineations in the data.

e Thisis an example of an unsupervised Machine Learning algorithm. This
category of algorithms enable users to “see the forest for the trees” if you will,
so that patterns and correlations can be established about the data. This is
especially valuable for datasets so large that a human could not possibly process
them all.

e One example of this type of algorithm is a sentiment analysis “word cloud,” as
illustrated in Figure 8-2.

e Inthis example, the hash tag #microsoft was sampled from live Twitter
feeds and then processed by several R ML packages to extract and analyze
the keywords in each tweet.

e This provides the words that appear. The font-size denotes how often
each word was used.

e Sentiment analysis was also performed on each tweet to determine
whether it was positive or negative. The color denotes the predicted
emotion.

353

CHAPTER 8 * ADVANCED ANALYTICS USING MACHINE LEARNING AND R

patmum ks
member
surpnse " hashtag
,_10 e
‘oundatan._- Imux

; surpnsedsurpnse
3. " thiswtf beyond '

centerm Sage DI ad Sa|d

@
will % amazed

Some%onnengg g[l']odoenr lekStart Scene
P milwaukees

woke lastyears

“ chowing 224 president e

mobile todayhe ever get sm Hh

funemployment
microsoft |etters i startup
jobsearch 'sadness ociymes

Figure 8-2. An example of a word cloud clustering algorithm Twitter sentiment analysis of #microsoft”

For those that may be new to the exciting field of data science, we have covered some of the primary
concepts such as “supervised” and “un-supervised” learning, and the four major categories of Machine
Learning algorithms, as shown in Figure 8-3.

Classification Regression Recommenders Clustering

Figure 8-3. The four major types of Machine Learning algorithms

Understanding these basic concepts provides the foundation for a deeper exploration of the fields of
data science, Machine Learning, artificial intelligence, and predictive analytics. Understanding how these
algorithms work and how they can best be leveraged is a key first step for those embarking on a “digital
transformation” and/or a Big Data journey.

354

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Brief History of Machine Learning

Today’s modern Machine Learning implementations were more closely aligned with the field of artificial
intelligence.

Early research that dates back to the 1940s predominately focused on the ability to mimic human
behavior. Back in 1943, Warren McCulloch and Walter Pitts created an early mathematical model for neural
network algorithms termed “threshold logic” This early research led to a focus on the application of neural
networks to help create “artificial intelligence” capabilities.

In the 1950s, Arthur Samuel from IBM created one of the world’s first computer programs that was able
to play Checkers against a human. One really exciting part of this early breakthrough was that Samuel found
that the computer algorithm was able to actually “learn” from previous game play and thereby improve over
time by learning and adapting to the opposing player’s strategy.

A great example can be found in the U.S. Postal Service. In the late 1990s, only about 10% of the U.S.
postal mail was able to be automatically sorted. This meant the rest had to be processed manually by
thousands of postal workers.

Fast-forward to today, where they are now able to automatically process about 98% of the U.S. mail
each day using Optical Character Recognition (OCR) technology to understand handwritten and printed
addresses of all shapes and sizes. It has been estimated that the U.S. Postal Service now processes 500
million unique pieces of mail every day.

With the rise of the Internet and the World Wide Web, e-commerce companies soon began to leverage
and refine Machine Learning and predictive analytics in order to influence web browsing and purchasing
behaviors. For example, web log analysis can provide a wealth of information about about customer search
patterns, order abandonment rates, advertising effectiveness, and more++. As has been previously noted,
Amazon and Netflix are well known and highly successful implementers of these technologies.

Industry Applications of Machine Learning

As can be seen from the examples, very large dividends arise when leveraging Machine Learning and
predictive analytics technologies. The potential financial rewards, combined with the rise of the cloud, are
a huge motivator for sponsoring continued research and development of these technologies to maximize
efficiencies across all kinds of industries.

Here is a list of examples and common use cases of Machine Learning technologies being applied
across several key industries today, such as retail, financial services, healthcare, and manufacturing:

e Retail
e Demand forecasting
e Loyalty programs
e Cross-sell and upsell
e (Customer acquisition
e Fraud detection
e Pricing strategy
e Personalization
e Lifetime customer value
e Product segmentation

e Store location demographics

355

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

e Supply chain management

e Inventory management
e Financial Services

e Customer churn

e Loyalty programs

e Cross-sell and upsell

e Customer acquisition

e Fraud detection

e Riskand compliance

e Loan defaults

e Personalization

e Lifetime customer value

e (all center optimization

e Pay for performance

e Healthcare
e Marketing mix optimization
e Patient acquisition
e Fraud detection
e Bill collection
e Population health
e Patient demographics
e Operational efficiency

e Pay for performance

e Manufacturing
e Demand forecasting
e Marketing mix optimization
e Pricing strategy
e Performance risk management
e Supply chain optimization
e Personalization
e Remote monitoring
e Predictive maintenance

e Asset management

356

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Horizontal Patterns Across Vertical Industries

In that list, you will note a few common themes, patterns, and use cases that emerge. The following list
denotes a few of these common use case scenarios that have many practical applications across most
vertical industries:

¢ Demand forecasting

e Loyalty programs

e Fraud detection

e Personalization

e Lifetime customer value

In today’s modern business environment, there are now many open source, academic, and commercial
software packages available that leverage various Machine Learning algorithms and models to help
enterprises succeed.

To that end, Microsoft has released a set of Azure Machine Learning templates that can be leveraged
across many of these vertical and horizontal scenarios:

e Predictive Maintenance: Predict physical machine failures based on past history.
e Customer Churn Prediction: Predict when a customer churn (loss) may occur.

e Online Purchase Fraud Detection: Predict if an online purchase transaction is
suspicious or fraudulent.

e Retail Forecasting: Provide forecasting for the product sales for an individual retail
store.

e Text Classification: Classify text records into different categories, such as for
sentiment analysis. Machine Learning Templates with Azure ML Studio: https://
gallery.cortanaintelligence.com/Collection/Machine-Learning-Templates-
with-Azure-ML-Studio-1.

We explore more of these templates, packages, libraries, and samples later in the chapter.

Overview of Azure Machine Learning

In July 2014, Microsoft first previewed the Azure Machine Learning service, a fully managed cloud service
that enables you to easily build, deploy, and share predictive analytics solutions. At the time, the goal was
simple yet visionary:

“Make Machine Learning accessible to every enterprise, data scientist, developer, information worker,
consumer, and device anywhere in the world”

Two years later, Microsoft has truly helped democratize the Machine Learning landscape by making
the technologies more approachable and accessible to everyone. All you need to get started is a modern
web browser and a problem to solve. Microsoft has even made a free version of the Azure Machine Learning
Studio available for newcomers to try it out.

357

https://gallery.cortanaintelligence.com/Collection/Machine-Learning-Templates-with-Azure-ML-Studio-1
https://gallery.cortanaintelligence.com/Collection/Machine-Learning-Templates-with-Azure-ML-Studio-1
https://gallery.cortanaintelligence.com/Collection/Machine-Learning-Templates-with-Azure-ML-Studio-1

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Note See, this link for more information; about the free version. Azure Machine Learning offers
free-usage tier: https://azure.microsoft.com/en-us/updates/azure-machine-learning-now-offers-
free-usage-tier/.

The Traditional Data Science Landscape

To better understand this new world of cloud-based Machine Learning that Microsoft has now enabled,
itis helpful to set the context by examining the state of the data science landscape prior to modern cloud
offerings like Azure Machine Learning:

e Expensive: The huge capital costs for tools, expertise, and compute and storage
capacity created unnecessary barriers to entry.

e Silos of Data: Cumbersome data management tools, siloed business data, and
restricted access to that data limited the amount of sharing of predictive models and
datasets.

e Disconnected tools: Complex and fragmented tools limited participation for
exploring data and building models.

e Deployment complexity: Specialized environments supporting data science
applications were fairly complex and required highly trained resources to
manage them.

Democratizing Machine Learning

In contrast to the traditional data science landscape outlined previously, Microsoft’s goal is to make Machine
Learning simpler, better, faster, and more collaborative. Microsoft’s Machine Learning Studio workspace
allows you to invite and share your predictive experiments with virtually anybody in the world.

e Published Guidance: Via the online/offline Azure Machine Learning overviews,
documentation, tutorials, and walk-thrus.

e Cortana Analytics Gallery: An ever-increasing repository of Azure Machine Learning
samples and solution templates produced by the Microsoft product group and
community members. They can be directly deployed into your Azure Machine
Learning workspace to get you started quickly.

e Machine Learning algorithm cheat sheet: To help you choose the right algorithm(s)
for creating your predictive analytics model, Microsoft provides a great predictive
analytics cheat sheet, which is like an ML solution flowchart.

Note See this link for more information. Machine Learning algorithm cheat sheet for Microsoft Azure
Machine Learning Studio: https://docs.microsoft.com/en-us/azure/machine-learning/machine-
learning-algorithm-cheat-sheet.

358

https://azure.microsoft.com/en-us/updates/azure-machine-learning-now-offers-free-usage-tier/
https://azure.microsoft.com/en-us/updates/azure-machine-learning-now-offers-free-usage-tier/
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

e Free Tier: To get started with zero obligations. Now, you have no excuse to get started.

e Team Data Science Process (TDSP): Provides a systematic approach and framework
to building intelligent applications that enable teams of data scientists to collaborate
effectively over the full lifecycle of a Machine Learning solution.

Note Learn more at Team Data Science Process (TDSP): https://azure.microsoft.com/en-us/
documentation/learning-paths/data-science-process/.

Azure Machine Learning Studio

Microsoft Azure Machine Learning Studio is an online, collaborative, drag-and-drop, environment that you
can leverage to build, test, and deploy predictive analytics solutions.

Even though Azure Machine Learning makes it easy for novices and newcomers to easily get started
working with predictive analytics, it is also provides a very powerful and updated set of algorithms and
integrated tools that even the most seasoned data science professionals will appreciate.

Once you have provisioned a new Azure Machine Learning workspace via the Azure Portal, you can
launch Azure Machine Learning Studio in a browser session, as shown in Figure 8-4.

= Mlicrosoft Azure Machine Learning Studio

r = e
ﬁ T pr Jje(.’[:a
NAME AUTHOR CONTENTS LAST USED ¢ o

Create project (3)

Figure 8-4. Azure Machine Learning Studio

After logging in to Azure Machine Learning Studio, you'll see the following tabs on the left:

e PROJECTS: This is where you store collections of experiments, datasets, notebooks,
and other resources representing a single Machine Learning project.

e EXPERIMENTS: This is where experiments that have been created, run, and saved as
drafts reside in your workspace. This is the most-often used option.

e WEB SERVICES: Azure Machine Learning web services that have been deployed
from your experiments can be viewed here.

359

https://azure.microsoft.com/en-us/documentation/learning-paths/data-science-process/
https://azure.microsoft.com/en-us/documentation/learning-paths/data-science-process/

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

e NOTEBOOKS: This link displays any Jupyter notebooks that you have created.
Jupyter Notebook is a web-based interactive computing platform that combines live
code, equations, narrative text, visualizations, and interactive dashboards. Microsoft
provides cloud-based Jupyter notebook environments at https://notebooks.
azure.com/.

e DATASETS: This link points to any datasets that you uploaded into Azure Machine
Learning Studio.

e TRAINED MODELS: This link displays a list of Machine Learning models that you
trained in experiments and saved in Azure Machine Learning Studio.

e SETTINGS: A collection of settings that you can use to configure your Azure Machine
Learning account and associated resources.

The Cortana Intelligence Gallery

If you click on the Hamburger menu icon in the top-left of the Azure Machine Learning Studio navigation
bar, you will see a link for the Cortana Intelligence Gallery.

The Gallery (see Figure 8-5) is a web site where Microsoft fosters a community of data scientists and
developers to share solutions that were created using Azure Machine Learning and components of the
Cortana Intelligence Suite.

Browse all Justries ~ luti P Machine Learning APls Custom Modules Learning More
Refine by Results Sort by: [Popular ~
CATEGORIES s
Sehtion
Experiment
Machine Learning AR
Cempetition 3
F . 4
Tutorial
Collection
Motebook
Custom Module = o " 2 i :
c Trai Sample 1: Download Tutorial: Building a Telco Customer Churn Clustering: Find similar Online Fraud Detection:
Lagsroom Traini bl . s
s ™ dataset from UCE: Adult ... classification medel in A... companies Step 1of 5: Generate ta...
Video Trainin i k 3
9 This sample demenstrates ho This exgeri ervws a5 & tul Customer chum can Lake differ This expresiment clusters simila This experiment demansirates
L wtodownload a dataset from arial on building a clissificatio ent forms, such as switching 1o feompanies NG same group the steps in building 3 onfing |
St a hittp location, add column na n model using Azure ML We a competitor's service, redudin given their Wikipedia articles a ransaction fraud detection sol

mes to the dataset and examin will be using the Titanic pass... g the number of senices use... nd can be used to assign du_ ution.
« the dataset and compute so
me b stalatics.

Microsaft content only

TAGS - Two-Class Decision Forest Two-Cless Declgion Fosest K-Means Clustering

R

Classification @

et Y Microsoft P Faialabal 9 weehyong tok ¥ Microsoft BE Microsoft

Python

regression .
Show all ® L] P)] o Go i i. e o -1h:

ALGORITHMS USED v i i B M@\o“‘f‘v“
A " o8 A e .
Two-Class Boosted Decision " IVl e e .«|\ I
Tree ¥ v time

Two-Class Suppen Vector
Machine q

Figure 8-5. The Cortana Intelligence Gallery
Notice that there are links on the top navigation bar for other valuable resources such as industry

solutions, sample Machine Learning experiments, Machine Learning APIs, custom modules, and a wealth of
training resources.

360

https://notebooks.azure.com/
https://notebooks.azure.com/

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Azure Machine Learning: EXPERIMENTS

The EXPERIMENTS section of Azure Machine Learning Studio is where you will spend most of your time
developing and refining Machine Learning experiments. The design surface feels very much like using
Microsoft Visio, and the interface is completely drag-and-drop driven. Figure 8-6 depicts a new Machine
Learning experiment and the Azure Machine Learning Studio Designer canvas.

Azure Machine Lear!

< My New ML Experiment

'"".- Saved Datasets
Y] Trained Models
EI Data Format Conversions
E_) Data Input and Qutput
T Data Transformation

HH

k. 1)

,@ Feature Selection
@ Machine Learning

OpenCV Library Modules

m
4

Python Language Modules
R Language Modules
Statistical Functions

Text Analytics

'Web Service

adgnudHe

Deprecated

Figure 8-6. A new, blank, Machine Learning experiment in Azure Machine Learning Studio

Azure Machine Learning: EXPERIMENT Modules

There are a series of modules and tools that appear on the left side of the Azure ML Studio screen, as shown
in Figure 8-6. These modules provide a wealth of functionality and capabilities that can simply be dragged
onto the designer surface.

After adding a new module, you can set the individual configuration properties via the Properties
section for each module, which appear on the right side of the screen.

361

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

362

The Azure Machine Learning modules are grouped in the following categories:

Data Format Conversions: These modules can help convert data to one of a number
of common formats (such as TSV, CSV, and ARFF) used by other Machine Learning
tools.

Data Input and Output: Use these modules to read data from other cloud and web
data sources. It is also possible read “zipped” datasets and to export data using these
modules.

Data Transformation: These modules are used to help prepare data for Machine
Learning analysis. With these modules, you can change data types, identify and/or
generate features, normalize your data, and much more.

Feature Selection: These modules are used to help identify the best attributes or
features in your data, using statistical methods.

Machine Learning: This group contains most of the algorithms supported by Azure
Machine Learning.

e Evaluate: After you have trained a model, you can use the Evaluate module to
measure the model’s accuracy.

e Initialize: These modules provide the Machine Learning algorithms. The
algorithms in this section are grouped by the following types:

e Anomaly detection
e C(lassification

e Clustering

e Regression

e Score: These modules are used to generate a set of results for evaluating a
model’s accuracy.

e Train: These modules are used to train a Machine Learning model based on the
datasets that you provide as inputs.

OpenCV Library Modules: These modules provide easy access to an open source
library for image processing and image classification. The term OCV stands for Open
Computer Vision.

R Language Modules: These modules are used to extend Machine Learning
experiments by utilizing custom R code.

Python Language Machine Learning Modules: These modules are used to add
custom Python code to your Machine Learning experiment.

Statistical Functions: These modules are used to implement various statistical
routines to accomplish various numerical analysis tasks.

Text Analytics: These modules can be used to process text and implement text-based
functionality such as feature hashing and named entity recognition.

Web Service: These modules can be used to add input or output ports to an existing
Azure Machine Learning web service. These are most often utilized to create
Machine Learning “re-training” web services implementations.

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Tip See this link for a detailed (A-Z) List of Machine Learning Studio Modules: https://msdn.microsoft.
com/en-us/library/azure/dn906033.aspx.

An Azure Machine Learning experiment comprises datasets that provide data to analytical modules,
which you connect to create a predictive analysis model. A functionally valid Azure Machine Learning
experiment has the following characteristics:

The experiment has at least one dataset and one module.

Datasets may be connected only to modules.

Modules may be connected to either datasets or other modules.

All input ports for modules must have a connection to the data flow.

All required parameters for each module must be set via the Properties pane on the
right side of the designer interface.

We examine the process of building an Azure Machine Learning experiment in detail in the latter
portion of this chapter when we cover the specifics of the reference implementation.

The Azure Machine Learning Data Science Flow

Microsoft provides comprehensive guidance and a systematic approach to building Machine Learning
applications that follow established data science methodologies and principles. This can be summarized as
a five-step process:

1.

Business Understanding:

a. Establishing technical needs/requirements

b. Identifying your scenario for matching to best ML algorithms
Data Acquisition and Exploration:

a. Loading data into Azure storage environments

b. Importing data into Azure Machine Learning Studio
Preparing the Data:

a. Exploring the data using built-in tools and utilities
b. Leveraging sample data

Modeling:

a. Engineering features

b. Selecting features

c. Learning with counts

d. Training the model

e. Evaluating the model

f. Tuning the model

363

https://msdn.microsoft.com/en-us/library/azure/dn906033.aspx
https://msdn.microsoft.com/en-us/library/azure/dn906033.aspx

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

5. Deployment:
a. Publishing a model as a web service
b. Consuming a model programmatically

c. Consuming a model in Excel

Note See the following link for more information about Azure Machine Learning’s application of the data
science process: https://azure.microsoft.com/en-us/documentation/learning-paths/data-science-
process/.

Microsoft R Server Overview

In April 2015, Microsoft acquired Revolution Analytics and has since released their flagship product as R
Server. Revolution Analytics was the leading commercial provider of software and services for R, the world’s
most widely used programming language for statistical computing and predictive analytics.

Today, the R programming language is one of the most popular statistical and Machine Learning
programing languages available to developers and data scientists around the world. The R language is freely
available as open source and is popular as a data visualization and reporting tool.

There is a strong and vibrant R community of approximately 2.5 million users. The R language is
commonly taught in most universities, and interest in the uses of R is demonstrated by many thriving user
groups around the world.

The capabilities of R are extended through user-developed packages, which can add custom statistical
or graphical capabilities and extensions. These packages are developed primarily in R but also in other
languages such as Java, C, and C++. This has created a very large and healthy ecosystem with over 9,000 R
packages contributed to open source repositories to date. Many of these packages and implementations
address common business problems and can help solve many use cases related to statistical and predictive
analytics.

Processing limitations of Open Source R
Note that there are two flavors of R available today to address specific needs in the data science industry.

e Open Source R: A free and widely available distribution from sources such as CRAN
(Comprehensive R Archive Network) and r-project.org. The software is generally
geared for academic use and is supported by the community.

e Commercial R Packages: Typically are professionally developed, licensed, and
supported for enterprise use for production scenarios.

There are a few significant differences between these R distributions in terms of speed and
performance. Open Source R has some limitations such as:

e Operations are limited to in-memory only.
e Data movement/duplication is expensive.

e Lack of parallelism; they are single-threaded only.

364

https://azure.microsoft.com/en-us/documentation/learning-paths/data-science-process/
https://azure.microsoft.com/en-us/documentation/learning-paths/data-science-process/

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Not enterprise grade:
e No SLAs or production support models.
e Lack of guaranteed support timeliness.

e Community support is inadequate for commercial enterprises.

Enter Microsoft R Server

Microsoft R Server is an enterprise-grade server for hosting and managing parallel and distributed
workloads of R processes on servers (Linux and Windows) and clusters (Hadoop and Apache Spark).

It provides an execution engine for solutions built using Microsoft R packages and extends open
source R with support for high-performance analytics, statistical analysis, Machine Learning scenarios, and
massively large datasets.

To compensate for some of the limitations of open source R outlined previously, Microsoft has filled
in the gaps with its Microsoft R Server offerings to provide an enterprise grade, commercially available, R
software product offering that offers these features:

Speed, scalability, flexibility, and efficiency

Product support and SLA

Works on data in memory or on disc (ScaleR)

Wide range of scalable and distributed R functions available

Works in several computing contexts (including Hadoop, Spark, and SQL Server),
and data sources (including disk, HDFS, and SQL)

Rlanguage is portable and includes investment assurance

In addition to extending Azure Machine Learning through the R language module, the Microsoft R
Server family allows you to develop and run R models on your platform of choice:

Windows: R Server for Windows ships as R Services in SQL Server 2016.

Linux: Leverage your open source investments to enable advanced predictive and
prescriptive analytics use case scenarios.

Hadoop/Apache Spark: Enable your analysis to scale transparently by distributing
analytics jobs to run across nodes without complex programming.

Teradata Database: Run advanced analytics in-database for seamless R data
analysis.

To summarize, Microsoft has a comprehensive portfolio of R programming offerings (community and
commercial) that can run on almost any operating system or platform. Figure 8-7 illustrates the various
versions of R that Microsoft now supports.

365

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Microsoft R Portfolio

Community Commercial

R Open SQL Server R Server
R Services (Linux)
(Windows) (Hadoop) (Teradata)

Figure 8-7. The Microsoft R portfolio of products

By leveraging the Microsoft supported R environments illustrated in Figure 8-7, you can now easily
develop and run R models on your platform of choice in Azure.

Extend Machine Learning Experiments with the R Language Module

By leveraging the R Language module in the Azure Machine Learning Studio Experiment designer, you can
instantly extend your Machine Learning model creation and training capabilities by incorporating R code
directly into an Azure Machine Learning experiment.

You simply drag and drop the module from the left tool palette in ML Studio onto the design surface.
Then you can click on a Properties window on the right, edit your R code in the Designer Editor, and save it
when you're done.

Figure 8-8 depicts a screenshot of the Azure Machine Learning Studio Designer with an Execute R Script
module. Note that the R code can be edited in the Properties pane on the right.

chine Learning Studio

3 « R Azure Modules Properties Project 2

Search experiment items = A # Execule R Script

=1 o) R Serpt
i Sved Dawsets ’ . -

u 1 v Display all @ Packages in Azure ML

5 R Trained Models 2 out <= data.frame(installed.packages(,,,fieldss Dascription™)
| CH 3 manl.mapOutputPort(out™)
.‘. Data Format Converuans *
[g» Dot input and Output
By Data Transformation
1O Feature selection
[E] machine Leaming
E™ Opency Library Modules
@ Python Language Modules
« G RLanguage Modules G Execute R Script

H' R Languag =3 /p

Create R Model e b

Execute R Script \
2yl Statistical Functions = i Random Seed

fg= corventocsv [
;?‘Z Text Analytics
R Version
L Web Service Quick Help -

B Deprecated Executes an R seript from an Azure Machine Leaining experiment

Figure 8-8. Azure Machine Learning R language modules

366

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

In the Execute R Script sample, the R code will simply list the currently installed R packages via this R
statement:

out <- data.frame(installed.packages(,,,fields="Description"))
maml.mapOutputPort("out")

The next module in the experiment, the Convert to CSV module, provides the ability to download and
save a copy of that list of R packages.

Note that for significant R development efforts, we recommend you use other R Developer tools, such as
Visual Studio Tools for R or R Studio to create, debug, version, and refine more complex R scripts. Then you
can simply paste your R code into the Azure Machine Learning R language module.

The Azure Machine Learning R language module opens up a new world of R code, packages, and
additional functionality that can now be accessed via Azure Machine Learning Studio and deployed as
a web service for easy consumption. Azure Machine Learning Studio currently includes over 400 of the
most popular R packages representing an intersection of the R ecosystem with the agility, collaboration,
consumption, and integration aspects of Azure Machine Learning.

Note For a complete list of the currently supported packages, see https://msdn.microsoft.com/en-us/
library/azure/mt741980.aspx.

The use of R is becoming so popular that Microsoft is now including it as a visualization control in
Power BI. We explore this new capability and much more in Chapter 9.

R Tools for Visual Studio

If you are a developer and have access to a version of Visual Studio, you can easily turn Visual Studio into
a powerful R development environment by installing the R Tools for Visual Studio. There are also free
downloads and trial offers for Visual Studio available at this link:

R Tools for Visual Studio: https://www.visualstudio.com/vs/rtvs/

Implementing Azure Machine Learning and R in the
Reference Implementation

Up to this point, we have explored some of the basic features and capabilities of Azure Machine Learning
and provided a brief background on the R programming language and Microsoft’s recent R offerings.

Next, we leverage some of our newly acquired knowledge by implementing a few more pieces of our
reference implementation.

Business Case for Machine Learning

As a quick refresher, we need to implement a Machine Learning web service that can help predict when a
specific team member may have reached the point of physical exhaustion. The inputs will be based on real-
time sensor readings that are relayed to the Azure cloud while the team member is working on the job.

The goal is to avoid any kind of accidents, injuries, or incidents that may be caused by team members
reaching their individual limits of physical exhaustion. In this way, the business entities can effectively
monitor their daily operations and proactively adjust team member workloads and duties to mitigate risk.

367

https://msdn.microsoft.com/en-us/library/azure/mt741980.aspx
https://msdn.microsoft.com/en-us/library/azure/mt741980.aspx
http://dx.doi.org/10.1007/978-1-4842-2650-6_9
https://www.visualstudio.com/vs/rtvs/

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Reference Implementation: Assumptions
We make a few practical assumptions to qualify a working prediction model, as follows:

e Team members may be reluctant to admit signs of physical exhaustion: This is a
fundamental working assumption and could be considered a common reaction
based on human nature.

o Team members may risk financial rewards if they display signs of physical exhaustion:
Since they are financially compensated for the number of hours they work, few will
readily admit that they have had enough and want to call it quits.

To overcome these natural human tendencies, we assume that stress tests will be administered to each
team member on a monthly basis.

e The stress tests would be able to quickly simulate and accelerate the physical
working conditions for a team member, right up to the point of exhaustion.

e Physical exhaustion is signaled when a team member voluntarily pushes an
emergency Stop button to cease the stress tests.

e Detailed sensor data will be captured during the entire stress test session. This data
will then be used to create training data for our new Machine Learning predictive
model.

e Theresultant Machine Learning models can also be re-trained on a periodic basis by
using updated stress test results.

¢ Theincoming data format for the stress tests will be an Excel spreadsheet with
separate tabs containing each team member’s individual stress test results.

¢ Inaddition to columns holding the sensor data readings, an additional data column
will be added to the end to denote when a team member triggered the point of
physical exhaustion.

Figure 8-9 depicts a screenshot of a sample team member'’s stress test spreadsheet results.

A B c D E F G H 1 J K L M
1 [userid il Activity Cadence Velocity Speed HIB d bil h
! c3eclfed-6TE9-4d30-8446-851856c0025c 17.94929379 96.29015605 16454.15282 0.133564 90 1 1898897 o "] o a N
1 cdeczfes-6789-4d3e-8446-35 1751138318 96.8B186507 16547.12564 0136821 2 2 5797734 [] 0 q N
4 clec2fed-5760-2d3e-B436-852856ce025: 17.57347257 96.5117873 16640.09846 0.140078 £ 3 8.695691 0 o o [N
5 cdecfed-6TE9-4d3e-8446-952856ce025c 17.53556196 96.31613514 16733.07128 0.143336 92 4 1153559 0 0 0 q]
G c3ec2fed-6780-d3¢-8446-852856ce025c 17.69765135 06.69531139 16826.0441 0.146593 92 5 14.49448 [0 0 q N
r 2 7l d; 17.75974074 96.77480951 16919.01682 0.14585 LE] 6 17.39338 o o o q N
? cdec2fed-6TED-1d3e-8446-852856ce025c 17.82183003 96.71956696 1701198974 0.153107 93 7 20.29228 o o 0 [L
) e3ecfes-6769-4d3e-8446 17.88391952 96.35834845 17104.96256 0.156365 2 8 2319118 0 0 0 [N

Figure 8-9. Sample team member stress test spreadsheet used to train the Azure Machine Learning model

Choosing a Machine Learning Algorithm

One of the first tasks in this endeavor is to determine the appropriate Machine Learning algorithm to use to
help solve this problem. Luckily, Microsoft provides a handy cheat sheet (in the form of a free PDF download)
to help you determine the best algorithm to use based on the type of problem you are trying to solve.

Figure 8-10 depicts a screenshot of the Azure Machine Learning cheat sheet. Given the actual problem
we are trying to solve in our reference implementation, we will attempt to predict a category according to the
cheat sheet.

368

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

AM icrosoft Azure Machine

AALY DETECTION

One-class SVM . s S — — Fast training, lin de ~+ Multiclass logistic regression
PCA-based anomaly detection - {—— Accuracy, long training times — Multiclass neural network

acy, fast training Multiclass decision forest
Ri N
= Aecuracy, small memory footprint— Multiclass decision jungle

Ordinal regression

—~ One-v-all multiclass
Poisson regression . - Ng event counts ——

Fast forest quantile regression

Linear regression »——— Fast training, linear madel b e Two-class decision forest

Two-class SVM -
Bayesian linear regression —— Linear model, s ets = Two-class boosted decision tree
Fast training
Two-class averaged perceptron =— l:.‘l'; "‘::I:.:: =1
Meural network regression . Ace ong training time

Two-class logistic regression «—
Dacision forest regression ———— Accuracy, fast raining

Two-class Bayes point machine «— i‘r:;::"::;l
Accuracy, fast training inear madel
Boosted decision tree regression »—— |CUrasy

Figure 8-10. The Azure Machine Learning algorithm cheat sheet

Note You can find the Machine Learning algorithm cheat sheet for Microsoft Azure Machine Learning Studio at
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet.

In this case, the specific outcome we are trying to predict is exhaustion, and there are exactly two
potential states: exhausted and not exhausted. You will recall from earlier in the chapter that binary
classification algorithms seek to predict one of two possible outcomes such as on/off, red/blue, or hot/cold.
Indeed, based on the cheat sheet guidance, we are advised to utilize a binary classification algorithm to
provide this Machine Learning model.

Another point to make here is that a binary classification model is an example of supervised learning. This
means that we supply the team member training data along with the observed outcome (exhausted or not) for
each row of the training data. In this way, once our new Machine Learning model has been trained, it will then
be able to predict the outcome (along with a probability percentage) from a set of input attributes (or features).

CREATE AZURE MACHINE LEARNING WORKSPACE

The first step toward realizing our reference implementation is to create the Azure Machine Learning
workspace via the Azure Portal. This will be the starting point for creating a Machine Learning
experiment and ultimately deploying it as a web service.

To get started, navigate to your previously defined Azure resource group and click on the + Add icon to
add another Azure service. Type Machine Learning Workspace in the search bar; you will see similar
results to what’s shown in Figure 8-11.

369

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Everything
Y Filter
A Machine Leaming Workspace x
Results
NAME “ PUBLISHER “ CATEGORY g
Machine Learning Workspace Microsoft Intelligence + analytics
Machine Learning Web Service Plan Microsoft Intelligence + analytics

Figure 8-11. Add a new Machine Learning workspace

Click on the Machine Learning Workspace. You will then see a confirmation screen similar to the one in
Figure 8-12.

Azure Maching Larning i a powerful cdoud-based predictive analytics service that makes it posiible to quickly create and desloy predictiae models as analytics selutions,

Use this templete to create an Arure Machine Leaming Workspace. A Warkspoce allows you t2 use Machme Learning Studio to create and manage maching learmng experiments and predictive web services. You can creste multssle Workspaces, each
ane containing a set of your experiments, datasats, trained predictive modals, wab services, and notibaoks. As the cwner of a Warkspace, you can inwite othar uzers 10 share the Workspace 5o you can collaborate with them on predictive analytics
solutions

v i finll § Qe

B

s
¥

PUBLISHER Micrasoft

UISEFUL LINKS

Figure 8-12. Create an Azure Machine Learning Workspace
Click on the Create icon at the bottom-left. You will then see a blade appear that will prompt you to

enter the parameters required to create your new Azure Machine Learning Workspace, as illustrated in
Figure 8-13.

370

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Machine Learning Work... — O X

* Workspace name

Enter the workspace name

* Subscription

v
* Resource group @
O Create new @ Use existing
v

* Location

South Central US v
* Storage account @
@ Create new O Use existing

Enter the storage account name
Workspace pricing tier @

Standard v
* Web service plan @
@ create new O Use existing

Enter the plan name
* Web service plan pricing tier @ >

No pricing tier selected

Pin to dashboard

Figure 8-13. Azure Machine Learning: Create New Workspace parameters

371

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Fill in the required parameters and then click on the Create icon. The new Azure Machine Learning
Workspace will be provisioned in a matter of minutes.

After your new workspace has been provisioned, you can navigate to the new Machine Learning
workspace blade and view the menu options, as shown in Figure 8-14.

Search (Clri+/)

AT Overview
B Activity log
:l.l Access control (IAM)

& Tags

x Diagnose and solve problems
SETTINGS

B locks

2 Automation script

GEMERAL
Properties

Resync Storage Keys

SUPPORT + TROUBLESHOOTING

s New support request

L¥ settings [Delete
Essentials ~

je) Type
PaidStandard

Status

Enabled

Location
South Central US

Subscription name (ct

Subscription ID

Additional Links

Launch Machine Learning Studio :
] £
- Launch Machine Learning Gallery
B

BA Launch Machine Learning Web Service Management
-

Figure 8-14. The Azure Machine Learning Workspace blade

Select the option to Launch Machine Learning Studio, as displayed in Figure 8-14. We will next start to
build our new Machine Learning experiment.

372

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

CREATE NEW AZURE MACHINE LEARNING EXPERIMENT

After you click on the Launch Machine Learning Studio icon, a new session will open in a new browser
tab, as illustrated in Figure 8-15.

Welcome back

MY RECENT WORKSPACES:

& brtaml

MY RECENT EXPERIMENTS:
& R Azure Modules

& Check-Team-Health

Figure 8-15. Azure Machine Learning Studio landing page

Click on the My Experiments button and you will be led to the Azure Machine Learning Studio
environment.

Now you are ready to create a new Machine Learning experiment. First you need to load training data
for this new model. From this book’s code base (published on GitHub), download the Excel file named
Teammates_AML_Training Data.xlsx.

After the file has downloaded, open the spreadsheet and click on the Teammates_AML_Training_Data
tab. Next, save the spreadsheet as a file in the CSV format by selecting File/Save/Computer and then
change the Save As type to CSV (comma delimited) (*.csv).

Upload Training Data File Into Azure Machine Learning Studio

Next, in your Azure Machine Learning Studio browser session, click on the + New icon in the lower-left
corner and then click on the Dataset and From Local File options, as shown in Figure 8-16.

373

CHAPTER 8 * ADVANCED ANALYTICS USING MACHINE LEARNING AND R

= Microsoft Azure Machine Learning Studio

experiments

MY EXPERIMENTS SAMPLES

NEW

= = Upload a new dataset from a local file

MODULE

1
=]
PROJECT

EXPERIMENT

NOTEBOOK

Figure 8-16. Azure Machine Learning Studio: New dataset from local file options

Next, you have an opportunity to enter the location of the source data file to upload from your local
disk folder. After browsing and selecting your local file that you just saved from the Excel spreadsheet,
designate the source file type as a generic CSV file with a header (.csv), as shown in Figure 8-17.

Upload a new dataset

SELECT THE DATA TO UPLOAD:

C\IB\Business_at_Internet Speed\JB Chapters Browse...

This is the new version of an existing dataset

EXISTING DATASET: v

Teammates_AML_Training_Data_v3.csv b

SELECT A TYPE FOR THE NEW DATASET:

Generic CSV File with a header (.csv)

PROVIDE AN OPTIONAL DESCRIPTION:

Figure 8-17. Upload a new Azure Machine Learning dataset from a local CSV file

374

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Click on the Check Mark icon to start the file upload. A status bar will appear on the bottom of the
screen to display progress as your file is uploaded into the Azure ML storage account.

Now that you have uploaded your training data, you can proceed to creating the Machine Learning
experiment.

Create New Experiment in Azure Machine Learning Studio

Next, you create and test a new Machine Learning experiment by using Azure Machine Learning Studio
to help predict team member exhaustion levels.

Start clicking on the + New icon in the lower-left corner of Azure Machine Learning Studio and then
click on the Experiment icon. Then select the Blank Experiment template to create the new Azure
Machine Learning experiment from scratch, as shown in Figure 8-18.

DATASET L Search experiment templa

MODULE

Microsoft Samples

PROJECT

EXPERIMENT

NOTEBOOK

Blank Experiment

Figure 8-18. Creating a new, blank Machine Learning experiment in Azure Machine Learning Studio
This will create a new blank Machine Learning experiment in your workspace. Start simple by clicking

on the top name field and renaming the experiment to Predict Team Health or something of that
nature, as shown in Figure 8-19.

375

CHAPTER 8 * ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Predict Team Health

Search experiment items p

=R
“dn Saved Datasets
4 My Datasets
Results dataset (saved fr... (g e e I
Teammates-AMUTraln SN | SESEERESEREE L e em e §-—-—===-
Samples :
e I
"‘ Trained Modes N .
i; Data Format Conversions I I
___________________ s
E_) Data Input and Output ,.

~Hn Data Transformation

‘G_) Feature Selection [} -
@ Machine Learning ~ emem=——— = e s
E- OpenCV Library Modules = X

A Python Language Modules - \

(R’ R Language Modules |- _ __________ 1 o

E,[Statistical Functions e T < ol

5% TextAnalytics . TTTmmemmeeall i \

@ Web Service RS oo - —s - A

5 Deprecated :I:I: @I_ @ a- ‘E. Ve p----=-=- ’
Figure 8-19. Rename the new blank Azure Machine Learning experiment
Next, click on the Saved Datasets navigation menu option in the left navigation bar to expand the
selections. Click on My Datasets and you will see the CSV data file that you uploaded earlier. Drag this

file onto the middle of the designer surface and drop it there.

Visualize the Training Data

You can take advantage of some of the built-in tools in Azure Machine Learning Studio to help visualize
and understand the data better. Start by right-clicking on the bottom connector of the input training data
that you just dropped onto the designer surface and then on the Visualize icon, as shown in Figure 8-20.

376

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

[i‘;ﬁ Teammates_AML _Training_...]
()
\\ L
¥ Download

] Visualize
[E Generate Data Access Code...

M Open in a new Notebook 4

Figure 8-20. Using the built-in tools to help visualize the training data
Next, after clicking on the Visualize icon, you can use the slider bar to select the column named
Exhaustion in the last position.

By clicking on the Exhaustion column, you will note that the Visualizations section on the right side of
the screen will automatically be filled with a visual display of the distribution of readings.

The credibility of the prediction data would be established based on the recent uploaded stress test
training data, as shown in Figure 8-21.

Predict Team Health » Teammates_AML_Training_Data_v3.csv » dataset

cohamns

RateBPM Cadence Velocity Speed HIB HeartrateRedZone HeartrateVariabidity BSGEIRIE | Feature Type String Feature
|

] ik il Lilih r..ul.” | , adl, L il

Exhaustion
2898897 0 1] (] Histogras

4
a
)
E |
C
%
o

8696691

14494484

Exhaustion

Figure 8-21. Using the built-in Azure Machine Learning studio visualization tools to better understand the
distribution of exhaustion levels across team members’ training data

377

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Note the histogram (bar chart) format used to quickly visualize the data. This helps you quickly
understand key factors in the ML prediction such as the relative mix of stress-triggering data in the
Machine Learning input training dataset.

In the bar chart, the bars represent the relative distribution of (Y or N) exhaustion levels and their
associated sensor readings that did (Y) or did not (N) trigger an exhaustion level being reached.

Now that you have added the input data file to the Azure Machine Learning Studio Designer and
visualized the contents, it is time to process the file and get it ready to be used as training data for this
Machine Learning experiment.

Recall that there is a column named Exhaustion in the input training dataset and it is populated with the
values of Y or N. In order to train this model using an R library, you need to convert these string values to
corresponding numerical values.

To do this, you’ll use an R Script module to populate a new column (ExhaustionLabel) with a numerical
representation of the value in the Exhaustion column. In short, you will replace Y with a 1 and N with 0.

To do this, expand the R language modules on the left side of the Machine Learning Studio and drag an
Execute R Script module to the designer surface. Connect the data input file to the top-left connector of
the Execute R Script module, as shown in Figure 8-22.

;’"u Teammates_AML_Training_...
el

S

v

(R Execute R Script

Figure 8-22. Execute the R Script Module

Click on the Execute R Script module and then click on the R Script Editor on the right side of the
designer studio screen. Enter this R code into the R Script Editor window:

Map 1-based optional input ports to variables
dataset1 <- maml.mapInputPort(1) # class: data.frame

Add/Change Label to numeric 0/1 for this R model
dataseti$ExhaustionLabel <- ifelse(dataseti$Exhaustion=="N",0,1)

378

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Select data.frame to be sent to the output Dataset port
maml.mapOutputPort("dataset1");

This R code will to create a new column named ExhaustionLabel and it will be populated it with a 0 or
1 - based on the value of the column named Exhaustion and if it contains an N or Y.

The next step is to add another module called a Split Data module. The Split Data module will separate
the input training data into two distinct streams. The first stream will be for training the new model, and
the second stream will be used for evaluating the accuracy of the new model.

You can easily locate the Split Data module by typing Split Data in the Search window on the left side
of the Azure Machine Learning Studio Designer screen. You can also find this module by expanding the
Data Transformation module under the sub-heading of Sample and Split.

Drag the Split Data module to the designer surface directly under the Execute R Script module. Next,
make the connection between the bottom-left connector of the Execute R Script module and the top
connector of the Split Data module.

Click on the Split Data module to access the module properties on the right side. Modify the property for
Fraction of Rows in the First Output Dataset to the value of 0.80, as shown in Figure 8-23.

4 Split Data

= ""__'; Splitting mode

&5 Teammates_AML_Training_...

| Split Rows V|

L
Fraction of rows in the fir...

(R Execute R Script Randomized split
) ¢ Random seed
Lo |
N Stratified split
EH .
Split Data J
. 1] - A
[@ @ l False ‘

Figure 8-23. Setting the Azure Machine Learning Split Data module property

Set the value to 0.80 to denote that you want 80% of the input training dataset to be used to actually
train this new model. The remaining 20% of the input training dataset data will be used to check the
accuracy of the new Machine Learning model.

379

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

The next step is to add a Train Model module to this experiment. Locate the module by typing Train
Model in the Search window on the left side of the Azure Machine Learning Studio Designer screen. You
can also find this module by expanding the Machine Learning module under the sub-heading of Train.

Drag the Train Model module to the designer surface under the Split Data module and position it at the
bottom-left of the Split Data module.

Next, connect the bottom-left of the Split Data module to the top-right connector of the Train Model
module, as illustrated in Figure 8-24.

Predict Team Health

LN
Hi Teammates_AML_Training_...
]

CR’ Execute R Script
@

.Efﬁm Split Data
i

[Train Model (1] J

(1)
U

Figure 8-24. Adding the Train Model module to the experiment
You may notice that there is a red exclamation mark displayed in the Train Model module. This Azure
Machine Learning’s method of informing you that you need to set a property in the module.

To fix the red warning, click on the Train Model module. You will see the Properties window appear in the
pane on the right side of the Studio screen.

Click on the Launch Column Selector button, as illustrated in Figure 8-25.

380

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Properties Project

4 Train Model

Q g raft saved at
2 Teammates_AML_Training_...

wi N N . jo Label column
®

Selected columns:
Launch the selector tool
- to make a selection

(R Execute R Script

'\
Eﬁm Split Data
@

Launch column selector

[Train Model o J

(1)
A/

Figure 8-25. Launch column selector for Train Model module

The Column Selector is a widely used tool in the Azure Machine Learning Studio that quickly selects all
or specific columns to use as the flow of execution passes to each module. For the Train Model module,
you need to indicate which column of the incoming data you want the new Machine Learning model

to predict. Start by typing in the column named ExhaustionLabel. You will see that AML studio includes
a nice feature for IntelliSense/type-ahead in the column name search field. Figure 8-26 depicts the
column selector populated with the single column name of ExhaustionLabel.

Select a single column

| . .
|Include V|1column names ~| | "ExhaustionLabel” W

I WITH RULES

Figure 8-26. Set the Train Model module, Column Selector field to denote which column to predict

Remember to click the check mark icon on the bottom-right of the launch column selector screen to
save your changes.

This will set up the experiment nicely for the next step, where you will plug in R code to execute a
binary classification algorithm.

381

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

In this step, you add a Create R Model module to the experiment. This exercise illustrates the full R
integration capabilities in Azure Machine Learning Studio.

Start by locating the module by typing Greate R Model in the Search window on the left side of the
Azure Machine Learning Studio Designer screen. This should find the exact module. You can also find
this module manually by expanding the R Language Modules module in the left side navigation pane in
Azure Machine Learning Studio.

Drag the Create R Model module onto the designer surface above the Train Model module and across
from the Split Data module.

Note that as soon as you release the Create R Model module, you may receive a message that the
version of the runtime script will be changing to CRAN R 3.1.0 for all the modules in the experiment. See
the screenshot in Figure 8-27.

Script Runtime Version Change

You are adding a Create R Model module to an experiment which contains
R modules - this will change the R runtime versions to CRAN R 3.1.0 for all
modules in the experiment.

Figure 8-27. Create R Model: script runtime version change notification

Next, connect the bottom of the Create R Model module to the top-left connector of the Train Model
module.

Now, it is time to modify the Create R Model module and provide the R code.
Click on the Create R Model module and then click on the R Script Editor on the right side of the screen.

You can use the Create R Model module to create an untrained model from R script that you provide.
You can base your model on any learner that is included as an R package in the Azure Machine Learning
environment.

Note that there are two locations to enter R code in a Create R Model module:

e Trainer R Script. An R script that takes a dataset as input and outputs an untrained
model.

e Scorer R Script. An R script that takes a model and a dataset as input and outputs the
scores specified in the script.

382

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

You will enter separate blocks of R code into each of these areas. After you create the model, you can
use Train Model to train the model on a dataset, like any other learner in the Azure Machine Learning
environment.

The trained model can then be passed to the Score Model module to use the model to make predictions.
The trained model can then be saved, and the scoring workflow can be published as a web service.

To implement the model, start by entering this R code into the Trainer R Script Editor window:

Trainer R Script
Input: dataset
Output: model

e1071 = pre-installed R package in the Azure Machine Learning environment for
Binary Classification
library(e1071)

The next three lines get the feature columns and the label column from the dataset
and combine them into a new R data frame that is named train.data:

features <- get.feature.columns(dataset)

labels <- as.factor(get.label.column(dataset))

train.data <- data.frame(features, labels)

The predefined function, get.feature.columns(), selects the columns that were
designated as features in the metadata for dataset.
feature.names <- get.feature.column.names(dataset)

the predefined function, get.feature.column.names(dataset), is used to get feature
column names from the dataset. Those names are designated

as the names for columns in train.data.

a temporary name Class is created for the label column.

names(train.data) <- c(feature.names, "Class")

Train the "Naive Bayes" classifier algorithm by using the labels and features in
the train.data data frame.
model <- naiveBayes(Class ~ ., train.data)

Next, enter this R code into the Scorer R Script Editor window:
Scorer R Script
Input: model, dataset

Output: scores

Loads the preinstalled R package.
library(e1071)

Computes the predicted probabilities for the scoring dataset by using the trained

model from the training script.
probabilities <- predict(model, dataset, type="raw")[,2]

383

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Apply a default threshold of 0.5 to probabilities when assigning the predicted
class labels.
classes <- as.factor(as.numeric(probabilities >= 0.5))

Combine the class labels and probabilities into the output data frame, named
"scores".
scores <- data.frame(classes, probabilities)

After you have entered the two blocks of R code, you can save your changes by simply clicking
anywhere in the Azure Machine Learning Studio Designer that is outside of the Create R Model module.

The last step in creating the Azure Machine Learning experiment is to add a Score Model module to it.

You can use Score Model to generate predictions using a trained classification or regression Machine
Learning model. The predicted value can be in many different formats, depending on the model and
your input data.

In this case, since you are using a classification model (binary) to create the scores, the Score Model
module outputs a predicted value for the class, along with the probability of the predicted value.

This is exactly what you need for your reference implementation. You need to make a prediction, based
on the current sensor reading data and the historical stress test data, about whether a team member is
at risk of physical exhaustion.

Start by locating the module by typing Score Model in the Search window on the left side of the Azure
Machine Learning Studio Designer screen. This should find the exact module.

You can also find this module by expanding the Machine Learning category and then the Score sub-
category in the left side navigation pane in Azure Machine Learning Studio.

Drag the Score Model module onto the designer surface below and to the right of the Train Model
module.

Connect the bottom of the Train Model module to the top-left connector of the Score Model module.
Connect the bottom-right of the Split Data module to the top-right of the Score Model module.

Click on the Save icon on the bottom of the screen and then click on the Run icon to process the
new Machine Learning experiment. A green check mark will soon appear next to each module in the
Machine Learning experiment as it is processed, as shown in Figure 8-28.

384

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Predict Team Health

;‘ "
e Teammates_AML_Training_...

v

CR Execute R Script

®
) . B split Data
CR Create R Model i P
o /0 L 4

v v

Train Model

Hi

Sy

@ Score Model

Figure 8-28. Completed Azure Machine Learning experiment for predicting team members’ health

At this point, you have successfully completed the Azure Machine Learning experiment to predict team
members’ health based on historical sensor readings from periodic stress tests. This experiment uses
a built-in binary classification R package to create the model and score the results. The next step
examines how to explore the prediction accuracy of the model.

In this step, you examine the predictions made by this new R Machine Learning model training
experiment. To get started, simply right-click on the bottom connector of the Score Model module and
then click on the Visualize option in the context menu, as shown in Figure 8-29.

385

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

\

@ Score Model

4—

.". Save as Dataset

-~ il Visualize

3 Open in a new Notebook

Figure 8-29. Visualize the results of the Score Model module

After you click on the Visualize option, you will see a list of the columns in the input training set.
Scroll all the way to the right to see the last three columns in the Score Model module dataset:

e ExhaustionLabel- This is the column generated with the R script module in the
experiment. You replaced aY or N with a 1 or 0.

e (lasses: This is the binary prediction made by the new R Machine Learning model.

* Probabilities: This is the calculated probability that the Machine Learning model’s
prediction will be correct.

Figure 8-30 depicts the visualization of the Score Model result set.

386

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Predict Team Health > Score Model » Scored dataset

12597 16

columns

HiB HeartrateRedZone HeartrateVariability — Exhaustion ExhaustionLabel classes probabilities
8 0 13.498052 N 0 0 0
4 0 15.589072 N 0 0 0
n 1 16.345628 Y 1 1 1
15 0 18.84546 N 0 0 0
8 0 13.770243 N 0 0 0

Figure 8-30. The visualization of the Score Model module

You can examine the prediction results and see that the algorithm is reasonably accurate, as Figure 8-30
illustrates nicely where the Exhaustion column =Y on the third row down. Note that prediction is accurate
along with the probability being very high, as it is 1.

Now that you have a working Azure Machine Learning model, it is time to productionalize this
experiment by exposing it as an Azure Machine Learning Web Service.

Creating an Azure Machine Learning Web Service allows you to embed your predictive analytics into
applications. You can pass new input feature data to the Azure Machine Learning Web Service. The new
feature data will be run through the Machine Learning model and the web service will send back the
prediction.

387

CHAPTER 8 * ADVANCED ANALYTICS USING MACHINE LEARNING AND R

To get started, make sure that you have run your experiment at least once. Then click on the Set Up
Web Service/Predictive Web Service [Recommended)] icon at the bottom of the Azure Machine Learning
Studio Designer screen, as shown in Figure 8-31.

Predictive Web Service [Recommended]

Retraining Web Service

> & 2]

RUN SET UP WEB PUBLISH TO
SERVICE GALLERY

Figure 8-31. Set up web service: predictive web service

After a few moments, your experiment will be transformed into a new, streamlined, Machine Learning
experiment. In this new web service version, there is no longer a need to train the model nor, likewise, to split
the incoming data into training and test sets. You will also notice that two additional connection ports have
been automatically added for the web service—Input and Output endpoints—as illustrated in Figure 8-32.

Predict Team Health [Predictive Exp.]

Teammates_AML_Training_... /

/
I
1
(R’ Execute R Script
N Predict Team Health [traine... k
_ :
=S \
™~ |
@ Score Model

Figure 8-32. Predictive web service created from the Azure Machine Learning experiment

388

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Click on the Run icon at the bottom of the designer screen to compile the new web service. You will
notice green checkmarks appear next to each module as it has been processed.

Once it’s complete, the Deploy Web Service icon will be enabled at the bottom of the Azure Machine
Learning Studio Designer screen, as shown in Figure 8-33.

Deploy Web Service [Classic]

Deploy Web Service [New] Preview

> @o 2

DEPLOY WEB PUBLISH TO
SERVICE GALLERY

Figure 8-33. The deploy web service options

Select the Deploy Web Service [New] Preview option, and you will be directed to the screen shown in
Figure 8-34.

Azure Machine Learning)

Deploy "Predict Team Health [Predictive Exp.]" experiment as a
web service

Web Service Name PredictTeamHealt 2017.1.9.3.23 34 883

Price Flan Select an existing plan or create a new one ~

Important: The plan Liers default to the plans in your default region and your web service will be deployed to that region.

By clicking on “Deploy”, you agree to pay the plan charges in accordance with the Pricing Page

Microsoft

FAQ Privacy and Cookies Terms of Use & Microsoft
Figure 8-34. Deploy web service [new] preview options

This screen allows you to modify the name of the web service and the Azure price plan under which it
will run. Make your selections and click on the Deploy button to deploy the web service.

A new browser tab will open and you will see a screen similar to the one in Figure 8-35.

389

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

= Microsoft Azure Machine Learning Web

Preditt Team Health [Predictive Exp.]

BASICS MANAGE & MONITOR DEVELOP
Test Web Service View usage statistics Swagger Documentation
Configure Web Service Tutorial: How to build apps

Use Web Service

Launch in Excel

Microsoft

FAC Privacy and Cockies Terms of Use ® Microsoft

Figure 8-35. Azure Machine Learning Web Services dashboard

This web page is the launching point for all things related to managing, testing, and monitoring your
Azure Machine Learning Web Services.

e Test Web Service: This option allows you to interactively call the new Azure Machine
Learning Web Service with your own parameters and then see the predicted results.

e Configure Web Service: Allows you to view the primary and secondary security keys,
enable logging, and enable sample data.

e Use Web Service: Provides guidance and sample code on how to securely call the Azure
Machine Learning Web service via request-response or Batch mode. Sample code
provided in C#, Python, Python3, and R.

e *Bonus*: This option also provides an Excel spreadsheet with an embedded macro
to interactively call your AML Web Service and test the results.

e Launch in Excel- Allows you to launch the test Excel spreadsheet with an embedded
macro to interactively call your AML Web Service and test the results.

This is probably one of the best tools and features included with Azure Machine Learning (for free).
This feature enables you to populate a spreadsheet with sample data to test your new Azure Machine
Learning Web Service without having to create a client application.

Figure 8-36 depicts the Excel spreadsheet with the inputs shown on the top, the Excel Office Add-in
panel shown on the right, and the Web Service prediction results displayed on the bottom portion of the
spreadsheet.

390

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

m o L= Chack-Team-Health [Proclictive Egp J-01_11_2017 02 32 2% dis - Eace K ¥ - & X
“ MOME INSERT PAGELAYOUT FORMULAS DATA REVIEW vaW sobt B -
121 r fr | B.12854680584104 -
C N o o ')

3 Azure Machi PR
1 83 erathingfl Tempera il VentiiatiEl Act - ocity |G = zure Machine Le..

? cleciMed-E7 17.449294 96.292156 16454153 0.1335638 20 1 2.8383969 [0 [oN —
) clecafed87 17.511383 96.851865 16547.126 0.136821 9 2 e7977938 [[[on & Check-Team-Heakh [Predi
4 cBec2ed 67 17.573473 96511788 16640.098 0.1400783 91 3 B.6966907 0 (] 0 oN 1. VIEW SCHEMA

5 cdec2fed-57 17635562 96.316135 16733071 0.14333%6 ”n 4 11595588 [° [oN

6 clecifed-67 17.687651 96695311 16826044 0.1465628 92 5 14.494484 o [0 oN PREDH

7 2¢49b721-e 23.720322 96748524 25844408 0.4625473 141 102 288118 4 F 0 81285459 ¥

a s Inpats inpet]

a

=

1 B My daza has headon

| &

15 Userld BresthingRaTemcersturVertilstion Acthity HestAsteBiCadence Valosty Ssesd HIB HearirateRec HaartrateVar Exhaustion Seored Lat Seored Prabal ~r Dutpurt: coput]

16 clec2fod-67 17449204 96.202156 16454.153 0.1335638 %0 1 28588968 o [[oN N 241605

17 c3ecafed-57 17.511333 96.851865 16547.126 0.136821 L 1 57977938 [° [oN H 241605 Ll

18 clecifed-87 17.573473 96511788 18640.088 0.1400783 EH 3 8.6568207 o 0 [} oN N 24108 Slinclude headers

19 clec2fed67 17.635562 96.316135 16733.071 0.1433356 2 4 11595588 [] [oN N 241605

20 clec2fed BT 17597651 96655311 16826044 0.1485528 92 5 14493482 [} L] o oN N 2.41€-05 n

21 [2045b721-¢ 23.720322 96748526 25844.408 0.4625473 141 02 284118 4 2 o] _s.1285469]v Y 0.999887

2] fust

by 3. ERRORS

2%

Fal

w

EF,

24

Figure 8-36. Excel 2013 AML web tester spreadsheet

In this exercise, you successfully created a new Web Service from the Azure Machine Learning
Experiment. You then deployed it and tested it using an Excel spreadsheet.

There are additional Azure Machine Learning Web Service tools to provide support for diagnostics,
logging, and generating Swagger APl documentation.

Create Re-Training AML Web Service

One of the most exciting features in Azure Machine Learning is the ability to programmatically re-train a
Machine Learning model based on new or updated training data. This one singular feature provides the
unique capability for computers to be programmed to automatically adapt and learn from experience.

That’s right—the same stuff that science fiction books and the Terminator movie series are made of.
The good news is that we are still in the early days and there is no immediate concern that computers
will become self-aware-for at least a few more years.

Recall that you created an Azure Data Factory job back in Chapter 6 to retrain the Azure Machine
Learning model via an exposed Azure Machine Learning Web Service. You will create that service in this
exercise.

To deploy the training experiment as a retraining web service, you must add web service inputs and
outputs to the existing model.

391

http://dx.doi.org/10.1007/978-1-4842-2650-6_6

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

By connecting a Web Service Output module to the experiment’s Train Model module, you enable
the training experiment to produce a new trained model that you can then use in your predictive
experiment.

Here is the high-level workflow of the process to retrain an Azure Machine Learning Web Service:

e Update the Azure Machine Learning training experiment to allow for retraining by
adding Web Service Inputs and Output ports.

e Deploy the new Azure Machine Learning Web Service.

e Use the Batch Execution Service sample code to re-train the model by calling the new
retraining Machine Learning Web Service.

e Note that there is no request-response interface for retraining an Azure Machine
Learning Web Service.

¢ You can only retrain an Azure Machine Learning model using the batch execution
service.

To update the reference implementation Azure Machine Learning training experiment, navigate to the
original training experiment in Azure Machine Learning Studio and then follow these steps:

1. Connect a Web Service Input module to your data input:

a. Hint: Make sure that the input data is processed in the same way as the
original training data.

b. Locate the module by typing Web Service Input in the Search window on the
left side of the Azure Machine Learning Studio Designer screen. You can also
find this module by expanding the Web Service module.

c. Drag the Web Service Input module to the designer surface right above the
Execute R Script module.

d. Connect the Web Service Input module to the top-left connector of the Execute
R Script module.

2. Connect a Web Service Output module to the output of the Train Model module.

a. Locate the module by typing Web Service Output in the Search window on
the left side of the Azure Machine Learning Studio Designer screen. You can
also find this module by expanding the Web Service module.

b. Drag the Web Service Output module to the designer surface right below the
Train Model module.

c. Connect the Train Model module to the top of the Web Service Output module.
3. Run the experiment.

Figure 8-37 shows the updated Azure Machine Learning experiment after adding the Web Service Input
and Output modules.

392

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Predict Team Health

Web service input ."" Teammates_AML_Training_...

(ﬁ Create R Model

—= \
.‘aj Train Model

L/

ﬁ Score Model
- -

Web service output

Figure 8-37. Updated Azure Machine Learning experiment after adding the web service input and output
modules

Next, you must deploy the updated Azure Machine Learning training experiment as a web service that
produces a trained model along with model evaluation results.

To do this, follow these steps:

At the bottom of the experiment canvas, click Set-Up Web Service, and then select
Deploy Web Service [New].

The Azure Machine Learning Web Services portal will then open a new browser tab to
the Deploy Web Service page.

Type a name for your web service, choose a payment plan, and then click Deploy.

You can only use the Batch Execution method when creating trained models.
You will see a screen similar to Figure 8-38.

393

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

Azure Machine Learning

Deploy "Predict Team Health" experiment as a web service

Web Service Name PredictTeamHealt.2017.1.12.2.24.36.556

Price Plan brtamiPlan ~

mportant: The plan tiers default to the plans in your default region and your web service will be deployed to that region.

By clicking on "Deploy”, you agree to pay the plan charges in accordance with the Pricing Page.

Deploy

Microsoft

FAQ Privacy and Cockies Terms of Use & Microsoft
Figure 8-38. Deploy a re-training Machine Learning web service

After the new web service has been deployed, click on the Consume icon on the top navigation bar. This
will take you to a page where you can retrieve important information about the web service such as the

primary/secondary security access keys along with the web service URLs for the request-response and
batch execution service.

Figure 8-39 shows the Web Services Consume page. Note that there are links for sample code to call
the web service located at the bottom of the page. Additionally, there is sample code for calling the
batch version of the web service, which is exactly what you need.

394

CHAPTER 8 " ADVANCED ANALYTICS USING MACHINE LEARNING AND R

kstart Dashboard atch Request Log Configure Consume Test Swagger AP

€= Web Services
Predict Team Health - Re-Train
Web service consumption options
x IS
Excel 2013 or later Excel 2010 or earlier

Basic consumption info

Want to see how to consume this information? Check out this easy tutorial.

Primary Key

Request-Response hitps://ussouthcentral.services.azuremlnet/subscriptions/ba3e37851e644e12a03e163edaabIes 3/services/fed940740ecf46a2a585453aba

Secondary Key

81b0bf/execute?api-version=2.0&format=swagger

Documentation

Batch Requests httpsy/fussouthcentral services.azuremlnet/subscriptions/ba3e37851e644e12a03e163edaab3es 3/services/fcd940740ecfa6a2a585453aba
81b0bf/jobs?api-version=2.0 D

Documentation
Sample Code
Batch
—
ce Python Python 3+ R
J/ Thiz code requires the Nuget package Microsoft. AspNet WebApi.Client to be installed.

J/ Instructions for doing this in Visual Studie:

f// Tools -» Huget Package Manager -»> Package Manager Console
// Install-Package Microsoft.Asphet.Webdpi.Client

i

Figure 8-39. Web Services Consume tab used to re-train Machine Learning Web Service

The sample code provided will assist you in creating a C# console application to retrain the Azure
Machine Learning model.

Note For more information about retraining a Machine Learning Model, visit this link: https://docs.
microsoft.com/en-us/azure/machine-learning/machine-learning-retrain-machine-learning-model.

In addition to creating a custom .NET C# Console application to call the Batch Execution Service for the
Machine Learning retraining web service, you can also simply use Azure Data Factory to set up and run
an Azure Machine Learning job. All that is required is that you pass in the associated web service URL
for retraining and provide the Azure storage location for the retraining data.

395

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-retrain-machine-learning-model
https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-retrain-machine-learning-model

CHAPTER 8 © ADVANCED ANALYTICS USING MACHINE LEARNING AND R

For more information on integration with Azure Data Factory, visit this link:

Retraining and Updating Azure Machine Learning models with Azure Data Factory: https://azure.
microsoft.com/en-us/blog/retraining-and-updating-azure-machine-learning-models-with-
azure-data-factory/.

Summary

We covered quite a bit of ground in this chapter, starting with a broad overview and high-level background
of Machine Learning and predictive analytics. These technologies will continue to expand in their usage and
continue to permeate our modern society.

Today’s successful modern businesses know how to get the most out of their data and, in many cases,
can even turn that data in additional revenue streams. Microsoft has democratized predictive analytics with
its Machine Learning offering.

We explored the R language and how Microsoft has integrated R into its core business intelligence
products like SQL Server 2016 and Azure Machine Learning. We demonstrated that the combination of R
and Azure Machine Learning opens up a vast world of data science code and packages that can now be
easily leveraged and exposed via an Azure Machine Learning Web Service interface. A good analogy is that R
integration is like an accelerator for Machine Learning.

We concluded with a look at the powerful capability of re-training an Azure Machine Learning model.
This feature truly provides the ability for machines to keep learning and constantly adapt as the environment
changes. Just like the animal kingdom. Except that the machines never sleep.

We also saw how Azure has highly integrated its cloud services to maximize the value proposition. One
example of this integration is between Azure Data Factory (ADF) and Azure Machine Learning (AML).

With ADE, you can create predictive pipelines to process large input data streams by invoking the Azure
Machine Learning Batch Execution Services (BES). Additionally, you can create re-training pipelines to
invoke AML re-training Web Batch Execution Service endpoints with updated training data to automatically
re-train your Machine Learning models on a scheduled basis.

396

https://azure.microsoft.com/en-us/blog/retraining-and-updating-azure-machine-learning-models-with-azure-data-factory/
https://azure.microsoft.com/en-us/blog/retraining-and-updating-azure-machine-learning-models-with-azure-data-factory/
https://azure.microsoft.com/en-us/blog/retraining-and-updating-azure-machine-learning-models-with-azure-data-factory/

CHAPTER 9

Data Visualizations, Alerts, and
Notifications with Power Bl

This chapter explores the use of data visualizations, alerts, and notifications to help today’s businesses
provide useful communications to their employees and customers in order to successfully manage their
operations in real time.

We will start the chapter with a brief look at today’s reporting landscape, then take a look at how
Microsoft technologies like Power BI and Azure functions can help provide quick-and-easy solutions. We
will then walk through enabling these technologies as part of our reference implementation scenario.

We will conclude the chapter by walking through the use of the C# .NET “Simulator” application to
automatically funnel thousands of sample test data transactions through our Azure cloud implementation.
The simulated data will be processed in real time using Azure Stream Analytics, and we will implement a
Power BI dashboard to view of our Lambda cloud architecture. Lambda architectures, as you may recall, are
designed to handle massive quantities of data by taking advantage of both batch- and stream-processing
methods.

Our reference implementation Power BI dashboard will display outputs for all three “temperatures” of
the Lambda architecture processing model via visualizations of the cold, warm, and hot data paths.

The Modern Reporting Landscape

Yesterday’s green bar print-outs, stale information, and archaic “TPS” reports have been replaced with real-
time, ubiquitous communications, modern mobile devices, and instant communications, feedback, and
reporting. Instant text alerts, automatic e-mail updates, web portals, and Key Performance Indicator (KPI)
dashboards rule the business landscape today. These features and capabilities now represent a large portion of
any good consumer, commercial, or enterprise software specifications for a Minimum Viable Product (MVP).

Today, the emphasis is truly on the use of the term “visual communications” to quickly and elegantly
convey meaning to users. Success lies in an organization’s ability to render key business information to their
users in a clear and concise manner.

At times, management by exception can be the guiding principle of the day, and reports, visualizations,
and tools that help to isolate, identify, and magnify abnormal trends and exceptions are worth their weight
in gold today. It has been said that great data visualization is both an art and a science. We would certainly
agree and would also propose having an extensive, flexible, and customizable tool chest of visual control
“metaphors” to help provide reporting and notifications.

In addition to reporting on what’s happening now, with dashboards and visualizations, predicting what will
happen next is quickly becoming the current mega-trend in the world of data science. Advances in technologies
like Machine Learning, predictive analytics, and artificial intelligence are all helping to pave the way.

© Bob Familiar and Jeff Barnes 2017 397
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_9

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Today’s modern business intelligence landscape requires that successful enterprises rely on a proper
mixture of hindsight, insight, and foresight to make effective business decisions to drive success. These
days, it is not enough to solely rely on the business strategies of the past; today, there is so much value to be
derived from the historical data, market trends, and KPI results that can be easily mined to shape predictive
strategies in real time.

All this becomes possible with the advent of pay-as-you-go cloud computing, cheap and ubiquitous
cloud storage, and democratized predictive analytics engines like Azure Machine Learning.

In order to compete in today’s global marketplaces, businesses must learn how to harness their key data
assets and transform them into positive-outcome producing streams. Such outcomes could be realized in
the forms of increased revenue results, better customer service, and outstanding customer loyalty.

Figure 9-1 illustrates the business intelligence landscape today. Note that there is a 360-degree analysis
depicted, with an emphasis on the use of predictive analytics to help drive future outcomes.

Present — What’s Happening Now?
_ « Dashboards _

+ Alerts
Past — What Happened? + KPI's Future — What will happen Next?
* Reports - Predictive Analytics
- Transactions + Machine Learning
« Images « Prescriptive Analytics
HINDSIGHT INSIGHT FORESIGHT

Figure 9-1. The business intelligence landscape today

One could argue that in today’s modern Internet of Things world, that there is a new meaning for the
term Al, or Artificial Intelligence. The reality is that Al is rapidly being replaced with a new meaning; that of
“actionable” intelligence. And nowhere is concept of actionable intelligence more important (and necessary)
than with the rise of the Internet of Things (IoT) and all the resulting data that these systems can generate.

Due to the sheer volumes of sensor data, humans must increasingly rely on advanced computer
systems to track, report, manage, and predict exceptions. Fortunately, as we have seen in the previous
chapters, technologies like Azure Stream Analytics (ASA) and Azure Machine Learning (AML) provide
valuable features and capabilities to help create and manage these scenarios. These tools can truly enable
many “actionable intelligence” use case scenarios, and we will further explore the integration aspects of
these technologies when we examine the alerts and notifications topics later in this chapter.

Today, there’s data, more data, data overload, and then there’s actionable intelligence. Surfacing what is
most important—exactly when it is needed—is one of the keys to success when it comes to operationalizing
a sensor-based business intelligence platform.

398

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Overview of Power B

Power Bl is a cloud-based analytics service by Microsoft that has the goal of providing “faster time to insight”.
Power BI has the ability to bring together data from many diverse sources to deliver rich visualizations and
comprehensive views of business operations across desktop, web, and mobile devices.

While Power BI certainly appeals to power users, it is also meant for less technical business users and
analysts to help them connect with their data and provide self-service business intelligence capabilities. A
key feature of Power Bl is that it allows you to see all of your data through a “single pane of glass” and then
create a complete analytics environment to monitor data and share reports.

The Power BI Service

The Power BI Service, which is located at www.powerbi.com, is a Microsoft cloud-based service that allows
you to:

e Create Beautiful Visualizations: Tell compelling data stories via rich visualization
controls.

e Build Rich, Live Dashboards: That can help turn business intelligence into business
insights by highlighting the exceptions in your data.

e Create Reports and Datasets: That can be used to create data visualizations and
reporting dashboards.

e Provide Up-to-Date Data: Via real-time, automatic, and scheduled data refreshes.

e Create and Share Power BI Dashboards: Easily with other people in your
organization.

e Ask Questions of Your Data in Plain English: Via a natural language query.

e Allow You to Stay Connected to your Data: The Power BI Mobile application is
available in every major mobile app store.

Power BI Desktop

Power BI Desktop is a visual data exploration and interactive reporting tool that is provided free by
Microsoft. It provides a rich, free-form, canvas for deep exploration of your data, along with an extensive
library of interactive visualizations. Power BI Desktop offers a highly productive authoring experience for
creating reports for the the Power BI service. New features are continually being integrated and the tool is
updated on monthly basis. For users who may not have access to Excel 2013, the Power BI Desktop can be
used to import data, create data models, and author and share Power BI Reports via the Power BI service.

While Power BI Desktop may not include all the analytical features of Excel, it does provide a simple
and elegant solution for creating Power BI reports, visualizations, and dashboards.

Power BI Desktop is a powerful visual data exploration engine that enables you to quickly connect,
query, and analyze your data and then quickly create stunning reports and visualizations. With Power BI
Desktop, you can:

e Acquire and Prepare Data: Using extensive query and filtering capabilities.

e Manipulate and Consolidate: Multiple data sources enable users to utilize data from
multiple sources in a single report.

399

http://www.powerbi.com/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

e Establish Data Structures: Then transform and analyze the data via the built-in tools
and visual components.

e Visualize and Explore Data: Quickly and easily through a free-form, drag-and-drop,
report designer authoring canvas.

e Author Reports: With a broad range of modern data visualization tools to fine-tune
and polish your dashboards and reports.

e Publish Beautiful, Interactive Reports: Directly to app.powerbi.com, which makes it
easy to share and collaborate on complex reporting projects.

e Securely Share Reports: This is done through a unique, curated, enterprise content
library approach.

Note You can download a copy of Power Bl Desktop at: Power Bl Desktop: https://powerbi.microsoft.
com/en-us/desktop/.

Unlocking Data Analysis

Power BI Desktop also enables extensive data analysis capabilities, enabling authors to produce rich data
models containing formulas and relationships. For example, you can:

e Automatically create a data model simply by importing data:

e Power BI Desktop can automatically detect relationships in the data and apply
default summarizations.

® Refine data models to enable complex calculations:
e Identify key relationships among datasets from a variety of sources.

e Create relationships between tables manually or by using the Auto-Detect
feature.

e Adjustrelationship types (one-to-one, many-to-many, or many-to-one) for
deriving specific data insights.
e Define calculations: You can define “measures” to generate new fields for use in
Power Bl reports and dashboards:

e Measures allow you to create new data from existing data in your data model.

e One direct benefit of this is that the calculated results of measures are always
changing in response to interactions with reports. This allows for fast and
dynamic ad hoc data explorations.

e You can also use the Data Analysis Expression (DAX) library to create calculated
tables. For example, instead of querying and loading values into a new table’s
columns from a data source, you can also create a Data Analysis Expression
(DAX) formula that defines the table’s values.

400

https://powerbi.microsoft.com/en-us/desktop/
https://powerbi.microsoft.com/en-us/desktop/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Note Download the DAX function reference at https://msdn.microsoft.com/en-us/library/ee634396.
aspx.

e Define synonyms: Allow for an improved Q&A experience in the Power BI service for
natural language query capabilities.

e Define row-level security: Allow you to secure your data at the table and row level by
defining security filters. You can define a role and an associated security filter in the
Power BI desktop and then assign members to that role in the Power BI service at
app.powerbi.com.

The Role of Excel and Power BI

Excel 2013 is Microsoft’s premier tool for business analytics. It includes additional business intelligence
features such as Power Query, Power Pivot, Power View, and Power Map.

With the Excel 2013 edition, business analysts can now publish Excel Workbooks to the web site app.
powerbi.comto share data, analyses, and reports with other Power BI users.

Note Power Bl publisher for Excel: https://powerbi.microsoft.com/en-us/excel-dashboard-
publisher.

Support for R Visualizations

With Power BI Desktop, you can leverage the power of the R programming language to help visualize your
data. To use R with Power BI Desktop, you must first install the R engine. To run R Scripts in Power BI
Desktop, you must separately install R on your local computer. You can download and install R free from
many locations, including the Revolution Open download page and the CRAN Repository.

Note \Visit this link to get started with R and Power BI Desktop: Running R Scripts in Power Bl Desktop:
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-r-scripts/.

Microsoft R Open

Microsoft R Open, formerly known as Revolution R Open, is the enhanced distribution of R from Microsoft.
It is a complete open source R platform for statistical analysis and data science.

Microsoft R Open 3.3.2 (the current version at the time of this writing) is based on (and 100%
compatible with) R-3.3.2, and is fully compatible with all packages, scripts, and applications that work with
that specific version of R.

Microsoft R Open also includes additional capabilities for improved performance on both Windows and
Linux-based platforms.

401

https://msdn.microsoft.com/en-us/library/ee634396.aspx
https://msdn.microsoft.com/en-us/library/ee634396.aspx
https://powerbi.microsoft.com/en-us/excel-dashboard-publisher
https://powerbi.microsoft.com/en-us/excel-dashboard-publisher
https://powerbi.microsoft.com/en-us/documentation/powerbi-desktop-r-scripts/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Note You can download Microsoft R Open via this link: Microsoft R Open 3.3.2: https://mran.
revolutionanalytics.com/download/

Power BI Desktop: R Script Visualizations

After you have installed and configured Microsoft R Open to work with Power BI Desktop, you can proceed
to create some amazing visuals by leveraging the power of some of the more popular R visualization
packages like ggplot2.

“ggplot2” is a powerful data visualization package for use in R programs. It is an implementation of a
“grammar of graphics,” which is a common playbook for data visualizations. The term comes from a seminal
book by Leland Wilkinson and was written in the early 2000s. The graphics grammar scheme seeks to
decompose graphs into semantic components such as scales and layers.

Note You can download a handy ggplot2 cheat sheet at: ggplot2 cheat sheet: http://www.rstudio.com/
wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf.

Once you are in the Power BI Desktop environment, you can drag the R Script Visual control to the
designer canvas, as illustrated in Figure 9-2.

Visualizations

o .--

. —r s
—_—
—

o

=hY 1334

o

R script visual

Figure 9-2. The R Script visual control, in the Power BI Visualizations toolbox

402

https://mran.revolutionanalytics.com/download/
https://mran.revolutionanalytics.com/download/
http://www.rstudio.com/wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf
http://www.rstudio.com/wp-content/uploads/2015/12/ggplot2-cheatsheet-2.0.pdf

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

After you drag the R visual control to the Power BI designer surface, all you need to do is:

1. Select a column of data to plot. In this example, we are using the Temperature
column.

2. Addtheselines of R code to the Power BI R Script visual control:

LOAD the ggplot2 package
library(ggplot2)

RENDER the ggplot2 Visual
ggplot(data=dataset,aes(x=Temperature)) + geom freqpoly(color="blue")

After populating the control with the R code and clicking on the Run arrow in the R Script Editor, you
should see a very rich graphic visualization appear. In this case, a geometric frequency polygon is depicted,
showing various temperature fluctuations in the sample data. Figure 9-3 illustrates the Power BI R control
visualization.

r — B eee ¥
=50
I3 i
95.00 96.25 96.50 96.75 97.00
Temperature
(. - .

R script editor

Create dataframe
dataset <- data.frame(Temperature)

Remove duplicated rows

dataset <- unique(dataset)

library(ggplot2)

Iggplot{data=dataset,aes(x:Temperature}) + geom_fregpoly(color="blue")

Figure 9-3. Power BI R module using the ggplot2 R package to render temperature sensor readings
visualization

403

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Asyou can see from Figure 9-3, Power Bl makes it extremely easy to leverage the R language and the
extensive library of packages to create very powerful graphic visualizations.

Note that in addition to providing rich visualizations, R can also be used as an input source in Power BI
desktop.

Power Bl Data Sources
Power BI can connect to a wide variety cloud and on-premises data sources, including:
e Popular SaaS Solutions: Such as Salesforce, GitHub, and Dynamics CRM.

e On-Premise Databases: Power BI offers live connectivity to SQL Server analysis
services. Using a gateway solution, Power BI can also connect to other database
solutions.

e Custom Data Sources: Power Bl also has the ability to connect to almost any data
source via powerful ReST APIs. This is a key extensibility point and means that
you can now provide custom interfaces into proprietary corporate data sources in
addition to leveraging additional external data services.

e Integration with Other Azure Services: Power BI provides tight integration with IoT
Hub, Event Hub, SQL Azure, and stream analytics.

e Power BI Desktop, Excel, and CSV Files: Excel workbooks can be directly connected
to Power Bl.com and can also be used with Power BI Desktop.

e Power Bl Desktop should be considered the companion application to the web-
based Power Bl service.

e Power BI Desktop files can be uploaded to the Power BI service, just like Excel
files or CSV files.

Power BI Mobile

One of the more powerful features of Power Bl is the ability to quickly and easily install native mobile
applications across a wide variety of mobile devices, to empower an organization’s users to instantly access
Power BI dashboards. The Power BI mobile application is currently available in the following mobile
marketplaces:

e AppleiOS (iPhone and iPad)
e Android
e Windows 10

In addition to viewing Power BI dashboards on-the-go, some of the additional capabilities of Power BI
that have been incorporated across all the mobile platforms include:

e Allows you to set “favorites” for key data visualizations.
e Provides the ability to zoom in/out of visualizations.

e Allows you to annotate visualizations and share snapshots with others in your
organization.

e Allows you to easily configure alerts to receive notifications when critical business
metrics reach prescribed thresholds.

404

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Figure 9-4 depicts a Power BI Desktop dashboard automatically rendered into a mobile device view.

/P‘q!spﬁu Toys Taitspin Toys CY2016

S Mb 3" r‘d ¥TD Revenue YTD Cusantin
118K M 18K

___u-l' il E '; | | L/i\l_l/ ‘

Figure 9-4. Power BI Dashboard view from a desktop/web browser and on a mobile device

Power BI mobile application reports support viewing dashboards, reports, SQL Server reporting
services reports, and Excel spreadsheets.

The application can also access data that resides both on-premise and in the cloud by connecting to
both SQL Server reporting services reports (on-premises) and Power BI dashboards and reports (in the
cloud) through a single app experience.

Power BI Embedded

Power BI Embedded is an Azure service that enables developers to leverage Power BI features in their
own custom applications. Possible embedded artifacts include charts, visualizations, and reports. One key
advantage of Power BI Embedded over the standard Power BI offering is that it can be used anonymously,
without requiring any account login information to access it.

With Power BI Embedded you can create and deploy stunning data visualizations and compelling
reports directly in your applications using simple ReST APIs and the Power BI Embedded SDK.

Additional features of Power Bl Embedded include the following:

e Power Bl Embedded provides friction-free authentication and authorization user
experiences for embedded reporting scenarios.

e Application developers can easily embed Power BI tiles and reports as an HTML
Iframe control in a mobile or web applications.

405

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

A Power BI Embedded JavaScript API enables developers to embed reports into applications and
to then programmatically interact with them. Common scenarios for using Power Bl Embedded in your
applications include:

e Independent software vendors (ISVs) and developers building customer facing
applications can use the Power Bl Embedded service, and the Power BI SDK, to
embed interactive reports.

e Asadeveloper, you can use the Power Bl visualization framework to create custom
visualizations that can be used in your own app.

e By utilizing an Azure Active Directory (AAD) application token authentication
model, you can embed interactive reports that were authored in the Power BI
Desktop tool into your own application.

Licensing Model for Microsoft Power Bl Embedded

Licensing for Power BI embedded is the responsibility of the developer of the application who is consuming
the Power BI visuals, and costs are charged to the subscription that owns those resources.

Note Power Bl Embedded pricing page: https://azure.microsoft.com/en-us/pricing/details/
power-bi-embedded/.

Power BI ReST APIs

Power BI ReST APIs allow developers to programmatically extend their applications to deliver custom, real-
time data payloads that drive key dashboard scenarios. Following are some of the key use cases for Power BI
ReST APIs.

e Developers can use the Power BI ReST APIs to programmatically push both static
and real-time data directly from an application into Power BI.

e Power BI ReST APIs can provide programmatic access to other Power Bl resources
such as datasets, tables, and schemas.

Power BI Custom Visuals

Power Bl is an open and extensible platform. You can download or develop custom visuals as needed to
support specific business requirements. To create custom visuals, developers can get started quickly with
Microsoft’s open source, production-quality, sample Power BI visualization codebase.

In addition to the rich set of (25+) Power Bl visual controls, developers also have the following options
for obtaining additional Power BI visualizations:

e Power BI Custom Visuals Gallery:
e Thisis a gallery of (free) visuals created by the Power BI community.

¢ You can also install R-powered Power Bl visuals. See this link for more
information: https://app.powerbi.com/visuals/.

406

https://azure.microsoft.com/en-us/pricing/details/power-bi-embedded/
https://azure.microsoft.com/en-us/pricing/details/power-bi-embedded/
https://app.powerbi.com/visuals/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

. Create Your Own Power BI Custom Visuals:

e Developers also have the option of creating their own custom Power BI
visualizations for use in dashboards, reports, and content packs.

e The Microsoft Power BI visuals project provides high-quality data visualization
that you can use to extend Power BI.

e The project contains over 20 visualization types, the framework to run
them, and the testing infrastructure that enables you to build high-quality
visualizations. See https://powerbi.microsoft.com/custom-visuals.

e Microsoft has published the source code for all of the Power BI visualizations to
GitHub at https://github.com/Microsoft/PowerBI-Visuals/.

e Microsoft enables developers to create their own custom visuals from the
published open source visuals along with the provided framework, and then
submit them back to the community.

Power BI Natural Language Query

One unique feature of Power BI the ability to ask a question about your data using a natural query language
known as Q&A. Power BI Q&A is different from a search engine in that Q&A only provides results about the
data hosted in Power BI.

You can use Power BI Q&A to explore your data using statements like “Show Stores with sales greater
than 50,000” and then receive the answers in the form of charts and graphs. Power BI Q&A also picks the
best visualization based on the underlying data types being displayed.

The Power BI Q&A question box is where you type your question using natural language. Power BI Q&A
recognizes the words you type and then automatically figures out which dataset to query in order to find the
answer. Power BI Q&A also helps you form your question correctly with auto-completion, re-statement, and
other textual and visual aids.

The answer to your question is displayed as an interactive visualization and automatically update as
you modify the question. Power BI Q&A can intelligently filter, sort, summarize, and display the data based
on the question.

Depending on the underlying dataset, the Power BI Q&A service can determine how to best display it.
For example, if data is defined as a city or state is more likely to be displayed as a map visualization. Once
your Power BI Q&A answers are displayed, you can pin the answers to your dashboard for future reference.

It is possible to even add your own suggested questions for each dataset. As an example, you can create
a set of frequently asked questions to help prompt the users of your Power BI datasets. Figure 9-5 depicts
a screenshot of the Power BI Q&A screen for the Supplier Quality Analysis sample dashboard, which is
available from the app.powerbi.com service.

407

https://powerbi.microsoft.com/custom-visuals
https://github.com/Microsoft/PowerBI-Visuals/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

pplier Quality Analysis Sample > Q&A & o] ¥
Exit Q&
(3 plant with total total downtime minutes
17 Favorites

~ My Workspace

® "t bl

Toronto /

4 ake-Dioparir
/ Missisauga

Mascon City

Washington - = anmapeis

b Reports

b':.-.‘;‘ ik 1 2017 Microsoft Corporation & 2017 HERE

Figure 9-5. Power BI Q&A showing total quantity of rejected defects

In this example, we asked for the “plant with total downtime minutes” and quickly received the visual
map in Figure 9-5. Note the visual clues offered by the size of the circles on the map, which indicate the
relative length of downtime for each individual plant.

Power BI Cortana Integration

Microsoft has recently integrated Cortana (the personal digital assistant) into Power BI to assist humans
looking for answers in their data. The Cortana voice integration works seamlessly with Power BI dashboards
and allows users to ask questions about their data—similar to the Q&A feature.

Users can ask Cortana questions either verbally or by typing them in such as “what plant had the most
defect reports” Cortana can then find answers directly from datasets or from Power BI report pages that are
designed specifically for Cortana (these are called Answer Pages).

Tip Use Power Bl to create a custom Answer Page for Cortana: https://powerbi.microsoft.com/en-
us/documentation/powerbi-service-cortana-desktop-entity-cards/.

Note that there are several prerequisites required before you can begin using Cortana with Power BI:
e The users have Windows 10 version 1511 or later (November 2015 update).
e The users must add their Power BI accounts to Windows 10.

e The dataset supports Q&A and is enabled for Cortana to access. See Figure 9-6.

408

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-cortana-desktop-entity-cards/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-cortana-desktop-entity-cards/

T Favorites

w My Workspace

¥ Show: A

=} Dashboards

st 0 = B & B powsrd

General Dashboards Workbook

AdventureWorks
axrtweetpawrbi-ds
Azure Audit Logs
Azure Audit Logs

Cannected Cars - Desktop Repart_I82

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Herts Subscriptions

Settings for IT Spend Analysis Sample

(D) Refresh can't be scheduled becauss the data set dossn't contain any data model connections, or is a
worksheet or linked table. To schedule refresh, the data must be loaded into the data model,

Refresh histony

4 Q& and Cortana

ConnectedCarsRualtime ¥ Allow Cortana to access this dataset

isthubdata Cortana will anly share this information with Fower B1 users wha have access to it
IT Spend Analysis Sample o Discard

JBCokeBotiler]

jemsbandz 4 Featured Q&A Questions

LogicAppsHealth Feetured questions are shown as suggestions for this dataset in Q&

Marketing Dashboard Add a question

Supplier Quality Analysis Sample

dli Reports

=}
Figure 9-6. Power BI Settings for Allowing Q&A and Cortana Integration

Note that you can also easily add Q&A question suggestions. Cortana will return and rank the answers
from Power BI, providing one or more best matches for the results. You can continue to interact with the
returned visualizations just as you would in Power BI.

Cloud Reporting Cost Architectures

In many cases, the topic of licensing models for reporting, dashboards, and visualizations can have a
significant impact on the final implementation details of a modern cloud architecture.

Noting the phrase “your mileage may vary,” keep in mind that deeper exploration and analysis is often
recommended to determine the best and most cost-effective approach for your organization.

The various strategies for implementing cloud-based dashboards, visualizations, and reporting services
for an organization might consist of the following options:

e Power BI Desktop/Mobile:

e Allows you to rapidly configure and enable a self-service BI capabilities in an
organization.

e Per user licensing model.
e Power BI Embedded:

e Provides the ability to embed Power BI visualizations and reporting directly into
your custom applications.

e Limited to static designs and interactivity.
e Licensed by usage within applications.

409

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

e Custom Applications:
e Web/mobile applications.
¢ Development staff required.
e Fully custom implementations.
e Third-Party Reporting Tools:
e Such as QlikView, Tableau, and Spotfire.
e Additional licensing costs.

Sometimes the right answer can even be multiple answers. For example, an organization’s reporting
architecture could include a mixture of these options with the ability to fully leverage each option for its own
best use cases. For example:

e Power BI: Can quickly fully-empower your organizations most demanding “power”
users.

e By enabling self-service BI capabilities, organizations can lighten the backlog of
reporting requests for IT staff.

e Power BI Embedded: Implement it in cases where static or anonymous web-based
reporting scenarios are required.

e Custom Application Development: Provides the ultimate in control, rendering,
and formatting. Consider this option when off-the-shelf reporting packages simply
won’t do.

Alerts and Notifications

No discussion about today’s modern reporting landscape would be complete without the mention of alerts
and notifications. One of the more important aspects of implementing and managing a Big Data cloud
application is the ability to provide “management by exception” and thereby focus on the higher value
activities such as refining Machine Learning algorithms.

As we have seen, having an awesome, graphically stunning, operations dashboard in Power Bl is
great, as long as someone is watching it! Alerts and notifications allow you to be automatically informed
and contacted when certain thresholds or KPI metrics have been reached. This is where the concept of
actionable Intelligence becomes a business differentiator .

In today’s fast-paced business environment, communicating with multiple people at the same time is
extremely challenging. And to that add the the multitude of communication devices and protocols such as
e-mail, SMS, and voice mail.

Another aspect to consider is the associated “escalation schedule” that could be associated with any
metric that might trigger an alarm. This refers to a schedule for contacting individuals using different protocols
and devices, depending on the severity of the alarm and the amount of elapsed time since the last notification.

In terms of consistency, some employees check their e-mail often, some a few times per day, and
some only on an irregular basis. Most employees have smart phones these days with SMS text messaging
capabilities. When it comes to communication protocols, the common denominators become those
technologies which are the most ubiquitous, widespread, and widely adopted. As a result, e-mail, SMS text
messaging, and web alerts quickly rise to the top as the best options for notifications that will reach the
largest base of existing users.

410

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

The appealing feature of great notification systems is that they streamline communications by alerting
all employees about emergencies via their various preferred communication channels. This process should
occur within a few seconds from the time the initial alert message is sent. This means that no matter what
device your employee has on hand, he or she can receive your important and urgent messages and alerts in
a timely manner.

Microsoft Azure has some great managed services capabilities that make handling these types of
notifications and alerts easier than ever before. Later in this chapter, we will explore the use of Azure Event
Hubs to receive alert messages from our reference implementation and then configure Azure Functions to
be automatically “triggered” whenever a new message arrives at the Event Hub.

Establishing a robust alert and notification system allows for the instantaneous broadcasting of
important and urgent news regarding (potential) emergencies in the workplace. As a result, a well-tuned
alerting system can be an invaluable asset to any business, its customers, and its employees.

In this section, we examine the following Azure technologies to achieve our goals for the reference
implementation:

e Azure Event Hubs: A large-scale, managed, messaging service that can provide intake
for massive data streams from various sources including, applications, devices, and
web sites.

e Azure Stream Analytics: We will briefly re-visit Azure Stream Analytics and explore
adding an additional output option for Event Hubs.

¢ Inaddition to having a “hot path” for real-time Power BI dashboard metrics for
our reference implementation, we will also implement a “hot path” to an Azure
Event Hub for dropping alert and notification messages that require immediate
action.

e Azure Functions: This PaaS offering is an extremely lightweight, event-based,
serverless, cloud computing platform.

e Azure Functions can be quickly and easily configured and coded to accelerate
development of alerts and notification solutions.

e They provide programmatic “hooks” into popular Azure-based events for
implementing instant integration scenarios.

Azure Event Hub

Azure Event Hub is a highly-scalable, data ingestion service that can scale to millions of events per second,
originating from a diverse set of devices and services, with low latency and high reliability.

We will be looking at using the Azure Event Hub service as the primary message queue for staging
outbound alerts and notifications for our reference implementation.

The design goal of Event Hubs includes managing what are sometimes referred to as the “three Vs” of
Big Data processing:

e Volume: Ability to handle massive amounts of data.
e Velocity: Ability to handle data ingestion and data egress at scale.
e Variety: Ability to handle a wide range of data types and data sources.

Microsoft Azure Event Hubs can support up to 1 million subscribers and support thousands of gigabytes
of inbound data. Figure 9-7 illustrates the Azure Event Hub architecture.

411

CHAPTER 9 ' DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

PRODUCERS SERVICE BUS CONSUMERS RECEIVERS

SENDER SRS Receiver

Partition 2 WORKER Receiver

EVENT Receiver

SENDER HUB

Receiver
Partition .. WORKER Receiver

SENDER Partition 32 Receiver

Protocols:
* HTTPS Partitions:
* AMQP = 1-32

Figure 9-7. Azure Event Hub architecture

Event Publishers

Any application that sends data to an Azure Event Hub is referred to as an event publisher. Event publishers
can emit events using the AMQP, AMQP over WebSockets and HTTP protocols. When sending messages,
publishers can use a Shared Access Signature (SAS) token to authenticate to an Event Hub.

Event Hub Partitions

Azure Event Hubs provides message streaming functionality via a partitioned consumer pattern. A partition
is an ordered sequence of events that is held in an Event Hub. As newer events arrive, they are added to the
end of this sequence. This pattern requires that each consumer only reads a specific subset of the message
stream. This partitioning pattern also enables horizontal scalability for event processing.

The number of Azure Event Hub partitions is specified at the time of initial provisioning in Azure and
can have a value between 2 and 32. The number of partitions specified in an Azure Event Hub directly relates
to the number of concurrent “workers” that will be assigned to process the messages in the background.

Event Consumers and Consumer Groups

Any application that reads data from an Event Hub is referred to as an event consumer. All Event Hub
consumers connect via the session protocol and events are delivered through the session as they become
available. The client does not need to poll for data availability.

The publish/subscribe capabilities in Azure Event Hubs are enabled through the notion of consumer
groups. A consumer group is defined as a view (a bookmark, position, or offset) of the message data contents
of an Event Hub. Consumer groups enable multiple consuming applications to each have their own separate
slice or view of the event hub data stream, and to then be able to read and process the event stream data in a
completely isolated and independent manner.

412

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Throughput Units

The processing capacity of Azure Event Hubs is measured in throughput units. Throughput units equate to
pre-purchased units of Azure Event Hub message processing capacity and each unit includes the following
processing components:

e Data Ingress: Up to 1MB per second or 1000 events per second (whichever comes
first) for inbound operations.

e Data Egress: Up to 2MB per second for outbound operations.

A best practice for optimizing the performance of Event Hubs is to balance the throughput units and
partitions to achieve an optimal scaling architecture in Azure. As a general rule, the number of throughput
units should be less than or equal to the number of partitions in an Event Hub.

Streaming Analytics: Output to Event Hub

Now that we have a good understanding of Azure Event Hubs, we will re-examine Azure Stream Analytics
and how it can integrate with Azure Event Hubs to trigger an alert or notification workflow.

Figure 9-8 illustrates the various output options available to an Azure Stream Analytics job. Note that
one of these output options is for Event Hub.

New output

* Qutput alias

output-eventhub v

SQL database
Blob storage
Table storage
Service bus Queue
Service bus Topic
DocumentDB
Power BI

Data Lake Store
brialarm v

* Event hub name

brtalarm v

Figure 9-8. Azure Streaming Analytics output option for event hub

413

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

You now have the ability to define another hot path for our Streaming Analytics job (in addition to
Power BI) for real-time alerting. This additional path allows you to:

e Monitor the incoming stream of sensor data.

¢ Invoke the Machine Learning Web Service to predict if a team member may be
physically exhausted.

e Drop an alert or notification message onto the Azure Event Hub in the case that
exhaustion was predicted.

e Perform an activity in response to the alert or notification, such as sending an e-mail
or SMS. Azure Functions, the topic of the next section, is a recommended approach
for implementing such actions.

Azure Functions

Azure Functions provide an extremely lightweight, server-less, event-driven, computing experience that can
help accelerate your development and deployment productivity. Application development is accelerated
due to the fact that there is zero server provisioning, configuration, or management involved. Focus is
exclusively on refining the workflow and business logic for connecting events to actions in Azure versus how
that functionally will be hosted and scaled.

Azure Functions provide hooks into many useful events and sources as both inputs and outputs. These
include predefined event triggers such as HTTP requests, storage update, queue dispatches, and event
streams, allowing you to quickly build solutions with less code.

Input Bindings

Here is a list of the various INPUT event types that can be triggered upon in Azure Functions (as of this
writing):

e Blob Trigger: A function that will be run whenever a blob is added to a specified
container.

e Event Hub Trigger: A function that will be run whenever an event hub receives a new
event.

e External File Trigger: A function that will be run whenever a file is added to an
External File provider.

e External Table: A function that fetches entities from an External Table when it
receives an HTTP request.

e Face Locator: A function that processes images and outputs the bounding rectangle
of faces.

e Generic Web Hook: A function that will be run whenever it receives a web hook
request.

e GitHub Commenter: A function that will be run whenever it receives a GitHub
Commenter web hook request.

. GitHub Web Hook: A function that will be run whenever it receives a GitHub web
hook request.

414

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Http GET (CRUD): A function that fetches entities from a Storage Table when it
receives an HTTP request.

Http POST (CRUD): A function that adds entities to a Storage Table when it receives
an HTTP request.

Http PUT (CRUD): A function that adds entities to a Storage Table when it receives
an HTTP request.

Http Trigger: A function that will be run whenever it receives an HTTP request.

Image Resizer: A function that creates resized images whenever a blob is added to a
specified container.

Manual Trigger: A function that is triggered manually via the portal Run button.

Queue Trigger: A function that will be run whenever a message is added to a specified
Azure Storage Queue.

SAS Token: A function that generates a SAS token for Azure Storage for a given
container and blob name.

Scheduled Mail: A function that will periodically send e-mails.

Send Grid: A function that sends a confirmation e-mail when a new item is added to
a particular queue.

Service Bus Queue Trigger: A function that will be run whenever a message is added
to a specified Service Bus queue.

Service Bus Topic Trigger: A function that will be run whenever a message is added to
the specified Service Bus topic.

Timer Trigger: A function that will be run on a specified schedule.

External Bindings

Here is a list of the various OUTPUT event types that can be integrated into an Azure Function (as of this

writing):
[
[]

Azure Event Hub

Azure Queue Storage

Azure Blob Storage

External File (Preview)

External Table (Experimental)
HTTP

Azure Service Bus

Azure Table Storage

Azure DocumentDB Document
Azure Mobile Table Record

Azure Notification Hub

415

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

e SendGrid (Preview)
e Twilio SMS (Preview)

e Bot Framework

Developer BYOL (Bring Your Own Language)

Azure Functions can be written in a variety of programming languages, such as C#, Node.js, Bash, F#, PHP,
PowerShell, and PHP. As a result, application developers can leverage their existing development skillsets
when implementing Azure Functions.

You can develop Azure Functions in a variety of tools, including the Azure Portal, Visual Studio, and
your favorite text editor. Source control integration enables continuous deployment scenarios, and you can
test and debug your function code locally using Visual Studio or the command-line tools.

Cost Effective Scaling

Microsoft offers two hosting options for Azure Functions: the consumption plan and the app service plan.
The choice of hosting plan affects the cost and scalability of your particular solution.

e Consumption Plan Approach: With this plan, the Azure Function runs in parallel
across multiple app instances that automatically scale based on resource utilization.
You don’t have to reserve resources and you will only be charged for the number of
executions and resources actually consumed.

e App Service plan Approach: With this plan, an Azure Function runs on a dedicated
virtual machine, and an Azure Function may share the server with other apps
running in the user’s account.

e Dedicated VMs are allocated to your App Service apps.

e The VMs are always available whether the code is being actively executed
or not.

e This may be a good option if your scenario requires that functions run
near continuously.

Note See the following link for more information regarding scaling and pricing for Azure Functions: Scaling
Azure Functions: https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale.

DevOps Integration with Azure Functions

Organizations can implement deep DevOps integration to enable key functionality like continuous
deployment scenarios by leveraging Azure Functions. Multiple Azure Functions can be combined to hook
into events associated with many popular source code control applications such as Visual Studio Team
Services, GitHub, Bit Bucket, and other popular DevOps tools.

Note that there are a few GitHub specific event hooks with Azure Functions such as GitHubCommentator
and GitHubWebHook. These event hooks provide specific integration points with GitHub repositories, actions,
and activities.

416

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Scheduled Functions

One of the more powerful features of Azure Functions is the ability to schedule Azure Functions to be called
on set time intervals.

You can use the CRON job syntax to trigger an Azure Function to execute tasks such as data cleaning
or synchronizing databases with external systems. A CRON expression usually includes six fields: {minute}
{hour} {day} {month} {day of the week} {Year}.

As an example, the CRON setting for a scheduled Azure Function to be triggered once every five
minutes would be:

"schedule": "0 */5 * * * x"

Figure 9-9 depicts an Azure Function that is triggered by a scheduled timer.

Jpublic static async Task Run(TimerInfo myTimer, TraceWriter log)

{
var str = ConfigurationManager.ConnectionStrings["sqldb_connection”].ConnectionString;
using (SqlConnection conn = new SqlConnection(str))
{
conn.Open();
var text = "DELETE from dbo.TodoItems WHERE Complete='True'";
using (SqlCommand cmd = new SqlCommand(text, conn))
{
// Execute the command and log the # rows deleted.
var rows = await cmd.ExecuteNonQueryAsync();
log.Info($"{rows} rows were deleted");
}
}
by

Figure 9-9. A sample Azure Function to perform database cleanup operations

Reference Implementation

Up to this point in the chapter, we have provided an overview of the core features and capabilities of Power
BI, Azure Event Hubs, and Azure Functions. This will serve as valuable background information when we
next revisit the reference implementation and leverage these Azure services for the solution.

Implementation Overview

We continue our technical reference implementation in this chapter with this stage being all about
visualizations, alerts, and notifications.

Figure 9-10 provides a high-level overview of the functionality we will implement in the remaining
sections of this chapter.

417

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

:}{' _

loT Hub

Simulator

Figure 9-10. Reference implementation overview for visualizations, alerts, and notifications

A

A
-P%“" -HOT Path
Stream Analytics
-
~HOT Path > mom
-

Event Hubs

L’%Z?//w

) EMAIL
(SendGrid)

Functions

Let’s explore the components in this solution as depicted in Figure 9-10:

e C# Device Simulator: This is utility program that we can use to generate random
sensor readings and send them securely into the Azure IoT Hub.

e JoT Hub: This is the primary ingestion point for the sensor readings.

e Stream Analytics: Used for processing incoming sensor readings at scale.

e Machine Learning Web Services are invoked from Stream Analytics as each set of
team member readings is processed, and a prediction is made as to the physical
exhaustion level of the team members.

e Hot Paths for Power BI and Event Hubs output are defined; data is streamed to
each of these in real time.

e Power BI: Datasets are populated in real time from the Azure Stream Analytics

service. Graphical visualizations, reports, and dashboards are then generated and

exposed to users.

e FEvent Hubs: Used to send high priority outbound alerts and notifications.

e Stream Analytics Query will filter data output to the Alarm Event Hub: based
upon the results of the Machine Learning Web Service Call.

e Only Positive results for the Machine Learning Web Service calls will

dropped into the Alarm Event Hub.

e This means that a team member is potentially at or near the point of

physical exhaustion. Action must be taken immediately!

418

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

e Azure Functions: Triggered whenever a new item is added to the Alarm Event Hub.

These events then trigger the associated Azure Functions and send messages as
SMS and e-mail via the third-party services as Twilio and SendGrid respectively.

e Send SMS Test Message: Azure Functions can be configured to
automatically send SMS text messages via a third-party communications
service (Twilio).

e E-mail Notifications: Can be configured in Azure Functions and
automatically sent via a third-party e-mail service (SendGrid).

MODIFY THE STREAMING ANALYTICS SQL QUERY

In this section, we revisit the Azure Stream Analytics query we created in Chapter 5 and make a few
modifications.

Navigate to your Azure Stream Analytics job in the Azure Portal and click on the Query pane, as shown in
Figure 9-11.

Job Topology

Inputs Query Outputs
2 s | 5
input-iothub output-blob
input-refdata-team output-EH

Figure 9-11. Azure Streaming Analytics Query pane

You will see the query displayed in the editor window. The first portion of the query is reprinted here for
your reference.

ok kkok ok kR ok Kok ok kKoK kK ok K

- * HOTPATH - POWER BI
- * Invoke Machine Learning As Function "ChkTeamHealth()"
- * Via ASA SQL Subquery

- * then output to PowerBI (Hot)/SQL (WARM)/BLOB (COLD)
skoksksksk ok sk skok sk ok skok sk ok ok sk ok sk ok sk ok sk ok

419

http://dx.doi.org/10.1007/978-1-4842-2650-6_5

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

WITH [subquery] AS

SELECT UserId,
[Timestamp],
EventProcessedUtcTime,
PartitionId,
EventEnqueuedUtcTime,
ChkTeamHealth(
Userld,
BreathingRate,
Temperature,
Ventilization,
Activity,
HeartRateBPM,
Cadence,
Velocity,
Speed,
HIB,
HeartrateRedZone,
HeartrateVariability,
lINIl)
as result from [input-iothub]
TIMESTAMP BY [Timestamp]
)
SELECT SQ.UserId,
SQ.[Timestamp],
SQ.EventProcessedUtcTime,
SQ.PartitionId,
SQ.EventEnqueuedUtcTime,
CAST(SQ.result.[BreathingRate] as float) as [BreathingRate],
CAST(SQ.result.[Temperature] as float) as [Temperature],
CAST(SQ.result.[Ventilization] as float) as [Ventilization],
CAST(SQ.result.[Activity] as float) as [Activity],
CAST(SQ.result.[HeartRateBPM] as bigint) as [HeartRateBPM],
CAST(SQ.result.[Cadence] as float) as [Cadence],
CAST(SQ.result.[Velocity] as float) as [Velocity],
CAST(SQ.result.[Speed] as float)as [Speed],
SQ.result.[HIB],
SQ.result.[HeartrateRedZone],
SQ.result.[HeartrateVariability],
SQ.result.[Scored labels],
SQ.result.[Scored Probabilities],
RF.id,
RF.companyname,
RF.imageUrl,
RF.firstname,
RF.lastname,
RF.username,
RF.[type],
RF. [phone],

420

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

RF.[email],

AD.firstname as [adminfname],
AD.lastname as [adminlname],
AD.username as [adminuname],
AD.type as [admintype],
AD.phone as [adminphone],
AD.email as [adminemail]

INTO [output-powerbi]
FROM subquery SQ

JOIN [input-refdata-team] RF
ON SQ.UserId = RF.id

JOIN [input-refdata-team] AD
ON RF.companyname = AD.companyname
WHERE ~ AD.[type] = '2'

Here are a few things that are noteworthy in the code sample:

e AWITH clause is used to create a SQL subquery to invoke the Machine Learning Web
Service via an ASA inline function call and return the results.

e The subquery is reused several times in the larger SQL statement. This is actually
a best practice to improve performance; avoid re-querying the same data source
by holding the temporary results from a WITH clause.

e The Machine Learning Web Service is invoked via an ASA Function called
ChkTeamHealth

e (CAST statements have been added to transform certain fields into numeric outputs
(instead of “strings”) for improved Power Bl output visualizations.

e Example: CAST(SQ.result.[BreathingRate] as float) as [BreathingRate]

e There is a JOIN clause at the end of the statement to the reference data input named
[input-refdata-team].

e This is considered an enrichment Query so that supplemental team member
information can be appended to the dataset.

e This enables you to determine additional information for alerts, such as the contact
information for a team member’s supervisor.

¢ In the event that a team member is predicted to be at or near physical exhaustion
levels, you need to alert the supervisor immediately.

e We now have the supervisor information available in the “hot path” dataset via the
JOIN clause addition to the basic query.

421

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

The next step is to create a new Azure Event Hub via the portal, so that you can send messages to it via
the Azure Stream Analytics query.

Messages that land in this event hub will be used to trigger alerts via an Azure Function.

The Azure Function will, in turn, send SMS text and e-mail messages to the team member’s supervisor
contact information via third-party communications providers such as Twilio and SendGrid.

Navigate to the Azure resource group for your solution and click on the + Add icon to add another Azure
service. Type Event Hub in the search bar and you will see similar results to Figure 9-12.

Everything

Y Filter

4 event huby x

Results
NAME & PUBLISHER & CATEGORY

i Event Hubs Microsoft Internet of Things
Figure 9-12. Add a new event hub to the Azure resource group

Click on Event Hub and you will see a confirmation screen similar to the one in Figure 9-13.

422

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Azure Event Hubs is a highly scalable publish-subscribe service that can ingest millions of events per
connected devices and applications.

Use Event Hubs to:

+ Log millions of events per second in near real time.

+ Connect devices using flexible authorization and throttling.
+ Use time-based event buffering.

+ Get a managed service with elastic scale.

» Reach a broad set of platforms using native client libraries.
+ Pluggable adapters for other cloud services.

v Qi finllyv 3=

v
&8 Lo rianss R navvRAGE RETENTIOR T

Figure 9-13. Create a new Azure Event Hub

Click on the Create icon at the bottom left and then you will see a blade appear that will prompt you to
enter the parameters required to create your new Azure Event Hub, such as illustrated in Figure 9-14.

423

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Create namespace
Event Hubs - PREVIEW

* Name
AlarmeH| v
servicebus.windows.net
* Pricing tier S
Standard

* Subscription

v
* Resource group @
O Createnew ® Use existing
v
* Location
EastUS 54

Figure 9-14. Create new Azure Event Hub parameters

Fill in the required parameters and click on the Create icon. The new Azure Event Hub will be
provisioned in a matter of minutes.

After your new event hub has been provisioned in your resource group, you can navigate to the new
Event Hub blade to retrieve the settings required for defining an output alias in Azure Streaming
Analytics.

To retrieve the connection settings:
1. Click on Settings/Shared Access policies.
2. Click RootManagerSharedAccessKey.
3. Retrieve these primary or secondary key settings:
a. Key.(Primary/Secondary)
b. Connection String

Save these settings for the next step.

424

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Now that we have defined a new Azure Event Hub and retrieved the access keys, the next step is to
define a new Stream Analytics Output definition.

To get started, navigate to your Azure Stream Analytics job via the Azure Portal and then click on the
Outputs pane shown in Figure 9-15.

Inputs Query Qutputs

2 % ; 2
input-iothub output-blob

input-refdata-team output-EH

Figure 9-15. Streaming Analytics Output definitions

Next, click on the + Add icon on the top navigation bar. You will see a screen similar to Figure 9-16.

425

CHAPTER 9 ' DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

* Qutput alias

* Sink @

Event hub v

* Subscription

Use event hub from current subscription v

* Service bus namespace

brtalarm v

* Event hub name

brtalarm v

* Event hub policy name

RootManageSharedAccessKey v

Partition key column @

* Event serialization format @

JSON o
Encoding @

UTF-8 v
Format @

Line separated v

Figure 9-16. Add Output Alias parameters for an event hub

Fill in the required parameters and click on the Create icon. The new Output Alias for the Azure Event
Hub will be created.

Modify ASA Query to Add Output to Event Hub for Alerts

Now that you have defined your new Azure Event Hub and Output alias, you will add a new SQL query to
output alerts to this event hub, and that, in turn, will trigger an Azure Function for further routing.

426

Navigate to your Azure Stream Analytics job in the Azure Portal and click on the Query icon.

Here is the code for adding the new Azure Event Hub as an additional output destination. Paste it into

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

the query right after the output to Power BI.

Skokook sk kok ok sk skok ok ok skok ok sk skok sk sk skok sk sk skok ok >k

-- * HOTPATH - OUTPUT to Event Hub

-- * If Machine Learning Predicts Stress
koK sk ok ok ok ok ok sk ok sk ok ok ok sk ok sk ok sk ok sk ok sk k sk ok k

SELECT SQ.
s0.
s0.
s0.
s0.

Userld,

[Timestamp],
EventProcessedUtcTime,
PartitionId,
EventEnqueuedUtcTime,

CAST(SQ.result.[BreathingRate] as float)
as [BreathingRate],

CAST(SQ.result.[Temperature] as float)
as [Temperature],

CAST(SQ.result.[Ventilization] as float)
as [Ventilization],

CAST(SQ.result.[Activity] as float)
as [Activity],

CAST(SQ.result.[HeartRateBPM] as bigint)
as [HeartRateBPM],

CAST(SQ.result.[Cadence] as float)
as [Cadence],

CAST(SQ.result.[Velocity] as float)
as [Velocity],

CAST(SQ.result.[Speed] as float)

as [Speed],
SQ.
S0.
s0.
s0.
).result.[Scored Probabilities],
RF.
RF.

SO

RF

RF
RF

AD

result.[HIB],
result.[HeartrateRedZone],
result.[HeartrateVariability],
result.[Scored labels],

id,
companyname,

.imageUrl,
RF.
RF.

firstname,
lastname,

.username,
-[type],

RF.
RF.
AD.
AD.
AD.
.type as [admintype],
AD.
AD.

[phone],
[email],

firstname as [adminfname],
lastname as [adminlname],
username as [adminuname],

phone as [adminphone],
email as [adminemail]

INTO [output-EH]
FROM subquery SQ

427

CHAPTER 9 = DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI
JOIN [input-refdata-team] RF
ON SQ.UserId = RF.id

JOIN [input-refdata-team] AD
ON RF.companyname = AD.companyname

WHERE ~ SQ.result.[Scored labels] = 'Y'

AND AD.type = '2'
You will notice that the WHERE clause contains this expression:
SQ.result.[Scored labels] = "Y'

This is a key filter for this SQL query because it will only send a message to the Event Hub if the
Machine Learning Web Service returned a “Y” as the predicted level of exhaustion. Hopefully very few
messages will be passed to this event hub.

BUILD VISUALIZATIONS TO DISPLAY SENSOR READINGS USING R
AND POWER Bl DESKTOP

The first step is to use Power Bl Desktop to connect to the warm path data source in the reference
scenario, namely the output directed to the Azure SQL Database by the Stream Analytics query.

Note You can download Power Bl desktop from this link: Power Bi Desktop: https://www.microsoft.com/
en-us/download/details.aspx?id=45331

After you have installed Power BI, you will connect to the Azure SQL database that is the output
destination specified in the Stream Analytics job.

Click on Get Data and then SQL Server. After that a new window will appear and ask for the SQL
database connection information, as shown in Figure 9-17.

428

https://www.microsoft.com/en-us/download/details.aspx?id=45331
https://www.microsoft.com/en-us/download/details.aspx?id=45331

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

SQL Server database

Server

| |

Database (optional)

Data Connectivity mode (i

mport
) DirectQuery

> Advanced options
Figure 9-17. Power BI SQL Server connection information parameters
Enter the server name for the Azure SQL database in this format: <YOUR-SERVER-NAME>.database.

windows.net.

It is a good idea to specify DirectQuery to get the latest information from the database, rather than
Import, which creates a snapshot of the data.

Click on the OK icon, and you will see a screen similar to Figure 9-18, where you can select the tables
to use with Power Bl Desktop.

Navigator
e lotHubSensorReadings
Display Options = o Userld Age Height
4 brisqlserverdev.database.windows.net: iothubt... 7e50e9c6-be7c-Afcs-b125-08e03fe23d22 e
c2df3320-adce-4644-a534-2918fdf 1ce 1B o

= sys.database_firewall_rules

= Af70c695-dcde-4885-bi%a-1d 712300001 72
L4 otHubSensorReadings z = 43
8dfef6d5-2302-4601-af61-fa2fd3c75e8b 72
058d7760-eB68-434¢-221d-bocd 38d5ebbi 72
€2df3320-adce-4644-2534-2HBdfLce 1B a7
199¢e68b-3584-4b64-9084-3ab2bd6F102¢ 27 t
42105224-0017-4153-3ca3-300132 14eb75 28
42105224-0017-4152-aca3-30012214eb75 28
c2df3320-adce-4644-2534-298fdf 1celB 47
fc5400fa-1362-4733-b87d-d6d20eean3ll 0
fc540bfa-136a-4733-b87d-d6d20eeae3ll 57
a7591ba2-e534-48Fd-afla-50e56c0e396a 47
@ The data in the preview has been truncated due to size limits.

Figure 9-18. Get Data from Azure SQL database: select table

429

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Select the [dbo] . [IotHubSensorReadings] table and click on the Load icon to prepare the data for
use with Power Bl Desktop.

At this point, you are ready to start creating visual controls and reports in Power Bl Desktop for the
reference implementation.

We will create three separate Power Bl dashboard reports, one for each of the companies represented in
the sample:

e Tall Towers
e The Complicated Badger
e WigiTech

We will use the R Power BI script control along with the ggplot2 R plotting package to create frequency
polygon controls.

Click on the R Script control in the Power Bl Desktop palette. Then click on the Temperature field and
drag it to the Values window for the control.

Right-click on the temperature value and select Average, as shown in Figure 9-19.

1es M = HeartRateBH

Average of Temperat... > HeartRateRg
Remove field

Quick Calc
Don't summarize
Sum

' Average
Minimum
Maximum
Count (Distinct)
Count
Standard deviation
Variance

Median
Figure 9-19. Changing the summarization type for the temperature field
While the R Script control is still highlighted, right-click on the companyname field and select Add Filter.

This will add a new filter control to the report, so that you can filter on each of the three companies in
the reference implementation.

430

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

After the companyname filter has been added, click on the filter and select Tall Towers, as shown in
Figure 9-20.

Filters
Visual level filters

Average of Temperature(...

companyname ~ X

ERETE S
Filter Type

Basic filtering

Select All

Tall Towers 4184
The Complica... 6060
WigiTech 1558

Figure 9-20. Apply filter criteria to the companyname field
While you are at it, right-click on the page tab at the bottom of the Power Bl designer and select
Rename Page. Set the Power Bl Report page name to Tall Towers.

Now, you are ready to add the R code to the control. Click on the R Script control and paste the following
code into the R editor window:

LOAD the ggplot2 package
library(ggplot2)

RENDER the ggplot2 Visual
ggplot(data=dataset,aes(x=Temperature)) + geom freqpoly(color="orange")

After you have pasted the R code into the control, click on the arrow » to compile and run the R Script.
Your control should render similar to Figure 9-21.

431

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

:j:‘

Average of Temperature

Filters

Average of Temperature(All)

4 1004

companyname

Temperature

is Tall Towers
Filter Type

R script editor

Basic filtering
dataset <- data.frame(Temperature) Select All
Tall Towers
Remove duplicated rows The Complicated Badger
dataset <- unique(dataset) WigiTech
LOAD the ggplot2 package
library(ggplot2)

RENDER the ggplot2 Visual |
ggplot(data=dataset,aes(x=Temperature)) + geom_fregpoly(color="orange")

Tall Towers +

Figure 9-21. The Power BI R Script control in action, displaying the average temperature for Tall Towers

Now that you have configured a Power Bl R Script control for displaying the average temperature
sensor readings for Tall Towers, you can easily repeat the process to create two more R Script controls
for HeartRateBPM and BreathingRate. We will use color coding to distinguish the values. Figure 9-22
depicts the completed R Script controls in the Power Bl Desktop.

count
count
count

|
|

HeartRateEPM

Temperature

104.00 L 20
BreathingRate

Figure 9-22. R Script controls rendering frequency plots for various sensor readings

432

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Before you publish the reports to the Power Bl Service, save the Power Bl Desktop file as

TallTower.pbix.

The reason for providing a descriptive filename is because the next step will be to publish the reports to

the Power Bl service and this will be the name that the report is given.

Click on the Publish icon in the top navigation bar, as shown in Figure 9-23.

=
New Publish
Measure

Calculations Share

| H & - = | TallTowers - Power Bl Desktop
slal Text Box
Va e AL
4 e 1 Image
Get Recent t Edit Refresh New New — Page
Data™ Sources™ Queries ™ Page™ \Visual = Shapes View ~
Clipboard External Data nsert View Relationships
Publish
Publish this report to Power Bl on
the web.

Figure 9-23. Publish Power BI Report with custom R controls to the Power BI Service

After a few moments, you will see a completion window appear, as shown in Figure 9-24.

Publishing to Power Bl

v Publishing succeeded. The published report has been configured to

use an enterprise gateway.

Open 'TallTowers.pbix' in Power Bl

Got it

Figure 9-24. Completion message for publish Power BI report to the Power BI service

At this point, you can click on the link to Open 'Tall Towers.pbix' in Power BI and it will open a

browser session at the Power Bl service located at http://app.powerbi.com.

433

http://app.powerbi.com/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

BUILD VISUALIZATIONS USING POWER BI SERVICE FOR REAL-TIME
SENSOR READINGS DASHBOARD

After clicking on the link to Open 'Tall Towers.pbix' in Power BI in the last step, you will then be
asked for your credentials to gain access to the Power Bl app service.

After entering your credentials, you will see that the Power Bl Desktop report that we created using R
Script controls has been published to the Power Bl app service, as shown in Figure 9-25.

&~ > O 8 powerbi.com

Power Bl @ wyv
Fil

Norkspace > TallTowers
v

! view~ Editreport | B3 Bxplore~ () Refresh 5 PinlivePage [Subscribe

curt.
ount
o
ESS

Jli Reports

Tempentue E “HeariRateBPM = EreathingRiate

Figure 9-25. Report with R Script controls published to Power BI service (app.powerbi.com) from Power BI
Desktop

The next step is to add visualization controls to enhance the existing R Script controls that you just
uploaded.
Note that it is only possible to create R Script controls in Power Bl Desktop at this time.

We will want to use a different data source for our visualizations, namely the “Streaming Dataset” that
was populated by the Azure Stream Analytics job you previously modified in this chapter.

Click on the bottom-left navigation bar while in the Power Bl app service and click on the Streaming
Datasets option, as shown in Figure 9-26.

434

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Streaming data

Datasets

71 Get Data

Figure 9-26. Bottom-left navigation bar to access streaming datasets from the Power BI service

A list will appear containing the streaming datasets that have already been created. If you have never
started your Azure Stream Analytics job nor processed any data (using the simulator, for example), this
list may be empty. If that is the case, feel free to skip ahead to the section on running the simulator, and
then return to this section to see dataset populated here.

Click on the Create Report icon for the streaming dataset named iothubdataStreaming, as shown in
Figure 9-27.

Create report

dl

Figure 9-27. Power BI Service streaming datasets, Create Report icon

Next, the Power BI designer surface load and populate with the dataset that is being output from the
Stream Analytics job in real time.

435

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Flav Wiew> Reading view B pplore A TetSox G Shapes v B Visual Intora

Figure 9-28. Power BI App Service Designer with iothubdataStreaming dataset

The first Power BI control we will make will be a real-time sensor gauge showing the average
temperature of the team members from the Tall Towers organization.

Click on the gauge control in the Power BI control palette. This populates the designer surface with a
new control. Next, click on the temperature field, and it will automatically display in the gauge. Note
though, that by default, it shows the sum of the temperature field.

To change this, right-click on the temperature field in the Value area and then select Average. The gauge
control will then display the average for the temperature sensor readings processed so far.

The next thing you need to do is add a filter for the correct company. Right-click on the companyname
field in the list of dataset fields and select the Add Filter option. This will append a filter control under
the properties for the gauge control. Adjust the filter properties to only show data for Tall Towers.

Next, set the color of this gauge control for the temperature sensor to match the previous R Script
control, which was rendered in orange.

To do this, simply click on the Paint Roller Brush icon under the properties for the gauge control. Expand
the Data Colors property and then choose an orange color for the fill value.

At this point, your Power Bl Gauge control should look similar to the one in Figure 9-29.

436

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

File™ View Reading view B Esploce~ A7 TedtBox G Shapess [B Visual Interactions () Refresh [Duplicate this page B Save

Visualizations » Fields

dminuname
breathingrate
. cadence
companynanme

email

Filters wveritenque..,

' ! s ol filt eVentprocess...
: firstname
11657 Auverage of temperature Al e
heartraten
heartratevaria_.,
hib
]
imageurl
lastname

i partitionid

timestamp

type

Page 1 + ventilization

Figure 9-29. Power BI Gauge control for real-time average temperature reading

Next, rename the current page by right-clicking on the page tab, selecting the option to Rename Page,
and changing it to Tall Towers Real-Time.

Click on the Save icon in the top-right navigation bar and you will be prompted to enter a name for your
report so it can be saved. Enter Tall Towers Real-Time.

Now you will add this gauge control to the Tall Towers dashboard by clicking on the Pin Visual icon in the
top-right corner of the gauge control, as illustrated in Figure 9-30.

437

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Pin visual

116.97

Figure 9-30. Power BI app service Pin Visual icon

After clicking on the Pin Visual icon, you will then be presented with an option to select the dashboard to
pin the control to, as shown in Figure 9-31.

Pin to dashboard

Select an existing dashboard or create a new one.
Average of temperature

Where would you like to pin to?
® Existing dashboard

O New dashboard

116.57

Tall Towers ad
000 23313]

Pin Cancel

Figure 9-31. Select Power BI dashboard to pin control to

The Tall Towers dashboard should already exist since you published the dashboard from Power Bl
Desktop. Select this option (if available) or you can create a new dashboard.

438

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

This will add the gauge control to the existing Tall Towers dashboard with the three R Script controls for
the sensor readings.

Repeat the previous steps to create two additional gauge controls for HeartRateBPM and
BreathingRate, apply a color theme, and pin the gauge visuals to the Tall Towers dashboard.

At this point, the Tall Towers dashboard should look like Figure 9-32.

*} Dashbeards — Ask 3 auestion bout vour dats

Average of temperature Average of heartratebpm breathingrate

11657 108.57 ‘ 20.34K

7 Get Data

Figure 9-32. Power BI dashboard for Tall Towers

Note that gauge controls on the top row of the Tall Towers dashboard represent real-time data, the hot
data path that is being streamed directly into the Power Bl service from the Stream Analytics service.

The R Script controls located below the gauge controls in Figure 9-32 are based on data from an Azure
SQL database that is also populated from the Stream Analytics service. This data is considered warm
due to increased latencies associated with data retrieved from a relational database.

In this way, you have created a dashboard for Tall Towers that displays both real-time and batch KPI
metrics.

439

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

BUILD POWER BI VISUALIZATIONS FOR MACHINE LEARNING
PREDICTIONS

We need to configure one more set of Power Bl visualizations to convey the Machine Learning Web
Service predictions for exhausted team members.

To get started, navigate back to the Tall Towers Real-Time report and click on the Edit icon at the top
navigation bar.

You will add two more controls to the dashboard:

e A pie chart control to display a visualization of the number of Machine Learning
predictions (Y or N) reflecting team member exhaustion.

e A fable control to display an individual team member’s information when you click on
the pie chart sections to drill into the data.

Click on the Pie Chart control and then select the Scored Labels field. Next drag the Scored Labels field
and drop it into the Values property for the Pie Chart control.

Next, add a filter for only the Tall Towers data by right-clicking on the companyname field and selecting
the Add Filter option. Expand the filter setting under the Pie Chart properties and filter for only the Tall
Towers data.

Add a filter for Company by right-clicking on the companyname field in the list of dataset fields and then
selecting the Add Filter option. Set the Filter properties to Tall Towers.

The last thing is to change the colors on the Pie Chart. To do this, simply click on the Paint Roller Brush
icon under the properties for the pie chart control. Expand the Data Colors property and then choose
Green for the N records’ fill value. Select Red for the Y records’ fill value.

Start by clicking on the Table control and then select the following fields to display in the control:
e timestamp
e scored labels
e firstname
e lastname
e breathingrate
¢ heartrateBPM

e temperature

440

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

e velocity

e speed

e phone

e adminemail
e adminphone

Next, add a filter for only the Tall Towers data by right-clicking on the companyname field in the list of
dataset fields and then selecting the Add Filter option. Set the Filter properties to Tall Towers.

At this point, the new Pie Chart and Table controls should resemble Figure 9-33.

scomed bbok frsiname ladrame brsathingrate heartratehpm poratrs velocity wed adminemall
N Adargno Mk 2643 138 Qe CECRCT] 51212 Fid Sdry@TalTowars.com
¥ =™ Graneliyrs 2683 121 4406 Wea ano 7 Fid Sy @TalTowers.com
BT OREIZPM N Carar fehtik 2636 136 145.26 19z o 2 FidSdy@lalTowerscom 2125551212
02917 R4RIZPM N Fhiytor Rhcky 2617 135 4406 467 o0 2 FdSdy@TelTowerscom 2125551212
QUZNTORARIZFM ¥ Ryysn Mardanmas 2683 1 512 R4 0 22 2 RSy @TolTowerscom 2125551212
0172917 0R4G12PM N Tha Geolyn 627 136 4408 955 ang 2 MidSdy@TalTowerscom 2125551212
0BT ORMEND PM N Maall Dnga 2645 138 I8 1587 o i FdSdy@lalfowerscom 2125551212
012917 CRIEIPM ¥ Mardro Dunmm 2683 141 4488 LTI] 2 Fid Sy @TalTowers com
OUZNT ORI PN N Erauik Lereym 2621 136 LTES 955 000 2 FdSdnedTalTowers.com
01291 M N Cleryan Guga 47 10 4415 n4 ang 2 Fid Sdry@TalTowers.com
oymar N] Sidry 2664 180 T ELTE T 2 AdSdry@lollowerscom 2
0Nt ¥ Ceaa Acuibuk 2813 152 e BSES 000 25822
QVNTORAOIFM ¥ Trejory Siemyr 2185] LT B0SZ 000 2 nzsEII2
02T 034508 PM N Einiel Verwan ELRE] 120 U5 EERL T] 125551212
/21T OG0B PM ¥ Brorss Glagh 2692 1 a2 929 X n255512
01/29/17 R4E0T PN ¥ Gilve Guaelhyry 2683 141 447 WO A om 225551212
DV ORAENT M N Adoryne Mk 2643 128 14504 W 0 2612 hdsdy@lallowericom 212555102
Total 20,343.38% 106729 11458357 11.408.90 21.00 &
< >

Figure 9-33. Power BI pie chart and table display for Machine Learning prediction

A few things are noteworthy about how these controls automatically interact:
e The Pie Chart control and the Table control work together via the filter properties.

e If you click on the green portion of the pie chart, the data in the Table control is
automatically filtered to only records with an N prediction in the Scored Labels
field.

e If you click on the red portion of the pie chart, the data in the Table control is
automatically filtered to only records with a Y prediction in the Scored Labels field.

e If you click anywhere outside of the Pie Chart control, you will see all the data
displayed in the Table control.

Next, save the Power Bl report and pin the Pie Chart and the Table controls to the Tall Towers dashboard.

You can then rearrange and resize the controls on the Power Bl dashboard for Tall Towers to make the
display visually appealing. Figure 9-34 depicts the updated dashboard for Tall Towers.

441

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

1 Ask a question about your data

Count of scored labels breathingrate, heartratebpm, temperature, velocity, speed

a5

Thadry 2617 135 14406 45 300
i 2034235 WETIH 11458357 1140880 21.00
7} Dashboards

Average of temperature breathingrate

Figure 9-34. The completed Power BI dashboard view for Tall Towers

Recall that Power Bl has a powerful feature called Q&A that you can use to “ask” questions of your data.
To start using Power Bl’s natural language query feature, simply type in the Q&A window at the top of the
Power Bl dashboard. You can see the Q&A window at the top of the dashboard depicted in Figure 9-34.

Power Bl Q&A recognizes words as you them type and figures out field names and in which datasets
to find the answers. Q&A helps you form your natural language questions with auto-completion,
re-statement, and other textual aids.

To demonstrate how Q&A works, let’s say that you want to see the names of team members who have
been predicted to be at risk of physical exhaustion.

You can simply type in the following statement in the Power Bl Q&A window at the top of the dashboard:
which firstname, lastname, adminemail, adminphone has scored label = Y

When you stop typing, Power Bl Q&A immediately returns the answers shown in Figure 9-35.

442

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

HH Power Bl . My Workspace > Tall Towers > Q

{3 which firstname lastname,adminemail, adminphone scored label = Y
firstname lastname adminemail adminphone
Brorss Glagh Fid Sidry@TallTowers.com 2125551212
Ceana Anshuk Fid. Sidry@TallTowers.com 2125551212
Fid Sidry Fid Sidry@TallTowers.com 2125551212
Gilve Gwaellyn Fid Sidry@TallTowers.com 2125551212
Nardro Dunnyn Fid Sidry@TallTowers.com 2125551212
Ryryan Mardimman Fid Sidry@TallTowers.com 2125551212
Trejanry Simyr Fid Sidry@TallTowers.com 2125551212

Figure 9-35. The Power BI Q&A natural language query results

Note that in addition to having the critical information about the team members, you also have the
administrator’s e-mail and phone number for each team member with a positive prediction.

You will use this information in the next section to trigger an automatic alert to the admin using Azure
Functions.

Note You can learn more about Power Bl Q&A at: Ask questions of your data using natural language:
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-how-to-use-q-and-a/.

Power Bl also has the ability to configure alerts to receive notifications when critical business KPIs and
key metrics exceed thresholds that you set.

Only you can see the data alerts you set, even if you share a dashboard with someone else. Alerts only
work for Power BI controls that display a single number, such as a “card” or “gauge” control.

This will work perfectly for this reference implementation, since you configured three individual gauge
controls in your dashboard to monitor the average temperature, heart rate, and breathing rates of team
members.

443

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-how-to-use-q-and-a/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

To get started, click on the three dots (or ellipses) at the top-right corner of the gauge control you
created for temperature. You will then see an Alert icon, as shown in Figure 9-36.

TafTowaseDoal Time -
Manage alerts
Q

Figure 9-36. Configure Power BI alerts

After you click on the Alert icon, you will see a new window where you can add a new alert rule.
Figure 9-37 depicts the properties you can set for a new alert rule.

444

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI
Manage alerts
—+ Add alert rule

~ Alert for Average of temperature

Active

On
Alert title

Alert for Average of temperature

Average of temperature

Condition Threshold

Above v 102

Maximum notification frequency
® At most every 24 hours

(O At most once an hour

Alerts are only sent if your data changes.
Save and close Cancel

Figure 9-37. Power BI alerts: add new alert rule properties

After you have set alerts for your dashboard controls, you will receive notifications via the Power BI
notification center, as shown on the right in Figure 9-38.

445

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

All Notifications

Lo

1657 108,57 B 2034K

Figure 9-38. The Power BI notification center window

Note See this link for more about Power Bl alerts: https://powerbi.microsoft.com/en-us/
documentation/powerbi-service-set-data-alerts/.

At this point, you have completed the Power Bl dashboard for visualizing the sensor and Machine
Learning data. In this dashboard, you combined datasets for real-time (from Stream Analytics) and batch
(from Azure SQL Database) data sources.

CREATE AZURE FUNCTIONS FOR ALERTS

446

In this section, we cover the implementation of Azure Functions to send alerts and notifications for the
reference implementation.

Recall that earlier in this chapter, you added a new Azure Event Hub to hold alert notifications that were
generated by the predictions from your Machine Learning Web Service.

You then modified the Stream Analytics query to output notification messages to the event hub if the
prediction was Y.

In the reference implementation, you will be sending alerts to the administrator in charge of each team
member for a specific company.

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-set-data-alerts/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-set-data-alerts/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

When you modified the Streaming Analytics query, you inserted SQL-like code that performed a JOIN
operation to obtain the team members’ administrator information:

JOIN [input-refdata-team] AD
ON RF.companyname = AD.companyname
WHERE SQ.result.[Scored labels] = 'Y'
AND AD.type = '2'

As as result of the JOIN clause, you had access to the following fields in the query:

AD.firstname as [adminfname],

AD.lastname as [adminlname],

AD.username as [adminuname],
AD.type as [admintype],
AD.phone as [adminphone],
AD.email as [adminemail]

Figure 9-39 is an updated view of Figure 9-35 that highlights the team members’ administrator
information that was returned as a result of the Q&A query.

it Power Bl . My Workspace > Tall Towers > Q&A

{3 which firstname lastname,adminemail, adminphone scored label = Y
firstname lastname adminemail adminphone
Brorss Glagh Fid.Sidry@TallTowers.com 2125551212
Ceana Anshuk Fid. Sidry@TallTowers.com 2125551212
Fid Sidry Fid Sidry@TallTowers.com 2125551212
Gilve Gwaellyn Fid Sidry@TallTowers.com 2125551212
Nardro Dunnyn Fid Sidry@TallTowers.com 2125551212
Ryryan Mardimman | Fid.Sidry@TallTowers.com 2125551212
Trejanry Simyr Fid Sidry@TallTowers.com 2125551212

Figure 9-39. Power BI Q&A displaying administrator information in the returned dataset

This information is the basis for sending alert messages, and you will send SMS text notifications to
administrators for immediate action. As a backup, you’ll also send a high-priority e-mail. Each of these
notification scenarios will be implemented using Azure Functions.

447

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

The first Azure Function you create is for sending SMS text messages. One of the output bindings
available in Azure Functions is via Twilio, a third-party cloud communications platform for building voice
and messaging applications via a ReST API. Twilio has a robust API for sending SMS text messages.

Note For more information, see this link: Azure Functions Twilio output binding: https://docs.microsoft.
com/en-us/azure/azure-functions/functions-bindings-twilio.

To register for free developer access, visit www.twilio.com to get a free API key.

Note that there are two sets of credentials granted, one for live credentials and one for testing. You need
to record your information for the following test credentials:

e Account SID
e Account Token

In addition, be sure to read the Twilio documentation for using the test credentials at https://www.
twilio.com/docs/api/rest/test-credentials.

One big takeaway from the previous link is that there are special “magic” phone numbers you can use
when testing with the Twilio test credentials.

It is also important to note that a real SMS text message will not be sent to any real phone number
while using the Twilio test credentials.

To get started, navigate to the Azure resource group for your solution and click on the + Add icon to
add another Azure service. Type Function App in the search bar. You will see results similar to the
screenshot in Figure 9-40.

Resource groups » brtwhdev > Everything

Everything
Y Filter
HH £ Function App
N Results
e NAME ~ PUBLISHER
- 3
Function App Microsoft

Figure 9-40. Adding a new Azure Function app to a resource group

448

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-twilio
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-twilio
http://www.twilio.com/
https://www.twilio.com/docs/api/rest/test-credentials
https://www.twilio.com/docs/api/rest/test-credentials

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Click on Function App and you will then see a confirmation screen like the one in Figure 9-41.

Function App

Microsaft

Write any function in minutes — whether to run a simple job that cleans up a database or build a
mere complex architecture. Creating functions is easier than ever before, whatever your chosen OS,
platform, or development method.

vl i Jinlly Jo el

PUBLISHER Microsoft

Documentation
USEFUL LINKS Solution Ov

Pricing Details

Figure 9-41. Function app confirmation page

Click on the Create icon at the bottom left and then you will see a blade appear. This blade will prompt
you to enter the properties required to create your Azure Function, as illustrated in Figure 9-42.

449

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Function App

* App name
AlarmFunctions v

.azurewebsites.net

* Subscription

azurepass-bobf M

* Resource Group @

O Create new @ Use existing

v
* Hosting Plan @
App Service Plan v
* App Service plan/Location S
* Storage Account S

Pin to dashboard

Create Aut

utomation options

Figure 9-42. Create new Azure Function parameters

450

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

After your Azure Function has been provisioned in your resource group, you can navigate to the new
Azure Function blade, as depicted in Figure 9-43.

Elics b Get started quickly with a premade function

1) Choose a scenario:

N
pm—

mer Jata processing Webhook + APl

2) Choose a language:

Or get started on your own

Qo+ %

Figure 9-43. Azure Function blade
Note that the main screen contains a wizard to help guide you through creating a new function using
function templates for common scenarios.
Click on the + New Function icon to add a new Azure Function.

Next, you will see a screen similar to Figure 9-44, where Data Processing has been selected in the
drop-down filter for the Scenario template.

451

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Function app

Search my functions
e —— Choose a template
Language: All Scenaric: | Dala Processing
BlobTrigger-CSharp BlobTrigger-FSharp BlobTrigger-JavaScript EventHubTrigger-CSharp EventHubTrigger-FSharp
ACH function that willbe | An F2 funclion that will be | A JavaScript function that A C2 function that will be An Fé function that will be
run whenever a blob is run whenever a blob is will be run whenever a run whenever an event run whenevar an event
added to a specified added to a specified blob is added to a hub recerves a new event hub receives a new event
container container specified container
EventHubTrigger-JavaScript QueueTrigger-CSharp QueueTrigger-FSharp QueucTrigger-JavaScript SendGrid-CSharp
A JavaScript function that | A C# function that will be An Fé function that will be | A JavaScript function that {Preview) A CF function
will be run whenever an run whenever a message run whenever a message will be run whenever a that sends a confirmation
event hub receives a new is added to a specified is added to a specified maessage is added to a a-mail when a new item is
event Azure Queue Storage Azure Queue Storage specified Azure Queue added to a particular
Storage queue

Figure 9-44. Choose Azure Function template for event hub trigger CSharp

452

Select the scenario for EventHubTrigger-CSharp and then scroll down on the screen to enter a
name for your new function. Note that you will also need to enter the event hub name and event hub
connection information at the bottom of the screen.

After you have entered the required parameters, click on the Create button. You will then see a screen
similar to Figure 9-45.

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Functicn app

I my functions
+ New Function Triggers @ Inputs @ Outputs @
EventHubTriggarCsharp Azure Event Hub (myEventHubMessage) 4 New Input 4 Mew Output
<+ Develop
% Integrate >
& Manage

Q, Monitor
L‘ Ll Ll L‘I L‘
HTTP Agure Service Bus Azure Table Storage Azure DocumentDB Azure Mobile Table Record

Document

b 0|00

Azure Notification Hub SendGrid (Preview) Twilio SME (Preview) Bot Framework

B+ %

[saoc |

Figure 9-45. Adding an output binding for Twilio SMS text messaging

The first thing you need to do is add a new output for the event hub trigger function. To do this, click on
the Integrate option on the left navigation bar. Then click on the + New Output icon on the top-left of the
screen to add a new output.

Scroll all the way down until you see Twilio SMS (Preview) and select that tile, as shown in Figure 9-45.

Then click on the Select command at the bottom of the screen. You will then be presented with a screen
similar to Figure 9-46. Here, you will set specific parameters for the event hub trigger function.

453

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Search my functicns

N Fanetion Triggers @ Inputs @ Outputs @
< » EventHubTriggerCSharp1 Azure Event Hub (myEventHubMessage) + New Input + New Output
<> Develop
% Integrate >
£ Manage
QL Moritor Twilio SMS (Preview) output (message)
Message parameter name @ Account SID setting @
message TwilioAccountSid
Auth Token setting @ To number @
TwilisAuthToken To number
Fram number @ Message text @
+ 13005550006 Message text
~

Figure 9-46. Function integration parameters for Twilio integration

Enter the following parameter values:
e Message Parameter Name: message
¢ Note: This value must match the value in the function.
e Auth Token Setting: TwilioAuthToken

¢ Note: This is only a variable name for an app setting variable that will hold the
actual value.

e from Number: +15005550006

e Note: This is a magic Twilio number used for sending SMS texts with test
credentials.

e Account SID Setting: TwilioAccountSid

e Note: This is only a variable name for an app setting variable that will hold the
actual value.

e To Number: Leave blank, as you will populate it via code.

e Message Text: Leave blank, as you will populate it via code.

454

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Click on the Save command at the bottom after you have entered the required parameters.

The next step is to create app settings for the two new variables you will use to hold the Twilio
credentials.

To do this, click on the Function App Settings link on the bottom-left side navigation pane.

Next, you will see a screen similar to Figure 9-47, where you can view and update all the relevant
settings for this Azure Function.

Function app

A “Always On” setting is set to off. Learn mare

+ New Function Develop

App Service Editor

In portal editor with an integrated console and streaming logs

» IBTimerTriggerCSharp1 Go to App Service Editor

Application settings
Manage environment variables and connection strings for your function app

Configure app settings

Dev Console
In-portal consale for accessing your function app's file system

Open dev console

Deploy
Continuous Integration Configure continuous
Deploy your function code from GitHub, Visual Studio Team Services, and more integration
Kudu
Access advanced functionality of App Service like uploading zips, killing Go to Kudu

processes, and more

Manage

App Service Settings
Advanced Features. Access all the underlying features of Azure App Service

Go to App Service Settings

CORS

Allow your HTTP-triggered functions to be called from within a web browser

Configure CORS

Authentication/Authorization S
; . - Configure authentication
For functions that use the HTTP trigger, you can require calls to be authenticated

Function app settings > AP| definition

Allow clients to more easily consume your HTTP-triggered functions

Configure APl metadata

Runtime version

Figure 9-47. Configure application settings

Since you need to add two app setting variables to hold the Twilio SID and authentication token, click on
the link for Configure App Settings.

This will take you to the Application Settings pane for your Azure Function. The screen should appear
similar to Figure 9-48.

455

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

=== Application settings

Save X Discard

R

Remote debugging m On

Remote Visual Studio version _

App settings
AzureWebJobsDashboard DefaultEndpaintsProtocol=s hitps;AccountNames=brtblobstoragedeviAcco Slot setting
AzureWebJobsStorage DefaultEndpointsProtocol=https:AccountName=brtblobstoragedeviAcco... Slot setting
FUNCTIONS_EXTENSION_VERSION ~1 Slot setting
WEBSITE_NODE_DEFAULT_VERSION 6.50 Slot setting
brtAlarmConnection Endpointsshy//brtalarm.servicebus. windows.net/;SharedAccessKeyName... Slot setting
TwilioAccountSid < YOUR TWILIO ACCOUNT SID VALUE> Slet setting

| TwilioAuthToken < YOUR TWILIO ACCOUNT Auth Token VALUE> Slot setting

Key Value Slot setting

Figure 9-48. Add two new Twilio application settings for SID and auth token

Here, you will add two new application settings to store the Twilio API keys.

Enter the new App Setting names and the corresponding values that were obtained when you signed up
for an API key from Twilio:

e TwilioAccountSid: <Your SID>
e TwilioAuthToken: <Your Auth Token>

Remember to click on the Save icon in the upper left of the Application Settings screen when you are
finished.

Now, you just have to update two small code file and you will have an operational Azure Function:
® Function.json: Holds basic input/output binding information for the function.

® Run.csx: Contains the C# code that will be run when the function is triggered which,
in this case, is whenever a new item is added to the event hub to signal an alarm
condition.

To update the code for the Function. json file, click on the </>Develop icon on the left navigation bar.

To make the file visible for editing, you must click on the View Files icon on the top right navigation bar.
You will then be able to view the files associated with the function.

Click on the Function. json file and it will open in the editor window.

456

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Replace the existing code with the following JSON code and then click on the Save command to save
the file.

{
"bindings": [
{
"type": "eventHubTrigger",
"name": "myEventHubMessage",
"direction": "in",
"path": "brtalarm",
"connection": "brtalarm2nd"
1
{
"type": "twilioSms",
"name": "message",
"accountSid": "TwilioAccountSid",
"authToken": "TwilioAuthToken",
"from": "+15005550006",
"direction": "out"
}
1,
"disabled": false
}

Code: Function. json
Figure 9-49 depicts the entire Function. json code in the editor window.

Function app

+ New Function

EventHubTriggerBrtAlarm

¥ Integrate
£ Manage

Q. Monitor

JBTimerTriggerCSharp

Figure 9-49. New Azure Function code for Function.json

Next, click on the run. csx file, and it will open the contents of the existing file into the editor window.

457

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Replace the existing code with the following C# code and then click on the Save command at the top of
the screen to save the file.

#r "Microsoft.ServiceBus"
#r "Newtonsoft.Json"
#r "Twilio.Api"

using System;

using Microsoft.ServiceBus.Messaging;
using Newtonsoft.Json;

using Twilio;

public static void Run(string myEventHubMessage, out SMSMessage message, TraceWriter
log)
{

string jsonContent = myEventHubMessage.ToString();
var alert = JsonConvert.DeserializeObject<EventHubData>(jsonContent);

string eventtime = alert.timerstamp;
string uname = alert.username;
string adminph = alert.adminphone;

message = new SMSMessage();

message.Body = "Team Member " + uname + " Exhaustion Alert at:
message.From = "+15005550006" ;

message.To = adminph;

+ eventtime;

log.Info($"Processed ALERT Event for: {uname}");

}

public class EventHubData

{
public string timerstamp { get; set; }
public string username { get; set; }
public string adminphone { get; set; }
public string adminemail { get; set; }

}

Code: run.csx

Figure 9-50 depicts the complete run.csx C# code in the editor window.

458

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Codew [HEEN RN

1 #r "Microsoft.ServiceBus”
2 #r "Newtonsoft.Json™
i #r "Twilio.Api®

New Function

EventHubTriggerBrtAlarm

D

5 using System;

6 using Microsoft.ServiceBus.Messaging;
7 using Mewtonsoft.Json;

£ Manage & using Twilio;

% Integrate

Q, Monitor 18 public static void Run(string myEventHubMessage, out SMSMessage message, TraceWriter log)
11 {

JBTimerTriggerCSharp 12 string jsonContent = myEventHubMessage.ToString();
13 var alert = JsonConvert.DeserializeObject<EventHubData>{jsonContent);

15 string eventtime = alert.timerstamp;
6 string uname = alert.username;
string adminph = alert.adminphone;

19 message = new SMSMessage();

28 message.Body = "Team Member " + uname + " Exhaustion Alert at: " + eventtime;
1 message.From = “+15885550886" ;

2 message.To = adminph;

24 log.Info($"C# Event Hub trigger function processed ALERT Event for: {uname}"};
26 }

public class EventHubData

]

public string timerstamp { get; set; }
public string username { get; set; }

public string adminphone { get; set; }
public string adminemail { get; set; }

TR

Q

Figure 9-50. New Azure Function C# code for run.csx in the editor window

Recall that messages to this event hub are generated from the Azure Stream Analytics Query job that
you defined earlier in the chapter. In that job, you defined SQL-like logic to output an alert message to
the event hub if the web service predicted a team member is at physical exhaustion levels.

Note that in the function, we defined a class named EventHubData to describe the layout of the
incoming event hub message.

We will use this class to deserialize the JSON string that is passed from the event hub. This is so that
you can retrieve the specific message fields that are needed to send an SMS text message to the
administrator who is responsible for that specific team member.

The next step is to extend the existing function to send an e-mail to the team member’s administrator.

To do this, you will add an output for SendGrid and then modify the code in the two Azure Functions
code files (Function. json and run.csx) to handle the additional outbound connection and logic.

To leverage SendGrid to send e-mails, you need to first register for a free developer API key at
www. SendGrid. com.

459

http://www.sendgrid.com/

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Once you have your SendGrid key, click on the Integrate option on the left navigation bar of the Azure
Function Editor blade. Then click on the +New Output icon in the top-right corner of the screen, as
depicted in Figure 9-51.

Mw Function Triggers @ Inputs @ Outputs &
l!wn!liuang,gaCSnarp‘v Azure Event Hub I".’;,'l: ventHul 5:'~'C'.LJ-;C" | + New Input Twilio SMS (Proview) MCssagel
< Develop + New Output

¥ Integrate »

O Menage

Q Monitor

EventHubTriggerCSharp2senDGridTes Azure Event Hub trigger (myEventHubMessage)

Euent paramwter name @ Event Hub name @

myEventHubMessage brialam

Event Hub consumer group & Fvent Hub connection @

$0wfoult brtAlarmCor

Figure 9-51. Azure Function Integrate option, add new output

Scroll all the way down to the bottom and select the option for SendGrid (Preview) and click on Select,
as depicted in Figure 9-52.

460

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Function app

Search my functions Tnggers o
= New Fimchion Azure Event Hub (myEventHubMessage) +
- EventHubTriggerCSharp1
<[> Develop
¥ Integrate >
& Manage
Q, Monitor
? (Y 1%
EventHubTriggerCSharp2SenDGridTes | |
HTTP Azure Service Bus
Azure Notification Hub SendGrid (Preview)
& Fur
¥ Q

Figure 9-52. Selecting the SendGrid output option for the Azure Function

After clicking on the Select button in Figure 9-52, you will next see a screen similar to Figure 9-53,
where you can enter specific information to configure the output binding for SendGrid.

461

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

arch my functior Triggers @ Inputs @ Outputs &
 New Function Azura Event Hub (myEventHubMessage) o Naw Input Twilio SMS (Praview] (message)
EventHubTriggerCSharp1 = New Output
> Develop
¥ Integrate >
€ Manage
Q Monitor

SendGrid (Preview) output (message)

EventHubTriggerCSharp2SenDGridTes

Message parameter name @ SendGrid AP| Key @
sendgridmessage SendGridApiKey
To address @ From address @
Message Subject @ Message Text @
"
F
+

Figure 9-53. Add new output SendGrid parameters

All you need to populate here is a different name for your “message parameter” and your SendGrid API
key. We will populate the remaining fields from C# code in the function. Click Save when you're done.

To update the code for the Function. json file to include the SendGrid output definition, click on the
</>Develop icon on the left navigation bar.

Next, click on the View Files icon on the top right navigation bar in order to make the files visible for
editing. Click on the Function. json file and it will open the contents of the existing file into the editor
window.

Replace the existing code with the following JSON code and then click on the Save command to save
the file.

{
"bindings": [
{
"type": "eventHubTrigger",
"name": "myEventHubMessage",
"direction": "in",
"path": "brtalarm",
"connection": "brtAlarmConnection"

"type": "twilioSms",
"name": "message",

462

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

"accountSid": "TwilioAccountSid",
"authToken": "TwilioAuthToken",
"from": "+15005550006",
"direction": "out"

1
{
"type": "sendGrid",
"name": "sendgridmessage",
"apiKey": "SendGridApiKey",
"from": "AzureAlerts@TallTowers.com",
"direction": "out"
}

1,
"disabled": false
}

Code: Function.json
Next, click on the run.csx file and it will open the contents of the existing file into the editor window.

Replace the existing code with the following C# code and then click on the Save command at the top of
the screen to save the updated C# file.

#r "Microsoft.ServiceBus"

#r "Newtonsoft.Json"

#r "Twilio.Api"

#r "SendGrid"

#r "Microsoft.Azure.WebJobs.Extensions.SendGrid"
using System;

using Microsoft.ServiceBus.Messaging;
using Newtonsoft.Json;

using Twilio;

using SendGrid;

using SendGrid.Helpers.Mail;

public static void Run(string myEventHubMessage, out SMSMessage message, out Mail
sendgridmessage, TraceWriter log)

{

string jsonContent = myEventHubMessage.ToString();

var alert = JsonConvert.DeserializeObject<EventHubData>(jsonContent);

string eventtime = alert.timerstamp;

string uname = alert.username;

string adminph = alert.adminphone;

string admemail = alert.adminemail;

//Send SMS TEXT ALERT via Twilio API

message = new SMSMessage();

message.Body = "Team Member " + uname + " Exhaustion Alert at:
message.From = "+15005550006";

message.To = adminph;

+ eventtime;

//Send EMAIL ALERT via SendGrid API
var personalization = new Personalization();

463

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

personalization.AddTo(new Email(admemail));

string subject = "ALERT NOTIFICATION - Team Member " + uname + " Exhaustion Alert
received at: " + eventtime;

var messageContent = new Content("text/html", "ALERT NOTIFICATION - Team Member " +
uname + " Exhaustion Alert received at: " + eventtime);

sendgridmessage = new Mail();
sendgridmessage.Subject = subject;
sendgridmessage.AddContent (messageContent);
sendgridmessage.AddPersonalization(personalization);

log.Info($"Processed ALERT Event for: {uname}");

public class EventHubData

{
public string timerstamp { get; set; }
public string username { get; set; }
public string adminphone { get; set; }
public string adminemail { get; set; }
}

Code: run.csx

The next thing you need to do is add a new Application Configuration setting for the SendGridAPI key. It
must match the same name as the one used in the Function. json file, which was SendGridApiKey.

Start by navigating to your Azure Function via the portal and then click on the link for Function App
Settings on the bottom left of the screen.

Next, click on the Application Settings command. This will take you to the Application Settings pane for
your Azure Function. The screen should appear similar to Figure 9-54.

464

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

App settings

AzureWebJobsDashboard DefaultEndpointsProtocol=...

AzureWebJobsStorage DefaultEndpointsProtocol=...

FUNCTIONS_EXTENSION_VE... ~1

WEBSITE_NODE_DEFAULT_V... 6.5.0

brtAlarmConnection Endpoint=sb://brtalarm.ser...

TwilioAccountSid ACeB8b88293422298ec236¢...
TwilioAuthToken 0b3129c0ced44dc2f9d5b3cd...

|| SendGridApiKey v | IFS1)¥irh483Fitgomap4
Key Value

Figure 9-54. Adding a new app setting for SendGridAPIKey

Slot setting
Slot setting
Slot setting
Slot setting
Slot setting
Slot setting
Slot setting
Slot setting

Slot setting

Here, you will add a new application setting to store the SendGrid API key.

Enter the new App Setting ID as SendGridAPIKey and your corresponding APl key as the value.

Remember to click on the Save icon in the upper left of the Application Settings pane when you are

finished.

Monitoring Azure Functions

After you have completed configuring your Azure Function bindings and logic, there are a few ways you

can monitor your function.

You can get direct feedback about how your function is running is via the Logs display, which is visible

underneath the code editor window in Figure 9-55.

465

CHAPTER 9 ' DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

COde (run.csx) “ “ & Logs B View Files & Test 9, Keys

#r “"Microsoft.ServiceBus”
#r "MNewtonsoft,Json”
#r "Twilio.Api®

using System;

5 using Microsoft.ServiceBus.Messaging;
using Newtonsoft.Json;

using Twilio;

O 0~

@ public static void Run(string myEventHubMessage, out SMSMessage message, TraceWriter log)
14

2 string jsonContent = myEventHubMessage.ToString();

13 var alert = JsonConvert.DeserializeObject<EventHubDatas({jsonContent);

4

5

&

string eventtime = alert.timerstamp;
5 string uname = alert.username;
string adminph = alert.adminphone;

19 message = new SMSMessage();

20 message.Body = "Team Member * + uname + " Exhaustion Alert at: " + eventtime;
21 message.From = "+158085550006";

22 message.To = adminph;

2817-82-83T15:15:43.583 Function started (Ids=B6d33cef-8alb-4b3@-bec8-465c7963adde)
2817-82-83715:15:43.503 €2 Event Hub trigger function processed ALERT Event for: Cleryan.Guga
2817-82-83T15:15:43.5083 Function completed (Success, Ide=B6d33ce6-BaZb-4b30-becB-465c7963adde)
2017-82-83T15:15:47.773 Function started (Id=2932dfc9-c976-4550-bes3-6a32135112¢c1)
2017-02-@3T15:15:47.773 C# Event Hub trigger function processed ALERT Event for: Maell.Driga
2017-02-83T15:15:47.773 Function completed (Success, Id=2932dfc9-c976-4550-be53-6a32135112¢1)
2817-82-83T15:15:49.64@ Function started (Id=34715e7b-a3fb-4elb-b78d-bbdaifciassf)
20817-02-23T15:15:49.640 C# Event Hub trigger function processed ALERT Event for: Caniver.Ishtik

Figure 9-55. Azure Function Logs window displaying real-time logging output

Note that you can see the output from the log.Info() command such as the one you used in the C#

function:
log.Info($"Processed ALERT Event for: {uname}");

Another method is to use the built-in monitoring tool in the Azure Portal for Azure Functions.

Start by clicking on the Monitor icon on the left navigation bar on the Azure Function blade. Next, you

will see a list of all the events and logging output messages that have been generated by this Azure
Function call.

Figure 9-56 shows a screenshot of the Azure Function monitoring window.

466

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Function app

Search my functions
Recent success count
<+ New Function 2 67
EventHubTriggerCSharp1
<> Develop .
Invocation log & Refresh live event strean
&
iesiate - Details: Last Z
Function Status (duration)
& Manage ran
Moniito > Tri ("ti
Q, Monitor E\]ventHub riggerCSharp1 ({"timerstamp™"201 v S Hols ao (78 me)
EventHubTriggerCSharp1 ({"ti tamp™:"201
\;en ubTrigge! arp1 ({"timerstamp’ 5 2 howks ago. (88 e 5

Figure 9-56. Azure Functions: monitoring function events

If you click on an event for a function, you will see a panel that displays the invocation details about the
function call.

Figure 9-57 depicts a sample invocation panel for a selected Azure Function event call.

Invocation details

Parameter

myEventHubMessage {"timerstamp":"2017-02-03T720:35:05.46954"
message {"AccountSidSetting":"ACe8h88293422298e
sendgridmessage {"ApiKey":"SG.ulp8mSvWSAOfK-ohrtj64g.4a
log

_context Oacdc59d-24db-4826-8a50-8b4f05a224¢8

Logs

Processed ALERT Event for: Adaryne.Millyn

Figure 9-57. Viewing invocation details for an event

Note that the Parameter and Logs data displayed in Figure 9-57 can be extremely useful for resolving
configuration data or debugging C# programming statements.

467

CHAPTER 9 ' DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

RUN SIMULATOR

Hidden within the deep, dark depths of the GitHub repository for this book is a highly useful C# console
application that can act as a effective device “simulator” in lieu of real sensor devices, live team
members, and actual commercial heavy equipment.

The device simulator is highly useful for generating realistic sensor data for (15) team members for
each of the three business entities in the reference implementation.

The business entities are well-known in limited circles and listed here for your reference:
e Complicated Badger
e Tall Towers
e WigiTech
The Github folder path to the device simulator C# code is
\devices\device-teamsim
After this point in the folder path, you will see three different code paths in the repository—one for each
business entity.

This is so that the device simulator for each entity can be then further customized to accommodate
each business entity in the reference implementation. An additional benefit of this approach is that
you can run the device simulators for each company concurrently. Running the device simulators
concurrently helps to facilitate modeling the data flow of a real multi-tenant loT environment.

The role of the device simulator cannot be over looked, as it is crucial to the success of any loT project.
It is the best way to generate representative loT sensor data and then send that data all the way through
the Azure solution you have created as part of the reference implementation. The role of the device
simulator is reflected in Figure 9-58.

Machine Learning rj
B 0 "
) + l
' ,% r\\.‘__:/‘;?* HOT Path
L

Stream Analytics [-

Power Bl

loT Hub

(™

C# Device

-
L—HOTPath—— mlm
Simulator u®

Event Hubs %
L’(’E B evaL
Azure (SendGrid)

Functions

Figure 9-58. The device simulator role in the reference architecture

468

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

Simulate Sensor Stress Conditions with BRZRKR Mode

One of the primary benefits of the reference implementation solution is the ability to detect issues and
automatically send alert notifications.

To that end, the focus of the Power Bl dashboard and the alerts and notifications have been on
generating visualizations and alerts for these abnormal conditions.

In order to mimic this, there is a feature called BRZRKR mode that can be adjusted to suit your
environment. Figure 9-59 illustrates a code fragment in the SendTelemetry function to adjust the
BRZRKR mode setting.

private static void SendTelemetry(Teammate teammate)

{

var rowindex = @;

const double brzrkr = 1.5; // inflate readings to quickly simulate alarm conditions

Figure 9-59. The Device Simulator BRZKR mode

To get started, open the C# device simulator project in Visual Studio 2015. Open the Tall Towers solution,
which can be found at the following folder location in the GitHub repository: devices\device-teamsim\
talltowers.

Check the Settings in the app. config file to make sure they match your environment. Then you can
build and run the simulator. See Figure 9-60.

Simulating teammatel
Profile Id : 8dfef6d5-2302-460f-af6l-fa2fd3c75e8b
Device Id : 537cfd35-1d39-4aeb-bf45-0ef6faaf300c
Simulating teammate2
Profile Id : a7591ba2-e534-48fd-afla-50e56c0e396a
Device Id : 2aadbl@3-fae8-4d84-a@7b-15ed48e33a55
Simulating teammate3
Profile Id : aB8569261-b13a-421f-938c-8ladef612e25
Device Id : bfc37538-98080-4d56-blda-6ba%9a9453f23
Simulating teammate4
Profile Id : fd36c995-e599-4bc3-8c28-0d5b6fe54624
Device Id : bf8e2539-1a0d-4642-94ea3-088a44ab0b3f
Simulating teammate5
Profile Id : 33e37484-31ac-4b34-b928-6520175b5d74
Device Id : e4867159-f070-409c-aB86e-dcf848088eb3

Figure 9-60. Sample Device simulator output

469

CHAPTER 9 ' DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

After starting the C# device simulator console application, you would typically then start the Azure
Stream Analytics job.

After both applications have fully started, you start seeing data appear in your Power Bl dashboard.

Depending on your BRZKR mode setting and how you have configured the Azure Functions for alerts,
you might also start to see alert messages appear on your cell phone or in your e-mail inbox.

In this section, you see how everything comes together in the reference implementation.

We will review some of the dashboard visualizations and alert artifacts that are generated as we run
data through the solution using the device simulators.

Figure 9-61 depicts the Power Bl dashboard as the device simulator is being run in the background in
BRZRKR mode.

3 Ask a question about your data

Count of scored labels breathengrate. heartratebpm, temperature, velocity, spesd

[)

¥ Average of temperature Average of heartra

tebpm breathingrate
14413 ‘ 15586 ‘ 1.26M

T

Tetsl 134000, CAEFNE BAIBGA. EIIZINN. &781000

Figure 9-61. The Power BI real-time dashboard for reference implementation

Note that in Figure 9-61, there is an alarm icon visible in the top-left corner of the average temperature
gauge. This occurred after we manually set the alarm earlier in the chapter.

Figure 9-62 displays the specific Power Bl dashboard notification message that was generated for this
alarm. You can see that it was triggered by exceeding the threshold you set earlier.

470

'Z¥ Featured dashboard

T Favorites

My Workspace

Show

=} Dashboards

Figure 9-62. Sample Power BI dashboard alert notification

Count of scored labels

{)

1 Average of temperature

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

breathingrate, heartratebpm, temperature, velocity, speed

Tetsl

Average of heartratebpm

‘ All Notifications

Alert for Averaga of temparatura 13 x
[R

et for Average of temparntune on Tall Towers

5 116.505 181676414, which Is above the

thrwshold of 102

"
[

[z Gottie

L1320 s11zem

breathingrate

‘ 1.12M

In this case, the Power BI notification alert reads as follows (from Figure 9-62):

Alert for Average of temperature on
Tall Towers is 116.565181676814, which is above the threshold of 102.

Also note that the subject of this Power Bl alert is “Alert for Average of temperature a day,” which
means you will receive this alert once per day.

While this dashboard alerting is certainly useful, we are still in need of a more effective and direct
alerting mechanism to contact the appropriate party, on the appropriate device, at the appropriate time.

This capability enables you to deliver vital outbound alert notifications to the most interested parties.
And all of this can easily be delivered via the “lowest-common-denominator” methods of modern
communication vehicles, namely text and e-mail.

Figure 9-63 represents a sample e-mail that was generated by the C# code and the SendGrid API
covered earlier in the chapter.

471

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

“ Reply| ¥ @ Delete Junk|Y s

ALERT NOTIFICATION - Team Member Trejanry.Simyr Exhaustion Alert received at: 2017-02-03720:13:34.5729547Z

o AzureAlerts@TallTowers.com

You ¥

ALERT NOTIFICATION - Team Member Trejanry.Simyr Exhaustion Alert received at: 2017-02-03720:13:34.57295472

Figure 9-63. Sample e-mail alert notification generated by the SendGrid output binding in the Azure
Function

In this scenario, the ability to automatically trigger, generate, and send SMS text and e-mail messages
offers a competitive advantage to the three reference implementation business entities.

These benefits are often realized in terms of increased team member health, reduced accidents,
reduced legal liability, and increased customer satisfaction.

Summary

This chapter covered the topic of visualizations, alerts, and notifications using Power BI and Azure
Functions.

We started with a look at the modern reporting landscape and then provided an overview of the
capabilities of the Microsoft Power BI platform, including the following versions and components:

e Power BI Service

e Power BI Desktop

e Power Bl Embedded

e Power BI Mobile

e ReSTAPIs

e Custom Visuals

e Natural Language Query
e Cortana Integration

e Power BI Desktop

e RScript Visualizations

We then explored the use of several Azure services—including event hubs, Stream Analytics, and
Functions—to enable an automatic alerts and notifications solution with minimal coding. We examined the
following Azure technologies:

e Azure Event Hubs: Use as a trigger mechanism for Azure Functions
e Streaming Analytics: Output to Event Hub capability

e Azure Functions: Send SMS text (via Twilio) and send alert e-mail (via SendGrid)

472

CHAPTER 9 " DATA VISUALIZATIONS, ALERTS, AND NOTIFICATIONS WITH POWER BI

We then “made it real” by incorporating all of these Azure capabilities into the reference
implementation. The final piece was the device simulator and the capability to generate both normal and
alarm conditions to test the end-to-end system.

With the device simulators in place, we were then able to quickly create simulated data and generate
rich, interactive, dashboard visualizations using Power BL. With minimal additional effort, those same
dashboard views are instantly available on all versions of Power BI, including the desktop, web, and mobile
versions.

In addition to rich visualizations and dashboards, we were also able to quickly and easily implement
alerts and notifications by leveraging several Azure services such as event hubs and Azure Functions.

In today’s fast-paced business world, constantly operating at “Internet speed,” there are many critical
requirements for highly streamlined, adaptive, operational dashboards and visualizations to help improve
business outcomes by avoiding unfavorable scenarios.

When you add cloud-enabled capabilities like Machine Learning and predictive analytics, you can start
to manage outcomes even before they happen.

Combine this predictive capability with timely, actionable, and effective alerts and notifications and you
have all the underpinnings of a great, modern cloud business architecture.

473

CHAPTER 10

Security and Identity

This chapter reviews several key security topics including threat modeling, security protocols, encryption,
and key management as well as managing user identities and supporting multi-tenancy in your solution.

Threat Modeling

Cybercrime and IoT security have been front and center in the news this past year. Defining the security
strategy for an IoT solution that uses public cloud platforms requires understanding the surface areas of
vulnerability and the attack vectors that cyber criminals might leverage. Security is a not a solution; it is an
ongoing process that requires discipline and constant analysis, review, and action.

Threat vectors in the context of an IoT solution are defined by zones, where each zone outlines a surface
area of attack. The design team uses these zone definitions to articulate a security strategy, technology stack,
monitoring, review, and response process. The zones in an IoT solution span the on-premises environment
made up of wired, wireless, and cellular networks, the devices you deploy into that environment, the
applications that you provide your end users, and everything in between.

Threat modeling helps you understand how an attacker might seek to compromise and gain access
to a system. It also defines the process and tools that you would leverage to mitigate the attack. Threat
modeling should be an activity that is undertaken at design time and continues throughout the lifetime of
the application. It is critical that security mitigation strategies are defined and continually updated as the
solution evolves.

The threat modeling activity consists of four steps:

¢ Modeling the application
¢ Enumerating threats
e Mitigating threats

e Validating mitigations

© Bob Familiar and Jeff Barnes 2017 475
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_10

CHAPTER 10 = SECURITY AND IDENTITY

This modeling process starts with creating a solution architecture diagram. All elements in the diagram
are potential surface areas of attack. STRIDE is a threat classification model that can be used to organize
potential threats and well known mitigation strategies as you perform the analysis on your architecture.
STRIDE stands for:

e Spoofing: The attacker pretends to be someone or some service they are not
e Tampering: The attacker modifies data in transit

e Repudiation: A user performs an action and then claims they did not actually do it,
such as a credit card transaction

e Information Disclosure: Can the attacker or user access data they are not allowed
to see

e Denial of Service: The attacker degrades a service through overloading or redirection

e Elevation of Privilege: The attacker can gain privileges that they would not
normally have

The services within your solution would be subject to different STRIDE classifications. For example:
e Processes can be classified using STRIDE
e Data flows are classified using TID components of STRIDE
e Data stores are classified using TID, and sometimes R, if the data stores are log files

e External entities are classified using SRD

Note An excellent reference on STRIDE written by Larry Osterman at Microsoft can be found at
https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/.

Threat Modeling Zones and loT

The zones in an IoT solution can be defined as follows:
e Local
e Device
e Cloud Gateway

e Cloud Service

Local Zone

One of the more critical parts of an IoT solution with respect to security are the devices that are deployed
into the world—into physical environments over which we may not have control. This local zone is subject to
physical and digital attack vectors.

476

https://blogs.msdn.microsoft.com/larryosterman/2007/09/04/threat-modeling-again-stride/

CHAPTER 10 = SECURITY AND IDENTITY

The relationship between end users or sensors and the device defines a data transition boundary. It
is at this boundary where attackers will focus their attention. The physical space into which it is deployed,
the network segment it belongs to, and how it receives and sends data must all be considered. A short but
certainly not exhaustive list of questions the design team should pose during their analysis of the local zone:

e Will the device be into a locked room with limited access?
e Will end users interact directly with the device, such as a lock or a thermostat?

e Isthe device attached to an open wireless network, connected to a cellular carrier, or
using to a hard-wired LAN?

e Does the device reside on its own network segment?

e How is the device deprovisioned if it fails or is replaced?

Device Zone

The device zone focuses on the inner workings of the device. The operating system and firmware that are
executing your application logic, connecting to networks, receiving and sending data, storing data locally,
and so on are analyzed. One important consideration is how user and admin accounts are created and their
passwords maintained. Consumer IoT devices are known to be vulnerable in this area as manufacturers
have been lax in their design and end users are may not be technically savvy enough to consider the
implications of the password 12345. Here’s a short but certainly not exhaustive list of questions the design
team should ask during their analysis of the device zone:

e What operating system is embedded on the device?

¢ Whatlanguage is the firmware/application implemented in?

e Has the firmware team left ports open for remote connection and debugging?

e How is the firmware upgraded?

e What user/admin accounts are created and how are their credentials maintained?
e How is the device installed on the local network?

e How does the device authenticate to the cloud gateway?

e Isthe data encrypted in flight and at rest?

e What data transmission protocols (MQTT, AMQP, HTTPs, or other) are used to
communicate locally and with the cloud?

As we covered in previous chapters, we use a two-phase authentication mechanism that combines
a secure HTTPs call to the Device API to retrieve the device manifest followed by a secure call over either
MQTT or AMQP to IoT Hub to connect and set up the two-way communication between the device and
the cloud. We also demonstrated the use of the device twin and direct methods to perform secure device
management operations (see Figure 10-1).

477

CHAPTER 10 * SECURITY AND IDENTITY

Cloud Gateway Zone

The cloud gateway is a cloud-hosted service or services that provide public cloud secure endpoints for
devices to register, authenticate, and send and receive messages. A cloud gateway needs to be able to
provide these services across multiple device zones. In our solution architecture, IoT Hub and the Device
API represent the players in the cloud gateway zone. They expose secure endpoints that allow devices to
connect and communicate. A protocol gateway and/or SMS gateway may also reside in this zone if you are
connecting to legacy devices in your solution (see Figure 10-1).

Local Device Zone

Cloud Gateway Zone

Azpire
Active Qirectory

Authenticate & Authorize

Opedtions
Dashpoard
Call Device API
Devices
LIPS |
' 9 <«———GallDevice m——q—p(_:.D} <+ Device m—prl‘l,_'lia
® | Iyl j
1 APl Management Devife API Manifest
1
1
i
1
i
| -1 Command & Control
—AMQP | MOTT—L -4 Device Twin
: L Direct Methods
i
i
1

loT Sub-System

Figure 10-1. Local, device, and cloud gateway zones

478

CHAPTER 10 = SECURITY AND IDENTITY

Cloud Services Zone

The cloud gateway provides access to the incoming messages by internal cloud-hosted services—in the
Cloud Services Zone—that provide data ingestion, stream processing, storage, advanced analytics, and
application integration through APIs, queues, and batch processing (see Figures 10-2 and 10-3).

Cloud Services Zone — Data Pipeline and Storage and Analytics

Azure S0 o
datsbase WigiTech
...-‘ﬁ’?}_—au Mcssagcs—p@.‘—aea e @3 'lll
ASA Cold Path Blab Storage Data Factory Data Factory Azure SOL i N
Data Lake Store database Tall Towers
Train Model
= " ‘
\%3—9 Pma.ured—bﬁ L @ "'I
ASA Wam Path Telemetry

Azure 501

i
i
I
I
I
i
i
I
1
i
i
[
I
I
I
i
1
I
i
i
i
1
I
i
I
I
I
I
[
i
!
i
i
i
1
I
| .
! database The Complicated
i Badger
i
i
1
I
I
i
i
I
I
i
i
i
I
I
i
i
I
I
i
i
i
I
i
I
i
i
I
1
i
i
I
I
i
!
I
1
I
i
i
i

Machine Learning

Operationalize

Reference Data Machine Learning
Model
Predictive

Analytics API

O —

Alerts and Notifications———————— | E‘b
ASA Hot Path Notification
Message
Backplane

Analytics Sub-System

Figure 10-2. Cloud services zone, data pipeline, storage, and analytics

479

CHAPTER 10 * SECURITY AND IDENTITY

B 0 O

A ——

Cloud Services Zone — APIs and Applications

B O

DevOps Automation

lol HLIJTL‘GdirgS Manifest Alarms Subscription Organization Dataset Configuration
Telemitry API Defice MNotiffation Acclunt Custigmer Simuiation Appllation
APl I APl APl 1 APl
|
1
1
1
|
1
1
SendGrid)\
. Store Notification History 4 D_,-T- L
! APl Management Multi enant
T I Poytal
|
Email Ales Authenticate & Authorize
MS. | Voice Alert: >
l Notifilation
. Fundtion
i &
| b
Twilio i Subscribe Azure
|]I Active Directory
1
| BN—
i
| {: m
i Notification
! Message Visual Studio Team
! Backplane Services
i
|
1
!

Application Sub-System

Figure 10-3. Cloud services zone, APIs, and applications

Note Recommended reading on Azure security includes the following:
Protecting Data and Privacy in the Cloud whitepaper

http://download.microsoft.com/download/2/0/A/20A1529E-65CB-4266-8651-1B57BOE42DAA/
Protecting-Data-and-Privacy-in-the-Cloud.pdf

Windows Azure Privacy Overview whitepaper

http://download.microsoft.com/download/7/5/9/759E2283-F517-430E-84AF-0151988C117A/
WindowsAzurePrivacyOverview.pdf

Microsoft Azure Security, Privacy, and Compliance whitepaper

http://download.microsoft.com/download/1/6/0/160216AA-8445-480B-B60F-5C8EC8067FCA/
WindowsAzure-SecurityPrivacyCompliance.pdf

480

http://download.microsoft.com/download/2/0/A/20A1529E-65CB-4266-8651-1B57B0E42DAA/Protecting-Data-and-Privacy-in-the-Cloud.pdf
http://download.microsoft.com/download/2/0/A/20A1529E-65CB-4266-8651-1B57B0E42DAA/Protecting-Data-and-Privacy-in-the-Cloud.pdf
http://download.microsoft.com/download/7/5/9/759E2283-F517-430E-84AF-0151988C117A/WindowsAzurePrivacyOverview.pdf
http://download.microsoft.com/download/7/5/9/759E2283-F517-430E-84AF-0151988C117A/WindowsAzurePrivacyOverview.pdf
http://download.microsoft.com/download/1/6/0/160216AA-8445-480B-B60F-5C8EC8067FCA/WindowsAzure-SecurityPrivacyCompliance.pdf
http://download.microsoft.com/download/1/6/0/160216AA-8445-480B-B60F-5C8EC8067FCA/WindowsAzure-SecurityPrivacyCompliance.pdf

CHAPTER 10 = SECURITY AND IDENTITY

Security Protocols

Interactions between infrastructure and the Azure components that comprise an IoT solution can be
secured using industry standard protocols including X.509 certificates, role-based access control, firewall
rules, and virtual networking.

Data emanating from on-premises IoT devices is unconditionally secured in-flight via TLS over
protocols such as HTTP/S on port 443 and secure AMQP on port 5671. Data-at-rest can also be secured
through service-based encryption (such as Transparent Data Encryption on Azure SQL Database and Azure
Storage Service Encryption) or application-level encryption with Azure Key Vault providing secure storage
of access keys. Specific requirements for at-rest security will vary with the nature of the data and the storage
mechanisms, which are addressed at the higher layers of the architecture.

Note For more detail on loT and Security, see this article by Yuri Diogenes and Dominic Betts from Microsoft:
https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture.

Azure Security Center

The Azure Security Center provides you with an overview of your current services with respect to potential
threats and verifies that the appropriate security controls are in place and configured correctly. You can set
up alerts and notifications for each of your services so that administrators and key members of the team are
alerted to potential threats (see Figure 10-4).

@ Data Resources - Micro: 2+

— > O @ & portalazure.com/éblade/Micrasoft_Azure_Security/SecurityhenuBlade/n bod =

[Power B P Log brgratsr

D Search feed A Your security exgerience may be Fmited. Click here ta l&arn mare

S0L BECOMMINDATIONS TaTaL

Prevention
AL - - —
Server Auditing B Threat det.. 10f 1 servers I

Resource security health e
Databate Auditing & Threat d.. 3 of 3 databsres | —]

O Overview

b o solacws I

i Quidstar

STORACE RECOMMENDATIONS ToTAL

D wikcme
Storage encryption not enabl.. 5 of § storage accou .
PETON

Pastrier solutions

= Recommendations 0L

Mo salitions =]
O Partaer sebitions
i1 panE ARINTING B THREAT [, TOE
oaTTcH A — 1t da I
[Y- ’ sickatant - |, brtsglserverder ' @
U Security sty Py Quickstan &
I a T DAL Mistony- Wig. [] L]
Detection =
I B othabrckemetry [] []
Security alerts
I B opsdamn 0 ®
Storage (Preview)
ACCCUNT KAML ENCRETION -~
“ l il ey =
' T eetmisbstonagedes o
[T suneseeiseamnasiy o

Figure 10-4. Security Center reporting on vulnerable services

481

https://docs.microsoft.com/en-us/azure/iot-suite/iot-security-architecture

CHAPTER 10 = SECURITY AND IDENTITY

The Security Center provides remediation guidance and the ability to turn on encryption, enable
auditing, and configure alerts as well as set up threat modeling if appropriate. In Figure 10-5, you can see
that threat modeling on the SQL Database is engaged to detect SQL injection and anomalous client logins.

L 1l
. s o At e N
; ol Nserem ——— shgraneder e O Hgn EI:

DD daibset —— . .
7 T ' [1 [tttk v e
Y
LA ... »
T FYPr— —— pan
+ - :
L] it Dot v °

prr——

+ ° e D —
e Wi 0
- o
. o

Figure 10-5. Configure threat modeling

Data Encryption

All the services we have employed through the solution provide encryption as data is being transmitted or,
as it is often described, in-flight.

Asyou can see from the Security Center report in Figure 10-5, encryption for data at rest is not on by
default. It is recommended that you turn on encryption for blob storage and SQL Database. You can do this
through the Security Center.

Data lake provides encryption for data at rest by default.

Key Management

Azure Key Vault safeguards cryptographic keys and secrets. You can encrypt keys and secrets such as
authentication keys, storage account keys, data encryption keys, .PFX files, and passwords using keys that
are protected by Hardware Security Modules (HSMs).

You can create a streamlined process using key vault so that you can maintain control of the keys
that are used to access and encrypt your data. Developers can create keys for development and testing in
minutes and then seamlessly migrate them to production keys. Security administrators can grant and revoke
permission to keys as needed.

If you have an Azure subscription, you can create and use Key Vault. Within an organization, it makes
sense to set up a more formal process where an administrator oversees the creation, distribution, and
revocation of keys. This person or persons would authorize users and applications to programmatically
access the key vault for subsets of keys while leaving the creation, import, delete, revocation, and monitoring
a private concern.

482

CHAPTER 10 = SECURITY AND IDENTITY

Note For more information on Key Vault, visit https://docs.microsoft.com/en-us/azure/key-vault/
key-vault-whatis.

Identity

Identity is all about who can access your applications, APIs, and the underlying data that are at the heart

of your IoT solution. You will want the ability to provide users some level of self-service for registration,
password management, and profile updates while maintaining stringent protocols for accessing application
capabilities and data.

Authentication and Authorization

Authentication and authorization for customers, employees, and partners is provided through a cloud-
hosted identity-as-a-service (IaaS) provider. Azure Active Directory has quickly become a popular choice in
the Azure ecosystem to manage multi-tenant identities.

Azure Active Directory (Azure AD) simplifies authentication for developers with support for industry-
standard protocols such as OAuth 2.0 and OpenID Connect as well as open source libraries for different
platforms to access its application and operations APIs.

Azure AD B2C is a full-featured cloud identity management service for consumer and partner facing
web and mobile applications. It is a highly available global service that scales to hundreds of millions of
identities. Your users can register, authenticate, and manage their profile using company e-mail or one of
their social accounts such as Google+, Facebook, or LinkedIn. The self-service forms are provided by Azure
AD B2(, and applications that want to integrate with this service are registered with the directory through
the Azure Portal or through the Azure AD automation API called the GraphAPI.

Multi-Tenancy

Multi-tenancy refers to the capability of a single code deployment, often a web application or AP], to
service a user base from multiple companies and partners (tenants) while providing a potentially distinct
experience for each tenant. Upon entry, users will only be able to see the functional areas of the app they are
authorized to see and access the data they are authorized to view.

With respect to data access, there are two design patterns that can be applied:

e The data pipeline services create individual, isolated databases for each organization
and role-based authorization is overlaid for employees of that company.

e The data pipeline services place all the data into a single, elastic store whose schema
provides a security overlay that uses authentication claims to restrict access by
company and role.

There is no right or wrong way to go about this; it is a business decision as to which one is appropriate
for you. You may have customers who want to be reassured their data is isolated from other organization
who are using the same SaaS$ application. In that case, the tradeoff is that your team will need to design a
process by which the databases for each organization are created and managed. If all organizations are
accessing the same scalable, elastic store then it is your duty to not only manage this store but also to provide
guarantees that data access is properly restricted across organizations and users in organizations.

483

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis

CHAPTER 10 = SECURITY AND IDENTITY

The reference solution demonstrates both of these patterns. Chapters 7 and 9 introduced the first
pattern: how you can design a data pipeline process using Data Factory to generate individual databases for
each organization (see Figure 10-6).

Cloud Services Zone — Data Pipeline and Storage and Analytics

v
All Messages—m q—.ie.- % E 1
ASA Cold Path Blob Storage Sots Fachar

Data Factory

Train Mode

e
== .

ASA Wikm Path

Azure 501
database The Complicated
Badger

Maching Learning

ASA Hot Path Natificat
ASA Hot Pat Notification

Analytics Sub-System

Figure 10-6. Separate data stores for each organization

Here we will examine the second pattern: a single, scalable store that defines a schema to provide both
company and role-based access.

In addition to the Blob Storage and Data Lake Store depicted in Figure 10-6, the Stream Analytics job
sends telemetry to a SQL Database table referred to as the warm path. As the Stream Analytics job processes
each of the incoming messages, it transforms the message by joining the biometric data with details
about the employee who is wearing the vest such as his name, e-mail, age, weight, and height along with
the company name and the type of user. In our scenario, there are two types of users: administrators and
employees. An employee can only view his or her own personal data. Administrators can only view data for
employees at their companies. Using the company and user type columns in the SQL Database table, we will
demonstrate the second pattern: providing a security overlay based on user type and organization to restrict
data access (see Figure 10-7).

484

http://dx.doi.org/10.1007/978-1-4842-2650-6_7
http://dx.doi.org/10.1007/978-1-4842-2650-6_9

CHAPTER 10 = SECURITY AND IDENTITY

oy vt -+ EEE——————
------- cript for SelectTopMRows comsand from SSMS ===es/ +
SELECT WF 1000 [UserId] -
[Age]. [Meight], [Weight], [compamynsme] , [firstname]. [Lastnome] , [username]. [type]
[teartRatelPr], [BreathingRate], [Temperature], [Stens], [Velocity], [Altitude]
[ventilization], [dctivity], [Cadence]. [Speed], [HIB], [HearthateRedZone] =
[heartratevarisbility], [Status], [14], [Deviceld], [Ntsngﬂyﬂ] lLe«gnua‘j [Latitude], [Timestamp], [imageurl), [phone] [ewail],[gender],[race]
FROM [dbo]. [TotHusSenscrRendings]|
Age Heght Weght compannane friname batname usemane hpe HestRueEPM EreshngRme Tempeasture Seps Velooty Msude Verthrgon Aci e
1 a0] The Conglzated Eadger Jyngwen Negma Jyrgmen Megaus 3 % TTAINAN SSISIMIT0IEE 0 sarIesnE 0 TestasE 00
2) o o The Compicated Badger Cael A (= EL T :] L1 175113802 2ATTITEMMT 0 THAENEI01 O 1654712564 01
3 FTTcbI5dode 48250 S0 dd T1 220000 1 [0 o The Compicated Badger Jyssa Ak Jyssa Arukc 2 0 1757M7257 %6 TNIM806 O BEIGES06E98M405 O 1664005306 01
4 F T dode 48550 Sa e 7123000 1 n N m The Compicated EBadger Jyssa Aok dymsa Ak 2 Ll 7 96 650093633364 0] 0 2000 o
[] Bl et 024600 06 a3 The 7N N Tal Tomesy Fid Sy Pl Sy 2 L 7 FRRNEIRINEL 0 o 0 20 o
€ 053477600268 d3se2aldbbcddbotentE T2 W m Wig Tech Togrk Denye Tesgrk Denye 2 L] 7 9655009383336 O 0 0 2000]
7 oldfiN20adoe 46442504 e Wil lce 1B a0n F~ The Compacated Eadger Caed L Casl Arur 2 5 7 96 1250058048025 O 0 0 2000 o
£ 15SesEiblSeiba bl B0 1T 63 WO Tl Towes Corver Itk Carwverlsheic 3w INMSESE1 SEEITMETITNS O BR4BISTINTIS O 19H06E 02
9 L0507l 0 auaT™ 2 T] WigTach Aoy v ey Diwe 3 L 1856550281 SETEMIIINOEE O shenueTeEEl 0 nBuTeeNe 0
10 &10524007H5aecad¥0laalieb?E 2B 0T L] WigTech Aog Dean hesy Dueany 1 L1 17511812 % 0 & 125226 0 1854712564 01
1 cAdfiX0adce-dB4d-a 50 ¥ loe 1B a7 n w The Compicated Badger Caell A Caell Aur] ® 173872044 96 5025058603118 O 02NEISLNTIE 0 18361 18 o
12 fcSable 1J6e4TI00ETddidMene 0 0 0 o The Complicsted Badger JSonns Anmesh Jlorna Animesh 3 w0 173872048 WOSNISHNY 0 0 0 1636118 oW
13 felAlie 1164700 e AR e0e 0 5T 3 o The Comgicated Badper Jionna Anmesh Jlorna Animesh 3 * RLAE E T PeMEAEN 0 e EmeE
14 aTS9baleSM aldal 10 50ebbcled¥a 4T T8 o Tal Towes Broms Gagh {Beors Glagh 2 % 1819436647 95.927%600008268 O JaTM5046TRE2 O 1756882586 01
15 faTdoodd TR040e082cb S4B 100060 M T2 L] Tal Towes Cenan Guga Ceryan. Gugs] 2 176155619 96.19M695|INTT 0 123750186260503 O 18733072 01
1 IEIN0addRiatladiclcnlE 4T TS 20 TheCompiced Badose Coed Her Codl s 3 | 00574817 HKSITNGNZBS 0 NESISIEEEN O 008901% 02
17 1Sl dSenta b2 b0 3T 63 Lo Tal Toweey (= Canvver ishtic 3 ur 08012084 sI24ET4080 0 151060155675022 0 erEE 03
12 faTdccddT2al40el-22ch 54222100060 M T2 " Tal Towerss Cleryan Guga Cleryan Gugs 3 1w 1T S ATAEMET 0 B0 2245612020568 O 12806 58204 02
15 fcSilia116a4T1000Td 050 mene 10 ST T3 5 The Compiicated Badger Sona Anmesh Jlorna Animesh 3 2 1TEISEEIE 96 6TIMERZNBNT 0 123841371256477 0 E7a0MmzE 0
W Sl 1154T0ME O ene) 5T T F<d The Compiicated Badger o Anmesh Jlorna Animehy k] % 183ETE L] 0 1eesEe 0
A N00adce-4644a e Wil a1l 0N o The Complicated Badoer Coel L4 Cael Aur k] mm 0I6M BATMS2E00E 0 124 858064267252 0 067494/ 02
2 MESEIE1D1A2VWIMoSladefE12e% €2 65 " Tal Towes Trejarey Semyr Teesarey. Semyr 3 2 17637515 9633670502068 O Teaennssee 0 BEXOT 01
I 1i5eefi- 150060 B3 ebDoWN 2T 63 Lo Tal Towess Covver bt Canvver lshtic 3 m 199945507 S61ISETET O 1S.366808647062 O HEE0Me 02
i“ ATENIbAZAS MG 1a-S00 el 4T TS 0 Tal Tomeen Broest. Gach Eronee Gl 3 % 1837749 L} o L2 0 13552 12T '.‘}1 =
(&) Cuery enecuted successhully, dev.databas. ? qlsery... | D000 00 rows

Figure 10-7. SQL table containing user telemetry

For this plan to work, we need a secure API that sits on top of the SQL Database table and enforces the
requirements of our security model. The Telemetry API will provide a secure endpoint for applications that
want to access the underlying data. Any application that wants to call the Telemetry API will need to provide
the details of the authenticated user, the company name, and user type as parameters to the call.

This application needs to be registered with Active Directory to establish the trust relationship between
the identity provider (Active Directory) and the application itself. Once the user is authenticated, the
application has access to “claims” for that user and can use that information to call the platform APIs. Claims
are name-value pairs that provide details about the user such as their given name and surname. In addition,
you can extend the default claims collection by adding additional properties needed at the application level.

Using the user ID claim, for instance, the application can look up the user’s profile via the Registry AP]I,
retrieve the user’s subscription level from the Account API, organization details from the Customer API, and
application configuration details from the Application API (see Figure 10-8).

485

CHAPTER 10 = SECURITY AND IDENTITY

43} H
(———————————IN: AAD App Role, Object I =[5 @
OUT: subscription level DJ
ccatink Subscription
) App performs lackup of User Keys
” IN: App Role, ab) H
Navigat " -
. — 1 haigate 10 g - Object 19 - ;J Bq——m-uo App Role, Object - I'.D" a
‘ o QUT: Account, Custamer, OUT: authorization level
SPLBpps and User Role Keys AF Customer Organization
&)
: AAD App Role, Objest |
3) AAD sends App Rale and Claims to App OUT: user profile 3
Registry Profile

5] App requests telemetry
IN: Account, Customer and User Role Keys
OUT: Tolemetry Data user Is allowed to soe

2) Redirect to AAD

&)

Telemetry

Account, Customer, User Role keys
used to query against telematry data

© ©

Cold Storage Warm Storage

Figure 10-8. Multi-tenant authentication and authorization

Figure 10-8 depicts a user authentication, authorization, and telemetry request workflow:

1. The user navigates to the home page of the web application or launches the
mobile app.

2. The user is redirected to the Azure AD login page and provides his or her
username and password. In the case of a mobile application, the Azure AD login
page is presented in a modal popup.

3. Azure AD authenticates the user and, if successful, redirects back to the
application with a token that contains a set of standard claims like name, unique
ID, etc.

4. The application uses these claims to invoke a set of managed APIs that are
secured from the application to the API Management proxy using OAuth bearer
tokens and from the proxy to the service using managed certificates, basic
authentication, or shared secrets.

a. The Account APIreturns a subscription model. The subscription model
might define levels of feature capability such as gold, silver, and bronze,
which map to a monetization model.

486

CHAPTER 10 = SECURITY AND IDENTITY

b. The Customer APIreturns an organization model consisting of roles that the
user has within the customer’s organization, for example, Super Admin, Admin,
Technical Services, Read Only, District Manager, Branch Manager, and so on.

c. The Registry API returns a user profile model that contains all the details
about the user including location, contact information, and preferences.

5. The user requests to view telemetry.

a. The application calls the secure managed Telemetry API passing in the
relevant keys for user profile, user role, account, and customer. These
keys are used in the WHERE clause along with other parameters in the
underlying query to limit the data returned for that user.

The remainder of this chapter takes you through a series of exercises that configure an Azure AD B2C
tenant in your subscription, import users from the three organizations, register applications, and leverage
the user claims returned from Azure AD B2C to make calls to the Telemetry API, which restricts access to
data based on user roles.

CREATE AN AZURE B2C TENANT

To implement an application that leverages Azure AD B2C for identity, you first need to have an instance
of Azure AD B2C and then register your application with that instance.

The application registration process creates a unique ID for your app, known as the Application ID.
The registration process will also request a Redirect URL that is used to redirect back to your application
after authentication has completed.

Azure AD supports several authentication protocols. This scenario leverages OpenlD Connect (which in
turn relies on OAuth 2.0), so the application communicates with Azure AD using these two endpoints:

® https://login.microsoftonline.com/{tenant}/oauth2/v2.0/authorize

® https://login.microsoftonline.com/{tenant}/oauth2/v2.0/token
where {tenant} is the name of your Azure AD B2C tenant; for example, mytenant.onmicrosoft.com
(or the GUID associated with that tenant).

To complete the application registration process, you configure a set of policies, one each for the
operations that you want Azure AD B2C to perform on your behalf. Policies include:

e SignUp
e Signin
e Update Profile
e Password Reset
Follow these steps to create and configure your instance of Azure AD.
1. Navigate to the Classic Azure Management portal and log in.
http://manage.windowsazure.com

2. Select New » Directory » Custom Create (see Figure 10-9).
487

https://login.microsoftonline.com/{tenant}/oauth2/v2.0/authorize
https://login.microsoftonline.com/{tenant}/oauth2/v2.0/token
http://manage.windowsazure.com/

CHAPTER 10 * SECURITY AND IDENTITY

DIRECTORY i-"i CUSTOM CREATE Create and manage a Microsoft Azure

AD directory

E’ SERVICE BUS ACCESS CONTROL

MOBILE EN: ENT MULTI-FACTOR AUTH PROVIDER

w L STUDHO TEAM SER)

Figure 10-9. Create an instance of Azure Active Directory B2C

3. Fill out the form providing the name of your organization, a unique name for your
tenant, and the region. Lastly be sure to check the box that is labeled “This is a B2C
directory” (see Figure 10-10).

@&\, This operation may take up to two minutes.

Add directory

DIRECTORY

Create new directory v

NAME

Business in Real Time

DOMAIN NAME

mybrtdomain & |.onmicrosoft.com

COUNTRY OR REGION

United States s

[Thisis a B2C directory. v

Figure 10-10. Name and create your B2C tenant

Note The default domain will be {your-tenant}.onmicrosoft.com. You can change the domain later in
the process if necessary.

4. Once the creation process is complete, you will be able to configure the directory
(see Figure 10-11).

488

CHAPTER 10 = SECURITY AND IDENTITY

&3 users GROUPS APPLICATIONS DOMAINS DIRECTORY INTEGRATION CONFIGURE

Your directory is ready to use.

Here are a few options to get started.

Read: Azure Active Directory B2C

Manage B2C settings
Figure 10-11. Ready to administer B2C Settings

5. Click Manage B2C Settings. This will take you to the new Azure portal (see Figure 10-12).

Essentials ~ [iter settings
Domain name Tenant type
] brtb2c.onmicroseft.com Production-scale tenant MANAGE
Metered Subscription status
@ No Registered . Applications)
. Subscription ID Resource name . :
= brtb2c onmicrosoft.com pa Identity providers >
4
All settings <> i:] User attributes >
T S Users and groups >
Welcome to Azure AD B2C. Click Settings to get started. =3 SR
POLICIES
al- Sign-up policies 3
a Sign-in policies >
= ; ;
Sign-up or sign-in policies >
Profile editing policies >
Q 8 Password reset policies >
e m All policies b

Figure 10-12. Azure AD B2C Settings blade

Next, you will associate your tenant to your subscription.

489

CHAPTER 10 = SECURITY AND IDENTITY

ASSOCIATE YOUR TENANT TO YOUR SUBSCRIPTION

To associate an Active Directory tenant with your subscription, you must use a Microsoft account.
An Organization ID will not be able to perform this function.

What is the difference? An Organization ID is an Azure account ID that can only sign into the directory
that it belongs to. Your Office 365 e-mail is an example of an organization ID. A Microsoft account,

or what used to be called a Live ID, is the account that you use to sign in to services such as Skype,
Outlook.com, OneDrive, Windows Phone, and Xbox LIVE.

1. If necessary, create a Microsoft ID and make that user a co-administrator of your
Azure subscription.

You can do this from the classic portal at https://manage.windowsazure.com.
Click settings in the left-side navigation bar, click the name of your subscription,
and then choose Administrators from the top menu. Then click the Add button in the
bottom toolbar (see Figure 10-13).

Specify a co-administrator for subscriptions

Co-administrators can fully manage the services within a subscription. Enter a valid email address, and then
select at least one subscription.

EMAIL ADDRESS

bob.familiar@outlook.com =. Microsoft Account
SUBSCRIPTION SUBSCRIPTION ID e

azurepass-bobf

Figure 10-13. Specify a co-administrator for subscriptions

490

https://manage.windowsazure.com/

CHAPTER 10 = SECURITY AND IDENTITY

2. Add the Microsoft account to the Azure AD B2C Directory as a Global Administrator
(see Figure 10-14).

o

O The Anure AD managem et redew Leam more Girectoey roke @
Ovuser
8 Globel administrator
O Limited administrator
Users and groups ek tasks
Global adminestrators have full controd over 88
direesory resoueeen
[, . Prolic B -
— 00000 :
o i ’ Mot configured
Users and growps]
n Froperties 0 3
B fmeene applcations Dalait
B App registrations p—
Ertesprise applications Azure AD Connect >
G A AD Connter e 0 groups selected
&
| Domain rares e st Q) Durectony roke b
User
@ Mokt AT dacd MAMY App registrations
P 4 H
Tl Company branting
Recommended Cther capabil ties
L User settings
0 eroperties @ Sync with Windows Server AD
B osifcations vettings 3 r Ao
U Condiional acces 1 ved
Hamed networks Self.sercice password reser
-> . ; g What's new
nemmany P
D Sgaring &
o e -1 Company branding oot ’ T] T

Figure 10-14. Add a global administrator

3. Make this user a service administrator of the subscription (see Figure 10-15).

Log in to https://account.windowsazure.com using the ID you used to
create your Azure subscription and then select your subscription to drill into
the details page. Click Edit Subscription Details and set the Microsoft ID as the
service administrator.

491

https://account.windowsazure.com/

CHAPTER 10 = SECURITY AND IDENTITY

EDIT YOUR SUBSCRIPTION

Make it yours

Personalize your subscriptions to keep them organized. Privacy & Cookies

SUBSCRIPTION NAME

azurepass-bobf

SERVICE ADMINISTRATOR

bob.familiar@live.com

Figure 10-15. Changing the service administrator

4. Log out and navigate to the classic portal. Log in using the Microsoft account. Click
Settings in the left navigation bar, select the subscription in the list, and then click
the Edit button in the bottom toolbar. Select the directory in the drop-down list, click
through to Step 2 and save your changes (see Figure 10-16).

492

CHAPTER 10 = SECURITY AND IDENTITY

EDIT DIRECTORY

Change the associated directory

SUBSCRIPTIONS

azurepass-bobf

DIRECTORY

‘ Bob Familiar (bobfamiliarlive.onmicrosoft.com) %

Figure 10-16. Change the associated directory

Note For more details, see this article on how to enable billing:
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-how-to-
enable-billing

REGISTER AN APPLICATION

Only registered applications can integrate with Azure AD B2C.

In this exercise, you will register a web application that provides access to the Telemetry and defines
the policies for sign-up, sign-in, and profile management. Note that we will update this app in a later
exercise. For now, we are just going to register it with Azure AD.

1. From the Azure AD B2C Management Blade, click Applications, then Add
(see Figure 10-17).

Enter brtportal for the name

Click Yes for Include Web App/Web API.

Enter https://localhost:44316/ as the redirect URL.
Click the Create button.

LU

493

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-how-to-enable-billing
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-how-to-enable-billing

CHAPTER 10 = SECURITY AND IDENTITY

New application

* Name @

brtportal v

Web App / Web API
Include web app / web API @

Yes No

Allow implicit flow @

Yes No

%9 Redirect URIs must all belong to the same domain

Reply URL @

https://localhost:44316/

Figure 10-17. Registering an application

6. Once the create process is finished, click on the application name to reveal the
generated application ID.

7. Copy the application ID for later use.

In this next step, we define a set of policies for our registered application. As
part of these definitions, we can specify the user attributes that we want to
prompt for at sign-up as well as which attributes to return as part of the claims
upon authentication. You can access the user attributes from the Azure AD B2C
Management Blade (see Figure 10-18). It is also possible to define custom user
attributes.

494

CHAPTER 10 = SECURITY AND IDENTITY

- hor sesings
v naaseoe

W gpicaion »
A S Mentity providers »
" s =] User alinbutes ?
g & Usens and grougs >
]

sewicas
m

B Sgvip pobies B
“ B Syvin potces »
u B Signeup o sigrein policies »

B Frotie estag pabcies »
L B Funowond seset patiies »
® @ o potiie »
I‘Q
L]
(o]

Figure 10-18. User attributes

Countnfingon

Display e

Emal Addrsses

Ghven Mame

Mentity Prowder 3

Jots Tide

Postal Code

Pate

Staredrovince

Sreet Addven

S

User's Objeat 1D

etscrrTn

The city in which the wise is bocated

The countryfregion i sbizh the uiee is kesated.

Dby M of the Usir

i aceiepcses of the s

The User's gven mame [als0 o 26 Srst aamel.

The social idenity provider used by fhe Lser 10 300055 0 your 40

The L job Sitke

The poteal code of e users sddsess.

Fuolky withen the wsers oeganization

The state o provinoe in user's address.

 tocaled

T kg 1 iy v o Last surm

ot sigred-up b your application

bt ideneior (100 of the wier abjrctia Agurt A

| Mmeo
ontor e

Data Type ®
Bulin g -

Eslivin Descsigtion @
Ender Desosgslion

8. Click Add on the User Attributes screen and create a custom attribute called Role
with a data type of string.

Now that the application is registered, we can define the policies for this
application. Policies define the integration points between Azure AD B2C and
the application. Azure AD B2C will provide screens for sign-up, sign-in, profile

management, and password reset.

9. Inthe Azure B2C Management blade, click Sign-Up Policy.

For Identity providers, choose Email. The sign-up attributes are the fields you want
the user to provide on the sign-up form. Choose Email and Display Name. For
claims, at a minimum select Display Name but you can choose as many attributes
as you want to send back upon a successful sign up. Save your edits and click

Create (see Figure 10-19).

495

CHAPTER 10 = SECURITY AND IDENTITY

> Select application claims reh resources

Select application claims

- Name @ W NamE CLAIM TYPE DATA TYPE DESCRIPTION ATTRIBUTE TYPE
L 82C_1_sign_up -
& City ity String Tha city in which the user is located, Bullt-in
* Identity providers O N
- Country/Region countr String Tne country/region in which the user is located Built-in
& 0 Selected by i : e
e i | Display Hame displayNarne String Display Name of the User in
= Sign-up attributes N
0 Selected Email Addresses emails StringCollection Email sddreszes of the user n
5
Application claims 8 = | Given Name sivenName String The users given name fa%a knewn as first namel. Built-in
] 0 Selected
dentity Provider identityProvider String The sccial identity provider used by the user to access to your sp. Bult-in
[] Multifactor authentication &
¥ Jab Title jobTitle String The user's jo& title Buitin
Off
L 4 Postal Code pestalCode String The postal code of the user's address. Bullt-in
Page Ul customization ©
— &
= Default Riole extension_Role String Role within the users organization Custom
StatesProvince state String The state or provinee in user's address. Buit-in
0 Street Address streetAddress String The street address where the user is located Built-in
e V| Sumame surame String The user's sumame falso known as family name or last namel. Builtin
User is new newliser Boolean True, if the user has just signed-up for your application Buit-in
L]
®
User's ObjectID objectid String Olject ickentifier [ID) of the user cbject in Azur AD. Buitin
. [Creste | i |
-

Figure 10-19. Add a policy, select claims

10. Once the policy is created, click the name and select the application that this policy
applies to. Enter the Reply URL for that application. For this example, that value is
https://localhost:4435644316/ (see Figure 10-20).

B2C_1_sign_in

Edit [Delete W Download

Metadata Endpoint for this policy @

microsoftonline com/brtb2c anmicrasoft com/fv2 0/ wall-knawn/openid-confiauration?

Run Policy
Select Application @
brtportal v

Select Reply URL@
https://localhost:44316/ v

Figure 10-20. B2C_1_sign_in Policy

496

CHAPTER 10 = SECURITY AND IDENTITY

11. Follow the same procedure to create a sign-in policy.

12. Create a Profile Edit policy. This policy will allow the user to update his or her profile
to provide a value for the custom atiribute we defined. Make sure to select Role as
one of the attributes users can edit as part of their profiles (see Figure 10-21).

Select profile attributes O Search resources

W HAME DATA TYPE DESCRIFTION ATTRISUTE TYPE

3 1 Selected
=

Profile attnbutes @

4 Selected

name (also known as first name). Built-in

Figure 10-21. Create Edit Profile policy

IMPORT USERS TO THE NEW TENANT

In this exercise, you import user accounts into the Azure AD B2C tenant so that you can test the multi-
tenant features. Microsoft provides an easy-to-use command-line utility to perform operations against
the tenant. The API for Active Directory is called the Graph API, and this exercise will provide insight into
how you can automate operations against the AD tenant using this API.

To provide secure access to the Graph AP, there is some setup before you can perform these directory
operations:

e (reate a local global administrator in your tenant.
e Install both the Online Sign-In Assistant and the Active Directory Module for PowerShell.

e Register the command-line utility with Azure AD B2C so that it has the proper
credentials to invoke the GraphAPI.

1. In the management blade, click on Users and Groups, All Users, and then click Add.
2. Create a user account for the local admin with the username.
admin@[your-tenant].onmicrosoft.com

3. Set the password.

497

CHAPTER 10 = SECURITY AND IDENTITY

4. Set the Directory Role to be Global Administrator.
5. Click Create.

This account will have rights to invoke the GraphAPI against your tenant (see Figure 10-22).

Directory role

PREVIEW

* Name @ Directory role @
Admin v O user
® Global administrator
* User name @ O Limited administrator
admin@brtb2c.onmicrosoft.com v

Global administrators have full control over all
directory resources.
Profile @ earn M

Not configured

Properties @
Default

Groups @

0 groups selected

Directory role
User

Password

(I T

Show Password

Figure 10-22. Add a local global administrator account manually

6. Follow these links to download and install the Online Sign-In Assistant and the
Active Directory Module for PowerShell:

http://go.microsoft.com/fwlink/?LinkID=286152
http://go.microsoft.com/fwlink/p/?1inkid=236297

7. When complete, open a command window or PowerShell console window, navigate to
the identity folder of your local repo, and clone the command-line utility using Git.

git clone https://github.com/AzureADQuickStarts/B2C-GraphAPI-
DotNet.git

498

http://go.microsoft.com/fwlink/?LinkID=286152
http://go.microsoft.com/fwlink/p/?linkid=236297
https://github.com/AzureADQuickStarts/B2C-GraphAPI-
DotNet.git
https://github.com/AzureADQuickStarts/B2C-GraphAPI-
DotNet.git

CHAPTER 10 = SECURITY AND IDENTITY

There are three PowerShell scripts in the identity folder that will assist you through this process.

® 01-RegisterAppInADTenant.ps1: Registers the command-line utility with Azure AD
and generates an Object ID, Application Principal ID, and a Client Secret.

® 02-AssignAppPermissions.psi: Extends the permission of the command-line utility.

e 03-ImportUsers.psi: Uses the command-line utility to import users. The users have
been predefined in a set of JSON files in the identity\UserJson folder.

The command-line utility will use the client secret to authenticate to Azure AD and to acquire access
tokens. The Object ID and Application Principal ID are used to assign the extended permissions that
the utility needs to perform, namely these CRUD operations: directory readers to read users, directory
writers to create and update users, and user account administrator to delete users.

8. Open a PowerShell console window and navigate to the identity folder of the repo.
Run the 01-RegisterAppInADTenant.ps1 script. The script will prompt for the
name of your Azure subscription and the name of the app you want to register. Note
the name of the application is B2CGraphClient (see Figure 10-23).

EN Administrator: Windows PowerShell o ®

PS C:\users\bob\source\repos\brt\identity> 1s

PS C:\users\bob\source\reposibrtiidentity> .\@1l-RegisterAppInADTenant.psl

cmdlet 01-RegisterAppInADTenant.psl at command pipeline position 1
Bu e following parameters:

AppName: B2C(

Figure 10-23. Register the B2CGraphClient command-line utility

The registration script generates two files—AppRegistration.txt and ClientSecret.txt. The
App Registration file contains the App Principal ID and the Object ID. The Object ID is used to extend
the permissions of the app registration. The App Principal ID and Client Secret are added to the
B2CGraphClient source code so it can authenticate and retrieve tokens from Azure AD B2C.

9. Runthe 02-AssignAppPermission.ps1 Script, passing in the name of the
subscription and the Object ID.

499

CHAPTER 10 = SECURITY AND IDENTITY

10. Open the B2CGraphClient solution in Visual Studio and then open the app.config
file. Update the following app settings:

key="b2c:Tenant" value="[your-tenant].onmicrosoft.com"
key="b2c:ClientId" value="[your-app-principal-id]"
key="b2c:ClientSecret" value="[your-client-secret]"

11. Build the solution.

12. To test the app, navigate to the B2C-GraphClient-DotNet\B2CGraphClient\Bin\
Debug folder and type the following command to get the help for the utility
(see Figure 10-24).

> .\b2c.exe help

EX Administrator: Windows FowerShell - [m] *

d 2/2/2617 6:05 PM B2C-GraphAPI-DotNet

d----~ 1/22/2017 9:04 PM UserJson

B Y— 1/22/2017 9:04 PM 830 Pl-RegisterAppInADTenant.psl
a 1/22/2017 9:04 PM 648 02 nAppPermissions.psi
=gem=a 1/22/2017 9:04 PM 454 B3-Im Users.psl

a 1/22/2017 9:04 PM 1896 istration.txt

—— 1/22/2017 9:04 PM 94 ClientSecret.txt

Y — 1/22/2017 9:04 PM 124 tenant.txt

reposi\brt\identity> ¢d b2c-graphapi-dotnet
pos\brti\ide graphapi-dotnet> cd b2cgraphclient
rs\brt\i t\b2cgraphclient> ¢d bin
posibrtiide b2cgraphclient\bin> cd debug
ros\brt\ide graphapi-dotnet\b2cgraphclient\bin\debug> .\b2c.exe help
: Read users from your B2C directory. Optionally accepts an Objectld as a 2nd argument, and

Create-User : Create a new user in your B2C directory. Requires a path to a .json file which contains r
2nd argument.

Update-User : Update an existing user in your B2C directory. Requires an objectId as a 2Znd arguemnt & a
nt.

Delete-User : Delete an existing user in your B2C directory. Requires an objectId as a 2nd argument.

Get-Extension=-Attribute : Lists all extension attributes in your B2C directory. Requires the bZc-extensions-app obj
set-B2C-Application : Get the B2C Extensions Application in your B2C directory, so you can retrieve the objectId

Help : Prints this help menu.

Syntax : Gives syntax information for each command, along with examples.

PS C:\users\bob\source\repos\brt\identity\b2c-graphapi-dotnet\b2cgraphclient\bin\debug>

< 3

Figure 10-24. Testing the B2C Graph Client command-line utility

13. Test getting users from the directory with this command:
> .\b2c.exe get-user
You should see the administrator account returned as a JSON stream.
14. Navigate back to the identity folder and execute the third script, 03-ImportUsers.ps1.

This script will use the contents of the identity\UserJson folder to import users
for each of the three pseudo-companies we defined.

15. When the script completes, navigate back to the application bin folder and re-run
the get-user command:

> .\b2c.exe get-user

You should see 50+ users returned from the directory (see Figure 10-25).

500

CHAPTER 10 = SECURITY AND IDENTITY

EX administrator: Windows PowerShell - o X
"mailNickname®: "Brorss.Glagh", -
"mobile®: "2125551212",

"onPremisesSecurityIdentifier”: null,
"otherMails": [],
"passwordPolicies®: "DisablePasswordExpiration”,
"passwordProfile®: null,
"physicalDeliveryOfficeName": null,
"postalCode”: "10818",
"preferredLanguage”: null,
"provisionedPlans”: [],
"provisioningErrors®: [1,
"proxyAddresses”: [],
"refreshTokensValidFromDateTime": "2817-01-23T08:31:362°,
"showInAddressList®”: null,
"sipProxyAddress®: null,
"state": "NY",
"streetAddress®: "53 WEST 36TH STREET",
"surname®: “"Glagh"®,
"telephoneNumber®: *2125551212",
"thumbnailPhoto@odata.mediaEditLink": "directoryObjects/feffacce-fB7c-44ec-97e9-4edbecS5c5fdf/Microsoft.DirectorySer
"usagelocation®: null,
"userPrincipalName”: "@7a%4e7l1f-0%9ab-4828-8988-0e113118c96babrtb2c.onmicrosoft.com”,
"userType": “Member*®
}
]

}

PS C:\users\bob\source\repos\brt\identity\b2c-graphapi-dotnet\b2cgraphclient\bin\debug> -

< B

Figure 10-25. Use the utility to list all users in the directory

16. Return to the Azure AD B2C management blade and click on Users and Groups and
then All Users. You will see that the directory has been populated and that you can
view the users and their properties (see Figure 10-26).

i D Overdew Aog Disan@WigiTech.com
MAMD USTR NAME 1 4
e e 20127705 b6d3 -4dcc acd0- 163922656835
° Aarne Gwe: Aaene Cwac@WigiTech com Diepantment
- ne Profle
= ° Adaryna Millyn Adaryne Millyn® Talllowers.com
e Directory role Summa
B @ Aean Addredd Aean Addredd @WhgiTech com L
L Groupt Users Sign Ins
u ° Mlaebrylla Anshuga Alsebryils AnshugaPThelemnplicatodBad e SIGM-INS FOR "ADS DIRAN BITWIIN WL20T? AND 112017,
B cewces
- @ Alsencic Druga Alsencc Druga TheComplicatedBacger.c — ... A
Agure resources
-~ o Anda Addresto: Anda Addredos @WigiTech.com
- . Amobey Gwaeddry Anobey Gracddry@WigiTech.com ScToaty
° fog iran Aog Dirsn@WegiTechcom D signim
0 witseny Asi Laeney @ WigiTechsom & Auditiogs
+ z
° Bob Famiiar bobil@bhaenetal com
e ° Bob Familiar bob familiar@ive.com s
aoooman
-
4 © = bobl@betb2conmicrosoftcom | -
w ° Brards Liveym Brasde Leveyn@TallTowers.com
Profite Group Memberships
(o] 0 Srenvver Mardahaga Breniver MardahagaTheComplicatedtiad _ __
- D srorss Giagh ri5.Glagh@ TalTowers.com :
& B oo Gy Brorss. Glaght TalTowers.co £5 "lll..l 0=
- =

Figure 10-26. Users successfully imported into the tenant

501

CHAPTER 10 = SECURITY AND IDENTITY

CREATE A MULTI-TENANT APPLICATION

In this exercise, you will create a web application that will use Azure AD B2C to authenticate users, and
you will define the Azure AD B2C Policies for sign-in, sign-up, and profile management.

1. Open Visual Studio and create a new project using the ASP.NET MVC template.
Select the dashboard folder in the repo and set the framework version to 4.6.1. Call
the mtauth solution. Click the OK button to advance to the next step in the wizard
(see Figure 10-27).

New Project ? x
P Recent \NET Framework 4.6.1 |~ Sort by: Default v i E= Search Installed Templates (Ctrl+E P
4 |nstalled . Vi
O Azure Cloud Service Visual C# Type: Visual C#
4 Templates Project templates for creating ASP.INET
b Business Intelligence B, | ASP.NET Web Application (.NET Framework) Visual C# applications. You can create ASP.NET Web
Vvl G Forms, MVC, or Web API applications and
ke add many other features in ASP.NET.
4 Windows @ﬁ Azure WebJob Visual C#
Universal ? Application Insights
I Windows 8 ED Azure Mcbile App Visual C# [[] Add Application Insights to project
Classic Dasktop Optimize performance and monitor
Web ED Azure Mabile Service Visual C# usage in your live application.
NET Core = » Lo
bobf@bl tal, BlueMetal
Android ¢ Aaure Resource Group Visual C# 7 bobi@bluemetalcom (BlueMetal)
¥ Cloud
Extancibiity Help me understand Application Insights
105 Privacy Statement
LightSwitch

=

Office SharePoint
Office/SharePoint

Reporting
Silverlight
Test
b Online Click here to go online and find templates
Mame: mtauth
Location: CiUsers\bob\Source\Repos\bri\dashboards), « | Browse.
Solution name: mtauth [V] Create directary for solution

["] Create new Git repository

OK { Cancel

Figure 10-27. Create web application

2. Select the MVC template and change the authentication to No Authentication. Click
OK (see Figure 10-28).

502

CHAPTER 10 = SECURITY AND IDENTITY

Select a template:
A project template for creating ASP.NET MVC

ASP.NET 4.6.1 Templates applications. ASP.NET MVC allows you to build
. 2 4 2 4 applications using the Model-View-Controller
FJ FJ FJ rJ FJ architecture. ASP.NET MVC includes many features that
=) e L e} it enable fast, test-driven development for creating
Empty Web Forms MVC Web API Single Page || applications that use the latest standards.
Change Authentication X
For applications that don't require any user authentication.
Az
® No Authentication Learn more
O Individual User Accounts
) Work And School Accounts
) Windows Authentication
Add
O OK Cancel

App Service
[_] Add unit tests

| Test project name: mtauth.Tests

OK Cancel

Figure 10-28. Change the authentication

3. From the menu, select Tools » NuGet Package Manager » Package Manager
Console. Install these NuGet packages, which provide the scaffolding for
authenticating to Azure AD using Open ID Connect:

Install-Package Microsoft.Owin.Security.OpenIdConnect
Install-Package Microsoft.Owin.Security.Cookies
Install-Package Microsoft.Owin.Host.Systemheb

4. Open the project settings, select the Web tab and update the project URL to be
https://localhost:44316/.When prompted to create the virtual directory, click
OK (see Figure 10-29).

503

CHAPTER 10 * SECURITY AND IDENTITY

Your ASP.MET application

Application
Build

Package/Publish Web
Package/Publish 5QL
Silverlight Applications
Build Events
Resources

Settings

Reference Paths
Signing

Code Analysis

N/A tf N/A

Start Action
@ Current Page
(@) Specific Page
(O Start external program
Command line arguments

‘Working directory

(O start URL

() Don't open a page. Wait for a request from an external application.

Servers
Apply server settings to all users (store in project file)
5 Express ~
Project Url |https:/localnost44316/

] Override application raet URL

https://localhost44316/

Create Virtual Directery

Debugg

ASP.MET [Native Code []saL Server

Enable Edit and Continue

Figure 10-29. Update the project settings

[sitverlight

5. Open the NuGet Packager Manager, select nuget.org in the source drop-down,
and click on Updates.

Select all the packages to be updated except for the System.IdentityModel.
Tokens. JWT package.

That package should remain at version 4.0 (see Figure 10-30). Note that you may
have to restart Visual Studio after these package updates.

504

CHAPTER 10 = SECURITY AND IDENTITY

NIt =T Layout.cshtml Error.cshtml ViewStart.cshtml Web.config AccountController.cs
Browse Installed Updates kB
Search (Ctrl+E) P - ¢ [include prerelease

[m] Select all packages Update

'eo Microsoft.ldentityModel.Protocol.Extensions by Microsoft Corporation 9 v1.00

This package provides an assembly containing classes which extend the NET Framework v1.0.3.308261200
4.5 with base constructs from the Openld Connect and WS-Federation protocols

7 'e Microsoft.Net.Compilers by Microsoft 9 v1.00
O Net Compilers package. Referencing this package will cause the project to be built using the v1.3.2

specific version of the C# and Visual Basic compilers contained in the package, as opposed to any...
v 'e Modernizr by Faruk Ates, Paul Irish, Alex Sexton O 262
© Modernizr is a small and simple JavaScript library that helps you take advantage of emerging web v2.83

technologies (C553, HTML 5) while still maintaining a fine level of control over older browsers that...

Newtonsoft.Json by James Newton-King @ v604
(1) Json.NET is a popular high-performance JSON framework for NET v9.0.1
.e Respond by Scott Jehl,Paul Irish,Nicholas Zakas 9 vi20
(1) A fast & lightweight polyfill for min/max-width C553 Media Queries (for IE 6-8, and more) v14.2
] 'e System.ldentityModel.Tokens.Jwt by Microsoft 0 v4.00
(1] Includes types that provide support for creating, serializing and validating JWT tokens. v5.1.2
L]
e WebGrease by webgrease@microsoft.com O vis52
(1) Web Grease is a suite of tools for optimizing javascript, css files and images. v1.6.0

Figure 10-30. Update the NuGet packages for the solution

There are several files that you need to add to this project. They have been supplied
in the repo in the dashboards\mtauth-files folder.

6. Add the web.config file from the mtauth-files folder and update the following
app settings. Note that this Application ID is the one that was generated when you
registered this app with Azure AD in Exercise 2.

<add key="ida:Tenant"
value="[your-tenant].onmicrosoft.com" />

<add key="ida:ClientId"
value="[your-app-id]" />

<add key="ida:AadInstance"
value="https://login.microsoftonline.com/{0}/v2.0/.well-known/
openid-configuration?p={1}" />

<add key="ida:RedirectUri"

505

CHAPTER 10 = SECURITY AND IDENTITY

10.

11.

12.

13.

506

value="https://localhost:44316/" />

<add key="ida:SignUpPolicyId"
value="b2c_1_sign_up" />

<add key="ida:SignInPolicyId"
value="b2c_1_sign_in" />

<add key="ida:UserProfilePolicyId"
value="b2c_1 edit_profile" />

Add the file called Startup.cs to the top level of the solution. This class
provides the entry point for application startup. Note that the implementation of
ConfigureAuth() is not yet defined.

Add the file called Startup.Auth.cs in the App_Start folder. This class loads
the settings from Web.config and then invokes the Open ID Connect APls

to authenticate the user and invoke the policies. This class implements the
ConfigureAuth() routine

Add the AccountController.cs file to the Controllers folder. This class provides
routing to the Startup class policy invocation methods that are triggered as the user
interacts with the user interface.

Open the HomeController.cs file and add an endpoint for routing the user to the
Claims view. The Claims view will display the claims data returned from Azure AD B2C.

[Authorize]
public ActionResult Claims()

{

var displayName =

ClaimsPrincipal.Current.FindFirst(
ClaimsPrincipal.Current
.Identities.First().NameClaimType);

ViewBag.DisplayName = displayName != null ?
displayName.Value : string.Empty;

return View();

}

There are updated View files in the mtauth-files folder. Copy those over the
existing files in your solution and then add the Claims.cshtml file using the Add
Existing Item menu command in Visual Studio.

Add the profile-dropdown. js file to the Scripts folder in your solution using the
Add Existing Item menu command in Visual Studio.

Build and run the solution. The home page will appear showing the Sign Up, Sign In,
and Claims menu options (see Figure 10-31).

CHAPTER 10 SECURITY AND IDENTITY

Multi-Tenant Dashboard Example

This solution demonstrates restricted access to telemetry using AD B2C Claims

@ 2017 - Multi-Tenancy

Figure 10-31. Multi-tenant dashboard home page

14. Click on Sign In. You will be routed to the Azure AD B2C Sign-In Policy Page. Note
that this is the default look and feel. It is possible to apply your own style to these
pages.

15. Tognk is an employee at WigiTech. He is an administrator there so he has raised
privileges in the solution, as you will see in a later exercise (see Figure 10-32).
Log in using his credentials:

Username: Tognk.Denyc@WigiTech.com
Password: P@ssword!

[signin to your secoumt % H - o x
& C @ Microsoht Carporation [US] | hittps./loginmicrosoftonine combriblc onmicrosoft comjoauth?/suthorize chient_id=bb2ale! 07 -4100-Blel-8e01d e 1 fdBredirect urishitps%2M20ogn F %t & O &
SRR Tognk Denye EWigiTech.com

Y
i \ [—
i
o .|, [Keep me signed in
-
S yr

Can't acoess your accourt?

Figure 10-32. Log in to the dashboard

507

CHAPTER 10 = SECURITY AND IDENTITY

16. Once authenticated, you will be redirected back to the home page, and you will see
that Tognk’s name appears where it used to say Sign Up, and that Sign In has been

replaced with Sign Out (see Figure 10-33).

Multi-Tenancy

Multi- Tenant Dashboard Example

This solution demonstrates restricted access to telemetry using AD B2C Claims

@ 2017 - Multi-Tenancy

Figure 10-33. User authenticated

17. Click on the Claims menu option. You will be redirected to the Claims view, which
will display the claims that have come back from Azure AD B2C for this user

(see Figure 10-34).

Claims
Claims Present in the Claims Identity: Tognk Denyc
Claim Type

exp
nbf
ver

iss
hitp:schemas.xmisoap.org/ws/2005/05/identity/claims/nameidentifier
aud

nonce

iat

hitp:/fsck icroscil.com/iws/2008/06/ i ims/authenticationinstant
hitp:/fschemas. microscll.com/identity/claims/objectidentifier

name

ip

& 2017 - Multi-Tenancy

Figure 10-34. User claims

508

Claim Value

1486133530

1486129930

1.0

https:Mogin.microsoftonline.com/24754173-Te01-417 2-b35d-dB4 557 36T HON2.0/
elbefbea-2995-4202-9726-09a60fd7 116
Uaee945d-17c0-4406-82c4-cheT7cBE12a3
636217267054628189.NWMxMTUZMTULZmYxMSOONWUxLWESMICHY 2Q2MMwOTg4..
1486129930

1486129930

el5efbea-2995-4202-9726-9a619(d7 116

Tognk Denyc

B2C_1_sign_in

CHAPTER 10 = SECURITY AND IDENTITY

18. Test the application with other users from the same company and from the other
companies. Note that the password for all user accounts is P@ssword!. Here are
some accounts that you can use to test:

WigiTech
Admin - Tognk.Denyc@WigiTech.com
Employee - Aog.Diran@WigiTech.com

Tall Towers
Admin - Fid.Sidry@TallTowers.com
Employee - Maell.Driga@TallTowers.com

The Complicated Badger
Admin - Jyssa.Anuk@TheComplicatedBadger.com
Employee - Jill.Aniua@TheComplicatedBadger.com

UPDATE THE APP TO CALL THE PLATFORM APIS

The application is now multi-tenant. You can log into the application using accounts from any of the

three supported organizations. The next step is to use the information in the claims to call the platform
APIs and retrieve details about the user.

Note If you have not done so already, you will need to build and deploy the Telemetry Model NuGet
package and Telemetry APl and then import the Swagger definition into APl Management following the build and
deploy process outlined in Chapter 2.

1. Add references to the Wire, Registry Model, and Telemetry Model NuGet packages
in the mtauth solution (see Figure 10-35).

MNuGet: mtauth + X _layoutcshtml Error.cshim! ViewStartcshtml Web.config AccountController.cs HomeContrcller.cs x
Installed Updates NuGet Package Manager: mtauth
Search (Ctrl+E £+ & [include prerelease Package source: brtfeed - &

B RegistryModels

a RegistryModels @ v20.6237.41130
© BRrModelsRegistry Installed: 20.6237.41130 | Uninstall |
B SimulationModels V10623741174 ERECIER 24623740114 .
BRT.Medels.Simulation
@ Options
B Store v2.0.5237 42082
BRT Microservices.Common.Store Description
birt.Models.Registry
'a TelemetryModels © v1.06243.19300 Varsion: 20623740114
9 BRT.Models.Telemetry Author(s): Birt
. Date published: Saturday, January 28, 2017 (1/28/2017)
a Wire O v2.0.623TA0626 Report Abuse: htt -
V] BRT.Microservices.Common.Wire

Tares

Figure 10-35. Add NuGet packages 509

http://dx.doi.org/10.1007/978-1-4842-2650-6_2

CHAPTER 10 = SECURITY AND IDENTITY

2. Add the following settings in the Web. config file:
<add key="RegistryAPI" value="https://[your-apim-host].azure-api.net/
dev/vl/registry/profiles" />

<add key="TelemetryAPI" value="https:// ://[your-apim-host].azure-api.net/
dev/vi/telemetry/events" />

<add key="DevKey" value="subscription-key=[your-key]" />

3. Open the HomeController.cs file and replace the Claims method with the
following code.

This code looks up the user’s profile and, using the type property from the profile,
sets up a call to the Telemetry API.

The Telemetry API takes as parameters the name of the company, the type of user, the
user’s e-mail, the number of data records to retrieve, and the APIM subscription key. The
collection returned is loaded into the viewBag object for processing by the Claims view.

[Authorize]
public ActionResult Claims()
{
var displayName = ClaimsPrincipal.Current.FindFirst(
ClaimsPrincipal
.Current
.Identities

.First().NameClaimType);
if (displayName != null)
ViewBag.DisplayName = displayName.Value;

var registryApi = ConfigurationManager
.AppSettings["RegistryAPI"];

var telemetryApi = ConfigurationManager
.AppSettings["TelemetryAPI"];

var devKey = ConfigurationManager
.AppSettings["DevKey"];

// get the full name and split into first, last
var names = displayName.Value.Split(' ');

var firstname = names[0];

var lastname = names[1];

// set up the call to the registry api
var query = $"/firstname/{firstname}" +
$ $"/lastname/{lastname}?{devKey}";
var api = registryApi + query;
var json = Rest.Get(new Uri(api));
var profile = ModelManager
.JsonToModel<Profile>(json);

510

CHAPTER 10

// NOTE: only type 2 (admin) and type 3

// (employee) are able to access telemetry.
// All other user types will return an empy
// telemetry collection

var type = 0;

if (profile != null)

switch (profile.type)
{

case ProfileTypeEnum.NotSet:
type = 0;
break;

case ProfileTypeEnum.Organization:
type = 1;
break;

case ProfileTypeEnum.Administrator:
type = 2;
break;

case ProfileTypeEnum.Employee:
type = 3;
break;

case ProfileTypeEnum.Contractor:
type = 4;
break;

case ProfileTypeEnum.Temporary:
type = 5;
break;

case ProfileTypeEnum.Partner:
type = 6;
break;

default:
throw new

ArgumentOutOfRangeException();

}

query = "/companyname/" +
$"{profile.companyname}" +
$"?usertype={type}" +
$"8username={profile.username}" +
$"8&count=158{devKey}";

api = telemetryApi + query;

json = Rest.Get(new Uri(api));
var telemetrylList = ModelManager
.JsonToModel<TelemetryList>(json);

ViewBag.UserProfile = profile;
ViewBag.Telemetry = telemetrylist.list;

}

return View();

SECURITY AND IDENTITY

511

CHAPTER 10 = SECURITY AND IDENTITY

4. Open the views\Home\Claims.cshtml file and update the contents of the file with
the following code.

This code will output a table of the user’s claims as well as display a list of the 15
most recent telemetry readings that this user can see. If logged in as an employee,
the user will see only his or her own telemetry readings. If logged in as an
administrator, they will see readings from their employees.

@using System.Security.Claims
@using BRT.Models.Telemetry
of

}

<h2>@ViewBag.Title</h2>

ViewBag.Title = "Claims";

<h4>Claims Present for @ViewBag.DisplayName</h4>

<table class="table-hover claim-table">
<tr>
<th class="claim-type claim-data claim-head">Claim Type</th>
<th class="claim-data claim-head">Claim Value</th>
</tr>

@foreach (Claim claim in
ClaimsPrincipal.Current.Claims)

{
<tr>
<td class="claim-type claim-data">
@claim.Type
</td>
<td class="claim-data">
@claim.Value
</td>
</tr>
}
</table>

<table>
<tr>

<td class="claim-data">Lastname</td>
<td class="claim-data">Age</td>

<td class="claim-data">Weight</td>

<td class="claim-data">Height</td>

<td class="claim-data">Activity</td>
<td class="claim-data">Altitude</td>
<td class="claim-data">Breathing Rate</td>
<td class="claim-data">Cadence</td>

<td class="claim-data">Heart Rate</td>
<td class="claim-data">Red Zone</td>
<td class="claim-data">Variability</td>
<td class="claim-data">Speed</td>

<td class="claim-data">Steps</td>

512

CHAPTER 10 = SECURITY AND IDENTITY

<td class="claim-data">Temperature</td>

<td class="claim-data">Velocity</td>

<td class="claim-data">Ventilization</td>
</tr>

@foreach (UserTelemetry telemetry in
ViewBag.Telemetry)
{
<tr>

<td class="claim-data">
@telemetry.User.lastname

</td>

<td class="claim-data">
@telemetry.Readings.age

</td>

<td class="claim-data">
@telemetry.Readings.weight

</td>

<td class="claim-data">
@telemetry.Readings.height

</td>

<td class="claim-data">
@telemetry.Readings.activity

</td>

<td class="claim-data">
@telemetry.Readings.altitude

</td>

<td class="claim-data">
@telemetry.Readings.breathingRate

</td>

<td class="claim-data">
@telemetry.Readings.cadence

</td>

<td class="claim-data">
@telemetry.Readings.heartRateBPM

</td>

<td class="claim-data">
@telemetry.Readings.heartRateRedZone

</td>

<td class="claim-data">
@telemetry.Readings.heartrateVariability

</td>

<td class="claim-data">
@telemetry.Readings.speed

</td>

<td class="claim-data">
@telemetry.Readings.steps

</td>

<td class="claim-data">
@telemetry.Readings.temperature

</td>

<td class="claim-data">

513

CHAPTER 10 = SECURITY AND IDENTITY

@telemetry.Readings.velocity
</td>
<td class="claim-data">
@telemetry.Readings.ventilization
</td>
</tr>

}
</table>

5. Run the telemetry simulators (see Chapter 4). Note that the Stream Analytics job
must be running for the data to be routed to the SQL Database table.

6. Test the portal application by logging in as both administrators and employees of
the different companies. See Figures 10-36 and 10-37.

Multi-Tenancy

Claims

Claims Present in the Claims Identity: Tognk Denyc

Claim Type Claim Value

exp 1486230722

nbf 1486227122

ver 1.0

iss hitps:/fogin.microsoftonline.com/94754 17 3-Te21-417 2-b35d-d84557 367 H0V2.0/
hitp:fischemas. xmisoap orgiws/2005/05/denti id el5effea-2095-4202-97 26-9a6f9fd7 116e

aud Oaeed45d-17c0-4406-82c4-cbeTTc8B1223

nance 636218238720291984. N2BmMzEOOGUINJUMZSOONTNmMLWFjMZUIMTJINWUWMDBIOT. ..
iat 1486227122

htip://schemas. microsoft.comiws/2008/06/dentity/cla
http:/fschemas. microsoft. comfidentity/claims/objectidentifier
name

iticationinstant

1486227122
e0beffea-2005-4202-9726-9a6f9fd7 116e
Tognk Denyc

tip B2C_1_sign_in

Lasiname Age Weight Height ctivity Altitude 2:21']“‘9 Cadence ::::t Red Zone Variability Speed Steps Tempera.. Velocity Ventiliza...
Rheoran 47 220 75 17290.9... 28.3878... 0 0.16287... 95 18.0080... 0 10 96.8734... 0 1] (i}
Aethocyn 68 186 65 17104.9... 23.1272... 0 0.15636... 94 17.86839... 0] 96.1556... 0 (1] 1]
Gwaeddry 54 150 B4 16826.0... 13.1729... 0 0.148659.., 92 17.6976... 0 5 96.9983... 0 1} 0
Carullyn 25 165 69 16454.1... 3.13471... 0 0.13356... 90 17.4482_. 0 96.1492... 0 0 (1]
Addredoc 42 210 64 16547.1... T.60836... 0 0.13682... 91 17.5113... 0 2 96.7376... 0 1] 1]
Rheoran 47 220 75 17290.9... 28.7533... 0 0.16287... 95 18.0080... 0 10 06.4875... 0 (1] 1]
Sur £ 210 T0 16454.1... 3.57567... 0 0.13356... 90 17.4492... 0 1 96.0263... 0 (1] 1]
Aethocyn 68 186 65 17011.9... 19.5525... 0 0.15310... 93 17.8218... 0 T 96.8306... 0 0 0
Addredd 34 185 T2 16361.18 0 0 0.13030... 90 17.3872... 0 0 96.0481... 0 0 (1]
Blaenyc 23 145 68 16361.18 0 0 0.13030... 90 17.3672... 0 0 96.5872... 0 0 (i}
Diran 28 120 71 16361.18 0 0 0.13030... 90 17.3872... 0 0 96.1024... 0 0 1]
Laenry 57 235 73 16919.0... 19.7206... 0 0.14985.., 93 17.7597... 0 B 96.3790... 0 0 0
Addreom.. 27 100 B3 16361.18 0 0 0.13030... 90 17.3872... 0 o 96.8357... 0 0 (1]
Gubryn 36 223 T3 16454.1... 2.92313... 0 0.13356... 90 17.4482... 0 96.0235... 0 (1] [i]
Mun 54 235 7O 18592.5... 60.5532... 0 0.20848... 102 18.8773... 0 24 96.5201... 0 (1] 1]

B 2017 - Multi-Tenancy

Figure 10-36. Logged in as Tognk Denyc, an administrator at WigiTech

We will use the claims returned from AD to look up the user in the system and pass
the users profile information to the Telemetry APl to demonstrate restricting access

to the telemetry.

514

http://dx.doi.org/10.1007/978-1-4842-2650-6_4

CHAPTER 10 = SECURITY AND IDENTITY

The users we will use for testing are from the WigiTech organization. Tognk Denyc
is an administrator, so he can see all employee information from WigiTech. Aog
Diran is an employee, so Aog can only see his own information.

Claims

Claims Present in the Claims Identity: Aog Diran

Claim Type

axp

nbf

ver

iss

htipz/schemas. xmisoap.orgiws/ 2005056/ dentity/claims/namelidentifier
aud

nonce

it

http:iisch f.c sthenticationinstant
httpischemas. microsoft.comidentity/claims/objectidentifier

v2/2008/06 identityiclaims!

name
tfp

Lastname Age Weight Height Activity Allitude ir;:hmg
Diran 28 120 71 16361.18 0 v}
Diran 28 190 71 16361.18 0 o
Diran 28 160 71 16361.18 0 0
Diran 28 190 1] 16361.18 0 o
Diran 28 190 T 16361.18 0 (1]
Diran 28 180 4l 16361.18 0 o
Diran 28 120 71 16361.18 0 0
Diran 28 180 71 16361.18 0 (1]
Diran 28 180 T 16361.18 0 (v}
Diran 28 180 71 16361.18 0 o
Diran 28 150 71 16361.18 0 0
Diran 28 190 71 16361.18 0 v}
Diran 28 180 71 16361.18 0 o
Diran 28 180 T 16361.18 0 o
Diran 28 120 71 16361.18 0 0o

© 2017 - Multi-Tenancy

Claim Value

1486230940

1486227340

1.0

https:iflogin.microseftonline.com4754173-Ted1-4f7 2-b35d-d8455T 3570200
2b1277e5-bbd3-44cc-acd0-1caaZ2bb68ab

DaeeB45d-17c0-4406-62cd-cbeT7ch612a3
B36218241018037504.0WVhOGVENWYZDVhYS00MzAZLWFIOGYIOWJINDg3NziwZm. .
1486227340

1486227340

2b1277e5-b6d3-44cc-acdD-1caa22bb68as

Ang Diran

B2C_1_sign_in
Cadence :::: Red Zone Variability Speed Steps Tempera.. Velocity Ventiliza...
0.13030... 20 17.3872... 0 0 06.1024... 0 (1] 1]
0.13030... 90 17.3872... 0 0 96.6383... 0 a o
0.13030... 90 17.3872... 0 Q 96.1907... 0] 0
0.13030... 90 17.3872... 0] 06.1996... 0 Q 0
0.13030... 80 17.3872... 0 0 96.6571... 0 0 0
0.13030... 90 17.3872... 0] 96.4389... 0] 0
0.13030... 90 17.2872... D] 96.0501....0 Q 0
0.13030... 90 17.3872... 0 o - 0 0 0
0.13030... 90 17.3872... 0 0 (v} o 0
0.13030... 90 17.3872... 0 a -0] 0
0.13030... 90 17.3872... 0 0 -0 Q 0
0.13030... 90 17.3872... 0 0 st A,] 0
0.13030... 90 17.3872... 0] o] 0
0.13030... 90 17.36872... 0 L} o Q o
0.13030... 90 17.3872... 0 0 (] 0 0

Figure 10-37. Logged in as Aog Diran, a WigiTech employee

The last thing that we want to validate in our application is that users can update
their profiles. In an earlier exercise, we defined a profile edit policy that allowed a
user to update a few of attributes, including a custom attribute called Role.

Follow these steps to validate that this feature is working.

7. Click the username in the upper-right corner of the application. An Edit Profile link

is displayed (see Figure 10-38).

515

CHAPTER 10 * SECURITY AND IDENTITY

| Edit Profile |

Multi-Tenant Dashboard Example

This solution demonstrates restricted access to telemetry using AD B2C Claims

@ 2017 - Multi-Tenancy
Figure 10-38. Edit Profile menu option

8. Click the link. You will be redirected to a page provided by Azure AD B2C that allows
the user to update the profile based on the policy definition. Note that the Role field
is available for edit (see Figure 10-39).

You can change your details below,
Display Name
[Tegnk Denyc

Given Mame
Tognk

Cancel

Figure 10-39. User Profile Editor provided by Azure AD B2C

Summary

This chapter looked at using threat modeling to define an analysis process and outlined mitigation strategies
for ongoing security audits. It also examined Azure AD B2C as a foundation for managing identities and
providing multi-tenant access to your application and underlying data.

516

CHAPTER 11

Epilogue

Every business is engaged in or will soon face a digital transformation. To accelerate this transformation

and provide customers, partners, and employees the most impactful solutions, these businesses need to
incorporate real-time data. While there may be SaaS services that comport to provide a complete end-to-end
solution, our experience shows that today there really is no option to buy a product that will truly deliver
what organizations need. To drive their digital transformations, organizations have two choices:

e Wait for the ISV market to catch up and risk missing the current window of
opportunity.

e Build a solution today that can expand and adapt tomorrow.

Our work with clients over the past several years has engendered an engineering approach highlighted
by best practices with respect to the software product lifecycle, a microservices-based architecture, and the
power and cohesion of cloud services that are provided by Microsoft Azure. Leveraging Azure’s PaaS services
eliminates the need to manage resources on virtual machine-based environments, configure and patch
operating systems, and develop your own elastic scale infrastructure. Instead, you focus on automation,
configuration, and just the code necessary to define and implement your business requirements.

The journey to delivering business-transformative solutions starts with cultivating and integrating
a DevOps culture inside your organization. DevOps is all about people, process, and tools working
collaboratively to support the high-velocity software development processes that are essential to success.
Sure, the technology is awesome, but it does not provision, build, and deploy itself.

Device management is often overlooked when organizations make their first foray into IoT. It's easy
to create the initial small-scale solutions with single-board computers and then manually support their
deployments. The ability to automate the monitoring and communication with your devices when you have
potentially tens of thousands of them out in the wild must be carefully considered.

As important as the devices are, you must never lose sight that IoT is still all about the data. The
data is the raw ore that the business hopes to mine for the gold, namely, the keen insight that truly
drives transformation. Success here requires designing and implementing a powerful data pipeline that
incorporates real-time processing, integrates reference data, and invokes operationalized Machine Learning
APIs. Such a pipeline addresses the three paths for data:

e Hot (such as alerts that require immediate action)
e Warm (such as telemetry)
e Cold (for archival and analysis)

This spectrum of data and associated analytics is central to providing the rich visualizations, alerts, and
notifications that ultimately drive the transformation.

© Bob Familiar and Jeff Barnes 2017 517
B. Familiar and J. Barnes, Business in Real-Time Using Azure IoT and Cortana Intelligence Suite,
DOI 10.1007/978-1-4842-2650-6_11

CHAPTER 11 © EPILOGUE

Focusing on security from the very start of your product development is paramount. Adopting a threat
modeling and mitigation process and leveraging tools such as Azure Security Center can help you identify
threats and mitigate risks.

We really hope you have enjoyed reading this book and working through the exercises as much as we
have enjoyed researching and crafting it. May all your business endeavors run at Internet speed!

Bob & Jeff

518

Index

A
Activities
databases, 229
data movement, 228
data transformation, 230
Alerts and notifications
Azure Event Hub, 411-412
consistency, 410
event consumers and consumer groups, 412
Event Hub partitions, 412
event publishers, 412
reference implementation, 411, 418
streaming analytics, 413
Analog-to-Digital (ADC) adapter, 128
API gateways, 10, 11
APIM
build definition, 68, 70
groups, 71
policy, 78-79
products, 72
property, 76-77
API proxy, 73-75
APIs, 79-82
Automation, 11
Azure
cmdlets, 29
PowerShell, 25, 27-28
Azure Active Directory (Azure AD), 483
Azure AD B2C tenant
B2CGraphClient command-line utility, 499-500
B2C settings, 489
creation and configuration, 488
graph API, 497
imported tenant, 501
local global administrator, 498
policies, 487
PowerShell scripts, 499
subscription, 490-493
utility, listing user, 501
web application, registering, 493-497

© Bob Familiar and Jeff Barnes 2017

Azure blob storage account, 252
Azure Classic mode, 59
Azure Data Factory
activities, 228-230
AML retraining, 261
Author and Deploy option, 256, 263
AzureMLBatchExecution, 270
Azure ML training
linked service, 267
update, 266, 268
AzureMLUpdateResource, 270
components, 257
create job parameters, 262
CSV output files, 260
data processing operations, 228
dataset, 230-231
blob storage option, 265, 269
output data, 269
training data, 264
data transformation functions, 227
diagram view, 274
DMU, 240
ETL, 228
job state transition flow, 238
JSON, 258-259
advantage, 232
Author and Deploy options, 233
copy activity definition, 234, 236
CSV, 233
linked service, Azure storage, 230, 263-264
Monitor & Manage option, 259
monitoring and management, 236, 238
parallel copies, 239-240
performance, 239
pipeline, 228
components, 273
copy activity, 231
creation, 271-272
JSON definitions, 275
option, 274
reference implementation, 243

B. Familiar and J. Barnes, Business in Real-Time Using Azure loT and Cortana Intelligence Suite,

DOI 10.1007/978-1-4842-2650-6

INDEX

Azure Data Factory (cont.) Azure Event Hub
re-run job activity, 260 architecture, 412
resource group, 261 Big Data processing, 411
scheduling and execution, 231 Consumers and Consumer groups, 412
tools, 232 event publisher, 412
Azure Data Lake partitions, 412
Azure blob storage streaming analytics, 413
Data Factory Copy Data, 281-282 throughput units, 413
Data Factory creation, 278 Azure functions
parameters, 277 cost effective scaling, 416
resource group, 276 developer BYOL, 416
Data Factory Copy Data DevOps integration, 416
copy files recursive, 282 e-mail alert
deployment complete screen, 288-289 Integrate option, 460
destination file format values, 286-287 SendGrid, 459, 461-464
destination selection, 284-285 SendGridAPIKey, 465
format settings, 283 INPUT event types, 414-415
properties, 279-280 monitor, 465-467
Visual Studio Cloud Explorer, 289 output event types, 415-416
Azure Data Lake Analytics (ADLA) reference implementation, 446-447
account, creation schedule function, 417
database and table, 302 text alert
Data Explorer, 301 C# code, 458-459
job execution, 300 configure application settings, 455-456
parameter values, 296 confirmation page, 449
resource group, 294 event hub trigger CSharp, 452
sample scripts, 298 JSON code, 457
SQL table, 303-304 output binding, 453
U-SQL, 299 parameters, 450, 454
web page, 297 resource group, 448
Azure SQL database and Azure IoT gateway architecture, 141
tables, 332-333 Azure IoT Hub, 99
CopyFromBlobToDatalLake, 323-324 Azure Machine Learning
core capability, 293 cheat sheet, 358
CSV files, 324-326, 328 cloud-based, 358
Data Factory Cortana Analytics Gallery, 358
Copy Data, 335 Data Science Flow, 363
Data Lake Store, 336 experiments
Input Dataset, 337-340 AML web tester spreadsheet, 391
job parameters, 335 characteristics, 363
Output Dataset, 341-344 create R Model, 382-383
pipeline, 344, 345 creation, 375-376
resource group, 334 data file upload, 373-374
data sources, 320-321 data file visualize, 376-377
JOIN operations, 328-330 modules categories, 362
reference implementation reference implementation, 392
architecture, 292, 320 result, visualizing, 385-387
separate extract files, 331-332 re-training AML web service, 391-392
VisualStudio (see Visual Studio) re-training ML web service, 394-395
Azure Data Lake Store (ADLS), 313, 319, 336-337 R Script module, 378
Hadoop Access, 241 Score Model module, 384-385
MEKSs, 243 Split Data module, 379
reference implementation, 243 Train Model module, 380-381
encryption key management, 243 web service, 393
security layers, 241-242 web service creation, 387-390

520

Free Tier, 359
Published Guidance, 358
Studio, 359-360
Cortana Intelligence Suite, 360
TDSP, 359
templates, 357
workspace, 370-372
Azure mapping, 13
Azure PowerShell, 28
Azure Resource Manager (ARM)
JSON templates, 30-33
terminology, 29
Azure Security Center, 481
Azure Stream Analytics (ASA), 14, 176-177
advantages, 178
applications, 181-182
blob storage, 206-208
built-in monitoring, 180
Data Factory
creation, 245
CSV output files, 260
job parameters, 245
Monitor & Manage option, 259
re-run job activity, 260
resource group, 244
Data Factory Copy Data, 246
Azure blob storage, 252
destination data store, 251
DocumentDB, 248
file format settings, 253
output file/folder properties, 252
performance settings, 254
properties, 247
query parameters, 250, 251
summary page, 255
tables or query, copy, 249
data stream inputs, 183
file naming convention, 244
HDInsight, 176-177
hopping windows, 172-173
IoT Hub configuration, 198-199
job, 194, 196-197
JSON parameters, 256-259
low-cost solutions, 180
mission-critical reliability, 179
Power BI, 211-216
PowerShell deployment, 179
rapid development, 180
reference data, 199-201
sliding windows, 173-174
SQL (see SQL query)
SQL database, 209-211
storage options, 184
tumbling windows, 172
web service, 202, 204-205

INDEX

Azure Stream Analytics query

Azure Event Hub
ASA Query, 426, 428
creation, 423
output definitions, 425-426
parameters, 424
resource group, 422

Power BI, 419, 421
custom R controls, 433
filter criteria, 431
R Script control, 432
SQL Server connection, 429
summarization type change, 430

Big Data, 5-7

Bluetooth beacons, 135

BRT Operators, 71

Business intelligence landscape, 397-398

C

Cloud data Movement Unit (DMU), 240

Cloud platforms, 5

Cloud reporting cost architectures, 409-410

Cloud services, 140

Cmdlets, 29

Configure() function, 118-119

Continuous Integration/Continuous
Deliver (CICD), 24

Cortana Intelligence Gallery, 360

D

Data and associated analytics, 517
Data encryption, 482
Data management, 10
Datasets, 230-231
Data transformations, 186
Device hub, 9-10, 14
Device management
API, 99-100, 103
API management, 120
Azure IoT hub, 99
Cadence properties, 126
configuration operations, 104
Configure() function, 118-119
create Manifest operation, 102-103
dashboard, 113,115
debug console, 125
debugger launch, 123
device.js file, 121
device twin, 105
DM solution explorer, 114-115

521

INDEX

Device management (cont.)
firmware update, 125
IoT Hub connection, 103
JSON document, 101-102
lifecycle, 95-97
planning, 97-98
provisioning, 98
reboot direct method, 125
reboot function, 116-117
setRebootHandler() function, 124
Set up Launch.Json file, 122
software services, 120
startup process, 103-104
UpdateFirmware() function, 117, 118
WigiTech, 115
Device twin
desired and reported properties, 106-108
model, 105
tags, 105-106
DevOps, 4, 517
andAzure (see Azure)
code, 23
continuous delivery, 24
continuous integration, 23
people, 22
process, 22
Direct methods, 109-110
DMU. See Cloud data Movement Unit (DMU)
DragonBoard 410c, 155
DragonBoard setup, 155

E, F

Edge gateways
Azure IoT gateway SDK, 141
operations, 140-141
Enterprise Resource Planning (ERP) systems, 98
Event Hub partitions, 412
Event publishers, 412
Extract-Transform-Load (ETL), 228

G

GSM modems and SMS, 130-133

H

Hardware Security Modules (HSMs), 482

Identity
authentication and authorization, 483
multi-tenancy, 483-487

Internet of Things (IoT), 5-7

IoT sub-system, 16

522

J

Jobs, 111-112
JSON definition
advantage, 232
Author and Deploy options, 233
copy activity definition, 233
input, 234
output, 235-236
CSV, 233

K

Key management, 482

L

Lambda architecture
batch and stream processing methodology, 169
IoT, 170-171

Lean engineering, 3

Linked services, 230

M, N

Machine Learning (ML)
algorithms
classification, 352, 354
clustering, 353-354
recommenders, 353-354
regression, 353-354
supervised learning, 352
unsupervised learning, 352
applications, 355-356
data input, 352
defined, 351
history, 355
templates (see Azure Machine Learning)
vs. traditional programming, 352
Management by exception, 397
Master Encryption Keys (MEKs), 243
Microcontroller software
cloud services, 140
smart devices, 139
Windows 10 IoT, 139
Microservices, 5, 10
Microsoft Azure IoT, 12
API gateway, 14
ASA, 14
automation, 13
data management, 14
device hub, 14
devices, 13
messaging, 14
microservices, 14-15
security and identity, 13

storage, 14
visualization, alerts, and notifications, 15
Microsoft R Open, 401
Microsoft R server
advantages, 365
machine learning, 366-367
cheat sheet, 369
supervised learning, 369
processing limitations, 364-365
reference implementation, 368
R portfolio, 366
stress tests, 368
Visual Studio, 367
Multi-tenant application
added files, 505-506
authentication, 503
create web application, 502
home page, 507
login, 507
NuGet packages update, 505
project settings update, 504
user authentication, 508
user claims, 508

(0

Optical Character Recognition (OCR)
technology, 355

P

PaaS services, 517

Platform APIs
Claims view, 510-511
contents update, 512-514
Edit Profile menu, 516
NuGet packages, 509
WigiTech

login as admin, 514
login as employee, 515

platform approach, 1-2

Power BI
app service, Visual icon, 438
Cortana integration, 408
custom R controls, 433
custom visuals, 406
dashboard, Visual icon, 438, 439
data alerts, 443-445
data analysis, 400-401
data sources, 404
desktop, 399-400
embedded, 405-406
Excel, 401
filter criteria, 431
gauge control, 437

INDEX

mobile application, 404-405
natural language query, 407-408, 443
notification center window, 446
pie chart control, 440, 441
Q&A, 442
ReST APIs, 406
R Script control, 432
R Visualizations
ggplot2 R package, 403
Microsoft R Open, 401
Script visual control, 402
service and desktop, 399, 434
streaming datasets access, 435-436
summarization type change, 430
table control, 440-441
PowerShell
administrator, 25-26
parameters, 27-28
Visual Studio code, 27
Predictive analytics, 8
Programmable logic controllers (PLCs), 128-130
Protocol gateway, 131-132

Q

Queries, 110-111

R

Radio Frequency Identification (RFID), 133-134
Real-time analytics
competitive advantage, 174
implementation, 174-176
streaming analytics, 172-174
Real-time business platform
advantage, 2
architecture, 5
methodology, 3
principles, 3
process, 4
Real-time business reference architecture
advanced analytics, 10
alerts, 11
API gateways, 10-11
automation, 11
component, 8-9
data management, 10
device hub, 9-10
devices, 9
identity, 11
microservice, 10-11
notifications, 11
security, 12
stream processing, 10
visualization, 11

523

INDEX

Reference architecture, 13 Software-as-a-Service (SaaS), 1
Retiring process, 112 SQL query
R Script Module, 378 absence of events, 192
Azure SQL database, 219-220
S blob storage, 220-221
built-in operators and functions, 188
Security layers, 241-242 data type conversions, 188
Security protocols, 481 data types, 187
Sensors duplicate records, 190
ADC adapter, 128 event delivery, 189
PLC (see Programmable Logic hopping windows, 191
Controllers (PLCs)) job output, 224-226
types, 127 job stream, 222-224
setRebootHandler() function, 124 joining multiple streams, 192
Simulator language, 187
BRZKR mode, 469 Power BI, 218
dashboard visualizations and alert, 470-472 sliding window, 192
reference architecture, 468 temporal semantic function, 188
Single-Board Computers (SBC), 136 time management functions, 190
Azure IoT Device SDKs, 137-138 tumbling windows, 191
Raspberry Pi enclosures, 137 unified programming model, 191
shields and sensor kits, 137 user defined functions, 189
Smart device creation SQL Server Management Studio (SSMS)., 224
build definition, 143 Stream processing, 10
Device Explorer, 147-148 STRIDE classifications, 476
device ID, 148-149
GetDeviceManifest(), 150 T
heartbeat messages, 152-153
MainPage_OnLoaded(), 149 Team Data Science Process (TDSP), 359
MSBuild Settings, 143 Team Foundation Server (TFS), 37
NuGet Installer settings, 143 Team simulators, 165-167
NuGet Packager, 144 Threat modeling
NuGet Publisher, 144 Azure Security Center, 481
requirements, 142 data encryption, 482
SBC key, 482
BlinkLED(), 162 security protocols, 481
DragonBoard 410c, 155 STRIDE, 476
DragonBoard setup, 155-156 zones, 475
GPIO interface, 161 cloud gateway, 478
heartbeat and temperature sensor cloud services, 479-480
messages, 165 device, 477
IP address set up, 164 local, 476
mezzanine board stacking, 158 Throughput units, 413
requirements, 154 TwinPropertyRequest, 116, 117
sensors, 159
StartTelemetry(), 162 U
Visual Studio configuration, 163
voltage jumper, set up, 158 UpdateFirmware() function, 117, 118
Windows device portal, 157 User-Defined Operators (UDOs), 307, 308
Windows IoT extensions, 160 U-SQL
SmartDevice references, 146 analytical functions, 311
StartHeartbeat(), 151 aggregation functions, 310-311
StartTelemetry(), 152 Azure Portal integration, 318
telemetry messages, 153 Big Data, 306, 319
Windows universal app project, 144 built-in optimization, 319

524

combine row sets, 318
features and benefits, 306-307
federated query, 312-317
query data, 311-312

UDOs, 307-308

windowing functions, 308, 310

\"

Visual Studio
additional tools, 305
U-SQL features and benefits (see U-SQL)
Visual Studio Team Services (VSTS)
account, 36
APIM
build definition, 68, 70
groups, 71
policy, 78-79
product, 72
property, 76-77
API proxy, 73-75
APIs, 79-82
Azure Classic commands, 59-61, 63
Bootstrap utility, 86-88
build definition, 46-51, 53
creation, 34-35
deployment build definition, 63-65, 67
databases and collections, 85

INDEX

Git repo configuration, 38-40
NuGet.config, 43-45
NuGet packages and feed, 83-84
package feed, 41-43
project, creation, 37
provisioning build

definitions, 54-55, 57, 59
simulation data, 88, 90-91
subscription keys, 82-83
TFS, 37

W, X, Y

Windowing functions, 308-310
Worker Health and Safety

Complicated Badger, 15
repository, 18

solution architecture, 15-18
Tall Towers, 15

WigiTech, 15

y4

Zones, 475

cloud gateway, 478
cloud services, 479-480
device, 477

local, 476

525

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter Overview
	Chapter 1: Business in Real-Time
	A Platform Approach
	Real-Time Business Platform
	Methodology: Lean Engineering
	Process: DevOps
	Architecture: Microservices
	Platform: Cloud

	Internet of Things (IoT) and Big Data
	The Tipping Point
	Big Data
	Advanced Analytics

	Real-Time Business Reference Architecture
	Devices
	Device Hub
	Stream Processing
	Data Management, Storage, and Messaging
	Advanced Analytics
	Microservices and API Gateways
	Visualization, Alerts, and Notifications
	Identity
	Automation
	Security

	Microsoft Azure IoT and Cortana Intelligence Suite
	Automation
	Security and Identity
	Devices
	Device Hub
	Stream Processing
	Data Management, Storage, and Messaging
	Advanced Analytics
	Microservices and API Gateway
	Visualization, Alerts, and Notifications

	Worker Health and Safety: A Reference Implementation
	Backstory
	Solution Architecture
	Downloading the Repository

	Summary

	Chapter 2: DevOps Using PowerShell, ARM, and VSTS
	People
	Process
	Infrastructure as Code
	Continuous Integration
	Continuous Delivery

	Tools
	DevOps and Azure
	PowerShell
	Script Constructs

	Azure PowerShell
	Invoking Azure Cmdlets

	Azure Resource Manager
	ARM Templates
	Part 1. $schema
	Part 2. Content Version
	Part 3. Parameters
	Part 4. Variables
	Part 5. Resources
	Part 6. Outputs

	Visual Studio Team Services

	Summary

	Chapter 3: Device Management Using IoT Hub
	The Device Management Lifecycle
	Planning
	Provisioning
	Azure IoT Hub
	The Device API and the Device Manifest

	Configuring and Monitoring
	Device Twin
	Tags
	Desired and Reported Properties

	Direct Methods
	Queries
	Jobs

	Retiring

	Summary

	Chapter 4: Sensors, Devices, and Gateways
	Sensors
	Programmable Logic Controllers

	Devices
	GSM Modems
	Protocol Gateway
	GSM Modems and SMS

	RFID
	Bluetooth Beacons
	Get Smart
	Single-Board Computers

	Microcontroller Software
	Edge Gateways

	Summary

	Chapter 5: Real-Time Processing Using Azure Stream Analytics
	The Lambda Architecture
	What Is Streaming Analytics?
	Real-Time Analytics
	Streaming Implementations and Time-Series Analysis
	Predicting Outcomes for Competitive Advantage
	Stream Processing: Implementation Options in Azure
	Choosing a Managed Streaming Analytics Engine in Azure
	Streaming Technology Choice: Decision Considerations
	Pain Points with Other Streaming Solutions
	Reference Implementation Choice: Azure Streaming Analytics
	Advantages of Azure Streaming Analytics
	No Challenges with Deployment
	Mission Critical Reliability
	Business Continuity
	No Challenges with Scale:
	Low Startup Costs
	Rapid Development

	Development and Debugging Experience Through Azure Portal
	Scheduling and Monitoring Built-In

	Why Are Customers Using Azure Stream Analytics?
	Key Vertical Scenarios to Explore for Azure Stream Analytics
	Our Solution: Leveraging Azure Streaming Analytics
	Streaming Analytics Jobs: INPUT definitions
	Streaming Analytics Jobs: OUTPUT Definitions
	Planning Streaming Analytics Outputs
	Hot Path
	Warm Path
	Cold Path
	Power BI for Real-Time Visualizations

	Streaming Analytics Jobs: Data Transformations via SQL Queries
	Azure Streaming Analytics SQL: Developer Friendly

	Azure Streaming Analytics (ASA): SQL Query Dialect Features
	SQL Query Language
	Supported Data Types
	Data Type Conversions
	CAST
	TRY_CAST

	Temporal Semantic Functionality
	Built-In Operators and Functions
	User Defined Functions: Azure Machine Learning Integration
	Event Delivery Guarantees Provided in Azure Stream Analytics
	Exactly Once Delivery
	Duplicate Records

	Time Management Functions
	The Importance of the TIMESTAMP BY Clause

	Azure Stream Analytics: Unified Programming Model

	Azure Stream Analytics: Examples of the SQL Programming Model
	The Simplest Example
	Tumbling Windows: A 10-Second Tumbling Window
	Hopping Windows: A 10-Second Hopping Window with a 5-Second “Hop”
	Sliding Windows: A 10-Second Sliding Window
	Joining Multiple Streams
	Detecting the Absence of Events

	The Reference Implementation
	Business Use Case Scenario

	Summary

	Chapter 6: Batch Processing with Data Factory and Data Lake Store
	Azure Data Factory Overview
	Pipelines and Activities
	Activities

	Linked Services
	Datasets
	Pipelines
	Scheduling and Execution
	Pipeline Copy Activity End-to-End Scenario
	Scenario Prerequisites
	JSON Definition

	Monitoring and Managing Data Factory Pipelines
	Data Factory Activity and Performance Tuning
	Parallel Copy
	Cloud Data Movement Units (DMUs)

	Azure Data Lake Store
	Hadoop Access
	Security Layers
	ADLS Encryption Key Management

	Implementing Data Factory and Data Lake Store in the Reference Implementation
	Summary

	Chapter 7: Advanced Analytics with Azure Data Lake Analytics
	Azure Data Lake Analytics
	Getting Started with Azure Data Lake Analytics
	Create an ADLA Account
	Sample Scripts: Create, Submit, and Monitor Jobs

	Azure Data Lake Tools for Visual Studio
	ADLA U-SQL Features and Benefits
	Types of U-SQL User-Defined Operators
	U-SQL Windowing Functions
	Reporting Aggregation Functions
	Ranking Functions
	Analytical Functions
	ADLA Federated Queries: Querying the Data Where It Lives
	Federated Queries: Overview of Steps Required to Query External Tables
	Combining Row Sets
	Azure Portal Integration
	Big Data Jobs: Simplified Management and Administration
	U-SQL: Optimization Is Built-In

	Implementing ADLA in the Reference Implementation
	Reference Implementation Summary

	Summary
	Handles Virtually All Types of Data
	Productive from Day One
	No Limits to Scale
	Enterprise Grade
	Reference Implementation
	Just Scratching the Surface

	Chapter 8: Advanced Analytics Using Machine Learning and R
	What Is Machine Learning?
	Understanding Machine Learning
	Brief History of Machine Learning
	Industry Applications of Machine Learning
	Horizontal Patterns Across Vertical Industries

	Overview of Azure Machine Learning
	The Traditional Data Science Landscape
	Democratizing Machine Learning
	Azure Machine Learning Studio
	The Cortana Intelligence Gallery
	Azure Machine Learning: EXPERIMENTS
	Azure Machine Learning: EXPERIMENT Modules
	The Azure Machine Learning Data Science Flow

	Microsoft R Server Overview
	Processing limitations of Open Source R
	Enter Microsoft R Server
	Extend Machine Learning Experiments with the R Language Module
	R Tools for Visual Studio

	Implementing Azure Machine Learning and R in the Reference Implementation
	Business Case for Machine Learning
	Reference Implementation: Assumptions
	Choosing a Machine Learning Algorithm

	Summary

	Chapter 9: Data Visualizations, Alerts, and Notifications with Power BI
	The Modern Reporting Landscape
	Overview of Power BI
	The Power BI Service
	Power BI Desktop
	Unlocking Data Analysis
	The Role of Excel and Power BI
	Support for R Visualizations
	Microsoft R Open

	Power BI Desktop: R Script Visualizations
	Power BI Data Sources

	Power BI Mobile
	Power BI Embedded
	Licensing Model for Microsoft Power BI Embedded

	Power BI ReST APIs
	Power BI Custom Visuals
	Power BI Natural Language Query
	Power BI Cortana Integration
	Cloud Reporting Cost Architectures

	Alerts and Notifications
	Azure Event Hub
	Event Publishers
	Event Hub Partitions
	Event Consumers and Consumer Groups
	Throughput Units

	Streaming Analytics: Output to Event Hub
	Azure Functions
	Input Bindings
	External Bindings
	Developer BYOL (Bring Your Own Language)
	Cost Effective Scaling
	DevOps Integration with Azure Functions
	Scheduled Functions

	Reference Implementation
	Implementation Overview

	Summary

	Chapter 10: Security and Identity
	Threat Modeling
	Threat Modeling Zones and IoT
	Local Zone
	Device Zone
	Cloud Gateway Zone
	Cloud Services Zone
	Security Protocols
	Azure Security Center
	Data Encryption
	Key Management

	Identity
	Authentication and Authorization
	Multi-Tenancy

	Summary

	Chapter 11: Epilogue
	Index

