
www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Joseph Albahari and Ben Albahari

C# 7.0 Pocket Reference
Instant Help for C# 7.0

Programmers

www.allitebooks.com

http://www.allitebooks.org


978-1-491-98853-4

[M]

C# 7.0 Pocket Reference
by Joseph Albahari and Ben Albahari

Copyright © 2017 Joseph Albahari, Ben Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://oreilly.com/
safari). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Nicholas Adams
Copyeditor: Rachel Monaghan
Proofreader: Octal Publishing, Inc.
Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2017:  First Edition

Revision History for the First Edition
2017-07-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491988534 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 7.0
Pocket Reference, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491988534
http://www.allitebooks.org


Table of Contents

C# 7.0 Pocket Reference                                                                                  1
Conventions Used in This Book                                                                    2
Using Code Examples                                                                                      3
O’Reilly Safari                                                                                                     3
How to Contact Us                                                                                            4
A First C# Program                                                                                            5
Syntax                                                                                                                  8
Type Basics                                                                                                       11
Numeric Types                                                                                                 20
Boolean Type and Operators                                                                      28
Strings and Characters                                                                                  29
Arrays                                                                                                                 34
Variables and Parameters                                                                           38
Expressions and Operators                                                                          46
Null Operators                                                                                                 52
Statements                                                                                                       54
Namespaces                                                                                                     63
Classes                                                                                                               67
Inheritance                                                                                                       82

iii

www.allitebooks.com

http://www.allitebooks.org


The object Type                                                                                               91
Structs                                                                                                                95
Access Modifiers                                                                                             96
Interfaces                                                                                                          98
Enums                                                                                                             101
Nested Types                                                                                                 104
Generics                                                                                                          105
Delegates                                                                                                       114
Events                                                                                                              120
Lambda Expressions                                                                                   126
Anonymous Methods                                                                                 131
try Statements and Exceptions                                                               132
Enumeration and Iterators                                                                       140
Nullable Types                                                                                              146
Extension Methods                                                                                      151
Anonymous Types                                                                                       153
Tuples (C# 7)                                                                                                 154
LINQ                                                                                                                 156
Dynamic Binding                                                                                         182
Operator Overloading                                                                                 191
Attributes                                                                                                       194
Caller Info Attributes                                                                                  198
Asynchronous Functions                                                                           199
Unsafe Code and Pointers                                                                         209
Preprocessor Directives                                                                              213
XML Documentation                                                                                   215
Index                                                                                                                219

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


C# 7.0 Pocket Reference

C# is a general-purpose, type-safe, object-oriented program‐
ming language. The goal of the language is programmer pro‐
ductivity. To this end, the language balances simplicity, expres‐
siveness, and performance. The C# language is platform-
neutral, but it was written to work well with the Micro‐
soft .NET Framework. C# 7.0 targets .NET Framework 4.6/4.7.

NOTE

The programs and code snippets in this book mirror those
in Chapters 2 through 4 of C# 7.0 in a Nutshell and are all
available as interactive samples in LINQPad. Working
through these samples in conjunction with the book accel‐
erates learning in that you can edit the samples and
instantly see the results without needing to set up projects
and solutions in Visual Studio.
To download the samples, click the Samples tab in LINQ‐
Pad and click “Download more samples.” LINQPad is free
—go to http://www.linqpad.net.

1

www.allitebooks.com

http://www.linqpad.net/
http://www.allitebooks.org


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state‐
ments, and keywords.

Constant width bold

Shows commands or other text that should be typed liter‐
ally by the user.

Constant width italic

Shows text that should be replaced with user-supplied val‐
ues or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

2 | C# 7.0 Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


Using Code Examples
The programs and code snippets in this book are all available
as interactive samples in LINQPad. To download the samples,
go to http://bit.ly/linqpad_csharp7_samples.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing
this book and quoting example code does not require permis‐
sion. Incorporating a significant amount of example code from
this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For
example: “C# 7.0 Pocket Reference by Joseph Albahari and Ben
Albahari (O’Reilly). Copyright 2017 Joseph Albahari, Ben
Albahari, 978-1-491-98853-4.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Safari

Safari (formerly Safari Books
Online) is a membership-based
training and reference platform for

enterprise, government, educators, and individuals.

Using Code Examples | 3

www.allitebooks.com

http://www.linqpad.net
http://bit.ly/linqpad_csharp7_samples
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.allitebooks.org


Members have access to thousands of books, training videos,
Learning Paths, interactive tutorials, and curated playlists from
over 250 publishers, including O’Reilly Media, Harvard Busi‐
ness Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apr‐
ess, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam‐
ples, and any additional information. You can access this page
at http://bit.ly/csharp_7_pocketref.

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

For more information about our books, courses, conferences,
and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

4 | C# 7.0 Pocket Reference

www.allitebooks.com

http://www.oreilly.com/safari
http://bit.ly/csharp_7_pocketref
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org


A First C# Program
Here is a program that multiplies 12 by 30 and prints the result,
360, to the screen. The double forward slash indicates that the
remainder of a line is a comment.

using System;                 // Importing namespace

class Test                    // Class declaration
{
  static void Main()          // Method declaration
  {
    int x = 12 * 30;          // Statement 1
    Console.WriteLine (x);    // Statement 2
  }                           // End of method
}                             // End of class

At the heart of this program lie two statements. Statements in
C# execute sequentially and are terminated by a semicolon. 
The first statement computes the expression 12 * 30 and stores
the result in a local variable, named x, which is an integer type.
The second statement calls the Console class’s WriteLine

method to print the variable x to a text window on the screen.

A method performs an action in a series of statements, called a
statement block—a pair of braces containing zero or more state‐
ments. We defined a single method named Main.

Writing higher-level functions that call upon lower-level func‐
tions simplifies a program. We can refactor our program with a
reusable method that multiplies an integer by 12, as follows:

using System;

class Test
{
  static void Main()
  {
    Console.WriteLine (FeetToInches (30));    // 360
    Console.WriteLine (FeetToInches (100));   // 1200
  }

  static int FeetToInches (int feet)
  {

A First C# Program | 5



    int inches = feet * 12;
    return inches;
  }
}

A method can receive input data from the caller by specifying
parameters, and output data back to the caller by specifying a
return type. We defined a method called FeetToInches that has
a parameter for inputting feet, and a return type for outputting
inches, both of type int (integer).

The literals 30 and 100 are the arguments passed to the Feet
ToInches method. The Main method in our example has empty
parentheses because it has no parameters, and is void because it
doesn’t return any value to its caller. C# recognizes a method
called Main as signaling the default entry point of execution.
The Main method may optionally return an integer (rather than
void) in order to return a value to the execution environment.
The Main method can also optionally accept an array of strings
as a parameter (that will be populated with any arguments
passed to the executable). For example:

static int Main (string[] args) {...}

NOTE

An array (such as string[]) represents a fixed number of
elements of a particular type (see “Arrays” on page 34).

Methods are one of several kinds of functions in C#. Another
kind of function we used was the * operator, which performs
multiplication. There are also constructors, properties, events,
indexers, and finalizers.

In our example, the two methods are grouped into a class. A
class groups function members and data members to form an
object-oriented building block. The Console class groups mem‐
bers that handle command-line input/output functionality,
such as the WriteLine method. Our Test class groups two

6 | C# 7.0 Pocket Reference



methods—the Main method and the FeetToInches method. A
class is a kind of type, which we will examine in “Type Basics”
on page 11.

At the outermost level of a program, types are organized into
namespaces. The using directive makes the System namespace
available to our application to use the Console class. We could
define all our classes within the TestPrograms namespace as fol‐
lows:

using System;

namespace TestPrograms
{
  class Test  {...}
  class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For
example, this is the namespace that contains types for handling
text:

using System.Text;

The using directive is there for convenience; you can also refer
to a type by its fully qualified name, which is the type name
prefixed with its namespace, such as System.Text.String
Builder.

Compilation
The C# compiler compiles source code, specified as a set of files
with the .cs extension, into an assembly. An assembly is the unit
of packaging and deployment in .NET. An assembly can be
either an application or a library. A normal console or Win‐
dows application has a Main method and is an .exe file. A
library is a .dll and is equivalent to an .exe without an entry
point. Its purpose is to be called upon (referenced) by an appli‐
cation or by other libraries. The .NET Framework is a set of
libraries.

A First C# Program | 7



The name of the C# compiler is csc.exe. You can use either an
IDE such as Visual Studio to compile, or call csc manually
from the command line. To compile manually, first save a pro‐
gram to a file such as MyFirstProgram.cs, and then go to the
command line and invoke csc (located in %Program‐
Files(X86)%\msbuild\14.0\bin as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

To produce a library (.dll), do the following:
csc /target:library MyFirstProgram.cs

WARNING

Peculiarly, .NET Framework 4.6 and 4.7 ship with the C# 5
compiler. To obtain the C# 7 command-line compiler, you
must install Visual Studio 2017 or MSBuild 15.

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we
will describe C#’s elements of syntax, using the following
program:

using System;

class Test
{
  static void Main()
  {
    int x = 12 * 30;
    Console.WriteLine (x);
  }
}

8 | C# 7.0 Pocket Reference



Identifiers and Keywords
Identifiers are names that programmers choose for their classes,
methods, variables, and so on. These are the identifiers in our
example program, in the order in which they appear:

System   Test   Main   x   Console   WriteLine

An identifier must be a whole word, essentially made up of
Unicode characters starting with a letter or underscore. C#
identifiers are case-sensitive. By convention, parameters, local
variables, and private fields should be in camel case (e.g.,
myVariable), and all other identifiers should be in Pascal case
(e.g., MyMethod).

Keywords are names that mean something special to the com‐
piler. These are the keywords in our example program:

using   class   static   void   int

Most keywords are reserved, which means that you can’t use
them as identifiers. Here is the full list of C# reserved key‐
words:

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

long

namespace

new

null

object

operator

out

override

params

private

protected

public

readonly

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

while

Syntax | 9



Avoiding conflicts
If you really want to use an identifier that clashes with a
reserved keyword, you can do so by qualifying it with the @ pre‐
fix. For instance:

class class  {...}      // Illegal
class @class {...}      // Legal

The @ symbol doesn’t form part of the identifier itself. So
@myVariable is the same as myVariable.

Contextual keywords
Some keywords are contextual, meaning they can also be used
as identifiers—without an @ symbol. These are:

add

ascending

async

await

by

descending

dynamic

equals

from

get

global

group

in

into

join

let

nameof

on

orderby

partial

remove

select

set

value

var

when

where

yield

With contextual keywords, ambiguity cannot arise within the
context in which they are used.

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the
program. The literals in our example program are 12 and 30. 
Punctuators help demarcate the structure of the program. The
punctuators in our program are {, }, and ;.

The braces group multiple statements into a statement block.
The semicolon terminates a (nonblock) statement. Statements
can wrap multiple lines:

Console.WriteLine
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

10 | C# 7.0 Pocket Reference



An operator transforms and combines expressions. Most opera‐
tors in C# are denoted with a symbol, such as the multiplica‐
tion operator, *. The operators in our program are:

.  ()   *   =

A period denotes a member of something (or a decimal point
with numeric literals). The parentheses, in our example, appear
where we declare or call a method; empty parentheses mean
that the method accepts no arguments. The equals sign per‐
forms assignment (the double equals, ==, performs equality
comparison).

Comments
C# offers two different styles of source code documentation: 
single-line comments and multiline comments. A single-line
comment begins with a double forward slash and continues
until the end of the current line. For example:

int x = 3;   // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For
example:

int x = 3;   /* This is a comment that
                spans two lines */

Comments may embed XML documentation tags (see “XML
Documentation” on page 215).

Type Basics
A type defines the blueprint for a value. In our example, we
used two literals of type int with the values 12 and 30. We also
declared a variable of type int whose name was x.

A variable denotes a storage location that can contain different
values over time. In contrast, a constant always represents the
same value (more on this later).

Type Basics | 11



All values in C# are an instance of a specific type. The meaning
of a value, and the set of possible values a variable can have, is
determined by its type.

Predefined Type Examples
Predefined types (also called built-in types) are types that are
specially supported by the compiler. The int type is a prede‐
fined type for representing the set of integers that fit into 32
bits of memory, from −231 to 231−1. We can perform functions
such as arithmetic with instances of the int type as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type repre‐
sents a sequence of characters, such as “.NET” or “http://
oreilly.com”. We can work with strings by calling functions on
them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage);      // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message);         // Hello world2015

The predefined bool type has exactly two possible values: true
and false. The bool type is commonly used to conditionally
branch execution flow with an if statement. For example:

bool simpleVar = false;
if (simpleVar)
  Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
  Console.WriteLine ("This will print");

12 | C# 7.0 Pocket Reference



NOTE

The System namespace in the .NET Framework contains
many important types that are not predefined by C# (e.g.,
DateTime).

Custom Type Examples
Just as we can build complex functions from simple functions,
we can build complex types from primitive types. In this exam‐
ple, we will define a custom type named UnitConverter—a
class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter
{
  int ratio;                             // Field

  public UnitConverter (int unitRatio)   // Constructor
  {
    ratio = unitRatio;
  }

  public int Convert (int unit)          // Method
  {
    return unit * ratio;
  }
}

class Test
{
  static void Main()
  {
    UnitConverter feetToInches = new UnitConverter(12);
    UnitConverter milesToFeet = new UnitConverter(5280);

    Console.Write (feetToInches.Convert(30));   // 360
    Console.Write (feetToInches.Convert(100));  // 1200
    Console.Write (feetToInches.Convert
                    (milesToFeet.Convert(1)));  // 63360
  }
}

Type Basics | 13



Members of a type
A type contains data members and function members. The data
member of UnitConverter is the field called ratio. The func‐
tion members of UnitConverter are the Convert method and
the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom
types have few differences. The predefined int type serves as a
blueprint for integers. It holds data—32 bits—and provides
function members that use that data, such as ToString. Simi‐
larly, our custom UnitConverter type acts as a blueprint for
unit conversions. It holds data—the ratio—and provides func‐
tion members to use that data.

Constructors and instantiation
Data is created by instantiating a type. We can instantiate pre‐
defined types simply by using a literal such as 12 or "Hello
world".

The new operator creates instances of a custom type. We started
our Main method by creating two instances of the UnitCon
verter type. Immediately after the new operator instantiates an
object, the object’s constructor is called to perform initializa‐
tion. A constructor is defined like a method, except that the
method name and return type are reduced to the name of the
enclosing type:

public UnitConverter (int unitRatio)   // Constructor
{
  ratio = unitRatio;
}

Instance versus static members
The data members and function members that operate on the
instance of the type are called instance members. The Uni
tConverter’s Convert method and the int’s ToString method

14 | C# 7.0 Pocket Reference



are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the
instance of the type, but rather on the type itself, must be
marked as static. The Test.Main and Console.WriteLine

methods are static methods. The Console class is actually a
static class, which means that all of its members are static. You
never actually create instances of a Console—one console is
shared across the entire application.

Let’s contrast instance with static members. In the following
code, the instance field Name pertains to an instance of a partic‐
ular Panda, whereas Population pertains to the set of all Panda
instances:

public class Panda
{
  public string Name;           // Instance field
  public static int Population; // Static field

  public Panda (string n)       // Constructor
  {
    Name = n;                   // Assign instance field
    Population = Population+1;  // Increment static field
  }
}

The following code creates two instances of the Panda, prints
their names, and then prints the total population:

Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (p1.Name);      // Pan Dee
Console.WriteLine (p2.Name);      // Pan Dah

Console.WriteLine (Panda.Population);   // 2

The public keyword

The public keyword exposes members to other classes. In this
example, if the Name field in Panda were not marked as public, it
would be private and the Test class could not access it. Mark‐

Type Basics | 15



ing a member public is how a type communicates: “Here is
what I want other types to see—everything else is my own pri‐
vate implementation details.” In object-oriented terms, we say
that the public members encapsulate the private members of
the class.

Conversions
C# can convert between instances of compatible types. A con‐
version always creates a new value from an existing one. Con‐
versions can be either implicit or explicit: implicit conversions
happen automatically, whereas explicit conversions require a
cast. In the following example, we implicitly convert an int to a
long type (which has twice the bitwise capacity of an int) and
explicitly cast an int to a short type (which has half the bitwise
capacity of an int):

int x = 12345;       // int is a 32-bit integer
long y = x;          // Implicit conversion to 64-bit int
short z = (short)x;  // Explicit conversion to 16-bit int

In general, implicit conversions are allowed when the compiler
can guarantee they will always succeed without loss of informa‐
tion. Otherwise, you must perform an explicit cast to convert
between compatible types.

Value Types Versus Reference Types
C# types can be divided into value types and reference types.

Value types comprise most built-in types (specifically, all
numeric types, the char type, and the bool type) as well as cus‐
tom struct and enum types. Reference types comprise all class,
array, delegate, and interface types.

The fundamental difference between value types and reference
types is how they are handled in memory.

16 | C# 7.0 Pocket Reference



Value types
The content of a value type variable or constant is simply a
value. For example, the content of the built-in value type int is
32 bits of data.

You can define a custom value type with the struct keyword
(see Figure 1):

public struct Point { public int X, Y; }

Figure 1. A value type instance in memory

The assignment of a value type instance always copies the
instance. For example:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1;             // Assignment causes copy

Console.WriteLine (p1.X);  // 7
Console.WriteLine (p2.X);  // 7

p1.X = 9;                  // Change p1.X
Console.WriteLine (p1.X);  // 9
Console.WriteLine (p2.X);  // 7

Figure 2 shows that p1 and p2 have independent storage.

Figure 2. Assignment copies a value type instance

Type Basics | 17



Reference types
A reference type is more complex than a value type, having two
parts: an object and the reference to that object. The content of a
reference type variable or constant is a reference to an object
that contains the value. Here is the Point type from our previ‐
ous example rewritten as a class (see Figure 3):

public class Point { public int X, Y; }

Figure 3. A reference type instance in memory

Assigning a reference type variable copies the reference, not the
object instance. This allows multiple variables to refer to the
same object—something that is not ordinarily possible with
value types. If we repeat the previous example, but with Point
now a class, an operation via p1 affects p2:

Point p1 = new Point();
p1.X = 7;

Point p2 = p1;             // Copies p1 reference

Console.WriteLine (p1.X);  // 7
Console.WriteLine (p2.X);  // 7

p1.X = 9;                  // Change p1.X
Console.WriteLine (p1.X);  // 9
Console.WriteLine (p2.X);  // 9

Figure 4 shows that p1 and p2 are two references that point to
the same object.

18 | C# 7.0 Pocket Reference



Figure 4. Assignment copies a reference

Null

A reference can be assigned the literal null, indicating that the
reference points to no object. Assuming Point is a class:

Point p = null;
Console.WriteLine (p == null);   // True

Accessing a member of a null reference generates a runtime
error:

Console.WriteLine (p.X);   // NullReferenceException

In contrast, a value type cannot ordinarily have a null value:
struct Point {...}
...
Point p = null;  // Compile-time error
int x = null;    // Compile-time error

NOTE

C# has a special construct called nullable types for repre‐
senting value type nulls (see “Nullable Types” on page
146).

Predefined Type Taxonomy
The predefined types in C# are:

Value types
• Numeric

Type Basics | 19



— Signed integer (sbyte, short, int, long)
— Unsigned integer (byte, ushort, uint, ulong)
— Real number (float, double, decimal)

• Logical (bool)
• Character (char)

Reference types
• String (string)
• Object (object)

Predefined types in C# alias .NET Framework types in the Sys
tem namespace. There is only a syntactic difference between
these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types excluding decimal are known
as primitive types in the Common Language Runtime (CLR).
Primitive types are so called because they are supported
directly via instructions in compiled code, which usually trans‐
lates to direct support on the underlying processor.

Numeric Types
C# has the following predefined numeric types:

C# type System type Suffix Size Range

Integral—signed

sbyte SByte  8 bits –27 to 27–1

short Int16  16 bits –215 to 215–1

int Int32  32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

20 | C# 7.0 Pocket Reference



C# type System type Suffix Size Range

Integral—unsigned

byte Byte  8 bits 0 to 28–1

ushort UInt16  16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and
are favored by both C# and the runtime. The other integral
types are typically used for interoperability or when space effi‐
ciency is paramount.

Of the real number types, float and double are called floating-
point types and are typically used for scientific and graphical
calculations. The decimal type is typically used for financial
calculations, where base-10-accurate arithmetic and high preci‐
sion are required. (Technically, decimal is a floating-point type
too, although it’s not generally referred to as such.)

Numeric Literals
Integral-typed literals can use decimal or hexadecimal notation;
hexadecimal is denoted with the 0x prefix (e.g., 0x7f is equiva‐
lent to 127). From C# 7, you can also use the 0b prefix for
binary literals. Real literals may use decimal or exponential
notation such as 1E06.

From C# 7, underscores may be inserted within a numeric lit‐
eral to improve readability (e.g., 1_000_000).

Numeric Types | 21



Numeric literal type inference
By default, the compiler infers a numeric literal to be either of
type double or an integral type:

• If the literal contains a decimal point or the exponential
symbol (E), it is a double.

• Otherwise, the literal’s type is the first type in this list that
can fit the literal’s value: int, uint, long, and ulong.

For example:
Console.Write (       1.0.GetType());  // Double (double)
Console.Write (      1E06.GetType());  // Double (double)
Console.Write (         1.GetType());  // Int32  (int)
Console.Write (0xF0000000.GetType());  // UInt32 (uint)
Console.Write (0x100000000.GetType()); // Int64  (long)

Numeric suffixes
The numeric suffixes listed in the preceding table explicitly
define the type of a literal:

decimal d = 3.5M;   // M = decimal (case-insensitive)

The suffixes U and L are rarely necessary because the uint, long,
and ulong types can nearly always be either inferred or implic‐
itly converted from int:

long i = 5;     // Implicit conversion from int to long

The D suffix is technically redundant, in that all literals with a
decimal point are inferred to be double (and you can always
add a decimal point to a numeric literal). The F and M suffixes
are the most useful and are mandatory when you’re specifying
fractional float or decimal literals. Without suffixes, the fol‐
lowing would not compile, because 4.5 would be inferred to be
of type double, which has no implicit conversion to float or
decimal:

float f = 4.5F;       // Won't compile without suffix
decimal d = -1.23M;   // Won't compile without suffix

22 | C# 7.0 Pocket Reference



Numeric Conversions

Integral to integral conversions
Integral conversions are implicit when the destination type can
represent every possible value of the source type. Otherwise, an
explicit conversion is required. For example:

int x = 12345;       // int is a 32-bit integral type
long y = x;          // Implicit conversion to 64-bit int
short z = (short)x;  // Explicit conversion to 16-bit int

Real to real conversions

A float can be implicitly converted to a double, given that a
double can represent every possible float value. The reverse
conversion must be explicit.

Conversions between decimal and other real types must be
explicit.

Real to integral conversions
Conversions from integral types to real types are implicit,
whereas the reverse must be explicit. Converting from a
floating-point to an integral type truncates any fractional por‐
tion; to perform rounding conversions, use the static Sys
tem.Convert class.

A caveat is that implicitly converting a large integral type to a
floating-point type preserves magnitude but may occasionally
lose precision:

int i1 = 100000001;
float f = i1;      // Magnitude preserved, precision lost
int i2 = (int)f;   // 100000000

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all
numeric types except the 8- and 16-bit integral types. The %
operator evaluates the remainder after division.

Numeric Types | 23



Increment and Decrement Operators
The increment and decrement operators (++, --) increment and
decrement numeric types by 1. The operator can either precede
or follow the variable, depending on whether you want the
variable to be updated before or after the expression is evalu‐
ated. For example:

int x = 0;
Console.WriteLine (x++);   // Outputs 0; x is now 1
Console.WriteLine (++x);   // Outputs 2; x is now 2
Console.WriteLine (--x);   // Outputs 1; x is now 1

Specialized Integral Operations

Division
Division operations on integral types always truncate remain‐
ders (rounding toward zero). Dividing by a variable whose
value is zero generates a runtime error (a DivideByZeroExcep
tion). Dividing by the literal or constant 0 generates a compile-
time error.

Overflow
At runtime, arithmetic operations on integral types can over‐
flow. By default, this happens silently—no exception is thrown
and the result exhibits wraparound behavior, as though the
computation were done on a larger integer type and the extra
significant bits discarded. For example, decrementing the mini‐
mum possible int value results in the maximum possible int
value:

int a = int.MinValue; a--;
Console.WriteLine (a == int.MaxValue); // True

The checked and unchecked operators

The checked operator tells the runtime to generate an Overflo
wException rather than overflowing silently when an integral-
typed expression or statement exceeds the arithmetic limits of
that type. The checked operator affects expressions with the ++,

24 | C# 7.0 Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


−−, (unary) −, +, −, *, /, and explicit conversion operators
between integral types.

You can use checked around either an expression or a state‐
ment block. For example:

int a = 1000000, b = 1000000;

int c = checked (a * b);   // Checks just the expression

checked                    // Checks all expressions
{                          // in statement block.
   c = a * b;
   ...
}

You can make arithmetic overflow checking the default for all
expressions in a program by compiling with the /checked+
command-line switch (in Visual Studio, go to Advanced Build
Settings). If you then need to disable overflow checking just for
specific expressions or statements, you can do so with the
unchecked operator.

Bitwise operators
C# supports the following bitwise operators:

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integral Types
The 8- and 16-bit integral types are byte, sbyte, short, and ush
ort. These types lack their own arithmetic operators, so C#

Numeric Types | 25



implicitly converts them to larger types as required. This can
cause a compilation error when trying to assign the result back
to a small integral type:

short x = 1, y = 1;
short z = x + y;          // Compile-time error

In this case, x and y are implicitly converted to int so that the
addition can be performed. This means that the result is also an
int, which cannot be implicitly cast back to a short (because it
could cause loss of data). To make this compile, we must add an
explicit cast:

short z = (short) (x + y);   // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that cer‐
tain operations treat specially. These special values are NaN
(Not a Number), +∞, −∞, and −0. The float and double classes
have constants for NaN, +∞, and −∞ (as well as other values
including MaxValue, MinValue, and Epsilon). For example:

Console.Write (double.NegativeInfinity);   // -Infinity

Dividing a nonzero number by zero results in an infinite value:
Console.WriteLine ( 1.0 /  0.0);   //  Infinity
Console.WriteLine (−1.0 /  0.0);   // -Infinity
Console.WriteLine ( 1.0 / −0.0);   // -Infinity
Console.WriteLine (−1.0 / −0.0);   //  Infinity

Dividing zero by zero, or subtracting infinity from infinity,
results in a NaN:

Console.Write ( 0.0 / 0.0);                 //  NaN
Console.Write ((1.0 / 0.0) − (1.0 / 0.0));  //  NaN

When you use ==, a NaN value is never equal to another value,
even another NaN value. To test whether a value is NaN, you
must use the float.IsNaN or double.IsNaN method:

Console.WriteLine (0.0 / 0.0 == double.NaN);    // False
Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True

26 | C# 7.0 Pocket Reference



When you use object.Equals, however, two NaN values are
equal:

bool isTrue = object.Equals (0.0/0.0, double.NaN);

double Versus decimal
double is useful for scientific computations (such as computing
spatial coordinates). decimal is useful for financial computa‐
tions and values that are “man-made” rather than the result of
real-world measurements. Here’s a summary of the differences:

Feature double decimal

Internal
representation

Base 2 Base 10

Precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and
NaN

None

Speed Native to processor Non-native to processor
(about 10 times slower than
double)

Real Number Rounding Errors
float and double internally represent numbers in base 2. For
this reason, most literals with a fractional component (which
are in base 10) will not be represented precisely:

float tenth = 0.1f;                     // Not quite 0.1
float one   = 1f;
Console.WriteLine (one - tenth * 10f);  // -1.490116E-08

This is why float and double are bad for financial calculations.
In contrast, decimal works in base 10 and so can precisely rep‐
resent fractional numbers such as 0.1 (whose base-10 represen‐
tation is nonrecurring).

Numeric Types | 27



Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical
value that can be assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the
runtime will use one byte of memory because this is the mini‐
mum chunk that the runtime and processor can efficiently
work with. To avoid space inefficiency in the case of arrays, the
Framework provides a BitArray class in the System.Collec
tions namespace that is designed to use just one bit per
Boolean value.

Equality and Comparison Operators
== and != test for equality and inequality of any type, and
always return a bool value. Value types typically have a very
simple notion of equality:

int x = 1, y = 2, z = 1;
Console.WriteLine (x == y);      // False
Console.WriteLine (x == z);      // True

For reference types, equality, by default, is based on reference, as
opposed to the actual value of the underlying object. Therefore,
two instances of an object with identical data are not consid‐
ered equal unless the == operator for that type is specially over‐
loaded to that effect (see “The object Type” on page 91 and
“Operator Overloading” on page 191).

The equality and comparison operators, ==, !=, <, >, >=, and <=,
work for all numeric types, but should be used with caution
with real numbers (see “Real Number Rounding Errors” on
page 27 in the previous section). The comparison operators
also work on enum type members, by comparing their underly‐
ing integral values.

Conditional Operators
The && and || operators test for and and or conditions. They
are frequently used in conjunction with the ! operator, which

28 | C# 7.0 Pocket Reference



expresses not. In this example, the UseUmbrella method returns
true if it’s rainy or sunny (to protect us from the rain or the
sun), as long as it’s not also windy (because umbrellas are use‐
less in the wind):

static bool UseUmbrella (bool rainy, bool sunny,
                         bool windy)
{
  return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible.
In the preceding example, if it is windy, the expression (rainy
|| sunny) is not even evaluated. Short-circuiting is essential in
allowing expressions such as the following to run without
throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:
return !windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason,
they are rarely used in place of conditional operators.

The ternary conditional operator (simply called the conditional
operator) has the form q ? a : b, where if condition q is true, a
is evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
  return (a > b) ? a : b;
}

The conditional operator is particularly useful for Language
Integrated Query (LINQ) tasks.

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Uni‐
code character and occupies two bytes. A char literal is speci‐
fied inside single quotes:

char c = 'A';       // Simple character

Strings and Characters | 29



Escape sequences express characters that cannot be expressed or
interpreted literally. An escape sequence is a backslash followed
by a character with a special meaning. For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are:

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode
character via its four-digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol     = '\u03A9';
char newLine         = '\u000A';

An implicit conversion from a char to a numeric type works for
the numeric types that can accommodate an unsigned short.
For other numeric types, an explicit conversion is required.

30 | C# 7.0 Pocket Reference



String Type
C#’s string type (aliasing the System.String type) represents
an immutable sequence of Unicode characters. A string literal
is specified inside double quotes:

string a = "Heat";

NOTE

string is a reference type, rather than a value type. Its
equality operators, however, follow value type semantics:

string a = "test", b = "test";
Console.Write (a == b);  // True

The escape sequences that are valid for char literals also work
inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash,
you must write it twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A ver‐
batim string literal is prefixed with @ and does not support
escape sequences. The following verbatim string is identical to
the preceding one:

string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines. You can
include the double-quote character in a verbatim literal by
writing it twice.

String concatenation

The + operator concatenates two strings:
string s = "a" + "b";

Strings and Characters | 31



One of the operands may be a nonstring value, in which case
ToString is called on that value. For example:

string s = "a" + 5;  // a5

Using the + operator repeatedly to build up a string can be inef‐
ficient: a better solution is to use the System.Text.String
Builder type—this represents a mutable (editable) string, and
has methods to efficiently Append, Insert, Remove, and Replace
substrings.

String interpolation

A string preceded with the $ character is called an interpolated
string. Interpolated strings can include expressions inside
braces:

int x = 4;
Console.Write ($"A square has {x} sides");
// Prints: A square has 4 sides

Any valid C# expression of any type can appear within the
braces, and C# will convert the expression to a string by calling
its ToString method or equivalent. You can change the format‐
ting by appending the expression with a colon and a format
string (we describe format strings in Chapter 6 of C# 7.0 in a
Nutshell):

string s = $"255 in hex is {byte.MaxValue:X2}"
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you
also specify the verbatim string operator. Note that the $ opera‐
tor must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the
desired brace character.

32 | C# 7.0 Pocket Reference



String comparisons

string does not support < and > operators for comparisons.
You must instead use string’s CompareTo method, which
returns a positive number, a negative number, or zero, depend‐
ing on whether the first value comes after, before, or alongside
the second value:

Console.Write ("Boston".CompareTo ("Austin"));   // 1
Console.Write ("Boston".CompareTo ("Boston"));   // 0
Console.Write ("Boston".CompareTo ("Chicago"));  // -1

Searching within strings

string’s indexer returns a character at a specified position:
Console.Write ("word"[2]);   // r

The IndexOf and LastIndexOf methods search for a character
within the string. The Contains, StartsWith, and EndsWith
methods search for a substring within the string.

Manipulating strings

Because string is immutable, all of the methods that “manipu‐
late” a string return a new one, leaving the original untouched:

• Substring extracts a portion of a string.
• Insert and Remove insert and remove characters at a

specified position.
• PadLeft and PadRight add whitespace.
• TrimStart, TrimEnd, and Trim remove whitespace.

The string class also defines ToUpper and ToLower methods for
changing case, a Split method to split a string into substrings
(based on supplied delimiters), and a static Join method to join
substrings back into a string.

Strings and Characters | 33



Arrays
An array represents a fixed number of elements of a particular
type. The elements in an array are always stored in a contigu‐
ous block of memory, providing highly efficient access.

An array is denoted with square brackets after the element
type. The following declares an array of five characters:

char[] vowels = new char[5];

Square brackets also index the array, accessing a particular ele‐
ment by position:

vowels[0] = 'a'; vowels[1] = 'e'; vowels[2] = 'i';
vowels[3] = 'o'; vowels[4] = 'u';

Console.WriteLine (vowels [1]);      // e

This prints “e” because array indexes start at 0. We can use a for
loop statement to iterate through each element in the array. The
for loop in this example cycles the integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
  Console.Write (vowels [i]);            // aeiou

Arrays also implement IEnumerable<T> (see “Enumeration and
Iterators” on page 140), so you can also enumerate members
with the foreach statement:

foreach (char c in vowels) Console.Write (c);  // aeiou

All array indexing is bounds-checked by the runtime. An Index
OutOfRangeException is thrown if you use an invalid index:

vowels[5] = 'y';   // Runtime error

The Length property of an array returns the number of ele‐
ments in the array. Once an array has been created, its length
cannot be changed. The System.Collection namespace and
subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

34 | C# 7.0 Pocket Reference



An array initialization expression lets you declare and populate
an array in a single step:

char[] vowels = new char[] {'a','e','i','o','u'};

or simply:
char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, which defines
common methods and properties for all arrays. This includes
instance properties such as Length and Rank, and static meth‐
ods to:

• Dynamically create an array (CreateInstance)
• Get and set elements regardless of the array type (Get
Value/SetValue)

• Search a sorted array (BinarySearch) or an unsorted
array (IndexOf, LastIndexOf, Find, FindIndex, FindLast
Index)

• Sort an array (Sort)
• Copy an array (Copy)

Default Element Initialization
Creating an array always preinitializes the elements with
default values. The default value for a type is the result of a bit‐
wise zeroing of memory. For example, consider creating an
array of integers. Because int is a value type, this allocates
1,000 integers in one contiguous block of memory. The default
value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]);            // 0

With reference type elements, the default value is null.

An array itself is always a reference type object, regardless of
element type. For instance, the following is legal:

Arrays | 35



int[] a = null;

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and
jagged. Rectangular arrays represent an n-dimensional block of
memory, and jagged arrays are arrays of arrays.

Rectangular arrays
To declare rectangular arrays, use commas to separate each
dimension. The following declares a rectangular two-
dimensional array, where the dimensions are 3 × 3:

int[,] matrix = new int [3, 3];

The GetLength method of an array returns the length for a
given dimension (starting at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
  for (int j = 0; j < matrix.GetLength(1); j++)
    matrix [i, j] = i * 3 + j;

A rectangular array can be initialized as follows (to create an
array identical to the previous example):

int[,] matrix = new int[,]
{
  {0,1,2},
  {3,4,5},
  {6,7,8}
};

(The code shown in boldface can be omitted in declaration
statements such as this.)

Jagged arrays
To declare jagged arrays, use successive square bracket pairs for
each dimension. Here is an example of declaring a jagged two-
dimensional array, where the outermost dimension is 3:

int[][] matrix = new int[3][];

36 | C# 7.0 Pocket Reference



The inner dimensions aren’t specified in the declaration
because, unlike a rectangular array, each inner array can be an
arbitrary length. Each inner array is implicitly initialized to null
rather than an empty array. Each inner array must be created
manually:

for (int i = 0; i < matrix.Length; i++)
{
  matrix[i] = new int [3];       // Create inner array
  for (int j = 0; j < matrix[i].Length; j++)
    matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array
identical to the previous example, but with an additional ele‐
ment at the end):

int[][] matrix = new int[][]
{
  new int[] {0,1,2},
  new int[] {3,4,5},
  new int[] {6,7,8,9}
};

(The code shown in boldface can be omitted in declaration
statements such as this.)

Simplified Array Initialization Expressions
We’ve already seen how to simplify array initialization expres‐
sions by omitting the new keyword and type declaration:

char[] vowels = new char[] {'a','e','i','o','u'};
char[] vowels =            {'a','e','i','o','u'};

Another approach is to omit the type name after the new key‐
word, and have the compiler infer the array type. This is a use‐
ful shortcut when you’re passing arrays as arguments. For
example, consider the following method:

void Foo (char[] data) { ... }

We can call this method with an array that we create on the fly,
as follows:

Arrays | 37



Foo ( new char[] {'a','e','i','o','u'} );   // Longhand
Foo ( new[]      {'a','e','i','o','u'} );   // Shortcut

This shortcut is essential in creating arrays of anonymous types,
as we’ll see later.

Variables and Parameters
A variable represents a storage location that has a modifiable
value. A variable can be a local variable, parameter (value, ref,
or out), field (instance or static), or array element.

The Stack and the Heap
The stack and the heap are the places where variables and con‐
stants reside. Each has very different lifetime semantics.

Stack
The stack is a block of memory for storing local variables and
parameters. The stack logically grows and shrinks as a function
is entered and exited. Consider the following method (to avoid
distraction, input argument checking is ignored):

static int Factorial (int x)
{
  if (x == 0) return 1;
  return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time
the method is entered, a new int is allocated on the stack, and
each time the method exits, the int is deallocated.

Heap
The heap is a block of memory in which objects (i.e., reference
type instances) reside. Whenever a new object is created, it is
allocated on the heap, and a reference to that object is returned.
During a program’s execution, the heap begins filling up as new
objects are created. The runtime has a garbage collector that
periodically deallocates objects from the heap so that your pro‐

38 | C# 7.0 Pocket Reference



gram does not run out of memory. An object is eligible for
deallocation as soon as it’s not referenced by anything that’s
itself alive.

Value type instances (and object references) live wherever the
variable was declared. If the instance was declared as a field
within a class type or as an array element, that instance lives on
the heap.

NOTE

You can’t explicitly delete objects in C#, as you can in C++.
An unreferenced object is eventually collected by the
garbage collector.

The heap also stores static fields and constants. Unlike objects
allocated on the heap (which can get garbage-collected), these
live until the application domain is torn down.

Definite Assignment
C# enforces a definite assignment policy. In practice, this
means that outside of an unsafe context, it’s impossible to
access uninitialized memory. Definite assignment has three
implications:

• Local variables must be assigned a value before they can
be read.

• Function arguments must be supplied when a method is
called (unless marked optional—see “Optional parame‐
ters” on page 44).

• All other variables (such as fields and array elements) are
automatically initialized by the runtime.

Variables and Parameters | 39



For example, the following code results in a compile-time
error:

static void Main()
{
  int x;
  Console.WriteLine (x);        // Compile-time error
}

However, if x were instead a field of the containing class, this
would be legal and would print 0.

Default Values
All type instances have a default value. The default value for the
predefined types is the result of a bitwise zeroing of memory,
and is null for reference types, 0 for numeric and enum types,
'\0' for the char type, and false for the bool type.

You can obtain the default value for any type with the default
keyword (in practice, this is useful with generics, as we’ll see
later). The default value in a custom value type (i.e., struct) is
the same as the default value for each field defined by the cus‐
tom type.

Parameters
method has a sequence of parameters. Parameters define the
set of arguments that must be provided for that method. In this
example, the method Foo has a single parameter named p, of
type int:

static void Foo (int p)   // p is a parameter
{
  ...
}
static void Main() { Foo (8); }   // 8 is an argument

You can control how parameters are passed by using the ref
and out modifiers:

40 | C# 7.0 Pocket Reference



Parameter modifier Passed by Variable must be definitely assigned

None Value Going in

ref Reference Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far
the most common case. This means that a copy of the value is
created when it is passed to the method:

static void Foo (int p)
{
  p = p + 1;                // Increment p by 1
  Console.WriteLine (p);    // Write p to screen
}
static void Main()
{
  int x = 8;
  Foo (x);                  // Make a copy of x
  Console.WriteLine (x);    // x will still be 8
}

Assigning p a new value does not change the contents of x,
because p and x reside in different memory locations.

Passing a reference type argument by value copies the reference,
but not the object. In the following example, Foo sees the same
StringBuilder object that Main instantiated, but has an inde‐
pendent reference to it. In other words, sb and fooSB are sepa‐
rate variables that reference the same StringBuilder object:

static void Foo (StringBuilder fooSB)
{
  fooSB.Append ("test");
  fooSB = null;
}
static void Main()
{
  StringBuilder sb = new StringBuilder();
  Foo (sb);
  Console.WriteLine (sb.ToString());    // test
}

Variables and Parameters | 41



Because fooSB is a copy of a reference, setting it to null doesn’t
make sb null. (If, however, fooSB was declared and called with
the ref modifier, sb would become null.)

The ref modifier

To pass by reference, C# provides the ref parameter modifier. In
this example, p and x refer to the same memory locations:

static void Foo (ref int p)
{
  p = p + 1;
  Console.WriteLine (p);
}
static void Main()
{
  int x = 8;
  Foo (ref x);             // Pass x by reference
  Console.WriteLine (x);   // x is now 9
}

Now, assigning p a new value changes the contents of x. Notice
how the ref modifier is required both when writing and calling
the method. This makes it very clear what’s going on.

NOTE

A parameter can be passed by reference or by value,
regardless of whether the parameter type is a reference type
or a value type.

The out modifier

An out argument is like a ref argument, except it:

• Need not be assigned before going into the function
• Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return
values back from a method.

42 | C# 7.0 Pocket Reference



Out variables and discards (C# 7)
From C# 7, you can declare variables on the fly when calling
methods with out parameters:

int.TryParse ("123", out int x);
Console.WriteLine (x);

This is equivalent to:
int x;
int.TryParse ("123", out x);
Console.WriteLine (x);

When calling methods with multiple out parameters, you can
“discard” any that you’re uninterested in with an underscore.
Assuming that SomeBigMethod has been defined with five out
parameters, we can ignore all but the third, as follows:

SomeBigMethod (out _, out _, out int x, out _, out _);
Console.WriteLine (x);

The params modifier

The params modifier may be specified on the last parameter of
a method so that the method accepts any number of arguments
of a particular type. The parameter type must be declared as an
array. For example:

static int Sum (params int[] ints)
{
  int sum = 0;
  for (int i = 0; i < ints.Length; i++) sum += ints[i];
  return sum;
}

We can call this as follows:
Console.WriteLine (Sum (1, 2, 3, 4));    // 10

You can also supply a params argument as an ordinary array.
The preceding call is semantically equivalent to:

Console.WriteLine (Sum (new int[] { 1, 2, 3, 4 } ));

Variables and Parameters | 43



Optional parameters
Starting with C# 4.0, methods, constructors, and indexers can
declare optional parameters. A parameter is optional if it speci‐
fies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

You may omit optional parameters when calling the method:
Foo();     // 23

The default argument of 23 is actually passed to the optional
parameter x—the compiler bakes the value 23 into the com‐
piled code at the calling side. The preceding call to Foo is
semantically identical to:

Foo (23);

because the compiler simply substitutes the default value of an
optional parameter wherever it is used.

WARNING

Adding an optional parameter to a public method that’s
called from another assembly requires recompilation of
both assemblies—just as though the parameter were
mandatory.

The default value of an optional parameter must be specified by
a constant expression or a parameterless constructor of a value
type. Optional parameters cannot be marked with ref or out.

Mandatory parameters must occur before optional parameters
in both the method declaration and the method call (the excep‐
tion is with params arguments, which still always come last). In
the following example, the explicit value of 1 is passed to x, and
the default value of 0 is passed to y:

void Foo (int x = 0, int y = 0)
{
  Console.WriteLine (x + ", " + y);

44 | C# 7.0 Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


}
void Test()
{
  Foo(1);    // 1, 0
}

To do the converse (pass a default value to x and an explicit
value to y), you must combine optional parameters with named
arguments.

Named arguments
Rather than identifying an argument by position, you can iden‐
tify an argument by name. For example:

void Foo (int x, int y)
{
  Console.WriteLine (x + ", " + y);
}
void Test()
{
  Foo (x:1, y:2);  // 1, 2
}

Named arguments can occur in any order. The following calls
to Foo are semantically identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

You can mix named and positional arguments, as long as the
named arguments appear last:

Foo (1, y:2);

Named arguments are particularly useful in conjunction with
optional parameters. For instance, consider the following
method:

void Bar (int a=0, int b=0, int c=0, int d=0) { ... }

We can call this, supplying only a value for d, as follows:
Bar (d:3);

This is particularly useful when you’re calling COM APIs.

Variables and Parameters | 45



var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in
one step. If the compiler is able to infer the type from the initi‐
alization expression, you can use the word var in place of the
type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:
string x = "hello";
System.Text.StringBuilder y =
  new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are
statically typed. For example, the following generates a
compile-time error:

var x = 5;
x = "hello";    // Compile-time error; x is of type int

In the section “Anonymous Types” on page 153, we describe a
scenario where the use of var is mandatory.

Expressions and Operators
An expression essentially denotes a value. The simplest kinds of
expressions are constants (such as 123) and variables (such as
x). Expressions can be transformed and combined with opera‐
tors. An operator takes one or more input operands to output a
new expression:

12 * 30   // * is an operator; 12 and 30 are operands.

Complex expressions can be built because an operand may
itself be an expression, such as the operand (12 * 30) in the
following example:

1 + (12 * 30)

46 | C# 7.0 Pocket Reference



Operators in C# can be classed as unary, binary, or ternary—
depending on the number of operands they work on (one, two,
or three). The binary operators always use infix notation, where
the operator is placed between the two operands.

Operators that are intrinsic to the basic plumbing of the lan‐
guage are called primary; an example is the method call opera‐
tor. An expression that has no value is called a void expression:

Console.WriteLine (1)

Because a void expression has no value, it cannot be used as an
operand to build more complex expressions:

1 + Console.WriteLine (1)      // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the
result of another expression to a variable. For example:

x = x * 5

An assignment expression is not a void expression. It actually
carries the assignment value; thus, it can be incorporated into
another expression. In the following example, the expression
assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple val‐
ues:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that
combine assignment with another operator. For example:

x *= 2    // equivalent to x = x * 2
x <<= 1   // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we
describe later: the += and -= operators here are treated specially
and map to the event’s add and remove accessors.)

Expressions and Operators | 47



Operator Precedence and Associativity
When an expression contains multiple operators, precedence
and associativity determine the order of their evaluation. Oper‐
ators with higher precedence execute before operators of lower
precedence. If the operators have the same precedence, the
operator’s associativity determines the order of evaluation.

Precedence

The expression 1 + 2 * 3 is evaluated as 1 + (2 * 3) because
* has a higher precedence than +.

Left-associative operators
Binary operators (except for assignment, lambda, and null coa‐
lescing operators) are left-associative; in other words, they are
evaluated from left to right. For example, the expression 8/4/2
is evaluated as (8/4)/2 due to left associativity. Of course, you
can insert your own parentheses to change evaluation order.

Right-associative operators
The assignment and lambda operators, null coalescing operator,
and (ternary) conditional operator are right-associative; in
other words, they are evaluated from right to left. Right asso‐
ciativity allows multiple assignments such as x=y=3 to compile:
it works by first assigning 3 to y, and then assigning the result
of that expression (3) to x.

Operator Table
The following table lists C#’s operators in order of precedence. 
Operators listed under the same subheading have the same
precedence. We explain user-overloadable operators in the sec‐
tion “Operator Overloading” on page 191.

48 | C# 7.0 Pocket Reference



Operator
symbol

Operator name Example Overloadable

Primary (highest precedence)

. Member access x.y No

-> Pointer to struct
(unsafe)

x->y No

() Function call x() No

[] Array/index a[x] Via indexer

++ Post-increment x++ Yes

-- Post-decrement x-- Yes

new Create instance new Foo() No

stackalloc Unsafe stack
allocation

stackalloc(10) No

typeof Get type from
identifier

typeof(int) No

nameof Get name of
identifier

nameof(x) No

checked Integral overflow
check on

checked(x) No

unchecked Integral overflow
check off

unchecked(x) No

default Default value default(char) No

Unary

await Await await myTask No

sizeof Get size of struct sizeof(int) No

?. Null-conditional x?.y No

+ Positive value of +x Yes

- Negative value of -x Yes

Expressions and Operators | 49



Operator
symbol

Operator name Example Overloadable

! Not !x Yes

~ Bitwise
complement

~x Yes

++ Pre-increment ++x Yes

-- Post-increment --x Yes

() Cast (int)x No

* Value at address
(unsafe)

*x No

& Address of value
(unsafe)

&x No

Multiplicative

* Multiply x * y Yes

/ Divide x / y Yes

% Remainder x % y Yes

Additive

+ Add x + y Yes

- Subtract x - y Yes

Shift

<< Shift left x << 1 Yes

>> Shift right x >> 1 Yes

Relational

< Less than x < y Yes

> Greater than x > y Yes

<= Less than or equal
to

x <= y Yes

50 | C# 7.0 Pocket Reference



Operator
symbol

Operator name Example Overloadable

>= Greater than or
equal to

x >= y Yes

is Type is or is
subclass of

x is y No

as Type conversion x as y No

Equality

== Equals x == y Yes

!= Not equals x != y Yes

Logical And

& And x & y Yes

Logical Xor

^ Exclusive Or x ^ y Yes

Logical Or

| Or x | y Yes

Conditional And

&& Conditional And x && y Via &

Conditional Or

|| Conditional Or x || y Via |

Conditional (ternary)

? : Conditional isTrue ? then

This : elseThis

No

Assignment and lambda (lowest precedence)

= Assign x = y No

*= Multiply self by x *= 2 Via *

/= Divide self by x /= 2 Via /

+= Add to self x += 2 Via +

Expressions and Operators | 51



Operator
symbol

Operator name Example Overloadable

-= Subtract from self x -= 2 Via -

<<= Shift self left by x <<= 2 Via <<

>>= Shift self right by x >>= 2 Via >>

&= And self by x &= 2 Via &

^= Exclusive-Or self
by

x ^= 2 Via ^

|= Or self by x |= 2 Via |

=> Lambda x => x + 1 No

Null Operators
C# provides two operators to make it easier to work with nulls:
the null coalescing operator and the null-conditional operator.

Null Coalescing Operator
The ?? operator is the null coalescing operator. It says “If the
operand is non-null, give it to me; otherwise, give me a default
value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing"; // s2 evaluates to "nothing"

If the lefthand expression is non-null, the righthand expression
is never evaluated. The null coalescing operator also works with
nullable value types (see “Nullable Types” on page 146).

Null-Conditional Operator
The ?. operator is the null-conditional, or “Elvis,” operator, and
was introduced in C# 6. It allows you to call methods and
access members just like the standard dot operator, except that
if the operand on the left is null, the expression evaluates to
null instead of throwing a NullReferenceException:

52 | C# 7.0 Pocket Reference



System.Text.StringBuilder sb = null;
string s = sb?.ToString();   // No error; s is null

The last line is equivalent to:
string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the
remainder of the expression. In the following example, s evalu‐
ates to null, even with a standard dot operator between
ToString() and ToUpper():

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper();   // No error

Repeated use of Elvis is necessary only if the operand immedi‐
ately to its left may be null. This expression is robust to both x
being null and x.y being null:

x?.y?.z

and is equivalent to the following (except that x.y is evaluated
only once):

x == null ? null
          : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The
following is illegal because int cannot accept a null:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length;   // Illegal

We can fix this with the use of nullable value types (see “Nulla‐
ble Types” on page 146):

int? length = sb?.ToString().Length;   // OK : int? can 
be null

You can also use the null-conditional operator to call a void
method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than
throwing a NullReferenceException.

Null Operators | 53



The null-conditional operator can be used with the commonly
used type members that we describe in “Classes” on page 67,
including methods, fields, properties, and indexers. It also com‐
bines well with the null coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";   // s evaluates 
to "nothing"

Statements
Functions comprise statements that execute sequentially in the
textual order in which they appear. A statement block is a series
of statements appearing between braces (the {} tokens).

Declaration Statements
A declaration statement declares a new variable, optionally ini‐
tializing the variable with an expression. A declaration state‐
ment ends in a semicolon. You may declare multiple variables
of the same type in a comma-separated list. For example:

bool rich = true, famous = false;

A constant declaration is like a variable declaration, except that
it cannot be changed after it has been declared, and the initiali‐
zation must occur with the declaration (more on this in “Con‐
stants” on page 78):

const double c = 2.99792458E08;

Local variable scope
The scope of a local variable or local constant variable extends
throughout the current block. You cannot declare another local
variable with the same name in the current block or in any nes‐
ted blocks.

54 | C# 7.0 Pocket Reference



Expression Statements
Expression statements are expressions that are also valid state‐
ments. In practice, this means expressions that “do” something;
in other words, expressions that:

• Assign or modify a variable
• Instantiate an object
• Call a method

Expressions that do none of these are not valid statements:
string s = "foo";
s.Length;          // Illegal statement: does nothing!

When you call a constructor or a method that returns a value,
you’re not obliged to use the result. However, unless the con‐
structor or method changes state, the statement is useless:

new StringBuilder();     // Legal, but useless
x.Equals (y);            // Legal, but useless

Selection Statements
Selection statements conditionally control the flow of program
execution.

The if statement

An if statement executes a statement if a bool expression is
true. For example:

if (5 < 2 * 3)
  Console.WriteLine ("true");       // true

The statement can be a code block:
if (5 < 2 * 3)
{
  Console.WriteLine ("true");       // true
  Console.WriteLine ("...")
}

Statements | 55



The else clause

An if statement can optionally feature an else clause:
if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  Console.WriteLine ("False");        // False

Within an else clause, you can nest another if statement:
if (2 + 2 == 5)
  Console.WriteLine ("Does not compute");
else
  if (2 + 2 == 4)
    Console.WriteLine ("Computes");    // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding if
statement in the statement block. For example:

if (true)
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");

This is semantically identical to:
if (true)
{
  if (false)
    Console.WriteLine();
  else
    Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:
if (true)
{
  if (false)
    Console.WriteLine();
}
else
  Console.WriteLine ("does not execute");

56 | C# 7.0 Pocket Reference



C# has no “elseif ” keyword; however, the following pattern
achieves the same result:

static void TellMeWhatICanDo (int age)
{
  if (age >= 35)
    Console.WriteLine ("You can be president!");
  else if (age >= 21)
    Console.WriteLine ("You can drink!");
  else if (age >= 18)
    Console.WriteLine ("You can vote!");
  else
    Console.WriteLine ("You can wait!");
}

The switch statement

switch statements let you branch program execution based on
a selection of possible values that a variable may have. switch
statements may result in cleaner code than multiple if state‐
ments because switch statements require an expression to be
evaluated only once. For instance:

static void ShowCard (int cardNumber)
{
  switch (cardNumber)
  {
    case 13:
      Console.WriteLine ("King");
      break;
    case 12:
      Console.WriteLine ("Queen");
      break;
    case 11:
      Console.WriteLine ("Jack");
      break;
    default:    // Any other cardNumber
      Console.WriteLine (cardNumber);
      break;
  }
}

The values in each case expression must be constants, which
restricts their allowable types to the built-in integral types; the
bool, char, and enum types, as well as the string type. At the

Statements | 57



end of each case clause, you must say explicitly where execu‐
tion is to go next, with some kind of jump statement. Here are
the options:

• break (jumps to the end of the switch statement)
• goto case x (jumps to another case clause)
• goto default (jumps to the default clause)
• Any other jump statement—namely, return, throw, con
tinue, or goto label

When more than one value should execute the same code, you
can list the common cases sequentially:

switch (cardNumber)
{
  case 13:
  case 12:
  case 11:
    Console.WriteLine ("Face card");
    break;
  default:
    Console.WriteLine ("Plain card");
    break;
}

This feature of a switch statement can be pivotal in terms of
producing cleaner code than multiple if-else statements.

The switch statement with patterns (C# 7)
From C# 7, you can switch based on type:

static void TellMeTheType (object x)
{
  switch (x)
  {
    case int i:
      Console.WriteLine ("It's an int!");
      break;
    case string s:
      Console.WriteLine (s.Length);      // We can use s
      break;
    case bool b when b == true   // Fires when b is true

58 | C# 7.0 Pocket Reference



      Console.WriteLine ("True");
      break;
    case null:   // You can also switch on null in C# 7
      Console.WriteLine ("null");
      break;
  }
}

(The object type allows for a variable of any type—see “Inheri‐
tance” on page 82 and “The object Type” on page 91.)

Each case clause specifies a type upon which to match, and a
variable upon which to assign the typed value if the match suc‐
ceeds. Unlike with constants, there’s no restriction on what
types you can use. The optional when clause specifies a condi‐
tion that must be satisfied for the case to match.

The order of the case clauses is relevant when you’re switching
on type (unlike when you’re switching on constants). An
exception to this rule is the default clause, which is executed
last, regardless of where it appears.

You can stack multiple case clauses. The Console.WriteLine in
the following code will execute for any floating-point type
greater than 1,000:

  switch (x)
  {
    case float f when f > 1000:
    case double d when d > 1000:
    case decimal m when m > 1000:
      Console.WriteLine ("f, d and m are out of scope");
      break;

In this example, the compiler lets us consume the variables f, d,
and m, only in the when clauses. When we call Console.Write
Line, it’s unknown as to which one of those three variables will
be assigned, so the compiler puts all of them out of scope.

Iteration Statements
C# enables a sequence of statements to execute repeatedly with
the while, do-while, for, and foreach statements.

Statements | 59



while and do-while loops

while loops repeatedly execute a body of code while a bool
expression is true. The expression is tested before the body of
the loop is executed. For example, the following writes 012:

int i = 0;
while (i < 3)
{                         // Braces here are optional
  Console.Write (i++);
}

do-while loops differ in functionality from while loops only in
that they test the expression after the statement block has exe‐
cuted (ensuring that the block is always executed at least once).
Here’s the preceding example rewritten with a do-while loop:

int i = 0;
do
{
  Console.WriteLine (i++);
}
while (i < 3);

for loops

for loops are like while loops with special clauses for initializa‐
tion and iteration of a loop variable. A for loop contains three
clauses as follows:

for (init-clause; condition-clause; iteration-clause)
  statement-or-statement-block

The init-clause executes before the loop begins and typically
initializes one or more iteration variables.

The condition-clause is a bool expression that is tested before
each loop iteration. The body executes while this condition is
true.

The iteration-clause is executed after each iteration of the body.
It’s typically used to update the iteration variable.

60 | C# 7.0 Pocket Reference



For example, the following prints the numbers 0 through 2:
for (int i = 0; i < 3; i++)
  Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where
each number is the sum of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
  Console.WriteLine (prevFib);
  int newFib = prevFib + curFib;
  prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement may be omitted. You
can implement an infinite loop such as the following (though
while(true) may be used instead):

for (;;) Console.WriteLine ("interrupt me");

foreach loops

The foreach statement iterates over each element in an enu‐
merable object. Most of the types in C# and the .NET Frame‐
work that represent a set or list of elements are enumerable. For
example, both an array and a string are enumerable. Here is an
example of enumerating over the characters in a string, from
the first character through to the last:

foreach (char c in "beer")
  Console.WriteLine (c + " ");   // b e e r

We define enumerable objects in “Enumeration and Iterators”
on page 140.

Jump Statements
The C# jump statements are break, continue, goto, return, and
throw. We cover the throw keyword in “try Statements and
Exceptions” on page 132.

Statements | 61



The break statement

The break statement ends the execution of the body of an itera‐
tion or switch statement:

int x = 0;
while (true)
{
  if (x++ > 5) break;      // break from the loop
}
// execution continues here after break
...

The continue statement

The continue statement forgoes the remaining statements in
the loop and makes an early start on the next iteration. The fol‐
lowing loop skips even numbers:

for (int i = 0; i < 10; i++)
{
  if ((i % 2) == 0) continue;
  Console.Write (i + " ");      // 1 3 5 7 9
}

The goto statement

The goto statement transfers execution to a label (denoted with
a colon suffix) within a statement block. The following iterates
the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
  Console.Write (i + " ");   // 1 2 3 4 5
  i++;
  goto startLoop;
}

The return statement

The return statement exits the method and must return an
expression of the method’s return type if the method is non‐
void:

62 | C# 7.0 Pocket Reference



static decimal AsPercentage (decimal d)
{
  decimal p = d * 100m;
  return p;     // Return to calling method with value
}

A return statement can appear anywhere in a method (except
in a finally block).

Namespaces
A namespace is a domain within which type names must be
unique. Types are typically organized into hierarchical name‐
spaces—both to avoid naming conflicts and to make type
names easier to find. For example, the RSA type that handles
public key encryption is defined within the following name‐
space:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The fol‐
lowing code calls RSA’s Create method:

System.Security.Cryptography.RSA rsa =
  System.Security.Cryptography.RSA.Create();

NOTE

Namespaces are independent of assemblies, which are
units of deployment such as an .exe or .dll.
Namespaces also have no impact on member accessibil‐
ity—public, internal, private, and so on.

The namespace keyword defines a namespace for types within
that block. For example:

namespace Outer.Middle.Inner
{
  class Class1 {}

Namespaces | 63



  class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested
namespaces. The code that follows is semantically identical to
the preceding example:

namespace Outer
{
  namespace Middle
  {
    namespace Inner
    {
      class Class1 {}
      class Class2 {}
    }
  }
}

You can refer to a type with its fully qualified name, which
includes all namespaces from the outermost to the innermost.
For example, we could refer to Class1 in the preceding example
as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the
global namespace. The global namespace also includes top-level
namespaces, such as Outer in our example.

The using Directive
The using directive imports a namespace and is a convenient
way to refer to types without their fully qualified names. For
example, we can refer to Class1 in the preceding example as
follows:

using Outer.Middle.Inner;

class Test    // Test is in the global namespace
{
  static void Main()
  {
    Class1 c;    // Don't need fully qualified name
    ...

64 | C# 7.0 Pocket Reference



  }
}

A using directive can be nested within a namespace itself to
limit the scope of the directive.

using static
From C# 6, you can import not just a namespace, but a specific
type by using the using static directive. All static members of
that type can then be used without being qualified with the type
name. In the following example, we call the Console class’s
static WriteLine method:

using static System.Console;

class Test
{
  static void Main() { WriteLine ("Hello"); }
}

The using static directive imports all accessible static mem‐
bers of the type, including fields, properties, and nested types.
You can also apply this directive to enum types (see “Enums”
on page 101), in which case their members are imported.
Should an ambiguity arise between multiple static imports, the
C# compiler is unable to infer the correct type from the con‐
text, and will generate an error.

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified
within inner namespaces. In this example, Class1 does not
need qualification within Inner:

namespace Outer
{
  class Class1 {}

  namespace Inner
  {

Namespaces | 65



    class Class2 : Class1 {}
  }
}

If you want to refer to a type in a different branch of your
namespace hierarchy, you can use a partially qualified name. In
the following example, we base SalesReport on Common.Report
Base:

namespace MyTradingCompany
{
  namespace Common
  {
    class ReportBase {}
  }
  namespace ManagementReporting
  {
    class SalesReport : Common.ReportBase {}
  }
}

Name hiding
If the same type name appears in both an inner and an outer
namespace, the inner name wins. To refer to the type in the
outer namespace, you must qualify its name.

NOTE

All type names are converted to fully qualified names at
compile time. Intermediate Language (IL) code contains
no unqualified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type
names within the namespaces don’t conflict:

namespace Outer.Middle.Inner { class Class1 {} }
namespace Outer.Middle.Inner { class Class2 {} }

The classes can even span source files and assemblies.

66 | C# 7.0 Pocket Reference



The global:: qualifier
Occasionally, a fully qualified type name may conflict with an
inner name. You can force C# to use the fully qualified type
name by prefixing it with global:: as follows:

global::System.Text.StringBuilder sb;

Aliasing Types and Namespaces
Importing a namespace can result in type–name collision.
Rather than importing the whole namespace, you can import
just the specific types you need, giving each type an alias. For
example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:
using R = System.Reflection;
class Program { R.PropertyInfo p; }

Classes
A class is the most common kind of reference type. The sim‐
plest possible class declaration is as follows:

class Foo
{
}

A more complex class optionally has the following:

Preceding the
keyword class

Attributes and class modifiers. The non-nested class
modifiers are public, internal, abstract, sealed,
static, unsafe, and partial.

Following Your
ClassName

Generic type parameters, a base class, and interfaces.

Within the braces Class members (these are methods, properties, indexers,
events, fields, constructors, overloaded operators, nested
types, and a finalizer).

Classes | 67



Fields
A field is a variable that is a member of a class or struct. For
example:

class Octopus
{
  string name;
  public int Age = 10;
}

A field may have the readonly modifier to prevent it from
being modified after construction. A read-only field can be
assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization is optional. An uninitialized field has a
default value (0, \0, null, false). Field initializers run before
constructors in the order in which they appear.

For convenience, you may declare multiple fields of the same
type in a comma-separated list. This is a convenient way for all
the fields to share the same attributes and field modifiers. For
example:

static readonly int legs = 8, eyes = 2;

Methods
A method performs an action in a series of statements. A
method can receive input data from the caller by specifying
parameters, and send output data back to the caller by specify‐
ing a return type. A method can specify a void return type,
indicating that it doesn’t return any value to its caller. A
method can also send output data back to the caller via ref and
out parameters.

A method’s signature must be unique within the type. A meth‐
od’s signature comprises its name and parameter types in order
(but not the parameter names, nor the return type).

68 | C# 7.0 Pocket Reference



Expression-bodied methods
A method that comprises a single expression, such as:

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method
(from C# 6). A fat arrow replaces the braces and return key‐
word:

int Foo (int x) => x * 2;

Expression-bodied functions can also have a void return type:
void Foo (int x) => Console.WriteLine (x);

Overloading methods
A type may overload methods (have multiple methods with the
same name), as long as the parameter types are different. For
example, the following methods can all coexist in the same
type:

void Foo (int x);
void Foo (double x);
void Foo (int x, float y);
void Foo (float x, int y);

Local methods (C# 7)
From C# 7, you can define a method inside another method:

void WriteCubes()
{
  Console.WriteLine (Cube (3));

  int Cube (int value) => value * value * value;
}

The local method (Cube, in this case) is visible only to the
enclosing method (WriteCubes). This simplifies the containing
type and instantly signals to anyone looking at the code that
Cube is used nowhere else. Local methods can access the local
variables and parameters of the enclosing method. This has a
number of consequences, which we describe in “Capturing
Outer Variables” on page 128.

Classes | 69



Local methods can appear inside other function kinds, such as
property accessors, constructors, and so on, end even inside
other local methods. Local methods can be iterators or asyn‐
chronous. The static modifier is invalid for local methods;
they are implicitly static if the enclosing method is static.

Instance Constructors
Constructors run initialization code on a class or struct. A con‐
structor is defined like a method, except that the method name
and return type are reduced to the name of the enclosing type:

public class Panda
{
  string name;              // Define field
  public Panda (string n)   // Define constructor
  {
    name = n;               // Initialization code
  }
}
...
Panda p = new Panda ("Petey");   // Call constructor

From C# 7, single-statement constructors can be written as
expression-bodied members:

public Panda (string n) => name = n;

A class or struct may overload constructors. One overload may
call another, using the this keyword:

public class Wine
{
  public Wine (decimal price) {...}

  public Wine (decimal price, int year)
               : this (price) {...}
}

When one constructor calls another, the called constructor exe‐
cutes first.

You can pass an expression into another constructor as follows:
public Wine (decimal price, DateTime year)
             : this (price, year.Year) {...}

70 | C# 7.0 Pocket Reference



The expression itself cannot make use of the this reference, for
example, to call an instance method. It can, however, call static
methods.

Implicit parameterless constructors
For classes, the C# compiler automatically generates a parame‐
terless public constructor if and only if you do not define any
constructors. However, as soon as you define at least one con‐
structor, the parameterless constructor is no longer automati‐
cally generated.

Nonpublic constructors
Constructors do not need to be public. A common reason to
have a nonpublic constructor is to control instance creation via
a static method call. The static method could be used to return
an object from a pool rather than creating a new object, or
return a specialized subclass chosen based on input arguments.

Deconstructors (C# 7)
Whereas a constructor typically takes a set of values (as param‐
eters) and assigns them to fields, a deconstructor does the
reverse and assigns fields back to a set of variables. A decon‐
struction method must be called Deconstruct, and have one or
more out parameters:

class Rectangle
{
  public readonly float Width, Height;

  public Rectangle (float width, float height)
  {
    Width = width; Height = height;
  }

  public void Deconstruct (out float width,
                           out float height)
  {
    width = Width; height = Height;

Classes | 71



  }
}

To call the deconstructor, we use the following special syntax:
var rect = new Rectangle (3, 4);
(float width, float height) = rect;
Console.WriteLine (width + " " + height);    // 3 4

The second line is the deconstructing call. It creates two local
variables and then calls the Deconstruct method. Our decon‐
structing call is equivalent to:

rect.Deconstruct (out var width, out var height);

Deconstructing calls allow implicit typing, so we could shorten
our call to:

(var width, var height) = rect;

Or simply:
var (width, height) = rect;

If the variables into which you’re deconstructing are already
defined, omit the types altogether; this is called a deconstructing
assignment:

(width, height) = rect;

You can offer the caller a range of deconstruction options by
overloading the Deconstruct method.

NOTE

The Deconstruct method can be an extension method
(see “Extension Methods” on page 151). This is a useful
trick, if you want to deconstruct types that you did not
author.

72 | C# 7.0 Pocket Reference



Object Initializers
To simplify object initialization, the accessible fields or proper‐
ties of an object can be initialized via an object initializer
directly after construction. For example, consider the following
class:

public class Bunny
{
  public string Name;
  public bool LikesCarrots, LikesHumans;

  public Bunny () {}
  public Bunny (string n) { Name = n; }
}

Using object initializers, you can instantiate Bunny objects as
follows:

Bunny b1 = new Bunny {
                       Name="Bo",
                       LikesCarrots = true,
                       LikesHumans = false
                     };

Bunny b2 = new Bunny ("Bo") {
                              LikesCarrots = true,
                              LikesHumans = false
                            };

The this Reference
The this reference refers to the instance itself. In the following
example, the Marry method uses this to set the partner’s mate
field:

public class Panda
{
  public Panda Mate;

  public void Marry (Panda partner)
  {
    Mate = partner;
    partner.Mate = this;

Classes | 73



  }
}

The this reference also disambiguates a local variable or
parameter from a field. For example:

public class Test
{
  string name;
  public Test (string name) { this.name = name; }
}

The this reference is valid only within nonstatic members of a
class or struct.

Properties
Properties look like fields from the outside, but internally they
contain logic, like methods do. For example, you can’t tell by
looking at the following code whether CurrentPrice is a field or
a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block
added. Here’s how to implement CurrentPrice as a property:

public class Stock
{
  decimal currentPrice;  // The private "backing" field

  public decimal CurrentPrice    // The public property
  {
     get { return currentPrice; }
     set { currentPrice = value; }
  }
}

get and set denote property accessors. The get accessor runs
when the property is read. It must return a value of the proper‐
ty’s type. The set accessor runs when the property is assigned.
It has an implicit parameter named value of the property’s type

74 | C# 7.0 Pocket Reference



that you typically assign to a private field (in this case, current
Price).

Although properties are accessed in the same way as fields, they
differ in that they give the implementer complete control over
getting and setting its value. This control enables the imple‐
menter to choose whatever internal representation is needed,
without exposing the internal details to the user of the prop‐
erty. In this example, the set method could throw an exception
if value was outside a valid range of values.

NOTE

Throughout this book, we use public fields to keep the
examples free of distraction. In a real application, you
would typically favor public properties over public fields to
promote encapsulation.

A property is read-only if it specifies only a get accessor, and it
is write-only if it specifies only a set accessor. Write-only prop‐
erties are rarely used.

A property typically has a dedicated backing field to store the
underlying data. However, it need not—it may instead return a
value computed from other data.

decimal currentPrice, sharesOwned;

public decimal Worth
{
  get { return currentPrice * sharesOwned; }
}

Expression-bodied properties
From C# 6, you can declare a read-only property, such as the
preceding one, more tersely as an expression-bodied property. A
fat arrow replaces all the braces and the get and return key‐
words:

Classes | 75



public decimal Worth => currentPrice * sharesOwned;

C# 7 extends this further by allowing set accessors to be
expression-bodied, too:

public decimal Worth
{
  get => currentPrice * sharesOwned;
  set => sharesOwned = value / currentPrice;
}

Automatic properties
The most common implementation for a property is a getter
and/or setter that simply reads and writes to a private field of
the same type as the property. An automatic property declara‐
tion instructs the compiler to provide this implementation. We
can improve the first example in this section by declaring Cur
rentPrice as an automatic property:

public class Stock
{
  public decimal CurrentPrice { get; set; }
}

The compiler automatically generates a private backing field of
a compiler-generated name that cannot be referred to. The set
accessor can be marked private or protected if you want to
expose the property as read-only to other types.

Property initializers
From C# 6, you can add a property initializer to automatic
properties, just as with fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with
an initializer can be read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties
can also be assigned in the type’s constructor. This is useful in
creating immutable (read-only) types.

76 | C# 7.0 Pocket Reference



get and set accessibility

The get and set accessors can have different access levels. The
typical use case for this is to have a public property with an
internal or private access modifier on the setter:

private decimal x;
public decimal X
{
  get         { return x;  }
  private set { x = Math.Round (value, 2); }
}

Notice that you declare the property itself with the more per‐
missive access level (public, in this case) and add the modifier
to the accessor you want to be less accessible.

Indexers
Indexers provide a natural syntax for accessing elements in a
class or struct that encapsulate a list or dictionary of values.
Indexers are similar to properties, but are accessed via an index
argument rather than a property name. The string class has an
indexer that lets you access each of its char values via an int
index:

string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that for using arrays,
except that the index argument(s) can be of any type(s). You
can call indexers null-conditionally by inserting a question
mark before the square bracket (see “Null Operators” on page
52):

string s = null;
Console.WriteLine (s?[0]);  // Writes nothing; no error.

Implementing an indexer

To write an indexer, define a property called this, specifying
the arguments in square brackets. For instance:

Classes | 77



class Sentence
{
  string[] words = "The quick brown fox".Split();

  public string this [int wordNum]      // indexer
  {
    get { return words [wordNum];  }
    set { words [wordNum] = value; }
  }
}

Here’s how we could use this indexer:
Sentence s = new Sentence();
Console.WriteLine (s[3]);       // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]);       // kangaroo

A type may declare multiple indexers, each with parameters of
different types. An indexer can also take more than one param‐
eter:

public string this [int arg1, string arg2]
{
  get { ... }  set { ... }
}

If you omit the set accessor, an indexer becomes read-only,
and expression-bodied syntax may be used (introduced in C#
6) to shorten its definition:

public string this [int wordNum] => words [wordNum];

Constants
A constant is a static field whose value can never change. A
constant is evaluated statically at compile time and the com‐
piler literally substitutes its value whenever used (rather like a
macro in C++). A constant can be any of the built-in numeric
types, bool, char, string, or an enum type.

A constant is declared by using the const keyword and must be
initialized with a value. For example:

public class Test
{

78 | C# 7.0 Pocket Reference



  public const string Message = "Hello World";
}

A constant is much more restrictive than a static readonly
field, both in the types you can use and in field initialization
semantics. A constant also differs from a static readonly field
in that the evaluation of the constant occurs at compile time.
Constants can also be declared local to a method:

static void Main()
{
  const double twoPI = 2 * System.Math.PI;
  ...
}

Static Constructors
A static constructor executes once per type, rather than once
per instance. A type can define only one static constructor, and
it must be parameterless and have the same name as the type:

class Test
{
  static Test() { Console.Write ("Type Initialized"); }
}

The runtime automatically invokes a static constructor just
prior to the type being used. Two things trigger this: instantiat‐
ing the type and accessing a static member in the type.

WARNING

If a static constructor throws an unhandled exception, that
type becomes unusable for the life of the application.

Static field initializers run just before the static constructor is
called. If a type has no static constructor, field initializers will
execute just prior to the type being used—or anytime earlier at
the whim of the runtime.

Classes | 79



Static Classes
A class can be marked static, indicating that it must be com‐
posed solely of static members and cannot be subclassed. The
System.Console and System.Math classes are good examples of
static classes.

Finalizers
Finalizers are class-only methods that execute before the
garbage collector reclaims the memory for an unreferenced
object. The syntax for a finalizer is the name of the class pre‐
fixed with the ~ symbol:

class Class1
{
  ~Class1() { ... }
}

C# translates a finalizer into a method that overrides the Final
ize method in the object class. We discuss garbage collection
and finalizers fully in Chapter 12 of C# 7.0 in a Nutshell.

From C# 7, single-statement finalizers can be written with
expression-bodied syntax.

Partial Types and Methods
Partial types allow a type definition to be split—typically across
multiple files. A common scenario is for a partial class to be
autogenerated from some other source (e.g., a Visual Studio
template) and for that class to be augmented with additional
hand-authored methods. For example:

// PaymentFormGen.cs - autogenerated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration.

80 | C# 7.0 Pocket Reference



Participants cannot have conflicting members. A constructor
with the same parameters, for instance, cannot be repeated.
Partial types are resolved entirely by the compiler, which means
that each participant must be available at compile time and
must reside in the same assembly.

A base class may be specified on a single participant or on mul‐
tiple participants (as long as the base class that you specify is
the same). In addition, each participant can independently
specify interfaces to implement. We cover base classes and
interfaces in “Inheritance” on page 82 and “Interfaces” on page
98.

Partial methods
A partial type may contain partial methods. These let an auto‐
generated partial type provide customizable hooks for manual
authoring. For example:

partial class PaymentForm    // In autogenerated file
{
  partial void ValidatePayment (decimal amount);
}

partial class PaymentForm    // In hand-authored file
{
  partial void ValidatePayment (decimal amount)
  {
    if (amount > 100) Console.Write ("Expensive!");
  }
}

A partial method consists of two parts: a definition and an
implementation. The definition is typically written by a code
generator, and the implementation is typically manually auth‐
ored. If an implementation is not provided, the definition of
the partial method is compiled away (as is the code that calls
it). This allows autogenerated code to be liberal in providing
hooks, without having to worry about bloat. Partial methods
must be void and are implicitly private.

Classes | 81



The nameof Operator
The nameof operator (introduced in C# 6) returns the name of
any symbol (type, member, variable, and so on) as a string:

int count = 123;
string name = nameof (count);       // name is "count"

Its advantage over simply specifying a string is that of static
type checking. Tools such as Visual Studio can understand the
symbol reference, so if you rename the symbol in question, all
of its references will be renamed, too.

To specify the name of a type member such as a field or prop‐
erty, include the type as well. This works with both static and
instance members:

string name = nameof (StringBuilder.Length);

This evaluates to "Length". To return "StringBuilder.Length",
you would do this:

nameof(StringBuilder)+"."+nameof(StringBuilder.Length);

Inheritance
A class can inherit from another class to extend or customize
the original class. Inheriting from a class lets you reuse the
functionality in that class instead of building it from scratch. A
class can inherit from only a single class but can itself be inher‐
ited by many classes, thus forming a class hierarchy. In this
example, we begin by defining a class called Asset:

public class Asset { public string Name; }

Next, we define classes called Stock and House, which will
inherit from Asset. Stock and House get everything an Asset
has, plus any additional members that they define:

public class Stock : Asset   // inherits from Asset
{
  public long SharesOwned;
}

82 | C# 7.0 Pocket Reference



public class House : Asset   // inherits from Asset
{
  public decimal Mortgage;
}

Here’s how we can use these classes:
Stock msft = new Stock { Name="MSFT",
                         SharesOwned=1000 };

Console.WriteLine (msft.Name);         // MSFT
Console.WriteLine (msft.SharesOwned);  // 1000

House mansion = new House { Name="Mansion",
                            Mortgage=250000 };

Console.WriteLine (mansion.Name);      // Mansion
Console.WriteLine (mansion.Mortgage);  // 250000

The subclasses, Stock and House, inherit the Name property from
the base class, Asset.

Subclasses are also called derived classes.

Polymorphism
References are polymorphic. This means a variable of type x
can refer to an object that subclasses x. For instance, consider
the following method:

public static void Display (Asset asset)
{
  System.Console.WriteLine (asset.Name);
}

This method can display both a Stock and a House, since they
are both Assets. Polymorphism works on the basis that sub‐
classes (Stock and House) have all the features of their base class
(Asset). The converse, however, is not true. If Display were
rewritten to accept a House, you could not pass in an Asset.

Inheritance | 83



Casting and Reference Conversions
An object reference can be:

• Implicitly upcast to a base class reference
• Explicitly downcast to a subclass reference

Upcasting and downcasting between compatible reference
types performs reference conversions: a new reference is created
that points to the same object. An upcast always succeeds; a
downcast succeeds only if the object is suitably typed.

Upcasting
An upcast operation creates a base class reference from a sub‐
class reference. For example:

Stock msft = new Stock();    // From previous example
Asset a = msft;              // Upcast

After the upcast, variable a still references the same Stock
object as variable msft. The object being referenced is not itself
altered or converted:

Console.WriteLine (a == msft);        // True

Although a and msft refer to the same object, a has a more
restrictive view on that object:

Console.WriteLine (a.Name);           // OK
Console.WriteLine (a.SharesOwned);    // Error

The last line generates a compile-time error because the vari‐
able a is of type Asset, even though it refers to an object of type
Stock. To get to its SharesOwned field, you must downcast the
Asset to a Stock.

Downcasting
A downcast operation creates a subclass reference from a base
class reference. For example:

84 | C# 7.0 Pocket Reference



Stock msft = new Stock();
Asset a = msft;                      // Upcast
Stock s = (Stock)a;                  // Downcast
Console.WriteLine (s.SharesOwned);   // <No error>
Console.WriteLine (s == a);          // True
Console.WriteLine (s == msft);       // True

As with an upcast, only references are affected, not the under‐
lying object. A downcast requires an explicit cast because it can
potentially fail at runtime:

House h = new House();
Asset a = h;          // Upcast always succeeds
Stock s = (Stock)a;   // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is
an example of runtime type checking (see “Static and Runtime
Type Checking” on page 93).

The as operator

The as operator performs a downcast that evaluates to null
(rather than throwing an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock;   // s is null; no exception thrown

This is useful when you’re going to subsequently test whether
the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

The as operator cannot perform custom conversions (see
“Operator Overloading” on page 191) and it cannot do
numeric conversions.

The is operator

The is operator tests whether a reference conversion would
succeed—in other words, whether an object derives from a
specified class (or implements an interface). It is often used to
test before downcasting:

if (a is Stock) Console.Write (((Stock)a).SharesOwned);

Inheritance | 85



The is operator also evaluates to true if an unboxing conver‐
sion would succeed (see “The object Type” on page 91). How‐
ever, it does not consider custom or numeric conversions.

From C# 7, you can introduce a variable while using the is
operator:

if (a is Stock s)
  Console.WriteLine (s.SharesOwned);

The variable that you introduce is available for “immediate”
consumption and remains in scope outside the is expression:

if (a is Stock s && s.SharesOwned > 100000)
  Console.WriteLine ("Wealthy");
else
  s = new Stock();   // s is in scope

Console.WriteLine (s.SharesOwned);  // Still in scope

Virtual Function Members
A function marked as virtual can be overridden by subclasses
wanting to provide a specialized implementation. Methods,
properties, indexers, and events can all be declared virtual:

public class Asset
{
  public string Name;
  public virtual decimal Liability => 0;
}

(Liability => 0 is a shortcut for { get { return 0; } }. See
“Expression-bodied properties” on page 75 for more details on
this syntax.) A subclass overrides a virtual method by applying
the override modifier:

public class House : Asset
{
  public decimal Mortgage;

  public override decimal Liability => Mortgage;
}

86 | C# 7.0 Pocket Reference



By default, the Liability of an Asset is 0. A Stock does not
need to specialize this behavior. However, the House specializes
the Liability property to return the value of the Mortgage:

House mansion = new House { Name="Mansion",
                            Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability);  // 250000
Console.WriteLine (a.Liability);        // 250000

The signatures, return types, and accessibility of the virtual and
overridden methods must be identical. An overridden method
can call its base class implementation via the base keyword (see
“The base Keyword” on page 88).

Abstract Classes and Abstract Members
A class declared as abstract can never be instantiated. Instead,
only its concrete subclasses can be instantiated.

Abstract classes are able to define abstract members. Abstract
members are like virtual members, except they don’t provide a
default implementation. That implementation must be pro‐
vided by the subclass, unless that subclass is also declared
abstract:

public abstract class Asset
{
  // Note empty implementation
  public abstract decimal NetValue { get; }
}

Subclasses override abstract members just as though they were
virtual.

Hiding Inherited Members
A base class and a subclass may define identical members. For
example:

public class A      { public int Counter = 1; }
public class B : A  { public int Counter = 2; }

Inheritance | 87



The Counter field in class B is said to hide the Counter field in
class A. Usually, this happens by accident, when a member is
added to the base type after an identical member was added to
the subtype. For this reason, the compiler generates a warning,
and then resolves the ambiguity as follows:

• References to A (at compile time) bind to A.Counter.
• References to B (at compile time) bind to B.Counter.

Occasionally, you want to hide a member deliberately, in which
case you can apply the new modifier to the member in the sub‐
class. The new modifier does nothing more than suppress the
compiler warning that would otherwise result:

public class A     { public     int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—
and other programmers—that the duplicate member is not an
accident.

Sealing Functions and Classes
An overridden function member may seal its implementation
with the sealed keyword to prevent it from being overridden
by further subclasses. In our earlier virtual function member
example, we could have sealed House’s implementation of Lia
bility, preventing a class that derives from House from over‐
riding Liability, as follows:

public sealed override decimal Liability { get { ... } }

You can also seal the class itself, implicitly sealing all the virtual
functions, by applying the sealed modifier to the class itself.

The base Keyword
The base keyword is similar to the this keyword. It serves two
essential purposes: accessing an overridden function member
from the subclass, and calling a base class constructor (see the
next section).

88 | C# 7.0 Pocket Reference



In this example, House uses the base keyword to access Asset’s
implementation of Liability:

public class House : Asset
{
  ...
  public override decimal Liability
    => base.Liability + Mortgage;
}

With the base keyword, we access Asset’s Liability property
nonvirtually. This means we will always access Asset’s version
of this property—regardless of the instance’s actual runtime
type.

The same approach works if Liability is hidden rather than
overridden. (You can also access hidden members by casting to
the base class before invoking the function.)

Constructors and Inheritance
A subclass must declare its own constructors. For example, if
we define Baseclass and Subclass as follows:

public class Baseclass
{
  public int X;
  public Baseclass () { }
  public Baseclass (int x) { this.X = x; }
}
public class Subclass : Baseclass { }

the following is illegal:
Subclass s = new Subclass (123);

Subclass must “redefine” any constructors it wants to expose.
In doing so, it can call any of the base class’s constructors with
the base keyword:

public class Subclass : Baseclass
{
  public Subclass (int x) : base (x) { ... }
}

Inheritance | 89



The base keyword works rather like the this keyword, except
that it calls a constructor in the base class. Base class construc‐
tors always execute first; this ensures that base initialization
occurs before specialized initialization.

If a constructor in a subclass omits the base keyword, the base
type’s parameterless constructor is implicitly called (if the base
class has no accessible parameterless constructor, the compiler
generates an error).

Constructor and field initialization order
When an object is instantiated, initialization takes place in the
following order:

1. From subclass to base class:
a. Fields are initialized.
b. Arguments to base class constructor calls are evalu‐

ated.
2. From base class to subclass:

a. Constructor bodies execute.

Overloading and Resolution
Inheritance has an interesting impact on method overloading.
Consider the following two overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has prece‐
dence:

House h = new House (...);
Foo(h);                      // Calls Foo(House)

The particular overload to call is determined statically (at com‐
pile time) rather than at runtime. The following code calls
Foo(Asset), even though the runtime type of a is House:

90 | C# 7.0 Pocket Reference



Asset a = new House (...);
Foo(a);                      // Calls Foo(Asset)

NOTE

If you cast Asset to dynamic (see “Dynamic Binding” on
page 182), the decision as to which overload to call is
deferred until runtime and is based on the object’s actual
type.

The object Type
object (System.Object) is the ultimate base class for all types.
Any type can be implicitly upcast to object.

To illustrate how this is useful, consider a general-purpose
stack. A stack is a data structure based on the LIFO principle—
“last in, first out.” A stack has two operations: push an object on
the stack, and pop an object off the stack. Here is a simple
implementation that can hold up to 10 objects:

public class Stack
{
  int position;
  object[] data = new object[10];
  public void Push (object o) { data[position++] = o; }
  public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop
instances of any type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop();   // Downcast
Console.WriteLine (s);             // sausage

object is a reference type by virtue of being a class. Despite
this, value types such as int can also be cast to and from
object. To make this possible, the CLR must perform some

The object Type | 91



special work to bridge the underlying differences between value
and reference types. This process is called boxing and unboxing.

NOTE

In “Generics” on page 105, we’ll describe how to improve
our Stack class to better handle stacks with same-typed
elements.

Boxing and Unboxing
Boxing is the act of casting a value type instance to a reference
type instance. The reference type may be either the object class
or an interface (see “Interfaces” on page 98). In this example,
we box an int into an object:

int x = 9;
object obj = x;           // Box the int

Unboxing reverses the operation by casting the object back to
the original value type:

int y = (int)obj;         // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the
stated value type matches the actual object type, and throws an
InvalidCastException if the check fails. For instance, the fol‐
lowing throws an exception because long does not exactly
match int:

object obj = 9;       // 9 is inferred to be of type int
long x = (long) obj;  // InvalidCastException

The following succeeds, however:
object obj = 9;
long x = (int) obj;

As does this:
object obj = 3.5;      // 3.5 inferred to be type double
int x = (int) (double) obj;    // x is now 3

92 | C# 7.0 Pocket Reference



In the last example, (double) performs an unboxing and then
(int) performs a numeric conversion.

Boxing copies the value type instance into the new object, and
unboxing copies the contents of the object back into a value
type instance:

int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed);    // 3

Static and Runtime Type Checking
C# checks types both statically (at compile time) and at run‐
time.

Static type checking enables the compiler to verify the correct‐
ness of your program without running it. The following code
will fail because the compiler enforces static typing:

int x = "5";

Runtime type checking is performed by the CLR when you
downcast via a reference conversion or unboxing:

object y = "5";
int z = (int) y;       // Runtime error, downcast failed

Runtime type checking is possible because each object on the
heap internally stores a little type token. You can retrieve this
token by calling the GetType method of object.

The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance of
System.Type. There are two basic ways to get a System.Type
object: call GetType on the instance or use the typeof operator
on a type name. GetType is evaluated at runtime; typeof is eval‐
uated statically at compile time.

System.Type has properties for such things as the type’s name,
assembly, base type, and so on. For example:

The object Type | 93



int x = 3;

Console.Write (x.GetType().Name);               // Int32
Console.Write (typeof(int).Name);               // Int32
Console.Write (x.GetType().FullName);    // System.Int32
Console.Write (x.GetType() == typeof(int));     // True

System.Type also has methods that act as a gateway to the run‐
time’s reflection model. For detailed information, see Chapter
19 of C# 7.0 in a Nutshell.

Object Member Listing
Here are all the members of object:

public extern Type GetType();
public virtual bool Equals (object obj);
public static bool Equals (object objA, object objB);
public static bool ReferenceEquals (object objA,
                                    object objB);
public virtual int GetHashCode();
public virtual string ToString();
protected override void Finalize();
protected extern object MemberwiseClone();

Equals, ReferenceEquals, and GetHashCode
The Equals method in the object class is similar to the == oper‐
ator, except that Equals is virtual, whereas == is static. The fol‐
lowing example illustrates the difference:

object x = 3;
object y = 3;
Console.WriteLine (x == y);        // False
Console.WriteLine (x.Equals (y));  // True

Because x and y have been cast to the object type, the compiler
statically binds to object’s == operator, which uses reference
type semantics to compare two instances. (And because x and y
are boxed, they are represented in separate memory locations
and thus are unequal.) The virtual Equals method, however,
defers to the Int32 type’s Equals method, which uses value type
semantics in comparing two values.

94 | C# 7.0 Pocket Reference

www.allitebooks.com

http://www.allitebooks.org


The static object.Equals method simply calls the virtual
Equals method on the first argument—after checking that the
arguments are not null:

object x = null, y = 3;
bool error = x.Equals (y);        // Runtime error!
bool ok = object.Equals (x, y);   // OK (false)

ReferenceEquals forces a reference type equality comparison
(this is occasionally useful on reference types where the ==
operator has been overloaded to do otherwise).

GetHashCode emits a hash code suitable for use with hashtable-
based dictionaries, namely System.Collections.Generic

.Dictionary and System.Collections.Hashtable.

To customize a type’s equality semantics, you must at a mini‐
mum override Equals and GetHashCode. You would also usually
overload the == and != operators. For an example of how to do
both, see “Operator Overloading” on page 191.

The ToString Method
The ToString method returns the default textual representation
of a type instance. The ToString method is overridden by all
built-in types:

string s1 = 1.ToString();      // s1 is "1"
string s2 = true.ToString();   // s2 is "True"

You can override the ToString method on custom types as fol‐
lows:

public override string ToString() => "Foo";

Structs
A struct is similar to a class, with the following key differences:

• A struct is a value type, whereas a class is a reference
type.

Structs | 95



• A struct does not support inheritance (other than implic‐
itly deriving from object, or more precisely, System
.ValueType).

A struct can have all the members a class can, except for a
parameterless constructor, field initializers, a finalizer, and vir‐
tual or protected members.

A struct is appropriate when value type semantics are desirable.
Good examples are numeric types, where it is more natural for
assignment to copy a value rather than a reference. Because a
struct is a value type, each instance does not require instantia‐
tion of an object on the heap; this can incur useful savings
when you’re creating many instances of a type. For instance,
creating an array of a value type requires only a single heap
allocation.

Struct Construction Semantics
The construction semantics of a struct are as follows:

• A parameterless constructor that you can’t override
implicitly exists. This performs a bitwise-zeroing of its
fields.

• When you define a struct constructor (with parameters),
you must explicitly assign every field.

• You can’t have field initializers in a struct.

Access Modifiers
To promote encapsulation, a type or type member may limit its
accessibility to other types and other assemblies by adding one
of five access modifiers to the declaration:

public

Fully accessible. This is the implicit accessibility for mem‐
bers of an enum or interface.

96 | C# 7.0 Pocket Reference



internal

Accessible only within the containing assembly or friend
assemblies. This is the default accessibility for non-nested
types.

private

Accessible only within the containing type. This is the
default accessibility for members of a class or struct.

protected

Accessible only within the containing type or subclasses.
protected internal

The union of protected and internal accessibility (this is
more permissive than protected or internal alone, in that
it makes a member more accessible in two ways).

In the following example, Class2 is accessible from outside its
assembly; Class1 is not:

class Class1 {}         // Class1 is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly;
ClassA does not:

class ClassA { int x;          }  // x is private
class ClassB { internal int x; }

When you’re overriding a base class function, accessibility must
be identical on the overridden function. The compiler prevents
any inconsistent use of access modifiers—for example, a sub‐
class itself can be less accessible than a base class, but not more.

Friend Assemblies
In advanced scenarios, you can expose internal members to
other friend assemblies by adding the System.Runtime.Compi
lerServices.InternalsVisibleTo assembly attribute, specify‐
ing the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly is signed with a strong name, you must
specify its full 160-byte public key. You can extract this key via

Access Modifiers | 97



a LINQ query—an interactive example is given in LINQPad’s
free sample library for C# 7.0 in a Nutshell.

Accessibility Capping
A type caps the accessibility of its declared members. The most
common example of capping is when you have an internal
type with public members. For example:

class C { public void Foo() {} }

C’s (default) internal accessibility caps Foo’s accessibility, effec‐
tively making Foo internal. A common reason Foo would be
marked public is to make for easier refactoring, should C later
be changed to public.

Interfaces
An interface is similar to a class, but it provides a specification
rather than an implementation for its members. An interface is
special in the following ways:

• Interface members are all implicitly abstract. In contrast,
a class can provide both abstract members and concrete
members with implementations.

• A class (or struct) can implement multiple interfaces. In
contrast, a class can inherit from only a single class, and a
struct cannot inherit at all (aside from deriving from
System.ValueType).

An interface declaration is like a class declaration, but it pro‐
vides no implementation for its members, because all of its
members are implicitly abstract. These members will be imple‐
mented by the classes and structs that implement the interface.
An interface can contain only methods, properties, events, and
indexers, which noncoincidentally are precisely the members
of a class that can be abstract.

98 | C# 7.0 Pocket Reference



Here is a slightly simplified version of the IEnumerator inter‐
face, defined in System.Collections:

public interface IEnumerator
{
  bool MoveNext();
  object Current { get; }
}

Interface members are always implicitly public and cannot
declare an access modifier. Implementing an interface means
providing a public implementation for all its members:

internal class Countdown : IEnumerator
{
  int count = 11;
  public bool MoveNext()  => count-- > 0 ;
  public object Current   => count;
}

You can implicitly cast an object to any interface that it imple‐
ments:

IEnumerator e = new Countdown();
while (e.MoveNext())
  Console.Write (e.Current);      // 109876543210

Extending an Interface
Interfaces may derive from other interfaces. For instance:

public interface IUndoable             { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable.

Explicit Interface Implementation
Implementing multiple interfaces can sometimes result in a
collision between member signatures. You can resolve such col‐
lisions by explicitly implementing an interface member. For
example:

interface I1 { void Foo(); }
interface I2 { int Foo();  }

Interfaces | 99



public class Widget : I1, I2
{
  public void Foo()   // Implicit implementation
  {
    Console.Write ("Widget's implementation of I1.Foo");
  }

  int I2.Foo()   // Explicit implementation of I2.Foo
  {
    Console.Write ("Widget's implementation of I2.Foo");
    return 42;
  }
}

Because both I1 and I2 have conflicting Foo signatures, Widget
explicitly implements I2’s Foo method. This lets the two meth‐
ods coexist in one class. The only way to call an explicitly
implemented member is to cast to its interface:

Widget w = new Widget();
w.Foo();           // Widget's implementation of I1.Foo
((I1)w).Foo();     // Widget's implementation of I1.Foo
((I2)w).Foo();     // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to
hide members that are highly specialized and distracting to a
type’s normal use case. For example, a type that implements
ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually
An implicitly implemented interface member is, by default,
sealed. It must be marked virtual or abstract in the base class
in order to be overridden; calling the interface member
through either the base class or the interface then calls the sub‐
class’s implementation.

An explicitly implemented interface member cannot be marked
virtual, nor can it be overridden in the usual manner. It can,
however, be reimplemented.

100 | C# 7.0 Pocket Reference



Reimplementing an Interface in a Subclass
A subclass can reimplement any interface member already
implemented by a base class. Reimplementation hijacks a mem‐
ber implementation (when called through the interface) and
works whether or not the member is virtual in the base class.

In the following example, TextBox implements IUndo.Undo
explicitly, and so it cannot be marked as virtual. To “override”
it, RichTextBox must reimplement IUndo’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
  void IUndoable.Undo()
    => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{
  public new void Undo()
    => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls
the subclass’s implementation:

RichTextBox r = new RichTextBox();
r.Undo();                 // RichTextBox.Undo
((IUndoable)r).Undo();    // RichTextBox.Undo

In this case, Undo is implemented explicitly. Implicitly imple‐
mented members can also be reimplemented, but the effect is
nonpervasive in that calling the member through the base class
invokes the base implementation.

Enums
An enum is a special value type that lets you specify a group of
named numeric constants. For example:

public enum BorderSide { Left, Right, Top, Bottom }

Enums | 101



We can use this enum type as follows:
BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top);   // true

Each enum member has an underlying integral-type value. By
default, the underlying values are of type int, and the enum
members are assigned the constants 0, 1, 2... (in their declara‐
tion order). You may specify an alternative integral type, as fol‐
lows:

public enum BorderSide : byte { Left,Right,Top,Bottom }

You may also specify an explicit integer value for each member:
public enum BorderSide : byte
 { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva‐
lent to:

public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions
You can convert an enum instance to and from its underlying
integral value with an explicit cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another; the
translation then uses the members’ underlying integral values.

The numeric literal 0 is treated specially, in that it does not
require an explicit cast:

BorderSide b = 0;    // No cast required
if (b == 0) ...

In this particular example, BorderSide has no member with an
integer value of 0. This does not generate an error: a limitation

102 | C# 7.0 Pocket Reference



of enums is that the compiler and CLR do not prevent the
assignment of integrals whose values fall outside the range of
members:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b);              // 12345

Flags Enums
You can combine enum members. To prevent ambiguities,
members of a combinable enum require explicitly assigned val‐
ues, typically in powers of two. For example:

[Flags]
public enum BorderSides
 { None=0, Left=1, Right=2, Top=4, Bottom=8 }

By convention, a combinable enum type is given a plural rather
than singular name. To work with combined enum values, you
use bitwise operators, such as | and &. These operate on the
underlying integral values:

BorderSides leftRight =
  BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
  Console.WriteLine ("Includes Left");   // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight);      // True

The Flags attribute should be applied to combinable enum
types; if you fail to do this, calling ToString on an enum instance
emits a number rather than a series of names.

For convenience, you can include combination members
within an enum declaration itself:

[Flags] public enum BorderSides
{
  None=0,
  Left=1, Right=2, Top=4, Bottom=8,

Enums | 103



  LeftRight = Left | Right,
  TopBottom = Top  | Bottom,
  All       = LeftRight | TopBottom
}

Enum Operators
The operators that work with enums are:

=   ==   !=   <   >   <=   >=   +   -   ^  &  |   ˜
+=  -=   ++   -   sizeof

The bitwise, arithmetic, and comparison operators return the
result of processing the underlying integral values. Addition is
permitted between an enum and an integral type, but not
between two enums.

Nested Types
A nested type is declared within the scope of another type. For
example:

public class TopLevel
{
  public class Nested { }               // Nested class
  public enum Color { Red, Blue, Tan }  // Nested enum
}

A nested type has the following features:

• It can access the enclosing type’s private members and
everything else the enclosing type can access.

• It can be declared with the full range of access modifiers
rather than just public and internal.

• The default accessibility for a nested type is private
rather than internal.

• Accessing a nested type from outside the enclosing type
requires qualification with the enclosing type’s name (like
when you’re accessing static members).

104 | C# 7.0 Pocket Reference



For example, to access Color.Red from outside our TopLevel
class, we’d have to do this:

TopLevel.Color color = TopLevel.Color.Red;

All types can be nested; however, only classes and structs can
nest.

Generics
C# has two separate mechanisms for writing code that is reusa‐
ble across different types: inheritance and generics. Whereas
inheritance expresses reusability with a base type, generics
express reusability with a “template” that contains “place‐
holder” types. Generics, when compared to inheritance, can
increase type safety and reduce casting and boxing.

Generic Types
A generic type declares type parameters—placeholder types to
be filled in by the consumer of the generic type, which supplies
the type arguments. Here is a generic type, Stack<T>, designed
to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{
  int position;
  T[] data = new T[100];
  public void Push (T obj) => data[position++] = obj;
  public T Pop()           => data[--position];
}

We can use Stack<T> as follows:
var stack = new Stack<int>();
stack.Push (5);
stack.Push (10);
int x = stack.Pop();        // x is 10
int y = stack.Pop();        // y is 5

Generics | 105



NOTE

Notice that no downcasts are required in the last two lines,
avoiding the possibility of a runtime error and eliminating
the overhead of boxing/unboxing. This makes our generic
stack superior to a nongeneric stack that uses object in
place of T (see “The object Type” on page 91 to see an
example of this).

Stack<int> fills in the type parameter T with the type argument
int, implicitly creating a type on the fly (the synthesis occurs at
runtime). Stack<int> effectively has the following definition
(substitutions appear in bold, with the class name hashed out
to avoid confusion):

public class ###
{
  int position;
  int[] data;
  public void Push (int obj) => data[position++] = obj;
  public int Pop()           => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas
Stack<int> is a closed type. At runtime, all generic type instan‐
ces are closed—with the placeholder types filled in.

Generic Methods
A generic method declares type parameters within the signature
of a method. With generic methods, many fundamental algo‐
rithms can be implemented in a general-purpose way only.
Here is a generic method that swaps the contents of two vari‐
ables of any type T:

static void Swap<T> (ref T a, ref T b)
{
  T temp = a; a = b; b = temp;
}

106 | C# 7.0 Pocket Reference



Swap<T> can be used as follows:
int x = 5, y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a
generic method, because the compiler can implicitly infer the
type. If there is ambiguity, generic methods can be called with
the type arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless
it introduces type parameters (with the angle bracket syntax).
The Pop method in our generic stack merely consumes the
type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce
type parameters. Properties, indexers, events, fields, construc‐
tors, operators, and so on cannot declare type parameters,
although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example,
for instance, we could write an indexer that returns a generic
item:

public T this [int index] { get { return data[index]; } }

Similarly, constructors can partake in existing type parameters,
but cannot introduce them.

Declaring Type Parameters
Type parameters can be introduced in the declaration of
classes, structs, interfaces, delegates (see “Delegates” on page
114), and methods. A generic type or method can have multi‐
ple parameters:

class Dictionary<TKey, TValue> {...}

Here’s how to instantiate:
var myDic = new Dictionary<int,string>();

Generics | 107



Generic type names and method names can be overloaded as
long as the number of type parameters differs. For example, the
following three type names do not conflict:

class A {}
class A<T> {}
class A<T1,T2> {}

NOTE

By convention, generic types and methods with a single
type parameter name their parameter T, as long as the
intent of the parameter is clear. With multiple type param‐
eters, each parameter has a more descriptive name (pre‐
fixed by T).

typeof and Unbound Generic Types
Open generic types do not exist at runtime: open generic types
are closed as part of compilation. However, it is possible for an
unbound generic type to exist at runtime—purely as a Type
object. The only way to specify an unbound generic type in C#
is with the typeof operator:

class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>);   // Unbound type
Type a2 = typeof (A<,>);  // Indicates 2 type args
Console.Write (a2.GetGenericArguments().Count());  // 2

You can also use the typeof operator to specify a closed type:
Type a3 = typeof (A<int,int>);

or an open type (which is closed at runtime):
class B<T> { void X() { Type t = typeof (T); } }

108 | C# 7.0 Pocket Reference



The default Generic Value
The default keyword can be used to get the default value for a
generic type parameter. The default value for a reference type is
null, and the default value for a value type is the result of
bitwise-zeroing the type’s fields:

static void Zap<T> (T[] array)
{
  for (int i = 0; i < array.Length; i++)
    array[i] = default(T);
}

Generic Constraints
By default, a type parameter can be substituted with any type
whatsoever. Constraints can be applied to a type parameter to
require more specific type arguments. There are six kinds of
constraint:

where T : base-class   // Base class constraint
where T : interface    // Interface constraint
where T : class        // Reference type constraint
where T : struct       // Value type constraint
where T : new()        // Parameterless constructor
                       // constraint
where U : T            // Naked type constraint

In the following example, GenericClass<T,U> requires T to
derive from (or be identical to) SomeClass and implement
Interface1, and requires U to provide a parameterless con‐
structor:

class     SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
                        where U : new()
{ ... }

Constraints can be applied wherever type parameters are
defined, whether in methods or in type definitions.

Generics | 109



A base class constraint specifies that the type parameter must
subclass (or match) a particular class; an interface constraint
specifies that the type parameter must implement that inter‐
face. These constraints allow instances of the type parameter to
be implicitly converted to that class or interface.

The class constraint and struct constraint specify that T must be
a reference type or a (non-nullable) value type, respectively. 
The parameterless constructor constraint requires T to have a
public parameterless constructor and allows you to call new()
on T:

static void Initialize<T> (T[] array) where T : new()
{
  for (int i = 0; i < array.Length; i++)
    array[i] = new T();
}

The naked type constraint requires one type parameter to derive
from (or match) another type parameter.

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class.
The subclass can leave the base class’s type parameters open, as
in the following example:

class Stack<T>                   {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a
concrete type:

class IntStack : Stack<int>  {...}

A subtype can also introduce fresh type arguments:
class List<T>                     {...}
class KeyedList<T,TKey> : List<T> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type
argument:

110 | C# 7.0 Pocket Reference



public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
  public bool Equals (Balloon b) { ... }
}

The following are also legal:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data
Static data is unique for each closed type:

class Bob<T> { public static int Count; }
...
Console.WriteLine (++Bob<int>.Count);     // 1
Console.WriteLine (++Bob<int>.Count);     // 2
Console.WriteLine (++Bob<string>.Count);  // 1
Console.WriteLine (++Bob<object>.Count);  // 1

Covariance

NOTE

Covariance and contravariance are advanced concepts. The
motivation behind their introduction into C# was to allow
generic interfaces and generics (in particular, those defined
in the .NET Framework, such as IEnumerable<T>) to work
more as you’d expect. You can benefit from this without
understanding the details behind covariance and contra‐
variance.

Assuming that A is convertible to B, X has a covariant type
parameter if X<A> is convertible to X<B>.

(With C#’s notion of variance, “convertible” means convertible
via an implicit reference conversion—such as A subclassing B, or A

Generics | 111



implementing B. Numeric conversions, boxing conversions, and
custom conversions are not included.)

For instance, type IFoo<T> has a covariant T if the following is
legal:

IFoo<string> s = ...;
IFoo<object> b = s;

From C# 4.0, interfaces (and delegates) permit covariant type
parameters. To illustrate, suppose that the Stack<T> class that
we wrote at the beginning of this section implements the fol‐
lowing interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output
positions (e.g., return types for methods) and flags the type
parameter as covariant, permitting the following code:

// Assuming that Bear subclasses Animal:
var bears = new Stack<Bear>();
bears.Push (new Bear());

// Because bears implements IPoppable<Bear>,
// we can convert it to IPoppable<Animal>:
IPoppable<Animal> animals = bears;   // Legal
Animal a = animals.Pop();

The cast from bears to animals is permitted by the compiler—
by virtue of the interface’s type parameter being covariant.

NOTE

The IEnumerator<T> and IEnumerable<T> interfaces (see
“Enumeration and Iterators” on page 140) are marked with
a covariant T from .NET Framework 4.0. This allows you
to cast IEnumerable<string> to IEnumerable<object>,
for instance.

112 | C# 7.0 Pocket Reference



The compiler will generate an error if you use a covariant type
parameter in an input position (e.g., a parameter to a method
or a writable property). The purpose of this limitation is to
guarantee compile-time type safety. For instance, it prevents us
from adding a Push(T) method to that interface, which con‐
sumers could abuse with the seemingly benign operation of
pushing a camel onto an IPoppable<Animal> (remember that
the underlying type in our example is a stack of bears). To
define a Push(T) method, T must in fact be contravariant.

NOTE

C# supports covariance (and contravariance) only for ele‐
ments with reference conversions—not boxing conversions.
So, if you wrote a method that accepted a parameter of type
IPoppable<object>, you could call it with IPoppa

ble<string>, but not IPoppable<int>.

Contravariance
We previously saw that, assuming that A allows an implicit ref‐
erence conversion to B, a type X has a covariant type parameter
if X<A> allows a reference conversion to X<B>. A type is contra‐
variant when you can convert in the reverse direction—from
X<B> to X<A>. This is supported on interfaces and delegates
when the type parameter appears only in input positions, desig‐
nated with the in modifier. Extending our previous example, if
the Stack<T> class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

we can legally do this:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals;    // Legal
bears.Push (new Bear());

Generics | 113



Mirroring covariance, the compiler will report an error if you
try to use a contravariant type parameter in an output position
(e.g., as a return value, or in a readable property).

Delegates
A delegate wires up a method caller to its target method at run‐
time. There are two aspects to a delegate: type and instance. A
delegate type defines a protocol to which the caller and target
will conform, comprising a list of parameter types and a return
type. A delegate instance is an object that refers to one (or
more) target methods conforming to that protocol.

A delegate instance literally acts as a delegate for the caller: the
caller invokes the delegate, and then the delegate calls the target
method. This indirection decouples the caller from the target
method.

A delegate type declaration is preceded by the keyword dele
gate, but otherwise it resembles an (abstract) method declara‐
tion. For example:

delegate int Transformer (int x);

To create a delegate instance, you can assign a method to a del‐
egate variable:

class Test
{
  static void Main()
  {
    Transformer t = Square;  // Create delegate instance
    int result = t(3);       // Invoke delegate
    Console.Write (result);  // 9
  }
  static int Square (int x) => x * x;
}

Invoking a delegate is just like invoking a method (given that
the delegate’s purpose is merely to provide a level of indirec‐
tion):

t(3);

114 | C# 7.0 Pocket Reference



The statement Transformer t = Square is shorthand for:
Transformer t = new Transformer (Square);

And t(3) is shorthand for:
t.Invoke (3);

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-In Methods with Delegates
A delegate variable is assigned a method at runtime. This is
useful for writing plug-in methods. In this example, we have a
utility method named Transform that applies a transform to
each element in an integer array. The Transform method has a
delegate parameter for specifying a plug-in transform.

public delegate int Transformer (int x);

class Test
{
  static void Main()
  {
    int[] values = { 1, 2, 3 };
    Transform (values, Square);
    foreach (int i in values)
      Console.Write (i + " ");    // 1 4 9
  }

  static void Transform (int[] values, Transformer t)
  {
    for (int i = 0; i < values.Length; i++)
      values[i] = t (values[i]);
  }

  static int Square (int x) => x * x;
}

Multicast Delegates
All delegate instances have multicast capability. This means that
a delegate instance can reference not just a single target

Delegates | 115



method, but also a list of target methods. The + and += opera‐
tors combine delegate instances. For example:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as:
d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2.
Delegates are invoked in the order they are added.

The - and -= operators remove the right delegate operand from
the left delegate operand. For example:

d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value is legal,
as is calling -= on a delegate variable with a single target (which
will result in the delegate instance being null).

NOTE

Delegates are immutable, so when you call += or -=, you’re
in fact creating a new delegate instance and assigning it to
the existing variable.

If a multicast delegate has a nonvoid return type, the caller
receives the return value from the last method to be invoked.
The preceding methods are still called, but their return values
are discarded. In most scenarios in which multicast delegates
are used, they have void return types, so this subtlety does not
arise.

All delegate types implicitly derive from System.MulticastDele
gate, which inherits from System.Delegate. C# compiles +, -,
+=, and -= operations made on a delegate to the static Combine
and Remove methods of the System.Delegate class.

116 | C# 7.0 Pocket Reference



Instance Versus Static Method Targets
When an instance method is assigned to a delegate object, the
latter must maintain a reference not only to the method, but
also to the instance to which the method belongs. The
System.Delegate class’s Target property represents this
instance (and will be null for a delegate referencing a static
method).

Generic Delegate Types
A delegate type may contain generic type parameters. For
example:

public delegate T Transformer<T> (T arg);

Here’s how we could use this delegate type:
static double Square (double x) => x * x;

static void Main()
{
  Transformer<double> s = Square;
  Console.WriteLine (s (3.3));        // 10.89
}

The Func and Action Delegates
With generic delegates, it becomes possible to write a small set
of delegate types that are so general they can work for methods
of any return type and any (reasonable) number of arguments.
These delegates are the Func and Action delegates, defined in
the System namespace (the in and out annotations indicate var‐
iance, which we will cover shortly):

delegate TResult Func <out TResult> ();
delegate TResult Func <in T, out TResult> (T arg);
delegate TResult Func <in T1, in T2, out TResult>
 (T1 arg1, T2 arg2);
... and so on, up to T16

delegate void Action ();
delegate void Action <in T> (T arg);

Delegates | 117



delegate void Action <in T1, in T2> (T1 arg1, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer dele‐
gate in our previous example can be replaced with a Func dele‐
gate that takes a single argument of type T and returns a same-
typed value:

public static void Transform<T> (
  T[] values, Func<T,T> transformer)
{
  for (int i = 0; i < values.Length; i++)
    values[i] = transformer (values[i]);
}

The only practical scenarios not covered by these delegates are
ref/out and pointer parameters.

Delegate Compatibility
Delegate types are all incompatible with one another, even if
their signatures are the same:

delegate void D1(); delegate void D2();
...
D1 d1 = Method1;
D2 d2 = d1;            // Compile-time error

The following, however, is permitted:
D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same
type and method target(s). For multicast delegates, the order of
the method targets is significant.

Return type variance
When you call a method, you may get back a type that is more
specific than what you asked for. This is ordinary polymorphic
behavior. In keeping with this, a delegate target method may
return a more specific type than described by the delegate. This
is covariance, and has been supported since C# 2.0:

118 | C# 7.0 Pocket Reference



delegate object ObjectRetriever();
...
static void Main()
{
  ObjectRetriever o = new ObjectRetriever (GetString);
  object result = o();
  Console.WriteLine (result);      // hello
}
static string GetString() => "hello";

The ObjectRetriever expects to get back an object; rather, it is
an object subclass will also do because delegate return types are
covariant.

Parameter variance
When you call a method, you can supply arguments that have
more specific types than the parameters of that method. This is
ordinary polymorphic behavior. In keeping with this, a delegate
target method may have less specific parameter types than
described by the delegate. This is called contravariance:

delegate void StringAction (string s);
...
static void Main()
{
  StringAction sa = new StringAction (ActOnObject);
  sa ("hello");  // Writes "Hello"
}
static void ActOnObject (object o) => Console.Write (o);

NOTE

The standard event pattern is designed to help you leverage
delegate parameter contravariance through its use of the
common EventArgs base class. For example, you can have
a single method invoked by two different delegates, one
passing a MouseEventArgs and the other passing a
KeyEventArgs.

Delegates | 119



Type parameter variance for generic delegates
We saw in “Generics” on page 105 how type parameters can be
covariant and contravariant for generic interfaces. The same
capability also exists for generic delegates from C# 4.0. If you’re
defining a generic delegate type, it’s a good practice to:

• Mark a type parameter used only on the return value as
covariant (out).

• Mark any type parameters used only on parameters as
contravariant (in).

Doing so allows conversions to work naturally by respecting
inheritance relationships between types. The following delegate
(defined in the System namespace) is covariant for TResult:

delegate TResult Func<out TResult>();

allowing:
Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) is
contravariant for T:

delegate void Action<in T> (T arg);

allowing:
Action<object> x = ...;
Action<string> y = x;

Events
When you’re using delegates, two emergent roles commonly
appear: broadcaster and subscriber. The broadcaster is a type
that contains a delegate field. The broadcaster decides when to
broadcast, by invoking the delegate. The subscribers are the
method target recipients. A subscriber decides when to start
and stop listening, by calling += and -= on the broadcaster’s del‐
egate. A subscriber does not know about, or interfere with,
other subscribers.

120 | C# 7.0 Pocket Reference



Events are a language feature that formalizes this pattern. An
event is a construct that exposes just the subset of delegate fea‐
tures required for the broadcaster/subscriber model. The main
purpose of events is to prevent subscribers from interfering with
one another.

The easiest way to declare an event is to put the event keyword
in front of a delegate member:

public class Broadcaster
{
  public event ProgressReporter Progress;
}

Code within the Broadcaster type has full access to Progress
and can treat it as a delegate. Code outside of Broadcaster can
perform only += and -= operations on the Progress event.

In the following example, the Stock class fires its PriceChanged
event every time the Price of the Stock changes:

public delegate void PriceChangedHandler
 (decimal oldPrice, decimal newPrice);

public class Stock
{
  string symbol; decimal price;

  public Stock (string symbol) { this.symbol = symbol; }

  public event PriceChangedHandler PriceChanged;

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;
      // Fire event if invocation list isn't empty:
      if (PriceChanged != null)
        PriceChanged (price, value);
      price = value;
    }
  }
}

Events | 121



If we remove the event keyword from our example so that
PriceChanged becomes an ordinary delegate field, our example
would give the same results. However, Stock would be less
robust, in that subscribers could do the following things to
interfere with one another:

• Replace other subscribers by reassigning PriceChanged
(instead of using the += operator).

• Clear all subscribers (by setting PriceChanged to null).
• Broadcast to other subscribers by invoking the delegate.

Events can be virtual, overridden, abstract, or sealed. They can
also be static.

Standard Event Pattern
The .NET Framework defines a standard pattern for writing
events. Its purpose is to provide consistency across both
Framework and user code. Here’s the preceding example refac‐
tored with this pattern:

public class PriceChangedEventArgs : EventArgs
{
  public readonly decimal LastPrice, NewPrice;

  public PriceChangedEventArgs (decimal lastPrice,
                                decimal newPrice)
  {
    LastPrice = lastPrice; NewPrice = newPrice;
  }
}

public class Stock
{
  string symbol; decimal price;

  public Stock (string symbol) { this.symbol = symbol; }

  public event EventHandler<PriceChangedEventArgs>
               PriceChanged;

  protected virtual void OnPriceChanged

122 | C# 7.0 Pocket Reference



                        (PriceChangedEventArgs e)
  {
    if (PriceChanged != null) PriceChanged (this, e);
  }

  public decimal Price
  {
    get { return price; }
    set
    {
      if (price == value) return;
      OnPriceChanged (new PriceChangedEventArgs (price,
                                                 value));
      price = value;
    }
  }
}

At the core of the standard event pattern is System.EventArgs: a
predefined .NET Framework class with no members (other
than the static Empty property). EventArgs is a base class for
conveying information for an event. In this example, we sub‐
class EventArgs to convey the old and new prices when a Price
Changed event is fired.

The generic System.EventHandler delegate is also part of
the .NET Framework and is defined as follows:

public delegate void EventHandler<TEventArgs>
  (object source, TEventArgs e)
   where TEventArgs : EventArgs;

NOTE

Before C# 2.0 (when generics were added to the language)
the solution was to instead write a custom event-handling
delegate for each EventArgs type as follows:

delegate void PriceChangedHandler
  (object sender,
   PriceChangedEventArgs e);

For historical reasons, most events within the Framework
use delegates defined in this way.

Events | 123



A protected virtual method, named On-event-name, centralizes
firing of the event. This allows subclasses to fire the event
(which is usually desirable) and also allows subclasses to insert
code before and after the event is fired.

Here’s how we could use our Stock class:
static void Main()
{
  Stock stock = new Stock ("THPW");
  stock.Price = 27.10M;

  stock.PriceChanged += stock_PriceChanged;
  stock.Price = 31.59M;
}

static void stock_PriceChanged
  (object sender, PriceChangedEventArgs e)
{
  if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
    Console.WriteLine ("Alert, 10% price increase!");
}

For events that don’t carry additional information, the .NET
Framework also provides a nongeneric EventHandler delegate.
We can demonstrate this by rewriting our Stock class such that
the PriceChanged event fires after the price changes. This
means that no additional information need be transmitted with
the event:

public class Stock
{
  string symbol; decimal price;

  public Stock (string symbol) {this.symbol = symbol;}

  public event EventHandler PriceChanged;

  protected virtual void OnPriceChanged (EventArgs e)
  {
    if (PriceChanged != null) PriceChanged (this, e);
  }

  public decimal Price
  {

124 | C# 7.0 Pocket Reference



    get { return price; }
    set
    {
      if (price == value) return;
      price = value;
      OnPriceChanged (EventArgs.Empty);
    }
  }
}

Note that we also used the EventArgs.Empty property—this
saves instantiating an instance of EventArgs.

Event Accessors
An event’s accessors are the implementations of its += and -=
functions. By default, accessors are implemented implicitly by
the compiler. Consider this event declaration:

public event EventHandler PriceChanged;

The compiler converts this to the following:

• A private delegate field
• A public pair of event accessor functions, whose imple‐

mentations forward the += and -= operations to the pri‐
vate delegate field

You can take over this process by defining explicit event acces‐
sors. Here’s a manual implementation of the PriceChanged
event from the previous example:

EventHandler priceChanged;   // Private delegate
public event EventHandler PriceChanged
{
  add    { priceChanged += value; }
  remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor
implementation (except that C# also ensures thread safety
around updating the delegate). By defining event accessors our‐

Events | 125



selves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex
strategies to the storage and access of the underlying delegate.
This is useful when the event accessors are merely relays for
another class that is broadcasting the event, or when explicitly
implementing an interface that declares an event:

public interface IFoo { event EventHandler Ev; }
class Foo : IFoo
{
  EventHandler ev;
  event EventHandler IFoo.Ev
  {
    add { ev += value; } remove { ev -= value; }
  }
}

Lambda Expressions
A lambda expression is an unnamed method written in place of
a delegate instance. The compiler immediately converts the
lambda expression to one of the following:

• A delegate instance.
• An expression tree, of type Expression<TDelegate>, repre‐

senting the code inside the lambda expression in a tra‐
versable object model. This allows the lambda expression
to be interpreted later at runtime (we describe the process
in Chapter 8 of C# 7.0 in a Nutshell).

Given the following delegate type:
delegate int Transformer (int i);

we could assign and invoke the lambda expression x => x * x
as follows:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3));    // 9

126 | C# 7.0 Pocket Reference



NOTE

Internally, the compiler resolves lambda expressions of this
type by writing a private method and then moving the
expression’s code into that method.

A lambda expression has the following form:
(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if
there is exactly one parameter of an inferable type.

In the example, there is a single parameter, x, and the expres‐
sion is x * x:

x => x * x;

Each parameter of the lambda expression corresponds to a del‐
egate parameter, and the type of the expression (which may be
void) corresponds to the return type of the delegate.

In the example, x corresponds to parameter i, and the expres‐
sion x * x corresponds to the return type int, therefore being
compatible with the Transformer delegate.

A lambda expression’s code can be a statement block instead of
an expression. We can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func
and Action delegates, so you will most often see our earlier
expression written as follows:

Func<int,int> sqr = x => x * x;

The compiler can usually infer the type of lambda parameters
contextually. When this is not the case, you can specify param‐
eter types explicitly:

Func<int,int> sqr = (int x) => x * x;

Lambda Expressions | 127



Here’s an example of an expression that accepts two parame‐
ters:

Func<string,string,int> totalLength =
 (s1, s2) => s1.Length + s2.Length;

int total = totalLength ("hello", "world");  // total=10;

Assuming Clicked is an event of type EventHandler, the follow‐
ing attaches an event handler via a lambda expression:

obj.Clicked += (sender,args) => Console.Write ("Click");

Capturing Outer Variables
A lambda expression can reference the local variables and
parameters of the method in which it’s defined (outer vari‐
ables). For example:

static void Main()
{
  int factor = 2;
  Func<int, int> multiplier = n => n * factor;
  Console.WriteLine (multiplier (3));           // 6
}

Outer variables referenced by a lambda expression are called
captured variables. A lambda expression that captures variables
is called a closure. Captured variables are evaluated when the
delegate is actually invoked, not when the variables were cap‐
tured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3));           // 30

Lambda expressions can themselves update captured variables:
int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural());           // 0
Console.WriteLine (natural());           // 1
Console.WriteLine (seed);                // 2

128 | C# 7.0 Pocket Reference



Captured variables have their lifetimes extended to that of the
delegate. In the following example, the local variable seed
would ordinarily disappear from scope when Natural finished
executing. But, because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural()
{
  int seed = 0;
  return () => seed++;      // Returns a closure
}
static void Main()
{
  Func<int> natural = Natural();
  Console.WriteLine (natural());      // 0
  Console.WriteLine (natural());      // 1
}

NOTE

Variables can also be captured by anonymous methods and
local methods. The rules for captured variables, in these
cases, are the same.

Capturing iteration variables

When you capture an iteration variable in a for loop, C# treats
the iteration variable as though it was declared outside the loop.
This means that the same variable is captured in each iteration.
The following program writes 333 instead of writing 012:

Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
  actions [i] = () => Console.Write (i);

foreach (Action a in actions) a();     // 333

Each closure (shown in bold) captures the same variable, i.
(This actually makes sense when you consider that i is a vari‐
able whose value persists between loop iterations; you can even

Lambda Expressions | 129



explicitly change i within the loop body if you want.) The con‐
sequence is that when the delegates are later invoked, each del‐
egate sees i’s value at the time of invocation—which is 3. The
solution, if we want to write 012, is to assign the iteration vari‐
able to a local variable that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
  int loopScopedi = i;
  actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a();     // 012

This causes the closure to capture a different variable on each
iteration.

WARNING

foreach loops used to work in the same way, but the rules
have since changed. Starting with C# 5.0, you can safely
close over a foreach loop’s iteration variable without
needing a temporary variable.

Lambda Expressions Versus Local Methods
The functionality of C# 7’s local methods (see “Local methods
(C# 7)” on page 69) overlaps with that of lambda expressions.
Local methods have the advantages of allowing for recursion
and avoiding the clutter of specifying a delegate. Avoiding the
indirection of a delegate also makes them slightly more effi‐
cient, and they can access local variables of the containing
method without the compiler having to “hoist” the captured
variables into a hidden class.

However, in many cases you need a delegate, most commonly
when calling a higher-order function (i.e., a method with a
delegate-typed parameter):

public void Foo (Func<int,bool> predicate) { ... }

130 | C# 7.0 Pocket Reference



In such cases, you need a delegate anyway, and it’s precisely in
these cases that lambda expressions are usually terser and
cleaner.

Anonymous Methods
Anonymous methods are a C# 2.0 feature that has been mostly
subsumed by lambda expressions. An anonymous method is
like a lambda expression, except that it lacks implicitly typed
parameters, expression syntax (an anonymous method must
always be a statement block), and the ability to compile to an
expression tree. To write an anonymous method, you include
the delegate keyword followed (optionally) by a parameter
declaration and then a method body. For example, given this
delegate:

delegate int Transformer (int i);

we could write and call an anonymous method as follows:
Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3));         // 9

The first line is semantically equivalent to the following lambda
expression:

Transformer sqr =       (int x) => {return x * x;};

Or simply:
Transformer sqr =            x  => x * x;

A unique feature of anonymous methods is that you can omit
the parameter declaration entirely—even if the delegate expects
it. This can be useful in declaring events with a default empty
handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal (notice the lack of parameters):

Clicked += delegate { Console.Write ("clicked"); };

Anonymous Methods | 131



Anonymous methods capture outer variables in the same way
lambda expressions do.

try Statements and Exceptions
A try statement specifies a code block subject to error-
handling or cleanup code. The try block must be followed by a
catch block, a finally block, or both. The catch block executes
when an error occurs in the try block. The finally block exe‐
cutes after execution leaves the try block (or if present, the
catch block), to perform cleanup code, whether or not an error
occurred.

A catch block has access to an Exception object that contains
information about the error. You use a catch block to either
compensate for the error or rethrow the exception. You rethrow
an exception if you merely want to log the problem or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program by always
executing no matter what. It’s useful for cleanup tasks such as
closing network connections.

A try statement looks like this:
try
{
  ... // exception may get thrown within execution of
      // this block
}
catch (ExceptionA ex)
{
  ... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
  ... // handle exception of type ExceptionB
}
finally
{
  ... // cleanup code
}

132 | C# 7.0 Pocket Reference



Consider the following code:
int x = 3, y = 0;
Console.WriteLine (x / y);

Because y is zero, the runtime throws a DivideByZeroException,
and our program terminates. We can prevent this by catching
the exception as follows:

try
{
  int x = 3, y = 0;
  Console.WriteLine (x / y);
}
catch (DivideByZeroException ex)
{
  Console.Write ("y cannot be zero. ");
}
// Execution resumes here after exception...

NOTE

This is a simple example to illustrate exception handling.
We could deal with this particular scenario better in prac‐
tice by checking explicitly for the divisor being zero before
calling Calc.
Exceptions are relatively expensive to handle, taking hun‐
dreds of clock cycles.

When an exception is thrown, the CLR performs a test:

Is execution currently within a try statement that can catch the
exception?

• If so, execution is passed to the compatible catch block. If
the catch block successfully finishes executing, execution
moves to the next statement after the try statement (if
present, executing the finally block first).

try Statements and Exceptions | 133



• If not, execution jumps back to the caller of the function,
and the test is repeated (after executing any finally
blocks that wrap the statement).

If no function in the call stack takes responsibility for the
exception, an error dialog is displayed to the user, and the pro‐
gram terminates.

The catch Clause
A catch clause specifies what type of exception to catch. This
must either be System.Exception or a subclass of System.Excep
tion. Catching System.Exception catches all possible errors.
This is useful when:

• Your program can potentially recover regardless of the
specific exception type.

• You plan to rethrow the exception (perhaps after logging
it).

• Your error handler is the last resort, prior to termination
of the program.

More typically, though, you catch specific exception types in
order to avoid having to deal with circumstances for which
your handler wasn’t designed (e.g., an OutOfMemoryException).

You can handle multiple exception types with multiple catch
clauses:

try
{
  DoSomething();
}
catch (IndexOutOfRangeException ex) { ... }
catch (FormatException ex)          { ... }
catch (OverflowException ex)        { ... }

Only one catch clause executes for a given exception. If you
want to include a safety net to catch more general exceptions

134 | C# 7.0 Pocket Reference



(such as System.Exception), you must put the more specific
handlers first.

You can catch an exception without specifying a variable, if you
don’t need to access its properties:

catch (OverflowException)   // no variable
{ ... }

Furthermore, you can omit both the variable and the type
(meaning that all exceptions will be caught):

catch { ... }

Exception filters
From C# 6.0, you can specify an exception filter in a catch
clause by adding a when clause:

catch (WebException ex)
  when (ex.Status == WebExceptionStatus.Timeout)
{
  ...
}

If a WebException is thrown in this example, the Boolean
expression following the when keyword is then evaluated. If the
result is false, the catch block in question is ignored, and any
subsequent catch clauses are considered. With exception filters,
it can be meaningful to catch the same exception type again:

catch (WebException ex) when (ex.Status == something)
{ ... }
catch (WebException ex) when (ex.Status == somethingelse)
{ ... }

The Boolean expression in the when clause can be side-
effecting, such as a method that logs the exception for diagnos‐
tic purposes.

The finally Block
A finally block always executes—whether or not an exception
is thrown and whether or not the try block runs to completion.
finally blocks are typically used for cleanup code.

try Statements and Exceptions | 135



A finally block executes either:

• After a catch block finishes
• After control leaves the try block because of a jump state‐

ment (e.g., return or goto)
• After the try block ends

A finally block helps add determinism to a program. In the
following example, the file that we open always gets closed,
regardless of whether:

• The try block finishes normally.
• Execution returns early because the file is empty (EndOf
Stream).

• An IOException is thrown while the file is being read.

For example:
static void ReadFile()
{
  StreamReader reader = null;  // In System.IO namespace
  try
  {
    reader = File.OpenText ("file.txt");
    if (reader.EndOfStream) return;
    Console.WriteLine (reader.ReadToEnd());
  }
  finally
  {
    if (reader != null) reader.Dispose();
  }
}

In this example, we closed the file by calling Dispose on the
StreamReader. Calling Dispose on an object within a finally
block is a standard convention throughout the .NET Frame‐
work and is supported explicitly in C# through the using state‐
ment.

136 | C# 7.0 Pocket Reference



The using statement
Many classes encapsulate unmanaged resources, such as file
handles, graphics handles, or database connections. These
classes implement System.IDisposable, which defines a single
parameterless method named Dispose to clean up these resour‐
ces. The using statement provides an elegant syntax for calling
Dispose on an IDisposable object within a finally block.

The statement:
using (StreamReader reader = File.OpenText ("file.txt"))
{
  ...
}

is precisely equivalent to:
{
  StreamReader reader = File.OpenText ("file.txt");
  try
  {
    ...
  }
  finally
  {
    if (reader != null) ((IDisposable)reader).Dispose();
  }
}

Throwing Exceptions
Exceptions can be thrown either by the runtime or in user
code. In this example, Display throws a System.ArgumentNul
lException:

static void Display (string name)
{
  if (name == null)
    throw new ArgumentNullException (nameof (name));

  Console.WriteLine (name);
}

try Statements and Exceptions | 137



throw expressions (C# 7)

Prior to C# 7, throw was always a statement. Now it can also
appear as an expression in expression-bodied functions:

public string Foo() => throw new 
NotImplementedException();

A throw expression can also appear in a ternary conditional
expression:

string ProperCase (string value) =>
  value == null ? throw new ArgumentException ("value") :
  value == "" ? "" :
  char.ToUpper (value[0]) + value.Substring (1);

Rethrowing an exception
You can capture and rethrow an exception as follows:

try {  ...  }
catch (Exception ex)
{
  // Log error
  ...
  throw;          // Rethrow same exception
}

Rethrowing in this manner lets you log an error without swal‐
lowing it. It also lets you back out of handling an exception
should circumstances turn out to be outside what you
expected.

NOTE

If we replaced throw with throw ex, the example would
still work, but the StackTrace property of the exception
would no longer reflect the original error.

The other common scenario is to rethrow a more specific or
meaningful exception type:

138 | C# 7.0 Pocket Reference



try
{
  ... // parse a date of birth from XML element data
}
catch (FormatException ex)
{
  throw new XmlException ("Invalid date of birth", ex);
}

When rethrowing a different exception, you can populate the
InnerException property with the original exception to aid
debugging. Nearly all types of exceptions provide a constructor
for this purpose (such as in our example).

Key Properties of System.Exception
The most important properties of System.Exception are the
following:

StackTrace

A string representing all the methods that are called from
the origin of the exception to the catch block.

Message

A string with a description of the error.
InnerException

The inner exception (if any) that caused the outer excep‐
tion. This, itself, may have another InnerException.

Common Exception Types
The following exception types are used widely throughout the
CLR and the .NET Framework. You can throw them yourself
or use them as base classes for deriving custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument.
This generally indicates a program bug.

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a func‐
tion argument is (unexpectedly) null.

try Statements and Exceptions | 139



System.ArgumentOutOfRangeException

Subclass of ArgumentException that’s thrown when a (usu‐
ally numeric) argument is too big or too small. For exam‐
ple, this is thrown when you pass a negative number into a
function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a
method to successfully execute, regardless of any particu‐
lar argument values. Examples include reading an unop‐
ened file or getting the next element from an enumerator
where the underlying list has been modified partway
through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not
supported. A good example is calling the Add method on a
collection for which IsReadOnly returns true.

System.NotImplementedException

Thrown to indicate that a function has not yet been imple‐
mented.

System.ObjectDisposedException

Thrown when the object upon which the function is called
has been disposed.

Enumeration and Iterators
Enumeration
An enumerator is a read-only, forward-only cursor over a
sequence of values. An enumerator is an object that implements
either System.Collections.IEnumerator or System.Collec

tions.Generic.IEnumerator<T>.

The foreach statement iterates over an enumerable object. An
enumerable object is the logical representation of a sequence. It
is not itself a cursor, but an object that produces cursors over
itself. An enumerable either implements IEnumerable/IEnumera
ble<T> or has a method named GetEnumerator that returns an
enumerator.

140 | C# 7.0 Pocket Reference



The enumeration pattern is as follows:
class Enumerator   // Typically implements IEnumerator<T>
{
  public IteratorVariableType Current { get {...} }
  public bool MoveNext() {...}
}
class Enumerable   // Typically implements IEnumerable<T>
{
  public Enumerator GetEnumerator() {...}
}

Here is the high-level way to iterate through the characters in
the word beer using a foreach statement:

foreach (char c in "beer") Console.WriteLine (c);

Here is the low-level way to iterate through the characters in
beer without using a foreach statement:

using (var enumerator = "beer".GetEnumerator())
  while (enumerator.MoveNext())
  {
    var element = enumerator.Current;
    Console.WriteLine (element);
  }

If the enumerator implements IDisposable, the foreach state‐
ment also acts as a using statement, implicitly disposing the
enumerator object.

Collection Initializers
You can instantiate and populate an enumerable object in a sin‐
gle step. For example:

using System.Collections.Generic;
...

List<int> list = new List<int> {1, 2, 3};

The compiler translates the last line into the following:
List<int> list = new List<int>();
list.Add (1); list.Add (2); list.Add (3);

Enumeration and Iterators | 141



This requires that the enumerable object implements the Sys
tem.Collections.IEnumerable interface, and that it has an Add
method that has the appropriate number of parameters for the
call. You can similarly initialize dictionaries (types that imple‐
ment System.Collections.IDictionary), as follows:

var dict = new Dictionary<int, string>()
{
  { 5, "five" },
  { 10, "ten" }
};

Or, more succinctly:
var dict = new Dictionary<int, string>()
{
  [3] = "three",
  [10] = "ten"
};

The latter is valid not only with dictionaries, but with any type
for which an indexer exists.

Iterators
Whereas a foreach statement is a consumer of an enumerator,
an iterator is a producer of an enumerator. In this example, we
use an iterator to return a sequence of Fibonacci numbers
(where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
  static void Main()
  {
    foreach (int fib in Fibs(6))
      Console.Write (fib + "  ");
  }

  static IEnumerable<int> Fibs(int fibCount)
  {
    for (int i = 0, prevFib = 1, curFib = 1;
         i < fibCount;

142 | C# 7.0 Pocket Reference



         i++)
    {
      yield return prevFib;
      int newFib = prevFib+curFib;
      prevFib = curFib;
      curFib = newFib;
    }
  }
}
OUTPUT: 1  1  2  3  5  8

Whereas a return statement expresses, “Here’s the value you
asked me to return from this method,” a yield return state‐
ment expresses, “Here’s the next element you asked me to yield
from this enumerator.” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so that
the method can continue executing as soon as the caller enu‐
merates the next element. The lifetime of this state is bound to
the enumerator such that the state can be released when the
caller has finished enumerating.

NOTE

The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>.
The logic within the iterator block is “inverted” and spliced
into the MoveNext method and the Current property on
the compiler-written enumerator class, which effectively
becomes a state machine. This means that when you call an
iterator method, all you’re doing is instantiating the com‐
piler-written class; none of your code actually runs! Your
code runs only when you start enumerating over the resul‐
tant sequence, typically with a foreach statement.

Iterator Semantics
An iterator is a method, property, or indexer that contains one
or more yield statements. An iterator must return one of the

Enumeration and Iterators | 143



following four interfaces (otherwise, the compiler will generate
an error):

System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.Generic.IEnumerable<T>
System.Collections.Generic.IEnumerator<T>

Iterators that return an enumerator interface tend to be used
less often. They’re useful when you’re writing a custom collec‐
tion class: typically, you name the iterator GetEnumerator and
have your class implement IEnumerable<T>.

Iterators that return an enumerable interface are more common
—and simpler to use because you don’t have to write a collec‐
tion class. The compiler, behind the scenes, writes a private
class implementing IEnumerable<T> (as well as IEnumera

tor<T>).

Multiple yield statements

An iterator can include multiple yield statements:
static void Main()
{
  foreach (string s in Foo())
    Console.Write (s + " ");    // One Two Three
}

static IEnumerable<string> Foo()
{
  yield return "One";
  yield return "Two";
  yield return "Three";
}

yield break

The yield break statement indicates that the iterator block
should exit early, without returning more elements. We can
modify Foo as follows to demonstrate:

144 | C# 7.0 Pocket Reference



static IEnumerable<string> Foo (bool breakEarly)
{
  yield return "One";
  yield return "Two";
  if (breakEarly) yield break;
  yield return "Three";
}

WARNING

A return statement is illegal in an iterator block—you
must use yield break instead.

Composing Sequences
Iterators are highly composable. We can extend our Fibonacci
example by adding the following method to the class:

static IEnumerable<int> EvenNumbersOnly (
  IEnumerable<int> sequence)
  {
    foreach (int x in sequence)
      if ((x % 2) == 0)
        yield return x;
  }
}

We can then output even Fibonacci numbers as follows:
foreach (int fib in EvenNumbersOnly (Fibs (6)))
  Console.Write (fib + " ");   // 2 8

Each element is not calculated until the last moment—when
requested by a MoveNext() operation. Figure 5 shows the data
requests and data output over time.

Enumeration and Iterators | 145



Figure 5. Composing sequences

The composability of the iterator pattern is essential in building
LINQ queries.

Nullable Types
Reference types can represent a nonexistent value with a null
reference. Value types, however, cannot ordinarily represent
null values. For example:

string s = null;   // OK - reference type.
int i = null;      // Compile error - int cannot be null.

To represent null in a value type, you must use a special con‐
struct called a nullable type. A nullable type is denoted with a
value type followed by the ? symbol:

146 | C# 7.0 Pocket Reference



int? i = null;                     // OK - Nullable Type
Console.WriteLine (i == null);     // True

Nullable<T> Struct
T? translates into System.Nullable<T>. Nullable<T> is a light‐
weight immutable structure, having only two fields, to repre‐
sent Value and HasValue. The essence of System.Nullable<T> is
very simple:

public struct Nullable<T> where T : struct
{
  public T Value {get;}
  public bool HasValue {get;}
  public T GetValueOrDefault();
  public T GetValueOrDefault (T defaultValue);
  ...
}

The code:
int? i = null;
Console.WriteLine (i == null);              // True

translates to:
Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue);           // True

Attempting to retrieve Value when HasValue is false throws an
InvalidOperationException. GetValueOrDefault() returns
Value if HasValue is true; otherwise, it returns new T() or a
specified custom default value.

The default value of T? is null.

Nullable Conversions
The conversion from T to T? is implicit, and from T? to T is
explicit. For example:

int? x = 5;        // implicit
int y = (int)x;    // explicit

Nullable Types | 147



The explicit cast is directly equivalent to calling the nullable
object’s Value property. Hence, an InvalidOperationException
is thrown if HasValue is false.

Boxing/Unboxing Nullable Values
When T? is boxed, the boxed value on the heap contains T, not
T?. This optimization is possible because a boxed value is a ref‐
erence type that can already express null.

C# also permits the unboxing of nullable types with the as
operator. The result will be null if the cast fails:

object o = "string";
int? x = o as int?;
Console.WriteLine (x.HasValue);   // False

Operator Lifting
The Nullable<T> struct does not define operators such as <, >,
or even ==. Despite this, the following code compiles and exe‐
cutes correctly:

int? x = 5;
int? y = 10;
bool b = x < y;      // true

This works because the compiler borrows or “lifts” the less-
than operator from the underlying value type. Semantically, it
translates the preceding comparison expression into this:

bool b = (x.HasValue && y.HasValue)
          ? (x.Value < y.Value)
          : false;

In other words, if both x and y have values, it compares via
int’s less-than operator; otherwise, it returns false.

Operator lifting means you can implicitly use T’s operators on
T?. You can define operators for T? in order to provide special-
purpose null behavior, but in the vast majority of cases, it’s best
to rely on the compiler automatically applying systematic nulla‐
ble logic for you.

148 | C# 7.0 Pocket Reference



The compiler performs null logic differently depending on the
category of operator.

Equality operators (==, !=)
Lifted equality operators handle nulls just like reference types
do. This means two null values are equal:

Console.WriteLine (       null ==        null);  // True
Console.WriteLine ((bool?)null == (bool?)null);  // True

Further:

• If exactly one operand is null, the operands are unequal.
• If both operands are non-null, their Values are compared.

Relational operators (<, <=, >=, >)
The relational operators work on the principle that it is mean‐
ingless to compare null operands. This means comparing a null
value to either a null or a non-null value returns false.

bool b = x < y;    // Translation:

bool b = (x == null || y == null)
  ? false
  : (x.Value < y.Value);

// b is false (assuming x is 5 and y is null)

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
These operators return null when any of the operands are null.
This pattern should be familiar to SQL users.

int? c = x + y;   // Translation:

int? c = (x == null || y == null)
         ? null
         : (int?) (x.Value + y.Value);

// c is null (assuming x is 5 and y is null)

Nullable Types | 149



An exception is when the & and | operators are applied to
bool?, which we will discuss shortly.

Mixing nullable and non-nullable operators
You can mix and match nullable and non-nullable types (this
works because there is an implicit conversion from T to T?):

int? a = null;
int b = 2;
int? c = a + b;   // c is null - equivalent to a + 
(int?)b

bool? with & and | Operators
When supplied operands of type bool?, the & and | operators
treat null as an unknown value. So, null | true is true,
because:

• If the unknown value is false, the result would be true.
• If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior would be famil‐
iar to SQL users. The following example enumerates other
combinations:

bool? n = null, f = false, t = true;
Console.WriteLine (n | n);    // (null)
Console.WriteLine (n | f);    // (null)
Console.WriteLine (n | t);    // True
Console.WriteLine (n & n);    // (null)
Console.WriteLine (n & f);    // False
Console.WriteLine (n & t);    // (null)

Nullable Types and Null Operators
Nullable types work particularly well with the ?? operator (see
“Null Coalescing Operator” on page 52). For example:

int? x = null;
int y = x ?? 5;        // y is 5

150 | C# 7.0 Pocket Reference



int? a = null, b = null, c = 123;
Console.WriteLine (a ?? b ?? c);  // 123

Using ?? on a nullable value type is equivalent to calling GetVa
lueOrDefault with an explicit default value, except that the
expression for the default value is never evaluated if the vari‐
able is not null.

Nullable types also work well with the null-conditional opera‐
tor (see “Null-Conditional Operator” on page 52). In the fol‐
lowing example, length evaluates to null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null coalescing operator to evalu‐
ate to zero instead of null:

int length = sb?.ToString().Length ?? 0;

Extension Methods
Extension methods allow an existing type to be extended with
new methods, without altering the definition of the original
type. An extension method is a static method of a static class,
where the this modifier is applied to the first parameter. The
type of the first parameter will be the type that is extended. For
example:

public static class StringHelper
{
  public static bool IsCapitalized (this string s)
  {
    if (string.IsNullOrEmpty (s)) return false;
    return char.IsUpper (s[0]);
  }
}

The IsCapitalized extension method can be called as though it
were an instance method on a string, as follows:

Console.Write ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back
into an ordinary static method call:

Extension Methods | 151



Console.Write (StringHelper.IsCapitalized ("Perth"));

Interfaces can be extended, too:
public static T First<T> (this IEnumerable<T> sequence)
{
  foreach (T element in sequence)
    return element;
  throw new InvalidOperationException ("No elements!");
}
...
Console.WriteLine ("Seattle".First());   // S

Extension Method Chaining
Extension methods, like instance methods, provide a tidy way to
chain functions. Consider the following two functions:

public static class StringHelper
{
  public static string Pluralize (this string s) {...}
  public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "Sausages", but x
uses extension methods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();

string y = StringHelper.Capitalize
           (StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution

Namespaces
An extension method cannot be accessed unless the namespace
is in scope (typically imported with a using statement).

Extension methods versus instance methods
Any compatible instance method will always take precedence
over an extension method—even when the extension method’s
parameters are more specifically type-matched.

152 | C# 7.0 Pocket Reference



Extension methods versus extension methods
If two extension methods have the same signature, the exten‐
sion method must be called as an ordinary static method to dis‐
ambiguate the method to call. If one extension method has
more specific arguments, however, the more specific method
takes precedence.

Anonymous Types
An anonymous type is a simple class created on the fly to store
a set of values. To create an anonymous type, you use the new
keyword followed by an object initializer, specifying the prop‐
erties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 1 };

The compiler resolves this by writing a private nested type with
read-only properties for Name (type string) and Age (type int). 
You must use the var keyword to reference an anonymous type,
because the type’s name is compiler-generated.

The property name of an anonymous type can be inferred from
an expression that is itself an identifier. For example:

int Age = 1;
var dude = new { Name = "Bob", Age };

is equivalent to:
var dude = new { Name = "Bob", Age = Age };

You can create arrays of anonymous types as follows:
var dudes = new[]
{
  new { Name = "Bob", Age = 30 },
  new { Name = "Mary", Age = 40 }
};

Anonymous types are used primarily when you’re writing
LINQ queries.

Anonymous Types | 153



Tuples (C# 7)
Like anonymous types, tuples provide a simple way to store a
set of values. The main purpose of tuples is to safely return
multiple values from a method without resorting to out param‐
eters (something you cannot do with anonymous types). The
simplest way to create a tuple literal is to list the desired values
in parentheses. This creates a tuple with unnamed elements:

var bob = ("Bob", 23);
Console.WriteLine (bob.Item1);   // Bob
Console.WriteLine (bob.Item2);   // 23

WARNING

C# 7’s tuple functionality relies on a set of supporting
generic structs named System.ValueTuple<...>. These are
not part of .NET Framework 4.6, and are contained in an
assembly called System.ValueTuple, available in a NuGet
package of the same name. If you’re using Visual Studio
with .NET Framework 4.6, you must download this pack‐
age explicitly. (If you are using LINQPad, the required
assembly is included automatically.)

System.ValueTuple is built into .NET Framework 4.7, in
mscorlib.dll.

Unlike with anonymous types, var is optional and you can
specify a tuple type explicitly:

(string,int) bob  = ("Bob", 23);

This means that you can usefully return a tuple from a method:
static (string,int) GetPerson() => ("Bob", 23);

static void Main()
{
  (string,int) person = GetPerson();
  Console.WriteLine (person.Item1);    // Bob

154 | C# 7.0 Pocket Reference



  Console.WriteLine (person.Item2);    // 23
}

Tuples play well with generics, so the following types are all
legal:

Task<(string,int)>
Dictionary<(string,int),Uri>
IEnumerable<(int ID, string Name)>   // See below...

Tuples are value types with mutable (read/write) elements. This
means that you can modify Item1, Item2, and so on, after creat‐
ing a tuple.

Naming Tuple Elements
You can optionally give meaningful names to elements when
creating tuple literals:

var tuple = (Name:"Bob", Age:23);
Console.WriteLine (tuple.Name);     // Bob
Console.WriteLine (tuple.Age);      // 23

You can do the same when specifying tuple types:
static (string Name, int Age) GetPerson() => ("Bob",23);

NOTE

Tuples are syntactic sugar for using a family of generic
structs called ValueTuple<T1> and ValueTuple<T1,T2>,
which have fields named Item1, Item2, and so on. Hence
(string,int) is an alias for ValueTuple<string,int>.
This means that “named elements” exist only in the source
code—and the imagination of the compiler—and mostly
disappear at runtime.

Tuples (C# 7) | 155



Deconstructing Tuples
Tuples implicitly support the deconstruction pattern (see
“Deconstructors (C# 7)” on page 71), so you can easily decon‐
struct a tuple into individual variables. So, instead of this:

var bob = ("Bob", 23);
string name = bob.Item1;
int age = bob.Item2;

you can do this:
var bob = ("Bob", 23);
(string name, int age) = bob;   // Deconstruct bob into
                                // name and age.
Console.WriteLine (name);
Console.WriteLine (age);

The syntax for deconstruction is confusingly similar to the syn‐
tax for declaring a tuple with named elements. The following
highlights the difference:

(string name, int age)      = bob;  // Deconstructing
(string name, int age) bob2 = bob;  // Declaring tuple

LINQ
LINQ, or Language Integrated Query, allows you to write struc‐
tured type-safe queries over local object collections and remote
data sources.

LINQ lets you query any collection implementing IEnumera
ble<>, whether it’s an array, list, XML DOM, or remote data
source (such as a table in SQL Server). LINQ offers the benefits
of both compile-time type checking and dynamic query com‐
position.

156 | C# 7.0 Pocket Reference



NOTE

A good way to experiment with LINQ is to download
LINQPad (www.linqpad.net). LINQPad lets you interac‐
tively query local collections and SQL databases in LINQ
without any setup and is preloaded with numerous exam‐
ples.

LINQ Fundamentals
The basic units of data in LINQ are sequences and elements. A
sequence is any object that implements the generic IEnumerable
interface, and an element is each item in the sequence. In the
following example, names is a sequence, and Tom, Dick, and
Harry are elements:

string[] names = { "Tom", "Dick", "Harry" };

A sequence such as this we call a local sequence because it rep‐
resents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A
typical query operator accepts an input sequence and emits a
transformed output sequence. In the Enumerable class in Sys
tem.Linq, there are around 40 query operators, all implemented
as static extension methods. These are called standard query
operators.

NOTE

LINQ also supports sequences that can be dynamically fed
from a remote data source such as SQL Server. These
sequences additionally implement the IQueryable<> inter‐
face and are supported through a matching set of standard
query operators in the Queryable class.

LINQ | 157



A simple query
A query is an expression that transforms sequences with one or
more query operators. The simplest query comprises one input
sequence and one operator. For instance, we can apply the 
Where operator on a simple array to extract those names whose
length is at least four characters, as follows:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> filteredNames =
  System.Linq.Enumerable.Where (
    names, n => n.Length >= 4);

foreach (string n in filteredNames)
  Console.Write (n + "|");            // Dick|Harry|

Because the standard query operators are implemented as
extension methods, we can call Where directly on names—as
though it were an instance method:

IEnumerable<string> filteredNames =
  names.Where (n => n.Length >= 4);

(For this to compile, you must import the System.Linq name‐
space with a using directive.) The Where method in Sys
tem.Linq.Enumerable has the following signature:

static IEnumerable<TSource> Where<TSource> (
  this IEnumerable<TSource> source,
  Func<TSource,bool> predicate)

source is the input sequence; predicate is a delegate that is
invoked on each input element. The Where method includes all
elements in the output sequence, for which the delegate returns
true. Internally, it’s implemented with an iterator—here’s its
source code:

foreach (TSource element in source)
  if (predicate (element))
    yield return element;

158 | C# 7.0 Pocket Reference



Projecting

Another fundamental query operator is the Select method.
This transforms (projects) each element in the input sequence
with a given lambda expression:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> upperNames =
  names.Select (n => n.ToUpper());

foreach (string n in upperNames)
  Console.Write (n + "|");       // TOM|DICK|HARRY|

A query can project into an anonymous type:
var query = names.Select (n => new {
                                     Name = n,
                                     Length = n.Length
                                   });
foreach (var row in query)
  Console.WriteLine (row);

Here’s the result:
{ Name = Tom, Length = 3 }
{ Name = Dick, Length = 4 }
{ Name = Harry, Length = 5 }

Take and Skip
The original ordering of elements within an input sequence is
significant in LINQ. Some query operators rely on this behav‐
ior, such as Take, Skip, and Reverse. The Take operator outputs
the first x elements, discarding the rest:

int[] numbers  = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);
// firstThree is { 10, 9, 8 }

The Skip operator ignores the first x elements, and outputs the
rest:

IEnumerable<int> lastTwo = numbers.Skip (3);

LINQ | 159



Element operators
Not all query operators return a sequence. The element opera‐
tors extract one element from the input sequence; examples are
First, Last, Single, and ElementAt:

int[] numbers    = { 10, 9, 8, 7, 6 };
int firstNumber  = numbers.First();                // 10
int lastNumber   = numbers.Last();                 // 6
int secondNumber = numbers.ElementAt (2);          // 8
int firstOddNum  = numbers.First (n => n%2 == 1);  // 9

All of these operators throw an exception if no elements are
present. To get a null/empty return value instead of an excep‐
tion, use FirstOrDefault, LastOrDefault, SingleOrDefault, or
ElementAtOrDefault.

The Single and SingleOrDefault methods are equivalent to
First and FirstOrDefault except that they throw an exception
if there’s more than one match. This behavior is useful when
you’re querying a database table for a row by primary key.

Aggregation operators
The aggregation operators return a scalar value, usually of
numeric type. The most commonly used aggregation operators
are Count, Min, Max, and Average:

int[] numbers = { 10, 9, 8, 7, 6 };
int count     = numbers.Count();             // 5
int min       = numbers.Min();               // 6
int max       = numbers.Max();               // 10
double avg    = numbers.Average();           // 8

Count accepts an optional predicate, which indicates whether to
include a given element. The following counts all even num‐
bers:

int evenNums = numbers.Count (n => n % 2 == 0);   // 3

The Min, Max, and Average operators accept an optional argu‐
ment that transforms each element prior to it being aggregated:

int maxRemainderAfterDivBy5 = numbers.Max
                              (n => n % 5);       // 4

160 | C# 7.0 Pocket Reference



The following calculates the root-mean-square of numbers:
double rms = Math.Sqrt (numbers.Average (n => n * n));

Quantifiers

The quantifiers return a bool value. The quantifiers are Con
tains, Any, All, and SequenceEquals (which compares two
sequences):

int[] numbers = { 10, 9, 8, 7, 6 };

bool hasTheNumberNine = numbers.Contains (9);    // true
bool hasMoreThanZeroElements = numbers.Any();    // true
bool hasOddNum = numbers.Any (n => n % 2 == 1);  // true
bool allOddNums = numbers.All (n => n % 2 == 1); // false

Set operators

The set operators accept two same-typed input sequences. Con
cat appends one sequence to another; Union does the same but
with duplicates removed:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
  concat = seq1.Concat (seq2),   // { 1, 2, 3, 3, 4, 5 }
  union  = seq1.Union  (seq2),   // { 1, 2, 3, 4, 5 }

The other two operators in this category are Intersect and
Except:

IEnumerable<int>
  commonality = seq1.Intersect (seq2),    //  { 3 }
  difference1 = seq1.Except    (seq2),    //  { 1, 2 }
  difference2 = seq2.Except    (seq1);    //  { 4, 5 }

Deferred Execution
An important feature of many query operators is that they exe‐
cute not when constructed, but when enumerated (in other
words, when MoveNext is called on its enumerator). Consider
the following query:

var numbers = new List<int> { 1 };

LINQ | 161



IEnumerable<int> query = numbers.Select (n => n * 10);
numbers.Add (2);    // Sneak in an extra element

foreach (int n in query)
  Console.Write (n + "|");          // 10|20|

The extra number that we sneaked into the list after construct‐
ing the query is included in the result, because it’s not until the
foreach statement runs that any filtering or sorting takes place.
This is called deferred or lazy evaluation. Deferred execution
decouples query construction from query execution, allowing
you to construct a query in several steps as well as making it
possible to query a database without retrieving all the rows to
the client. All standard query operators provide deferred exe‐
cution, with the following exceptions:

• Operators that return a single element or scalar value (the
element operators, aggregation operators, and quantifiers)

• The conversion operators ToArray, ToList, ToDictionary,
and ToLookup

The conversion operators are handy, in part, because they
defeat lazy evaluation. This can be useful to “freeze” or cache
the results at a certain point in time, to avoid reexecuting a
computationally intensive or remotely sourced query such as a
LINQ to SQL table. (A side effect of lazy evaluation is that the
query gets reevaluated should you later reenumerate it.)

The following example illustrates the ToList operator:
var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
  .Select (n => n * 10)
  .ToList();    // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count);      // Still 2

162 | C# 7.0 Pocket Reference



WARNING

Subqueries provide another level of indirection. Everything
in a subquery is subject to deferred execution—including
aggregation and conversion methods, because the sub‐
query is itself executed only lazily upon demand. Assuming
names is a string array, a subquery looks like this:

names.Where (
  n => n.Length ==
    names.Min (n2 => n2.Length))

Standard Query Operators
The standard query operators (as implemented in the Sys
tem.Linq.Enumerable class) can be divided into 12 categories,
summarized in Table 1.

Table 1. Query operator categories

Category Description Deferred
execution?

Filtering Returns a subset of elements that satisfy a
given condition

Yes

Projecting Transforms each element with a lambda
function, optionally expanding subsequences

Yes

Joining Meshes elements of one collection with
another, using a time-efficient lookup
strategy

Yes

Ordering Returns a reordering of a sequence Yes

Grouping Groups a sequence into subsequences Yes

Set Accepts two same-typed sequences, and
returns their commonality, sum, or difference

Yes

Element Picks a single element from a sequence No

Aggregation Performs a computation over a sequence,
returning a scalar value (typically a number)

No

LINQ | 163



Category Description Deferred
execution?

Quantification Performs a computation over a sequence,
returning true or false

No

Conversion:
Import

Converts a nongeneric sequence to a
(queryable) generic sequence

Yes

Conversion:
Export

Converts a sequence to an array, list,
dictionary, or lookup, forcing immediate
evaluation

No

Generation Manufactures a simple sequence Yes

Tables 2–13 summarize each query operator. The operators
shown in bold have special support in C# (see “Query Expres‐
sions” on page 169).

Table 2. Filtering operators

Method Description

Where Returns a subset of elements that satisfy a given condition

Take Returns the first x elements, and discards the rest

Skip Ignores the first x elements, and returns the rest

TakeWhile Emits elements from the input sequence until the given predicate
is true

SkipWhile Ignores elements from the input sequence until the given
predicate is true, and then emits the rest

Distinct Returns a collection that excludes duplicates

Table 3. Projection operators

Method Description

Select Transforms each input element with a given lambda expression

SelectMany Transforms each input element, then flattens and concatenates
the resultant subsequences

164 | C# 7.0 Pocket Reference



Table 4. Joining operators

Method Description

Join Applies a lookup strategy to match elements from two collections,
emitting a flat result set

GroupJoin As above, but emits a hierarchical result set

Zip Enumerates two sequences in step, returning a sequence that
applies a function over each element pair

Table 5. Ordering operators

Method Description

OrderBy, ThenBy Returns the elements sorted in ascending order

OrderByDescending,
ThenByDescending

Returns the elements sorted in descending order

Reverse Returns the elements in reverse order

Table 6. Grouping operators

Method Description

GroupBy Groups a sequence into subsequences

Table 7. Set operators

Method Description

Concat Concatenates two sequences

Union Concatenates two sequences, removing duplicates

Intersect Returns elements present in both sequences

Except Returns elements present in the first sequence, but not the
second

LINQ | 165



Table 8. Element operators

Method Description

First, FirstOrDefault Returns the first element in the sequence, or the
first element satisfying a given predicate

Last, LastOrDefault Returns the last element in the sequence, or the
last element satisfying a given predicate

Single,
SingleOrDefault

Equivalent to First/FirstOrDefault, but
throws an exception if there is more than one
match

ElementAt,
ElementAtOrDefault

Returns the element at the specified position

DefaultIfEmpty Returns a single-value sequence whose value is
null or default(TSource) if the sequence
has no elements

Table 9. Aggregation operators

Method Description

Count,
LongCount

Returns the total number of elements in the input
sequence, or the number of elements satisfying a given
predicate

Min, Max Returns the smallest or largest element in the sequence

Sum, Average Calculates a numeric sum or average over elements in the
sequence

Aggregate Performs a custom aggregation

166 | C# 7.0 Pocket Reference



Table 10. Qualifiers

Method Description

Contains Returns true if the input sequence contains the given
element

Any Returns true if any elements satisfy the given predicate

All Returns true if all elements satisfy the given predicate

SequenceEqual Returns true if the second sequence has identical
elements to the input sequence

Table 11. Conversion operators (import)

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly
typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an
exception if there are any wrongly typed elements

Table 12. Conversion operators (export)

Method Description

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to
Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to
ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

LINQ | 167



Table 13. Generation operators

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

Chaining Query Operators
To build more complex queries, you chain query operators
together. For example, the following query extracts all strings
containing the letter a, sorts them by length, and then converts
the results to uppercase:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = names
  .Where   (n => n.Contains ("a"))
  .OrderBy (n => n.Length)
  .Select  (n => n.ToUpper());

foreach (string name in query)
  Console.Write (name + "|");

// RESULT: JAY|MARY|HARRY|

Where, OrderBy, and Select are all standard query operators
that resolve to extension methods in the Enumerable class. The
Where operator emits a filtered version of the input sequence;
OrderBy emits a sorted version of its input sequence; Select
emits a sequence where each input element is transformed or
projected with a given lambda expression (n.ToUpper(), in this
case). Data flows from left to right through the chain of opera‐
tors, so the data is first filtered, then sorted, then projected. The
end result resembles a production line of conveyor belts, as
illustrated in Figure 6.

168 | C# 7.0 Pocket Reference



Figure 6. Chaining query operators

Deferred execution is honored throughout with operators, so
no filtering, sorting, or projecting takes place until the query is
actually enumerated.

Query Expressions
So far, we’ve written queries by calling extension methods in
the Enumerable class. In this book, we describe this as fluent
syntax. C# also provides special language support for writing
queries, called query expressions. Here’s the preceding query
expressed as a query expression:

IEnumerable<string> query =
  from n in names
  where n.Contains ("a")
  orderby n.Length
  select n.ToUpper();

A query expression always starts with a from clause, and ends
with either a select or group clause. The from clause declares a
range variable (in this case, n), which you can think of as tra‐
versing the input collection—rather like foreach. Figure 7 illus‐
trates the complete syntax.

LINQ | 169



Figure 7. Query expression syntax

NOTE

If you’re familiar with SQL, LINQ’s query expression syn‐
tax—with the from clause first and the select clause last—
might look bizarre. Query expression syntax is actually
more logical because the clauses appear in the order they’re
executed. This allows Visual Studio to prompt you with
IntelliSense as you type, as well as simplifying the scoping
rules for subqueries.

170 | C# 7.0 Pocket Reference



The compiler processes query expressions by translating them
to fluent syntax. It does this in a fairly mechanical fashion—
much like it translates foreach statements into calls to GetEnum
erator and MoveNext:

IEnumerable<string> query = names
  .Where   (n => n.Contains ("a"))
  .OrderBy (n => n.Length)
  .Select  (n => n.ToUpper());

The Where, OrderBy, and Select operators then resolve using
the same rules that would apply if the query were written in
fluent syntax. In this case, they bind to extension methods
in the Enumerable class (assuming you’ve imported the
System.Linq namespace) because names implements IEnumera
ble<string>. The compiler doesn’t specifically favor the Enu
merable class, however, when translating query syntax. You can
think of the compiler as mechanically injecting the words
Where, OrderBy, and Select into the statement, and then
compiling it as though you’d typed the method names yourself.
This offers flexibility in how they resolve—the operators in
LINQ to SQL and Entity Framework queries, for instance, bind
instead to the extension methods in the Queryable class.

Query expressions versus fluent queries
Query expressions and fluent queries each have advantages.

Query expressions support only a small subset of query opera‐
tors, namely:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

For queries that use other operators, you must either write
entirely in fluent syntax or construct mixed-syntax queries; for
instance:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
  from   n in names

LINQ | 171



  where  n.Length == names.Min (n2 => n2.Length)
  select n;

This query returns names whose length matches that of the
shortest (“Tom” and “Jay”). The subquery (in bold) calculates
the minimum length of each name, and evaluates to 3. We have
to use fluent syntax for the subquery because the Min operator
has no support in query expression syntax. We can, however,
still use query syntax for the outer query.

The main advantage of query syntax is that it can radically sim‐
plify queries that involve the following:

• A let clause for introducing a new variable alongside the
range variable

• Multiple generators (SelectMany) followed by an outer
range variable reference

• A Join or GroupJoin equivalent, followed by an outer
range variable reference

The let Keyword
The let keyword introduces a new variable alongside the range
variable. For instance, suppose we want to list all names whose
length, without vowels, is greater than two characters:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
  from n in names
  let vowelless = Regex.Replace (n, "[aeiou]", "")
  where vowelless.Length > 2
  orderby vowelless
  select n + " - " + vowelless;

The output from enumerating this query is:
Dick - Dck
Harry - Hrry
Mary - Mry

172 | C# 7.0 Pocket Reference



The let clause performs a calculation on each element, without
losing the original element. In our query, the subsequent
clauses (where, orderby, and select) have access to both n and
vowelless. A query can include any multiple let clauses, and
they can be interspersed with additional where and join clau‐
ses.

The compiler translates the let keyword by projecting into a
temporary anonymous type that contains both the original and
transformed elements:

IEnumerable<string> query = names
 .Select (n => new
   {
     n = n,
     vowelless = Regex.Replace (n, "[aeiou]", "")
   }
 )
 .Where (temp0 => (temp0.vowelless.Length > 2))
 .OrderBy (temp0 => temp0.vowelless)
 .Select (temp0 => ((temp0.n + " - ") + temp0.vowelless))

Query Continuations
If you want to add clauses after a select or group clause, you
must use the into keyword to “continue” the query. For
instance:

from c in "The quick brown tiger".Split()
select c.ToUpper() into upper
where upper.StartsWith ("T")
select upper

// RESULT: "THE", "TIGER"

Following an into clause, the previous range variable is out of
scope.

The compiler translates queries with an into keyword simply
into a longer chain of operators:

"The quick brown tiger".Split()
  .Select (c => c.ToUpper())
  .Where (upper => upper.StartsWith ("T"))

LINQ | 173



(It omits the final Select(upper=>upper) because it’s redun‐
dant.)

Multiple Generators
A query can include multiple generators (from clauses). For
example:

int[] numbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
                            from l in letters
                            select n.ToString() + l;

The result is a cross product, rather like you’d get with nested
foreach loops:

"1a", "1b", "2a", "2b", "3a", "3b"

When there’s more than one from clause in a query, the com‐
piler emits a call to SelectMany:

IEnumerable<string> query = numbers.SelectMany (
  n => letters,
  (n, l) => (n.ToString() + l));

SelectMany performs nested looping. It enumerates every ele‐
ment in the source collection (numbers), transforming each ele‐
ment with the first lambda expression (letters). This generates
a sequence of subsequences, which it then enumerates. The final
output elements are determined by the second lambda expres‐
sion (n.ToString()+l).

If you subsequently apply a where clause, you can filter the
cross product and project a result akin to a join:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query =
  from name1 in players
  from name2 in players
  where name1.CompareTo (name2) < 0
  orderby name1, name2
  select name1 + " vs " + name2;

174 | C# 7.0 Pocket Reference



RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The translation of this query into fluent syntax is more com‐
plex, requiring a temporary anonymous projection. The ability
to perform this translation automatically is one of the key ben‐
efits of query expressions.

The expression in the second generator is allowed to use the
first range variable:

string[] fullNames =
  { "Anne Williams", "John Fred Smith", "Sue Green" };

IEnumerable<string> query =
  from fullName in fullNames
  from name in fullName.Split()
  select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith

This works because the expression fullName.Split emits a
sequence (an array of strings).

Multiple generators are used extensively in database queries, to
flatten parent-child relationships and to perform manual joins.

Joining
LINQ provides three joining operators, the main ones being
Join and GroupJoin, which perform keyed lookup-based joins.
Join and GroupJoin support only a subset of the functionality
you get with multiple generators/SelectMany, but they are more
performant with local queries because they use a hashtable-
based lookup strategy rather than performing nested loops.
(With LINQ to SQL and Entity Framework queries, the joining
operators have no advantage over multiple generators.)

Join and GroupJoin support equi-joins only (i.e., the joining
condition must use the equality operator). There are two meth‐

LINQ | 175



ods: Join and GroupJoin. Join emits a flat result set, whereas
GroupJoin emits a hierarchical result set.

The query expression syntax for a flat join is:
from outer-var in outer-sequence
join inner-var in inner-sequence
  on outer-key-expr equals inner-key-expr

For example, given the following collections:
var customers = new[]
{
  new { ID = 1, Name = "Tom" },
  new { ID = 2, Name = "Dick" },
  new { ID = 3, Name = "Harry" }
};
var purchases = new[]
{
  new { CustomerID = 1, Product = "House" },
  new { CustomerID = 2, Product = "Boat" },
  new { CustomerID = 2, Product = "Car" },
  new { CustomerID = 3, Product = "Holiday" }
};

we could perform a join as follows:
IEnumerable<string> query =
  from c in customers
  join p in purchases on c.ID equals p.CustomerID
  select c.Name + " bought a " + p.Product;

The compiler translates this to:
customers.Join (                // outer collection
  purchases,                    // inner collection
  c => c.ID,                    // outer key selector
  p => p.CustomerID,            // inner key selector
  (c, p) =>                     // result selector
     c.Name + " bought a " + p.Product
);

Here’s the result:
Tom bought a House
Dick bought a Boat
Dick bought a Car
Harry bought a Holiday

176 | C# 7.0 Pocket Reference



With local sequences, Join and GroupJoin are more efficient at
processing large collections than SelectMany because they first
preload the inner sequence into a keyed hashtable-based
lookup. With a database query, however, you could achieve the
same result equally efficiently, as follows:

from c in customers
from p in purchases
where c.ID == p.CustomerID
select c.Name + " bought a " + p.Product;

GroupJoin

GroupJoin does the same work as Join, but instead of yielding a
flat result, it yields a hierarchical result, grouped by each outer
element.

The query expression syntax for GroupJoin is the same as for
Join, but is followed by the into keyword. Here’s a basic exam‐
ple, using the customers and purchases collections we set up in
the previous section:

IEnumerable<IEnumerable<Purchase>> query =
  from c in customers
  join p in purchases on c.ID equals p.CustomerID
  into custPurchases
  select custPurchases;   // custPurchases is a sequence

NOTE

An into clause translates to GroupJoin only when it
appears directly after a join clause. After a select or
group clause it means query continuation. The two uses of
the into keyword are quite different, although they have
one feature in common: they both introduce a new query
variable.

The result is a sequence of sequences, which we could enumer‐
ate as follows:

LINQ | 177



foreach (IEnumerable<Purchase> purchaseSequence in query)
  foreach (Purchase p in purchaseSequence)
    Console.WriteLine (p.Description);

This isn’t very useful, however, because outerSeq has no refer‐
ence to the outer customer. More commonly, you’d reference
the outer range variable in the projection:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

We could obtain the same result (but less efficiently, for local
queries) by projecting into an anonymous type that included a
subquery:

from c in customers
select new
{
  CustName = c.Name,
  custPurchases =
    purchases.Where (p => c.ID == p.CustomerID)
}

Zip

Zip is the simplest joining operator. It enumerates two sequen‐
ces in step (like a zipper), returning a sequence based on apply‐
ing a function over each element pair. For example:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip =
  numbers.Zip (words, (n, w) => n + "=" + w);

produces a sequence with the following elements:
3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not
supported when you are querying a database.

178 | C# 7.0 Pocket Reference



Ordering
The orderby keyword sorts a sequence. You can specify any
number of expressions upon which to sort:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = from n in names
                            orderby n.Length, n
                            select n;

This sorts first by length and then by name, so the result is:
Jay, Tom, Dick, Mary, Harry

The compiler translates the first orderby expression to a call to
OrderBy, and subsequent expressions to a call to ThenBy:

IEnumerable<string> query = names
  .OrderBy (n => n.Length)
  .ThenBy (n => n)

The ThenBy operator refines rather than replaces the previous
sorting.

You can include the descending keyword after any of the
orderby expressions:

orderby n.Length descending, n

This translates to:
.OrderByDescending (n => n.Length).ThenBy (n => n)

NOTE

The ordering operators return an extended type of IEnu
merable<T> called IOrderedEnumerable<T>. This inter‐
face defines the extra functionality required by the ThenBy
operator.

LINQ | 179



Grouping
GroupBy organizes a flat input sequence into sequences of
groups. For example, the following groups a sequence of names
by their length:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

var query = from name in names
            group name by name.Length;

The compiler translates this query into:
IEnumerable<IGrouping<int,string>> query =
  names.GroupBy (name => name.Length);

Here’s how to enumerate the result:
foreach (IGrouping<int,string> grouping in query)
{
  Console.Write ("\r\n Length=" + grouping.Key + ":");
  foreach (string name in grouping)
    Console.Write (" " + name);
}

 Length=3: Tom Jay
 Length=4: Dick Mary
 Length=5: Harry

Enumerable.GroupBy works by reading the input elements into a
temporary dictionary of lists so that all elements with the same
key end up in the same sublist. It then emits a sequence of
groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement>
  : IEnumerable<TElement>, IEnumerable
{
  // Key applies to the subsequence as a whole
  TKey Key { get; }
}

By default, the elements in each grouping are untransformed
input elements, unless you specify an elementSelector argu‐
ment. The following projects each input element to uppercase:

from name in names
group name.ToUpper() by name.Length

180 | C# 7.0 Pocket Reference



which translates to this:
names.GroupBy (
  name => name.Length,
  name => name.ToUpper() )

The subcollections are not emitted in order of key. GroupBy
does no sorting (in fact, it preserves the original ordering). To
sort, you must add an OrderBy operator (which means first
adding an into clause because group by ordinarily ends a
query):

from name in names
group name.ToUpper() by name.Length into grouping
orderby grouping.Key
select grouping

Query continuations are often used in a group by query. The
next query filters out groups that have exactly two matches in
them:

from name in names
group name.ToUpper() by name.Length into grouping
where grouping.Count() == 2
select grouping

NOTE

A where after a group by is equivalent to HAVING in SQL. It
applies to each subsequence or grouping as a whole rather
than the individual elements.

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection
and emit a generic IEnumerable<T> sequence that you can sub‐
sequently query:

var classicList = new System.Collections.ArrayList();
classicList.AddRange ( new int[] { 3, 4, 5 } );
IEnumerable<int> sequence1 = classicList.Cast<int>();

LINQ | 181



This is useful because it allows you to query collections written
prior to C# 2.0 (when IEnumerable<T> was introduced), such as
ControlCollection in System.Windows.Forms.

Cast and OfType differ in their behavior when encountering an
input element that’s of an incompatible type: Cast throws an
exception, whereas OfType ignores the incompatible element.

The rules for element compatibility follow those of C#’s is
operator. Here’s the internal implementation of Cast:

public static IEnumerable<TSource> Cast <TSource>
             (IEnumerable source)
{
  foreach (object element in source)
    yield return (TSource)element;
}

C# supports the Cast operator in query expressions—simply
insert the element type immediately after the from keyword:

from int x in classicList ...

This translates to:
from x in classicList.Cast <int>() ...

Dynamic Binding
Dynamic binding defers binding—the process of resolving
types, members, and operations—from compile time to run‐
time. Dynamic binding was introduced in C# 4.0 and is useful
when at compile time you know that a certain function, mem‐
ber, or operation exists, but the compiler does not. This com‐
monly occurs when you are interoperating with dynamic lan‐
guages (such as IronPython) and COM and in scenarios when
you might otherwise use reflection.

A dynamic type is declared with the contextual keyword
dynamic:

dynamic d = GetSomeObject();
d.Quack();

182 | C# 7.0 Pocket Reference



A dynamic type tells the compiler to relax. We expect the run‐
time type of d to have a Quack method. We just can’t prove it
statically. Because d is dynamic, the compiler defers binding
Quack to d until runtime. Understanding what this means
requires distinguishing between static binding and dynamic
binding.

Static Binding Versus Dynamic Binding
The canonical binding example is mapping a name to a specific
function when compiling an expression. To compile the follow‐
ing expression, the compiler needs to find the implementation
of the method named Quack:

d.Quack();

Let’s suppose the static type of d is Duck:
Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking
for a parameterless method named Quack on Duck. Failing that,
the compiler extends its search to methods taking optional
parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match is
found, you’ll get a compilation error. Regardless of what
method gets bound, the bottom line is that the binding is done
by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes
it static binding.

Now let’s change the static type of d to object:
object d = ...
d.Quack();

Calling Quack gives us a compilation error because, although
the value stored in d can contain a method called Quack, the
compiler cannot know it given that the only information it has
is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

Dynamic Binding | 183



dynamic d = ...
d.Quack();

A dynamic type is like object—it’s equally nondescriptive about
a type. The difference is that it lets you use it in ways that aren’t
known at compile time. A dynamic object binds at runtime
based on its runtime type, not its compile-time type. When the
compiler sees a dynamically bound expression (which in gen‐
eral is an expression that contains any value of type dynamic), it
merely packages up the expression such that the binding can be
done later at runtime.

At runtime, if a dynamic object implements IDynamicMetaOb
jectProvider, that interface is used to perform the binding. If
not, binding occurs in almost the same way as it would have
had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language
binding.

Custom Binding
Custom binding occurs when a dynamic object implements
IDynamicMetaObjectProvider (IDMOP). Although you can
implement IDMOP on types that you write in C#, and this is
useful to do, the more common case is that you have acquired
an IDMOP object from a dynamic language that is imple‐
mented in .NET on the Dynamic Language Runtime (DLR),
such as IronPython or IronRuby. Objects from those languages
implicitly implement IDMOP as a means to directly control the
meanings of operations performed on them. Here’s a simple
example:

using System;
using System.Dynamic;

public class Test
{
  static void Main()
  {
    dynamic d = new Duck();
    d.Quack();       // Quack was called

184 | C# 7.0 Pocket Reference



    d.Waddle();      // Waddle was called
  }
}
public class Duck : DynamicObject
{
  public override bool TryInvokeMember (
    InvokeMemberBinder binder, object[] args,
    out object result)
  {
    Console.WriteLine (binder.Name + " was called");
    result = null;
    return true;
  }
}

The Duck class doesn’t actually have a Quack method. Instead, it
uses custom binding to intercept and interpret all method calls.

We discuss custom binders in greater detail in Chapter 20 of C#
7.0 in a Nutshell.

Language Binding
Language binding occurs when a dynamic object does not
implement IDynamicMetaObjectProvider. Language binding is
useful when you are working around imperfectly designed
types or inherent limitations in the .NET type system. For
example, the built-in numeric types are imperfect in that they
have no common interface. We have seen that methods can be
bound dynamically; the same is true for operators:

static dynamic Mean (dynamic x, dynamic y) => (x+y) / 2;

static void Main()
{
  int x = 3, y = 4;
  Console.WriteLine (Mean (x, y));
}

The benefit is obvious—you don’t have to duplicate code for
each numeric type. However, you lose static type safety, risking
runtime exceptions rather than compile-time errors.

Dynamic Binding | 185



NOTE

Dynamic binding circumvents static type safety but not
runtime type safety. Unlike with reflection, you cannot cir‐
cumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as
possible to static binding, had the runtime types of the dynamic
objects been known at compile time. In our previous example,
the behavior of our program would be identical if we hardco‐
ded Mean to work with the int type. The most notable excep‐
tion in parity between static and dynamic binding is for exten‐
sion methods, which we discuss in “Uncallable Functions” on
page 190.

NOTE

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to
the same dynamic expression are optimized—allowing you
to efficiently call dynamic expressions in a loop. This opti‐
mization brings the typical overhead for a simple dynamic
expression on today’s hardware down to less than 100 ns.

RuntimeBinderException
If a member fails to bind, a RuntimeBinderException is thrown.
You can think of this like a compile-time error at runtime:

dynamic d = 5;
d.Hello();       // throws RuntimeBinderException

The exception is thrown because the int type has no Hello
method.

186 | C# 7.0 Pocket Reference



Runtime Representation of dynamic
There is a deep equivalence between the dynamic and object
types. The runtime treats the following expression as true:

typeof (dynamic) == typeof (object)

This principle extends to constructed types and array types:
typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an
object of any type (except pointer types):

dynamic x = "hello";
Console.WriteLine (x.GetType().Name);  // String

x = 123;  // No error (despite same variable)
Console.WriteLine (x.GetType().Name);  // Int32

Structurally, there is no difference between an object reference
and a dynamic reference. A dynamic reference simply enables
dynamic operations on the object it points to. You can convert
from object to dynamic to perform any dynamic operation you
want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append ("hello");
Console.WriteLine (o);   // hello

Dynamic Conversions
The dynamic type has implicit conversions to and from all other
types. For a conversion to succeed, the runtime type of the
dynamic object must be implicitly convertible to the target
static type.

The following example throws a RuntimeBinderException

because an int is not implicitly convertible to a short:
int i = 7;
dynamic d = i;
long l = d;       // OK - implicit conversion works
short j = d;      // throws RuntimeBinderException

Dynamic Binding | 187



var Versus dynamic
The var and dynamic types bear a superficial resemblance, but
the difference is deep:

• var says, “Let the compiler figure out the type.”
• dynamic says, “Let the runtime figure out the type.”

To illustrate:
dynamic x = "hello";  // Static type is dynamic
var y = "hello";      // Static type is string
int i = x;            // Runtime error
int j = y;            // Compile-time error

Dynamic Expressions
Fields, properties, methods, events, constructors, indexers,
operators, and conversions can all be called dynamically.

Trying to consume the result of a dynamic expression with a
void return type is prohibited—just as with a statically typed
expression. The difference is that the error occurs at runtime.

Expressions involving dynamic operands are typically them‐
selves dynamic because the effect of absent type information is
cascading:

dynamic x = 2;
var y = x * 3;       // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First,
casting a dynamic expression to a static type yields a static
expression. Second, constructor invocations always yield static
expressions—even when called with dynamic arguments.

In addition, there are a few edge cases where an expression
containing a dynamic argument is static, including passing an
index to an array and delegate creation expressions.

188 | C# 7.0 Pocket Reference



Dynamic Member Overload Resolution
The canonical use case for dynamic involves a dynamic receiver.
This means that a dynamic object is the receiver of a dynamic
function call:

dynamic x = ...;
x.Foo (123);          // x is the receiver

However, dynamic binding is not limited to receivers: the
method arguments are also eligible for dynamic binding. The
effect of calling a function with dynamic arguments is to defer
overload resolution from compile-time to runtime:

static void Foo (int x)    => Console.WriteLine ("1");
static void Foo (string x) => Console.WriteLine ("2");

static void Main()
{
  dynamic x = 5;
  dynamic y = "watermelon";

  Foo (x);    // 1
  Foo (y);    // 2
}

Runtime overload resolution is also called multiple dispatch and
is useful in implementing design patterns such as visitor.

If a dynamic receiver is not involved, the compiler can statically
perform a basic check to see whether the dynamic call will suc‐
ceed: it checks that a function with the right name and number
of parameters exists. If no candidate is found, you get a
compile-time error.

If a function is called with a mixture of dynamic and static
arguments, the final choice of method will reflect a mixture of
dynamic and static binding decisions:

static void X(object x, object y) =>Console.Write("oo");
static void X(object x, string y) =>Console.Write("os");
static void X(string x, object y) =>Console.Write("so");
static void X(string x, string y) =>Console.Write("ss");

static void Main()

Dynamic Binding | 189



{
  object o = "hello";
  dynamic d = "goodbye";
  X (o, d);               // os
}

The call to X(o,d) is dynamically bound because one of its
arguments, d, is dynamic. But because o is statically known, the
binding—even though it occurs dynamically—will make use of
that. In this case, overload resolution will pick the second
implementation of X due to the static type of o and the runtime
type of d. In other words, the compiler is “as static as it can pos‐
sibly be.”

Uncallable Functions
Some functions cannot be called dynamically. You cannot call:

• Extension methods (via extension method syntax)
• Any member of an interface (via the interface)
• Base members hidden by a subclass

This is because dynamic binding requires two pieces of infor‐
mation: the name of the function to call, and the object upon
which to call the function. However, in each of the three uncal‐
lable scenarios, an additional type is involved, which is known
only at compile time. And there is no way to specify these addi‐
tional types dynamically.

When you are calling extension methods, that additional type
is an extension class, chosen implicitly by virtue of using direc‐
tives in your source code (which disappear after compilation).
When calling members via an interface, you communicate the
additional type via an implicit or explicit cast. (With explicit
implementation, it’s in fact impossible to call a member without
casting to the interface.) A similar situation arises when you are
calling a hidden base member: you must specify an additional
type via either a cast or the base keyword—and that additional
type is lost at runtime.

190 | C# 7.0 Pocket Reference



Operator Overloading
Operators can be overloaded to provide more natural syntax
for custom types. Operator overloading is most appropriately
used for implementing custom structs that represent fairly
primitive data types. For example, a custom numeric type is an
excellent candidate for operator overloading.

The following symbolic operators can be overloaded:
+   -   *   /   ++   --   !   ~   %   &   |   ^
==  !=  <   <<  >>   >

Implicit and explicit conversions can also be overridden (with
the implicit and explicit keywords), as can the literals true
and false, and the unary + and - operators.

The compound assignment operators (e.g., += and /=) are auto‐
matically overridden when you override the noncompound
operators (e.g., + and /).

Operator Functions
To overload an operator, you declare an operator function. An
operator function must be static, and at least one of the
operands must be the type in which the operator function is
declared.

In the following example, we define a struct called Note repre‐
senting a musical note, and then overload the + operator:

public struct Note
{
  int value;

  public Note (int semitonesFromA)
    => value = semitonesFromA;

  public static Note operator + (Note x, int semitones)
  {
    return new Note (x.value + semitones);
  }
}

Operator Overloading | 191



This overload allows us to add an int to a Note:
Note B = new Note (2);
Note CSharp = B + 2;

Because we overrode +, we can use += too:
CSharp += 2;

Just as with methods and properties, C# 6 and later allow oper‐
ator functions comprising a single expression to be written
more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
  => new Note (x.value + semitones);

Overloading Equality and Comparison Operators
Equality and comparison operators are often overridden when
writing structs, and in rare cases with classes. Special rules and
obligations apply when these operators are overridden:

Pairing
The C# compiler enforces that operators that are logical
pairs are both defined. These operators are (== !=), (< >),
and (<= >=).

Equals and GetHashCode
If you overload == and !=, you will usually need to over‐
ride object’s Equals and GetHashCode methods so that col‐
lections and hashtables will work reliably with the type.

IComparable and IComparable<T>
If you overload < and >, you would also typically imple‐
ment IComparable and IComparable<T>.

Extending the previous example, here’s how we could overload
Note’s equality operators:

public static bool operator == (Note n1, Note n2)
  => n1.value == n2.value;

public static bool operator != (Note n1, Note n2)
  => !(n1.value == n2.value);

public override bool Equals (object otherNote)

192 | C# 7.0 Pocket Reference



{
  if (!(otherNote is Note)) return false;
  return this == (Note)otherNote;
}
// value's hashcode will work for our own hashcode:
public override int GetHashCode() => value.GetHashCode();

Custom Implicit and Explicit Conversions
Implicit and explicit conversions are overloadable operators.
These conversions are typically overloaded to make converting
between strongly related types (such as numeric types) concise
and natural.

As explained in the discussion on types, the rationale behind
implicit conversions is that they should always succeed and not
lose information during conversion. Otherwise, explicit con‐
versions should be defined.

In the following example, we define conversions between our
musical Note type and a double (which represents the fre‐
quency in hertz of that note):

...
// Convert to hertz
public static implicit operator double (Note x)
  => 440 * Math.Pow (2,(double) x.value / 12 );

// Convert from hertz (accurate to nearest semitone)
public static explicit operator Note (double x)
  => new Note ((int) (0.5 + 12 * (Math.Log(x/440)
               / Math.Log(2)) ));
...

Note n =(Note)554.37;  // explicit conversion
double x = n;          // implicit conversion

NOTE

This example is somewhat contrived: in real life, these con‐
versions might be better implemented with a ToFrequency
method and a (static) FromFrequency method.

Operator Overloading | 193



Custom conversions are ignored by the as and is operators.

Attributes
You’re already familiar with the notion of attributing code ele‐
ments of a program with modifiers such as virtual or ref.
These constructs are built into the language. Attributes are an
extensible mechanism for adding custom information to code
elements (assemblies, types, members, return values, and
parameters). This extensibility is useful for services that inte‐
grate deeply into the type system, without requiring special
keywords or constructs in the C# language.

A good scenario for attributes is serialization—the process of
converting arbitrary objects to and from a particular format. In
this scenario, an attribute on a field can specify the translation
between C#’s representation of the field and the format’s repre‐
sentation of the field.

Attribute Classes
An attribute is defined by a class that inherits (directly or indi‐
rectly) from the abstract class System.Attribute. To attach an
attribute to a code element, specify the attribute’s type name in
square brackets, before the code element. For example, the fol‐
lowing attaches the ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause
compiler warnings if a type or member marked obsolete is ref‐
erenced. By convention, all attribute types end with the word
Attribute. C# recognizes this and allows you to omit the suffix
when attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace
as follows (simplified for brevity):

194 | C# 7.0 Pocket Reference



public sealed class ObsoleteAttribute : Attribute {...}

Named and Positional Attribute Parameters
Attributes may have parameters. In the following example, we
apply XmlElementAttribute to a class. This attribute tells XmlSer
ializer (in System.Xml.Serialization) how an object is repre‐
sented in XML and accepts several attribute parameters. The
following attribute maps the CustomerEntity class to an XML
element named Customer, belonging to the http://oreilly.com
namespace:

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional
or named. In the preceding example, the first argument is a
positional parameter; the second is a named parameter. Posi‐
tional parameters correspond to parameters of the attribute
type’s public constructors. Named parameters correspond to
public fields or public properties on the attribute type.

When specifying an attribute, you must include positional
parameters that correspond to one of the attribute’s construc‐
tors. Named parameters are optional.

Attribute Targets
Implicitly, the target of an attribute is the code element it
immediately precedes, which is typically a type or type mem‐
ber. You can also attach attributes, however, to an assembly.
This requires that you explicitly specify the attribute’s target.
Here’s an example of using the CLSCompliant attribute to spec‐
ify Common Language Specification (CLS) compliance for an
entire assembly:

[assembly:CLSCompliant(true)]

Attributes | 195



Specifying Multiple Attributes
Multiple attributes can be specified for a single code element.
Each attribute can be listed either within the same pair of
square brackets (separated by a comma) or in separate pairs of
square brackets (or a combination of the two). The following
two examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

Writing Custom Attributes
You can define your own attributes by subclassing Sys

tem.Attribute. For example, we could use the following cus‐
tom attribute for flagging a method for unit testing:

[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
  public int     Repetitions;
  public string  FailureMessage;

  public TestAttribute () : this (1) { }
  public TestAttribute (int repetitions)
    => Repetitions = repetitions;
}

Here’s how we could apply the attribute:
class Foo
{
  [Test]
  public void Method1() { ... }

  [Test(20)]
  public void Method2() { ... }

  [Test(20, FailureMessage="Debugging Time!")]
  public void Method3() { ... }
}

196 | C# 7.0 Pocket Reference



AttributeUsage is itself an attribute that indicates the construct
(or combination of constructs) that the custom attribute can be
applied to. The AttributeTargets enum includes such mem‐
bers as Class, Method, Parameter, and Constructor (as well as
All, which combines all targets).

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

• Call GetCustomAttributes on any Type or MemberInfo
object.

• Call Attribute.GetCustomAttribute or Attribute.GetCus
tomAttributes.

These latter two methods are overloaded to accept any reflec‐
tion object that corresponds to a valid attribute target (Type,
Assembly, Module, MemberInfo, or ParameterInfo).

Here’s how we can enumerate each method in the preceding
Foo class that has a TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
  TestAttribute att = (TestAttribute)
    Attribute.GetCustomAttribute
     (mi, typeof (TestAttribute));

  if (att != null)
    Console.WriteLine (
      "{0} will be tested; reps={1}; msg={2}",
      mi.Name, att.Repetitions, att.FailureMessage);
}

Here’s the output:
Method1 will be tested; reps=1; msg=
Method2 will be tested; reps=20; msg=
Method3 will be tested; reps=20; msg=Debugging Time!

Attributes | 197



Caller Info Attributes
From C# 5.0, you can tag optional parameters with one of three
caller info attributes, which instruct the compiler to feed infor‐
mation obtained from the caller’s source code into the parame‐
ter’s default value:

• [CallerMemberName] applies the caller’s member name.
• [CallerFilePath] applies the path to the caller’s source

code file.
• [CallerLineNumber] applies the line number in the call‐

er’s source code file.

The Foo method in the following program demonstrates all
three:

using System;
using System.Runtime.CompilerServices;

class Program
{
  static void Main() => Foo();

  static void Foo (
    [CallerMemberName] string memberName = null,
    [CallerFilePath] string filePath = null,
    [CallerLineNumber] int lineNumber = 0)
  {
    Console.WriteLine (memberName);
    Console.WriteLine (filePath);
    Console.WriteLine (lineNumber);
  }
}

Assuming that our program resides in c:\source\test\Pro‐
gram.cs, the output would be:

Main
c:\source\test\Program.cs
6

198 | C# 7.0 Pocket Reference



As with standard optional parameters, the substitution is done
at the calling site. Hence, our Main method is syntactic sugar for
this:

static void Main()
  => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for writing logging functions,
and for implementing change notification patterns. For
instance, we can call a method such as the following from
inside a property’s set accessor—without having to specify the
property’s name:

void RaisePropertyChanged (
  [CallerMemberName] string propertyName = null)
  {
    ...
  }

Asynchronous Functions
The await and async keywords (introduced in C# 5) support
asynchronous programming, a style of programming where
long-running functions do most or all of their work after
returning to the caller. This is in contrast to normal synchro‐
nous programming, where long-running functions block the
caller until the operation is complete. Asynchronous program‐
ming implies concurrency because the long-running operation
continues in parallel to the caller. The implementer of an asyn‐
chronous function initiates this concurrency either through
multithreading (for compute-bound operations) or via a call‐
back mechanism (for I/O-bound operations).

NOTE

Multithreading, concurrency, and asynchronous program‐
ming are large topics. We dedicate two chapters to them in
C# 7.0 in a Nutshell, and discuss them online at http://alba‐
hari.com/threading.

Asynchronous Functions | 199

http://albahari.com/threading
http://albahari.com/threading


For instance, consider the following synchronous method,
which is long-running and compute-bound:

int ComplexCalculation()
{
  double x = 2;
  for (int i = 1; i < 100000000; i++)
    x += Math.Sqrt (x) / i;
  return (int)x;
}

This method blocks the caller for a few seconds while it runs,
before returning the result of the calculation to the caller:

int result = ComplexCalculation();
// Sometime later:
Console.WriteLine (result);   // 116

The CLR defines a class called Task<TResult> (in Sys

tem.Threading.Tasks) to encapsulate the concept of an opera‐
tion that completes in the future. You can generate a Task<TRe
sult> for a compute-bound operation by calling Task.Run,
which tells the CLR to run the specified delegate on a separate
thread that executes in parallel to the caller:

Task<int> ComplexCalculationAsync()
{
  return Task.Run (() => ComplexCalculation());
}

This method is asynchronous because it returns immediately to
the caller while it executes concurrently. However, we need
some mechanism to allow the caller to specify what should
happen when the operation finishes and the result becomes
available. Task<TResult> solves this by exposing a GetAwaiter
method that lets the caller attach a continuation:

Task<int> task = ComplexCalculationAsync();
var awaiter = task.GetAwaiter();
awaiter.OnCompleted (() =>        // Continuation
{
  int result = awaiter.GetResult();
  Console.WriteLine (result);       // 116
});

200 | C# 7.0 Pocket Reference



This says to the operation, “When you finish, execute the speci‐
fied delegate.” Our continuation first calls GetResult, which
returns the result of the calculation. (Or, if the task faulted—
threw an exception—calling GetResult rethrows that excep‐
tion.) Our continuation then writes out the result via Con
sole.WriteLine.

The await and async Keywords
The await keyword simplifies the attaching of continuations.
Starting with a basic scenario, the compiler expands:

var result = await expression;
statement(s);

into something functionally similar to:
var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() =>
{
  var result = awaiter.GetResult();
  statement(s);
);

NOTE

The compiler also emits code to optimize the scenario of
the operation completing synchronously (immediately). A
common reason for an asynchronous operation complet‐
ing immediately is if it implements an internal caching
mechanism, and the result is already cached.

Hence, we can call the ComplexCalculationAsync method we
defined previously, like this:

int result = await ComplexCalculationAsync();
Console.WriteLine (result);

To compile, we need to add the async modifier to the contain‐
ing method:

Asynchronous Functions | 201



async void Test()
{
  int result = await ComplexCalculationAsync();
  Console.WriteLine (result);
}

The async modifier tells the compiler to treat await as a key‐
word rather than an identifier should an ambiguity arise within
that method (this ensures that code written prior to C# 5.0 that
might use await as an identifier will still compile without
error). The async modifier can be applied only to methods (and
lambda expressions) that return void or (as we’ll see later) a
Task or Task<TResult>.

NOTE

The async modifier is similar to the unsafe modifier in
that it has no effect on a method’s signature or public
metadata; it affects only what happens inside the method.

Methods with the async modifier are called asynchronous func‐
tions, because they themselves are typically asynchronous. To
see why, let’s look at how execution proceeds through an asyn‐
chronous function.

Upon encountering an await expression, execution (normally)
returns to the caller—rather like with yield return in an itera‐
tor. But before returning, the runtime attaches a continuation
to the awaited task, ensuring that when the task completes, exe‐
cution jumps back into the method and continues where it left
off. If the task faults, its exception is rethrown (by virtue of call‐
ing GetResult); otherwise, its return value is assigned to the
await expression.

202 | C# 7.0 Pocket Reference



NOTE

The CLR’s implementation of a task awaiter’s OnComple
ted method ensures that by default, continuations are pos‐
ted through the current synchronization context, if one is
present. In practice, this means that in rich-client UI sce‐
narios (WPF, UWP, and Windows Forms), if you await
on a UI thread, your code will continue on that same
thread. This simplifies thread safety.

The expression upon which you await is typically a task; how‐
ever, any object with a GetAwaiter method that returns an
awaitable object—implementing INotifyCompletion.OnComple
ted and with an appropriately typed GetResult method (and a
bool IsCompleted property that tests for synchronous comple‐
tion)—will satisfy the compiler.

Notice that our await expression evaluates to an int type; this
is because the expression that we awaited was a Task<int>
(whose GetAwaiter().GetResult() method returns an int).

Awaiting a nongeneric task is legal and generates a void expres‐
sion:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Task.Delay is a static method that returns a Task that completes
in the specified number of milliseconds. The synchronous
equivalent of Task.Delay is Thread.Sleep.

Task is the nongeneric base class of Task<TResult> and is func‐
tionally equivalent to Task<TResult> except that it has no
result.

Capturing Local State
The real power of await expressions is that they can appear
almost anywhere in code. Specifically, an await expression can
appear in place of any expression (within an asynchronous

Asynchronous Functions | 203



function) except for inside a catch or finally block, a lock
expression, an unsafe context, or an executable’s entry point
(main method).

In the following example, we await inside a loop:
async void Test()
{
  for (int i = 0; i < 10; i++)
  {
    int result = await ComplexCalculationAsync();
    Console.WriteLine (result);
  }
}

Upon first executing ComplexCalculationAsync, execution
returns to the caller by virtue of the await expression. When
the method completes (or faults), execution resumes where it
left off, with the values of local variables and loop counters pre‐
served. The compiler achieves this by translating such code
into a state machine, like it does with iterators.

Without the await keyword, the manual use of continuations
means that you must write something equivalent to a state
machine. This is traditionally what makes asynchronous pro‐
gramming difficult.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void
return type with a Task to make the method itself usefully asyn‐
chronous (and awaitable). No further changes are required:

async Task PrintAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  Console.WriteLine (answer);
}

Notice that we don’t explicitly return a task in the method body.
The compiler manufactures the task, which it signals upon

204 | C# 7.0 Pocket Reference



completion of the method (or upon an unhandled exception).
This makes it easy to create asynchronous call chains:

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

(And because Go returns a Task, Go itself is awaitable.) The
compiler expands asynchronous functions that return tasks
into code that (indirectly) leverages TaskCompletionSource to
create a task that it then signals or faults.

NOTE

TaskCompletionSource is a CLR type that lets you create
tasks that you manually control, signaling them as com‐
plete with a result (or as faulted with an exception). Unlike
Task.Run, TaskCompletionSource doesn’t tie up a thread
for the duration of the operation. It’s also used for writing
I/O-bound task-returning methods (such as Task.Delay).

The aim is to ensure that when a task-returning asynchronous
method finishes, execution can jump back to whoever awaited
it, via a continuation.

Returning Task<TResult>

You can return a Task<TResult> if the method body returns
TResult:

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  // answer is int so our method returns Task<int>
  return answer;
}

Asynchronous Functions | 205



We can demonstrate GetAnswerToLife by calling it from Print
AnswerToLife (which is, in turn, called from Go):

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}
async Task PrintAnswerToLife()
{
  int answer = await GetAnswerToLife();
  Console.WriteLine (answer);
}
async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;
}

Asynchronous functions make asynchronous programming
similar to synchronous programming. Here’s the synchronous
equivalent of our call graph, for which calling Go() gives the
same result after blocking for five seconds:

void Go()
{
  PrintAnswerToLife();
  Console.WriteLine ("Done");
}
void PrintAnswerToLife()
{
  int answer = GetAnswerToLife();
  Console.WriteLine (answer);
}
int GetAnswerToLife()
{
  Thread.Sleep (5000);
  int answer = 21 * 2;
  return answer;
}

This also illustrates the basic principle of how to design with
asynchronous functions in C#, which is to write your methods

206 | C# 7.0 Pocket Reference



synchronously, and then replace synchronous method calls with
asynchronous method calls, and await them.

Parallelism
We’ve just demonstrated the most common pattern, which is to
await task-returning functions right after calling them. This
results in sequential program flow that’s logically similar to the
synchronous equivalent.

Calling an asynchronous method without awaiting it allows the
code that follows to execute in parallel. For example, the fol‐
lowing executes PrintAnswerToLife twice, concurrently:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

By awaiting both operations afterward, we “end” the parallel‐
ism at that point (and rethrow any exceptions from those
tasks). The Task class provides a static method called WhenAll to
achieve the same result slightly more efficiently. WhenAll

returns a task that completes when all of the tasks that you pass
to it complete:

await Task.WhenAll (PrintAnswerToLife(),
                    PrintAnswerToLife());

WhenAll is called a task combinator. (The Task class also pro‐
vides a task combinator called WhenAny, which completes when
any of the tasks provided to it complete.) We cover the task
combinators in detail in C# 7.0 in a Nutshell.

Asynchronous Lambda Expressions
Just as ordinary named methods can be asynchronous:

async Task NamedMethod()
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
}

Asynchronous Functions | 207



so can unnamed methods (lambda expressions and anonymous
methods), if preceded by the async keyword:

Func<Task> unnamed = async () =>
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
};

We can call and await these in the same way:
await NamedMethod();
await unnamed();

We can use asynchronous lambda expressions when attaching
event handlers:

myButton.Click += async (sender, args) =>
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

This is more succinct than the following, which has the same
effect:

myButton.Click += ButtonHandler;
...
async void ButtonHander (object sender, EventArgs args)
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task<TRe
sult>:

Func<Task<int>> unnamed = async () =>
{
  await Task.Delay (1000);
  return 123;
};
int answer = await unnamed();

208 | C# 7.0 Pocket Reference



Unsafe Code and Pointers
C# supports direct memory manipulation via pointers within
blocks of code marked unsafe and compiled with the /unsafe
compiler option. Pointer types are primarily useful for intero‐
perability with C APIs, but may also be used for accessing
memory outside the managed heap or for performance-critical
hotspots.

Pointer Basics
For every value type or reference type V, there is a correspond‐
ing pointer type V*. A pointer instance holds the address of a
variable. Pointer types can be (unsafely) cast to any other
pointer type. The table that follows lists the main pointer oper‐
ators:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable.

* The dereference operator returns the variable at the address of a
pointer.

-> The pointer-to-member operator is a syntactic shortcut, in which
x->y is equivalent to (*x).y.

Unsafe Code
By marking a type, type member, or statement block with the
unsafe keyword, you’re permitted to use pointer types and per‐
form C++-style pointer operations on memory within that
scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
  int length = bitmap.Length;
  fixed (int* b = bitmap)
  {
    int* p = b;
    for (int i = 0; i < length; i++)

Unsafe Code and Pointers | 209



      *p++ &= 0xFF;
  }
}

Unsafe code can run faster than a corresponding safe imple‐
mentation. In this case, the code would have required a nested
loop with array indexing and bounds checking. An unsafe C#
method may also be faster than calling an external C function
because there is no overhead associated with leaving the man‐
aged execution environment.

The fixed Statement
The fixed statement is required to pin a managed object such
as the bitmap in the previous example. During the execution of
a program, many objects are allocated and deallocated from the
heap. To avoid unnecessary waste or fragmentation of memory,
the garbage collector moves objects around. Pointing to an
object is futile if its address could change while referencing it,
so the fixed statement tells the garbage collector to “pin” the
object and not move it around. This may have an impact on the
efficiency of the runtime, so fixed blocks should be used only
briefly, and heap allocation should be avoided within the fixed
block.

Within a fixed statement, you can get a pointer to a value type,
an array of value types, or a string. In the case of arrays and
strings, the pointer will actually point to the first element,
which is a value type.

Value types declared inline within reference types require the
reference type to be pinned, as follows:

class Test
{
  int x;
  unsafe static void Main()
  {
    Test test = new Test();
    fixed (int* p = &test.x)   // Pins test
    {
      *p = 9;

210 | C# 7.0 Pocket Reference



    }
    System.Console.WriteLine (test.x);
  }
}

The Pointer-to-Member Operator
In addition to the & and * operators, C# also provides the C++-
style -> operator, which can be used on structs:

struct Test
{
  int x;
  unsafe static void Main()
  {
    Test test = new Test();
    Test* p = &test;
    p->x = 9;
    System.Console.WriteLine (test.x);
  }
}

Arrays

The stackalloc keyword
You can allocate memory in a block on the stack explicitly with
the stackalloc keyword. Since it is allocated on the stack, its
lifetime is limited to the execution of the method, just as with
any other local variable. The block may use the [] operator to
index into memory:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
  Console.WriteLine (a[i]);   // Print raw memory

Fixed-size buffers

To allocate a block of memory within a struct, use the fixed
keyword:

unsafe struct UnsafeUnicodeString
{
  public short Length;
  public fixed byte Buffer[30];

Unsafe Code and Pointers | 211



}

unsafe class UnsafeClass
{
  UnsafeUnicodeString uus;

  public UnsafeClass (string s)
  {
    uus.Length = (short)s.Length;
    fixed (byte* p = uus.Buffer)
      for (int i = 0; i < s.Length; i++)
        p[i] = (byte) s[i];
  }
}

The fixed keyword is also used in this example to pin the
object on the heap that contains the buffer (which will be the
instance of UnsafeClass).

void*
A void pointer (void*) makes no assumptions about the type of
the underlying data and is useful for functions that deal with
raw memory. An implicit conversion exists from any pointer
type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. For example:

unsafe static void Main()
{
  short[] a = {1,1,2,3,5,8,13,21,34,55};
  fixed (short* p = a)
  {
    //sizeof returns size of value-type in bytes
    Zap (p, a.Length * sizeof (short));
  }
  foreach (short x in a)
    System.Console.WriteLine (x);  // Prints all zeros
}

unsafe static void Zap (void* memory, int byteCount)
{
  byte* b = (byte*) memory;
    for (int i = 0; i < byteCount; i++)
      *b++ = 0;
}

212 | C# 7.0 Pocket Reference



Preprocessor Directives
Preprocessor directives supply the compiler with additional
information about regions of code. The most common prepro‐
cessor directives are the conditional directives, which provide a
way to include or exclude regions of code from compilation.
For example:

#define DEBUG
class MyClass
{
  int x;
  void Foo()
  {
    #if DEBUG
    Console.WriteLine ("Testing: x = {0}", x);
    #endif
  }
  ...
}

In this class, the statement in Foo is compiled as conditionally
dependent upon the presence of the DEBUG symbol. If we
remove the DEBUG symbol, the statement is not compiled. Pre‐
processor symbols can be defined within a source file (as we
have done), and they can be passed to the compiler with the /
define:symbol command-line option.

With the #if and #elif directives, you can use the ||, &&, and !
operators to perform or, and, and not operations on multiple
symbols. The following directive instructs the compiler to
include the code that follows if the TESTMODE symbol is defined
and the DEBUG symbol is not defined:

#if TESTMODE && !DEBUG
  ...

Bear in mind, however, that you’re not building an ordinary C#
expression, and the symbols upon which you operate have
absolutely no connection to variables—static or otherwise.

Preprocessor Directives | 213



The #error and #warning symbols prevent accidental misuse of
conditional directives by making the compiler generate a warn‐
ing or error given an undesirable set of compilation symbols.

Table 14 describes the complete list of preprocessor directives.

Table 14. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol.

#undef symbol Undefines symbol.

#if symbol [operator
symbol2]...

Conditional compilation (operators are ==, !=,
&&, and ||).

#else Executes code to subsequent #endif.

#elif symbol [opera
tor symbol2]

Combines #else branch and #if test.

#endif Ends conditional directives.

#warning text text of the warning to appear in compiler output.

#error text text of the error to appear in compiler output.

#line [number [“file”] |
hidden]

number specifies the line in source code; file is
the filename to appear in computer output; hidden
instructs debuggers to skip over code from this point
until the next #line directive.

#region name Marks the beginning of an outline.

#endregion Ends an outline region.

#pragma warning See the next section.

Pragma Warning
The compiler generates a warning when it spots something in
your code that seems unintentional. Unlike errors, warnings
don’t ordinarily prevent your application from compiling.

Compiler warnings can be extremely valuable in spotting bugs.
Their usefulness, however, is undermined when you get false

214 | C# 7.0 Pocket Reference



warnings. In a large application, maintaining a good signal-to-
noise ratio is essential if the “real” warnings are to get noticed.

To this effect, the compiler allows you to selectively suppress
warnings with the #pragma warning directive. In this example,
we instruct the compiler not to warn us about the field Message
not being used:

public class Foo
{
  static void Main() { }

  #pragma warning disable 414
  static string Message = "Hello";
  #pragma warning restore 414
}

Omitting the number in the #pragma warning directive disables
or restores all warning codes.

If you are thorough in applying this directive, you can compile
with the /warnaserror switch—this tells the compiler to treat
any residual warnings as errors.

XML Documentation
A documentation comment is a piece of embedded XML that
documents a type or member. A documentation comment
comes immediately before a type or member declaration, and
starts with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done either like this:
/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

or like this (notice the extra star at the start):
/**
    <summary> Cancels a running query. </summary>

XML Documentation | 215



*/
public void Cancel() { ... }

If you compile with the /doc directive, the compiler extracts
and collates documentation comments into a single XML file.
This has two main uses:

• If placed in the same folder as the compiled assembly,
Visual Studio automatically reads the XML file and uses
the information to provide IntelliSense member listings
to consumers of the assembly of the same name.

• Third-party tools (such as Sandcastle and NDoc) can
transform the XML file into an HTML help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and docu‐
mentation generators recognize:

<summary>

<summary>...</summary>

Indicates the tool tip that IntelliSense should display for
the type or member. Typically a single phrase or sentence.

<remarks>

<remarks>...</remarks>

Additional text that describes the type or member. Docu‐
mentation generators pick this up and merge it into the
bulk of a type or member’s description.

<param>

<param name="name">...</param>

Explains a parameter on a method.

<returns>

<returns>...</returns>

Explains the return value for a method.

216 | C# 7.0 Pocket Reference



<exception>

<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to
the exception type).

<permission>

<permission [cref="type"]>...</permission>

Indicates an IPermission type required by the docu‐
mented type or member.

<example>

<example>...</example>

Denotes an example (used by documentation generators).
This usually contains both description text and source
code (source code is typically within a <c> or <code> tag).

<c>

<c>...</c>

Indicates an inline code snippet. This tag is usually used
inside an <example> block.

<code>

<code>...</code>

Indicates a multiline code sample. This tag is usually used
inside an <example> block.

<see>

<see cref="member">...</see>

Inserts an inline cross-reference to another type or mem‐
ber. HTML documentation generators typically convert
this to a hyperlink. The compiler emits a warning if the
type or member name is invalid.

<seealso>

<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation
generators typically write this into a separate “See Also”
section at the bottom of the page.

XML Documentation | 217



<paramref>

<paramref name="name"/>

References a parameter from within a <summary> or
<remarks> tag.

<list>

<list type=[ bullet | number | table ]>
  <listheader>
    <term>...</term>
    <description>...</description>
  </listheader>
  <item>
    <term>...</term>
    <description>...</description>
  </item>
</list>

Instructs documentation generators to emit a bulleted,
numbered, or table-style list.

<para>

<para>...</para>

Instructs documentation generators to format the contents
into a separate paragraph.

<include>

<include file='filename' path='tagpath[@name="id"]'>
  ...
</include>

Merges an external XML file that contains documentation.
The path attribute denotes an XPath query to a specific
element in that file.

218 | C# 7.0 Pocket Reference



Index

Symbols
! (not operator), 28, 213
!= (inequality operator), 28, 149
" (double quotes), 31
#elif directive, 213
#error symbol, 214
#if directive, 213
#pragma warning directive, 214
#warning symbol, 214
$ (string interpolation character),

32
% operator, 23
& (address-of operator), 209
& (AND operator), 25, 103, 150
&& (conditional AND operator),

28, 213
() (parentheses)

casting and conversions, 84
in lambda expressions, 127
method parameters, 11

* (dereference operator), 209
* (multiplication operator), 6, 23
*/ character, 11
+ operator, 23, 31, 116
++ (increment operator), 24
+= operator, 116

add to self operator, 48

custom event accessor, 125
event subscription, 120

- operator, 23, 116
-- (decrement operator), 24
-= operator

custom event accessor, 125
event unsubscription, 120
remove delegate instance, 116
subtract from self operator, 48

-> (pointer-to-member operator),
209, 211

. (period), 11

.cs files, 7

.dll files, 7

.exe files, 7

.NET Framework
assemblies in, 7
common exception types in,

139
libraries in, 7
namespaces in, 7
standard event pattern in, 122
System namespace in, 13, 20

/ (division operator), 23
/* character (comments), 11
// (comments), 5, 11
/doc directive, 216

219



16-bit integral types, 25
8-bit integral types, 25
; (semicolon), 5, 10, 54
< (less-than operator), 28, 149
<< (shift left operator), 25
<= operator, 28, 149
= (assignment operator), 11
== (equality operator), 11, 28, 94

operator lifting and, 149
overloading, 192

=> (fat arrows)
expression-bodied properties,

75, 78
lambda expressions, 126

> (greater than or equal to opera‐
tor), 149

> (greater-than operator), 28
>= (greater than or equal to oper‐

ator), 28, 149
>> (shift right operator), 25
? symbol (nullable types), 146
?. (null-conditional operator), 52
?? (null coalescing operator), 52,

150
@ symbol

preceding identifiers, 10
verbatim string literals, 31

[] (square brackets), 34, 211
\" (double quote escape

sequence), 30
\' (single quote escape sequence),

30
\0 (null escape sequence), 30
\a (alert escape sequence), 30
\b (backspace character), 30
\f (form feed character), 30
\n (newline character), 30
\r (carriage return character), 30
\t (horizontal tab character), 30
\u escape sequence, 30
\v (vertical tab character), 30
\x escape sequence, 30
\\ (backslash escape sequence), 30

^ (xor operator), 25
{} (curly braces), 5, 10
| (OR operator), 25, 103, 150
|| (conditional OR operator), 28,

213
~ (complement operator), 25
~ symbol (finalizers), 80

A
abstract classes, 87
abstract members, 87
access modifiers, 96-98

accessibility capping, 98
friend assemblies, 97

accessibility capping, 98
accessors, event, 125
Action delegates, 117
address-of operator (&), 209
aggregation operators (LINQ),

160
aliasing, 67
AND operator (&), 25, 103, 150
and/or operators (&& ||), 28
anonymous methods, 131
anonymous types, 153
arguments

named, 45
passing by reference, 42
passing by value, 41

(see also parameters)
arithmetic operators, 23
array initialization expression, 35
arrays, 34-38

default element initialization,
35

fixed-size buffers, 211
jagged, 36
multidimensional, 36
rectangular, 36
simplified initialization

expressions, 37
stackalloc keyword, 211
unsafe code and, 211

220 | Index



as operator, 85
assembly, 7
assignment expressions, 47
assignment operator (=), 11
associativity of operators, 48
async keyword, 201-204
asynchronous functions, 199-208

about, 199-201
await and async keywords,

201-203
capturing local state, 203
lambda expressions, 207
parallelism, 207
returning Task<TResult>,

205-207
writing, 204-207

attributes, 194-197
caller info attributes, 198
classes, 194
custom, 196
named/positional parameters,

195
retrieving at runtime, 197
specifying multiple, 196
targets, 195

automatic properties, 76
await keyword, 201-203

B
backspace character (\b), 30
base class constraint, 110
base keyword, 88
binary operators, 47
binding

custom, 184
dynamic (see dynamic bind‐

ing)
language, 185
static vs. dynamic, 183

bitwise operators, 25, 25
bool type, 28
bool? type, 150
Boolean operators, 28

conditional operators, 28
equality and comparison

operators, 28
boxing

nullable values, 148
object type, 92

braces, changing the flow of exe‐
cution with, 56

braces/brackets
curly ({}), 5, 10
square ([]), 34, 211

break statement, 62
built-in types, 12

C
C#, sample program, 5-8
caller info attributes, 198
capping, accessibility, 98
captured variables, 128
carriage return character (\r), 30
case keyword (see switch state‐

ments)
Cast operator (LINQ), 181
casting, 84-86

(see also boxing)
as operator, 85
downcasting, 84
is operator, 85
upcasting, 84

catch block, 132
catch clause, 134-135
char (character) type, 29
checked operator, 24
class constraint, 110
classes, 67-82

abstract, 87
constants, 78
deconstructors, 71
finalizers, 80
indexers, 77
inheritance (see inheritance)
nameof operator, 82
object type (see object type)

Index | 221



partial methods, 81
partial types, 80
properties, 74-77
sealing, 88
static classes, 80
subclassing generic types, 110
this reference, 73

collection initializers, 141
comments, 5
comments, syntax for, 11
comparison operators, 28, 192
comparisons, string, 33
compilation

basics, 7
pragma warning, 214

complement operator (~), 25
compound assignment operators,

47
concatenation (strings), 31
conditional operators, 28
const keyword, 78
constants, 11, 78
constraints, generics, 109
constructors, 14

and field initialization order,
90

implicit parameterless, 71
inheritance and, 89
instance constructors, 70
nonpublic, 71
static, 79

contextual keywords, 10, 182
continue statement, 62
contravariance

delegate, 119
generics, 113
type parameter variance for

generic delegates, 120
conversions

between instances of types, 16
enums, 102
nullable, 147
of numeric types, 23

covariance
delegate return type variance,

118
generics, 111-113
type parameter variance for

generic delegates, 120
csc.exe (C# compiler), 8
curly braces ({}), 5, 10
custom binding, 184

D
data members, 14
decimal class, double class vs., 26
declaration statements, 54
deconstruction, tuple, 156
deconstructors, 71
decrement operator (--), 24
default keyword, 109
default values

for generic type parameter,
109

initializing arrays with, 35
variables and, 40

deferred execution, 161
definite assignment, 39
delegate keyword, 114
delegates, 114-120

Action, 117
compatibility, 118-120
Func, 117
generic types, 117
instance vs. static method tar‐

gets, 117
multicast, 115
parameter variance, 119
return type variance, 118
type parameter variance for

generic delegates, 120
types and instances, 114
writing plug-in methods with,

115
dereference operator (*), 209
derived classes (see subclasses)

222 | Index



discards, 43
division

operator (/), 23
division operations, 24
do-while loops, 60
documentation comments,

215-218
double forward slash (//), 5, 11
double quotes ("), 31
double type, 26
downcasting, 84

as operator, 85
is operator, 85

dynamic binding, 182-190
conversions, 187
custom binding, 184
dynamic expressions, 188
dynamic member overload

resolution, 189
language binding, 185
runtime representation of

dynamic reference, 187
RuntimeBinderException, 186
static binding vs., 183
uncallable functions, 190
var vs. dynamic types, 188

dynamic keyword, 182

E
E (exponential symbol), 22
element operators (LINQ), 160
else clause, 56
“elseif ” keyword, 57
Elvis (null-conditional operator),

52
enumeration, 140-142

collection initializers, 141
iterators (see iterators)

enums, 101-104
conversions, 102
Flags attribute, 103
operators, 104

equality operator (==), 11, 28, 94

operator lifting and, 149
overloading, 192
strings and, 31

Equals() method, 94
escape sequences, 30
event keyword, 121
events, 120-126

accessors, 125
declaring, 121
standard pattern, 122-125

exception filters, 135
exceptions

catch clause and, 134-135
(see also try statements)

common types, 139
finally block, 135
key properties of Sys‐

tem.Exception, 139
rethrowing, 138
RuntimeBinderException, 186
throw expressions, 138
throwing, 137-140

exclusive OR operator, 25
explicit conversions

between instances of types, 16
overloading, 193

explicit interface implementation,
99

exponential symbol (E), 22
expression statements, 55
expression-bodied methods, 69
expression-bodied properties, 75
expressions, 46-48

assignment, 47
dynamic, 188
operator precedence/associa‐

tivity, 48
extension methods, 151-153

ambiguity and resolution, 152
chaining functions with, 152
instance methods vs., 152
namespaces, 152

Index | 223



F
fat arrows (=>)

expression-bodied methods,
69

expression-bodied properties,
75, 78

lambda expressions, 126
fields, 68
finalizers, 80
finally block, 135

and using statement, 137
defined, 132

fixed keyword, 211
fixed statement, 210
Flags attribute, 103
float type, 26
floating-point types, 21, 26
fluent queries, query expressions

vs., 171
for loops, 60
foreach loops, 61
form feed character (\f), 30
friend assemblies, 97
from clause, 174
fully qualified name, 64
Func delegates, 117
function members, 14, 86
functions

asynchronous (see asynchro‐
nous functions)

sealing, 88

G
generics, 105-114

constraints, 109
contravariance, 113
covariance, 111-113
declaring type parameters,

107
default generic value, 109
inheritance vs., 105
methods, 106

self-referencing declarations,
110

static data, 111
type parameter variance for

generic delegates, 120
typeof operator and unbound

generic types, 108
get accessors, 77
GetHashCode() method, 95
GetType() method, 93
global namespaces, 64
global:: qualifier, 67
goto statement, 62
GroupBy operator, 180
GroupJoin operator, 177

H
heap, 38
horizontal tab character (\t), 30

I
identifiers, defined, 9
if statement, 55
implicit conversions

between instances of types, 16
dynamic binding, 187
overloading, 193

implicit parameterless construc‐
tor(s), 71

implicitly typed local variables, 46
increment operator (++), 24
indexers, 77
indexing an array, 34
inequality operator (!=), 28, 149
inheritance, 82-91

abstract classes/members, 87
base keyword, 88
casting and reference conver‐

sions, 84-86
constructors and, 89
generics vs., 105
hiding inherited members, 87

224 | Index



overloading and resolution,
90

polymorphism, 83
sealing functions/classes, 88
virtual function members, 86

initialization
array default elements, 35
collection initializers, 141
constructors and field initiali‐

zation order, 90
fields, 68
object initializers, 73
property initializers, 76
simplified expressions for

arrays, 37
instance constructors, 70
instance members, 14
instantiation of type, 14
integral types, 21

8- and 16-bit, 25
conversions, 23
overflow, 24

integral-typed literals, 21
interfaces, 98-101

explicit implementation, 99
extending, 99
reimplementing in subclass,

101
virtual implementation, 100

interpolated string, 32
interpolation, string, 32
is operator, 85
iteration statements, 59-61

do-while loops, 60
for loops, 60
foreach loops, 61
while loops, 60

iteration variables, lambda
expressions and, 129

iterators, 142-146
composing sequences, 145
multiple yield statements, 144
yield break statement, 144

J
jagged arrays, 36
joining operators, LINQ, 175-178

GroupJoin, 177
Zip, 178

jump statements, 61
break statement, 62
continue statement, 62
goto statement, 62
return statement, 62

K
keywords, 9-10

(see also specific keywords)
avoiding conflicts with, 10
contextual, 10

L
lambda expressions, 126-131

anonymous methods and, 131
asynchronous, 207
capturing iteration variables,

129
capturing outer variables,

128-130
local methods vs., 130

left-associative operators, 48
let keyword, 172
LINQ (Language Integrated

Query), 156-182
aggregation operators, 160
Cast operator, 181
chaining query operators, 168
deferred execution, 161
element operators, 160
friend assemblies and, 97
fundamentals, 157-161
grouping, 180
GroupJoin operator, 177
joining operators, 175-178
let keyword, 172
multiple generators, 174

Index | 225



OfType operator (LINQ), 181
orderby keyword, 179
projecting (LINQ), 159
quantifiers, 161
query continuations, 173
query expressions, 169-172
set operators, 161
simple query, 158
Skip operator, 159
standard query operators, 163
Take operator (LINQ), 159

literals, 10
local methods

about, 69
lambda expressions vs., 130

M
methods, 68

anonymous, 131
expression-bodied, 69
generic, 106
local, 69
overloading, 69
partial, 81

multicast delegates, 115
multidimensional arrays, 36
multiline comments, 11
multiple dispatch, 189
multiplication operator (*), 6, 23

N
naked type constraint, 110
named arguments (methods), 45
named parameters (attributes),

195
nameof operator, 82
namespace keyword, 63
namespaces, 63-67

aliasing, 67
extension methods and, 152
global:: qualifier, 67
importing, 67

name hiding, 66
name scoping, 65
repeated, 66
using directive, 64
using static directive, 65

nested types, 104
new keyword , 153
newline character (\n), 30
not operator (!), 28
null coalescing operator (??), 52,

150
null operators

about, 52
nullable types and, 150

null-conditional operator (?.), 52
nullable types, 146-151

bool? with & and | operators,
150

boxing/unboxing nullable val‐
ues, 148

conversions, 147
Nullable<T> struct, 147
operator lifting, 148-150

nullable values, boxing/unboxing,
148

Nullable<T> struct, 147
numeric conversions, 23
numeric literals, 21

and numeric suffixes, 22
type inference, 22

numeric suffixes, 22
numeric types, 20-27

8- and 16-bit integral types,
25

arithmetic operators for, 23
conversions, 23
double vs. decimal, 26
increment/decrement opera‐

tors, 24
numeric literals, 21
real number rounding errors,

27

226 | Index



special float and double val‐
ues, 26

specialized integral opera‐
tions, 24

O
object initializers, 73
object type, 91-95

boxing and unboxing, 92
Equals method, 94
GetHashCode, 95
GetType method, 93
ReferenceEquals() method, 95
static/runtime type checking,

93
ToString method, 95
typeof operator, 93

OfType operator, 181
operator functions (custom), 191
operator lifting, 148-150
operator overloading, 191-194

custom implicit/explicit con‐
versions, 193

operator functions and, 191
overloading equality and

comparison operators,
192

operators
defined, 11, 46

(see also specific opera‐
tors)

in order of precedence, 48-52
left-associative, 48
lifting (see operator lifting)
null, 52
overloading (see operator

overloading)
precedence and associativity,

48
right-associative, 48

optional parameters, 44
OR operator (|), 25, 103, 150
orderby keyword, 179

out parameter modifier, 42
outer variables, 128-130
overflow, arithmetic operations

on integral types, 24
overloading

constructors, 70
methods, 69
operator (see operator over‐

loading)

P
parallelism, asynchronous func‐

tions and, 207
parameterless constructor con‐

straint, 110
parameters, 40-45

delegate parameter variance,
119

named arguments, 45
optional, 44
out modifier, 42
out variables and discards, 43
params modifier, 43
passing arguments by value,

41
ref modifier, 42

params modifier, 43
parentheses ()

casting and conversions, 84
in lambda expressions, 127
method parameters, 11

partial methods, 81
passing

by reference, 42
by value, 41

period (.), 11
plug-in methods, 115
pointer-to-member operator (->),

209
pointers, 209-212

basics, 209
fixed statement, 210

Index | 227



pointer-to-member operator
(->), 211

void*, 212
polymorphism, 83
positional parameters, 195
pragma warning, 214
precedence of operators, 48
predefined types

examples, 12
symmetry with custom types,

14
taxonomy, 19

preprocessor directives, 213-215
primary operators, 47
primitive types, 20
projecting (LINQ), 159
properties, 74-77

automatic, 76
expression-bodied, 75
get/set accessibility, 77
property initializers, 76

property initializers, 76
public keyword, 15
punctuators, 10, 10

Q
quantifiers, 161
queries (see LINQ)
query continuations, 173
query expressions

fluent queries vs., 171
LINQ, 169-172

query operators
chaining in LINQ, 168
defined, 157
list of LINQ, 163

R
real literals, 21
real number types, 21

conversions, 23
rounding errors, 27

rectangular arrays, 36
ref parameter modifier, 42
reference conversions, 84-86

downcasting, 84
is operator, 85
upcasting, 84

reference types
defined, 18
null, 19
value types vs., 16-19

ReferenceEquals() method, 95
reimplementing an interface, 101
relational operators, 149, 149
remainder operator (%), 23
rethrowing exceptions, 138
return statement, 62
Reverse operator, 159
right-associative operators, 48
rounding errors, 27
runtime overload resolution, 189
runtime type checking, 93
RuntimeBinderException, 186

S
sealed keyword, 88
searching within strings, 33
Select method (LINQ), 159
selection statements, 55-59

changing the flow of execu‐
tion with braces, 56

else clause, 56
if statement, 55
switch statement, 57-59

semicolon (;), 5, 10, 54
sequences, LINQ, 157
serialization, 194
set accessors, 77
set operators, 161
shift left operator (<<), 25
shift right operator (>>), 25
short-circuiting, 29
signature method, 68
single-line comments, 11

228 | Index



Skip operator, 159
specialized integral operations, 24
square brackets ([]), 34, 211
stack, defined, 38, 91
stackalloc keyword, 211
statement block, 54
statements, 54-63

declaration statements, 54
expression statements, 55
iteration statements, 59-61
jump statements, 61
selection statements, 55-59
try statements, 132-140

static binding, dynamic binding
vs., 183

static classes, 80
static constructors, 79
static data, 111
static members, 15
static type checking, 93
string type, 31-33

comparisons, 33
concatenation, 31
interpolation, 32
manipulation of, 33
searching within strings, 33

struct generic constraint, 110
structs

construction semantics, 96
defined, 95
Nullable<T>, 147

subclasses
constructors, 89
reimplementing interfaces in,

101
subclassing generic types, 110

subscribers, 120
switch statements, 57-59

about, 57
with patterns, 58

syntax, 8-11
comments, 11
identifiers, 9

keywords, 9-10
literals, 10
operators, 11
punctuators, 10

System namespace, 20
System.Exception

common exception types, 139
key properties, 139

T
Take operator, 159
targets, attribute, 195
Task<TResult>, 205-207
this keyword, 70
this reference, 73
throw expressions, 138
throwing exceptions (see excep‐

tions)
tilde symbol (~), 25, 80
ToString() method, 95
try statements, 132-140

catch clause, 134-135
finally block, 135
throwing exceptions, 137-140

tuples, 154-156
deconstructing, 156
naming elements, 155

type inference, 22
type parameters, declaring, 107
typeof() operator, 93, 108
types, 11-38

aliasing, 67
anonymous, 153
arrays and, 34-38
basics, 11-20
constructors and instantia‐

tion, 14
conversions, 16
custom examples, 13-16
instance vs. static members,

14
members, 14
nested, 104

Index | 229



nullable (see nullable types)
numeric, 20-27
partial, 80
predefined type taxonomy, 19
value types vs. reference

types, 16-19
var vs. dynamic, 188

U
unbound generic types, 108
unboxing

nullable values, 148
object type, 92

unchecked operator, 24
unsafe code, 209-212

about, 209
arrays, 211
fixed statement, 210
fixed-size buffers, 211
stackalloc keyword, 211

unsafe keyword, 209
upcasting, 84
using directive, 64
using statement, 137
using static directive, 65

V
value types

and null values, 19
defined, 16
numeric types, 20-27
reference types vs., 16-19

var (implicitly typed local vari‐
able)

about, 46
dynamic types vs., 188

var keyword , 153
variables, 38-46

default values, 40
defined, 11
definite assignment, 39
implicitly typed, 46

verbatim string literals, 31
vertical tab character (\v), 30
virtual function members, 86
void expression, 47
void pointer (void*), 212

W
when clauses, 135
WhenAll method, 207
Where operator, 158
while loops, 60

X
XML documentation, 215-218
xor operator (^), 25

Y
yield breaks, 144
yield statements, 144

Z
Zip (LINQ joining operator), 178

230 | Index



About the Authors
Joseph Albahari is the author of the past four editions of C#
7.0 in a Nutshell and C# 7.0 Pocket Reference. He also wrote
LINQPad—the popular code scratchpad and LINQ querying
utility.

Ben Albahari is cofounder of Auditionist, a casting website for
actors in the UK. He was a Program Manager at Microsoft for
five years, where he worked on several projects, including
the .NET Compact Framework and ADO.NET.

He was the cofounder of Genamics, a provider of tools for C#
and J++ programmers, as well as software for DNA and protein
sequence analysis. He is a coauthor of C# Essentials, the first C#
book from O’Reilly, and of previous editions of C# in a
Nutshell.


	Copyright
	Table of Contents
	C# 7.0 Pocket Reference
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Conversions
	Value Types Versus Reference Types
	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric Conversions
	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	8- and 16-Bit Integral Types
	Special Float and Double Values
	double Versus decimal
	Real Number Rounding Errors

	Boolean Type and Operators
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	String Type

	Arrays
	Default Element Initialization
	Multidimensional Arrays
	Simplified Array Initialization Expressions

	Variables and Parameters
	The Stack and the Heap
	Definite Assignment
	Default Values
	Parameters
	var—Implicitly Typed Local Variables

	Expressions and Operators
	Assignment Expressions
	Operator Precedence and Associativity
	Operator Table

	Null Operators
	Null Coalescing Operator
	Null-Conditional Operator

	Statements
	Declaration Statements
	Expression Statements
	Selection Statements
	Iteration Statements
	Jump Statements

	Namespaces
	The using Directive
	using static
	Rules Within a Namespace
	Aliasing Types and Namespaces

	Classes
	Fields
	Methods
	Instance Constructors
	Deconstructors (C# 7)
	Object Initializers
	The this Reference
	Properties
	Indexers
	Constants
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	The nameof Operator

	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	Object Member Listing
	Equals, ReferenceEquals, and GetHashCode
	The ToString Method

	Structs
	Struct Construction Semantics

	Access Modifiers
	Friend Assemblies
	Accessibility Capping

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators

	Nested Types
	Generics
	Generic Types
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Covariance
	Contravariance

	Delegates
	Writing Plug-In Methods with Delegates
	Multicast Delegates
	Instance Versus Static Method Targets
	Generic Delegate Types
	The Func and Action Delegates
	Delegate Compatibility

	Events
	Standard Event Pattern
	Event Accessors

	Lambda Expressions
	Capturing Outer Variables
	Lambda Expressions Versus Local Methods

	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	Throwing Exceptions
	Key Properties of System.Exception
	Common Exception Types

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Composing Sequences

	Nullable Types
	Nullable<T> Struct
	Nullable Conversions
	Boxing/Unboxing Nullable Values
	Operator Lifting
	bool? with & and | Operators
	Nullable Types and Null Operators

	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution

	Anonymous Types
	Tuples (C# 7)
	Naming Tuple Elements
	Deconstructing Tuples

	LINQ
	LINQ Fundamentals
	Deferred Execution
	Standard Query Operators
	Chaining Query Operators
	Query Expressions
	The let Keyword
	Query Continuations
	Multiple Generators
	Joining
	Ordering
	Grouping
	OfType and Cast

	Dynamic Binding
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Member Overload Resolution
	Uncallable Functions

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes
	Writing Custom Attributes
	Retrieving Attributes at Runtime

	Caller Info Attributes
	Asynchronous Functions
	The await and async Keywords
	Capturing Local State
	Writing Asynchronous Functions
	Parallelism
	Asynchronous Lambda Expressions

	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	Arrays
	void*

	Preprocessor Directives
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags


	Index



