
www.allitebooks.com

http://www.allitebooks.org

[FM-1]

Cardboard VR Projects for
Android

Develop mobile virtual reality apps using the native
Google Cardboard SDK for Android

Jonathan Linowes

Matt Schoen

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Cardboard VR Projects for Android

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1120516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-787-1

www.packtpub.com

Credits for the Cover Image:

Custom Illustration designed by eLearning Mind, LLC., www.eLearningMind.com,
ELM creates interactive learning experiences using modern brain science and
intuitively stunning design.

The DIY Virtual Reality article:
http://elearningmind.com/diy-virtual-reality-world-of-warcraft-
thinks-inside-the-box-at-comic-con-2015/

www.allitebooks.com

http://www.allitebooks.org

[FM-3]

Credits

Authors
Jonathan Linowes

Matt Schoen

Reviewers
Scott Dolim

Oleksandr Popov

Commissioning Editor
Edward Gordon

Acquisition Editor
Reshma Raman

Content Development Editor
Sachin Karnani

Technical Editor
Siddhi Rane

Copy Editor
Rashmi Sawant

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Authors

Jonathan Linowes is the owner of Parkerhill Reality Labs, a start-up VR/AR
consultancy firm. He is a VR and 3D graphics enthusiast, full-stack web developer,
software engineer, successful entrepreneur, and teacher. He has a fine arts degree
from Syracuse University and a master's degree from the MIT Media Lab. He has
founded several successful start-ups and held technical leadership positions at major
corporations, including Autodesk Inc. He is also the author of the Unity Virtual
Reality Projects book by Packt Publishing.

Matt Schoen is the cofounder of Defective Studios and has been making VR apps
since the early DK1 days. Still in the early stages of his career, he spent most of his
time working on Unity apps and games, some for hire and some of his own design.
He studied computer engineering at Boston University and graduated with a BS in
2010, at which point he founded Defective with Jono Forbes, a high-school friend.
He has been making games and apps ever since. Matt was the technical lead on
Defective's debut game, CosmoKnots, and remains involved in Jono's pet project,
Archean. This is his first foray into authorship, but he brings with him his experience
as an instructor and curriculum designer for Digital Media Academy. Jono and Matt
have recently joined Unity's VR Labs division, where they will be helping to create
experimental new features which will shape the VR landscape for years to come.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Scott Dolim has worked on and off in 3D computer graphics for over 20 years,
including a 5-year stint at Walt Disney Feature Animation in the 1990s. More
recently, for the last 5 years, he has been actively involved in virtual reality
development, mostly with Unity 3D. Scott currently works at Google where
he is the lead engineer of the Cardboard SDK for Unity.

Oleksandr Popov is a developer of numerous 3D apps, mainly live wallpapers,
for Android devices. His first experience with 3D for Android started in 2012 when
with the release of Android 2.2, it became possible to create live wallpapers. Since
then, he has released about 15 of them in collaboration with his brother, Dmytro,
who is responsible for creating 3D scenes. After releasing each app, he gained more
and more experience in OpenGL ES. Basically, he tried almost every new feature
of Android where 3D and OpenGL can be applied. He started with live wallpapers
in Android 2.2, then he added support of the daydream mode for them in 4.2. He
started using some of the features of OpenGL ES 3.0 introduced in Android 4.3. And
as soon as Google added support of custom watch faces for Android Wear 5.0, he
and his brother created a set of 3D watch faces for smart watches too. Of course,
after Google announced Cardboard, he immediately decided to create VR apps
for this platform as well.

He and his brother are also coauthors of the Deconstructing Google Cardboard Apps
book by Bleeding Edge Press.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Virtual Reality for Everyone 1

Why is it called Cardboard? 1
The spectrum of VR devices 3

Old fashioned stereoscopes 3
Cardboard is mobile VR 4
Desktop VR and beyond 5

A gateway to VR 6
The value of low-end VR 9
Cardware! 11
Configuring your Cardboard viewer 14
Developing apps for Cardboard 16

Using Unity 16
Going native 17

An overview to VR best practices 19
Summary 21

Chapter 2: The Skeleton Cardboard Project 23
What's in an Android app? 23

APK files 24
A Gradle build process 24
A Java compiler 26

The Android project structure 26
Getting started with Android Studio 29

Installing Android Studio 29
The Android Studio user interface 29

Creating a new Cardboard project 33
Adding the Cardboard Java SDK 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The AndroidManifest.xml file 40
The activity_main.xml file 45
The MainActivity class 46

Default onCreate 48
Building and running 49

Summary 51
Chapter 3: Cardboard Box 53

Creating a new project 54
Hello, triangle! 55

Introducing geometry 55
Triangle variables 57
onSurfaceCreated 58
Introducing OpenGL ES 2.0 58
Simple shaders 61
The compileShaders method 63
The prepareRenderingTriangle method 63
onDrawEye 65
Building and running 66

3D camera, perspective, and head rotation 67
Welcome to the matrix 67
The MVP vertex shader 70
Setting up the perspective viewing matrices 70
Render in perspective 71
Building and running 73

Repositioning the triangle 74
Hello, cube! 75

The cube model data 75
Cube code 77

Lighting and shading 80
Adding shaders 80
Cube normals and colors 82
Preparing the vertex buffers 84
Preparing the shaders 85
Adding a light source 87
Building and running the app 88

Spinning the cube 88
Hello, floor! 89

Shaders 89
Floor model data 91
Variables 91

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

onCreate 92
onSurfaceCreated 92
initializeScene 92
prepareRenderingFloor 93
onDrawEye 94
drawFloor 94

Hey, look at this! 95
The isLookingAtObject method 95

Summary 98
Chapter 4: Launcher Lobby 99

Creating a new project 100
Adding Hello Virtual World text overlay 101

A simple text overlay 101
Center the text using a child view 103
Create stereoscopic views for each eye 105
Controlling the overlay view from MainActivity 108

Using a virtual screen 109
Responding to head look 111
Adding an icon to the view 113
Listing installed Cardboard apps 115

Queries for Cardboard apps 116
Create the Shortcut class for apps 117
Add shortcuts to OverlayView 117
Using view lists in OverlayEye 118

Highlighting the current shortcut 120
Using the trigger to pick and launch the app 122
Further enhancements 123
Summary 124

Chapter 5: RenderBox Engine 125
Introducing RenderBox – a graphics engine 126
Creating a new project 128

Creating the RenderBox package folder 129
Creating an empty RenderBox class 130
Adding the IRenderBox interface 132

Materials, textures, and shaders 133
Abstract material 134

The Math package 137
MathUtils 137
Matrix4 138
Quaternion 138

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Vector2 139
Vector3 140

The Transform class 141
Parent methods 143
Position methods 144
Rotation methods 146
Scale methods 147
Transform to matrix and draw 148

The Component class 149
The RenderObject component 150
The Cube RenderObject component 152
Vertex color material and shaders 155

Vertex color shaders 155
VertexColorMaterial 156

The Camera component 159
RenderBox methods 161
A simple box scene 163
Cube with face normals 164
The Light component 165
Vertex color lighting material and shaders 167
Time for animation 172
Detect looking at objects 174
Exporting the RenderBox package 176

Building the RenderBoxLib module 177
The RenderBox test app 181
Using RenderBox in future projects 182

Summary 185
Chapter 6: Solar System 187

Setting up a new project 188
Creating a Sphere component 189
A solid color lighted sphere 195

Solid color lighting shaders 195
Solid color lighting material 197
Adding a Material to a Sphere 200
Viewing the Sphere 200

Adding the Earth texture material 201
Loading a texture file 202
Diffuse lighting shaders 203
Diffuse lighting material 205
Adding diffuse lighting texture to a Sphere component 209

Table of Contents

[v]

Viewing the Earth 209
Changing the camera position 211

Day and night material 212
Day/night shader 212
The DayNightMaterial class 215
Rendering with day/night 218

Creating the Sun 219
Unlit texture shaders 219
Unlit texture material 220
Rendering with an unlit texture 222
Adding the Sun 223

Creating a Planet class 224
Formation of the Solar System 226

Setting up planets in MainActivity 227
Camera's planet view 230
Animating the heavenly bodies 231

A starry sky dome 231
Fine tuning the Earth 232

The night texture 233
Axis tilt and wobble 234

Changing the camera location 234
Possible enhancements 235
Updating the RenderBox library 236
Summary 237

Chapter 7: 360-Degree Gallery 239
Setting up the new project 240
Viewing a 360-degree photo 242

Viewing a sample photosphere 244
Using the background image 246

Viewing a regular photo 247
Defining the Plane component and allocating buffers 247
Adding materials to the Plane component 249
Adding an image screen to the scene 249

Putting a border frame on the image 252
Border shaders 252
The border material 254
Using the border material 256

Loading and displaying a photo image 257
Defining the image class 258
Reading images into the app 259

Table of Contents

[vi]

Image load texture 260
Showing an image on the screen 262
Rotating to the correct orientation 263
Dimensions to correct the width and height 266
Sample image down to size 267

Loading and displaying a photosphere image 270
The image gallery user interface 272

Positioning the photo screen on the left 274
Displaying thumbnails in a grid 274

The thumbnail image 274
The Thumbnail class 275
The thumbnail grid 276

Gaze to load 278
Gaze-based highlights 278
Selecting and showing photos 279
Queue events 280
Using a vibrator 281

Enable scrolling 282
Creating the Triangle component 282
Adding triangles to the UI 284
Interacting with the scroll buttons 285
Implementing the scrolling method 286

Stay responsive and use threads 287
An explanation of threading and virtual reality 292
Launch with an intent 294
Showing/hiding the grid with tilt-up gestures 297
Spherical thumbnails 300

Add a sphere to the Thumbnail class 300
Updating the RenderBox library 302
Further possible enhancements 303
Summary 304

Chapter 8: 3D Model Viewer 305
Setting up a new project 306
Understanding the OBJ file format 307
Creating the ModelObject class 309
Parse OBJ models 310

buildBuffers 315
Model extents, scaling, and center 316
I'm a little teapot 317
I'm a little rotating teapot 319

Table of Contents

[vii]

Thread safe 321
Launch with intent 322
Practical and production ready 324
Summary 324

Chapter 9: Music Visualizer 325
Setting up a new project 326
Capturing audio data 327
A VisualizerBox architecture 328
Waveform data capture 331
A basic geometric visualization 332
2D texture-based visualization 335

Texture generator and loader 335
Waveform shaders 337
Basic waveform material 338
Waveform visualization 341

FFT visualization 343
Capture the FFT audio data 343
FFT shaders 345
Basic FFT material 346
FFT visualization 347

Trippy trails mode 348
Multiple simultaneous visualizations 351
Random visualizations 353
Further enhancements 355

A community invite 356
Summary 356
Onward to the future 357

Index 359

Preface

[ix]

Preface
Google Cardboard is a low-cost, entry-level medium used for experiencing virtual
3D environments. Its applications are as broad and varied as mobile smartphone
applications themselves. This book gives you the opportunity to implement a variety
of interesting projects for Google Cardboard using the native Java SDK. The idea is to
educate you with best practices and methodologies to make Cardboard-compatible
mobile VR apps and guide you through making quality content appropriate for the
device and its intended users.

What this book covers
Chapter 1, Virtual Reality for Everyone, defines Google Cardboard, explores it,
and discusses how it's used and how it fits in the spectrum of VR devices.

Chapter 2, The Skeleton Cardboard Project, examines the structure of a Cardboard app
for Android, takes a tour of Android Studio, and helps you build a starter Cardboard
project by introducing the Cardboard Java SDK.

Chapter 3, Cardboard Box, discusses how to build a Cardboard Android app
from scratch (based on Google's Treasure Hunt sample) with a 3D cube model,
transformations, stereoscopic camera views, and head rotations. This chapter also
includes discussions of 3D geometry, Open GL ES, shaders, matrix math, and the
rendering pipeline.

Chapter 4, Launcher Lobby, helps you build an app to launch other Cardboard apps on
your phone. Rather than using 3D graphics, this project simulates stereoscopic views
in screen space and implements gaze-based selections.

Chapter 5, RenderBox Engine, shows you how to create a small graphics engine used
to build new Cardboard VR apps by abstracting the low-level OpenGL ES API calls
into a suite of the Material, RenderObject, Component, and Transform classes. The
library will be used and further developed in subsequent projects.

Preface

[x]

Chapter 6, Solar System, builds a Solar System simulation science project by adding
a sunlight source, spherical planets with texture mapped materials and shaders,
animating in their solar orbits, and a Milky Way star field.

Chapter 7, 360-Degree Gallery, helps you build a media viewer for regular and
360-degree photos, and helps you load the phone's camera folder pictures into a grid
of thumbnail images and use gaze-based selections to choose the ones to view. It also
discusses how to add process threading for improved user experience and support
Android intents to view images from other apps.

Chapter 8, 3D Model Viewer, helps you build a viewer for 3D models in the OBJ file
format, rendered using our RenderBox library. It also shows you how to interactively
control the view of the model as you move your head.

Chapter 9, Music Visualizer, builds a VR music visualizer that animates based on
waveform and FFT data from the phone's current audio player. We implement a
general architecture used to add new visualizations, including geometric animations
and dynamic texture shaders. Then, we add a trippy trails mode and multiple
concurrent visualizations that transition in and out randomly.

What you need for this book
Throughout the book, we use the Android Studio IDE development environment to
write and build Android applications. You can download Android Studio for free,
as explained in Chapter 2, The Skeleton Cardboard Project. You will need an Android
phone to run and test your projects. And it's strongly recommended that you have a
Google Cardboard viewer to experience your apps in stereoscopic virtual reality.

Who this book is for
This book is for Android developers who are interested in learning about and
developing Google Cardboard apps using the Google Cardboard native SDK. We
assume that the reader has some knowledge of Android development and the Java
language, but may be new to 3D graphics, virtual reality, and Google Cardboard.
Novice developers, or those unfamiliar with the Android SDK, may find it hard to
get started with this book. Those who aren't coming from an Android background
may be better served by creating cardboard apps with a game engine like Unity.

Preface

[xi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Edit the MainActivity Java class so that it extends CardboardActivity and
implements CardboardView.StereoRenderer."

A block of code is set as follows:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);
 }

Any command-line input or output is written as follows:

git clone https://github.com/googlesamples/cardboard-java.git

New terms and important words are shown in bold. Words that you see
on the screen, for example, in menus or dialog boxes, appear in the text
like this: "In Android Studio, select File | New | New Module…. Select
Import .JAR/.AAR Package."

Preface

[xii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiii]

5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

You can also download the code fles from GitHub at https://github.com/
cardbookvr.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/CardboardVRProjectsforAndroid_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/cardbookvr
https://github.com/cardbookvr
https://www.packtpub.com/sites/default/files/downloads/CardboardVRProjectsforAndroid_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CardboardVRProjectsforAndroid_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CardboardVRProjectsforAndroid_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Virtual Reality for Everyone
Welcome to the exciting new world of virtual reality! We're sure that, as an Android
developer, you want to jump right in and start building cool stuff that can be viewed
using Google Cardboard. Your users can then just slip their smartphone into a
viewer and step into your virtual creations. Before we get up to our elbows in the
code and tech stuff throughout the rest of this book, let's take an outside-in tour of
VR, Google Cardboard, and its Android SDK to see how they all fit together. We will
discuss the following topics in this chapter:

• Why is it called Cardboard?
• The spectrum of virtual reality devices
• A gateway to VR
• The value of low-end VR
• Cardware
• Configuring your Cardboard viewer
• Developing apps for Cardboard
• An overview of VR best practices

Why is it called Cardboard?
It all started in early 2014 when Google employees, David Coz and Damien Henry,
in their spare time, built a simple and cheap stereoscopic viewer for the Android
smartphones. They designed a device that can be constructed from ordinary
cardboard, plus a couple of lenses for your eyes, and a mechanism to trigger a
button "click." The viewer is literally made from cardboard. They wrote software
that renders a 3D scene with a split screen: one view for the left eye, and another
view, with offset, for the right eye. Peering through the device, you get a real sense
of 3D immersion into the computer generated scene. It worked! The project was then
proposed and approved as a "20% project" (where employees may dedicate one day
a week for innovations), funded, and joined by other employees.

Virtual Reality for Everyone

[2]

Two sources of "canonical" facts about the story behind how Cardboard
came into existence are as follows:

• http://www.wired.com/2015/06/inside-story-
googles-unlikely-leap-cardboard-vr/

• https://en.wikipedia.org/wiki/Google_Cardboard

In fact, Cardboard worked so well that Google decided to go forward, taking the
project to the next level and releasing it to the public a few months later at Google
I/O 2014. The following figure shows a typical unassembled Google Cardboard kit:

Since its inception, Google Cardboard has been accessible to hackers, hobbyists, and
professional developers alike. Google open sourced the viewer design for anyone to
download the schematics and make their own, from a pizza box or from whatever
they had lying around. One can even go into business selling precut kits directly to
consumers. An assembled Cardboard viewer is shown in the following image:

http://www.wired.com/2015/06/inside-story-googles-unlikely-leap-cardboard-vr/
http://www.wired.com/2015/06/inside-story-googles-unlikely-leap-cardboard-vr/
https://en.wikipedia.org/wiki/Google_Cardboard

Chapter 1

[3]

The Cardboard project also includes a software development kit (SDK) that makes
it easy to build VR apps. Google has released continuous improvements to the
software, including both a native Java SDK as well as a plugin for the Unity 3D
game engine (https://unity3d.com/).

Since the release of Cardboard, a huge number of applications have been developed
and made available on the Google Play Store. At Google I/O 2015, Version 2.0
introduced an upgraded design, improved software, and support for Apple iOS.

Google Cardboard has rapidly evolved in the eye of the market from an almost
laughable toy into a serious new media device for certain types of 3D content and VR
experiences. Google's own Cardboard demo app has been downloaded millions of
times from the Google Play Store. The New York Times distributed about a million
cardboard viewers with its November 8, Sunday issue back in 2015.

Cardboard is useful for viewing 360-degree photos and playing low-fidelity 3D VR
games. It is universally accessible to almost anyone because it runs on any Android
or iOS smartphone.

Developers are now integrating 3D VR content directly into Android apps. Google
Cardboard is a way of experiencing virtual reality that is here to stay.

The spectrum of VR devices
As with most technologies, there is a spectrum of products for virtual reality ranging
from the simplest and least expensive to the very advanced.

Old fashioned stereoscopes
Cardboard is at the low end of the VR device spectrum. Well, you could even go
lower if you consider the ViewMaster that you may have played with as a child, or
even the historic stereoscope viewer from 1876 (B.W. Kilborn & Co, Littleton, New
Hampshire), as shown in the following image:

https://unity3d.com/

Virtual Reality for Everyone

[4]

In these old fashioned viewers, a pair of photographs display two separate views for
the left and right eyes that are slightly offset to create parallax. This fools the brain
into thinking that it's seeing a truly three-dimensional view. The device contains
separate lenses for each eye that allow you to easily focus on the photo close up.

Similarly, rendering these side-by-side stereo views is the first job of a Google
Cardboard application. (Leveraging their legacy, Mattel recently released a
Cardboard-compatible ViewMaster brand VR viewer that uses a smartphone,
which can be found at http://www.view-master.com/).

Cardboard is mobile VR
Cardboard's obvious advantages over stereoscopic viewers are like the advantages of
digital photographs over traditional ones. Digital media can be dynamically stored,
loaded, and manipulated right within our smartphones. That's a powerful leap on
its own.

On top of that, Cardboard uses the motion sensors in the phone in such a way that
when you turn your head left-right or up-down, the image is adjusted accordingly,
effectively obliterating the traditional frame edges of the image. Framing the image
is a very important part of traditional visual media, such as painting, photography,
and cinematography. For centuries, artists and directors have established a visual
language using this rectangular frame.

However, not so much in VR. When you move your head in VR your view direction
changes, and the scene is updated as if the camera is rotating along with you,
providing a fully immersive view. You can rotate it horizontally 360 degrees as
you look side to side and 180 degrees up and down. In other words, you can look
anywhere you want. There is no frame in VR! (Albeit your peripheral vision might
be limited by the optics and display size, which determine the device's field of view
or FOV). In this way, the design considerations may be more akin to sculpture,
theatre-in-the-round, or even architectural design. We need to think about the
whole space that immerses the visitor.

The Google Cardboard device is simply a casing for you to slip your smartphone
into. It uses the smartphone's technology, including the following:

• Display
• CPU (the main processor)
• GPU (the graphics processor)
• IMU (the motion sensor)
• Magnetometer and/or touchscreen (the trigger sensor)

http://www.view-master.com/

Chapter 1

[5]

We'll talk more about how all this works a little later.

Using a mobile smartphone for VR means great things, such as ease of use, but also
annoying constraints, such as limited battery life, slower graphics processing, and
lower accuracy/higher latency motion sensors.

The Samsung Gear VR is a mobile VR headset that is smarter than a simple
Cardboard viewer. Android-based but not compatible with Cardboard apps (and
only works with specific models of Samsung phones), it has a separate built-in higher
precision IMU (motion sensor), which increases the accuracy of the head motion
tracking and helps reduce the motion-to-pixel latency when updating the display.
It's also ergonomically designed for more extended use and it includes a strap.

Desktop VR and beyond
At the higher end of consumer virtual reality devices are the Oculus Rift, HTC Vive,
and Sony PlayStation VR, among others. These products go beyond what Cardboard
can do because they're not limited by the capabilities of a smartphone. Sometimes
referred to as "desktop VR," these devices are head-mounted displays (HMD)
tethered to an external PC or console.

On desktop VR, the desktop's powerful CPU and GPU do the actual computation
and graphics rendering and send the results to the HMD. Furthermore, the HMD has
higher quality motion sensors and other features that help reduce the latency when
updating the display at, say, 90 frames per second (FPS). We'll learn throughout
this book that reducing latency and maintaining high FPS are important concerns
for all VR development and the comfort of your users on all VR devices,
including Cardboard.

Desktop VR devices also add positional tracking. The Cardboard device can detect
the rotational movement on any of the X, Y, and Z axes, but it unfortunately cannot
detect the positional movement (for example, sliding along any of these axes). The
Rift, Vive, and PSVR can. The Rift, for example, uses an external camera to track the
position using infrared lights on the HMD (outside-in tracking). The Vive, on the other
hand, uses sensors on the HMD to track a pair of laser emitters placed strategically in
the room (inside-out tracking). The Vive also uses this system to track the position and
rotation of a pair of hand controllers. Both strategies achieve similar results. The user
has a greater freedom to move around within the tracked space while experiencing
moving around within the virtual space. Cardboard cannot do this.

Virtual Reality for Everyone

[6]

Note that innovations are continually being introduced. Very likely, at some point,
positional tracking will be included with the Cardboard arsenal. For example, we
know that Google's Project Tango implements visual-inertial odometry, or VIO,
using sensors, gyroscopes, and awareness of the physical space to provide motion
and positional tracking to mobile apps. Refer to https://developers.google.
com/project-tango/overview/concepts. Mobile device companies, such as LG
and Samsung, are working hard to figure out how to do mobile positional tracking,
but (at the time of this writing) a universal, low-latency solution does not yet exist.
Google's Project Tango shows some promise but cannot yet achieve the time-to-pixel
latency required for a smooth, comfortable VR experience. Too much latency and
you get sick!

At the very high end are industrial and military grade systems that cost thousands
or millions of dollars, which are not consumer devices, and I'm sure can do really
awesome things. I could tell you more about it, but then I'd have to kill you. Solutions
such as these have also been around since the 1980s. VR is not new—consumer VR
is new.

The spectrum of VR devices is illustrated in the following diagram:

When we develop for Cardboard, it is important to keep in mind the things it can
and cannot do relative to other VR devices. Cardboard can display stereoscopic
views. Cardboard can track rotational head movement. It cannot do positional
tracking. It has limitations of graphics processing power, memory, and battery life.

A gateway to VR
In the very short time it has been available, this generation of consumer virtual
reality has demonstrated itself to be instantly compelling, immersive, entertaining,
and "a game changer" for just about everyone who tries it. Google Cardboard is
especially easy to access with a very low barrier to use. All you need is a smartphone,
a low-cost Cardboard viewer (as low as $5 USD), and free apps downloaded from
Google Play (or Apple App Store for iOS).

https://developers.google.com/project-tango/overview/concepts
https://developers.google.com/project-tango/overview/concepts

Chapter 1

[7]

Google Cardboard has been called a gateway to VR, perhaps in reference to
marijuana as a "gateway drug" to more dangerous illicit drug abuse? We can play
with this analogy for a moment, however decadent. Perhaps Cardboard will give
you a small taste of VR's potential. You'll want more. And then more again. This will
help you fulfill your desire for better, faster, more intense, and immersive virtual
experiences that can only be found in higher end VR devices. At this point, perhaps
there'll be no turning back; you're addicted!

Yet as a Rift user, I still also enjoy Cardboard. It's quick. It's easy. It's fun. And it
really does work, provided I run apps that are appropriately designed for the device.

I brought a Cardboard viewer in my backpack when visiting my family for the
holidays. Everyone enjoyed it a lot. Many of my relatives didn't even get past the
standard Google Cardboard demo app, especially its 360-degree photo viewer. That
was engaging enough to entertain them for a while. Others jumped to a game or two
or more. They wanted to keep playing and try new experiences. Perhaps it's just the
novelty. Or, perhaps it's the nature of this new medium. The point is that Google
Cardboard provides an immersive experience that's enjoyable, useful, and very
easily accessible. In short, it is amazing.

Then, show them an HTC Vive or Oculus Rift. Holy Cow! That's really, really
amazing! Well, for this book, we're not here to talk about the higher end VR
devices, except to contrast them with Cardboard and to keep things in perspective.

Once you try desktop VR, is it hard to "go back" to mobile VR? Some folks say so.
But that's almost silly. The fact is that they're really separate things.

As discussed earlier, desktop VR comes with much higher processing power and
other high-fidelity features, whereas mobile VR is limited by your smartphone. If a
developer were to try and directly port a desktop VR app to a mobile device, there's
a good chance that you'll be disappointed.

It's best to think of each as a separate medium. Just like a desktop application or
a console game is different from, but similar to, a mobile one. The design criteria
may be similar but different. The technologies are similar but different. The user
expectations are similar but different. Mobile VR may be similar to desktop VR,
but it's different.

Virtual Reality for Everyone

[8]

To emphasize how different Cardboard is from desktop VR devices,
it's worth pointing out that Google has written the following into their
manufacturer's specifications and guidelines:
"Do not include a headstrap with your viewer. When the user holds the
Cardboard with their hands against the face, their head rotation speed is
limited by the torso rotational speed (which is much slower than the neck
rotational speed). This reduces the chance of "VR sickness" caused by
rendering/IMU latency and increases the immersiveness in VR."

The implication is that Cardboard apps should be designed for shorter, simpler, and
somewhat stationary experiences. Throughout this book, we'll illustrate these and
other tips and best practices as you develop for the mobile VR medium.

Let's now consider the other ways that Cardboard is a gateway to VR.

We predict that Android will continue to grow as a primary platform for
virtual reality in the future. More and more technologies will get crammed into
smartphones. And this technology will include features advantageous to VR:

• Faster processors and mobile GPUs
• Higher resolution screens
• Higher precision motion sensors
• Optimized graphics pipelines
• Better software
• Many more VR apps

Mobile VR will not give way to desktop VR; it may even eventually replace it.

Furthermore, we'll soon see dedicated mobile VR headsets that have the guts of a
smartphone built-in without the cost of a wireless communications contract. No need
to use your own phone. No more getting interrupted while in VR by an incoming
call or notification. No more rationing battery life in case you need to receive an
important call or otherwise use your phone. All these dedicated VR devices will
likely be Android-based.

Chapter 1

[9]

The value of low-end VR
Meanwhile, Android and Google Cardboard are here today on our phones, in our
pockets, in our homes, at the office, and even in our schools.

Google Expeditions, for example, is Google's educational program for Cardboard
(https://www.google.com/edu/expeditions/), which allows K-12 school children
to take virtual field trips to "places a school bus can't," as they say, "around the
globe, on the surface of Mars, on a dive to coral reefs, or back in time." The kits
include Cardboard viewers and Android phones for each child in a classroom, plus
an Android tablet for the teacher. They're connected with a network. The teacher
can then guide students on virtual field trips, provide enhanced content, and create
learning experiences that go way beyond a textbook or classroom video, as shown in
the following image:

www.allitebooks.com

https://www.google.com/edu/expeditions/
http://www.allitebooks.org

Virtual Reality for Everyone

[10]

In another creative marketing example, in summer of 2015, Kellogg's began selling
Nutri-Grain snack bars in a box that transforms into a Google Cardboard viewer.
This links to an app that shows a variety of extreme sport 360-degree videos
(http://www.engadget.com/2015/09/09/cereal-box-vr-headset/),
as shown in the following image:

The entire Internet can be considered a world-wide publishing and media
distribution network. It's a web of hyperlinked pages, text, images, music, video,
JSON data, web services, and much more. It's also teeming with 360-degree photos
and videos. There's also an ever growing amount of three-dimensional content and
virtual worlds. Would you consider writing an Android app today that doesn't
display images? Probably not. There's a good chance that your app also needs to
support sound files, videos, or other media. So pay attention. Three-dimensional
Cardboard-enabled content is coming quickly. You might be interested in reading
this book now because VR looks fun. But, soon enough, it may be a customer-driven
requirement for your next app.

Some examples of types of popular Cardboard apps include:

• 360-degree photo viewing, for example, Google's Cardboard demo
(https://play.google.com/store/apps/details?id=com.google.
samples.apps.cardboarddemo) and Cardboard Camera (https://play.
google.com/store/apps/details?id=com.google.vr.cyclops)

• Video and cinema viewing, for example, a Cardboard theatre (https://
play.google.com/store/apps/details?id=it.couchgames.apps.
cardboardcinema)

http://www.engadget.com/2015/09/09/cereal-box-vr-headset/
https://play.google.com/store/apps/details?id=com.google.samples.apps.cardboarddemo
https://play.google.com/store/apps/details?id=com.google.samples.apps.cardboarddemo
https://play.google.com/store/apps/details?id=com.google.vr.cyclops
https://play.google.com/store/apps/details?id=com.google.vr.cyclops
https://play.google.com/store/apps/details?id=it.couchgames.apps.cardboardcinema
https://play.google.com/store/apps/details?id=it.couchgames.apps.cardboardcinema
https://play.google.com/store/apps/details?id=it.couchgames.apps.cardboardcinema

Chapter 1

[11]

• Roller coasters and thrill rides, for example, VR Roller Coaster (https://
play.google.com/store/apps/details?id=com.frag.vrrollercoaster)

• Cartoonish 3D games, for example, Lamber VR (https://play.google.
com/store/apps/details?id=com.archiactinteractive.LfGC&hl=en_
GB)

• First person shooter games, for example, Battle 360 VR (https://play.
google.com/store/apps/details?id=com.oddknot.battle360vr)

• Creepy scary stuff, for example, Sisters (https://play.google.com/store/
apps/details?id=com.otherworld.Sisters)

• Educational experiences, for example, Titans of Space
(https://play.google.com/store/apps/details?id=com.drashvr.
titansofspacecb&hl=en_GB)

• Marketing experiences, for example, Volvo Reality (https://play.google.
com/store/apps/details?id=com.volvo.volvoreality)

And much more; thousands more. The most popular ones have had hundreds of
thousands of downloads (the Cardboard demo app itself has millions of downloads).

The projects in this book are examples of different kinds of Cardboard apps that you
can build yourself today.

Cardware!
Let's take a look at the different Cardboard devices that are available. There's a lot
of variety.

Obviously, the original Google design is actually made from cardboard. And
manufacturers have followed suit, offering cardboard Cardboards directly to
consumers—brands such as Unofficial Cardboard, DODOCase, and IAmCardboard
were among the first.

https://play.google.com/store/apps/details?id=com.frag.vrrollercoaster
https://play.google.com/store/apps/details?id=com.frag.vrrollercoaster
https://play.google.com/store/apps/details?id=com.archiactinteractive.LfGC&hl=en_GB
https://play.google.com/store/apps/details?id=com.archiactinteractive.LfGC&hl=en_GB
https://play.google.com/store/apps/details?id=com.archiactinteractive.LfGC&hl=en_GB
https://play.google.com/store/apps/details?id=com.oddknot.battle360vr
https://play.google.com/store/apps/details?id=com.oddknot.battle360vr
https://play.google.com/store/apps/details?id=com.otherworld.Sisters
https://play.google.com/store/apps/details?id=com.otherworld.Sisters
https://play.google.com/store/apps/details?id=com.drashvr.titansofspacecb&hl=en_GB
https://play.google.com/store/apps/details?id=com.drashvr.titansofspacecb&hl=en_GB
https://play.google.com/store/apps/details?id=com.volvo.volvoreality
https://play.google.com/store/apps/details?id=com.volvo.volvoreality

Virtual Reality for Everyone

[12]

Google provides the specifications and schematics free of charge (refer to
https://www.google.com/get/cardboard/manufacturers/). For example,
the Version 2.0 Viewer Body schematic is shown as follows:

The basic viewer design consists of an enclosure body, two lenses, and an input
mechanism. The Works with Google Cardboard certification program indicates
that a given viewer product meets the Google standards and works well with
Cardboard apps.

The viewer enclosure may be constructed from any material: cardboard, plastic,
foam, aluminum, and so on. It should be lightweight and do a pretty good job of
blocking the ambient light.

The lenses (I/O 2015 Edition) are 34 mm diameter aspherical single lenses with
an 80 degree circular FOV (field of view) and other specified parameters.

https://www.google.com/get/cardboard/manufacturers/

Chapter 1

[13]

The input trigger ("clicker") can be one of several alternative mechanisms. The
simplest is none, where the user must touch the smartphone screen directly with her
finger to trigger a click. This may be inconvenient since the phone is sitting inside
the viewer enclosure but it works. Plenty of viewers just include a hole to stick your
finger inside. Alternatively, the original Cardboard utilized a small ring magnet
attached to the outside of the viewer, held in place by an embedded circular magnet.
The user can slide the ring magnet, and the change in magnetic field is sensed by the
phone's magnetometer and recognized by the software as a "click". This design is not
always reliable because the location of the magnetometer varies among phones. Also,
using this method, it is harder to detect a "press and hold" interaction, which means
that there is only one type of user input "event" to use within your application.

Cardboard Version 2.0 introduced a button input constructed from a conductive
"strip" and "pillow" glued to a Cardboard-based "hammer," like the ones in a grand
piano. When the button is pressed, the user's body charge is transferred onto the
smartphone screen, as if he'd directly touched the screen with his finger. This clever
solution avoids the unreliable magnetometer solution, and instead it uses the phone's
native touchscreen input, albeit indirectly.

It is also worth mentioning at this point that, since your smartphone supports
Bluetooth, it's possible to use a handheld Bluetooth controller with your Cardboard
apps. This is not part of the Cardboard specifications and requires some extra
configuration: the use of a third-party input handler or controller support built
into the app. A mini Bluetooth controller is shown in the following image:

Virtual Reality for Everyone

[14]

Cardboard viewers are not necessarily made out of cardboard. Plastic viewers can
get relatively costly. While they are more sturdy than cardboard they fundamentally
have the same design (assembled). Some devices allow you to adjust the distance
from the lenses to the screen, and/or the distance between your eyes (IPD or inter-
pupillary distance). The Zeiss VR One, Homido, and Sunnypeak devices were
among the first to become popular.

Some manufacturers have gone outside the box (pun intended) with innovations
that are not necessarily compliant with Google's specifications but provide
capabilities beyond the Cardboard design. A notable example is the Wearality
viewer (http://www.wearality.com/), which includes a patented 150-degree
field of view (FOV) double Fresnel lens. It's so portable that it folds up like a
pair of sunglasses. A pre-release version of the Wearality viewer is shown in the
following image:

Configuring your Cardboard viewer
With such a variety of Cardboard devices and variations in lens distance, field of
view, distortion, and so on, Cardboard apps must be configured to a specific device's
attributes. Google provides a solution to this as well. Each Cardboard viewer comes
with a unique QR code and/or NFC chip which you scan to configure the software
for that device. If you're interested in calibrating your own device or customizing
your parameters, check out the profile generator tools at https://www.google.com/
get/cardboard/viewerprofilegenerator/.

To configure your phone to a specific Cardboard viewer, open the standard Google
Cardboard app, and select the Settings icon in the bottom center section of the screen,
as shown in the following image:

http://www.wearality.com/
https://www.google.com/get/cardboard/viewerprofilegenerator/
https://www.google.com/get/cardboard/viewerprofilegenerator/

Chapter 1

[15]

Then point the camera at the QR code for your particular Cardboard viewer:

Your phone is now configured for the specific Cardboard viewer parameters.

Virtual Reality for Everyone

[16]

Developing apps for Cardboard
At the time of writing this book, Google provides two SDKs for Cardboard:

• Cardboard SDK for Android (https://developers.google.com/
cardboard/android)

• Cardboard SDK for Unity (https://developers.google.com/cardboard/
unity)

Let's consider the Unity option first.

Using Unity
Unity (http://unity3d.com/) is a popular full-featured 3D game engine, which
supports building your games on a wide gamut of platforms, from PlayStation and
XBox, to Windows and Mac (and Linux!), to Android and iOS.

Unity consists of many separate tools integrated into a powerful engine under a
unified visual editor. There are tools for graphics, physics, scripting, networking,
audio, animations, UI, and much more. It includes advanced computer graphics
rendering, shading, textures, particles, and lighting with all kinds of options for
optimizing performance and fine tuning the quality of your graphics for both 2D and
3D. If that's not enough, Unity hosts a huge Asset Store teeming with models, scripts,
tools, and other assets created by its large community of developers.

The Cardboard SDK for Unity provides a plugin package that you can import into
the Unity Editor, containing prefabs (premade objects), C# scripts, and other assets.
The package gives you what you need in order to add a stereo camera to your virtual
3D scene and build your projects to run as Cardboard apps on Android (and iOS).
Unity is planning on integrating the Cardboard SDK directly into the engine, which
means that adding support for Cardboard will be possible by just checking a box in
the build settings.

If you're interested in learning more about using Unity to build VR
applications for Cardboard, check out another book by Packt Publishing,
Unity Virtual Reality Projects by Jonathan Linowes (https://www.
packtpub.com/game-development/unity-virtual-reality-
projects).

https://developers.google.com/cardboard/android
https://developers.google.com/cardboard/android
https://developers.google.com/cardboard/unity
https://developers.google.com/cardboard/unity
http://unity3d.com/
https://www.packtpub.com/game-development/unity-virtual-reality-projects
https://www.packtpub.com/game-development/unity-virtual-reality-projects
https://www.packtpub.com/game-development/unity-virtual-reality-projects

Chapter 1

[17]

Going native
So, why not just use Unity for Cardboard development? Good question. It depends
on what you're trying to do. Certainly, if you need all the power and features of
Unity for your project, it's the way to go.

But at what cost? With great power comes great responsibility (says Uncle Ben
Parker). It is quick to learn but takes a lifetime to master (says the Go Master).
Seriously though, Unity is a powerful engine that may be overkill for many
applications. To take full advantage, you may require additional expertise in
modeling, animation, level design, graphics, and game mechanics.

Cardboard applications built with Unity are bulky. An empty Unity scene build for
Android generates an .apk file that is a minimum of 23 megabytes. In contrast, the
simple native Cardboard application, .apk, that we build in Chapter 2, The Skeleton
Cardboard Project, is under one megabyte.

Along with this large app size comes a long loading time, possibly more than several
seconds. It impacts the memory usage and battery use. Unless you've paid for a
Unity Android license, your app always starts with the Made With Unity splash
screen. These may not be acceptable constraints for you.

In general, the closer you are to the metal, the better performance you'll eke out of
your application. When you write directly for Android, you have direct access to
the features of the device, more control over memory and other resources, and more
opportunities for customization and optimization. This is why native mobile apps
tend to trump mobile web apps.

Lastly, one of the best reasons to develop with native Android and Java may be
the simplest. You're anxious to build something now! If you're already an Android
developer, then just use what you already know and love! Take the straightest path
from here to there.

If you're familiar with Android development, then Cardboard development will
come naturally. Using the Cardboard SDK for Android, you can program in Java,
using the Android Studio IDE (integrated development environment), which is
based on InteliJ IDEA by Jet Brains.

Virtual Reality for Everyone

[18]

As we'll see throughout this book, your Cardboard Android app is like other
Android apps, including a manifest, resources, and Java code. As with any
Android app, you will implement a MainActivity class, but yours will extend
CardboardActivity and implement CardboardView.StereoRenderer. Your
app will utilize OpenGL ES 2.0 graphics, shaders, and 3D matrix math. It will be
responsible for updating the display on each frame, that is, rerendering your 3D
scene based on the direction the user is looking at that particular slice in time. It is
particularly important in VR, but also in any 3D graphics context, to render a new
frame as quickly as the display allows, usually at 60 FPS. Your app will handle the
user input via the Cardboard trigger and/or gaze-based control. We'll go into the
details of all these topics in the upcoming chapters.

That's what your app needs to do. However, there are still more nitty gritty details
that must be handled to make VR work. As noted in the Google Cardboard SDK
guide (https://developers.google.com/cardboard/android/), the SDK
simplifies many of these common VR development tasks, including the following:

• Lens distortion correction
• Head tracking
• 3D calibration
• Side-by-side rendering
• Stereo geometry configuration
• User input event handling

Functions are provided in the SDK to handle these tasks for you.

Building and deploying your applications for development, debugging, profiling,
and eventually publishing on Google Play also follow the same Android workflows
you may be familiar with already. That's cool.

Of course, there's more to building an app than simply following an example.
We'll take a look at techniques such as using data-driven geometric models,
abstracting shaders and OpenGL ES API calls, and building user interface elements
with gaze-based selection. On top of all this, there are important suggested best
practices for making your VR experiences work and avoiding common mistakes.

https://developers.google.com/cardboard/android/

Chapter 1

[19]

An overview to VR best practices
More and more is being discovered and written each day about the dos and don'ts
when designing and developing for VR. Google provides a couple of resources to
help developers build great VR experiences, including the following:

• Designing for Google Cardboard is a best practice document that helps you
focus on overall usability as well as avoid common VR pitfalls (http://www.
google.com/design/spec-vr/designing-for-google-cardboard/a-new-
dimension.html).

• Cardboard Design Lab is a Cardboard app that directly illustrates the
principles of designing for VR which you can explore in Cardboard itself. At
Vision Summit 2016, the Cardboard team announced that they have released
the source (Unity) project for developers to examine and extend (https://
play.google.com/store/apps/details?id=com.google.vr.cardboard.
apps.designlab and https://github.com/googlesamples/cardboard-
unity/tree/master/Samples/CardboardDesignLab).

VR motion sickness is a real symptom and concern for virtual reality caused in
part by a lag in screen updates, or latency, when you're moving your head. Your
brain expects the world around you to change exactly in sync with your actual
motion. Any perceptible delay can make you feel uncomfortable, to say the least,
and possibly nauseous. Latency can be reduced by faster rendering of each frame to
maintain the recommended frames per second. Desktop VR apps are held to the high
standard of 90 FPS, enabled by a custom HMD screen. On mobile devices, the screen
hardware often limits refresh rates to 60 FPS, or in the worst case, 30 FPS.

There are additional causes of VR motion sickness and other user discomforts,
which can be mitigated by following these design guidelines:

• Always maintain head tracking. If the virtual world seems to freeze or pause,
this may cause users to feel ill.

• Display user interface elements, such as titles and buttons, in 3D virtual
space. If rendered in 2D, they'll seem to be "stuck to your face" and you
will feel uncomfortable.

• When transitioning between scenes, fade to black. Cut scenes will be very
disorienting. Fading to white might be uncomfortably bright for your users.

• Users should remain in control of their movement within the app. Something
about initiating camera motion yourself helps reduce motion sickness. Try to
avoid "artificially" rotating the camera.

http://www.google.com/design/spec-vr/designing-for-google-cardboard/a-new-dimension.html
http://www.google.com/design/spec-vr/designing-for-google-cardboard/a-new-dimension.html
http://www.google.com/design/spec-vr/designing-for-google-cardboard/a-new-dimension.html
https://play.google.com/store/apps/details?id=com.google.vr.cardboard.apps.designlab
https://play.google.com/store/apps/details?id=com.google.vr.cardboard.apps.designlab
https://play.google.com/store/apps/details?id=com.google.vr.cardboard.apps.designlab
https://github.com/googlesamples/cardboard-unity/tree/master/Samples/CardboardDesignLab
https://github.com/googlesamples/cardboard-unity/tree/master/Samples/CardboardDesignLab

Virtual Reality for Everyone

[20]

• Avoid acceleration and deceleration. As humans, we feel acceleration but not
constant velocity. If you are moving the camera inside the app, keep it at a
constant velocity. Rollercoasters are fun, but even in real life they can make
you feel sick.

• Keep your users grounded. Being a virtual floating point in space can make
you feel sick, whereas feeling like you're standing on the ground or sitting in
a cockpit provides a sense of stability.

• Maintain a reasonable distance from the eye for UI elements, such as buttons
and reticle cursors. If objects are too close, the user may have to look cross-
eyed and can experience eye strain. Some items that are too close may not
converge at all and cause "double-vision."

Applications for virtual reality also differ from conventional Android apps in other
ways, such as:

• When transitioning from a 2D application into VR, it is recommended
that you provide a headset icon for the user to tap, as shown in the
following image:

• To exit VR, the user can hit the back button in the system bar (if present) or
the home button. The cardboard sample apps use a "tilt-up" gesture to return
to the main menu, which is a fine approach if you want to allow a "back"
input without forcing the user to remove the phone from the device.

• Make sure that you build your app to run in fullscreen mode (and not in
Android's Lights Out mode).

• Do not perform any API calls that will present the user with a 2D dialog box.
The user will be forced to remove the phone from the viewer to respond.

• Provide audio and haptic (vibration) feedback to convey information and
indicate that the user input is recognized by the app.

Chapter 1

[21]

So, let's say that you've got your awesome Cardboard app done and it is ready to
publish. Now what? There's a line you can put in the AndroidManifest file that
marks the app as a Cardboard app. Google's Cardboard app includes a Google Play
Store browser used to find a Cardboard app. Then just publish it as you would do
for any normal Android application.

Summary
In this chapter, we started by defining Google Cardboard and saw how it fits in the
spectrum of consumer virtual reality devices. We then contrasted Cardboard with
higher end VR devices, such as Oculus Rift, HTC Vive, and PlayStation VR, making
the case for low-end VR as a separate medium in its own right. There are a variety
of Cardboard viewer devices on the market, and we looked at how to configure
your smartphone for your viewer using QR codes. We talked a bit about developing
for Cardboard, and considered why and why not to use the Unity 3D game engine
versus writing a native Android app in Java with the Cardboard SDK. Lastly we took
a quick survey of many design considerations for developing for VR that we'll talk
more about throughout the book, including ways to avoid motion sickness and tips
for integrating Cardboard with Android apps in general.

In the next chapter we start coding. Yaay! For a common point of reference, we'll
spend a little time introducing the Android Studio IDE and reviewing the Cardboard
Android classes. Then together we'll build a simple Cardboard app, as we lay the
groundwork for the structure and function of other projects throughout the book.

[23]

The Skeleton Cardboard
Project

In this chapter, you will learn how to build a skeleton Cardboard project which can be
a starting point for other projects in this book. We will begin with an introduction to
Android Studio, the Cardboard SDK, and Java programming. We want to make sure
that you're up to speed on the tools and Android projects in general. Then, we will
walk you through setting up a new Cardboard project so that we don't need to repeat
these details in each project. If some or all of this is already familiar to you, great!
You might be able to skim it. In this chapter, we will cover the following topics:

• What's in an Android app?
• The Android project structure
• Getting started with Android Studio
• Creating a new Cardboard project
• Adding the Cardboard Java SDK
• Editing the manifest, layout, and MainActivity
• Building and running the app

What's in an Android app?
For our projects, we're going to use the powerful Android Studio IDE (an integrated
development environment) to build Google Cardboard virtual reality applications
that run on Android devices. Woot! Android Studio integrates a number of different
tools and processes under one roof.

The Skeleton Cardboard Project

[24]

The result of all your hard work to develop an Android app is an Android
application package or an .apk file, which is distributed to users via the Google
Play Store or however you choose to distribute your app. This file gets installed
on their Android device.

We'll jump to Android Studio itself in a moment. However, in order to shed some
light on what's going on here, let's consider this end result .apk file first. What is it
really? How'd we get it? Understanding the build process will help.

Keeping this in mind, for fun and to gain perspective, let's start from the end and work
our way backward from the APK through the build pipeline to our app source code.

APK files
The APK file is actually a compressed zipped package of a bunch of different files,
including the compiled Java code and non-compiled resources, such as images.

An APK file is built for a specific target version of Android, but it also indicates a
minimum version. An app built for an older version of Android, in general, will
run on newer Android versions but not vice versa. To build for an older version of
Android, however, means that newer features will not be available to the app. You
want to choose the minimum version of Android that supports the features you need
in order to target as many devices as possible. Or, if you want to support a smaller
subset of devices for, say, performance reasons, you might choose an artificially high
minimum API version.

To build your project and create an APK file in Android Studio, you need to click
on the Build menu option and select Make Project, (or click on the green arrow
icon to build, deploy, and run the app on a device or within an Android Virtual
Device (AVD)), which kicks off a Gradle build process. You can build a version to
develop and debug or build a more optimized release version of the application for
distribution. You can choose to do this by clicking on the Build menu and selecting
Select Build Variant....

A Gradle build process
Android Studio uses a tool named Gradle to build the APK file from your project
files. The following is a flow diagram of the Gradle build process taken from the
Android documentation (http://developer.android.com/sdk/installing/
studio-build.html). Actually, most of the illustrated details aren't so important
for us. What is important is to see the many pieces and how they fit together.

http://developer.android.com/sdk/installing/studio-build.html
http://developer.android.com/sdk/installing/studio-build.html

Chapter 2

[25]

In the bottom-most box in the preceding diagram, you can see that the result of the
build is a signed and aligned .apk file, which is the final version of our app that has
been compiled (converted from the source code), zipped (compressed), and signed
(for authentication) from the earlier build process. The final step, zipalign, aligns the
compressed resources along 4-byte boundaries in order to quickly access them at
runtime. Basically, this last step makes the app load faster.

In the middle of the diagram, you'll see that the .apk (unsigned, uncompressed) file
is assembled from .dex files, compiled Java classes, and other resources (such as
images and media files).

The Skeleton Cardboard Project

[26]

A .dex file is the Java code, which has been compiled into a format (Dalvik
bytecode) that runs on the Dalvik virtual machine (DVM) on your device. This is an
executable file of your program. Any third-party libraries and compiled Java source
code files (.class) that you have included in your module build are converted to
.dex files in order to be packaged into the final .apk file.

Again, don't sweat the details if this is new to you. The important thing is that we're
going to be working with a lot of different files in our Google Cardboard projects. It
will be helpful for us to have a context of where they're used in the build process.

For example, the common.aar file (binary Android Library Archive) with the
Cardboard SDK is one of the third-party libraries which we will use. The contents
of your project's res/ directory, such as layout/activity_main.xml, are passed
through the Android Asset Packaging Tool (aapt).

A Java compiler
What feeds into the .dex file? A Java compiler takes the Java language source code
and generates an .dex file containing bytecode. By referring to the preceding Gradle
build flow diagram, at the top of the diagram, you will see that the inputs to the Java
compiler include the following:

• Your application's Java source code
• Your application's XML resources, such as the AndroidManifest.xml file,

compiled using the aapt, and used to generate the R.java file
• Your application's Java interfaces (Android Interface Definition Language

.aidl files), compiled using the aidl tool

In the rest of this book, we're going to talk a lot about these source code files. That's
the stuff you write! That's the place where you do your magic! That's the world
where we programmers live.

Let's now take a look at the directory structure of your Android project source code.

The Android project structure
The root directory of your Android project contains various files and subdirectories.
Or, should I say, the root folder of your Android project contains various files
and subfolders. Ha ha. We'll use the words "folder" and "directory" interchangeably
throughout this book, just as Android Studio also seems to do (actually, there is a
difference, as discussed at http://stackoverflow.com/questions/29454427/
new-directory-vs-new-folder-in-android-studio).

http://stackoverflow.com/questions/29454427/new-directory-vs-new-folder-in-android-studio
http://stackoverflow.com/questions/29454427/new-directory-vs-new-folder-in-android-studio

Chapter 2

[27]

As shown in the Android hierarchy, in the following sample Cardboard project,
the root directory contains an app/ subdirectory, which, in turn, contains the
following subdirectories:

• app/manifests/: This contains the AndroidManifest.xml manifest file that
specifies the components of the application, including activities (UI), device
permissions, and other configurations

• app/java/: This contains subfolders with your application Java files that
implement the application's MainActivity and other classes

• app/res/: This contains subfolders with resources, including the layout XML
definition files, values definitions (strings.xml, styles.xml, and so on),
icons, and other resource files

The Skeleton Cardboard Project

[28]

It's not a coincidence that these directories correspond to the boxes in the topmost
row of the preceding Gradle build process diagram; they supply the source files that
are run through the Java compiler.

Also, there are Gradle scripts under the root directory, which do not need to be edited
directly since the Android Studio IDE provides convenient dialog boxes to manage the
settings. In some cases, you might find it to be easier to modify these files directly.

Notice that in the upper-left corner of the hierarchy pane is a tab select menu. In the
preceding screenshot, it is set to Android, which just shows the Android-specific
files. There are other views that might also be useful, such as Project, which lists
all the files and subdirectories under your project root directory, as shown in the
following screenshot, for the same app. The Project hierarchy shows the files as they
are structured on the actual filesystem. The other hierarchies artificially restructure
your project to make it easier to work with.

Chapter 2

[29]

From time to time, you'll need to switch between the Android
view and Project view.

Getting started with Android Studio
When developing Cardboard apps for Android, there's tons of stuff that you need to
track, including all your files and folders, Java classes and objects, and functions and
variables. You need a properly organized Java program structure and valid language
syntax. You need to set options and manage processes to build and debug your
applications. Whew!

Thank goodness we have Android Studio, a powerful IDE (integrated development
environment). It's built on top of IntelliJ IDEA by JetBrains, a popular intelligent Java
development suite of tools.

It's intelligent because it actually gives you relevant suggestions as you write your
code (Ctrl + Space), helps navigate between related references and files (Ctrl + B, Alt +
F7) as well as automates refactor operations, such as renaming a class or method (Alt
+ Enter). In some ways, it may know what you're trying to do, even if you don't. How
smart is that?

Installing Android Studio
If you don't already have Android Studio installed on your development machine,
what are you waiting for? Head on over to the Android developers page (http://
developer.android.com/develop/index.html) and download it to your system.
It's available for Windows, Mac OS X, or Linux. You can install the full Android Studio
package and not just the SDK tools. Then, obediently follow the installation instructions.

The Android Studio user interface
There's a lot to Android Studio. In most cases, we'll just explain with the help
of examples as we go along. But let's take a little time to review a few features,
especially the ones that are relevant to Cardboard development. Just make sure that
you read the documentation available at the Android developer tools page if needed
(http://developer.android.com/tools/studio/index.html).

www.allitebooks.com

http://developer.android.com/develop/index.html
http://developer.android.com/develop/index.html
http://developer.android.com/tools/studio/index.html
http://www.allitebooks.org

The Skeleton Cardboard Project

[30]

For a beginner, the Android Studio user interface can seem daunting. And the
default interface is only the beginning; editor themes and layouts can be customized
to your liking. Worse, it has a tendency to change with new releases, so tutorials
can seem out of date. While this can make it challenging for you to find what you
need on a particular occasion, the underlying functionality does not change a whole
lot. An Android app is an Android app is an Android app, in most cases. We used
Android Studio 2.1 for Windows for this book (although some screen captures are
from an earlier version, the interface is essentially identical).

While using Android Studio, you may get notifications of the
new updates available. We recommend that you do not upgrade
in the middle of a project, unless you know that you really
need the new improvements. Even so, make sure that you have
backups if compatibility issues are introduced.

Let's take a brief tour of the Android Studio window, as shown in the
following screenshot:

Chapter 2

[31]

The menus of Android Studio are:

• At the top is the main menu bar (#1) with a drop-down menu and pull out
menus for just about all the features available.

• Under the menu bar is a convenient main toolbar (#2) with shortcuts to
common functions. Hovering over an icon shows a tooltip hint of what it does.

• Under the toolbar is the main editor pane (#3). When no file is open, it says
No files are open. The main editor panes are tabbed along the top when
multiple files are open.

• The hierarchy navigator pane is on the left-hand side (#4).
• The hierarchy navigator pane has tabs along the left-hand side (vertical tabs,

#5) to select between the various views of your project.

Notice the select menu on the top left-hand side of the
hierarchy pane. In the preceding screenshot, it is set to
Android, which just shows the Android-specific files. There are
other views that might also be useful, such as Project, which
shows all the files and subdirectories under your project root
directory, as mentioned earlier.

• Along the bottom is an additional tool bar (#6) used to choose other dynamic
tools you might need, including a Terminal window, build messages,
debugging information, and even a to-do list. Perhaps the most important
one is the Android Monitor logcat tab that provides a window to the
Android logging system to collect and view the system debug output.

It will be helpful for you to pay attention to the Debuggable
Application drop-down menu, Log Level and other filters within
logcat in order to filter out the "log spam" that will make it hard
for you to find the output that you are looking for. Also, note
that even on a high-end computer with a fast CPU, this log view
can slow down Android Studio to a crawl. It is recommended
that you hide this view when not in use, especially if you have
multiple instances of Android Studio open.

• Controls in the corners of each pane generally pertain to managing the IDE
panes themselves.

It can be fun to poke around and browse all the different things Android Studio
provides. To learn more, click on the Help | Help Topics menu items (or the ?
icon on the toolbar) to open the IntelliJ IDEA help documentation (https://www.
jetbrains.com/idea/help/intellij-idea.html).

https://www.jetbrains.com/idea/help/intellij-idea.html
https://www.jetbrains.com/idea/help/intellij-idea.html

The Skeleton Cardboard Project

[32]

Keep in mind that Android Studio is built on top of the IntelliJ IDE, which can be
used for more than just the Android development. So, there's a lot here; some of
which you'll never use; others you'll need but might have to hunt for.

Here's a bit of advice: with great power comes great responsibility
(where have I heard this before?). Actually, with so many user
interface things, a little tunnel vision will come in handy (yeah, I
just made that one up). Focus on the ones you need to use when you
need to use them, and don't sweat the other details.

Before we move on, let's take a glance at the main menu bar. It looks like the
following screenshot:

Reading from left to right, the menu items are organized somewhat parallel to your
application development process itself: create, edit, refactor, build, debug, and manage.

• File: These are project files and settings
• Edit: This includes the cut, copy, paste, and macros options, and so on
• View: This allows us to view windows, toolbars, and UI modes
• Navigate: This refers to content-based navigation between files
• Code: These are code editing shortcuts
• Analyze: This is used to inspect and analyze code for errors and inefficiencies
• Refactor: This is used to edit code across semantically related files
• Build: This builds the project
• Run: This is used to run and debug
• Tools: This is an interface with external and third-party tools
• VCS: The refers to version-control (that is, git) commands
• Window: This manages the IDE user interface
• Help: This includes documentation and help links

There now, was that so scary?

If you haven't already, you might want to try and build the Cardboard Android
demo app available from the Google Developers website's Android SDK Getting
Started page (refer to https://developers.google.com/cardboard/android/
get-started).

https://developers.google.com/cardboard/android/get-started
https://developers.google.com/cardboard/android/get-started

Chapter 2

[33]

At the time of writing this book, the demo app is called Treasure Hunt, and there
are instructions on how to clone the project from its GitHub repository. Just clone it,
open it in Android Studio, then click on the green play button to build it, and run it.
The rest of the Getting Started page walks you through the code that explains the
key elements.

Cool! In the next chapter, we will start and rebuild pretty much the same project but
from scratch.

Creating a new Cardboard project
With Android Studio installed, let's create a new project. These are the steps you'll
follow for any of the projects in this book. We'll just make an empty skeleton and
make sure that it can be built and run:

1. After opening the IDE, you'll see a Welcome screen, as shown in the
following screenshot:

The Skeleton Cardboard Project

[34]

2. Select Start a new Android Studio project, and the New Project screen
appears, as follows:

Chapter 2

[35]

3. Fill in your Application name:, such as Skeleton, and your Company
Domain:, for example, cardbookvr.com. You can also change the Project
location. Then, click on Next:

The Skeleton Cardboard Project

[36]

4. On the Target Android Devices screen, ensure that the Phone and Tablet
checkbox is checked. In the Minimum SDK, select API 19: Android 4.4
(KitKat). Then, click on Next:

5. On the Add an activity to Mobile screen, select Empty Activity. We're going
to build this project from scratch. Then, click on Next:

Chapter 2

[37]

6. Keep the suggested name, MainActivity. Then, click on Finish.

Your brand new project comes up on Studio. If required, press Alt + 1 to open the
Project View (Command + 1 on the Mac).

Adding the Cardboard Java SDK
Now's a good time to add the Cardboard SDK library .aar files to your project. For
the basic projects in this book the libraries you need (at the time of writing v0.7) are:

• common.aar

• core.aar

Note the SDK includes additional libraries that we do not
use in the projects in this book but could be useful for your
projects. The audio.aar file is for spatialized audio support.
The panowidget and videowidget libraries are meant for
2D apps that want to drop-into VR for things such as viewing
a 360-degree image or video.

The Skeleton Cardboard Project

[38]

At the time of writing, to obtain the Cardboard Android SDK client libraries,
you can clone the cardboard-java GitHub repository, as explained on the
Google Developers Cardboard Getting Started page, Start your own project topic
at https://developers.google.com/cardboard/android/get-started#start_
your_own_project. Clone the cardboard-java GitHub repository by running the
following command:

git clone https://github.com/googlesamples/cardboard-java.git

To use the exact commit with the same SDK version 0.7 we're using here, checkout
the commit:

git checkout 67051a25dcabbd7661422a59224ce6c414affdbc -b sdk07

Alternatively, the SDK 0.7 library files are included with each of the download
projects .zip files from Packt Publishing, and on this book's GitHub projects at
https://github.com/cardbookvr.

Once you have local copies of the libraries, be sure to locate them on your filesystem.
To add the libraries to our project, take the following steps:

1. For each of the required libraries, create new modules. In Android Studio,
select File | New | New Module…. Select Import .JAR/.AAR Package:

https://developers.google.com/cardboard/android/get-started#start_your_own_project
https://developers.google.com/cardboard/android/get-started#start_your_own_project
https://github.com/cardbookvr

Chapter 2

[39]

2. Locate one of the AARs and import it.

The Skeleton Cardboard Project

[40]

3. Add the new modules as dependencies to your main app by navigating to
File | Project Structure | Modules (on the left hand side) | app (your app
name) | Dependencies | + | Module Dependency:

Now we can use the Cardboard SDK in our app.

The AndroidManifest.xml file
The new empty app includes a handful of default files, including the manifests/
AndroidManifest.xml file (this is if you have the Android view activated.
In the Project view, it is in app/src/main). Every application must have an
AndroidManifest.xml file in its manifest directory that tells the Android system
what it needs in order to run the app's code, along with other metadata.

Chapter 2

[41]

More information on this can be found at http://
developer.android.com/guide/topics/manifest/
manifest-intro.html.

Let's set this up first. Open your AndroidManifest.xml file in the editor. Modify it
to read it as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.cardbookvr.skeleton" >

 <uses-permission android:name="android.permission.NFC" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.VIBRATE" />

 <uses-sdk android:minSdkVersion="16"
 android:targetSdkVersion="19"/>
 <uses-feature android:glEsVersion="0x00020000"
 android:required="true" />
 <uses-feature
 android:name="android.hardware.sensor.accelerometer"
 android:required="true"/>
 <uses-feature android:name="android.hardware.sensor.gyroscope"
 android:required="true"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".MainActivity"

 android:screenOrientation="landscape"
 android:configChanges=
 "orientation|keyboardHidden|screenSize" >

 <intent-filter>
 <action android:name="android.intent.action.MAIN"
 />

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

The Skeleton Cardboard Project

[42]

 <category
 android:name="android.intent.category.LAUNCHER" />
 <category
 android:name=
 "com.google.intent.category.CARDBOARD" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The package name show in the preceding listing, package="com.cardbookvr.
skeleton", may be different for your project. The <uses-permission> tag indicates
that the project may be using the NFC sensor, which the Cardboard SDK can use to
detect the smartphone that has been inserted into a Cardboard viewer device. The
Internet and read/write storage permissions are needed for the SDK to download,
read, and write the configure setup options. We will need to do a little more work in
order to handle permissions properly, but that happens in another file, which we will
discuss later.

The <uses-feature> tag specifies that we'll be using the OpenGL ES 2.0 graphics
processing library (http://developer.android.com/guide/topics/graphics/
opengl.html).

It's also strongly recommended that you include the accelerometer and gyroscope
sensor uses-feature tags. Too many users have phones lacking one or both of these
sensors. When the app fails to track their head motions correctly, they may think
that the app is to blame rather than their phone. Within the <application> tag
(the default attributes of which were generated when we created the file), there's an
<activity> definition named .MainActivity and screen settings. Here, we specify
the android:screenOrientation attribute as our Cardboard app uses the normal
(left) landscape orientation. We also specify android:configChanges that the
activity will handle itself.

These and other attribute settings may vary based on your application's
requirements. For example, using android:screenOrientation="sensorLandsca
pe" instead will allow either normal or reverse landscape orientations based on the
phone's sensor (and trigger the onSurfaceChanged callback when the screen flips).

We specify our intent metadata in the <intent-filter> tag. In Android, an intent
is a messaging object used to facilitate communication between applications'
components. It can also be used to query the apps that are installed and match
certain intent filters, as defined in the app's manifest file. For example, an app that
wants to take a picture will broadcast an intent with the ACTION_IMAGE_CAPTURE
action filter. The OS will respond with a list of apps installed which contain activities
that can respond to such an action.

http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html

Chapter 2

[43]

Having defined the MainActivity class, we'll specify that it can respond to the
standard MAIN action and match the LAUNCHER category. MAIN means that this activity
is the entry point of the application; that is, when you launch the app, this activity is
created. LAUNCHER means that the app should appear in the home screen's launcher
as a top-level application.

We've added an intent so that this activity will also match the CARDBOARD category
because we want the other apps to see this as a Cardboard app!

Google made major changes to the permissions system in Android 6.0 Marshmallow
(API 23). While you still must include the permissions you want within the
AndroidManifest.xml file, you must now also call a special API function to request
permissions at runtime. There are a variety of reasons for this, but the idea is to
give the user finer control of app permissions, and avoid having to ask for a long
list of permissions during install and at runtime. This new feature also allows users
to selectively revoke permissions after they have been granted. This is great for
the user, but unfortunate for us app developers, as it means that we need to do
significantly more work when we need access to these protected features. Essentially,
you need to introduce a step which checks if a particular permission is granted,
and prompts the user if it is not. Once the user grants permission, a callback
method is called, and you are free to do whatever it was that needed permission.
Alternatively, if the permission was granted the whole time, you can proceed to
use the restricted feature.

At the time of writing, our project code and the current version of the Cardboard
SDK do not implement this new permission system. Instead, we will force Android
Studio to build our projects against an older version of the SDK (API 22) so that
we side-step the new features. It is possible that, in the future, Android might
break backwards compatibility with the old permissions system. However, you
can read a very clear guide on how to use the new permissions system in the
Android documentation (refer to http://developer.android.com/training/
permissions/requesting.html). We hope to address this, and any future issues
in the online GitHub repositories, but bear in mind that the code in the text, and
the provided zip files, may not work on the newest version of Android. Such is the
nature of software maintenance.

 http://developer.android.com/training/permissions/requesting.html
 http://developer.android.com/training/permissions/requesting.html

The Skeleton Cardboard Project

[44]

Let's apply that workaround to build against version 22 of the SDK. Odds are that
you just installed Android Studio 2.1 or above, which comes with SDK 23 or above.
Whenever you create a new project, Android Studio does ask what minimum SDK
you would like to target, but does not let you choose the SDK used for compilation.
That's OK, because we can manually set this in the build.gradle file. Don't be
afraid; the build toolset is big and scary, but we're only tweaking the project settings
a little bit. Bear in mind that there are a couple of build.gradle files in your project.
Each one will be within its corresponding module folder on the filesystem, and will
be labeled accordingly within the Gradle scripts section of the Android flavor of the
project view. Were looking to change build.gradle for the app module. Modify it to
look like this:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 22
 ...

 defaultConfig {
 minSdkVersion 19
 targetSdkVersion 22
 ...
 }
 ...
}

dependencies {
 compile 'com.android.support:appcompat-v7:22.1.0'
 ...
}

The important changes are to compileSdkVersion, minSdkVersion, targetSdkVersion,
and that last one in dependencies, where we changed the version of the support
repository we are linking to. Technically, we could eliminate this dependency
entirely, but the project template includes a bunch of references to it, which are a
pain to remove. However, if we leave the default setting, Gradle will most likely yell
at us about mismatching versions. Once you've made these changes, there should be
a yellow bar at the top of the editor with a link that says Sync now. Sync now.
If you're lucky, the Gradle sync will finish successfully, and you can go on your
merry way. If not, you might be missing the SDK platform or other dependencies.
The Messages window should have clickable links to install and update the
Android system appropriately. If you hit an error, try restarting Android Studio.

Chapter 2

[45]

From this point on, you might want to avoid updating Android Studio or your SDK
platform versions. Pay special attention to what happens when you import your
project on another computer or after updates to Android Studio. You will likely
need to let the IDE manipulate your Gradle files, and it may modify your compile
version. This permissions issue is sneaky, in that it will only reveal itself at runtime
on phones running 6.0 and above. Your app may appear to work just fine on a device
running an older version of Android, but actually run into trouble on newer devices.

The activity_main.xml file
Our app needs a layout where we'll define a canvas to paint our graphics. The
new project created by Android Studio makes a default layout file in the app/res/
layout/ folder (using the Android view or app/src/main/res/layout using the
Project view). Find the activity_main.xml file and double-click on it to edit it.

There are two views of a layout file in the Android Studio editor: Design versus
Text, selected by tabs on the lower-left hand side of the window pane. If the Design
view tab is selected, you'll see an interactive editor with a simulated smartphone
image, a palette of UI components on the left-hand side, and a Properties editor on
the right-hand side. We're not going to use this view. If necessary, select the Text tab
at the bottom of the activity_main.xml editor pane to use text mode.

Cardboard apps should run on the full screen, so we remove any padding. We will
also remove the default TextView that we're not going to use. Instead, we replace it
with a CardboardView, as follows:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <com.google.vrtoolkit.cardboard.CardboardView
 android:id="@+id/cardboard_view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true" />

</RelativeLayout>

The AndroidManifest.xml file references the main activity named MainActivity.
Let's take a look at that now.

The Skeleton Cardboard Project

[46]

The MainActivity class
The default project generated with Empty Activity also created a default
MainActivity.java file. In the hierarchy pane, locate the app/java/ directory
that contains a subdirectory named com.cardbookvr.skeleton.

Note, this is different than the androidTest version of the directory,
we're not using that one! (Your name may vary based on the actual
project and domain names given when you created the project.)

In this folder, double-click on the MainActivity.java file to open it for editing.
The default file looks like this:

package com.cardbookvr.skeleton;

import ...

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

The first thing you should notice is the extends AppCompatActivity class (or
ActionBarActivity) for the built-in Android action bar. We do not need this. We
will rather define the activity to the extends CardboardActivity and implements
the CardboardView.StereoRenderer interfaces. Modify the class declaration line of
code, as follows:

public class MainActivity extends CardboardActivity implements
CardboardView.StereoRenderer {

As this is a Google Cardboard application, we need to define the MainActivity class
as a child class of the CardboardActivity class given by the SDK. We do this using
the extends keyword.

MainActivity needs to also implement, at a minimum, the stereo renderer interface
defined as CardboardView.StereoRender. We do this using the implements keyword.

One of the nice things about Android Studio is how it does work for you as
you write the code. When you enter extends CardboardActivity, the IDE
automatically adds an import statement for the CardboardActivity class at the top
of the file. When you enter implements CardboardView.StereoRenderer, it adds
an import statement to the CardboardView class.

Chapter 2

[47]

As we continue to add code, Android Studio will identify when we need additional
import statements and automatically add them for us. Therefore, I won't bother to
show you the import statements in the code that follows. On occasion it may find
the wrong one when, for example, there's multiple Camera or Matrix classes among
your libraries, and you'll need to resolve it to the correct reference.

We'll now fill in the body of the MainActivity class with stubs for the functions
that we're going to need. The CardboardView.StereoRenderer interface that we're
using defines a number of abstract methods that we can override, as documented
in the Android API Reference for the interface (refer to https://developers.
google.com/cardboard/android/latest/reference/com/google/vrtoolkit/
cardboard/CardboardView.StereoRenderer).

This is quickly accomplished in Studio in a number of ways. Either use the intellisense
context menu (the light bulb icon) or go to Code | Implement Methods… (or Ctrl + I).
By placing your cursor at the red error underline and pressing Alt + Enter, you will
also be able to accomplish the same goal. Do it now. You will be asked to confirm the
methods to implement, as shown in the following screenshot:

Ensure that all are selected and click on OK.

https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardView.StereoRenderer
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardView.StereoRenderer
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardView.StereoRenderer

The Skeleton Cardboard Project

[48]

Stubs for the following methods will be added to the MainActivity class:

• onSurfaceCreated: This is called when the surface is created or recreated.
It should create buffers and variables needed to display graphics.

• onNewFrame: This is called when a new frame is about to be drawn. It should
update the application data that changes from one frame to the next, such
as animations.

• onDrawEye: This renders the scene for one eye for the current camera
viewpoint (called twice per frame, unless you have three eyes!).

• onFinishFrame: This is called before a frame is finished.
• onRenderShutdown: This is called when the renderer thread is shutting

down (rarely used).
• onSurfaceChanged: This is called when there is a change in the surface

dimensions (for example, when a portrait/landscape rotation is detected).

I've listed these methods in an order that mirrors the life cycle of a Cardboard
Android application.

The @Override directive means that these functions are originally defined in the
CardboardView.StereoRenderer interface and we're replacing (overriding)
them in our MainActivity class here.

Default onCreate
All Android activities expose an onCreate() method that is called when the
activity is first created. This is where you should do all your normal static setups
and bindings. The stereo renderer interface and Cardboard activity class are the
foundations of the Cardboard SDK.

The default onCreate method makes a standard onCreate call to the parent activity.
Then, it registers the activity_main layout as the current content view.

Edit onCreate() by adding the CardboadView instance, as follows:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);
 }

Chapter 2

[49]

To set up the CardboardView instance for the app, we get its instance by looking it
up by the resource ID given in activity_main.xml and then set it up with a couple
of function calls.

This object is going to do the stereoscopic rendering to the display, so we
call setRenderer(this) to specify it as the receiver of the StereoRenderer
interface methods.

Note that your activity doesn't have to implement the interface.
You can have any class define these methods, such as an
abstracted renderer as we'll see later in this book.

Then we associate the CardboardView class with this activity by calling
setCardboardView(cardboardView) so that we'll be able to receive any required
life cycle notifications, including the StereoRenderer interface methods, such as
onSurfaceCreated and onDrawEye.

Building and running
Let's build and run it:

1. Go to Run | Run 'app', or simply use the green-triangle Run icon on
the toolbar.

2. If you've made changes, Gradle will do its build thing.
3. Select the Gradle Console tab at the bottom of the Android Studio window

to view the Gradle build messages. Then, assuming that all goes well, the
APK will be installed on your connected phone (it's connected and turned
on, right?).

4. Select the Run tab at the bottom to view the upload and launch messages.

The Skeleton Cardboard Project

[50]

You shouldn't get any build errors. But of course, the app doesn't actually do
anything or draw anything on the screen. Well, that's not entirely true! The
Cardboard SDK, via CardboardView.StereoRenderer, provides a stereoscopic
split screen with a vertical line in between and a gear icon, as shown in the
following screenshot:

The vertical line will be used to align your phone properly on the Cardboard
viewer device.

The gear icon opens the standard configuration settings utility which includes the
ability to scan a QR code to configure the SDK for the lenses and other physical
attributes of your specific device (as explained in Chapter 1, Virtual Reality for
Everyone, in the Configuring your Cardboard viewer section).

Now, we've built a skeleton Google Cardboard app for Android. You'll follow
similar steps to start each project in this book.

Chapter 2

[51]

Summary
In this chapter, we examined the structure of a Cardboard app for Android and
many of the files involved, including the Java source code, XML manifest, .aar
libraries, and final built APK, which runs on your Android device. We installed
and took a brief tour of the Android Studio development environment. Then, we
walked you through the steps to create a new Android project, add the Cardboard
Java SDK, and define the AndroidManifest.xml file and layout, as well as a stubbed
MainActivity Java class file. You will follow similar steps to start each Cardboard
project in this book.

In the next chapter, we will build a Google Cardboard project from scratch called
CardboardBox with a scene containing some simple geometry (a triangle and a cube),
3D transformations, and shaders that render graphics to your Cardboard device.

[53]

Cardboard Box
Remember when you were a kid and happy to just play in a cardboard box? This
project might even be more fun than that! Our first Cardboard project will be a
simple scene with a box (a geometric cube), a triangle, and a bit of user interaction.
Let's call it "CardboardBox." Get it?

Specifically, we're going to create a new project, build a simple app that just draws
a triangle, then enhance the app to draw a shaded 3D cube, and illustrate some user
interactions by highlighting the cube when you look at it.

In this chapter, you will be:

• Creating a new Cardboard project
• Adding a triangle object to the scene, including geometry, simple shaders,

and render buffers
• Using a 3D camera, perspective, and head rotation
• Using model transformations
• Making and drawing a cube object
• Adding a light source and shading
• Spinning the cube
• Adding a floor
• Highlighting the object that the user is looking at

The project in this chapter is derived from an example application provided by the
Google Cardboard team called Treasure Hunt. Originally, we considered instructing
you to simply download Treasure Hunt, and we'd walk you through the code
explaining how it works. Instead, we decided to build a similar project from scratch,
explaining as we go along. This also mitigates the possibility that Google changes or
even replaces that project after this book is published.

Cardboard Box

[54]

The source code for this project can be found on the Packt Publishing website and on
GitHub at https://github.com/cardbookvr/cardboardbox (with each topic as a
separate commit).

The Android SDK version is important to your finished app, but your desktop
environment can also be set up in a number of ways. We mentioned earlier that we
used Android Studio 2.1 to build the projects in this book. We also used the Java
SDK Version 8 (1.8). It will be important for you to have this version installed (you
can have many versions installed side by side) in order to import the projects. As
with any development environment, any changes made to Java or Android Studio
may "break" the import process in the future, but the actual source code should
compile and run for many years to come.

Creating a new project
If you'd like more details and explanation about these steps, refer to the Creating a
new Cardboard project section in Chapter 2, The Skeleton Cardboard Project, and follow
along there:

1. With Android Studio opened, create a new project. Let's name it
CardboardBox and target Android 4.4 KitKat (API 19) with an
Empty Activity.

2. Add the Cardboard SDK common.aar and core.aar library files to your
project as new modules, using File | New | New Module....

3. Set the library modules as dependencies to the project app, using
File | Project Structure.

4. Edit the AndroidManifest.xml file as explained in Chapter 2, The Skeleton
Cardboard Project, being careful to preserve the package name for this project.

5. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard
Project, to compile against SDK 22.

6. Edit the activity_main.xml layout file as explained in Chapter 2,
The Skeleton Cardboard Project.

7. Edit the MainActivity Java class so that it extends CardboardActivity and
implements CardboardView.StereoRenderer. Modify the class declaration
line as follows:
public class MainActivity extends CardboardActivity
implements CardboardView.StereoRenderer {

8. Add the stub method overrides for the interface (using intellisense
implement methods or pressing Ctrl + I).

https://github.com/cardbookvr/cardboardbox

Chapter 3

[55]

9. At the top of the MainActivity class, add the following comments as
placeholders for variables that we will be creating in this project:
CardboardView.StereoRenderer {
 private static final String TAG = "MainActivity";

 // Scene variables
 // Model variables
 // Viewing variables
 // Rendering variables

10. Lastly, edit onCreate() by adding the CardboadView instance as follows:
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);
 }

Hello, triangle!
Let's add a triangle to the scene. Yeah, I know that a triangle isn't even a box.
However, we're going to start with super simple tips. Triangles are the building
blocks of all 3D graphics and the simplest shapes that OpenGL can render (that is,
in triangle mode).

Introducing geometry
Before moving on, let's talk a little about geometry.

Virtual reality is largely about creating 3D scenes. Complex models are organized as
three-dimensional data with vertices, faces, and meshes, forming objects that can be
hierarchically assembled into more complex models. For now, we're taking a really
simple approach—a triangle with three vertices, stored as a simple Java array.

The triangle is composed of three vertices (that's why, it's called a tri-angle!). We're
going to define our triangle as top (0.0, 0.6), bottom-left (-0.5, -0.3), bottom-right (0.5,
-0.3). The first vertex is the topmost point of the triangle and has X=0.0, so it's at the
center and Y=0.6 up.

Cardboard Box

[56]

The order of the vertices, or triangle winding, is very important as it indicates
the front-facing direction of the triangle. OpenGL drivers expect it to wind in a
counter-clockwise direction, as shown in the following diagram:

If the vertices are defined clockwise, the shader will assume that the triangle is facing
the other direction, away from the camera, and will thus not be visible and rendered.
This is an optimization called culling, which allows the rendering pipeline to readily
throw away geometry that is on the back side of an object. That is, if it is not visible
to the camera, don't even bother trying to draw it. Having said this, you can set
various culling modes to choose to only render front faces, back faces, or both.

Refer to the creative commons source at http://learnopengl.com/#!Advanced-
OpenGL/Face-culling.

The OpenGL Programming Guide by Dave Shreiner, Graham
Sellers, John M. Kessenich, Bill Licea-Kane, "By convention,
polygons whose vertices appear in a counter-clockwise order on the
screen are called front-facing." This is determined by a global
state mode, and the default value is GL_CCW (https://www.
opengl.org/wiki/Face_Culling).

Three-dimensional points, or vertices, are defined with x, y, and z coordinate values.
A triangle, for example, in 3D space is made up of three vertices, each having an x, y,
and z value.

http://learnopengl.com/#!Advanced-OpenGL/Face-culling
http://learnopengl.com/#!Advanced-OpenGL/Face-culling
https://www.opengl.org/wiki/Face_Culling
https://www.opengl.org/wiki/Face_Culling

Chapter 3

[57]

Our triangle lies on a plane parallel to the screen. When we add 3D viewing to the
scene (later in this chapter), we'll need a z coordinate to place it in 3D space. In
anticipation, we'll set the triangle on the Z=-1 plane. The default camera in OpenGL
is at the origin (0,0,0) and looks down at the negative z axis. In other words, objects
in the scene are looking up the positive z axis at the camera. We put the triangle one
unit away from the camera so that we can see it at Z=-1.0.

Triangle variables
Add the following code snippet to the top of the MainActivity class:

 // Model variables
 private static final int COORDS_PER_VERTEX = 3;
 private static float triCoords[] = {
 // in counter-clockwise order
 0.0f, 0.6f, -1.0f, // top
 -0.5f, -0.3f, -1.0f, // bottom left
 0.5f, -0.3f, -1.0f // bottom right
 };

 private final int triVertexCount = triCoords.length /
 COORDS_PER_VERTEX;
 // yellow-ish color
 private float triColor[] = { 0.8f, 0.6f, 0.2f, 0.0f };
 private FloatBuffer triVerticesBuffer;

Our triangle coordinates are assigned to the triCoords array. All the vertices are in
3D space with three coordinates (x, y, and z) per vertex (COORDS_PER_VERTEX). The
triVertexCount variable, precalculated as the length of the triangle's triCoords
array, is divided by COORDS_PER_VERTEX. We also define an arbitrary triColor
value for our triangle, which is composed of R, G, B, and A values (red, green, blue,
and alpha (transparency)). The triVerticesBuffer variable will be used in the
draw code.

For those who are new to Java programming, you might also wonder about the
variable types. Integers are declared int and floating point numbers are declared
float. All the variables here are being declared private, which means that they'll
only be visible and used within this class definition. The ones that are declared static
will share their data across multiple instances of the class. The ones that are declared
final are immutable and are not expected to change once they are initialized.

Cardboard Box

[58]

onSurfaceCreated
The purpose of this activity code is to draw stuff on the Android device display.
We do this through the OpenGL graphics library, which draws onto a surface,
a memory buffer onto which you can draw graphics via a rendering pipeline.

After the activity is created (onCreate), a surface is created and onSurfaceCreated
is called. It has several responsibilities, including initializing the scene and compiling
the shaders. It also prepares for rendering by allocating memory for vertex buffers,
binding textures, and initializing the render pipeline handles.

Here's the method, which we've broken into several private methods that we're
going to write next:

 @Override
 public void onSurfaceCreated(EGLConfig eglConfig) {
 initializeScene();
 compileShaders();
 prepareRenderingTriangle();
 }

There's nothing to initialize in the scene at this point:

private void initializeScene() {
}

Let's move on to the shaders and rendering discussions.

Introducing OpenGL ES 2.0
Now is a good time to introduce the graphics pipeline. When a Cardboard app
draws 3D graphics on the screen, it hands the rendering to a separate graphics
processor (GPU). Android and our Cardboard app uses the OpenGL ES 2.0
standard graphics library.

OpenGL is a specification for how applications interact with graphics drivers. You
could say that it's a long list of function calls that do things in graphics hardware.
Hardware vendors write their drivers to conform to the latest specification, and some
intermediary, in this case Google, creates a library that hooks into driver functions in
order to provide method signatures that you can call from whatever language you're
using (generally, Java, C++, or C#).

Chapter 3

[59]

OpenGL ES is the mobile, or Embedded Systems, version of OpenGL. It follows the
same design patterns as OpenGL, but its version history is very different. Different
versions of OpenGL ES and even different implementations of the same version
will require different approaches to drawing 3D graphics. Thus, your code might
differ greatly between OpenGL ES 1.0, 2.0, and 3.0. Thankfully, most major changes
happened between Version 1 and 2, and the Cardboard SDK is set up to use 2.0.
The CardboardView interface also varies slightly from a normal GLSurfaceView.

To draw graphics on the screen, OpenGL needs two basic things:

• The graphics programs, or shaders (sometimes used interchangeably),
which define how to draw shapes

• The data, or buffers, which define what is being drawn

There are also some parameters that specify transformation matrices, colors, vectors,
and so on. You might be familiar with the concept of a game loop, which is a basic
pattern to set up the game environment and then initiate a loop that runs some game
logic, renders the screen, and repeats at a semi-regular interval until the game is
paused or the program exits. The CardboardView sets up the game loop for us,
and basically, all that we have to do is implement the interface methods.

A bit more on shaders: at the bare minimum, we need a vertex shader and a
fragment shader. The vertex shader is responsible for transforming the vertices
of an object from world space (where they are in the world) to screen space
(where they should be drawn on the screen).

The fragment shader is called on each pixel that the shape occupies (determined by
the raster function, a fixed part of the pipeline) and returns the color that is drawn.
Every shader is a single function, accompanied by a number of attributes that can be
used as inputs.

A collection of functions (that is, a vertex and a fragment) is compiled by OpenGL
into a program. Sometimes, whole programs are referred to as shaders, but this
is a colloquialism that assumes the basic knowledge that more than one function,
or shader, is required to fully draw an object. The program and the values for all
its parameters will sometimes be referred to as a material, given that it completely
describes the material of the surface that it draws.

Shaders are cool. However, they don't do anything until your program sets up the
data buffers and makes a bunch of draw calls.

A draw call consists of a Vertex Buffer Object (VBO), the shaders that will be used
to draw it, a number of parameters that specify the transformation applied to the
object, the texture(s) used to draw it, and any other shader parameters.

Cardboard Box

[60]

The VBO refers to any and all data used to describe the shape of an object. A very
basic object (for example, a triangle) only needs an array of vertices. The vertices are
read in order, and every three positions in space define a single triangle. Slightly more
advanced shapes use an array of vertices and an array of indices, which define which
vertices to draw in what order. Using an index buffer, multiple vertices can be re-used.

While OpenGL can draw a number of shape types (a point, line, triangle, and quad),
we will assume that all are triangles. This is both a performance optimization and a
matter of convenience. If we want a quad, we can draw two triangles. If we want a
line, we can draw a really long, skinny quad. If we want a point, we can draw a tiny
triangle. This way, not only can we leave OpenGL in triangle mode, but we can also
treat all VBOs in exactly the same manner. Ideally, you want your render code to be
completely agnostic to what it is rendering.

To summarize:

• The purpose of the OpenGL graphics library is to give us access to the GPU
hardware, which then paints pixels on the screen based on the geometry
in a scene. This is achieved through a rendering pipeline, where data is
transformed and passed through a series of shaders.

• A shader is a small program that takes certain inputs and generates
corresponding outputs, depending on the stage of the pipeline.

• As a program, shaders are written in a special C-like language. The source
code is compiled to be run very efficiently on the Android device's GPU.

For example, a vertex shader handles processing individual vertices, outputting
a transformed version of each one. Another step rasterizes the geometry, after
which a fragment shader receives a raster fragment and outputs colored pixels.

We'll be discussing the OpenGL rendering pipeline later on, and
you can read about it at https://www.opengl.org/wiki/
Rendering_Pipeline_Overview.
You can also review the Android OpenGL ES API Guide at
http://developer.android.com/guide/topics/
graphics/opengl.html.
For now, don't worry too much about it and let's just follow along.
Note: GPU drivers actually implement the entire OpenGL library
on a per-driver basis. This means that someone at NVIDIA (or
in this case, probably Qualcomm or ARM) wrote the code that
compiles your shaders and reads your buffers. OpenGL is a
specification for how this API should work. In our case, this is the
GL class that's part of Android.

https://www.opengl.org/wiki/Rendering_Pipeline_Overview
https://www.opengl.org/wiki/Rendering_Pipeline_Overview
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html

Chapter 3

[61]

Simple shaders
Presently, we'll write a couple of simple shaders. Our shader code will be written in a
separate file, which is loaded and compiled by our app. Add the following functions
at the end of the MainActivity class:

 /**
 * Utility method for compiling a OpenGL shader.
 *
 * @param type - Vertex or fragment shader type.
 * @param resId - int containing the resource ID of the shader
 code file.
 * @return - Returns an id for the shader.
 */
 private int loadShader(int type, int resId){
 String code = readRawTextFile(resId);
 int shader = GLES20.glCreateShader(type);

 // add the source code to the shader and compile it
 GLES20.glShaderSource(shader, code);
 GLES20.glCompileShader(shader);

 return shader;
 }

 /**
 * Converts a raw text file into a string.
 *
 * @param resId The resource ID of the raw text file about to
 be turned into a shader.
 * @return The content of the text file, or null in case of
 error.
 */
 private String readRawTextFile(int resId) {
 InputStream inputStream =
 getResources().openRawResource(resId);
 try {
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(inputStream));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = reader.readLine()) != null) {
 sb.append(line).append("\n");
 }
 reader.close();

Cardboard Box

[62]

 return sb.toString();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

We will call loadShader to load a shader program (via readRawTextFile) and
compile it. This code will be useful in other projects as well.

Now, we'll write a couple of simple shaders in the res/raw/simple_vertex.shader
and res/raw/simple_fragment.shader files.

In the Project Files hierarchy view, on the left-hand side of Android Studio, locate
the app/res/ resource folder, right-click on it, and go to New | Android Resource
Directory. In the New Resource Directory dialog box, from Resource Type:, select
Raw, and then click on OK.

Right-click on the new raw folder, go to New | File, and name it simple_vertex.
shader. Add the following code:

attribute vec4 a_Position;
void main() {
 gl_Position = a_Position;
}

Similarly, for the fragment shader, right-click on the raw folder, go to New | File,
and name it simple_fragment.shader. Add the following code:

precision mediump float;
uniform vec4 u_Color;
void main() {
 gl_FragColor = u_Color;
}

Basically, these are identity functions. The vertex shader passes through the given
vertex, and the fragment shader passes through the given color.

Notice the names of the parameters that we declared: an attribute named a_
Position in simple_vertex and a uniform variable named u_Color in simple_
fragment. We'll set these up from the MainActivity onSurfaceCreated method.
Attributes are properties of each vertex, and when we allocate buffers for them, they
must all be arrays of equal length. Other attributes that you will encounter are vertex
normals, texture coordinates, and vertex colors. Uniforms will be used to specify
information that applies to the whole material, such as in this case, the solid color
applied to the whole surface.

Chapter 3

[63]

Also, note that the gl_FragColor and gl_Position variables are built-in variable
names that OpenGL is looking for you to set. Think of them as the returns on your
shader function. There are other built-in output variables, which we will see later.

The compileShaders method
We're now ready to implement the compileShaders method that
onSurfaceCreated calls.

Add the following variables on top of MainActivity:

 // Rendering variables
 private int simpleVertexShader;
 private int simpleFragmentShader;

Implement compileShaders, as follows:

 private void compileShaders() {
 simpleVertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
 R.raw.simple_vertex);
 simpleFragmentShader =
 loadShader(GLES20.GL_FRAGMENT_SHADER,
 R.raw.simple_fragment);
 }

The prepareRenderingTriangle method
The onSurfaceCreated method prepares for rendering by allocating memory for
vertex buffers, creating OpenGL programs, and initializing the render pipeline
handles. We will do this for our triangle shape now.

Add the following variables on top of MainActivity:

 // Rendering variables
 private int triProgram;
 private int triPositionParam;
 private int triColorParam;

Here's a skeleton of the function:

 private void prepareRenderingTriangle() {
 // Allocate buffers
 // Create GL program
 // Get shader params
 }

Cardboard Box

[64]

We need to prepare some memory buffers that will be passed to OpenGL when each
frame is rendered. This is the first go-round for our triangle and simple shaders;
we now only need a vertex buffer:

 // Allocate buffers
 // initialize vertex byte buffer for shape coordinates (4
 bytes per float)
 ByteBuffer bb = ByteBuffer.allocateDirect(triCoords.length
 * 4);
 // use the device hardware's native byte order
 bb.order(ByteOrder.nativeOrder());

 // create a floating point buffer from the ByteBuffer
 triVerticesBuffer = bb.asFloatBuffer();
 // add the coordinates to the FloatBuffer
 triVerticesBuffer.put(triCoords);
 // set the buffer to read the first coordinate
 triVerticesBuffer.position(0);

These five lines of code result in the setting up of the triVerticesBuffer value,
which are as follows:

• A ByteBuffer is allocated that is big enough to hold our triangle
coordinate values

• The binary data is arranged to match the hardware's native byte order
• The buffer is formatted for a floating point and assigned to our FloatBuffer

vertex buffer
• The triangle data is put into it, and then we reset the buffer cursor position to

the beginning

Next, we build the OpenGL ES program executable. Create an empty OpenGL ES
program using glCreateProgram, and assign its ID as triProgram. This ID will be
used in other methods as well. We attach any shaders to the program, and then build
the executable with glLinkProgram:

 // Create GL program
 // create empty OpenGL ES Program
 triProgram = GLES20.glCreateProgram();
 // add the vertex shader to program
 GLES20.glAttachShader(triProgram, simpleVertexShader);
 // add the fragment shader to program
 GLES20.glAttachShader(triProgram, simpleFragmentShader);
 // build OpenGL ES program executable
 GLES20.glLinkProgram(triProgram);
 // set program as current
 GLES20.glUseProgram(triProgram);

Chapter 3

[65]

Lastly, we get a handle on the render pipeline. A call to glGetAttribLocation
on a_Position retrieves the location of the vertex buffer parameter,
glEnableVertexAttribArray gives permission to access it, and a call to
glGetUniformLocation on u_Color retrieves the location of the color
components. We'll be happy that we did this once we get to onDrawEye:

 // Get shader params
 // get handle to vertex shader's a_Position member
 triPositionParam = GLES20.glGetAttribLocation(triProgram,
 "a_Position");
 // enable a handle to the triangle vertices
 GLES20.glEnableVertexAttribArray(triPositionParam);
 // get handle to fragment shader's u_Color member
 triColorParam = GLES20.glGetUniformLocation(triProgram,
 "u_Color");

So, we've isolated the code needed to prepare a drawing of the triangle model in
this function. First, it sets up buffers for the vertices. Then, it creates a GL program,
attaching the shaders it'll use. Then, we get handles to the parameters in the shaders
that we'll use to draw.

onDrawEye
Ready, Set, and Go! If you think of what we've written so far as the "Ready Set" part,
now we do the "Go" part! That is, the app starts and creates the activity, calling
onCreate. The surface is created and calls onSurfaceCreated to set up the buffers
and shaders. Now, as the app runs, for each frame, the display is updated. Go!

The CardboardView.StereoRenderer interface delegates these methods. We can
handle onNewFrame (and will later on). For now, we'll just implement the onDrawEye
method, which will draw the contents from the point of view of an eye. This method
gets called twice, once for each eye.

All that onDrawEye needs to do for now is render our lovely triangle. Nonetheless,
we'll split it into a separate function (that'll make sense later):

 @Override
 public void onDrawEye(Eye eye) {
 drawTriangle();
 }

 private void drawTriangle() {
 // Add program to OpenGL ES environment
 GLES20.glUseProgram(triProgram);

Cardboard Box

[66]

 // Prepare the coordinate data
 GLES20.glVertexAttribPointer(triPositionParam,
 COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false, 0, triVerticesBuffer);

 // Set color for drawing
 GLES20.glUniform4fv(triColorParam, 1, triColor, 0);

 // Draw the model
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0,
 triVertexCount);
 }

We need to specify which shader program we are using by calling glUseProgram.
A call to glVertexAttribPointer sets our vertex buffer to the pipeline. We also set
the color using glUniform4fv (4fv refers to the fact that our uniform is a vector with
four floats). Then, we actually draw using glDrawArrays.

Building and running
That's it. Yee haa! That wasn't so bad, was it? Actually, if you're familiar with
Android development and OpenGL, you might have breezed through this.

Let's build and run it. Go to Run | Run 'app', or simply use the green triangle Run
icon on the toolbar.

Gradle will do its build thing. Select the Gradle Console tab at the bottom of the
Android Studio window to view the Gradle build messages. Then, assuming that
all goes well, the APK file will be installed on your connected phone (it's connected
and turned on, right?). Select the Run tab at the bottom to view the upload and
launch messages.

This is what it displays:

Chapter 3

[67]

Actually, it kind of looks like a Halloween pumpkin carving! Spooky. But in VR you'll
see just a single triangle.

Notice that while the triangle vertex coordinates define edges with straight lines, the
CardboardView renders it with barrel distortion to compensate for the lens optics in
the headset. Also, the left image is different from the right, one for each eye. When
you insert the phone in a Google Cardboard headset, the left and right stereoscopic
views appear as one triangle floating in space with straight edges.

That's great! We just built a simple Cardboard app for Android from scratch. Like
any Android app, there are a number of different pieces that need to be defined just
to get a basic thing going, including the AndroidManifest.xml, activity_main.
xml, and MainActivity.java files.

Hopefully everything went as planned. Like a good programmer, you've probably
been building and running the app after making incremental changes to the account
for syntax errors and unhandled exceptions. A little bit later, we will call the GLError
function to check error information from OpenGL. As always, pay close attention to
errors in logcat (try filtering for the running application) and to variable names. You
might have a syntax error in your shader, causing its compiling to fail, or you might
have a typo in the attribute/uniform name when trying to access the handles. These
kind of things will not result in any compile-time errors (shaders are compiled at
runtime), and your app will run but may not render anything as a result.

3D camera, perspective, and head
rotation
As awesome as this is (ha ha), our app is kind of boring and not very Cardboard-like.
Specifically, it's stereoscopic (dual views) and has lens distortion, but it's not yet a 3D
perspective view and it doesn't move with your head. We're going to fix this now.

Welcome to the matrix
We can't talk about developing for virtual reality without talking about matrix
mathematics for 3D computer graphics.

What is a matrix? The answer is out there, Neo, and it's looking for you, and it will
find you if you want it to. That's right, it's time to learn about the matrix. Everything
will be different now. Your perspective is about to change.

Cardboard Box

[68]

We're building a three-dimensional scene. Each location in space is described by
the X, Y, and Z coordinates. Objects in the scene may be constructed from X, Y, and
Z vertices. An object can be transformed by moving, scaling, and/or rotating its
vertices. This transformation can be represented mathematically with a matrix of 16
floating point values (four rows of four floats each). How it works mathematically is
cool, but we won't get into it here.

Matrices can be combined by multiplying them together. For example, if you have
a matrix that represents how much to resize an object (scale) and another matrix to
reposition (translate), then you could make a third matrix, representing both the
resizing and repositioning by multiplying the two together. You can't just use the
primitive * operator though. Also, note that unlike a simple scalar multiplication,
matrix multiplication is not commutative. In other words, we know that a * b = b * a.
However, for matrices A and B, AB ≠ BA! The Matrix Android class library provides
functions for doing matrix math. Here's an example:

// allocate the matrix arrays
float scale[] = new float[16];
float translate[] = new float[16];
float scaleAndTranslate[] = new float[16];

// initialize to Identity
Matrix.setIdentityM(scale, 0);
Matrix.setIdentityM(translate, 0);

// scale by 2, move by 5 in Z
Matrix.scaleM(scale, 0, 2.0, 2.0, 2.0);
Matrix.translateM(translate, 0, 0, 0.0, 0.0, 5.0);

// combine them with a matrix multiply
Matrix.multipyMM(scaleAndTranslate, 0, translate, 0, scale, 0);

Note that due to the way in which matrix multiplication works, multiplying a
vector by the result matrix will have the same effect as first multiplying it by
the scale matrix (right-hand side), and then multiplying it by the translate matrix
(left-hand side). This is the opposite of what you might expect.

The documentation of the Matrix API can be found at
http://developer.android.com/reference/
android/opengl/Matrix.html.

http://developer.android.com/reference/android/opengl/Matrix.html
http://developer.android.com/reference/android/opengl/Matrix.html

Chapter 3

[69]

This matrix stuff will be used a lot. Something that is worth mentioning here is
precision loss. You might get a "drift" from the actual values if you repeatedly
scale and translate that combined matrix because floating point calculations lose
information due to rounding. It's not just a problem for computer graphics but also
for banks and Bitcoin mining! (Remember the movie Office Space?)

One fundamental use of this matrix math, which we need immediately, is
to transform a scene into a screen image (projection) as viewed from the
user's perspective.

In a Cardboard VR app, to render the scene from a particular viewpoint, we think of
a camera that is looking in a specific direction. The camera has X, Y, and Z positions
like any other object and is rotated to its view direction. In VR, when you turn your
head, the Cardboard SDK reads the motion sensors in your phone, determines
the current head pose (the view direction and angles), and gives your app the
corresponding transformation matrix.

In fact, in VR for each frame, we render two slightly different perspective
views: one for each eye, offset by the actual distance between one's eyes
(the interpupillary distance).

Also, in VR, we want to render the scene using a perspective projection (versus
isometric) so that objects closer to you appear larger than the ones further away.
This can be represented with a 4 x 4 matrix as well.

We can combine each of these transformations by multiplying them together to get a
modelViewProjection matrix:

modelViewProjection = modelTransform X camera X eyeView X
perspectiveProjection

A complete modelViewProjection (MVP) transformation matrix is a combination
of any model transforms (for example, scaling or positioning the model in the scene)
with the camera eye view and perspective projection.

When OpenGL goes to draw an object, the vertex shader can use this
modelViewProjection matrix to render the geometry. The whole scene gets drawn
from the user's viewpoint, in the direction his head is pointing, with a perspective
projection for each eye to appear stereoscopically through your Cardboard viewer.
VR MVP FTW!

Cardboard Box

[70]

The MVP vertex shader
The super simple vertex shader that we wrote earlier doesn't transform each
vertex; it just passed it through the next step in the pipeline. Now, we want it to
be 3D-aware and use our modelViewProjection (MVP) transformation matrix.
Create a shader to handle it.

In the hierarchy view, right-click on the app/res/raw folder, go to New | File,
enter the name, mvp_vertex.shader, and click on OK. Write the following code:

uniform mat4 u_MVP;
attribute vec4 a_Position;
void main() {
 gl_Position = u_MVP * a_Position;
}

This shader is almost the same as simple_vertex but transforms each vertex by
the u_MVP matrix. (Note that while multiplying matrices and vectors with * does
not work in Java, it does work in the shader code!)

Replace the shader resource in the compleShaders function to use R.raw.mvp_vertex
instead:

simpleVertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
R.raw.mvp_vertex)

Setting up the perspective viewing matrices
To add the camera and view to our scene, we define a few variables. In the
MainActivity.java file, add the following code to the beginning of the
MainActivity class:

// Viewing variables
private static final float Z_NEAR = 0.1f;
private static final float Z_FAR = 100.0f;
private static final float CAMERA_Z = 0.01f;

private float[] camera;
private float[] view;
private float[] modelViewProjection;

// Rendering variables
private int triMVPMatrixParam;

The Z_NEAR and Z_FAR constants define the depth planes used later to calculate
the perspective projection for the camera eye. CAMERA_Z will be the position of the
camera (for example, at X=0.0, Y=0.0, and Z=0.01).

Chapter 3

[71]

The triMVPMatrixParam variable will be used to set the model transformation
matrix in our improved shader.

The camera, view, and modelViewProjection matrices will be 4 x 4 matrices
(an array of 16 floats) used for perspective calculations.

In onCreate, we initialize the camera, view, and modelViewProjection matrices:

 protected void onCreate(Bundle savedInstanceState) {
 //...

 camera = new float[16];
 view = new float[16];
 modelViewProjection = new float[16];
 }

In prepareRenderingTriangle, we initialize the triMVPMatrixParam variable:

// get handle to shape's transformation matrix
triMVPMatrixParam = GLES20.glGetUniformLocation(triProgram,
"u_MVP");

The default camera in OpenGL is at the origin (0,0,0) and looks down
at the negative Z axis. In other words, objects in the scene are facing
toward the positive Z axis at the camera. To place them in front of the
camera, give them a position with some negative Z value.

There is a longstanding (and pointless) debate in the 3D graphics world about which
axis is up. We can somehow all agree that the X axis goes left and right, but does the
Y axis go up and down, or is it Z? Plenty of software picks Z as the up-and-down
direction, and defines Y as pointing in and out of the screen. On the other hand, the
Cardboard SDK, Unity, Maya, and many others choose the reverse. If you think of the
coordinate plane as drawn on graph paper, it all depends on where you put the paper.
If you think of the graph as you look down from above, or draw it on a whiteboard,
then Y is the vertical axis. If the graph is sitting on the table in front of you, then the
missing Z axis is vertical, pointing up and down. In any case, the Cardboard SDK, and
therefore the projects in this book, treat Z as the forward and backward axis.

Render in perspective
With things set up, we can now handle redrawing the screen for each frame.

First, set the camera position. It can be defined once, like in onCreate. But, often
in a VR application, the camera position in the scene can change, so we'll reset it for
each frame.

Cardboard Box

[72]

The first thing to do is reset the camera matrix at the start of a new frame to a generic
front-facing direction. Define the onNewFrame method, as follows:

 @Override
 public void onNewFrame(HeadTransform headTransform) {
 // Build the camera matrix and apply it to the ModelView.
 Matrix.setLookAtM(camera, 0, 0.0f, 0.0f, CAMERA_Z, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
 }

Note, as you write Matrix, Android Studio will want
to auto-import the package. Ensure that the import you
choose is android.opengl.Matrix, and not some other
matrix library, such as android.graphic.Matrix.

Now, when it's time to draw the scene from the viewpoint of each eye, we calculate
the perspective view matrix. Modify onDrawEye as follows:

 public void onDrawEye(Eye eye) {
 GLES20.glEnable(GLES20.GL_DEPTH_TEST);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT |
 GLES20.GL_DEPTH_BUFFER_BIT);

 // Apply the eye transformation to the camera
 Matrix.multiplyMM(view, 0, eye.getEyeView(), 0, camera,
 0);

 // Get the perspective transformation
 float[] perspective = eye.getPerspective(Z_NEAR, Z_FAR);

 // Apply perspective transformation to the view, and draw
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 view, 0);

 drawTriangle();
 }

The first two lines that we added reset the OpenGL depth buffer. When 3D scenes
are rendered, in addition to the color of each pixel, OpenGL keeps track of the
distance the object occupying that pixel is from the eye. If the same pixel is rendered
for another object, the depth buffer will know whether it should be visible (closer)
or ignored (further away). (Or, perhaps the colors get combined in some way, for
example, transparency). We clear the buffer before rendering any geometry for each
eye. The color buffer, which is the one you actually see on screen, is also cleared.
Otherwise, in this case, you would end up filling the entire screen with a solid color.

Chapter 3

[73]

Now, let's move on to the viewing transformations. onDrawEye receives the current
Eye object, which describes the stereoscopic rendering details of the eye. In particular,
the eye.getEyeView() method returns a transformation matrix that includes
head tracking rotation, position shift, and interpupillary distance shift. In other
words, where the eye is located in the scene and what direction it's looking. Though
Cardboard does not offer positional tracking, the positions of the eyes do change in
order to simulate a virtual head. Your eyes don't rotate on a central axis, but rather
your head pivots around your neck, which is a certain distance from the eyes. As
a result, when the Cardboard SDK detects a change in orientation, the two virtual
cameras move around the scene as though they were actual eyes in an actual head.

We need a transformation that represents the perspective view of the camera at this
eye's position. As mentioned earlier, this is calculated as follows:

modelViewProjection = modelTransform X camera X eyeView X
perspectiveProjection

We multiply the camera by the eye view transform (getEyeView), then multiply the
result by the perspective projection transform (getPerspective). Presently, we do
not transform the triangle model itself and leave the modelTransform matrix out.

The result (modelViewProjection) is passed to OpenGL to be used by the shaders
in the rendering pipeline (via glUniformMatrix4fv). Then, we draw our stuff (via
glDrawArrays as written earlier).

Now, we need to pass the view matrix to the shader program. In the drawTriangle
method, add it as follows:

 private void drawTriangle() {
 // Add program to OpenGL ES environment
 GLES20.glUseProgram(triProgram);

 // Pass the MVP transformation to the shader
 GLES20.glUniformMatrix4fv(triMVPMatrixParam, 1, false,
 modelViewProjection, 0);

 // . . .

Building and running
Let's build and run it. Go to Run | Run 'app', or simply use the green triangle Run
icon on the toolbar. Now, moving the phone will change the display synchronized
with your view direction. Insert the phone in a Google Cardboard viewer and it's like
VR (kinda sorta).

Cardboard Box

[74]

Note that if your phone is lying flat on the table when the app starts, the camera in
our scene will be facing straight down rather than forward at our triangle. What's
worse, when you pick up the phone, the neutral direction may not be facing straight
in front of you. So, each time you run apps in this book, pick up the phone first, so
you look forward in VR, or keep the phone propped up in position (personally, I use
a Gekkopod, which is available at http://gekkopod.com/).

Also, in general, make sure that your phone is not set to Lock Portrait in the Settings
dialog box.

Repositioning the triangle
Our matrix-fu has really gotten us places. Let's go further.

I want to move the triangle out of the way. We'll do this by setting up another
transformation matrix and then using it on the model when it's time to draw.

Add two new matrices named triTransform and triView:

 // Model variables
 private float[] triTransform;

 // Viewing variables
 private float[] triView;

Initialize them in onCreate as well:

 triTransform = new float[16];
 triView = new float[16];

Let's set the model matrix that positions the triangle in the initializeScene
method (called by onSurfaceCreated). We'll offset it by 5 units in X and backwards
5 units in Z. Add the following code to initializeScene:

 // Position the triangle
 Matrix.setIdentityM(triTransform, 0);
 Matrix.translateM(triTransform, 0, 5, 0, -5);

Lastly, we use the model matrix to build the modelViewProjection matrix in
onDrawEye. Modify onDrawEye, as follows:

 public void onDrawEye(Eye eye) {
 ...
 // Apply perspective transformation to the view, and draw
 Matrix.multiplyMM(triView, 0, view, 0, triTransform, 0);

http://gekkopod.com/

Chapter 3

[75]

 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 triView, 0);
 drawTriangle();
 }

Build and run it. You will now see the triangle further away and off to the side.

To summarize one more time: the modelViewProjection
matrix is a combination of the triangle's position transform
(triTransform), the camera's location and orientation
(camera), the current eye's viewpoint from CardboardView
based on the phone's motion sensors (eye.getEyeView),
and the perspective projection. This MVP matrix is handed
to the vertex shader to determine its actual location when
drawing the triangle on the screen.

Hello, cube!
A flat triangle floating in 3D space may be amazing, but it's nothing compared to
what we're going to do next: a 3D cube!

The cube model data
The triangle, with just three vertices, was declared in the MainActivity class to keep
the example simple. Now, we will introduce more complex geometry. We'll put it in
a class named Cube.

Okay, it's just a cube that is composed of eight distinct vertices, forming six
faces, right?

Well, GPUs prefer to render triangles rather than quads, so subdivide each face into
two triangles; that's 12 triangles in total. To define each triangle separately, that's a
total of 36 vertices, with proper winding directions, defining our model, as shown
in CUBE_COORDS. Why not just define eight vertices and reuse them? We'll show you
how to do this later.

Remember that we always need to be careful of the winding
order of the vertices (counter-clockwise) so that the visible side
of each triangle is facing outward.

Cardboard Box

[76]

In Android Studio, in the Android project hierarchy pane on the left-hand side,
find your Java code folder (such as com.cardbookvr.cardboardbox). Right-click
on it, and go to New | Java Class. Then, set Name: Cube, and click on OK. Then,
edit the file, as follows (remember that the code for the projects in this book are
available for download from the publisher's website and from the book's public
GitHub repositories):

package com.cardbookvr.cardboardbox;

public class Cube {

 public static final float[] CUBE_COORDS = new float[] {
 // Front face
 -1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,

 // Right face
 1.0f, 1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f,

 // Back face
 1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,

 // Left face
 -1.0f, 1.0f, -1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, -1.0f, 1.0f,
 -1.0f, 1.0f, 1.0f,

Chapter 3

[77]

 // Top face
 -1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,

 // Bottom face
 1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 };
}

Cube code
Returning to the MainActivity file, we'll just copy/paste/edit the triangle code and
reuse it for the cube. Obviously, this isn't ideal, and once we see a good pattern, we
can abstract out some of this into reusable methods. Also, we'll use the same shaders
as those of the triangle, and then in the next section, we'll replace them with a better
lighting model. That is to say, we'll implement lighting or what a 2D artist might call
shading, which we haven't done so far.

Like the triangle, we declare a bunch of variables that we are going to need. The
vertex count, obviously, should come from the new Cube.CUBE_COORDS array:

 // Model variables
 private static float cubeCoords[] = Cube.CUBE_COORDS;
 private final int cubeVertexCount = cubeCoords.length /
 COORDS_PER_VERTEX;
 private float cubeColor[] = { 0.8f, 0.6f, 0.2f, 0.0f }; //
 yellow-ish
 private float[] cubeTransform;
 private float cubeDistance = 5f;

 // Viewing variables
 private float[] cubeView;

 // Rendering variables
 private FloatBuffer cubeVerticesBuffer;

Cardboard Box

[78]

 private int cubeProgram;
 private int cubePositionParam;
 private int cubeColorParam;
 private int cubeMVPMatrixParam;

Add the following code to onCreate:

 cubeTransform = new float[16];
 cubeView = new float[16];

Add the following code to onSurfaceCreated:

 prepareRenderingCube();

Write the prepareRenderingCube method, as follows:

private void prepareRenderingCube() {
 // Allocate buffers
 ByteBuffer bb =
 ByteBuffer.allocateDirect(cubeCoords.length * 4);
 bb.order(ByteOrder.nativeOrder());
 cubeVerticesBuffer = bb.asFloatBuffer();
 cubeVerticesBuffer.put(cubeCoords);
 cubeVerticesBuffer.position(0);

 // Create GL program
 cubeProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(cubeProgram, simpleVertexShader);
 GLES20.glAttachShader(cubeProgram, simpleFragmentShader);
 GLES20.glLinkProgram(cubeProgram);
 GLES20.glUseProgram(cubeProgram);

 // Get shader params
 cubePositionParam =
 GLES20.glGetAttribLocation(cubeProgram, "a_Position");
 cubeColorParam = GLES20.glGetUniformLocation(cubeProgram,
 "u_Color");
 cubeMVPMatrixParam =
 GLES20.glGetUniformLocation(cubeProgram, "u_MVP");

 // Enable arrays
 GLES20.glEnableVertexAttribArray(cubePositionParam);
 }

Chapter 3

[79]

We will position the cube 5 units away and rotate it 30 degrees on a diagonal axis
of (1, 1, 0). Without the rotation, we'll just see the square of the front face. Add the
following code to initializeScene:

 // Rotate and position the cube
 Matrix.setIdentityM(cubeTransform, 0);
 Matrix.translateM(cubeTransform, 0, 0, 0, -cubeDistance);
 Matrix.rotateM(cubeTransform, 0, 30, 1, 1, 0);

Add the following code to onDrawEye to calculate the MVP matrix, including the
cubeTransform matrix, and then draw the cube:

 Matrix.multiplyMM(cubeView, 0, view, 0, cubeTransform, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 cubeView, 0);
 drawCube();

Write the drawCube method, which is very similar to the drawTri method,
as follows:

 private void drawCube() {
 GLES20.glUseProgram(cubeProgram);
 GLES20.glUniformMatrix4fv(cubeMVPMatrixParam, 1, false,
 modelViewProjection, 0);
 GLES20.glVertexAttribPointer(cubePositionParam,
 COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false, 0, cubeVerticesBuffer);
 GLES20.glUniform4fv(cubeColorParam, 1, cubeColor, 0);
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0,
 cubeVertexCount);
 }

Build and run it. You will now see a 3D view of the cube, as shown in the following
screenshot. It needs shading.

www.allitebooks.com

http://www.allitebooks.org

Cardboard Box

[80]

Lighting and shading
We need to introduce a light source into the scene and provide a shader that will
use it. For this, the cube needs additional data, defining normal vectors and colors
at each vertex.

Vertex colors aren't always required for shading, but in
our case, the gradient is very subtle, and the different color
faces will help you distinguish the edges of the cube. We
will also be doing shading calculations in the vertex shader,
which is a faster way to do it (there are fewer vertices than
raster pixels), but works less well for smooth objects, such
as spheres. To do vertex lighting, you need vertex colors in
the pipeline, so it also makes sense to do something with
those colors. In this case, we choose a different color per
face of the cube. Later in this book, you will see an example
of per-pixel lighting and the difference it makes.

We'll now build the app to handle our lighted cube. We'll do this by performing the
following steps:

• Write and compile a new shader for lighting
• Generate and define cube vertex normal vectors and colors
• Allocate and set up data buffers for rendering
• Define and set up a light source for rendering
• Generate and set up transformation matrices for rendering

Adding shaders
Let's write an enhanced vertex shader that can use a light source and vertex normals
from a model.

Right-click on the app/res/raw folder in the project hierarchy, go to New | File,
and name it light_vertex.shader. Add the following code:

uniform mat4 u_MVP;
uniform mat4 u_MVMatrix;
uniform vec3 u_LightPos;

attribute vec4 a_Position;
attribute vec4 a_Color;
attribute vec3 a_Normal;

Chapter 3

[81]

const float ONE = 1.0;
const float COEFF = 0.00001;

varying vec4 v_Color;

void main() {
 vec3 modelViewVertex = vec3(u_MVMatrix * a_Position);
 vec3 modelViewNormal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));

 float distance = length(u_LightPos - modelViewVertex);
 vec3 lightVector = normalize(u_LightPos - modelViewVertex);
 float diffuse = max(dot(modelViewNormal, lightVector), 0.5);

 diffuse = diffuse * (ONE / (ONE + (COEFF * distance * distance)));
 v_Color = a_Color * diffuse;
 gl_Position = u_MVP * a_Position;
}

Without going through the details of writing a lighting shader, you can see that the
vertex color is calculated based on a formula related to the angle between the light
ray and the surface and how far the light source is from the vertex. Note that we are
also bringing in the ModelView matrix as well as the MVP matrix. This means that
you will need to have access to both steps of the process, and you can't overwrite/
throw away the MV matrix after you're done with it.

Notice that we used a small optimization. Numeric literals (for example, 1.0) use
uniform space, and on certain hardware, this can cause problems, so we declare
constants instead (refer to http://stackoverflow.com/questions/13963765/
declaring-constants-instead-of-literals-in-vertex-shader-standard-
practice-or).

There are more variables to be set in this shader, as compared to the earlier simple
one, for the lighting calculations. We'll send these over to the draw methods.

We also need a slightly different fragment shader. Right-click on the raw folder in the
project hierarchy, go to New | File, and name it passthrough_fragment.shader.
Add the following code:

precision mediump float;
varying vec4 v_Color;

void main() {
 gl_FragColor = v_Color;
}

http://stackoverflow.com/questions/13963765/declaring-constants-instead-of-literals-in-vertex-shader-standard-practice-or
http://stackoverflow.com/questions/13963765/declaring-constants-instead-of-literals-in-vertex-shader-standard-practice-or
http://stackoverflow.com/questions/13963765/declaring-constants-instead-of-literals-in-vertex-shader-standard-practice-or

Cardboard Box

[82]

The only difference in the fragment shader from the simple one is that we replace
uniform vec4 u_Color with varying vec4 v_Color because colors are now passed in
from the vertex shader in the pipeline. And the vertex shader now gets an array buffer
of colors. This is a new issue that we'll need to address in our setup/draw code.

Then, in MainActivity, add these variables:

 // Rendering variables
 private int lightVertexShader;
 private int passthroughFragmentShader;

Compile the shader in the compileShaders method:

 lightVertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
 R.raw.light_vertex);
 passthroughFragmentShader =
 loadShader(GLES20.GL_FRAGMENT_SHADER,
 R.raw.passthrough_fragment);

Cube normals and colors
Each face of a cube faces outwards in a different direction that's perpendicular to the
face. A vector is an XYZ coordinate. One that is normalized to a length of 1 can be
used to indicate this direction, and is called a normal vector.

The geometry we pass to OpenGL is defined as vertices, not faces. Therefore,
we need to provide a normal vector for each vertex of the face, as shown in the
following diagram. Strictly speaking, not all vertices on a given face have to face
the same direction. This is used in a technique called smooth shading, where the
lighting calculations give the illusion of a curved face instead of a flat one. We will
be using the same normal for each face (hard edges), which also saves us time while
specifying the normal data. Our array only needs to specify six vectors, which can be
expanded into a buffer of 36 normal vectors. The same applies to color values.

Chapter 3

[83]

Each vertex also has a color. Assuming that each face of the cube is a solid color,
we can assign each vertex of that face the same color. In the Cube.java file, add the
following code:

 public static final float[] CUBE_COLORS_FACES = new float[] {
 // Front, green
 0f, 0.53f, 0.27f, 1.0f,
 // Right, blue
 0.0f, 0.34f, 0.90f, 1.0f,
 // Back, also green
 0f, 0.53f, 0.27f, 1.0f,
 // Left, also blue
 0.0f, 0.34f, 0.90f, 1.0f,
 // Top, red
 0.84f, 0.18f, 0.13f, 1.0f,
 // Bottom, also red
 0.84f, 0.18f, 0.13f, 1.0f,
 };

 public static final float[] CUBE_NORMALS_FACES = new float[] {
 // Front face
 0.0f, 0.0f, 1.0f,
 // Right face
 1.0f, 0.0f, 0.0f,
 // Back face
 0.0f, 0.0f, -1.0f,
 // Left face
 -1.0f, 0.0f, 0.0f,
 // Top face
 0.0f, 1.0f, 0.0f,
 // Bottom face
 0.0f, -1.0f, 0.0f,
 };

For each face of the cube, we defined a solid color (CUBE_COLORS_FACES) and a
normal vector (CUBE_NORMALS_FACES).

Now, write a reusable method, cubeFacesToArray, to generate the float arrays
actually needed in MainActivity. Add the following code to your Cube class:

 /**
 * Utility method for generating float arrays for cube faces
 *
 * @param model - float[] array of values per face.

Cardboard Box

[84]

 * @param coords_per_vertex - int number of coordinates per
 vertex.
 * @return - Returns float array of coordinates for
 triangulated cube faces.
 * 6 faces X 6 points X coords_per_vertex
 */
 public static float[] cubeFacesToArray(float[] model, int
 coords_per_vertex) {
 float coords[] = new float[6 * 6 * coords_per_vertex];
 int index = 0;
 for (int iFace=0; iFace < 6; iFace++) {
 for (int iVertex=0; iVertex < 6; iVertex++) {
 for (int iCoord=0; iCoord < coords_per_vertex;
 iCoord++) {
 coords[index] = model[iFace*coords_per_vertex
 + iCoord];
 index++;
 }
 }
 }
 return coords;
 }

Add this data to MainActivity with the other variables, as follows:

 // Model variables
 private static float cubeCoords[] = Cube.CUBE_COORDS;
 private static float cubeColors[] =
 Cube.cubeFacesToArray(Cube.CUBE_COLORS_FACES, 4);
 private static float cubeNormals[] =
 Cube.cubeFacesToArray(Cube.CUBE_NORMALS_FACES, 3);

You can also delete the declaration of private float cubeColor[], as it's not
needed now.

Armed with a normal and color, the shader can calculate the values of each pixel
occupied by the object.

Preparing the vertex buffers
The rendering pipeline requires that we set up memory buffers for the vertices,
normals, and colors. We already have vertex buffers from before, we now need to
add the others.

Chapter 3

[85]

Add the variables, as follows:

 // Rendering variables
 private FloatBuffer cubeVerticesBuffer;
 private FloatBuffer cubeColorsBuffer;
 private FloatBuffer cubeNormalsBuffer;

Prepare the buffers, and add the following code to the prepareRenderingCube
method (called from onSurfaceCreated). (This is the first half of the full
prepareRenderingCube method):

 private void prepareRenderingCube() {
 // Allocate buffers
 ByteBuffer bb =
 ByteBuffer.allocateDirect(cubeCoords.length * 4);
 bb.order(ByteOrder.nativeOrder());
 cubeVerticesBuffer = bb.asFloatBuffer();
 cubeVerticesBuffer.put(cubeCoords);
 cubeVerticesBuffer.position(0);

 ByteBuffer bbColors =
 ByteBuffer.allocateDirect(cubeColors.length * 4);
 bbColors.order(ByteOrder.nativeOrder());
 cubeColorsBuffer = bbColors.asFloatBuffer();
 cubeColorsBuffer.put(cubeColors);
 cubeColorsBuffer.position(0);

 ByteBuffer bbNormals =
 ByteBuffer.allocateDirect(cubeNormals.length * 4);
 bbNormals.order(ByteOrder.nativeOrder());
 cubeNormalsBuffer = bbNormals.asFloatBuffer();
 cubeNormalsBuffer.put(cubeNormalParam);
 cubeNormalsBuffer.position(0);

 // Create GL program

Preparing the shaders
Having defined the lighting_vertex shader, we need to add the param handles to
use it. At the top of the MainActivity class, add four more variables to the lighting
shader params:

 // Rendering variables
 private int cubeNormalParam;
 private int cubeModelViewParam;
 private int cubeLightPosParam;

Cardboard Box

[86]

In the prepareRenderingCube method (which is called by onSurfaceCreated),
attach the lightVertexShader and passthroughFragmentShader shaders instead
of the simple ones, get the shader params, and enable the arrays so that they now
read as follows. (This is the second half of prepareRenderingCube, continuing from
the preceding section):

 // Create GL program
 cubeProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(cubeProgram, lightVertexShader);
 GLES20.glAttachShader(cubeProgram,
 passthroughFragmentShader);
 GLES20.glLinkProgram(cubeProgram);
 GLES20.glUseProgram(cubeProgram);

 // Get shader params
 cubeModelViewParam =
 GLES20.glGetUniformLocation(cubeProgram, "u_MVMatrix");
 cubeMVPMatrixParam =
 GLES20.glGetUniformLocation(cubeProgram, "u_MVP");
 cubeLightPosParam =
 GLES20.glGetUniformLocation(cubeProgram, "u_LightPos");

 cubePositionParam =
 GLES20.glGetAttribLocation(cubeProgram, "a_Position");
 cubeNormalParam = GLES20.glGetAttribLocation(cubeProgram,
 "a_Normal");
 cubeColorParam = GLES20.glGetAttribLocation(cubeProgram,
 "a_Color");

 // Enable arrays
 GLES20.glEnableVertexAttribArray(cubePositionParam);
 GLES20.glEnableVertexAttribArray(cubeNormalParam);
 GLES20.glEnableVertexAttribArray(cubeColorParam);

If you refer to the shader code that we wrote earlier, you'll notice that these calls to
glGetUniformLocation and glGetAttribLocation correspond to the uniform
and attribute parameters declared in those scripts, including the change of
cubeColorParam from u_Color to now a_Color. This renaming is not required by
OpenGL, but it helps us distinguish between vertex attributes and uniforms.

Shader attributes that reference array buffers must be enabled.

Chapter 3

[87]

Adding a light source
Next, we'll add a light source to our scene and tell the shader its position when we
draw. The light will be positioned just above the user.

At the top of MainActivity, add variables to the light position:

 // Scene variables
 // light positioned just above the user
 private static final float[] LIGHT_POS_IN_WORLD_SPACE = new
 float[] { 0.0f, 2.0f, 0.0f, 1.0f };
 private final float[] lightPosInEyeSpace = new float[4];

Calculate the position of the light by adding the following code to onDrawEye:

 // Apply the eye transformation to the camera
 Matrix.multiplyMM(view, 0, eye.getEyeView(), 0, camera,
 0);

 // Calculate position of the light
 Matrix.multiplyMV(lightPosInEyeSpace, 0, view, 0,
 LIGHT_POS_IN_WORLD_SPACE, 0);

Note that we're using the view matrix (the eye view * camera) to transform the light
position into the current view space using the Matrix.multiplyMV function.

Now, we just tell the shader about the light position and the viewing matrices it
needs. Modify the drawCube method (called by onDrawEye), as follows:

 private void drawCube() {
 GLES20.glUseProgram(cubeProgram);

 // Set the light position in the shader
 GLES20.glUniform3fv(cubeLightPosParam, 1,
 lightPosInEyeSpace, 0);

 // Set the ModelView in the shader, used to calculate
 lighting
 GLES20.glUniformMatrix4fv(cubeModelViewParam, 1, false,
 cubeView, 0);

 GLES20.glUniformMatrix4fv(cubeMVPMatrixParam, 1, false,
 modelViewProjection, 0);

 GLES20.glVertexAttribPointer(cubePositionParam,
 COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false, 0, cubeVerticesBuffer);

Cardboard Box

[88]

 GLES20.glVertexAttribPointer(cubeNormalParam, 3,
 GLES20.GL_FLOAT, false, 0,
 cubeNormalsBuffer);
 GLES20.glVertexAttribPointer(cubeColorParam, 4,
 GLES20.GL_FLOAT, false, 0,
 cubeColorsBuffer);

 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0,
 cubeVertexCount);
 }

Building and running the app
We are now ready to go. When you build and run the app, you will see a screen
similar to the following screenshot:

Spinning the cube
The next step is a quick one. Let's make the cube spin. This is achieved by rotating
the cubeTransform matrix a little bit for each frame. We can define a TIME_DELTA
value for this. Add the static variable, as follows:

 // Viewing variables
 private static final float TIME_DELTA = 0.3f;

Then, modify cubeTransform for each frame, and add the following line of code to
the onNewFrame method:

Matrix.rotateM(cubeTransform, 0, TIME_DELTA, 0.5f, 0.5f, 1.0f);

Chapter 3

[89]

The Matrix.rotateM function applies a rotation to a transformation matrix based on
an angle and an axis. In this case, we are rotating by an angle of TIME_DELTA around
the axis vector (0.5, 0.5, 1). Strictly speaking, you should provide a normalized axis,
but all that matters is the direction of the vector and not the magnitude.

Build and run it. Now the cube is spinning. Animazing!

Hello, floor!
Having a sense of being grounded can be important in virtual reality. It can be much
more comfortable to feel like you're standing (or sitting) than to be floating in space
like a bodyless eyeball. So, let's add a floor to our scene.

This should be much more familiar now. We'll have a shader, model, and rendering
pipeline similar to the cube. So, we'll just do it without much explanation.

Shaders
The floor will use our light_shader with a small modification and a new
fragment shader.

Modify the light_vertex.shader by adding a v_Grid variable, as follows:

uniform mat4 u_Model;
uniform mat4 u_MVP;
uniform mat4 u_MVMatrix;
uniform vec3 u_LightPos;

attribute vec4 a_Position;
attribute vec4 a_Color;
attribute vec3 a_Normal;

varying vec4 v_Color;
varying vec3 v_Grid;

const float ONE = 1.0;
const float COEFF = 0.00001;

void main() {
 v_Grid = vec3(u_Model * a_Position);

 vec3 modelViewVertex = vec3(u_MVMatrix * a_Position);
 vec3 modelViewNormal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));

Cardboard Box

[90]

 float distance = length(u_LightPos - modelViewVertex);
 vec3 lightVector = normalize(u_LightPos - modelViewVertex);
 float diffuse = max(dot(modelViewNormal, lightVector), 0.5);

 diffuse = diffuse * (ONE / (ONE + (COEFF * distance *
 distance)));
 v_Color = a_Color * diffuse;
 gl_Position = u_MVP * a_Position;
}

Create a new shader in app/res/raw named grid_fragment.shader, as follows:

precision mediump float;
varying vec4 v_Color;
varying vec3 v_Grid;

void main() {
 float depth = gl_FragCoord.z / gl_FragCoord.w; // Calculate
 world-space distance.

 if ((mod(abs(v_Grid.x), 10.0) < 0.1) || (mod(abs(v_Grid.z),
 10.0) < 0.1)) {
 gl_FragColor = max(0.0, (90.0-depth) / 90.0) * vec4(1.0,
 1.0, 1.0, 1.0)
 + min(1.0, depth / 90.0) * v_Color;
 } else {
 gl_FragColor = v_Color;
 }
}

It may seem complicated, but all that we are doing is drawing some grid lines on
a solid color shader. The if statement will detect whether we are within 0.1 units
of a multiple of 10. If so, we draw a color that is somewhere between white (1, 1, 1,
1) and v_Color, based on the depth of that pixel, or its distance from the camera.
gl_FragCoord is a built-in value that gives us the position of the pixel that we are
rendering in window space as well as the value in the depth buffer (z), which will
be within the range [0, 1]. The fourth parameter, w, is essentially the inverse of the
camera's draw distance and, when combined with the depth value, gives the
world-space depth of the pixel. The v_Grid variable has actually given us access
to the world-space position of the current pixel, based on the local vertex position
and the model matrix that we introduced in the vertex shader.

In MainActivity, add a variable for the new fragment shader:

 // Rendering variables
 private int gridFragmentShader;

Chapter 3

[91]

Compile the shader in the compileShaders method, as follows:

 gridFragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER,
 R.raw.grid_fragment);

Floor model data
Create a new Java file named Floor in the project. Add the floor plane coordinates,
normals, and colors:

 public static final float[] FLOOR_COORDS = new float[] {
 200f, 0, -200f,
 -200f, 0, -200f,
 -200f, 0, 200f,
 200f, 0, -200f,
 -200f, 0, 200f,
 200f, 0, 200f,
 };

 public static final float[] FLOOR_NORMALS = new float[] {
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 public static final float[] FLOOR_COLORS = new float[] {
 0.0f, 0.34f, 0.90f, 1.0f,
 0.0f, 0.34f, 0.90f, 1.0f,
 0.0f, 0.34f, 0.90f, 1.0f,
 0.0f, 0.34f, 0.90f, 1.0f,
 0.0f, 0.34f, 0.90f, 1.0f,
 0.0f, 0.34f, 0.90f, 1.0f,
 };

Variables
Add all the variables that we need to MainActivity:

 // Model variables
 private static float floorCoords[] = Floor.FLOOR_COORDS;
 private static float floorColors[] = Floor.FLOOR_COLORS;

Cardboard Box

[92]

 private static float floorNormals[] = Floor.FLOOR_NORMALS;
 private final int floorVertexCount = floorCoords.length /
 COORDS_PER_VERTEX;
 private float[] floorTransform;
 private float floorDepth = 20f;

 // Viewing variables
 private float[] floorView;

 // Rendering variables
 private int gridFragmentShader;

 private FloatBuffer floorVerticesBuffer;
 private FloatBuffer floorColorsBuffer;
 private FloatBuffer floorNormalsBuffer;
 private int floorProgram;
 private int floorPositionParam;
 private int floorColorParam;
 private int floorMVPMatrixParam;
 private int floorNormalParam;
 private int floorModelParam;
 private int floorModelViewParam;
 private int floorLightPosParam;

onCreate
Allocate the matrices in onCreate:

 floorTransform = new float[16];
 floorView = new float[16];

onSurfaceCreated
Add a call to prepareRenderingFloor in onSufraceCreated, which we'll write
as follows:

 prepareRenderingFloor();

initializeScene
Set up the floorTransform matrix in the initializeScene method:

 // Position the floor
 Matrix.setIdentityM(floorTransform, 0);
 Matrix.translateM(floorTransform, 0, 0, -floorDepth, 0);

Chapter 3

[93]

prepareRenderingFloor
Here's the complete prepareRenderingFloor method:

 private void prepareRenderingFloor() {
 // Allocate buffers
 ByteBuffer bb =
 ByteBuffer.allocateDirect(floorCoords.length * 4);
 bb.order(ByteOrder.nativeOrder());
 floorVerticesBuffer = bb.asFloatBuffer();
 floorVerticesBuffer.put(floorCoords);
 floorVerticesBuffer.position(0);

 ByteBuffer bbColors =
 ByteBuffer.allocateDirect(floorColors.length * 4);
 bbColors.order(ByteOrder.nativeOrder());
 floorColorsBuffer = bbColors.asFloatBuffer();
 floorColorsBuffer.put(floorColors);
 floorColorsBuffer.position(0);

 ByteBuffer bbNormals =
 ByteBuffer.allocateDirect(floorNormals.length * 4);
 bbNormals.order(ByteOrder.nativeOrder());
 floorNormalsBuffer = bbNormals.asFloatBuffer();
 floorNormalsBuffer.put(floorNormals);
 floorNormalsBuffer.position(0);

 // Create GL program
 floorProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(floorProgram, lightVertexShader);
 GLES20.glAttachShader(floorProgram, gridFragmentShader);
 GLES20.glLinkProgram(floorProgram);
 GLES20.glUseProgram(floorProgram);

 // Get shader params
 floorPositionParam =
 GLES20.glGetAttribLocation(floorProgram, "a_Position");
 floorNormalParam =
 GLES20.glGetAttribLocation(floorProgram, "a_Normal");
 floorColorParam = GLES20.glGetAttribLocation(floorProgram,
 "a_Color");

 floorModelParam =
 GLES20.glGetUniformLocation(floorProgram, "u_Model");
 floorModelViewParam =
 GLES20.glGetUniformLocation(floorProgram, "u_MVMatrix");

Cardboard Box

[94]

 floorMVPMatrixParam =
 GLES20.glGetUniformLocation(floorProgram, "u_MVP");
 floorLightPosParam =
 GLES20.glGetUniformLocation(floorProgram, "u_LightPos");

 // Enable arrays
 GLES20.glEnableVertexAttribArray(floorPositionParam);
 GLES20.glEnableVertexAttribArray(floorNormalParam);
 GLES20.glEnableVertexAttribArray(floorColorParam);
 }

onDrawEye
Calculate MVP and draw the floor in onDrawEye:

 Matrix.multiplyMM(floorView, 0, view, 0, floorTransform,
 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 floorView, 0);
 drawFloor();

drawFloor
Define a drawFloor method, as follows:

 private void drawFloor() {
 GLES20.glUseProgram(floorProgram);
 GLES20.glUniform3fv(floorLightPosParam, 1,
 lightPosInEyeSpace, 0);
 GLES20.glUniformMatrix4fv(floorModelParam, 1, false,
 floorTransform, 0);
 GLES20.glUniformMatrix4fv(floorModelViewParam, 1, false,
 floorView, 0);
 GLES20.glUniformMatrix4fv(floorMVPMatrixParam, 1, false,
 modelViewProjection, 0);
 GLES20.glVertexAttribPointer(floorPositionParam,
 COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false, 0, floorVerticesBuffer);
 GLES20.glVertexAttribPointer(floorNormalParam, 3,
 GLES20.GL_FLOAT, false, 0,
 floorNormalsBuffer);
 GLES20.glVertexAttribPointer(floorColorParam, 4,
 GLES20.GL_FLOAT, false, 0,
 floorColorsBuffer);
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0,
 floorVertexCount);
 }

Chapter 3

[95]

Build and run it. It will now look like the following screenshot:

Woot!

Hey, look at this!
In the last part of the project, we add a feature that detects when you're looking at an
object (the cube) and highlights it with a different color.

This is accomplished with the help of the CardboardView interface method,
onNewFrame, which passes the current head transformation information.

The isLookingAtObject method
Let's start with the most interesting part. We'll borrow the isLookingAtObject
method from Google's Treasure Hunt demo. It checks whether the user is looking
at an object by calculating where the object is in the eye space and returns true if the
user is looking at the object. Add the following code to MainActivity:

/**
 * Check if user is looking at object by calculating where the
 object is in eye-space.
 *
 * @return true if the user is looking at the object.
 */
 private boolean isLookingAtObject(float[] modelView, float[]
 modelTransform) {
 float[] initVec = { 0, 0, 0, 1.0f };
 float[] objPositionVec = new float[4];

Cardboard Box

[96]

 // Convert object space to camera space. Use the headView
 from onNewFrame.
 Matrix.multiplyMM(modelView, 0, headView, 0,
 modelTransform, 0);
 Matrix.multiplyMV(objPositionVec, 0, modelView, 0,
 initVec, 0);

 float pitch = (float) Math.atan2(objPositionVec[1], -
 objPositionVec[2]);
 float yaw = (float) Math.atan2(objPositionVec[0], -
 objPositionVec[2]);

 return Math.abs(pitch) < PITCH_LIMIT && Math.abs(yaw) <
 YAW_LIMIT;
 }

The method takes two arguments: the modelView and modelTransform
transformation matrices of the object we want to test. It also references the
headView class variable, which we'll set in onNewFrame.

A more precise way to do this might be to cast a ray from the camera into the
scene in the direction in which the camera is looking and determines whether
it intersects any geometry in the scene. This will be very effective but also very
computationally expensive.

Instead, this function takes a simpler approach and doesn't even use the geometry of
the object. It rather uses the object's view transform to determine how far the object
is from the center of the screen and tests whether the angle of that vector is within a
narrow range (PITCH_LIMIT and YAW_LIMIT). Yeah I know, people get PhDs to come up
with this stuff!

Let's define the variables that we need as follows:

 // Viewing variables
 private static final float YAW_LIMIT = 0.12f;
 private static final float PITCH_LIMIT = 0.12f;

 private float[] headView;

Allocate headView in onCreate:

 headView = new float[16];

Get the current headView value on each new frame. Add the following code to
onNewFrame:

 headTransform.getHeadView(headView, 0);

Chapter 3

[97]

Then, modify drawCube to check whether the user is looking at the cube and decide
which colors to use:

 if (isLookingAtObject(cubeView, cubeTransform)) {
 GLES20.glVertexAttribPointer(cubeColorParam, 4,
 GLES20.GL_FLOAT, false, 0,
 cubeFoundColorsBuffer);
 } else {
 GLES20.glVertexAttribPointer(cubeColorParam, 4,
 GLES20.GL_FLOAT, false, 0,
 cubeColorsBuffer);
 }

That's it! Except for one (minor) detail: we need a second set of vertex colors for
the highlight mode. We'll highlight the cube by drawing all the faces with the same
yellow color. There are a few changes to be made in order to make this happen.

In Cube, add the following RGBA values:

 public static final float[] CUBE_FOUND_COLORS_FACES = new
 float[] {
 // Same yellow for front, right, back, left, top, bottom
 faces
 1.0f, 0.65f, 0.0f, 1.0f,
 1.0f, 0.65f, 0.0f, 1.0f,
 1.0f, 0.65f, 0.0f, 1.0f,
 1.0f, 0.65f, 0.0f, 1.0f,
 1.0f, 0.65f, 0.0f, 1.0f,
 1.0f, 0.65f, 0.0f, 1.0f,
 };

In MainActivity, add these variables:

 // Model variables
 private static float cubeFoundColors[] =
 Cube.cubeFacesToArray(Cube.CUBE_FOUND_COLORS_FACES, 4);

 // Rendering variables
 private FloatBuffer cubeFoundColorsBuffer;

Add the following code to the prepareRenderingCube method:

 ByteBuffer bbFoundColors =
 ByteBuffer.allocateDirect(cubeFoundColors.length * 4);
 bbFoundColors.order(ByteOrder.nativeOrder());
 cubeFoundColorsBuffer = bbFoundColors.asFloatBuffer();
 cubeFoundColorsBuffer.put(cubeFoundColors);
 cubeFoundColorsBuffer.position(0);

Cardboard Box

[98]

Build and run it. When you look directly at the cube, it gets highlighted.

It may be more fun and challenging if the cubes weren't so close. Try
setting cubeDistance to something like 12f.
Like the Treasure Hunt demo, try setting a new set of random values
for the cube position every time you look at it. Now, you have a game!

Summary
In this chapter, we built a Cardboard Android app from scratch, starting with a
new project and adding Java code a little bit at a time. In our first build, we had a
stereoscopic view of a triangle that you can see in a Google Cardboard headset.

We then added the model transformation, 3D camera views, perspective and head
rotation transformations, and discussed a bit about matrix mathematics. We built a
3D model of a cube, and then created shader programs to use a light source to render
the cube with shading. We also animated the cube and added a floor grid. Lastly,
we added a feature that highlights the cube when the user is looking at it.

Along the way, we enjoyed good discussions of 3D geometry, OpenGL, shaders,
matrix math for 3D perspective viewing, geometric normals, and data buffers for
the rendering pipeline. We also started thinking about the ways in which you can
abstract common patterns in the code into reusable methods.

In the next chapter, we will take a different approach to stereoscopic rendering using
Android layout views to build a useful "virtual lobby" that can be used as a 3D menu
system or portal into other worlds.

[99]

Launcher Lobby
This project creates a Cardboard VR app that can be used to launch the other
Cardboard apps installed on your device. We'll call it LauncherLobby. When you
open LauncherLobby, you will see up to 24 icons arranged horizontally. As you turn
your head to the right or left, the icons scroll as if they are inside a cylinder. You can
open an app by gazing at its icon and pulling the Cardboard trigger.

For this project, we take a minimal approach to creating stereoscopic views.
The project simulates parallax using standard Android ViewGroup layouts and
simply shifts the images to the left or right in each eye, creating the parallax visual
effect. We do not use 3D graphics. We do not use OpenGL directly, though most
modern versions of Android render views with OpenGL. In fact, we hardly use the
Cardboard SDK at all; we only use it to paint the split screen overlay and get the
head orientation. The view layout and image shifting logic, however, is derived
from Google's Treasure Hunt sample (where it is used to draw a text overlay).

The advantages of this approach are multifold. It illustrates how it's possible to
build Cardboard apps even without high-level graphics, matrix math, render
engines, and physics. Of course, these are often required, but in this case, they're not.
If you have experience with Android development, the classes and patterns used
here may be especially familiar. This project demonstrates how Cardboard VR, at a
minimum, only needs a Cardboard SDK head transform and a split-screen layout to
produce a stereoscopic application.

Practically speaking, we chose this approach so that we can use Android's TextView.
Rendering arbitrary text in 3D is actually pretty complicated (though certainly
possible), so for the sake of simplicity, we are constraining this project to 2D views
and Android layouts.

Launcher Lobby

[100]

To build the project, we'll first walk you through some basics of putting a text string
and icon image on the screen and viewing them stereoscopically. Then, we'll design
a virtual screen that works like the inside of a cylinder unraveled. Turning your
head horizontally will be like panning across this virtual screen. The screen will
be divided into slots, each containing the icon and the name of a Cardboard app.
Gazing at and clicking on one of the slots will launch the corresponding application.
If you've used the Cardboard Samples app (so called at the time of writing), this
interface will be familiar.

In this chapter, we will cover the following topics:

• Creating a new Cardboard project
• Adding a Hello Virtual World text overlay
• Using virtual screen space
• Responding to head look
• Adding an icon to the view
• Listing installed Cardboard apps
• Highlighting the current app shortcut
• Using the trigger to pick and launch an app

The source code for this project can be found on the Packt Publishing website and on
GitHub at https://github.com/cardbookvr/launcherlobby (with each topic as a
separate commit).

Creating a new project
If you'd like more details and an explanation of these steps, refer to the Creating a
new Cardboard project section of Chapter 2, The Skeleton Cardboard Project, and follow
along there:

1. With Android Studio opened, create a new project. Let's name it
LauncherLobby and target Android 4.4 KitKat (API 19) with an
Empty Activity.

2. Add the Cardboard SDK common.aar and core.aar library files to your
project as new modules, using File | New | New Module....

3. Set the library modules as dependencies to the project app, using File |
Project Structure.

4. Edit the AndroidManifest.xml file as explained in Chapter 2, The Skeleton
Cardboard Project, being careful to preserve the package name for this project.

https://github.com/cardbookvr/launcherlobby

Chapter 4

[101]

5. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard
Project, to compile against SDK 22.

6. Edit the activity_main.xml layout file as explained in Chapter 2,
The Skeleton Cardboard Project.

7. Edit the MainActivity Java class so that it extends CardboardActivity and
implements CardboardView.StereoRenderer. Modify the class declaration
line as follows:
public class MainActivity extends CardboardActivity
implements CardboardView.StereoRenderer {

8. Add the stub method overrides for the interface (using intellisense
Implement Methods or pressing Ctrl + I).

9. Lastly, edit onCreate() by adding the CardboadView instance as follows:
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(this);
 setCardboardView(cardboardView);
 }

Adding Hello Virtual World text overlay
For starters, we're just going to put some text on the screen that you might use for a
toast message to the user, or a heads-up display (HUD) with informative content.
We're going to implement this incrementally in small steps:

1. Create a simple overlay view with some text.
2. Center it on the screen.
3. Add parallax for stereoscopic viewing.

A simple text overlay
First, we'll add some overlay text in a simple way, not stereoscopically, just text on
the screen. This will be our initial implementation of the OverlayView class.

Launcher Lobby

[102]

Open the activity_main.xml file, and add the following lines to add an
OverlayView to your layout:

<.OverlayView
 android:id="@+id/overlay"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true" />

Note that we reference the OverlayView class with just .OverlayView. You may do
this if your view class is in the same package as your MainActivity class. We did
the same earlier for .MainActivity.

Next, we write the Java class. Right-click on the app/java folder (app/src/main/
java/com.cardbookvr.launcherlobby/), and navigate to New | Java Class.
Name it OverlayView.

Define the class so that it extends LinearLayout, and add a constructor method,
as follows:

public class OverlayView extends LinearLayout{

 public OverlayView(Context context, AttributeSet attrs) {
 super(context, attrs);

 TextView textView = new TextView(context, attrs);
 addView(textView);

 textView.setTextColor(Color.rgb(150, 255, 180));
 textView.setText("Hello Virtual World!");
 setVisibility(View.VISIBLE);
 }
}

The OverlayView() constructor method creates a new TextView instance with a
pleasant greenish color and the text Hello Virtual World!.

Chapter 4

[103]

Run the app, and you will notice our text in the top-left corner of the screen,
as shown in the following screenshot:

Center the text using a child view
Next, we create a separate view group and use it to control the text object.
Specifically, to center it in the view.

In the OverlayView constructor, replace the TextView with an instance of a different
ViewGroup helper class that we're going to write called EyeView. Presently, it's
monoscopic but soon we'll use this class to create two views: one for each eye:

 public OverlayView(Context context, AttributeSet attrs) {
 super(context, attrs);

 LayoutParams params = new LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.MATCH_PARENT, 1.0f);
 params.setMargins(0, 0, 0, 0);

 OverlayEye eye = new OverlayEye(context, attrs);
 eye.setLayoutParams(params);
 addView(eye);

 eye.setColor(Color.rgb(150, 255, 180));
 eye.addContent("Hello Virtual World!");
 setVisibility(View.VISIBLE);
 }

Launcher Lobby

[104]

We create a new instance of OverlayEye named eye, set its color, and add the
text string.

When using a ViewGroup class, you need to specify LayoutParams to tell the parent
how to lay out the view, which we want to be full screen size with no margins (refer
to http://developer.android.com/reference/android/view/ViewGroup.
LayoutParams.html).

In the same OverlayView.java file, we're going to add the private class named
OverlayEye, as follows:

 private class OverlayEye extends ViewGroup {
 private Context context;
 private AttributeSet attrs;
 private TextView textView;
 private int textColor;

 public OverlayEye(Context context, AttributeSet attrs) {
 super(context, attrs);
 this.context = context;
 this.attrs = attrs;
 }

 public void setColor(int color) {
 this.textColor = color;
 }

 public void addContent(String text) {
 textView = new TextView(context, attrs);
 textView.setGravity(Gravity.CENTER);
 textView.setTextColor(textColor);
 textView.setText(text);
 addView(textView);
 }
 }

We have separated the TextView creation from the OverlayEye constructor.
The reason for this will soon become clear.

The OverlayEye constructor registers the context and attributes needed to add new
content views to the group.

Then, addContent creates the TextView instance and adds it to the layout.

http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html
http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html

Chapter 4

[105]

Now we define onLayout for OverlayEye, which sets the margins of textview,
specifically the top margin, as a mechanism to force the text to be vertically centered:

 @Override
 protected void onLayout(boolean changed, int left, int
 top, int right, int bottom) {
 final int width = right - left;
 final int height = bottom - top;

 final float verticalTextPos = 0.52f;

 float topMargin = height * verticalTextPos;
 textView.layout(0, (int) topMargin, width, bottom);
 }

To center the text vertically, we push it down from the top of the screen using a top
margin. The text will be positioned vertically just below the center of the screen, as
specified by verticalTextPos, a percentage value where 1.0 is the full height of the
screen. We picked a value of 0.52 to push the top of the text down to an extra 2% just
below the middle of the screen.

Run the app, and you will notice that our text is now centered on the screen:

Create stereoscopic views for each eye
Now, we get real. Virtually, that is. For VR, we need stereoscopic left and right
eye views. Fortunately, we have this handy OverlayEye class that we can reuse
for each eye.

Launcher Lobby

[106]

Your eyes are separated by a measurable distance, which is referred to as
your interpupillary distance (IPD). When you view a stereoscopic image in a
Cardboard headset, there are separate views for each eye, offset (horizontally)
by a corresponding distance.

Let's assume that our text is on a plane perpendicular to the view direction. That is,
we're looking straight at the text plane. Given a numeric value corresponding to the
distance of the text from your eyes, we can shift the views for the left and right eyes
horizontally by a fixed number of pixels to create the parallax effect. We'll call this
the depthOffset value. A larger depth offset will cause the text to appear closer; a
smaller depth offset will cause the text to appear further away. A depth offset of zero
will indicate no parallax, as if the text is very far away (greater than 20 feet).

For our application, we're going to choose a depth offset factor of 0.01, or 1% measured
in screen coordinates (a fraction of screen size). The icons will appear to be about 2
meters away (6 feet), which is a comfortable distance for VR, although this value is
an ad hoc approximation. Using percentages of screen size instead of actual pixel
amounts, we can ensure that our application will adapt to any screen/device size.

Let's implement this now.

To begin, declare variables for the leftEye and rightEye values at the top of the
OverlayView class:

public class OverlayView extends LinearLayout{
 private final OverlayEye leftEye;
 private final OverlayEye rightEye;

Initialize them in the OverlayView constructor method:

 public CardboardOverlayView(Context context, AttributeSet
 attrs) {
 super(context, attrs);

 LayoutParams params = new LayoutParams(
 LayoutParams.MATCH_PARENT,
 LayoutParams.MATCH_PARENT, 1.0f);
 params.setMargins(0, 0, 0, 0);

 leftEye = new OverlayEye(context, attrs);
 leftEye.setLayoutParams(params);
 addView(leftEye);

 rightEye = new OverlayEye(context, attrs);
 rightEye.setLayoutParams(params);

Chapter 4

[107]

 addView(rightEye);

 setDepthFactor(0.01f);
 setColor(Color.rgb(150, 255, 180));
 addContent("Hello Virtual World!");
 setVisibility(View.VISIBLE);
 }

Notice the six lines in the middle where we define leftView and rightView and call
addView for them. The setDepthFactor call will set that value in the views.

Add the setter methods for the depth, color, and text content:

 public void setDepthFactor(float factor) {
 leftEye.setDepthFactor(factor);
 rightEye.setDepthFactor(-factor);
 }

 public void setColor(int color) {
 leftEye.setColor(color);
 rightEye.setColor(color);
 }

 public void addContent(String text) {
 leftEye.addContent(text);
 rightEye.addContent(text);
 }

Important: notice that for the rightEye value we use a
negative of the offset value. To create the parallax effect, it
needs to be shifted to the opposite direction of the left eye
view. We can still achieve parallax by only shifting one eye,
but then all of the content will appear to be slightly off center.

The OverlayEye class needs the depth factor setter, which we convert to pixels as
depthOffset. Also, declare a variable for the physical view width (in pixels):

 private int depthOffset;
 private int viewWidth;

In onLayout, set the view width in pixels after it's been calculated:

 viewWidth = width;

Launcher Lobby

[108]

Define the setter method, which converts the depth factor to a pixel offset:

 public void setDepthFactor(float factor) {
 this.depthOffset = (int)(factor * viewWidth);
 }

Now, when we create textView in addContent, we can shift it by the depthOffset
value in pixels:

 textView.setX(depthOffset);
 addView(textView);

When you run the app, your screen will look like this:

The text is now in stereo views, although it's "stuck to your face" as it doesn't move
when your head moves. It's attached to a visor or HUD.

Controlling the overlay view from MainActivity
The next step is to remove some of the hardcoded properties and control them from
the MainActivity class.

In MainActivity.java, add an overlayView variable at the top of the class:

public class MainActivity extends CardboardActivity implements
CardboardView.StereoRenderer {
 private OverlayView overlayView;

Chapter 4

[109]

Initialize its value in onCreate. We'll display the text using the addContent()
method:

 ...
 setCardboardView(cardboardView);
 overlayView = (OverlayView) findViewById(R.id.overlay);
 overlayView.addContent("Hello Virtual World");

Don't forget to remove the call to addContent from the OverlayView method:

 setDepthOffset(0.01f);
 setColor(Color.rgb(150, 255, 180));
 addContent("Hello Virtual World!");
 setVisibility(View.VISIBLE);
 }

Run the app one more time. It should look the same as shown earlier.

You can use code like this to create a 3D toast, such as a text notification message.
Or, it can be used to construct a HUD panel to share in-game status or report the
current device attributes. For example, to show the current screen parameters you
can put them into MainActivity:

 ScreenParams sp =
 cardboardView.getHeadMountedDisplay().getScreenParams();
 overlayView.setText(sp.toString());

This will show the phone's physical width and height in pixels.

Using a virtual screen
In virtual reality, the space you are looking into is bigger than what is on the screen
at a given time. The screen is like a viewport into the virtual space. In this project,
we're not calculating 3D views and clipping planes, and we're constraining the head
motion to left/right yaw rotation.

Launcher Lobby

[110]

You can think of the visible space as the inside surface of a cylinder, with your
head at the center. As you rotate your head, a portion of the unraveled cylinder is
displayed on the screen.

The height of the virtual screen in pixels is the same as the physical device.

We need to calculate the virtual width. One way to do this, for example, would be to
figure out the number of pixels in one degree of head rotation. Then, the width of a
full rotation would be pixels per degree * 360.

We can easily find the physical width of the display in pixels. In fact, we already
found it in onLayout as the viewWidth variable. Alternatively, it can be retrieved
from the Cardboard SDK call:

 ScreenParams sp =
 cardboardView.getHeadMountedDisplay().getScreenParams();
 Log.d(TAG, "screen width: " + sp.getWidth());

From the SDK, we can also get the field of view (FOV) angle of the Cardboard
headset (in degrees). This value will vary from one device to the next and is part
of the Cardboard device configuration parameters:

 FieldOfView fov =
 cardboardView.getHeadMountedDisplay().
 getCardboardDeviceParams().getLeftEyeMaxFov();
 Log.d(TAG, "FOV: " + fov.getLeft());

Chapter 4

[111]

Given this, we can calculate the number of pixels per degree and the total width in
pixels of the virtual screen. For example, on my Nexus 4, the device width (landscape
mode) is 1,280, and using a Homido viewer, the FOV is 40.0 degrees. Thus, the split
screen view is 640 pixels, giving us 16.0 pixels per degree and a virtual screen width
of 5,760 pixels.

While we're at it, we can also calculate and remember the pixelsPerRadian
value, which will be useful to determine the head offset based on the current
user's HeadTransform (given in radians).

Let's add it. At the top of the OverlayView class, add these variables:

 private int virtualWidth;
 private float pixelsPerRadian;

Then, add the following method:

 public void calcVirtualWidth(CardboardView cardboard) {
 int screenWidth =
 cardboard.getHeadMountedDisplay().
 getScreenParams().getWidth() / 2;
 float fov = cardboard.getCardboardDeviceParams().
 getLeftEyeMaxFov().getLeft();
 float pixelsPerDegree = screenWidth / fov;
 pixelsPerRadian = (float) (pixelsPerDegree * 180.0 /
 Math.PI);
 virtualWidth = (int) (pixelsPerDegree * 360.0);
 }

In the onCreate method of MainActivity, add the following call:

 overlayView.calcVirtualWidth(cardboardView);

Note that the FOV value reported from the device parameters is a rough
approximation defined by the headset manufacturer, and, in some devices, may be
overestimated and padded. The actual FOV can be retrieved from the eye object
passed to onDrawEye(), since that represents the actual frustum that should be
rendered. Once the project is working, you might consider making this change to
your own code.

Now, we can use these values to respond to the user's head look rotation.

Responding to head look
Let's make the text move with our head, so it doesn't appear to be stuck to your face!
As you look left or right, we'll move the text in the opposite direction, so it appears
to be stationary in space.

Launcher Lobby

[112]

To do this, we'll start in MainActivity. In the onNewFrame method, we'll determine
the horizontal head rotation angle and pass that to the overlayView object.

In MainActivity, define onNewFrame:

 public void onNewFrame(HeadTransform headTransform) {
 final float[] angles = new float[3];
 headTransform.getEulerAngles(angles, 0);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 overlayView.setHeadYaw(angles[1]);
 }
 });
 }

The onNewFrame method receives the current HeadTransform instance as an
argument, which is an object that provides the current head pose.

There are various ways to mathematically represent the head pose, such as a forward
XYZ direction vector, or a combination of angles. The getEulerAngles method gets
the pose as three angles called Euler angles (pronounced oiler), about the three axes
for pitch, yaw, and roll:

• Pitch turns your head as if nodding "yes"
• Yaw turns your head to the left/right (as if shaking "no")
• Roll turns your head from ear to shoulders ("Do a barrel roll!")

These axes correspond to the X, Y, and Z coordinate axes, respectively. We're going
to constrain this experience to yaw, as you look left or right to select from a row
of menu items. Therefore, we send just the second Euler angle, angles[1], to the
overlayView class.

Note the use of runOnUiThread, which ensures that the overlayView update is
run on the UI thread. Otherwise, we'll cause all sorts of exceptions and break the
UI (you can refer to http://developer.android.com/reference/android/app/
Activity.html#runOnUiThread(java.lang.Runnable)).

So, back in OverlayView, add a variable to headOffset and a method to set it,
setHeadYaw:

 private int headOffset;

 public void setHeadYaw(float angle) {
 headOffset = (int)(angle * pixelsPerRadian);

http://developer.android.com/reference/android/app/Activity.html#runOnUiThread(java.lang.Runnable)
http://developer.android.com/reference/android/app/Activity.html#runOnUiThread(java.lang.Runnable)

Chapter 4

[113]

 leftEye.setHeadOffset(headOffset);
 rightEye.setHeadOffset(headOffset);
 }

The idea here is to convert the head rotation into a positional offset for the text object
on the screen. When your head turns to the left, move the objects to the right. When
your head turns to the right, move the objects to the left. Thus, the objects scroll on
the screen as you turn your head.

The yaw angle (rotation about the vertical Y axis) that we get from the Cardboard
SDK is in radians. We calculate the number of pixels to offset the view, in the
opposite direction from the head. Thus, we take the angle and multiply that
by pixelsPerRadian. Why don't we negate the angle? It just turns out that the
clockwise rotation is registered as a negative rotation in the Y axis. Go figure.

Lastly, in OverlayEye, define the setHeadOffset method to change the X position of
the view objects. Make sure that you include the depthOffset variable as well:

 public void setHeadOffset(int headOffset) {
 textView.setX(headOffset + depthOffset);
 }

Run the app. When you move your head, the text should scroll in the
opposite direction.

Adding an icon to the view
Next, we'll add an icon image to the view.

For now, let's just use a generic icon, such as android_robot.png. A copy of this can
be found on the Internet, and there's a copy included with the files for this chapter.
Paste the android_robot.png file into your project's app/res/drawable/ folder.
Don't worry, we'll be using the actual app icons later.

We want to display both the text and an icon together, so we can add the code in
order to add the image views to the addContent method.

In the onCreate method of MainActivity, modify the addContent call to pass the
icon as a second parameter:

 Drawable icon = getResources()
 .getDrawable(R.drawable.android_robot, null);
 overlayView.addContent("Hello Virtual World!", icon);

Launcher Lobby

[114]

In addContent of OverlayView, add the icon parameter and pass it to the
OverlayEye views:

 public void addContent(String text, Drawable icon) {
 leftEye.addContent(text, icon);
 rightEye.addContent(text, icon);
 }

Now for the OverlayEye class. At the top of OverlayEye, add a variable to the
ImageView instance:

 private class OverlayEye extends ViewGroup {
 private TextView textView;
 private ImageView imageView;

Modify addContent of OverlayEye in order to also take a Drawable icon and create
the ImageView instance for it. The modified method now looks like this:

 public void addContent(String text, Drawable icon) {
 textView = new TextView(context, attrs);
 textView.setGravity(Gravity.CENTER);
 textView.setTextColor(textColor);
 textView.setText(text);
 addView(textView);

 imageView = new ImageView(context, attrs);
 imageView.setScaleType
 (ImageView.ScaleType.CENTER_INSIDE);
 imageView.setAdjustViewBounds(true);
 // preserve aspect ratio
 imageView.setImageDrawable(icon);
 addView(imageView);
 }

Using imageView.setScaleType.CENTER_INSIDE tells the view to scale the image
from its center. Setting setAdjustViewBounds to true tells the view to preserve the
image's aspect ratio.

Set the layout parameters of ImageView in the onLayout method of OverlayEye.
Add the following code to the bottom of the onLayout method:

 final float imageSize = 0.1f;
 final float verticalImageOffset = -0.07f;
 float imageMargin = (1.0f - imageSize) / 2.0f;
 topMargin = (height * (imageMargin +
 verticalImageOffset));
 float botMargin = topMargin + (height * imageSize);
 imageView.layout(0, (int) topMargin, width, (int)
 botMargin);

Chapter 4

[115]

When the image is drawn, it will fit within the top and bottom margins, scaled
automatically. In other words, given a desired image size (such as 10% of the screen
height, or 0.1f), the image margin factor is (1 - size)/2, multiplied by the pixel height
of the screen to get the margin in pixels. We also add a small vertical offset (negative,
to move it up) for spacing between the icon and the text below it.

Finally, add the imageView offset to the setHeadOffset method:

 public void setHeadOffset(int headOffset) {
 textView.setX(headOffset + depthOffset);
 imageView.setX(headOffset + depthOffset);
 }

Run the app. Your screen will look like this. When you move your head, both the
icon and text will scroll.

Listing installed Cardboard apps
If you haven't forgotten, the purpose of this LauncherLobby app is to show a list of
Cardboard apps on the device and let the user pick one to launch it.

If you like what we've built so far, you may want to save a copy for future reference.
The changes we're going to make next will significantly modify the code to support a
list of views as shortcuts to your apps.

Launcher Lobby

[116]

We're going to replace the addContent method with addShortcut and the
imageView and textView variables with a list of shortcuts. Each shortcut consists of
an ImageView and a TextView to display the shortcut, as well as an ActivityInfo
object for the purpose of launching the app. The shortcut images and text will appear
on top of each other, as shown earlier, and will be arranged horizontally in a line, a
fixed distance apart.

Queries for Cardboard apps
First, let's get the list of Cardboard apps installed on the device. At the end of the
onCreate method of MainActivity, add a call to a new method, getAppList:

 getAppList();

Then, define this method in MainActivity, as follows:

 private void getAppList() {
 final Intent mainIntent = new Intent(Intent.ACTION_MAIN,
 null);
 mainIntent.addCategory
 ("com.google.intent.category.CARDBOARD");
 mainIntent.addFlags(PackageManager.GET_INTENT_FILTERS);

 final List<ResolveInfo> pkgAppsList =
 getPackageManager().queryIntentActivities(mainIntent,
 PackageManager.GET_INTENT_FILTERS);

 for (ResolveInfo info : pkgAppsList) {
 Log.d("getAppList",
 info.loadLabel(getPackageManager()).toString());
 }
 }

Run it, and review the logcat window in Android Studio. The code gets the list of
Cardboard apps on the current device (pkgAppsList) and prints their label (name) to
the debug console.

Cardboard apps are identified by having the CARDBOARD intent category, so we filter
by that. The call to addFlags and specifying the flag in queryIntentActivities are
important, because otherwise we won't get the list of intent filters and note of the apps
will match the CARDBOARD category. Also, note that we're using the Activity class's
getPackageManager() function. If you need to put this method in another class, it will
need a reference to the activity. We will be using intents again later on in this book. For
more information on the package manager and Intents, refer to http://developer.
android.com/reference/android/content/pm/PackageManager.html and
http://developer.android.com/reference/android/content/Intent.html.

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/Intent.html

Chapter 4

[117]

Create the Shortcut class for apps
Next, we'll define a Shortcut class that holds the details we require of each
Cardboard app in a convenient object.

Create a new Java class named Shortcut. Define it as follows:

public class Shortcut {
 private static final String TAG = "Shortcut";
 public String name;
 public Drawable icon;
 ActivityInfo info;

 public Shortcut(ResolveInfo info, PackageManager
 packageManager){
 name = info.loadLabel(packageManager).toString();
 icon = info.loadIcon(packageManager);
 this.info = info.activityInfo;
 }
}

In MainActivity, modify getAppList() to build shortcuts from pkgAppsList and
add them to overlayView:

 ...
 int count = 0;
 for (ResolveInfo info : pkgAppsList) {
 overlayView.addShortcut(new Shortcut(info,
 getPackageManager()));
 if (++count == 24)
 break;
 }

We need to limit the number of shortcuts that will fit within our view cylinder.
In this case, I chose 24 as a reasonable number.

Add shortcuts to OverlayView
Now, we modify OverlayView to support a list of shortcuts that will be rendered.
First, declare a list variable, shortcuts, to hold them:

public class OverlayView extends LinearLayout {
 private List<Shortcut> shortcuts = new ArrayList<Shortcut>();
 private final int maxShortcuts = 24;
 private int shortcutWidth;

Launcher Lobby

[118]

The addShortcut method is as follows:

 public void addShortcut(Shortcut shortcut){
 shortcuts.add(shortcut);
 leftEye.addShortcut(shortcut);
 rightEye.addShortcut(shortcut);
 }

As you can see, this calls the addShortcut method in the OverlayEye class.
This builds a list of TextView and ImageView instances for the layout.

Note the maxShortcuts and shortcutWidth variables. maxShortcuts defines
the maximum number of shortcuts we want to fit on the virtual screen, and
shortcutWidth will be the width of each shortcut slot on the screen. Initialize
shortcutWidth in calcVirtualWidth(), adding the following line of code at the
end of calcVirtualWidth:

 shortcutWidth = virtualWidth / maxShortcuts;

Using view lists in OverlayEye
At the top of OverlayEye, replace the textView and imageView variables with lists:

 private class OverlayEye extends LinearLayout {
 private final List<TextView> textViews = new
 ArrayList<TextView>();
 private final List<ImageView> imageViews = new
 ArrayList<ImageView>();

Now we're ready to write the addShortcut method in OverlayEye. It looks
very much like the addContent method we're replacing. It creates textView and
imageView (as mentioned earlier) but then stuffs them into a list:

 public void addShortcut(Shortcut shortcut) {
 TextView textView = new TextView(context, attrs);
 textView.setTextSize(TypedValue.COMPLEX_UNIT_DIP,
 12.0f);
 textView.setGravity(Gravity.CENTER);
 textView.setTextColor(textColor);
 textView.setText(shortcut.name);
 addView(textView);
 textViews.add(textView);

 ImageView imageView = new ImageView(context, attrs);
 imageView.setScaleType
 (ImageView.ScaleType.CENTER_INSIDE);

Chapter 4

[119]

 imageView.setAdjustViewBounds(true);
 imageView.setImageDrawable(shortcut.icon);
 addView(imageView);
 imageViews.add(imageView);
 }

Setting setAdjustViewBounds to true preserves the image aspect ratio.

Delete the obsolete addContent method definitions in both the OverlayView and
OverlayEye classes.

In onLayout, we now iterate over the list of textViews, as follows:

 for(TextView textView : textViews) {
 textView.layout(0, (int) topMargin, width,
 bottom);
 }

We also iterate over the list of imageViews, as follows:

 for(ImageView imageView : imageViews) {
 imageView.layout(0, (int) topMargin, width, (int)
 botMargin);
 }

Lastly, we also need to iterate over the list in setHeadOffset:

 public void setHeadOffset(int headOffset) {
 int slot = 0;
 for(TextView textView : textViews) {
 textView.setX(headOffset + depthOffset +
 (shortcutWidth * slot));
 slot++;
 }
 slot = 0;
 for(ImageView imageView : imageViews) {
 imageView.setX(headOffset + depthOffset +
 (shortcutWidth * slot));
 slot++;
 }
 }

Launcher Lobby

[120]

Run the app. You will now see your Cardboard shortcuts neatly arranged in a
horizontal menu that you can scroll by turning your head.

Note that some Java programmers out there might point
out that the list of shortcuts and the list of views in each
OverlayEye class are redundant. They are, indeed, but
it turns out to be quite complicated to refactor the draw
functionality per-eye into the Shortcut class. We found
that this way was the simplest and easiest to understand.

Highlighting the current shortcut
When the user gazes at a shortcut, it should be able to indicate that it is selectable. In
the next section, we'll wire it up to highlight the selected item and to actually launch
the corresponding app.

The trick here is to determine which slot is in front of the user. To highlight it,
we'll brighten the text color.

Let's write a helper method to determine which slot is currently in the gaze, based on
the headOffset variable (which was calculated from the head yaw angle). Add the
getSlot method to the OverlayView class:

 public int getSlot() {
 int slotOffset = shortcutWidth/2 - headOffset;
 slotOffset /= shortcutWidth;
 if(slotOffset < 0)

Chapter 4

[121]

 slotOffset = 0;
 if(slotOffset >= shortcuts.size())
 slotOffset = shortcuts.size() - 1;
 return slotOffset;
 }

One half of the shortcutWidth value is added to the headOffset value, so we
detect gazing at the center of the shortcut. Then, we add the negative of headOffset
since that was originally calculated as the positional offset, which is opposite of the
view direction. Negative values of headOffset actually correspond to slot numbers
greater than zero.

getSlot should return a number between 0 and the number of slots in our virtual
layout; in this case, its 24. Since it is possible to look to the right and set a positive
headOffset variable, getSlot can return negative numbers, so we check the
boundary conditions.

Now, we can highlight the currently selected slot. We'll do it by changing the text
label color. Modify setHeadOffset as follows:

 public void setHeadOffset(int headOffset) {
 int currentSlot = getSlot();
 int slot = 0;
 for(TextView textView : textViews) {
 textView.setX(headOffset + depthOffset +
 (shortcutWidth * slot));
 if (slot==currentSlot) {
 textView.setTextColor(Color.WHITE);
 } else {
 textView.setTextColor(textColor);
 }
 slot++;
 }
 slot = 0;
 for(ImageView imageView : imageViews) {
 imageView.setX(headOffset + depthOffset +
 (shortcutWidth * slot));
 slot++;
 }
 }

Run the app and the item in front of your gaze will become highlighted. Of course,
there may be other interesting ways to highlight the selected app, but this is good
enough for now.

Launcher Lobby

[122]

Using the trigger to pick and launch
the app
The final piece is to detect which shortcut the user is gazing at and respond to a
trigger (click) by launching the app.

When we launch a new app from this one, we need to reference the MainActivity
object. One way to do it is to make it a singleton object. Let's do that now. Note
that you can get into trouble defining activities as singletons. Android can launch
multiple instances of a single Activity class, but even across apps, static variables
are shared.

At the top of the MainActivity class, add an instance variable:

 public static MainActivity instance;

Initialize it in onCreate:

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 instance = this;

Now in MainActivity, add a handler to the Cardboard trigger:

 @Override
 public void onCardboardTrigger(){
 overlayView.onTrigger();
 }

Then, in OverlayView, add the following method:

 public void onTrigger() {
 shortcuts.get(getSlot()).launch();
 }

We're using getSlot to index into our shortcuts list. Because we checked
the boundary conditions in getSlot itself, we don't need to worry about
ArrayIndexOutOfBounds exceptions.

Finally, add a launch() method to Shortcut:

 public void launch() {
 ComponentName name = new
 ComponentName(info.applicationInfo.packageName,
 info.name);
 Intent i = new Intent(Intent.ACTION_MAIN);

Chapter 4

[123]

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |
 Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
 i.setComponent(name);

 if(MainActivity.instance != null) {
 MainActivity.instance.startActivity(i);
 } else {
 Log.e(TAG, "Cannot find activity singleton");
 }
 }

We use the ActivityInfo object that we stored in the Shortcut class to create a new
Intent instance, and then call MainActivity.instance.startActivity with it as
an argument to launch the app.

Note that once you've launched a new app, there's no system-wide way to get back
to LauncherLobby from within VR. The user will have to remove the phone from
the Cardboard Viewer, and then click on the back button. However, the SDK does
support CardboardView.setOnCardboardBackButtonListener which can be
added to your Cardboard apps if you want to present a back or exit button.

There you have it! LauncherLobby is ready to rock and roll.

Further enhancements
Some ideas for how to improve and enhance this project include the following:

• Support more than 24 shortcuts, perhaps adding multiple rows or an infinite
scrolling mechanic

• Reuse images and text view objects; you only ever see a few at a time
• Currently, really long app labels will overlap, tweak your view code to make

the text wrap, or introduce an ellipsis (...) when the label is too long
• Add a cylindrical background image (skybox)
• Alternative ways to highlight the current shortcut, perhaps with a glow,

or move it closer by adjusting its parallax offset
• Add sounds and/or vibrations to enhance the experience and reinforce the

selection feedback

Launcher Lobby

[124]

Summary
In this chapter, we built the LauncherLobby app, which can be used to launch other
Cardboard apps on your device. Rather than using 3D graphics and OpenGL,
we implemented this using Android GUI and a virtual cylindrical screen.

The first part of the implementation was largely instructional: how to add a
TextView overlay, center it in the view group, and then display it stereoscopically
with left/right eye parallax views. Then, we determined the size of the virtual screen,
an unraveled cylinder, based on the current physical device size and the current
Cardboard device field of view parameters. Objects are scrolled on the virtual screen
as the user moves his head left and right (yaw rotation). Finally, we queried the
Android device for installed Cardboard apps, displayed their icons and titles in a
horizontal menu, and allowed you to pick one to launch by gazing at it and clicking
on the trigger.

In the next chapter, we go back to 3D graphics and OpenGL. This time, we're
building a software abstraction layer that helps encapsulate much of the lower
level details and housekeeping. This engine will be reusable for other projects in
this book as well.

[125]

RenderBox Engine
While the Cardboard Java SDK and OpenGL ES are powerful and robust libraries
for mobile VR applications, they're pretty low level. Software development best
practices expect that we abstract common programming patterns into new classes
and data structures. In Chapter 3, Cardboard Box, we got some hands-on experience
with the nitty gritty details. This time, we're revisiting those details while abstracting
them into a reusable library that we'll call RenderBox. There'll be vector math,
materials, lighting, and more, all rolled up into a neat little package.

In this chapter, you will learn to:

• Create a new Cardboard project
• Write a Material class with shaders
• Explore our Math package
• Write a Transform class
• Write a Component class with RenderObject Cube, Camera,

and Light components
• Add a Material class for rendering cubes with vertex colors and lighting
• Write a Time animation class
• Export all this into a RenderBox library for reuse

The source code for this project can be found on the Packt Publishing website,
and on GitHub at https://github.com/cardbookvr/renderboxdemo (with each
topic as a separate commit). The final RenderBoxLib project, which will continue
to be maintained and reused in other projects in this book, can also be found on the
Packt Publishing website and on GitHub at https://github.com/cardbookvr/
renderboxlib.

https://github.com/cardbookvr/renderboxdemo
https://github.com/cardbookvr/renderboxlib
https://github.com/cardbookvr/renderboxlib

RenderBox Engine

[126]

Introducing RenderBox – a graphics
engine
In a virtual reality app, you are creating a three-dimensional space with a bunch of
objects. The user's viewpoint, or camera, is also located in this space. With the help
of the Cardboard SDK, the scene is rendered twice, once for the left and right eye, to
create the side-by-side stereoscopic views. The second and equally important feature
translates the sensor data into a head look direction, tracking the real-life user's head.
The pixels are drawn on the screen, or rendered, using the OpenGL ES library, which
talks to the hardware graphics processor (GPU) on your device.

We're going to organize the graphics rendering code into separate Java classes,
which we'll be able to extract into a reusable graphics engine library. We'll call this
library RenderBox.

As you'll see, the RenderBox class implements the CardboardView.StereoRender
interface. But it's more than that. Virtual reality needs 3D graphics rendering, and to
do all this in low-level OpenGL ES calls (and other supporting APIs) can be tedious,
to say the least, especially as your application grows. Furthermore, these APIs
require you to think like a semiconductor chip! Buffers, shaders, and matrix math,
oh my! I mean seriously, who wants to think like that all the time? I'd rather think
like a 3D artist and VR developer.

There are many distinct pieces to track and manage, and they can get complicated. As
software developers, it's our role to identify common patterns and implement layers of
abstraction, which serve to reduce this complexity, avoid duplicated code, and express
the program as objects (software classes) closer to the problem domain. In our case, this
domain makes 3D scenes that can be rendered on Cardboard VR devices.

RenderBox starts to abstract away details into a nice clean layer of code. It is
designed to take care of OpenGL calls and complex arithmetic, while still letting
us set up our app-specific code the way we want. It also creates a common pattern
known as the entity component pattern (https://en.wikipedia.org/wiki/
Entity_component_system) for new materials and component types if our projects
demand any special cases. Here's an illustration of the major classes in our library:

https://en.wikipedia.org/wiki/Entity_component_system
https://en.wikipedia.org/wiki/Entity_component_system

Chapter 5

[127]

The RenderBox class implements CardboardView.StereoRenderer, relieving
that responsibility from the app's MainActivity class. As we'll see, MainActivity
communicates with RenderBox through the IRenderBox interface (with the setup,
preDraw, and postDraw hooks) so that MainActivity implements IRenderBox.

Let's consider the kinds of Component that can participate in a 3D VR scene:

• RenderObject: These are drawable models in the scene, such as cubes
and spheres

• Camera: This is the viewpoint of the user, which is used to render the scene
• Light: These are sources of illumination used for shading and shadows

Every object in our scene has an X, Y, and Z location in space, a rotation, and three
scale dimensions. These properties are defined by the Transform class. Transforms
can be arranged in a hierarchy, letting you build more complex objects that are
assembled from simpler ones.

Each Transform class can be associated with one or more Component classes.
Different kinds of components (for example, Camera, Light, and RenderObject)
extend the Component class. A component should not exist without being attached to
a Transform class but the reverse (a transform with no components) is perfectly fine.

RenderBox Engine

[128]

Internally, RenderBox maintains a list of RenderObjects. These are the geometric
models in the scene. Types of RenderObjects include Cube and Sphere, for example.
These objects are associated with a Material, which defines their color, texture,
and/or shading properties. Materials, in turn, reference, compile, and execute
low-level shader programs. Maintaining a flat list of components to render each
frame is more efficient than traversing the transform hierarchy every frame. It is a
perfect example of why we use the entity component pattern.

Other things in the RenderBox package include a Time class used to implement
animations, and a library of Math functions used for vector and matrix operations.

Now, let's start putting this together.

What's the game plan? The end goal is to create our RenderBox graphics engine
library. It will be handy to maintain it in its own project (and repository if
you're using source control, such as Git), so it can be improved and maintained
independently. However, to kick this off, we need a simple app to build it, show you
how to use it, and verify (if not test) that it is working properly. This will be called
RenderBoxDemo. At the end of the chapter, we will extract the RenderBox code into
an Android library module and then export it.

Creating a new project
If you'd like more details and explanation about these steps, refer to the Creating
a new Cardboard project section Chapter 2, The Skeleton Cardboard Project, and follow
along there:

1. With Android Studio opened, create a new project. Let's name it
RenderBoxDemo and target Android 4.4 KitKat (API 19) with an
Empty Activity.

2. Add the Cardboard SDK common.aar and core.aar library files to your
project as new modules, using File | New | New Module....

3. Set the library modules as dependencies to the project app, using File |
Project Structure.

4. Edit the AndroidManifest.xml file as explained in Chapter 2, The Skeleton
Cardboard Project, being careful to preserve the package name for this project.

5. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard
Project, to compile against SDK 22.

6. Edit the activity_main.xml layout file as explained in Chapter 2,
The Skeleton Cardboard Project.

Chapter 5

[129]

Now, open the MainActivity.java file and edit the MainActivity Java class to
extend CardboardActivity:

 public class MainActivity extends CardboardActivity {
 private static final String TAG = "RenderBoxDemo";

Note that unlike the previous chapters, we do not implement
CardboardView.StereoRender. Instead, we will implement
that interface in the RenderBox class (in the next topic).

Creating the RenderBox package folder
Since our plan is to export the RenderBox code as a library, let's put it all into its
own package.

In the Android hierarchy panel, use the Gear icon and uncheck Compact Empty
Middle Packages so that we can insert the new package under com.cardbookvr.

Right-click on the app/java/com/carbookvr/ folder in the project view, navigate
to New | Package, and name it renderbox. You may now wish to enable Compact
Empty Middle Packages again.

Within the renderbox folder, create three package subfolders named components,
materials, and math. The project should now have the same folders as shown in the
following screenshot:

RenderBox Engine

[130]

Creating an empty RenderBox class
Let's begin by creating a skeleton of the RenderBox class Java code. Right-click on the
renderbox/ folder, navigate to New | Java Class, and name it RenderBox.

Now, open the RenderBox.java file and edit it to implement the CardboardView.
StereoRenderer interfaces. Add the following code:

public class RenderBox implements CardboardView.StereoRenderer {
 private static final String TAG = "RenderBox";

 public static RenderBox instance;
 public Activity mainActivity;
 IRenderBox callbacks;

 public RenderBox(Activity mainActivity, IRenderBox callbacks){
 instance = this;
 this.mainActivity = mainActivity;
 this.callbacks = callbacks;
 }
}

It's primarily housekeeping at this point. The RenderBox class is defined as
implements CardboardView.StereoRenderer. Its constructor will receive a
reference to the MainActivity instance and the IRenderBox implementer (in this
case, also the MainActivity) class. MainActivity will now have to implement the
IRenderBox methods (to be defined next). In this way, we instantiate the framework
and implement the critical methods.

Note that we also make RenderBox a singleton by registering the this instance in the
class constructor.

We must also add the method overrides for the StereoRenderer class. From the
intellisense menu, select Implement Methods… (or Ctrl + I) to add the stub method
overrides for the interface, as follows:

 @Override
 public void onNewFrame(HeadTransform headTransform) {
 }

 @Override
 public void onDrawEye(Eye eye) {
 }

 @Override
 public void onFinishFrame(Viewport viewport) {
 }

Chapter 5

[131]

 @Override
 public void onSurfaceChanged(int i, int i1) {
 }

 @Override
 public void onSurfaceCreated(EGLConfig eglConfig) {
 }

 @Override
 public void onRendererShutdown() {
 }

It is now a good time to add an error reporting method, checkGLError, to
RenderBox to log OpenGL rendering errors, as illustrated in the following code:

 /**
 * Checks if we've had an error inside of OpenGL ES, and if so
 what that error is.
 * @param label Label to report in case of error.
 */
 public static void checkGLError(String label) {
 int error;
 while ((error = GLES20.glGetError()) !=
 GLES20.GL_NO_ERROR) {
 String errorText = String.format("%s: glError %d, %s",
 label, error, GLU.gluErrorString(error));
 Log.e(TAG, errorText);
 throw new RuntimeException(errorText);
 }
 }

In the previous chapter projects, we defined MainActivity so that it implements
CardboardView.StereoRenderer. Now this is delegated to our new RenderBox
object. Let's tell MainActivity to use it.

In MainActivity.java, modify the onCreate method to create a new instance of
RenderBox and set it as the view renderer, as follows:

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(new RenderBox(this,this));
 setCardboardView(cardboardView);
 }

RenderBox Engine

[132]

Note that cardboardView.setRender is passed new RenderBox, which takes the
MainActivity instance as both the Activity and IRenderBox arguments. Voila,
we've taken control of the Cardboard SDK integration entirely, and now it's all about
implementing IRenderbox. In this way, we have wrapped the Cardboard SDK,
OpenGL, and a variety of other external dependencies in our own library. Now, if
these specifications change, all we have to do is keep RenderBox up to date, and our
app can tell RenderBox what to do, the same way as always.

Adding the IRenderBox interface
Once we've put all this together, the MainActivity class will implement the
IRenderBox interface. The interface provides callbacks for the setup, preDraw,
and postDraw functions that the activity may implement.

The setup method will be called after doing some generic work in
onSurfaceCreated. The preDraw and postDraw methods will be called during
onDrawEye. We'll get to see this later in the chapter.

We can set that up now. Right-click on renderbox in the hierarchy panel, navigate to
New | Java Class, select Kind: "Interface", and name it IRenderBox. It's only a few
lines and should include just the following code:

public interface IRenderBox {
 public void setup();
 public void preDraw();
 public void postDraw();
}

Then, modify MainActivity so that it implements IRenderBox:

public class MainActivity extends CardboardActivity implements
IRenderBox {

Select intellisense Implement Methods (or Ctrl + I), to add the interface methods
overrides. Android Studio will automatically fill in the following:

 @Override
 public void setup() {

 }

 @Override
 public void preDraw() {

 }

Chapter 5

[133]

 @Override
 public void postDraw() {

 }

If you run the empty app now, you will not get any build errors, and it'll display the
empty Cardboard split view:

Now we have created a skeleton app, ready to implement the RenderBox package
and utilities, which we can use to help build new Cardboard VR applications.

In the next few topics, we will build some of the classes needed in RenderBox.
Unfortunately, we can't display anything interesting on your Cardboard device until
we get these coded up. This also limits our ability to test and verify that the coding
is correct. This could be an appropriate time to introduce unit testing, such as JUnit.
Refer to the Unit testing support docs for details (http://tools.android.com/tech-
docs/unit-testing-support). Unfortunately, space does not allow us to introduce
this subject and use it for the projects in this book. But we encourage you to pursue
this on your own. (And I'll remind you that the GitHub repository for this project has
separate commits for each topic, incrementally adding code as we go along).

Materials, textures, and shaders
In Chapter 3, Cardboard Box, we introduced the OpenGL ES 2.0 graphics pipeline and
simple shaders. We will now extract that code into a separate Material class.

In computer graphics, materials refer to the visual surface characteristics of
geometric models. When rendering an object in the scene, materials are used
together with lighting and other scene information required by the shader code
and the OpenGL graphics pipeline.

http://tools.android.com/tech-docs/unit-testing-support
http://tools.android.com/tech-docs/unit-testing-support

RenderBox Engine

[134]

A solid colored material is the simplest; the entire surface of the object is a single
color. Any color variation in the final rendering will be due to lighting, shadows, and
other features in a different shader variant. It is quite possible to produce solid color
materials with lighting and shadows, but the simplest possible example just fills
raster segments with the same color, such as our very first shader.

A textured material may have surface details defined in an image file (such as a JPG).
Textures are like wallpapers pasted on the surface of the object. They can be used to
a great extent and are responsible for most of the details that the user perceives on
an object. A solid colored sphere may look like a ping pong ball. A textured sphere
may look like the Earth. More texture channels can be added to define variations in
shading or even to emit light when the surface is in shadow. You will see this kind of
effect at the end of Chapter 6, Solar System, when we add an artificial light to the dark
side of the Earth.

More realistic physically-based shading goes beyond texture maps to include
simulated height maps, metallic shininess, and other imperfections, such as rust or
dirt. We won't be going into that in this book, but it's common in graphics engines
such as Unity 3D and the Unreal Engine. Our RenderBox library could be extended to
support it.

Presently, we'll build the infrastructure for a basic solid colored material and
associated shaders. Later in the chapter, we'll expand it with lighting.

Abstract material
In the renderbox/materials/ folder, create a new Java class named Material and
begin to write it as follows:

public abstract class Material {
 private static final String TAG = "RenderBox.Material";

 protected static final float[] modelView = new float[16];
 protected static final float[] modelViewProjection = new
 float[16];

 public static int createProgram(int vertexShaderResource, int
 fragmentShaderResource){
 int vertexShader = loadGLShader(GLES20.GL_VERTEX_SHADER,
 vertexShaderResource);
 int passthroughShader =
 loadGLShader(GLES20.GL_FRAGMENT_SHADER,
 fragmentShaderResource);

 int program = GLES20.glCreateProgram();
 GLES20.glAttachShader(program, vertexShader);

Chapter 5

[135]

 GLES20.glAttachShader(program, passthroughShader);
 GLES20.glLinkProgram(program);
 GLES20.glUseProgram(program);

 RenderBox.checkGLError("Material.createProgram");
 return program;
 }

 public abstract void draw(float[] view, float[] perspective);
}

This defines an abstract class that will be used to extend the various types of
materials we define. The createProgram method loads the designated shader
scripts and builds an OpenGL ES program with the shaders attached.

We also define an abstract draw() method that will be implemented in
each shader separately. Among other things, it requires the modelView and
modelViewProjection transformation matrices be declared at the top of the class.
At this point, we will actually only use modelViewProjection, but a separate
reference to the modelView matrix will be needed when we add lighting.

Next, add the following utility methods to the Material class to load the shaders:

 /**
 * Converts a raw text file, saved as a resource, into an
 OpenGL ES shader.
 *
 * @param type The type of shader we will be creating.
 * @param resId The resource ID of the raw text file about to
 be turned into a shader.
 * @return The shader object handler.
 */
 public static int loadGLShader(int type, int resId) {
 String code = readRawTextFile(resId);
 int shader = GLES20.glCreateShader(type);
 GLES20.glShaderSource(shader, code);
 GLES20.glCompileShader(shader);

 // Get the compilation status.
 final int[] compileStatus = new int[1];
 GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS,
 compileStatus, 0);

 // If the compilation failed, delete the shader.
 if (compileStatus[0] == 0) {

RenderBox Engine

[136]

 Log.e(TAG, "Error compiling shader: " +
 GLES20.glGetShaderInfoLog(shader));
 GLES20.glDeleteShader(shader);
 shader = 0;
 }

 if (shader == 0) {
 throw new RuntimeException("Error creating shader.");
 }

 return shader;
 }

 /**
 * Converts a raw text file into a string.
 *
 * @param resId The resource ID of the raw text file about to
 be turned into a shader.
 * @return The context of the text file, or null in case of
 error.
 */
 private static String readRawTextFile(int resId) {
 InputStream inputStream = RenderBox.instance.
 mainActivity.getResources().openRawResource(resId);
 try {
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(inputStream));
 StringBuilder sb = new StringBuilder();
 String line;
 while ((line = reader.readLine()) != null) {
 sb.append(line).append("\n");
 }
 reader.close();
 return sb.toString();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return null;
 }

As discussed in Chapter 3, Cardboard Box, these methods will load a shader script and
compile it.

Later on, we'll derive specific materials from this class, and define specific shaders
that each one will use.

Chapter 5

[137]

The Math package
In Chapter 3, Cardboard Box, we introduced 3D geometry and matrix math
calculations. We will wrap these up into even more useful functions.

Much of this math code that we've put together is from existing open source projects
(attributions are given in comments in the source code). After all, we might as well take
advantage of the math geniuses who like this stuff and have open sourced excellent
true and tested code. The code list is included with the file downloads for this book.

The following list documents our math API. The actual
code is included with the file downloads for this book and
the GitHub repository.

Generally speaking, the mathematics falls within the subject of linear algebra, but
most of it is specific to graphics programming and works within the constraints of
fast floating point math on modern CPUs.

We encourage you to browse the source code included with the book, which you
will obviously need access to in order to complete the project. Suffice it to say that
everything included is pretty standard fare for a 3D game engine and was, in fact,
largely sourced from (or checked against) an open source engine called LibGDX. The
math library for LibGDX is pretty vast, optimized for mobile CPUs, and could make a
great drop-in replacement for our simpler math package. We will also use the Android
Matrix class extensively, which, in most cases, runs in native code and avoids the
overhead of the Java Virtual Machine (JVM or Dalvik VM in the case of Android).

Here's a summary of our math API.

MathUtils
The MathUtils variables and methods are mostly self-explanatory: PI, sin, cos, and
so on, defined to use floats as an alternative to Java's Math class, which contains
doubles. In computer graphics, we speak floats. The math takes less power and fewer
transistors and the precision loss is acceptable. Your MathUtils class should look
like the following code:

// File: renderbox/math/MathUtils.java
public class MathUtils {
 static public final float PI = 3.1415927f;
 static public final float PI2 = PI * 2;
 static public final float degreesToRadians = PI / 180;
 static public final float radiansToDegrees = 180f / PI;
}

RenderBox Engine

[138]

Matrix4
The Matrix4 class manages 4 x 4 transformation matrices and is used to translate
(position), rotate, and scale points in three-dimensional space. We'll make good
use of these soon. Here is an abridged version of the Matrix4 class with function
bodies removed:

// File: renderbox/math/Matrix4.java
public class Matrix4{
 public final float[] val = new float[16];
 public Matrix4()
 public Matrix4 toIdentity()

 public static Matrix4 TRS(Vector3 position, Vector3 rotation,
 Vector3 scale)
 public Matrix4 translate(Vector3 position)
 public Matrix4 rotate(Vector3 rotation)
 public Matrix4 scale(Vector3 scale)
 public Vector3 multiplyPoint3x4(Vector3 v)
 public Matrix4 multiply(Matrix4 matrix)
 public Matrix4 multiply(float[] matrix)

Make a special note of the TRS function. It is used by the Transform class to
combine the position, rotation, and scale information into a useful matrix, which
represents all three. The order in which this matrix is created is important. First, we
generate a translation matrix, and then we rotate and scale it. The resulting matrix
can be multiplied by any 3D point (our vertices) to apply these three operations
hierarchically.

Quaternion
A quaternion represents a rotational orientation in three-dimensional space in such a
way that, when two quaternions are combined, no information is lost.

From a human point of view, it's easier to think of rotational orientation as three
Euler (pronounced "oiler") angles since we think of three dimensions of rotation:
pitch, yaw, and roll. The reason we use quaternions as opposed to a more
straightforward vector representation of rotations is that depending on the order in
which you apply the three Euler rotations to an object, the resulting 3D orientation
will be different.

Chapter 5

[139]

For more information on quaternions and Euler angles, refer to the
following links:

• https://en.wikipedia.org/wiki/Quaternions_
and_spatial_rotation

• https://en.wikipedia.org/wiki/Euler_angles
• http://mathworld.wolfram.com/EulerAngles.html
• https://en.wikipedia.org/wiki/Conversion_

between_quaternions_and_Euler_angles

Even though quaternions are a four-dimensional construct, we treat each quaternion
as a single value, which represents a 3D orientation. Thus, when we apply multiple
rotation operations in a row, we don't run into issues where one axis' rotation
influences the effect of another. If none of this makes any sense, don't worry. This is
one of the trickiest concepts in 3D graphics. Here is the abridged Quaternion class:

// File: renderbox/math/Quaternion.java
public class Quaternion {
 public float x,y,z,w;
 public Quaternion()
 public Quaternion(Quaternion quat)

 public Quaternion setEulerAngles (float pitch, float yaw,
 float roll) public Quaternion setEulerAnglesRad (float
 pitch, float yaw, float roll)
 public Quaternion conjugate ()
 public Quaternion multiply(final Quaternion other)
 public float[] toMatrix4()
 public String toString()

Vector2
A Vector2 is a two-dimensional point or direction vector defined by (X,Y)
coordinates. With the Vector2 class, you can transform and manipulate
vectors. Here is the abridged Vector2 class:

// File: renderbox/math/Vector2.java
public class Vector2 {
 public float x;
 public float y;

 public static final Vector2 zero = new Vector2(0, 0);
 public static final Vector2 up = new Vector2(0, 1);
 public static final Vector2 down = new Vector2(0, -1);
 public static final Vector2 left = new Vector2(-1, 0);

https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Euler_angles
http://mathworld.wolfram.com/EulerAngles.html
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles

RenderBox Engine

[140]

 public static final Vector2 right = new Vector2(1, 0);

 public Vector2()

 public Vector2(float xValue, float yValue)
 public Vector2(Vector2 other)
 public Vector2(float[] vec)

 public final Vector2 add(Vector2 other)
 public final Vector2 add(float otherX, float otherY, float
 otherZ)
 public final Vector2 subtract(Vector2 other)
 public final Vector2 multiply(float magnitude)
 public final Vector2 multiply(Vector2 other)
 public final Vector2 divide(float magnitude)
 public final Vector2 set(Vector2 other)
 public final Vector2 set(float xValue, float yValue)
 public final Vector2 scale(float xValue, float yValue)
 public final Vector2 scale(Vector2 scale)
 public final float dot(Vector2 other)
 public final float length2()
 public final float distance2(Vector2 other)
 public Vector2 normalize()
 public final Vector2 zero()
 public float[] toFloat3()
 public float[] toFloat4()
 public float[] toFloat4(float w)
 public String toString()

Vector3
A Vector3 is a three-dimensional point or direction vector defined by X, Y, and Z
coordinates. With the Vector3 class, you can transform and manipulate vectors.
Here is the abridged Vector3 class:

// File: renderbox/math/Vector3.java
public final class Vector3 {
 public float x;
 public float y;
 public float z;

 public static final Vector3 zero = new Vector3(0, 0, 0);
 public static final Vector3 up = new Vector3(0, 1, 0);
 public static final Vector3 down = new Vector3(0, -1, 0);

Chapter 5

[141]

 public static final Vector3 left = new Vector3(-1, 0, 0);
 public static final Vector3 right = new Vector3(1, 0, 0);
 public static final Vector3 forward = new Vector3(0, 0, 1);
 public static final Vector3 backward = new Vector3(0, 0, -1);

 public Vector3()
 public Vector3(float xValue, float yValue, float zValue)
 public Vector3(Vector3 other)
 public Vector3(float[] vec)

 public final Vector3 add(Vector3 other)
 public final Vector3 add(float otherX, float otherY, float
 otherZ)
 public final Vector3 subtract(Vector3 other)
 public final Vector3 multiply(float magnitude)
 public final Vector3 multiply(Vector3 other)
 public final Vector3 divide(float magnitude)
 public final Vector3 set(Vector3 other)
 public final Vector3 set(float xValue, float yValue, float
 zValue)
 public final Vector3 scale(float xValue, float yValue, float
 zValue)
 public final Vector3 scale(Vector3 scale)
 public final float dot(Vector3 other)
 public final float length()
 public final float length2()
 public final float distance2(Vector3 other)
 public Vector3 normalize()
 public final Vector3 zero()
 public float[] toFloat3()
 public float[] toFloat4()
 public float[] toFloat4(float w)
 public String toString()

Vector2 and Vector3 share a lot of the same functionality, but pay special attention
to the functions that exist in 3D, and that do not exist in 2D. Next, we'll see how the
math library gets used when we implement the Transform class.

The Transform class
A 3D virtual reality scene will be constructed from various objects, each with a
position, rotation, and scale in 3D dimensional space defined by a Transform.

RenderBox Engine

[142]

It will also be naturally useful to permit transforms to be grouped hierarchically.
This grouping also creates a distinction between local space and world space, where
children only keep track of the difference between their translation, rotation, and
scale (TRS) and that of their parent (local space). The actual data that we are storing
is the local position (we'll use the words position and translation interchangeably),
rotation, and scale. Global position, rotation, and scale are computed by combining
the local TRS all the way up the chain of parents.

First, let's define the Transform class. In the Android Studio hierarchy panel,
right-click on renderbox/, go to New | Java Class, and name it Transform.

Each Transform may have one or more associated components. Typically there is just
one, but it is possible to add as many as you want (as we'll see in the other projects in
this book). We'll maintain a list of components in the transform, as follows:

public class Transform {
 private static final String TAG = "RenderBox.Transform";

 List<Component> components = new ArrayList<Component>();

 public Transform() {}

 public Transform addComponent(Component component){
 component.transform = this;
 return this;
 }
 public List<Component> getComponents(){
 return components;
 }
}

We will define the Component class in the next topic. If it really bothers you to
reference it now before it's defined, you can start with an empty Component Java
class in the renderbox/components folder.

Now back to the Transform class. A Transform object has a location, orientation,
and scale in space, defined by its localPosition, localRotation, and localScale
variables. Let's define these private variables, and then add the methods to
manipulate them.

Also, as transforms can be arranged in a hierarchy, we'll include a reference to a
possible parent transform, as follows:

 private Vector3 localPosition = new Vector3(0,0,0);
 private Quaternion localRotation = new Quaternion();
 private Vector3 localScale = new Vector3(1,1,1);

 private Transform parent = null;

Chapter 5

[143]

The position, rotation, and scale values are initialized to identity values, that is, no
positional offset, rotation, or resizing until they are explicitly set elsewhere. Note that
the identity scale is (1, 1, 1).

The parent transform variable allows each transform to have a single parent in
the hierarchy. You can keep the list of children in the transform, but you might be
surprised to know how far you can get without having to move down the hierarchy.
If you can avoid it, as we have, you can save a good deal of branching when
setting/unsetting a parent reference. Maintaining the list of children means an O(n)
operation every time you unparent an object, and an extra O(1) insertion cost on
setting a parent. It is also not very efficient to hunt through children looking for a
particular object.

Parent methods
The transform can be added or removed from its position in the hierarchy with the
setParent and unParent methods, respectively. Let's define them now:

 public Transform setParent(Transform Parent){
 setParent(parent, true);
 return this;
 }

 public Transform setParent(Transform parent, boolean
 updatePosition){
 if(this.parent == parent)
 //Early-out if setting same parent--don't do anything
 return this;
 if(parent == null){
 unParent(updatePosition);
 return this;
 }

 if(updatePosition){
 Vector3 tmp_position = getPosition();
 this.parent = parent;
 setPosition(tmp_position);
 } else {
 this.parent = parent;
 }
 return this;
 }

 public Transform upParent(){
 unParent(true);
 return this;

RenderBox Engine

[144]

 }

 public Transform unParent(boolean updatePosition){
 if(parent == null)
 //Early out--we already have no parent
 return this;
 if(updatePosition){
 localPosition = getPosition();
 }
 parent = null;
 return this;
 }

Simply, the setParent method sets this.parent to the given parent transform.
Optionally, you can specify that the position is updated relative to the parent. We
added an optimization to skip this procedure if the parent is already set. Setting the
parent to null is equivalent to calling unParent.

The unParent method removes the transform from the hierarchy. Optionally, you
can specify that the position is updated relative to the (previous) parents, so that the
transform is now disconnected from the hierarchy but remains in the same position
in world space.

Note that the rotation and scale can, and should, also be updated when parenting
and unparenting. We don't need that in the projects in this book, so they have been
left as an exercise for the reader. Also, note that our setParent methods include
an argument for whether to update the position. If it is false, the operation runs a
little faster, but the global state of the object will change if the parent transform was
not set to identity (no translation, rotation, or scale). For convenience, you may set
updatePosition to true, which will apply the current global transformation to the
local variables, keeping the object fixed in space, with its current rotation and scale.

Position methods
The setPosition methods set the transform position relative to the parent, or apply
absolute world position to the local variable if there is no parent. Two overloads are
provided if you want to use a vector or individual component values. getPosition
will compute the world space position based on parent transforms, if they exist. Note
that this will have a CPU cost related to the depth of the transform hierarchy. As
an optimization, you may want to include a system to cache world space positions
within the Transform class, invalidating the cache whenever a parent transform is
modified. A simpler alternative would be to make sure that you store the position in
a local variable right after calling getPosition. The same optimization applies for
rotation and scale.

Chapter 5

[145]

Define the position getters and setters as follows:

 public Transform setPosition(float x, float y, float z){
 if(parent != null){
 localPosition = new
 Vector3(x,y,z).subtract(parent.getPosition());
 } else {
 localPosition = new Vector3(x, y, z);
 }
 return this;
 }

 public Transform setPosition(Vector3 position){
 if(parent != null){
 localPosition = new
 Vector3(position).subtract(parent.getPosition());
 } else {
 localPosition = position;
 }
 return this;
 }

 public Vector3 getPosition(){
 if(parent != null){
 return Matrix4.TRS(parent.getPosition(),
 parent.getRotation(),
 parent.getScale()).multiplyPoint3x4(localPosition);
 }
 return localPosition;
 }

 public Transform setLocalPosition(float x, float y, float z){
 localPosition = new Vector3(x, y, z);
 return this;
 }

 public Transform setLocalPosition(Vector3 position){
 localPosition = position;
 return this;
 }

 public Vector3 getLocalPosition(){
 return localPosition;
 }

RenderBox Engine

[146]

Rotation methods
The setRotation methods set the transform rotation relative to the parent, or the
absolute world rotation is applied to the local variable if there is no parent. Again,
multiple overloads provide options for different input data. Define the rotation
getters and setters as follows:

 public Transform setRotation(float pitch, float yaw,
 float roll){
 if(parent != null){
 localRotation = new Quaternion(parent.getRotation()).
 multiply(new Quaternion().setEulerAngles(pitch, yaw,
 roll).conjugate()).conjugate();
 } else {
 localRotation = new Quaternion().setEulerAngles(pitch,
 yaw, roll);
 }
 return this;
 }

 /**
 * Set the rotation of the object in global space
 * Note: if this object has a parent, setRoation modifies the
 input rotation!
 * @param rotation
 */
 public Transform setRotation(Quaternion rotation){
 if(parent != null){
 localRotation = new Quaternion(parent.getRotation()).
 multiply(rotation.conjugate()).conjugate();
 } else {
 localRotation = rotation;
 }
 return this;
 }

 public Quaternion getRotation(){
 if(parent != null){
 return new Quaternion(parent.getRotation()).
 multiply(localRotation);
 }
 return localRotation;
 }

Chapter 5

[147]

 public Transform setLocalRotation(float pitch, float yaw,
 float roll){
 localRotation = new Quaternion().setEulerAngles(pitch,
 yaw, roll);
 return this;
 }

 public Transform setLocalRotation(Quaternion rotation){
 localRotation = rotation;
 return this;
 }

 public Quaternion getLocalRotation(){
 return localRotation;
 }

 public Transform rotate(float pitch, float yaw, float roll){
 localRotation.multiply(new Quaternion().
 setEulerAngles(pitch, yaw, roll));
 return this;
 }

Scale methods
The setScale methods set the transform scale relative to the parent, or apply the
absolute scale to the local variable if there is no parent. Define getters and setters for
the scale as follows:

 public Vector3 getScale(){
 if(parent != null){
 Matrix4 result = new Matrix4();
 result.setRotate(localRotation);
 return new Vector3(parent.getScale())
 .scale(localScale);
 }
 return localScale;
 }

 public Transform setLocalScale(float x, float y, float z){
 localScale = new Vector3(x,y,z);
 return this;
 }

 public Transform setLocalScale(Vector3 scale){

RenderBox Engine

[148]

 localScale = scale;
 return this;
 }

 public Vector3 getLocalScale(){
 return localScale;
 }

 public Transform scale(float x, float y, float z){
 localScale.scale(x, y, z);
 return this;
 }

Transform to matrix and draw
The last thing we need to do with the Transform class is transform an identity
matrix into one that will tell OpenGL how to draw the object correctly. To do this,
we translate, rotate, and scale the matrix, in that order. Technically, we can also
do cool things with matrices, such as shearing and skewing models, but the math
is complicated enough as it is. If you want to learn more, type transformation
matrix, quaternion to matrix, and some of the other terms that we have
been throwing around into a search engine. The actual math behind all of this is
fascinating and way too detailed to explain in a single paragraph.

We also provide the drawMatrix() function that sets up the lighting and model
matrices for a draw call. Since the lighting model is an intermediate step, it makes
sense to combine this call;

 public float[] toFloatMatrix(){
 return Matrix4.TRS(getPosition(), getRotation(),
 getScale()).val;
 }

 public float[] toLightMatrix(){
 return Matrix4.TR(getPosition(), getRotation()).val;
 }

 /**
 * Set up the lighting model and model matrices for a draw
 call
 * Since the lighting model is an intermediate step, it makes
 sense to combine this call
 */
 public void drawMatrices() {

Chapter 5

[149]

 Matrix4 modelMatrix = Matrix4.TR(getPosition(),
 getRotation());
 RenderObject.lightingModel = modelMatrix.val;
 modelMatrix = new Matrix4(modelMatrix);
 RenderObject.model = modelMatrix.scale(getScale()).val;
 }

The drawMatrices method uses variables from the RenderObject class, which will
be defined later. It might seem very anti-Java that we are just setting our matrices
to static variables in the RenderObject class. As you will see, there is actually no
need for multiple instances of the lightingModel object and model to exist. They
are always calculated just in time for each object as they are drawn. If we were to
introduce optimizations that avoid recomputing this matrix all the time, it would
make sense to keep the information around. For the sake of simplicity, we just
recalculate the matrix every time each object is drawn, since it might have
changed since the last frame.

Next, we'll see how the Transform class gets used when we implement the
Component class, which will be extended by a number of classes that define
objects in the 3D scene.

The Component class
Our 3D virtual reality scenes consist of various kinds of components. Components
may include geometric objects, lights, and cameras. Components can be positioned,
rotated, and scaled in 3D space, according to their associated transform. Let's create a
Component class that will serve as the basis for other object classes in the scene.

If you haven't created Component.java yet, create one now in the renderbox/
components folder. Define it as follows:

public class Component {
 public Transform transform;

 public boolean enabled = true;
}

We've included an enabled flag, which will come in handy to easily hide/show
objects when we draw our scene.

That's it. Next, we'll define our first component, RenderObject, to represent
geometric objects in the scene.

RenderBox Engine

[150]

The RenderObject component
RenderObject will serve as the parent class of geometric objects that can be rendered
in the scene. RenderObject extends Component, so it has a Transform.

In the renderbox/components folder, create a new Java class, RenderObject.
Define it as an abstract class that extends Component:

public abstract class RenderObject extends Component {
 private static final String TAG = "RenderObject";

 public RenderObject(){
 super();
 RenderBox.instance.renderObjects.add(this);
 }
}

The first thing we do is have each instance add itself to the list of renderObjects
maintained by the RenderBox instance. Let's jump over to the RenderBox class now
and add support for this list.

Open the RenderBox.java file and add a renderObjects list:

public class RenderBox implements CardboardView.StereoRenderer {

 public List<RenderObject> renderObjects = new
 ArrayList<RenderObject>();

Now, back to the RenderObject class; we'll implement three methods:
allocateFloatBuffer, allocateShortBuffer, and draw.

OpenGL ES requires us to allocate a number of different memory buffers for
various data, including model vertices, normal vectors, and index lists. The
allocateFloatBuffer and allocateShortBuffer methods are utility methods that
objects can use for floats and integers, respectively. Indexes are integers (specifically,
shorts); everything else will be floats. These will be available to derived object classes:

public abstract class RenderObject extends Component {
 ...
 protected static FloatBuffer allocateFloatBuffer(float[]
 data){
 ByteBuffer bbVertices =
 ByteBuffer.allocateDirect(data.length * 4);
 bbVertices.order(ByteOrder.nativeOrder());
 FloatBuffer buffer = bbVertices.asFloatBuffer();
 buffer.put(data);
 buffer.position(0);

Chapter 5

[151]

 return buffer;
 }

 protected static ShortBuffer allocateShortBuffer(short[]
 data){
 ByteBuffer bbVertices =
 ByteBuffer.allocateDirect(data.length * 2);
 bbVertices.order(ByteOrder.nativeOrder());
 ShortBuffer buffer = bbVertices.asShortBuffer();
 buffer.put(data);
 buffer.position(0);
 return buffer;
 }
}

Clever readers might have noticed that we're using ByteBuffer first, and then
converting it to FloatBuffer or ShortBuffer. While the conversion from a byte
to float might make sense—raw memory is not often represented as floats—some
might wonder why we don't allocate the ShortBuffer as a ShortBuffer from the
start. The reason is actually the same in both cases. We want to take advantage of
the allocateDirect method, which is more efficient and only exists within the
ByteBuffer class.

Ultimately, the purpose of a RenderObject component is to draw geometry on the
screen. This is done by transforming the 3D view and rendering through a Material
class. Let's define variables for the material, some setter and getter methods, and the
draw method:

 protected Material material;
 public static float[] model;
 public static float[] lightingModel;

 public Material getMaterial(){
 return material;
 }
 public RenderObject setMaterial(Material material){
 this.material = material;
 return this;
 }

 public void draw(float[] view, float[] perspective){
 if(!enabled)
 return;
 //Compute position every frame in case it changed
 transform.drawMatrices();
 material.draw(view, perspective);
 }

RenderBox Engine

[152]

The draw method prepares the model transform for this object, and most of the draw
action happens in materials. The draw method will be called from the current Camera
component as it responds to the pose from the Cardboard SDK's onDrawEye hook.
If the component isn't enabled, it's skipped.

The RenderObject class is abstract; we will not be working with RenderObjects
directly. Instead, we'll derive object classes, such as Cube and Sphere. Let's create
the Cube class from the RenderObject component next.

The Cube RenderObject component
For demonstration purposes, we'll start with a simple cube. Later on, we'll improve
it with lighting. In Chapter 3, Cardboard Box, we defined a Cube model. We'll start by
using the same class and data structure here. You can even copy the code, but it's
shown in the following text. Create a Cube Java class in the renderbox/components/
folder:

// File: renderbox/components/Cube.java
public class Cube {
 public static final float[] CUBE_COORDS = new float[] {
 // Front face
 -1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,

 // Right face
 1.0f, 1.0f, 1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f,

 // Back face
 1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,
 1.0f, -1.0f, -1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, -1.0f,

 // Left face

Chapter 5

[153]

 -1.0f, 1.0f, -1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 -1.0f, -1.0f, 1.0f,
 -1.0f, 1.0f, 1.0f,

 // Top face
 -1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,
 -1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, -1.0f,

 // Bottom face
 1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, 1.0f,
 -1.0f, -1.0f, -1.0f,
 };

 public static final float[] CUBE_COLORS_FACES = new float[] {
 // Front, green
 0f, 0.53f, 0.27f, 1.0f,
 // Right, blue
 0.0f, 0.34f, 0.90f, 1.0f,
 // Back, also green
 0f, 0.53f, 0.27f, 1.0f,
 // Left, also blue
 0.0f, 0.34f, 0.90f, 1.0f,
 // Top, red
 0.84f, 0.18f, 0.13f, 1.0f,
 // Bottom, also red
 0.84f, 0.18f, 0.13f, 1.0f
 };

 /**
 * Utility method for generating float arrays for cube faces
 *
 * @param model - float[] array of values per face.
 * @param coords_per_vertex - int number of coordinates per
 vertex.
 * @return - Returns float array of coordinates for
 triangulated cube faces.

RenderBox Engine

[154]

 * 6 faces X 6 points X coords_per_vertex
 */
 public static float[] cubeFacesToArray(float[] model, int
 coords_per_vertex) {
 float coords[] = new float[6 * 6 * coords_per_vertex];
 int index = 0;
 for (int iFace=0; iFace < 6; iFace++) {
 for (int iVertex=0; iVertex < 6; iVertex++) {
 for (int iCoord=0; iCoord < coords_per_vertex;
 iCoord++) {
 coords[index] = model[iFace*coords_per_vertex
 + iCoord];
 index++;
 }
 }
 }
 return coords;
 }
}

We list the coordinates for each face of the cube. Each face is made up of two triangles,
resulting in 12 triangles, or a total of 36 sets of coordinates to define the cube.

We also list the different colors for each face of the cube. Rather than duplicating the
colors 36 times, there's the cubeFacesToArray method to generate them.

Now, we need to upgrade Cube for RenderBox.

First, add the words extends RenderObject. This will provide the super() method
in the constructor and allow you to call the draw() method:

public class Cube extends RenderObject {

Allocate buffers for its vertices and colors, and create the Material class that'll be
used for rendering:

 public static FloatBuffer vertexBuffer;
 public static FloatBuffer colorBuffer;
 public static final int numIndices = 36;

 public Cube(){
 super();
 allocateBuffers();
 createMaterial();
 }

 public static void allocateBuffers(){
 //Already setup?

Chapter 5

[155]

 if (vertexBuffer != null) return;
 vertexBuffer = allocateFloatBuffer(CUBE_COORDS);
 colorBuffer = allocateFloatBuffer
 (cubeFacesToArray(CUBE_COLORS_FACES, 4));
 }

 public void createMaterial(){
 VertexColorMaterial mat = new VertexColorMaterial();
 mat.setBuffers(vertexBuffer, colorBuffer, numIndices);
 material = mat;
 }

We ensure that allocateBuffers is run only once by checking whether
vertexBuffer is null.

We plan to use the VertexColorMaterial class for rendering most cubes. That will
be defined next.

A Camera component will call the draw method of the Cube class (inherited from
RenderObject), which, in turn, calls the Material class's draw method. The draw
method will be called from the main Camera component as it responds to the
Cardboard SDK's onDrawEye hook.

Vertex color material and shaders
The Cube component needs a Material to render it on the display. Our Cube
has separate colors for each face, defined as separate vertex colors. We'll define
a VertexColorMaterial instance and the corresponding shaders.

Vertex color shaders
At a minimum, the OpenGL pipeline requires that we define a vertex shader, which
transforms vertices from 3D space to 2D, and a fragment shader, which calculates the
pixel color values for a raster segment. Similar to the simple shaders that we created
in Chapter 3, Cardboard Box, we'll create two files, vertex_color_vertex.shader and
vertex_color_fragment.shader. Unless you have done so already, create a new
Android resource directory with the raw type and name it raw. Then, for each file,
right-click on the directory, and go to New | File. Use the following code for each of
the two files. The code for the vertex shader is as follows:

// File:res/raw/vertex_color_vertex.shader
uniform mat4 u_Model;
uniform mat4 u_MVP;

attribute vec4 a_Position;

RenderBox Engine

[156]

attribute vec4 a_Color;

varying vec4 v_Color;

void main() {
 v_Color = a_Color;
 gl_Position = u_MVP * a_Position;
}

The code for the fragment shader is as follows:

//File: res/raw/vertex_color_fragment.shader
precision mediump float;
varying vec4 v_Color;

void main() {
 gl_FragColor = v_Color;
}

The vertex shader transforms each vertex by the u_MVP matrix, which will be
supplied by the Material class's draw function. The fragment shader simply
passes through the color specified by the vertex shader.

VertexColorMaterial
Now, we're ready to implement our first material, the VertexColorMaterial
class. Create a new Java class named VertexColorMaterial in the renderbox/
materials/ directory. Define the class as extends Material:

public class VertexColorMaterial extends Material {

The methods we're going to implement are as follows:

• VertexColorMaterial: These are constructors
• setupProgram: This creates the shader program and gets its OpenGL

variable locations
• setBuffers: This sets the allocated buffer used in rendering
• draw: This draws a model from a view perspective

Here's the complete code:

public class VertexColorMaterial extends Material {
 static int program = -1;

 static int positionParam;

Chapter 5

[157]

 static int colorParam;
 static int modelParam;
 static int MVPParam;

 FloatBuffer vertexBuffer;
 FloatBuffer colorBuffer;
 int numIndices;

 public VertexColorMaterial(){
 super();
 setupProgram();
 }

 public static void setupProgram(){
 //Already setup?
 if (program != -1) return;
 //Create shader program
 program = createProgram(R.raw.vertex_color_vertex,
 R.raw.vertex_color_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 colorParam = GLES20.glGetAttribLocation(program,
 "a_Color");

 //Enable vertex attribute parameters
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(colorParam);

 //Shader-specific parameters
 modelParam = GLES20.glGetUniformLocation(program,
 "u_Model");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");

 RenderBox.checkGLError("Solid Color Lighting params");
 }

 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 colorBuffer, int numIndices){
 this.vertexBuffer = vertexBuffer;
 this.colorBuffer = colorBuffer;
 this.numIndices = numIndices;
 }

RenderBox Engine

[158]

 @Override
 public void draw(float[] view, float[] perspective) {
 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);

 GLES20.glUseProgram(program);

 // Set the Model in the shader, used to calculate lighting
 GLES20.glUniformMatrix4fv(modelParam, 1, false,
 RenderObject.model, 0);

 // Set the position of the cube
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);

 // Set the ModelViewProjection matrix in the shader.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 // Set the normal positions of the cube, again for shading
 GLES20.glVertexAttribPointer(colorParam, 4,
 GLES20.GL_FLOAT, false, 0, colorBuffer);

 // Set the ModelViewProjection matrix in the shader.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, numIndices);
 }

 public static void destroy(){
 program = -1;
 }
}

The setupProgram method creates an OpenGL ES program for the two shaders
that we created in res/raw/ directory—vertex_color_vertex and vertex_color_
fragment. It then gets references to the positionParam, colorParam, and MVPParm
shader variables using the GetAttribLocation and GetUniformLocation calls
that provide memory locations within the shader program, which are used later
for drawing.

Chapter 5

[159]

The setBuffers method sets the memory buffers for vertices that define an object
that will be drawn using this material. The method assumes that an object model
consists of a set of 3D vertices (X, Y, and Z coordinates).

The draw() method renders the object specified in the buffers with a given set
of model-view-perspective (MVP) transformation matrices. (Refer to the 3D
camera, perspective, and head rotation section of Chapter 3, Cardboard Box, for
detailed explanations.)

You may have noticed that we aren't using that ShortBuffer function mentioned
earlier. Later on, materials will use the glDrawElements call along with an index
buffer. glDrawArrays is essentially a degenerate form of glDrawElements, which
assumes a sequential index buffer (that is, 0, 1, 2, 3, and so on). It is more efficient
with complex models to reuse vertices between triangles, which necessitates an
index buffer.

For completeness, we will also provide a destroy() method for each of the
Material classes. We will come to know exactly why the material must be
destroyed a little later.

As you can see, Material encapsulates much of the lower level OpenGL ES 2.0
calls to compile the shader script, create a render program, set the model-view-
perspective matrices in the shader, and draw the 3D graphic elements.

We can now implement the Camera component.

The Camera component
A Camera class is another type of Component, positioned in space like other
component objects. The camera is special because through the camera's eyes,
we render the scene. For VR, we render it twice, once for each eye.

Let's create the Camera class, and then see how it works. Create it in the renderbox/
components folder and define it as follows:

public class Camera extends Component {
 private static final String TAG = "renderbox.Camera";

 private static final float Z_NEAR = .1f;
 public static final float Z_FAR = 1000f;

 private final float[] camera = new float[16];
 private final float[] view = new float[16];
 public Transform getTransform(){return transform;}

RenderBox Engine

[160]

 public Camera(){
 //The camera breaks pattern and creates its own Transform
 transform = new Transform();
 }

 public void onNewFrame(){
 // Build the camera matrix and apply it to the ModelView.
 Vector3 position = transform.getPosition();
 Matrix.setLookAtM(camera, 0, position.x, position.y,
 position.z + Z_NEAR, position.x, position.y, position.z,
 0.0f, 1.0f, 0.0f);

 RenderBox.checkGLError("onNewFrame");
 }

 public void onDrawEye(Eye eye) {
 GLES20.glEnable(GLES20.GL_DEPTH_TEST);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT |
 GLES20.GL_DEPTH_BUFFER_BIT);

 RenderBox.checkGLError("glClear");

 // Apply the eye transformation to the camera.
 Matrix.multiplyMM(view, 0, eye.getEyeView(), 0,
 camera, 0);

 // Build the ModelView and ModelViewProjection matrices
 float[] perspective = eye.getPerspective(Z_NEAR, Z_FAR);

 for(RenderObject obj : RenderBox.instance.renderObjects) {
 obj.draw(view, perspective);
 }
 RenderBox.checkGLError("Drawing complete");
 }
}

The Camera class implements two methods: onNewFrame and onDrawEye, which
will be delegated from the RenderBox class (which, in turn, is delegated from
MainActivity).

As the name implies, onNewFrame is called on each new frame update. It is passed
the current Cardboard SDK's HeadTransform, which describes the user's head
orientation. Our camera actually doesn't need the headTransform value, because
Eye.getEyeView(), which is combined with the camera matrix, also contains
rotation information. Instead, we just need to define its position and initial direction
using Matrix.setLookAtM (refer to http://developer.android.com/reference/
android/opengl/Matrix.html).

http://developer.android.com/reference/android/opengl/Matrix.html
http://developer.android.com/reference/android/opengl/Matrix.html

Chapter 5

[161]

The onDrawEye method is called by the Cardboard SDK once for each eye view.
Given a Cardboard SDK eye view, the method begins to render the scene. It clears
the surface, including the depth buffer (used to determine visible pixels), applies
the eye transformation to the camera (including perspective), and then draws each
RenderObject object in the scene.

RenderBox methods
Alright! We're getting closer. We're now ready to build a little scene in RenderBox
using the code we created earlier. To start, the scene will simply consist of a colored
cube and, of course, a camera.

At the beginning of this project, we created the skeleton RenderBox class,
which implements CardboardView.StereoRenderer.

To this, we now add a Camera instance. At the top of the RenderBox class,
declare mainCamera, which will get initialized in onSurfaceCreated:

 public static Camera mainCamera;

Note that Android Studio may find other Camera classes; ensure that it uses the one
that we created in this package.

Shortly after your app starts and the MainActivity class is instantiated, the
onSurfaceCreated callback is called. This is where we can clear the screen,
allocate buffers, and build shader programs. Let's add that now:

 public void onSurfaceCreated(EGLConfig eglConfig) {
 RenderBox.reset();
 GLES20.glClearColor(0.1f, 0.1f, 0.1f, 0.5f);

 mainCamera = new Camera();

 checkGLError("onSurfaceCreated");
 callbacks.setup();
 }

To be safe, the first thing it does is call reset, which will destroy any materials that
might have already been compiled by resetting their program handles, before
possibly compiling others. The need for this will become clear in the later projects
where we will implement the intent feature to launch/relaunch the apps:

 /**
 * Used to "clean up" compiled shaders, which have to be
 recompiled for a "fresh" activity
 */

RenderBox Engine

[162]

 public static void reset(){
 VertexColorMaterial.destroy();
 }

The last thing onSurfaceCreated does is invoke the setup callback. This will be
implemented in the interface implementer, which in our case is MainActivity.

In each new frame, we will call the camera's onNewFrame method to build the camera
matrix and apply it to its model-view.

Let's also capture the current head pose (headView and headAngles as
transformation matrices and angles, respectively) if we want to reference it in the
later projects (refer to https://developers.google.com/cardboard/android/
latest/reference/com/google/vrtoolkit/cardboard/HeadTransform#public-
constructors). Still in RenderBox, add the following code:

 public static final float[] headView = new float[16];
 public static final float[] headAngles = new float[3];

 public void onNewFrame(HeadTransform headTransform) {
 headTransform.getHeadView(headView, 0);
 headTransform.getEulerAngles(headAngles, 0);
 mainCamera.onNewFrame();
 callbacks.preDraw();
 }

Then, when the Cardboard SDK goes to draw each eye (for the left and right split
screen stereoscopic views), we will call the camera's onDrawEye method:

 public void onDrawEye(Eye eye) {
 mainCamera.onDrawEye(eye);
 }

While we're at it, we can also enable the preDraw and postDraw callbacks (in the
previous code, in onNewFrame, and in onFinishFrame, respectively).

 public void onFinishFrame(Viewport viewport) {
 callbacks.postDraw();
 }

Should these interface callbacks be implemented in MainActivity, they will be
called from here.

Now, we can build a scene that uses a Camera, a Cube, and the
VertexColorMaterial class.

https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/HeadTransform#public-constructors
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/HeadTransform#public-constructors
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/HeadTransform#public-constructors

Chapter 5

[163]

A simple box scene
Let's rock this riddim! Make a scene with just a cube and, of course, a camera (which
has been set up automatically by RenderBox). Set up the MainActivity class using
the IRenderBox interface's setup callback.

In setup of MainActivity, we create a Transform for the cube and position it so that
it's set back and slightly offset in space:

 Transform cube;

 @Override
 public void setup() {
 cube = new Transform();
 cube.addComponent(new Cube());
 cube.setLocalPosition(2.0f, -2.f, -5.0f);
 }

In Android Studio, click on Run. The program should compile, build, and install
onto your connected Android phone. If you receive any compile errors, fix them
now! As mentioned earlier, with the Matrix class, make sure that you are importing
the right Camera type. There is also a Camera class within the SDK, which represents
the phone's physical camera.

You will see something like this on your device display. (Remember to start the app
while the device is facing you, or you might need to look behind you to find the cube!)

I don't know about you, but I'm excited! Now, let's add some light and shading.

RenderBox Engine

[164]

Cube with face normals
Now, let's add a light to the scene and render the cube with it. To do this, we
also need to define normal vectors for each face of the cube, which are used in
the shader calculations.

If you derive Cube from the one in Chapter 3, Cardboard Box, you may already have
this code:

 public static final float[] CUBE_NORMALS_FACES = new float[] {
 // Front face
 0.0f, 0.0f, 1.0f,
 // Right face
 1.0f, 0.0f, 0.0f,
 // Back face
 0.0f, 0.0f, -1.0f,
 // Left face
 -1.0f, 0.0f, 0.0f,
 // Top face
 0.0f, 1.0f, 0.0f,
 // Bottom face
 0.0f, -1.0f, 0.0f,
 };

Now, add a buffers for the normals, like we have for colors and vertices, and
allocate them:

 public static FloatBuffer normalBuffer;
 ...

 public static void allocateBuffers(){
 ...
 normalBuffer = allocateFloatBuffer(
 cubeFacesToArray(CUBE_NORMALS_FACES, 3));
 }

We're going to add a lighting option argument to createMaterial and implement it
using VertexColorLightingMaterial if it is set to true:

 public Cube createMaterial(boolean lighting){
 if(lighting){
 VertexColorLightingMaterial mat = new
 VertexColorLightingMaterial();
 mat.setBuffers(vertexBuffer, colorBuffer,
 normalBuffer, 36);
 material = mat;

Chapter 5

[165]

 } else {
 VertexColorMaterial mat = new VertexColorMaterial();
 mat.setBuffers(vertexBuffer, colorBuffer, numIndices);
 material = mat;
 }
 return this;
 }

Of course, the VertexColorLightingMaterial class hasn't been written yet. That's
coming up soon. However, first we should create a Light component that can also
be added to illuminate the scene.

We will refactor the Cube() constructor method with two variations. When no
arguments are given, the Cube does not create any Material. When a Boolean
lighting argument is given, that gets passed to createMaterial in order to choose
the material:

 public Cube(){
 super();
 allocateBuffers();
 }

 public Cube(boolean lighting){
 super();
 allocateBuffers();
 createMaterial(lighting);
 }

We'll remind you later, but don't forget to modify the call to new Cube(true) in
MainActivity to pass the lighting option.

Note that we're creating the material in the constructor out of convenience. There
is nothing to stop us from just adding a setMaterial() method to RenderObject
or making the material variable public. In fact, as the number of object and material
types increases, this becomes the only sane way to proceed. This is a drawback of our
simplified Material system, which expects a different class per material type.

The Light component
A light source in our scene is a type of Component with a color and a float array that is
used to represent the calculated location in eye space. Let's create the Light class now.

RenderBox Engine

[166]

Create a new Light Java class in the renderbox/components folder. Define it
as follows:

public class Light extends Component {
 private static final String TAG = "RenderBox.Light";

 public final float[] lightPosInEyeSpace = new float[4];
 public float[] color = new float[]{1,1,1,1};

 public void onDraw(float[] view){
 Matrix.multiplyMV(lightPosInEyeSpace, 0, view, 0,
 transform.getPosition().toFloat4(), 0);
 }
}

Our default light is white (color 1,1,1).

The onDraw method calculates the actual light position in eye space based on the
position of Transform multiplied by the current view matrix.

It's possible to extend RenderBox to support multiple light sources and other fancy
rendering, such as shadows and so on. However, we will limit the scene to a single
light source. Thus, we'll keep it as an instance variable in RenderBox.

Now, we can add a default light to the scene in RenderBox, like how we added the
Camera component earlier. In RenderBox.java, add the following code:

 public Light mainLight;

Modify onSurfaceCreated to initialize the light and add it to the scene:

 public void onSurfaceCreated(EGLConfig eglConfig) {
 ...
 mainLight = new Light();
 new Transform().addComponent(mainLight);
 mainCamera = new Camera();
 ...
 }

Then, compute its position in the Camera class's onDrawEye (it might change for
every frame). Edit the Camera class in Camera.java:

 public void onDrawEye(Eye eye) {
 ...
 // Apply the eye transformation to the camera.
 Matrix.multiplyMM(view, 0, eye.getEyeView(), 0, camera,
 0);

 // Compute lighting position
 RenderBox.instance.mainLight.onDraw(view);

Chapter 5

[167]

Then, we'll also be able to reference the mainLight object in our Material class's
draw method. We could have declared the color and position as static variables, since
we are only using one light, but it makes more sense to plan for supporting multiple
lights in the future.

Vertex color lighting material and shaders
This next topic gets a bit complicated. We're going to write new vertex and fragment
shaders that handle lighting and write a corresponding class extending Material
that makes use of them. Don't worry though, we've already done this once before.
We're just going to actually explain it this time.

Let's dive right into it. Locate the res/raw/ folder. Then, for each file, right-click on
it, and go to New | File to create new files.

File: res/raw/vertex_color_lighting_vertex.shader

uniform mat4 u_Model;
uniform mat4 u_MVP;
uniform mat4 u_MVMatrix;
uniform vec3 u_LightPos;

attribute vec4 a_Position;
attribute vec4 a_Color;
attribute vec3 a_Normal;

varying vec4 v_Color;

const float ONE = 1.0;
const float COEFF = 0.00001;

void main() {
 vec3 modelViewVertex = vec3(u_MVMatrix * a_Position);
 vec3 modelViewNormal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));

 float distance = length(u_LightPos - modelViewVertex);
 vec3 lightVector = normalize(u_LightPos - modelViewVertex);
 float diffuse = max(dot(modelViewNormal, lightVector), 0.5);

 diffuse = diffuse * (ONE / (ONE + (COEFF * distance *
 distance)));
 v_Color = a_Color * diffuse;
 gl_Position = u_MVP * a_Position;
}

RenderBox Engine

[168]

The vertex shader maps a 3D vertex to 2D screen space using a model-view
transformation matrix. Then, it finds the light distance and direction to calculate the
light color and intensity at that point. These values are passed through the graphics
pipeline. The fragment shader then determines the pixel colors in the raster segment.

// File: res/raw/vertex_color_lighting_fragment.shader
precision mediump float;
varying vec4 v_Color;

void main() {
 gl_FragColor = v_Color;
}

Now, we'll create the Material. In the renderbox/materials/ folder, create a
VertexColorLightingMaterial class. Define it so it extends Material, and then
declare its buffers and methods for setupProgram and draw. Here's the code in all its
gory glory:

public class VertexColorLightingMaterial extends Material {
 private static final String TAG = "vertexcollight";
 static int program = -1;
 //Initialize to a totally invalid value for setup state

 static int positionParam;
 static int colorParam;
 static int normalParam;
 static int MVParam;
 static int MVPParam;
 static int lightPosParam;

 FloatBuffer vertexBuffer;
 FloatBuffer normalBuffer;
 FloatBuffer colorBuffer;
 int numIndices;

 public VertexColorLightingMaterial(){
 super();
 setupProgram();
 }

 public static void setupProgram(){
 //Already setup?
 if (program != -1) return;
 //Create shader program

Chapter 5

[169]

 program = createProgram(R.raw.
 vertex_color_lighting_vertex,
 R.raw.vertex_color_lighting_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 normalParam = GLES20.glGetAttribLocation(program,
 "a_Normal");
 colorParam = GLES20.glGetAttribLocation(program,
 "a_Color");

 //Enable vertex attribute parameters
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(normalParam);
 GLES20.glEnableVertexAttribArray(colorParam);

 //Shader-specific parameteters
 MVParam = GLES20.glGetUniformLocation(program,
 "u_MVMatrix");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 lightPosParam = GLES20.glGetUniformLocation(program,
 "u_LightPos");

 RenderBox.checkGLError("Solid Color Lighting params");
 }
 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 colorBuffer, FloatBuffer normalBuffer, int numIndices){
 this.vertexBuffer = vertexBuffer;
 this.normalBuffer = normalBuffer;
 this.colorBuffer = colorBuffer;
 this.numIndices = numIndices;
 }

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 GLES20.glUniform3fv(lightPosParam, 1,
 RenderBox.instance.mainLight.lightPosInEyeSpace, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.lightingModel, 0);

RenderBox Engine

[170]

 // Set the ModelView in the shader, used to calculate
 // lighting
 GLES20.glUniformMatrix4fv(MVParam, 1, false,
 modelView, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix in the shader.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 // Set the normal positions of the cube, again for shading
 GLES20.glVertexAttribPointer(normalParam, 3,
 GLES20.GL_FLOAT, false, 0, normalBuffer);
 GLES20.glVertexAttribPointer(colorParam, 4,
 GLES20.GL_FLOAT, false, 0, colorBuffer);

 // Set the position of the cube
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);

 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, numIndices);
 }

 public static void destroy(){
 program = -1;
 }
}

There's a lot going on here, but you can follow along if you read through it carefully.
Mostly, the material code sets up the parameters that we wrote in the shader program.

It is especially important that in the draw() method, we obtain the current position
transformation matrix, RenderBox.instance.mainLight.lightPosInEyeSpace of
mainLight and the light color, and pass them along to the shader program.

Now is a good time to bring up the calls to GLES20.glEnableVertexAttribArray,
which is required for each vertex attribute you are using. Vertex attributes are any
data which are specified for each vertex, so in this case, we have positions, normals,
and colors. Unlike before, we're now using normal and colors.

Chapter 5

[171]

Having introduced a new Material, let's follow our pattern of adding it to
RenderBox.reset():

 public static void reset(){
 VertexColorMaterial.destroy();
 VertexColorLightingMaterial.destroy();
 }

Finally, in the setup() method of MainActivity, make sure that you pass the
lighting parameter to the Cube constructor:

 public void setup() {
 cube = new Transform();
 cube.addComponent(new Cube(true));
 cube.setLocalPosition(2.0f, -2.f, -5.0f);
 }

Run your app. TAADAA!! There, we have it. The difference from the nonlit material
view may be subtle, but it's more real, virtually.

If you'd like to adjust the shading, you might need to play with the attenuation value
used to calculate the diffuse lighting (for example, change COEFF = 0.00001 to
0.001) in vertex_color_lighting_vertex.shader, depending on the scale of your
scene. For those still in the dark (pun intended), attenuation is a fancy word for how
light intensity diminishes over distance, and actually refers to the same property of
any physical signal (for example, light, radio, sound, and so on). If you have a very
large scene, you might want a smaller value (so light reaches distant regions) or the
inverse (so not everything is in light). You might also want to make the attenuation a
uniform float parameter, which can be adjusted and set on a per-material or per-light
basis, in order to achieve just the right lighting conditions.

RenderBox Engine

[172]

So far, we've been using a single point light to light our scene. A point light is a light
source with a position in 3D space, which casts light equally in all directions. Just
like a standard light bulb placed at a specific location in a room, all that matters is the
distance between it and the object, and the angle at which the ray strikes the surface.
Rotation doesn't matter for point lights, unless a cookie is used to apply a texture to
the light. We do not implement light cookies in the book, but they're super cool.

Other light sources can be directional lights, which will imitate sunlight on earth,
where all of the light rays are going essentially in the same direction. Directional
lights have a rotation that affects the direction of the light rays, but they do not
have a position, as we assume that the theoretical source is infinitely far away along
that direction vector. The third type of light source, from a graphics perspective,
is a spotlight, where the light takes a cone shape and casts a circle or ellipse on
the surface that it hits. The spotlight will end up working in a similar way to the
perspective transformation that we do to our MVP matrix. We will only be using a
single point light for the examples in this book. Implementation of other light source
types is left as an exercise for the reader.

Time for animation
It's time to throw in a little more excitement. Let's animate the cube so that it rotates.
This'll help demonstrate the shading as well.

For this, we need a Time class. This is a singleton utility class that ticks off frames and
makes that information available to the application, for example, via getDeltaTime.
Note that this is a final class, which explicitly means that it cannot be extended.
There is no such thing as a static class in Java, but if we make the constructor private,
we can ensure that nothing will ever instantiate it.

Create a new Time class in the renderbox/ folder. It won't be getting extended, so
we can declare it final. Here's the code:

public final class Time {
 private Time(){}
 static long startTime;
 static long lastFrame;
 static long deltaTime;
 static int frameCount;

 protected static void start(){
 frameCount = 0;
 startTime = System.currentTimeMillis();
 lastFrame = startTime;
 }

Chapter 5

[173]

 protected static void update(){
 long current =System.currentTimeMillis();
 frameCount++;
 deltaTime = current - lastFrame;
 lastFrame = current;
 }

 public static int getFrameCount(){return frameCount;}

 public static float getTime(){
 return (float)(System.currentTimeMillis() - startTime) /
 1000;
 }

 public static float getDeltaTime(){
 return deltaTime * 0.001f;
 }
}

Start the timer in the RenderBox setup:

 public RenderBox(Activity mainActivity, IRenderBox callbacks){
 ...
 Time.start();
 }

Then, in the onNewFrame method of RenderBox, call Time.update():

 public void onNewFrame(HeadTransform headTransform) {
 Time.update();
 ...
}

Now, we can use it to modify the cube's transform each frame, via the preDraw()
interface hook. In MainActivity, make the cube rotate 5 degrees per second about
the X axis, 10 degrees on the Y axis, and 7.5 degrees on the Z axis:

 public void preDraw() {
 float dt = Time.getDeltaTime();
 cube.rotate(dt * 5, dt * 10, dt * 7.5f);
 }

The getDeltaTime() method returns the fraction of a second since the previous
frame. So, if we want it to rotate 5 degrees around the X axis each second, we multiply
deltaTime by 5 to get the fraction of a degree to turn this particular frame.

Run the app. Rock and roll!!!

RenderBox Engine

[174]

Detect looking at objects
Wait, there's more! Just one more thing to add. Building interactive applications
require us to be able to determine whether the user is gazing at a specific object. We
can put this into RenderObject, so any objects in the scene can be gaze detected.

The technique that we'll implement is straightforward. Considering each object
we render is projected onto a camera plane, we really only need to determine
whether the user is looking at the object's plane. Basically, we check whether the
vector between the camera and the plane position is the same as the camera's view
direction. But we'll throw in some tolerance, so you don't have to look exactly at the
center of the plane (that'd be impractical). We will check a narrow range. A good
way to do this is to calculate the angle between the vectors. We calculate the pitch
and yaw angles between these vectors (the up/down X axis angle and left/right Y
axis angle, respectively). Then, we check whether these angles are within a narrow
threshold range, indicating that the user is looking at the plane (more or less).

This method is just like the one used in Chapter 3, Cardboard Box, although at that
time, we put it in MainActivity. Now, we'll move it into the RenderObject
component.

Note that this can get inefficient. This technique is fine for our projects because there
is a limited number of objects, so the calculation isn't expensive. But if we had a
large complex scene with many objects, this setup would fall short. In that case, one
solution is to add an isSelectable flag so that only those objects that should be
interactive in a given frame will be interactive.

If we were using a fully-featured game engine, we would have a physics engine
capable of doing a raycast to precisely determine whether the center of your gaze
intersects the object with a high degree of accuracy. While this might be great in the
context of a game, it is overkill for our purposes.

At the top of RenderObject, add a Boolean variable for an isLooking value. Also,
add two variables to hold the yaw and pitch range limits to detect the camera
viewing angle, and a modelView matrix that we'll use for calculations:

 public boolean isLooking;
 private static final float YAW_LIMIT = 0.15f;
 private static final float PITCH_LIMIT = 0.15f;
 final float[] modelView = new float[16];

Chapter 5

[175]

The implementation of the isLookingAtObject method is as follows. We convert
the object space to the camera space, using the headView value from onNewFrame,
calculate the pitch and yaw angles, and then check whether they're within the range
of tolerance:

 private boolean isLookingAtObject() {
 float[] initVec = { 0, 0, 0, 1.0f };
 float[] objPositionVec = new float[4];

 // Convert object space to camera space. Use the headView
 // from onNewFrame.
 Matrix.multiplyMM(modelView, 0, RenderBox.headView, 0,
 model, 0);
 Matrix.multiplyMV(objPositionVec, 0, modelView, 0,
 initVec, 0);

 float pitch = (float) Math.atan2(objPositionVec[1], -
 objPositionVec[2]);
 float yaw = (float) Math.atan2(objPositionVec[0], -
 objPositionVec[2]);

 return Math.abs(pitch) < PITCH_LIMIT && Math.abs(yaw) <
 YAW_LIMIT;
 }

For convenience, we'll set the isLooking flag at the same time the object is drawn.
Add the call at the end of the draw method:

 public void draw(float[] view, float[] perspective){
 . . .
 isLooking = isLookingAtObject();
 }

That should do it.

For a simple test, we'll log some text to the console when the user is gazing at the
cube. In MainActivity, make a separate variable for the Cube object:

 Cube cubeObject;

 public void setup() {
 cube = new Transform();
 cubeObject = new Cube(true);
 cube.addComponent(cubeObject);
 cube.setLocalPosition(2.0f, -2.f, -5.0f);
 }

RenderBox Engine

[176]

Then, test it in postDraw, as follows:

 public void postDraw() {
 if (cubeObject.isLooking) {
 Log.d(TAG, "isLooking at Cube");
 }
 }

Exporting the RenderBox package
Now that we've finished creating this beautiful RenderBox library, how do we reuse
it in other projects? This is where modules and .aar files come into play. There are a
number of ways to share code between Android projects. The most obvious way is to
literally copy pieces of code into the next project as you see fit. While this is perfectly
acceptable in certain situations, and in fact should be part of your normal process,
it can become quite tedious. What if we have a bunch of files that reference each
other and depend on a certain file hierarchy, such as RenderBox? If you're familiar
with Java development, you might say, "Well, obviously just export the compiled
classes in a .jar file." You would be right, except that this is Android. We have some
generated classes as well as the /res folder, which contains, in this case, our shader
code. What we actually want is an .aar file. Android programmers might be familiar
with .aidl files, which are used for similar purposes, but specifically to establish
interfaces between apps, and not encapsulate feature code.

To generate an .aar file, we first need to put our code inside an Android Studio
module with a different output than an app. You have a few options from this point
onward. We recommend that you create a dedicated Android Studio project, which
contains the RenderBox module as well a test app, which will build alongside the
library and serve as a means to ensure that any changes you make to the library don't
break anything. You can also just copy the renderbox package and the /res/raw
folders into a new project and go from there, but eventually, you'll see that a module
is much more convenient.

You might think "We're gonna call this new project RenderBox," but you might run
into a snag. Basically, the build system can't handle a situation where a project and
module have the same name (they would be expected to have the same package
name, which is a no-no). If you call your project RenderBox, (technically, you
shouldn't have if you followed the instructions) and include an activity, and then
create a module called RenderBox, you will see a build error that complains about
the project and module sharing a name. If you create an empty project with no
activity called RenderBox and add a module called RenderBox, you happen to get
away with it, but as soon as you try to build an app from this project, you'll find
that you cannot. Hence, we suggest that your next step from here is to create a new
project called RenderBoxLib.

Chapter 5

[177]

Building the RenderBoxLib module
Let's give it a shot. Go to File | New | New Project. Name the project RenderBoxLib.

We don't need a MainActivity class, but we're still going to want one, as discussed,
as a test case to ensure that our library works. Adding a test app to the library project
not only gives us the convenience of testing changes to the library in a single step,
but also ensures that we cannot build a new version of the library without ensuring
that an app that uses it can also compile it. Even if your library is free of syntax
errors, it might still break compilation when you include it in a new project.

So, go ahead and add an Empty Activity, and click on Finish in the default options.

All familiar territory so far. However, now we're going to create a new module:

1. Go to File | New | New Module and select Android Library:

RenderBox Engine

[178]

2. Name it RenderBox.

3. Now, we have a new folder in our project view:

Instead of performing the next steps in Android Studio, let's just use our file manager
(Windows Explorer or Finder, or the terminal if you're a pro) to copy our RenderBox
files from the existing project into the new one. If you're using version control, you
might consider transferring your repository to the new project, or creating an init
commit before the copy; it's up to you and how much you care about preserving
your history.

We want to copy all your RenderBox code to the new module from the
RenderBoxDemo project's /app/src/main/java/com/cardbookvr/renderbox
folder to the /renderbox/src/main/java/com/cardbookvr/renderbox folder of
RenderBoxLib.

Chapter 5

[179]

The same goes for the resources; copy them from the RenderBoxDemo project's /app/
src/main/res/raw folder to /renderbox/src/main/res/raw.

This means that almost every .java and .shader file that we created in the original
project goes into the module of the new project, in their corresponding locations.

We won't be transferring MainActivity.java, or any of the XML files, such as
layouts/activity_main.xml or AndroidManifest.xml to the module. These are
app-specific files, which are not included in the library.

Once you've copied the files, go back to Android Studio, and click on the
Synchronize button. This will ensure that Android Studio has noticed the new files.

Then, with renderbox selected in the hierarchy panel, initiate a build by navigating
to Build | Make Module 'RenderBox' (or Ctrl + Shift + F9). You will see a bunch of
errors. Let's take care of them.

RenderBox references the Cardboard SDK, and as such, we must include it in the
RenderBox module as a dependency in a similar way to how we do it for the main
app, like at the beginning of this project:

1. Add the Cardboard SDK common.aar and core.aar library files to your
project as new modules, using File | New | New Module... and Import
.JAR/.AAR Package.

2. Set the library modules as dependencies to the RenderBox model, using
File | Project Structure. In the left-side panel, select RenderBox, then choose
the Dependencies tab | + | Module Dependency, and add common and
core modules.

Once you sync the project and trigger a build, you will hopefully see those errors
related to CardboardView and so on disappear.

Another build. Still, other errors?

RenderBox Engine

[180]

This is because of the naming issues mentioned earlier. If the package name of your
module doesn't match the package name from the original project (that is, com.
cardbookvr.renderbox), you will have to rename it in the copied Java files. Even if
these match, we named our original project RenderBoxDemo, which means that the
generated R class will be part of the com.cardbookvr.renderboxdemo package. Any
import references to this package will need to be changed.

Start by deleting the line that references com.cardbookvr.renderboxdemo (such as
the Material Java files). Then, any references to the R class will show up as errors:

Delete this line, and Android Studio will generate a new valid import line. Try and
build it again. If it's error-free, we're good to go.

You will now see references to R show up as errors with a suggestion:

If you go ahead and press Alt + Enter, Android Studio will add the appropriate
import line to your code. If you don't see the Alt + Enter tooltip, try placing your
cursor next to R. Using the feature this way, you'll have to select Import Class
from the menu you see after pressing Alt + Enter. If you still see errors, make sure
that you've copied the shader code into the /renderbox/res/raw folder, and that
there aren't other errors interfering with this process. Essentially, we are removing
any external references from the code and getting RenderBox to build on its own.
We can also accomplish this code fix by simply pasting import com.cardbook.
renderbox.R; over import com.cardbook.renderboxdemo.R;. That's probably
easier than the first method, but then you wouldn't have learned about Alt + Enter.

Chapter 5

[181]

Once this is done, we should be able to build without errors. This might seem like a
messy way to work, but it doesn't hurt to get messy once in a while. You might even
learn something new about the build pipeline you didn't know earlier.

If everything goes well, you will see a file called renderbox-debug.aar in
renderbox/build/outputs/aar/. If so, you're done. Whew!

One final thought: you should include renderbox-release.aar in your final
applications, but you will lose useful debugging features in the meantime. We will
not discuss how to switch back and forth between debug and release in this book,
but understanding build configurations is essential to the publication process.

The RenderBox test app
This new project houses the renderbox module, but there's also an app folder that
we created in the first place. app is where we can implement a test application to
make sure, at a minimum, that the library is built and basically runs.

We're going to do the same thing to the app module in RenderBoxLib that we did in
our new projects (like renderbox, app is a module. It turns out that we've been using
modules the whole time!):

1. Right-click on the app folder, go to Open Module Settings, and add the
existing renderbox module as a Module dependency with Compile Scope.
Notice that the dependencies cannot be circular. Now that renderbox is a
dependency of the app, the reverse cannot be true.

2. Update /res/layout/activity_main.xml and AndroidManifest.xml,
as we saw at the top of this chapter. (If you're just copying code, make sure
that you change the package= value to the current name, for example, com.
cardbookvr.renderboxlib).

3. Set up class MainActivity extends CardboardActivity implements
IRenderBox.

4. We now also want our MainActivity class to instantiate RenderBox and
define a setup() method, just like MainActivity in RenderBoxDemo. In fact,
just go ahead and copy the entire MainActivity class from RenderBoxDemo,
and make that you do not copy/overwrite the package definition at the top
of the new file in your new project.

With any luck, you should be able to click on the green run button, select your target
device, and see a running app with our buddy, the vertex color cube. We've officially
gone backward in terms of the final result, but our application-specific code is so
clean and simple!

RenderBox Engine

[182]

Using RenderBox in future projects
Now that we've gone through all of this trouble, let's do a trial run to see how to use
our pretty little package all tied up with a bow. One more time. You can perform the
following steps to start each of the subsequent projects in this book:

1. Create a new project, called whatever you like, such as MyCardboardApp,
for API 19 KitKat. Include Empty Activity.

2. Now, go to File | New | New Module…. It's a little counterintuitive,
but even though we are importing an existing module, we're adding
a new one to this project. Choose Import .JAR/.AAR Package.

3. You'll need to navigate to the RenderBoxLib/renderbox/build/outputs
folder of your RenderBox lib project, and select the .aar file. We recommend
that you rename the module to renderbox, as opposed to renderbox-debug.
Click on Finish. For a production app, you would want to have two different
modules in your project: one for debug and one for release, but we will only
be using debug for the projects in this book.

Chapter 5

[183]

4. Now that we have this new module, we need to add it as a dependency to
the default app. Go back to the familiar Module Settings screen, and head
over to the Dependencies tab for app. Click on the plus tab on the right-hand
side, and choose Module dependency:

RenderBox Engine

[184]

5. Then, you can add renderbox:

We now have a copy of the .aar file in our new project's /renderbox module folder.
When you've made changes to the RenderBox library, you just need to build a new
.aar file (build menu, MakeProject), overwrite the copy in the new project, and
trigger a project sync, or clean and rebuild if you want to be sure. The new project
does not maintain a link to the build folder of your library output project.

The remaining steps required to setup a new project are as follows:

1. Use File | New Module to import the Cardboard SDK .aar packages
common and core, and add them as dependencies to the app.

2. Update /res/layout/activity_main.xml and AndroidManifest.xml,
as we've just done for RenderBoxDemo.

3. Set up the MainActivity class so that it extends CardboardActivity and
implements IRenderBox, using the same code as before.

4. We now also want our MainActivity class to instantiate RenderBox and
define a setup() method, just like our MainActivity class in RenderBoxDemo.
In fact, just go ahead and copy the entire MainActivity class, and be careful
not to copy/overwrite the package definition at the top of the file.

Build and run it yet again. Bagged it! We can now proceed with the cool stuff.

This will be our new project process from now on, since the
rest of the projects in this book make use of the RenderBox
library module.

Chapter 5

[185]

A final word on the module process: there's more than one way to peel an orange.
You could have just created a new module in the RenderBox demo project, grabbed
its output, and been off and running. You can also just copy source files around and
try using Git submodules or subtrees to synchronize the sources. This page from the
IntelliJ docs discusses some of the finer points as well (https://www.jetbrains.
com/idea/help/sharing-android-source-code-and-resources-using-
library-projects.html). We've also made certain decisions in terms of keeping
the main activity and layout files completely application-specific, and including
most or all of our shaders and materials in the RenderBox module, instead of in
application code. At any one of these decision points, there are pros and cons, and
we recommend that you think carefully about how you structure your own code in
future projects.

Summary
In this chapter, we created a short and sweet, lightweight graphics engine to build
new Cardboard VR applications. We abstracted the low-level OpenGL ES API calls
into a suite of Material classes and a Camera class. We defined RenderObject for
geometric entities, a Camera and Light components which inherit from a Component
class. We defined a Transform class to organize and orient entities (which contain
components) hierarchically in 3D space. All of this is integrated under the RenderBox
class, which is instantiated and controlled in the MainActivity class, which, in turn,
implements the IRenderBox interface. We complete the circle by specifying the
MainActivity class as the implementer of IRenderBox and implementing setup,
preDraw, and postDraw.

To develop the library, we followed much of what was covered in Chapter 3,
Cardboard Box, with less explanation of how to use OpenGL ES and matrix libraries
and more focus on implementing our RenderBox software architecture.

The resulting RenderBox engine library is now in its own project. In subsequent
chapters we will reuse this library, and we will expand it, including new
Components and Materials. You are encouraged to maintain your RenderBoxLib
code in a source code repository, such as Git. Of course, the final code is provided
with the book assets and in our GitHub repository.

The next chapter is a science project! We're going to build a model of our Solar
System, replete with the Sun, planets, moons, and a starscape. Using RenderBox,
we will add a Sphere component, and we will also add textured shaders to our suite
of materials.

https://www.jetbrains.com/idea/help/sharing-android-source-code-and-resources-using-library-projects.html
https://www.jetbrains.com/idea/help/sharing-android-source-code-and-resources-using-library-projects.html
https://www.jetbrains.com/idea/help/sharing-android-source-code-and-resources-using-library-projects.html

[187]

Solar System
When I was 8 years old, for a science project at school, I made a Solar System from
wires, styrofoam balls, and paint. Today, 8-year olds all around the world will be
able to make virtual Solar Systems in VR, especially if they read this chapter! This
project creates a Cardboard VR app that simulates our Solar System. Well, maybe
not with total scientific accuracy, but good enough for a kid's project and better than
styrofoam balls.

In this chapter, you will create a new Solar System project with the RenderBox
library by performing the following steps:

• Setting up the new project
• Creating a Sphere component and a solid color material
• Adding an Earth texture material with lighting
• Arranging the Solar System geometry
• Animating the heavenly bodies
• Interactively changing camera locations
• Updating the RenderBox library with our new code

As we put these together, we will create planets and moons from a sphere. Much
of the code, however, will be in the various materials and shaders for rendering
these bodies.

The source code for this project can be found on the Packt Publishing
website, and on GitHub at https://github.com/cardbookvr/
solarsystem (with each topic as a separate commit).

https://github.com/cardbookvr/solarsystem
https://github.com/cardbookvr/solarsystem

Solar System

[188]

Setting up a new project
To build this project, we will use our RenderBox library created in Chapter 5, RenderBox
Engine. You can use yours, or grab a copy from the downloadable files provided with
this book or our GitHub repository (use the commit tagged after-ch5—https://
github.com/cardbookvr/renderboxlib/releases/tag/after-ch5). For a
more detailed description of how to import the RenderBox library, refer to the final
Using RenderBox in future projects section of Chapter 5, RenderBox Engine. Perform the
following steps to create a new project:

1. With Android Studio opened, create a new project. Let's name it SolarSystem
and target Android 4.4 KitKat (API 19) with an Empty Activity.

2. Create new modules for each of renderbox, common and core packages,
using File | New Module | Import .JAR/.AAR Package.

3. Set the modules as dependencies for the app, using File | Project Structure.
4. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard

Project, to compile against SDK 22.
5. Update /res/layout/activity_main.xml and AndroidManifest.xml,

as explained in the previous chapters.
6. Edit MainActivity as class MainActivity extends CardboardActivity

implements IRenderBox, and implement the interface method stubs (Ctrl + I).

We can go ahead and define the onCreate method in MainActivity. The class now
has the following code:

public class MainActivity extends CardboardActivity implements
IRenderBox {
 private static final String TAG = "SolarSystem";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CardboardView cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(new RenderBox(this, this));
 setCardboardView(cardboardView);
 }
 @Override
 public void setup() {

 }
 @Override
 public void preDraw() {

Chapter 6

[189]

 }
 @Override
 public void postDraw() {
 }
}

While we build this project, we will be creating new classes that could be good
extensions to RenderBox lib. We'll make them regular classes in this project at first.
Then, at the end of the chapter, we'll help you move them into the RenderBox lib
project and rebuild the library:

1. Right-click on the solarsystem folder (com.cardbookvr.solarsystem),
select New | Package, and name it RenderBoxExt.

2. Within RenderBoxExt, create package subfolders named components and
materials.

There's no real technical need to make it a separate package, but this helps organize
our files, as the ones in RenderBoxExt will be moved into our reusable library at the
end of this chapter.

You can add a cube to the scene, temporarily, to help ensure that everything is set up
properly. Add it to the setup method as follows:

 public void setup() {
 new Transform()
 .setLocalPosition(0,0,-7)
 .setLocalRotation(45,60,0)
 .addComponent(new Cube(true));
 }

If you remember, a cube is a component that's added to a transform. The cube
defines its geometry (for example, vertices). The transform defines its position,
rotation, and scale in 3D space.

You should be able to click on Run 'app' with no compile errors, and see the cube
and Cardboard split screen view on your Android device.

Creating a Sphere component
Our Solar System will be constructed from spheres, representing planets, moons, and
the Sun. Let's first create a Sphere component. We are going to define a sphere as a
triangle mesh of vertices that form the surface of the sphere (For more information
on a triangle mesh, refer to https://en.wikipedia.org/wiki/Triangle_mesh).

https://en.wikipedia.org/wiki/Triangle_mesh

Solar System

[190]

Right-click on the RenderBoxExt/components folder, select New | Java Class, and
name it Sphere. Define it as public class Sphere extends RenderObject:

public class Sphere extends RenderObject{
 private static final String TAG = "RenderBox.Sphere";
 public Sphere() {
 super();
 allocateBuffers();
 }
}

The constructor calls a helper method, allocateBuffers, which allocates buffers for
vertices, normals, textures, and indexes. Let's declare variables for these at the top of
the class:

 public static FloatBuffer vertexBuffer;
 public static FloatBuffer normalBuffer;
 public static FloatBuffer texCoordBuffer;
 public static ShortBuffer indexBuffer;
 public static int numIndices;

Note that we've decided to declare the buffers public to afford future flexibility in
creating arbitrary texture materials for objects.

We'll define a sphere with a radius of 1. Its vertices are arranged by 24 longitude
sections (as hours of the day) and 16 latitude sections, providing sufficient resolution for
our purposes. The top and bottom caps are handled separately. This is a long method,
so we'll break it down for you. Here's the first part of the code where we declare and
initialize variables, including the vertices array. Similar to our Material setup methods,
we only need to allocate the Sphere buffers once, and in this case, we use the vertex
buffer variable to keep track of this state. If it is not null, the buffers have already been
allocated. Otherwise, we should continue with the function, which will set this value:

 public static void allocateBuffers(){
 //Already allocated?
 if (vertexBuffer != null) return;
 //Generate a sphere model
 float radius = 1f;
 // Longitude |||
 int nbLong = 24;
 // Latitude ---
 int nbLat = 16;

 Vector3[] vertices = new Vector3[(nbLong+1) * nbLat +
 nbLong * 2];
 float _pi = MathUtils.PI;
 float _2pi = MathUtils.PI2;

Chapter 6

[191]

Calculate the vertex positions; first, the top and bottom ones and then along the
latitude/longitude spherical grid:

 //Top and bottom vertices are duplicated
 for(int i = 0; i < nbLong; i++){
 vertices[i] = new Vector3(Vector3.up).
 multiply(radius);
 vertices[vertices.length - i - 1] = new
 Vector3(Vector3.up).multiply(-radius);
 }
 for(int lat = 0; lat < nbLat; lat++)
 {
 float a1 = _pi * (float)(lat+1) / (nbLat+1);
 float sin1 = (float)Math.sin(a1);
 float cos1 = (float)Math.cos(a1);

 for(int lon = 0; lon <= nbLong; lon++)
 {
 float a2 = _2pi * (float)(lon == nbLong ? 0 : lon)
 / nbLong;
 float sin2 = (float)Math.sin(a2);
 float cos2 = (float)Math.cos(a2);

 vertices[lon + lat * (nbLong + 1) + nbLong] =
 new Vector3(sin1 * cos2, cos1, sin1 * sin2).
 multiply(radius);
 }
 }

Next, we calculate the vertex normals and then the UVs for texture mapping:

 Vector3[] normals = new Vector3[vertices.length];
 for(int n = 0; n < vertices.length; n++)
 normals[n] = new Vector3(vertices[n]).normalize();

 Vector2[] uvs = new Vector2[vertices.length];
 float uvStart = 1.0f / (nbLong * 2);
 float uvStride = 1.0f / nbLong;
 for(int i = 0; i < nbLong; i++) {
 uvs[i] = new Vector2(uvStart + i * uvStride, 1f);
 uvs[uvs.length - i - 1] = new Vector2(1 - (uvStart + i
 * uvStride), 0f);
 }
 for(int lat = 0; lat < nbLat; lat++)
 for(int lon = 0; lon <= nbLong; lon++)

Solar System

[192]

 uvs[lon + lat * (nbLong + 1) + nbLong] = new
 Vector2((float)lon / nbLong, 1f -
 (float)(lat+1) / (nbLat+1));

This next part of the same allocateBuffers method generates the triangular
indices, which connect the vertices:

 int nbFaces = (nbLong+1) * nbLat + 2;
 int nbTriangles = nbFaces * 2;
 int nbIndexes = nbTriangles * 3;
 numIndices = nbIndexes;
 short[] triangles = new short[nbIndexes];

 //Top Cap
 int i = 0;
 for(short lon = 0; lon < nbLong; lon++)
 {
 triangles[i++] = lon;
 triangles[i++] = (short)(nbLong + lon+1);
 triangles[i++] = (short)(nbLong + lon);
 }

 //Middle
 for(short lat = 0; lat < nbLat - 1; lat++)
 {
 for(short lon = 0; lon < nbLong; lon++)
 {
 short current = (short)(lon + lat * (nbLong + 1) +
 nbLong);
 short next = (short)(current + nbLong + 1);

 triangles[i++] = current;
 triangles[i++] = (short)(current + 1);
 triangles[i++] = (short)(next + 1);

 triangles[i++] = current;
 triangles[i++] = (short)(next + 1);
 triangles[i++] = next;
 }
 }

 //Bottom Cap
 for(short lon = 0; lon < nbLong; lon++)
 {
 triangles[i++] = (short)(vertices.length - lon - 1);

Chapter 6

[193]

 triangles[i++] = (short)(vertices.length - nbLong -
 (lon+1) - 1);
 triangles[i++] = (short)(vertices.length - nbLong -
 (lon) - 1);
 }

Finally, apply these calculated values to the corresponding vertexBuffer,
normalBuffer, texCoordBuffer, and indexBuffer arrays, as follows:

 //convert Vector3[] to float[]
 float[] vertexArray = new float[vertices.length * 3];
 for(i = 0; i < vertices.length; i++){
 int step = i * 3;
 vertexArray[step] = vertices[i].x;
 vertexArray[step + 1] = vertices[i].y;
 vertexArray[step + 2] = vertices[i].z;
 }
 float[] normalArray = new float[normals.length * 3];
 for(i = 0; i < normals.length; i++){
 int step = i * 3;
 normalArray[step] = normals[i].x;
 normalArray[step + 1] = normals[i].y;
 normalArray[step + 2] = normals[i].z;
 }
 float[] texCoordArray = new float[uvs.length * 2];
 for(i = 0; i < uvs.length; i++){
 int step = i * 2;
 texCoordArray[step] = uvs[i].x;
 texCoordArray[step + 1] = uvs[i].y;
 }

 vertexBuffer = allocateFloatBuffer(vertexArray);
 normalBuffer = allocateFloatBuffer(normalArray);
 texCoordBuffer = allocateFloatBuffer(texCoordArray);
 indexBuffer = allocateShortBuffer(triangles);
 }

This is a lot of code, and might be hard to read on the pages of a book; you can find a
copy in the project GitHub repository if you prefer.

Solar System

[194]

Conveniently, since the sphere is centered at the origin (0,0,0), the normal vectors at
each vertex correspond to the vertex position itself (radiating from the origin to the
vertex). Strictly speaking, since we used a radius of 1, we can avoid the normalize()
step to generate the array of normals as an optimization. The following image shows
the 24 x 16 vertex sphere with its normal vectors:

Note that our algorithm includes an interesting fix that avoids a single vertex at
the poles (where all the UVs converge at a single point and cause some swirling
texture artifacts).

We create nLon-1 co-located vertices spread across the UV X, offset by 1/(nLon*2),
drawing teeth at the top and bottom. The following image shows the flattened UV
sheet for the sphere illustrating the polar teeth:

Chapter 6

[195]

A solid color lighted sphere
We are going to start by rendering our sphere in a solid color but with lighted shading.
As usual, we start by writing the shader functions that, among other things, define the
program variables they will need from the Material that uses it. Then, we'll define the
SolidColorLightingMaterial class and add it to the Sphere component.

Solid color lighting shaders
In the previous chapters, where we used shaders with lighting, we did the lighting
calculations in the vertex shader. That's simpler (and faster), but transitioning
the calculations to the fragment shader yields better results. The reason is that, in
the vertex shader, you only have one normal value to compare against the light
direction. In the fragment, all vertex attributes are interpolated, meaning that the
normal value at a given point between two vertices will be some point in between
their two normals. When this is the case, you see a smooth gradient across the
triangle face, rather than localized shading artifacts around each vertex. We will be
creating a new Material class to implement lighting in the fragment shader.

If necessary, create an Android Resource Directory for the shaders (resource type:
raw), res/raw/. Then, create the solid_color_lighting_vertex.shader and res/
raw/solid_color_lighting_fragment.shader files and define them as follows.

File: res/raw/solid_color_lighting_vertex.shader

uniform mat4 u_MVP;
uniform mat4 u_MV;

attribute vec4 a_Position;
attribute vec3 a_Normal;

varying vec3 v_Position;
varying vec3 v_Normal;

void main() {
 // vertex in eye space
 v_Position = vec3(u_MV * a_Position);

 // normal's orientation in eye space
 v_Normal = vec3(u_MV * vec4(a_Normal, 0.0));

 // point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

Solar System

[196]

Note that we have separate uniform variables for u_MV and u_MVP. Also, if you
remember that in the previous chapter, we separated the lighting model from the
actual model because we did not want scale to affect lighting calculations. Similarly,
the projection matrix is only useful to apply the camera FOV to vertex positions and
will interfere with lighting calculations.

File: res/raw/solid_color_lighting_fragment.shader

precision mediump float;
// default medium precision in the fragment shader
uniform vec3 u_LightPos;
// light position in eye space
uniform vec4 u_LightCol;
uniform vec4 u_Color;

varying vec3 v_Position;
varying vec3 v_Normal;
varying vec2 v_TexCoordinate;

void main() {
 // distance for attenuation.
 float distance = length(u_LightPos - v_Position);

 // lighting direction vector from the light to the vertex
 vec3 lightVector = normalize(u_LightPos - v_Position);

 // dot product of the light vector and vertex normal.
 // If the normal and light vector are
 // pointing in the same direction then it will get max
 // illumination.
 float diffuse = max(dot(v_Normal, lightVector), 0.01);

 // Add a tiny bit of ambient lighting (this is outerspace)
 diffuse = diffuse + 0.025;

 // Multiply color by the diffuse illumination level and
 // texture value to get final output color
 gl_FragColor = u_Color * u_LightCol * diffuse;
}

Chapter 6

[197]

Solid color lighting material
Next, we define the Material class for the shaders. In the materials folder, create a
new Java class named SolidColorLightingMaterial and define it as follows:

public class SolidColorLightingMaterial extends Material {
 private static final String TAG = "solidcolorlighting";

}

Add the variables for color, program references, and buffers, as shown in the
following code:

 float[] color = new float[4];
 static int program = -1;
 static int positionParam;
 static int colorParam;
 static int normalParam;
 static int modelParam;
 static int MVParam;
 static int MVPParam;
 static int lightPosParam;
 static int lightColParam;

 FloatBuffer vertexBuffer;
 FloatBuffer normalBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Now, we can add a constructor, which receives a color (RGBA) value and sets up the
shader program, as follows:

 public SolidColorLightingMaterial(float[] c){
 super();
 setColor(c);
 setupProgram();
 }

 public void setColor(float[] c){
 color = c;
 }

Solar System

[198]

As we've seen earlier, the setupProgram method creates the shader program and
obtains references to its parameters:

 public static void setupProgram(){
 //Already setup?
 if (program != -1) return;

 //Create shader program
 program = createProgram(R.raw.solid_color_lighting_vertex,
 R.raw.solid_color_lighting_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 normalParam = GLES20.glGetAttribLocation(program,
 "a_Normal");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(normalParam);

 //Shader-specific parameters
 colorParam = GLES20.glGetUniformLocation(program,
 "u_Color");
 MVParam = GLES20.glGetUniformLocation(program, "u_MV");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 lightPosParam = GLES20.glGetUniformLocation(program,
 "u_LightPos");
 lightColParam = GLES20.glGetUniformLocation(program,
 "u_LightCol");

 RenderBox.checkGLError("Solid Color Lighting params");
 }

Likewise, we add a setBuffers method that is called by the RenderObject
component (Sphere):

 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 normalBuffer, ShortBuffer indexBuffer, int numIndices){
 this.vertexBuffer = vertexBuffer;
 this.normalBuffer = normalBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 }

Chapter 6

[199]

Lastly, add the draw code, which will be called from the Camera component, to
render the geometry prepared in the buffers (via setBuffers). The draw method
looks like this:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 GLES20.glUniform3fv(lightPosParam, 1,
 RenderBox.instance.mainLight.lightPosInEyeSpace, 0);
 GLES20.glUniform4fv(lightColParam, 1,
 RenderBox.instance.mainLight.color, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.lightingModel, 0);
 // Set the ModelView in the shader,
 // used to calculate lighting
 GLES20.glUniformMatrix4fv(MVParam, 1, false,
 modelView, 0);
 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix for eye position.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 GLES20.glUniform4fv(colorParam, 1, color, 0);

 //Set vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(normalParam, 3,
 GLES20.GL_FLOAT, false, 0, normalBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);
 }

Now that we have a solid color lighting material and shaders, we can add them to
the Sphere class to be used in our project.

Solar System

[200]

Adding a Material to a Sphere
To use this Material with the Sphere, we'll define a new constructor (Sphere) that
calls a helper method (createSolidColorLightingMaterial) to create the material
and set the buffers. Here's the code:

 public Sphere(float[] color) {
 super();
 allocateBuffers();
 createSolidColorLightingMaterial(color);
 }

 public Sphere createSolidColorLightingMaterial(float[] color){
 SolidColorLightingMaterial mat = new
 SolidColorLightingMaterial(color);
 mat.setBuffers(vertexBuffer, normalBuffer, indexBuffer,
 numIndices);
 material = mat;
 return this;
 }

Okay, we can now add the sphere to our scene.

Viewing the Sphere
Let's see how this looks! We'll create a scene with a sphere, a light, and a camera.
Remember that, fortunately, the RenderBox class creates the default Camera and
Light instances for us. We just need to add the Sphere component.

Edit your MainActivity.java file to add the sphere in setup. We'll color it
yellowish and position it at x, y, z location (2, -2, 5):

 private Transform sphere;

 @Override
 public void setup() {
 sphere = new Transform();
 float[] color = new float[]{1, 1, 0.5f, 1};
 sphere.addComponent(new Sphere(color));
 sphere.setLocalPosition(2.0f, -2.f, -5.0f);
 }

Chapter 6

[201]

Here's what it should look like, a stereoscopic pair of golden globes:

If you see what I see, you deserve an award for that!

Adding the Earth texture material
Next, we'll terraform our sphere into a globe of the Earth by rendering a texture onto
the surface of the sphere.

Shaders can get quite complex, implementing all kinds of specular highlights,
reflections, shadows, and so on. A simpler algorithm that still makes use of a color
texture and lighting is a diffuse material. This is what we'll use here. The word
diffuse refers to the fact that light diffuses across the surface, as opposed to being
reflective or shiny (specular lighting).

A texture is just an image file (for example, .jpg) that can be mapped (projected)
onto a geometric surface. Since a sphere isn't easily flattened or unpeeled into a
two-dimensional map (as centuries of cartographers can attest), the texture image
will look distorted. The following is the texture we'll use for the Earth. (A copy of
this file is provided with the download files for this book and similar ones can be
found on the Internet at http://www.solarsystemscope.com/nexus/textures/):

• In our application, we plan to make use of the standard practice of packaging
image assets into the res/drawable folder. If necessary, create this folder now.

• Add the earth_tex.png file to it.

http://www.solarsystemscope.com/nexus/textures/

Solar System

[202]

The earth_tex texture is shown in the following image:

Loading a texture file
We now need a function to load the texture into our app. We can add it to
MainActivity. Or, you can add it directly to the RenderObject class of your
RenderBox lib. (It's fine in MainActivity for now, and we'll move it along with our
other extensions to the library at the end of this chapter.) Add the code, as follows:

 public static int loadTexture(final int resourceId){
 final int[] textureHandle = new int[1];

 GLES20.glGenTextures(1, textureHandle, 0);

 if (textureHandle[0] != 0)
 {
 final BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inScaled = false; // No pre-scaling

 // Read in the resource
 final Bitmap bitmap = BitmapFactory.decodeResource
 (RenderBox.instance.mainActivity.getResources(),
 resourceId, options);

Chapter 6

[203]

 // Bind to the texture in OpenGL
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 textureHandle[0]);

 // Set filtering
 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);

 // Load the bitmap into the bound texture.
 GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0,
 bitmap, 0);

 // Recycle the bitmap, since its data has been loaded
 // into OpenGL.
 bitmap.recycle();
 }

 if (textureHandle[0] == 0)
 {
 throw new RuntimeException("Error loading texture.");
 }

 return textureHandle[0];
 }

The loadTexture method returns an integer handle that can be used to reference the
loaded texture data.

Diffuse lighting shaders
As you may now be familiar, we are going to create a new Material, which uses
new shaders. We'll write the shaders now. Create the two files in the res/raw folder
named diffuse_lighting_vertex.shader and diffuse_lighting_fragment.
shader, and define them as follows.

File: res/raw/diffuse_lighting_vertex.shader

uniform mat4 u_MVP;
uniform mat4 u_MV;

attribute vec4 a_Position;
attribute vec3 a_Normal;
attribute vec2 a_TexCoordinate;

Solar System

[204]

varying vec3 v_Position;
varying vec3 v_Normal;
varying vec2 v_TexCoordinate;

void main() {
 // vertex in eye space
 v_Position = vec3(u_MV * a_Position);

 // pass through the texture coordinate.
 v_TexCoordinate = a_TexCoordinate;

 // normal's orientation in eye space
 v_Normal = vec3(u_MV * vec4(a_Normal, 0.0));

 // final point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

File: res/raw/diffuse_lighting_fragment.shader

precision highp float;
// default high precision for floating point ranges of the planets

uniform vec3 u_LightPos; // light position in eye space
uniform vec4 u_LightCol;
uniform sampler2D u_Texture; // the input texture

varying vec3 v_Position;
varying vec3 v_Normal;
varying vec2 v_TexCoordinate;

void main() {
 // distance for attenuation.
 float distance = length(u_LightPos - v_Position);

 // lighting direction vector from the light to the vertex
 vec3 lightVector = normalize(u_LightPos - v_Position);

 // dot product of the light vector and vertex normal.
 // If the normal and light vector are
 // pointing in the same direction then it will get max
 // illumination.
 float diffuse = max(dot(v_Normal, lightVector), 0.01);

Chapter 6

[205]

 // Add a tiny bit of ambient lighting (this is outerspace)
 diffuse = diffuse + 0.025;

 // Multiply the color by the diffuse illumination level and
 // texture value to get final output color
 gl_FragColor = texture2D(u_Texture, v_TexCoordinate) *
 u_LightCol * diffuse;
}

These shaders add attributes to a light source and utilize geometry normal vectors
on the vertices to calculate the shading. You might have noticed that the difference
between this and the solid color shader is the use of texture2D, which is a sampler
function. Also, note that we declared u_Texture as sampler2D. This variable type
and function make use of the texture units, which are built into the GPU hardware,
and can be used with UV coordinates to return the color values from a texture image.
There are a fixed number of texture units, depending on graphics hardware. You can
query the number of texture units using OpenGL. A good rule of thumb for mobile
GPUs is to expect eight texture units. This means that any shader may use up to eight
textures simultaneously.

Diffuse lighting material
Now we can write a Material to use a texture and shaders. In the materials/
folder, create a new Java class, DiffuseLightingMaterial, as follows:

public class DiffuseLightingMaterial extends Material {
 private static final String TAG = "diffuselightingmaterial";

Add the variables for the texture ID, program references, and buffers, as shown in
the following code:

 int textureId;
 static int program = -1;
 //Initialize to a totally invalid value for setup state
 static int positionParam;
 static int texCoordParam;
 static int textureParam;
 static int normalParam;
 static int MVParam;
 static int MVPParam;
 static int lightPosParam;
 static int lightColParam;

Solar System

[206]

 FloatBuffer vertexBuffer;
 FloatBuffer texCoordBuffer;
 FloatBuffer normalBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Now we can add a constructor, which sets up the shader program and loads the
texture for the given resource ID, as follows:

 public DiffuseLightingMaterial(int resourceId){
 super();
 setupProgram();
 this.textureId = MainActivity.loadTexture(resourceId);
 }

As we've seen earlier, the setupProgram method creates the shader program and
obtains references to its parameters:

 public static void setupProgram(){
 //Already setup?
 if (program != -1) return;

 //Create shader program
 program = createProgram(R.raw.diffuse_lighting_vertex,
 R.raw.diffuse_lighting_fragment);
 RenderBox.checkGLError("Diffuse Texture Color Lighting
 shader compile");

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 normalParam = GLES20.glGetAttribLocation(program,
 "a_Normal");
 texCoordParam = GLES20.glGetAttribLocation(program,
 "a_TexCoordinate");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(normalParam);
 GLES20.glEnableVertexAttribArray(texCoordParam);

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 MVParam = GLES20.glGetUniformLocation(program, "u_MV");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");

Chapter 6

[207]

 lightPosParam = GLES20.glGetUniformLocation(program,
 "u_LightPos");
 lightColParam = GLES20.glGetUniformLocation(program,
 "u_LightCol");

 RenderBox.checkGLError("Diffuse Texture Color Lighting
 params");
 }

Likewise, we add a setBuffers method that is called by the RenderObject
component (Sphere):

 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 normalBuffer, FloatBuffer texCoordBuffer, ShortBuffer
 indexBuffer, int numIndices){
 //Associate VBO data with this instance of the material
 this.vertexBuffer = vertexBuffer;
 this.normalBuffer = normalBuffer;
 this.texCoordBuffer = texCoordBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 }

Lastly, add the draw code, which will be called from the Camera component, to
render the geometry prepared in the buffers (via setBuffers). The draw method
looks like this:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 // Set the active texture unit to texture unit 0.
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

 // Bind the texture to this unit.
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);

 // Tell the texture uniform sampler to use this texture in
 // the shader by binding to texture unit 0.
 GLES20.glUniform1i(textureParam, 0);

 //Technically, we don't need to do this with every draw
 //call, but the light could move.
 //We could also add a step for shader-global parameters
 //which don't vary per-object

Solar System

[208]

 GLES20.glUniform3fv(lightPosParam, 1,
 RenderBox.instance.mainLight.lightPosInEyeSpace, 0);
 GLES20.glUniform4fv(lightColParam, 1,
 RenderBox.instance.mainLight.color, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.lightingModel, 0);
 // Set the ModelView in the shader, used to calculate
 // lighting
 GLES20.glUniformMatrix4fv(MVParam, 1, false,
 modelView, 0);
 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix for eye position.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 //Set vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(normalParam, 3,
 GLES20.GL_FLOAT, false, 0, normalBuffer);
 GLES20.glVertexAttribPointer(texCoordParam, 2,
 GLES20.GL_FLOAT, false, 0, texCoordBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 RenderBox.checkGLError("Diffuse Texture Color Lighting
 draw");
 }
}

Comparing this with the SolidColorLightingMaterial class that we defined
earlier, you will notice that it's quite similar. We've replaced the single color with
a texture ID, and we've added the requirements for a texture coordinate buffer
(texCoordBuffer) given by a Sphere component. Also, note that we are setting
the active texture unit to GL_TEXTURE0 and binding the texture.

Chapter 6

[209]

Adding diffuse lighting texture to a Sphere
component
To add the new material to the Sphere component, we'll make an alternative
constructor that receives a texture handle. It then creates an instance of the
DiffuseLightingMaterial class and sets the buffers from the sphere.

Let's add the material to the Sphere component by defining a new constructor
(Sphere) that takes the texture ID and calls a new helper method named
createDiffuseMaterial, as follows:

 public Sphere(int textureId){
 super();
 allocateBuffers();
 createDiffuseMaterial(textureId);
 }

 public Sphere createDiffuseMaterial(int textureId){
 DiffuseLightingMaterial mat = new
 DiffuseLightingMaterial(textureId);
 mat.setBuffers(vertexBuffer, normalBuffer, texCoordBuffer,
 indexBuffer, numIndices);
 material = mat;
 return this;
 }

Now, we can use the textured material.

Viewing the Earth
To add the Earth texture to our sphere, modify the setup method of MainActivity
to specify the texture resource ID instead of a color, as follows:

 @Override
 public void setup() {
 sphere = new Transform();
 sphere.addComponent(new Sphere(R.drawable.earth_tex));
 sphere.setLocalPosition(2.0f, -2.f, -2.0f);
 }

Solar System

[210]

There you have it, Home Sweet Home!

That looks really cool. Oops, it's upside down! Although there's not really a specific
up versus down in outer space, our Earth looks upside down from what we're used
to seeing. Let's flip it in the setup method so that it starts at the correct orientation,
and while we're at it, let's take advantage of the fact that the Transform methods
return themselves, so we can chain the calls, as follows:

 public void setup() {
 sphere = new Transform()
 .setLocalPosition(2.0f, -2.f, -2.0f)
 .rotate(0, 0, 180f)
 .addComponent(new Sphere(R.drawable.earth_tex));
 }

Naturally, the Earth is supposed to spin. Let's animate it to rotate it like we'd expect
the Earth to do. Add this to the preDraw method, which gets called before each new
frame. It uses the Time class's getDeltaTime method, which returns the current
fraction of a second change since the previous frame. If we want it to rotate,
say, -10 degrees per second, we use -10 * deltaTime:

 public void preDraw() {
 float dt = Time.getDeltaTime();
 sphere.rotate(0, -10f * dt, 0);
 }

That looks good to me! How about you?

Chapter 6

[211]

Changing the camera position
One more thing. We seem to be looking at the Earth in line with the light source.
Let's move the camera view so that we can see the Earth from the side. That way,
we can see the lighted shading better.

Suppose we leave the light source position at the origin, (0,0,0) as if it were the Sun at
the center of the Solar System. The Earth is 147.1 million km from the Sun. Let's place
the sphere that many units to the right of the origin, and place the camera at the
same relative position. Now, the setup method looks like the following code:

 public void setup() {
 sphere = new Transform()
 .setLocalPosition(147.1f, 0, 0)
 .rotate(0, 0, 180f)
 .addComponent(new Sphere(R.drawable.earth_tex));
 RenderBox.mainCamera.getTransform().setLocalPosition(
 147.1f, 2f, 2f);
 }

Run it and this is what you will see:

Does that look virtually realistic or what? NASA would be proud!

Solar System

[212]

Day and night material
Honestly though, the back of the Earth looks uncannily dark. I mean, this isn't the
18th century. So much nowadays is 24 x 7, especially our cities. Let's represent this
with a separate Earth night texture that has city lights.

We have a file for you to use named earth_night_tex.jpg. Drag a copy of the file
into your res/drawable/ folder.

It may be a little difficult to discern on this book's page, but this is what the texture
image looks like:

Day/night shader
To support this, we will create a new DayNightMaterial class that takes both
versions of the Earth texture. The material will also incorporate the corresponding
fragment shader that takes into consideration the normal vector of the surface
relative to the light source direction (using dot products, if you're familiar with
vector math) to decide whether to render using the day or night texture image.

In your res/raw/ folder, create files for day_night_vertex.shader and
day_night_fragment.shader, and then define them, as follows.

Chapter 6

[213]

File: day_night_vertex.shader

uniform mat4 u_MVP;
uniform mat4 u_MV;

attribute vec4 a_Position;
attribute vec3 a_Normal;
attribute vec2 a_TexCoordinate;

varying vec3 v_Position;
varying vec3 v_Normal;
varying vec2 v_TexCoordinate;

void main() {
 // vertex to eye space
 v_Position = vec3(u_MV * a_Position);

 // pass through the texture coordinate
 v_TexCoordinate = a_TexCoordinate;

 // normal's orientation in eye space
 v_Normal = vec3(u_MV * vec4(a_Normal, 0.0));

 // final point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

Except for the addition of v_Texcoordinate, this is exactly the same as our
SolidColorLighting shader.

File: day_night_fragment.shader

precision highp float;
// default high precision for floating point ranges of the
// planets
uniform vec3 u_LightPos; // light position in eye space
uniform vec4 u_LightCol;
uniform sampler2D u_Texture; // the day texture.
uniform sampler2D u_NightTexture; // the night texture.

varying vec3 v_Position;
varying vec3 v_Normal;
varying vec2 v_TexCoordinate;

void main() {

Solar System

[214]

 // lighting direction vector from the light to the vertex
 vec3 lightVector = normalize(u_LightPos - v_Position);

 // dot product of the light vector and vertex normal. If the
 // normal and light vector are
 // pointing in the same direction then it will get max
 // illumination.
 float ambient = 0.3;
 float dotProd = dot(v_Normal, lightVector);
 float blend = min(1.0, dotProd * 2.0);
 if(dotProd < 0.0){
 //flat ambient level of 0.3
 gl_FragColor = texture2D(u_NightTexture, v_TexCoordinate)
 * ambient;
 } else {
 gl_FragColor = (
 texture2D(u_Texture, v_TexCoordinate) * blend
 + texture2D(u_NightTexture, v_TexCoordinate) * (1.0 -
 blend)
) * u_LightCol * min(max(dotProd * 2.0, ambient), 1.0);
 }
}

As always, for lighting, we calculate the dot product (dotProd) of the vertex normal
vector and the light direction vector. When that value is negative, the vertex is
facing away from the light source (the Sun), so we'll render using the night texture.
Otherwise, we'll render using the regular daytime earth texture.

The lighting calculations also include a blend value. This is basically a way of
squeezing the transitional zone closer around the terminator when calculating the
gl_FragColor variable. We are multiplying the dot product by 2.0 so that it follows
a steeper slope, but still clamping the blend value between 0 and 1. It's a little
complicated, but once you think about the math, it should make some sense.

We are using two textures to draw the same surface. While this might seem
unique to this day/night situation, it is actually a very common method known as
multitexturing. You may not believe it, but 3D graphics actually got quite far before
introducing the ability to use more than one texture at a time. These days, you see
multitexturing almost everywhere, enabling techniques such as normal mapping,
decal textures, and displacement/parallax shaders, which create greater detail with
simpler meshes.

Chapter 6

[215]

The DayNightMaterial class
Now we can write the DayNightMaterial class. It's basically like the
DiffuseLightingMaterial class that we created earlier but supports both the
textures. Therefore, the constructor takes two texture IDs. The setBuffers method
is identical to the earlier one, and the draw method is nearly identical but with the
added binding of the night texture.

Here's the complete code, highlighting the lines that differ from
DiffuseLightingMaterial:

public class DayNightMaterial extends Material {
 private static final String TAG = "daynightmaterial";

As with our other materials, declare the variables we'll need, including the texture ID
for both the day and night:

 int textureId;
 int nightTextureId;

 static int program = -1;
 //Initialize to a totally invalid value for setup state
 static int positionParam;
 static int texCoordParam;
 static int textureParam;
 static int nightTextureParam;
 static int normalParam;
 static int MVParam;
 static int MVPParam;
 static int lightPosParam;
 static int lightColParam;

 FloatBuffer vertexBuffer;
 FloatBuffer texCoordBuffer;
 FloatBuffer normalBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Define the constructor that takes both the resource IDs and the setupProgram
helper method:

 public DayNightMaterial(int resourceId, int nightResourceId){
 super();
 setupProgram();
 this.textureId = MainActivity.loadTexture(resourceId);

 this.nightTextureId = MainActivity.

Solar System

[216]

 loadTexture(nightResourceId);
 }

 public static void setupProgram(){
 if(program != -1) return;
 //Create shader program
 program = createProgram(R.raw.day_night_vertex,
 R.raw.day_night_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 normalParam = GLES20.glGetAttribLocation(program,
 "a_Normal");
 texCoordParam = GLES20.glGetAttribLocation(program,
 "a_TexCoordinate");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(normalParam);
 GLES20.glEnableVertexAttribArray(texCoordParam);

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 nightTextureParam = GLES20.glGetUniformLocation(program,
 "u_NightTexture");
 MVParam = GLES20.glGetUniformLocation(program, "u_MV");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 lightPosParam = GLES20.glGetUniformLocation(program,
 "u_LightPos");
 lightColParam = GLES20.glGetUniformLocation(program,
 "u_LightCol");

 RenderBox.checkGLError("Day/Night params");
 }

 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 normalBuffer, FloatBuffer texCoordBuffer, ShortBuffer
 indexBuffer, int numIndices){
 //Associate VBO data with this instance of the material
 this.vertexBuffer = vertexBuffer;
 this.normalBuffer = normalBuffer;
 this.texCoordBuffer = texCoordBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 }

Chapter 6

[217]

Lastly, the draw method that cranks it all out to the screen:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 // Set the active texture unit to texture unit 0.
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

 // Bind the texture to this unit.
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);

 GLES20.glActiveTexture(GLES20.GL_TEXTURE1);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 nightTextureId);

 // Tell the texture uniform sampler to use this texture in
 // the shader by binding to texture unit 0.
 GLES20.glUniform1i(textureParam, 0);
 GLES20.glUniform1i(nightTextureParam, 1);

 //Technically, we don't need to do this with every draw
 //call, but the light could move.
 //We could also add a step for shader-global parameters
 //which don't vary per-object
 GLES20.glUniform3fv(lightPosParam, 1,
 RenderBox.instance.mainLight.lightPosInEyeSpace, 0);
 GLES20.glUniform4fv(lightColParam, 1,
 RenderBox.instance.mainLight.color, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.lightingModel, 0);
 // Set the ModelView in the shader, used to calculate
 // lighting
 GLES20.glUniformMatrix4fv(MVParam, 1, false,
 modelView, 0);
 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix for eye position.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 //Set vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(normalParam, 3,
 GLES20.GL_FLOAT, false, 0, normalBuffer);

Solar System

[218]

 GLES20.glVertexAttribPointer(texCoordParam, 2,
 GLES20.GL_FLOAT, false, 0, texCoordBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 RenderBox.checkGLError("DayNight Texture Color Lighting
 draw");
 }
}

Rendering with day/night
Now we're ready to integrate the new material into our Sphere component and see
how it looks.

In Sphere.java, add a new constructor and the createDayNightMaterial helper
method, as follows:

 public Sphere(int textureId, int nightTextureId){
 super();
 allocateBuffers();
 createDayNightMaterial(textureId, nightTextureId);
 }

 public Sphere createDayNightMaterial(int textureId,
 int nightTextureId){
 DayNightMaterial mat = new DayNightMaterial(textureId,
 nightTextureId);
 mat.setBuffers(vertexBuffer, normalBuffer, texCoordBuffer,
 indexBuffer, numIndices);
 material = mat;
 return this;
 }

Let's call it from the setup method of MainActivity, and replace the call with the
new Sphere instance passing both the textures' resource IDs:

 .addComponent(new Sphere(R.drawable.earth_tex,
 R.drawable.earth_night_tex));

Run it now. That looks really cool! Classy! Unfortunately, it doesn't make a lot of
sense to paste a screenshot here because the city night lights won't show very well.
You'll just have to see it for yourself in your own Cardboard viewer. Believe me
when I tell you, it's worth it!

Next, here comes the Sun, and I say, it's alright...

Chapter 6

[219]

Creating the Sun
The Sun will be rendered as a textured sphere. However, it's not shaded with front
and back sides like our Earth. We need to render it unlit or rather unshaded. This
means we need to create the UnlitTextureMaterial.

We have a texture file for the Sun, too (and all the planets as well).We won't show
all of them in the chapter although they're included with the downloadable files for
the book.

Drag a copy of the sun_tex.png file onto your res/drawable/ folder.

Unlit texture shaders
As we've seen earlier in this book, unlit shaders are much simpler than ones with
lighting. In your res/raw/ folder, create files for unlit_tex_vertex.shader and
unlit_tex_fragment.shader, and then define them, as follows.

File: unlit_tex_vertex.shader

uniform mat4 u_MVP;

attribute vec4 a_Position;
attribute vec2 a_TexCoordinate;

varying vec3 v_Position;
varying vec2 v_TexCoordinate;

void main() {
 // pass through the texture coordinate
 v_TexCoordinate = a_TexCoordinate;

 // final point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

File: unlit_tex_fragment.shader

precision mediump float; // default medium precision
uniform sampler2D u_Texture; // the input texture

varying vec3 v_Position;
varying vec2 v_TexCoordinate;

void main() {

Solar System

[220]

 // Send the color from the texture straight out
 gl_FragColor = texture2D(u_Texture, v_TexCoordinate);
}

Yup, that's simpler than our earlier shaders.

Unlit texture material
Now, we can write the UnlitTexMaterial class. Here's the initial code:

public class UnlitTexMaterial extends Material {
 private static final String TAG = "unlittex";

 int textureId;

 static int program = -1;
 //Initialize to a totally invalid value for setup state
 static int positionParam;
 static int texCoordParam;
 static int textureParam;
 static int MVPParam;

 FloatBuffer vertexBuffer;
 FloatBuffer texCoordBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Here are the constructor, setupProgram, and setBuffers methods:

 public UnlitTexMaterial(int resourceId){
 super();
 setupProgram();
 this.textureId = MainActivity.loadTexture(resourceId);
 }

 public static void setupProgram(){
 if(program != -1) return;
 //Create shader program
 program = createProgram(R.raw.unlit_tex_vertex,
 R.raw.unlit_tex_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");

Chapter 6

[221]

 texCoordParam = GLES20.glGetAttribLocation(program,
 "a_TexCoordinate");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(texCoordParam);

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");

 RenderBox.checkGLError("Unlit Texture params");
 }

 public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
 texCoordBuffer, ShortBuffer indexBuffer, int numIndices){
 //Associate VBO data with this instance of the material
 this.vertexBuffer = vertexBuffer;
 this.texCoordBuffer = texCoordBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 }

It will be handy to have getter and setter methods for the texture ID (in later projects,
not used here):

 public void setTexture(int textureHandle){
 textureId = textureHandle;
 }

 public int getTexture(){
 return textureId;
 }

Lastly, here's the draw method:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 // Set the active texture unit to texture unit 0.
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

 // Bind the texture to this unit.

Solar System

[222]

 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);

 // Tell the texture uniform sampler to use this texture in
 // the shader by binding to texture unit 0.
 GLES20.glUniform1i(textureParam, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix in the shader.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 // Set the vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(texCoordParam, 2,
 GLES20.GL_FLOAT, false, 0, texCoordBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 RenderBox.checkGLError("Unlit Texture draw");
 }
}

Rendering with an unlit texture
We're ready to integrate the new material into our Sphere class and see how it looks.

In Sphere.java, add a new constructor that takes a boolean parameter, indicating
that the texture should be lighted, and the createUnlitTexMaterial helper method:

 public Sphere(int textureId, boolean lighting){
 super();
 allocateBuffers();
 if (lighting) {
 createDiffuseMaterial(textureId);
 } else {
 createUnlitTexMaterial(textureId);
 }
 }

 public Sphere createUnlitTexMaterial(int textureId){

Chapter 6

[223]

 UnlitTexMaterial mat = new UnlitTexMaterial(textureId);
 mat.setBuffers(vertexBuffer, texCoordBuffer, indexBuffer,
 numIndices);
 material = mat;
 return this;
 }

Notice that the way in which we've defined constructors, you can call either new
Sphere(texId) or Sphere(texId, true) to get lighted renders. But for unlit, you
must use the second one as Sphere(texId, false). Also note that setting up the
whole component in the constructor is not the only way to go. We only do it this way
because it keeps our MainActivity code concise. In fact, as we start expanding our
use of RenderBox and its shader library, it will become necessary to put most of this
code into our MainActivity class. It would be impossible to create a constructor for
every type of material. Ultimately, a materials system is necessary to allow you to
create and set materials without having to create a new class for each one.

Adding the Sun
Now, all we need to do is add the Sun sphere to the setup method of MainActivity.
Let's make it big, say, at a scale of 6.963 (remember that's in millions of kms). This
value may seem arbitrary now, but you'll see where it comes from when we run the
calculations on the Solar System geometry and scale the planets as well.

Add the following code to the setup method of MainActivity:

 public void setup() {
 Transform origin = new Transform();

 //Sun
 Transform sun = new Transform()
 .setParent(origin, false)
 .setLocalScale(6.963f, 6.963f, 6.963f)
 .addComponent(new Sphere(R.drawable.sun_tex, false));

 //"Sun" light
 RenderBox.instance.mainLight.transform.
 setPosition(origin.getPosition());
 RenderBox.instance.mainLight.color = new float[]{1, 1,
 0.8f, 1};

 //Earth…

Solar System

[224]

We start by defining an origin transform that will be the center of the Solar System.
Then, we create the Sun, parented to the origin, with the given scale. Then, add a
new sphere component with the Sun texture. We've also given our light a slightly
yellowish color, which will blend with the Earth's texture colors.

Here's what the rendered Sun looks like, which seems to illuminate the Earth:

Now, let's move on to the rest of the Solar System.

Creating a Planet class
As we build our Solar System, it will be useful to abstract out a Planet class to be
used for each planet.

Planets have a number of different attributes that define their unique characteristics
in addition to their texture resource IDs. Planets have a distance from the Sun, size
(radius), and an orbital speed. Planets all orbit around the Sun as their origin.

• The distance will be its distance from the Sun measured in millions
of kilometers.

• The radius will be the planet's size in kilometers (actually in millions of
kilometers, to be consistent).

• Rotation is the rate at which the planet rotates about its own axis (one of
its days).

• Orbit is the rate at which the planet rotates about the Sun (one of its years).
We will assume a perfectly circular orbit.

Chapter 6

[225]

• TexId is the resource ID of the texture image for the planet.
• origin is the center of its orbit. For planets, this will be the Sun's transform.

For a moon, this will be the moon's planet.

The Solar System is a really big thing. The distances and radii are measured in
millions of kilometers. The planets are really far apart and relatively small compared
to the size of their orbits. The rotation and orbit values are relative rates. You'll note
that we'll normalize them to 10 seconds per Earth day.

From these attributes, a planet maintains two transforms: one transform for the
planet itself and another transform that describes its location in orbit. In this way, we
can rotate each planet's separate parent transform which, when the planet is at a local
position whose magnitude is equal to the orbital radius, causes the planet to move in
a circular pattern. Then we can rotate the planet itself using its transform.

For the Moon, we'll also use the Planet class (yeah, I know, maybe we should have
named it HeavenlyBody?) but set its origin as the Earth. The moon does not rotate.

In your app (for example, app/java/com/cardbookvr/solarsystem/), create a
Java class and name it Planet. Add variables for its attributes (distance, radius,
rotation, orbit, orbitTransform, and transform), as follows:

public class Planet {
 protected float rotation, orbit;
 protected Transform orbitTransform, transform;

 public float distance, radius;

Define a constructor that takes the planet's attribute values, initializes the variables,
and calculates the initial transforms:

 public Planet(float distance, float radius, float rotation,
 float orbit, int texId, Transform origin){
 setupPlanet(distance, radius, rotation, orbit, origin);
 transform.addComponent(new Sphere(texId));
 }

 public void setupPlanet(float distance, float radius, float
 rotation, float orbit, Transform origin){
 this.distance = distance;
 this.radius = radius;
 this.rotation = rotation;
 this.orbit = orbit;
 this.orbitTransform = new Transform();
 this.orbitTransform.setParent(origin, false);

 transform = new Transform()

Solar System

[226]

 .setParent(orbitTransform, false)
 .setLocalPosition(distance, 0, 0)
 .setLocalRotation(180, 0, 0)
 .setLocalScale(radius, radius, radius);
 }

The constructor generates an initial transform for the planet and adds a Sphere
component with the given texture.

On each new frame, we will update the orbitTransform rotation around the Sun
(year) and the planet's rotation about its own axis (day):

 public void preDraw(float dt){
 orbitTransform.rotate(0, dt * orbit, 0);
 transform.rotate(0, dt * -rotation, 0);
 }

We can also provide a couple of accessor methods for the Planet class's transforms:

 public Transform getTransform() { return transform; }
 public Transform getOrbitransform() { return orbitTransform; }

Now, let's take a look at the geometry of our Solar System.

Formation of the Solar System
This is our chance to throw some real science into our project. The following table
shows the actual distance, size, rotation, and orbit values for each of the planets.
(Most of this data came from http://www.enchantedlearning.com/subjects/
astronomy/planets/.)

Planet Distance from Sun
(millions km)

Radius size
(km)

Day length
(Earth hours)

Year length
(Earth years)

Mercury 57.9 2440 1408.8 0.24
Venus 108.2 6052 5832 0.615
Earth 147.1 6371 24 1.0
Earth's Moon 0.363 (from Earth) 1737 0
Mars 227.9 3390 24.6 2.379
Jupiter 778.3 69911 9.84 11.862
Saturn 1427.0 58232 10.2 29.456
Uranus 2871.0 25362 17.9 84.07
Neptune 4497 24622 19.1 164.81
Pluto (still counts) 5913 1186 6.39 247.7

http://www.enchantedlearning.com/subjects/astronomy/planets/
http://www.enchantedlearning.com/subjects/astronomy/planets/

Chapter 6

[227]

We also have texture images for each of the planets. These files are included with the
downloads for this book. They should be added to the res/drawable folder, named
mercury_tex.png, venus_tex.png, and so on. The following table identifies the
sources we have used and where you can find them as well:

Planet Texture
Mercury http://laps.noaa.gov/albers/sos/mercury/mercury/

mercury_rgb_cyl_www.jpg

Venus http://csdrive.srru.ac.th/55122420119/texture/venus.jpg

Earth http://www.solarsystemscope.com/nexus/content/tc-earth_
texture/tc-earth_daymap.jpg

Night: http://www.solarsystemscope.com/nexus/content/tc-
earth_texture/tc-earth_nightmap.jpg

Earth's Moon https://farm1.staticflickr.com/120/263411684_
ea405ffa8f_o_d.jpg

Mars http://lh5.ggpht.com/-2aLH6cYiaKs/TdOsBtnpRqI/
AAAAAAAAAP4/bnMOdD9OMjk/s9000/mars%2Btexture.jpg

Jupiter http://laps.noaa.gov/albers/sos/jupiter/jupiter/
jupiter_rgb_cyl_www.jpg

Saturn http://www.solarsystemscope.com/nexus/content/planet_
textures/texture_saturn.jpg

Uranus http://www.astrosurf.com/nunes/render/maps/full/uranus.
jpg

Neptune http://www.solarsystemscope.com/nexus/content/planet_
textures/texture_neptune.jpg

Pluto http://www.shatters.net/celestia/files/pluto.jpg

Sun http://www.solarsystemscope.com/nexus/textures/texture_
pack/assets/preview_sun.jpg

Milky Way http://www.geckzilla.com/apod/tycho_cyl_glow.png (by Judy
Schmidt, http://geckzilla.com/)

Setting up planets in MainActivity
We're going to set up all the planets in MainActivity using a setupPlanets method
that will be called from setup. Let's go for it.

At the top of the class, declare a planets array:

 Planet[] planets;

http://laps.noaa.gov/albers/sos/mercury/mercury/mercury_rgb_cyl_www.jpg
http://laps.noaa.gov/albers/sos/mercury/mercury/mercury_rgb_cyl_www.jpg
http://csdrive.srru.ac.th/55122420119/texture/venus.jpg
http://www.solarsystemscope.com/nexus/content/tc-earth_texture/tc-earth_daymap.jpg
http://www.solarsystemscope.com/nexus/content/tc-earth_texture/tc-earth_daymap.jpg
http://www.solarsystemscope.com/nexus/content/tc-earth_texture/tc-earth_nightmap.jpg
http://www.solarsystemscope.com/nexus/content/tc-earth_texture/tc-earth_nightmap.jpg
https://farm1.staticflickr.com/120/263411684_ea405ffa8f_o_d.jpg
https://farm1.staticflickr.com/120/263411684_ea405ffa8f_o_d.jpg
http://lh5.ggpht.com/-2aLH6cYiaKs/TdOsBtnpRqI/AAAAAAAAAP4/bnMOdD9OMjk/s9000/mars%2Btexture.jpg
http://lh5.ggpht.com/-2aLH6cYiaKs/TdOsBtnpRqI/AAAAAAAAAP4/bnMOdD9OMjk/s9000/mars%2Btexture.jpg
http://laps.noaa.gov/albers/sos/jupiter/jupiter/jupiter_rgb_cyl_www.jpg
http://laps.noaa.gov/albers/sos/jupiter/jupiter/jupiter_rgb_cyl_www.jpg
http://www.solarsystemscope.com/nexus/content/planet_textures/texture_saturn.jpg
http://www.solarsystemscope.com/nexus/content/planet_textures/texture_saturn.jpg
http://www.astrosurf.com/nunes/render/maps/full/uranus.jpg
http://www.astrosurf.com/nunes/render/maps/full/uranus.jpg
http://www.solarsystemscope.com/nexus/content/planet_textures/texture_neptune.jpg
http://www.solarsystemscope.com/nexus/content/planet_textures/texture_neptune.jpg
http://www.shatters.net/celestia/files/pluto.jpg
http://www.solarsystemscope.com/nexus/textures/texture_pack/assets/preview_sun.jpg
http://www.solarsystemscope.com/nexus/textures/texture_pack/assets/preview_sun.jpg
http://www.geckzilla.com/apod/tycho_cyl_glow.png
http://geckzilla.com/

Solar System

[228]

Then, we declare a number of constants which we'll explain in a moment:

 // tighten up the distances (millions km)
 float DISTANCE_FACTOR = 0.5f;
 // this is 100x relative to interplanetary distances
 float SCALE_FACTOR = 0.0001f;
 // animation rate for one earth rotation (seconds per
 rotation)
 float EDAY_RATE = 10f;
 // rotation scale factor e.g. to animate earth: dt * 24 *
 // DEG_PER_EHOUR
 float DEG_PER_EHOUR = (360f / 24f / EDAY_RATE);
 // animation rate for one earth rotation (seconds per orbit)
 // (real is EDAY_RATE * 365.26)
 float EYEAR_RATE = 1500f;
 // orbit scale factor
 float DEG_PER_EYEAR = (360f / EYEAR_RATE);

The setupPlanets method uses our celestial data and builds new planets
accordingly. First, let's define the physical data, as follows:

 public void setupPlanets(Transform origin) {

 float[] distances = new float[] { 57.9f, 108.2f, 149.6f,
 227.9f, 778.3f, 1427f, 2871f, 4497f, 5913f };
 float[] fudged_distances = new float[] { 57.9f, 108.2f,
 149.6f, 227.9f, 400f, 500f, 600f, 700f, 800f };

 float[] radii = new float[] { 2440f, 6052f, 6371f, 3390f,
 69911f, 58232f, 25362f, 24622f, 1186f };

 float[] rotations = new float[] { 1408.8f * 0.05f, 5832f *
 0.01f, 24f, 24.6f, 9.84f, 10.2f, 17.9f, 19.1f, 6.39f };

 float[] orbits = new float[] { 0.24f, 0.615f, 1.0f,
 2.379f, 11.862f, 29.456f, 84.07f, 164.81f, 247.7f };

The distances array has the distance of each planet from the Sun in millions of
km. This is really huge, especially for the outer planets that are really far away and
are not very visible relative to other planets. To make things more interesting, we'll
fudge the distance of those planets (Jupiter through Pluto), so the values that we'll
use are in the fudged_distances array.

The radii array has the actual size of each planet in kms.

The rotations array has the day length, in Earth hours. Since Mercury and Venus
spin really fast compared to the Earth, we'll artificially slow them down by arbitrary
scale factors.

Chapter 6

[229]

The orbits array has the length of each planet's year in Earth years and the time it
takes for one complete rotation around the Sun.

Now, let's set up the texture IDs for each planet's materials:

 int[] texIds = new int[]{
 R.drawable.mercury_tex,
 R.drawable.venus_tex,
 R.drawable.earth_tex,
 R.drawable.mars_tex,
 R.drawable.jupiter_tex,
 R.drawable.saturn_tex,
 R.drawable.uranus_tex,
 R.drawable.neptune_tex,
 R.drawable.pluto_tex
 };

Now initialize the planets array, creating a new Planet object for each:

 planets = new Planet[distances.length + 1];
 for(int i = 0; i < distances.length; i++){
 planets[i] = new Planet(
 fudged_distances[i] * DISTANCE_FACTOR,
 radii[i] * SCALE_FACTOR,
 rotations[i] * DEG_PER_EHOUR,
 orbits[i] * DEG_PER_EYEAR *
 fudged_distances[i]/distances[i],
 texIds[i],
 origin);
 }

While we fudged some of the planets' actual distances so that they'd be closer to the
inner Solar System, we also multiply all the distances by a DISTANCE_FACTOR scalar,
mostly to not blow up our float precision calculations. We scale all the planet sizes by
a different SCALE_FACTOR variable to make them relatively larger than life (a factor of
0.0001 is actually a factor of 100 because radii are calculated in km while the distance
is calculated in millions of km).

The rotation animation rate is the actual length of the day of the planet scaled by
how fast we want to animate a day in VR. We default to 10 seconds per Earth day.

Lastly, the planetary orbit animation has its own scale factor. We've sped it up about
2 X. You can also adjust the orbit rate of the distance fudge factors (for example,
Pluto orbits the Sun once every 247 Earth years, but we've moved it a lot closer so it
needs to slow down).

Solar System

[230]

Then, we add the Earth's moon. We've used some artistic license here as well,
adjusting the distance and radius and speeding up its orbit rate to make it
compelling to watch in VR:

 // Create the moon
 planets[distances.length] = new Planet(7.5f, 0.5f, 0, -
 0.516f, R.drawable.moon_tex, planets[2].getTransform());}

Let's take a look at one more method: goToPlanet. It'll be convenient to position the
Camera near a specific planet. Since the planets are located at data-driven positions
and will be moving in orbit, it's best to make the camera a child of the planet's
transform. This is one of the reasons why we separated out the orbiting transform
from the planet's transform. We don't want the camera to spin around with the
planet—you might get sick! Here's the implementation:

 void goToPlanet(int index){
 RenderBox.mainCamera.getTransform().
 setParent(planets[index].getOrbitransform(), false);
 RenderBox.mainCamera.getTransform().
 setLocalPosition(planets[index].distance,
 planets[index].radius * 1.5f, planets[index].radius * 2f);
 }

Note that the scale and distance values we finally use
in the code are derived from but not the actual celestial
measurements. For a lovely VR experience of the Solar
System with real educational value, check out Titans of
Space (http://www.titansofspacevr.com/).

Camera's planet view
The gotoPlanet function is called with a planet index (for example, Earth is 2), so
we can position the camera near the specified planet. The Camera component gets
parented to the planet's orbitTransform variable as a way to obtain the planet's
current orbit rotation. Then, it's positioned as the planet's distance from the Sun,
and then offset a bit, relative to the planet's size.

In MainActivity class's setup method, we have already set up the Sun and the
Earth. We'll replace the Earth sphere with a call to a setupPlanets helper method:

 public void setup() {
 //Sun ...

 // Planets

http://www.titansofspacevr.com/

Chapter 6

[231]

 setupPlanets(origin);

 // Start looking at Earth
 goToPlanet(2);
 }

If you build and run the project now, you will see the Earth, the Sun, and maybe
some of the planets. But not until they're moving in their orbits will they come to life.

Animating the heavenly bodies
Now that we have all the planets instantiated, we can animate their orbit and
axis rotations. All it takes is updating their transforms in the MainAcitvity class's
preDraw method:

 @Override
 public void preDraw() {
 float dt = Time.getDeltaTime();
 for(int i = 0; i < planets.length; i++){
 planets[i].preDraw(dt);
 }
 }

Run! Oh, wow! I feel like a god. Well, not exactly, because it's dark outside.
We need stars!

A starry sky dome
What if the Universe was just a giant ball and we're inside it? That's what we're
going to imagine to implement a starry sky spherical background.

In computer graphics, you can create backgrounds to make the scene look bigger
than it really is. You can use a spherical texture, or skydome, as we will use here.
(A common alternative in many game engines is a cuboid skybox, constructed from
six internal faces of a cube.)

Among the set of textures that we provided with this book is milky_way_tex.png.
Drag a copy of this file into your res/drawable/ directory, if it's not there already.

Now, we can add the starry sky dome to our scene. Add the following code to
MainActivity.setup():

 //Stars in the sky
 Transform stars = new Transform()
 .setParent(RenderBox.mainCamera.transform, false)

Solar System

[232]

 .setLocalScale(Camera.Z_FAR * 0.99f, Camera.Z_FAR
 * 0.99f, Camera.Z_FAR * 0.99f)
 .addComponent(new Sphere(R.drawable.milky_way_tex,
 false));

This looks so much more celestial.

You might be wondering what that 0.99 factor is all about. Different GPUs deal with
floating point numbers differently. While some might render a vertex at the draw
distance one way, others might exhibit render glitches when the geometry is "on the
edge" due to a floating point precision. In this case, we just pull the skybox toward
the camera by an arbitrarily small factor. It is especially important in VR that the
skybox be as far away as possible, so that it is not drawn with parallax. The fact that
the skybox is in the same exact place for the left and right eye is what tricks your
brain into thinking that it's infinitely far away. You may find that you need to tweak
this factor to avoid holes in the skybox.

Fine tuning the Earth
If you're a space geek, you might be thinking that there are a few things we could
do to our Earth model. For one, we should add the night view texture. (Mars and
the other planets don't need one because their cities shut off all their lights at night.)
Also, the Earth is slightly tilted on its axis. We can fix that.

Chapter 6

[233]

The night texture
First, let's add the night texture. To do this, let's make an Earth Java class a subclass
of a Planet. Right-click on your Java solarsystem folder, select New | Java Class,
and name it Earth. Then, start defining it like this:

public class Earth extends Planet {

 public Earth(float distance, float radius, float rotation,
 float orbit, int texId, int nightTexId, Transform origin) {
 super(distance, radius, rotation, orbit, origin);
 transform.addComponent(new Sphere(texId, nightTexId));
 }
}

This requires that we add a new constructor to the Planet class, which omits texId,
since the Earth constructor creates the new Sphere component, this time with two
textures, textId and nightTexId.

In Planet.java, add the following code:

 public Planet(float distance, float radius, float rotation,
 float orbit, Transform origin){
 setupPlanet(distance, radius, rotation, orbit, origin);
 }

Now, in MainActivity, let's create an Earth separately from the other planets.
In setupPlanets, modify the loop to handle this case:

 for(int i = 0; i < distances.length; i++){
 if (i == 2) {
 planets[i] = new Earth(
 fudged_distances[i] * DISTANCE_FACTOR,
 radii[i] * SCALE_FACTOR,
 rotations[i] * DEG_PER_EHOUR,
 orbits[i] * DEG_PER_EYEAR *
 fudged_distances[i] / distances[i],
 texIds[i],
 R.drawable.earth_night_tex,
 origin);
 } else {
 planets[i] = new Planet(

Solar System

[234]

Axis tilt and wobble
Among all its greatness, like all nature and mankind, the Earth is not perfect. In this
case, we're talking about tilt and wobble. The Earth's axis of rotation is not exactly
perpendicular to the orbital plane. It also suffers from a slight wobble as it rotates.
We can show this in our virtual model.

Modify the Earth class constructor to read as follows:

 Transform wobble;

 public Earth(float distance, float radius, float rotation,
 float orbit, int texId, int nightTexId, Transform origin) {
 super(distance, radius, rotation, orbit, origin);

 wobble = new Transform()
 .setLocalPosition(distance, 0, 0)
 .setParent(orbitTransform, false);

 Transform tilt = new Transform()
 .setLocalRotation(-23.4f,0,0)
 .setParent(wobble, false);

 transform
 .setParent(tilt, false)
 .setLocalPosition(0,0,0)
 .addComponent(new Sphere(texId, nightTexId));
 }

Now, the Earth's rotation on each frame is against this wobble transform, so give
Earth its own preDraw method, as follows:

 public void preDraw(float dt){
 orbitTransform.rotate(0, dt * orbit, 0);
 wobble.rotate(0, dt * 5, 0);
 transform.rotate(0, dt * -rotation, 0);
 }

Changing the camera location
The final feature of our Solar System is to make it more interactive. I mean all these
planets look so cool, but you can't really see them from so far away. How about
clicking on the Cardboard trigger to jump from planet to planet, nice and up close?

Chapter 6

[235]

Fortunately, we already have a goToPlanet method that we used to set our initial
view from the Earth. Because MainActivity extends CardboardActivity, we
can use the Cardboard SDK's onCardboardTrigger method (refer to https://
developers.google.com/cardboard/android/latest/reference/com/google/
vrtoolkit/cardboard/CardboardActivity.html#onCardboardTrigger()).

Add the following code to MainActivity:

 int currPlanet = 2;

 public void onCardboardTrigger(){
 if (++currPlanet >= planets.length)
 currPlanet = 0;
 goToPlanet(currPlanet);
 }

The app will start with the camera near the Earth (index 2). When the user presses
the cardboard trigger (or touches the screen), it'll go to Mars (3). Then, Jupiter, and so
on, and then cycle back to Mercury (0).

Possible enhancements
Can you think of other enhancements to this project? Here are a few you could
consider and try to implement:

• Add rings to Saturn. (A cheap way to implement might be a plane
with transparency.)

• Improve goToPlanet so that your camera position animates between positions.
• Add controls to allow you to change the perspective or fly freely

through space.
• Add a top-down view option, for a "traditional" picture of the Solar System.

(Be aware of float precision issues at scale.)
• Add moons to each of the other planets. (This can be implemented just like

we did for the Earth's moon, with its mother planet as its origin.)
• Represent the asteroid belt between Mars and Jupiter.
• Add tilt and wobble to the other planets. Did you know that Uranus spins

on its side?
• Add text labels to each planet that use the planet's transform but always face

the camera. In lieu of 3D text objects, the labels could be prepared images.
• Add background music.
• Improve the positional accuracy in such a way that it accurately represents

the relative positions of each planet on a given date.

https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardActivity.html#onCardboardTrigger()
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardActivity.html#onCardboardTrigger()
https://developers.google.com/cardboard/android/latest/reference/com/google/vrtoolkit/cardboard/CardboardActivity.html#onCardboardTrigger()

Solar System

[236]

Updating the RenderBox library
With the Solar System project implemented and our code stabilized, you might
realize that we've built some code that is not necessarily specific to this application,
which can be reused in other projects, and ought to make its way back to the
RenderBox library. That's what we'll do now.

We recommend you do this directly within Android Studio, selecting and copying
from this project's hierarchy view to the other's. Perform the following steps:

1. Move all the .shader files from the Solar System's res/raw/ directory into
the res/raw/ directory of the RenderBox lib's RenderBox module. If you've
been following along, there will be eight files for the vertex and fragment
.shader files for day_night, diffuse_lighting, solid_color_lighting,
and unilt_tex.

2. Move all the Component and Material .java files from the Solar System's
RenderBoxExt module folder to the corresponding folders in RenderBox lib's
RenderBox module. Remove all invalid references to MainActivity in the
source code.

3. In the Solar System project, we implemented a method named loadTexture
in MainActivity. It rightfully belongs to the RenderBox library. Find the
declaration for loadTexture in the Solar System's MainActivity.java file,
and cut the code. Then, open the RenderObject.java file in RenderBox lib
and paste the definition into the RenderObject class.

4. In the RenderBox lib, replace (refactor) all the instances of MainActivity.
loadTexture with RenderObject.loadTexture. These will be found in
several Material Java files, where we load material textures.

5. In RenderBox.java, the reset() method destroys the handles of any
materials. Add the calls for the new materials that we just introduced:

 ° DayNightMaterial.destroy()

 ° DiffuseLightingMaterial.destroy()

 ° SolidColorLightingMaterial.destroy()

 ° UnlitTexMaterial.destroy()

6. Resolve any package name mismatches, and fix any other compile-time
errors, including removing any references to solarsystem throughout.

Now, you should be able to successfully rebuild the library (Build | Make Module
'renderbox') to generate an updated renderbox[-debug].aar library file.

Chapter 6

[237]

Lastly, the Solar System project can now use the new .aar library. Copy the
renderbox[-debug].aar file from the RenderBoxLib project's renderbox/build/
output folder into the SolarSystem renderbox/ folder, replacing the older version
of the same file with the newly built one. Build and run the Solar System project with
this version of the library.

Summary
Congratulations! You received an "A" on your Solar System science project!

In this chapter, we built a Solar System simulation that can be viewed in virtual
reality using a Cardboard VR viewer and an Android phone. This project uses and
expands the RenderBox library, as discussed in Chapter 5, RenderBox Engine.

To begin, we added a Sphere component to our repertoire. Initially, it was rendered
using a solid color lighting material. Then, we defined a diffuse lighting material
and rendered the sphere with an Earth image texture, resulting in a rendered globe.
Next, we enhanced the material to accept two textures, adding an additional one to
the back/"night" side of the sphere. And lastly, we created an unlit texture material,
which is used for the Sun. Armed with actual sizes of the planets and distances from
the Sun, we configured a Solar System scene with nine planets, the Earth's moon, and
the Sun. We added a star field as a sky dome, and we animated the heavenly bodies
for their appropriate rotation (day) and orbit (year). We also implemented some
interaction, responding to Cardboard trigger events by moving the camera view
from planet to planet.

In the next chapter, we'll get to use our sphere again, this time, to view your library
of 360-degree photos.

[239]

360-Degree Gallery
360-degree photos and videos are a different approach to virtual reality. Rather
than rendering 3D geometry in real time with OpenGL, you're letting users look
around a prerendered or photographed scene. 360-degree viewers are a great way to
introduce consumers to VR because they give a very natural experience and are easy
to produce. It is much easier to take a photo than to render a photorealistic scene of
objects in real time. Images are easy to record with a new generation of 360-degree
cameras, or the photosphere feature in the Google Camera app. Viewing prerecorded
images requires much less computer power than rendering full 3D scenes, and this
works well on mobile Cardboard viewers. Battery power should also be less of
an issue.

Non-VR 360-degree media has become fairly common. For example, for many years
real-estate listing sites have provided panoramic walkthroughs with a web-based
player that lets you interactively view the space. Similarly, YouTube supports the
uploading and playback of 360-degree videos and provides a player with interactive
controls to look around during playback. Google Maps lets you upload 360-degree
still photosphere images, much like their Street View tool, that you can create with
an Android or iOS app (for more information, visit https://www.google.com/
maps/about/contribute/photosphere/) or a consumer 360 camera. The Internet
is teeming with 360-degree media!

Viewing 360-degree media in VR is surprisingly immersive, even for still photos (and
even without a pair of stereoscopic images). You're standing at the center of a sphere
with an image projected onto the inside surface, but you feel like you're really there
in the captured scene. Simply turn your head to look around.

https://www.google.com/maps/about/contribute/photosphere/
https://www.google.com/maps/about/contribute/photosphere/

360-Degree Gallery

[240]

In this project, we'll build a photo gallery that lets you browse photos on your phone.
Regular flat pictures and panoramas will appear projected on a large screen to
your left. But 360-degree photospheres will fully immerse you inside the spherical
projection. We will accomplish this project by performing the following steps:

• Setting up the new project
• Viewing a 360-degree photosphere
• Viewing a regular photo on a large virtual projection screen
• Adding a frame border to the photos
• Loading and displaying a photo image from your device's camera folder
• Adjusting a photo's orientation and aspect ratio
• Creating a user interface with a grid of thumbnail images for selecting the

photo to be viewed with scrolling
• Ensuring a good, responsive VR experience with thread-safe operations
• Launching an Android image view intent app

The source code for this project can be found on the Packt Publishing website, and
on GitHub at https://github.com/cardbookvr/gallery360 (with each topic a
separate commit).

Setting up the new project
To build this project, we're going to use our RenderBox library created in
Chapter 5, RenderBox Engine. You can use yours, or grab a copy from the download
files provided with this book or our GitHub repo (use the commit tagged after-
ch6—https://github.com/cardbookvr/renderboxlib/releases/tag/after-
ch6). For a more detailed description of how to import the RenderBox library, refer
to the final section, Using RenderBox in future projects, in Chapter 5, RenderBox Engine.
To do this, perform the following steps:

1. With Android Studio opened, create a new project. Let's name it Gallery360
and target Android 4.4 KitKat (API 19) with an Empty Activity.

2. Create new modules for the renderbox, common, and core packages,
using File | New Module | Import .JAR/.AAR Package.

3. Set the modules as dependencies for the app, using File | Project Structure.
4. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard

Project, to compile against SDK 22.
5. Update /res/layout/activity_main.xml and AndroidManifest.xml,

as explained in the previous chapters.

https://github.com/cardbookvr/gallery360
https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch6
https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch6

Chapter 7

[241]

6. Edit MainActivity as class MainActivity extends CardboardActivity
implements IRenderBox, and implement the interface method stubs
(Ctrl + I).

We can go ahead and define the onCreate method in MainActivity. The class now
has the following code:

public class MainActivity extends CardboardActivity implements
IRenderBox {
 private static final String TAG = "Gallery360";
 CardboardView cardboardView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(new RenderBox(this, this));
 setCardboardView(cardboardView);
 }
 @Override
 public void setup() {

 }
 @Override
 public void preDraw() {
 // code run beginning each frame
 }
 @Override
 public void postDraw() {
 // code run end of each frame
 }
}

While we implement this project, we will be creating new classes that could be good
extensions to RenderBoxLib. We'll make them regular classes in this project at first.
Then, at the end of the chapter, we'll help you move them into the RenderBoxLib
project and rebuild the library. Perform the following steps:

1. Right-click on the gallery360 folder (com.cardbookvr.gallery360) and go
to New | Package, and name the package RenderBoxExt.

2. Within RenderBoxExt, create package subfolders named components
and materials.

360-Degree Gallery

[242]

There's no real technical need to make it a separate package but this helps organize
our files, because the ones in RenderBoxExt will be moved into our reusable library
at the end of this chapter.

You can add a cube to the scene, temporarily, to help ensure that everything is set up
properly. Add it to the setup method as follows:

 public void setup() {
 new Transform()
 .setLocalPosition(0,0,-7)
 .setLocalRotation(45,60,0)
 .addComponent(new Cube(true));
 }

If you remember, a cube is a component that's added to a transform. The cube
defines its geometry (for example, vertices). The transform defines its position,
rotation, and scale in 3D space.

You should be able to click on Run 'app' with no compile errors, and see the cube
and Cardboard split screen view on your Android device.

Viewing a 360-degree photo
Ever since it was discovered that the Earth is round, cartographers and mariners
have struggled with how to project the spherical globe onto a two-dimensional chart.
The result is an inevitable distortion of some areas of the globe.

To learn more about map projections and spherical distortions,
visit http://en.wikipedia.org/wiki/Map_projection.

For 360-degree media, we typically use an equirectangular (or a meridian) projection
where the sphere is unraveled into a cylindrical projection, stretching the texture
as you progress toward the North and South poles while keeping the meridians as
equidistant vertical straight lines. To illustrate this, consider Tissot's Indicatrix (visit
http://en.wikipedia.org/wiki/Tissot%27s_indicatrix for more information)
that shows a globe with strategically arranged identical circles (an illustration by
Stefan Kühn):

http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Tissot%27s_indicatrix

Chapter 7

[243]

The following image shows the globe unwrapped with an equirectangular projection
(https://en.wikipedia.org/wiki/Equirectangular_projection):

We will use an equirectangular mesh for our photospheres and an appropriately
projected (warped) image for its texture map. To view, we place the camera
viewpoint at the center of the sphere and render the image onto the inside surface.

https://en.wikipedia.org/wiki/Equirectangular_projection

360-Degree Gallery

[244]

You may have noticed that our Earth and other planet textures had the same sort of
distortion on them. It's a pretty common way to map spherical images to flat ones,
and in fact, we've been "doing the math" on this problem ever since we created the
UVs for our sphere in Chapter 6, Solar System! You'll have to get clever with UV
offsets to keep them from appearing stretched, but you should also be able to
display panoramic photos on a sphere in the same way.

Viewing a sample photosphere
You may choose any 360-degree equirectangular image for this topic. We've included
the following beach photo with this book, named sample360.jpg:

Add it to your project.

Copy the image you want to view into the project's res/drawable/ folder. Now add
the following code to the MainActivity.java file:

 final int DEFAULT_BACKGROUND = R.drawable.sample360;

 Sphere photosphere;

 @Override
 public void setup() {
 setupBackground();
 }

 void setupBackground() {
 photosphere = new Sphere(DEFAULT_BACKGROUND, false);
 new Transform()

Chapter 7

[245]

 .setLocalScale(Camera.Z_FAR * 0.99f, -Camera.Z_FAR *
 0.99f, Camera.Z_FAR * 0.99f)
 .addComponent(photosphere);
 }

Note that multiplying the scale by 0.99 avoids unwanted clipping of the background
image due to floating point precision errors on some phones. Using a negative scale
y axis compensates for inverted rendering by the texture shader (alternatively you
could modify the shader code).

You can replace the drawable filename, R.drawable.sample360, with yours,
as defined in the DEFAULT_BACKGROUND variable. This variable must be final,
as required by the Android resource system.

In the setup method, we create a Sphere component as we have been doing all
along. Start with a new transform, scale it, then add a new Sphere component with
our resource ID to the transform. We're naming the object background because later
on, this object will be the default background for the app.

Run the app, and insert your phone into a Cardboard viewer. Voila! You're in
Margaritaville!! If that seemed really easy, you're right; it was! Really, the hard work
was done for us by the photosphere app or whatever transformed the image into an
equirectangular projection. The rest of it is the standard UV projection math we've
been doing all along!

360-Degree Gallery

[246]

Using the background image
We're going to make a gallery that lets the user pick from a number of images. It
would be nice if the user saw something more neutral when they first started the
app. A more appropriate background image is included with the downloadable files
for this book. It is named bg.png and contains a regular grid. Copy it to your res/
drawable/ folder. Then, change DEFAULT_BACKGROUND to R.drawable.bg.

Rerun the app, and it should look like this:

Chapter 7

[247]

Viewing a regular photo
Now that we got that done, let's prepare our app to also be able to view regular flat
photos. We'll do this by rendering them onto a plane. So first we need to define a
Plane component.

Defining the Plane component and allocating
buffers
The Plane component rightfully belongs to the RenderBox library, but for the time
being, we'll add it directly to the app.

Create a new Java class file in the RenderBoxExt/components/ folder, and name it
Plane. Define it as extends RenderObject, as follows:

public class Plane extends RenderObject {
}

As with other geometry in the RenderBox library, we'll define the plane with
triangles. Simply two adjacent triangles are required, a total of six indices. The
following data arrays define our default plane's 3D coordinates, UV texture
coordinates, vertex colors (middle gray), normal vectors, and corresponding
indices. Add the following code at the top of the class:

 public static final float[] COORDS = new float[] {
 -1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 -1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f
 };
 public static final float[] TEX_COORDS = new float[] {
 0.0f, 1.0f,
 1.0f, 1.0f,
 0f, 0f,
 1.0f, 0f,
 };
 public static final float[] COLORS = new float[] {
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f
 };

360-Degree Gallery

[248]

 public static final float[] NORMALS = new float[] {
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f
 };
 public static final short[] INDICES = new short[] {
 0, 1, 2,
 1, 3, 2
 };

Now, we can define the Plane constructor that calls an allocateBuffers helper
method that allocates buffers for vertices, normals, textures, and indexes. Let's
declare variables for these at the top of the class, and write the methods:

 public static FloatBuffer vertexBuffer;
 public static FloatBuffer colorBuffer;
 public static FloatBuffer normalBuffer;
 public static FloatBuffer texCoordBuffer;
 public static ShortBuffer indexBuffer;
 public static final int numIndices = 6;

 public Plane(){
 super();
 allocateBuffers();
 }

 public static void allocateBuffers(){
 //Already allocated?
 if (vertexBuffer != null) return;
 vertexBuffer = allocateFloatBuffer(COORDS);
 texCoordBuffer = allocateFloatBuffer(TEX_COORDS);
 colorBuffer = allocateFloatBuffer(COLORS);
 normalBuffer = allocateFloatBuffer(NORMALS);
 indexBuffer = allocateShortBuffer(INDICES);
 }

Again, we ensure that allocateBuffers is run only once by checking whether
vertexBuffer is null. (Note that we've decided to declare the buffers public to
afford future flexibility to create arbitrary texture materials for objects.)

Chapter 7

[249]

Adding materials to the Plane component
Next, we can add an appropriate material to the Plane, one that uses a texture
image. Using a constructor API pattern that is consistent with the built-in Sphere
component in Chapter 6, Solar System, we'll add the ability to call a new Plane with
an image texture ID and an optional lighting Boolean flag. Then, we'll add helper
methods to allocate the corresponding Material objects and set their buffers:

 public Plane(int textureId, boolean lighting) {
 super();
 allocateBuffers();
 if (lighting) {
 createDiffuseMaterial(textureId);
 } else {
 createUnlitTexMaterial(textureId);
 }
 }

 public Plane createDiffuseMaterial(int textureId) {
 DiffuseLightingMaterial mat = new
 DiffuseLightingMaterial(textureId);
 mat.setBuffers(vertexBuffer, normalBuffer, texCoordBuffer,
 indexBuffer, numIndices);
 material = mat;
 return this;
 }

 public Plane createUnlitTexMaterial(int textureId) {
 UnlitTexMaterial mat = new UnlitTexMaterial(textureId);
 mat.setBuffers(vertexBuffer, texCoordBuffer, indexBuffer,
 numIndices);
 material = mat;
 return this;
 }

Adding an image screen to the scene
We can now add an image to the scene in MainActivity. Soon we will take a look
at the phone's photos folder for pictures, but at this point, you can just use the same
(photosphere) one that we used earlier (or drop another in your res/drawable
folder). Note that you might have issues displaying an image that is too large for a
phone's GPU. We will take a look at this issue later, so try to keep it less than 4,096
pixels in either dimension.

360-Degree Gallery

[250]

Name the object screen because later on, we'll use it to project whichever photo the
user selects from a gallery.

In MainActivity.java, update the setup function to add the image to the scene,
as follows:

 Plane screen;

 public void setup() {
 setupBackground();
 setupScreen();
 }

 void setupScreen() {
 screen = new Plane(R.drawable.sample360, false);
 new Transform()
 .setLocalScale(4, 4, 1)
 .setLocalPosition(0, 0, -5)
 .setLocalRotation(0, 0, 180)
 .addComponent(screen);
 }

The screen is scaled to 4 units (in X and Y) and placed 5 units in front of the camera.
That's like sitting 5 meters (15 feet) from an 8 meter wide movie screen!

Also, note that we rotate the plane 180 degrees on the z axis; otherwise, the image
will appear upside down. Our world coordinate system has the up-direction along
the positive y axis. However, UV space (for rendering textures) typically has the
origin in the upper-left corner and positive is downward. (If you remember, in the
previous chapter, this is why we also had to flip the Earth). Later in this chapter,
when we implement an Image class, we'll read the actual orientation from the image
file and set the rotation accordingly. Here's our screen plane with the image (viewed
from an angle):

Chapter 7

[251]

It will be convenient to separate the screen plane (with its image texture) from the
placement and size of the screen. We will see why this is important later, but it has
to do with scaling and rotating based on image parameters. Let's refactor the code so
that the screen is parented by a screenRoot transform as follows:

 void setupScreen() {
 Transform screenRoot = new Transform()
 .setLocalScale(4, 4, 1)
 .setLocalRotation(0, 0, 180)
 .setLocalPosition(0, 0, -5);

 screen = new Plane(R.drawable.sample360, false);

 new Transform()
 .setParent(screenRoot, false)
 .addComponent(screen);
 }

360-Degree Gallery

[252]

Putting a border frame on the image
Pictures look best in a frame. Let's add one now. There are a number of ways to
accomplish this, but we are going to use shaders. The frame will also be used for the
thumbnail images and will enable us to change colors to highlight when the user
selects an image. Furthermore, it helps define a region of contrast, which ensures
that you can see the edge of any image on any background.

Border shaders
We can start by writing the shader programs which, among other things, define the
variables they will need from the Material object that uses it.

If necessary, create a resource directory for the shaders, res/raw/. Then, create
the border_vertex.shader and border_fragment.shader files. Define them
as follows.

The border_vertex shader is identical to the unlit_tex_vertex shader that we
were using.

File: res/raw/border_vertex.shader

uniform mat4 u_MVP;

attribute vec4 a_Position;
attribute vec2 a_TexCoordinate;

varying vec3 v_Position;
varying vec2 v_TexCoordinate;

void main() {
 // pass through the texture coordinate
 v_TexCoordinate = a_TexCoordinate;

 // final point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

For the border_fragement shader, we add variables for a border color (u_Color)
and width (u_Width). Then, add a bit of logic to decide whether the current
coordinate being rendered is on the border or in the texture image:

Chapter 7

[253]

File: res/raw/border_fragment.shader

precision mediump float;
uniform sampler2D u_Texture;

varying vec3 v_Position;
varying vec2 v_TexCoordinate;
uniform vec4 u_Color;
uniform float u_Width;

void main() {
 // send the color from the texture straight out unless in
 // border area
 if(
 v_TexCoordinate.x > u_Width
 && v_TexCoordinate.x < 1.0 - u_Width
 && v_TexCoordinate.y > u_Width
 && v_TexCoordinate.y < 1.0 - u_Width
){
 gl_FragColor = texture2D(u_Texture, v_TexCoordinate);
 } else {
 gl_FragColor = u_Color;
 }
}

Note that this technique cuts off the edges of the image. We found this to be
acceptable, but if you really want to see the entire image, you can offset the UV
coordinates within the texture2D sampler call. It would look something like this:

float scale = 1.0 / (1 - u_Width * 2);
Vec2 offset = vec(
 v_TexCoordinate.x * scale – u_Width,
 v_TexCoordinate.x * scale – u_Width);
gl_FragColor = texture2D(u_Texture, offset);

Finally, observant readers might notice that when the plane is scaled non-uniformly
(to make it a rectangle), the border will be scaled so that the vertical borders might be
thicker or thinner than the horizontal borders. There are a number of ways to fix this,
but this is left as an exercise for the (over-achieving) reader.

360-Degree Gallery

[254]

The border material
Next, we define the material for the border shader. Create a new Java class in
RenderBoxExt/materials/ named BorderMaterial and define it as follows:

public class BorderMaterial extends Material {
 private static final String TAG = "bordermaterial";

}

Add material variables for the texture ID, border width, and color. Then,
add variables for the shader program references and buffers, as shown in
the following code:

 int textureId;
 public float borderWidth = 0.1f;
 public float[] borderColor = new float[]{0, 0, 0, 1};
 // black
 static int program = -1;
 //Initialize to a totally invalid value for setup state
 static int positionParam;
 static int texCoordParam;
 static int textureParam;
 static int MVPParam;
 static int colorParam;
 static int widthParam;

 FloatBuffer vertexBuffer;
 FloatBuffer texCoordBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Now we can add a constructor. As we've seen earlier, it calls a setupProgram helper
method that creates the shader program and obtains references to its parameters:

 public BorderMaterial() {
 super();
 setupProgram();
 }

 public static void setupProgram() {
 //Already setup?
 if (program > -1) return;
 //Create shader program
 program = createProgram(R.raw.border_vertex,
 R.raw.border_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");

Chapter 7

[255]

 texCoordParam = GLES20.glGetAttribLocation(program,
 "a_TexCoordinate");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 GLES20.glEnableVertexAttribArray(texCoordParam);

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 colorParam = GLES20.glGetUniformLocation(program,
 "u_Color");
 widthParam = GLES20.glGetUniformLocation(program,
 "u_Width");
 RenderBox.checkGLError("Border params");
 }

Likewise, we add a setBuffers method to be called by the RenderObject
component (Plane):

public void setBuffers(FloatBuffer vertexBuffer, FloatBuffer
texCoordBuffer, ShortBuffer indexBuffer, int numIndices){
 //Associate VBO data with this instance of the material
 this.vertexBuffer = vertexBuffer;
 this.texCoordBuffer = texCoordBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 }

Provide a setter method for the texture ID:

 public void setTexture(int textureHandle) {
 textureId = textureHandle;
 }

Add the draw code, which will be called from the Camera component, to render the
geometry prepared in the buffers (via setBuffer). The draw method looks like this:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 // Set the active texture unit to texture unit 0.
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

360-Degree Gallery

[256]

 // Bind the texture to this unit.
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);

 // Tell the texture uniform sampler to use this texture in
 // the shader by binding to texture unit 0.
 GLES20.glUniform1i(textureParam, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix for eye position.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 GLES20.glUniform4fv(colorParam, 1, borderColor, 0);
 GLES20.glUniform1f(widthParam, borderWidth);

 //Set vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(texCoordParam, 2,
 GLES20.GL_FLOAT, false, 0, texCoordBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 RenderBox.checkGLError("Border material draw");
 }

One more thing; let's provide a method to destroy an existing material:

 public static void destroy(){
 program = -1;
 }

Using the border material
To use the BorderMaterial class instead of the default UnlitTexMaterial class, we
wrote in the Plane class previously, we can add it to the Plane Java class, as follows.
We plan to create the material outside the Plane class (in MainActivity), so we just
need to set it up. In Plane.java, add the following code:

 public void setupBorderMaterial(BorderMaterial material){
 this.material = material;
 material.setBuffers(vertexBuffer, texCoordBuffer,
 indexBuffer, numIndices);
 }

Chapter 7

[257]

In MainActivity, modify the setupScreen method to use this material instead of
the default one, as follows. We first create the material and set the texture to our
sample image. We don’t need to set the color, which will default to black. Then we
create the screen plane and set its material. And then create the transform and add
the screen component:

 void setupScreen() {
 //...
 Screen = new Plane();
 BorderMaterial screenMaterial = new BorderMaterial();
 screenMaterial.setTexture(RenderBox.loadTexture(
 R.drawable.sample360));
 screen.setupBorderMaterial(screenMaterial);
 //...

}

When you run it now, it should look something like this:

Loading and displaying a photo image
So far, we've used images in the project's drawable resource folder. The next step is
to read photo images from the phone and display one on our virtual screen.

360-Degree Gallery

[258]

Defining the image class
Let's make a placeholder Image class. Later on, we'll build the attributes and
methods. Define it as follows:

public class Image {
 final static String TAG = "image";
 String path;
 public Image(String path) {
 this.path = path;
 }
 public static boolean isValidImage(String path){
 String extension = getExtension(path);
 if(extension == null)
 return false;
 switch (extension){
 case "jpg":
 return true;
 case "jpeg":
 return true;
 case "png":
 return true;
 }
 return false;
 }
 static String getExtension(String path){
 String[] split = path.split("\\.");
 if(split== null || split.length < 2)
 return null;
 return split[split.length - 1].toLowerCase();
 }
}

We define a constructor that takes the image's full path. We also provide a validation
method that checks whether the path is actually for an image, based on the filename
extension. We don't want to load and bind the image data on construction because
we don't want to load all the images at once; as you'll see, we will manage these
intelligently using a worker thread.

Chapter 7

[259]

Reading images into the app
Now in MainActivity, access the photos folder on the phone and build a list of
images in our app. The following getImageList helper method looks in the given
folder path and instantiates a new Image object for each file found:

 final List<Image> images = new ArrayList<>();

 int loadImageList(String path) {
 File f = new File(path);
 File[] file = f.listFiles();
 if (file==null)
 return 0;
 for (int i = 0; i < file.length; i++) {
 if (Image.isValidImage(file[i].getName())) {
 Image img = new Image(path + "/" +
 file[i].getName());
 images.add(img);
 }
 }
 return file.length;
 }

Use this method in the setup method, passing in the name of the camera images
folder path, as follows (your path may vary):

 final String imagesPath = "/storage/emulated/0/DCIM/Camera";

 public void setup() {
 …

 loadImageList(imagesPath);
 }

Also, ensure that the following line is included in your AndroidManifest.xml file,
giving the app the permission to read the device's external storage. Technically,
you should already have this permission when using the Cardboard SDK:

 <uses-permission
 android:name="android.permission.READ_EXTERNAL_STORAGE" />

You can add a log message to the getImageList loop and run it to verify that it is
finding files. If not, you may need to discover the actual path to your photos folder.

360-Degree Gallery

[260]

This is the first project where we need to be really careful about permissions. Up
until this point, the Cardboard SDK itself was the only thing which needed access
to the filesystem, but now we need it for the app itself to function. If you are using a
device with Andriod 6.0, and you don't make sure to compile the app against SDK
22, you will not be able to load the image files, and the app will either do nothing,
or crash.

If you are compiling against SDK 22 and you have the permission set up correctly
in the manifest but you still get an empty file list, try looking for the correct path
on your device with a file browser. It could very well be that the path we provided
doesn't exist or is empty. And, of course, make sure that you have actually taken a
picture with that device!

Image load texture
If you remember, in Chapter 6, Solar System, we wrote a loadTexture method that
reads a static image from the project's res/drawable folder into a memory bitmap
and binds it to the texture in OpenGL. Here, we're going to do something similar but
source the images from the phone's camera path and provide methods for additional
processing, such as resizing and rotating its orientation.

At the top of the Image class, add a variable to hold the current texture handle:

 int textureHandle;

The image's loadTexture method, given a path to an image file, will load an image
file into a bitmap and then convert it to a texture. (This method will be called from
MainActivity with the app's CardboardView class.) Write it as follows:

 public void loadTexture(CardboardView cardboardView) {
 if (textureHandle != 0)
 return;
 final Bitmap bitmap = BitmapFactory.decodeFile(path);
 if (bitmap == null){
 throw new RuntimeException("Error loading bitmap.");
 }
 textureHandle = bitmapToTexture(bitmap);
 }

Chapter 7

[261]

We added a small (but important) optimization, checking whether the texture has
already been loaded; don't do it again if not needed.

Our implementation of bitmapToTexture is shown in the following code. Given a
bitmap, it binds the bitmap to an OpenGL ES texture (with some error checking).
Add the following code to Image:

 public static int bitmapToTexture(Bitmap bitmap){
 final int[] textureHandle = new int[1];

 GLES20.glGenTextures(1, textureHandle, 0);
 RenderBox.checkGLError("Bitmap GenTexture");

 if (textureHandle[0] != 0) {
 // Bind to the texture in OpenGL
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 textureHandle[0]);

 // Set filtering
 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);

 // Load the bitmap into the bound texture.
 GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0,
 bitmap, 0);
 }
 if (textureHandle[0] == 0){
 throw new RuntimeException("Error loading texture.");
 }

 return textureHandle[0];
 }

360-Degree Gallery

[262]

Showing an image on the screen
Let's show one of our camera images in the app, say, the first one.

To show an image on the virtual screen, we can write a show method that takes the
current CardboardView object and the Plane screen. It'll load and bind the image
texture and pass its handle to the material. In the Image class, implement the show
method as follows:

 public void show(CardboardView cardboardView, Plane screen) {
 loadTexture(cardboardView);
 BorderMaterial material = (BorderMaterial)
 screen.getMaterial();
 material.setTexture(textureHandle);
 }

Now let's use this stuff! Go to MainActivity and write a separate showImage
method to load the image texture. And, temporarily, call it from setup with the
first image that we find (you will need at least one image in your camera folder):

 public void setup() {
 setupBackground();
 setupScreen();
 loadImageList(imagesPath);
 showImage(images.get(0));
 }

 void showImage(Image image) {
 image.show(cardboardView, screen);
 }

It now also makes sense to modify setupScreen, so it creates the screen but doesn't
load an image texture onto it. Remove the call to screenMaterial.setTexture
in there.

Chapter 7

[263]

Now run the app, and you will see your own image on the screen. Here's mine:

Rotating to the correct orientation
Some image file types keep track of their image orientation, particularly JPG files
(.jpg or .jpeg). We can get the orientation value from the EXIF metadata included
with the file written by the camera app. (For example, refer to http://sylvana.
net/jpegcrop/exif_orientation.html. Note that some devices may not be
compliant or contain different results.)

If the image is not JPG, we'll skip this step.

At the top of the Image class, declare a variable to hold the current image rotation:

 Quaternion rotation;

The rotation value is stored as a Quaternion instance, as defined in our RenderBox
math library. If you remember Chapter 5, RenderBox Engine, a quaternion represents
a rotational orientation in three-dimensional space in a way that is more precise
and less ambiguous than Euler angles. But Euler angles are more human-friendly,
specifying an angle for each x, y, and z axes. So, we'll set the quaternion using
Euler angles based on the image orientation. Ultimately, we use a Quaternion
here because it is the underlying type of Transform.rotation:

 void calcRotation(Plane screen){
 rotation = new Quaternion();

http://sylvana.net/jpegcrop/exif_orientation.html
http://sylvana.net/jpegcrop/exif_orientation.html

360-Degree Gallery

[264]

 // use Exif tags to determine orientation, only available
 // in jpg (and jpeg)
 String ext = getExtension(path);
 if (ext.equals("jpg") || ext.equals("jpeg")) {

 try {
 ExifInterface exif = new ExifInterface(path);
 switch (exif.getAttribute
 (ExifInterface.TAG_ORIENTATION)) {
 // Correct orientation, but flipped on the
 // horizontal axis
 case "2":
 rotation = new
 Quaternion().setEulerAngles(180, 0, 0);
 break;
 // Upside-down
 case "3":
 rotation = new
 Quaternion().setEulerAngles(0, 0, 180);
 break;
 // Upside-Down & Flipped along horizontal axis
 case "4":
 rotation = new
 Quaternion().setEulerAngles(180, 0, 180);
 break;
 // Turned 90 deg to the left and flipped
 case "5":
 rotation = new
 Quaternion().setEulerAngles(0, 180, 90);
 break;
 // Turned 90 deg to the left
 case "6":
 rotation = new
 Quaternion().setEulerAngles(0, 0, -90);
 break;
 // Turned 90 deg to the right and flipped
 case "7":
 rotation = new
 Quaternion().setEulerAngles(0, 180, 90);
 break;
 // Turned 90 deg to the right
 case "8":
 rotation = new
 Quaternion().setEulerAngles(0, 0, 90);
 break;

Chapter 7

[265]

 //Correct orientation--do nothing
 default:
 break;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 screen.transform.setLocalRotation(rotation);
 }

Now we set the screen's rotation in the show method of the Image class, as follows:

 public void show(CardboardView cardboardView, Plane screen) {
 loadTexture(cardboardView);
 BorderMaterial material = (BorderMaterial)
 screen.getMaterial();
 material.setTexture(textureHandle);
 calcRotation(screen);
 }

Run your project again. The image should be correctly oriented. Note that it is
possible that your original image was fine all along. It will become easier to check
whether your rotation code works once we get the thumbnail grid going.

360-Degree Gallery

[266]

Dimensions to correct the width and height
Square images are easy. But usually, photos are rectangular. We can get the actual
width and height of the image and scale the screen accordingly, so the display won't
show up distorted.

At the top of the Image class, declare variables to hold the current image width
and height:

 int height, width;

Then, set them in loadTexture using bitmap options in the decodeFile method,
as follows:

 public void loadTexture(CardboardView cardboardView) {
 if (textureHandle != 0)
 return;
 BitmapFactory.Options options = new
 BitmapFactory.Options();
 final Bitmap bitmap = BitmapFactory.decodeFile(path,
 options);
 if (bitmap == null){
 throw new RuntimeException("Error loading bitmap.");
 }
 width = options.outWidth;
 height = options.outHeight;
 textureHandle = bitmapToTexture(bitmap);
 }

The decodeFile call returns the image's width and height (among other
information) in the options (refer to http://developer.android.com/reference/
android/graphics/BitmapFactory.Options.html).

Now we can set the screen size in the show method of the Image class. We'll
normalize the scale so that the longer side is of size 1.0 and the shorter one is
calculated as the image aspect ratio:

 public void show(CardboardView cardboardView, Plane screen) {
 loadTexture(cardboardView);
 BorderMaterial material = (BorderMaterial)
 screen.getMaterial();
 material.setTexture(textureHandle);
 calcRotation(screen);
 calcScale(screen);
 }

http://developer.android.com/reference/android/graphics/BitmapFactory.Options.html
http://developer.android.com/reference/android/graphics/BitmapFactory.Options.html

Chapter 7

[267]

 void calcScale(Plane screen) {
 if (width > 0 && width > height) {
 screen.transform.setLocalScale(1, (float) height /
 width, 1);
 } else if(height > 0) {
 screen.transform.setLocalScale((float) width / height,
 1, 1);
 }
 }

If you run it now, the screen will have the correct aspect ratio for the image:

Sample image down to size
The camera in your phone is probably awesome! It's probably really mega awesome!
Many-megapixel images are important when printing or doing lots of cropping. But
for viewing in our app, we don't need the full resolution image. In fact, you might
already be having trouble running this project if the image size generates a texture
that's too big for your device's hardware.

360-Degree Gallery

[268]

We can accommodate this issue by constraining the maximum size and scaling
our bitmaps to fit within these constraints when loading the texture. We will
ask OpenGL ES to give us its current maximum texture size. We'll do this in
MainActivity, so it's generally available (and/or move this into the RenderBox
class in your RenderBox library project). Add the following to MainActivity:

 static int MAX_TEXTURE_SIZE = 2048;

 void setupMaxTextureSize() {
 //get max texture size
 int[] maxTextureSize = new int[1];
 GLES20.glGetIntegerv(GLES20.GL_MAX_TEXTURE_SIZE,
 maxTextureSize, 0);
 MAX_TEXTURE_SIZE = maxTextureSize[0];
 Log.i(TAG, "Max texture size = " + MAX_TEXTURE_SIZE);
 }

We call it as the first line of the setup method of the MainActivity class.

As for scaling the image, unfortunately, Android's BitmapFactory does not let you
directly request a new size of a sampled image. Instead, given an arbitrary image,
you can specify the sampling rate, such as every other pixel (2), every fourth pixel
(4), and so on. It must be a power of two.

Back to the Image class. First, we will add a sampleSize argument to loadTexture,
which can be used as an argument to decodeFile, as follows:

 public void loadTexture(CardboardView cardboardView, int
 sampleSize) {
 if (textureHandle != 0)
 return;
 BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inSampleSize = sampleSize;
 final Bitmap bitmap = BitmapFactory.decodeFile(path,
 options);
 if(bitmap == null){
 throw new RuntimeException("Error loading bitmap.");
 }
 width = options.outWidth;
 height = options.outHeight;
 textureHandle = bitmapToTexture(bitmap);
 }

Chapter 7

[269]

To determine an appropriate sample size for images, we need to first find out its full
dimensions and then figure out what sample size will get it closest but less than the
maximum texture size we're going to use. The math isn't too difficult, but instead of
going through that, we'll use a procedural method to search for the best size value.

Fortunately, one of the input options of decodeFile is to only retrieve the image
bounds, and not actually load the image. Write a new load texture method named
loadFullTexture, as follows:

 public void loadFullTexture(CardboardView cardboardView) {
 // search for best size
 int sampleSize = 1;
 BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 do {
 options.inSampleSize = sampleSize;
 BitmapFactory.decodeFile(path, options);
 sampleSize *= 2;
 } while (options.outWidth > MainActivity.MAX_TEXTURE_SIZE
 || options.outHeight > MainActivity.MAX_TEXTURE_SIZE);
 sampleSize /= 2;
 loadTexture(cardboardView, sampleSize);
 }

We keep bumping up the sample size until we find one that produces a bitmap
within the MAX_TEXTURE_SIZE bounds, and then call loadTexture.

Use loadFullTexture in the show method instead of the other loadTexture one:

 public void show(CardboardView cardboardView, Plane screen) {
 loadFullTexture(cardboardView);
 BorderMaterial material = (BorderMaterial)
 screen.getMaterial();
 ...

Run the project. It should look the same as the earlier one. But if your camera is too
good, maybe it's not crashing like it was before.

This sampling will also be useful to display thumbnail versions of the images in the
user interface. There's no point in loading the full-sized bitmap for a thumbnail view.

360-Degree Gallery

[270]

Loading and displaying a photosphere
image
So far, we've been handling all the images in the same manner. But some of them
may be 360-degree images. These should be displayed on the photosphere and not
on the virtual screen.

If you do not have any 360-degree photos in your device's camera folder yet, you can
create them using the Google Camera app.

If the default camera app on your phone does not include a Photosphere
mode, you may need to download the Google Camera app from the Play
Store. Third-party cameras might use a different name. For example,
Samsung calls their photosphere feature Surround Shot.

Some images include the XMP metadata that will include information of whether the
image is distorted for an equirectangular projection. This can be useful to distinguish
spherical images from flat ones. However, the Android API doesn't include an XMP
interface, so integrating XMP header parsing is beyond the scope of this book.

For now, we'll just check whether the filename is prefixed with PANO_. Add the
following variable to the Image class and set it in the constructor method:

 public boolean isPhotosphere;

 public Image(String path) {
 this.path = path;
 isPhotosphere = path.toLowerCase().contains("pano");
 }

We can now build the MainActivity show method to handle regular photos
(displayed on the virtual screen) versus photospheres (displayed on the background
sphere). Furthermore, it should handle switching between a flat image displayed on
the virtual screen and rendering the photosphere and vice versa.

We want to remember the texture handle ID of the background photosphere texture.
Add a bgTextureHandle handle at the top of the MainActivity class:

 int bgTextureHandle;

Chapter 7

[271]

Then, set it in setupBackground by calling getTexture:

 void setupBackground() {
 photosphere = new Sphere(DEFAULT_BACKGROUND, false);
 new Transform()
 .setLocalScale(Camera.Z_FAR * 0.99f,
 -Camera.Z_FAR * 0.99f, Camera.Z_FAR * 0.99f)
 .addComponent(photosphere);
 UnlitTexMaterial mat = (UnlitTexMaterial)
 photosphere.getMaterial();
 bgTextureHandle = mat.getTexture();
 }

Now we can update the showImage method, as follows:

 void showImage(Image image) {
 UnlitTexMaterial bgMaterial = (UnlitTexMaterial)
 photosphere.getMaterial();
 image.loadFullTexture(cardboardView);
 if (image.isPhotosphere) {
 bgMaterial.setTexture(image.textureHandle);
 screen.enabled = false;
 } else {
 bgMaterial.setTexture(bgTextureHandle);
 screen.enabled = true;
 image.show(cardboardView, screen);
 }
 }

When the image is a photosphere, we set the background photosphere texture to
the image and hide the screen plane. When the image is a regular photo, we set the
background texture back to the default one and show the image on the virtual screen.

Until we implement the user interface (next) to test this, you will need to know
which image in the images list is a photosphere. If you make a new photosphere
now, it'll be the last one in the list, and you can change the setup method to call
showImage on it. For example, run the following code:

 showImage(images.get(images.size()-1));

Run the project again and be happy!

360-Degree Gallery

[272]

The image gallery user interface
Before we go ahead and implement a user interface for this project, let's talk about
how we want it to work.

The purpose of this project is to allow the user to select a photo from their phone's
storage and view it in VR. The phone's photo collection will be presented in a
scrollable grid of thumbnail images. If a photo is a normal 2D one, it'll be displayed
on the virtual screen plane we just made. If it's a photosphere, we'll view it as a fully
immersive 360-degree spherical projection.

A sketch of our proposed scene layout is shown in the following diagram. The user
camera is centered at the origin, and the photosphere is represented by the gray
circle, which surrounds the user. In front of the user (determined by the calibration
at launch), there will be a 5 x 3 grid of thumbnail images from the phone's photo
gallery. This will be a scrollable list. To the left of the user, there is the image
projection screen.

Specifically, the UI will implement the following features:

• Displays up to 15 thumbnail images in a 5 x 3 grid.
• Allows the user to select one of the thumbnail images by looking at it and

then clicking on the Cardboard trigger. Thumbnails will be highlighted when
in the sightline.

• Selecting a regular photo will display it on the virtual projection screen in the
scene (and clear the photosphere to the background image).

Chapter 7

[273]

• Selecting a photosphere will hide the virtual projection screen and load the
image into the photosphere projection.

• Allows the user to scroll through thumbnail images by selecting the
up/down arrows.

Some of our UI considerations are unique to virtual reality. Most importantly, all
of the user interface elements and controls are in world coordinate space, That is,
they're integrated into the scene as geometric objects with a position, rotation, and
scale like any other component. This is in contrast with most mobile games where
the UI is implemented as a screen space overlay.

Why? Because in VR, in order to create the stereoscopic effect, each eye has a
separate viewpoint, offset by the interpupillary distance. This can be simulated in
screen space by horizontally offsetting the position of screen space objects, so they
appear to have a parallax (a technique we used in Chapter 4, Launcher Lobby). But
when mixed with 3D geometry, camera, lighting, and rendering, that technique
proves inadequate. A world space UI is required for an effective user experience
and immersion.

Another feature that's unique to VR is gaze-based selection. In this case, where you
look will highlight an image thumbnail, and then you click on the Cardboard trigger
to open the image.

Lastly, as mentioned earlier, since we're working in world space and making
selections based on where we're looking, the layout of our 3D space is an important
consideration. Remember that we're in VR and not constrained by rectangular
edges of a phone screen. Objects in the scene can be placed all around you. On the
other hand, you don't want users twisting and turning all the time (unless that's an
intended part of the experience). We'll pay attention to comfort zones to place our UI
controls and image screen.

Furthermore, Google and researchers elsewhere have begun to develop best practices
for the user interface design, including the optimal distance for menus and UI
controls from the camera, approximately 5 to 15 feet (1.5 to 5 meters). This distance
is close enough to enjoy a 3D parallax effect but not so close to make you look
cross-eyed to focus on the objects.

Okay, let's begin with the UI implementation.

360-Degree Gallery

[274]

Positioning the photo screen on the left
Firstly, let's move the screen from in front to the side, that is, rotate it 90 degrees to
the left. Our transform math does the position after the rotation, so we now offset
it along the x axis. Modify the setupScreen method of the MainActivity class,
as follows:

 void setupScreen() {
 Transform screenRoot = new Transform()
 .setLocalScale(4, 4, 1)
 .setLocalRotation(0, -90, 0)
 .setLocalPosition(-5, 0, 0);
 ...

Displaying thumbnails in a grid
A thumbnail is a mini version of the full image. Therefore, we don't need to load a
full-sized texture bitmap. For the sake of simplicity, let's just always sample it down
by 4 (to 1/16th the original size).

The thumbnail image
In the Image class, the show method loads the full texture. Let's write a similar
showThumbnail method that uses a smaller sampling. In the Image class, add the
following code:

 public void showThumbnail(CardboardView cardboardView, Plane
 thumb) {
 loadTexture(cardboardView, 4);
 BorderMaterial material = (BorderMaterial)
 thumb.getMaterial();
 material.setTexture(textureHandle);
 calcRotation(thumb);
 calcScale(thumb);
 }

Chapter 7

[275]

The Thumbnail class
Create a new Thumbnail class for the project that will contain a small Plane object
and an Image object to show on it. It also gets the current cardboardView instance,
which Image will require:

public class Thumbnail {
 final static String TAG = "Thumbnail";

 public Plane plane;
 public Image image;
 CardboardView cardboardView;

 public Thumbnail(CardboardView cardboardView) {
 this.cardboardView = cardboardView;
 }
}

Define a setImage method that loads the image texture and shows it as a thumbnail:

 public void setImage(Image image) {
 this.image = image;
 // Turn the image into a GPU texture
 image.loadTexture(cardboardView, 4);
 // TODO: wait until texture binding is done
 // show it
 image.showThumbnail(cardboardView, plane);
 }

Lastly, make a quick toggle for the thumbnail visibility:

 public void setVisible(boolean visible) {
 plane.enabled = visible;
 }

360-Degree Gallery

[276]

The thumbnail grid
The plan is to display the phone photos in a 5 x 3 grid of thumbnail images.
At the top of the MainActivity class, declare a thumbnails variable to hold
the list of thumbnails:

 final int GRID_X = 5;
 final int GRID_Y = 3;

 final List<Thumbnail> thumbnails = new ArrayList<>();

Build the list in a new method named setupThumbnailGrid. The first thumbnail is
positioned in the upper-left corner of the page (-4, 3, -5) and each thumb spaced 2.1
units in x and 3 units in y, as follows:

 void setupThumbnailGrid() {
 int count = 0;
 for (int i = 0; i < GRID_Y; i++) {
 for (int j = 0; j < GRID_X; j++) {
 if (count < images.size()) {
 Thumbnail thumb = new
 Thumbnail(cardboardView);
 thumbnails.add(thumb);

 Transform image = new Transform();
 image.setLocalPosition(-4 + j * 2.1f,
 3 - i * 3, -5);
 Plane imgPlane = new Plane();
 thumb.plane = imgPlane;
 imgPlane.enabled = false;
 BorderMaterial material = new
 BorderMaterial();
 imgPlane.setupBorderMaterial(material);
 image.addComponent(imgPlane);
 }
 count++;
 }
 }
 }

Now we need to add image textures to the planes. We'll write another method,
updateThumbnails, as follows. It will show the first 15 images in the grid
(or less if you don't have that many):

 void updateThumbnails() {
 int count = 0;
 for (Thumbnail thumb : thumbnails) {

Chapter 7

[277]

 if (count < images.size()) {
 thumb.setImage(images.get(count));
 thumb.setVisible(true);
 } else {
 thumb.setVisible(false);
 }
 count++;
 }
 }

Add these new methods to setup:

 public void setup() {
 setupMaxTextureSize();
 setupBackground();
 setupScreen();
 loadImageList(imagesPath);
 setupThumbnailGrid();
 updateThumbnails();
 }

When you run the project, it should look something like this:

360-Degree Gallery

[278]

Note that the thumbnails' sizes are adjusted to match the image aspect ratio, and are
properly oriented, because we implemented those features in the Image class earlier.

If you don't have more than 15 photos already in your phone, add a
loop to loadImageList to load duplicates. For example, run the
following code:

for(int j = 0; j < 3; j++) { //Repeat image list
 for (int i = 0; i < file.length; i++) {
 if (Image.isValidImage(file[i].getName())) {
 ...

Gaze to load
We want to detect when the user looks at a thumbnail and highlight the image by
changing its border color. If users move their gaze away from the thumbnail, it will
unhighlight. When the user clicks on the Cardboard trigger, that image is loaded.

Gaze-based highlights
Fortunately, we implemented the isLooking detection in the RenderBox library at
the end of Chapter 5, RenderBox Engine. If you remember, the technique determines
whether the user is looking at the plane by checking whether the vector between the
camera and the plane position is the same as the camera's view direction, within a
threshold of tolerance.

We can use this in MainActivity. We'll write a selectObject helper method
that checks whether any of the objects in the scene are selected and highlights
them. First, let's declare some variables at the top of the MainActivity class. The
selectedThumbnail object holds the currently selected thumbnail index. We define
border colors for normal and selected states:

 final float[] selectedColor = new float[]{0, 0.5f, 0.5f, 1};
 final float[] invalidColor = new float[]{0.5f, 0, 0, 1};
 final float[] normalColor = new float[]{0, 0, 0, 1};
 Thumbnail selectedThumbnail = null;

Chapter 7

[279]

Now the selectObject method goes through each thumbnail, checks whether it's
isLooking, and highlights (or unhighlights) it accordingly:

 void selectObject() {
 selectedThumbnail = null;
 for (Thumbnail thumb : thumbnails) {
 if (thumb.image == null)
 return;
 Plane plane = thumb.plane;
 BorderMaterial material = (BorderMaterial)
 plane.getMaterial();
 if (plane.isLooking) {
 selectedThumbnail = thumb;
 material.borderColor = selectedColor;
 } else {
 material.borderColor = normalColor;
 }
 }
 }

RenderBox provides hooks, including postDraw where we'll check for selected
objects. We want to use postDraw because we need to wait until draw is called
on all of RenderObjects before we know which one the user is looking at. In
MainActivity, add a call to the selectObject method as follows:

 @Override
 public void postDraw() {
 selectObject();
 }

Run the project. As you gaze at a thumbnail image, it should get highlighted!

Selecting and showing photos
Well, now that we can pick an image from the thumbnail grid, we need a way
to click on it and show that image. That'll happen in MainActivity using the
Cardboard SDK hook, onCardboardTrigger.

360-Degree Gallery

[280]

With all the work we've done so far, it's not going to take much more to
implement this:

 @Override
 public void onCardboardTrigger() {
 if (selectedThumbnail != null) {
 showImage(selectedThumbnail.image);
 }
 }

Try and run it. Now highlight an image and pull the trigger. If you're lucky,
it'll work…mine crashes.

Queue events
What's going on? We're running into thread-safe issues. So far, we've been
executing all of our code from the render thread, which is started by the
GLSurfaceView/CardboardView class via the Cardboard SDK. This thread owns
the access to the GPU and to the particular surface we're rendering on. The call to
onCardboardTrigger originates from a thread that is not the render thread. This
means that we can't make any OpenGL calls from here. Luckily, GLSurfaceView
provides a nifty way to execute arbitrary code on the render thread through a
method called queueEvent. The queueEvent method takes a single Runnable
argument, which is a Java class meant to create one-off procedures such as these
(refer to http://developer.android.com/reference/android/opengl/
GLSurfaceView.html#queueEvent(java.lang.Runnable).

Modify showImage to wrap it inside a Runnable argument, as follows:

 void showImage(final Image image) {
 cardboardView.queueEvent(new Runnable() {
 @Override
 public void run() {

 UnlitTexMaterial bgMaterial = (UnlitTexMaterial)
 photosphere.getMaterial();
 image.loadFullTexture(cardboardView);
 if (image.isPhotosphere) {
 Log.d(TAG, "!!! is photosphere");
 bgMaterial.setTexture(image.textureHandle);
 screen.enabled = false;
 } else {
 bgMaterial.setTexture(bgTextureHandle);

http://developer.android.com/reference/android/opengl/GLSurfaceView.html#queueEvent(java.lang.Runnable) /IsMap false >> endobj 1843 0 obj << /A 1844 0 R /H /N /BS << /S /S /W 0 /Type /Border >> /Rect [108 371.885 381.595 357.74] /Type /Annot /Border [0 0 0] /Subtype /Link /StructParent 480 >> endobj 1840 0 obj [1841 0 R 1843 0 R] endobj 1845 0 obj << /Filter [/FlateDecode] /Length 1996 >> streamH��Wk�����N���v�a�*{�<�r�W쵳�q��7�B*%����DF��J忧G� �=��-���s���{F�T�̣���/F�at��/_������`t}�@�S�A�g���Z���x����|���C�N�^����������<{#�JJ���T�������������m_��m�_�?p��[�p��?ж�O[�.q�+ ^��Հ��~������ޥ4$A����R��a%T������������H�<�H�J����|t�7����rB�g���!|�v�/=�|>����Am6@���ux����q��P�?�����K+�G�9�$��4����~�e��m�-`(�g��Fw����������>�!�c�O�P{>q����sR.�3�ʥ�m�>�V^n$��LB��<RO!)/�����y��e�e�Qª���ʕ�;��0g�8�L�`��Dأk�BM��
"Z��j�ʕ�J�GR<�@c=4����ń�� ��.��o�o�R�LZ�p����cG�u5M��6y2�<���l�㿱J���&����e�@�0@ߊ��@���&�B�2.�l��V�,JRx�5dU�Zrp?����D��>�e�}���������������P	�c���������ω�I-��a��.#n�Wc��(���2T����[X&�e����@����uժK�$��ws@5�D�H'�U�q�Ԧ�MTNxX�"�=�� ��@�>�a��j�(/q�ZC'�qW	
h��b)�r���FO���t ����v(��+YI�����bM�pM�I��a�i�@���)=	���
�6:X�S�+�q�~_�7m�u����5c�5��"�s��۞����w��?���v��f��<���v��������k��#Fm�k?As_�S�r��߉ƶ�m�����o�?�'>�ta�Z����2�J��u���W
�|&a��U]�Jf3��T�h������~R@QF
u��;|6��6�qN�[�ឩGI�2������S����Z@y&^	�q �8��9'����ݣ��q�Ö�2Qk��9I{���QQ�&���������	�q�i��6�*yӹS�������űDFz�ī��>����c�%q�F
�&�z2U���y�g�&�c|9�'�ܜ4��a�r�x-��Ó���4����g�.*䈕dQ)��2�}�J�g]�z2�T�mH-����&��a%��h�lu����Vzo�e;x����m����R*I��{~��t��97�v�%��0�m�K��iG�(��(����5�������k�op�P`�dɼ��6���o�����I�"��j)ϳǙ��p�V-p�gC�HN�.��;8�G��gu
`���3�U���E������������HR9G0���t�Y4��	?�*憄
���ˢ&3,����>��Q+��u��(���:)5�Vܥ�$z�?UY�MSi�e�Z���]��J��n�����w�H-��F�37E�h���XKg�K7Ƣ,u��g�|�XᱜU
]_T���E��V�V�0��9n���f2Tr�e¦�R��N��w��-�r�|4��>&�/���dF�|5���,�����_�,4��B�ux�3��nA��*��Xz����=�"����ꛔ#v�7t��������i��1���;W�k���Y2����@�P�p��n��X��w�ha�8f�c4������Ӊ�U�������ۦU�c�*���x���ŵO�f�b�S�oP[{k<����<O�|[<�@>7X5K�ʰ�2�p����z�C$'�9N�)���Է��/�
����'8R�G��A�n�fr�� L��l��Y��]��>�}|�~#��<��;�R]�ਚ]�u5M��	��2땞����z�a����!K�r,�����̀��p�5L���#;�r���	���P<`ha���u�/�^��|��˼X����,�k��|e�ۅvY�^�a��H�G�o�4E_�87L��ʰ#tN��?��5�9��a��?�}d������Mѩ�������&��œ'O���	��vn1PI���{�	�����<ĪqV�~���J��5��������Q��*3"k��a�Σ��6$�D����g��o��h�"��I=F�3����L��OD�������װendstream endobj 1839 0 obj << /Type /Page /Annots 1840 0 R /ArtBox [72 81 540 729] /Parent 1846 0 R /Rotate 0 /CropBox [72 81 540 729] /TrimBox [72 81 540 729] /BleedBox [72 81 540 729] /Contents 1845 0 R /MediaBox [0 0 612 792] /Resources << /Font << /TT0 246 0 R /TT1 144 0 R /TT2 644 0 R /C2_0 148 0 R /C2_1 646 0 R /T1_0 649 0 R >> /ProcSet [/PDF /Text] /ExtGState << /GS0 159 0 R /GS1 160 0 R >> /ColorSpace << /CS0 161 0 R >> >> /StructParents 478 >> endobj 1848 0 obj << /Filter [/FlateDecode] /Length 1635 >> streamH��Wko�6��n ���$�K���G��H�d�дX�f�桠e�fc��D�����]J�+e�B.A"���s/�繖s�jtv6�����N���{w�~�z���`8�PZ ��EE�����Ң��c��4����f��0�qD���1���n�{'�%�h���t��w9�]ހ���p��;�~�y��-
����v�:AċqH	���3��(]�̭u�OB��z�ޯO�@H��&O�@̣�x���&��ļ�0E4�	���rћ��/e����n�h��(�B��p�Dq��?:�y�$��qe5��!X%Q�*�P��iy�O��X������ό��<[�����<:�����#�$~ԱO�<�����@�$�j���)҈���OWb��"���g��b�����=����Rm'')�gS�������&�.�%����z�G������z�����C,`��G����

Chapter 7

[281]

 screen.enabled = true;
 image.show(cardboardView, screen);
 }

 }
 });
 }

Note that any data passed to the anonymous class, such as our image, must be
declared final to be accessible from the new procedure.

Try to run the project again. It should work. You can gaze at a thumbnail, click
on the trigger, and that image will be shown, either on the virtual screen or in the
background photosphere.

Using a vibrator
No worries, we're keeping it clean. We want to provide some haptic feedback to the
user when an image has been selected, using the phone's vibrator. And fortunately,
in Android, that's straightforward.

First, make sure that your AndroidManifest.xml file includes the following line
of code:

 <uses-permission android:name="android.permission.VIBRATE" />

At the top of the MainActivity class, declare a vibrator variable:

 private Vibrator vibrator;

Then, in onCreate, add the following code to initialize it:

 vibrator = (Vibrator)
 getSystemService(Context.VIBRATOR_SERVICE);

Then, use it in onCardboardTrigger, as follows:

 vibrator.vibrate(25);

Run it again. Click on it and you'll feel it. Ahhh! But don't get carried away, it's not
that kind of vibrator.

360-Degree Gallery

[282]

Enable scrolling
Our thumbnail grid has 15 images. If your phone has more than 15 photos, you'll
need to scroll through the list. For this project, we'll implement a simple mechanic to
scroll the list up and down, using triangular scroll buttons.

Creating the Triangle component
Like other RenderObjects in our RenderBox, the Triangle component defines
coordinates, normals, indices, and other data that describes a triangle. We create a
constructor method that allocates buffers. Like the Plane component, we want to use
the BorderMaterial class so that it can be highlighted when selected. And like the
Plane component, it will determine when the user is looking at it. Without further
ado, here's the code.

Create a new Java class file, Triangle.java, in the RenderBoxExt/components
folder. We begin by declaring it extends RenderObject and by declaring the
following variables:

public class Triangle extends RenderObject {

 /*
 Special triangle for border shader

 * 0/3 (0,1,0)/(0,1,0) (0,1)/(1,1)
 /|\
 / | \
 ----*
 1 2 4
 */

 private static final float YAW_LIMIT = 0.15f;
 private static final float PITCH_LIMIT = 0.15f;
 public static final float[] COORDS = new float[] {
 0f, 1.0f, 0.0f,
 -1.0f, -1.0f, 0.0f,
 0.0f, -1.0f, 0.0f,
 0f, 1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 };
 public static final float[] TEX_COORDS = new float[] {
 0f, 1f,
 0f, 0f,
 0.5f, 0f,
 1f, 1f,

Chapter 7

[283]

 1f, 0f
 };
 public static final float[] COLORS = new float[] {
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f,
 0.5f, 0.5f, 0.5f, 1.0f
 };
 public static final float[] NORMALS = new float[] {
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f,
 0.0f, 0.0f, -1.0f
 };
 public static final short[] INDICES = new short[] {
 1, 0, 2,
 2, 3, 4
 };

 private static FloatBuffer vertexBuffer;
 private static FloatBuffer colorBuffer;
 private static FloatBuffer normalBuffer;
 private static FloatBuffer texCoordBuffer;
 private static ShortBuffer indexBuffer;
 static final int numIndices = 6;

 static boolean setup;
}

In case it's not clear as to why we need this 2-triangle triangle, it has to do with how
the UVs work. You can't get a full border with just one triangle, at least not the way
we've written the border shader.

Add a constructor, along with an allocateBuffers helper:

 public Triangle(){
 super();
 allocateBuffers();
 }

 public static void allocateBuffers(){
 //Already allocated?
 if (vertexBuffer != null) return;

360-Degree Gallery

[284]

 vertexBuffer = allocateFloatBuffer(COORDS);
 texCoordBuffer = allocateFloatBuffer(TEX_COORDS);
 colorBuffer = allocateFloatBuffer(COLORS);
 normalBuffer = allocateFloatBuffer(NORMALS);
 indexBuffer = allocateShortBuffer(INDICES);
 }

We can create various materials, but we really only plan to use BorderMaterial,
so let's support this like we did with Plane:

 public void setupBorderMaterial(BorderMaterial material){
 this.material = material;
 material.setBuffers(vertexBuffer, texCoordBuffer,
 indexBuffer, numIndices);
 }

Adding triangles to the UI
In MainActivity, we can add the up and down triangle buttons to scroll the
thumbnails. At the top of the MainActivity class, declare variables for the
triangles and their materials:

 Triangle up, down;
 BorderMaterial upMaterial, downMaterial;
 boolean upSelected, downSelected;

Define a setupScrollButtons helper as follows:

 void setupScrollButtons() {
 up = new Triangle();
 upMaterial = new BorderMaterial();
 up.setupBorderMaterial(upMaterial);
 new Transform()
 .setLocalPosition(0,6,-5)
 .addComponent(up);

 down = new Triangle();
 downMaterial = new BorderMaterial();
 down.setupBorderMaterial(downMaterial);
 new Transform()
 .setLocalPosition(0,-6,-5)
 .setLocalRotation(0,0,180)
 .addComponent(down);
 }

Chapter 7

[285]

Then, call it from the setup method:

 public void setup() {
 setupMaxTextureSize();
 setupBackground();
 setupScreen();
 loadImageList(imagesPath);
 setupThumbnailGrid();
 setupScrollButtons();
 updateThumbnails();
 }

When you run the project, you will see the arrows:

Interacting with the scroll buttons
Now we will detect when the user is looking at a triangle, by using isLooking in
selectObject (which is called from the postDraw hook):

 void selectObject() {
 ...

 if (up.isLooking) {
 upSelected = true;
 upMaterial.borderColor = selectedColor;

360-Degree Gallery

[286]

 } else {
 upSelected = false;
 upMaterial.borderColor = normalColor;
 }

 if (down.isLooking) {
 downSelected = true;
 downMaterial.borderColor = selectedColor;
 } else {
 downSelected = false;
 downMaterial.borderColor = normalColor;
 }
 }

Implementing the scrolling method
To implement scrolling the thumbnail images, we'll keep the grid planes in place and
just scroll the textures. Use an offset variable to hold the index of the first image in
the grid:

 static int thumbOffset = 0;

Now, modify the updateThumbnails method to populate the plane textures using
the thumb offset as the starting index of the image textures:

 void updateThumbnails() {
 int count = thumbOffset;
 for (Thumbnail thumb : thumbnails) {
 . . .

We can perform scrolling when the up or down arrows are pressed in
onCardboardTrigger by shifting the thumbOffset variable one row at
a time (GRID_X):

 public void onCardboardTrigger() {
 if (selectedThumbnail != null) {
 vibrator.vibrate(25);
 showImage(selectedThumbnail.image);
 }
 if (upSelected) {
 // scroll up
 thumbOffset -= GRID_X;
 if (thumbOffset < 0) {
 thumbOffset = images.size() - GRID_X;
 }

Chapter 7

[287]

 vibrator.vibrate(25);
 updateThumbnails();
 }
 if (downSelected) {
 // scroll down
 if (thumbOffset < images.size()) {
 thumbOffset += GRID_X;
 } else {
 thumbOffset = 0;
 }
 vibrator.vibrate(25);
 updateThumbnails();
 }
 }

As with showImage, the updateThumbnails method needs to run on the
render thread:

 void updateThumbnails() {
 cardboardView.queueEvent(new Runnable() {
 @Override
 public void run() {
 ...

Run the project. You can now click on the up and down arrows to scroll through
your photos.

Stay responsive and use threads
There are a few problems with our loading and scrolling code, all related to the
fact that loading images and converting bitmaps is compute-intensive. Attempting
to do this for 15 images all at once causes the app to appear frozen. You may have
also noticed that the app takes significantly longer to start up since we added the
thumbnail grid.

In conventional apps, it might be annoying but somewhat acceptable for the app to
lock up while waiting for data to load. But in VR, the app needs to stay alive. The
app needs to continue responding to the head movement and update the display
for each frame with a view corresponding to the current view direction. If the app
is locked while loading files, it will feel stuck, that is, stuck to your face! In a fully
immersive experience, and on a desktop HMD that is strapped on, visual lockup is
the most severe cause of nausea, or sim sickness.

360-Degree Gallery

[288]

The solution is a worker thread. The key to successful multithreaded support is
providing the ability for the procedures to signal each other with semaphores
(Boolean flags). We'll use the following:

• Image.loadLock: This is true when waiting for the GPU to generate a texture
• MainActivity.cancelUpdate: This is true when the thread should stop due

to a user event
• MainActivity gridUpdateLock: This is true when the grid is updating;

ignore other user events

Let's declare these. At the top of the Image class, add the following code:

 public static boolean loadLock = false;

At the top of the MainActivity class, add the following:

 public static boolean cancelUpdate = false;
 static boolean gridUpdateLock = false;

First, let's identify the compute-intensive part of our code. Feel free to do your own
investigation, but let's assume that BitmapFactory.decodeFile is the culprit.
Ideally, any code that wasn't directly related to rendering should be done on a
worker thread, but beware of pre-optimization. We're doing this work because we've
noticed an issue, so we should be able to identify the new code which is causing it.
An educated guess points to this business of loading arbitrary images into textures.

Where do we do this operation? Well, the actual call to BitmapFactory.decodeFile
comes from Image.loadTexture, but more generally, all of this is kicked off in
MainActivity.updateGridTextures and MainActivity.showImage. Let's update
these last two functions now.

Lucky for us, showImage has already been wrapped in Runnable for the purpose of
redirecting its execution to the render thread. Now we want to actually ensure that it
always happens off the render thread. We'll be using queueEvent in a different place
to avoid the error that we encountered earlier. We replace the previous Runnable
code with Thread. For example, showImage now looks like this:

 void showImage(final Image image) {
 new Thread() {
 @Override
 public void run() {
 UnlitTexMaterial bgMaterial = (UnlitTexMaterial)
 photosphere.getMaterial();
 ...
 }
 }.start();
 }

Chapter 7

[289]

Do the same to updateThumbnails. While we're here, add the gridUpdateLock flag
that remains set while it's running, and handle the cancelUpdate flag, so the loops
can be interrupted:

 void updateThumbnails() {
 gridUpdateLock = true;
 new Thread() {
 @Override
 public void run() {
 int count = thumbOffset;
 for (Thumbnail thumb : thumbnails) {
 if (cancelUpdate)
 return;
 if (count < images.size()) {
 thumb.setImage(images.get(count));
 thumb.setVisible(true);
 } else {
 thumb.setVisible(false);
 }
 count++;
 }
 cancelUpdate = false;
 gridUpdateLock = false;
 }
 }.start();
 }

Focusing on the Image class's loadTexture method, we need to redirect the GPU
calls back to the render thread with queueEvent. If you try to run the app now, it
will crash right out of the gate. This is because showImage is now always run in its
own thread, and when we eventually make the OpenGL calls to generate the texture,
we'll get the invalid operation error that we got earlier when we added the trigger
input. To fix this, modify loadTexture as follows:

 public void loadTexture(CardboardView cardboardView,
 int sampleSize) {
 if (textureHandle != 0)
 return;
 BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inSampleSize = sampleSize;
 final Bitmap bitmap = BitmapFactory.decodeFile(path,
 options);
 if(bitmap == null){

360-Degree Gallery

[290]

 throw new RuntimeException("Error loading bitmap.");
 }
 width = options.outWidth;
 height = options.outHeight;

 loadLock = true;
 cardboardView.queueEvent(new Runnable() {
 @Override
 public void run() {
 if (MainActivity.cancelUpdate)
 return;
 textureHandle =
 bitmapToTexture(bitmap);
 bitmap.recycle();
 loadLock = false;
 }
 }
 });
 while (loadLock){
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }

We changed it so that bitmapToTexture is now called on the GPU thread. We use
the loadLock flag to indicate that the loading is busy. When it's done, the flag is
reset. Meanwhile, loadTexture waits for it to finish before returning because we
need this textureHandle value for later. But since we're always calling this from
a worker thread, the app isn't hung waiting. This change will also improve the
start-up time.

Similarly, we do the same thing in the Thumbnail class; its setImage method also
loads the image texture. Modify it so that it looks like this:

 public void setImage(Image image) {
 this.image = image;
 // Turn the image into a GPU texture
 image.loadTexture(cardboardView, 4);
 // wait until texture binding is done
 try {
 while (Image.loadLock) {

Chapter 7

[291]

 if (MainActivity.cancelUpdate)
 return;
 Thread.sleep(10);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 // show it
 . . .
 }

You might have noticed a subtler issue in all of this. If we try to close the app in the
middle of one of these worker thread operations, it will crash. The underlying issue
is that the thread persists, but the graphics context has been destroyed, even if you
are just switching apps. Trying to generate textures with an invalid graphics context
results in a crash, and the user gets little notification. Bad news. What we want to do
is stop the worker thread when the app closes. This is where cancelUpdate comes
into play. In MainActivity, we'll set its value in the onCreate method, and add the
methods to the onStart, onResume, and onPause hook methods, as follows:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 cancelUpdate = false;
 //...
 }

 @Override
 protected void onStart(){
 super.onStart();
 cancelUpdate = true;
 }
 @Override
 protected void onResume(){
 super.onResume();
 cancelUpdate = false;
 }
 @Override
 protected void onPause(){
 super.onPause();
 cancelUpdate = true;
 }

360-Degree Gallery

[292]

If you try to click on something while the grid is updating, it shouldn't let you to do
so. Add the following code to the top of onCardboardTrigger:

 if (gridUpdateLock) {
 vibrator.vibrate(new long[]{0,50,30,50}, -1);
 return;
 }

This new long[]{0,50,30,50} business is a way of programming a sequence into
the vibrator. In this case, two short (50 milliseconds) pulses in a row are used to
indicate the nuh-uh reaction.

We can even go one beautiful step further and highlight selectable objects in
selectObject with a disabled color during gridUpdateLock like this:

 if (plane.isLooking) {
 selectedThumbnail = thumb;
 if(gridUpdateLock)
 material.borderColor = invalidColor;
 else
 material.borderColor = selectedColor;

 ...

Your project should run as before. But now it's more responsive, better behaved, and
doesn't get stuck waiting for images to load.

An explanation of threading and virtual
reality
OpenGL is not thread-safe. This sounds like a design flaw. In reality, it's more like
a design requirement. You want your graphics API to draw frames as quickly and
frequently as possible. As you may know, or will soon learn, waiting is something
that threads end up doing a lot of the time. If you introduce multithreaded access
to your graphics hardware, you introduce periods where the hardware might be
waiting on the CPU simply to figure out its thread scheduling and who needs access
at the time. It's much simpler and faster to say "only one thread may access the
GPU." Technically speaking, as graphics APIs become more advanced (DirectX 12
and Vulkan), this is not strictly true, but we will not be getting into multithreaded
rendering in this book.

Chapter 7

[293]

Let's first take a step back and ask the question, "Why do we need to use threads?"
To some of you who are more experienced application developers, the answer
should be obvious. But not all programmers need to use threads, and, even worse,
many programmers use threads inappropriately, or when they aren't needed in the
first place. For those of you still in the dark, a thread is a fancy term for "a way to run
two procedures at the same time." On a practical level, the operating system takes
control of scheduling threads to run one after another, or on different CPU cores,
but as programmers, we assume that all threads are running "simultaneously."

Incidentally, while we are only allowed one CPU thread to control the GPU, the
whole point of a GPU is that it is massively multithreaded. Mobile GPUs are still
getting there, but high-end Tegra chips have hundreds of cores (currently, the X1
is at 256 cores), lagging behind their desktop equivalents with thousands of cores
(Titan Black @ 2880 cores). A GPU is set up to process each pixel (or other similar
small datum) on a separate thread, and there is some hardware magic going on that
schedules all of them automatically with zero overhead. Think of your render thread
as a slow taskmaster instructing a tiny army of CPUs to do your bidding and report
back with the results, or in most cases, just draw them right to the screen. This means
that the CPU is already doing a fair amount of waiting on behalf of the GPU, freeing
your other worker threads to do their tasks and then wait when there is more CPU
render work to be done.

Threads are generally useful when you want to run a process which will take a
while, and you want to avoid blocking the program's execution, or main, thread.
The most common place where this comes up is starting a background process and
allowing the UI to continue to update. If you're creating a media encoder program,
you don't want it to be unresponsive for 30 minutes while it decodes a video. Instead,
you'd like the program to run as normal, allowing the user to click on buttons and
see progress updates from the background work. In this scenario, you have to let the
UI and background threads take a break now and then to send and check messages
passed between the two. Adjusting the length of the break, or sleep time, and thread
priority values allows you to avoid one thread hogging too much CPU time.

Back to OpenGL and graphics programming. It is common in a game engine to
split the work into a few, distinct threads (render, physics, audio, input, and so on).
However, the render thread is always a kind of orchestrator because rendering still
tends to be the most time-sensitive job and must happen at least 30 times per second.
In VR, this constraint is even more important. We're not worried about physics and
audio, perhaps, but we still need to make sure that our renderer can draw things as
quickly as possible, or the feeling of presence is lost. Furthermore, we can never stop
rendering, as long as the person is looking at the screen. We need threads to avoid
"hiccups" or unacceptably long periods between render frames.

360-Degree Gallery

[294]

Head tracking is essential to a VR experience. A person who is moving their head,
looking only at a fixed image, will start to experience nausea, or simsickness. Even
some text on a black background, if it is not compensated by some sort of fixed
horizon, will eventually cause discomfort. Sometimes, we do have to block the
render thread for significant periods of time, and the best option is to first fade the
image to a solid color, or void. This can be comfortable for a short period of time.
The worst thing that can happen in VR is periodic hiccups or frame rate drops due
to extensive work being done on the render thread. If you don't maintain a constant,
smooth, frame rate, your VR experience is worthless.

In our case, we need to decode a series of rather large bitmaps and load them into
GPU textures. Unfortunately, the decode step takes a few hundred milliseconds
and causes those hiccups we were just talking about. However, since this isn't GPU
work, it doesn't have to happen on the render thread! If we want to avoid any heavy
lifting in our setup(), preDraw(), and postDraw() functions, we should create a
thread any time that we want to decode a bitmap. In the case of updating our grid of
previews, we should probably just create a single thread, which can run the whole
update process, waiting in between each bitmap. In the CPU land, the OS needs
to use some resources to schedule threads and allocate their resources. It's much
more efficient to just create a single thread to run through the entire job, rather than
spinning up and taking down a thread for each bitmap.

Of course, we're going to need to make use of our old friend queueEvent in order
to do any graphics work, in this case generating and loading the texture. As it
turns out, updating the display of the image is not graphics work, since it just
involves changing a value on our material. We do, however, need to wait on the
graphics work in order to get this new value. As a result of these optimizations and
constraints, we need a locking system in order to allow one thread to wait on the
others to finish its work, and to prevent the user from interrupting or restarting
this procedure before it has completed. This is what we just implemented in the
previous topic.

Launch with an intent
Wouldn't it be cool if you could launch this app any time you go to view an image on
your phone, especially 360-degree photospheres?

Chapter 7

[295]

One of the more powerful features of the Android operating system is the ability to
communicate between apps with intents. An intent is a message that any app can
send to the Android system, which declares its intent to use another app for a certain
purpose. The intent object contains a number of members to describe what type
of action needs to be done, and, if any, the data on which it needs to be done. As a
user, you may be familiar with the default action picker, which displays a number
of app icons, and the choices, Just Once, or Always. What you're seeing is the result
of the app you were just using broadcasting a new intent to the system. When you
choose an app, and Android launches a new activity from that app, which has been
registered to respond to intents of that type.

In your AndroidManifest.xml file, add an intent filter to the activity block. Let
Android know that the app can be used as an image viewer. Add the following
XML code:

<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="image/*" />
</intent-filter>

We just need to handle the situation so an intent image is the default image loaded
when the app starts. In MainActivity, we'll write a new function that shows an
image given its URI, as follows. The method gets the URI path and translates it into
a file pathname, calls the new Image object on that path, and then the showImage
method. (For reference, visit http://developer.android.com/guide/topics/
providers/content-provider-basics.html):

 void showUriImage(final Uri uri) {
 Log.d(TAG, "intent data " + uri.getPath());
 File file = new File(uri.getPath());
 if(file.exists()){
 Image img = new Image(uri.getPath());
 showImage(img);
 } else {
 String[] filePathColumn =
 {MediaStore.Images.Media.DATA};
 Cursor cursor = getContentResolver().query(uri,
 filePathColumn, null, null, null);
 if (cursor == null)
 return;

http://developer.android.com/guide/topics/providers/content-provider-basics.html
http://developer.android.com/guide/topics/providers/content-provider-basics.html

360-Degree Gallery

[296]

 if (cursor.moveToFirst()) {
 int columnIndex =
 cursor.getColumnIndex(filePathColumn[0]);
 String yourRealPath =
 cursor.getString(columnIndex);
 Image img = new Image(yourRealPath);
 showImage(img);
 }
 // else report image not found error?
 cursor.close();

 }

Then, add a call to showUriImage from setup, as follows:

 public void setup() {
 BorderMaterial.destroy();
 setupMaxTextureSize();
 setupBackground();
 setupScreen();
 loadImageList(imagesPath);
 setupThumbnailGrid();
 setupScrollButtons();
 Uri intentUri = getIntent().getData();
 if (intentUri != null) {
 showUriImage(intentUri);
 }
 updateThumbnails();
 }

We've also added a call to BorderMaterial.destroy() since the intent launches
a second instance of the activity. If we don't destroy the materials, the new activity
instance, which has its own graphics context, will throw errors when it tries to use
shaders compiled on the first activity's graphics context.

Now with the project built and installed on the phone, when you choose an image
file, for example, from a file folder browser app such as My Files (Samsung), you're
given a choice of apps with an intent to view images. Your Gallery360 app (or
whatever you have actually named it) will be one of the choices, as shown in the
following screenshot. Pick it and it will launch with that image file view as
the default.

Chapter 7

[297]

Showing/hiding the grid with tilt-up
gestures
Back in the early days of Cardboard, you had one button. That was all. The one
button and head tracking were the only ways for the user to interact with the app.
And because the button was a nifty magnet thing, you couldn't even press and hold
the one button. With Cardboard 2.0, the screen turned into the button, and we also
realized that we could briefly take the box off of our face, tilt the phone up, put it
back on, and interpret that as a gesture. Thus, a second input was born! At the time
of writing, the sample Cardboard apps use this as a back gesture.

We will be using tilt-up to show and hide the grid and arrows so that you can fully
immerse yourself in the selected photosphere. Since it's less work, we'll also let
the user do this anytime, and not just while looking at photospheres. As with the
vibration feedback, this is actually a pretty painless feature to add. Most of the hard
work is done by an OrientationEventListener class.

360-Degree Gallery

[298]

At the top of the MainActivity class, add a variable for the state of the grid,
the orientation event listener, and ones for a tilt detection timer, as follows:

 static boolean setupComplete = false;

 boolean interfaceVisible = true;
 OrientationEventListener orientationEventListener;
 int orientThreshold = 10;
 boolean orientFlip = false;
 long tiltTime;
 int tiltDamper = 250;

First, we can write a method that toggles the thumbnail grid menu on/off. Check
whether there are less images than planes since empty ones are already disabled in
updateThumbnails:

 void toggleGridMenu() {
 interfaceVisible = !interfaceVisible;
 if (up != null)
 up.enabled = !up.enabled;
 if (down != null)
 down.enabled = !down.enabled;
 int texCount = thumbOffset;
 for (Thumbnail thumb : thumbnails) {
 if (texCount < images.size() && thumb != null) {
 thumb.setVisible(interfaceVisible);
 }
 texCount++;
 }
 }

Next, write a setupOrientationListener helper method, which provides a callback
function when the device orientation changes. If the orientation gets close to vertical
after being in landscape mode, we can call our toggle function, and once the device
returns to landscape and goes vertical again, we toggle again:

 void setupOrientationListener() {
 orientationEventListener = new
 OrientationEventListener(this,
 SensorManager.SENSOR_DELAY_NORMAL) {
 @Override
 public void onOrientationChanged(int orientation) {
 if(gridUpdateLock || !setupComplete)
 return;
 if(System.currentTimeMillis() - tiltTime > tiltDamper)
 {

Chapter 7

[299]

 if(Math.abs(orientation) < orientThreshold ||
 Math.abs(orientation - 180) <
 orientThreshold){
 //"close enough" to portrait mode
 if(!orientFlip) {
 Log.d(TAG, "tilt up! " + orientation);
 vibrator.vibrate(25);
 toggleGridMenu();
 }
 orientFlip = true;
 }
 if(Math.abs(orientation - 90) <
 orientThreshold || Math.abs(orientation - 270)
 < orientThreshold) {
 //"close enough" to landscape mode
 orientFlip = false;
 }
 tiltTime = System.currentTimeMillis();
 }
 }
 };
 if(orientationEventListener.canDetectOrientation())
 orientationEventListener.enable();
 }

Then, add it to onCreate:

 protected void onCreate(Bundle savedInstanceState) {
 ...
 setupOrientationListener();
 }

The setupComplete flag prevents the grid from being toggled while it is still being
created. Let's reset the complete flag after updateThumbnails:

 void updateThumbnails() {
 . . .
 cancelUpdate = false;
 gridUpdateLock = false;
 setupComplete = true;

It's prudent to destroy it in onDestroy:

 @Override
 protected void onDestroy(){
 super.onDestroy();
 orientationEventListener.disable();
 }

360-Degree Gallery

[300]

The onOrientationChanged callback will fire whenever the phone changes
orientation. We'll only be interested in the times when it changes from landscape to
portrait, and we also want to make sure that it doesn't happen too often, hence the
tilt damper feature. You might want to tweak the value (currently 250 milliseconds)
to your liking. Too short, and you might falsely register two changes in a row. Too
long, and the user might try to tiltup twice within the cutoff time.

Spherical thumbnails
Spherical 360-degree images deserve better than a plain ol' paint-chip thumbnail
images, don't you think? I suggest that we display them as small balls. Maybe we
should call them thumb-tips or thumb-marbles. Anyway, let's do a little hacking to
make this happen.

Add a sphere to the Thumbnail class
In the Thumbnail class, add a sphere variable:

 public Sphere sphere;

Modify setImage to recognize a photosphere image:

 public void setImage(Image image) {
 // ...
 // show it
 if (image.isPhotosphere) {
 UnlitTexMaterial material = (UnlitTexMaterial)
 sphere.getMaterial();
 material.setTexture(image.textureHandle);
 } else {
 image.showThumbnail(cardboardView, plane);
 }
 }

We must also change setVisible to handle both the plane and sphere variables,
as follows:

 public void setVisible(boolean visible) {
 if(visible) {
 if(image.isPhotosphere){
 plane.enabled = false;
 sphere.enabled = true;
 } else{
 plane.enabled = true;
 sphere.enabled = false;

Chapter 7

[301]

 }
 } else {
 plane.enabled = false;
 sphere.enabled = false;
 }
 }

Next, in the MainActivity class's setupThumbnailGrid, initialize a Sphere object in
addition to a Plane object (inside the GRID_Y and GRID_X loops):

 . . .
 image.addComponent(imgPlane);

 Transform sphere = new Transform();
 sphere.setLocalPosition(-4 + j * 2.1f,
 3 - i * 3, -5);
 sphere.setLocalRotation(180, 0, 0);
 sphere.setLocalScale(normalScale, normalScale,
 normalScale);
 Sphere imgSphere = new Sphere(R.drawable.bg,
 false);
 thumb.sphere = imgSphere;
 imgSphere.enabled = false;
 sphere.addComponent(imgSphere);

Now the thumbnails have both a plane and a sphere that we can populate depending
on the image type.

Lastly, we just need to modify the selectObject method to see how we highlight a
sphere thumbnail. We highlight the rectangular ones by changing the border color.
Our spheres don't have a border; in lieu of that we'll change their size.

At the top of MainActivity, add variables to the normal and selected scales:

 final float selectedScale = 1.25f;
 final float normalScale = 0.85f;

Now, change selectObject to behave differently when the image is a photosphere:

 void selectObject() {
 float deltaTime = Time.getDeltaTime();
 selectedThumbnail = null;
 for (Thumbnail thumb : thumbnails) {
 if (thumb.image == null)
 return;
 if(thumb.image.isPhotosphere) {
 Sphere sphere = thumb.sphere;
 if (sphere.isLooking) {
 selectedThumbnail = thumb;

360-Degree Gallery

[302]

 if (!gridUpdateLock)
 sphere.transform.setLocalScale
 (selectedScale, selectedScale,
 selectedScale);
 } else {
 sphere.transform.setLocalScale(normalScale,
 normalScale, normalScale);
 }
 sphere.transform.rotate(0, 10 * deltaTime, 0);
 } else {
 Plane plane = thumb.plane;
 //...
 }
 }
 //. . .

Whoo hoo! We even have the sphere spinning, so you can see its 360-ness in all its
glory! This is so much fun, it should be illegal.

There you have it! A beautiful photo viewer app that supports both regular camera
images as well as 360-degree photospheres.

Updating the RenderBox library
With the Gallery360 project implemented and our code stabilized, you might
realize that we've built some code that is not necessarily specific to this application
that can be reused in other projects, and ought to make its way back to the
RenderBox library.

Chapter 7

[303]

We did this at the end of the previous project in Chapter 6, Solar System. You can refer
to that topic for details. Follow these steps to update the RenderBoxLib project:

1. Move the Plane and Triangle components from RenderBoxExt/
components.

2. Move the BorderMaterial component from RenderBoxExt/materials.
3. Move the border shader files from res/raw.
4. Refactor any invalid references to correct the package names.
5. Rebuild the library by clicking Build | Make Project.

Further possible enhancements
Whew, that was a lot of work! This thing is certainly done, isn't it? Never! Here are a
few improvements just begging to be implemented:

• Better detection of phone images:
 ° Not everyone keeps all of their images in a specific path. In fact, some

camera software uses completely different paths! Introduce a proper
file browser.

• Better detection of photosphere images:
 ° There is a Projection Type attribute in the XMP header, another

piece of metadata in some JPG files. Unfortunately, the Android
API doesn't have a specific class to read this data, and integrating a
third-party library is beyond the scope of this project. Feel free to try
the following links:
https://github.com/dragon66/pixymeta-android

https://github.com/drewnoakes/metadata-extractor

Don't use the pano technique because it picks up regular panoramas.
Allow users to flag or fix photosphere or rotation metadata on images
that are displayed incorrectly.

• Animate UI actions—scale/translate on select, smooth grid scrolling.
• A nifty technique to keep grid tiles from showing up behind the up/down

arrows is known as depth masking. You can also just introduce a maximum
and minimum Y value in the world space beyond which tiles would not be
able to draw. But depth masks are cooler.

• Respond to the GALLERY intent to override the grid with a selection of images
from another app.

https://github.com/dragon66/pixymeta-android
https://github.com/drewnoakes/metadata-extractor

360-Degree Gallery

[304]

• Accept image URLs from the web in VIEW intents.
• You need to first download the image, and then load it from the

download path.

Summary
I hope you're as excited as I am with what we accomplished here! We built a truly
practical Cardboard VR app to view a gallery of regular photos and 360-degree
photospheres. The project uses the RenderBox library, as discussed in Chapter 5,
RenderBox Engine.

To begin with, we illustrated how photospheres work and viewed one on Cardboard
using the RenderBox library without any custom changes. Then, to view a regular
photo, we created a Plane component to be used as a virtual projection screen.
We wrote new materials and shaders to render images with a frame border.

Next, we defined a new Image class and loaded images from the phone's camera
folder into a list, and wrote a method to show the image on the screen Plane,
correcting its orientation and aspect ratio. Then, we built a user interface that shows
a grid of thumbnail images and lets you select one by gazing at it and clicking on the
Cardboard trigger to display the image. The grid is scrollable, which required us to
add threading, so the app would not appear to lock up when files are loading. Lastly,
we added a couple of bells and whistles to launch the app with the image view
intent, toggle the menu grid by tilting the phone vertically, and spherical thumbanils
for photospheres.

In the next chapter, we'll build another kind of viewer; this time to view full 3D
models in OBJ files.

[305]

3D Model Viewer
Three-dimensional models are everywhere, from mechanical engineering of machine
parts to medical imaging; from video game design to 3D printing. 3D models are
as prolific as photos, videos, music, and other media. Yet, while browsers and apps
have native support for other media types, 3D models do not have so much. One
day 3D viewing standards will be integrated into the browser (such as WebGL
and WebVR). Until then, we'll have to rely on plugins and sister apps to view our
models. Free 3D file models in the OBJ format, for example, can be found online,
including TF3DM (http://tf3dm.com/), TurboSquid (http://www.turbosquid.
com/), and many others (http://www.hongkiat.com/blog/60-excellent-free-
3d-model-websites/).

In this project, we will build an Android 3D model viewer app that lets you open
and view models in 3D using a Cardboard VR headset. The file format that we'll
use is OBJ, an open format first developed by Wavefront Technologies for cinematic
3D animation. OBJs can be created and exported by many 3D design applications,
including open source ones, such as Blender and MeshLab, as well as commercial
ones, such as 3D Studio Max and Maya. An OBJ is a noncompressed plain text file
that stores a description of the surface mesh of a 3D object composed of triangles
(or higher degree polygons).

To implement the viewer, we will read and parse OBJ file models and display them
in 3D for viewing with Cardboard. We will accomplish this by performing the
following steps:

• Setting up the new project
• Writing an OBJ file parser to import the geometry
• Displaying the 3D model
• Rotating the view of the object using the user's head motion

http://tf3dm.com/
http://www.turbosquid.com/
http://www.turbosquid.com/
http://www.hongkiat.com/blog/60-excellent-free-3d-model-websites/
http://www.hongkiat.com/blog/60-excellent-free-3d-model-websites/

3D Model Viewer

[306]

The source code for this project can be found on the Packt Publishing website, and
on GitHub at https://github.com/cardbookvr/modelviewer (with each topic as a
separate commit).

Setting up a new project
To build this project, we're going to use our RenderBox library created in Chapter 5,
RenderBox Engine. You can use yours, or grab a copy from the downloadable files
provided with this book or from our GitHub repository (use the commit tagged
after-ch7—https://github.com/cardbookvr/renderboxlib/releases/tag/
after-ch7). For a more detailed description of how to import the RenderBox library,
refer to the final section, Using RenderBox in future projects, of Chapter 5, RenderBox
Engine. To create a new project, perform the following steps:

1. With Android Studio opened, create a new project. Let's name it Gallery360
and target Android 4.4 KitKat (API 19) with an Empty Activity.

2. Create new modules for the renderbox, common and core packages,
using File | New Module | Import .JAR/.AAR Package.

3. Set the modules as dependencies for the app, using File | Project Structure.
4. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard

Project, to compile against SDK 22.
5. Update /res/layout/activity_main.xml and AndroidManifest.xml,

as explained in the previous chapters.
6. Edit MainActivity as class MainActivity extends CardboardActivity

implements IRenderBox, and implement the interface method stubs
(Ctrl + I).

We can go ahead and define the onCreate method in MainActivity. The class now
has the following code:

public class MainActivity extends CardboardActivity implements
IRenderBox {
 private static final String TAG = "ModelViewer";
 CardboardView cardboardView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(new RenderBox(this, this));

https://github.com/cardbookvr/modelviewer
https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch7
https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch7

Chapter 8

[307]

 setCardboardView(cardboardView);
 }
 @Override
 public void setup() {
 }
 @Override
 public void preDraw() {
 // code run beginning each frame
 }
 @Override
 public void postDraw() {
 // code run end of each frame
 }
}

You can add a cube to the scene, temporarily, to help ensure that everything is set up
properly. Add it to the setup method, as follows:

 public void setup() {
 new Transform()
 .setLocalPosition(0,0,-7)
 .setLocalRotation(45,60,0)
 .addComponent(new Cube(true));
 }

If you remember, a Cube is a Component that's added to a Transform. The Cube
defines its geometry (for example, vertices). The Transform defines its position,
rotation, and scale in 3D space.

You should be able to click on Run 'app' with no compile errors and see the cube and
Cardboard split screen view on your Android device.

Understanding the OBJ file format
The goal of this project is to view 3D models in the Wavefront OBJ format. Before
we begin coding, let's take a look at the file format. A reference can be found at
http://www.fileformat.info/format/wavefrontobj/egff.htm.

As we know, 3D models can be represented as a mesh of X, Y, and Z vertices. Sets of
vertices are connected to define a face of the mesh surface. A full mesh surface is a
collection of these faces.

http://www.fileformat.info/format/wavefrontobj/egff.htm

3D Model Viewer

[308]

Each vertex can also be assigned a normal vector and/or a texture coordinate. The
normal vector defines the outward facing direction at that vertex, used in lighting
calculations. The UV texture coordinate can be used to map texture images onto the
mesh surface. There are other features of the format, including free-form curves and
materials, which we will not support in this project.

As a plain text file, an OBJ is organized as separate lines of text. Each nonblank line
begins with a keyword and data for that keyword separated by spaces. Comments
begin with # and are ignored by the parser.

The OBJ data keywords include:

• v: Geometric vertices (for example, v 0.0 1.0 0.0)
• vt: Texture vertices (for example, vt 0.0 1.0 0.0) [not supported in

our project]
• vn: Vertex normals (for example, vn 0.0 1.0 0.0)
• f: Polygonal face indexes (for example, f 1 2 3)

The face values are indices pointing into the vertices list into the vertices (starting at
1 for the first one).

As for the f command specifying face indices, they're integer values that index into
the vertex list. When there are three indices, it describes a triangle; four describes a
quad, and so on.

When texture vertices exist, they are referenced as the second number after a slash,
for example, f 1/1 2/2 3/3. We're not supporting them now, but we might
need to parse them in an f command. When vertex normals exist, they are referenced
as the third number after a slash, for example, f 1//1 2//2 3//3 or f 1/1/1
2/2/2 3/3/3.

Indices can be negative, in which case they reference the last (most recently
encountered) item as -1, the previous one as -2, and so on.

Other lines, including data that we are not supporting here, will be ignored.

For example, the following data represents a simple triangle:

Simple Wavefront file
v 0.0 0.0 0.0
v 0.0 1.0 0.0
v 1.0 0.0 0.0
f 1 2 3

Chapter 8

[309]

Our OBJ implementation is limited. It safely handles the example models included
with this book, and perhaps others that you'll find on the Internet or make yourself.
However, this is an example code and a demonstration project. Writing a robust
data importer and supporting the many features of OBJ in our RenderBox engine is
beyond the scope of this book.

Creating the ModelObject class
To begin with, we will define a ModelObject class that extends RenderObject.
It will load model data from OBJ files and set up buffers needed by its material
(and OpenGL ES shaders to be rendered in the VR scene).

Right-click on the app/java/com.cardboardvr.modelviewer/ folder, go to New |
Java Class, and name it ModelObject. Define it so that it extends RenderObject,
as follows:

public class ModelObject extends RenderObject {
}

Just like we've done in the previous chapters, when introducing new kinds of
RenderObjects, we'll have one or more constructors that can instantiate a Material
and set up buffers. For ModelObject, we'll pass in a file resource handle, parse
the file (refer to the next topic), and create a solid color material (initially, without
lighting), as follows:

 public ModelObject(int objFile) {
 super();
 InputStream inputStream = RenderBox.instance.mainActivity.
 getResources().openRawResource(objFile);
 if (inputStream == null)
 return; // error
 parseObj(inputStream);
 createMaterial();
 }

Now add the material as follows. First, declare variables for the buffers (as we have
done for other RenderObjects in the previous projects). These can be private, but
our convention is to keep them public if we want to define new materials outside:

 public static FloatBuffer vertexBuffer;
 public static FloatBuffer colorBuffer;
 public static FloatBuffer normalBuffer;
 public static ShortBuffer indexBuffer;
 public int numIndices;

3D Model Viewer

[310]

Here's the createMaterial method (which is called from the constructor):

 public ModelObject createMaterial(){
 SolidColorLightingMaterial scm = new
 SolidColorLightingMaterial(new float[]{0.5f, 0.5f,
 0.5f, 1});
 scm.setBuffers(vertexBuffer, normalBuffer, indexBuffer,
 numIndices);
 material = scm;
 return this;
 }

Next, we implement the parseObj method.

Parse OBJ models
The parseObj method will open the resource file as an InputStream. It reads one
line at a time, parsing the command and data, building the model's list of vertices,
normals, and indexes. Then, we build the buffers from the data.

First, at the top of the ModelObject class, declare variables for the data lists:

 Vector<Short> faces=new Vector<Short>();
 Vector<Short> vtPointer=new Vector<Short>();
 Vector<Short> vnPointer=new Vector<Short>();
 Vector<Float> v=new Vector<Float>();
 Vector<Float> vn=new Vector<Float>();
 Vector<Material> materials=null;

Let's write parseObj with placeholders for helper methods. We open the file,
process each line, build the buffers, and handle potential IO errors:

 void parseObj(InputStream inputStream) {
 BufferedReader reader = null;
 String line = null;

 reader = new BufferedReader(new
 InputStreamReader(inputStream));
 if (reader == null)
 return; // error

 try { // try to read lines of the file
 while ((line = reader.readLine()) != null) {
 parseLine(line);
 }
 buildBuffers();

Chapter 8

[311]

 } catch (IOException e) {
 e.printStackTrace();
 }
 }

The parseLine code is pretty straightforward. The first token of the line is the
one-or-two character command (such as v, vn, or f), followed by data values
(either float coordinates or integer indexes). Here's the code for parseLine
and the parsers for the v and vn vertices:

 private void parseLine(String line) {
 Log.v("obj", line);
 if(line.startsWith("f")){//a polygonal face
 processFLine(line);
 }
 else
 if(line.startsWith("vn")){
 processVNLine(line);
 }
 else
 if(line.startsWith("v")){
 //line having geometric position of single vertex
 processVLine(line);
 }
 }

 private void processVLine(String line){
 String [] tokens=line.split("[]+");
 //split the line at the spaces
 int c=tokens.length;
 for(int i=1; i<c; i++){
 //add the vertex to the vertex array
 v.add(Float.valueOf(tokens[i]));
 }
 }

 private void processVNLine(String line){
 String [] tokens=line.split("[]+");
 //split the line at the spaces
 int c=tokens.length;
 for(int i=1; i<c; i++){
 //add the vertex to the vertex array
 vn.add(Float.valueOf(tokens[i]));
 }
 }

3D Model Viewer

[312]

The f line needs to handle various value cases.

As for the f command that specifies face indices, they're integer values that index
into the vertex list. When there are three indices, it describes a triangle, four describes
a quad, and so on. Anything with more than three sides will need to be subdivided
into triangles for our rendering with OpenGL ES.

Also, there can be any combination of index values, including formats such as v or
v/vt or v/vt/vn, or even v//vn, /vt/vn, or //vn. (Remember that since we're not
mapping textures, we will only use the first and third.)

Let's tackle the simplest case first, a triangle face:

 private void processFLine(String line){
 String [] tokens=line.split("[]+");
 int c=tokens.length;

 if(tokens[1].matches("[0-9]+")){//f: v
 if(c==4){//3 faces
 for(int i=1; i<c; i++){
 Short s=Short.valueOf(tokens[i]);
 s--;
 faces.add(s);
 }
 }
 }
 }

Now consider that there are more than three indices on the face. We need a method
to triangulate the polygon. Let's write that now:

 public static Vector<Short> triangulate(Vector<Short>
 polygon){
 Vector<Short> triangles=new Vector<Short>();
 for(int i=1; i<polygon.size()-1; i++){
 triangles.add(polygon.get(0));
 triangles.add(polygon.get(i));
 triangles.add(polygon.get(i+1));
 }
 return triangles;
 }

Chapter 8

[313]

We can use it in processFLine:

 private void processFLine(String line) {
 String[] tokens = line.split("[]+");
 int c = tokens.length;

 if (tokens[1].matches("[0-9]+") || //f: v
 tokens[1].matches("[0-9]+/[0-9]+")) {//f: v/vt

 if (c == 4) {//3 faces
 for (int i = 1; i < c; i++) {
 Short s = Short.valueOf(tokens[i]);
 s--;
 faces.add(s);
 }
 }
 else{//more faces
 Vector<Short> polygon=new Vector<Short>();
 for(int i=1; i<tokens.length; i++){
 Short s=Short.valueOf(tokens[i]);
 s--;
 polygon.add(s);
 }
 faces.addAll(triangulate(polygon));
 //triangulate the polygon and
 //add the resulting faces
 }
 }
 //if(tokens[1].matches("[0-9]+//[0-9]+")){//f: v//vn
 //if(tokens[1].matches("[0-9]+/[0-9]+/[0-9]+")){
 //f: v/vt/vn
 }

This code is applied to the face value v and also v/vt since we are skipping textures.
I've also commented out the other two permutations of the face index values. The
rest of this is mostly just brute force string parsing. The v//vn case is as follows:

 if(tokens[1].matches("[0-9]+//[0-9]+")){//f: v//vn
 if(c==4){//3 faces
 for(int i=1; i<c; i++){
 Short s=Short.valueOf(tokens[i].split("//")[0]);
 s--;
 faces.add(s);

3D Model Viewer

[314]

 s=Short.valueOf(tokens[i].split("//")[1]);
 s--;
 vnPointer.add(s);
 }
 }
 else{//triangulate
 Vector<Short> tmpFaces=new Vector<Short>();
 Vector<Short> tmpVn=new Vector<Short>();
 for(int i=1; i<tokens.length; i++){
 Short s=Short.valueOf(tokens[i].split("//")[0]);
 s--;
 tmpFaces.add(s);
 s=Short.valueOf(tokens[i].split("//")[1]);
 s--;
 tmpVn.add(s);
 }
 faces.addAll(triangulate(tmpFaces));
 vnPointer.addAll(triangulate(tmpVn));
 }
 }

Lastly, the v/vt/vn case is as follows:

 if(tokens[1].matches("[0-9]+/[0-9]+/[0-9]+")){//f: v/vt/vn
 if(c==4){//3 faces
 for(int i=1; i<c; i++){
 Short s=Short.valueOf(tokens[i].split("/")[0]);
 s--;
 faces.add(s);
 // (skip vt)
 s=Short.valueOf(tokens[i].split("/")[2]);
 s--;
 vnPointer.add(s);
 }
 }
 else{//triangulate
 Vector<Short> tmpFaces=new Vector<Short>();
 Vector<Short> tmpVn=new Vector<Short>();
 for(int i=1; i<tokens.length; i++){
 Short s=Short.valueOf(tokens[i].split("/")[0]);
 s--;
 tmpFaces.add(s);
 // (skip vt)
 s=Short.valueOf(tokens[i].split("/")[2]);
 s--;

Chapter 8

[315]

 tmpVn.add(s);
 }
 faces.addAll(triangulate(tmpFaces));
 vnPointer.addAll(triangulate(tmpVn));
 }
 }

As mentioned earlier, in the OBJ file format description, indices can be negative;
in which case they need to be referenced from the end of the vertex list backward.
This can be implemented by adding the index value to the size of the index list.
To support this, in the preceding code, replace all s--; lines with the following:

 if (s < 0)
 s = (short)(s + v.size());
 else
 s--;

buildBuffers
The last step for the parseObj method is to build our shader buffers from the model
data, that is, the vertexBuffer, normalBuffer, and indexBuffer variables. We can
add that now to a buildBuffers method, as follows:

 private void buildBuffers() {
 numIndices = faces.size();
 float[] tmp = new float[v.size()];
 int i = 0;
 for(Float f : v)
 tmp[i++] = (f != null ? f : Float.NaN);
 vertexBuffer = allocateFloatBuffer(tmp);

 i = 0;
 tmp = new float[vn.size()];
 for(Float f : vn)
 tmp[i++] = (f != null ? -f : Float.NaN);
 //invert normals
 normalBuffer = allocateFloatBuffer(tmp);

 i = 0;
 short[] indicies = new short[faces.size()];
 for(Short s : faces)
 indicies[i++] = (s != null ? s : 0);
 indexBuffer = allocateShortBuffer(indicies);
 }

3D Model Viewer

[316]

One caveat. We noticed that for the RenderBox coordinate system and shaders, it is
necessary to invert the normals from the OBJ data (using -f rather than f). Actually,
this depends on OBJ exporters (3Ds Max, Blender, and Maya). Some of them do and
some don't flip normals. Unfortunately, there's no way to determine whether or not
normals are flipped other than by viewing the model. For this reason, some OBJ
importer/viewers provide (optional) functions to calculate normals from the face
geometry rather than rely on the import data itself.

Model extents, scaling, and center
3D models come in all shapes and sizes. To view them in our app, we need to know
the minimum and maximum boundaries of the model and its geometric center to
scale and position it properly. Let's add this to ModelObject now.

At the top of the ModelObject class, add the following variables:

 public Vector3 extentsMin, extentsMax;

Initialize the extents in the parser, before we parse the model data. The minimum
extents are initialized to the maximum possible values; the maximum extents are
initialized to the minimum possible values:

 public ModelObject(int objFile) {
 super();
 extentsMin = new Vector3(Float.MAX_VALUE,
 Float.MAX_VALUE, Float.MAX_VALUE);
 extentsMax = new Vector3(Float.MIN_VALUE,
 Float.MIN_VALUE, Float.MIN_VALUE);
 . . .

Rather than calculating the extents after the model is loaded, we'll do it during the
import process. As we add a new vertex to the vertex list, we'll calculate the current
extents. Add a call to setExtents in the processVLine loop:

 private void processVLine(String line) {
 String[] tokens = line.split("[]+");
 //split the line at the spaces
 int c = tokens.length;
 for (int i = 1; i < c; i++) {
 //add the vertex to the vertex array
 Float value = Float.valueOf(tokens[i]);
 v.add(value);
 setExtents(i, value);
 }
 }

Chapter 8

[317]

Then, the setExtents method can be implemented as follows:

 private void setExtents(int coord, Float value) {
 switch (coord) {
 case 1:
 if (value < extentsMin.x)
 extentsMin.x = value;
 if (value > extentsMax.x)
 extentsMax.x = value;
 break;
 case 2:
 if (value < extentsMin.y)
 extentsMin.y = value;
 if (value > extentsMax.y)
 extentsMax.y = value;
 break;
 case 3:
 if (value < extentsMin.z)
 extentsMin.z = value;
 if (value > extentsMax.z)
 extentsMax.z = value;
 break;
 }
 }

And let's add a scalar method that will be useful when we add the model to the scene
(as you'll see in the next topic), to scale it to a normalized size with extents -1 to 1:

 public float normalScalar() {
 float sizeX = (extentsMax.x - extentsMin.x);
 float sizeY = (extentsMax.y - extentsMin.y);
 float sizeZ = (extentsMax.z - extentsMin.z);
 return (2.0f / Math.max(sizeX, Math.max(sizeY, sizeZ)));
 }

Now, let's try it out!

I'm a little teapot
For decades, 3D computer graphics researchers and developers have used this cute
model of a teapot. It's a classic! The back story is that Martin Newell, the famous
computer graphics pioneer and researcher, needed a model for his work, and his
wife suggested that he model their teapot at home. The original is now on display
at the Boston Computer Museum. We have included an OBJ version of this classic
model with the downloadable files for this book.

3D Model Viewer

[318]

Of course, you can choose your own OBJ file, but if you want to use the teapot, locate
the teapot.obj file, and copy it to the res/raw folder (create the folder if necessary).

Now load the model and try it. In MainActivity, add a variable at the top of the
MainActivity class to hold the current model:

 Transform model;

Add the following code to the setup method. Notice that we're scaling it to a fraction
of the original size and placing it 3 units in front of the camera:

 public void setup() {
 ModelObject modelObj = new ModelObject(R.raw.teapot);
 float scalar = modelObj.normalScalar();
 model = new Transform()
 .setLocalPosition(0, 0, -3)
 .setLocalScale(scalar, scalar, scalar)
 .addComponent(modelObj);
 }

Run the project, and it should look like this:

Chapter 8

[319]

You can see that the model was successfully loaded and rendered. Unfortunately, the
shading is difficult to discern. To get a better view of the shaded teapot, let's shift it
down a bit. Modify the setLocalPosition method in setup, as follows:

 .setLocalPosition(0, -2, -3)

The following screenshot is cropped and enlarged, so you can see the shaded teapot
here similar to the way you'd see it in the Cardboard viewer:

I'm a little rotating teapot
Let's enhance the viewing experience by rotating the model as the user rotates
his head. The effect will be different than a "normal" virtual reality experience.
Ordinarily, moving one's head in VR rotates the subjective view of the camera in the
scene to look around in unison with your head movement. In this project, the head
movement will be like an input control rotating the model. The model is at a fixed
position in front of you at all times.

To implement this feature is quite simple. The RenderBox preDraw interface method
is called at the start of each frame. We'll get the current head angles and rotate
the model accordingly, converting the head post-Euler angles into a Quaternion.
(Combining multiple Euler angles can result in an unexpected final rotational
orientation). We will also conjugate (that is, invert or reverse) the rotation, so that
when you look up, you see the bottom of the object and so on. It feels more natural
this way.

3D Model Viewer

[320]

In MainActivity, add the following code to preDraw:

 public void preDraw() {
 float[] hAngles = RenderBox.instance.headAngles;
 Quaternion rot = new Quaternion();
 rot.setEulerAnglesRad(hAngles[0], hAngles[1], hAngles[2]);
 model.setLocalRotation(rot.conjugate());
 }

In setup, ensure that the setLocalPosition method positions the teapot straight in
front of the camera:

 .setLocalPosition(0, 0, -3)

Try and run it. We're almost there! The model rotates with the head, but we're still
looking around the VR space as well.

To lock the head position, we just need to disable head tracking in RenderBox.
If your version of RenderBox (as built in Chapter 5, RenderBox Engine) does not yet
have this feature, add it to your separate RenderBoxLib lib project, as follows:

In the Camera.java file, first add a new public variable for headTracking:

 public boolean headTracking = true;

Modify the onDrawEye method to conditionally update the view transform,
as follows:

 if (headTracking) {
 // Apply the eye transformation to the camera.
 Matrix.multiplyMM(view, 0, eye.getEyeView(), 0,
 camera, 0);
 } else {
 // copy camera into view
 for (int i=0; i < camera.length; i++) { view[i] =
 camera[i]; }
 }

Make sure that you copy the updated .aar file to the ModelViewer project's
RenderBox module folder after you rebuild it.

Now, in the MainActivity class's setup(), add the following setting:

 RenderBox.instance.mainCamera.headTracking = false;

Run it now, and as you move your head, the model remains relatively stationary
but rotates as you turn your head. Neato! Much better.

Chapter 8

[321]

Thread safe
In Chapter 7, 360-Degree Gallery, we explained the need for worker threads to
offload processing from the render thread. In this project, we'll add threading
to the ModelObject constructor where we read and parse the model files:

 public ModelObject(final int objFile) {
 super();
 extentsMin = new Vector3(Float.MAX_VALUE, Float.MAX_VALUE,
 Float.MAX_VALUE);
 extentsMax = new Vector3(Float.MIN_VALUE, Float.MIN_VALUE,
 Float.MIN_VALUE);

 SolidColorLightingMaterial.setupProgram();
 enabled = false;
 new Thread(new Runnable() {
 @Override
 public void run() {
 InputStream inputStream = RenderBox.instance.
 mainActivity.getResources().
 openRawResource(objFile);
 if (inputStream == null)
 return; // error
 createMaterial();
 enabled = true;
 float scalar = normalScalar();
 transform.setLocalScale(scalar, scalar, scalar);
 }
 }).start();
 }

We have to declare the file handle, objFile, as final to be able to access it
from within the inner class. You may have also noticed that we added a call
to the material's setup program before starting the thread to ensure that it's
properly set up in time and avoid crashing the app. This avoids the need to call
createMaterial within a queueEvent procedure, since the shader compiler makes
use of the graphics context. Similarly, we disable the object until it has completed
loading its data. Finally, since the load is asynchronous, it's necessary to set the scale
at the end of this procedure. Our previous method set the scale in setup(), which
now completes before the model is done loading.

3D Model Viewer

[322]

Launch with intent
In Chapter 7, 360-Degree Gallery, we introduced the use of Android intents to associate
an app with a specific file type in order to launch our app as a viewer of those files.
We'll do the same for OBJ files here.

An intent is a message that any app can send to the Android system that declares
its intent to use another app for a certain purpose. The intent object contains a
number of members to describe what type of action needs to be done, and, if any,
the data on which it needs to be done. For the image gallery, we associated the intent
filter with an image mime type. For this project, we'll associate an intent filter with a
filename extension.

In your AndroidManifest.xml file, add an intent filter to the activity block. This lets
Android know that the app can be used as an OBJ file viewer. We need to specify it
as a file scheme and the filename pattern. The wildcard mime type and host are also
required by Android. Add the following XML code:

 <intent-filter>
 <action android:name="android.intent.action.VIEW"
 />
 <category android:name=
 "android.intent.category.DEFAULT" />
 <category android:name=
 "android.intent.category.BROWSABLE" />
 <data android:scheme="file" />
 <data android:mimeType="*/*" />
 <data android:pathPattern=".*\\.obj" />
 <data android:host="*" />
 </intent-filter>

To handle the situation, we'll add a new constructor to ModelObject that takes a URI
string instead of a resource ID, as we did earlier. Like the other constructor, we need
to open an input stream and pass it to parseObj. Here's the constructor, including
the worker thread:

 public ModelObject(final String uri) {
 super();
 extentsMin = new Vector3(Float.MAX_VALUE, Float.MAX_VALUE,
 Float.MAX_VALUE);
 extentsMax = new Vector3(Float.MIN_VALUE, Float.MIN_VALUE,
 Float.MIN_VALUE);
 SolidColorLightingMaterial.setupProgram();
 enabled = false;

Chapter 8

[323]

 new Thread(new Runnable() {
 @Override
 public void run() {
 File file = new File(uri.toString());
 FileInputStream fileInputStream;
 try {
 fileInputStream = new FileInputStream(file);
 } catch (IOException e) {
 e.printStackTrace();
 return; // error
 }
 parseObj(fileInputStream);
 createMaterial();
 enabled = true;
 float scalar = normalScalar();
 transform.setLocalScale(scalar, scalar, scalar);
 }
 }).start();
 }

Now in the MainActivity class's setup, we'll check whether the app is launched
from an intent and use the intent URI. Otherwise, we'll view the default model,
as we did earlier:

 public void setup() {
 ModelObject modelObj;
 Uri intentUri = getIntent().getData();
 if (intentUri != null) {
 Log.d(TAG, "!!!! intent " + intentUri.getPath());
 modelObj = new ModelObject(intentUri.getPath());
 } else {
 // default object
 modelObj = new ModelObject(R.raw.teapot);
 }
 //...

Now with the project built and installed on the phone, let's try some web integration.
Open the web browser and visit a 3D model download site.

Find the Download link for the interesting model to download it into the phone,
and then when prompted, use the ModelViewer app to view it!

3D Model Viewer

[324]

Practical and production ready
Note that, as mentioned earlier, we've created a limited implementation of the OBJ
model format, so not every model that you find will view correctly (if at all) at this
point. Then again, it might be sufficient, depending on the requirements of your own
projects, for example, if you include specific models in the resource folder that can be
viewed in the released version of your app. When you have complete control of the
input data, you can cut corners.

While the basic structure of the OBJ file format is not very complicated, as we've
demonstrated here, like many things in software (and in life) "the devil is in the
details." Using this project as a starting point, and then building your own practical
and production-ready OBJ file parser and renderer will require a considerable
amount of additional work. You might also do some research on pre-existing
packages, other model formats, or maybe even lifting some code from an
open-source game engine like LibGDX. The features of OBJ that we omitted
but are worth considering include the following:

• Texture vertices
• Material definitions
• Curve elements
• Grouping of geometry
• Color and other vertex attributes

Summary
In this project, we wrote a simple viewer for 3D models in the open OBJ file format.
We implemented a ModelObject class that parses the model file and builds the
vector and normal buffers needed by RenderBox to render the object in the scene.
We then enabled shading. We then made the viewer interactive so that the model
rotates as you move your head.

In the next chapter, we explore another type of media, your music. The music
visualizer responds to the current music player to display dancing geometry
in the VR world.

[325]

Music Visualizer
"See the music, hear the dance," said George Balanchine, famed Russian-born
choreographer and father of the American ballet.

We won't attempt to raise the level of the art form, but still, maybe it'd be fun to
visualize the playlists on our phones. In this project, we will create 3D animated
abstract graphics that dance to the beat of your music. You might be familiar with
music visualizations in 2D, but what would it look like in VR? To get inspired, try
Googling for images using the phrase geometry wars, the classic game for XBox,
for example!

A visualizer app takes input from the Android audio system and displays
visualizations. In this project, we will take advantage of the Android Visualizer
class, which lets an app capture part of the currently playing audio, not the full
fidelity music details but a lower quality audio content sufficient for visualizations.

In this project, we will:

• Set up the new project
• Build a Java class architecture named VisualizerBox
• Capture waveform data from the phone's audio player
• Build a geometric visualization
• Build a texture-based visualization
• Capture the FFT data and build an FFT visualization
• Add a trippy trails mode
• Support multiple concurrent visualizations

The source code for this project can be found on the Packt Publishing website and on
GitHub at https://github.com/cardbookvr/visualizevr (with each topic as a
separate commit).

https://github.com/cardbookvr/visualizevr

Music Visualizer

[326]

Setting up a new project
To build this project, we're going to use our RenderBox library created in Chapter 5,
RenderBox Engine. You can use yours, or grab a copy from the downloadable files
provided with this book or our GitHub repo (use the commit tagged after-ch8—
https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch8). For
a more detailed description of how to import the RenderBox library, refer to the final
section, Using RenderBox in future projects, of Chapter 5, RenderBox Engine. To create a
new project, perform the following steps:

1. With Android Studio opened, create a new project. Let's name it
VisualizeVR and target Android 4.4 KitKat (API 19) with an
Empty Activity.

2. Create new modules for each of renderbox, common, and core packages,
using File | New Module | Import .JAR/.AAR Package.

3. Set the modules as dependencies for the app, using File | Project Structure.
4. Edit the build.gradle file as explained in Chapter 2, The Skeleton Cardboard

Project, to compile against SDK 22.
5. Update /res/layout/activity_main.xml and AndroidManifest.xml,

as explained in the previous chapters.
6. Edit MainActivity as class MainActivity extends CardboardActivity

implements IRenderBox, and implement the interface method stubs
(Ctrl + I).

We can go ahead and define the onCreate method in MainActivity. The class now
has the following code:

public class MainActivity extends CardboardActivity implements
IRenderBox {
 private static final String TAG = "MainActivity";
 CardboardView cardboardView;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 cardboardView = (CardboardView)
 findViewById(R.id.cardboard_view);
 cardboardView.setRenderer(new RenderBox(this, this));
 setCardboardView(cardboardView);
 }
 @Override
 public void setup() {

https://github.com/cardbookvr/renderboxlib/releases/tag/after-ch8

Chapter 9

[327]

 }
 @Override
 public void preDraw() {
 // code run beginning each frame
 }
 @Override
 public void postDraw() {
 // code run end of each frame
 }
}

You can add a cube to the scene, temporarily, to ensure that everything is set up
properly. Add it to the setup method as follows:

 public void setup() {
 new Transform()
 .setLocalPosition(0,0,-7)
 .setLocalRotation(45,60,0)
 .addComponent(new Cube(true));
 }

If you remember, a Cube is a Component that's added to a Transform. The Cube
defines its geometry (for example, vertices). The Transform defines its position,
rotation, and scale in 3D space.

You should be able to click on Run 'app' with no compile errors, and see the cube
and Cardboard split screen view on your Android device.

Capturing audio data
Using the Android Visualizer class (http://developer.android.com/
reference/android/media/audiofx/Visualizer.html), we can retrieve part of
the audio data that is currently playing, at a specified sample rate. You can choose to
capture data as waveform and/or frequency data:

• Waveform: This is an array of mono audio waveform bytes, or pulse code
modulation (PCM) data, representing a sample series of audio amplitudes

• Frequency: This is an array of Fast Fourier Transform (FFT) bytes,
representing a sampling of audio frequencies

The data is limited to 8 bits, so it's not useful for playback but is sufficient for
visualizations. You can specify the sampling rate, although it must be a power
of two.

http://developer.android.com/reference/android/media/audiofx/Visualizer.html
http://developer.android.com/reference/android/media/audiofx/Visualizer.html

Music Visualizer

[328]

Armed with this knowledge, we'll now go ahead and begin implementing an
architecture that captures audio data and makes it available to visualization
renderers that you can build.

A VisualizerBox architecture
Music visualizers often look really cool, especially at first. But after a time they may
seem too repetitive, even boring. Therefore, in our design, we'll build the ability
to queue up a number of different visualizations, and then, after a period of time,
transition from one to the next.

To begin our implementation, we'll define an architecture structure that will be
expandable and let us develop new visualizations as we go along.

However, even before that, we must ensure that the app has permission to
use the Android audio features we need. Add the following directives to
AndroidManifest.xml:

 <!-- Visualizer permissions -->
 <uses-permission
 android:name="android.permission.RECORD_AUDIO" />
 <uses-permission
 android:name="android.permission.MODIFY_AUDIO_SETTINGS" />

Remember that the RenderBox library, first developed in Chapter 5, RenderBox
Engine, allows MainActivity to delegate much of the graphics and Cardboard VR
work to the RenderBox class and associated classes (Component, Material, and
so on). We will follow a similar design pattern here, built on top of RenderBox.
MainActivity can instantiate specific visualizations and then delegate the work to
the VisualizerBox class.

The VisualizerBox class will provide the callback functions to the Android
Visualizer class. Let's define a skeletal implementation of this first. Create a
VisualizerBox Java class, as follows:

public class VisualizerBox {
 static final String TAG = "VisualizerBox";
 public VisualizerBox(final CardboardView cardboardView){
 }
 public void setup() {
 }
 public void preDraw() {
 }
 public void postDraw() {
 }
}

Chapter 9

[329]

Integrate VisualizerBox into MainActivity, adding a visualizerBox variable at
the top of the class. In MainActivity, add the following line:

 VisualizerBox visualizerBox;

Initialize it in onCreate:

 visualizerBox = new VisualizerBox(cardboardView);

Also, in MainActivity, call the corresponding version of each of the IRenderBox
interface methods:

 @Override
 public void setup() {
 visualizerBox.setup();
 }
 @Override
 public void preDraw() {
 visualizerBox.preDraw();
 }
 @Override
 public void postDraw() {
 visualizerBox.postDraw();
 }

Good. Now we'll set up VisualizerBox to let you build and use one or more
visualizations. So, first let's define the abstract Visualization class in the
Visualization.java file, as follows:

public abstract class Visualization {
 VisualizerBox visualizerBox; //owner

 public Visualization(VisualizerBox visualizerBox){
 this.visualizerBox = visualizerBox;
 }
 public abstract void setup();
 public abstract void preDraw();
 public abstract void postDraw();
}

Now we have a mechanism to create a variety of visualization implementations
for the app. Before we go ahead and start writing one of those, let's also provide
the integration with VisualizerBox. At the top of the VisualizerBox class, add a
variable to the current activeViz object:

 public Visualization activeViz;

Music Visualizer

[330]

Then, call it from the interface methods:

 public void setup() {
 if(activeViz != null)
 activeViz.setup();
 }
 public void preDraw() {
 if(activeViz != null)
 activeViz.preDraw();
 }
 public void postDraw() {
 if(activeViz != null)
 activeViz.postDraw();
 }

Of course, we're not even using the Android Visualizer class yet and not rendering
anything on the screen. That'll come next.

For now, let's create a placeholder for a visualization. Create a new folder in
your project named visualizations. Right-click on your Java code folder (for
example, java/com/cardbookvr/visualizevr/), go to New | Package, and name
it visualizations. Then, right click on the new visualizations folder, go to
New | Java Class, and name it BlankVisualization. Then, define it as extends
Visualization as follows:

public class BlankVisualization extends Visualization {
 static final String TAG = "BlankVisualization";
 public BlankVisualization(VisualizerBox visualizerBox) {
 super(visualizerBox);
 }
 @Override
 public void setup() {
 }
 @Override
 public void preDraw() {
 }
 @Override
 public void postDraw() {
 }
}

Chapter 9

[331]

We'll be able to use this as a template for specific visualizers. The purpose of each
method is pretty self-explanatory:

• setup: This initializes variables, transforms, and materials for
the visualization

• preDraw: This code is executed at the beginning of each frame; for example,
using the current captured audio data

• postDraw: This code is executed at the end of each frame

Now let's add some meat to this skeleton.

Waveform data capture
As mentioned earlier, the Android Visualizer class lets us define callbacks to
capture audio data. This data comes in two formats: waveform and FFT. We'll add
just the waveform data to the VisualizerBox class now.

First, define the variables that we'll use for the captured audio data, as follows:

 Visualizer visualizer;
 public static int captureSize;
 public static byte[] audioBytes;

Using the API, we can determine the minimum capture size available, and then use
that as our capture sample size.

Then, initialize them in the constructor as follows. First, instantiate an Android
Visualizer. Then set the capture size to use, and allocate our buffers:

 public VisualizerBox(final CardboardView cardboardView){
 visualizer = new Visualizer(0);
 captureSize = Visualizer.getCaptureSizeRange()[0];
 visualizer.setCaptureSize(captureSize);
 // capture audio data
 // Visualizer.OnDataCaptureListener captureListener = ...
 visualizer.setDataCaptureListener(captureListener,
 Visualizer.getMaxCaptureRate(), true, true);
 visualizer.setEnabled(true);
 }

We want to use the minimum size for a variety of reasons. Firstly, it will be faster,
and in VR, speed is paramount. Secondly, it organizes our FFT samples (as discussed
later) into fewer buckets. This is helpful because each bucket catches more activity
over a broader range of frequencies.

Music Visualizer

[332]

Note that we left a comment where we'll define the capture listener,
and then set it in the visualizer. Make sure that you enable the
visualizer as always listening.

Let's first write the captureListener object for waveform data only. We
define and instantiate a new anonymous class that implements Visualizer.
OnDataCaptureListener, and provide it with a function named
onWaveFormDataCapture, which receives the wave form bytes and
stores them for our Visualization code (forthcoming):

 // capture audio data
 Visualizer.OnDataCaptureListener captureListener = new
 Visualizer.OnDataCaptureListener() {
 @Override
 public void onWaveFormDataCapture(Visualizer
 visualizer, byte[] bytes, int samplingRate) {
 audioBytes = bytes;
 }
 @Override
 public void onFftDataCapture(Visualizer visualizer,
 byte[] bytes, int samplingRate) {
 }
 };

The interface still requires that we provide an onFftDataCapture method, but we're
leaving it empty for the time being.

Now we're ready to add some graphics to this baby.

A basic geometric visualization
For our first visualization, we'll create a basic equalizer wave graphic. It'll be a
rectangular block consisting of a series of cubes that are scaled according to the
audio waveform data. We'll use the built-in Cube component already in the
RenderBox library and its basic vertex color lighting material.

In the visualizations/ folder, create a new Java class named
GeometricVisualization and begin as follows:

public class GeometricVisualization extends Visualization {
 static final String TAG = "GeometricVisualization";
 public GeometricVisualization(VisualizerBox visualizerBox) {
 super(visualizerBox);
 }
}

Chapter 9

[333]

At the top of the class, declare a Transform array of cube transforms and the
corresponding array for RenderObjects:

 Transform[] cubes;
 Cube[] cubeRenderers;

Then, initialize them in the setup method. We'll allocate the array of cubes, aligned
and scaled as an adjacent set of blocks, creating a 3D representation of a wavy block.
The setup method can be implemented as follows:

 public void setup() {
 cubes = new Transform[VisualizerBox.captureSize / 2];
 cubeRenderers = new Cube[VisualizerBox.captureSize / 2];

 float offset = -3f;
 float scaleFactor = (offset * -2) / cubes.length;
 for(int i = 0; i < cubes.length; i++) {
 cubeRenderers[i] = new Cube(true);
 cubes[i] = new Transform()
 .setLocalPosition(offset, -2, -5)
 .addComponent(cubeRenderers[i]);
 offset += scaleFactor;
 }
 }

Now on each frame, we just need to modify the height of each cube based on the
current waveform data from the audio source (as obtained in VisualizerBox).
Implement the preDraw method as follows:

 public void preDraw() {
 if (VisualizerBox.audioBytes != null) {
 float scaleFactor = 3f / cubes.length;
 for(int i = 0; i < cubes.length; i++) {
 cubes[i].setLocalScale(scaleFactor,
 VisualizerBox.audioBytes[i] * 0.01f, 1);
 }
 }
 }

 public void postDraw() {
 }

Music Visualizer

[334]

We also need to add a stub for the postDraw implementation. Then, instantiate the
visualization and make it the active one. In MainActivity, at the end of onCreate,
add the following line of code:

 visualizerBox.activeViz = new
 GeometricVisualization(visualizerBox);

That's all we need for now.

Start playing some music on your phone. Then, run the app. You will see something
like this:

As you can see, we kept the unit cube in the scene, as it helps clarify what's going
on. Each audio datum is a thin "slice" (or a flattened cube) the height of which varies
with the audio value. If you're looking at a colored version of the preceding screen
image, you will notice that the colored faces of the visualization cubes are like
solitary cubes since they use the same object and material to render.

Chapter 9

[335]

This visualization is a very basic example of using audio waveform data to
dynamically modify 3D geometry. Let your imagination run wild to create your own.
The audio bytes can control any transform parameters, including scale, position, and
rotation. Remember that we're in a 3D virtual reality space, and you can use all of
it—move your stuff all round, up and down, and even behind you. We have a few
basic primitive geometric shapes (a cube, sphere, plane, triangle, and so on). But you
can also use the audio data to parametrically generate new shapes and models. Plus,
you can even integrate the ModelObject class from the previous chapter to load
interesting 3D models!

In the next topic, we'll take a look at how to use the audio waveform data in
texture-based material shaders.

2D texture-based visualization
The second visualization will also be a basic oscilloscope-type display of waveform
data. However, previously, we used audio data to scale 3D slice cubes; this time,
we'll render them all on a 2D plane using a shader that uses audio data as input.

Our RenderBox library allows us to define new materials and shaders. In the
previous projects, we built materials that use bitmap images for texture mapping
onto the geometry as it's rendered. In this project, we'll paint the quad using the
audio bytes array, using the byte value to control the position where we set a
brighter color. (Note that the Plane class was added to RenderBox lib in Chapter 7,
360-Degree Gallery.)

Texture generator and loader
First, let's generate a texture structure to hold our texture data. In the VisualizerBox
class, add the following method to set up the texture in GLES. We can't use our
normal texture pipeline, since it is designed to allocate a texture directly from image
data. Our data is one-dimensional, so it may seem odd to use a Texture2D resource,
but we'll set the height to one pixel:

 public static int genTexture(){
 final int[] textureHandle = new int[1];
 GLES20.glGenTextures(1, textureHandle, 0);
 RenderBox.checkGLError("VisualizerBox GenTexture");
 if (textureHandle[0] != 0) {
 // Bind to the texture in OpenGL
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 textureHandle[0]);
 // Set filtering

Music Visualizer

[336]

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);
 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);
 }
 if (textureHandle[0] == 0){
 throw new RuntimeException("Error loading texture.");
 }
 return textureHandle[0];
 }

Then add the call to setup, including a static variable to hold the generated
texture handle:

 public static int audioTexture = -1;

 public void setup() {
 audioTexture = genTexture();
 if(activeViz != null)
 activeViz.setup();
 }

Now we can populate the texture from audio byte data. In the Android Visualizer
listener, add a call to loadTexture in the onWaveFormDataCapture method:

 public void onWaveFormDataCapture(Visualizer
 visualizer, byte[] bytes, int samplingRate){
 audioBytes = bytes;
 loadTexture(cardboardView, audioTexture, bytes);
 }

Let's define loadTexture as follows. It copies the audio bytes into a new array buffer
and hands it off to OpenGL ES with the glBindTexture and glTexImage2D calls.

(Refer to http://stackoverflow.com/questions/14290096/how-to-create-a-
opengl-texture-from-byte-array-in-android.):

 public static void loadTexture(CardboardView cardboardView,
 final int textureId, byte[] bytes){
 if(textureId < 0)
 return;
 final ByteBuffer buffer =
 ByteBuffer.allocateDirect(bytes.length * 4);
 final int length = bytes.length;
 buffer.order(ByteOrder.nativeOrder());
 buffer.put(bytes);
 buffer.position(0);

http://stackoverflow.com/questions/14290096/how-to-create-a-opengl-texture-from-byte-array-in-android
http://stackoverflow.com/questions/14290096/how-to-create-a-opengl-texture-from-byte-array-in-android

Chapter 9

[337]

 cardboardView.queueEvent(new Runnable() {
 @Override
 public void run() {
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 textureId);
 GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0,
 GLES20.GL_LUMINANCE, length, 1, 0,
 GLES20.GL_LUMINANCE,
 GLES20.GL_UNSIGNED_BYTE, buffer);
 }
 });
 }

Waveform shaders
Now it's time to write the shader programs that, among other things, will dictate the
parameters and attributes that need to be set in the Material class.

If necessary, create a resources directory for the shaders, res/raw/. Then, create
the waveform_vertex.shader and waveform_fragment.shader files. Define them
as follows.

The waveform_vertex.shader file is identical to the unlit_tex_vertex shader
we were using. Strictly speaking, we can just reuse this file and specify its resource
in the createProgram function, but it is good practice to define individual shader
files unless you are explicitly following some sort of a pattern where you are using a
number of variants on a given shader.

File: res/raw/waveform_vertex.shader:

uniform mat4 u_MVP;
attribute vec4 a_Position;
attribute vec2 a_TexCoordinate;
varying vec2 v_TexCoordinate;
void main() {
 // pass through the texture coordinate
 v_TexCoordinate = a_TexCoordinate;
 // final point in normalized screen coordinates
 gl_Position = u_MVP * a_Position;
}

Music Visualizer

[338]

For the waveform_fragment shader, we add variables for a solid color (u_Color)
and threshold width (u_Width). And then, add a bit of logic to decide whether the
y coordinate of the current pixel being rendered is within u_Width of the sample.

File: res/raw/waveform_fragment.shader

precision mediump float; // default medium precision
uniform sampler2D u_Texture; // the input texture
varying vec2 v_TexCoordinate; // interpolated texture coordinate
per fragment
uniform vec4 u_Color;
uniform float u_Width;
// The entry point for our fragment shader.
void main() {
 vec4 color;
 float dist = abs(v_TexCoordinate.y - texture2D(u_Texture,
 v_TexCoordinate).r);
 if(dist < u_Width){
 color = u_Color;
 }
 gl_FragColor = color;
}

Basic waveform material
Now we define the Material class for the shaders. Create a new Java class named
WaveformMaterial and define it as follows:

public class WaveformMaterial extends Material {
 private static final String TAG = "WaveformMaterial";
}

Add material variables for the texture ID, border, width, and color. Then,
add variables for the shader program reference and buffers, as shown in the
following code:

 static int program = -1;
 //Initialize to a totally invalid value for setup state
 static int positionParam;
 static int texCoordParam;
 static int textureParam;
 static int MVPParam;
 static int colorParam;
 static int widthParam;

Chapter 9

[339]

 public float borderWidth = 0.01f;
 public float[] borderColor = new float[]{0.6549f, 0.8392f, 1f,
 1f};

 FloatBuffer vertexBuffer;
 FloatBuffer texCoordBuffer;
 ShortBuffer indexBuffer;
 int numIndices;

Now we can add a constructor. As we saw earlier, it calls a setupProgram helper
method that creates the shader program and obtains references to its parameters:

 public WaveformMaterial() {
 super();
 setupProgram();
 }

 public static void setupProgram() {
 if(program > -1) return;
 //Create shader program
 program = createProgram(R.raw.waveform_vertex,
 R.raw.waveform_fragment);
 RenderBox.checkGLError("Bitmap GenTexture");

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "a_Position");
 RenderBox.checkGLError("Bitmap GenTexture");
 texCoordParam = GLES20.glGetAttribLocation(program,
 "a_TexCoordinate");
 RenderBox.checkGLError("Bitmap GenTexture");

 //Enable them (turns out this is kind of a big deal ;)
 GLES20.glEnableVertexAttribArray(positionParam);
 RenderBox.checkGLError("Bitmap GenTexture");
 GLES20.glEnableVertexAttribArray(texCoordParam);
 RenderBox.checkGLError("Bitmap GenTexture");

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 colorParam = GLES20.glGetUniformLocation(program,
 "u_Color");
 widthParam = GLES20.glGetUniformLocation(program,
 "u_Width");
 RenderBox.checkGLError("Waveform params");
 }

Music Visualizer

[340]

Likewise, we add a setBuffers method to be called by the RenderObject
component (Plane):

 public WaveformMaterial setBuffers(FloatBuffer vertexBuffer,
 FloatBuffer texCoordBuffer, ShortBuffer indexBuffer, int
 numIndices) {
 //Associate VBO data with this instance of the material
 this.vertexBuffer = vertexBuffer;
 this.texCoordBuffer = texCoordBuffer;
 this.indexBuffer = indexBuffer;
 this.numIndices = numIndices;
 return this;
 }

Add the draw code, which will be called from the Camera component, to render the
geometry prepared in the buffers (via setBuffers). The draw method looks like this:

 @Override
 public void draw(float[] view, float[] perspective) {
 GLES20.glUseProgram(program);

 // Set the active texture unit to texture unit 0.
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);

 // Bind the texture to this unit.
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
 VisualizerBox.audioTexture);

 // Tell the texture uniform sampler to use this texture in
 //the shader by binding to texture unit 0.
 GLES20.glUniform1i(textureParam, 0);

 Matrix.multiplyMM(modelView, 0, view, 0,
 RenderObject.model, 0);
 Matrix.multiplyMM(modelViewProjection, 0, perspective, 0,
 modelView, 0);
 // Set the ModelViewProjection matrix for eye position.
 GLES20.glUniformMatrix4fv(MVPParam, 1, false,
 modelViewProjection, 0);

 GLES20.glUniform4fv(colorParam, 1, borderColor, 0);
 GLES20.glUniform1f(widthParam, borderWidth);

Chapter 9

[341]

 //Set vertex attributes
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glVertexAttribPointer(texCoordParam, 2,
 GLES20.GL_FLOAT, false, 0, texCoordBuffer);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 RenderBox.checkGLError("WaveformMaterial draw");
 }

One more thing; let's provide a method to destroy an existing material:

 public static void destroy(){
 program = -1;
 }

Waveform visualization
Now we can create a new visualization object. Under the visualizations/ folder,
create a new Java class named WaveformVisualization and define it as extends
Visualization:

public class WaveformVisualization extends Visualization {
 static final String TAG = "WaveformVisualization";
 public WaveformVisualization(VisualizerBox visualizerBox) {
 super(visualizerBox);
 }
 @Override
 public void setup() {
 }
 @Override
 public void preDraw() {
 }
 @Override
 public void postDraw() {
 }
}

Declare a variable for the Plane component we will create:

 RenderObject plane;

Music Visualizer

[342]

Create it in the setup method as follows. Set the material to a new
WaveformMaterial, and position it over towards the left:

 public void setup() {
 plane = new Plane().setMaterial(new WaveformMaterial()
 .setBuffers(Plane.vertexBuffer,
 Plane.texCoordBuffer, Plane.indexBuffer,
 Plane.numIndices));

 new Transform()
 .setLocalPosition(-5, 0, 0)
 .setLocalRotation(0, 90, 0)
 .addComponent(plane);
 }

Now in onCreate of MainActivity, replace the previous visualization with this one:

 visualizerBox.activeViz = new
 WaveformVisualization(visualizerBox);

When you run the project, you get a visualization like this:

Chapter 9

[343]

FFT visualization
For the next visualization, we'll introduce the use of FFT data (instead of waveform
data). As in the previous example, we'll dynamically generate a texture from the data
and write a material and shaders to render it.

Capture the FFT audio data
To begin with, we need to add that data capture to our VisualizerBox class. We will
start by adding the variables we'll need:

 public static byte[] fftBytes, fftNorm;
 public static float[] fftPrep;
 public static int fftTexture = -1;

We need to allocate the FFT data arrays, and to do that we need to know their size.
We can ask the Android Visualizer API how much data it's capable of giving us.
For now, we'll choose the minimum size and then allocate the arrays as follows:

 public VisualizerBox(final CardboardView cardboardView){
 . . .
 fftPrep = new float[captureSize / 2];
 fftNorm = new byte[captureSize / 2];
 ...

Capturing FFT data is similar to capturing waveform data. But we'll do some
preprocessing on it before saving it. According to the Android Visualizer API
documentation, (http://developer.android.com/reference/android/media/
audiofx/Visualizer.html#getFft(byte[]) the getFfT function provides data
specified as follows:

• The capture is an 8-bit magnitude FFT; the frequency range covered being 0
(DC) to half of the sampling rate returned by getSamplingRate()

• The capture returns the real and imaginary parts of a number of frequency
points equal to half of the capture size plus one

Note that only the real part is returned for the first point (DC)
and the last point (sampling frequency/2).

http://developer.android.com/reference/android/media/audiofx/Visualizer.html#getFft(byte[]) /IsMap false >> endobj 2035 0 obj << /A 2036 0 R /H /N /BS << /S /S /W 0 /Type /Border >> /Rect [187.293 359.559 489.388 345.414] /Type /Annot /Border [0 0 0] /Subtype /Link /StructParent 563 >> endobj 2038 0 obj << /S /URI /URI (http://developer.android.com/reference/android/media/audiofx/Visualizer.html#getFft(byte[]) /IsMap false >> endobj 2037 0 obj << /A 2038 0 R /H /N /BS << /S /S /W 0 /Type /Border >> /Rect [108 346.959 318.896 332.814] /Type /Annot /Border [0 0 0] /Subtype /Link /StructParent 564 >> endobj 2034 0 obj [2035 0 R 2037 0 R] endobj 2039 0 obj << /Filter [/FlateDecode] /Length 7924 >> streamH��W]o���}_��a�>d�D��M2Q�H�e��S�R����P�Y-�]rMr%���=w���d�)ڇ"�%��c���{���j�i�5��d�W6�!}(W;==�y���׃�ŕ`Y�D�auV�F�q��������z:H�Ä���8�	sq̍��p1�^��e�+��]�c��z�����^mֽ��q �e�̰7l����}ɤ��S�bI˭��e��=Z�t�p����?=���	���<���W��H�G%�˄>���x���C���`��H=�!y�!�h�9�`$��Dq�л��|9%��u��l�e������'B�-�t��ګЧ�,=¯��֚CC������iA+����%�����%U�0�2��"B�i���kv�t��3m�xr����}q�����1}hL��$�+������'��`Y�f�Y�?6���a�������������!�!
��MUNV��`V�g�Q0&i���0/�Ƨ��{���iY-X�d�kh��������qvV�^����]^�j�?���ܯC�&�E�ȳt>�`���U�x���1]U~��M�r�V������G���*����R����z�N|U��De�����gp�$�e[~��q�#jvm���������t5���w���n[�Y�λ�uɎ���������t5�t1f����E�w�73"����'tE��I;���:�r�mb�������i��N�Q�d�����.�(:�9�y]־:/?vς������[��O�&��u�i�o��R�����hJ�q�nҪa7��������R������z�4}�#���ȯ�����j�]����-W7�<c���r���w��tڜcT�C��!b��@a:�P��?�b:/Ӧ����>�m��"���c�x2|݊"�3;�}�tUB��,�k����k*8�s��.o�)�eZU���Aꈗ&%��{���g���*�X�"�=��D]QG��m3����M���سbR�������R�@�С���IE�k]�TE�I�҇��������^��Y�������K�W��o�;*�U�'�Vt����ʽ^�����٬,�/�����E��˕�/�)�2	Ic���O����c��ˠc�6�{�u ���4/��_���ğ�s��x���G���Lu���
http://developer.android.com/reference/android/media/audiofx/Visualizer.html#getFft(byte[]) /IsMap false >> endobj 2037 0 obj << /A 2038 0 R /H /N /BS << /S /S /W 0 /Type /Border >> /Rect [108 346.959 318.896 332.814] /Type /Annot /Border [0 0 0] /Subtype /Link /StructParent 564 >> endobj 2034 0 obj [2035 0 R 2037 0 R] endobj 2039 0 obj << /Filter [/FlateDecode] /Length 7924 >> streamH��W]o���}_��a�>d�D��M2Q�H�e��S�R����P�Y-�]rMr%���=w���d�

Music Visualizer

[344]

The layout in the returned byte array is as follows:

• n is the capture size returned by getCaptureSize()
• Rfk and Ifk are the real and imaginary parts of the kth frequency

component, respectively
• If Fs is the sampling frequency returned by getSamplingRate(), the kth

frequency is: (k*Fs)/(n/2)

Likewise, we'll prepare the incoming captured data into a normalized array of values
between 0 and 255. Our implementation is as follows. Add the onFftDataCapture
declaration immediately after the onWaveFormDataCapture method (within the
OnDataCaptureListener instance):

 @Override
 public void onFftDataCapture(Visualizer visualizer,
 byte[] bytes, int samplingRate) {
 fftBytes = bytes;
 float max = 0;
 for(int i = 0; i < fftPrep.length; i++) {
 if(fftBytes.length > i * 2) {
 fftPrep[i] = (float)Math.sqrt(fftBytes[i *
 2] * fftBytes[i * 2] + fftBytes[i * 2 + 1]
 * fftBytes[i * 2 + 1]);
 if(fftPrep[i] > max){
 max = fftPrep[i];
 }
 }
 }
 float coeff = 1 / max;
 for(int i = 0; i < fftPrep.length; i++) {
 if(fftPrep[i] < MIN_THRESHOLD){
 fftPrep[i] = 0;
 }
 fftNorm[i] = (byte)(fftPrep[i] * coeff * 255);
 }
 loadTexture(cardboardView, fftTexture, fftNorm);
 }

Note that our algorithm uses a MIN_THRESHOLD value of 1.5 to filter out
insignificant values:

 final float MIN_THRESHOLD = 1.5f;

Chapter 9

[345]

Now in setup(), initialize fftTexture with a generated texture, as we do for the
audioTexture variable:

 public void setup() {
 audioTexture = genTexture();
 fftTexture = genTexture();
 if(activeViz != null)
 activeViz.setup();
 }

FFT shaders
Now we need to write the shader programs.

If necessary, create a resources directory for the shaders, res/raw/.
The fft_vertex.shader is identical to the waveform_vertext.shader
created earlier, so you can just duplicate it.

For the fft_fragment shader, we add a bit of logic to decide whether the current
coordinate is being rendered. In this case, we are not specifying a width and just
rendering all pixels below the value. One way to look at the difference is that our
waveform shader is a line graph (well, actually a scatterplot), and our FFT shader
is a bar graph.

File: res/raw/fft_fragment.shader

precision mediump float; // default medium precision
uniform sampler2D u_Texture; // the input texture

varying vec2 v_TexCoordinate; // interpolated texture coordinate
per fragment
uniform vec4 u_Color;

void main() {
 vec4 color;
 if(v_TexCoordinate.y < texture2D(u_Texture,
 v_TexCoordinate).r){
 color = u_Color;
 }
 gl_FragColor = color;
}

Music Visualizer

[346]

Basic FFT material
The code for the FFTMaterial class is very similar to what we did for the
WaveformMaterial class. So for brevity, just duplicate that file into a new
one named FFTMaterial.java. And then, modify it as follows.

Ensure that the class name and constructor method name now read as FFTMaterial:

public class FFTMaterial extends Material {
 private static final String TAG = "FFTMaterial";
 ...

 public FFTMaterial(){
 ...

We decided to change the borderColor array to a different hue:

 public float[] borderColor = new float[]{0.84f, 0.65f, 1f,
 1f};

In setupProgram, ensure that you're referencing the R.raw.fft_vertex and
R.raw.fft_fragment shaders:

 program = createProgram(R.raw.fft_vertex,
 R.raw.fft_fragment);

Then, make sure that the appropriate shader-specific parameters are getting set.
These shaders use u_Color (but not a u_Width variable):

 //Shader-specific parameters
 textureParam = GLES20.glGetUniformLocation(program,
 "u_Texture");
 MVPParam = GLES20.glGetUniformLocation(program, "u_MVP");
 colorParam = GLES20.glGetUniformLocation(program, "u_Color");
 RenderBox.checkGLError("FFT params");

Now, in the draw method, we're going to draw with the VisualizerBox.
fftTexture value (instead of VisualizerBox.audioTexture), so change
the call to GLES20.glBindTexture as follows:

GLES20.glBindTexture(GLES20.GL_TEXTURE_2D,
VisualizerBox.fftTexture);

Ensure that the colorParam parameter is set (but unlike the WaveformMaterial
class, there is no width parameter here):

GLES20.glUniform4fv(colorParam, 1, borderColor, 0);

Chapter 9

[347]

FFT visualization
We can now add the visualization for the FFT data. In the visualizations/
folder, duplicate the WaveformVisualization.java file into a new file named
FFTVisualization.java. Ensure that it's defined as follows:

 public class FFTVisualization extends Visualization {

In its setup method, we'll create a Plane component and texture it with the
FFTMaterial class like this, (also note modifying the position and rotation values):

 public void setup() {
 plane = new Plane().setMaterial(new FFTMaterial()
 .setBuffers(Plane.vertexBuffer,
 Plane.texCoordBuffer, Plane.indexBuffer,
 Plane.numIndices));

 new Transform()
 .setLocalPosition(5, 0, 0)
 .setLocalRotation(0, -90, 0)
 .addComponent(plane);
 }

Now in onCreate of MainActivity, replace the previous visualization with this one:

visualizerBox.activeViz = new FFTVisualization(visualizerBox);

When you run the project, we get a visualization like this, rotated and positioned
over to the right:

Music Visualizer

[348]

This simple example illustrates that FFT data separates spatial frequencies of
the audio into discrete data values. Even without understanding the underlying
mathematics (which is nontrivial), it's often sufficient to know that the data changes
and flows in sync with the music. We used it here to drive a texture map. FFT can
also be used like we used waveform data in the first example to drive attributes
of 3D objects in the scene, including position, scale, and rotation, as well as
parametrically defined geometry. In fact, it is generally a better data channel for such
purposes. Each bar corresponds to an individual frequency range, so you can specify
certain objects to respond to high frequencies versus low frequencies.

Trippy trails mode
If you are craving hallucinogenic simulations, we'll introduce a "trippy trails mode"
to our visualizations! The implementation is added to the RenderBox library itself. If
you're using the completed RenderBox library, then just toggle on the mode in your
app. For example, in setup() of MainActivity, add the following line of code at
the end:

 RenderBox.mainCamera.trailsMode = true;

To implement it in your copy of RenderBox library, open that project (in Android
Studio). In the Camera class (the components/Camera.java file), add public
boolean trailsMode:

 public boolean trailsMode;

Then, in onDrawEye, instead of erasing the screen for the new frame, we'll draw a
full screen quad over the entire frame, with alpha transparency, thus leaving behind
a ghostly faded image of the last frame. Every subsequent frame is overdrawn by
more semi-transparent black, causing them to fade out over time. Define a color
value as follows:

public static float[] customClearColor = new float[]{0,0,0,0.05f};

Then, modify onDrawEye, so it reads as follows:

 public void onDrawEye(Eye eye) {
 if(trailsMode) {
 GLES20.glEnable(GLES20.GL_BLEND);
 GLES20.glBlendFunc(GLES20.GL_SRC_ALPHA,
 GLES20.GL_ONE_MINUS_SRC_ALPHA);
 customClear(customClearColor);
 GLES20.glEnable(GLES20.GL_DEPTH_TEST);
 GLES20.glClear(GLES20.GL_DEPTH_BUFFER_BIT);
 } else {

Chapter 9

[349]

 GLES20.glEnable(GLES20.GL_DEPTH_TEST);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT |
 GLES20.GL_DEPTH_BUFFER_BIT);
 }

 ...

The customClear method skips the clear call, leaving behind the colors from the
previous frame. Instead, it just draws a semitransparent full-screen black quad with
transparency, slightly darkening the "old" image each frame. Before we can do this,
the camera needs a shader program to draw the full screen solid color.

fullscreen_solid_color_vertex.shader is as follows:

attribute vec4 v_Position;

void main() {
 gl_Position = v_Position;
}

fullscreen_solid_color_fragment.shader is as follows:

precision mediump float;
uniform vec4 u_Color;

void main() {
 gl_FragColor = u_Color;
}

Now back to the Camera component. We set up the program and define a full screen
quad mesh, buffers, and other variables. First, we define the variables we'll need:

 static int program = -1;
 static int positionParam, colorParam;
 static boolean setup;
 public static FloatBuffer vertexBuffer;
 public static ShortBuffer indexBuffer;
 public static final int numIndices = 6;
 public boolean trailsMode;

 public static final float[] COORDS = new float[] {
 -1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 -1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f
 };
 public static final short[] INDICES = new short[] {

Music Visualizer

[350]

 0, 1, 2,
 1, 3, 2
 };
 public static float[] customClearColor = new
 float[]{0,0,0,0.05f};

Then, define a method to set up the program:

 public static void setupProgram(){
 if(program > -1) //This means program has been set up
 //(valid program or error)
 return;
 //Create shader program
 program = Material.createProgram
 (R.raw.fullscreen_solid_color_vertex,
 R.raw.fullscreen_solid_color_fragment);

 //Get vertex attribute parameters
 positionParam = GLES20.glGetAttribLocation(program,
 "v_Position");

 //Enable vertex attribute parameters
 GLES20.glEnableVertexAttribArray(positionParam);

 //Shader-specific parameters
 colorParam = GLES20.glGetUniformLocation(program,
 "u_Color");

 RenderBox.checkGLError("Fullscreen Solid Color params");
 }

Define a method to allocate the buffers:

 public static void allocateBuffers(){
 setup = true;
 vertexBuffer = RenderObject.allocateFloatBuffer(COORDS);
 indexBuffer = RenderObject.allocateShortBuffer(INDICES);
 }

Then, call these from the Camera initializer:

 public Camera(){
 transform = new Transform();
 setupProgram();
 allocateBuffers();
 }

Chapter 9

[351]

Finally, we can implement the customClear method:

 public static void customClear(float[] clearColor){
 GLES20.glUseProgram(program);
 // Set the position buffer
 GLES20.glVertexAttribPointer(positionParam, 3,
 GLES20.GL_FLOAT, false, 0, vertexBuffer);
 GLES20.glUniform4fv(colorParam, 1, clearColor, 0);
 GLES20.glDrawElements(GLES20.GL_TRIANGLES, numIndices,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);
 }

Rebuild the RenderBox module and copy the library file back to this VisualizeVR
project. Don’t forget to set trailsMode to true!

Now when you run the app, it looks trippy and cool!

Multiple simultaneous visualizations
Now that we have a collection of visualizations, we can enhance the app to run more
than one at a time and switch between them.

To support multiple concurrent visualizations, replace the activeViz variable in
VisualizerBox with a list of visualizations:

public List<Visualization> visualizations = new
ArrayList<Visualization|();

Music Visualizer

[352]

Then, cycle through the list in each of the VisualizerBox method that use it.
We always want to set up all of them, but then only draw (preDraw, postDraw)
the active ones:

 public void setup() {
 audioTexture = genTexture();
 fftTexture = genTexture();
 for (Visualization viz : visualizations) {
 viz.setup();
 }
 }
 public void preDraw() {
 for (Visualization viz : visualizations) {
 viz.preDraw();
 }
 }
 public void postDraw() {
 for (Visualization viz : visualizations) {
 viz.postDraw();
 }
 }

We can control the scene in MainActivity. Modify the MainActivity class's
onCreate method to populate the visualizations list, as follows:

visualizerBox = new VisualizerBox(cardboardView);
visualizerBox.visualizations.add(new
GeometricVisualization(visualizerBox));
visualizerBox.visualizations.add(new
WaveformVisualization(visualizerBox));
visualizerBox.visualizations.add(new
FFTVisualization(visualizerBox));

Chapter 9

[353]

Run the project and we have a 3D scene full of visualizations!

Random visualizations
We can switch between visualizations by adding and removing them over time.
In the following example, we start with one active visualization and then every
few seconds, toggle a random visualization on or off.

First, add an activate method to the abstract Visualization class, which takes a
Boolean enabled parameter. The Boolean active variable is read-only:

 public boolean active = true;
 public abstract void activate(boolean enabled);

Its implementation will depend on the specific visualization. RenderBox
library provides an enabled flag that's used when we render objects. The
ones that instantiate a single Plane component are the easiest, such as
WaveformVisualization and FFTVisualization. To each of these, add the
following code:

 @Override
 public void activate(boolean enabled) {
 active = enabled;
 plane.enabled = enabled;
 }

Music Visualizer

[354]

For the GeometricVisualization class, we can enable (and disable) each of the
component cubes:

 @Override
 public void activate(boolean enabled) {
 active = enabled;
 for(int i = 0; i < cubes.length; i++) {
 cubeRenderers[i].enabled = enabled;
 }
 }

Now we can control this within the MainActivity class.

Start with each of visualizations that are inactive. Add this initialization to
setup() of MainActivity:

 for (Visualization viz : visualizerBox.visualizations) {
 viz.activate(false);
 }

In preDraw of MainActivity, we'll check the current time (using the Time class of
RenderBox library) and toggle a random visualization after every 3 seconds. First,
add a few variables to the top of the class:

 float timeToChange = 0f;
 final float CHANGE_DELAY = 3f;
 final Random rand = new Random();

Now we can modify preDraw to check the time and modify the list of
visualizations:

 public void preDraw() {
 if (Time.getTime() > timeToChange) {
 int idx = rand.nextInt
 (visualizerBox.visualizations.size());
 Visualization viz = visualizerBox.
 visualizations.get(idx);
 viz.activate(!viz.active);
 timeToChange += CHANGE_DELAY;
 }
 visualizerBox.preDraw();
 }

A similar kind of time control structure (or delta time) can be used to implement
many kinds of animation, such as changing the visualization object's position,
rotation, and/or scale, or evolving the geometry itself over time.

Chapter 9

[355]

Further enhancements
We hope that we've given you some tools to get you going with your own music
visualizations. As we've suggested throughout this chapter, the options are infinite.
Unfortunately, space prohibits us from having too much fun coding more and more
stuff here.

• Animations: We have applied the simplest transformations to each of our
visualizations: a simple position, scale, and perhaps 90-degree rotations.
Naturally, the position, rotation, and scale can be animated, that is, updated
for each frame in coordination with the music, or independent of the music
using Time.deltaTime. Stuff can be virtually flying all around you!

• Advanced textures and shaders: Our shaders and data-driven textures are
the most basic: fundamentally rendering a single color pixel corresponding to
the audio byte value. The audio data can be fed into much more complex and
interesting algorithms to generate new patterns and color and/or be used to
morph preloaded textures.

• Texture mapping: The texture materials in the project are simply mapped
onto a flat plane. Hey man, this is VR! Map the textures onto a photosphere
or other geometry and totally immerse your users in it.

• Render to texture: Our trails mode looks alright for these visualizations, but
will probably become a mess for anything sufficiently complex. Instead, you
could use it exclusively within the surface of your textured planes. Setting up
RTs is complex and beyond the scope of this book. Essentially, you introduce
another camera to your scene, direct OpenGL to render subsequent draw
calls to a new surface that you've created, and use that surface as the texture
buffer for the objects you want to render it onto. RT is a powerful concept,
enabling techniques such as reflection and in-game security cameras.
Furthermore, you can apply transformations to the surface to make the
trails appear to fly off into the distance, which is a popular effect among
traditional visualizers such as MilkDrop (https://en.wikipedia.org/
wiki/MilkDrop).

• Parametric geometry: Audio data can be used to drive the definition
and rendering of 3D geometric models of varying complexity. Think of
fractals, crystals, and 3D polyhedra. Take a look at Goldberg polyhedra
(refer to http://schoengeometry.com/) and Sacred geometry (refer to
http://www.geometrycode.com/sacred-geometry/) for inspiration.

https://en.wikipedia.org/wiki/MilkDrop
https://en.wikipedia.org/wiki/MilkDrop
http://schoengeometry.com/
http://www.geometrycode.com/sacred-geometry/

Music Visualizer

[356]

A community invite
We invite you to share your own visualizations with other readers of this book
and the Cardboard community at large. One way to do this is via our GitHub
repository. If you create a new visualization, submit it as a pull request to the project
at https://github.com/cardbookvr/visualizevr, or create your own fork of the
entire project!

Summary
In this chapter, we built a music visualizer that runs as a Cardboard VR application.
We designed a general architecture that lets you define multiple visualizations,
plug them into the app, and transition between them. The app uses the Android
Visualization API to capture the waveform and FFT data from the phone's current
audio player.

First, we defined the VisualizerBox class responsible for the activity and
callback functions to the Android Visualizer API. Then, we defined an abstract
Visualization class to implement a variety of visualizations. We then added
waveform audio data capture to VisualizerBox and used it to parametrically
animate a series of cubes to make a 3D wavy box. Next, we wrote a second
visualizer; this time using waveform data to dynamically generate a texture that is
rendered with material shader programs. And lastly, we captured the FFT audio data
and used it for a third visualization. Then, we added more fun with a trippy trails
mode and multiple concurrent visualizations that transition in and out randomly.

We acknowledge that the visual examples are pretty simplistic, but hopefully they'll
fuel your imagination. We challenge you to build your own 3D virtual reality music
visualizations that perhaps utilize a combination of the techniques in this project as
well as other things from this book.

https://github.com/cardbookvr/visualizevr

Chapter 9

[357]

Onward to the future
We hope you've enjoyed this introduction to and journey through Cardboard virtual
reality development for Android. Throughout this book, we have explored the
Google Cardboard Java SDK, OpenGL ES 2.0 graphics, and Android development
in general. We touched on a number of VR best practices and saw the limitations
of low-level graphics development on a mobile platform. Still, if you followed
along, you've succeeded in implementing a reasonable general purpose library for
3D graphics and VR development. You created a wide variety of VR applications,
including an app launcher, a Solar System simulation, a 360-degree media gallery,
a 3D model viewer, and music visualizers.

Naturally, we expect the Cardboard Java SDK to change, evolve, and mature from
this point forward. No one really knows what the future holds, perhaps not even
Google. Yet here we are, at the precipice of a bold new future. The best way to
predict the future is to help invent it. Now it's your turn!

[359]

Index
Symbols
2D texture-based visualization

about 335
basic waveform material 338-341
texture generator 335, 336
texture loader 335, 336
waveform shaders 337
waveform visualization 341, 342

3D camera 67
3D models

about 305
center 317
extents 316
rotating teapot model, viewing 319, 320
scaling 317
teapot model, viewing 317-319

3D model viewer project
intent, launching with 322, 323
practical and production ready 324
setting up 306, 307
threading, adding 321

360-degree gallery 239
360-degree photo

background image, using 246
sample photosphere, viewing 244, 245
viewing 242-244

A
activity_main.xml file 45
aidl tool 26
Android API Reference

URL 47
Android app

about 23, 24

APK files 24
Gradle build process 24-26
Java compiler 26

Android Asset Packaging Tool (aapt) 26
Android Interface Definition Language 26
AndroidManifest.xml file

about 40-45
URL 41

Android OpenGL ES API Guide
URL 60

Android project structure
about 26-29
URL 27

Android SDK Getting Started page
URL 32

Android Studio
about 29
developers page 29
installing 29
user interface 29-33

Android Virtual Device (AVD) 24
APK files 24
apps, for Cardboard

developing 16
developing, Unity used 16-18

audio data
capturing 327

B
basic geometric visualization 332-334
border frame

border material 254-256
border material, using 256, 257
border shaders 252, 253
putting, on image 252

[360]

C
Camera component 159-161
camera location

changing 234
Cardboard 1-3
Cardboard Android demo app

URL 32
Cardboard apps

360-degree photo viewing 10
cartoonish 3D games 11
creepy scary stuff 11
educational experiences 11
first person shooter games 11
launching, trigger used 122, 123
listing 115, 116
marketing experiences 11
queries 116
roller coasters and thrill rides 11
Shortcut class, creating 117
shortcuts, adding to OverlayView 117
video and cinema viewing 10
view lists, using in OverlayEye 118-120

Cardboard devices 11-14
Cardboard Java SDK

adding 37-40
Cardboard project

creating 33-37
Cardboard SDK for Android

reference 16
Cardboard SDK for Unity

reference 16
Cardboard viewer

about 12-14
configuring 14, 15

Cardboard VR app
creating 99, 100
further enhancements 123
new project, creating 100, 101

compileShaders method 63
Component class 149
cube

about 75
animating 172, 173
code 77-79

model data 75, 76
spinning 88

Cube RenderObject component 152-155
cube, with face normals 164, 165
culling 56
current shortcut

highlighting 120, 121

D
Dalvik virtual machine (DVM) 26
day and night material

about 212
DayNightMaterial class 215-217
day/night shader 212-214
rendering with 218

depth masking 303
draw method 156

E
Earth

fine tuning 232
Earth texture material

adding 201
camera position, changing 211
diffuse lighting material 205-208
diffuse lighting shaders 203-205
diffuse lighting texture,

adding to Sphere component 209
texture file, loading 202, 203
viewing 209, 210

Embedded Systems 59
enhancements, music visualizer project

advanced textures and shaders 355
animations 355
community invite 356
parametric geometry 355
render to texture 355
texture mapping 355

entity component pattern
URL 126

equirectangular projection
reference 243

[361]

F
FFT visualization

about 343, 347, 348
basic FFT Material 346
FFT audio data, capturing 343, 344
FFT shaders 345

field of view (FOV) 14
fine tuning, Earth

about 232
axis tilt and wobble 234
night texture 233

floor
about 89
drawFloor 94
initializeScene 92
model data 91
onCreate 92
onDrawEye 94
onSurfaceCreated 92
prepareRenderingFloor 93
shaders 89
variables 91

frequency 327
front-facing 56

G
Gallery360 project

enhancements 303, 304
launching, with intent 294-296
RenderBox library, updating 302, 303
setting up 240-242

gateway to VR 6, 7
gaze, loading

about 278
events, queuing 280, 281
gaze-based highlights 278, 279
photos, displaying 279
photos, selecting 279
vibrator, using 281

Gekkopod
URL 74

geometry 55-57
Goldberg polyhedra

reference 355

Google Cardboard SDK guide
URL 18

Google Developers Cardboard Getting
Started page

URL 38
Google Expeditions

reference 9
Gradle build process

about 24-26
URL 24

graphics processor (GPU) 126
grid

showing/hiding,
with tilt-up gestures 297-300

H
head look

responding to 111-113
head-mounted displays (HMD) 5
head rotation 67
heads-up display (HUD) 101
Hello Virtual World text overlay

adding 101
overlay view, controlling from

MainActivity 108, 109
simple text overlay 101, 102
stereoscopic views,

creating for each eye 105-108
text, centering with child view 103-105

I
icon

adding, to view 113-115
IDE (integrated development

environment) 29
image gallery user interface

about 272, 273
features 272
photo screen, positioning on left 274

Image.loadLock 288
IntelliJ IDEA

URL 31
intent 295, 322
intent metadata 42, 43
isLookingAtObject method 95-98

[362]

J
Java compiler 26
Java Virtual Machine (JVM) 137

L
LauncherLobby 99
Light component 165, 166
lighting and shading. See shaders
low-end VR 9, 10

M
MainActivity.cancelUpdate 288
MainActivity class

about 46-48
building 49, 50
Default onCreate 48, 49
running 49, 50

MainActivity gridUpdateLock 288
map projections and spherical distortions

reference 242
materials

about 133
abstract material 134-136
shaders 134
textured material 134

Math package
about 137
MathUtils 137
Matrix4 138
quaternion 138, 139
Vector2 139
Vector3 140, 141

MathUtils variables 137
matrix

about 67, 68
URL 68

Matrix4 class 138
MilkDrop

reference 355
ModelObject class

creating 309
model-view-perspective (MVP)

transformation matrices 159

multiple simultaneous
visualizations 351, 352

music visualizer project
enhancements 355
setting up 326, 327

MVP vertex shader 70

N
normal vector 82
numeric literals 81

O
objects

detecting 174, 175
OBJ file format

about 307, 308
reference 307

OBJ models
buildBuffers 315, 316
parsing 310-315

onDrawEye 65, 66
OpenGL ES 2.0 58-60
OpenGL rendering pipeline

URL 60

P
parent methods

about 144
setParent 143
unParent 143, 144

perspective
about 67
app, building 73
app, running 74
render 71-73
viewing matrices, setting up 70, 71

photo image
correct orientation, rotating to 263-265
dimensions, for correcting width

and height 266
displaying 257
image class, defining 258
image, displaying on screen 262

[363]

image load texture 260
images, reading into app 259, 260
loading 257
sample image down to size 267-269

photosphere image
displaying 270, 271
loading 270, 271

Photosphere mode 270
Planet class

creating 224-226
position methods

getPosition 144
setPosition 144

postDraw 331
preDraw 331
prepareRenderingTriangle method 63-65
profile generator tools

reference 14
project

creating 54, 55

Q
quaternion

about 138
references 139

R
random visualizations 353, 354
regular photo

allocating buffers, defining 247, 248
image screen, adding to scene 249-251
materials, adding to Plane component 249
Plane component, defining 247
viewing 247

RenderBox
about 125-128
empty RenderBox class, creating 130-132
IRenderBox interface, adding 132, 133
new project, creating 128, 129
RenderBox package folder, creating 129

RenderBox library
updating 236

RenderBox methods 161, 162

RenderBox package
exporting 176
RenderBoxLib module, building 177-181
RenderBox test app 181
RenderBox, using in future projects 182-185

RenderObject component 150-152
rotation methods

setRotation 146

S
Sacred geometry

reference 355
sampler function 205
scale methods

setScale 147
scrolling, enabling

about 282
scroll buttons, interacting with 285
scrolling method, implementing 286, 287
Triangle component, creating 282-284
triangles, adding to UI 284, 285

setBuffers method 156
setup 331
setupProgram method 156
shaders

about 80
adding 80, 81
app, building 88
app, running 88
cube normals and colors 82-84
light source, adding 87
preparing 85, 86
vertex buffers, preparing 84

shading 77
simple box scene 163
smooth shading 82
software development kit (SDK) 3
Solar System project

camera's planet view 230
creating 188, 189
enhancements 235
formation 226, 227
heavenly bodies, animating 231

[364]

planets, setting up in
MainActivity 227-229

solid color lighted sphere
about 195
Material, adding to Sphere 200
solid color lighting material 197-199
solid color lighting shaders 195
Sphere, viewing 200, 201

spectrum, VR devices
Cardboard, as mobile VR 4
desktop VR 5, 6
old fashioned stereoscopes 3

Sphere component
creating 189-194

spherical thumbnails
about 300
sphere, adding to

Thumbnail class 300-302
starry sky dome 231, 232
Sun

adding 223, 224
creating 219
unlit texture material 220, 221
unlit texture, rendering with 222
unlit texture shaders 219, 220

Surround Shot 270

T
threading 292-294
threads

using 287-292
Thumbnail class 275
thumbnail grid 276-278
thumbnail image 274
thumbnails

displaying, in grid 274
tilt damper feature 300
tilt-up gestures

for showing/hiding grid 297-300
Tissot's Indicatrix

reference 242

Titans of Space
URL 230

Transform class
about 141-143
drawMatrices method 149
drawMatrix() function 148
identity matrix, transforming 148, 149
parent methods 143, 144
position methods 144, 145
rotation methods 146
scale methods 147

translation, rotation, and scale (TRS) 142
Treasure Hunt 33, 53
triangle

about 55
app, building 66, 67
app, running 66, 67
compileShaders method 63
geometry 55-57
onDrawEye 65, 66
onSurfaceCreated 58
OpenGL ES 2.0 58-60
prepareRenderingTriangle method 63-65
repositioning 74, 75
simple shaders 61, 62
variables 57

trigger
used, for picking and

launching app 122, 123
trippy trails mode 348-350

U
Unity

about 16
reference 16
using 16

Unity 3D game engine
URL 3

[365]

V
VBO (Vertex Buffer Object) 59
Vector2 139
Vector3 140, 141
vertex color lighting material 167-172
vertex color lighting shaders 167-172
VertexColorMaterial class 156-159
VertexColorMaterial instance

defining 155
vertex color shaders 155, 156
ViewMaster brand VR/AR viewer

URL 4
virtual screen

using 109-111

VisualizerBox architecture 328-330
VR best practices

overview 19, 20
VR devices

spectrum 3

W
waveform 327
waveform data capture 331, 332
Wearality viewer

URL 14

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Virtual Reality for Everyone
	Why is it called Cardboard?
	The spectrum of VR devices
	Old fashioned stereoscopes
	Cardboard is mobile VR
	Desktop VR and beyond

	A gateway to VR
	The value of low-end VR
	Cardware!
	Configuring your Cardboard viewer
	Developing apps for Cardboard
	Using Unity
	Going native

	An overview to VR best practices
	Summary

	Chapter 2: The Skeleton Cardboard Project
	What's in an Android app?
	APK files
	A Gradle build process
	A Java compiler

	The Android project structure
	Getting started with Android Studio
	Installing Android Studio
	The Android Studio user interface

	Creating a new Cardboard project
	Adding the Cardboard Java SDK
	The AndroidManifest.xml file
	The activity_main.xml file
	The MainActivity class
	Default onCreate
	Building and running

	Summary

	Chapter 3: Cardboard Box
	Creating a new project
	Hello, triangle!
	Introducing geometry
	Triangle variables
	onSurfaceCreated
	Introducing OpenGL ES 2.0
	Simple shaders
	The compileShaders method
	The prepareRenderingTriangle method
	onDrawEye
	Building and running

	3D camera, perspective, and head rotation
	Welcome to the matrix
	The MVP vertex shader
	Setting up the perspective viewing matrices
	Render in perspective
	Building and running

	Repositioning the triangle
	Hello, cube!
	The cube model data
	Cube code

	Lighting and shading
	Adding shaders
	Cube normals and colors
	Preparing the vertex buffers
	Preparing the shaders
	Adding a light source
	Building and running the app

	Spinning the cube
	Hello, floor!
	Shaders
	Floor model data
	Variables
	onCreate
	onSurfaceCreated
	initializeScene
	prepareRenderingFloor
	onDrawEye
	drawFloor

	Hey, look at this!
	The isLookingAtObject method

	Summary

	Chapter 4: Launcher Lobby
	Creating a new project
	Adding Hello Virtual World text overlay
	A simple text overlay
	Center the text using a child view
	Create stereoscopic views for each eye
	Controlling the overlay view from MainActivity

	Using a virtual screen
	Responding to head look
	Adding an icon to the view
	Listing installed Cardboard apps
	Queries for Cardboard apps
	Create the Shortcut class for apps
	Add shortcuts to OverlayView
	Using view lists in OverlayEye

	Highlighting the current shortcut
	Using the trigger to pick and launch
the app
	Further enhancements
	Summary

	Chapter 5: RenderBox Engine
	Introducing RenderBox – a graphics engine
	Creating a new project
	Creating the RenderBox package folder
	Creating an empty RenderBox class
	Adding the IRenderBox interface

	Materials, textures, and shaders
	Abstract material

	The Math package
	MathUtils
	Matrix4
	Quaternion
	Vector2
	Vector3

	The Transform class
	Parent methods
	Position methods
	Rotation methods
	Scale methods
	Transform to matrix and draw

	The Component class
	The RenderObject component
	The Cube RenderObject component
	Vertex color material and shaders
	Vertex color shaders
	VertexColorMaterial

	The Camera component
	RenderBox methods
	A simple box scene
	Cube with face normals
	The Light component
	Vertex color lighting material and shaders
	Time for animation
	Detect looking at objects
	Exporting the RenderBox package
	Building the RenderBoxLib module
	The RenderBox test app
	Using RenderBox in future projects

	Summary

	Chapter 6: Solar System
	Setting up a new project
	Creating a Sphere component
	A solid color lighted sphere
	Solid color lighting shaders
	Solid color lighting material
	Adding a Material to a Sphere
	Viewing the Sphere

	Adding the Earth texture material
	Loading a texture file
	Diffuse lighting shaders
	Diffuse lighting material
	Adding diffuse lighting texture to a Sphere component
	Viewing the Earth
	Changing the camera position

	Day and night material
	Day/night shader
	The DayNightMaterial class
	Rendering with day/night

	Creating the Sun
	Unlit texture shaders
	Unlit texture material
	Rendering with an unlit texture
	Adding the Sun

	Creating a Planet class
	Formation of the Solar System
	Setting up planets in MainActivity
	Camera's planet view
	Animating the heavenly bodies

	A starry sky dome
	Fine tuning the Earth
	The night texture
	Axis tilt and wobble

	Changing the camera location
	Possible enhancements
	Updating the RenderBox library
	Summary

	Chapter 7: 360-Degree Gallery
	Setting up the new project
	Viewing a 360-degree photo
	Viewing a sample photosphere
	Using the background image

	Viewing a regular photo
	Defining the Plane component and allocating buffers
	Adding materials to the Plane component
	Adding an image screen to the scene

	Putting a border frame on the image
	Border shaders
	The border material
	Using the border material

	Loading and displaying a photo image
	Defining the image class
	Reading images into the app
	Image load texture
	Showing an image on the screen
	Rotating to the correct orientation
	Dimensions to correct the width and height
	Sample image down to size

	Loading and displaying a photosphere image
	The image gallery user interface
	Positioning the photo screen on the left

	Displaying thumbnails in a grid
	The thumbnail image
	The Thumbnail class
	The thumbnail grid

	Gaze to load
	Gaze-based highlights
	Selecting and showing photos
	Queue events
	Using a vibrator

	Enable scrolling
	Creating the Triangle component
	Adding triangles to the UI
	Interacting with the scroll buttons
	Implementing the scrolling method

	Stay responsive and use threads
	An explanation of threading and virtual reality
	Launch with an intent
	Showing/hiding the grid with tilt-up gestures
	Spherical thumbnails
	Add a sphere to the Thumbnail class

	Updating the RenderBox library
	Further possible enhancements
	Summary

	Chapter 8: 3D Model Viewer
	Setting up a new project
	Understanding the OBJ file format
	Creating the ModelObject class
	Parse OBJ models
	buildBuffers

	Model extents, scaling, and center
	I'm a little teapot
	I'm a little rotating teapot
	Thread safe
	Launch with intent
	Practical and production ready
	Summary

	Chapter 9: Music Visualizer
	Setting up a new project
	Capturing audio data
	A VisualizerBox architecture
	Waveform data capture
	A basic geometric visualization
	2D texture-based visualization
	Texture generator and loader
	Waveform shaders
	Basic waveform material
	Waveform visualization

	FFT visualization
	Capture the FFT audio data
	FFT shaders
	Basic FFT material
	FFT visualization

	Trippy trails mode
	Multiple simultaneous visualizations
	Random visualizations
	Further enhancements
	A community invite

	Summary
	Onward to the future

	Index

