THE EXPERT’S VOICE® IN

Cloud Computing
Using Oracle
Application
Express

Riaz Ahmed

ApPress’

http://www.allitebooks.org

Cloud Computing
Using Oracle
Application Express

Riaz Ahmed

Apress’

www.allitebooks.cond

http://www.allitebooks.org

Cloud Computing Using Oracle Application Express

Riaz Ahmed
Karachi, Pakistan

ISBN-13 (pbk): 978-1-4842-2501-1 ISBN-13 (electronic): 978-1-4842-2502-8
DOI: 10.1007/978-1-4842-2502-8

Library of Congress Control Number: 2016961317
Copyright © 2016 Riaz Ahmed

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Celestin Suresh John

Technical Reviewer: Kali Kishore Gomattam

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,
Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Sanchita Mandal

Copy Editor: Kim Wimpsett

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www. apress . com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

I dedicate this book to the person who taught me how
to hold a pencil—my mother.

I'm here because of her.

I also dedicate this book to my wife, who is always behind
me in these endeavors.

vww . allitebooks.con

http://www.allitebooks.org

Contents at a Glance

About the AULROKcciiieeeiiiree s e e n e nmm e pnnnnn XXi
About the Technical REeVIEWEcoreeeesiremmmsssssnssassssnssnsssssnnnnssnnes XXiii
o (=] £ [3 XXV

Chapter 1: Introduction to Cloud Computing and the

Application Project.......cuueeemmmmmmmmmmmmssmssssnmmmssssssssssssssssssssssssssnsnnnnns 1
Chapter 2: Application Navigation..........cccccsneemmmmsssennmmnsssensnnssssnnn 9
Chapter 3: COMPANIESeevrsseerrrmsssnnsmmsssssnssmsssssnssssssssnsssssssnnsssssans 15
Chapter 4: Fiscal Year........coucemmmmmssemnmmmsssessnmsssssssnnsssssssssssssassnnssnss 19
Chapter 5: Voucher TYPescccuumsssemsmmssssnnsnsssssansnsssssnnsssssssnnnssssans 35
Chapter 6: Application Segments.........cccinnnsnmmnnmssssssnnmssssssnsssssnnn 41
Chapter 7: User GroupPS.......cccsuumsssamsmmsssssssssssssssnssssssssnssssssssnsssssnnns 49
Chapter 8: Create USers.......ccoummmsmmmmmssssnnnmmssssssnssssssssnssssssnsnsssssnnns 63
Chapter 9: Reset Passwordccccunsseennmmssssnnnmsssssssnsssssssssssssnans 69
Chapter 10: Switch Company, Year, and Month...........ccoccccnnriinnnes 77
Chapter 11: Cost Centers.......cccuummmmmssssnnmmsssssnsnmssssssssssssssnnsssssnnns 85
Chapter 12: Chart of Accountsccceenmrsmmmsssssssnnnmsmmmssssssssnns 97
Chapter 13: Copy Chart of Accounts........uuseeemmmnnnnnssssssssssnnnnnnnas 113
Chapter 14: Enter Vouchers..........cccinmnnsemmnnmssssnsnssssssssssssssssssnnsns 117
Chapter 15: Search Transactions.........ccccuummseesssnnnmnmmmssssssssnns 133

v

www.allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS AT A GLANCE

Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:
Chapter 27:
Chapter 28:
Chapter 29:
Chapter 30:
Chapter 31:
Chapter 32:

Appendix: Book Code

Vouchers Verification...........ccoussmimmssmsnsssnsssssasssnss 139
Vouchers Report.........cccccemmmmmmmsssssssssssnnnnnsssssssssnnnnns 149
Ledger Reportccccvussmmmmmmssssnsnsnssssnsnsssssssnnsnsssnnns 161
Trial Balance Report............cccccvnnnsmmemmnnnnnnnssssssssnnans 171
Opening Bank Transactionsccousssesmsssssssssnsssssns 183
Bank Reconciliationcccuvmmvmsmsassmsssssssssassnsnss 189
Bank Reconciliation Report............ccsnmeemmmnnnnnessssnns 199
Month Closure.........cccsmemmsmmmsssmmssssssssssssssssssssnsssans 205
Year-End ProCesSescuussssssssssssmsssassssnssssnsnsansss 211
Budget Allocation...........cccrrnsssennnnssssennsssssssnnsssssnnnns 221
Budget Report..........ccccuvcmmmmmmssmmsmmmsssssssmssssssssnnsnnnns 231
Set Up Accounts for Financial Statements.............. 241
Financial Statementsccocniemninninnsnnsnninnnes 251
Executive Dashboard...........ccvemmsemmmsmsssnsssessssnsnsanss 267
Application Feedback.........ucccrmmmssseanmmssssnssnnssssnssnnss 277
Mobile Versionccusmsesmsmmmssmsssssssssssssssssssssssasssnss 281
Application Security.......ccccuseemmmmissennmnssssensnnssssansnnns 297

.. 31
... 399

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AULNOFcoveeeiiiireeeirr e nmmnns XXi
Ahout the Technical ReVIEWETcueeeeeresremmssssmsmssssssssnsssssssnnssssnnnns XXiii
] [XXV

Chapter 1: Introduction to Cloud Computing and the

Application Project........ccuurmemmmmmmmmmmmmmmmssssssnnnmmsmsssssssssssssssssssssnnnns 1
1.1 An Introduction to Cloud Computingc.cceevverrerriernsesesensessnnennes 1
1.2 Public vs. Private Cloud...........cccooerrinnnmncnnscnssnsesssese e 2
1.3 What IS ACCoUNtiNg?.......ccvverrrrirrirrer et se e 3
1.4 Accounting SYSTEmccccvverriiccnir e 3
1.5 General LEdger......ccccvvrverrerierrer s ses e ses s e sns s snnnnns 4
1.6 The Cloud Accountant General Ledger Project.........c.cceevvrrerreninnne 5
1.7 Development Environment..........ccocvereicscssssesses s sessennenns 6
1.8 Application SEgMENTSccecverrircrrrrr e 6
L T 111117 o 7SS 8
Chapter 2: Application Navigation...........cccccunsemmmmnssssnnnmnssssssnmnssnnns 9
2.1 Create the Main Application Menu..........cccccvrerierrerrersessessesseesaenns 9
2.2 Modify/Add Navigation Bar Entriesc.ccccceevvrrennicnnssenesenenns 12
2.3 SUMMACY...cicciitrerisesesese e e sss e sss s s s sse s s ssssssnssssssns 14

vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: COMPANIEScosurrssanrmssanssssanssssanssssansesssnsesssnsesssnsssssnnes 15
3.1 Create Application TabIEs...........cccocermrmriernnersnssssse s 15
3.2 Create Pages for Company Setupccorvrererrnmnernnesernsnesesennes 16
BT T 111111 T 17
Chapter 4: Fiscal Year.........cccummmssesssnnmmmmmmmmssssssssssssssssssssnsssssnnnnns 19
4.1 Create List 0f VAIUES.......ccoceeererecrerecrere e 20
4.2 Create Page and Parameters Regionccccvvrvercersercersenennns 21
4.3 Create a Fiscal Year Gridcccerenerersnmsessncsesssesesssesesseenens 22
4.4 Add ltems to Hold Months/Dates.........c.cooeeererenererenesessesesessesenens 24
4.5 Create Buttons to Generate, Save, and Remove a Fiscal Year...... 25
4.6 Generate Fiscal Year ProCess.........cccovreererenesesesesessesesessesesenns 26
4.7 Save Fiscal Year ProCess.......c.ccoeevrerereresmsessesmsessesesessesesessesesens 26
4.8 Delete Fiscal Year ProCesSS........c.ccvvurervereesessessnsessssssessssssssssssesnens 27
4.9 Fetch Fiscal Year Dynamic Actionccccecvvrverrenrennensensensensennens 27
4.10 Create Validation: Check Transactioncceerirnneniesensennnns 28
411 Create Branchccocveeivennneiesnscnsssssesssse s ssssessessssesnens 29
4.12 Dynamic Actions to Hide Buttons..........cccvvrvrrcrvnnccrcnncnieenne, 29
413 TeStYOUr WOrK......ccooceeririnererine s s sssse s 32
414 SUMMANY..cc.cctierrrserresesessssesesssssssessssesssssssessssssssssssessssssssssansssens 34
Chapter 5: Voucher TYPescccvuussummmmsssssnnnssssssnsnssssssssssssssansnssssnnns 35
5.1 Create List 0f ValUES.........ccoceeererrsirennernse e 35
5.2 Create Pages for Voucher Types Setup.........ccevrerverrersersersersenienne 36

5.2.1 Convert Text [tem to Radio GroUPccoveereererereriererrererereeseraesesaesessenes 37
5.3 Create Validation: Check Transactioncocoeeeererenrerernsscserennes 38
9.4 TeStYOUr WOrK.......cocoiiinncrencsssss s 39
ES TR TV 111 1T 1S 39

viii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: Application Segments..........cccernsemmnnmsssssnnnmnsssnnmnssnn 41
6.1 Create LOVS.......ccorircnnicrrirenss s s 42
6.2 Create Segments Setup Pages........cccevvrrrrrrnnersensenses s sessenenns 42
6.3 Modify Segments FOrm.........ccoorvrieenicnnsncsnscseses e 44
6.4 Add Tree View Region.........ccceeeereersrsessensssses s ses s e e sesssnnnns 45
6.5 Create BUttONS ..o 45
6.6 Create Validationsccccoverrnienernenenseseses e 46
6.7 Create BranChcccoivrennnennnnessse s e 47
6.8 Test Your Work.........ccoonnninnnnns s 47
6.9 SUMMACY ...ttt sn e sr e nrnnnnnan 48
Chapter 7: User GroupsS........uuuuusssssssssmmmssssssssnsssssssssssssssssnsssssssnss 49
7.1 Page and Parameters Region...........cccceeeeeeverseesessessessnssnssenssnnnnns 50
7.2 BULONS ... 54
7.3 NEW Group ProCeSS.......ccvervirreeriersessesssessssssesssessssssssssssssssssssssaes 54
7.4 Delete Group BUttoN.........cccooeeeceecececerere e 55
7.5 Delete Group PrOCESS.......cccvvvrerrerrersersessssssssesssssssssssssssssssssssssenns 56
7.6 Group Privileges Region..........cccevverrerrennesnessessesses s sessesssssessanenns 56
7.7 Tre@ REQION ...ttt ss s e sn s sn e sn s sn e sn e nnnnnenns 57
7.8 Add Classic Report Region..........c.cveeevvernsrsessssmssssessesssssssesssens 58
7.9 Dynamic Action to Refresh Region..........ccccceevvrvirsrncenseessessennnes 58
7.10 Add Button and a Process to Allow/Revoke Segment Access
RIGNE ..v.vcveererescsssssseesssssssssesssssesssesssssessssssssasesssssssesesssssssenens 59
711 TestYOUr WOrK........cooceercncnircrnsnsess s s 60
712 SUMMANY...ci et snesse s s s s s s ssssnssnssns s s snesnesrssnannns 61
ix

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 8: Create USers......cccusummssmmmmsssnsmssansssssnsssssssssssnsssssnssssnnnas 63
8.1 Create Pages.......c.cccrvrrerrerserrerser s 63
8.2 Create/Modify REMS.......ccoceververierrrr e 65
8.3 Create a Process to Set Company, Year, and Month...................... 67
8.4 TestYOUr WOrk........ccoeeiinnircncres s 67
ST TV 111 1T 1 68
Chapter 9: Reset Passwordcccounsemmmmmssssssmmsssssssnsssssssssnsssnnns 69
9.1 Add Custom FUNCHIONSccccoererecnerncnerse e 69
9.2 Create Page.......cccocvvererrerricre e 70
9.3 Check User ID and Match Password Validations..............ccceeuruene. 73
9.4 Update PasSWOrd ProCESS.........ccecerrveerverrrnerrsesssessssrsssessssssssesssenes 74
9.5 Change Authentication Scheme...........cccocevrerrirrrriernscnecenen 74
0.6 SUMMANY.....ccoiirirrrirrerre e s 75
Chapter 10: Switch Company, Year, and Month...........ccocccnrriisnnns 77
10.1 Create Page........ccocvverenmrenesesessse s s ss s sassesnas 77
10.2 Add BUHON......coeeeeecrre s 80
10.3 Add Validations..........ccccerverernerenesiennsesesese s 80
10.4 Update User Profile ProCess........ccocevrrerrerrersessensessessessessessensenaes 81
10.5 Display Company, Year, and Month...........ccccccvvrrrrrrrrenrernerenne 81
10.6 SUMMACY ... s 83
Chapter 11: Cost Centers.......cccumemmmmmmsssnnmmmssssnssssssssssssssssssssssssnnns 85
11,1 Create Pages.......cccceerereerrerresre e sse s s ssssssssssnssns s snssnsssssnnnes 85
11.2 Delete ProCESSES........coccrereererreerersiesesses s sesses s sessesns 87
11.3 Modify Delete Button..........cccevrvrrinninvrc e, 87
11,4 Add BUHON.......eeeeeeee e s 88
11.5 Modify Page IHemScoccervereerierssrresesse e nnas 88

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

11.6 Add Dynamic Action: Evaluate Levelccccevvrvrrervernenrenenne, 89
11.7 Validation: Check LEVelcoeceerrcenerncnersese s 89
11.8 Validation: Check Parent Level...........cccovvernserennnsesssnsesensennes 90
11.9 Validation: Check Child LEVEIccccerrvererericrermseneresesesesnenens 90
11.10 Validation: Check in Transaction...........c.ccovveerernsenernscsesnnseens 91
11.11 Validation: Disallow Code Modificationc.ccccveerrerrrcerenennes L)
11.12 Process: Save RECOI..........coveerermrrcrermscneresese e sessenens 92
11.13 Process: Delete ReCOrd..........cccoenriernninicnnssnsnnsesssesesesenas 92
11.14 Add Button: Refresh ... 93
11.15 Test YOUr Work........ccovvvriicnrircness s 94
1116 SUMMAY....coicccrcrr e 95
Chapter 12: Chart of Accountsccuseemmnssssennnnssssssnsssssssssssssnns 97
12.1 Create Three Lists of ValUES........cccovverrnriennsiricnnsensnserenenns 98
12.2 COPY PAQES......ccorrereerrrernesrsesssse s s s ssssnsssssssnsnes 99
12.3 Modify the Report Page (Page 15).......ccccecrvmriernerienseessessennne, 100
12.4 Modify the Form Page (Page 16).......c.ccccvverrercrsersersersessensennens 100
12.5 Modify/Create Dynamic ACHIONSccocvvereerrccrnsesesensessenennens 103
12.6 Modify Validations...........cccvevernersessssenses s seeseneas 107
12.7 Create Validation: Check Account Typeccoceveeeervercercesnennnns 108
12.8 MOdify PrOCESSES.....ccecerererirererser st sne e 109
12.9 Create a Highlight Rulecccoceorercrrereercce e 109
1210 TeSt YOUr WOrK......cocoeieeerircencress e 109
L B 1T 111 111
Chapter 13: Copy Chart of Accounts........ccuussmmmmmmnnnnesssssssssnnnnnnn 113
13.1 Create Page........ccovvvverierierrer st ses s e s e 113
13.2 Add BULON......eccceeet e 114

xi

CONTENTS

13.3 Add Validations...........ccorrenerrenerssseresese e sessenens 115
13.4 Copy COA PrOCESS.....ccererreerrererersesesessssessesessessssessssessessssessens 115
13.5 Test YOUr WOrk........cccovenircninc s 116
13.6 SUMMACY ... 116
Chapter 14: Enter Vouchers..........cccinnnmmmmmmssssnsnnssssssssssssssssssnsans 117
14.1 Create List 0f VAIUES..........ccormrererrienerseersee s 119
14.2 Create PagesS.......cccevrvrrnererenscse s ses e snsesnens 119
14.3 Modify the Master Page (Page 42)...........cccevvernnerenessesnnnesnens 121
14.4 Add Items (Page 42)........ccceveriernerierreree e ssee e ssnesessnene 122
14.5 Modify Button (Page 42).........coeeeeereeercessescesses e 123
14.6 Modify the Detail Page (Page 43).......ccceerrerriernserenensessnsennens 123
14.7 Add/Modify REMSovoveeeeceere e 125
14.8 Modify Validations on Page 43..........cccoverererercessesses s 126
14.9 Add Validations to Page 43..........ccccecuvermnrnennsennsesessssessssensens 127
14.10 Modify ProCess.......cccceverierrmrersmriessessessesses s ssssssesssessesssene 128
14.11 Create ProCesSS........ccccvererienensesssessesssse s sessssnssesnens 129
14.12 Control BUttONSccocceeeeierrc e 130
1413 Test YOUr WOrK........ccovirinerinnincesssse s 130
1414 SUMMANY...coieccececece e 132
Chapter 15: Search Transactions.........ccccusemmssnsssssnsssssssssssnssssnns 133
15.1 Create Page and Parameters Regioncccceeveercercerserennene 133
15.2 Create an Interactive Report Regionccccevvvervevververnersennne 135
15.3 Add a Dynamic ACLIONcccceeeeeereesrrrresns e ses s se e e 137
15.4 TeStYOUr WOrK........cocorcereercnne e 138
155 SUMMAIY ... sn e s 138

xii

CONTENTS

Chapter 16: Vouchers Verification..........ccceussemmnnnssssnnsnsssssnnnnnns 139
16.1 Create Page and Parameters Regionc.ccccveveercercercernnnnne 139
16.2 Create Interactive Report Region.........ccccovvvvvrverversensensensennnn, 141
16.3 Create Verification Page.........cccccervrriernseresnscnssenesensessenennens 143
16.4 Modify, Delete, and Create Page Buttonsccccecrvvrcernnne. 143
16.5 Modify Page-Rendering ProCess..........covrerrerrersersessensessessenens 144
16.6 Delete Validations...........cccccvenrinnnincnnn s 145
16.7 Delete ProCESSES........ccvccverereenrsseressrseses s s e snsnssens 145
16.8 Add ProCeSSES........coviereresireisessss s s 145
16.9 Handle Branches..........ccooivninnicnncncsesesseseenens 146
16.10 Test YOUr WOrk........ccccvoreerinnnreneseseseseseses s 146
16.11 SUMMAIY.....ccecceerecreree e 148
Chapter 17: Vouchers Report...........ccccunemmmmnssssnnnmnssssssnssssssssnnnns 149
17.1 Create a List 0f ValUes..........cccooeeerrierirricrerreserseseseseesesenens 149
17.2 Create the Parameters FOrm.........cccvniiinnccnnsncsnscssnnnens 149
17.3 Create Report QUENY........c.cccererernesersnsesessssese s e sesssesessssennns 152
17.4 Download and Install Bl Publisher Desktopcccccveerierrennne. 153
17.5 Create Report Template in Microsoft Word..........c.cccccvrurrnrnnnen. 153
17.6 Template Formatting...........coceevvernnnicnnsesesse e 155
17.7 Create the Report Layoutc.ccoovvrvrvenvenressesss e 157
17.8 Attach the Report Layout to Report Query........coecveevrierenenaens 158
17.9 Send the Print Request ..., 158
17.10 Create Validationccccevererniesernnenerssesessesesesesesesseens 159
1711 TeStYOUr WOrK......cooovicrircnse s 159
L A 111111 S 160

xiii

CONTENTS

Chapter 18: Ledger Reportccccvnuemmmsssnmmsssnsssssssssssssssssnssssnns 161
18.1 Create Page and Parameters Form.........c.ccccoevercrcrcercerennen. 161
18.2 Create an Interactive Report Regionccccevvverververcerseriennen, 164
18.3 Formatting Ledger Report..........ccooeereeeercercessesres e 164
18.4 Get Ledger Report in PDF.........cccooeerercrceecereeeeee e 165
18.5 Drill Down t0 SOUrce VOUCKETcccvrererersneresenereseseressnnens 166
18.5.1 Create Link in Interactive REpoM.........ccccvrvererererervererseresseranseraens 166

18.5.2 Create VOUCHEr PAQEccovevererererererererereresesesesesesesesesesesesesesesenens 167

18.6 Test YOUr Work ... 168
18.7 SUMMACY ...t 169
Chapter 19: Trial Balance Report.........ccccusmrmsssmmssssnsssssnsssssnsssanns 171
19.1 Trial Balance Report Table..........ccccoeererercercercrcecer e 171
19.2 Create a List of Values..........coccoceerriererricnnnicncrseseresesesesenens 172
19.3 Create Page and Parameters Form..........c.ccococvvvriernccrnccnnens 172
19.4 Create the Interactive Report Region.........cccoccvercrcercercerennen. 174
19.5 Create a Process to Generate Trial Balance.............cccccevruencne 175
19.6 Formatting the Trial Balance Report..........ccccoeveereercercersenennns 175
19.7 Print the Selected LeVel........ccccocveerienninensessse s 176
19.7.1 Create PrOCESScoceererereceressesese s seesesss e s sese s sesesesnnnes 177

19.8 Eliminate Zero Balances............cccvvoererereneresnenesesssesesssesessnnens 177
19.8.1 Create @ PrOCESSovererererererererereresenens 178

19.9 Create aValidationccovreeerriesrsierrrese s 179
19.10 Get the Trial Balance Report in PDFcocrercrcrcercerene, 179
19.10.1 Template FOrmattingoccoeomrricncnnncecre s 180

19.11 Drill Down to the Ledger Reportcccoevvrvrrrverrersenseriennens 180
19.12 TeStYOUr WOrK ... 181
19.13 SUMMANY.....eieeeceerr e 181

xiv

CONTENTS

Chapter 20: Opening Bank Transactionsccccusssessnsssssnnsnnnsns 183
20.1 Create Page.........ccovverrerrersrrsnesns s sss e s s s e sns e 183
20.2 Modify Region SOUrce QUErY........ccuurrererserresesessssessesessesssnennes 184
20.3 Handling Default Validationscccceeverercssersessessesces s 185
20.4 Add Validation..........cccoveernerenenscnnse s 186
20.5 TestYOUr WOrK.........coourerenennmrnsnnennsssssss s ssesssss s 186
20.6 SUMMACY....cceicrererererrssesessssese e sss e sss e ssssessssssssssssssssssnes 187
Chapter 21: Bank Reconciliationcccunnmmemmmnnnnnnnmmsssssssnnns 189
21.1 Create Page and Parameters Form...........ccccecvverinsrennscsnnsennes 189
21.2 Display Outstanding Opening Transactions............cccccveevrernnne 191
21.3 Modify Reconcile Opening FOrmccccovvvrervennessessessensensenns 192
21.4 Current Transactions Regionccocevvvererrcernsesesensessnnennns 193

21.4.1 Create a Button and @ ProCesSS........cocovererererereresesesesesesesesesesesesesenes 195
21.5 TeStYOUr WOrK........ccoeeeiienenereninessss s sssesnes 195
21,6 SUMMACY....cooiccirrcre e 197
Chapter 22: Bank Reconciliation Report.........ccccccvvvnissnnnennnnnnnas 199
22.1 The Bank Reconciliation Report Table.........cccccvveeveerieevcerienreenns 199
22.2 Create the Parameters FOrm.........cccccovevcnnencnenescnesnescnesnenes 200
22.3 Create the Interactive Report.........cccccvvveecrcercescesces s 201
22.4 Create the Reconciliation Report Generation Process.............. 202
22.5 Format the Reconciliation Report............cccocverersrcersersersensnnne 202
22.6 Generate the PDF Report..........cccoovvvrvrcecrcssee s 203
22.7 TestYOUr WOrK........ccooererennmrnssnesss s 204
22.8 SUMMAIY....cooiiiiecirerrestre e se s sss s ss s se e sns e snes 204

XV

CONTENTS

Chapter 23: Month ClOSUre.......cccuseermsssnsmssansssssnsssssnsssssnsssssnssssnns 205
23.1 Create Page and Page ltems.........cccceerercrcrsersescessescessesennes 205
23.2 Show Unverified VOUCKETS ... 206
23.3 Add Validation............cccererererrneesenesenesesesse e ssenas 207
23.4 Close Month ProCess.........cccveererenmrnnessssessesssessessssessssessesnas 208
23.5 Hide BUHONS........ccoorrcerrcrce s 209
23.6 SUMMACY....cccoiiiecererrrc e r e sn s enas 210
Chapter 24: Year-End ProCessesccuuummsssssssssssssssssssssnssnsnsnnsas 211
24.1 Enter Opening Balances..........ccceervererniennncsesessessesessesenennas 211
24.2 Temporary Year-End (TYE)ccccoorvrrrcrrr s 213
24.3 Create the Page and Page Items..........ccccvvrvrrrvercersensensensenne 213
24.4 Create aValidationc.cccerrveerniesrnseserssese s 215
24.5 Generate the Fiscal Year Process...........cccvevseresessesssesesensennas 215
24.6 A Process to Generate a Closing Entry..........ccccvvrververcersenenne 216
24.7 TeStYOUr WOrK........coveerenenerrniresese s s 216
24.8 Permanent Year End (PYE)........ccoconrnrnrnrnnnnsenesesesesenens 217
24,9 Create the Page and Page Items..........ccccevrvrverrercersescessenenne 217
24.10 Create the Validationsccvrrrennnennsnnesssesesesesesenas 218
24.11 A Process to Close the Year Permanently..........c.ccoeeerrernrnenen 218
2412 TeStYOUr WOrK.......cooccererermrmnsisssessssse s sssssssesnas 219
2413 SUMMAIY.....crcerererrerserses s se s se e e e e e e s e e e senses 220
Chapter 25: Budget Allocation........ccccusemmnnsssssnnnmssssssnssssssssssnnans 221
25.1 Budget Allocation Table..........ccceervrrrrrrerssrer e 221
25.2 Create the Page and Parameters Form..........ccccoccvvrvrcercernenne 222
25.3 Create a Tabular FOrm..........ccovvveernscnrnsenerssese e sesesesnenes 225
25.4 Budget ProCeSSEScceverrerrerrersessesressesses s s sesses e e e sesennes 227

xvi

CONTENTS

25.5 TestYOUr WOrK........ccooevrernmnnnmnsnsssssse s 227
25.6 SUMMACY....c.cecerrreeerrrssese s se s se s s ssssssnssenes 229
Chapter 26: Budget Report...........ccccinsnnemmmnnssssnnnnnsssssnsssssssssnnnns 231
26.1 Budget Report Table.........ccooveerererresrrer e 231
26.2 Create Page and Parameters FOrm........cccocvveevverrienvensensensannns 231
26.3 Create Computations.........cccuevrerverreriessessessesseessesssessesssesaenns 235
26.4 Create Interactive Reportccocovvrievrccrenncernscc e 236
26.5 Budget Report Generation Process..........ceceverversersessessessensennns 237
26.6 Generate PDF REPOr.........cccocvververnerienseessesseessesaesnessesnesaenns 237
26.7 TeStYOUr WOrK........ccoenererenirerinesisssss s s snsn e 238
26.8 SUMMANY....ceorrrrrrrrerserserssesesssssesssssessassasssssasssssessssssssssssssssssnses 240
Chapter 27: Set Up Accounts for Financial Statements.............. 241
27.1 Accounts Table for the Financial Statements............c.cccevuunee. 241
27.2 Create a List 0f VAIUES..........ccovereeerecrerecrerecse e 241
27.3 Create Page and Page Items.........cccoceevreeeresessessnsses s sen e 242
27.4 Create a Tabular FOrM........ccoooiirennnesnsesesnssesssese s 245
27.5 Create Validationscccooeeeererenrencrnenesesesesese s 247
27.6 Create ProCeSS........coocvuireresnmresnsessssssssssse s s s sessssnssnsnas 248
27.7 TeStYOUr WOrK.......cccoeeeeneeneereererseeses e 249
P TV 11111 L 250
Chapter 28: Financial Statementscccecvineemninnneennnnsseennn, 251
28.1 Financial Statements Table.........ccoceonrernncscnneserrecrene 251
28.2 Create Page and Page ltems.........cccceveeevecereceseesesses e 251
28.3 Create Interactive Report and Buttons..........cccoceveevveereriennaenns 256
28.4 Create Computations...........ccoceerirenriennsne e 257
28.5 Create On-Demand ProCeSSEScuoerrrererrssersssmssesessessesennes 259

xvii

CONTENTS

28.6 Create Branches..........cccoorverrncnnnicnssese e 260
28.7 Create Page for Financial Statements Notesccccvcevvernene. 261
28.8 Create Column LinK.........ccoooereneriennnenssesenssesesesse s ssesessesnas 262
28.9 Generate PDF REPOI.........cccveerieevierieerienseesessessessaessessssssessennns 262
28.10 Enter VOUCKErS......ccccieerirer e 264
28.11 Test YOUr WorkK........ccoocreernersereresesesesesesesese s 264
28.12 SUMMAIY....ccieeerereereseeresee s ses e ses e sasssesesssesasass 266
Chapter 29: Executive Dashboard............ccccusseemminssssnnnnnssssnnnsnnans 267
29.1 Dashboard Table...........ccorinnrinnn s 267
29.2 Copy Components to the Home Page..........cccccevervrririnnienienne 267
29.3 Create RegiONS........cccuoerererernenesesnssessesesessssessesesssssssesssssssesnes 269
29.4 Create Chart Subregion..........ccccoevvrvrvrrrcrcr e 269
29.5 Create a Hidden Item ... 270
29.6 Copy Chart REJIONS........cccveerrererernssersssesessssessessssessssessessssesnas 271
29.7 TeStYOUr WOrK........ccoceeerennirnirssese s s 275
20.8 SUMMAIY.....cocrercercerser s e e 276
Chapter 30: Application Feedback..........ccounssnennsrssssnnnsessssnnssnnans 277
30.1 Application Feedback Table..........c.ccccvvrrrsrcrsrsercersercerenen 277
30.2 Create Feedback Input FOrm..........ccoccvvrvervrnersensessessesses e 277
30.3 Create Feedback Report Page...........cceerverrseresnsscrnesesesnnennas 279
30.4 TeStYOUr WOrK........ccoveerenercrniresessess s s ssesessesnas 280
30.5 SUMMAIY.....coorerirrirrer st 280
Chapter 31: Mobile Versioncccciumsemmmmmsssssnmmssssssssssssssssssssns 281
31.1 Create an Interface for a Mobile Application............cceeevvevrnnnne 281
31.2 Region and Page Items...........ccceeeerrersessessessesses s 282
31.3 Copy Computations and Branches............cccceeevverrerverseriennnnne 287

xviii

CONTENTS

31.4 Add Entries to Mobile Navigation Menu...........cccevvvrvrrernnne. 287
31.5 Create Profit and Loss Statement Report.........cccccoveervernrncnne. 288
31.6 Create Other Mobile Report Pages...........ceceerrreercersersensensnnnns 289
31.7 TestYOUr WOrK........ccovrermrnirnninsnss s ssse s 294
31.8 SUMMACY....ccoicetreerre s 295
Chapter 32: Application Security........ccccmmmmmnmssnnnmmmmmmnssssssns 297
32.1 Authorization Schemes for the Main Menu...........ccccovveceenene. 297
32.2 Test Menu Authorization..........c.cccceesmrennsesnsnssessssse s ssseenes 300
32.3 Authorization Schemes for Application Pages............cccvrurenne 300
32.4 Test Page Authorization............ccceoveevecenessecs s 302
32.5 Authorization Schemes for Buttons...........ccccveeenneresensesnnnennes 302
32.6 Test Buttons Authorization ... 304
32.7 SUMMANY....ceioecreererrr e sssssesssssssssssssssssssnssassnssnssnssnssssssssnsssssnnnes 310
32.8 CONCIUSION......cereeerrerrerserese s sns s 310
Appendix: Book Code........ccirussmmmmmmssssnnnmsssssnsnssssssssnsssssssnssssssnnnns 311
Chapler 4. e e sa e nr e n s 311
08 T 0 (] 317
ChaPEEr B......eeeee e nr e 318
(I3 1T T (] RS 319
ChApLer 8. e sr e 321
ChapIer 9. e 321
4 1 T - O 324
Chapter 11..... e 327
Chapler 12..... e n e 329
4 1 T] gl 1 333
Chapter 14.......o e e e 335

Xix

CONTENTS

81 =) (- L 338
Chapter 18........o e 340
Chapter 19..... e —————— 344
81 =T (=T O 348
Chaper 2. e s 349
Chapter 23........ e ———————— 352
81T - 2 353
Chapter 25........o e ———————— 359
Chapter 26..........ccocrererer e 363
I8 1 0] 367
Chapter 28.......... e —————— 368
1T - 399
XX

www.allitebooks.cond

http://www.allitebooks.org

About the Author

Riaz Ahmed is an IT professional with more than 23 years of experience. He started

his career in early 1990s as a programmer and has been employed in a wide variety of
information technology positions, including analyst programmer, system analyst, project
manager, data architect, database designer, and senior database administrator. Currently
he is working as the head of IT for a group of companies. His core areas of interest
include web-based development technologies, business intelligence, and databases. Riaz
possesses extensive experience in database design and development. Besides all versions
of Oracle, he has worked intensively in almost all the major RDBMSs on the market today.
During his career he designed and implemented numerous databases for a wide range of
applications, including ERP. You can reach him via oratech@cyber.net. pk.

xxi

About the Technical
Reviewer

Kali Kishore Gomattam is an MCA graduate with
almost a decade of experience working with various
Oracle technologies such as Oracle Identity &
Access Management (OID, OIM, OVD, 0SSO, and
OAM), Fusion Middleware (WebLogic/SOA/OBIEE/
WebCenter Portal/WebCenter Content/Agile/PIP),
Oracle E-Business Suite (R12.2/R12.1/11i), Web Tier
(OHS and Web Cache), Oracle APEX, and databases
(RAC and Data Guard) on various platforms. He is
currently working as the principal DBA consultant at
Apps Associates Pvt. Ltd. and has worked with Hitachi
in his earlier assignments.

xxiii

Preface

If someone had asked me to write this book two decades ago, I would have simply
refused the suggestion—not because I couldn’t do so but because of the mountain of
code necessary to create the application with its menus, forms, reports, and so on. The
appearance of GUIs and RAD has not only eased the burden on developers but has also
enabled application development to be easily demonstrated in book form.

Oracle Application Express (APEX) is a unique development platform that helps you
develop cloud-based applications rapidly. In my book Oracle Application Express 5 for
Beginners, 1 practically demonstrated almost every significant feature of Oracle APEX.
This book is an attempt to take my readers to the next level with some more useful stuff.

You might be one of those readers who is already familiar with Oracle APEX and
has some experience in developing simple applications but who lacks the required
knowledge that is needed to develop a comprehensive system. In this book, you will
bridge this gap by developing a complete general ledger accounting system named
The Cloud Accountant, which will be accessible through a variety of devices including
desktops, laptops, and the latest smartphones. Besides the development of a functional
application (which you can deploy in your organization or even in other organizations
to earn some handsome bucks), the book demonstrates many new techniques to further
enhance your APEX development skills.

This book is also ideal for those who have been developing applications in Oracle
Forms and now want to try web development using their existing expertise.

If you know what Oracle Application Express is and are also comfortable with SQL
and PL/SQL, then grab this book to learn something that is not available anywhere else. If
you are a novice, then you are encouraged to read my book Oracle Application Express 5
for Beginners (ISBN-13: 978-1-512-00330-7).

Good luck!

XXV

CHAPTER 1

Introduction to Cloud
Computing and the
Application Project

The phenomenal growth of information technology—especially the advent of cloud
computing—is changing the landscape of information technology, business, and
personal computing. If applied correctly, information technology can increase the
productivity of enterprises and enable them to focus on increasing profits and lowering
costs. Cloud computing in its simplest form means accessing and storing data and
applications over the Internet, instead of on a native computer’s hard drive. The purpose
of this book is to give you a taste of cloud computing by developing a functional general
ledger accounting system for and in the cloud.

1.1 An Introduction to Cloud Computing

Swift adaptation is the key to success for the survival of any business in today’s dynamic
economic environment. If one is running a profitable business today, this doesn’t mean
that the current business model will provide the same growth in the future. In addition to
adapting to changing government regulations, businesses must explore and implement
new areas to cope with current IT trends. In this book, you will be given a taste of cloud
computing, which provides an effective computing infrastructure for today’s business
whenever or wherever it is needed.

Many businesses have already switched their IT resources to the cloud because,
according to them, this model delivers a more cost-effective and efficient way to serve
their customers, partners, and suppliers. In contrast, there are many businesses that
are looking at this model more cautiously with respect to the security of their business
processes and intellectual assets. The biggest advantage provided by cloud computing

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2502-8_1) contains supplementary material, which is available
to authorized users.

© Riaz Ahmed 2016 1
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_1

http://dx.doi.org/10.1007/978-1-4842-2502-8_1

CHAPTER 1

INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

is that it eliminates many of the complex constraints found in the traditional computing
environment, including cost, space, time, and power.

The following are the three main types of cloud services being delivered by various
cloud service providers:

Infrastructure as a Service (IaaS): In this type, the service
provider delivers computer hardware (servers, operating systems,
virtualization technology, networking technology, and storage)
as a service. Amazon'’s Elastic Compute Cloud (Amazon EC2) is

a good example of [aaS in which a web interface is provided to
customers to access virtual machines.

Platform as a Service (PaaS): This layer offers development
environments to IT organizations to develop Internet-facing
cloud applications.

Software as a Service (Saa$S): This is one of the first implementations
of cloud services where a service provider hosts business
applications in its own vicinity and delivers them to its customers.

1.2 Public vs. Private Cloud

The primary objective of designing applications in Oracle Application Express (APEX)

is that these applications are accessible anywhere and at any time. APEX, hence, neatly
supports cloud computing. To achieve this objective, you are provided with the following
two cloud deployment models to host your applications:

Public cloud: A public cloud is a computing model wherein a
service provider provides computing resources to the general
public over the Internet. These resources include hardware,
networks, storage, services, and applications. Public cloud
services may be free or offered on a pay-per-usage model.
Some companies (including the Oracle Corporation) offer

a database cloud service, which has two main components:
RESTful web service access (which allows access to the data in
your database cloud service through simple URIs) and Oracle
Application Express (for creating and deploying all kinds of
applications in a browser-based environment). The database
cloud service is simple to obtain, simple to administer, and
simple to use to develop and deploy all types of applications.
This simplicity is complemented by a simple pricing structure,
based on only two metrics: storage and data transfer. In
addition, the simplicity of the public cloud means lower costs
for your own IT staff. Universal access to the components of
the public cloud through a browser dramatically simplifies
the maintenance overhead for your cloud-based solutions.
Applications delivered through the public cloud can be
accessed from a wide variety of client platforms including
Windows, Apple, or mobile devices. Oracle Corporation

CHAPTER 1 © INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

provides its own cloud computing platform called Oracle
Cloud. For further details, see https://cloud.oracle.com.

Private cloud: This term refers to the data centers inside your
company’s firewall. Within your organization you can have a
single Oracle Database supporting many departments with
each having their own workspaces to build applications.
Each of these workspaces can be granted access to one or
more schemas as appropriate. The term may also apply to

a private space dedicated to your company within a cloud
provider’s data center. Private clouds enable organizations to
have complete control and visibility over security, regulatory
compliance, service levels, and functionality.

Oracle APEX applications are built on technology that resides within an Oracle
Database, so all your applications can be easily run on any Oracle platform, from the
Oracle Database Cloud Service to your in-house data center to Oracle Database XE on your
laptop. Once you have developed an application either on your PC or in the cloud, simply
export the application and then import into any other Oracle Database where you have a
compatible version of APEX installed. Naturally you may also deploy your application on
the Oracle Database Cloud Service and then allow access to it from anywhere in the world.

1.3 What Is Accounting?

Since you will be developing an accounting application in the upcoming chapters, it

is necessary to have a little background of accounting. Accounting can be defined as
follows: the systematic recording, reporting, and analysis of financial transactions of

a business. Accounting provides financial information to stakeholders. Stakeholders
include banks, suppliers, investors, government agencies, and people engaged with

an organization, such as its owners and employees. Banks need financial information

to assess the condition of a firm before lending money. A profitable organization with
positive cash flows can easily acquire loans as compared to one suffering heavy losses
and little money. Suppliers need financial information to consider trade credit. Investors
will invest their money only in profitable organizations. They determine the profitability
of an organization by reading its financial statements. Every business concern is bound
by law to report on its revenue and expenses to local government agencies for income tax
purposes. In a nutshell, accounting performs the following tasks:

e Evaluates profit or loss of a business concern
e Provides detailed information about a firm’s net worth

e Reports on assets, liabilities, owner’s equity, and profitability

1.4 Accounting System

Organizations use accounting systems (either manual or computerized) to store,
manage, and provide their financial information to their stakeholders. These systems
are implemented to produce financial statements, including income statement, balance

https://cloud.oracle.com/

CHAPTER 1 " INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

sheet, and other accounting reports. They store detailed records of accounts, such as
cash, accounts receivable (due from customers), accounts payable (due to suppliers/
banks), fixed assets, stocks, and so on. This book will teach you how to develop a
computerized accounting system to store the financial information of a fictitious
company in an organized manner and will provide instructions for creating all the
generic financial reports that will be produced with a mouse click.

1.5 General Ledger

In enterprise resource planning (ERP) software, the general ledger module works
as a central repository for accounting data transferred from other modules such as
fixed assets, product planning, material purchasing, inventory control, distribution,
marketing, and HR. A general ledger carries all the accounts for recording financial
transactions relating to a company's assets, liabilities, owners’ equity, revenues,
and expenses. It is known as the backbone of any accounting system because it
ties together all of the component transaction processing cycles and systems in an
organization.

A sound general ledger system has the following broad objectives:

e Recording of all accounting transactions promptly and accurately
e Posting of transactions to the proper accounts

¢ Maintaining an equality of debit and credit balances among the
accounts

e Generating reliable and timely financial reports for stakeholders
The following are the major functions performed by a general ledger system:

e Data collection: Business transactions arise when some sale or
purchase event occurs. In the real world, these transactions are
handled by their respective operation processing systems, such
as sales and purchase systems. These systems interface with the
general ledger system in order to feed their daily transactions.
Transactions arising from other sources are recorded though
specially designed forms, called vouchers. You will use the latter
method in this book for transaction processing.

e Classification and coding: For proper maintenance of accounts,
daily transactions are classified and coded according to a
prescribed chart of accounts.

e Validation: To ascertain the accuracy of data, every transaction
goes through a process of validation that is implemented through
various control procedures. These validations include checks on
amounts, use of valid account codes from the chart of accounts,
transaction period verification, and so on.

CHAPTER 1 © INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

e Reporting: A general ledger system provides three primary
financial statements: income statement, the balance sheet, and
a statement of cash flows. While the most familiar financial
outputs are the financial statements, numerous other reports
(for example, trial balance, ledgers, budget variance reports, and
so on) are also generated by a general ledger system to fulfill the
information requirements of the stakeholders.

1.6 The Cloud Accountant General Ledger
Project

Running your business gets a whole lot easier when you can access your books anywhere
and anytime. The Cloud Accountant being developed in this book is a complete double-
entry cloud accounting application that lets you keep in touch with your business all

the time. The intensely competitive market in today’s economy requires that managers
continuously improve the way they work and make decisions. Today’s successful managers
demand instantaneous information that is both accurate and useful. A traditional

desktop accounting system simply cannot cope with these high demands. Only by taking
advantage of the power of the latest technology can these demands be met.

The goal of the Cloud Accountant is to remove most of the boring bookkeeping work
from the business. The application will take over all the simple and monotonous tasks
that can eat up precious time. For instance, it will automate all period-end tasks such as
closing the books, transferring the closing balances forward, and so on, with just a few
clicks. It also facilitates the recording of all purchase and sales transactions, bill payments,
and so on. Since the application can process and retrieve business transactions instantly,
there will be a quicker response time to customers, suppliers, and creditors, which
will ensure better business relations. In addition, it will produce professional-looking
financial reports and accounting records quickly and easily. The Cloud Accountant will
free up more time, which can be used to work on improving other areas of the business.

A paperless environment means less work and less confusion since all information
is stored electronically and can be accessed instantaneously. A computerized system will
also produce more accurate records. The logic created in this application ensures that
all entries are posted properly and that the calculations of key financial data are done
correctly. This greatly reduces the potential for human error that is prevalent in manual
accounting systems. Because of the inherent structure within the Cloud Accountant,
the accounting system around the computer will be simplified and more organized. As
aresult, the flow of information in all stages of the business cycle will be more logical
and efficient. Of great importance are the security features built into the application,
which ensure that only authorized people have access to company’s sensitive financial
information. In this application, you will define your own security levels that will allow
users to access only what you want them to access. This ensures that data will remain
safe, can be easily maintained, and is neat and organized.

CHAPTER 1

1.7 Development Environment

INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

Although you can develop the application locally on your own PC, it is a good idea

to develop it in the cloud. This way, not only will you enjoy a new development
environment, but you will also have a complete infrastructure provided by Oracle
available for you. Create a free workspace on https://apex.oracle.com. After creating
the workspace, create a new desktop database application, which will contain Home and
Login pages by default. My application is named The Cloud Accountant, and I associated
it with a new schema named GL. I selected Universal Theme (42) for the application,
and for the time being set Authentication Scheme for the application to the default
Application Express Accounts scheme. Later you will create a custom authentication
scheme to implement a custom authentication and application access mechanism.

1.8 Application Segments

Table 1-1 lists all the segments of this application you will develop in this book.

Table 1-1. Application Segments

Menu Application Segment APEX Page Number
Home Home (Executive Dashboard) 1
Setup Companies 3,4
Fiscal Year 5
Voucher Types 7,8
Application Segments 19, 20
User Groups 21
Users 22,23
Cost Centers 13,14
Chart of Accounts 15,16
Opening Bank Transactions 17
Accounts for Financial Statements 18
Select Switch (Company, Year, and Month) 30
Transactions Vouchers (to record transactions) 42,43, 44
Utilities Reconcile Banks 51,52
Search Transaction 53
Copy Chart of Accounts 54
Budget Allocation 55
Reset Password 56
(continued)

https://apex.oracle.com/

CHAPTER 1 © INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

Table 1-1. (continued)

Menu Application Segment APEX Page Number
Reports Vouchers 71

Ledgers 72

Trial Balance 73

Bank Reconciliation 74

Budget 75

Financial Statements 76-77

Feedback Report 302
Closing Process Vouchers Verification 94, 95

Month Closing 96

Temporary Year End 93

Permanent Year End 97
Mobile App Mobile version for management 6,102-111, 1001, 9999
Feedback Get feedback from users 300

As a taste of what’s to come, Figure 1-1 shows a glimpse of the completed application
you are about to build.

[

BONL Ealuace Thent ' Gt Vean * 3

thowAl Proft& Lo Trerd Rat Ansis

B cumsorite [MEncua

Figure 1-1. Completed application

bt
e

y

sl

W oo [nao

CHAPTER 1 " INTRODUCTION TO CLOUD COMPUTING AND THE APPLICATION PROJECT

1.9 Summary

In this chapter, you went through some basic concepts about cloud computing. Besides
being introduced to the three most common types of cloud services, you were briefed
about public and private clouds. The basic objective of this book is to reveal how

Oracle APEX fits into the cloud computing model with respect to business applications.
To achieve this objective, you will create a GL project that will also enhance your
development skills. In the next chapter, you will be provided step-by-step instructions to
initiate the project, starting with the application navigation.

CHAPTER 2

Application Navigation

Previous versions of APEX used tabs that acted as an application’s main menu up to
version 4.2. In version 5, a default navigation list named the desktop navigation menu
was introduced as a shared component for each new application. This provides the user
with a hierarchical set of pull-down menus and submenus. It is displayed as a responsive
sidebar. Based on the available space, the navigation bar either displays as a full menu or
collapses to a narrow icon bar.

2.1 Create the Main Application Menu

The default desktop navigation menu carries just one item (Home). In this chapter,
you'll modify this list to add more application menu entries. Follow these instructions to
complete this exercise:

1. In Shared Components, click the Lists option in the
Navigation section.

2. Select the Desktop Navigation Menu option, which carries
a default entry (Home) created by the application builder
wizard. Modify this entry by clicking its name. In the attributes
page of the Home menu item, click the pop-up LOV icon
to the right of the Image/Class attribute to display a list of
possible icon images for the Home menu option. At the top of
the icon list you will notice two options: Show and Category;
set Show to Font Awesome Icons, and set Category to Web
Application. Click the Go button to refresh the view and then
select the fa-home icon from the icons list. This image will
be displayed for the Home menu at run time. Hit the Apply
Changes button to save your work. With practice you will
get to know the icon names and can type them directly in
the Image/Class attribute to save time. If you do not see the
specified icon, select anyone you like from the list.

© Riaz Ahmed 2016 9
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_2

CHAPTER 2 ' APPLICATION NAVIGATION

3. Click the Create List Entry button to create a new menu item.
Enter the values shown in Table 2-1 against the specified
attributes. You won't select anything for the first attribute
(Parent List Entry) because initially you will create level-one
entries that do not have parent entries. The target is either
a page in the current application or any valid URL. In this
case, the Setup menu entry itself is not associated with any
application page, so its Target Type is set to No Target.

Table 2-1. Create First Level 1 Menu Item

Attribute Value

Parent List Entry No Parent List Item
Image/Class fa-database

List Entry Label Setup

Target Type No Target

4. Using the button Create and Create Another, save the previous
entry and create five more level-one entries, as shown in
Table 2-2. Combined, the Target Type and Page attributes
inform APEX where to land when a menu item is clicked.

Table 2-2. Create More Level 1 Menu Items

Parent List Entry Image/Class List Entry Label Target Type Page

No Parent List tem fa-list-alt Select Page in this 30
Application

No Parent ListItem fa-table Transactions Page in this 42
Application

No Parent List Item fa-gear Utilities No Target

No Parent ListItem fa-file-pdf-o Reports No Target

No Parent ListItem fa-calendar Closing No Target

Tables 2-1 and 2-2 show how to construct the main menu of
your application. Again, for each of these, you set Parent List
Entry to No Parent List Item. Note that the Setup, Utilities,
Reports, and Closing entries have no target because these
entries are not directly linked to application pages; they link to
submenus. In the next step, you will create the submenus for
these main entries.

10

CHAPTER 2 © APPLICATION NAVIGATION

5. Create level-two menu entries using Tables 2-3 to 2-6.
These entries will appear under their respective main menu
(specified under the Parent List Entry column).

Table 2-3. Setup Menu

Parent List Entry Image/Class List Entry Label Target Type Page

Setup fa-building Company Page in this 3
Application

Setup fa-calendar-o Fiscal Year Page in this 5
Application

Setup fa-money Voucher Types Page in this 7
Application

Setup fa-sitemap Application Segments Page in this 19
Application

Setup fa-users Groups Page in this 21
Application

Setup fa-user Users Page in this 22
Application

Setup fa-tasks Cost Centers Page in this 13
Application

Setup fa-newspaper-o Chart of Accounts Page in this 15
Application

Setup fa-bank Opening Bank Page in this 17

Transactions Application

Setup fa-bar-chart Financial Statements Page in this 18
Application

Table 2-4. Utilities Menu

Parent List Entry Image/Class List Entry Label Target Type Page

Utilities fa-bank Bank Reconciliation Page in this 51
Application

Utilities fa-search Search Transaction Page in this 53
Application

Utilities fa-cc Copy Chart of Page in this 54

Accounts Application

Utilities fa-calculator Budget Allocation Page in this 55
Application

Utilities fa-ellipsis-h Reset Password Page in this 56
Application

11

CHAPTER 2 ' APPLICATION NAVIGATION

Table 2-5. Reports Menu

Parent List Entry Image/Class List Entry Label Target Type Page
Reports fa-money Vouchers Page in this 71
Application
Reports fa-book Ledgers Page in this 72
Application
Reports fa-reorder Trial Balance Page in this 73
Application
Reports fa-bank Bank Reconciliation ~ Page in this 74
Application
Reports fa-calculator Budget Page in this 75
Application
Reports fa-bar-chart Financial Statements Page in this 76
Application
Reports fa-comments Feedback Page in this 77
Application

Table 2-6. Closing Menu

Parent List Entry Image/Class List Entry Label Target Type Page

Closing fa-money Vouchers Verification ~ Page in this 94
Application

Closing fa-close Month Closing Page in this 96
Application

Closing fa-calendar Temporary Year End Page in this 93
Application

Closing fa-calendar-o = Permanent Year End Page in this 97
Application

2.2 Modify/Add Navigation Bar Entries

Having created the menus, the final task in this chapter is to design the Navigation Bar.
Go to Shared Components, select the Lists option, and then click Desktop Navigation Bar.
This will bring up the default navigation bar carrying the default Logout entry. Click the
Create List Entry button to add some more entries by using the settings listed in Table 2-7.
By defining a parent entry, the Sign Out entry appears as a submenu item. APP_USER and
LOGOUT_URL are built-in substitution strings. APP_USER is the current user running
the application, while LOGOUT_URL is an application-level attribute used to identify the
logout URL. This is a URL that navigates the user to a logout page or optionally directly
logs out a user.

12

CHAPTER 2 © APPLICATION NAVIGATION

Table 2-7. Navigation Bar Entries

Attribute New Entry New Entry New Entry Modify Log Out Entry
Parent List No Parent List No Parent List No Parent &APP_USER.

Entry Item Item List Item

Image/Class fa-mobile fa-comments fa-user

List Entry Label Mobile Feedback &APP_USER. Sign Out

Target Type Page in this Page in this No Target URL
Application Application

Page 6 300
Clear Cache 300
URL Target &LOGOUT_URL.

Figure 2-1 illustrates the navigation menu and navigation bar of your application.

B3 Temporary Year End
L Application Segme
PP Aot Bem) manent Year End

Groups

& Users @® Vouchers

i Cost Centers & Ledgers

= Trial Balance
I Bank Recanciliation

Figure 2-1. Navigation menu and navigation bar

13

CHAPTER 2 ' APPLICATION NAVIGATION

2.3 Summary

This completes the creation of the menus and navigation bar. In subsequent chapters,
you will create the application pages that these menu items will connect to. The next
chapter describes the creation of the Company Setup page.

14

CHAPTER 3

Companies

Let’s begin the application-building process by creating the Company Setup, which is very
simple. Note that the Home page of your application will contain an executive dashboard
that displays various charts based on existing data. Since you do not have any transaction
data so far in your database, the Home page will be dealt with in Chapter 29. The Cloud
Accountant is capable of handling accounts of multiple companies simultaneously,

which is why you have to develop this setup. Each company created through this setup
will have a unique code. This code will be saved with every transaction to distinguish one
company’s data from that of the others.

3.1 Create Application Tables

Because of the referential integrity constraints used in the tables of this application, I
recommend you create all the tables at once using the script.sql file provided in the
book code. Go to SQL Workshop » SQL Scripts » Upload. Click the Browse button, select
the scrlpt sql file, and click the Upload button. In SQL Scripts interface, click the Run
button ‘%’ to execute the script file. On the Run Script page, click the button labeled Run
Now. After successfully executing the script file, go to SQL Workshop » Object Browser
and verify the objects.

COMPANIES TABLE AND SEQUENCE

CREATE TABLE GL_Company

(Cocode NUMBER, Coname VARCHAR2(50), Coaddress VARCHAR2(100), Cophone
VARCHAR2(15), Cofax VARCHAR2(15), Cocity VARCHAR2(15), Cozip VARCHAR2(15),
Cocurrency VARCHAR2(15), CONSTRAINT gl_company_pk PRIMARY KEY (Cocode) ENABLE)

CREATE SEQUENCE gl_company_seq

Note Do not reexecute the CREATE statements because you have already created the
objects. These statements will be provided at the top of each chapter just for information.

© Riaz Ahmed 2016 15
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_3

http://dx.doi.org/10.1007/978-1-4842-2502-8_29

CHAPTER 3 "' COMPANIES

3.2 Create Pages for Company Setup

Use Table 3-1 to create two pages for this setup. On the first wizard page, select Form, and
on the next page, select Form on a Table with Report.

Table 3-1. Attributes for Two Pages

Page Type Attribute Value
Report Implementation Interactive
Page Page Number 3
Page Mode Normal
Page Name Company Setup
Region Title Company Setup
Region Template Standard
Breadcrumb - do not add breadcrumb region to
page -
Table/View owner Accept the displayed value. It is
dependent upon your setup.
Table/View Name GL_COMPANY

Navigation Preference

Existing Navigation Menu Entry
Report Columns

Edit Link Image

Data Manipulation Process
Form Page Number
Page Page Name
Page Mode
Region Title
Region Template
Primary Key Type
Primary Key Column 1
Source for Primary Key Column 1
Sequence
Form Columns

Data Manipulation Process

Identify an existing navigation
menu entry for this page

Setup
Select all columns

Select any edit link image from the
provided options

Insert=Yes, Update=Yes, Delete=Yes
4

Company Setup

Modal Dialog

Company Setup

Standard

Select Primary Key Column(s)
COCODE

Existing Sequence
GL_COMPANY_SEQ

Select all columns

Insert=Yes, Update=Yes, Delete=Yes

16

CHAPTER 3 © COMPANIES

Note Itis assumed that you have knowledge about all APEX attributes used throughout
this book. However, if you are not familiar with any attribute, then click it in the Properties
pane and select the Help tab to see its details.

After creation, modify both pages to set appropriate column headings/labels, as
shown in Figure 3-1. Run this segment from the Setup » Companies menu and create at
least two companies, also shown in Figure 3-1. That’s it!

Company Address Phone Fax City Zip Currency

& ABC&Company Raymond Street 123.456-793 13-456.9488

boat X¥Z & Comparry Mansfield Street 111-222-333 999-993.4

Company Name | ABC & Company

l Address Raymond Street
Phone 123-456-789

Report page showing all companies
e e e e Fae 13-456-999

Cty Chicago
Form page to create a new company @—— Zip Code | 61062

Currency §

Figure 3-1. Creating two companies

3.3 Summary

In this chapter, you created the simplest setup of your application. The next task in the
setup hierarchy is to create financial calendars for these established companies.

17

CHAPTER 4

Fiscal Year

Organizations are required by law to produce a set of annual accounts. To this end, their
general ledger systems must maintain a fiscal calendar. Although the specific start and
end dates of a fiscal year vary from country to country, for our purposes the year will start
on July 1 and end on June 30. In addition, each fiscal year is normally subdivided into
periods. For our purposes, each period will be a calendar month.

FISCAL YEAR TABLE

CREATE TABLE gl _fiscal_year

(Cocode NUMBER Constraint fk_fiscal_year References gl_company (Cocode),
Coyear NUMBER(4), Comonthid NUMBER(2), Comonthname VARCHAR2(9), Pfrom DATE,
Pto DATE, Initial_Year NUMBER(1), Year_Closed NUMBER(1),

Month_Closed NUMBER(1), TYE_Executed DATE,

CONSTRAINT gl_fiscal_year_pk PRIMARY KEY (Cocode,Coyear,Comonthid) ENABLE)

This setup will use the previous table. Each company’s fiscal year will be
distinguished by the company code (cocode), which references its parent key in
the Company table. Coyear is a numeric field, which will store the year, such as 2015.
Comonthid is also a numeric column, and it will hold the ID of each month, in other
words, from 1 to 12. The first month—in our case July—will be marked as 1. Comonthname
will store the name of the month, such as September. The two columns, Pfrom and Pto,
will store start and end dates for a month, such as 01-JAN-2015 and 31-JAN-2015. A
value of 1 in the Initial_Year column signifies that this is the first year of a company;
autogeneration of subsequent years will be relative to this initial year. The Year Closed
column tags a year as either open or closed. You'll use this column in the year-end
processes in Chapter 24. Month_Closed is used to indicate that a month is closed to
further transactions. The TYE_Executed column stores a date value to record when
the Temporary Year End process was last executed. Finally, a table-level primary key
constraint is defined, comprising three columns, to prevent duplicate values.

© Riaz Ahmed 2016 19
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_4

http://dx.doi.org/10.1007/978-1-4842-2502-8_24

CHAPTER 4 " FISCAL YEAR

4.1 Create List of Values

The next task is to create two lists of values (LOVs) from scratch. These LOVs will be used
to populate the Company and Month drop-down lists shown in Figure 4-2 later in this
chapter. The query defined in the first LOV displays the names of companies in a select
list. The code of the selected company is returned and stored in the corresponding page
item (P5_COMPANIES) for further processing. The second LOV returns a static numeric
value, which will be used to evaluate the first month of the new fiscal year.

Hereis LOV 1:

Attribute Value

Name Companies
Type Dynamic
Query SELECT coname d, cocode r

FROM gl_company
ORDERBY 1

Here is LOV 2:

Attribute Value

Name Months

Type Static

Display & Return Display Value Return Value
Values

January
February
March
April
May
June

July
August

© 0 N OO a s Wy

September
October

—_
=

November

p—
\S]

December

20

CHAPTER 4 * FISCAL YEAR

4.2 Create Page and Parameters Region

Create a blank page, add the components specified in Table 4-1 onto it, and set their
relevant attribute values.

Note

Tables similar to the following are used throughout this book to set up and

manipulate the application’s pages. The Action column displays the action to be taken. For
example, the Create Blank Page entry specifies that a blank page is to be created. The
Attribute column identifies the attribute for the Blank Page, while the Value column lists the

value of each attribute.

Table 4-1. Component Values

Action Attribute Value
Create Blank Page = Page Number 5
Name Fiscal Year Setup
Page Mode Normal
Breadcrumb - don’t use breadcrumbs on

Create Region

Create Page Item

Navigation Preference

Existing Navigation Menu Entry
Title

Type

Template

Name

Type

Label

Region

Start New Row

Column and Column Span
Label Column Span
Template

Value Required

LOV Type

List of Values

Display Null Value

page -
Identify an existing navigation
menu entry for this page

Setup
Parameters
Static Content
Standard
P5_COMPANIES
Select List
Companies
Parameters

Yes

Automatic

2

Required

Yes

Shared Component
COMPANIES
Yes

(continued)

21

CHAPTER 4 " FISCAL YEAR

Table 4-1. (continued)

Action Attribute Value

Create Page Item Name P5_YEAR
Type Text Field
Label Year
Region Parameters
Start New Row No
Column Automatic
New Column Yes
Column Span Automatic
Label Column Span 2
Template Required
Width 4
Value Required Yes
Maximum Length 4

Create Page Item Name P5_MONTH
Type Select List
Label Month
Region Parameters
Start New Row No
Column Automatic
New Column Yes
Column Span Automatic
Label Column Span 2
Template Required
Value Required No
LOV Type Shared Component
List of Values MONTHS
Display Null Value Yes

4.3 Create a Fiscal Year Grid

Next you'll create four regions and a hidden item. The first region (Fiscal Year Setup) is
the main region that contains three child regions. It also carries a hidden item

(P5_INITIAL_YEAR) to store the value of the Initial_Year column. This value is used in
some processes to evaluate the existence of the selected company’s fiscal year. The first

22

CHAPTER 4 * FISCAL YEAR

child region will display the month names, while the other two will show start and end
dates for each month. Use Table 4-2 to create these regions, starting with the main region,

which is Fiscal Year Setup.

Table 4-2. Region Values

Action Attribute Value

Create Region Title Fiscal Year Setup
Type Static Content
Template Standard

Create Region Title Month
Type Static Content
Parent Region Fiscal Year Setup
Template Standard
Start New Row Yes
Column Automatic

Create Region

Create Region

Create Page Item

Column Span
Title

Type

Parent Region
Template

Start New Row
Column
Column Span
Title

Type

Parent Region
Template

Start New Row
Column
Column Span
Name

Type

Value Protected

Region

4 (Uses columns 1-4)
From

Static Content

Fiscal Year Setup
Standard

No

5

2 (Uses columns 5 and 6)
To

Static Content

Fiscal Year Setup
Standard

No

7

2 (Uses columns 7 and 8)
P5_INITIAL_YEAR
Hidden

No

Fiscal Year Setup

23

CHAPTER 4 " FISCAL YEAR

Let’s spend a moment reviewing the purpose of what you have done so far. To create
a fiscal year, you first select a company from the provided list and then manually enter its
initial year before choosing the fiscal year’s starting month. All of this will be done in the
Parameters region. Then, you'll click a button that will execute a process. The process will
generate a fiscal year based on the year and month selections. Thereafter, the generated
fiscal year will be displayed in additional page items, which you'll create next.

4.4 Add Items to Hold Months/Dates

Now you must add 12 items to each of the three child regions, as listed in Table 4-3. These
items will hold month names and the respective first and last dates for each month.

Table 4-3. Item Values

Action Attribute Value
Create 12Page Name P5_MONTHI1, P5_MONTH?2, ... P5_
Items MONTHI12

Type Display Only

Label 1,2, ...12.

Save Session State No

Region Month

Template Optional
Create 12Page Name P5_FROM1, P5_FROM2, ... P5_FROM12
Items Type Display Only

Label Clear Label

Save Session State No

Region From

Template Optional
Create 12 Page Name P5_TO1, P5_TO2, ... P5_TO12
Items Type Display Only

Label Clear Label

Save Session State No

Region To

Template Optional

24

CHAPTER 4 * FISCAL YEAR

4.5 Create Buttons to Generate, Save, and
Remove a Fiscal Year

In this section, you will add three buttons using Table 4-4 to the Fiscal Year Setup region
to generate, save, and delete a fiscal year. You use JavaScript behind the Delete button to
present the delete confirmation box.

Table 4-4. Button Values

Action Attribute Value

Create Button Button Name Generate
Label Generate Fiscal Year
Region Fiscal Year Setup
Button Position Copy
Hot Yes
Action Submit Page

Create Button Button Name Save
Label Save
Region Fiscal Year Setup
Button Position Copy
Hot No
Action Submit Page

Create Button Button Name Delete
Label Delete
Region Fiscal Year Setup
Button Position Copy
Hot No
Action Redirect to URL
URL Target javascript:apex.confirm(‘Delete Fiscal

Year?', ‘Delete’);

Execute Validations Yes (associated with “4.10 Create

Validation: Check Transaction”)

Note The Delete request defined in JavaScript is case-sensitive and must match the

value specified in the Button Name attribute.

25

CHAPTER 4 " FISCAL YEAR

In the next section, you'll create the processes that will run each time a button is
clicked.

4.6 Generate Fiscal Year Process

After creating a new company, you select it along with its starting fiscal year and

month. You then click the Generate button on the page, which automatically generates

a complete fiscal year for the company. This automatic generation of the fiscal year is
backed by the first of the processes that you are going to add in this section. On the Fiscal
Year Setup page, click the Processing tab. Then right-click the Processing node, and select
Create Process from the menu. Set the attributes defined in Table 4-5 for this process. You
will find the PL/SQL code for this chapter in the Chapter4 folder.

Table 4-5. Process Attributes

Action Attribute Value

Create Name Generate Fiscal Year

Process 1,0 PL/SQL Code
PL/SQL Code Book_Code\Chapter4\Generate Fiscal Year.txt
Point Processing
When Button Pressed Generate

Note The appendix at the end of this book contains all the book code for referencing.

In this PL/SQL block, the financial year runs only from July to June; therefore, no
calendar will be generated if the selected month is other than July. You may enhance
the code if you want to add other fiscal year combinations. I incremented the year value
in December to show the correct year for the months of January to June. I also made
provision for leap years in February.

4.7 Save Fiscal Year Process

After generating a fiscal year on the screen, you'll click the Save button, which invokes
the process defined in Table 4-6. The process comprises 12 simple insert statements. It
collects values from the page items and inserts them into the GL_FISCAL_YEAR table. Note
that this process and the one that follows will be created under the Generate Fiscal Year
process.

26

http://dx.doi.org/10.1007/978-1-4842-2502-8_4
http://dx.doi.org/10.1007/978-1-4842-2502-8_4

CHAPTER 4 * FISCAL YEAR

Table 4-6. Save Process

Action Attribute Value
Create Name Save Fiscal Year
Process Type PL/SQL Code
PL/SQL Code Book_Code\Chapter4\Save Fiscal Year.txt
Point Processing
Success Message Fiscal year saved successfully
When Button Pressed Save

4.8 Delete Fiscal Year Process

You can also remove erroneously created fiscal years using the process mentioned in
Table 4-7 that runs when the delete button is clicked. A year can be deleted only when it
passes the Check Transaction validation (see Table 4-9).

Table 4-7. Delete Process

Action Attribute Value
Create Process Name Delete Fiscal Year
Type PL/SQL Code
PL/SQL Code DELETE FROM gl _fiscal_year

WHERE cocode=:P5_COMPANIES
AND coyear=:P5_YEAR;

Point Processing
Success Message Fiscal year deleted successfully
When Button Pressed Delete

4.9 Fetch Fiscal Year Dynamic Action

As the name implies, this dynamic action will fetch the initial fiscal year of a company
from the database when you select a company from the P5_ COMPANIES select list. Click
the Dynamic Actions tab, right-click the Change node, and select Create Dynamic Action
from the context menu. Set the attributes mentioned in Table 4-8 for the new dynamic
action.

27

http://dx.doi.org/10.1007/978-1-4842-2502-8_4

CHAPTER 4 " FISCAL YEAR

Table 4-8. Action Attributes

Action Attribute Value
Create Name Fetch Fiscal Year
Dynamic pq Change
Action
Selection Type Item(s)
Item(s) P5_COMPANIES
Action (under the Shownode) Execute PL/SQL Code

PL/SQL Code

Page Items to Submit

Page Items to Return

Fire On Page Load

Book_Code\Chapter4\Fetch Fiscal Year.
txt

P5_COMPANIES

The Fetch Fiscal Year process will
retrieve fiscal year values from the
database and will return these to the
items specified in the Page items to
Return attribute. Because it’s a long
list comprising almost all page items,
I created a separate text file for your
convenience: Book_Code\Chapter4\
Page Items to Return.txt

No

410 Create Validation: Check Transaction

The following validation will check for the existence of data before the deletion of a fiscal
year. The delete request will be refused if any record exists in the transactions table. Go to
the Processing tab, right-click the Validating node, and select Create Validation. Set the
attributes mentioned in Table 4-9 for this validation.

Table 4-9. Validation Attributes

Action Attribute Value
Create Name Check Transaction
Validation Type PL/SQL Function Body (returning
Boolean)
PL/SQL Function Body Book_Code\Chapter4\Check
(returning Boolean) Transaction.txt
Error Message Can’t delete; transactions exist
in this year
When Button Pressed Delete
28

vww . allitebooks.con

http://dx.doi.org/10.1007/978-1-4842-2502-8_4
http://dx.doi.org/10.1007/978-1-4842-2502-8_4
http://dx.doi.org/10.1007/978-1-4842-2502-8_4
http://www.allitebooks.org

CHAPTER 4 * FISCAL YEAR

4.11 Create Branch

After deleting a fiscal year, you need to clear the cache. The following branch performs
this process. In the Processing tab, right-click the After Processing node, and select Create
Branch. Set the attributes mentioned in Table 4-10 for this branch.

Table 4-10. Branch Attributes

Action Attribute Value

Create Name Clear Cache

Branch Point After Processing
Behavior Type Page or URL (redirect)
Target Type Page in this Application
Page 5
Clear Cache 5
When Button Pressed Delete

4.12 Dynamic Actions to Hide Buttons

After creating a fiscal year, you must hide the Save and Generate buttons and show the
Delete button. Similarly, you must hide the Delete button and show the other two when a
new fiscal year is being generated. Create the dynamic actions (using Tables 4-11 to 4-19)
to achieve these tasks. These dynamic actions will run when a fiscal year for the selected
company exists, in other words, when the value of the hidden item P5_INITIAL_YEAR
equals 1. Note that this value is retrieved from the database through Fetch Fiscal Year
dynamic action, as shown earlier in Table 4-8.

First, you hide the Save button (see Table 4-11).

Table 4-11. Action: Hide Save Button

Action Attribute Value

Create Dynamic Action Name Hide Save Button
Event Change
Selection Type Item(s)
Item P5_INITIAL_YEAR
Condition Equal to
Value 1

29

CHAPTER 4 " FISCAL YEAR

Click the Show node under the True node to set the attributes in Table 4-12. These
attributes will hide the Save button when the value of P5_INITIAL_YEAR is equal to 1.

Table 4-12. Action: Hide

Attribute Value
Action (Under Show node) Hide
Selection Type Button
Button Save
Fire On Page Load Yes

Now, right-click the False node, and select Create False Action. A new node (Show)
will be added, as shown in Figure 4-1.

= Change
<7 Fefch Fiscal Year
4% Hide Save Button
= True
Hide
= False
L xmew
[Click
] Dialog Closed

Figure 4-1. The new node

Set the attributes in Table 4-13 for the false action to show the Save button when the
value of P5_INITIAL_YEAR is NOT equal to 1.

Table 4-13. Action: Show

Attribute Value
Action Show
Selection Type Button
Button Save
Fire On Page Load Yes

30

CHAPTER 4 * FISCAL YEAR

Next you create a dynamic action to hide/show the Generate button (see Table 4-14).

Table 4-14. Action: Hide Generate Fiscal Year Button

Action Attribute Value
Create Dynamic Name Hide Generate Fiscal Year Button
Action Event Change

Selection Type Item(s)

Item P5_INITIAL_YEAR

Condition Equal to

Value 1

Table 4-15 shows the true action attributes.

Table 4-15. True Action Attributes

Attribute Value
Action Hide
Selection Type Button
Button Generate
Fire On Page Load Yes

Table 4-16 shows the false action attributes.

Table 4-16. False Action Attributes

Attribute Value
Action Show
Selection Type Button
Button Generate
Fire On Page Load Yes

Finally, create one more dynamic action to hide/show the Delete button, as shown

in Table 4-17.

31

CHAPTER 4 " FISCAL YEAR

Table 4-17. Action: Show Delete Button

Action Attribute Value

Create Dynamic Action Name Show Delete Button
Event Change
Selection Type Item(s)
Item P5_INITIAL_YEAR
Condition Equal to
Value 1

Table 4-18 shows the true action attributes.

Table 4-18. Show Attributes

Attribute Value
Action Show
Selection Type Button
Button Delete

Fire On Page Load Yes

Table 4-19 lists the false action attributes.

Table 4-19. Hide Attributes

Attribute Value
Action Hide
Selection Type Button
Button Delete

Fire On Page Load Yes

413 Test Your Work

Save the page and run it from the Setup » Fiscal Year menu. It should look similar to
Figure 4-2. Follow these instructions to create a fiscal year for the ABC & Company:

1. Select ABC & Company from the Companies select list.

2. Enter 2015 in the Year box.

3. SelectJuly from the Month select list.

32

4, Hit the Generate Fiscal Year button. This should display a
fiscal year starting from 01-JUL-2015 to 30-JUN-2016. Since
2016 is a leap year, the process adds an extra day onto the

month of February.
5. Click the Save button.

CHAPTER 4

6. Repeat steps 2 to 5 to generate a calendar for the other

company.

Companies Y ABC & Compary ¢ Year . 2015

FISCAL YEAR

L by 01-JUL-2015
2. August 01-AUG-2015
3 September 01-SEP-2015
4 October 01-0CT-2015
S, November 01-NOV-2015
6. December 01-DEC-2015
7. Jenuary 01-JAN-2016
8 February 01-FEB-2016
9 March 01-MAR-2016
0. April 01-APR-2016
1L My 01-MAY-2016
1. June 01-JUN-2016

31-JUL-2015

31-AUG-2015

30-SEP-2015

31-0CT-2015

30-NOV-2015

31-DEC-2015

31-JAN-2016

29-FEB-2016

31-MAR-2016

30-APR-2016

31-MAY-2016

30-JUN-2016

Figure 4-2. Creating a fiscal year

33

CHAPTER 4 " FISCAL YEAR

414 Summary

In this chapter, you generated fiscal years for the two companies you created in the
previous chapter. Each fiscal year comprises 12 periods, and every transaction you create
in the application will be posted in one of these periods. In the next chapter, you will
create another application segment called Voucher Types.

34

CHAPTER 5

Voucher Types

Financial transactions are recorded in ledgers using special forms called vouchers. Before
creating the actual interface for vouchers, you are going to create a setup page to define
different voucher types. Vouchers are broadly divided into three categories: Payment,
Receipt, and Journal. Each one has its own specific interface to record transactions.
However, in this book, you will create a single interface for all three. By creating this
setup, you'll allow the end users to create custom voucher types to distinguish between
transactions. Creating this setup is similar to the Company setup described previously.
The only difference is the use of Radio Group items that will identify the nature of a
voucher type. The database table GL_VOUCHER contains a column named VCHNATURE.
This column holds information about the nature of the vouchers. For example, payment
vouchers will be flagged as type 1, receipt vouchers will be marked as type 2, and journal
vouchers will be identified as type 3. You will also create a sequence to autogenerate
primary key values for the table.

VOUCHER TYPES TABLE AND SEQUENCE

CREATE TABLE gl_voucher

(Vchcode NUMBER, Vchtype VARCHAR2(6), Vchtitle VARCHAR2(30), Vchnature
NUMBER(1),

CONSTRAINT GL_VOUCHER_PK PRIMARY KEY (Vchcode) ENABLE)

CREATE SEQUENCE gl_voucher_seq

5.1 Create List of Values

Create a list of values from scratch. This LOV will be linked to the voucher nature radio
item. Set the Name attribute of this LOV to Voucher Nature, and set Type to Static. Set
display and return values, as defined in Table 5-1.

© Riaz Ahmed 2016 35
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_5

CHAPTER 5 " VOUCHER TYPES

Table 5-1. Voucher Nature List of Values

Display Value Return Value
PV 1
RV 2
v 3

5.2 Create Pages for Voucher Types Setup

Create a new page by selecting the Form and Form on a Table with Report options in the
page creation wizard. Set the attributes for the two pages as shown in Table 5-2.

Table 5-2. Page Attributes

Page Type Attribute Value
ReportPage Implementation Interactive
Page Number 7
Page Mode Normal
Page Name Voucher Types Report
Region Title Voucher Types
Region Template Standard
Breadcrumb - do not add breadcrumb region to
page -
Table/View owner Accept the displayed value
Table/View Name GL_VOUCHER

Navigation Preference

Existing Navigation Menu Entry

Report Columns

Edit Link Image

Identify an existing navigation
menu entry for this page

Setup

Select all the columns to include in
the report page

Select any edit link image from the
provided options

36

(continued)

CHAPTER 5 " VOUCHER TYPES

Table 5-2. (continued)

Page Type Attribute Value
Form Page Page Number 8
Page Name Voucher Types Form
Page Mode Modal Dialog
Region Title Enter New Voucher Type
Region Template Standard
Primary Key Type Select Primary Key Column(s)
Primary Key Column 1 VCHCODE
Source for Primary Key Column 1 Existing Sequence
Sequence GL_VOUCHER_SEQ
Form Columns Select all the columns to include in
the form page
Data Manipulation Process Insert=Yes, Update=Yes, Delete=Yes

After creation, modify the attributes on page 8 so they match Table 5-3.

Table 5-3. Page 8 Attributes

Action Attribute Value

Modify Page Items Name P8_VCHTYPE
Label Type
Template Required
Value Required Yes
Name P8_VCHTITLE
Label Title
Template Required
Value Required Yes

5.2.1 Convert Text Item to Radio Group

The final task of this setup is to covert the page item representing the VCHNATURE column
from a text item to a radio group. Click the P8_VCHNATURE page item, and set the
attributes defined in Table 5-4.

37

CHAPTER 5 " VOUCHER TYPES

Table 5-4. VCHNATURE Attributes

Attribute Value

Type Radio Group

Label Nature

Number of Columns 3

Template Required

Value Required Yes

LOV Type Shared Component
List of Values VOUCHER NATURE
Display Extra Value No

Display Null Value No

Default Type Static Value

Static Value 3(i.e.JV)

5.3 Create Validation: Check Transaction

Create a validation to prevent the deletion of voucher types with generated transactions.
Select the Processing tab, right-click the Validating node, and then click the Create
Validation option in the context menu. Now set the attributes of this validation as

mentioned in Table 5-5.

Table 5-5. Validation Attributes

Action Attribute Value
Create Validation Name Check Transaction
Type PL/SQL Function Body
(returning Boolean)

PL/SQL Function Body Returning
Boolean

Error Message

When Button Pressed

Book_Code\Chapter5\
Check Transaction.txt

Can't delete voucher type
with generated transactions

DELETE

38

CHAPTER 5 " VOUCHER TYPES

5.4 Test Your Work

Add the appropriate labels for the columns on both forms, as shown in Figure 5-1.
Save the page and run this feature from the Setup | Voucher Types menu. Create the
three voucher types as illustrated in the title picture. Voucher types having cash or a
bank involved must be of a Payment (PV) or Receipt (RV) nature; all other types can be
assigned to the Journal (JV) nature.

Actions ™ Crea

Type Title
(P
171 BPYV Bank Payment Voucher
Y]
171 La Local Sales Invoice Tine . BRV
") e
. .
w4 BRV Bank Receipt Voucher Title Bank Receipt Voucher
]
2 ap Adjustment Voucher Hwan” OW Orv ON

Form to Enter New Type @——

Delete Cancel

Figure 5-1. Labels for the columns on both forms

5.5 Summary

By adding this setup, you allow users to create custom voucher types to distinguish
financial transactions according to their nature. The GL application consists of various
segments that will be used in a multiuser environment. To control user access to these
segments, you will create a strong security module. But first you have to identify and store
those segments in the database, which is the topic of the next chapter.

39

CHAPTER 6

Application Segments

In this chapter, you will create a setup that provides a list of all the different parts of the
application. Just like a site map created for web sites, it is displayed as a tree view of

the application and is created to implement application security. There are three main
components in the application that you should apply security to: Menus (including the
main and submenus), Pages, and Items (such as buttons). The fourth one (App) is called
the root node and is used to distinguish between segments of multiple applications.
After creating all the application segments here, you will use them in the next chapter to
enforce application access rules. It’s a flexible module, which is designed in such a way to
accommodate future application enhancements.

SEGMENTS TABLE AND SEQUENCE

CREATE TABLE gl_segments

(segmentID NUMBER, segmentTitle VARCHAR2(50), segmentParent NUMBER,
segmentType VARCHAR2(4),

pageID NUMBER(4), itemRole VARCHAR2(10), CONSTRAINT gl_segments_pk PRIMARY
KEY (segmentID) ENABLE)

CREATE SEQUENCE gl_segments_seq MINVALUE 1 START WITH 1 INCREMENT
BY 1 CACHE 20

Each application segment will be stored in this table with a unique ID (segmentID).
To present these segments in a hierarchal format, the segmentParent column will store
the ID of each segment’s parent. Each entry in this table will have a type that will be
stored in the segmentType column. The pageID column will be stored with each segment
to identify its location. The itemRole column specifies the role of page items (buttons and
select lists). For example, the create button on a page performs the role of record creation,
so the Create role will be assigned to this button.

© Riaz Ahmed 2016 41
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_6

CHAPTER 6 ' APPLICATION SEGMENTS

6.1 Create LOVs

Create two static LOVs from scratch using Tables 6-1 and 6-2. The values included in
these LOVs will be utilized in the segment creation form to identify the type of segments
and the roles performed by page items.

Table 6-1. LOV Name: Segment Type

Display Value Return Value
App App

Item Item

Menu Menu

Page Page

Table 6-2. LOV Name: Item Role

Display Value Return Value
Create Create
Modify Modify
Delete Delete

Save Save

Print Print
Display Display

6.2 Create Segments Setup Pages

Use Table 6-3 to create two pages. On the first wizard page, select the Form option
followed by Form on a Table with Report.

42

Table 6-3. Segments Setup Pages

CHAPTER 6 " APPLICATION SEGMENTS

Page Type Attribute Value
Report Page Implementation Interactive
Page Number 19
Page Mode Normal
Page Name Application Segments Report
Region Title Application Segments
Region Template Standard
Breadcrumb - do not add breadcrumb region to
page -
Table/View owner Accept the displayed value
Table/View Name GL_SEGMENTS
Navigation Preference Identify an existing navigation
menu entry for this page
Existing Navigation Menu Entry ~ Setup
Report Columns Select all the columns to include in
the report page
Edit Link Image Select any edit link image from the
provided options
Form Page Page Number 20
Page Name Application Segments Form
Page Mode Modal Dialog
Region Title Application Segment
Region Template Standard
Primary Key Type Select Primary Key Column(s)

Primary Key Column 1
Source for Primary Key Column 1
Sequence

Form Columns

Data Manipulation Process

SEGMENTID
Existing Sequence
GL_SEGMENTS_SEQ

Select all the columns to include in
the form page

Insert=Yes, Update=Yes,
Delete=Yes

43

CHAPTER 6 ' APPLICATION SEGMENTS

After creation, modify the form page (page 20) to change the item labels, as shown in

Figure 6-1.

6.3 Modify Segments Form

Amend the Application Segments form’s items as indicated in Table 6-4. The P20_
SEGMENTPARENT item is being transformed into a pop-up LOV. It will display title and
type columns from the segments table to allow the selection of a parent for a new entry.
Since the Item segment type doesn’t have any children, the LOV will exclude these records.

Table 6-4. Application Segments Form Attributes

Action Attribute Value
Modify Items Names P20_SEGMENTTITLE, P20_
SEGMENTPARENT & P20_SEGMENTTYPE
Template Required
Value Required Yes
Modify Item Name P20_SEGMENTPARENT
Type Popup LOV
Type (LOV) SQL Query
SQL Query SELECT segmentTitle||' ('||segmentType]||’)’ d,
segmentID r
FROM gl_segments
WHERE segmentType != 'Ttem'
ORDER BY
pagelD,segmentID,segmentParent
Default Type Static Value
Static Value 0
Modify Item Name P20_SEGMENTTYPE
Type Select List
LOV Type Shared Component
List of Values SEGMENT TYPE
Modify Item Name P20_PAGEID
Width 4
Maximum Length 4
Modify Item Name P20_ITEMROLE
Type Select List
LOV Type Shared Component
List of Values ITEM ROLE

44

CHAPTER 6 " APPLICATION SEGMENTS

6.4 Add Tree View Region

Currently, the report page (19) contains an interactive report region to display all
segments in a matrix report. In this section, you will change this appearance to display all
the segments in a tree view, as shown in Figure 6-1. First, delete the existing Application
Segments region from page 19 and then add a new region to this page using the attributes
shown in Table 6-5.

Table 6-5. Tree View Region Attributes
Attribute Value

Title Application Segments

Type Tree

SQL Query Book_Code\Chapter6\Tree Query.txt
Template Standard

6.5 Create Buttons

Right-click the new Application Segments tree region and select Create Button from the
context menu. Set the attributes for this button, as shown in Table 6-6. This button will be
used to create a new application segment.

Table 6-6. Create Button Attributes

Attribute Value

Button Name Create

Label Create

Region Application Segments

Button Position Copy

Hot Yes

Action Redirect to Page in this Application

Target Type = Page In This Application
Page =20

Clear Cache =20

Create another button named Refresh using the attributes indicated in Table 6-7.
This button is added to refresh the segments tree.

45

CHAPTER 6 ' APPLICATION SEGMENTS

Table 6-7. Refresh Button Attributes

Attribute Value

Button Name Refresh

Label Refresh

Region Application Segments

Button Position Copy

Button Template Text with Icon

Hot No

Icon CSS Classes fa-undo

Action Redirect to Page in this Application
Target Type = Page In This Application

Page = &APP_PAGE_ID.

6.6 Create Validations

Using the Table 6-8, create two validations on page 20 to prevent the deletion of used

segments.

Table 6-8. Validation Attributes

Action Attribute Value
Create Validation Name Check Segment
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Body Book_Code\Chapter5\Check
Returning Error Text Segment.txt
Error Message Cannot delete a utilized segment
When Button Pressed DELETE
Create Validation Name Check Child Segment
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Body Book_Code\Chapter5\Check Child
Returning Error Text Segment.txt
Error Message Cannot delete, this segment has child
entries
When Button Pressed DELETE

46

CHAPTER 6 " APPLICATION SEGMENTS

6.7 Create Branch

After clicking the Create button on the Application Segments form page, you will get a
message indicating that your action was processed successfully, but you'll notice that the
values still exist on the form. To create uninterrupted records in a blank form, create a
branch under the After Processing node and set the attributes specified in Table 6-9.

Table 6-9. Branch Attributes

Action Attribute Value
Create Branch Name Clear Page 20
Point After Processing
Behavior Type Page or URL (Redirect)
Target Type = Page In This Application
Page =20
Clear Cache =20
When Button Pressed CREATE

One more thing that you must do in order to stay on page 20 is to remove the
CREATE button value from the request specified in the Close Dialog process. In the
Processing tab, click the Close Dialog process. Scroll down to the Condition section in the
properties editor, and remove the CREATE entry from the Value list. By default, the modal
page is closed when Create, Save, or Delete buttons are clicked. By removing the CREATE
entry, the dialog page will be closed only when the Save (labeled Apply Changes) or
Delete buttons are clicked. This way you will stay on page 20 to create additional segment
records.

6.8 Test Your Work

Everything is set! Now it is the time to test your work. Save your work and run the
Application Segments module from the Setup menu. Click the Create button, and enter
the records mentioned in Table 6-10 one after the other in the segments form.

Table 6-10. List of Application Segments

Segment Title | Parent | Type | PageID | Item Role
2 Home Menu The Cloud Accountant Menu
3 Home Home Menu Page 1
4 Select Menu The Cloud Accountant Menu
5 Select (Company/Year/Month) Select Menu Page 30

W | Application Menu _‘Page M| Item

47

CHAPTER 6 ' APPLICATION SEGMENTS

The first entry in Table 6-10 will create the application root; therefore, no parent
is assigned to it. Recall that you assigned the default value (zero) for the parent item in
Table 6-4. The second and fourth main menu entries will come under the application
root. The first page entry defined in line 3 will be placed under the Home menu, along
with the corresponding page number. Similarly, the Select page defined in line 5 will
come under the Select menu. The last level of your application hierarchy belongs to
page items (lines 6-8). The Select page (30) will have three select lists (Company, Year,
and Month), so these items are set under page 30. If you mark the Type of an entry as an
Item, then you must also specify its role. Roles will be used in Chapter 32 to implement
application security. The list in Table 6-10 is a subset of a comprehensive list that covers
all of the application’s segments. You can find the complete list in the application_
segments.x1sx file in the book code’s Chapter 6 folder. Open it up and add all application
segments to complete this chapter. Note that it is not necessary to follow the defined
sequence while creating new segments; you can add an entry to any level, any time. The
important thing is to select the correct parent to place the new entry under. Figure 6-1
provides an overview of the two Application Segments pages.

Application Segments Create

v The Cloud Accountant ————————————@ App

L Home

v Select 9 Menu
* Select (Company/Year/Month) ——@ Page
Switch Company —————————@ |tem

Switch Year

New Segment Form

Apphcation Segments Form

Switch Month

% T Segment Tide Seatch Comparny
> Transactions
= Ublities Parent © Sehect (CompanyYean/Month) (Page)
L3 Reports T em
> Closing
Mobile 2 2
Feedback O e

Figure 6-1. Segments pages

6.9 Summary

In this chapter, you created a hierarchy of your application segments that will be used to
control application access in the next chapter.

48

http://dx.doi.org/10.1007/978-1-4842-2502-8_32
http://dx.doi.org/10.1007/978-1-4842-2502-8_6

CHAPTER 7

User Groups

In the previous chapter, you laid the foundation of your application’s security that

will be imposed on menus, pages, and page items. In this chapter, you will create user
groups. Allocating application rights to individual users is a tedious activity, and it’s not
recommended because it is highly error-prone. You create a few user groups and assign
application privileges to them instead. Users are created afterward and then associated
with their respective groups. This means all users inherit application rights from the
group (or groups) to which they belong. For example, to handle application security for
a staff of more than 100 employees, comprising managers and data entry clerks, you will
create just two groups (Managers and Clerks) with appropriate privileges. Any changes
made to the privileges of these groups will be automatically inherited by all associated
users.

USER GROUPS TABLES

CREATE TABLE gl_groups_master
(groupID NUMBER(4), groupTitle VARCHAR2(25), CONSTRAINT gl_groups_pk PRIMARY
KEY (groupID) ENABLE)

CREATE TABLE gl_groups_detail

(groupID NUMBER(4) CONSTRAINT fk_Group_Detail REFERENCES gl_groups_
master(groupID), segmentID NUMBER CONSTRAINT fk_user_groups REFERENCES gl_
segments(segmentID), segmentParent NUMBER, segmentType VARCHAR2(4), pageID
NUMBER(4), itemRole VARCHAR2(10), allow_access VARCHAR2(1))

In this setup, you will be using two tables. The master table will hold IDs and titles
of groups, while the details table will contain all application privileges (specified in the
segments setup) for each group.

© Riaz Ahmed 2016 49
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_7

CHAPTER 7 © USER GROUPS

7.1 Page and Parameters Region

You will set up user groups using just one application page. This page will carry two
main regions: Parameters and Group’s Privileges. In the Parameters region, you indicate
whether you are creating a new group or are manipulating an existing one. Based on this
selection, you'll be provided with the appropriate interface. For example, if you're trying
to modify or delete an existing group, then you'll select the Existing option, followed by
a group from the provided list. When you select the New option, a different interface will
be presented to allow you to create a new group. Just like the Financial Year setup, you'll
start by creating a blank page for this setup. Use Table 7-1 to add a blank page and other

components to the page.

Table 7-1. Page and Parameters Region Attributes

Action Attribute Value
Create Blank Page Page Number 21

Name User Groups

Page Mode Normal

Breadcrumb - do not use breadcrumbs on
page -

Navigation Preference Identify an existing
navigation menu entry for
this page

Existing Navigation Menu Entry Setup

Create Region Title Parameters

Type
Template

Static Content
Standard

50

(continued)

Table 7-1. (continued)

CHAPTER 7 © USER GROUPS

Action Attribute Value

Create Page Item Name P21_EXISTINGNEW
Type Radio Group
Label Action:
Number of Columns 2

Page Action on Selection

Region

Start New Row
Column/Column Span
Label Column Span
Template

Type (LOV)

Static Values

Display Null Value
Type (Default)
Static Value

Submit Page (to show/hide
Group'’s Privileges region)

Parameters
Yes
Automatic

1

Required
Static Values

STATIC:New;NEW, Existing; E
XISTING

No
Static Value
EXISTING

(continued)

51

CHAPTER 7 © USER GROUPS

Table 7-1. (continued)

Action Attribute Value
Create Page Item Name P21_GROUPID1
Type Select List
Label Group:
Page Action on Selection Submit Page (to refresh
Selected Segment region)
Region Parameters
Start New Row No
Column/Column Span 4/5
LOV Type SQL Query
SQL Query SELECT DISTINCT
groupTitle d, groupID r
FROM gl_groups_master
ORDER BY groupID
Type (Condition) Item = Value
Item P21_EXISTINGNEW
Value EXISTING (the list is
displayed only when
EXISTING option is on)
Create Page Item Name P21_GROUPTITLEI (used in
the Tree region’s title)
Type Hidden
Region Parameters
Type (Source) SQL Query (return single
value)
SQL Query SELECT groupTitle FROM
gl groups_master
WHERE grouplID=:P21_
GROUPID1
Source Used Always, replacing any existing

value in session state

52

(continued)

Table 7-1. (continued)

CHAPTER 7 © USER GROUPS

Action Attribute Value
Create Page Item Name P21_GROUPID2 (to assign a
new ID to a new group)
Type Display Only
Label Group ID:
Region Parameters
Start New Row No
Column 4
Column Span 2

Create Page Item

Type (Source)
SQL Query
Source Used

Type (Default)
Static Value

Type (Condition)

Item
Value

Name

Type

Label

Region

Start New Row
Column

New Column

Column Span

Type (Condition)

Item

Value

SQL Query (return single
value)

SELECT MAX(groupID)+1
FROM gl_groups_master

Always, replacing any existing
value in session state

Static Value

1

Item = Value
P21_EXISTINGNEW
NEW

P21_GROUPTITLEZ (title for
a new group)

Text Field
Title:
Parameters

No

Automatic

Yes

Automatic

Item = Value
P21_EXISTINGNEW
NEW

53

CHAPTER 7 © USER GROUPS

Note The two items (P21_GROUPID2 and P21_GROUPTITLE?2) are displayed only when
the NEW option is on. Make sure that the Value attribute NEW doesn’t have any leading or
trailing blanks.

7.2 Buttons

Add two buttons to the Parameters region, as mentioned in Table 7-2. These buttons
will be displayed on the new group creation form. Clicking the Create Group - Allow All
button will create a group with all the application access privileges, while clicking the
Create Group - Disallow All button will create a group without any privileges.

Table 7-2. Button Attributes

Attribute Button 1 Button 2

Name Allow Disallow

Label Create Group - Allow All Create Group - Disallow All
Region Parameters Parameters

Button Position Create Create

Action Submit Page Submit Page

Type (Condition) Item = Value Item = Value

Item P21_EXISTINGNEW P21_EXISTINGNEW

Value NEW NEW

7.3 New Group Process

This process is associated with the two buttons created in the previous section. The
condition says that if the request came from any of the two buttons, then execute the
PL/SQL process to create the group with all or no privileges. Under the Processing tab,
right-click the Processing node and choose Create Process to create a new process, as
specified in Table 7-3.

54

CHAPTER 7 © USER GROUPS

Table 7-3. New Group Process Attributes

Action Attribute Value
Create Process Name Create New Group
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter7\Create New Group.
txt
Point Processing
Success Message Group Created Successfully
Error Message Could not create group
Type (Condition) Request is contained in Value
Value Allow,Disallow (Case Sensitive, should
match with the button names provided
above)

7.4 Delete Group Button

Create a button (as mentioned in Table 7-4) to delete an existing group. When you submit
the page through this button, the process Delete Group (created next) is executed.

Table 7-4. Delete Group Button Attributes

Action Attribute Value
Create Button Name Delete
Label Delete Group
Region Parameters
Button Position Create
Hot Yes
Action Submit Page
Type (Condition) Item = Value
Item P21_EXISTINGNEW
Value EXISTING

55

CHAPTER 7 © USER GROUPS

7.5 Delete Group Process

Create a new process (as specified in Table 7-5) to drop a group. This process will execute
only when the user selects a group from the select list, in other words, when the value of
the page item P21_GROUPIDI is not zero. Note that the GL_USERS table already has a

constraint to avoid the deletion of a group with associated users.

Table 7-5. Delete Group Process Attributes

Action Attribute Value

Create Process Name Delete Group
Type PL/SQL Code
PL/SQL Code DELETE FROM gl_

groups_detail WHERE
grouplD=:P21_GrouplD1;
DELETE FROM gl _
groups_master WHERE
grouplD=:P21_GroupID1];

Point Processing

Success Message Group Deleted Successfully

Error Message Could not delete group

When Button Pressed Delete

Type (Condition) Item is NOT NULL and NOT
Z€ero

Item P21_GROUPID1

7.6 Group Privileges Region

This is another static content region that will carry tree and classic report regions to
display the application access privileges of a selected group. The region will be displayed
only when you select the EXISTING option from the radio group. Use Table 7-6 to create
this region.

Table 7-6. Group Privileges Region Attributes

Action Attribute Value

Create Region Title Group's Privileges
Type Static Content
Type (Condition) Item = Value
Item P21_EXISTINGNEW
Value EXISTING

56

CHAPTER 7 © USER GROUPS

7.7 Tree Region

Add a tree region to the Group’s Privileges region (using Table 7-7) to display the
application access rights of the selected group. The query used for this tree is similar to
the one used in Chapter 6, except for the link column, which uses the inline JavaScript
call ' javascript:pageItemName('||apex_escape.js_literal(segmentid)|]|"')"' As
link to a function named pageItemName, defined in Table 7-7. The APEX_ESCAPE package
provides functions for escaping special characters in strings to ensure that the data is
suitable for further processing. The JS_LITERAL function, of the APEX_ESCAPE package,
escapes and optionally enquotes a JavaScript string.

The function (pageItemName) is called in the tree’s query link. The calling procedure
(in the query) passes a segment ID to the function’s selectedNode parameter. The $s
(which is a JavaScript function) sets the value of a hidden page item (P21_SELECTED_
NODE) to the value received in the selectedNode parameter, which is then used to
refresh another region (Selected Segment) to display the relevant segment along with its
access privilege.

Table 7-7. Tree Region Attributes

Action Attribute Value
Create Region Title Group: &P21_GROUPTITLEL.
Type Tree
SQL Query Book_Code\Chapter7\Tree
Query.txt
Parent Region Group's Privileges
Select Node Page Item P21_SELECTED_NODE (fo save
(Under Attributes) the Tree state)
Create Page Item Name P21_SELECTED_NODE
Type Hidden
Value Protected No
Region Group: &P21_GROUPTITLEL.
Modify Page 21 Function and Global Variable function

Declaration (Click on the root pageltemName(selectedNode)

node - Page 21: User Groups - {

to enter this code) $s('"P21_SELECTED_NODE/,
selectedNode);

}

57

http://dx.doi.org/10.1007/978-1-4842-2502-8_6

CHAPTER 7 © USER GROUPS

7.8 Add Classic Report Region

This report will show the name of the selected segment, along with its access privilege.
A button will also be added to this region to allow/revoke the access right. The report
is presented using a query that is based on the value of the hidden item, which P21_
SELECTED_NODE. Set the attributes as indicated in Table 7-8 for this region.

Table 7-8. Classic Report Region Attributes

Action Attribute Value
Create Region Title Selected Segment
Type Classic Report
SQL Query SELECT s.segmentTitle,g.allow_access

FROM gl_segments s, gl_groups_detail g
WHERE s.segmentID=:P21_SELECTED_
NODE AND
s.segmentID=g.segmentID AND
g.groupID=:P21_GROUPID1

Page Items to Submit P21_SELECTED_NODE

Parent Region Group’s Privileges
Start New Row No

Type (Condition) Item = Value

Item P21_EXISTINGNEW
Value EXISTING

7.9 Dynamic Action to Refresh Region

You also need to refresh the classic report region (Selected Segment) with the appropriate
data when the user switches from one tree node to another. The dynamic action mentioned
in Table 7-9 serves this purpose. Create this dynamic action under the Change node.

58

Table 7-9. Dynamic Action to Refresh Region

CHAPTER 7 © USER GROUPS

Action Attribute Value
Create Dynamic Action Name Refresh Region
Event Change
Selection Type Item(s)
Item(s) P21_SELECTED_NODE

Action (under Show node) Refresh

Selection Type

Region

Region

Selected Segment

7.10 Add Button and a Process to Allow/Revoke
Segment Access Right

This button will appear in the Selected Segment report region. When clicked, it will
invoke the associated process to either allow or revoke access privilege to or from the
selected group. Use Table 7-10 to create the button and the corresponding process.

Table 7-10. Button and Process Attributes

Action Attribute Value

Create Button Name Allow/Revoke
Label Allow/Revoke
Region Selected Segment
Button Position Next
Hot Yes
Action Submit Page

Add Page Process Name
Type
PL/SQL Code

Point

When Button Pressed

Update Allow_Access Column
PL/SQL Code

Book_Code\Chapter7\Allow
Access.txt

Processing

Allow/Revoke

59

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 7 © USER GROUPS

7.11 Test Your Work

Execute the following steps to test your work:

1. Save your work and execute the module from the Setup »
User Groups menu. The page resembling Figure 7-1 should
come up.

2. Click the New option in the Parameters pane.
3. Enter atitle for the new group. For example, enter Admins.

4. Click the button Create Group - Allow All. This should create
the Admins group with all application privileges.

5. Click the Existing option, and select Admins from the select
list. Click different tree nodes and watch the changes in the
right pane.

Click the Allow/Revoke button and note the immediate
reflection.

The value Y'in the Allow Access column says that the selected
group has the access privilege on the selected segment.

6. Add two more groups. Name the first one Managers and the
second one as Clerks. Create the Managers group using the
Create Group - Allow All button. Create the Clerks group using
the Create Group - Disallow All button.

Note Sometimes when you click a segment node you do not see anything in
the Selected Segment region; this happens when you forget to select a group from the
select list.

60

CHAPTER 7 © USER GROUPS

Action: @hhlhg O New Group: Admins

v The Cloud Accountant Segment 1 Allow access

> Home
b Select Switch Month Y
v Select (Company/Year/Month) l
Switch Company
Switch Year Selecte dss:esment
Switch Month —@ Application Segment Access Right
» Setup
> Transactions
* o Unilities New Group Creation Form
* Reports
2 i Action: © Obusting © New GrouplD: 4 Tale | Clerks
Mobile
Feedback Create Group - Allow All Create Group - Disallow All

Figure 7-1. Group’s Privileges page

7.12 Summary

You've successfully set up the application access privileges, but these privileges are not
yet implemented. This is because the application is in the development phase and only
after its completion will you be in a position to completely deploy the security module,

which will be done in Chapter 32. In the next chapter, you will create a setup to add

accounts of the application users.

61

http://dx.doi.org/10.1007/978-1-4842-2502-8_32

CHAPTER 8

Create Users

After creating groups, you add users to them, as shown in Figure 8-1 later in this chapter.
You input a user ID for each new user, but when you call up an existing user’s record for
modification, this value is displayed as read-only text. You also allocate a default company
to each new user to work in. This allocation is helpful in restricting a user to handling the
accounts of a specific company. You might notice from Figure 8-1 that besides assigning
the Admins group, you also specify whether the user is an administrator. This is because
you have a column (Admin) in the GL_USERS table that explicitly assigns administrative
rights to those users marked as administrators, irrespective of the group to which they
belong. This explicit marking is necessary in some cases to quickly assess whether a user is
an administrator. You'll see an instance of this in the next chapter.

USERS TABLE

CREATE TABLE gl_users

(userID VARCHAR2(50), cocode NUMBER CONSTRAINT fk_users REFERENCES gl _
company (Cocode), coyear NUMBER(4), comonthid NUMBER(2), groupID NUMBER(4)
CONSTRAINT fk_users2 REFERENCES gl_groups_master(groupID),

passwoxrd VARCHAR2(4000), admin VARCHAR2(1), CONSTRAINT gl _users_pk PRIMARY
KEY (userID) ENABLE)

Besides their usual credentials, this table will store company, year, and month
information for each user. This information will be displayed through the Global Page on
every application page so that users will know where their transactions are going to be
saved. For more details, see Chapter 10.

8.1 Create Pages

Select the Form option followed by Form on a Table with Report to create Report and
Form pages, as mentioned in Table 8-1.

© Riaz Ahmed 2016 63
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_8

http://dx.doi.org/10.1007/978-1-4842-2502-8_10

CHAPTER 8 ' CREATE USERS

Table 8-1. Report and Form Page Attributes

Page Type Attribute Value
Report Page Implementation Interactive
Page Number 22
Page Mode Normal
Page Name Users Report
Region Title Application Users
Region Template Standard
Breadcrumb - do not add breadcrumb
region to page -
Table/View owner Accept the displayed value
Table/View Name GL_USERS
Navigation Preference Identify an existing navigation
menu entry for this page
Existing Navigation Menu Entry Setup
Report Columns Select all columns
Edit Link Image Select any edit link image from
the provided options
Form Page Page Number 23
Page Name User Form
Page Mode Modal Dialog
Region Title Application User
Region Template Standard
Primary Key Type Managed by Database
(ROWID)

Form Columns

Data Manipulation Process

Select three columns: USERID,
GROUPID, and ADMIN

Insert=Yes, Update=Yes,
Delete=Yes

After creation, modify both these pages to set the attributes listed in Table 8-2. The
default query in the source SQL query is replaced with a custom join query, which fetches
users’ records from multiple tables.

64

Table 8-2. Modified Page Attributes

CHAPTER 8 " CREATE USERS

Action Attribute Value

Modify Region on Users Region Application Users

Report Page SQL Query Book_Code\Chapter8\SQL Query.txt
Modify Region on User Region Application User

Form Page Title Application User: &P23_USERID.

8.2 Create/Modify Items

Add and amend the items on page 23 using Table 8-3. The first item (Display Only) is
added (between two existing items: User ID and Group ID) to show the ID of the selected
user as read-only text. The condition for this item is set so that it will display only when
you call a record of an existing user for modification. The opposite condition is set for the
item P23_USERID to make it visible only for new records.

Table 8-3. Create/Modify Items

Action Attribute Value

Create Page Item Item Name P23_USERID2
Type Display Only
Label User ID:
Sequence 25 (between UserID and GroupID)
Source Type Database Column
Column Name USERID
Condition Type Item Is NOT NULL
Item P23_USERID

Modify Item Item Name P23_USERID
Label User ID:
Value Placeholder Enter in UPPER CASE
Condition Type Item is NULL
Item P23_USERID

(continued)

65

CHAPTER 8 ' CREATE USERS

Table 8-3. (continued)

Action Attribute Value
Modify Item Item Name P23_GROUPID
Type Select List
Label Group:
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query SELECT groupTitle d, groupID r FROM
gl_groups_master
Modify Item Item Name P23_ADMIN
Type Radio Group
Label Administrator:
No. of Columns 2
LOV Type Static Values
Static Values STATIC:Yes;Y,No;N
Display Null Value No
Default Type Static Value
Static Value N
Create Page Item Item Name P23_COMPANY
Type Select List
Label Default Company:
Region Application User: &P23_USERID.
Template Required
Value Required Yes
LOV Type Shared Component
List of Values COMPANIES
Source Type Null

66

CHAPTER 8 " CREATE USERS

8.3 Create a Process to Set Company, Year, and
Month

The process mentioned in Table 8-4 will be executed when either the CREATE or the
APPLY CHANGES buttons are clicked on page 23. The process is added to fill in values for
the company, year, and month columns based on the default company that is selected for
a user. Create this process under the Processes node and place it just after the first process
named Process Row of GL_USERS. If you place it in the last position, it won’t execute
because of the preceding Close Dialog process, which will execute before this process and
will close the page.

Table 8-4. Process Attributes

Action Attribute Value
Create Process Name Set Company Year Month
Type PL/SQL Code

PL/SQL Code Book_Code\Chapter8\Company Year Month.txt
Condition Type Request is contained in Value

Value CREATE,SAVE (case sensitive, must match button
names)

8.4 Test Your Work

Save your work and run the module from the Setup » Users menu. You can view the two
pages of the module in Figure 8-1.

1. Click the Create button.

2. Enter SUPER in UserID, set Group to Admins, select Yes for
Administrator, set Default Company to ABC & Company,
and click Create. Note that the password column of the new
user will be blank at this stage. How to set user passwords
is discussed in the next chapter. Modify this user and take
alook at the user ID, which should be displayed as an
unmodifiable text.

3. Create two more users (belonging to different groups), as
shown in Figure 8-1.

67

CHAPTER 8 ' CREATE USERS

o] _

User D Group Company

"4 DEMO Managers XYZ & Company

& jonn Clerks ABC & Company
¥ PR Adrring ABC & Company

Year Month Password Admin
016 July 2SFTAIBECOALIBCOSIASIDFIBSETIMFT N
015 uy 141006 1453526250662 334845CERSSEA N

016 uly SB120EABSSOTFFITTT403RASD34F DADE Y

Figure 8-1. Two pages of the module

8.5 Summary

User ID: SUPER

Grovp: = Admins ®
Administrator: O Ne @ Yes

De‘!u.il(n-pmg:. ABC & Company ¢

Delete Cancel m

The users you created in this chapter are the holy souls who can access your application.
In the next chapter, you will create a form to set/reset their passwords.

68

CHAPTER 9

Reset Password

A user who wants to access this application can do so only with a valid ID and password.
You created some user accounts in the previous chapter and assigned them IDs and
groups. In this chapter, you will create a facility for setting and changing passwords. Note
that this feature will be invoked from the Utilities menu. The Reset Password interface

is self-explanatory. Administrators select a user ID and then provide and confirm a new
password for it. The application then checks to make sure both of these are identical and,
if so, allocates the password to the user ID. Users may also use the same method to reset
an existing password. The initial password allocation task is performed by the application
administrator.

9.1 Add Custom Functions

The users you created in the previous chapter reside in the database table GL_USERS
without passwords; therefore, none of them can access the application at the moment.
You'll create the password interface by adding a blank page to the application, but

first you have to add two custom functions, CUSTOM_AUTH and CUSTOM_HASH, to your
database. After receiving login information, the APEX engine evaluates and executes the
authentication scheme that will be configured at the end of this chapter. The scheme
makes a call to a function named CUSTOM_AUTH, which, in conjunction with the CUSTOM_
HASH function, authenticates users using the credentials stored in the GL_USERS table.
The two functions are added to the database to implement a custom authentication
mechanism. The CUSTOM_HASH function is a subordinate function to the CUSTOM_AUTH
function and is called from the parent function to obfuscate passwords with hash
algorithm. Execute the following steps to add these two functions to the database:

1. Open the SQL Commands interface from SQL Workshop.

2. Copy and paste the two functions available in the
Chapter9\Custom Functions.txt file and click the Run
button to store them in the database. If you are using the
online APEX version, then create the functions provided
in the CustomFunctions.txt file, which uses the DBMS
OBFUSCATION_TOOLKIT package. For an offline APEX version,
use the Custom_Functions_DBMS_CRYPTO.txt file.

© Riaz Ahmed 2016 69
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_9

CHAPTER 9 " RESET PASSWORD

3. Forverification, open the Object Browser interface and
locate the two functions in the Functions category, as shown
Figure 9-1.

Object Browser

Functons

Figure 9-1. Functions category

Note that the DBMS_OBFUSCATION_TOOLKIT package has been deprecated in favor
of DBMS_CRYPTO, which is now used to encrypt and decrypt data. It provides support
for various industry-standard encryption and hashing algorithms, including the highly
secure Advanced Encryption Standard (AES) encryption algorithm. AES has been
approved as a new standard to replace the Data Encryption Standard (DES).

Oracle Database installs the DBMS_CRYPTO package in the SYS schema. In order to use
this package, users must be granted access to it, as shown here:

conn sys/¥¥¥¥*kxx¥ ag sysdba
grant execute on sys.dbms_crypto to <users;

Note that you do not have access to the SYS schema in the online APEX version, so
you can’t use DMBS_CRYPTO.

In a production environment, where you have access to the SYS schema, run the two
functions provided in the Custom_Functions DBMS_CRYPTO.txt file in the user’s schema
to use DMBS_CRYPTO instead of the DBMS_OBFUSCATION_TOOLKIT package.

9.2 Create Page

Create the password interface using a blank page and then set the attributes listed

in Table 9-1. Note that this page will be called from the Reset Password option in

the Utilities menu. The query defined in the SQL Query attribute for the Select List
(P56_USERID) uses a condition in the WHERE clause (admin="Y’) to quickly assess the
presence of an administrator, who is allowed to change the password of any user. This
is the reason for the inclusion of the Admin column in the GL_USERS table. By setting this
condition, the Select List item, which is added to display a list of all users, will be visible
to administrators only. Normal users will see only their own user ID in the display item
named P56_USERID2.

70

Table 9-1. Page Attributes

CHAPTER 9 © RESET PASSWORD

Action Attribute Value
Create Page Page Number 56
Name Reset Password
Page Mode Normal
Breadcrumb - don’t use breadcrumbs on

Navigation Preference

page -
Identify an existing navigation
menu entry for this page

Existing Navigation Menu Entry Utilities
Create Region Title Reset Password
Type Static Content
Template Standard
Create Page Item Name P56_USERID
Type Select List
Label User ID:
Region Reset Password
LOV Type SQL Query
SQL Query SELECT userid d, userid r
FROM gl_users
Condition Type Rows Returned
SQL Query SELECT 1 FROM gl_users

WHERE userid = :APP_USER
AND admin="Y'

In Table 9-2, the Display Only item (P56_USERID2) will show the ID of the current

nonadmin user using a substitution string. (&APP_USER). The Save Session State
attribute is set to YES to store the current item value in the session state when the page
gets submitted. If set to No, you'll encounter the error message “No user selected for

the reset password process.” You also used an opposite WHERE clause in the condition
query, in contrast to the previous one, to display nonadmin IDs. Finally, you added two
password page items. The first one is used to enter the new password, whereas the other
one is added for its confirmation.

71

CHAPTER 9 " RESET PASSWORD

Table 9-2. Items and Button Attributes

Action Attribute Value
Create Page Item Name P56_USERID2
Type Display Only
Label User ID:
Save Session State Yes
Region Reset Password
Default Type Static Value
Static Value &APP_USER.
Condition Type Rows Returned
SQL Query SELECT 1 FROM gl_users
WHERE userid = :APP_USER AND
admin !="Y'
Create Page Item Name P56_PASSWORD1
Type Password
Label New Password:
Submit When Enter Pressed No
Region Reset Password
Template Required
Value Required Yes
Create Page Item Name P56_PASSWORD?2
Type Password
Label Confirm Password:
Submit When Enter Pressed No
Region Reset Password
Template Required
Value Required Yes
Create Button Name RESET_PW
Label Reset Password
Region Reset Password
Button Position Copy
Hot Yes
Action Submit Page

72

CHAPTER 9 © RESET PASSWORD

Note
process.

Upon page submission, the RESET_PW button will run the Update Password

9.3 Check User ID and Match Password
Validations

In Table 9-3, the first validation checks for the existence of a user ID, while the second one

checks for a match.

Table 9-3. Validation Attributes

Action Attribute Value
Create Validation = Name Check User ID
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter9\Check User
ID.txt
Error Message Select a user for the reset password
process
When Button Pressed RESET_PW
Create Validation = Name Match Passwords
Type PL/SQL Function Body (returning
Boolean)
PL/SQL Function Book_Code\Chapter9\Match
Passwords.txt
Error Message Passwords do not match
When Button Pressed RESET_PW

73

CHAPTER 9 " RESET PASSWORD

9.4 Update Password Process

The process specified in Table 9-4 will store a new password for the selected user.

Table 9-4. Update Password Process Attributes

Action Attribute Value
Create Process Name Update Password
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter9\Update Password.txt
Point Processing
Success Message Password changed successfully
Error Message Could not change password

When Button Pressed RESET_PW

If you run the page at this stage, you won't see the user’s select list. This is because
the select list item, P56_USERID, is visible only when the currently logged in user is an
administrator. Since the account you are currently logged in with doesn’t exist in the
GL_USERS table, the list doesn’t appear. To make the list visible, create an admin account
for yourself having the same ID you are currently using from the Users option in the Setup
menu. After creating your new account, invoke the Reset Password page to test your work
by setting passwords for all application users, including yourself. Note that the passwords
you set through this interface are case-sensitive; therefore, care must be taken of when
saving them. Verify the addition of passwords to the table by accessing the table either
from the Object Browser utility in SQL Workshop or through the user report page from
the Users menu.

9.5 Change Authentication Scheme

At this stage you can set and browse the users’ passwords, but you cannot use these
passwords to log in. This is because of the currently implemented authentication
scheme, which was set to the Application Express Scheme when you initially created the
application. To authenticate the users through their new IDs and passwords, you have to
create a custom authentication scheme. Here are the steps to implement this scheme:

1. Select Authentication Scheme from Shared Components.
2. Click the Create button.

3. Select the option Based on the preconfigured scheme from
the gallery and click Next.

74

CHAPTER 9 © RESET PASSWORD

4. Enter Custom Scheme in the Name box and select Custom as
the Scheme Type. On the same page, enter CUSTOM_AUTH
for the Authentication Function Name attribute. This is the
name of the function that you created earlier in this chapter to
verify users’ credentials on the login page.

5. Click the Create Authentication Scheme button. The new
scheme will appear on the page with a check mark. Now you
can access the application using the credentials stored in
the GL_USERS table. Access the Reset Password page, which
should look like Figure 9-2.

Reset Password Reset Password

User ID: SUPER

New Password: = sssssssene

Confirm Password: - sssssssene

Figure 9-2. Reset Password page

9.6 Summary

Now that you have allowed your users to access the application, you must also allow
privileged users to switch company, year, and month, which comes next.

75

CHAPTER 10

Switch Company, Year,
and Month

This page allows users to switch the company, year, and month depending on their access
privileges. Recall that every new user was allotted a default company, while an associated
process saved a default year and month within their profiles so that they could start using
the application right away. These selections are saved in the GL_USERS table and are
reflected on the top-right corner of every page through the Global Page.

10.1 Create Page

This segment will be created using a blank page. After creating the blank page, add page
components, as listed in Table 10-1. The last two select lists added to the page use an
attribute called Cascading LOV Parent Item(s). This attribute is used to associate an LOV
to its parent. For example, when you select a company, the second list is refreshed to
display years of the selected company. Similarly, the third list gets populated with the
corresponding months of the selected company.

© Riaz Ahmed 2016 7
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_10

CHAPTER 10 ' SWITCH COMPANY, YEAR, AND MONTH

Table 10-1. Page Attributes

Action Attribute Value
Create Page Page Number 30
Name Select
Page Mode Normal
Breadcrumb - don’t use breadcrumbs on page -
Navigation Preference Identify an existing navigation
menu entry for this page
Existing Navigation Menu Entry Select
Create Region Title Select
Type Static Content
Template Standard
Create Page Name P30_COMPANY
Item Type Select List
Label Company
Region Select
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query SELECT coname, cocode FROM
gl_company ORDER BY cocode
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users
WHERE userid = :APP_USER
Source Used Always, replacing any existing

value in session state

78

(continued)

CHAPTER 10 I SWITCH COMPANY, YEAR, AND MONTH

Table 10-1. (continued)

Action Attribute Value
Create Page Name P30_YEAR
Item Type Select List
Label Year
Region Select
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query SELECT DISTINCT(coyear) d,

Create Page
Item

Cascading LOV Parent Item(s)
Source Type
SQL Query

Source Used

Name

Type

Label

Region
Template
Value Required
LOV Type

SQL Query

Cascading LOV Parent Item(s)
Source Type
SQL Query

Source Used

coyear r FROM gl_fiscal_year
WHERE cocode=:P30_COMPANY
ORDER BY coyear

P30_COMPANY
SQL Query (return single value)

SELECT coyear FROM gl_users
WHERE userid = :APP_USER

Always, replacing any existing
value in session state
P30_MONTH

Select List

Month

Select

Required

Yes

SQL Query

SELECT
DISTINCT(comonthname) d,
comonthid r

FROM gl _fiscal_year WHERE

cocode=:P30_COMPANY
ORDER BY comonthid

P30_COMPANY
SQL Query (return single value)

SELECT comonthid FROM
gl_users
WHERE userid = :APP_USER

Always, replacing any existing
value in session state

79

CHAPTER 10 I SWITCH COMPANY, YEAR, AND MONTH

10.2 Add Button

The button in Table 10-2 will submit the page to update the user’s profile, using the

process mentioned in Table 10-4.

Table 10-2. Button Attributes

Action Attribute Value
Create Button Button Name Select
Label Select
Region Select
Button Position Copy
Hot Yes
Action Submit Page

10.3 Add Validations

The three validations in Table 10-3 are included to check the switching privileges of a user

for the three options.

Table 10-3. Validation Attributes

Action Attribute Value

Create Validation Name Check Switch Company Privilege
Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter10\Switch

Company.txt

Error Message You are not allowed to switch company
When Button Pressed Select (not -select-)

Create Validation Name Check Switch Year Privilege
Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter10\Switch Year.txt
Error Message You are not allowed to switch year
When Button Pressed Select (not -select-)

80

(continued)

CHAPTER 10 I SWITCH COMPANY, YEAR, AND MONTH

Table 10-3. (continued)

Action Attribute Value
Create Validation Name Check Switch Month Privilege
Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter10\Switch Month.
txt
Error Message You are not allowed to switch month

When Button Pressed Select (not -select-)

10.4 Update User Profile Process

After passing the previous validations, the process specified in Table 10-4 is executed to
store new values in the GL_USERS table.

Table 10-4. Update User Profile Process

Action Attribute Value
Create Process Name Update User Profile
Type PL/SQL Code
PL/SQL Code UPDATE gl_users SET cocode=:P30

COMPANY, coyear=:P30_YEAR,
comonthid=:P30_MONTH
WHERE upper(userid)=upper(:APP_USER);

Point Processing

Success Message Company/Year/Month switched
successfully.

Error Message Could not switch company/year/month.

When Button Pressed Select

10.5 Display Company, Year, and Month

The page is ready for a test run. Although you can change all the three options as a
privileged user, there is no way to know whether the changes have taken place, except
for looking at the GL_USERS table. In this section, you will make these selections visible
on every application page so that users can see the company, year, and month they are
working in. You will make use of a Global Page for this purpose. In the main application
builder, click the Create Page button. Click the Global Page option to move forward.
Accept the default page number (zero) and click the Create button. Add components
listed in Table 10-5 to the Global Page.

81

CHAPTER 10 I SWITCH COMPANY, YEAR, AND MONTH

Table 10-5. Global Page Attributes

Action Attribute Value
Create Region Title User Profile
Type Static Content
Position Breadcrumb Bar
Template Blank with Attributes
Condition Type Current Page != Page (the region will
not appear on the login page)
Page 101
Create Page Item Name PO_USERPROFILE
Type Display Only
Label Clear Label
Region User Profile
Custom Attributes style="float:right;font-
weight:bold;font-
size:20;color:#267ed4;"
Source Type PL/SQL Function Body
PL/SQL Function Body Book_Code\Chapter10\User Profile.
txt
Source Used Always, replacing any existing value in

session state

change the three options, and see the impact in the user profile region, which should now

Everything is set! Run this page (illustrated in Figure 10-1) from the Select menu,

be visible on every application page.

82

CHAPTER 10 I SWITCH COMPANY, YEAR, AND MONTH

User Profile Region
Showing Current @ ABC & Company July, 2016
Company, Month,
and Year

OMobile % Feedback & SUPER ¥

Select Select

Company X ABC & Company ¢

* ——® Selection Form
Year 2016 ¢

Month = July

Figure 10-1. Page to switch company, year, and month

Note The Year value shown in the user profile region displays the first part of the
fiscal year, which is fetched from the financial year table. For example, the value shown in
Figure 10-1 (top) represents 2015-16. A fiscal year starting from July 1, 2015, and ending
on June 30, 2016, will be displayed as 2015 for all 12 months, even for January 2016 and
onward.

10.6 Summary

Users can access the application and can select their respective companies and fiscal
years to post transactions. By creating the cost center setup in the next chapter, you allow
these users to lay the foundation of the data entry process.

83

CHAPTER 11

Cost Centers

Cost and revenue centers help you maintain accounts of all departments and divisions
participating in your business. Using this setup, you keep track of revenues generated by
departments and expenses incurred by them. After creating cost centers, you can link
them to the main financial accounts in the chart of accounts. This allows you to set a
default cost/revenue center for every financial account. When you pick up an account
from the chart of accounts during the voucher generation process, these cost/revenue
centers come along as default entries to minimize data entry work.

COST CENTERS TABLE

CREATE TABLE GL_Cost_Center

(Cocode NUMBER CONSTRAINT fk_cost_center REFERENCES GL_Company (Cocode),
Cccode VARCHAR2(S),

Cctitle VARCHAR2(25), Cclevel NUMBER(1),

CONSTRAINT GL_COST_CENTER_PK PRIMARY KEY (Cocode,Cccode) ENABLE)

11.1 Create Pages

Create a Form page followed by the Form on a Table with Report option. Using Table 11-1,
set the attributes for the two pages.

© Riaz Ahmed 2016 85
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_11

CHAPTER 11 ' COST CENTERS

Table 11-1. Two Page Attributes

Page Type Attribute Value
Report Page Implementation Interactive
Page Number 13

Page Name

Page Mode
Region Title
Region Template

Breadcrumb

Table/View owner
Table/View Name

Navigation Preference

Existing Navigation Menu Entry

Report Columns
Edit Link Image

Form Page Page Number
Page Name
Page Mode
Region Title
Region Template
Primary Key Type

Form Columns

Data Manipulation Process

Cost Centers Report
Normal

Cost Centers Setup
Standard

- do not add breadcrumb region to
page -

Accept the displayed value
GL_COST_CENTER

Identify an existing navigation menu
entry for this page

Setup

Select 3 columns -
CCCODE,CCTITLE, and CCLEVEL

Select any edit link image from the
provided options

14

Cost Centers Form

Modal Dialog

Cost Center

Standard

Managed by Database (ROWID)

Select 3 columns -
CCCODE,CCTITLE, and CCLEVEL

Insert=Yes, Update=Yes, Delete=Yes

After creation, modify the report page (13) to alter the default SQL statement. A
WHERE clause is added to the default SQL query (indicated in Table 11-2), which fetches

the current company’s cost centers.

86

CHAPTER 11 COST CENTERS

Table 11-2. Modified Query
Action Attribute Value

Modify Region Region Cost Centers Setup

SQL Query SELECT "ROWID",
"CCCODE","CCTITLE","CCLEVEL"
FROM "#OWNER#"."GL_COST_CENTER"
WHERE cocode = (select cocode from gl_users
where userid = :app_user)

11.2 Delete Processes

Remove the two default processes (Process Row of GL_COST_CENTER and reset page)
created by the wizard from page 14, along with the CREATE and APPLY CHANGES
buttons. You'll create custom processes and add a new button to handle these operations.

11.3 Modify Delete Button

On page 14, modify the Delete button (which was created by the wizard) using

the attributes mentioned in Table 11-3. You use a JavaScript function to present a
confirmation box, before deleting a record. Note that the visibility of this button and the
corresponding delete process is controlled by a condition set on this page, which states
that this button will be visible only when the P14_ROWID page item is NOT NULL, in other
words, when the record is fetched from page 13 for modification. You also disable the
default database action (SQL DELETE action) because you handle this process manually;
see Table 11-13.

Table 11-3. Modified Delete Button

Action Attribute Value
Modify Button Button Name DELETE
Action Redirect to URL
Target javascript:apex.confirm('Are you sure you

wish delete this record?','DELETE");
Execute Validations Yes

Database Action - Select -

87

CHAPTER 11 ' COST CENTERS

11.4 Add Button

Add a new button to page 14 using Table 11-4 to handle new and amended records.

Table 11-4. New Button Attributes

Action Attribute Value Attribute Value
Create Button Name Save Button Position Create
Label Save Hot Yes
Region Buttons Action Submit Page

11.5 Modify Page Items

Modify page 14 items using Table 11-5. Note that the Level column will be displayed as a
read-only item.

Table 11-5. Modified Page Item Attributes

Action Attribute Value

Modify Item Name P14_CCCODE
Template Required
Value Required Yes
Width/Maximum Length 5

Modify Item Name P14_CCTITLE
Template Required
Value Required Yes

Modify Item Name P14_CCLEVEL
Type Display Only
Save Session State No

88

CHAPTER 11 COST CENTERS

11.6 Add Dynamic Action: Evaluate Level

The dynamic action specified in Table 11-6 will be created on page 14 to calculate a level
for each cost center account. Note that this setup comprises two levels. The first level,
which denotes locations, is two digits long (99), while the second one, which represents
departments or divisions, carries five digits (99999). The first two digits in the second level
represent its parent level.

Table 11-6. Dynamic Action Attributes

Action Attribute Value Attribute Value
Create Name Evaluate Level PL/SQL Code Book_Code\
Dynamic . . Lose Focus Chapter11\Evaluate
Action Level.txt
Selection Type Item(s) Page Itemsto P14_CCCODE
Submit
Item(s) P14_CCTITLE Page Itemsto P14_CCLEVEL
Return

Action (under Execute PL/SQL Fire on Page Yes
Show) Code Load

11.7 Validation: Check Level

The validation specified in Table 11-7 will check whether the value of the account level is
zero. Note that the valid values for this item are 1 and 2 only. The dynamic action created
in the previous section will calculate this value automatically.

Table 11-7. Validation: Check Level

Action Attribute Value
Create Validation Name Check Level
Validation Type Item is NOT zero
Item P14_CCLEVEL
Error Message You've defined an invalid

Cost Center code.

When Button Pressed Save

89

CHAPTER 11 ' COST CENTERS

11.8 Validation: Check Parent Level

As the name suggests, the validation specified in Table 11-8 is added to check the parent
level of an account. To implement application integrity, you are not allowed to create

an account without a parent. For example, in the current setup, a department cannot be
created without first creating a location.

Table 11-8. Validation: Check Parent Level

Action Attribute Value
Create Validation Name Check Parent Level
Type PL/SQL Function Body
(returning Boolean)
PL/SQL Function Book_Code\Chapter11\
Check Parent Level.txt
Error Message Parent level not found.
When Button Pressed Save

Note Duplicate cost center code is eliminated by the table constraint (GL_COST _
CENTER_PK PRIMARY KEY (Cocode,Cccode)), which shows the generic message “An
error occurred while saving Cost Center record when you try to enter a code which already
exists.” To inform the user about the actual problem, you can create a validation to search
the table for an existing cost center code prior to saving a record.

11.9 Validation: Check Child Level

Just like the way you checked for the existence of the parent level while creating a new
child account, the validation in Table 11-9 will check for the existence of a child account
before deleting a parent level account.

90

CHAPTER 11 COST CENTERS

Table 11-9. Validation: Check Child Level

Action Attribute Value
Create Validation Name Check Child Level
Type PL/SQL Function Body (returning
Boolean)
PL/SQL Function Book_Code\Chapter11\Check Child
Level.txt
Error Message Child account found. Unable to delete

cost center record.

When Button Pressed DELETE

11.10 Validation: Check in Transaction

An account used even in a single transaction must not be deleted. The validation in
Table 11-10 is added for this purpose. Note that in this application you will use the last
level (in other words, level 2) in your transactions to allocate cost centers.

Table 11-10. Validation: Check in Transaction

Action Attribute Value
Create Validation Name Check in Transaction
Type PL/SQL Function Body (returning
Boolean)
PL/SQL Function Book_Code\Chapter11\Check in

Transaction.txt

Error Message Account used in transaction.
Unable to delete cost center record.

When Button Pressed DELETE

11.11 Validation: Disallow Code Modification

Cost centers are rendered in a text item that an end user can easily modify. The validation
specified in Table 11-11 will prevent the code from being modified in order to retain
application consistency. The condition set for this validation checks for a value in the
hidden item (P14_ROWID). A non-null value in this item indicates that a record exists on
the page with its code.

91

CHAPTER 11 ' COST CENTERS

Table 11-11. Validation: Disallow Code Modification

Action Attribute

Value

Create Validation Name

Type
PL/SQL Function

Error Message

When Button Pressed

Condition Type

Item

Disallow Code Modification

PL/SQL Function Body (returning
Boolean)

Book_Code\Chapter11\Disallow Code
Modification.txt

Cost Center code cannot be modified.
Save

Item is NOT NULL

P14_ROWID

11.12 Process: Save Record

The process being created in Table 11-12 is the one that will save a cost center record.
Note that this process will handle both new and updated cost centers.

Table 11-12. Process: Save Record Attributes

Action Attribute Value
Create Process Name Save Record
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter11\Save Record.txt
Sequence 10
Point Processing

Success Message

Error Message

When Button Pressed

Cost Center record saved.

An error occurred while saving Cost
Center record.

Save

11.13 Process: Delete Record

This process mentioned in Table 11-13 will delete a cost center record after passing all

validations.

92

CHAPTER 11 COST CENTERS

Table 11-13. Delete Record Process Attributes

Action Attribute Value
Create Process Name Delete Record
Type PL/SQL Code
PL/SQL Code DELETE FROM gl_cost_center WHERE

CCcode=:P14_CCcode AND cocode=
(SELECT cocode FROM gl_users WHERE
userid = :app_user);

Sequence 20 (to execute before the Close Dialog process)

Point Processing

Success Message Cost Center record deleted.

Error Message An error occurred while deleting Cost Center
record.

When Button Pressed DELETE

Remove the CREATE and SAVE button values from the request specified in the Close
Dialog process to generate continuous cost center records. In the Processing tab, click the
Close Dialog process. Scroll down to the Condition section in the properties editor, and
remove the CREATE and SAVE entries from the Value list. By default, the modal page is
closed when the Create, Save, or Delete buttons are clicked. By removing the CREATE and
SAVE entries, the dialog page will be closed only when the Delete button is clicked.

11.14 Add Button: Refresh

Create a button on page 13 using the attributes listed in Table 11-14 to refresh the cost

centers report.

Table 11-14. Refresh Button Attributes

Attribute Value

Button Name Refresh

Label Refresh

Region Cost Centers Setup
Button Position Copy

Button Template Text with Icon

Hot No

Icon CSS Classes fa-undo

Action Submit Page

93

CHAPTER 11 ' COST CENTERS

11.15 Test Your Work

After saving your work, execute the following steps to create cost centers in the
application:

1. Run the module from the Setup | Cost Centers menu.
Figure 11-1 illustrates the two pages of this module.

2. Click Create on page 13.
3. Enter 01 in Code and Head Office in Title.

4. Click the Save button. This will add a new cost center level-
one record.

5. Create a new record by entering 01001 for Code and Admin
for Title. Click Save. This will create the Admin department
under the Head Office location. Note that the levels for both
these accounts are assessed automatically by the dynamic
action created through Table 11-6.

6. Usingthe file Cost Centers.xls, in the Book_Code\Chapter11
folder, create the remaining cost centers. The last entry
(“09-N/A - not applicable”) in the XLS file will be used for all
financial accounts in the Chart of Accounts (coming up next)
where cost centers are inapplicable.

94

CHAPTER 11 COST CENTERS

Create Refresh D

Code . Title Level
171 | 0 Head Office | 1
- N ewcnim |
& [ow01 Admin | 2
Code" M
A owo2 Accounts 2 Yoo * (Hand OfBce
lVJ. 01003 IT- HO 2 lewl 1 ————® Level 1 Used for Locations
. - =T
4 02 Factory 1
! Code " 021
4 o001 Production /] s
7 02002 IT - Fac 2 et 2 —@Level 2 Departments Under Locations
Delete Cancel
7 03 Warehouse 1 - .
-
71 03001 Store 2
|7 | N/A 1
09001 N/A 2

Figure 11-1. Cost centers pages

11.16 Summary

The cost center is a handy setup for organizations that want to keep track of income and
expenses. In the next chapter, you will create the heart of financial accounting called the
chart of accounts.

95

CHAPTER 12

Chart of Accounts

The chart of accounts (COA) is part of the application that needs to be planned carefully
before implementation. A well-planned COA provides better insight into the financial
matters of an organization. A separate COA is created for each company; however, you
can create a COA for one company—the master COA—and then copy it to the others
using the Copy COA utility as developed in the next chapter. The accounts created here
are selected for each transaction during voucher generation, report calls, and preparation
of financial statements. Because this setup is similar to the cost center setup, you will use
the copy utility to save some time. The account code used in this setup uses the format
9-99-999-99999, which contains four separate number groupings or levels. The first level
defines the nature of account, while the next three levels act as its subcategories. Each
account specified on the first level belongs to one of the following natures: Equities,
Liabilities, Assets, Revenues, and Expenses. The initial three levels are called group levels,
whereas the bottom level (in other words, level 4) is called the transaction level because
accounts from this level are selected to generate transactions in the vouchers interface.
The group-level accounts are used in trial balance and financial statement reports to
extract summarized group-level information.

CHART OF ACCOUNTS TABLE

CREATE TABLE GL_COA

(Cocode NUMBER CONSTRAINT fk_coa REFERENCES GL_Company (Cocode), COAcode
VARCHAR2(11),

COAtitle VARCHAR2(50), COAlevel NUMBER(1), COAnature VARCHAR2(11), COAtype
VARCHAR2(11), Cccode VARCHAR2(5), CONSTRAINT GL_COA_PK PRIMARY KEY
(Cocode,COAcode) ENABLE)

© Riaz Ahmed 2016 97
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_12

CHAPTER 12 I CHART OF ACCOUNTS

12.1 Create Three Lists of Values

Create three LOVs from scratch using Tables 12-1 to 12-3. The first one will show
departments (level 2) from the cost centers table for association with financial accounts.
This association is not mandatory. The second LOV contains the five natures mentioned
earlier for assignment to the first level. The third LOV is created to identify bank accounts.
It will be visible for the last level only. All accounts marked as “Bank” type in the chart

of accounts will be used in Chapter 21. Accounts other than banks will be marked as
“Others” for distinction. Take a look at the COA. x1s file provided in the downloaded code’s
Chapter 12 folder.

1. Tables 12-1 shows attributes for the Cost Center LOV.

Table 12-1. First LOV

Attribute Value

Name Cost Centers

Type Dynamic

Query SELECT cccode||'-'||cctitle t, cccode ¢ FROM gl_cost_center

WHERE cclevel=2 AND cocode=(select cocode from gl_users where
userid=:APP_USER)
ORDERBY 1

2. Setthe Name of the second LOV to COA Nature, and its Type
to Static.

Table 12-2. Second LOV

Display Value Return Value
Equities Equities
Liabilities Liabilities
Assets Assets
Revenues Revenues
Expenses Expenses

3. Setthe Name of the third LOV to COA Types, and its Type to
Static.

Table 12-3. Third LOV

Display Value Return Value
Bank Bank
Others Others

98

http://dx.doi.org/10.1007/978-1-4842-2502-8_21
http://dx.doi.org/10.1007/978-1-4842-2502-8_12

12.2 Copy Pages

CHAPTER 12 I CHART OF ACCOUNTS

The COA interface will be created by copying the two pages from the Cost Centers
segment. Open the Cost Centers Report page (Page 13). Next click the Create menu

+ v

and select the option Page as Copy. In the copy page wizard, set the attributes

mentioned in Table 12-4.

Table 12-4. Copy Pages Attributes

Attribute

Value

Create a page as a copy of
Copy from Page

Copy to New Page Number
New Page Name
Breadcrumb

Button (New Value)
Region (New Value)

Navigation Preference

Existing Navigation Menu Entry

Page in this application

13. Cost Centers Report

15

Chart of Accounts Report

- do not use breadcrumbs on page -

Create and Refresh (accept the default new values)
Chart of Accounts Setup

Identify an existing navigation menu entry for this
page
Setup

Now open the Cost Centers Form page (page 14) and repeat the previous steps to
make a copy of it using the attributes listed in Table 12-5.

Table 12-5. Page Copy Attributes

Attribute

Value

Page as a copy of

Copy from Page

New Page Number

New Page Name

Breadcrumb

Cost Center Region New Value

Navigation Preference

Existing Navigation Menu Entry

Page in this application

14. Cost Centers Form

16

Chart of Accounts Form

- do not use breadcrumbs on page -

Chart of Accounts

Identify an existing navigation menu entry for this
page

Setup

99

CHAPTER 12 © CHART OF ACCOUNTS
12.3 Modify the Report Page (Page 15)
Modify the COA report page by setting the attributes listed in Table 12-6.

Table 12-6. COA Report Page Modified

Action Attribute Value
Modify Region Region Title Chart of Accounts Setup
SQL Query SELECT “ROWID”, “COACODE”,

“COATITLE”, “COALEVEL,
“COANATURE”, “COATYPE’,
“CCCODE”
FROM “#OWNER#”.“GL_COA”
WHERE cocode = (select cocode from

gl_users
where userid =
:app_user)
ORDER BY coacode
Modify Interactive =~ Column Headings Set appropriate column headings as
Report shown in Figure 12-2
Target (under 16 (replacing the existing value 14 to
Attributes) point to the COA form page)
Name (under Set Items) P16_ROWID (previous value is
P14 ROWID)
Modify Button Button Name CREATE
Target Page = 16 (to call COA Form page)

Clear Cache = 16

12.4 Modify the Form Page (Page 16)

When you call this page to modify a COA entry, you'll see three items: P16_CCCODE,
P16_CCTITLE, and P16_CCLEVEL. These items relate to the cost centers setup. In this
section, you'll modify these items and will add a few more for this setup, as mentioned in
Tables 12-7 to 12-9.

100

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-7. P16_CCCODE, P16_CCTITLE, and P16_CCLEVEL Attributes

Attribute P16_CCCODE P16_CCTITLE P16_CCLEVEL
Name (new) P16_COACODE P16_COATITLE P16_COALEVEL
Width 11 50

Maximum Length 11 50

Type (under Source) Database Column Database Column Database Column

Database Column COACODE COATITLE COALEVEL

Add the new items in Table 12-8 to this page.

Table 12-8. New Item Attributes

Action Attribute Value

Create Page Item Name P16_COANATURE
Type Select List
Label Nature
Region Chart of Accounts Form
Value Required No (because nature is not required for

levels greater than 1)

LOV Type Shared Component
Shared Component COA NATURE (Table 12-2)
Display Null Value No
Source Type Database Column

Database Column

Source Used

Create Page Item Name
Type
Label
Save Session State
Region

Source Type

COANATURE

Always, replacing any existing value
in session state

P16_NATURE_DISPLAY
Display Only

Nature

No

Chart of Accounts Form
Null

(continued)

101

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-8. (continued)

Action Attribute Value
Create Page Item Name P16_COATYPE
Type Select List
Label Account Type
Region Chart of Accounts Form
Value Required No (because it is not required for
levels 1 through 3)
LOV Type Shared Component
Shared Component COA TYPES (Table 12-3)
Display Extra Values No
Display Null Value Yes
Source Type Database Column
Database Column COATYPE
Source Used Always, replacing any existing value
in session state
Create Page Item Name P16_CCCODE
Type Popup LOV
Label Cost Center
Value Required No
LOV Type Shared Component

Shared Component

Source Type

Database Column

Source Used

COST CENTERS (Table 12-1)
Database Column

CCCODE

Always, replacing any existing value
in session state

On the Rendering tab, expand the node labeled Pre-Rendering. Modify the process
named Fetch Row from GL_COST_CENTER under this node to show and link to the

correct segment, as shown in Table 12-9.

Table 12-9. Fetch Row Process Modifications

Action Attribute Value

Modify Process Name (new) Fetch Row from GL_COA
Table Name GL_COA
Primary Key Column ROWID
Primary Key Item P16_ROWID

102

CHAPTER 12 I CHART OF ACCOUNTS

12.5 Modify/Create Dynamic Actions

Modify the Evaluate Level dynamic action. In the When section, change item(s) from
P16_CCTITLE to P16_COACODE. Expand this dynamic action node and click Execute
PL/SQL Code under the True subnode to set the attributes listed in Table 12-10. The value
of level is determined by the code size.

Table 12-10. Evaluate Level Modifications

Action

Attribute

Value

Modify Dynamic Action

PL/SQL Code

Page Items to Submit

Page Items to Return

Book_Code\Chapter12\
Evaluate Level.txt

P16_COACODE
P16_COALEVEL

Create the dynamic actions listed in Table 12-11 to 12-20 to show/hide P16_
COANATURE and other page items when the value of the Level page item changes.

Table 12-11. Hide Show Item Dynamic Action

Action Attribute Value

Create Dynamic Action Name Hide Show Item
Event Change
Selection Type Item(s)
Item P16_COALEVEL
Condition equal to
Value 1

Note The previous condition is set for the dynamic action. It says the following:

If P16_COALEVEL=1 then

Show: P16_COANATURE and

Hide: P16 NATURE_DISPLAY,P16 COATYPE,P16 CCCODE

Else

Hide: P16_COANATURE

Table 12-12 shows the true action attributes.

103

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-12. True Action Attributes

Attribute Value

Action Show

Selection Type Item(s)

Item(s) P16_COANATURE (this is the page element to control)

Fire On Page Load Yes

Now, right-click the False node, and select Create False Action. Set the attributes in
Table 12-13 for the False action.

Table 12-13. False Action Attributes

Attribute Value

Action Hide

Selection Type Item(s)

Item(s) P16_COANATURE

Fire On Page Load Yes

Add another True action under the True node using the attributes in Table 12-14.

Table 12-14. Second True Action Attributes

Attribute Value

Action Hide

Selection Type Item(s)

Item(s) P16_NATURE_DISPLAY,P16_COATYPE,P16_CCCODE

Fire On Page Load Yes

Create the dynamic action in Table 12-15 to show/hide the Type and Cost Center
items when the value of Level is 4.

104

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-15. Show Type and Cost Center Dynamic Action

Action Attribute Value
Create Dynamic Action Name Show Type and Cost Center
Event Change
Selection Type Item(s)
Item P16_COALEVEL
Condition equal to
Value 4

Note The condition says the following:

If P16 _COALEVEL=4 then

Show: P16 _COATYPE,P16_CCCODE
Else

Hide: P16 _COATYPE,P16 CCCODE

Table 12-16 shows the true action attributes.

Table 12-16. True Action Attributes

Attribute Value

Action Show

Selection Type Item(s)

Ttem(s) P16_COATYPE, P16_CCCODE

Fire On Page Load Yes

Right-click the False node, and select Create False Action. Set the attributes in
Table 12-17 for the False action.

Table 12-17. False Action Attributes

Attribute Value

Action Hide

Selection Type Item(s)

Ttem(s) P16_COATYPE, P16_CCCODE

Fire On Page Load Yes

105

CHAPTER 12 I CHART OF ACCOUNTS

Evaluate and turn the account nature into a display-only item based on the first level,
for level numbers 2, 3, and 4, as shown in Table 12-18.

Table 12-18. Evaluate Nature Item Dynamic Action

Action Attribute Value

Create Dynamic Action Name Evaluate Nature
Event Lose Focus
Selection Type Item(s)
Item(s) P16_COACODE
Action (under Show node) Execute PL/SQL Code
PL/SQL Code Book_Code\Chapter12\

Evaluate Nature.txt

Page Items to Submit P16_COACODE
Page Items to Return P16_NATURE_DISPLAY
Fire on Page Load Yes

Create the dynamic action in Table 12-19 to show/hide P16_NATURE_DISPLAY
when the value of Level is > 1.

Table 12-19. Display Nature Dynamic Action

Action Attribute Value

Create Dynamic Action Name Display Nature
Event Change
Selection Type Item(s)
Item P16_COALEVEL
Condition greater than
Value 1

Table 12-20 lists the true action attributes.

106

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-20. True Action Attributes

Attribute Value

Action Show

Selection Type Item(s)

Item(s) P16_NATURE_DISPLAY
Fire On Page Load Yes

Create a False action by selecting Create False Action. Set the attributes shown in
Table 12-21 for the False action.

Table 12-21. False Action Attributes

Attribute Value

Action Hide

Selection Type Item(s)

Item(s) P16_NATURE_DISPLAY
Fire On Page Load Yes

12.6 Modify Validations

Using Table 12-22 modify the five page validations.

Table 12-22. Modify Validations

Check Level

Attribute Value

Type Item is NOT zero

Item P16_COALEVEL

Error Message You've defined an invalid account code

Check Parent Level

Attribute Value

PL/SQL Function Body Returning Book_Code\Chapter12\Check Parent Level.txt
Boolean

Error Message Parent level not found

(continued)

107

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-22. (continued)

Check Child Level
Attribute

PL/SQL Function Body Returning
Boolean

Error Message
Check in Transaction
Attribute

PL/SQL Function Body Returning
Boolean

Error Message

Disallow Code Modification
Attribute

PL/SQL Function Body Returning
Boolean

Error Message

Value
Book_Code\Chapter12\Check Child Level.txt

Child level found. Unable to delete account.

Value

Book_Code\Chapter12\Check in Transaction.
txt

Can’t delete. Account has been used in
transaction.

Value

Book_Code\Chapter12\Disallow Code
Modification.txt

Account code cannot be modified

12.7 Create Validation: Check Account Type

Each transaction level account (for example, level 4) must be associated with one of the
two specified types—Bank or Others. The validation created in Table 12-23 will prompt
users to select one from the specified two types.

Table 12-23. Validation: Check Account Type

Action Attribute Value
Create Name Check Account Type
Validation Type Item is NOT NULL
Item P16_COATYPE
Error Message Please select a Type for the new account
When Button Save
Pressed
Condition Type Item =Value
Item P16_COALEVEL
Value 4

108

CHAPTER 12 I CHART OF ACCOUNTS

12.8 Modify Processes

Modify the two processes (Save Record and Delete Record) using the PL/SQL code
provided in the Save Record.txt and Delete Record.txt files (in the Chapterl2 folder),
respectively. Also, replace the existing success and error messages with the appropriate
text to reflect the current module.

12.9 Create a Highlight Rule

Save your progress and run the module from the Setup » Chart of Accounts menu. Using
the Actions menu, create a highlight rule (Actions » Format » Highlight) to highlight the
root level, as shown in Figure 12-1. Also, arrange the report columns using the Actions
menu in the sequence illustrated in Figure 12-2 (later in the chapter).

vame Group
equence 10
Enabled Yes &
fighkght Type Row w
round Color POETSCH
#FFFFFF
Highlight Conditic
Codurmn Oper ator Exper ession

Lével W = W 1 -

Figure 12-1. Highlight rule

12.10 Test Your Work

Click the Create button (on page 15) to add the accounts listed in Table 12-24.
Figure 12-2 illustrates the two pages of this module. Note that the Level value will
be generated automatically for each account. Similarly, the account nature will be
inherited by subaccounts from the first level. Use the COA.x1s file—located in the
Chapter12 folder—to create the complete chart of accounts.

109

CHAPTER 12 I CHART OF ACCOUNTS

Table 12-24. Accounts to Add

Code Title Level Nature Type Cost Center
1 Capital 1 Capital N/A N/A
101 Share Capital 2 Capital (Inherited N/A N/A
& Reserve from parent)
101001 Paid up Share 3 Capital (Inherited N/A N/A
Capital from parent)
10100100001 M.H. 4 Capital (Inherited Others 09001
Thomson from parent)

f Accounts Setup

Create Refresh D

b -

Code |

Title

Level Nature

Capital

Cost Center

Type

74 101 Share Capital & Reserve @ Capital
71 101001 Paid up Share Capital @ Capital
» -
I 7 10100100001 M.H.Thomson ® cw oom Others
"4 10100100002 AF. Stevens 4 Capital
A 101002 Reserves 3
A 10100200001 Mults Asset Funds 4 Code * 10100200001
Z 10100200002 Income Fund 4 T
5 level 4
% 101003 Unappropriated Profit/Loss 3
Mature Coplnal
"1 10100300001 Unappropriated Profit/Loss 4 McsantType | [ORaiEE
Comt Center I90O1-N/A

Figure 12-2. Chart of accounts pages

110

Delete Cancel

CHAPTER 12 I CHART OF ACCOUNTS

12.11 Summary

The chart of accounts setup is the most important segment; without it, you cannot post
transactions in the application. It requires ample time to plan, design, and create the
chart of accounts. Once you create it in this application, you can copy this master COA to
other companies to save time. The next chapter will show you how to do that.

111

CHAPTER 13

Copy Chart of Accounts)

As mentioned earlier, the application has the capability of maintaining the accounts

of multiple companies simultaneously. To complement this feature, the application
contains a utility to allow you to copy the chart of accounts from one company to another.
Obviously, this is a great time-saver when setting up a new company. Before you start
development, make sure that the source COA has been created successfully before
invoking this utility. The page for this module consists of two select lists. The first one
allows you to specify the source company whose COA you want to copy from, while the
second one allows you to select the target company you want to copy the source COA to.

13.1

Create Page

This segment will be created manually using a blank page. After creating the blank page,
you’'ll add some items and a button to it along with a corresponding process to save a
COA for the target company. Create the page and page items as listed in Table 13-1.

Table 13-1. Page Attributes

Action Attribute Value
Create Page Page Number 54
Name Copy COA
Page Mode Normal
Breadcrumb - don’t use breadcrumbs on page -

Create Region

Navigation Preference

Existing Navigation Menu
Entry

Title
Type

Template

Identify an existing navigation
menu entry for this page

© Riaz Ahmed 2016

Utilities
Copy Chart of Accounts
Static Content
Standard
(continued)
113

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_13

CHAPTER 13 ' COPY CHART OF ACCOUNTS

Table 13-1. (continued)

Action Attribute Value

Create Page Item Name P54_SOURCE
Type Popup LOV
Label Source Company:
Region Copy Chart of Accounts
Template Required
Value Required Yes
LOV Type Shared Component
Shared Component COMPANIES

Create Page Item Name P54_TARGET
Type Popup LOV
Label Target Company:
Region Copy Chart of Accounts
Template Required
Value Required Yes
LOV Type Shared Component

Shared Component

COMPANIES

13.2 Add Button

Add a button to the page using Table 13-2. This button will submit the page to run the
Copy COA process, covered later in the chapter.

Table 13-2. Button Attributes

Action Attribute Value
Create Button Button Name Copy
Label Copy
Region Copy Chart of Accounts
Button Position Copy
Hot Yes
Action Submit Page

114

13.3 Add Validations

The three validations listed in Table 13-3 will ensure that the copy operation is possible.

Table 13-3. Validation Attributes

CHAPTER 13 ' COPY CHART OF ACCOUNTS

Action Attribute Value
Create Validation Name Select Different Companies
Type PL/SQL Function (returning
Error Text)
PL/SQL Function Book_Code\Chapter13\Select
Different Companies.txt
Error Message Select different Source and
Target companies
When Button Pressed Copy
Create Validation Name Check Source COA
Type PL/SQL Function (returning
Error Text)
PL/SQL Function Book_Code\Chapter13\Check
Source COA.txt
Error Message Chart of Accounts for the source
company doesn’t exist
When Button Pressed Copy
Create Validation Name Check Target COA
Type PL/SQL Function (returning
Error Text)
PL/SQL Function Book_Code\Chapter13\Check
Target COA.txt
Error Message Chart of Accounts for the target
company already exists
When Button Pressed Copy

13.4 Copy COA Process

The process listed in Table 13-4 will copy the source COA to the selected target company,
assuming, of course, the previous three validations were successful.

115

CHAPTER 13 ' COPY CHART OF ACCOUNTS

Table 13-4. Copy COA Process Attributes

Action Attribute Value

Create Process Name Copy COA
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter13\Copy COA.txt
Point Processing
Success Message Chart of Accounts copied successfully
Error Message Could not copy chart of accounts

When Button Pressed Copy

13.5 Test Your Work

Testing of this segment is simple. Invoke this module from the Copy Chart of Accounts
option under the Utilities menu. You will see a small form illustrated in Figure 13-1.
Select a company from the source LOV whose COA already exists in the database and
then attempt to copy it to a company that does not have a COA. The selected company’s
COA should be copied to the target company followed by the success message. Click the
button again and see what happens. It should, of course, fail this time.

Copy Chart of Accounts
Source Company: ? ABC & Company A
Target Company: 2 XYZ & Company ~

Figure 13-1. Simple form

13.6 Summary

After creating the COA for both companies, now you are in a position to post financial
transaction through vouchers, which is coming next.

116

CHAPTER 14

Enter Vouchers

This is the segment that you use to enter and record financial transactions. On the initial
page of this segment, you select a voucher type, which you created in Chapter 5. The
underneath report gets populated with all the vouchers related to the selected type.
Clicking the Create button calls the voucher form page, where you create a new voucher
for the selected type. The voucher form page contains two regions. The Enter Voucher
region displays the selected voucher type and three text items to input the voucher
number, date, and description. The number item can receive values up to ten digits,
whereas the date should fall in the month being displayed at the top of the page. Add a
description of up to 150 characters to describe the transaction. In the Transaction Details
region, you enter transactions by selecting the affected accounts from the COA and cost
centers, and you input the amount involved in the transaction either in the Debit or Credit
column. The Reference column is used to save additional information, such as check or
invoice numbers. Using the Add Row button, you can record any number of transactions
in a single voucher.

VOUCHER TABLES

CREATE TABLE gl_tran_master

(Tran_No NUMBER, Cocode NUMBER CONSTRAINT fk_tran_mastera REFERENCES
gl_company (Cocode) NOT NULL,

Coyear NUMBER(4) NOT NULL, comonthid NUMBER(2) NOT NULL,

vchcode NUMBER CONSTRAINT fk_tran_master2 REFERENCES gl_voucher(vchcode)
NOT NULL,

vchno NUMBER(10) NOT NULL, vchdate DATE NOT NULL,

vchdescription VARCHAR2(150) NOT NULL, createdby VARCHAR2(10) NOT NULL,
createdon DATE NOT NULL,

vchverified VARCHAR2(1) NOT NULL, vchposted VARCHAR2(1) NOT NULL, closing
NUMBER(1) NOT NULL,

CONSTRAINT pk_tran_master PRIMARY KEY (tran_no),

CONSTRAINT fk_tran_master3 FOREIGN KEY (Cocode,Coyear,Comonthid) REFERENCES
gL_fiscal_year)

© Riaz Ahmed 2016 117
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_14

http://dx.doi.org/10.1007/978-1-4842-2502-8_5

CHAPTER 14 I ENTER VOUCHERS

CREATE TABLE gl_tran_detail

(Line_No NUMBER, Tran_No NUMBER NOT NULL,

Cocode NUMBER CONSTRAINT fk_tran_detaili REFERENCES GL_Company (Cocode)
NOT NULL,

coacode VARCHAR2(11) NOT NULL, cccode VARCHAR2(5), vchdescription
VARCHAR2(150) NOT NULL,

vchdr NUMBER(15,2) NOT NULL, vchcxr NUMBER(15,2) NOT NULL, vchreference
VARCHAR2(25),

reconciled NUMBER(1) NOT NULL,

CONSTRAINT pk_tran_detail PRIMARY KEY (line_no), CONSTRAINT fk_tran_detail3
FOREIGN KEY (cocode,cccode) REFERENCES GL_Cost_Center, CONSTRAINT fk_tran_
detail4 FOREIGN KEY (cocode,coacode) REFERENCES GL_COA)

ALTER TABLE gl_tran_detail ADD CONSTRAINT fk_tran_detail2 FOREIGN KEY
(TRAN_NO) REFERENCES gl_tran_master(TRAN_NO) ON DELETE CASCADE ENABLE

CREATE SEQUENCE gl_tran_master_seq MINVALUE 1 START WITH 1 INCREMENT BY 1
CACHE 20
CREATE SEQUENCE gl _tran_detail_seq MINVALUE 1 START WITH 1 INCREMENT BY 1
CACHE 20

CREATE OR REPLACE TRIGGER "tran_detail get_cost_center" BEFORE INSERT OR
UPDATE ON gl_tran_detail
FOR EACH ROW
DECLARE
Vcccode varchar2(5);
BEGIN
if :new.cccode is null then
select cccode into Vcccode from GL_COA where cocode = :new.cocode and
coacode = :new.coacode;
tnew.cccode := Vcccode;
end if;
END;

ALTER TRIGGER "TRAN_DETAIL_GET_ COST_CENTER" ENABLE

118

CHAPTER 14 I ENTER VOUCHERS

Transaction data will be saved in two tables: GL_TRAN_MASTER and GL_TRAN_DETAIL.
The master table contains header information for each voucher, while the details table
carries transaction information. The two tables are linked together using a common key
(TRAN_NO), following a one-to-many relationship in which a single voucher record in the
master table can have multiple records in the details table. The tran_detail get cost_
center trigger is used to populate default cost centers in the details table from the COA
when no cost center is selected during voucher creation.

14.1 Create List of Values

Using Table 14-1, create two dynamic LOVs from scratch. You'll use the first LOV in the
Transaction Details region to select financial accounts from the COA for each transaction.
The second LOV will be used to fetch and create vouchers for the selected type.

Table 14-1. Dynamic LOVs

Lov Query

COA Entry Level SELECT coacode||'-"||coatitle d, coacode r FROM gl_coa
WHERE coalevel=4 and cocode=(select cocode from gl_users
where userid = :APP_USER)

ORDER BY coacode

Voucher Types SELECT vchtype d, vchcode r
FROM gl_voucher
ORDER BY vchtype

14.2 Create Pages

This segment will also comprise two pages, but here you will use the Form » Master
Detail Form option. The master page (42) will show header information from the
master table, while the detail page (43) will have two regions: Enter Voucher and
Transaction Details. The Enter Voucher region will receive header information,
whereas the second region will be used to enter details of each transaction. Create the
two pages using Table 14-2.

119

CHAPTER 14 I ENTER VOUCHERS

Table 14-2. Page Attributes

Page Type Attribute Value
Master Table Owner Accept the displayed value
Page Table Name GL_TRAN_MASTER
Columns Select all columns
Primary Key Type Select Primary Key Column(s)
Primary Key Column 1 TRAN_NO
Primary Key Source Existing Sequence
Sequence GL_TRAN_MASTER_SEQ
Include master row navigation Yes (default)
Include master report Yes (default)
Build Master Detail with Edit detail as tabular form on
same page
Master Page Number 42
Page Title Vouchers
Region Title Vouchers
Page Mode Normal
Breadcrumb - do not add breadcrumb region
to page -
Navigation Preference Identify an existing navigation
menu entry for this page
Existing Navigation Menu Entry Transactions
Detail Table Owner Accept the displayed value
Page Table Name GL_TRAN_DETAIL
Columns Select all columns
Primary Key Type Select Primary Key Column(s)
Primary Key Column 1 LINE_NO
Primary Key Source Existing Sequence
Sequence GL_TRAN_DETAIL_SEQ
Detail Page Number 43
Page Title Voucher Details
Master Region Title Enter Voucher
Detail Region Title Transaction Details

120

14.3

Click the Classic Report region called Vouchers and execute the following steps:

1.

CHAPTER 14 I ENTER VOUCHERS

Modify the Master Page (Page 42)

Replace the existing SQL query with the one that follows.
When you select a voucher type from the select list (created in
the next section), the report is refreshed using the conditions
specified in the WHERE clause and displays vouchers related to

the selected company, year, month, and type.

SELECT
"GL_TRAN_MASTER"."TRAN_NO" "TRAN_NO",
"GL_TRAN_MASTER"."COCODE" "COCODE",
"GL_TRAN_MASTER"."COYEAR" "COYEAR",
"GL_TRAN_MASTER"."COMONTHID"
"COMONTHID",
"GL_TRAN_MASTER"."VCHCODE" "VCHCODE",
"GL_TRAN_MASTER"."VCHNO" "VCHNO",
"GL_TRAN_MASTER"."VCHDATE" "VCHDATE",
"GL_TRAN_MASTER"."VCHDESCRIPTION"
"VCHDESCRIPTION",
"GL_TRAN_MASTER"."CREATEDBY"
"CREATEDBY",
"GL_TRAN_MASTER"."CREATEDON"
"CREATEDON",
"GL_TRAN_MASTER"."VCHVERIFIED"
"VCHVERIFIED",
"GL_TRAN_MASTER"."VCHPOSTED"
"VCHPOSTED",
"GL_TRAN_MASTER"."CLOSING" "CLOSING"

FROM "GL_TRAN MASTER"

WHERE (("GL_TRAN_MASTER"."COCODE" = :P42_COCODE and
"GL_TRAN_MASTER"."COYEAR" = :P42 COYEAR and
"GL_TRAN_MASTER"."COMONTHID"

= :P42_COMONTHID and "GL_TRAN_
MASTER"."VCHCODE" = :P42 VCHCODE))

Expand the Columns node under the Vouchers region. Using
drag and drop to arrange the report columns in this order:
TRAN_NO, VCHVERIFIED, VCHPOSTED, VCHNO, VCHDATE, and
VCHDESCRIPTION. Also, set the appropriate column headings
(shown later in the chapter).

Set the Default Sequence attribute for the VCHNO column to 1

and set Direction to Ascending to sort the report on this column.

Set the Type attribute to Hidden Column for the COCODE,
COYEAR, COMONTHID, VCHCODE, CREATEDBY,
CREATEDON, and CLOSING columns.

121

CHAPTER 14 I ENTER VOUCHERS

14.4 Add ltems (Page 42)

Using Table 14-3, create three hidden items on the master page to hold the company
code, year, and month ID values. You fetch values for these items through individual
SELECT statements. These values are forwarded through the Create button to the details
page (page 43) to record vouchers in the proper company and period. The Select List item
(P42_VCHCODE, listed last in Table 14-3) is added to display all voucher types. When you
switch voucher types, the page is submitted to fetch vouchers related to the selected type.

Table 14-3. Hidden Item Attributes

Action Attribute Value
Create Page Item Name P42_COCODE
Type Hidden
Value Protected Yes (default)
Region Vouchers
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users
WHERE userid = :app_user
Source Used Always, replacing any existing value in
session state
Create Page Item Name P42_COYEAR
Type Hidden
Value Protected Yes (default)
Region Vouchers
Source Type SQL Query (return single value)
SQL Query SELECT coyear FROM gl_users
WHERE userid = :app_user
Source Used Always, replacing any existing value in
session state
Create Page Item Name P42_COMONTHID
Type Hidden
Value Protected Yes (default)
Region Vouchers
Source Type SQL Query (return single value)
SQL Query SELECT comonthid FROM gl_users
WHERE userid = :app_user
Source Used Always, replacing any existing value in

session state

122

(continued)

CHAPTER 14 I ENTER VOUCHERS

Table 14-3. (continued)

Action Attribute Value

Create Page Item Name P42_VCHCODE
Type Select List
Label Select Voucher Type:
Page Action on Submit Page (page is refreshed with
Selection vouchers of the selected type)
Region Vouchers

Label Column Span 2
LOV Type Shared Component
List of Values VOUCHER TYPES

14.5 Modify Button (Page 42)

Modify the Create button on the master page. Set the Button Position attribute to Copy. In
the Behavior section, click the Target attribute link. In the Link Builder dialog box, set the
items as illustrated in Figure 14-1. Upon page submission, item values on the master page
(preceded with the & symbol and terminated with a full stop) will be forwarded to the
corresponding items on page 43 (specified under the Set Items column).

P43_COCODE &P42_COCODE : X
P43_COYEAR 8P42_COYEAR X
P43_COMONTHID \ 8P42_COMONTHID - X
P43_VCHCODE ~ 8P42_VCHCODE - X

Figure 14-1. Link Builder dialog box

14.6 Modify the Detail Page (Page 43)

Execute the following set of steps to modify the details page:

1. Click the Transaction Details (Tabular Form) region and
remove the default condition by setting Condition Type
to - Select -. This tabular form was displayed only when
P43_TRAN_NO carried some value. With this amendment, the
form will always be visible.

123

CHAPTER 14 I ENTER VOUCHERS

2. Inthe Enter Voucher region, mark all items as Hidden
except VCHNO, VCHDATE, and VCHDESCRIPTION. Add
appropriate labels (Number, Date, and Description) to the
three visible items. Also, set Template to Required, and set
Value Required to Yes for these three items. These three items
will accept voucher header information manually from users.
All other items will have autogenerated values, as configured
in the next couple of steps.

3. SetDefault Type to PL/SQL Expression and PL/SQL
Expression to V('APP_USER') for P43_CREATEDBY.

4. Set Default Type to PL/SQL Expression and PL/SQL
Expression to SYSDATE for P43_CREATEDON.

5. Set Default Type to Static Value and Static Value to N, N,
and 0 for P43_VCHVERIFIED, P43_VCHPOSTED, and P43_
CLOSING, respectively.

6. Change the Type attribute of P43_VCHDESCRIPTION from
Text Field to Textarea. Also, set Label Column Span to 2, Width
to 130, Height to 2, and Maximum Length to 150.

7. Inthe Transaction Details region, set the Type attribute
to Hidden Column (saves state) for the COCODE and
RECONCILED page items.

8. Setthe Compute Sum attribute to Yes for the VCHDR and
VCHCR columns to display the total of these columns on the
bottom.

9. Click the LINE_NO column. Set its Default Sequence to 1 and
Direction to Ascending to sort the transactions in the tabular
form on this column.

10. Modify the COCODE column. In the Default section, set its
Type to Item and enter P43_COCODE in the Item attribute.
Note that the database table GL_TRAN_DETAIL has a column
labeled COCODE, which is added to the table to implement a
constraint. This column will default to the value held in P43_
COCODE, which was evaluated and forwarded by the master
page in the previous section.

11. Modify the COACODE column. Switch its Type property from
Text Field to Popup LOV (shows displays value). Set LOV Type
to Shared Component, select COA ENTRY LEVEL for the list
of values, and Width to 35. These changes will present the
column as a Popup LOV, from where you can pick an account
from the chart of accounts.

124

12.

13.

14.

14.7

CHAPTER 14 I ENTER VOUCHERS

Modify the CCCODE column. Switch its Type property from
Text Field to Popup LOV (shows displays value). Set LOV Type
to Shared Component, select COST CENTERS for the list of
values, and set Width to 12.

Modify the columns VCHDR, VCHCR, and RECONCILED.
In the Default section, set the Type attribute to PL/SQL
Expression and enter 0 in the PL/SQL Expression box. These
settings will show zero as the default value in the former

two columns. The zero value is stored in the RECONCILED
column to mark every transaction initially as unreconciled.
After reconciling a transaction with the bank (in Chapter 21),
these default values will be replaced with 1.

Click the Attribute node (under Transaction Details) and set
Number of Rows to 500 to display the number of entries on
a single page. Scroll down toward the bottom. In the Break
Formatting section, enter Total in the Report Sum Label
attribute. At runtime, this will display the text (Total) at the
bottom alongside the summed-up debit and credit figures.

Add/Modify Items

Using Table 14-4, add a Display Only item under the Enter Vouchers region on page 43.
It is added to display the selected voucher type. This item is to be placed between the
VCHCODE and VCHNO items. You assess the voucher type using the value held in the
page item P43_VCHCODE, which was forwarded across; see Figure 14-1.

Table 14-4. Display Only Item Attributes

Action Attribute Value

Create Page Item Name P43_VCHTYPE

Item Type Display Only
Label Voucher Type:
Sequence 55 (to place it properly after the vchcode item)
Region Enter Voucher

Label Column Span 2
Source Type SQL Query (return single value)

SQL Query SELECT vchtype FROM gl_voucher WHERE
vchcode=:P43_VCHCODE

Source Used Always, replacing any existing value in
session state

125

CHAPTER 14 I ENTER VOUCHERS

The attributes specified in Table 14-5 are set to align the P43_VCHNO and P43_
VCHDATE items horizontally with the Voucher Type item.

Table 14-5. Alignment Attributes

Action Attribute Value
Modify Item Item Name P43_VCHNO
Start New Row No
Label Column Span 2
Template Required
Width 10
Value Required Yes
Maximum Length 10
Condition Type - Select - (in other words, no condition set

Modify Item Item Name
Start New Row

Label Column Span

Width

Maximum Length

for this item)

P43_VCHDATE

No

2

11 (to hold 01-AUG-2015 format)
11

14.8 Modify Validations on Page 43

Using Table 14-6, modify the ten default validations. Currently, these validations do not
respond to the CREATE button when you create a new voucher.

Table 14-6. Validation Modifications

Validations

Attribute Value

COCODE not null

COCODE must be numeric
COACODE not null
VCHDESCRIPTION not null
VCHDR not null

VCHDR must be numeric
VCHCR not null

VCHCR must be numeric
RECONCILED not null
RECONCILED must be numeric

PL/SQLExpression :requestin (‘SAVE) ‘CREATE’)

or :request like ‘GET_NEXT%’
or :request like ‘GET_PREV%’

126

CHAPTER 14 I ENTER VOUCHERS

14.9 Add Validations to Page 43

Using Tables 14-7 to 14-10, add four validations to page 43. The first validation
(mentioned in Table 14-7) checks for the existence of a voucher number and the presence
of a valid voucher date. You cannot use the same number of the same type in the same
company, year, and month. Suppose, for example, you are connected to the ABC &
Company with January 2015 as your working period. If you try to create JV 1, which
already exists in the database, then the system will prevent you from using the same
number for the same voucher type. Of course, you can create this number in another
period for the same type. The validation also keeps track of invalid dates. For instance,
you cannot create vouchers related to February in the month of January. If this is
required, then you need to change your working period. The validation will fire when you
click any of the four buttons (Apply Changes, Create, Next, or Previous).

Table 14-7. Validation to Check Voucher Number and Date

Action Attribute Value

Create Name Check Voucher Number and Date

Validation Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter14\Check Number Date.txt
Error Message Invalid voucher number and/or date
Condition Type PL/SQL Expression
PL/SQL Expression :request in ('SAVE','CREATE') or :request Like

'GET_NEXT%' or :request Like 'GET_PREV%'

The validation in Table 14-8 loops through the tabular form (Transaction Details)
region to check for the existence of records. From the basic principles of double entry
accounting, you must have at least two records in this section: one debit and another for
credit.

Table 14-8. Validation to Check Voucher Details

Action Attribute Value
Create Name Check Voucher Details
Validation Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter14\Check Voucher
Details.txt
Error Message Enter data in the details section
Condition Type PL/SQL Expression
PL/SQL Expression :request in ('SAVE','CREATE') or :request Like

'GET_NEXT%' or :request Like 'GET_PREV%'

127

CHAPTER 14 " ENTER VOUCHERS
A transaction is said to be invalid if you input either zero or different values in the
debit or credit columns or if you forget to enter a value into either of them. The next

validation, shown in Table 14-9, is added to prevent these errors.

Table 14-9. Validation to Check Debit/Credit Columns

Action Attribute Value

Create Name Check Debit/Credit

Validation Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter14\Check Debit Credit.txt
Error Message Enter positive amount either in Debit or Credit
Condition Type PL/SQL Expression
PL/SQL Expression :request in ('SAVE','CREATE') or :request Like

'GET_NEXT%' or :request Like 'GET_PREV%'

For a voucher to be valid, it must be balanced; in other words, there should be no
difference between debit and credit amounts. The validation in Table 14-10 will check
this situation and inform you, by showing you the difference, of any balance discrepancy.

Table 14-10. Validation to Check Voucher Balancing

Action Attribute Value

Create Name Voucher Balancing

Validation Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter14\Voucher Balancing.txt
Error Message Voucher is not balanced
Condition Type PL/SQL Expression

PL/SQL Expression :requestin ('SAVE','CREATE') or :request Like
'GET_NEXT%' or :request Like 'GET_PREV%'

14.10 Modify Process

Using Table 14-11, amend the following default processes. The first one is amended to
assign the primary key (populated from sequences) to the page item P43_TRAN_NO. This
is used in the next section to populate the TRAN_NO column in the Transaction Details
tabular form. Without this modification, the values defined in the Transaction Details
pane will not be propagated to the transaction details table. The second amendment is
made to display vouchers related to the selected criteria. In the absence of this clause,

all vouchers can be navigated through using the Next and Previous buttons, irrespective

128

CHAPTER 14 I ENTER VOUCHERS

of company, year, month, and voucher type. The first two processes (Process Row of
GL_TRAN_MASTER and ApplyMRU) are located on the Processing tab, while the last
one (Get Next or Previous Primary Key Value) is located under the Pre-Rendering section
in the Rendering tab. The PL/SQL Expression for the ApplyMRU process is modified

to execute the process when either the Save or Create button is pressed. By default, the
process applies to only the modified records.

Table 14-11. Process Modifications

Process Attribute Value
Process Row of GL_ Return Key Into Item P43_TRAN_NO
TRAN_MASTER
ApplyMRU PL/SQL Expression :requestin ('SAVE',/CREATE') or
:request like 'GET_NEXT%' or :request
like 'GET_PREV%'
Get Next or Previous Navigation Order TRAN_NO
Primary Key Value Column
Runtime Where COCODE=:P43_COCODE and
Clause COYEAR=:P43_COYEAR and

COMONTHID=:P43_COMONTHID
and VCHCODE=:P43_VCHCODE

14.11 Create Process

Using Table 14-12, add a process between Process Row process of GL_TRAN_MASTER and
ApplyMRU. This process will add the value of the P43_TRAN_NO item into the third tabular

form column.

Table 14-12. Process to Populate TRAN_NO Column

Action Attribute Value
Create Name Populate TRAN_NO in Transaction Details
Process py,e PL/SQL Code

PL/SQL Code FORiIN1.. apex_application.g_f02.COUNT LOOP
apex_application.g f03(i) := :P43_TRAN_NO;

END LOOP;

Sequence 15 (between Process Row of GL_TRAN_MASTER and
ApplyMRU)

Point Processing

129

CHAPTER 14 I ENTER VOUCHERS

14.12 Control Buttons

As per general accounting standards, verified vouchers (Chapter 16) and system-
generated closing vouchers (Chapter 29) must not be modified or deleted. Using

Table 14-13, amend the default conditions specified for the buttons on page 43 to prevent
these actions.

Table 14-13. Button Modifications

Action Attribute Value
Modify Button Names DELETE, SAVE and APPLY_CHANGES_MRD
Buttons Condition Type PL/SQL Function Body

PL/SQL Function Body Book_Code\Chapter14\Control Buttons.txt
Modify Button Name GET_PREVIOUS_TRAN_NO and GET_NEXT _
Buttons TRAN_NO

Condition Type PL/SQL Function Body

PL/SQL Function Body Book_Code\Chapter14\Control Navigation
Buttons.txt

14.13 Test Your Work

This exercise assumes you have completed all the previous chapters fully and have
sufficient sample data entered. For instance, selecting a voucher type is mandatory;
therefore, you must have created at least one. Similarly, you must also have created a
company, year, and month and created a COA. Once you have all these segments in
place, follow the next steps to create your first voucher. This is a payment voucher to pay
a creditor (A.B. Enterprises) through a bank (ABN Amro), against their invoice number
78345.

1. Select Transactions from the main menu.

2. Select a voucher type on the master page (in my case, it is
BPV-Bank Payment Voucher). Click the Create button. The
selected voucher type will be displayed as a read-only item on
the details page.

3. Enter 1 for the voucher number.

4. Select a date from the date picker. The date should fall within
the period appearing on the top of this page.

5. Type Paid to A.B. Enterprises against invoice # 78345 in the
Description box.

6. After entering voucher master information, click the Add Row
button to enter the transaction details.

130

http://dx.doi.org/10.1007/978-1-4842-2502-8_16
http://dx.doi.org/10.1007/978-1-4842-2502-8_29

CHAPTER 14 I ENTER VOUCHERS

7. Click the LOV button in the Account Code column, and select
A B. Enterprises from the pop-up list.

8. Now copy and paste the description from the main
Description box (entered in step 5) into the current row’s
Description column.

9. Enter 3000 in the Debit column.
10. Enter Inv # 78345 in the Reference column.
11. Add one more row using the Add Row button.

12. Select a bank account, such as ABN Amro Bank -
30200300001.

13. Paste the same description again for this row.

14. Enter 3000 in the Credit column. Figure 14-2 shows the
completed voucher.

15. Click the Create button to save this voucher.

et Vonshors Type: o . Py
—® List of Existing Vouchers
B8t Verifed Posted Vousher Munber 0 Date Description

New Voucher Form
N N i PLAR-0018 Pad to AR Enterproes vade mmvoece @ TGS

—® Master Region

Voucher Type: 8PV Voucher Mumber; © 1 Date* Lamns @

Owsaription: © Padd to &b, Unterprives vide {nvolce # 76345

tals ———@ Details Region

0O Moot Code Cont Comter Dhesaription Dbt Crodit Keterroae
O H1MIM0NL AR, Enterpries L Pad 0 AR Enterpasei vt wrvtsie 8 s L) v @ 1O
O JI0 R00NL-ABN Arveo Band ~ F0I1-NA ~ P 10 AR Enterpeie) vade wvete B L] Bl
Totad 000 o0
< »

Delete Chached A Biver

Figure 14-2. Complete voucher

131

CHAPTER 14 I ENTER VOUCHERS

14.14 Summary

There are many other things covered in this chapter that need some testing on your
part. Revisit these sections and give this segment a thorough test-run by trying
different things, especially those related to the four validations. Once you have
thoroughly tested the application by entering different types of transactions in
different fiscal periods, move on to the next chapter where you will create a form to
search the transactions you entered here.

132

CHAPTER 15

Search Transactions

The Transaction Search utility helps you locate transactions in a matter of seconds.
There are numerous occasions when an accountant needs to search for a specific
financial activity entered into a ledger. For example, the accountant may want to
know the details of a payment made against invoice number 78345. In this chapter,
you will create a search utility to locate a transaction. To search for transactions,

a criteria list is provided along with a search box. You select a value from the
criteria list (for example, Reference), then enter a value in the Search box

(for example, 78345), and finally hit the Search button. The utility searches for

the provided value in the selected column and displays the matching records in

an interactive report.

15.1 Create Page and Parameters Region

This segment will again be created manually using a blank page, followed by the addition
of some page components. It will be invoked from the Utilities menu. Create the page and
its components using Table 15-1.

Table 15-1. Page and Component Attributes

Action Attribute Value
Create Blank Page Number 53
Page Name Search Transaction
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu
entry for this page
Existing Navigation Menu Entry Utilities
(continued)
© Riaz Ahmed 2016 133

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_15

CHAPTER 15 I SEARCH TRANSACTIONS

Table 15-1. (continued)

Action Attribute Value
Create Title Search Parameters
Region Type Static Content
Template Standard
Create Button Name Search
Button Label Search
Region Search Parameters
Button Position Copy
Hot Yes
Action Submit Page
Create Page Name P53_CRITERION
Item Type Select List
Label Criterion:
Region Search Parameters
Label Column Span 2
Template Required
Value Required Yes
LOV Type Static Values
Static Values STATIC:Voucher Number;TM.
(Make sure that there are no VCHNO,
spaces before or after the Account Code;TD.COACODE,
semicolon character.) Account Title; COA.COATITLE,
Debit;TDVCHDR,
Credit; DVCHCR,
Master Description; TM.
VCHDESCRIPTION,
Detail Description;TD.
VCHDESCRIPTION,
Reference;TD.VCHREFERENCE

134

(continued)

CHAPTER 15 © SEARCH TRANSACTIONS

Table 15-1. (continued)

Action Attribute Value
Create Page Name P53_SEARCH
Item Type Text Field
Label Search:
Region Search Parameters
Start New Row No
Label Column Span 2
Template Required
Width 100
Value Required Yes

The LOV defined in the select list (P53_CRITERION) has eight options. Each
option comprises two values: a display value and a return value. The value placed in
the display position is shown to users. When the user selects a value, the return value
is what actually gets returned to the program. For example, when the user selects a
voucher number from the list, the program will receive a return value of TM.VCHNO,
which is the voucher number from the transaction master table. This value is then
used in the WHERE clause of the SQL statement covered in the next section to fetch the
required records.

15.2 Create an Interactive Report Region

The interactive report region created in Table 15-2 will show all the searched records
beneath the parameters region. It is based on a SELECT query that joins multiple tables to
provide complete information. The WHERE clause in this statement uses the value returned
by the criterion select list via the DECODE function. Note that COATITLE, VCHDESCRIPTION,
and VCHREFERENCE are character columns, so values in these columns are searched using
the LIKE operator.

135

CHAPTER 15 I SEARCH TRANSACTIONS

Table 15-2. Interactive Report Region

Action

Attribute

Create
Region

Title
Type
SQL Query

Template

Search Result
Interactive Report
SELECT TM.TRAN_NO, TM.VCHDATE, VCHVCHTYPE,

TMVCHNO, TD.COACODE, COA.COATITLE,
TM.VCHDESCRIPTION MD,
TD.VCHDESCRIPTION DD, TDVCHDR, TDVCHCR,
TDVCHREFERENCE

FROM GL_COA COA, GL_VOUCHER VCH,

GL_TRAN_MASTER TM, GL_TRAN_DETAIL TD

WHERE TM.COCODE=TD.COCODE AND TM.COCODE=

COA.COCODE AND

TM.TRAN_NO=TD.TRAN_NO AND

TM.VCHCODE=VCH.VCHCODE AND TD.COACODE=

COA.COACODE AND

TM.COCODE=(select cocode from gl_users

where userid=:APP_USER)
AND
(
decode(:P53_CRITERION, TD.COACODE',TD.
COACODE)=:P53_SEARCH

OR decode(:P53_CRITERION, COA.COATITLE',upper
(COA.COATITLE))
Like upper(:P53_SEARCH)

OR decode(:P53_CRITERION, TDVCHCR',TD.
VCHCR)=:P53_SEARCH

OR decode(:P53_CRITERION,' TDVCHDR',TD.
VCHDR)=:P53_SEARCH

OR decode(:P53_CRITERION,'TD.
VCHDESCRIPTION',upper(TD.
VCHDESCRIPTION))
Like upper(:P53_SEARCH)

OR decode(:P53_CRITERION, TMVCHDESCRIPTION,
upper(TMVCHDESCRIPTION))
Like upper(:P53_SEARCH)

OR decode(:P53_CRITERION, TDVCHREFERENCE',
upper(TDVCHREFERENCE))
Like upper(:P53_SEARCH)

OR decode(:P53_CRITERION,' TMVCHNO', TM.
VCHNO)=:P53_SEARCH

)

ORDER BY TMVCHDATE
Standard

136

CHAPTER 15 © SEARCH TRANSACTIONS

Add meaningful column headings (as shown later in the chapter in Figure 15-1) to
the report by expanding the Columns node under the Search Result interactive report.

15.3 Add a Dynamic Action

Using Tables 15-3 and 15-4, add a dynamic action to enable a wildcard character (%) to
be used to allow the searching of values in character columns. The true action fires when
you select a criterion from the list. The dynamic action then places the text %put search
string between these symbols% into the search box (P53_SEARCH) to inform users that the
character search should be added in between the two percent signs. The false action (in
other words, when a numeric criterion is selected) makes the search box empty. The two
parameter values (criterion and searched value) are then used in the WHERE clause (in the

previous section) to filter records in the SELECT statement.

Table 15-3. Dynamic Action For Static Assignment

Action Attribute Value
Create Dynamic Name Put Percent Sign
Action Event Change
Selection Type Item(s)
Item(s) P53_CRITERION
Condition in list
Value COA.COATITLE,
TMVCHDESCRIPTION,
TDVCHDESCRIPTION,
TDVCHREFERENCE
Action (under Show) Set Value
Set Type Static Assignment
Value %put search string between these
symbols%
Item (Under Affected P53_SEARCH
Elements)

Right-click the False node, and select Create False Action. Set the attributes in

Table 15-4 for the False action.

137

CHAPTER 15 I SEARCH TRANSACTIONS

Table 15-4. False Action Attributes

Attribute Value

Action Set Value

Set Type Static Assignment
Value Leave Blank
Selection Type Item(s)

Item(s) P53_SEARCH

15.4 Test Your Work

Invoke this page from the Utilities menu’s Search Transaction option, and execute the
following steps to search a transaction that you recorded in the previous chapter:

1. Select Reference from the Criterion list. The search box will
prompt you to enter a value within % symbols. Do so by
entering 78345 between these symbols and hit the Search
button. You'll get the voucher information you entered in the
previous chapter, as illustrated in Figure 15-1.

2. Switch criterion to Debit. Enter 3000 in the Search box, and
click the Search button. Once again, the same record appears
on your screen, but this time it is fetched using numeric
parameters.

Search Parameters

Criterion: * Rference ' ——® Searched Parameters @—— Sewch = %putsearch tring between these symboli’

l Q - - [— ﬂ
Date Type Mumber Account Title Master Description Detall Description Debit Credit Reference
01-JUL-201% BV 1 100100001 AR Erterpries Paid to AR, Enterprizes Pasd to AR, Enterprises ko)] vy @ TRMS

Figure 15-1. Search results

15.5 Summary

Once your data piles up in the database, the Search Transaction utility helps you dig out
a financial event from the data mine. In the next chapter, you will create a segment that
protects data from manipulation.

138

CHAPTER 16

Vouchers Verification

The Vouchers Verification segment serves two purposes. First, it allows authorized staff
to check the accuracy of business transactions, and second, it prevents verified vouchers
from being modified or deleted. Its main interface provides a Parameters region, where

you enter a range of dates and specify whether you want to see Unverified or Verified
vouchers. The date parameters receive voucher creation dates (not the voucher date).
The lower region of the page displays a list of vouchers based on the selected criteria.
Each voucher’s detail record starts with a link column, which calls another page where
an authorized person can see a complete voucher with all its details. The page carries
appropriate buttons to verify/unverify the voucher being shown.

16.1

Table 16-1. Page Attributes and Parameters Region

Create Page and Parameters Region

Create a blank page and configure it using Table 16-1.

Action Attribute Value
Create Blank Page Page Number 94
Name Vouchers Verification
Page Mode Normal
Breadcrumb - do not use breadcrumbs on
page -
Navigation Preference Identify an existing navigation
menu entry for this page
Existing Navigation Menu Closing
Entry
Create Region Title Parameters
Type Static Content
Template Standard
(continued)
© Riaz Ahmed 2016 139

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_16

CHAPTER 16 I VOUCHERS VERIFICATION

Table 16-1. (continued)

Action Attribute Value
Create Page Item Name P94_FROM
Type Date Picker
Label From
Region Parameters
Label Column Span 2
Template Required
Value Required Yes
Source Type PL/SQL Expression
Item Source Value SYSDATE
Create Page Item Name P94_TO
Type Date Picker
Label To
Region Parameters
Label Column Span 2
Template Required
Value Required Yes
Source Type PL/SQL Expression
Item Source Value SYSDATE
Create Page Item Name P94_CRITERION
Type Radio Group
Label Select:
Number of Columns 2
Region Parameters
Label Column Span 2
LOV Type Static Values
Static Values STATIC:Unverified; N, Verified;Y
Display Null Value No
Default Type Static Value
Static Value N

140

CHAPTER 16 © VOUCHERS VERIFICATION

Table 16-1. (continued)

Action Attribute Value
Create Button Button Name Get
Label Get
Region Parameters
Button Position Copy
Hot Yes
Action Submit Page

The two date picker items are added to the page where users will specify a range of
voucher creation dates. The purpose of using the Created On date column is to make it
easier for the verifying person to call all vouchers entered on a specific date, irrespective
of the financial period . For example, if the authorized person verifies all vouchers on
daily basis, then that person will need to view a list of all vouchers created today. The
radio group item is added to filter vouchers according to the selected criterion: Unverified
or Verified. Once a voucher is marked as verified, it vanishes from the Unverified list and
can be seen only by selecting the Verified option.

16.2 Create Interactive Report Region

The interactive report region in Table 16-2 is based on a SELECT statement. The region
refreshes when a user clicks the Get button after choosing one option from the radio group.
Note that this report is based on the CREATEDON column, which means that the user will
have to put a voucher creation date, not the voucher date itself, in the two date boxes. For
example, a voucher dated 01-JAN-2015 is created on January 2, 2015, and can be viewed

in this report only when you enter 02-JAN-2015 in the date boxes. The Closing column

in the transaction master table is a tag that is used by the application to identify year-end
vouchers. A value of 1 in this column signifies that the voucher is a system-generated
closing voucher and is not user-modifiable. See Chapter 29 for more on closing vouchers.

Table 16-2. Interactive Report Region Attributes

Action Attribute Value
Create Region Title Vouchers Verification
Type Interactive Report

SQL Query SELECT * FROM gl_tran_master
WHERE cocode=(select cocode from gl_users where
Userid = :APP_USER) AND
createdon between :P94_FROM AND :P94_
TO AND
vchverified=:P94_CRITERION AND closing=0
ORDER BY vchdate

Template Standard

141

http://dx.doi.org/10.1007/978-1-4842-2502-8_29

CHAPTER 16

VOUCHERS VERIFICATION

After creating the region, amend the interactive report region as follows:

1.

Table 16-3.

Hide all columns except VCHNO, VCHDATE,
VCHDESCRIPTION, CREATEDBY, and CREATEDON. Also
add the appropriate headings to these visible columns, as
shown in Figure 16-1 later in the chapter.

Create a link in the TRAN_NO column. This link will open
page 95 to display the selected voucher, where you can mark
it as verified and can even reverse it. The Set Items section

is populated with some key values that are passed to the
verification page for further processing. Recall that for page 42
(Vouchers), you created three hidden items (P42_COCODE,
P42_COYEAR, and P42_COMONTHID) and stored the
appropriate values in these items through SQL statements for
this purpose. You didn’t do this for page 94 because in page 42
hidden items were created to add conditions to the wizard-
generated report query. Here, you do not need these items

as you have already placed filters in the WHERE clause of the
interactive report’s SQL query. The items (P95_COCODE,
P95_COYEAR, P95_COMONTHID, and P95_VCHCODE) on
page 95 (coming up next) are populated with values from the
interactive report items: &P94_COCODE., &P94_COYEAR.,
&P94_COMONTHID., and &P94_VCHCODE. Set the
attributes mentioned in Table 16-3 to create the link.

Link Attributes

Action

Attribute Value

Modify
Column

TRAN_NO
Link
Call

Center

Column Name
Type

Heading

Column Alignment

Target Type = Page In This Application

Page =95
Set Items

Name Value

Link Text

P95_TRAN_NO
P95_COCODE
P95_COYEAR
P95_COMONTHID
P95_VCHCODE

Clear Cache =95

#TRAN_NO#
&P94_COCODE.
&P94_COYEAR.
&P94_COMONTHID.
&P94_VCHCODE.

<img src="#IMAGE_PREFIX#magnifying glass_

white_bg.gif" alt="">

142

CHAPTER 16 © VOUCHERS VERIFICATION

16.3 Create Verification Page

The main vouchers verification page will be created from the Voucher Details page you

N
created in Chapter 14. Edit page 43, click the Create menu - , and select the option
Page as Copy. Follow the wizard and set the attributes listed in Table 16-4.

Table 16-4. Verification Page Attributes

Attribute Value

Create a page as a copy of Page in this application

Copy from Page 43. Voucher Details

Copy to New Page Number 95

New Page Name Vouchers Verification Page

Breadcrumb - do not use breadcrumbs on page -

New Names Page Accept all the default new values

Navigation Preference Identify an existing navigation menu entry for this
page

Existing Navigation Menu Entry Closing

A copy of the voucher details page is created with a new ID (95). The new page will
function just like the one it is copied from. Let’s modify it to restrict some of its functions
and add some new components so that it can perform the intended task of verification.

16.4 Modify, Delete, and Create Page Buttons

The first amendment mentioned in Table 16-5 is being made on page 95 to handle the
application flow when the Cancel button is clicked. When clicked, this button will turn
the flow back to page 94 instead of 42.

Table 16-5. Cancel Button Attributes

Action Attribute Value
Modify Button Button Name CANCEL
Target Page 94

Delete the five buttons mentioned in Table 16-6 because they are no longer
applicable to this segment.

143

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

CHAPTER 16 I VOUCHERS VERIFICATION

Table 16-6. Button Deletions

Action Attribute Value

Delete Buttons Button Name DELETE, SAVE, CREATE, APPLY_CHANGES_
MRD, APPLY_CHANGES_ADD

Now add two new buttons, as listed in Table 16-7. The first button will be displayed
for vouchers that are yet to be verified (P95_VCHVERIFIED=N), while the second one will

appear for those vouchers that are already marked as verified.

Table 16-7. New Buttons Attributes

Action Attribute Value Button 1 Value Button 2
Create Buttons Button Name Verify Unverify
Label Verify Unverify
Region Enter Voucher Enter Voucher
Button Position Copy Copy
Hot Yes Yes
Action Submit Page Submit Page
Condition Type Item = Value Item = Value
Item P95_VCHVERIFIED P95_VCHVERIFIED
Value N Y

Tip To set the same attribute value for multiple page items, select all items using
Ctrl+click and set the desired value.

16.5 Modify Page-Rendering Process

On the Rendering tab, expand the Pre-Rendering node and click the process named Get
Next or Previous Primary Key Value. Replace its existing Runtime Where clause using
Table 16-8 to fetch and display vouchers according to the specified criteria.

Table 16-8. Modify Page-Rendering Process

Action Attribute Value
Modify Name Get Next or Previous Primary Key Value
Process

Runtime Where COCODE=:P95_COCODE and createdon between
Clause :P94_FROM and :P94_TO and vchverified=:P94_
CRITERION and CLOSING=0

144

CHAPTER 16 © VOUCHERS VERIFICATION

16.6 Delete Validations

Delete all validations from this page. Since all the validations on this page relate to the
voucher entry segment, they are not applicable to the verification process.

16.7 Delete Processes

Just like validations, you do not need the defined six processes for this segment. So, delete
all these processes.

16.8 Add Processes

Using Table 16-9, add two processes. As the name implies, the first process (Verify) marks
avoucher as verified in the transaction master table. The second one is just the opposite
and is added to reverse the verification process. Once a voucher is marked as verified,
normal users cannot amend or delete it unless an authorized person reverses its state to
unverified. Note that since each transaction number (TRAN_NO) is generated uniquely
and belongs to a particular company, no more comparisons are needed in the UPDATE

statement’s WHERE clause.

Table 16-9. Process Attributes

Action Attribute Value
Create Process Name Verify
Type PL/SQL Code
PL/SQL Code update gl_tran_master set
vchverified="Y' where tran_no=:P95_
TRAN_NO;
Point Processing
When Button Pressed Verify
Create Process Name Unverify
Type PL/SQL Code
PL/SQL Code update gl_tran_master set
vchverified='"N' where tran_no=:P95_
TRAN_NO;
Point Processing
When Button Pressed Unverify

145

CHAPTER 16 I VOUCHERS VERIFICATION

16.9 Handle Branches

Remove the first branch named Go To Page 95 with the invalid When Button Pressed
value. Set the When Button Pressed attribute to GET_NEXT_TRAN_NO and GET_
PREVIOUS_TRAN_NO, respectively, for the next two branches, also named as Go To
Page 95.

Using Table 16-10, add a new branch. This branch is added to page 95 to move
around vouchers of the selected criteria. Without this, when you click the Verify button,
the voucher is marked as verified, and the Unverified button becomes visible. In a
situation like this, you cannot verify subsequent vouchers in one go and then move
back to select the next one manually. Once in place, the branch keeps you on the same
page with the next record fetched using a value (&P95_TRAN_NO_NEXT.) held in the
corresponding page item (P95_TRAN_NO) specified in the Set Items section.

Table 16-10. Branch Attributes

Action Attribute Value
Create Branch Name Stay on this page
Point After Processing
Type Page or URL (Redirect)
Target Type = Page In This Application
Page =95
Set Items
Name Value
P95_TRAN_NO &P95_TRAN_NO_
NEXT.
Condition Type Request is contained in Value
Value Verify,Unverify

16.10 Test Your Work

Execute the following steps to test this segment, which you can invoke from the Closing
menu:

1. Select a date range in which you entered vouchers
(see Figure 16-1).

2. With the Unverified option selected, hit the Get button.
The Vouchers Verification region will be populated with all
unverified vouchers.

3. Click the Call link for a voucher to bring up page 95 with all
the details of the selected voucher.

146

Parameters

CHAPTER 16 © VOUCHERS VERIFICATION

Click the Verify button on this page (that is, page 95). The
selected voucher will be marked as verified, and the next
voucher will come up automatically for verification.

Click the Cancel button. Select the Verified option from the
Parameters region and click Get again to have a list of all the
vouchers you just verified.

Go to Select menu (from the main menu), and select the
appropriate period for which you created the previously
verified vouchers. Select Transactions from the main menu
followed by the type of voucher you just verified. The Verified
column on this page should now be displaying Y for all the
verified vouchers. Click the Edit link for a verified voucher to
open its details. Note that all the buttons, except Cancel and
Add Row, have disappeared. This is because of the condition
that you implemented in Chapter 14 (see Table 14-13), which
says that you can hide all buttons if a voucher either is marked
as verified or is an autogenerated closing voucher, which
you'll create in Chapter 29.

Vouchers Verification

from = 01-Aug-2015
]—C Date Range Based on Creation Date
31-Aug-2015

To

Select: & Unverified O Verified

Actions v

Mumber Date Description CreatedBy | Created On
1 01-JUL-2015 Paid to AB. Enterprizes vide irvoice # 78345 SUPER 18-AUG-2015
1 01-AUG-2015 Paid to XY.Corporation against irrvoice # 87654 vide chq ® 123456 SUPER 22-AUG-2015
1 01-JUL-2016 Recorded local export vide imvoice # 123456 SUPER 31-AUG-2015
2 15-JUL-2016 Recorded local sales vide invoice ® §87654 SUPER I1-AUG-2015

Link to the Main Verification Page

Figure 16-1. Voucher verification

147

http://dx.doi.org/10.1007/978-1-4842-2502-8_14
http://dx.doi.org/10.1007/978-1-4842-2502-8_29

CHAPTER 16 I VOUCHERS VERIFICATION

16.11 Summary

In this chapter, you created a mechanism that not only ensures the accuracy of
transactions but also prevents data manipulation. After verifying a voucher, a user can
print its hard copy, which comes next.

148

CHAPTER 17

Vouchers Report

The application enables you to make hard copies of vouchers. Using this feature you can
print either a single voucher or multiple vouchers at once. Note that the output format
for all the reports created in this application will be PDE To get these PDFs, you must
have access to a print server, such as Oracle BI Publisher. As of this writing, the online
APEX development environment supports PDF printing. You will use Microsoft Word

to create report templates in this book (I used Word 2003). In addition, you need Oracle
BI Publisher Desktop to prepare the report templates, for which you might be asked to
install Java Runtime Edition (JRE) and Dot Net Framework (in my case, it was jre-6u11-
windows-1586-p-s.exe and NetFx20SP1_x86.exe). To begin with, you have to create a
parameters form to specify the criteria used to produce the hard-copy report.

17.1 Create a List of Values

Using Table 17-1, create a dynamic LOV from scratch. It contains a list of users and will
be used in the next section to print only those vouchers that were recorded by the user
selected from the list.

Table 17-1. Dynamic LOV Attributes

Action Attribute Value
Create LOV Name Users
Type Dynamic
Query SELECT userid d, userid r FROM gl_users

WHERE cocode=(select cocode from gl_users where
userid = :APP_USER)

17.2 Create the Parameters Form

Create a blank page and follow the instructions in Table 17-2 to add parameter
components.

© Riaz Ahmed 2016 149
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_17

CHAPTER 17 I VOUCHERS REPORT

Table 17-2. Parameters Form Attributes

Action Attribute Value

Create Blank Page =~ Page Number 71
Name Vouchers Report
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation

menu entry for this page

Existing Navigation Menu Reports
Entry

Create Region Title Vouchers Report
Type Static Content
Template Standard

Create Page Item Name P71_VCHCODE
Type Select List
Label Voucher Type
Region Vouchers Report
Label Column Span 2
Template Required
Value Required Yes
LOV Type Shared Component
Shared Component Voucher Types
Display Null Value No

Create Page Item Name P71_VCHDATEFROM
Type Date Picker
Label Voucher Date
Region Vouchers Report
Label Column Span 2
Template Required
Value Required Yes

Create Page Item Name P71_VCHDATETO
Type Date Picker
Label Clear Label Box
Region Vouchers Report
Label Column Span 2
Value Required Yes

150

(continued)

Table 17-2. (continued)

CHAPTER 17 I VOUCHERS REPORT

Action Attribute Value
Create Page Item Name P71_CREATEDFROM
Type Date Picker
Label Creation Date
Region Vouchers Report
Label Column Span 2
Template Required
Value Required Yes
Default Type PL/SQL Expression
PL/SQL Expression SYSDATE
Create Page Item Name P71_CREATEDTO
Type Date Picker
Label Clear Label Box
Region Vouchers Report
Label Column Span 2
Value Required Yes
Default Type PL/SQL Expression
PL/SQL Expression SYSDATE
Create Page Item Name P71_VCHNOFROM
Type Text Field
Label Voucher Number
Region Vouchers Report
Label Column Span 2
Template Required
Value Required Yes
Default Type Static Value
Static Value 1 (from minimum voucher number)
Create Page Item Name P71_VCHNOTO
Type Text Field
Label Clear Label Box
Region Vouchers Report
Label Column Span 2
Value Required Yes
Default Type Static Value
Static Value 9999999999 (fo maximum voucher

number)

(continued)

151

CHAPTER 17 I VOUCHERS REPORT

Table 17-2. (continued)

Action Attribute Value
Create Page Item Name P71_USERID
Type Select List
Label Created By
Region Vouchers Report
Label Column Span 2
Template Required
Value Required Yes
LOV Type Shared Component
List of Values Users
Display Null Value No
Default Type PL/SQL Expression
PL/SQL Expression V('APP_USER") (show id of the
logged in user)
Create Button Button Name Print
Label Print
Region Vouchers Report
Button Position Copy
Hot Yes
Action Submit Page

17.3 Create Report Query

A report query, as the name suggests, is a SELECT statement that fetches records according
to the specified parameters. This query is then associated with a report layout to print
fetched records in a desired format. Create a report query using the following steps:

1. Go to Shared Components and click the Report Queries link
located in the Reports section.

2. Click the Create button to create a new query.

3. Typevouchers_report in the Report Query Name box, set
Output Format to PDE, set View File As to Attachment, and
then click Next.

4. Copy and paste the SQL query contained in the Book_Code\
Chapter17\Report Query.txt file and click Next.

152

CHAPTER 17 I VOUCHERS REPORT

5. Select the XML Data option for Data Source for Report
Layout to export your report definition as an XML file. This
file contains the data fetched using the previous SELECT
statement.

6. Click the Download button (on the same Download Definition
page), click the Save File option in the resulting dialog box,
and click OK. This will save an XML file (vouchers_report.
xml) to your local hard drive.

7. Click the Create Report Query button.

8. On the Confirm page, click the Test Report button. In the
resulting pop-up dialog box, select Open with Adobe Acrobat
option, and click OK. Since the report is based on several
bind variables (whose values will be passed on to the query
from the page 71 parameters), a blank generic PDF will be
displayed at this stage.

9. Click the Create button to finish the wizard.

17.4 Download and Install Bl Publisher Desktop

BI Publisher provides client-side tools that aid in building and testing layout templates.
This consists of a plug-in to Microsoft Word for building RTF templates. You can
download it from www.oracle.com/technetwork/middleware/bi-publisher/
downloads/index.html.

Download the software using the link BI Publisher Desktop 10.1.3.4.1 for Windows
(123 MB) and install it on your PC using the . exe file. Once the installation completes,
you'll see the BI Publisher plug-in as a menu item in Microsoft Word. In newer Microsoft
Word versions, it will be placed under the main Add-Ins menu. Note that I have provided
the link that I tested myself. There might be some new versions of BI Publisher Desktop
available when you access the download page. It will be feasible to go with the tested
version first.

17.5 Create Report Template in Microsoft Word

Perform the following steps in Microsoft Word to create a template for the vouchers
report. For your convenience, I have provided both XML and RTF files with the book’s
code.

1. Select an A4 size page and set the margins.

2. From the Data ribbon (under the Oracle BI Publisher main
menu), select Load XML Data, as shown in Figure 17-1. In
some Word versions, it is listed as Sample XML.

153

http://www.oracle.com/technetwork/middleware/bi-publisher/downloads/index.html
http://www.oracle.com/technetwork/middleware/bi-publisher/downloads/index.html

CHAPTER 17 I VOUCHERS REPORT

.-/é;\l =~ LI vouchers_report [Compatibility Mode] - Mici
- Home Insert Page Layout References Mailings Review View Add-Ins
Oradle B1 Publisher ~ [Data ~] Insert ~ Preview ~ Tools ~ Help ~
5 LloadXMLData.. |

| 2| Load XML Schema...
Menu Commands g CUSEom 1001Dare

Figure 17-1. Load XML Data menu item

3. Select vouchers_report.xml and click Open to load the XML
file you downloaded in the Create Report Query section. The
message “Data Loaded Successfully” will appear. Click OK.

4. Select Insert and then choose the option Table Wizard (as
shown in Figure 17-2) to add a table. This table will be used
to output voucher details. Set Report Format to Table and
click Next. On the next form, set Data Set to DOCUMENT/
ROWSET/ROW. Click Next again.

|’:I-,\ A < ~ 2 I vouchers_report [Compatibility Mode] - Mic
3

Home Insert Page Layout References Mailings Review View Add-Ins

Oracle BI Publisher ~ Data - [Insert =| Preview ~ Tools ~ Help ~
ab| Field...
73 Table Wizard...

Menu Commands 3] Table/Form...

Figure 17-2. Table Wizard menu item

5. Move the Vchno, Coacode, Coatitle, Cccode, Cctitle, Vchdr,
Vcher, and Vchreference fields to the right pane, as illustrated
in Figure 17-3. Click Next.

154

CHAPTER 17 I VOUCHERS REPORT

Table Wizard 3

Which fields do you want to show in your report?

Coname Yehno
Vchcode Coacode
VYchtitle Coatitle
Ychdate > | Cecode
Ychdescription Cctitle
Createdby = I Wehdr
Createdon Yecher
Line No Ychreference
< |
<< |
KIN 2 KIN 2

Figure 17-3. Moving the fields

17.6

Select Vchno in Group By to group records according to
voucher number. Click Next and then do not select any field
for Sort By. Click Next once more and then add appropriate
labels, as shown in Figure 17-5 later in this chapter.

Click Finish.

Template Formatting

Follow these steps to format the template:

1.

Double-click the group field titled “group ROW by VCHNO."
On the Properties tab, set the Break attribute to Page. This will
print each new voucher on a separate page. Click OK.

Select the Insert ribbon and select Field. Select the CONAME
field and click the Insert button to add this field to the next
row just after the group “group Row by VCHNO.” You can also
add the logo (Logo. jpg is provided with the book’s source
code) just before the company name.

Add the VCHTITLE field under CONAME to print the voucher
type under the company name.

Add the VCHNO field and add the label Voucher Number in
front of it.

Add the label Printed on: and append the NOW field to it. The
field (NOW) contains current timestamp.

155

CHAPTER 17 I VOUCHERS REPORT

156

10.

11.

12.

13.

14.

15.

16.

Add the VCHDATE field using the instructions in step 2. Enter
Voucher Date as its label.

Add the VCHDESCRIPTION field and put a label on it. Click
Change.

Double-click the first COACODE table column labeled
Account. In BI Publisher’s Properties dialog, click the
Advanced tab. Append COATITLE to the existing code so that
it looks like this:

<?COACODE?>-<?COATITLE?>

Click OK. This expression will concatenate an account code
and its corresponding title in the report.

Delete the column COATITLE.

Repeat the previous two step to join the CCCODE and
CCTITLE (cost center code and title) fields.

Double-click VCHDR. Set its type to Number and its format
to #,##0.00. Using the standard alignment tool in Microsoft
Word, right-align the field. Repeat this step for VCHCR.

Add a blank row (by pressing the Enter key) before the page
“breakend ROW by VCHNO!” Click Insert and then select
Field. In the Field dialog box, select VCHDR. From the
Calculation list, select sum, select On Grouping, and click
Insert. Repeat this step for VCHCR. Insert a label of Total and
then format and align the two fields as shown in the template.
This step will add a new row (just after the last transaction) to
display the sum of the debit and credit columns.

Add the fields CREATEDBY and CREATEDON, as shown in
Figure 17-4, to print who created the voucher along with its
creation date.

Click the View menu and select Header and Footer. Put the
cursor in the Footer section. From Insert Auto Text, select
Page X of Y to print the page number on the bottom of each
page. In the latest versions of Word, it is located under the
menu Insert » Page Number » Bottom of Page. Figure 17-4
shows the completed report template.

Save the report to your hard drive as vouchers_report and
select Rich Text Format (RTF) as its type.

Close Microsoft Word.

CHAPTER 17 I VOUCHERS REPORT

group ROW by VCHNO (—E’
CONAME < :]
The Cloud Accountant Vouchers Report

page breakend ROW by VCHNO

Figure 17-4. Report template, with step numbers

Note For your convenience | have provided a completed template (vouchers_report.
rtf) in the Chapter17 folder in the downloaded code.

17.7 Create the Report Layout

After creating the report template, the next step is to upload it to APEX. To do so, follow
these steps:

1. Goto Shared Components and select Report Layouts (in the
Reports section).

2. Click Create to upload a new layout.
3. Select Named Columns (RTF) and click Next.

4. SetLayout Name to vouchers_report, Report Layout File
to vouchers_report.rtf (select the file using the browse
button), and click the Create Layout button.

157

CHAPTER 17 I VOUCHERS REPORT

17.8 Attach the Report Layout to Report Query

Your report template is uploaded, so now you need to attach this layout to the
corresponding query you defined in the Create Report Query section. Execute the
following steps for this:

1. Go to Shared Components and select Report Queries.

2. Click the vouchers_report query. In Report Query Attributes,
switch Report Layout from Use Generic Report Layout to
vouchers_report. Click the Apply Changes button. This way,
the APEX engine will use vouchers_report.rtf to display the
result returned by the report query.

17.9 Send the Print Request

Edit page 71 and create a branch listed in Table 17-3 to send a print request when the
Print button is clicked. Go to the Processing tab, right-click the After Processing node,
and select Create Branch from the context menu. Set the attributes in in Table 17-3 for the

new branch.

Table 17-3. Branch Attributes

Action Attribute Value
Create Branch Name Run Vouchers Report
Point After Processing
Type Page or URL (Redirect)
Target Type: Page in this Application
Page: 0

Request (under Advanced section):
PRINT_REPORT=vouchers_report

When Button Pressed Print

Note You must use the same name and case for Report Query, Layout, and Branch
Request or you’ll get an error while printing the PDF. For instance, use vouchers_report
for all three in the current scenario. Also, ensure that there is no space in the print request
(PRINT_REPORT=vouchers_report) or you'll get an “ORA-22275: invalid LOB locator
specified” error while printing the PDF report.

158

CHAPTER 17 I VOUCHERS REPORT

17.10 Create Validation

The validation created in Table 17-4 will check the data for the existence of the provided

criteria.

Table 17-4. Validation Attributes

Action Attribute Value
Add Validation Name Check Data
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter17\Check
Data.txt
Error Message No data found
When Button Pressed Print

17.11

Test Your Work

Suppose that right now you have just one voucher that you created in Chapter 14. Let’s
fill in the parameters form (as illustrated in Figure 17-5) to see its printed version, also
illustrated in Figure 17-5.

1.

Click the Vouchers option (under Reports) in the Main Menu
to open page 71, Vouchers Report.

Select BPV or the type you used when you created the voucher
in Chapter 14.

Also select the same date you entered there in both Voucher
Date boxes.

It's good if you recall the date you entered that voucher. If you
can'’t, then select a long range for Creation Date.

Enter 1 in both Voucher Number boxes, or leave them to their
default minimum and maximum values.

Select the ID of the user who entered that voucher and click
the Print button. This should bring up a pop-up window to
either open or save the PDF report. Choose either of these
options and take a look at the printed version of the voucher.

159

http://dx.doi.org/10.1007/978-1-4842-2502-8_14
http://dx.doi.org/10.1007/978-1-4842-2502-8_14

CHAPTER 17 I VOUCHERS REPORT

Report Parameters @—— Vouchers Report -

Voucher Type ~ B9V 4

Vouches Dote © 01-5-2015]
12018 (]

PDF Qutput .

Creation Date 11-Aug- 2015 &

1A 2015 &=
Youcher Number 2 1
Wi
Created By~ WRER N

ABC & Company

The Cloud Vouchers Report

Ll LR 17-AUG-2015 05:37.57

s P v o]
orun s

Paid to A B. Enterprises vide invoice # 78345

Credit Reference

Account Cost Center Debit
20100100001-A B. Enterprises 09001-N/A 3,000.00 0.00 Inv# 78345
30200300001-ABN Amro Bank 09001-N/A 0.00 3,000.00

Total 3,000.00 3,000.00

Figure 17-5. Printing a report

17.12 Summary

Printed copies of vouchers are kept in folders along with supporting documents (bills,
invoices, and so on) for future referencing. The next chapter discusses another significant

financial report called Ledger.

160

CHAPTER 18

Ledger Report

A ledger report is a report that shows all financial activities performed in an account.

In this application, it consists of seven columns, as illustrated later in the chapter in
Figure 18-1. When a voucher is saved, all transactions you define in it are posted to the
relevant ledger accounts with the respective debit and credit figures. The ledger report
shows accounts with their transactions and balances. To generate this report, you use
the Ledger Report Parameters form, where you specify the duration and the range of
accounts you want to browse. As you can see, the parameter form has two buttons: the
Display button is used to produce an onscreen view of the ledger report, while the Print
button produces a hard copy. A useful ability of the report is that it contains a link for
viewing the source voucher. This link will be created on the Voucher Date column.

18.1 Create Page and Parameters Form

The Ledger report segment will be created using a blank page containing two regions,

as listed in Table 18-1. The first region will receive report parameters, and the second
one (to be created in the next section) will show the ledger report onscreen. You will add
two pop-up LOVs to the parameter form. Using these LOVs, users will select financial
accounts from the COA. Note that the COA Entry Level LOV will show only transaction-
level accounts (in other words, level 4 accounts).

Table 18-1. Page and Parameters Form Attributes

Action Attribute Value
Create Page Number 72
Blank Page 1, Ledger Report

Page Mode Normal

Breadcrumb - do not use breadcrumbs on page -

Navigation Preference Identify an existing navigation menu entry for

this page
Existing Navigation Menu Reports
Entry
(continued)

© Riaz Ahmed 2016 161

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_18

CHAPTER 18 I LEDGER REPORT

Table 18-1. (continued)

Action Attribute Value
Create Title Ledger Report Parameters
Region Type Static Content
Template Standard
Create Name P72_FROM
Pageltem 1y, Date Picker
Label From
Region Ledger Report Parameters
Label Column Span 2
Template Required
Value Required Yes
Source Type SQL Query (return single value) (select fiscal
year’s starting date)
SQL Query SELECT pfrom From gl_fiscal_year
WHERE cocode=(select cocode from gl_users
where userid = :APP_USER)
AND
coyear=(select coyear from gl_users
where userid = :APP_USER)
AND
comonthid=1
Source Used Only when current value in session state is null
Create Name P72_TO
Pageltem 1y, Date Picker
Label To
Region Ledger Report Parameters
Label Column Span 2
Template Required
Value Required Yes
Source Type SQL Query (return single value) (select fiscal
year’s closing date)
SQL Query SELECT pto FROM gl_fiscal_year
WHERE cocode=(select cocode from gl_users
where userid = :APP_USER)
AND
coyear=(select coyear from gl_users
where userid = :APP_USER)
AND
comonthid=12
Source Used Only when current value in session state is null

162

(continued)

Table 18-1. (continued)

CHAPTER 18 I LEDGER REPORT

Action Attribute

Value

Create Name
Page Item Type
Label
Region
Label Column Span
Template
Value Required
LOV Type
List of Values
Create Name
Page Item Type
Label
Region
Label Column Span
Template
Value Required
LOV Type
List of Values
Create Button Name
Button Label
Region

Button Position

Action
Create Button Name
Button Label

Region

Button Position

Action

P72_ACCOUNTFROM
Popup LOV

From Account
Ledger Report Parameters
2

Required

Yes

Shared Component

COA Entry Level
P72_ACCOUNTTO

Popup LOV

To Account
Ledger Report Parameters
2

Required

Yes

Shared Component

COA Entry Level

Display

Display

Ledger Report Parameters
Copy

Submit Page

Print

Print

Ledger Report Parameters
Copy

Submit Page

163

CHAPTER 18 I LEDGER REPORT

18.2 Create an Interactive Report Region

Using Table 18-2, create an interactive report region to produce the onscreen version of
the ledger report. The SELECT statement used in this report comprises two subqueries
joined together using a UNION ALL set operator. The first subquery calculates opening
balances of accounts by summing up all debit and credit figures recorded before the
From date, specified in the P72_FROM date picker item. The second subquery fetches
all transactions recorded between the two selected dates, inclusive. These are the
transactions that you want to see in the ledger report. The queries also contain filters to
process only those accounts selected in the two pop-up lists.

Table 18-2. Interactive Report Region

Action Attribute Value
Create Region Title Ledger
Type Interactive Report

SQL Query Book_Code\Chapter18\IR SQL Query 18.2.txt
Template Standard

18.3 Formatting Ledger Report

Execute the following steps to format the Ledger interactive report:

1. Set the Type attribute to Hidden Column for both the VCHCODE
and TRAN_NO columns.

2. Modify the VCHDR, VCHCR, and BALANCE columns by applying a
format mask ($5,234.10) to all three of them.

3. Add appropriate headings to all columns, as shown in
Figure 18-1.

4. Run this segment from the Ledgers menu under the Reports
menu. Select the date you entered for the first voucher you
created in Chapter 14 in both date boxes, or specify a long
range to fetch that transaction. Also select account of A.B.
Enterprises (the account you selected in that voucher) in both
pop-up LOVs, and hit the Display button.

5. Click the Actions menu. Select Format followed by the Sort
option. Select the columns in this order: COACODE (Code),
VCHDATE (Voucher Date), and VCHNO (Voucher Number). Keep
Direction as Ascending and Null Sorting as Default. This step
will sort the interactive report first on account codes, then
on voucher dates, and finally on voucher numbers. The new
column names, appearing within parentheses, were provided
in step 3.

164

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

CHAPTER 18 I LEDGER REPORT

6. Click the Actions menu again. Select Format and then
Control Break. Select COACODE (Code) in the first row and
COATITLE (Title) in the second row. Click Apply. This action
will place a control break to display each account separately.

7. Click the Actions menu. Select Format and then Highlight.
Set the highlight rule Name to Opening Balance, Highlight
Type to Row, Background Color to Blue, Text Color to White,
Condition Column to Description, Operator to Like, and
Expression to Opening Balance%. Click Apply. This rule is
created to highlight opening balances of accounts using
different colors.

8. Click the Actions menu. Select Format and then Aggregate. Set
Aggregation to New Aggregation, Function to Sum, Column
to VCHDR (which should be Debit after renaming). Click
Apply. This will add a grand total figure for each account after
summing up all the values in the debit column.

9. Repeat step 8 for the VCHCR (Credit) column.

10. Click Actions and select Save Report. Select the Save option As
Default Report Settings, set Default Report Type to Primary,
and click Apply to save these modifications.

11. Inthe second LOV, select the ABN AMRO bank account that
you used in Chapter 14, and hit the Display button to refresh
the report, which should now display the two ledgers with
the grand totals and individual current balances of these
accounts, as shown in Figure 18-1.

18.4 Get Ledger Report in PDF

Since the process of creating the ledger PDF is similar to the vouchers report process
that you saw in the previous chapter, won’t repeat it here. However, the distinctions

are highlighted in Table 18-3. To assist you further, I've provided the two required files
(XML and RTF) along with the corresponding report query and code in the Chapter18
folder. Note that the ORDER BY clause in the report query is different from the interactive
report query because the two columns (COACODE and GRP) defined there created a sorting
conflict in Microsoft Word. Ledgers didn’t sort data according to voucher dates, resulting
in the display of opening balances in between normal transactions rather than on top

of each ledger. If you want to try yourself, then create the PDF version by executing the
instructions mentioned in the sections starting from “Create Report Query” to “Create
Validation” (excluding BI Publisher Desktop installation), considering the attributes in
Table 18-3 specific to this segment.

165

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

CHAPTER 18 I LEDGER REPORT

Table 18-3. Report Query Attributes

Attribute

Value

Report Query Name

SQL Query

XML File Name

Columns in RTF Template Table

Group by selected in RTF Template
RTF File Name

Branch Name

Branch Request

Validation Name

Validation Code

ledger_report
Book_Code\Chapter18\PDF Report Query.txt
ledger_report.xml

coacode, vchdate, vchtype, vchdescription,
vchdr, vcher, and balance

coacode

ledger_report.rtf

Run Ledger Report
PRINT_REPORT=ledger_report

Check Data
Book_Code\Chapter18\Check Data.txt

18.5 Drill Down to Source Voucher

While scrutinizing a ledger, an accountant may want to see the complete details of a

specific transaction appearing in that ledger. To facilitate the accountant, you will provide

a link for each transaction in the ledger interactive report to allow easy navigation to the
source voucher. Execute the instructions provided in the following sections to add this

functionality.

18.5.1 Create Link in Interactive Report

Expand the Columns node in the Ledger interactive report region and set the
attributes listed in Table 18-4 for the VCHDATE column. This is the column that will
act as a link between the ledger and source voucher. The link is created on the
date column, and it calls page 44 (created next) to display details of the clicked
transaction. It also forwards three values to items on page 44 from the voucher

master section.

166

CHAPTER 18 I LEDGER REPORT

Table 18-4. Link in Interactive Report

Action

Column

Attribute Value
Modify Report Column Name VCHDATE

Type Link

Target Type = Page In This Application
Page =44
Set Items
Name Value
P44_VCHDATE #VCHDATE#
P44_VCHCODE #VCHCODE#
P44_VCHNO #VCHNO#

Clear Cache = 44
Link Text #VCHDATE#

18.5.2 Create Voucher Page

Execute the following steps to create a new page to display the selected voucher when a
link is clicked in the ledger report:

1.

Create a new page (page 44) from page 43 using the Copy
utility as described previously for the Voucher Verification
segment. Name the new page Drilled Down Voucher and
associate it with the Reports menu.

Modify the Transaction Details region on page 44 by replacing
the existing SQL query with Book_Code\Chapter18\Drilled
Down Voucher.txt.

In the previous section, you passed three page items from
the ledger interactive report to this page. However, there is

a fourth one (Description) that is displayed in the voucher’s
master section. Since the master description was not fetched
in the interactive report query, you will adopt another
technique to fetch a value for this item using the three key
values defined on the previous page. On page 44, click the
P44_VCHDESCRIPTION item and then set the attributes
listed in Table 18-5.

167

CHAPTER 18 I LEDGER REPORT

Table 18-5. P44_VCHDESCRIPTION Attributes

Attribute Value
Source Type SQL Query (return single value)
SQL Query SELECT vchdescription

FROM gl_tran_master

WHERE vchdate=:P44_VCHDATE AND
vchcode=:P44_VCHCODE AND
vchno=:P44_VCHNO

Source Used Always, replacing any existing value in session state

4. Click the Cancel button. Set its label to Back to Ledger and
replace the existing Page attribute value (under Target) from
42 to 72 to move back to the ledger report page.

5. Delete all other buttons, all validations, and all processes.

18.6 Test Your Work

That's it—you’re done! The ledger report is ready for a test-drive. Invoke it from the
Reports menu and pass different parameters (as illustrated in Figure 18-1) to check both
the onscreen and PDF versions. You can optionally add a print button to page 44 that will
allow users to print the selected voucher without leaving the interface. You can find its
report query in the Print Drilled Down Voucher.txt file.

168

Ledger Re

From 01-JUL-2015

To ' [30-JUN-2016

'
From Account

To Account

20100100001-A.B. Enterprises

30200300001-ABN Amro Bank

CHAPTER 18
Print Print PDF
&
———®@ Report Parameters
~
Fat

LEDGER REPORT

On-5creep Report

Actions

i B = cose
-

Opening Balance

Code : 20100100001, Title : AB. Enterprises

:"—. Control Break Rules

—® Highlight Rule

Voucher Date Type Voucher Number Description Debit Credit

01-JUL-2015 EPV 1 Paid to AB. Enterprises vide imvoice # 78345 $3,000.00 $0.00

Drill-down Link $3008.00 o
Code : 30200300001, Title : ABN Amro Bank Balance
Youcher Date Type her Numb D Debit Credit Balance
01-JUL-2015 BPV 1 Paid to AB. Enterprises vide invoice # 78345 $0.00 $3,000.00 -$3,000.00

Figure 18-1. Ledger report

18.7 Summary

Total

Using a ledger report you can view the activities and balances of accounts with a few
clicks. If you want to see a summarized report of all accounts, move on to the next chapter

to create trial balance report.

169

CHAPTER 19

Trial Balance Report

The trial balance report shows the summarized balances of accounts up to a specific date.
It delivers the opening balance, activity, and closing balance of each account. Unlike the
ledger report, this report can be produced for any level. For example, you can run a trial
balance report for the first level only simply to see top-level account activities. You can
also filter the report to display a specific range of financial accounts from the COA along
with a cost center should you want to see account balances for only one cost center. The
parameters form has just one date picker from where you select the date up to which
closing balances are calculated and displayed in the report.

19.1 Trial Balance Report Table

The transaction data, entered through vouchers, are stored in the gl _tran_master and
gl tran_detail tables. After generating the trial balance report from these two tables,
you store the result in the following temporary table. It holds trial balance data for each
user until the user runs the report again. The data in this table is populated through a
process to be created later in Table 19-4.

TRIAL BALANCE REPORT TABLE

CREATE TABLE gl_trial_balance

(coacode VARCHAR2(11), coatitle VARCHAR2(50), coalevel NUMBER(1), opendr
NUMBER(15,2), opencr NUMBER(15,2), activitydr NUMBER(15,2), activitycr
NUMBER(15,2), closingdr NUMBER(15,2), closingcr NUMBER(15,2),

coname VARCHAR2(50), tbdate DATE, fromaccount VARCHAR2(11), toaccount
VARCHAR2(11), cccode VARCHAR2(S5),

cctitle VARCHAR2(25), reportlevel NUMBER(1), userid VARCHAR2(50),
grand_total NUMBER(1))

© Riaz Ahmed 2016 171
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_19

CHAPTER 19 I TRIAL BALANCE REPORT

19.2 Create a List of Values

Using Table 19-1, create a LOV from scratch. It will be used to allow you to select any
account level for the trial balance report. If you run this report for the transaction level
(level 4), all parent levels (that is, 1, 2, and 3) also appear on the report by default, unless
you put a check on the parameter option labeled Print Selected Level.

Table 19-1. LOV Attributes

Action Attribute Value
Create LOV Name COA All Levels
Type Dynamic
Query SELECT coacode||'-'||coatitle d, coacode r FROM gl_coa

WHERE cocode=(select cocode from gl_users
where userid = :APP_USER)
ORDER BY coacode

19.3 Create Page and Parameters Form

Using Table 19-2, create a blank page and its components for this segment.

Table 19-2. Page and Component Attributes

Action Attribute Value
Create Blank Page Page Number 73
Name Trial Balance Report
Page Mode Normal
Breadcrumb - don’t use breadcrumbs on page -
Navigation Preference Identify an existing navigation

menu entry for this page

Existing Navigation Menu Reports

Entry

Create Region Title Trial Balance Report Parameters
Type Static Content
Template Standard

(continued)

172

Table 19-2. (continued)

CHAPTER 19 I TRIAL BALANCE REPORT

Action Attribute Value
Create Page Item Name P73_ACCOUNTFROM
Type Popup LOV
Label From Account
Region Trial Balance Report Parameters
Label Column Span 2
Template Required
Value Required Yes
LOV Type Shared Component
List of Values COA All Levels
Create Page Item Name P73_ACCOUNTTO
Type Popup LOV
Label To Account
Region Trial Balance Report Parameters
Label Column Span 2
Template Required
Value Required Yes
LOV Type Shared Component
List of Values COA All Levels
Create Page Item Name P73_CCCODE
Type Popup LOV
Label Cost Center
Region Trial Balance Report Parameters
Label Column Span 2
Template Optional
Value Required No
LOV Type Shared Component

List of Values

Cost Centers

(continued)

173

CHAPTER 19 I TRIAL BALANCE REPORT

Table 19-2. (continued)

Action Attribute Value
Create Page Item Name P73_COALEVEL
Type Text Field
Label Account Level
Region Trial Balance Report Parameters
Label Column Span 2
Template Required
Value Required Yes
Default Type Static Value
Static Value 4 (display report for all levels)
Create Page Item Name P73_TBDATE
Type Date Picker
Label As On
Region Trial Balance Report Parameters
Label Column Span 2
Template Required
Value Required Yes
Default Type PL/SQL Expression
PL/SQL Expression SYSDATE
Create Button Button Name Display
Label Display
Region Trial Balance Report Parameters
Button Position Copy
Action Submit Page
Create Button Button Name Print
Label Print
Region Trial Balance Report Parameters

Button Position

Action

Copy
Submit Page

19.4 Create the Interactive Report Region

Using Table 19-3, add an interactive report region to the page. It will produce an onscreen
version of the trial balance report. It is based on a SELECT statement that fetches the
report of the current user from the GL_TRIAL_BALANCE table. The table is populated using
a process defined in the next section.

174

CHAPTER 19 I TRIAL BALANCE REPORT

Table 19-3. Interactive Report Region Attributes

Action Attribute Value
Create Region Title Trial Balance
Type Interactive Report
SQL Query SELECT * FROM gl_trial_balance
WHERE userid = :APP_USER
ORDER BY coacode

19.5 Create a Process to Generate Trial Balance

The process mentioned in Table 19-4 uses a cursor based on the COA of the logged-in
user. The cursor loops through every COA record to calculate account balances. These
balances, along with other relevant information, are inserted into the GL_TRIAL_BALANCE
table with the user ID. After completing the loop, a record is added to the end of the table
that shows the grand total for each column. The process is executed when either the
Display or Print button is clicked.

Table 19-4. Process to Generate Trial Balance

Action Attribute Value
Create Process Name Generate Trial Balance
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter19\Generate Trial
Balance.txt
Point Processing

Condition Type Request is contained in Value

Value Display,Print

19.6 Formatting the Trial Balance Report

Execute the following steps to format the interactive report:

1. Add the appropriate headings to columns as Code, Title,
Opening Debit, Opening Credit, Activity Debit, Activity Credit,
Closing Debit, and Closing Credit.

2. Modify all the numeric columns to apply the number format
mask.

175

CHAPTER 19 I TRIAL BALANCE REPORT

3. Run this module from the Trial Balance option in the
Reports menu. Select the values shown in Figure 19-1 in the
Parameters region and hit the Display button. At this stage,
the report will show the balances of just two accounts along
with their group accounts. These are the same accounts you
entered in the first voucher.

Trial Balance Report Parameters

From Account 1-CAPITAL
ToAccount = 50400100002-Sandard Chartered (nte
Cost Center
Account Level 4

AsOn ' 19-AUG-2015 tat

Figure 19-1. Report parameters

4. Click the Actions menu and then click the Select Columns
option. Move the CCCODE, CCTITLE, COALEVEL, CONAME,
FROMACCOUNT, REPORTLEVEL, TBDATE, TOACCOUNT,
USERID, and GRAND TOTAL columns to the Do Not Display
pane, leaving the Code, Title, Opening Debit, Opening Credit,
Activity Debit, Activity Credit, Closing Debit, and Closing
Credit columns in the Display in Report section. Click Apply.

5. Click the Actions menu again. Select Format » Sort. Select
CODE in the first row, keep Direction as Ascending, and keep
Null Sorting as Default to sort the report on the Code column.
Click Apply.

6. Add a highlight rule (as mentioned in the Formatting Ledger
Report section in Chapter 18) for the Grand Total row, using
Title and GRAND_TOTAL% as Column and Expression,
respectively. Click Apply.

7. Click Actions and select Save Report. Select the option As
Default Report Settings, set Default Report Type to Primary,
and click Apply to save the report.

19.7 Print the Selected Level

Create a check box item as listed in Table 19-5. When this is selected, the process
associated with this check box will remove all records other than the selected level to
display a trial balance report for the selected level only. Conversely, keeping it unchecked

176

http://dx.doi.org/10.1007/978-1-4842-2502-8_18

CHAPTER 19 I TRIAL BALANCE REPORT
displays all levels up to the selected level, as you saw in the previous section where you
selected 4 as the account level and the result displayed all parent levels. Checking this

option would have displayed the report only for the transaction-level accounts.

Table 19-5. Check Box Attributes

Action Attribute Value
Create Page Item Name P73_SELECTEDLEVEL
Type Checkbox
Label Clear Label
Number of Columns 1
Region Trial Balance Report Parameters
Label Column Span 2
LOV Type Static Values
Static Values STATIC:Print Selected Level;Y

19.7.1 Create Process

The process listed in Table 19-6 is associated with the previous check box to display/print
accounts for the selected level.

Table 19-6. Process Attributes

Action Attribute Value
Create Process Name Print Selected Level
Type PL/SQL Code
PL/SQL Code DELETE FROM gl _trial balance

WHERE coalevel <> :P73_COALEVEL AND
userid = :APP_USER;

Point Processing

Condition Type Item = Value

Item P73_SELECTEDLEVEL
Value Y

19.8 Eliminate Zero Balances

As the name suggests, the process (created later in Table 19-8) associated with the check
box created in Table 19-7 will eliminate all records that have no balances at all. This
feature will make the report smaller because it removes those records from the trial
balance report with zero balances.

177

CHAPTER 19 I TRIAL BALANCE REPORT

Table 19-7. Checkbox Attributes

Action Attribute Value
Create Page Item Name P73_ZEROBALANCE
Type Checkbox
Label Clear Label
Number of Columns 1
Region Trial Balance Report Parameters
Label Column Span 2
LOV Type Static Values
Static Values STATIC:Eliminate Zero Balances;Y
Default Type Static Value
Static Value Y (all zero balance records will be

eliminated by default)

19.8.1 Create a Process

Create the process shown in Table 19-8. The process will eliminate accounts with

zero balance.

Table 19-8. Process Attributes

Action Attribute Value
Create Process Name Eliminate Zero Balances
Type PL/SQL Code
PL/SQL Code DELETE FROM gl _trial_balance
WHERE
nvl(opendr,0) = 0 AND
nvl(opencr,0) = 0 AND
nvl(activitydr,0) = 0 AND
nvl(activitycr,0) = 0 AND
nvl(closingdr,0) = 0 AND
nvl(closingcr,0) = 0 AND
userid=:APP_USER;
Point Processing
Condition Type Item = Value
Item P73_ZEROBALANCE
Value Y

178

CHAPTER 19 I TRIAL BALANCE REPORT

19.9 Create a Validation

The validation listed in Table 19-9 will

Table 19-9. Validation Attributes

check the data for the existence of report criteria.

Action Attribute

Value

Create Validation = Name

Check Data

Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter19\Check Data.txt
Error Message No data found

Condition Type Request is contained in Value

Value Display,Print

19.10 Get the Trial Balance Report in PDF

Create a PDF version of the trial balance report using the instructions in Chapter 17
considering the distinctions listed in Table 19-10.

Table 19-10. Report Query Attributes

Attribute

Value

Report Query Name
SQL Query

XML File Name
Columns in RTF Template Table

Group by selected in RTF Template
RTF File Name
Branch Name

Branch Request

trial_balance_report

SELECT * FROM gl_trial balance
WHERE userid=:APP_USER
ORDER BY coacode

trial_balance_report.xml

coacode, coatitle, opendr, opencr, activitydr,
activitycr, closingdr, and closingcr

The report doesn’t need grouping and sorting
trial_balance_report.rtf
Run Trial Balance Report

PRINT_REPORT=trial_balance_report

179

http://dx.doi.org/10.1007/978-1-4842-2502-8_17

CHAPTER 19 I TRIAL BALANCE REPORT

19.10.1 Template Formatting

The template formatting process for this segment is similar to its predecessors; see the
downloaded RTF (in the Chapter19 folder) for guidance. I added a few more things

to this template. For example, I repeated the headers on every report page and used a
different color for the Grand Total row and for the six numeric columns. To repeat the
report headers in the latest Word versions, select the table in your template (this will
show an additional menu named Layout). From the Layout menu, click the first option
labeled Repeat Header Rows. To highlight the Grand Total row, click the COATITLE field
in the table and select Conditional Format (under the BI Publisher » Insert option).
Select GRAND_TOTAL from the Data field list and then set the value to Number in the
list next to it. Under the Condition 1 section, set the Data field to Equal to, and enter 1

in the corresponding value box. Click the Format button. Check all the three options
(Background Color, Font Color, and Font Style) in the dialog box. Set Font Style to Bold,
and pick different background and font colors. The GRAND_TOTAL value that you
selected in the first conditional step is a column in the trial balance report table. This
column is marked with a 1 for the grand total row; see the PL/SQL code associated with
the Generate Trial Balance process (19.5). Repeat the previous step to apply a conditional
format rule to all the remaining report columns.

19.11 Drill Down to the Ledger Report

Just like the link that you created in the ledger report to access the source voucher, you
will create a link here on the Code column to access the ledger report from within the
trial balance. Expand the Trial balance report’s Columns node and set the attributes
in Table 19-11 for the COACODE column. Recall that you needed two account codes and
two date parameters to call the ledger report. The values declared in the attributes

in Table 19-11 forward account code information to the ledger page. The dates are
calculated by the target page itself using a couple of SELECT statements.

Table 19-11. Code Column Link Attributes

Action Attribute Value

Modify Report Column Name COACODE
Column Type Link

Target Type = Page In This Application
Page =72

Set Items

Name Value
P72_ACCOUNTFROM #COACODE#
P72_ACCOUNTTO #COACODE#

Clear Cache =72
Link Text #COACODE#

180

CHAPTER 19 I TRIAL BALANCE REPORT

19.12 Test Your Work

Run the trial balance report first by passing a complete COA range, as shown in Figure 19-2.
Also, try the report by selecting specific accounts and enabling/disabling the optional
parameters provided on the page. Note that although the drill-down function applies
to all levels (in other words, all account codes appear as links irrespective of levels), the
ledger report will display data for the transaction level only.

From Account = 1-CAPITAL A

ToAccount © SO0400100002-Standard Chartered dnte ~
Cost Center - ~—® Report Parameters

Accountlevel © 4

AsOn 15-AUG-2015 53]
[Print Selected Level
(7] Eliminate Zero Balances Screen Display
Q- Go | Actions~
» i Grand Total
Code 3 Title Opening Debit Opening Credit Activity Debit Activity Credit (losing Debit Closing Credit
20100100001 AB. Enterprises - - 3,00000 - 3,000.00
30200300001 ABN Amro Bank . - . 3,000.00 - 3,000.00

GRAND TOTAL FOR LEVEL 4

Drill-down link to display ledger report

Figure 19-2. Trial balance report

19.13 Summary

The trial balance report here not only displays summarized balances of accounts, but the
online view of this report helps you drill down to an account ledger and then from
the ledger account to the source transaction. The next few chapters deal with bank
transactions.

181

CHAPTER 20

Opening Bank Transactions/

The application provides you with a complete module to deal with your banking.

Recall that while creating accounts in the COA you used a specific type to mark bank
accounts; that was the first step in the bank reconciliation process. In addition, the
application allows you to reconcile the bank transactions recorded through vouchers
with the statements provided by your banks. But, before that, you have to incorporate
some bank transactions into this application. These are the transactions recorded either
manually or in another system and were not reconciled with the banks. In this chapter,
you'll record all such transactions into a separate table that will keep appearing on the
Bank Reconciliation page and report unless you mark them as reconciled. The actual
reconciliation process will be created in the next chapter.

TABLE TO RECORD OPENING BANK TRANSACTIONS

CREATE TABLE gl_banks_os

(sxr_no NUMBER, Cocode NUMBER CONSTRAINT fk_banks_osi REFERENCES GL_Company
(Cocode) NOT NULL,

coacode VARCHAR2(11) NOT NULL, remarks VARCHAR2(50) NOT NULL, vchdr
NUMBER(15,2) NOT NULL,

vchcr NUMBER(15,2) NOT NULL, reconciled NUMBER(1) NOT NULL, CONSTRAINT
pk_banks_os PRIMARY KEY (sr_no), CONSTRAINT fk_banks_os2 FOREIGN KEY
(cocode,coacode) REFERENCES GL_COA)

CREATE SEQUENCE gl_banks_os_seq MINVALUE 1 START WITH 1 INCREMENT BY 1 CACHE 20

20.1 Create Page

Using Table 20-1, create a page to record the opening outstanding figures. In this page
you'll add a tabular form that allows you to input and save as many outstanding figures as

you want.

© Riaz Ahmed 2016 183
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_20

CHAPTER 20 I OPENING BANK TRANSACTIONS

Table 20-1. Page Attributes

Action

Attribute

Value

Create Page

Page Type

Table Owner

Table Name

Select Columns
Allowed Operations
Primary Key Type
Primary Key Column 1

Form » Tabular Form

Accept the displayed value
GL_BANKS_OS

Select all columns

Update, Insert and Delete

Select Primary Key Column
SR_NO (stands for Serial Number)

Source Type Existing Sequence

Sequence GL_BANKS_OS_SEQ
Updatable Columns Select all columns

Page 17

Page Name Opening Banks Outstanding
Page Mode Normal

Region Title Opening Banks Outstanding
Navigation Preference Identify an existing navigation

Existing Navigation Menu Entry

Buttons and Branching page

menu entry for this page
Setup
Accept all the default values

20.2 Modify Region Source Query

Edit the Opening Banks Outstanding region and modify the Region Source query by
adding the WHERE clause in Table 20-2. This clause is added to fetch the records of the
company to which the user belongs. The clause retrieves only those entries that are still

unreconciled.

Table 20-2. Opening Banks Outstanding Region Attributes

Action

Attribute Value

Modify Region

SQL Query
"COACODE",

SELECT "SR_NO", "COCODE", "REMARKS",

"VCHDR", "VCHCR", "RECONCILED"
FROM "#OWNER#"."GL_BANKS_0S"
WHERE cocode=(select cocode from gl_users where
userid=:APP_USER) AND
reconciled=0

184

CHAPTER 20 © OPENING BANK TRANSACTIONS

Expand the Columns node under the Opening Banks Outstanding region and

perform the following modifications:

1. Set the Type attribute of the SR_NO, COCODE, and
RECONCILED columns to Hidden Column (saves state) to

hide these columns.

2. Types appropriate headings for the four visible columns:
Bank Code, Remarks, Debit, and Credit.

3. Edit the COACODE column. Set its Type to Popup LOV (shows
displays value), set List of Values Type to SQL Query, and
enter the following SQL statement in the SQL Query box to
display the bank accounts of the current company in the pop-
up LOV. Set the Width attribute of this column to 50.

SELECT coacode||'-']||coatitle d, coacode ¥ FROM

gl_coa

WHERE cocode=(select cocode from gl_users where
userid=:APP_USER) AND coatype='Bank’

ORDER BY coacode

4. Modify the VCHDR, VCHCR, and RECONCILED columns and
set their Default Type values to PL/SQL Expression and setPL/
SQL Expression to 0. This way the three columns will have

zero as the default value.

Set the Width attribute of the Remarks column to 50.

Sort records in the tabular form by selecting the SR_NO column
and setting Default Sequence (under Sorting section) to 1.

20.3 Handling Default Validations

The APEX engine creates some default validations based on the back-end table
constraints. One of these validations is COCODE NOT NULL. If you run the page at this
stage and try to save a record, you'll be prevented by this validation because the company
code column was hidden in the previous section (step 1) and hence doesn’t carry any
value. To correct this situation, create a hidden item, as mentioned in Table 20-3.

Table 20-3. Hidden Item Attributes

Action Attribute Value
Create Page Item Name P17_COCODE
Type Hidden
Region Opening Banks Outstanding
Source Type SQL Query (return single value)
SQL Query SELECT cocode from gl_users where

userid=:APP_USER

185

CHAPTER 20 I OPENING BANK TRANSACTIONS

Now edit the COCODE column and set the attributes listed in Table 20-4. Using these
attributes, the COCODE column inherits its value from the previously hidden item: P17_

COCODE. After setting these attributes, the validation won't obstruct you anymore.

Table 20-4. COCODE Column Attributes

Action Attribute Value

Modify Column Column Name COCODE
Default Type Item
Item P17_COCODE

20.4 Add Validation

The validation listed in Table 20-5 will check whether a positive amount is entered in
either the Debit or Credit column.

Table 20-5. Validation Attributes

Action Attribute Value
Create Validation Name Check Debit/Credit
Sequence 45 (place it after COACODE Not NULL
validation)
Type PL/SQL Function (returning Error Text)
PL/SQL Function Book_Code\Chapter20\Check Debit
Credit.txt
Error Message Invalid amount

When Button Pressed SUBMIT

20.5 Test Your Work

Run this segment from the Setup » Opening Bank Transactions menu and execute the
following steps:

1. Click the Add Row button to add a blank row where you will
enter the first outstanding transaction of a particular bank.

2. From the Bank Code pop-up LOV, which should be displaying
only bank accounts, select an account (for example,
ABN AMRO). Note that you can enter as many unsettled
transactions as you need for a bank using this interface. For
example, there are certain deposits not appearing in the bank
statement. Similarly, the checks you issued to some creditors
were not presented as well. You need to input all such cases
on a separate row so that when you run the reconciliation
segment, they appear individually as separate entries.

186

CHAPTER 20 © OPENING BANK TRANSACTIONS

3. Enter something in the remarks column, such as Opening
outstanding as on 30" June 2015.

4. Enter a numeric value (for example, 10000) in the Debit
column and hit the Apply Changes button to save this
entry. Figure 20-1 demonstrates some opening outstanding
transactions.

Opening Banks Outstanding Apply Changes

O BankCode Remarks Debit Credit
O 30200300002-Standard Chartered Bank ~ Recerved chq # 85236 From B.V.Heliform 100002]
O 30200300001-ABN Amiro Bank ~ Recerved chq # 65832 SA Gacel 150000 0
O 30200300001-ABN Amro Bank ~ Paid chq # 123456 to)LY. Corporstion (] 25000

Delete Checked Add Row
Figure 20-1. Opening outstanding transactions

20.6 Summary

This segment is helpful in the bank reconciliation process. After you record the
outstanding transactions through this interface, you are ready to perform the
reconciliation activity, as discussed in the next chapter.

187

CHAPTER 21

Bank Reconciliation

A bank reconciliation is the process by which you match your bank ledger transactions
with those in your bank statement and attempt to find any differences between the two.
All income transactions appearing on the debit side of your ledger are shown on the
credit side of the bank statement. Conversely, all payments that you make are recorded
on the credit side of your ledger, and the same transactions are reported on the debit side
of the bank statement. This part of the application allows you to identify transactions and
perform a reconciliation.

21.1 Create Page and Parameters Form

Using Table 21-1, create a blank page and add components to it. The page contains three
regions. The first region (Parameters), which you are already familiar with, carries two
radio buttons (Reconciled and Unreconciled) and a Select List showing all accounts
marked as the Bank type from the chart of accounts. The reconciled option displays all
the records that you reconciled previously with the bank; all unsettled transactions are
displayed when you select the Unreconciled option. Whenever you switch banks or select
a different criterion from the radio group, the page is submitted to refresh the data.

Table 21-1. Page Attributes

Action Attribute Value
Create Blank Page Number 51
Page Name Bank Reconciliation
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu
entry for this page
Existing Navigation Menu Utilities
Entry
(continued)
© Riaz Ahmed 2016 189

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_21

CHAPTER 21 I BANK RECONCILIATION

Table 21-1. (continued)

Column/Column Span
Label Column Span
Template

Value Required

LOV Type

SQL Query

Action Attribute Value
Create Region Title Bank Reconciliation Parameters
Type Static Content
Template Standard
Create Page Name P51_CRITERIA
Item Type Radio Group
Label Show
Number of Columns 2
Page Action on Selection Submit Page (fo show data according to
the selected option)
Region Bank Reconciliation Parameters
Start New Row Yes
Column/Column Span Automatic
Label Column Span 2
LOV Type Static Values
Static Values STATIC:Reconciled;1,Unreconciled;0
Display Null Value No
Default Type Static Value
Static Value 0
Create Page Name P51_BANKS
Item Type Select List
Label Select a bank
Page Action on Selection ~ Submit Page (fo refresh report regions)
Region Bank Reconciliation Parameters
Start New Row Yes

Automatic
2
Required
Yes

SQL Query
SELECT coacode||'-'||coatitle d, coacode r
FROM gl_coa

WHERE cocode=(select cocode from
gl_users where
userid=:APP_USER) AND

coatype='Bank'
ORDER BY coacode

190

CHAPTER 21 BANK RECONCILIATION

21.2 Display Outstanding Opening Transactions

Create the following interactive report region to display all the outstanding bank
transactions that you entered in the previous chapter. In the Application Builder interface,
click the Create Page button and select the Form option followed by Form on a Table
with Report. Use the parameters given in Table 21-2 to complete the wizard. Note that
when you provide a page number (on the Report Page screen) of a page that already
exists, an interactive report is added to that page. Here, for example, an interactive report
region will be added to page 51 along with a corresponding form on a separate page
(page 52). All opening outstanding figures will be displayed on page 51 in an interactive
report region. Using the edit link in this region, you can call the selected record on page
52 where it is displayed in a form to mark it either as reconciled or as unreconciled.
Remember, the GL_BANKS_OS table has a flag column named Reconciled, which is
attached to the radio items in the form on page 52. Also note that the form allows an
update operation only on the Reconciled column.

Table 21-2. Page Attributes

Page Type Attribute Value

Report Implementation Interactive

Page Page Number 51
Page Name Opening Outstanding
Page Mode Normal
Region Title Opening Outstanding
Table/View owner Accept the displayed value
Table/View Name GL_BANKS_OS

Navigation Preference
Existing Navigation Menu
Entry

Report Columns

Optional WHERE Clause

Edit Link Image

Identify an existing navigation menu entry
for this page

Utilities

Select all columns to include in the report
page

cocode=(select cocode from gl_

users where userid=:APP_USER)

AND coacode=:P51_BANKS and
reconciled=:P51_CRITERIA

Select any edit link image from the provided
options

(continued)

191

CHAPTER 21 I BANK RECONCILIATION

Table 21-2. (continued)

Page Type Attribute Value
Form Page Number 52
Page Page Mode Modal Dialog
Page Name Reconcile Opening
Region Title Reconcile Opening
Region Template Standard
Primary Key Type Select Primary Key Column(s)
Primary Key Column 1 SR_NO
Source for Primary Key Existing Sequence
Column 1
Sequence GL_BANKS_OS_SEQ
Form Columns Select all columns to include in the form
page

Data Manipulation Process Insert=No, Update=Yes, Delete=No

Modify the Opening Outstanding interactive report region on page 51 using the
following steps:

1. Set Condition Type to Rows Returned and enter the following
query in the SQL Query box. This condition will hide the
report region when there is no record for the selected
criterion.

SELECT 1 FROM "#OWNER#"."GL_BANKS_0S"

WHERE cocode=(select cocode from gl users where
userid=:APP_USER) AND coacode=:P51_BANKS and
reconciled=:P51 CRITERIA

2. Hide the SR_NO, COCODE, COACODE, and RECONCILED
columns by setting their Type attribute to Hidden Column.
Change the headings for the VCHDR and VCHCR columns to
Debit and Credit and set Include Search Bar (under Attributes
node) to No to suppress the interactive report’s search box.

21.3 Modify Reconcile Opening Form

Edit page 52 (the Reconcile Opening form) and modify the following items. You can
access this form from the Opening Outstanding interactive report on page 51 to mark an
opening outstanding transaction as reconciled. In the final step of this section, you will

192

CHAPTER 21 BANK RECONCILIATION

transform the P52_RECONCILED item into a radio group with two options. Once you
mark an entry as reconciled and submit the change, it disappears from the unreconciled
list in the interactive report on page 51. Selecting the Reconciled radio option on page 51
reverses the entry.

1. Mark the P52_COCODE item as hidden.

2. Modify the labels of the page items coacode, vhedr, and vcher
to Bank Code, Debit, and Credit, respectively.

3. Change the Type attribute of Bank Code, Remarks, Debit, and
Credit items to Display Only.

4. Modify the P52_RECONCILED item using the attributes listed
in Table 21-3.

Table 21-3. P52_RECONCILED Attributes

Attribute Value

Type Radio Group

Label Clear Label box

Number of Columns 2

LOV Type Static Values

Static Values STATIC:Reconcile;1,Unreconcile;0
Display Null Values No

21.4 Current Transactions Region

Edit page 51 to add another region. This region will have a tabular form to display and
reconcile current transactions entered through vouchers. It is based on a powerful SQL
statement that fetches complete transaction information from three relevant tables based
on the provided criteria and related to the current company. The statement also ensures
that the fetched transactions are neither opening nor closing entries. Closing entries have
nothing to do with the reconciliation process. Since you have already made exclusive
provision in the previous chapter for individual opening outstanding transactions of
banks, opening balances are also exempt from this process. Opening balances are

those values that you usually enter through a journal voucher when you switch to a

new application from another system. For this application, you will create a voucher
carrying the opening balances of accounts in Chapter 24. Note that the transaction table
also includes a Reconciled flag column. A value of 1 in this column indicates that the
corresponding transaction is reconciled. Create a tabular form region using Table 21-4 to
display current bank transactions.

193

http://dx.doi.org/10.1007/978-1-4842-2502-8_24

CHAPTER 21 I BANK RECONCILIATION

Table 21-4. Tabular Form Region Attributes
Action Attribute Value

Create Title Current Transactions
Region Type Tabular Form (answer OK to the message)
SQL Query SELECT "TD"."LINE_NO", "TM"."VCHDATE",
"VCH"."VCHTYPE", "TM"."VCHNO",
"TD"."VCHDESCRIPTION",
nvl("TD"."VCHREFERENCE",'-") "VCHREFERENCE",
"TD"."VCHDR", "TD"."VCHCR", "TD"."RECONCILED"
FROM "GL_VOUCHER" "VCH", "GL_TRAN_MASTER"
"TM", "GL_TRAN_DETAIL" "TD"
WHERE "TM"."COCODE"="TD"."COCODE" AND
"TM"."TRAN_NO"="TD"."TRAN_NO" AND
"TM"."VCHCODE"="VCH"."VCHCODE" AND
"TM"."CLOSING"=0 AND
"TM"."VCHDESCRIPTION" <> 'OPENING
BALANCES' AND
"TM"."COCODE"=(select cocode from gl_users
where userid=:APP_USER) AND
"TD"."COACODE"=:P51_BANKS AND
"TD"."RECONCILED"=:P51_CRITERIA

When you change the type of a region to a tabular form, you get a message “This will
just create the tabular form and not the associated processes and validations. To generate
the related processes and validations please use the Create Page wizard.” You followed the
Create Page Wizard approach and created the interactive report on an existing page; see
Table 21-1. This time you are using an alternative method to learn something new.

Modify the tabular form by executing the following steps. In step 2, you change
the Reconciled column to a check box. Initially you use this check box to reconcile
transactions and later uncheck the same check box to reverse the reconciliation process.

1. Expand the Columns node. Click the LINE_NO column and
set its Type to Hidden Column (saves state).

2. Click the VCHDATE column and set Default Sequence (in the
Sorting section) to 1.

3. For the VCHDR and VCHCR columns, set the heading and
column alignments to the right and apply a 5,234.10 format
mask.

4. Click the RECONCILED column. Set its Type to Simple
Checkbox and enter 1,0 for Checkbox Values. This check
box will show all the reconciled entries (in other words,
Reconciled=1) with a tiny check mark.

5. Enter meaningful column headings (Date, Type, Number,
Description, Reference, Debit, Credit, and Reconcile).

194

CHAPTER 21 BANK RECONCILIATION

21.4.1 Create a Button and a Process

The tabular form is created without any DML process, which means that your changes
will not be saved to the table. Using Tables 21-5 and 21-6, create a button and a process to
allow submission of your reconciliations.

Table 21-5. Button Attributes

Action Attribute Value
Create Button Button Name SUBMIT
Label Save
Region Current Transactions
Button Position Copy
Action Submit Page

Create the process in Table 21-6 on the Processing tab. The tabular form called Multi
Row Update is used to update multiple rows from a tabular form region. Here, you are
going to update the values in the Reconciled column.

Table 21-6. Process Attributes

Action Attribute Value

Create Process Name ApplyMRU
Type Tabular Form - Multi Row

Update

Table Name GL_TRAN_DETAIL
Primary Key Column LINE_NO
Point Processing
Tabular Form Current Transactions
Success Message Changes saved to the table
When Button Pressed SUBMIT

21.5 Test Your Work

Right now you have just two entries to test this segment, one each in the opening
outstanding and current transactions. Execute the following steps to perform a
reconciliation using the Bank Reconciliation option from the Utilities menu. Figure 21-1
illustrates the three regions you created for this segment in this chapter.

195

CHAPTER 21 I BANK RECONCILIATION

1. Select the Unreconciled option in the parameters region
followed by ABN Amro bank from the banks list. The page
gets refreshed and shows the two entries in their respective
regions.

2. Start the reconciliation by clicking the edit link for the entry
appearing in the Opening Outstanding region. This will open
page 52 with the selected record. Select the Reconcile option
from the radio group and click Apply Changes to mark the
opening outstanding entry as reconciled. You are taken back
to page 51 where the entry disappears.

3. Onpage 51, switch the Show option to Reconciled. The
entry reappears in its region, but this time it is displayed as a
reconciled entry. You can reverse it using the same edit link.
Go ahead and test this functionality.

4. Toreconcile current transactions, switch the Show option on
page 51 back to the Unreconciled, click the check box in the
Reconcile column for the sole entry appearing in the Current
Transaction region, and click the Save button. Once again the
entry will vanish from your screen and can be reinstated by
removing the check using the Reconciled option, as you did in
the previous step.

Bank Reconciliation Parameters ——=® Parameters Region

Show O Reconciled @ Unreconciled

Selectabank = 30200300001-ABN Amro Bank

Opening Bank Transactions Region

Remarks Debit Credit
1 Recerved chq # 65832 SA Gacel 150,000.00 0.00
w Paid chq # 123456 to)Y, Corporation 0.00 25,000.00
Current Transactions ——e Current Transactions Region Apply Changes
Date LT Type Number Description Reference Debit Credit Reconcile
01-JUL-2015 BPV 1 Paid to AB. Enterpnses vide invoice # 78345 -] 3000

Figure 21-1. Three regions

196

CHAPTER 21 BANK RECONCILIATION

21.6 Summary

The bank reconciliation process helps you find discrepancies between your books of
accounts and your bank statement. After completing this process, you call the bank
reconciliation report (created in the next chapter) that shows balances from both sides
along with outstanding transactions (if any).

197

CHAPTER 22

Bank Reconciliation Report/

Even after reconciling your ledger entries with those appearing in the bank statement,
there might still be some unsettled transactions on both sides. For example, say a check
was issued to a vendor that doesn’t appear in the bank statement. Although it was
recorded in the application, for some reason it was not presented to the bank in due
course. Similarly, say the bank statement reports a credit amount deposited directly by
one of your customers that you were not aware of. In the latter case, accountants prepare
areceipt voucher to incorporate and reconcile the credit. For the former case, you have
to wait until the check appears in a subsequent bank statement. After completing the
reconciliation process, the application produces a report that shows the current ledger
balance and a calculated bank statement balance, with some unsettled transactions
(such as unpresented checks). The two balances should match, if there are no more
outstanding figures on either side.

22.1 The Bank Reconciliation Report Table

In a similar way to the trial balance report, the bank reconciliation report is based on
atable: gl reconcile report. Reconciliation reports are also stored for each user
individually. The table also stores report parameters for display on the report.

BANK RECONCILIATION REPORT TABLE

CREATE TABLE gl_reconcile_report

(srno NUMBER, userid VARCHAR2(50), coname VARCHAR2(50), reportdate DATE,
coacode VARCHAR2(11),

coatitle VARCHAR2(50), monthyear VARCHAR2(14), vchdate DATE, vchtype
VARCHAR2(6), vchno NUMBER(10), vchdescription VARCHAR2(150), vchreference
VARCHAR2(25), amount NUMBER(15,2))

© Riaz Ahmed 2016 199
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_22

CHAPTER 22

BANK RECONCILIATION REPORT

22.2 Create the Parameters Form

As usual, create a blank page using Table 22-1 that will carry two regions: Parameters and

Interactive Report.

Table 22-1. Parameters Form Attributes

Action Attribute Value
Create Blank Page Page Number 74
Name Bank Reconciliation Report
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu
entry for this page
Existing Navigation Reports
Menu Entry
Create Region Title Bank Reconciliation Report
Parameters
Type Static Content
Template Standard
Create Page Item Name P74_BANK
Type Select List
Label Select a bank
Region Bank Reconciliation Report
Parameters
Start New Row Yes
Column/Column Span Automatic
Label Column Span 2
Template Required
Value Required Yes
Type (LOV) SQL Query
SQL Query SELECT coacode||'-'||coatitle d,
coacode r FROM
gl coa

WHERE cocode=(select cocode from
gl users where
userid=:APP_USER)
AND
coatype='Bank’
ORDER BY coacode

200

(continued)

Table 22-1. (continued)

CHAPTER 22 = BANK RECONCILIATION REPORT

Action Attribute Value
Create Page Item Name P74_REPORTDATE
Type Date Picker
Label As On
Region Bank Reconciliation Report

Parameters

Label Column Span 2

Template Required
Value Required Yes
Create Button Button Name Display
Label Display
Region Bank Reconciliation Report
Parameters
Button Position Copy
Action Submit Page
Create Button Button Name Print
Label Print

Region Bank Reconciliation Report
Parameters

Button Position Copy

Action Submit Page

22.3 Create the Interactive Report

Using Table 22-2, create an interactive report to produce the onscreen version of the
reconciliation report. Just like the trial balance report, this one too is based on a SELECT
statement that fetches the report of the current user from the table GL_RECONCILE_REPORT.
The table fetches the corresponding data through a process created in the next section.

Table 22-2. Interactive Report Attributes

Action Attribute Value
Create Region Title Bank Reconciliation Report
Type Interactive Report
SQL Query SELECT * FROM gl_reconcile_report

WHERE userid=:APP_USER
ORDER BY srno

201

CHAPTER 22 I BANK RECONCILIATION REPORT

22.4 Create the Reconciliation Report
Generation Process

Create a process as listed in Table 22-3 to generate the reconciliation report.

Table 22-3. Process Attributes

Action Attribute Value

Create Process Name Generate Reconciliation Report
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter22\Generate

Reconciliation Report.txt

Point Processing
Condition Type Request is contained in Value
Value Display,Print

22.5 Format the Reconciliation Report

Execute the following steps to format the interactive report:

1. Hide the SRNO, USERID, CONAME, REPORTDATE,
COACODE, and COATITLE columns.

2. Apply a numeric format mask to the Amount column.

3. Modify column headings and give them suitable names, such
as Period, Date, Type, Number, Description, Reference, and
Amount.

4. Run the reconciliation report from the Reports menu and
select the values listed in Table 22-4 in the parameters form.

Table 22-4. Selecting Parameters

Parameter Value
Select a bank ABN Amro
As On Select the date you generated the voucher in Chapter 14

5. Create a highlight rule to highlight ledger and bank balances
using the two conditions listed in Table 22-5. The two expressions
appearing in this table were added to the report table through the
PL/SQL process, defined on the previous page.

202

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

Table 22-5. Highlight Rule

CHAPTER 22 = BANK RECONCILIATION REPORT

Rule Name Column Operator Expression

Bank’s Balance Description = Balance as per bank
statement

Ledger Balance Description = Balance as per Ledger

6. Save the report by selecting As Default Report Settings
followed by the Primary option.

22.6 Generate the PDF Report

Follow the instructions mentioned in the preceding chapters to create a PDF version
of the report using the attributes in Table 22-6. Here you will add a “Group by” column
(monthyear) to group the report according to different financial periods. Look at
Figure 22-1 where the two outstanding transactions are reported separately in their

respective months.

Table 22-6. Report Query Attributes

Attribute Value
Report Query Name reconciliation_report
SQL Query SELECT * FROM gl_reconcile_report
WHERE userid=:APP_USER
ORDER BY srno
XML File Name reconciliation_report.xml
Columns in RTF Template monthyear, vchdate, vchtype, vchno, vchdescription,
Table vchreference, and amount
Group by selected in RTF monthyear
Template
Data already sorted Checked (already sorted in the above SQL query)
Break No Break
RTF File Name reconciliation_report.rtf

Branch Name

Branch Request

Run Reconciliation Report

PRINT_REPORT=reconciliation_report

203

CHAPTER 22 I BANK RECONCILIATION REPORT

22.7 Test Your Work

Run this segment first by keeping the two entries (opening outstanding and current
transaction) as unreconciled and watch the output. Then mark both entries as reconciled
and rerun the report to observe the impact. In the former test, the two balances (“Balance
as per Ledger” and “Balance as per bank statement”) will yield different figures, but when
you reconcile both entries, the two should display the same figure. Figure 22-1 shows the
parameters form and the report output.

3an wiliation Report Parameters m
PDF Qutput

Select a bank: 30200300001-ABN Amro Bank

AsOn ' 31-Aug-2015 &
ABC & Company
Bank Reconciliation Statement
Bank Account: 30200300001 - ABN Amro Bank
The Gloud Acomiiaid As On: 31-AUG-2015
Voucher Description Reference Amount
Balance as per Ledger 1000000
Received chq # 65832 SA. Gacel l_ $-150,000.00 ¢
Paid chq# 123456 1o X.Y. Coporalion | o Batance As On 31-Aug-2015 25,000.00 :
July-2015 i i
01-JUL-2015 BPV-1 Paid to A B. Enterprises vide invoice # 78345 Outstanding : 300000 :
Transactions §
August-2015 3 H
01-AUG-2015 BPV-1 Paid 10 XY .Corporation against invoice # 987654 i 100000 :
vide chq # 123456 :
Calculated Bank Balance """t
Balance as per bank statement -125,000.00

Figure 22-1. Parameters form and the report output

22.8 Summary

Bank reconciliation is a monthly activity to keep track of the bank balance and
outstanding transactions. The report you created in this chapter reveals both. After
completing the interfaces in the previous chapters that deal with the day-to-day
accounting tasks, the next couple of chapters deal with the closing process.

204

CHAPTER 23

Month Closure

It is common practice for organizations to close those fiscal periods for which they are
sure to receive no more data. This process is usually referred to as month closure. The
main purpose of this process is to prevent data manipulation in a closed month. In this
chapter, you will create this feature first by creating some procedures to mark a fiscal
period as closed and then modifying the main transaction interfaces to apply the desired

data security.

23.1

Create Page and Page ltems

Using Table 23-1, create a blank page along with its items for this feature. The select list is

populated with the 12 fiscal periods of the current company.

Table 23-1. Page Attributes

Action Attribute Value

Create Blank Page Number 96

Page Name Month Closure
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu

Create Region

Existing Navigation Menu
Entry

Title
Type
Template

entry for this page
Closing

Month Closure
Static Content

Standard

© Riaz Ahmed 2016

(continued)

205

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_23

CHAPTER 23 © MONTH CLOSURE

Table 23-1. (continued)

Action Attribute

Value

Create Page Item Name
Type
Label
Page Action on Selection
Region
Start New Row
Column/Column Span
Label Column Span
Template
Value Required
Type (LOV)
SQL Query

Create Button Button Name
Label
Region
Button Position

Action

P96_COMONTH

Select List

Select a month:

Submit Page

Month Closure

Yes

Automatic

2

Required

Yes

SQL Query

SELECT comonthname d, comonthid r

FROM ¢gl_fiscal_year

WHERE cocode=(select cocode from
gl_users where
upper(userid)=
upper(:APP_USER))
AND

coyear=(select coyear from
gl users where

upper(userid)=
upper(:APP_USER))

ORDER BY comonthid

Close_Month

Close Month

Month Closure

Copy

Submit Page

23.2 Show Unverified Vouchers

Using Table 23-2, add an interactive report region to display a list of unverified vouchers.
It is being added as a precautionary measure to inform the user about the vouchers that
are unverified in the system prior to executing the month closure process. It is good
practice to verify all vouchers before closing a month, because vouchers cannot be

modified after the month has been closed.

206

CHAPTER 23 © MONTH CLOSURE

Table 23-2. Interactive Report Region Attributes

Action Attribute Value
Create Region Title Unverified Vouchers
Type Interactive Report
SQL Query SELECT VCH.vchtype, TM.vchdate, TM.vchno,
TM.vchdescription

FROM ¢gl_voucher VCH, gl_tran_master TM
WHERE vchverified="N' AND VCH.vchcode=TM.
vchcode AND
cocode=(select cocode from gl_users where
upper(userid)=upper
(:APP_USER)) AND
coyear=(select coyear from gl_users where
upper(userid)=upper
(:APP_USER)) AND
comonthid=:P96_COMONTH

Add meaningful headings to the report’s columns, as shown in Figure 23-1. Run
the page from the Month Closing option in the main menu. Select the first month (July)
from the select list. You'll see the payment voucher you created in Chapter 14, if it is still
unverified.

Month Closure

Select a month: 4 July :

Unverified Vouchers

Type Date Number Description

BPYV 01-JUL-2015 1 Paid to A.B. Enterprises vide invoice # 78345

Figure 23-1. Unverified payment voucher

23.3 Add Validation

Create the validation listed in Table 23-3 to check whether the selected month is not
already closed.

207

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

CHAPTER 23 © MONTH CLOSURE

Table 23-3. Validation Attributes

Action Attribute Value
Create Validation Name Check Month Closure
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter23\Check Month
Closure.txt
Error Message Month is already closed
When Button Pressed Close_Month

23.4 Close Month Process

The process in Table 23-4 will mark the selected month as closed.

Table 23-4. Process Attributes

Action Attribute Value
Create Process Name Close Month
Type PL/SQL Code
PL/SQL Code UPDATE gl_fiscal_year SET month_
closed=1
WHERE cocode=(select cocode from
gl_users
where upper(userid)
=upper(:APP_USER))
AND
coyear=(select coyear from
gl_users
where upper(userid)
=upper(:APP_USER))
AND
comonthid=:P96_COMONTH;
Point Processing

Success Message
Error Message

When Button Pressed

Month closed successfully
Could not close the selected month

Close_Month

208

CHAPTER 23 © MONTH CLOSURE

Rerun the segment and click the Close Month button. You should see the success
message. Click the button again. This time you'll get a message: “Cannot proceed with
this process because the selected month is already marked as closed.” The message
confirms that the month has been marked as closed.

23.5 Hide Buttons

After marking a month as closed, no one is allowed to manipulate data in that month.
Implement this security by following the instructions in Tables 23-5 to 23-7. The first one
will hide the CREATE button on page 42 (if the month is marked as closed) to disallow the
creation of new vouchers. Edit page 42 (Vouchers) and add the hidden item in Table 23-5,
which stores the closing status of the current month.

Table 23-5. Item and Button Attributes

Action Attribute Value
Create Page Name P42_MONTHCLOSED
Item Type Hidden
Value Protected Yes (default)
Sequence 35 (to place it after P42_COMONTHID)
Region Vouchers
Source Type SQL Query (return single value)
SQL Query SELECT month_closed FROM gl_fiscal_year
WHERE cocode=(select cocode from gl_users
where
upper(userid)=upper
(:APP_USER)) AND
coyear=(select coyear from gl_users
where
upper(userid)=upper
(:APP_USER)) AND
comonthid=(select comonthid from
gl_users where
upper(userid)=upper(:APP_USER))
Source Used Always, replacing any existing value in session
state
Modify Button Button Name CREATE
Condition Type Item = Value
Item P42_MONTHCLOSED
Value 0 (the button will be visible only when the value of

P42_MONTHCLOSED is zero)

209

CHAPTER 23 © MONTH CLOSURE

If you run the Vouchers page now, you won'’t see the CREATE button, which means
that the users cannot create a new voucher in a closed month. In the same way, you
also have to hide three more buttons on the Voucher Details page (page 43). These are
DELETE, SAVE, and APPLY_CHANGES_MRD. Table 23-6 shows the procedure to prevent
amendments on page 43.

Table 23-6. Preventing Amendments

Action Attribute Value
Create Page Item Name P43_MONTHCLOSED
Type Hidden
Value Protected Yes (default)
Region Enter Voucher
Source Type SQL Query (return single value)
SQL Query Repeat the query specified for

P42_MONTHCLOSED item

Source Used Always, replacing any existing value in
session state

Now modify the PL/SQL function defined as a condition for the three buttons, as
shown in Table 23-7.

Table 23-7. PL/SQL Function Modifications

Action Attribute Value
Modify Buttons Button Name DELETE, SAVE, and APPLY_CHANGES_
MRD
PL/SQL Function Body begin
(under Condition) if :P43_TRAN_NO IS NOT NULL and

:P43_CLOSING=0 and
:P43_VCHVERIFIED='N' and :P43_
MONTHCLOSED=0 then
return true;

else
return false;

end if;

end;

23.6 Summary

After executing the month closing process, users cannot add, modify, or delete any
voucher in a closed month. This way, the historical data is protected from any kind of
manipulation. In the next chapter, you will create two year-end processes to close a fiscal
year either temporarily or permanently.

210

CHAPTER 24

Year-End Processes

The year-end process consists of two options: temporary and permanent. The temporary
year-end process performs two actions: first it generates the next fiscal year, and then it
transfers the balances of accounts from the closing year to the new fiscal year. When you
select this option from the Closing menu, the system asks you to provide a profit and loss
account from the chart of accounts, which is used to transfer the difference of revenues
and expenses.

The second option is the permanent year-end process, which has two additional
tasks: first it checks the closure status of the 12 fiscal periods, and then it marks the year
as permanently closed. After the successful completion of this process, you can view the
transactions performed in that year and generate reports, but you cannot add, amend, or
delete anything.

24.1 Enter Opening Balances

If you are running a business, then you will have some accounts with balances. When you
upgrade your general ledger application, these balances act as opening balances in the
new application. In this section, you'll incorporate these balances in your application to
test the year-end process. It is assumed that you have created a fiscal year (2015) for the
ABC & Company, which starts from July 1, 2015, and ends June 30, 2016. From the Select
menu, change your working period to June, in other words, the last accounting period.
Enter the opening balances of accounts in a JV type voucher using Table 24-1.

© Riaz Ahmed 2016 211
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_24

CHAPTER 24 I YEAR-END PROCESSES

Table 24-1. Opening Balances of Accounts

Voucher Type: ADJ Voucher Number: 1

Description: Opening Balances

Voucher Date: 30-JUN-2016

Account Code Account Title Description Debit Credit

10100100001 M.H. Thomson Opening 50,000
Balance

10100100002 A.E Stevens Opening 50,000
Balance

10100300001 Unappropriate Profit/Loss Opening 20,500
Balance

20100100001 A.B. Enterprises Opening 10,000
Balance

20100100002 XY. Corporation Opening 40,000
Balance

20100200001 Salaries Payable Opening 8,000
Balance

20100200002 Utilities Payable Opening 4,000
Balance

20100300001 ABN Amro Bank (STF) Opening 12,000
Balance

20100400002 Caponi SRL Opening 6,000
Balance

20100400001 HNH International Opening 3,000
Balance

20100500001 Motor Car (AD) Opening 4,500
Balance

20100500002 Delivery Truck (AD) Opening 5,000
Balance

20200200001 Staff Gratuity Payable Opening 20,000
Balance

30100100001 Office Building Opening 100,000
Balance

30100100002 Warehouse Opening 100,000
Balance

30100200002 Computers Opening 10,000
Balance

30100300001 Motor Car Opening 30,000
Balance

(continued)

212

Table 24-1. (continued)

CHAPTER 24 I YEAR-END PROCESSES

Account Code Account Title Description Debit Credit
30200100001 Stock - Raw Material Opening 1,000
Balance
30200200001 S.A. Gacel Opening 2,000
Balance
30200200002 BV.Heliform Opening 100,000
Balance
30200300001 ABN Amro Bank Opening 150,000
Balance
40100100001 Export Sales Opening 175,000
Balance
50100100001 Stock Consumption - Raw Opening 15,000
Material Balance
50200100001 Staff Salaries Expense Opening 8,000
(Admin) Balance
50200100002 Gratuity Expense Opening 12,000
Balance
50200200001 Electricity Expense Opening 1,500
Balance
50200300001 Depreciation - Motor Car Opening 2,000
Balance
50300200001 Depreciation Opening 3,500
Expense - Delivery Truck ~ Balance
Total 471,500 471,500

24.2 Temporary Year-End (TYE)

Up until now you have created each application feature in a separate chapter. Though the
two year-end segments are listed individually under the Closing menu, you will create
both of them in this chapter. Perform the following steps to first create the temporary

year-end segment.

24.3 Create the Page and Page Items

The temporary year-end process will receive two values from the user: Voucher Type
and Profit and Loss Account. This closing process will first create a new fiscal year. If
one already exists, for example, you execute this process for a second time, this step will
be skipped. After creating the new fiscal year, the year-end process generates a closing

213

CHAPTER 24 I YEAR-END PROCESSES

voucher of the selected type to close all revenues and expenses into an account called
the Profit and Loss Account. For this purpose, the segment receives the two parameters
mentioned earlier. Create a new blank page with page items in Table 24-2.

Table 24-2. Page Attributes

Action Attribute Value
Create Blank Page Page Number 93
Name Temporary Year-End
Page Mode Normal
Breadcrumb - do not use breadcrumbs on
page -
Navigation Preference Identify an existing navigation

Existing Navigation Menu
Entry

Create Region Title

Type

Template
Create Page Item Name

Type

Label

Region

Label Column Span

Template

Value Required

LOV Type

List of Values
Create Page Item Name

Type

Label

Region

Label Column Span

Template

Value Required

LOV Type

List of Values

menu entry for this page

Closing

Temporary Year-End
Static Content
Standard
P93_VCHCODE
Select List

Select a voucher type:
Temporary Year-End
2

Required

Yes

Shared Component
VOUCHER TYPES
P93_PLACCOUNT
Popup LOV

P&L Account:
Temporary Year-End
2

Required

Yes

Shared Component
COA Entry Level

214

(continued)

CHAPTER 24 I YEAR-END PROCESSES

Table 24-2. (continued)

Action Attribute Value
Create Button Button Name GO
Label Execute TYE
Region Temporary Year-End
Button Position Copy
Action Submit Page

24.4 Create a Validation

Add the validation in Table 24-3 to check that the current year is not permanently closed.
In such a case the TYE process will not execute.

Table 24-3. Validation Attributes

Action Attribute Value
Create Validation Name Check Permanent Year Closure
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter24\Check

Permanent Year Closure.txt
Error Message Year is permanently closed

When Button Pressed GO

24.5 Generate the Fiscal Year Process

The process in Table 24-4 creates a new fiscal year when you execute the TYE process for
the first time.

Table 24-4. Process Attributes

Action Attribute Value
Create Process Name Generate Fiscal Year
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter24\Generate Fiscal
Year.txt
Point Processing

When Button Pressed GO

215

CHAPTER 24 I YEAR-END PROCESSES

24.6 A Process to Generate a Closing Entry

The process in Table 24-5 will close all revenue and expense accounts into a profit and
loss account that you will select as the second parameter.

Table 24-5. Process Attributes

Action Attribute Value
Create Process Name Generate Closing Entry
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter24\Generate
Closing Entry.txt
Point Processing
Success Message Temporary year-end process executed
successfully
Error Message Could not execute the TYE process
When Button Pressed GO

Note The TYE process must be executed to update the profit and loss account
whenever you manipulate data in the previous fiscal year.

24.7 Test Your Work

Invoke the page from the Temporary Year End option in the Closing menu, as shown

in Figure 24-1. Select a JV type voucher from the first drop-down list. For the second
parameter, select the account titled “Unappropriated Profit/Loss account” from the chart
of accounts and click the Execute TYE button. You should see a success message after the
execution of the process. Now click the Transactions menu and select the voucher type
you chose to store the closing entry. You'll see two vouchers in the vouchers report list.
The first voucher is the one you entered through Table 24-1 to record opening balances,
while the second one (numbered 9999999999) is created by the TYE process to close
expense and revenue accounts. Note that this voucher is marked as both verified and
posted, which means you cannot modify or delete its contents. Click the edit link next to it
and notice that all the data manipulation buttons have disappeared from the details page.
The only button you should see is the Cancel button that takes you back to the reports
page. Also note that the closing voucher is reflected in the ledger report in the year it was
created. For example, if you run a ledger report for an expense or a revenue account,
you'll see this voucher. The first task that this process performed was the creation of a new
fiscal year. To verify this, click the Select menu and expand the Year select list. Now there
will be two years: 2015 and 2016.

216

CHAPTER 24 I YEAR-END PROCESSES

24.8 Permanent Year End (PYE)

This is the second year-end process, which prevents any kind of data manipulation
operation in a year marked as permanently closed. Execute the following sections to

create this process.

24.9 Create the Page and Page Items

Using Table 24-6, create a blank page and items to create the PYE process.

Table 24-6. Page Attributes

Action Attribute Value
Create Blank Page Page Number 97
Name Permanent Year-End
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -

Navigation Preference

Existing Navigation Menu

Entry
Create Region Title

Type

Text

Template

Create Button Button Name
Label
Region
Button Position

Action

Identify an existing navigation
menu entry for this page

Closing

Permanent Year-End
Static Content

<p> Before you
proceed, make sure that:

 You have closed all 12
fiscal periods.

 You have executed
Temporary Year End process
recently to register latest closing
entries.

 Click Go to
proceed!</p>

Standard

GO

GO

Permanent Year-End
Copy

Submit Page

217

CHAPTER 24 I YEAR-END PROCESSES

24.10 Create the Validations

Create the validations in Table 24-7 to fully execute the PYE process. The first validation
checks whether the current year is not already marked as permanently closed. For this
process to be successful, it is necessary to first close all 12 periods. The second validation
ensures that all 12 fiscal periods have been marked as closed. The final validation needs

you to execute the TYE process to record the latest closing entries.

Table 24-7. Validation Attributes

Action Attribute Value
Create Validation Name Permanent Year Closure
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter24\Permanent
Year Closure.txt
Error Message Year is already permanently closed
When Button Pressed GO
Create Validation Name Check Months Closure
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter24\Check
Months Closure.txt
Error Message Fiscal months are not closed
When Button Pressed GO
Create Validation Name Check Temporary Year End Date
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter24\Check
Temporary Year End Date.txt
Error Message Execute Temporary Year End
process for fresh closing entries
When Button Pressed GO

2411

A Process to Close the Year Permanently

After passing the validations, the currently selected year is marked as permanently closed
by the process mentioned in Table 24-8.

218

CHAPTER 24 I YEAR-END PROCESSES

Table 24-8. Process Attributes

Action Attribute Value
Create Name Close Year Permanently
Process Type PL/SQL Code
PL/SQL Code UPDATE gl _fiscal_year SET year_closed=1

WHERE cocode=(select cocode from gl_users
where upper(userid) = upper
(:APP_USER)) and
coyear=(select coyear from gl_users
where upper(userid) = upper
(:APP_USER));

Point Processing
Success Message Permanent year end process executed successfully
Error Message Could not execute the PYE process

When Button Pressed GO

24.12 Test Your Work

Run the Permanent Year End segment from the Closing menu; you will see the PYE page,

as illustrated in Figure 24-1. Hit the Go button. The process will not execute because the 12
fiscal periods are open and must be marked as closed prior to executing this process. Do

so by closing all the periods individually from the Month Closing option under the Closing
menu and execute this process again. If you ran the TYE process on the same date, the PYE
process should execute successfully in this attempt; otherwise, you will get another message
to execute the TYE process to register fresh closing entries. After successful execution of this
process, transaction manipulation actions are permanently prevented in the current year. Of
course, you can view the data through the voucher interface and the reports.

Temporary Year End

Select a voucher type: . AD) ¢

"
P&L Account: 10100300001-Unappropriated Profit/Loss A

Permanent Year End

Before you proceed, make sure that:

You have closed all 12 fiscal periods.

You have executed Temporary Year End process recently to register latest closing entries.
Click Go to proceed!

Figure 24-1. Year End Pages
219

CHAPTER 24 I YEAR-END PROCESSES

2413 Summary

After executing the TYE process, you get the next fiscal year. Also, the closing balances of
assets, liabilities, and capital accounts are transferred to the next fiscal year. In the next
couple of chapters, you will learn how to develop a budget module.

220

CHAPTER 25

Budget Allocation

A budget is a useful tool to keep spending under control. Every good organization uses
this tool to keep an eye on its activities. After allocating a budget to an account, it is
compared to the actual expenditure to make sure there is no overspend of money. In the
initial year, budgets are allocated manually because of the absence of historical data.

In subsequent years, you have two options to define budgets: you can reuse last year’s
budget or allocate last year’s actual spend to act as the current year’s budget.

25.1 Budget Allocation Table

Budgets will be saved in the following table for each company, year, and account:

BUDGET ALLOCATION TABLE

CREATE TABLE gl_budget

(cocode number constraint fk_budgeti References GL_Company (Cocode)

NOT NULL, coyear number(4), coacode varchar2(11) NOT NULL, coanature
varchar2(11) NOT NULL, cccode varchar2(5), budget_amounti number(1s,2),
budget_amount2 number(15,2), budget_amount3 number(15,2), budget_amounts
number(15,2), budget_amount5 number(15,2), budget_amounté number(15,2),
budget_amount7 number(15,2), budget_amount8 number(15,2), budget_amount9
number(15,2), budget_amount10 number(15,2), budget_amountili number(1s,2),
budget_amount12 number(15,2), criterion number(1), constraint fk_budget2
Foreign Key (cocode,coacode) References GL=COA);

© Riaz Ahmed 2016 221
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_25

CHAPTER 25 | BUDGET ALLOCATION

25.2 Create the Page and Parameters Form

Using Table 25-1, create a blank page and add components to it. The two hidden items
defined underneath will store the current company’s code and year to properly save the
budget. Budgets are mainly allocated according to the nature of the account, so you also
add a select list to display the five natures from the chart of accounts.

Table 25-1. Page Attributes

Action Attribute Value
Create Page Number 55
Blank Page ;e Budget Allocation
Page Mode Normal
Navigation Preference Identify an existing navigation menu entry for
this page
Existing Navigation Menu Utilities
Entry
Create Title Budget Allocation Parameters
Region Type Static Content
Template Standard
Create Name P55_COCODE
Page Item Type Hidden
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users WHERE
userid = :app_user
Source Used Always, replacing any existing value in session
state
Create Name P55_COYEAR
Page Item Type Hidden
Source Type SQL Query (return single value)
SQL Query SELECT coyear FROM gl_users WHERE userid
=:app_user
Source Used Always, replacing any existing value in session
state

(continued)

222

Table 25-1. (continued)

CHAPTER 25 | BUDGET ALLOCATION

Action Attribute Value
Create Name P55_COANATURE
Pageltem Ty Select List
Label Nature of Account:
Page Action on Selection ~ Submit Page
Region Budget Allocation Parameters
Start New Row Yes
Column/Column Span Automatic
Label Column Span 2
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query SELECT DISTINCT coanature d, coanature r

FROM gl_coa
WHERE cocode=(select cocode from gl_users
where userid=:APP_USER)

The three options defined in the Radio Group page item (Table 25-2) help users
evaluate which type of budget was saved for the selected nature of account. For example,
if a budget was created for a particular nature using the first option (User Defined),
then whenever the user selects that nature, the first type is highlighted. After selecting
an account nature, you click one of the three provided buttons (User Defined, Last Year
Budget, or Last Year Actual in Table 25-2) to specify what type of budget you want to
allocate. These buttons are associated with respective processes defined using Table 25-5
later in the chapter.

223

CHAPTER 25 | BUDGET ALLOCATION

Table 25-2. Item and Button Attributes

Value

Action Attribute

Create Page Item Name
Type
Label

Number of Columns
Region

Start New Row
Column/Column Span
Label Column Span
LOV Type

Static Values

Display Null Value
Source Type
SQL Query

Source Used

Default Type
Static Value
Create Button Name
Label
Region
Position
Action
Create Button Name
Label
Region
Position

Action

P55_CRITERIA

Radio Group

Type of Budget:

3

Budget Allocation Parameters
Yes

Automatic

2

Static Values

STATIC:1-User Defined;1,2-Last Year
Budget;2,3-Last Year Actual;3

No
SQL Query (return single value)

SELECT DISTINCT criterion FROM
gl _budget

WHERE cocode=:P55_COCODE AND
coyear=:P55_COYEAR AND
coanature=:P55_COANATURE

Always, replacing any existing value
in session state

Static Value

1

User_Defined

User Defined

Budget Allocation Parameters
Copy

Submit Page
Last_Year_Budget

Last Year Budget

Budget Allocation Parameters

Copy
Submit Page

224

(continued)

Table 25-2. (continued)

CHAPTER 25 | BUDGET ALLOCATION

Action Attribute Value
Create Button Name Last_Year_Actual
Label Last Year Actual
Region Budget Allocation Parameters
Position Copy
Action Submit Page

25.3 Create a Tabular Form

After selecting an account nature, you click one of the three buttons created in the previous
section. The processes associated with these buttons execute and populate the table
GL_BUDGET with respective accounts and values. To browse the result and to manipulate the
values, you need to create a tabular form. Click the Create Page button in the Application
Builder interface to create the tabular form on page 55. Select the Form option followed by
Tabular Form in the initial wizard screens. Note that setting page to 55 creates the tabular
form on the existing page 55. Use Table 25-3 to complete the tabular form region.

Table 25-3. Tabular Form Region

Action Attribute Value
Create Table Owner Accept the displayed value
Region Table Name GL_BUDGET

Select Columns Select all columns

Allowed Operations
Primary Key Type
Updatable Columns
Page

Page Name

Page Mode

Region Title

Buttons and Branching

Update, Insert, and Delete
Managed by Database (ROWID)
All columns

55

Budget Allocation

Normal

Allocate budget for &P55_
COANATURE. accounts

Accept all default values

225

CHAPTER 25 | BUDGET ALLOCATION

Modify the new tabular form region to incorporate the following amendments:

1. Add a WHERE clause to the region’s SQL query as follows to
display the data of the current company, year, and selected
nature:

SELECT "ROWID","COCODE","COYEAR","COACODE","COANATURE",
"CCCODE", "BUDGET_AMOUNT1",
"BUDGET_AMOUNT2","BUDGET_AMOUNT3","BUDGET_AMOUNT4",
"BUDGET_AMOUNT5",

"BUDGET_AMOUNT6", "BUDGET_AMOUNT7", "BUDGET_AMOUNT8",
"BUDGET_AMOUNT9",
"BUDGET_AMOUNT10","BUDGET_AMOUNT11", "BUDGET _
AMOUNT12","CRITERION"

FROM "#OWNER#"."GL_BUDGET"

WHERE cocode=:P55_COCODE and coyear=:P55_COYEAR and

coanature=:P55_COANATURE

2. Modify the attributes listed in Table 25-4 for the COACODE
column.

Table 25-4. COACODE Attributes

Attribute Value

Type Popup LOV (shows displays value)
Heading Account

LOV Type Shared Component

List of Values COA ENTRY LEVEL

Width 35

Default Sequence (under Sorting) 1

3. Setthe Type attribute to Hidden Column (saves state) for
the COCODE, COYEAR, COANATURE, CCCODE, and
CRITERION columns.

4. Modify the COCODE column. Set its Default Type value to
Item and enter P55_COCODE in the Item attribute. Repeat
the same for the COYEAR (P55_COYEAR), COANATURE
(P55_COANATURE), and CRITERION (P55_CRITERIA)
columns. This way, the four table columns will inherit values
from the corresponding page items.

5. Setheadings for the 12 Budget Amount columns as Month 1,
Month 2, and so on, as shown in Figure 25-1 later in this
chapter.

226

25.4 Budget Processes

CHAPTER 25 | BUDGET ALLOCATION

Using Table 25-5, add three processes to handle the allocation. Each process is associated
with a particular button to populate the GL_BUDGET table.

Table 25-5. Process Attributes

Action Attribute Value
Create Process Name User Defined Budget
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter25\User Defined
Budget.txt
Point Processing
When Button Pressed User_Defined
Create Process Name Last Year Budget
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter25\Last Year
Budget.txt
Point Processing
When Button Pressed Last_Year Budget
Create Process Name Last Year Actual
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter25\Last Year
Actual.txt
Point Processing
When Button Pressed Last_Year_Actual

25.5 Test Your Work

Budgets are usually applied to expenses to keep them under control. However, the
segment created in this chapter can be used to set a budget for any nature of account.
Let’s see how a budget is defined.

1. Now that you have two fiscal years (2015 and 2016) for ABC &
Company, switch to the new fiscal year (2016) from the select
menu. Selecting a period is not necessary for this segment.

2. Invoke the Budget Allocation segment from the Utilities menu.

227

CHAPTER 25 | BUDGET ALLOCATION

3. Set Nature of Account to Assets and click the User Defined
button. The process associated with this button will populate
the tabular form with all asset accounts from the chart
of accounts. Note that the first month column (Month 1)
represents the first month of the fiscal year. In the current
scenario, the first month represents July, the second month
represents August, and so on. Enter some numeric figures
in some month columns for different accounts and click the
Apply Changes button to save the budget values. Switch the
nature of account to some other nature and then back to the
Assets nature. You'll see the saved figures. Also, note that the
type of budget is set to the first option, in other words, User
Defined. You save the budget using the Apply Changes button
only when you define it manually. For the other two options,
you are not required to use this button unless you change the
fetched values or add/delete rows from the tabular form.

4. Select Expenses as the nature of account and hit the Last Year
Actual button, as shown at the top of Figure 25-1. Scroll to
extreme right and note the figures being shown in the Month
12 column, as shown at the bottom of Figure 25-1. These are
the figures that you entered as opening balances for respective
expense accounts in the month of June in the previous fiscal year.

Budget Allocation Parameters User Defaned [Lust Yeur Budget] Lst Year Actunl l
Mature of Account; Bpenss 0
Trpeof Budget: 1 User Defined O 2-Lust Yewr Budget O 3-Lust Yewr Actund

Account L‘ Morth | Manth 7 Maonth Month 4 Month S
O 50104100801+ ok Consumption « Ruw My - 100004 eaney 10000 0108 So200
00 58200200001-Labor Wages A 108008 70080 100e e s
C 00300001 Electrcty Charges A 10400 900 10000 e 030
O 50200100001 S0aff Salaries Expanse (Ademin =~ e s oo wbier oo
O 50200200002-Gratuity Expense - 13000 oo OO0 Wit 008
m} SA20700001 - Eectrsty Eptnie - 168008 200000 00N 450108 008

Figure 25-1. Budget allocation page

228

CHAPTER 25 | BUDGET ALLOCATION

25.6 Summary

Since you do not have any previous year budget data, you won'’t get any result if you click
the Last Year Budget button. For this, you will have to create another fiscal year using the
temporary year-end process, and then you can use the budget you set in the previous
steps. The next chapter provides instructions to generate a budget report.

229

CHAPTER 26

Budget Report

The budget report displays the variance between the allocated budget figure and the
actual figure recorded through vouchers. It also carries a Status column to signify whether
the actual value exceeded (over-applied: O) the allocated budget, or it remained within
the defined limit (under-applied: U). The parameters form allows you to generate this
report for a particular nature, for a single account or a range of accounts, and for different
durations.

26.1 Budget Report Table

The following table (already created through the script file) stores budget report values
generated by a process defined in Table 26-5 later in the chapter.

BUDGET REPORT TABLE

CREATE TABLE gl_budget_report

(coacode VARCHAR2(11), coatitle VARCHAR2(50), budget NUMBER(15,2),

actual NUMBER(15,2), variance NUMBER(15,2), percent NUMBER(7,2),

status VARCHAR2(1), userid VARCHAR2(50), grand_total NUMBER(1), coname
VARCHAR2(50), AccountFrom VARCHAR2(11), AccountTo VARCHAR2(11), MonthFrom
VARCHAR2(9), MonthTo VARCHAR2(9),

PrintedOn timestamp)

26.2 Create Page and Parameters Form

As usual, create a blank page (using Table 26-1) that will carry two regions: Parameters
and Interactive Report. By selecting an option from the Nature radio group list, you apply
a filter to display accounts associated with the selected nature in the two LOVs defined on
the next page.

© Riaz Ahmed 2016 231
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_26

CHAPTER 26 | BUDGET REPORT

Table 26-1. Page Attributes

Action Attribute Value
Create Blank Page Number 75
Page Name Budget Report
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu
entry for this page
Existing Navigation Menu Reports
Entry
Create Region Title Budget Report Parameters
Type Static Content
Template Standard
Create Page Item Name P75_COANATURE
Type Radio Group
Label Nature:
Number of Columns 6
Page Action on Selection Submit Page
Region Budget Report Parameters
Start New Row Yes
Column/Column Span Automatic
Label Column Span 2
Type (LOV) Static Values
Static Values STATIC:Capital;Capital,Liabilities; Li
abilities,Assets;Assets,
Expenses; Expenses,Revenue;Reve
nue
Display Null Value No
Type (Default) Static Value
Static Value Revenue

232

(continued)

Table 26-1. (continued)

CHAPTER 26 ' BUDGET REPORT

Action Attribute Value
Create Page Item Name P75_ACCOUNTFROM
Type Popup LOV
Label From:
Region Budget Report Parameters
Label Column Span 2
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query SELECT coacode||'-'||coatitle d,
coacode r FROM gl_coa
WHERE cocode=(select cocode from
gl_users
where userid=:APP_
USER) AND
coalevel=4 AND
coanature=:P75_COANATURE
ORDER BY coacode
Create Page Item Name P75_ACCOUNTTO
Type Popup LOV
Label To:
Region Budget Report Parameters
Label Column Span 2
Template Required
Value Required Yes
LOV Type SQL Query
SQL Query Same as the one defined for P75_
ACCOUNTFROM

(continued)

233

CHAPTER 26 | BUDGET REPORT

Table 26-1. (continued)

Action Attribute

Value

Create PageItem Name
Type
Label
Region
Start New Row
Column/Column Span
Label Column Span
Template
Value Required
LOV Type
SQL Query

Default Type
Static Value

Create PageItem Name
Type
Label
Region
Start New Row
Column/Column Span
Label Column Span
Template
Value Required
LOV Type
SQL Query

Default Type
Static Value

P75_MONTHFROM
Select List

From:

Budget Report Parameters
Yes

Automatic

2

Required

Yes

SQL Query

SELECT comonthname d,comonthid

r FROM gl_fiscal_year
WHERE cocode=(select cocode from

gl_users
where userid=:APP_
USER) AND
coyear=(select coyear from

gl_users
where userid=:APP_
USER)

ORDER BY comonthid

Static Value

1

P75_MONTHTO

Select List

To:

Budget Report Parameters

Yes

Automatic

2

Required

Yes

SQL Query

Same as the one defined for P75_
MONTHFROM

Static Value
1

234

(continued)

Table 26-1. (continued)

CHAPTER 26 ' BUDGET REPORT

Action Attribute Value
Create Page Item Name P75_COCODE
Type Hidden
Region Budget Report Parameters
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users
WHERE userid=:APP_USER
Source Used Always, replacing any existing value

Create Page Item Name
Type
Region
Source Type
SQL Query

Source Used

Create Button Button Name
Label
Region
Button Position
Action

Create Button Button Name
Label
Region
Button Position

Action

in session state

P75_COYEAR

Hidden

Budget Report Parameters

SQL Query (return single value)

SELECT coyear FROM gl_users
WHERE userid=:APP_USER

Always, replacing any existing value
in session state

Display

Display

Budget Report Parameters
Copy

Submit Page

Print

Print

Budget Report Parameters
Copy

Submit Page

26.3 Create Computations

Click the Rendering tab to create two computations (listed in Table 26-2) to display the
first and last accounts from the COA in the corresponding page items. Right-click the
Before Header node and select Create Computation from the context menu. This will
add a Computations node under the Before Header node. Set the following attributes as

shown in Table 26-2.

235

CHAPTER 26 | BUDGET REPORT

Table 26-2. Computation Attributes

Action Attribute Value
Create Computation Item Name P75_ACCOUNTFROM
Point Before Header
Computation Type SQL Query (return single value)
SQL Query SELECT MIN(coacode) FROM
gl _coa
WHERE coanature=:P75_
COANATURE AND
coalevel=4 AND
cocode=:P75_COCODE
Create Computation Item Name P75_ACCOUNTTO
Point Before Header
Computation Type SQL Query (return single value)
SQL Query SELECT MAX(coacode) FROM
gl _coa
WHERE coanature=:P75_
COANATURE AND

coalevel=4 AND
cocode=:P75_COCODE

26.4 Create Interactive Report

Using Table 26-3, create an interactive report to create the onscreen version of the budget
report.

Table 26-3. Interactive Report Attributes

Action Attribute Value
Create Region Title Budget Report
Type Interactive Report
SQL Query SELECT * FROM gl_budget_report

WHERE userid=:APP_USER
ORDER BY grand_total,coacode

Template Standard

Modify the interactive report to incorporate the following amendments:

1. Set meaningful column headings.

236

CHAPTER 26 ' BUDGET REPORT

2. Run the page, and using the Actions menu » Select Columns
option, move Account Code, Title, Budgeted Amount, Actual
Amount, Variance, Percent, and Status columns to the Display
in Report pane.

3. Create a highlight rule as listed in Table 26-4 to highlight the
grand total row using different text and background colors.

Table 26-4. Highlight Rule

Rule Name Column Operator Expression

Grand Total Grand Total = 1

4. Save the report by selecting As Default Report Settings,
followed by the Primary option.

26.5 Budget Report Generation Process

The process mentioned in Table 26-5 generates the budget report and stores the result in
the gl budget report table with respective user ID and parameters.

Table 26-5. Budget Report Generation Process

Action Attribute Value
Create Process Name Generate Budget Report
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter26\Generate Budget
Report.txt
Point Processing
Condition Type Request is contained in value
Value Display,Print

26.6 Generate PDF Report

Create a PDF version of this report using the attributes and values listed in Table 26-6.

237

CHAPTER 26 | BUDGET REPORT

Table 26-6. Report Query Attributes

Attribute Value
Report Query Name budget_report
SQL Query SELECT * FROM gl_budget_report

WHERE userid=:APP_USER
ORDER BY grand_total,coacode

XML File Name budget_report.xml

Columns in RTF Template Table Account Code, Title, Budget Amount, Actual
Amount, Variance, Percent, and Status

RTF File Name budget_report.rtf
Branch Name Run Budget Report
Branch Request PRINT_REPORT=budget_report

26.7 Test Your Work

Execute the following steps to test this segment. Make sure your current company is
ABC & Company and your working period is July in 2016. In other words, the text ABC &
Company July, 2016 should display on your screen.

1. Using Tables 26-7 and 26-8, create two sales vouchers. Note
that I created a separate voucher type (SI) to record sales
transactions.

Table 26-7. Sales Voucher 1

Voucher Type: SI Voucher Number: 1 Voucher Date: 01-JUL-2016
Description: Recorded export sales vide invoice # 123456
Account Code Account Title Description Debit Credit
30200200001 S.A. Gacel Recorded export 100,000 -

sales vide invoice #

123456
40100100001 Export Sales Recorded export - 100,000

sales vide invoice #

123456
Total 100,000 100,000

238

CHAPTER 26 ' BUDGET REPORT

Table 26-8. Sales Voucher 2
Voucher Type: S| Voucher Number: 2 Voucher Date: 15-JUL-2016

Description: Recorded local sales vide invoice # 987654

Account Code Account Title Description Debit Credit
30200200002 BV Heliform Recorded local sales 150,000 -
vide invoice # 987654
40100100002 Local Sales Recorded local sales - 150,000
vide invoice # 987654
Total 150,000 150,000

2. From the Utilities menu, click the Budget Allocation option.
Select Revenue as the nature of account and click the User
Defined button. You'll get the four accounts marked as
Revenue in the tabular form. Enter 120000 and 100000
in the Month 1 column for Export Sales and Local Sales,
respectively. This will set a budget for these two accounts for
the month of July. Click the Apply Changes button.

3. Invoke the Budget Report segment from the Reports menu.
Fill in the parameters as shown in Figure 26-1 (top) and hit the
Display button. You will see the report shown in Figure 26-1
(bottom).

Parameters

Nature: O Assets O Capital O Bpenses O Liabilities @ Revenue

From: © 40100100001 Export Ssles ~
To:© 40100100002-Local Sales ~
From: = July B
To: " July [

ABC & Company

Budget Report
Printed On: 31-AUG-2015 10:39AM

To Account: REIL T

G ~
= | = = == == | ==l
50.00000

40100100001-Expont Sakes 120,000.00
40100100002-Local Sales 100,000.00 mooo
_GRAND TOTAL -gx::m-z:rm_m:m_nn-_

Figure 26-1. Budget report

239

CHAPTER 26 | BUDGET REPORT

26.8 Summary

By showcasing the difference between the budgeted and actual values, the budget report
helps management keep things under control. In addition to this report, there are few
more financial reports (discussed in the next chapter) that inform management about the
health of their organizations.

240

CHAPTER 27

Set Up Accounts for
Financial Statements

Organizations prepare financial statements periodically (especially at the end of a fiscal
year) to assess business performance. The two most common financial statements are
the profit and loss (P&L) statement and the balance sheet. In this chapter, you will create
a setup where users will provide parameters in the form of account codes from the chart
of accounts for these two reports. These accounts will be used in the next chapter to
produce the two financial statements.

27.1 Accounts Table for the Financial
Statements

The following table was created through the script file to store financial statement
accounts:

FINANCIAL STATEMENTS ACCOUNTS TABLE

CREATE TABLE gl_fs_setup

(cocode NUMBER, reportcode varchar2(4), reporttitle varchar2(50), fsaccount
varchar2(50), AccountFrom varchar2(11i), AccountTo varchar2(11), CONSTRAINT
GL_FS_SETUP=PK PRIMARY KEY (cocode,reportcode,fsaccount) ENABLE)

27.2 Create a List of Values

Using Table 27-1, create a static list of values from scratch and name it Financial
Statement Accounts.

© Riaz Ahmed 2016 241
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_27

CHAPTER 27 I SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Table 27-1. Financial Statement Accounts LOV

Display Value Return Value

Sales Sales Profit & Loss Parameters
Cost of Goods Cost of Goods

Administrative Expenses Admin

Selling & Marketing Expenses Selling

Financial Charges Financial

Share Capital Share Capital Balance Sheet Parameters
Reserves Reserves

Profit/(Loss) Profit/(Loss)

Trade Creditors Trade Creditors

Accrued Expenses
Short Term Finance
Advance From Customers

Accumulated Depreciation

Accrued Expenses
Short Term Finance
Advance From Customers

Accumulated Depreciation

Banks Overdrafts Banks Overdrafts
Long Term Liabilities Long Term Liabilities
Building Building
Office Equipment Office Equipment
Vehicles Vehicles
Stock in Trade Stock in Trade
Trade Debts Trade Debts
Cash and Bank Cash and Bank
Note Initially the LOV wizard allows 15 entries. To add more entries, modify the LOV

and use the Create Entry button.

27.3 Create Page and Page Items

Create a blank page and add the items to it using Table 27-2.

242

Table 27-2. Page Attributes

CHAPTER 27 © SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Action Attribute Value
Create Page Number 18
E::;;k Name Financial Statements Setup
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu entry
for this page
Existing Navigation Menu Setup
Entry
Create Title Financial Statements Parameters
Region Type Static Content
Template Standard
Create Name P18_COCODE
Page Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users WHERE
userid=:APP_USER
Source Used Always, replacing any existing value in
session state
Create Name P18_EXISTINGNEW
Pageltem 1., Radio Group
Label Report:
Number of Columns 2
Page Action on Selection Submit Page
Region Financial Statements Parameters
Start New Row Yes
Column/Column Span Automatic
Label Column Span 2
Template Required
LOV Type Static Values
Static Values STATIC:New; NEW, Existing; EXISTING
Display Null Value No
Type (Default) Static Value
Static Value EXISTING

(continued)

243

CHAPTER 27 I SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Table 27-2. (continued)

Action Attribute Value
Create Name P18_REPORTCODE1
Page Item Type Select List
Label Code:
Page Action on Selection Submit Page
Region Financial Statements Parameters
Start New Row No
Column Automatic
New Column Yes
Column Span Automatic
Label Column Span 2
Template Required
Value Required No
LOV Type SQL Query
SQL Query SELECT DISTINCT reportcode d, reportcode r
FROM gl fs_setup
WHERE cocode=:P18_COCODE
Type (Condition) Item = Value
Item P18_EXISTINGNEW
Value EXISTING
Create Name P18 _REPORTTITLE1L
Page Item Type Text Field
Label Title:
Region Financial Statements Parameters
Start New Row No
Column Automatic
New Column Yes
Column Span Automatic
Label Column Span 2
Width 50
Source Type SQL Query (return single value)
SQL Query SELECT reporttitle FROM gl_fs_setup
WHERE reportcode=:P18_REPORTCODE1
and cocode=:P18_COCODE
Source Used Always, replacing any existing value in
session state
Type (Condition) Item = Value
Item P18_EXISTINGNEW
Value EXISTING

244

(continued)

Table 27-2. (continued)

CHAPTER 27 © SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Action Attribute

Value

Create Name

Page Item Type
Label
Region
Start New Row
Column
New Column
Column Span
Label Column Span
Type (Condition)
Item
Value

Create Name

Page Item Type
Label
Region
Start New Row
Column
New Column
Column Span
Label Column Span
Width
Type (Condition)
Item

Value

P18_REPORTCODE2
Text Field
Code:
Financial Statements Parameters
No

Automatic

Yes

Automatic

2

Item = Value
P18_EXISTINGNEW
NEW
P18_REPORTTITLE2
Text Field
Title:
Financial Statements Parameters
No

Automatic

Yes

Automatic

2

50

Item = Value
P18_EXISTINGNEW
NEW

27.4 Create a Tabular Form

Click the Create Page button in the Application Builder interface to create a tabular form
region on page 18 using Table 27-3. Select the Form option followed by the Tabular Form
option in the initial wizard screens. In this tabular form, you will specify accounts for each

report.

245

CHAPTER 27 I SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Table 27-3. Tabular Form Attributes

Action Attribute Value
Create Table Owner Accept the displayed value
Region pyple Name GL_FS_SETUP
Select Columns Select all columns
Allowed Operations Update, Insert, and Delete
Primary Key Type Managed by Database (ROWID)
Updatable Columns All columns
Page 18
Page Name Financial Statements Setup
Page Mode Normal
Region Title Accounts for &P18_REPORTTITLEL.
Buttons and Branching Accept all default values

Modify the new tabular form region on page 18 to incorporate the following

amendments:

246

1.

Add a WHERE clause to the region’s SQL query as follows to
display the data of the current company, year, and selected
nature:

SELECT "ROWID", "COCODE", "REPORTCODE", "REPORTTITLE",
"FSACCOUNT", "ACCOUNTFROM",

"ACCOUNTTO"
FROM "#OWNER#"."GL_FS_SETUP"
WHERE (reportcode=:P18_REPORTCODE1 or reportcode=:P18_
REPORTCODE2) and

cocode=:P18_COCODE
ORDER BY ACCOUNTFROM

Modify the COCODE column. Set Default Type to Item and enter
P18_COCODE in the Item attribute.

CHAPTER 27 © SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

3. Hide the columns COCODE, REPORTCODE, and REPORTTITLE by
setting the Type property to Hidden Column (saves state).

4. Modify the attributes listed in Table 27-4 for the FSACCOUNT
column.

Table 27-4. FSACCOUNT Column Attributes

Attribute Value

Type Select List

Heading Account

LOV Type Shared Component

List of Values FINANCIAL STATEMENT ACCOUNTS

5. Modify the attributes listed in Table 27-5 for the ACCOUNTFROM
and ACCOUNTTO columns.

Table 27-5. ACCOUNTFROM and ACCOUNTTO Column Attributes
Attribute Value

Type Popup LOV (shows displays value)
Heading From/To

LOV Type Shared Component

List of Values COA ALLLEVELS

Width 45

6. Click the Attributes node representing the tabular form and
set the Number of Rows attribute to 20.

27.5 Create Validations

Using Table 27-6, create two validations. The first one checks for a report code when you
create parameters for a new report. The second one prompts you if it finds a code that
already exists in the database.

247

CHAPTER 27 I SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Table 27-6. Validation Attributes

Action Attribute Value
Create Validation Name Report Code Not NULL
Type Item is NOT NULL
Item P18_REPORTCODE2
Error Message Report Code must be provided for
new reports
When Button Pressed SUBMIT
Condition Type Item = Value
Item P18_EXISTINGNEW
Value NEW
Create Validation Name Check Report Code
Type PL/SQL Function (returning Error
Text)
PL/SQL Function Book_Code\Chapter27\Check
Report Code.txt
Error Message Report Code already exists
When Button Pressed SUBMIT

27.6 Create Process

The process mentioned in Table 27-7 will populate the report code and the title in the
tabular form to associate the code with the selected accounts.

Table 27-7. Process Attributes

Action Attribute Value
Create Process = Name Populate Report Code Value in TF
Type PL/SQL Code
PL/SQL Code Book_Code\Chapter26\Populate Report
Code Value in TEtxt
Sequence 5 (to be placed before ApplyMRU process)
Point After Submit (fo execute it before

REPORTCODE not null validation)

When Button Pressed SUMBIT

248

27.7

CHAPTER 27 © SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

Test Your Work

Execute the following steps to test this segment:

1.

Run the segment from the Financial Statement option under
the Setup menu. You'll see the segment page as illustrated in
Figure 27-1.

Select the New option from the radio group to define
parameters for a new report.

In the Code box, enter PLO1 and type Profit & Loss
Statement in the Title box.

Click the Add Row button to define the first account for this
report.

In the Account column, select Sales from the select list.

Click From LOV and select the 4-REVENUES account from
the chart of accounts. Click the To LOV and select the last-
selling account (in other words, 40100200002 Sales Return &
Discount - Local). By setting these parameters, you specified
arange for the sales accounts that will be used in the next
chapter to fetch sales figures for the P&L report.

Add some more P&L accounts to the tabular form, as shown
in Figure 27-1, to complete this setup.

Click the Apply Changes button.

Using a file named Balance Sheet Accounts.PNGin the
book’s code, create a new report to specify accounts for the
balance sheet.

O busting @ New Code: PLOL Tithe: Profit & Losi Saternent

C Account From Te

O Sales 4-REVENUES ~ 40100200002+ Sales Return & Discount - Local
Cost of Goods ' SO1601-Material Cost A SO1003000 1-Ehectrcity Charges

O Aderanaitratet Bipenie ' S02-Adeirastratne Bxpenies - SU200300001-Deprecistion - Moter Car

O Sellng & Marketing Epenses 0 503-Sellang S Mark eting Expenses . SO0 L-Deprecistion Expente - Delvery Truck

O Financial Charges ' S08-Fmancisl Charges ~ SD4I0LE0902-Sandard Chartered Qrterest)

Add o

Figure 27-1. P&L accounts

249

CHAPTER 27 I SET UP ACCOUNTS FOR FINANCIAL STATEMENTS

27.8 Summary

In this chapter, you laid the foundation for the two most significant financial reports: the
P&L statement and the balance sheet. In the next chapter, you will learn how to create
these two reports.

250

CHAPTER 28

Financial Statements

This is the segment that returns the final result of the efforts you have made so far. In this
chapter, you will create the profit and loss (P&L) and balance sheet financial statements.
These statements are based on the setup parameters you specified in the previous
chapter. The P&L statement shows the profitability, whereas the balance sheet reports on
the equities, liabilities, and assets of a business. Combined, these two reports reveal the
financial state of an organization.

28.1 Financial Statements Table

The following table was added to the database through the script file to store the two
financial statements along with respective notes:

FINANCIAL STATEMENTS TABLE

CREATE TABLE gl_fs_report

(reportcode varchar2(4), reporttitle varchar2(50), srno NUMBER, fsaccount
varchar2(50), currentbalance number(15,2), previousbalance number(1s,2),
percent number(7,2), userid varchar2(50), coname varchar2(50), coyear
number(4), comonthname varchar2(9), calculation number(1), netvalue
number(1), notes number(1), notescode varchar2(11), notestitle varchar2(50),
heading number(1))

28.2 Create Page and Page ltems

Create a blank page and add the items to it using Table 28-1.

© Riaz Ahmed 2016 251
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_28

CHAPTER 28 I FINANCIAL STATEMENTS

Table 28-1. Page Attributes

Action Attribute Value
Create Blank Page Number 76
Page Name Financial Statements
Page Mode Normal
Breadcrumb - do not use breadcrumbs on page -
Navigation Preference Identify an existing navigation menu entry
for this page
Existing Navigation Menu Reports
Entry
Create Title Financial Statements Parameters
Region Type Static Content
Template Standard
Create Page = Name P76_COCODE
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users
WHERE userid=:APP_USER
Create Page Name P76_CONAME
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT coname FROM gl_company
WHERE cocode=(select cocode from
gl_users
where upper(userid)=
upper(:APP_USER))
Create Page Name P76_CURRENTFROMDATE
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl_fiscal_year
WHERE cocode=:P76_COCODE and
coyear=:P76_CURRENTYEAR
and comonthid=1
Source Used Always, replacing any existing value in

session state

252

(continued)

Table 28-1. (continued)

CHAPTER 28 © FINANCIAL STATEMENTS

Action Attribute Value
Create Page Name P76_CURRENTTODATE
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pto FROM gl_fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR
AND comonthid=:P76_
CURRENTMONTH
Source Used Always, replacing any existing value in
session state
Create Page Name P76_PREVIOUSFROMDATE
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl_fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR-1
AND comonthid=1
Source Used Always, replacing any existing value in
session state
Create Page Name P76_PREVIOUSTODATE
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pto FROM gl_fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR-1
AND
comonthid=:P76_
CURRENTMONTH
Source Used Always, replacing any existing value in

session state

(continued)

253

CHAPTER 28 I FINANCIAL STATEMENTS

Table 28-1. (continued)

Action Attribute Value
Create Page Name P76_COMONTHNAME
Item Type Hidden
Region Financial Statements Parameters
Source Type SQL Query (return single value)
SQL Query SELECT comonthname FROM gl_fiscal year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR AND
comonthid=:P76_CURRENTMONTH
Source Used Always, replacing any existing value in

Create Page Name

Item Type
Label
Region
Start New Row
Column/Column Span
Label Column Span
Template
Value Required
LOV Type
SQL Query

Create Page Name

Item Type
Label
Region
Start New Row
Column
New Column
Column Span
Label Column Span
Template
Value Required
LOV Type
SQL Query

session state
P76_REPORTCODE

Select List

Code:

Financial Statements Parameters
Yes

Automatic

1

Required

Yes

SQL Query

SELECT distinct reportcode||' - '||reporttitle

d, reportcode r FROM gl _fs_setup
WHERE cocode=:P76_COCODE

P76_CURRENTYEAR

Select List

Current Year:

Financial Statements Parameters

No

Automatic

Yes

Automatic

2

Required

Yes

SQL Query

SELECT distinct coyear d, coyear r FROM
gl_fiscal_year

WHERE cocode=:P76_COCODE ORDER BY
coyear

254

(continued)

Table 28-1. (continued)

CHAPTER 28 © FINANCIAL STATEMENTS

Action Attribute Value
Create Page = Name P76_CURRENTMONTH
Item Type Select List
Label Month:
Region Financial Statements Parameters

Create Button

Create Button

Start New Row
Column
New Column

Column Span

Label Column Span

Template
Value Required
LOV Type

SQL Query

Button Name
Label

Region

Button Position
Action

Button Name
Label

Region

Button Position

Action

No

Automatic

Yes

Automatic

2

Required

Yes

SQL Query

SELECT DISTINCT comonthname d,
comonthid r

FROM gl_fiscal_year

WHERE cocode=:P76_COCODE order by
comonthid

PROFIT_LOSS

Generate P&L

Financial Statements Parameters
Copy

Submit Page

BALANCE_SHEET

Generate Balance sheet
Financial Statements Parameters
Copy

Submit Page

255

CHAPTER 28

FINANCIAL STATEMENTS

28.3 Create Interactive Report and Buttons

Using Table 28-2, create an interactive report region to produce the onscreen view of the
financial statements.

Table 28-2. Interactive Report Region

Action Attribute Value
Create Region Title &P76_REPORTCODE.
Type Interactive Report
SQL Query SELECT * from gl_fs_report
WHERE upper(userid)=upper(:APP_USER) AND
notes=0 AND
reportcode=:P76_REPORTCODE
ORDER BY srno
Template Standard
Create Button Button Name PRINT
Label Print
Region &P76_REPORTCODE.
Button Position Copy
Action Submit Page
Create Button Button Name PRINT_NOTES

Label
Region
Button Position

Action

Print Notes

&P76_REPORTCODE.

Copy
Submit Page

Modify the interactive report as shown in Figure 28-1 and save it by selecting the As
Default Report Settings option followed by the Primary option.

256

CHAPTER 28 © FINANCIAL STATEMENTS

> . Net Value, Net Profit/Loss

Account Current Year Previous Year 9% Change
Sales 249,000.00 175,000.00 42.29
Cost of Goods 0.00 15,500.00 -100
..... Gross Margin 249,000.00 159,500.00 56.11
Administrative Expenses 17,000.00 48,500.00 -64.95
Selling Expenses 60,000.00 3,500.00 1614.29
Financial Charges 500.00

Figure 28-1. The interactive report

28.4 Create Computations

The two financial statements are generated for the selected year (which is treated as the
current year) along with comparative figures from the previous year. The computations
listed in Table 28-3 are created to evaluate the proper periods from the fiscal year table
and are used in the processes created in the next section.

257

CHAPTER 28 I FINANCIAL STATEMENTS

Table 28-3. Computation Attributes

Action Attribute Value
Create Item Name P76_CURRENTFROMDATE
Computation Point After Submit
Computation Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl _fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR AND
comonthid=1
Create Item Name P76_CURRENTTODATE
Computation Point After Submit
Computation Type SQL Query (return single value)
SQL Query SELECT pto FROM gl_fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR AND
comonthid=:P76_CURRENTMONTH
Create Item Name P76_PREVIOUSFROMDATE
Computation Point After Submit
Computation Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl _fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR-1 AND
comonthid=1
Create Item Name P76_PREVIOUSTODATE
Computation Point After Submit
Computation Type SQL Query (return single value)
SQL Query SELECT pto FROM gl_fiscal_year
WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR-1 AND
comonthid=:P76_CURRENTMONTH
Create Item Name P76_COMONTHNAME
Computation Point After Submit
Computation Type SQL Query (return single value)
SQL Query SELECT comonthname FROM gl

fiscal_year

WHERE cocode=:P76_COCODE AND
coyear=:P76_CURRENTYEAR AND
comonthid=:P76_CURRENTMONTH

258

CHAPTER 28 © FINANCIAL STATEMENTS

28.5 Create On-Demand Processes

Open the Shared Components interface. Click Application Processes in the Application
Logic section to create two on-demand processes, as listed in Table 28-4. Note that these
processes will be called from three different application pages.

Table 28-4. On-Demand Process Attributes

Action Attribute Value
Create Process Name Generate Profit and Loss
Point On Demand: Run this application process
when requested by a page process.
PL/SQL Code Book_Code\Chapter28\Generate Profit
and Loss.txt
Condition Type Current Page Is Contained Within

Create Process

Expression 1

Name

Point

PL/SQL Code

Condition Type

Expression 1

Expression 1 (comma delimited list of
pages)

1,6,76 (1=Desktop Home Page, 6=Mobile
Home Page)

Generate Balance Sheet

On Demand: Run this application process
when requested by a page process.

Book_Code\Chapter28\Generate Balance
Sheet.txt

Current Page Is Contained Within
Expression 1 (comma-delimited list of

pages)
1,6,76

ON-DEMAND SHARED PROCESSES

The Shared Components interface has an option called Application Processes. It
has some process categories, one of which is On-Demand process, which lets you
use the same PL/SQL code on multiple application pages. This way, the element of
redundancy is eliminated from your application. Once created, these processes are
called through some page-level processes. In APEX 4.2, there used to be a page-
level process called On-Demand Process that was used to call such application-
level processes on demand. When I initially created this application in APEX 4.2,
the previous two processes were created as 13 individual processes for better
readability and to avoid the 30,000 code limit. | used the On-Demand Process

259

CHAPTER 28 I FINANCIAL STATEMENTS

page-level option to call these 13 shared processes with just a single button click
to produce both P&L and balance sheet statements. Unfortunately, this page-level
option is not available in APEX 5.0. As a workaround, | merged those processes into
the previous two and tweaked the calling process through a couple of branches
(Table 28-5) that are invoked by two different buttons: Generate P&L and Generate
Balance Sheet. Both the processes generate respective financial statements along
with their corresponding notes to the accounts. However, the balance sheet process
produces accurate results only when you first execute the P&L process using the
Generate P&L button.

28.6 Create Branches

Using Table 28-5, create two branches on page 76 to run the previous on-demand
processes. Right-click the Processing node and select Create Branch from the context
menu. Set the following attributes for the new branches. The request (APPLICATION _
PROCESS) calls the two on-demand processes to generate profit and loss and balance
sheet statements along with respective notes. Note that the process name is case-sensitive

and must be provided as it was set in the Name attribute in the previous section.

Table 28-5. Branch Attributes

Action Attribute Value
Create Branch Name Generate Profit and Loss
Point Processing
Type Page or URL (Redirect)
Target Type: Page In This Application
Page: 76
Request (under Advanced):
APPLICATION_PROCESS=Generate
Profit and Loss
When Button Pressed PROFIT_LOSS
Create Branch Name Generate Balance Sheet
Point Processing
Type Page or URL (Redirect)
Target Type: Page In This Application
Page: 76
Request (under Advanced):
APPLICATION_PROCESS=Generate
Balance Sheet
When Button Pressed BALANCE_SHEET

260

CHAPTER 28 © FINANCIAL STATEMENTS

28.7 Create Page for Financial Statements

Notes

Using Table 28-6, create a blank page and its components. This page is invoked from a
link on page 76 (created in the next section) to browse the notes (details) of the selected

account.

Table 28-6. Page for Financial Statements Notes

Action Attribute Value
Create Blank Page Page Number 77
Name Financial Statement Notes
Page Mode Modal Dialog
Breadcrumb - do not use breadcrumbs on page -

Navigation Preference

Existing Navigation Menu

Entry
Create Region Title

Type

SQL Query

Create Page Item Name
Type

Region

Identify an existing navigation menu
entry for this page

Reports

Notes to the Accounts
Interactive Report

SELECT fsaccount, notescode,
notestitle, currentbalance,
previousbalance, percent

FROM gl _fs_report

WHERE upper(userid)=upper(:APP_
USER) AND notes=1 AND
fsaccount=:P77_
FSACCOUNT

ORDER BY notescode

P77_FSACCOUNT
Hidden

Notes to the Accounts

The notes page should look like Figure 28-2 after completing this chapter.

261

CHAPTER 28 I FINANCIAL STATEMENTS

Financial Statement Motes

> E Notes:

Notes: : Administrative Expenses

Code Title

50200100001 Staff Salaries Expense (Admin)
50200100002 Gratuity Expense

50200200001 Electricity Expense
50200300001 Depreciation - Motor Car

Figure 28-2. Notes page

Current Previous % Change
10,000.00 8,000,00 25

0.00 37,000.00 -100
2,000.00 1,500.00 3333
5,000.00 2,000.00 150

28.8 Create Column Link

Switch back to page 76 to convert the Account column into a link. Click the FSACCOUNT
column and set the attributes listed in Table 28-7.

Table 28-7. FSACCOUNT Column Attributes

Action Attribute

Value

Modify Report Type

Column Target

Link Text

Link

Type = Page In This Application
Page =77

Set Items
Name Value
P77_FSACCOUNT #FSACCOUNT#

Clear Cache =77
#FSACCOUNT#

28.9 Generate PDF Report

Using Table 28-8, create three PDF reports. You can use the . rtf files provided with the

book code to save some time.

262

Table 28-8. PDF Versions

CHAPTER 28 © FINANCIAL STATEMENTS

Attribute

Value

Report Query Name
SQL Query

XML File Name
Columns in RTF Template Table

RTF File Name
Branch Name

Point

Branch Request
When Button Pressed
Condition Type

Item

Value

Report Query Name
SQL Query

XML File Name
Columns in RTF Template Table

RTF File Name
Branch Name

Point

Branch Request
When Button Pressed
Condition Type

Item

Value

income_statement

SELECT * FROM gl_fs_report

WHERE upper(userid)=upper(:APP_USER)
AND notes=0 AND
reportcode=:P76_REPORTCODE
ORDER BY srno

income_statement.xml

Account, Current Balance, Previous Balance,
and Percent

income_statement.rtf

Run Income Statement

After Processing
PRINT_REPORT=income_statement
PRINT

Item = Value

P76_REPORTCODE

PLO1

balance_sheet

SELECT * FROM gl_fs_report

WHERE upper(userid)=upper(:APP_USER)
AND notes=0 AND
reportcode=:P76_REPORTCODE
ORDER BY srno

balance_sheet.xml

Account, Current Balance, Previous Balance,
and Percent

balance_sheet.rtf

Run Balance Sheet

After Processing
PRINT_REPORT=balance_sheet
PRINT

Item = Value
P76_REPORTCODE

BS01

(continued)

263

CHAPTER 28 I FINANCIAL STATEMENTS

Table 28-8. (continued)

Attribute

Value

Report Query Name
SQL Query

XML File Name
Columns in RTF Template Table

RTF File Name
Branch Name

Point

Branch Request
When Button Pressed

financial_statement_notes

SELECT * FROM gl_fs_report

WHERE upper(userid)=upper(:APP_USER)
AND notes=1 AND
reportcode=:P76_REPORTCODE
ORDER BY srno

financial_statement_notes.xml

Account, Current Balance, Previous Balance,
and Percent

financial_statement_notes.rtf

Run Notes

After Processing
PRINT_REPORT=financial_statement_notes
PRINT _NOTES

28.10 Enter Vouchers

Using the two files (2015 . PDF and 2016 . PDF) provided in the book code (Chapter28 folder),
create some more vouchers to get a complete picture of the two financial statements.

The file 2015. PDF contains a couple of transactions related to expense accounts. These
transactions should be posted in the previous year, in other words, 2015. Every time you
create or amend an expense or revenue account in the previous year, the temporary year-
end process must be executed to reflect these amendments in the profit and loss account.
Failing to do so may result in inaccurate financial statements. After posting all vouchers
from the two PDFs, switch back to 2015 and execute the temporary year-end process.

28.11

Test Your Work

Execute the following steps to test this part of the application:

1. Invoke it from the Reports » Financial Statements menu.

2. Select PLO1-Profit & Loss Statement from the Code list, select
2016 as the Current Year, and select June from the Month
list, as illustrated in Figure 28-3 (top). Click the Generate
P&L button to execute the corresponding process created
in Chapter 28. The interactive report defined under the
parameters region will be populated with the profit and loss
report. The first column (Account) of this report is presented
as a link that you defined in the “Create Column Link” section.
This link was created to browse the details behind a selected
account. Click the Sales link to see its notes.

264

http://dx.doi.org/10.1007/978-1-4842-2502-8_28

CHAPTER 28 © FINANCIAL STATEMENTS

3. To test the balance sheet report, switch the code to BSO1-
Balance Sheet. Keep the year and month parameters as is. To
produce an accurate balance sheet statement, you must click
both buttons. Click the Generate P&L button first to calculate
the profit and loss figures that are reflected in the balance
sheet. After clicking this button, the profit and loss report
will appear in the interactive report. Next, click the Generate
Balance Sheet button that invokes the corresponding on-
demand process and presents the report on your screen.

4. Click the Print button to have a PDF version of the main
financial report (shown at the bottom of Figure 28-3) currently
displayed on your screen. The Print Notes button produces a
PDF carrying the details of the selected report. I've provided
all four PDFs in the book code (in the Chapter28 folder).

Gararate POL I Cararvte Bainrce et I

Codes " PLIL- Profit & Lo Sstemnent § CuventVear: ~ N1 0 Moot "\ Jene '

ABC & Company

Profit & Loss Statement June - 2016 & 2015

175,000.00
Cost of Goods 0.00 15,500.00 =100
Gross Margin 249,000.00 159,500.00 56.11
Admunistrative Expenses 17,000.00 48.500.00 64 95
Selling Expenses 60,000.00 3.500.00 161429
Fmancial Charges 500.00 0.00 0

Figure 28-3. Financial report

265

http://dx.doi.org/10.1007/978-1-4842-2502-8_28

CHAPTER 28 I FINANCIAL STATEMENTS

28.12 Summary

The two financial reports you created in this chapter are the most wanted reports by the
management of any organization. In the next chapter, you will finish this group with an
executive dashboard comprising various analysis charts.

266

CHAPTER 29

Executive Dashboard

You created the two most vital accounting reports in the previous chapter. With the
information provided by these reports, all stakeholders of an organization assess their
business health. Among these stakeholders are the business executives who need some
more information so that they can evaluate their business at a glance. To satisfy the
need of these key stakeholders, you will create an executive dashboard in this chapter to
graphically present the information they are looking for.

29.1 Dashboard Table

This segment will use the following table that has already been added to the database
through the script file:

DASHBOARD TABLE

CREATE TABLE gl_dashboard

(sxno NUMBER, accountTitle varchar2(50), currentYear number(1s,2),
previousYear number(15,2), userid varchar2(50), ratioTitle varchar2(50),
currentayear number(15,2), previousayear number(15,2))

29.2 Copy Components to the Home Page

This segment will be created in the Home page (page 1), which already exists in your
application. What'’s more, it uses the same processes and page components used in the
previous chapter, which means that you are not required to re-create them. If you look
at the bottom part of the two on-demand processes (Chapter 28), you will find three
code blocks labeled P&L Account Balances, P&L Ratios, and Balance Sheet Ratios. These
are the PL/SQL blocks that relate to this segment. After calculating figures for the two
financial statements, these blocks are executed to calculate figures that appear in different
charts on the Home page.

Usually you modify a page to add components to it. But this time you are going to
learn how to use the Copy to other Page option to copy a whole region along with its
components from page 76 to the Home page.

© Riaz Ahmed 2016 267
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_29

http://dx.doi.org/10.1007/978-1-4842-2502-8_28

CHAPTER 29 I EXECUTIVE DASHBOARD

1. On-age 76, right-click the region named Financial Statements
Parameters and select the option labeled Copy to other Page...
from the context menu. Set the attributes listed in Table 29-1.
Once finished, edit the Home page where you will see the copied
region with all of its components.

Table 29-1. Copy Region

Attribute Value

To Page 1

Copy Region Items Yes

Copy Buttons Yes

Region Name Dashboard Parameters

2. Click the Dashboard Parameters region on the Home page
and change its Type from Static Content to Region Display
Selector. Scroll down in the Properties pane and set Region
Display Selector to No. Setting the Type attribute to Region
Display Selector displays region names in a horizontal
list, enabling end users to select one region to display and
hide other regions. Only page regions with their Region
Display Selector attribute set to Yes will be displayed in the
horizontal list.

3. Repeat the previous step to copy the five computations
from page 76 to page 1, considering the attributes listed in
Table 29-2. After copying these computations, go to page 1
and amend their respective SQL queries by replacing the P76
prefix with P1 to point to the items on the Home page.

Table 29-2. Copy Computations

Attribute Value

Copy Computation P76_CURRENTFROMDATE ...
P76_COMONTHNAME

Target Page 1 (same for all 5 computations)

Target Computation Sequence 10...50

Target Item to be Computed P1_CURRENTFROMDATE ...

P1_COMONTHNAME

4, Copy the two branches (Generate Profit and Loss and
Generate Balance Sheet, listed in Table 29-3) from page 76
to the Home page. After creation, change the Page attribute
(under Target) from 76 to 1 in both branches.

268

Table 29-3. Copy Branches

CHAPTER 29 I EXECUTIVE DASHBOARD

Attribute

Value

Copy Branch

Target Page

Target Page Branch Sequence
When Button Pressed

Copy Branch

Target Page

Target Page Branch Sequence

When Button Pressed

Generate Profit and Loss
1
10

PROFIT_LOSS (Generate P&L)

Generate Balance Sheet
1
20

BALANCE_SHEET (Generate Balance Sheet)

29.3 Create Regions

Right-click the main Regions node and select Create Region to create two regions
(as mentioned in Table 29-4) on the Home page.

Table 29-4. Region Attributes

Action Attribute Value (Region 1) Value (Region 2)
Create Region Title Profit & Loss Ratio Analysis
Trend

Type
Parent Region

Region Display
Selector

Static Content

-Select- (in other
words, no parent
region)

Yes

Static Content

-Select-

Yes

29.4 Create Chart

Subregion

This region will display the current year’s profit and loss accounts in a pie chart. To create
this region, right-click the Profit & Loss Trend region and select Create Sub Region from
the context menu. Set the attributes listed in Table 29-5 for the new region.

269

CHAPTER 29 I EXECUTIVE DASHBOARD

Table 29-5. Subregion Attributes

Attribute Value
Title Year&P1_CURRENTYEAR.
Type Chart
Parent Region Profit & Loss Trend
Body Height (in Template ~ 240px
Options)
Column Span 6
New Node:
Source Type SQL Query
SQL Query SELECT null, accounttitle, currentyear FROM gl _
dashboard
WHERE userid=:APP_USER AND srno
BETWEEN 1 AND 11
ORDER BY by srno
Attributes Node:
Chart Type Pie
Rendering Flash Chart
3D Mode Yes
Width 550
Height 200
Series Color Scheme Look 6
Label Show No
Value Show No

29.5 Create a

Hidden Item

The chart to be created later in the chapter (Table 29-7) will display the P&L trend for the
previous year. Create the hidden item (as listed in Table 29-6) to assess the previous year value.

Table 29-6. Hidden Item Attributes

Action Attribute Value
Create Page Item Name P1_PREVIOUSYEAR
Type Hidden
Region Dashboard Parameters
Source Type SQL Query (return single value)
SQL Query SELECT :P1_CURRENTYEAR - 1 FROM dual

270

CHAPTER 29 I EXECUTIVE DASHBOARD

29.6 Copy Chart Regions

Right-click the region Year&P1_CURRENTYEAR. and click the Duplicate option in the
context menu. A copy of the existing region will be created under it with the same name.
Set the attributes listed in Table 29-7 for the new region, keeping all others as is.

Table 29-7. Region Attributes

Attribute Value

Title Year&P1_PREVIOUSYEAR.

Start New Row No

SQL Query SELECT null, accounttitle, previousyear FROM gl_dashboard
WHERE userid=:APP_USER AND srno BETWEEN 1 AND 11
ORDER BY srno

Duplicate any existing chart, such as Year&P1_PREVIOUSYEAR, and set the
attributes listed in Table 29-8. This chart will render the current revenue trend.

Table 29-8. Revenue Trend Attributes

Attribute Value

Title Revenue Trend

Type Chart

Parent Region Profit & Loss Trend

Body Height (in Template 320px

Options)

Column Span 6

New Node:

Source Type SQL Query

SQL Query SELECT null, accounttitle, currentyear, previousyear
FROM gl_dashboard WHERE userid=:APP_USER AND
srno=1

Attributes Node:

Chart Type Column

Rendering Flash Chart

Show Grid Y-Axis

Show Scrollbars None

Width 450

(continued)

271

CHAPTER 29 I EXECUTIVE DASHBOARD

Table 29-8. (continued)

Attribute Value
Height 300

Series Color Scheme Look 2
Label Show Yes
Legend Show Top
Element Orientation Horizontal

Make a duplicate of the Revenue Trend chart and set the attributes listed in Table 29-9.
As the name implies, this chart will show the expenses trend.

Table 29-9. Expenses Trend Attributes

Attribute Value

Title Expenses Trend

Start New Row No

New Node:

SQL Query SELECT null, accounttitle, currentyear, previousyear

FROM gl_dashboard WHERE userid=:APP_USER AND
(srno=3 or srno=8 or srno=9 or srno=10)

Attributes Node:
Series Color Scheme Look 6
Label Rotation 20 (degrees)

Make a copy of Revenue Trend and set the attributes listed in Table 29-10. This
region will show the gross profit ratio. All the regions from this point will be placed under
the Ratio Analysis region.

Table 29-10. Gross Profit Ratio Attributes

Attribute Value

Title Gross Profit Ratio
Parent Region Ratio Analysis

Body Height (in Template Options) 320px

Column Span 4

(continued)

272

CHAPTER 29 I EXECUTIVE DASHBOARD

Table 29-10. (continued)

Attribute Value
New Node:
SQL Query SELECT null, accounttitle, current_year,

previous_year
FROM gl_dashboard WHERE userid=:APP_
USER AND srno=50

Attributes Node:

Width 300
Height 300

Series Color Scheme Custom
Custom #08A03D, #398F84
Decimal Places (under Y-Axis) 2

Label Show No

Value Show Yes

Font Color #FFFFFF
Tooltip Show No
Legend Show Top
Element Orientation Horizontal

Make a duplicate of Gross Profit Ratio to create Operating Profit Ratio. Incorporate
the attributes listed in Table 29-11 in the new region.

Table 29-11. Operating Profit Ratio Attributes

Attribute Value

Title Operating Profit Ratio

Start New Row No

New Node:

SQL Query SELECT null, accounttitle, current_year, previous_
year
FROM gl_dashboard WHERE userid=:APP_USER
AND srno=52

Attributes Node:

Custom (under Series Color) #73000F, #B31919

273

CHAPTER 29 I EXECUTIVE DASHBOARD

Make a duplicate of the Operating Profit Ratio region to create the Net Profit Ratio
region with the distinctions listed in Table 29-12.

Table 29-12. Net Profit Ratio Chart Attributes

Attribute Value

Title Net Profit Ratio

New Node:

SQL Query SELECT null, accounttitle, current_year, previous_year
FROM gl_dashboard WHERE userid=:APP_USER AND
srno=53

Attributes Node:

Series Color Scheme Look 2

Make the Current Ratio region from Gross Profit Ratio considering the distinctions
listed in Table 29-13.

Table 29-13. Current Ratio Attributes

Attribute Value
Title Current Ratio
Sequence 100
New Node:
SQL Query SELECT null, accounttitle, current_year, previous_year
FROM gl_dashboard WHERE userid=:APP_USER AND srno=60
Attributes Node:
Legend Show None

Using Table 29-14, make the Net Working Capital region from Operating Profit Ratio.

274

CHAPTER 29 I EXECUTIVE DASHBOARD

Table 29-14. Net Working Capital Attributes

Attribute Value
Title Net Working Capital
Sequence 110
New Node:
SQL Query SELECT null, accounttitle, current_year, previous_year
FROM gl_dashboard WHERE userid=:APP_USER AND srno=62
Attributes Node:
Font Color #000000
Legend Show None

Make the Quick Ratio region from Net Profit Ratio, using Table 29-15.

Table 29-15. Quick Ratio Attributes

Attribute Value
Title Quick Ratio
Sequence 120
New Node:
SQL Query SELECT null, accounttitle, current_year, previous_year
FROM gl_dashboard WHERE userid=:APP_USER AND srno=63
Attributes Node:
Legend Show None

29.7 Test Your Work

Click the application title The Cloud Accountant on the top of your screen to see the
Home page. Select BSO1-Balance Sheet, 2016, and June for Code, Current Year, and
Month, respectively. Hit the Generate P&L button. Once the page gets refreshed, hit the
Generate Balance Sheet button. If Region Display Selector is set to the default Show All
option, then you'll see all ten charts on your screen. Click the option Profit & Loss Trend
in the region selector. This action will hide the six charts created under the Ratio Analysis
region. Similarly, if you click the Ratio Analysis option (Figure 29-1), the four charts
created under the Profit & Loss Trend region will be hidden.

275

CHAPTER 29 I EXECUTIVE DASHBOARD

_ el l sl l

Codes © B Balance Shert ' Corvemt Vour © NI 4 Mot © e '

Show Al Profs & Loss Trend | Rabo Anslyss

OESmiog Prai fatlo et Peof Ratio

7 '
Z

Figure 29-1. Ratio Analysis charts

29.8 Summary

The charts you added to the Home page provide insight into an organization’s financial
status. Here you learned how to create different types of analyses for management. In the
next chapter, you will create a feedback module that allows interaction among application
users.

276

CHAPTER 30

Application Feedback

This segment is added to create interaction among the application administrator and

its users. It allows end users to communicate application issues to the application
administrator. It consists of a form and a report. The form is created for the users to input
their feedback, while the report is used by the application administrator to browse the
issues added through the form.

30.1 Application Feedback Table

The following table and sequence were created through the script file to store application
feedback received from the users of the application:

FEEDBACK TABLE

CREATE TABLE gl_feedback

(feedbackID NUMBER, TS timestamp default sysdate, custName varchar2(50),
custEmail varchar2(100), custFeedback varchar2(4000), CONSTRAINT GL_
FEEDBACK_PK PRIMARY KEY (feedbackID) ENABLE)

CREATE SEQUENCE gl_feedback_seq

30.2 Create Feedback Input Form

Using Table 30-1, create a new page. On the first wizard page, select Form, and on the
next page, select Form on a Table or View.

© Riaz Ahmed 2016 277
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_30

CHAPTER 30 I APPLICATION FEEDBACK

Table 30-1. Page Attributes

Action Attribute Value
Create Table/View owner Accept the displayed value
Page Table/View Name GL_FEEDBACK (table)
Page Number 300
Page Name Application Feedback
Page Mode Normal
Region Title Application Feedback

Navigation Preference

Primary Key Type

Primary Key Column 1

Source for Primary Key Column 1
Sequence

Form Columns

Buttons

Branch here on Submit

Branch here on Cancel

Do not associate this page with a
navigation menu entry

Select Primary Key Column(s)
FEEDBACKID

Existing Sequence
GL_FEEDBACK_SEQ

Select all columns

Accept all default values

1

1

278

Modify the feedback page as follows:

1.

Change the Type value of the timestamp field (P300_TS) to
Hidden. Set the Default Type value of this item to PL/SQL
Expression and enter sysdate as the value for the PL/SQL
Expression attribute to store the current system date for each

feedback.

Set the labels of the three text items to Customer, Email, and
Feedback. Also set Template to Required and Value Required
to Yes for these three Text Field items.

Select the P300_CUSTFEEDBACK item and set its Height

attribute to 20 lines.

Click the process named Process Row of GL_FEEDBACK on
the Processing tab. Type Thank you very much for providing
your valuable feedback in the Success Message box.

CHAPTER 30 I APPLICATION FEEDBACK

30.3 Create Feedback Report Page

Next, create an interactive report page to display a list of all feedback entered through
page 301. This report allows an administrator to see and reply to the users’ feedback.
Click the Create Page button. Select the Report option on the first wizard screen followed
by the Interactive Report option. Set the attributes as listed in Table 30-2.

Table 30-2. Feedback Report Page Attributes

Action Attribute Value
Create Page Number 300
Page Page Name Feedback Report
Page Mode Normal
Region Name Feedback Report
Navigation Preference Identify an existing navigation

Existing Navigation Menu Entry
SQL Query

menu entry for this page
Reports
SELECT * FROM gl_feedback

Modify the feedback report page by changing the column headings as shown in
Figure 30-1 (bottom).

Application Feedback

Mame © Rz Ahmed
Emad testftestcom

This 15 feedback.

Concel

i -

Feedback

| —=
Jo
4
g

Timestamp Name Email

21-SEP-2015 12:00AM Riaz Ahmed test@rest.com This is feedback.

Figure 30-1. Feedback report page

279

CHAPTER 30 I APPLICATION FEEDBACK

30.4 Test Your Work

Click the Feedback link in the navigation bar to run the feedback input form. Enter your
name, e-mail address, and some text such as This is feedback (shown earlier at the top
of Figure 30-1), and click the Create button. An acknowledgment message will appear
indicating that your feedback was received. Expand the Reports menu and click the
Feedback option to see the feedback you just saved.

30.5 Summary

In this chapter, you learned how application users can interact with each other to discuss
application issues. In the next chapter, you will create a small footprint of the application
that is accessible on smartphones.

280

CHAPTER 31

Mobile Version

With mobile web usage incrementing every year, there is a huge demand in the market for
applications supported on smartphones and tablets. To help develop new applications
and extend existing web applications for mobile use, Oracle APEX is enhanced with
mobile development features. Now you can easily build applications for modern
smartphones and tablets, such as the iPhone, iPad, Android, and so on, using Oracle
APEX. In this chapter, you'll get a taste of this handy feature by creating some high-end
graphical financial reports for the busy business community to keep them in touch with
their businesses while on the road.

31.1 Create an Interface for a Mobile
Application

Oracle APEX allows you to create two types of interfaces: desktop and mobile. Each page
in an application is associated with one user interface. If a user logs into the application
with a mobile device, the pages created with the mobile interface will be rendered; for big
screens, the desktop user interface is used. You developed the desktop interface in each of
the previous chapters. Now you'll use the mobile interface to build a mobile version.

1. Click the Edit Application Properties button in the main
Application Builder interface.

2. Click the User Interface tab.
3. Click the Add User Interface button.

4. On the User Interface page, set the attributes listed in
Table 31-1, and click Next.

© Riaz Ahmed 2016 281
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_31

CHAPTER 31 I MOBILE VERSION

Table 31-1. Mobile Ul Attributes

Attribute Value

Type Mobile

Display Name Mobile (the display name is shown in page creation wizards)

Auto Detect Yes

Home URL f?p=&APP_ID.:HOME_JQM_SMARTPHONE:&SESSION.
(Specifies the home page of the application for the mobile user
interface)

Login URL f?p=&APP_ID.:LOGIN_JQM_SMARTPHONE:&SESSION.
(Points toward the login page of the application for the mobile user
interface)

5. Onthe Identify Theme page, select Standard Themes for
Theme Type, and select Mobile (Theme 51) as the mobile
application theme. Click Next.

6. Click Create.

Just like the desktop application, the mobile interface is also created with two default
pages: Home (page 6 in my application) and Login (page 1001). In addition to these
pages, the wizard creates a third one: Global Page - Mobile (page 9999).

Note You may get the error “Unable to create theme. ORA-00001: unique constraint
(APEX_050000.WWV_FLOW_PAGE_PLUG_IDX2) violated while creating the mobile
interface.” Only the APEX administrator can fix this error. As a workaround, you can create
the mobile version by creating a mobile application from the Application Builder (Application
Builder » Create » Mobile). Note that the mobile version will have a new ID and you have
to link it with the Mobile navigation bar entry by setting the Target Type attribute to URL and
the URL Target attribute to https://apex.oracle.com/pls/apex/f?p=2506:1, where 2506
is the ID of your mobile application. You also need to create the two processes (Generate
Balance Sheet and Generate Profit and Loss) in the mobile application and amend them
accordingly.

31.2 Region and Page ltems

The mobile version of the general ledger application will show some crucial reports to
business executives on their mobile devices. After a successful login attempt, the user will
select three values from the home page parameters: Company, Year, and Month. Then

282

https://apex.oracle.com/pls/apex/f?p=2506:1

CHAPTER 31 I MOBILE VERSION

the user can click two buttons (Profit & Loss and Balance Sheet) to generate the data
for the selected parameters. The mobile version has a slider menu on the top left of the
screen. The menu will display a set of report options that you'll define using Table 31-3.
Clicking these options will fetch the appropriate data from the base table. The rest of
the procedure is similar to the one you used in the previous chapter while creating the
desktop executive dashboard. Let’s start by creating a region on the mobile home page
(page 6) and adding some page items using Table 31-2.

Note
page number.

Use an item prefix for page items and in SQL queries according to your mobile

Table 31-2. Region and Item Attributes

Action Attribute Value
Create Region Title Mobile Parameters
Type Static Content
Template Standard
Create Page Name P6_COMPANY
Item Type Select List
Label Company
Region Mobile Parameters
Start New Row Yes
Column Automatic
LOV Type SQL Query
SQL Query SELECT coname, cocode FROM gl_company
ORDER BY cocode
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users WHERE
userid=:APP_USER
Source Used Only when current value in session state is null

(continued)

283

CHAPTER 31

MOBILE VERSION

Table 31-2. (continued)

Action Attribute Value
Create Page Name P6_CURRENTYEAR
Item Type Select List
Label Year
Region Mobile Parameters
Start New Row Yes
Column Automatic
LOV Type SQL Query
SQL Query SELECT DISTINCT(coyear) d, coyear r FROM
gl fiscal_year
WHERE cocode=:P6_COMPANY ORDER BY
coyear
Cascading LOV P6_COMPANY
Parent Item(s)
Source Type SQL Query (return single value)
SQL Query SELECT coyear FROM gl_users WHERE
userid=:APP_USER
Source Used Only when current value in session state is null
SQL Query SELECT cocode FROM gl_users WHERE
userid=:APP_USER
Create Page Name P6_CURRENTMONTH
Item Type Select List
Label Month
Region Mobile Parameters
Start New Row Yes
Column Automatic
LOV Type SQL Query
SQL Query SELECT DISTINCT(comonthname) d, comonthid r
FROM gl _fiscal_year
WHERE cocode=:P6_COMPANY
ORDER BY comonthid
Cascading LOV P6_COMPANY
Parent Item(s)
Source Type SQL Query (return single value)
SQL Query SELECT comonthid FROM gl_users WHERE

Source Used

userid=:APP_USER

Only when current value in session state is null

284

(continued)

Table 31-2. (continued)

CHAPTER 31 I MOBILE VERSION

Action Attribute Value
Create Page Name P6_COCODE
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT cocode FROM gl_users WHERE
userid=:APP_USER
Create Page Name P6_CONAME
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT coname FROM gl_company
WHERE cocode=(select cocode from gl_users
where upper(userid)=upper
(:APP_USER))
Create Page Name P6_CURRENTFROMDATE
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl_fiscal_year
WHERE cocode=:P6_COCODE and coyear=:P6_
CURRENTYEAR AND
comonthid=1
Source Used Always, replacing any existing value in session
state
Create Page Name P6_CURRENTTODATE
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pto FROM gl _fiscal_year
WHERE cocode=:P6_COCODE AND coyear=:P6_
CURRENTYEAR AND
comonthid=:P6_CURRENTMONTH
Source Used Always, replacing any existing value in session

state

(continued)

285

CHAPTER 31

MOBILE VERSION

Table 31-2. (continued)

Action Attribute Value
Create Page Name P6_PREVIOUSFROMDATE
Ttem Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pfrom FROM gl_fiscal_year
WHERE cocode=:P6_COCODE AND coyear=:P6_
CURRENTYEAR-1 AND
comonthid=1
Source Used Always, replacing any existing value in session
state
Create Page Name P6_PREVIOUSTODATE
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT pto FROM gl _fiscal_year
WHERE cocode=:P6_COCODE AND coyear=:P6_
CURRENTYEAR-1 AND
comonthid=:P6_CURRENTMONTH
Source Used Always, replacing any existing value in session
state
Create Page Name P6_COMONTHNAME
Item Type Hidden
Region Mobile Parameters
Source Type SQL Query (return single value)
SQL Query SELECT comonthname FROM gl _fiscal year

Create Button

Source Used

Button Name
Label

Region

Button Position

Action

WHERE cocode=:P6_COCODE AND coyear=:P6_
CURRENTYEAR AND
comonthid=:P6_CURRENTMONTH

Always, replacing any existing value in session
state

PROFIT_LOSS
Profit & Loss
Mobile Parameters
Bottom of Region

Submit Page

286

(continued)

CHAPTER 31 I MOBILE VERSION

Table 31-2. (continued)

Action Attribute Value

Create Button Button Name BALANCE_SHEET
Label Balance sheet
Region Mobile Parameters

Button Position Bottom of Region

Action Submit Page

31.3 Copy Computations and Branches

Copy the five computations across from page 76 as you did in the previous chapter.
Replace the P76 prefix with P6 in all SQL queries to point to the items on the mobile home
page. Also, copy the two branches (Generate Profit and Loss and Generate Balance Sheet)
from page 76 to the mobile home page. Do not forget to change the Page attribute (under
Target) from 76 to 6 in both branches.

31.4 Add Entries to Mobile Navigation Menu

Select the Mobile Navigation menu from the Shared Components » Navigation menu.
Click the Create List Entry button and add the entries listed in Table 31-3 one after the
other to the navigation menu.

Table 31-3. Mobile Navigation Menu

List Entry Label Page
Profit & Loss Statement 103
Revenue Trend 104
Expense Trend 105
Gross Profit Ratio 106
Operating Profit Ratio 107
Net Profit Ratio 108
Current Ratio 109
Net Working Capital 110
Quick Ratio 111

287

CHAPTER 31 I MOBILE VERSION

31.5 Create Profit and Loss Statement Report

Using Table 31-4, create the first mobile report page to display the P&L statement. The
report consists of a bar chart and a column toggle report. By setting a region to the
Column Toggle Report type, you specify the most important columns and those that will
be hidden as necessary on smaller screens.

Table 31-4. Mobile Report Page

Action Attribute Value
Create Blank Page =~ Page Number 103
Name Profit & Loss Statement
Page Mode Normal
Navigation Preference Identify an existing navigation

menu entry for this page

Existing Navigation Menu Entry Profit & Loss Statement

Create Region Title Profit & Loss Statement
Type Chart
New Node:
Source Type SQL Query
SQL Query SELECT null, accounttitle,

currentyear, previousyear
FROM gl_dashboard

WHERE userid=:APP_USER
AND srno BETWEEN 1 AND 11

ORDER BY srno

Attributes Node:

Chart Type Column

Rendering HTMLS5 Chart

3D Mode Yes

Series Color Scheme Custom

Custom #025391,#0587EB
Create Page Item Name P103_CONAME

Type Text Field

Label Company

Region Profit & Loss Statement

Source Type Item

Item P6_CONAME

Source Used Always, replacing any existing

value in session state

(continued)
288

Table 31-4. (continued)

CHAPTER 31 I MOBILE VERSION

Action Attribute Value
Create Page Item Name P103_CURRENTYEAR
Type Text Field
Label Current
Region Profit & Loss Statement
Source Type Item
Item P6_CURRENTYEAR
Source Used Always, replacing any existing
value in session state
Create Page Item Name P103_PREVIOUSYEAR
Type Text Field
Label Previous
Region Profit & Loss Statement
Source Type PL/SQL Expression
PL/SQL Expression P103_CURRENTYEAR -1
Source Used Always, replacing any existing
value in session state
Create Region Title P&L Report
Type Column Toggle Report
SQL Query SELECT accounttitle,

currentyear, previousyear
FROM gl_dashboard

WHERE userid=:APP_USER
AND srno BETWEEN 1 AND 11
ORDER BY srno

31.6 Create Other Mobile Report Pages

Edit page 103, click the Create menu

b4
, and select the option Page as Copy.

Follow the wizard and set the attributes shown in Table 31-5.

289

CHAPTER 31 I MOBILE VERSION

Table 31-5. Revenue Trend Report Attributes

Attribute Value

Create a page as a copy of Page in this application

Copy from Page 103. Profit & Loss Statement

Copy to New Page Number 104

New Page Name Revenues Trend

User Interface Mobile

Breadcrumb - do not use breadcrumbs on page -
Chart Region’s New Value Revenues Trend

Report Region’s New Value Revenues Report

On page 104, modify the two SQL queries as indicated in Table 31-6.

Table 31-6. SQL Queries

Component SQL Query

New node (under Revenue Trend) SELECT null, accounttitle, currentyear,
previousyear
FROM ¢gl_dashboard
WHERE userid=:APP_USER AND srno=1

Revenue Report SELECT accounttitle, currentyear, previousyear
FROM gl_dashboard
WHERE userid=:APP_USER AND srno=1

Copy page 104 to 105 (Expenses Trend) using the values specified in Table 31-7.

Table 31-7. Expenses Trend Report Attributes

Attribute Value

Copy to New Page Number 105

New Page Name Expenses Trend

Chart Region’s New Value Expenses Trend

Report Region’s New Value Expenses Report

SQL Query - Expenses Trend SELECT null, accounttitle, currentyear, previousyear

FROM gl_dashboard
WHERE userid=:APP_USER AND (srno=3 or srno=8
or srno=9 or srno=10)

SQL Query - Expenses Report SELECT accounttitle, currentyear, previousyear
FROM gl_dashboard
WHERE userid=:APP_USER and (srno=3 or srno=8 or
srno=9 or srno=10)

290

CHAPTER 31 ' MOBILE VERSION
Create a Gross Profit Ratio report from Page 105 using Table 31-8.

Table 31-8. Gross Profit Ratio Report Attributes

Attribute Value

Copy to New Page Number 106

New Page Name Gross Profit Ratio

Chart Region’s New Value Gross Profit Ratio

Report Region’s New Value Gross Profit Report

Decimal Places (under Attributes) 2

SQL Query - Gross Profit Ratio SELECT null, ratiotitle, current_year, previous_
year

FROM gl_dashboard
WHERE userid=:APP_USER AND srno=50

SQL Query - Gross Profit Report SELECT ratiotitle, currentyear, previousyear
FROM gl_dashboard
WHERE userid=:APP_USER AND srno=50

Create an Operating Profit Ratio report from Page 106 using Table 31-9.

Table 31-9. Operating Profit Ratio Report Attributes

Attribute Value
Copy to New Page Number 107
New Page Name Operating Profit Ratio
Chart Region’s New Value Operating Profit Ratio
Report Region’s New Value Operating Profit Report
SQL Query - Operating Profit SELECT null, ratiotitle, current_year, previous_year
Ratio FROM gl_dashboard
WHERE userid=:APP_USER AND srno=52
SQL Query - Operating Profit SELECT ratiotitle, currentyear, previousyear
Report FROM gl_dashboard

WHERE userid=:APP_USER AND srno=52

Create a Net Profit Ratio report from page 106 using Table 31-10.

2901

CHAPTER 31 I MOBILE VERSION

Table 31-10. Net Profit Ratio Report Attributes

Attribute Value

Copy to New Page Number 108

New Page Name Net Profit Ratio

Chart Region’s New Value Net Profit Ratio

Report Region’s New Value Net Profit Report

SQL Query - Net Profit Ratio SELECT null, ratiotitle, current_year, previous_year

FROM gl_dashboard
WHERE userid=:APP_USER AND srno=53

SQL Query - Net Profit Report SELECT ratiotitle, currentyear, previousyear
FROM gl_dashboard
WHERE userid=:APP_USER AND srno=53

Create a Current Ratio report from Page 106 using Table 31-11.

Table 31-11. Current Ratio Report Attributes

Attribute Value

Copy to New Page Number 109

New Page Name Current Ratio

Chart Region’s New Value Current Ratio

Report Region’s New Value Current Ratio Report

SQL Query - Current Ratio SELECT null, ratiotitle, current_year, previous_year

FROM gl_dashboard
WHERE userid=:APP_USER AND srno=60

SQL Query - Current Ratio SELECT accounttitle, currentyear, previousyear
Report FROM gl_dashboard
WHERE userid=:APP_USER AND (srno=60 or
srno=61)

Create Net Working Capital report from page 109 using Table 31-12.

292

CHAPTER 31 I MOBILE VERSION

Table 31-12. Net Working Capital Report Attributes

Attribute Value

Copy to New Page Number 110

New Page Name Net Working Capital
Chart Region’s New Value Net Working Capital

Report Region’s New Value

SQL Query - Net Working
Capital

SQL Query - Net Working
Capital Report

Net Working Capital Report

SELECT null, ratiotitle, current_year, previous_year
FROM gl_dashboard
WHERE userid=:APP_USER AND srno=62

SELECT accounttitle, currentyear, previousyear
FROM gl_dashboard

WHERE userid=:APP_USER AND (srno=60 or
srno=61)

Create a Quick Ratio report from page 109 using Table 31-13.

Table 31-13. Quick Ratio Report Attributes

Attribute Value

Copy to New Page Number 111

New Page Name Quick Ratio

Chart Region’s New Value Quick Ratio
Report Region’s New Value Quick Ratio Report

SQL Query - Quick Ratio

SQL Query - Quick Ratio
Report

SELECT null, ratiotitle, current_year, previous_year
FROM gl_dashboard WHERE userid=:APP_USER AND
srno=63

SELECT accounttitle, currentyear, previousyear

FROM gl_dashboard

WHERE userid=:APP_USER AND (srno=61 or srno=63)
ORDER BY srno DESC

293

CHAPTER 31 I MOBILE VERSION

31.7 Test Your Work

Execute the mobile application from the Mobile option available in the desktop
navigation bar. Enter the same username and password that you have been using

until now. Select ABC & Company, 2016, and June for the Company, Year, and Month
parameters, respectively. Click the Profit & Loss button to generate profit and loss
figures. Then click the Balance Sheet button to execute the corresponding process. From
the mobile menu, click the first option labeled Profit & Loss Statement (on the left of
Figure 31-1). This action will run page 103 containing a bar chart and a column toggle
report, as shown on the right of Figure 31-1. Click all the remaining reports appearing

in the menu to check your work. Note that you are not required to select the three
parameters or hit the two buttons for each report individually. It’s a one-time process that
must be reexecuted when you change any of the available three parameters.

Profit & Loss Statement
Revenue Trend
Expense Trend

Gross Profit Ratio
Operating Profit Ratio
Net Profit Ratio

Current Ratio

Net Working Capital

©
©
©
©
©
©
©
©
©

Quick Ratio

Figure 31-1. Mobile menu (left) and charts (right)

294

CHAPTER 31 I MOBILE VERSION

31.8 Summary

The mobile version created in this chapter was aimed at higher management to keep
them in touch with their businesses when they are away from their offices. The final
chapter of this book discusses the security of the application.

295

CHAPTER 32

Application Security

Before you go live with an application, it is important to apply proper security measures.
One of the most basic forms of protection that any web application must have is the
enforcement of an authentication and authorization policy. Authentication deals with
identifying users to the application; you've already implemented it in this application
using a custom authentication scheme: a username and password. Authorization is

the process of assessing whether the authenticated user is privileged to access certain
data or perform a particular action. Recall that you have already laid the foundation of
application authorization in Chapter 6 where you specified the application segments to
which you want to apply authorization. Then, you created user groups and provided them
with the appropriate application access privileges. In this chapter, you will create a bunch
of authorization schemes to protect your application. These schemes will be created to
protect menus, pages, buttons, and processes.

32.1 Authorization Schemes for the Main Menu

First you will create some authorization schemes to control access to the menu options
of your application. Note that you have 9 main menus and 26 submenu options in the
application. These all need to be protected through individual authorization schemes to
prevent unauthorized application access. In this section, you will create authorization
schemes for the nine main menu options. The submenu options will be controlled
through the Page Access authorization scheme, as listed in Table 32-4 later in this chapter.
Use the table to create these authorization schemes. The code for all these schemes is the
same except for the menu name that must be changed for each menu item. For example,
the menu name Home (presented in bold in the following code) should be replaced with
the word Setup for the Setup menu, Select for the Select menu, and so on. Go to Shared
Components, select Authorization Schemes under the Security section, and click the
Create button. Select the From Scratch option in the initial wizard screen and set the
remaining attributes as indicated in Table 32-1.

© Riaz Ahmed 2016 297
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_32

http://dx.doi.org/10.1007/978-1-4842-2502-8_6

CHAPTER 32 I APPLICATION SECURITY

Table 32-1. Application Menu Authorization Scheme

Attribute Value
Name Home
Scheme Type PL/SQL Function Returning Boolean
PL/SQL Function Body DECLARE
Book_Code\Chapter32\ Vadmin varchar2(1);
Menu Authorization.txt Vallow varchar2(1);
BEGIN

Identify error message...

Validate authorization scheme

SELECT admin INTO Vadmin FROM gl_users
WHERE upper(userid)=upper(:APP_USER);
IF Vadmin = 'N' then
SELECT allow_access INTO Vallow FROM
gl_groups_detail
WHERE segmentType="Menu' AND
segmentID=(select segmentID from
gl_segments
where segmentTitle="Home
(Menu)' and
segmentType="Menu')
AND
groupID=(select groupID
from gl_users
where upper(userid)
=upper(:APP_USER));
if Vallow="Y" then
return true;
else
return false;
end if;
ELSE
return true;
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN RETURN FALSE;
END;

Home authorization scheme violated

Once per session

Create the remaining menu authorization schemes as listed in Table 32-2. Replace
segmentTitle="Home (Menu)' in the PL/SQL code with the corresponding menu name.

298

CHAPTER 32 ' APPLICATION SECURITY

Table 32-2. Menu Authorization Schemes

Name PL/SQL Code Text Identify Error Message...
Setup segmentTitle='Setup (Menu)' Setup authorization scheme
violated
Select segmentTitle="Select (Menu)' Select authorization scheme
violated
Transactions segmentTitle="Transactions Transactions authorization scheme
(Menu)' violated
Utilities segmentTitle="Utilities (Menu)' Utilities authorization scheme
violated
Reports segmentTitle='"Reports (Menu)' Reports authorization scheme
violated
Closing segmentTitle='Closing (Menu)' Closing authorization scheme
violated
Mobile segmentTitle="Mobile (Menu)' Mobile authorization scheme
violated
Feedback segmentTitle="Feedback Feedback authorization scheme
(Menu)' violated

After creating the menu authorization schemes, go to Shared Components and in
the Navigation section select Navigation Menu » Desktop Navigation Menu; then click
the Home menu entry, select Home for the Authorization Scheme attribute, and click
the Apply Changes button. This action will attach the Home authorization scheme to the
Home menu. Repeat this step for the remaining menu options (as shown in Table 32-3)
including the Mobile and Feedback entries in the desktop navigation bar.

Table 32-3. Menu Items and Associated Authorization Schemes

Menu Entry Authorization Scheme
Home Home

Setup Setup

Select Select

Transactions Transactions

Utilities Utilities

Reports Reports

Closing Closing

Mobile Mobile

Feedback Feedback

299

CHAPTER 32 I APPLICATION SECURITY

32.2 Test Menu Authorization

Test the menu authorization schemes you just implemented using the following
steps. Make sure you have created the Clerks group (in Chapter 7) and the user John
(in Chapter 8) who is assigned to this group. Recall that the Clerks group was created
without any application access privileges.

1. Login to the application using John’s credentials and see that
no application menu is available to this user.

2. Login using the application’s administrator credentials.

3. From the Setup menu, select the User Groups option and then
select the existing Clerks group. Allow access to the Select,
Transactions, Utilities, Reports, and Feedback menus for this
group.

4. Login again as user John and observe that the five menu
options are now accessible.

32.3 Authorization Schemes for Application
Pages

After controlling the main menu access, your next task is to control the application pages
that are usually executed through submenus (except for the pages associated with the
Select and Transactions menus). Go to Shared Components and create the authorization
scheme listed in Table 32-4. This is the only authorization scheme that controls access

to all application pages. The text defined in the “Identify error message” attribute is a
custom message with a link to take the unauthorized user to the Select page (page 30),
which is usually granted to every application user.

300

http://dx.doi.org/10.1007/978-1-4842-2502-8_7
http://dx.doi.org/10.1007/978-1-4842-2502-8_8

CHAPTER 32 ' APPLICATION SECURITY

Table 32-4. Authorization Scheme for Application Pages

Attribute Value
Name Page Access
Scheme Type PL/SQL Function Returning Boolean
PL/SQL Function Body DECLARE
Book_Code\Chapter32\ Vadmin varchar2(1);
Page Access Authorization.txt Vallow varchar2(1);
BEGIN

SELECT admin INTO Vadmin FROM gl_users
WHERE upper(userid)=upper(: APP_USER);
IF Vadmin = 'N' THEN
SELECT allow_access INTO Vallow FROM gl _
groups_detail
WHERE pagelD=:APP_PAGE_ID AND
segmentType="Page' AND
grouplD=(select groupID from gl_users
where upper(userid)=upper
(:APP_USER));
if Vallow="Y" then
return true;
else
return false;
end if;
ELSE
return true;
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN RETURN FALSE;
END;

Identify error message... You are not authorized to view this page!

Click here</
a> to continue.

Validate authorization scheme Once per page view

301

CHAPTER 32 I APPLICATION SECURITY

32.4 Test Page Authorization

Execute the following steps to test the page authorization:

1. Edit page 54 (Copy COA). Click its root node (page 54: Copy
COA). In the Properties pane, scroll down to the Security
section and set the Authorization Scheme attribute to Page
Access. Save the modification.

2. Login to the application using John's credentials. Expand the
Utilities menu and click the Copy Chart of Accounts option.
The message defined in the previous table will appear and
prevent you from accessing the page. Click the “here” link,
which will take you to the Select page.

3. Loginas the application administrator and allow John’s group
to access the Copy COA segment.

4. Login again using John’s credentials and click the Copy COA
menu option. This time the page will come up.

5. Using step 1, apply the Page Access authorization scheme to
all application pages except for the two pairs of global and
login pages created for the desktop and mobile interfaces.

32.5 Authorization Schemes for Buttons

An application page usually contains several different types of items. From a security
point of view, the most significant item is the button, which is used to send a request

for further processing. You used six buttons (Save, Create, Modify, Delete, Display, and
Print) to handle different processes in this application. In this section, you will control
the application processes by creating some authorization schemes for these buttons.
Table 32-5 creates an authorization scheme to control the Save buttons on all application
pages. Use this table to create schemes for the remaining five buttons, replacing the text
itemRole='Save’ with the appropriate button name.

302

CHAPTER 32 ' APPLICATION SECURITY

Table 32-5. Button Authorization Schemes

Attribute Value
Name Save
Scheme Type PL/SQL Function Returning Boolean
PL/SQL Function Body DECLARE
Book_Code\Chapter32\ Vadmin varchar2(1);
Button Authorization.txt Vallow varchar2(1);
BEGIN

SELECT admin INTO Vadmin FROM gl_users
WHERE upper(userid)=upper(:APP_USER);
IF Vadmin = 'N' THEN
SELECT allow_access INTO Vallow FROM
gl_groups_detail
WHERE pageID=:APP_PAGE_ID AND
itemRole='Save' AND
grouplID=(select groupID from
gl_users where
upper(userid)=upper
(:APP_USER));
if Vallow="Y" then
return true;
else
return false;
end if;
ELSE
return true;
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN RETURN FALSE;
END;

Identify error message... Save button authorization scheme violated

Validate authorization scheme Once per page view

303

CHAPTER 32 I APPLICATION SECURITY

32.6 Test Buttons Authorization

Execute the following steps to test the button authorization:

1. Edit page 54 (Copy COA). Click the Copy button. In the
Properties pane, scroll down to the Security section and
set the Authorization Scheme attribute to Save. Save the
modification.

2. LoginusingJohn’s credentials and run the page from the
Utilities menu. The button has vanished from the page,
because John’s group was created without any application
access privileges.

3. Login as the application administrator and grant access to
this button to the Clerks group.

4. Login asJohn. This time the Copy button on the Copy COA
page will be visible.

5. Using Table 32-6, apply the relevant authorization schemes to
all buttons on all application pages.

Table 32-6. Applying Authorization Schemes

Menu Page . Buttons - Authorization Schemes

AUTHORIZATION
MENU/PAGE/BUTTONS PAGEID
SCHEME
Setup (Menu)

Company Setup Report ‘ 3

Company Setup Form

(continued)

304

CHAPTER 32 ' APPLICATION SECURITY

Table 32-6. (continued)

(continued)

305

CHAPTER 32 I APPLICATION SECURITY

Table 32-6. (continued)

(continued)

306

CHAPTER 32 ' APPLICATION SECURITY

Table 32-6. (continued)

Select (Menu)

Transactions (Menu)

(continued)

307

CHAPTER 32 I APPLICATION SECURITY

Table 32-6. (continued)

Utilities (Menu)

Reports (Menu)

(continued)

308

CHAPTER 32 ' APPLICATION SECURITY

Table 32-6. (continued)

309

CHAPTER 32 I APPLICATION SECURITY

Note When applying security to a button, remember to also apply equal security
constraints to the process that is invoked when the button is clicked. For example, the
Authorization Scheme attribute of the Copy COA process on page 54 must be set to Save.
This way, the process is also attached to the authorized scheme that matches the button to
avoid access-control vulnerability.

32.7 Summary

In this chapter, you learned how to apply strong security on each component of your
APEX application. Either through an application page or a button on that page, you can
control user access to all application components.

32.8 Conclusion

The main objective behind this book was to give you insight into developing business
applications for the cloud. You can develop such applications and offer them to the
business community under the software as a service model. Now, why should you use
Oracle APEX for this? It’s simply because Oracle APEX is a rising platform in which you
can develop Internet-facing applications rapidly, as you have just experienced. Besides
being a rapid application development tool, Oracle APEX offers many features that are
lacking in other web development platforms. The new IDE has made the process of
application development much easier than ever before. The strong navigation features
found in APEX cannot be created that easily in any other development tool. Using

the shared components, you can use application components and logic in more than
one place. Eye-catching charts and mobile application development are among many
other features offered by this platform for rapid application development, but the most
important one is the use of less code that is required when you are implementing custom
application logic. In addition, everything can easily be handled through the built-in
features. In a nutshell, Oracle APEX has made the life of developers significantly easier.
With this development platform, you can create any kind of business application instantly
to meet the challenges of today’s ever-evolving business world.

I have tried my best to make this an error-free book, but flaws might still exist for
which I sincerely apologize. Please let me know of any errors at my e-mail address
(oratech@cyber.net.pk) so that I can post corrections on my blog page: http://
cloudcomputingusingoracleapex.blogspot.com/2015/03/errata.html.

The last word: I have plans to write more books like this on other ERP modules. If you
liked this work and want me to go ahead with my plans, then drop me a line at my e-mail
address indicating your area of interest. I'll write the next APEX book on the subject with
the most votes.

Thank you!

310

http://cloudcomputingusingoracleapex.blogspot.com/2015/03/errata.html
http://cloudcomputingusingoracleapex.blogspot.com/2015/03/errata.html

APPENDIX

Book Code

Chapter 4

Generate Fiscal Year

declare
Vyear number;
VleapYear number;

begin T
Vyear := :P5_YEAR;

if :P5_MONTH = 7 then
:P5_MONTH1 := 'July’;

Comparles © | ABC & Company | 8 Vear = (2015 nth * | luly

I3

:P5_FROM1 := '01-07-'||Vyear; -- Stores 01-07-2015 in the page item
:P5_FROM1
:P5_TO1 := '31-07-'||Vyear; -- Stores 31-07-2015 in the page item
:P5_T01
-- 'August’

:P5_MONTH2 := 'August';

:P5_FROM2 := '01-08-'||Vyear;

:P5_T02 := '31-08-'||Vyear;
-- 'September’

:P5_MONTH3 := 'September’;

:P5_FROM3 := '01-09-'||Vyear;

:P5_TO3 := '30-09-'||Vyear;
-- 'October’

:P5_MONTH4 := 'October’;

:P5_FROM4 := '01-10-'|[|Vyear;

:P5_T04 := '31-10-'||Vyear;
-- ‘November '

:P5 MONTH5 := 'November';

:P5_FROM5 := '01-11-'||Vyear;

:P5_TO5 := '30-11-'||Vyear;
-- 'December’

:P5_MONTH6 := 'December’;

:P5_FROM6 := '01-12-'||Vyear;

© Riaz Ahmed 2016 311
R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8_33

http://dx.doi.org/10.1007/978-1-4842-2502-8_4

APPENDIX " BOOK CODE

:P5_T06 := '
Vyear := Vye

-- 'January'
:P5_MONTH?
:P5_FROM7 :
:P5_T07 := '

-- 'February'
:P5_MONTH8
:P5_FROM8 :=
VleapYear :=
if VleapYear

:P5_TO8
else

:P5_TO8
end if;

-- 'March'
:P5_MONTH9 :
:P5_FROM9 :=
:P5_T09 := '

-- 'April’
:P5S_MONTH10
:P5_FROM10
:P5_TO10 :=

'

-- 'May
:P5_MONTH11
:P5_FROM11
:P5_TO11 :=

-- 'June'
:P5_MONTH12
:P5_FROM12
:P5_TO12 :=

end if;

end;

Save Fiscal Year

BEGIN

31-12-'||Vyear;
ar+1;

:= 'January';

'01-01-'||Vyear;
31-01-'||Vyear;

:= 'February';

'01-02-"||Vyear;
mod(Vyear,4);
=0 then

1= '29-02-'||Vyear;

1= '28-02-'||Vyear;

= 'March';
'01-03-"'||Vyear;
31-03-'| |Vyear;

:= 'April’;

:= '01-04-'||Vyear;

'30-04-"' | |Vyear;

= 'May’';

:= '01-05-"||Vyear;

'31-05-"||Vyear;

:= "June’;

1= '01-06-"||Vyear;

'30-06-" | |Vyear;

-- Incremented the Vyear value
to set the next year in
January

-- Evaluate leap year

insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,1,:P5 MONTH1,

TO DATE(:P5_FROM1, 'DD-MM-YYYY'),TO
DATE(:P5_TO1, 'DD-MM-YYYY'),1,0,0,null);

insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,2,:P5 MONTH2,

312

TO_DATE(:P5_FROM2, 'DD-MM-YYYY'),TO_
DATE(:P5_T02, 'DD-MM-YYYY'),1,0,0,null);

APPENDIX " BOOK CODE

insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,3,:P5 MONTH3,
TO DATE(:P5_FROM3, 'DD-MM-YYYY'),TO
DATE(:P5_T03, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,4,:P5 MONTH4,
TO_DATE(:P5_FROM4, 'DD-MM-
YYYY'),TO_DATE(:P5_TO4, 'DD-MM-
YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,5,:P5 MONTHS,
TO_DATE(:P5_FROMS, 'DD-MM-YYYY"),TO_
DATE(:P5_TO5, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,6,:P5 MONTH6,
TO DATE(:P5_FROM6, 'DD-MM-YYYY'),TO
DATE(:P5_T06, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,7,:P5 MONTH7,
TO_DATE(:P5_FROM7, 'DD-MM-YYYY'),TO_
DATE(:P5_TO07, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,8,:P5 MONTHS,
TO DATE(:P5_FROM8, 'DD-MM-YYYY'),TO
DATE(:P5_T08, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal _year values (:P5_COMPANIES,:P5_YEAR,9,:P5 MONTH9,
TO_DATE(:P5_FROM9, 'DD-MM-YYYY'),TO_
DATE(:P5_T09, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5_COMPANIES,:P5 YEAR,10,:P5 MONTH10,
TO_DATE(:P5_FROM10, 'DD-MM-YYYY'),TO_
DATE(:P5_TO10, 'DD-MM-YYYY'),1,0,0,null);
insert into gl fiscal year values (:P5 COMPANIES,:P5 YEAR,11,:P5 MONTH11,
TO_DATE(:P5_FROM11, 'DD-MM-YYYY'),TO_
DATE(:P5_TO11, 'DD-MM-YYYY'),1,0,0,null);
insert into gl _fiscal year values (:P5_COMPANIES,:P5_YEAR,12,:P5_MONTH12,
TO_DATE(:P5_FROM12, 'DD-MM-YYYY'),TO_
DATE(:P5_T012, 'DD-MM-YYYY'),1,0,0,null);
END;

Fetch Fiscal Year

DECLARE The cursor fetches the initial fiscal year
records of the selected company.

Vrecords number;
CURSOR fiscal year cur IS SELECT *
FROM gl fiscal year
WHERE cocode = :P5_ COMPANIES and initial year=1 ORDER BY comonthid;
fiscal year rec fiscal year cur%ROWTYPE;
BEGIN
select count(*) into Vrecords from gl fiscal year where cocode=:P5_
COMPANIES and initial_year=1;
if Vrecords > 0 then -- The page items will be populated with values
only when there exist some records
FOR fiscal year rec IN fiscal year cur LOOP -- Cursor opened to fetch
records

313

APPENDIX " BOOK CODE

if fiscal_year_rec.comonthid=1 then
:P5_YEAR := fiscal year rec.coyear;
:P5 MONTH := fiscal year rec.comonthname;
:P5_INITIAL_YEAR := fiscal year rec.initial year;
:P5_MONTH1 := fiscal_year rec.comonthname;
:P5_FROM1 := fiscal_year_rec.pfrom;
:P5_TO1 := fiscal year rec.pto;

end if;

if fiscal year rec.comonthid=2 then
:P5_MONTH2 := fiscal year rec.comonthname;
:P5_FROM2 := fiscal_year rec.pfrom;
:P5_T02 := fiscal year rec.pto;

end if;

if fiscal year rec.comonthid=3 then
:P5_MONTH3 := fiscal year rec.comonthname;
:P5_FROM3 := fiscal_year rec.pfrom;
:P5_T03 := fiscal year rec.pto;

end if;

if fiscal year rec.comonthid=4 then
:P5 MONTH4 := fiscal year rec.comonthname;
:P5_FROM4 := fiscal year rec.pfrom;
:P5_T04 := fiscal year rec.pto;

end if;

if fiscal_year_rec.comonthid=5 then
:P5 MONTH5 := fiscal year rec.comonthname;
:P5_FROM5 := fiscal year rec.pfrom;
:P5_TO5 := fiscal year rec.pto;

end if;

if fiscal_year_rec.comonthid=6 then
:P5_MONTH6 := fiscal year rec.comonthname;
:P5_FROM6 := fiscal year rec.pfrom;
:P5 TO6 := fiscal year rec.pto;

end if;

if fiscal year_rec.comonthid=7 then
:P5_MONTH7 := fiscal_year rec.comonthname;
:P5_FROM7 := fiscal year rec.pfrom;
:P5 TO7 := fiscal year rec.pto;

end if;

if fiscal_year rec.comonthid=8 then
:P5_MONTH8 := fiscal_year rec.comonthname;
:P5_FROM8 := fiscal year rec.pfrom;
:P5_TO8 := fiscal year rec.pto;

end if;

if fiscal year rec.comonthid=9 then
:P5_MONTH9 := fiscal_year_ rec.comonthname;
:P5_FROM9 := fiscal_year rec.pfrom;
:P5_T09 := fiscal year rec.pto;

end if;

314

APPENDIX " BOOK CODE

if fiscal_year_ rec.comonthid=10 then
:P5_MONTH10 := fiscal year rec.comonthname;
:P5_FROM10 := fiscal_year rec.pfrom;
:P5_T010 := fiscal year_rec.pto;

end if;

if fiscal_year_rec.comonthid=11 then
:P5_MONTH11 := fiscal year rec.comonthname;
:P5_FROM11 := fiscal year rec.pfrom;
:P5_T011 := fiscal_year_rec.pto;

end if;

if fiscal_year_ rec.comonthid=12 then
:P5_MONTH12 := fiscal year rec.comonthname;
:P5_FROM12 := fiscal year rec.pfrom;
:P5_T012 := fiscal year rec.pto;
end if;
END LOOP;
else -- The fiscal year of the selected company doesn’t exist,
so make all page items as null

:P5_YEAR := NULL;

:P5_INITIAL_YEAR := NULL;

:P5_MONTH := NULL;

:P5_MONTH1 := NULL;

:P5_FROM1 := NULL;

:P5_TO1 := NULL;

:P5_MONTH2 := NULL;

:P5_FROM2 := NULL;

:P5_TO2 := NULL;

:P5_MONTH3 := NULL;

:P5_FROM3 := NULL;

:P5_T0O3 := NULL;

:P5_MONTH4 := NULL;

:P5_FROM4 := NULL;

:P5_TO4 := NULL;

:P5_MONTH5 := NULL;

:P5_FROM5 := NULL;

:P5_TO5 := NULL;

:P5_MONTH6 := NULL;

:P5_FROM6 := NULL;

:P5_T06 := NULL;

:P5_MONTH7 := NULL;

:P5_FROM7 := NULL;

:P5_TO7 := NULL;

:P5_MONTH8 := NULL;

:P5_FROM8 := NULL;

:P5_TO8 := NULL;

:P5 MONTH9 := NULL;

:P5_FROM9 := NULL;

315

APPENDIX " BOOK CODE

:P5_T09 := NULL;
:P5_MONTH10 := NULL;
:P5_FROM10 := NULL;
:P5_T010 := NULL;
:P5_MONTH11 := NULL;
:P5_FROM11 := NULL;
:P5_TO11 := NULL;
:P5_MONTH12 := NULL;
:P5_FROM12 := NULL;
:P5_T012 := NULL;
end if;
END;

Page Items to Return

P5_YEAR,P5_MONTH,P5_INITIAL YEAR,P5 MONTH1,P5 FROM1,P5 TO1,P5 MONTH2,
P5_FROM2,P5 T02,P5 MONTH3,
P5_FROM3,P5_T03,P5_MONTH4,P5_FROM4,P5_T04,P5_MONTH5,P5_FROM5,P5_TO5,
P5_MONTH6,P5 FROM6,P5_TO6,
P5_MONTH7,P5_FROM7,P5_TO7,P5_MONTHS,P5_FROMS,P5 TO8,P5 MONTH9,P5 FROM9,
P5_T09,P5 MONTH10,
P5_FROM10,P5_T010,P5 MONTH11,P5 FROM11,P5 TO11,P5 MONTH12,P5 FROM12,P5 TO12

Check Transaction

declare
1 count number;
begin
select count(*) into 1 _count from gl tran master where cocode = :P5_
COMPANIES;
if 1 _count > 0 then
return false; -- Displays the message: Can’t delete,
transactions exist in this year
else
return true;

end if;

’ The PL/SQL code stores the number of transactions of the selected company in the |_count variable.
end; A value greater than zero in this variable means the existence of transactions. In such case, the code
returns false to prevent fiscal year deletion.

316

APPENDIX " BOOK CODE

Chapter 5

Check Transaction

DECLARE
1 count number;
BEGIN
select count(*) into 1 count from gl tran master where vchcode = :P8_
VCHCODE;
if 1 _count > 0 then
return false;
else
return true;
end if;
END;

317

http://dx.doi.org/10.1007/978-1-4842-2502-8_5

APPENDIX " BOOK CODE

Chapter 6

Tree Query

select case when connect by isleaf = 1 then 0 when level = 1 then 1 else -1
end as status,

level,

segmenttitle as title,

NULL as icon,

segmentid as value,

'View' as tooltip,

apex_util.prepare url('f?p="||:APP_ID||"':20:"||:APP_
SESSION||'::NO::P20 SEGMENTID:'||segmentid) as link
from gl segments
start with segmentparent = 0
connect by prior segmentid =
order siblings by segmentid

segmentparent

Check Segment

DECLARE
Vutilized number := 0;
Verrortext varchar2(60);
BEGIN
select count(*) into Vutilized from gl groups detail where
segmentId=:P20_SEGMENTID;
if Vutilized > 0 then
Verrortext := 'Cannot delete this segment because it is utilized';
end if;
return rtrim(Verrortext);
END;

Check Child Segment

DECLARE
VchildExist number := 0;
Verrortext varchar2(60);
BEGIN
select count(*) into VchildExist from gl _segments where
segmentParent=:P20_SEGMENTID;
if VchildExist > 0 then

Verrortext := 'Cannot delete, this segment has child entries’;
end if;
return rtrim(Verrortext);

END;

318

http://dx.doi.org/10.1007/978-1-4842-2502-8_6

Chapter 7

Create New Group

DECLARE

VsegmentID number := 0;
VsegmentParent Number;
VsegmentType varchar2(4);
VpageID number := 0;
VitemRole varchar2(10);
Vallow varchar2(1);
VmasterRow number := 0;

cursor segments_cur is

select *

from gl _segments

order by segmentID;

segments_rec segments_cur%ROWTYPE;

APPENDIX " BOOK CODE

BEGIN
if :request="Allow' then -- The request came from the Allow button
labeled Create Group - Allow All
Vallow := 'Y';
else
Vallow := 'N';
end if;

for segments_rec in segments_cur loop
VsegmentID := segments_rec.segmentID;

VsegmentParent := segments_rec.segmentParent;

VsegmentType := segments_rec.segmentType;

VpageID := segments_rec.pagelD;

VitemRole := segments_rec.itemRole;

if VmasterRow = 0 then
insert into gl groups master values
(:P21_GROUPID2,:P21_GROUPTITLE2);
commit;

If the group is created using the Allow
button. then Y (for Yes) will be saved In
the database table. On the contrary, if
the request is sent through the Disallow
button, M (for No) will be saved.

VmasterRow := 1; -- Master row switch turned off

end if;
insert into gl groups detail values

(:P21_GROUPID2,VsegmentID,VsegmentParent,VsegmentType,VpageID,VitemRo

le,Vallow);
commit;
end loop;
END;

319

http://dx.doi.org/10.1007/978-1-4842-2502-8_7

APPENDIX " BOOK CODE

Tree Query

select case when connect_by isleaf = 1 then 0 when level = 1 then 1 else -1
end as status,
level,
segmenttitle as title,
NULL as icon,
segmentid as value,
'View Right' as tooltip,
'javascript:pageItemName('||apex_escape.js_
literal(segmentid)||"')"' as link
from gl segments
start with segmentparent = 0
connect by prior segmentid = segmentparent
order siblings by segmentid

Allow Access

DECLARE
VrecordExist number := 0;
Vallow varchar2(1);
Vsegmenttype varchar2(4);
Vpageid number;
Vitemrole varchar2(10);
BEGIN
select count(*) into VrecordExist from gl groups detail
where groupID=:P21_GROUPID1 and segmentID=:P21 SELECTED_NODE;
if VrecordExist = 1 then
select allow_access into Vallow from gl groups detail
where groupID=:P21_GROUPID1 and segmentID=:P21_SELECTED_NODE;
if Vallow="Y' then -- If the group is currently allowed to access
this segment, then

Vallow := 'N'; -- revoke it
else -- If currently the segment is not allowed, then
Vallow := 'Y'; -- allow it
end lf; It's a new segment that is added to the
update gl_groups_detail Lo bloa: il ada shch segments 1o the
set allow_access:Vallow group with disallowed privilege.
where groupID=:P21 GROUPID1 and segmentID=:

A
P21 SELECTED_NODE; !

commit;

else
select segmenttype,pageid,itemrole into Vsegmenttype,Vpageid,Vitemrole
from gl _segments
where segmentID=:P21 SELECTED_ NODE;
insert into gl groups detail values (:P21 GROUPID1,:P21 SELECTED NODE,
null,Vsegmenttype,VpageID,Vitemrole, 'N");
commit;

end if;

END;

320

APPENDIX " BOOK CODE

Chapter 8
SQL Query

select "U"."ROWID",
"U"."USERID",
"G"."GROUPTITLE",
", "CONAME",
"."COYEAR",
". "COMONTHNAME" ,
" . "PASSWORD",
" . "ADMIN"
$" "U", "GL_GROUPS MASTER" "G", "GL_COMPANY" "C", "GL_FISCAL_

mCccCcTmcC A

from "GL_USE
YEAR" "F"
where "U"."COCODE"="C"."COCODE" and "U"."GROUPID"="G"."GROUPID" and
"U"."COCODE"="F"."COCODE" and

"U"."COYEAR"="F"."COYEAR" and "U"."COMONTHID"="F"."COMONTHID"

Company Year Month

DECLARE
Vcoyear number;

BEGIN
select max(coyear) into Vcoyear from gl fiscal year where cocode=:P23_
COMPANY;
update gl users set cocode=:P23_COMPANY,coyear=Vcoyear,comonthID=1 where
userid=:P23_USERID;
commit;

END;

Chapter 9

Custom Functions

This function should be wrapped, as the hash algorithm is exposed here. See my blog post
“Protecting Your Code with Oracle’s Wrap Utility”:

http://oracleapex5.blogspot.com/2015/05/protecting-your-code-with-
oracles-wrap.html

-- CUSTOM HASH FUNCTION
create or replace function custom hash (p_userName in varchar2, p password
in varchar2) return varchar2 is
1 password varchar2(4000);
1 salt varchar2(4000) := 'XViMH24EC1IHDCQHSS6XQ6QTISANT3';
begin

321

http://dx.doi.org/10.1007/978-1-4842-2502-8_8
http://dx.doi.org/10.1007/978-1-4842-2502-8_9
http://oracleapex5.blogspot.com/2015/05/protecting-your-code-with-oracles-wrap.html
http://oracleapex5.blogspot.com/2015/05/protecting-your-code-with-oracles-wrap.html

APPENDIX " BOOK CODE

1 password := utl raw.cast to raw(dbms_obfuscation toolkit.mds(input_
string => p_password || substr(l salt,10,13) ||
p_userName || substr(l salt, 4,10)));
return 1 _password;
end;

The CUSTOM_AUTH function receives username and password on line # 1 as parameters
from the login form and compares this information with the values stored in the GL_
USERS table after applying the CUSTOM_HASH function. If the provided information
matches with the table values, the user is authenticated and is allowed to access the
application.

-- CUSTOM AUTH FUNCTION
create or replace function custom auth (p_userName in VARCHAR2, p password
in VARCHAR2) return BOOLEAN is
1 password varchar2(4000);
1 stored password varchar2(4000);
1 count number;
begin
select count(*) into 1 count from gl users where userID = p_userName;
if 1_count > 0 then
select password into 1 stored password from gl users where userID =
p_userName;
1 password := custom_hash(p_userName, p_password);
if 1 password = 1 stored password then
return true;

else
return false;
end if;
else
return false;
end if;
end;
Check User ID
DECLARE
Verrortext varchar2(100);
BEGIN
if :P56_USERID is null and :P56_USERID2 is null THEN
Verrortext := 'No user selected for the reset password process';
end if;
return rtrim(Verrortext);
END;

322

APPENDIX " BOOK CODE

Match Passwords

BEGIN
if :P56_PASSWORD1 = :P56_PASSWORD2 then
return true;
else
return false;
end if;
END;

Update Password

BEGIN
if :P56_USERID is not null then
update gl users set password = custom hash(:P56 USERID, :P56_
PASSWORD1)
where upper(userID)
else
update gl users set password = custom hash(:P56 USERID2, :P56
PASSWORD1)
where upper(userID) = upper(:P56 _USERID2);
end if;
commit;
END;

upper(:P56_USERID);

323

APPENDIX " BOOK CODE

Chapter 10

Switch Company

DECLARE
Vadmin varchar2(1);
Vallow varchar2(1);
VcurrentCompany number;
Verrortext varchar2(60);
BEGIN
select admin into Vadmin from gl users where upper(userid)=upper(:APP_
USER);
if Vadmin = 'N' then
select allow_access into Vallow from gl groups_detail
where segmentID=(select segmentID from gl segments where
segmentTitle="Switch Company' and
segmentType="Item') and groupID=(select groupID from gl _
users where upper(userid)=upper(:APP_USER));
if vallow="N" then
select cocode into VcurrentCompany from gl users where
upper (userid)=upper(:APP_USER);
if :P30_COMPANY <> VcurrentCompany then

Verrortext := 'You are not allowed to switch company';
end if;
end if;

end if;

return rtrim(Verrortext);
END;
Switch Year
DECLARE

Vadmin varchar2(1);

Vallow varchar2(1);

VcurrentYear number;

Verrortext varchar2(60);
BEGIN

324

http://dx.doi.org/10.1007/978-1-4842-2502-8_10

APPENDIX " BOOK CODE

select admin into Vadmin from gl users where upper(userid)=upper
(:APP_USER);
if Vadmin = 'N' then
select allow_access into Vallow from gl groups detail
where segmentID=(select segmentID from gl segments where
segmentTitle="Switch Year' and
segmentType="Item') and groupID=(select groupID from
gl users where upper(userid)=upper(:APP_USER));
if Vallow="N" then
select coyear into VcurrentYear from gl users where
upper(userid)=upper(:APP_USER);
if :P30_YEAR <> VcurrentYear then

Verrortext := 'You are not allowed to switch year';
end if;
end if;

end if;

return rtrim(Verrortext);
END;
Switch Month
DECLARE

Vadmin varchar2(1);

Vallow varchar2(1);

VcurrentMonth number;

Verrortext varchar2(60);

BEGIN

select admin into Vadmin from gl users where upper(userid)=upper

(:APP_USER);

if vadmin = 'N' then
select allow_access into Vallow from gl groups_detail
where segmentID=(select segmentID from gl segments where
segmentTitle="Switch Month' and

325

APPENDIX " BOOK CODE

segmentType="'Item') and groupID=(select groupID from gl
users where upper(userid)=upper(:APP_USER));
if Vallow="N" then
select comonthid into VcurrentMonth from gl users where
upper (userid)=upper(:APP_USER);
if :P30_MONTH <> VcurrentMonth then

Verrortext := 'You are not allowed to switch month';
end if;
end if;

end if;

return rtrim(Verrortext);
END;
User Profile
DECLARE

Vconame varchar2(50);
vcoyear number;
vcomonthname varchar2(9);
Vuserprofile varchar2(100);
BEGIN
select distinct c.coname,f.comonthname,u.coyear into
vconame, vcomonthname, vcoyear
from gl company c, gl users u, gl fiscal year f
where c.cocode=u.cocode and c.cocode=f.cocode and f.comonthid=u.
comonthid and
upper (u.userid)=upper(:APP_USER);

Vuserprofile := trim(Vconame)||' '||trim(Vcomonthname)||', '||Vcoyear;
return Vuserprofile;
END;

326

APPENDIX " BOOK CODE

Chapter 11

Evaluate Level

if length(:P14_CCCODE) = 2 then
:P14 _CCLEVEL := 1;

elsif length(:P14_CCCODE) = 5 then
:P14_CCLEVEL := 2;

else

:P14 CCLEVEL := 0;
end if;
Check Parent Level
DECLARE

VparentFound number := 0;
VparentCode varchar2(2);
BEGIN

if :P14_CCLEVEL = 2 then
VparentCode := substr(:P14 CCcode,1,2);
select count(*) into VparentFound from gl cost_center where
CCcode=trim(VparentCode) and CClevel=1 and
cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER));
if VparentFound = 0 then

return false;

else
return true;
end if;
end if;
END;
Check Child Level
DECLARE
VchildFound number := 0;
BEGIN

select count(*) into VchildFound from gl cost center where CCcode like
:P14 CCcode||'%" and CClevel > :P14 CClevel
and cocode=(select cocode from gl users where upper(userid)=upper
(:app_user));
if VchildFound > 0 then
return false;
else
return true;
end if;
END;

327

http://dx.doi.org/10.1007/978-1-4842-2502-8_11

APPENDIX " BOOK CODE

Check in Transaction

DECLARE
Vdependent number := 0;
BEGIN
select count(*) into Vdependent from gl tran detail where CCcode =
:P14_CCcode and
cocode = (select cocode from gl users where upper(userid) = upper
(:app_user));
if Vdependent > 0 then
return false;
else
return true;
end if;
END;

Disallow Code Modification

DECLARE
Vdbcccode varchar2(s);
BEGIN
select cccode into Vdbcccode from gl _cost_center where ROWID=:P14_ROWID;
if :P14_CCcode <> Vdbcccode then
return false;
else
return true;
end if;
END;

Save Record

DECLARE
Vcocode number;
BEGIN
select cocode into Vcocode from gl users where upper(userid)=upper(:APP_
USER);
if :P14 ROWID is null then -- New Record
insert into gl cost center values (Vcocode,:P14 CCcode,:P14_
CCtitle,:P14 CClevel);
else
update gl cost _center set CCtitle=:P14 CCtitle where ROWID=:P14 ROWID;
end if;
END;

328

APPENDIX " BOOK CODE

Chapter 12

Evaluate Level

if length(:P16_COACODE) = 1 then
:P16_COALEVEL := 1;

elsif length(:P16_COACODE) = 3 then
:P16_COALEVEL := 2;

elsif length(:P16_COACODE) = 6 then
:P16_COALEVEL := 3;

elsif length(:P16_COACODE) = 11 then

:P16_COALEVEL := 4;
else

:P16_COALEVEL := 0;
end if;

Evaluate Nature

if :P16_COALEVEL = 2 or :P16_COALEVEL = 3 or :P16_COALEVEL = 4 then
select coanature into :P16_NATURE_DISPLAY from gl coa where
coacode=substr(:P16_COACODE,1,1) and coalevel=1 and
cocode=(select cocode from gl users where upper(userid) = upper
(:app_user));

end if;

The nature for level 2, 3, and 4 accounts is evaluated using the first level. For example, if you select the account of
A.B.Enterprises, then the previous select statement will evaluate the first level of this account using substr(:P16_COACODE,1,1)
and coalevel=1 conditions. The substr function will return 2, which is set for the Liabilities nature.

Check Parent Level

DECLARE This code will check for the existence of the parent level
VparentFound number := 0; for level 2, 3, and 4 accounts.
VparentCode varchar2(11);

BEGIN

-- First level will not be checked because it doesn't have parent

if :P16_COALEVEL = 2 then
VparentCode := substr(:P16 COAcode,1,1);
select count(*) into VparentFound from gl coa where
COAcode=trim(VparentCode) and COAlevel=1 and
cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER));

end if;

if :P16_COALEVEL = 3 then
VparentCode := substr(:P16 COAcode,1,3);

329

http://dx.doi.org/10.1007/978-1-4842-2502-8_12

APPENDIX " BOOK CODE

select count(*) into VparentFound from gl_coa where
COAcode=trim(VparentCode) and COAlevel=2 and
cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER));

end if;

if :P16_COALEVEL = 4 then
VparentCode := substr(:P16_COAcode,1,6);
select count(*) into VparentFound from gl coa where
COAcode=trim(VparentCode) and COAlevel=3 and
cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER));
end if;
if VparentFound = 0 and :P16_COAlevel <> 1 then -- No parent level
found and the
account is not
parent itself
return false; -- Displays the
message: Parent
level not found
else
return true;
end if;
END;

Check Child Level

DECLARE
VchildFound number :
BEGIN
select count(*) into VchildFound from gl coa where COAcode like :P16_
COAcode||'%" and COAlevel > :P16 COAlevel and
cocode=(select cocode from gl users where upper(userid)=upper(:app_
user));
if VchildFound > 0 then
return false;
else
return true;
end if;
END;

0;

330

APPENDIX " BOOK CODE

Check In Transaction

DECLARE
Vdependent number := 0;
BEGIN
select count(*) into Vdependent from gl tran detail where COAcode =
:P16_COAcode and
cocode = (select cocode from gl users where upper(userid) = upper
(:app_user));
if Vdependent > 0 then
return false;
else
return true;
end if;
END;

Disallow Code Modification

DECLARE
VdbCOAcode varchar2(11);
BEGIN
select COAcode into VdbCOAcode from gl coa where ROWID=:P16_ROWID;
if :P16_COAcode <> VdbCOAcode then
return false;
else
return true;
end if;
END;

331

APPENDIX " BOOK CODE

Save Record

DEC

BEG

LARE
Vcocode number;
IN
select cocode into Vcocode from gl users where upper(userid)=upper(
:APP_USER);
if :P16_ROWID is null then -- New Record
if :P16_COAlevel = 1 then -- Group Level 1
insert into gl coa values (Vcocode,:P16 COAcode,:P16 COAtitle,
:P16_COAlevel, :P16 _COAnature,null,null);
elsif :P16 COAlevel = 2 or :P16_COAlevel = 3 then -- Group Levels
(2 and 3)
insert into gl coa values (Vcocode,:P16 COAcode,:P16 COAtitle,
:P16_COAlevel, :P16_nature_display,null,null);
else -- 4th Level
insert into gl coa values
(Vcocode, :P16_COAcode, :P16_COAtitle,:P16 COAlevel,
:P16_nature_display,:P16_COAtype,:P16 _CCcode);
end if;
else -- Record being edited
if :P16_COAlevel = 1 then -- Group Levels 1
update gl coa set COAtitle=:P16 _COAtitle, COAlevel=
:P16_COAlevel, COAnature=:P16_COAnature where
ROWID=:P16_ROWID;
elsif :P16_COAlevel = 2 or :P16_COAlevel = 3 then -- Group lLevels
(2 and 3)
update gl coa set COAtitle=:P16_COAtitle, COAlevel=
:P16_COAlevel, COAnature=:P16 nature display where
ROWID=:P16_ROWID;
else -- 4th Level
update gl coa set COAtitle=:P16_COAtitle, COAlevel=:P16_COAlevel,

COAnature=:P16_nature_display,

COAtype=:P16_COAtype, CCcode=:P16 CCcode where ROWID=:P16 ROWID;
end if;

end if;

END;

b Although the update statement contains all eolumns, you can only modify title, account type, and cost
center information on the form.

Delete Record

DELETE FROM gl coa WHERE rowid = :P16_ROWID;

332

APPENDIX " BOOK CODE

Chapter 13

Select Different Companies

DECLARE
Verrortext varchar2(100);
BEGIN
if :P54_SOURCE = :P54 TARGET THEN
Verrortext := 'Source and Target companies must be different.';
end if;
return rtrim(Verrortext);
END;

Check Source COA

DECLARE
VcoaRecords number := 0;
Verrortext varchar2(200);
BEGIN
select count(*) into VcoaRecords from gl coa where cocode=:P54 SOURCE;
if VcoaRecords <= 0 THEN

Verrortext := 'Chart of Accounts of the Source company does not
exist';

end if;

return rtrim(Verrortext);

END;

333

http://dx.doi.org/10.1007/978-1-4842-2502-8_13

APPENDIX " BOOK CODE

Check Target COA

DECLARE
VcoaRecords number := 0;
Verrortext varchar2(200);
BEGIN
select count(*) into VcoaRecords from gl coa where cocode=:P54 TARGET;
if VcoaRecords > 0 THEN

Verrortext := 'Chart of Accounts already exists for the target
company';
end if;
return rtrim(Verrortext);
END;
Copy COA
DECLARE

Vcoacode varchar2(11); Vcoatitle varchar2(50); Vcoalevel number(1);
Vcoanature varchar2(11); Vcoatype varchar2(11);
Vccecode varchar2(s);
cursor coa_cur is select * from gl coa where cocode=:P54_ SOURCE order by
coacode,coalevel;
coa_rec coa_cur%ROWTYPE;
BEGIN
for coa_rec in coa_cur loop
Vcoacode := coa_rec.coacode;
Vcoatitle := coa_rec.coatitle;
Vcoalevel := coa_rec.coalevel;
Vcoanature := coa_rec.coanature;
Vcoatype := coa_rec.coatype;
Vcccode := coa_rec.cccode;
insert into gl coa values (:P54 TARGET,Vcoacode,Vcoatitle,Vcoalevel,Vc
oanature,Vcoatype,Vcccode);
commit;
end loop;
END;

334

APPENDIX " BOOK CODE

Chapter 14

Check Number Date

DECLARE
Vpfrom date;
Vpto date;
Vvoucherfound number := 0;
Verrortext varchar2(60);
BEGIN
select count(*) into Vvoucherfound from gl tran master where cocode=
:P43_COCODE and coyear=:P43_COYEAR and
comonthid=:P43_COMONTHID and vchcode=:P43_VCHCODE and vchno=:P43_VCHNO;
select pfrom,pto into Vpfrom,Vpto from gl fiscal year where cocode=
:P43_COCODE and coyear=:P43_COYEAR and
comonthid=:P43_COMONTHID;,
if Vvoucherfound > 0 and :request like 'CREATE%' THEN
Verrortext := 'Voucher already exist in the database’;
end if;
if :P43_VCHDATE not between Vpfrom and Vpto then
Verrortext := 'Voucher date should fall between '||to_char(Vpfrom)||'
and '||to_char(Vpto);

end if;
if :P43_VCHNO IS NULL or :P43_VCHNO <= 0 then
Verrortext := 'Voucher number must be greater than zero';
end if;
return rtrim(Verrortext);
END;
Check Voucher Details
DECLARE

Vrecords number := 0;
Verrortext varchar2(60);
BEGIN
FOR i IN 1 .. apex_application.g f02.COUNT LOOP -- select a visible
tabular form column, else the validation won't execute
Vrecords := Vrecords + i;

END LOOP;
if Vrecords <= 1 then
Verrortext := 'No data defined in the details section';
end if;
return rtrim(Verrortext);
END;

335

http://dx.doi.org/10.1007/978-1-4842-2502-8_14

APPENDIX " BOOK CODE

Check Debit Credit

DECLARE
Verrortext varchar2(1000);
BEGIN
FOR i IN 1 .. apex_application.g f02.COUNT LOOP
if (apex_application.g f10(i) = 0 and apex_application.g f11(i) = 0)
OR (apex_application.g f10(i) <= 0 and
apex_application.g f11(i) <= 0) OR (apex_application.g f10(i) <> 0
and apex_application.g f11(i) <> 0) OR
(apex_application.g f10(i) is null or apex_application.g f11(i) is
null) then
Verrortext := 'Row '||i||': Enter zero or a positive
amount either in Debit or Credit.
';
end if;
END LOOP;
return rtrim(Verrortext, '
');
END;

Voucher Balancing

DECLARE
Verrortext varchar2(1000);
Vtotaldebit number := 0;
Vtotalcredit number := 0;
Vdifference number := 0;
BEGIN
FOR i IN 1 .. apex_application.g_f02.COUNT LOOP
Vtotaldebit := Vtotaldebit + to_number(apex application.g f10(i));
Vtotalcredit := Vtotalcredit + to_number(apex_application.g f11(i));
END LOOP,;
if Vtotaldebit <> Vtotalcredit then
Vdifference := Vtotaldebit - Vtotalcredit;

Verrortext := 'Voucher is not balanced - Debit='||Vtotaldebit]||'
Credit='||Vtotalcredit||' Difference='||Vdifference;

end if;

return rtrim(Verrortext);

END;

336

APPENDIX " BOOK CODE

Control Buttons

BEGIN
if :P43_TRAN_NO IS NOT NULL and :P43_CLOSING=0 and :P43 VCHVERIFIED=
'N' then
return true;
else
return false;
end if;
END;

Control Navigation Buttons

-- PL/SQL Function Body code for GET_PREVIOUS TRAN_NO
BEGIN
if :P43_TRAN_NO IS NOT NULL and :P43_CLOSING=0 and :P43_ VCHVERIFIED='N'
and :P43_TRAN NO PREV IS NOT NULL
then
return true;
else
return false;
end if;
END;

-- PL/SQL Function Body code for GET_NEXT_TRAN_NO
begin
if :P43_TRAN_NO IS NOT NULL and :P43_CLOSING=0 and :P43 VCHVERIFIED='N'
and :P43_TRAN_NO_NEXT IS NOT NULL
then
return true;
else
return false;
end if;
end;

337

APPENDIX " BOOK CODE

Chapter 17

Report Query

SELECT

co.
VM.

coname,
Vchcode,

VCH.Vchtitle,

VM.
VM.
VM.
VM.
VM.

\D

Vchno,

Vchdate,
Vchdescription,
createdby,
createdon,

.line_no,
\D.

COAcode,

COA.COAtitle,

\D.
cC.
\D.
\D.
\D.

CCCode,
CCTitle,
Vchdr,
Vchcr,

Vchreference, (SELECT TO CHAR(SYSDATE, 'DD-MON-YYYY

HH24:MI:SS') FROM DUAL) NOW

FROM GL_COMPANY CO, GL_VOUCHER VCH, GL_COA COA, GL_COST_CENTER CC, GL_TRAN_

MASTER VM,

GL_TRAN_DETAIL VD

WHERE VM.VchCode=:P71_VCHCODE AND VM.Vchdate between :P71 VCHDATEFROM and

:P71_VCHDATETO

AND

VM.createdon between :P71_CREATEDFROM and :P71_CREATEDTO AND
VM.vchno BETWEEN :P71_VCHNOFROM and :P71_VCHNOTO AND

upper (VM. createdby)=upper(:P71_USERID) AND

VM. cocode=(select cocode from GL_USERS where

upper (userid)=upper(:APP_USER)) AND

VM. cocode=C0.cocode AND
VM.tran_no=VD.tran_no AND
VM.Vchcode=VCH.Vchcode AND
VD.cocode=COA.cocode AND
VD.COAcode=COA.COAcode AND
VD.CCCode=CC.CCCode(+)

ORDER BY VCHCODE,VCHNO,LINE_NO

338

http://dx.doi.org/10.1007/978-1-4842-2502-8_17

APPENDIX " BOOK CODE

Check Data

DECLARE
Vvouchersfound number := 0;
Verrortext varchar2(100);
BEGIN
select count(*) into Vvouchersfound from gl tran master VM
where VM.VchCode=:P71_VCHCODE AND VM.Vchdate between :P71_VCHDATEFROM and
:P71_VCHDATETO AND
VM.createdon between :P71_CREATEDFROM and :P71_CREATEDTO AND
VM.vchno BETWEEN :P71_VCHNOFROM and :P71_VCHNOTO AND
upper (VM. createdby)=upper(:P71_USERID) AND
VM.cocode=(select cocode from GL_USERS where
upper (userid)=upper(:APP_USER));
if Vvouchersfound <= 0 THEN

Verrortext := 'No data found for the given criteria’;
end if;
return rtrim(Verrortext);

END;

339

APPENDIX " BOOK CODE

Chapter 18

IR SQL Query

SELECT coacode, coatitle, tran_no, vchdate, vchcode, vchtype, vchno,
vchdescription, vchdr, vchcr, SUM (vchdr - vchcr) OVER (partition by coacode
ORDER BY coacode, vchdate, tran no, vchno) as balance
FROM
SELECT TD.coacode, COA.coatitle, 0 as tran no, to_date
(:P72_FROM, 'DD-MON-YYYY') - 1 as vchdate
, 0 as vchcode

, as vchtype

| The SELECT statemnent calculates opening balances of accounts as of the P72_FROM date,

, null as vchno
, 'Opening Balance as on '||to_char(to date
(:P72_FROM, 'DD-MON-YYYY') - 1) as Vchdescription
,sum(TD.vchdr) as vchdr
,sum(TD.vchcr) as vcher
»1 AS grp
FROM gl coa COA, gl voucher VCH, gl tran master TM, gl _
tran_detail TD
WHERE TM.vchdate < to_date(:P72_FROM, 'DD-MON-YYYY') and
TD.coacode=COA.coacode and
TD.coacode >= :P72_ACCOUNTFROM and TD.coacode
<= :P72_ACCOUNTTO and
TM.cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
TM.tran_no=TD.tran_no and TM.vchcode=VCH.
vchcode and
COA. cocode=TM. cocode
GROUP BY TD.coacode, COA.coatitle

UNION ALL Combines the results of the two SELECT statements.

SELECT TD.coacode, COA.coatitle, TM.tran_no, TM.vchdate

, TM.vchcode
, VCH.vchtype

Retrieves transaction data for the specified period.

TM.vchno

TD.vchdescription

TD.vchdr

TD.vcher

, 2 AS grp

FROM gl coa COA, gl voucher VCH, gl tran_master
T™, gl tran_detail TD

L R Y

340

http://dx.doi.org/10.1007/978-1-4842-2502-8_18

APPENDIX " BOOK CODE

WHERE TM.vchdate between to_date(:P72_FROM, 'DD-MON-YYYY') and
to date(:P72_TO, 'DD-MON-YYYY') and
TD.coacode=C0A.coacode and TD.coacode >= :P72_
ACCOUNTFROM and
TD.coacode <= :P72_ACCOUNTTO and
TM.cocode=(select cocode from gl_users where
upper (userid)=upper(:APP_USER)) and
TM.tran_no=TD.tran_no and TM.vchcode=VCH.
vchcode and COA.cocode=TM. cocode

ORDER BY coacode, grp, vchdate, vchno
PDF Report Query

SELECT coname, coacode, coatitle, tran_no, vchdate, vchtype,vchno,
vchdescription, vchdr, vchcr, SUM (vchdr - vcher)
OVER (partition by coacode ORDER BY coacode, vchdate, tran no, vchno) as
balance,
(SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY HH24:MI:SS') FROM DUAL)
NOW, :P72_FROM FromDate,
:P72_TO ToDate, :P72_ACCOUNTFROM AccountFrom,:P72_ACCOUNTTO
Accountto
FROM (
SELECT (CO.coname, TD.coacode, COA.coatitle, 0 as tran_no,
to_date(:P72_FROM, 'DD-MON-YYYY') - 1 as vchdate
"' as vchtype
0 as vchno
'<<< Opening Balance >>>' as Vchdescription
sum(TD.vchdr) as vchdr
sum(TD.vchcr) as vchcr
’ 1 AS grp
FROM gl company CO, gl coa COA, gl voucher VCH, gl tran_
master TM, gl tran detail TD
WHERE TM.vchdate < to_date(:P72_FROM, 'DD-MON-YYYY') and
TD.coacode=COA.coacode and
TD.coacode >= :P72_ACCOUNTFROM and TD.coacode
<= :P72_ACCOUNTTO and
TM.cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
TM.tran_no=TD.tran_no and TM.vchcode=VCH.
vchcode and TM.cocode=C0.cocode and
COA.cocode=TM.cocode
GROUP BY CO.coname, TD.coacode, COA.coatitle

UNION ALL

D ™

341

APPENDIX " BOOK CODE

SELECT (CO.coname, TD.coacode, COA.coatitle, TM.tran_no
TM.vchdate
VCH.vchtype
TM.vchno
TD.vchdescription
TD.vchdr
TD.vchcr
, 2 AS grp
FROM gl company CO, gl coa COA, gl voucher VCH, gl tran_
master TM, gl tran_detail TD
WHERE TM.vchdate between to_date(:P72_FROM, 'DD-MON-YYYY') and
to_date(:P72_TO, 'DD-MON-YYYY') and
TD.coacode=COA.coacode and TD.coacode >=
:P72_ACCOUNTFROM and
TD.coacode <= :P72_ACCOUNTTO and
TM.cocode=(select cocode from gl users where
upper(userid)=upper(:APP_USER)) and
TM.tran_no=TD.tran_no and TM.vchcode=VCH.vchcode and
TM.cocode=C0.cocode and
COA.cocode=TM. cocode

L S Y

)
ORDER BY vchdate,vchno

Check Data

DECLARE
Vdatafound number := 0;
Verrortext varchar2(100);
BEGIN
select count(*) into Vdatafound from gl tran master TM, gl tran detail TD
where TM.vchdate <= to_date(:P72_TO, 'DD-MON-YYYY') and TD.coacode >=
:P72_ACCOUNTFROM and
TD.coacode <= :P72_ACCOUNTTO and
TM. cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER));
if Vdatafound <= 0 THEN

Verrortext := 'No data found for the given criteria’;
end if;
return rtrim(Verrortext);

END;

342

APPENDIX " BOOK CODE

Drilled Down Voucher

SELECT

TD.
TD.
TD.
TD.
TD.
TD.

D

LINE_NO,
TRAN_NO,
COCODE,
COACODE,
CCCODE,
VCHDESCRIPTION,

.VCHDR,
TD.
TD.
TD.

VCHCR,
VCHREFERENCE,
RECONCILED

FROM GL_TRAN_DETAIL TD, GL_TRAN_MASTER TM

WHERE TD.TRAN_NO

= TM.TRAN_NO and

TM.VCHDATE = TO DATE(:P44 VCHDATE, 'DD-MON-YYYY') and
TM.VCHCODE = TO_NUMBER(:P44_ VCHCODE) and

TM.VCHNO = TO _NUMBER(:P44 VCHNO) and

TM.COCODE = (select cocode from gl users where

upper (userid)=upper(:APP_USER))

343

APPENDIX " BOOK CODE

Chapter 19

Generate Trial Balance

DECLARE
Vstartdate date; VcoacodeSearch varchar2(20); Vcoacode varchar2(11);
Vcoatitle varchar2(50); Vcoalevel number;
Vcctitle varchar2(25); Vcocode number; Vconame varchar2(50); Vopendr
number; Vopencr number; VactivityDr number;
VactivityCr number; VcumulativeDr number; VcumulativeCr number;
VclosingBalDr number; VclosingBalCr number;
VtotalOpenDr number; VtotalOpenCr number; VtotalActivityDr number;
VtotalActivityCr number;
VtotalClosingDr number; VtotalClosingCr number;
cursor tb_cur is
select coacode,coatitle,coalevel from gl coa where coacode between :P73_
ACCOUNTFROM and :P73_ACCOUNTTO and
coalevel <= :P73 _COALEVEL and cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER))
order by coacode;
tb_rec tb_cur%ROWTYPE;
BEGIN
delete from gl trial balance where upper(userid)=upper(:APP_USER);
-- delete existing TB of the current user
commit;
select cocode into Vcocode from gl users where upper(userid)=upper(:APP_
USER);
select coname into Vconame from gl company where cocode=Vcocode;
select pfrom into Vstartdate from gl fiscal year where cocode=Vcocode and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER)) and comonthid=1;
for tb_rec in tb_cur loop
Vcoacode := tb_rec.coacode;
VcoacodeSearch := tb_rec.coacode||'%";
Vcoatitle := tb_rec.coatitle;
Vcoalevel := tb_rec.coalevel;
if :P73_CCCODE is null THEN -- If no cost center is selected
select sum(TD.vchdr) into Vopendr from gl tran master TM, gl tran_
detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate < Vstartdate;
select sum(TD.vchcr) into Vopencr from gl tran_master TM, gl tran_
detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM.cocode=Vcocode and TM.vchdate < Vstartdate;
select sum(TD.vchdr) into VactivityDr from gl tran master TM, gl
tran_detail TD where TM.tran_no=TD.tran_no and

344

http://dx.doi.org/10.1007/978-1-4842-2502-8_19

APPENDIX " BOOK CODE

TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate between
Vstartdate and
to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TM.closing=0;
select sum(TD.vchcr) into VactivityCr from gl tran_master TM, gl_
tran_detail TD where TM.tran_no=TD.tran no and
TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate between
Vstartdate and
to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TM.closing=0;

else
select cctitle into Vcctitle from gl cost center where cccode=:P73_
CCCODE; -- Print CCTITLE on TB PDF

select sum(TD.vchdr) into Vopendr from gl tran master TM, gl tran_
detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate < Vstartdate and
TD.cccode=:P73_CCCODE;
select sum(TD.vchcr) into Vopencr from gl tran master TM, gl tran_
detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM.cocode=Vcocode and TM.vchdate < Vstartdate
and
TD.cccode=:P73_CCCODE;
select sum(TD.vchdr) into VactivityDr from gl tran master TM, gl
tran_detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate between
Vstartdate and
to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TM.closing=0 and TD.cccode=:P73_CCCODE;
select sum(TD.vchcr) into VactivityCr from gl tran master TM, gl
tran_detail TD where TM.tran_no=TD.tran_no and
TD.coacode like VcoacodeSearch and
TM. cocode=Vcocode and TM.vchdate between
Vstartdate and
to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TM.closing=0 and TD.cccode=:P73_CCCODE;

end if;

-- Calculate closing balance
VcumulativeDr := nv1(VopenDr,0) + nvl(VactivityDr,0);
-- Sum up opening and activity debits
VcumulativeCr := nv1(VopenCr,0) + nvl(VactivityCr,0);
-- Sum up opening and activity credits
if VcumulativeDr > VcumulativeCr then

345

APPENDIX " BOOK CODE

VclosingBalDr := VcumulativeDr - VcumulativeCr;
-- Closing balance is debit
VclosingBalCr := 0;
elsif VcumulativeCr > VcumulativeDr then
VclosingBalDr := 0;
VclosingBalCr := VcumulativeCr - VcumulativeDr;
-- C(Closing balance is credit
else -- Both are equal
VclosingBalDr := 0;
VclosingBalCr := 0;
end if;
if Vopendr=Vopencr then -- Previous year's balance is zero (It’s an
Income or Expense account)
insert into gl trial balance values
(Vcoacode,Vcoatitle,Vcoalevel,0,0,VactivityDR,VactivityCR,VclosingBa
1Dr,VclosingBalCxr,Vconame,
:P73_TBDATE, :P73_ACCOUNTFROM, :P73_ACCOUNTTO, :P73_
CCCODE, Vcctitle, :P73_COALEVEL,upper(:APP_USER),0);
else
insert into gl trial balance values
(Vcoacode,Vcoatitle,Vcoalevel,Vopendr,Vopencr,VactivityDR,VactivityC
R,VclosingBalDr,VclosingBalCr,Vconame,
:P73_TBDATE, :P73_ACCOUNTFROM, :P73_ACCOUNTTO, :P73_
CCCODE, Vcctitle, :P73_COALEVEL,upper(:APP_USER),0);
end if;
commit;
end loop;
-- Calculate & insert grand totals
select sum(opendr) into VtotalOpenDr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73 _COALEVEL;
select sum(opencr) into VtotalOpenCr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73_COALEVEL;
select sum(activitydr) into VtotalActivityDr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73_COALEVEL;
select sum(activitycr) into VtotalActivityCr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73_COALEVEL;
select sum(closingdr) into VtotalClosingDr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73_COALEVEL;
select sum(closingcr) into VtotalClosingCr from gl trial balance where
upper (userid)=upper(:APP_USER) and
coalevel=:P73_COALEVEL;
insert into gl trial balance (coatitle,coalevel,opendr,opencr,activitydr,
activitycr,closingdr,closingcr,userid,grand total)

346

APPENDIX " BOOK CODE

values ('GRAND TOTAL FOR LEVEL '||:P73_COALEVEL,:P73_COALEVEL,Vtotalopend
r,Vtotalopencr,VtotalactivityDR,
VtotalactivityCR,VtotalclosingDr,VtotalclosingCr,upper(:APP_USER),1);
commit;

-- Replace zeros with nulls for clear presentation
update gl trial balance set opendr=null where opendr=0;
update gl trial balance set opencr=null where opencr=0;
update gl trial balance set activitydr=null where activitydr=0;
update gl trial balance set activitycr=null where activitycr=0;
update gl trial balance set closingdr=null where closingdr=0;
update gl trial balance set closingcr=null where closingcr=0;
commit;

END;

Check Data
DECLARE

Vdatafound number := 0;
Verrortext varchar2(100);

BEGIN
if :P73_CCCODE is null THEN -- No cost center selected
select count(*) into Vdatafound from gl tran master TM, gl tran detail
D

where TM.vchdate <= to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TD.coacode >= :P73_ACCOUNTFROM and TD.coacode <= :P73_
ACCOUNTTO and
TM.cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER));

else

select count(*) into Vdatafound from gl tran master TM,

gl _tran_detail TD

where TM.vchdate <= to_date(:P73_TBDATE, 'DD-MON-YYYY') and
TD.coacode >= :P73_ACCOUNTFROM and TD.coacode <= :P73_
ACCOUNTTO and
TD.cccode = :P73_CCCODE and
TM. cocode=(select cocode from gl _users where

upper (userid)=upper(:APP_USER));

end if;
if Vdatafound <= 0 THEN
Verrortext := 'No data found for the given criteria’;
end if;
return rtrim(Verrortext);
END;

347

APPENDIX " BOOK CODE

Chapter 20

CheCk Deblt Cl'edlt g_f07 represents the Debit column in the
tabular form, whereas g_f08 represents the
DECLARE Credit column.

Verrortext varchar2(1000);
BEGIN
FOR i IN 1 .. apex_application.g f02.COUNT LOOP
if (apex_application.g fo7(i) = 0 and
apex_application.g fo8(i) = 0) OR
(apex_application.g f07(i) <= 0 and
apex_application.g_fo8(i) <= 0) OR
(apex_application.g f07(i) <> 0 and
apex_application.g f08(i) <> 0) OR
(apex_application.g f07(i) is null or
apex_application.g f08(i) is null) then
Verrortext := 'Row '||i||': Enter positive amount either
in Debit or Credit.
';
end if;
END LOOP;
return rtrim(Verrortext, '
');
END;

348

http://dx.doi.org/10.1007/978-1-4842-2502-8_20

APPENDIX " BOOK CODE

Chapter 22

Generate Reconciliation Report

DECLARE
Vcocode number; VactivityDr number := 0; VactivityCr number := 0;
VclosingBal number := 0; Vconame varchar2(50);
Vbanktitle wvarchar2(50); Vosdebit number := 0; Voscredit
number := 0; Vamount number := 0;
VtranDebit number := 0; VtranCredit number := 0; Vmonthyear
varchar2(14); Vvchdate date; Vvchtype varchar2(6);
Vvchno number := 10; Vvchdescription varchar2(150); Vremarks
varchar2(150); Vvchreference varchar2(25);
Vsrno number := 1; VbankBalance number := 0;

-- Opening Bank Transactions Cursor
cursor os_cur is
select remarks,vchdr,vchcr from gl banks os where cocode=(select cocode
from gl_users where
upper (userid)=upper(:APP_USER)) and coacode=:P74 BANK and reconciled=0
order by sr_no;

-- Bank's current transactions cursor
cursor tran_cur is
SELECT TM.VCHDATE, VCH.VCHTYPE, TM.VCHNO, TD.VCHDESCRIPTION,
TD.VCHREFERENCE, TD.VCHDR, TD.VCHCR
FROM GL_VOUCHER VCH, GL TRAN MASTER TM, GL_TRAN DETAIL TD
WHERE TM.COCODE=TD.COCODE AND TM.TRAN_NO=TD.TRAN_NO AND TM.VCHCODE=VCH.
VCHCODE AND
TM.vchdate <= to_date(:P74_REPORTDATE, 'DD-MON-YYYY') AND
TM.CLOSING=0 AND
TM.VCHDESCRIPTION <> 'OPENING BALANCES' AND
TM.COCODE=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) AND
TD.COACODE=:P74_BANK AND TD.RECONCILED=0
ORDER BY TM.vchdate;
0s_rec 0s_cur%ROWTYPE;
tran_rec tran_cur%ROWTYPE;

BEGIN
delete from gl reconcile report where upper(userid)=upper(:APP_USER);
-- Delete user's existing report
commit;
select cocode into Vcocode from gl users where upper(userid)=upper
(:APP_USER);
select coname into Vconame from gl company where cocode=Vcocode;
select coatitle into Vbanktitle from gl coa where coacode=:P74_BANK and
cocode=Vcocode;

349

http://dx.doi.org/10.1007/978-1-4842-2502-8_22

APPENDIX " BOOK CODE

-- Evaluate bank's balance as per ledger
SELECT sum(TD.vchdr), sum(TD.vchcr) into VactivityDr,VactivityCr
FROM gl tran_master TM, gl tran_detail TD
WHERE TM.tran_no=TD.tran_no and TM.cocode=Vcocode AND TD.coacode=:P74_
BANK AND
TM.vchdate <= to_date(:P74_REPORTDATE, 'DD-MON-YYYY') AND
TM. cocode=TD.cocode AND TM.closing=0;

if VactivityDr > VactivityCr then
VclosingBal := VactivityDr - VactivityCr;
elsif VactivityCr > VactivityDr then
VclosingBal := VactivityCr - VactivityDr;

VclosingBal := VclosingBal-(VclosingBal * 2); -- Make overdraft
(0D) balance
negative

else

VclosingBal := 0;

end if;

insert into gl reconcile report values (Vsrno,upper(:APP_

USER), Vconame,
to_date(:P74_REPORTDATE, 'DD-MON-YYYY'), :P74 BANK,Vbanktitle,null,null,
null,null, 'Balance as per Ledger',

null,VclosingBal);

commit;

-- Incorporate opening transactions
for os_rec in os_cur loop -- 0s stands for opening
outstanding
Vsrno := Vsrno + 1;
Vremarks := os_rec.remarks;
Vosdebit := os_rec.vchdr;
Voscredit := os_rec.vchcr;
if Vosdebit > 0 then
Vamount := Vosdebit;

Vamount := Vamount-(Vamount * 2); -- Made negative to deduct
the amount.
elsif Voscredit > 0 then This is a deposited amount that is
Vamount := Voscredit; recorded in the company's ledger
else but hasn't appeared in the bank
Vamount := 0; statement. To reconcile the
end if; ledger balance with the bank
insert into gl reconcile report balance, this amount should be
values (Vsrno,upper(:APP_USER),Vconame, EZEUCtEdfr°”1thE|Edger
dance.

350

APPENDIX " BOOK CODE

to_date(:P74_REPORTDATE, 'DD-MON-YYYY'), :P74_BANK,Vbanktitle,null,null,
null,null,Vremarks,null,Vamount);
commit;

end loop;

-- Incorporate current transactions
for tran_rec in tran_cur loop

Vsrno := Vsrno + 1;
Vvchdate := tran_rec.vchdate;
Vvchtype := tran_rec.vchtype;
Vvchno := tran_rec.vchno;
Vvchdescription := tran_rec.vchdescription;
Vvchreference := tran_rec.vchreference;
VtranDebit := tran_rec.vchdr;
VtranCredit := tran_rec.vchcr;
Vmonthyear := TRIM(to char(Vvchdate, 'Month"))||'-"||to_
char(Vvchdate, 'YYYY');
if VtranDebit > 0 then

Vamount := VtranDebit;

Vamount := Vamount-(Vamount * 2); -- Made negative to deduct
the deposited amount not
appearing in the BS

elsif VtranCredit > 0 then

Vamount := VtranCredit;

else
Vamount := 0;
end if;
insert into gl reconcile report values (Vsrno,upper
(:APP_USER),Vconame,
to_date(:P74_REPORTDATE, 'DD-MON-YYYY'), :P74 BANK,Vbanktitle,Vmonthyear
,Vvchdate,Vvchtype,Vvchno,
Vvchdescription,Vvchreference,Vamount);
commit;
end loop;

-- Calculate and insert bank balance based on the figures instered above
select sum(amount) into VbankBalance from gl reconcile report where
upper (userid)=upper(:APP_USER);
insert into gl reconcile report values (Vsrno+l,upper(:APP_USER),Vconame,
to_date(:P74_REPORTDATE, 'DD-MON-YYYY'), :P74_BANK,Vbanktitle,null,null,nul
1,null, 'Balance as per bank statement’,
null,VbankBalance);
commit;

END;

351

APPENDIX " BOOK CODE

Chapter 23

Check Month Closure

DECLARE
Vmonthclosed number := 0;
Verrortext varchar2(100);
BEGIN
select month_closed into Vmonthclosed from gl fiscal year
where cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER)) and
coyear=(select coyear from gl users where upper(userid)=upper(:APP_
USER)) and
comonthid=:P96_COMONTH;
if Vmonthclosed = 1 THEN
Verrortext := 'Cannot proceed with this process because the selected
month is already marked as closed';
end if;
return rtrim(Verrortext);
END;

352

http://dx.doi.org/10.1007/978-1-4842-2502-8_23

APPENDIX " BOOK CODE

Chapter 24

Check Permanent Year Closure

DECLARE
Vyearclosed number := 0;
Verrortext varchar2(100);
BEGIN
select count(*) into Vyearclosed from gl fiscal year
where year closed=1 and cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER));
if Vyearclosed > 0 THEN
Verrortext := 'Cannot proceed with this process because year is
already permanently closed';
end if;
return rtrim(Verrortext);
END;

Generate Fiscal Year

DECLARE
Vyearexist number := 0; Vnextyear number := 0; Vcoyear number := 0;
Vcocode number := 0; Vcomonthid number := 0;
Vcomonthname varchar2(9); Vpfrom varchar2(11); Vpto varchar2(11);
Vleapyear number; Vprev_rec_year varchar2(4);
cursor fy cur is
select * from gl fiscal year where cocode=(select cocode from gl users
where upper(userid)=upper(:APP_USER)) and
coyear=(select coyear from gl users where upper(userid)=upper(:APP_
USER));
fy_rec fy curROWTYPE;

BEGIN
select cocode, coyear+l, coyear+l, to _char(coyear) into
Vcocode,Vcoyear,Vnextyear,Vprev_rec_year from gl users
where upper(userid)=upper(:APP_USER);
select count(*) into Vyearexist from gl fiscal_year
where cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER)) and coyear=Vcoyear;

if Vyearexist = 0 then -- New fiscal year not found so create it
for fy rec in fy_cur loop
Vcomonthid := fy rec.comonthid;

Vcomonthname := fy rec.comonthname;

353

http://dx.doi.org/10.1007/978-1-4842-2502-8_24

APPENDIX " BOOK CODE

Vpfrom := substr(to _char(fy rec.pfrom,

‘DD-MON-YYYY'),1,7) | |Vnextyear;

Vpto substr(to_char(fy rec.pto,

'DD-MON-YYYY'),1,7) | |Vnextyear;

if to_char(fy _rec.pfrom, 'YYYY")

<> Vprev_rec_year then
Vnextyear := Vnextyear + 1;
Vpfrom
'DD-MON-YYYY'),1,7) | |Vnextyear;
Vpto
'DD-MON-YYYY'),1,7) | |Vnextyear;

end if;

if Vcomonthname = 'February' then
Vleapyear := mod(Vnextyear,4);
if Vleapyear = 0 then

Vpto := '29-FEB-'||Vnextyear;
else
Vpto :

end if;

end if;

'28-FEB-'| |Vnextyear;

substr(to_char(fy rec.pto,

If Vnextyear is 2016, then Vpfrom
and Vpto will have 01-JUL-2016 and
31-JUL-2016 values, respectively, for
the month of July.

substr(to_char(fy rec.pfrom,

Provision made for the next year for
January and onward months.

insert into gl fiscal year values (Vcocode,Vcoyear,Vcomonthid,Vcom

onthname,

to_date(Vpfrom, 'DD-MON-YYYY'),to_date(Vpto, 'DD-MON-

YYYY'),0,0,0,null);
commit;
Vprev_rec_year
end loop;
end if;
END;

Generate Closing Entry

DECLARE
VoldClosingEntry number;

:= to_char(fy _rec.pfrom, 'YYYY');

Vtran_no number;
Vline_no number;
Vcoacode varchar2(11);
Vcocode number;
Vcoyear number;

A closing entry is created to close all
expense and revenue accounts into a
profit and loss account. The cursor
fetches all accounts marked as either
revenue or expense.

Vvchdate date;
Vactivitydr number;
Vactivitycr number;
VnetDebit number;
VnetCredit number;
VcumulativeDebit number
VcumulativeCredit number :

1= 0;
0-

)

354

APPENDIX " BOOK CODE

Vloss number;
Vprofit number;
cursor tye cur is
select TD.coacode coacode, sum(TD.vchdr) activitydr, sum(TD.vchcr)
activitycr
from gl coa coa, gl tran _master TM, gl tran_detail TD
where TM.tran_no=TD.tran_no and TD.coacode=COA.coacode and coa.cocode=td.
cocode and
TM. cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
TM.coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER)) and TM.closing=0 and
COA.coanature in ('Revenue','Expenses')
group by TD.coacode order by TD.coacode;
tye rec tye_cur%ROWTYPE;
BEGIN
BEGIN
select distinct(TM.tran_no) into VoldClosingEntry -- Locate and
remove existing
closing entry

from gl tran_master T™

where TM.cocode=(select cocode from gl users where

upper (userid)=upper(:APP_USER)) and

TM.coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER)) and TM.closing=1;
delete from gl tran_detail where tran_no=VoldClosingEntry;
delete from gl tran_master where tran_no=VoldClosingEntry;

commit;

EXCEPTION The statement evaluates the current
WHEN NO_PATA_FOUND then company, year, and the last date of
VoldClosingEntry := 0; the current fiscal year.

END;

select gl _tran_master_seq.nextval into Vtran_no from dual;

select cocode,coyear,pto into Vcocode,Vcoyear,Vvchdate
from gl fiscal year
where cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER)) and

coyear=(select coyear from gl users where

upper (userid)=upper(:APP_USER)) and comonthid=12;

insert into gl tran master values (Vtran no,Vcocode,Vcoyear,12,:P93_
VCHCODE, 9999999999, Vvchdate,
'Closing Entry',upper(:APP_USER),sysdate,'Y','Y',1); -- Master record
instered
commit;

355

APPENDIX " BOOK CODE

for tye_rec in tye_cur 100P A closing entry is autogenerated and appears

-- Insert detail records on the last date of the fiscal year (i.e., 30"
select gl tran_detail seq.nextval June) and is numbered as 9999999999. The
into Vline no from dual; value 1 in the closing column of the table

signifies that it is a closing entry.
Vcoacode := tye rec.coacode; gnitt gl ing entry

Vactivitydr := tye_rec.activitydr;
Vactivitycr := tye rec.activitycr;

if Vactivitydr > Vactivitycr then
VnetDebit := Vactivitydr - Vactivitycr;
VnetCredit := 0;
VcumulativeDebit := VcumulativeDebit + VnetDebit;
elsif Vactivitycr > Vactivitydr then
VnetCredit := Vactivitycr - Vactivitydr;
VnetDebit := 0;
VcumulativeCredit := VcumulativeCredit + VnetCredit;
else
VnetDebit := 0
VnetCredit :=
end if;
if VnetDebit > 0 or VnetCredit > 0 then
insert into gl tran detail values (V1line_no,Vtran no,Vcocode,Vcoaco
de,null, 'Closing Entry',VnetCredit,VnetDebit,
null,o);
commit;
end if;
end loop;
Record the difference of revenues and expenses in the profit and loss
account
select gl tran_detail seq.nextval into Vline no from dual;
if VcumulativeDebit > VcumulativeCredit then

)
)

Vloss := VcumulativeDebit - VcumulativeCredit; -- Loss: expenses
exceeded
reveunes

Vprofit := 0;

elsif VcumulativeCredit > VcumulativeDebit then

Vloss := 0;

Vprofit := VcumulativeCredit - VcumulativeDebit; -- Profit: revenues
exceeded
expenses

else

356

APPENDIX " BOOK CODE

Vloss := 0;
Vprofit :=

end if;

if Vloss > 0 or Vprofit > 0 then
insert into gl tran detail values (V1line_no,Vtran no,Vcocode, :P93_
PLACCOUNT,null, 'Closing Entry',Vloss,Vprofit,null,o);

0;

commit;
end if;
update gl fiscal year set TYE_Executed=SYSDATE -- Record temporary
year end execution
date

where cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER)) and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER));
commit;
END;

Permanent Year Closure

DECLARE
Vyearclosed number := 0;
Verrortext varchar2(100);
BEGIN
select count(*) into Vyearclosed from gl fiscal year
where year_closed=1 and
cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER));
if Vyearclosed > 0 THEN
Verrortext := 'Cannot proceed with this process because year is
already closed permanently';
end if;
return rtrim(Verrortext);
END;

357

APPENDIX " BOOK CODE

Check Months Closure

DECLARE
Vunclosed number := 0;
Verrortext varchar2(100);
BEGIN
select count(*) into Vunclosed from gl fiscal year
where month_closed=0 and cocode=(select cocode from gl users where
upper (userid)=upper(:APP_USER)) and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER));
if Vunclosed >= 1 THEN
Verrortext := Vunclosed||' month(s) found unclosed. Cannot proceed
with this process’;
end if;
return rtrim(Verrortext);
END;

Check Temporary Year End Date

DECLARE
Vtyedate date;
Verrortext varchar2(100);
BEGIN
select TYE_Executed into Vtyedate from gl fiscal year
where cocode=(select cocode from gl users where upper(userid)=upper
(:APP_USER)) and
coyear=(select coyear from gl users where
upper (userid)=upper(:APP_USER)) and comonthid=1;
if TRUNC(Vtyedate) < TRUNC(SYSDATE) or Vtyedate is null THEN
Verrortext := 'Kindly execute Temporary Year End Process to create
fresh closing entries';
end if;
return rtrim(Verrortext);
END;

358

APPENDIX " BOOK CODE

Chapter 25

User Defined Budget

DECLARE

Vbudgetrecords number := 0;

Vcoacode varchar2(11);

cursor coa_cur is

select coacode from gl coa where cocode=:P55 COCODE and coanature=:P55_
COANATURE and coalevel=4

order by coacode;

coa_rec coa_cur%ROWTYPE;
BEGIN

select count(*) into Vbudgetrecords from gl budget where cocode=:P55_
COCODE and coyear=:P55_COYEAR and

coanature=:P55 COANATURE;

if Vbudgetrecords = 0 then -- Budget is not defined for the
selected nature of accounts,
therefore
for coa_rec in coa_cur loop -- fetch accounts of the selected

nature from the chart of accounts
Vcoacode := coa_rec.coacode;
insert into gl budget values (:P55 COCODE,:P55
COYEAR,Vcoacode, : P55 COANATURE,null,o,o0,0,0,0,0,0,0,0,0,0,0,1);
commit;
end loop;

end if;
EXCEPTION Code for user-defined budget

WHEN NO_DATA_FOUND THEN null;
END;

Last Year Budget

DECLARE
Vbudgetrecords number := 0; Vcoacode varchar2(11); Vbudget amounti
number := 0; Vbudget amount2 number := 0;
Vbudget_amount3 number := 0; Vbudget_amount4 number :
amount5 number := 0; Vbudget amount6é number := 0;
Vbudget_amount7 number := 0; Vbudget amount8 number := 0; Vbudget
amount9 number := 0; Vbudget amount10 number := 0;
Vbudget_amount1l number := 0; Vbudget amounti2 number :
Cursor coa_cur is
select coacode from gl coa where cocode=:P55 COCODE and coanature=:P55_
COANATURE and coalevel=4
order by coacode;
coa_rec coa_cur%ROWTYPE;

BEGIN

0; Vbudget_

0;

359

http://dx.doi.org/10.1007/978-1-4842-2502-8_25

APPENDIX " BOOK CODE

select count(*) into Vbudgetrecords from gl budget where cocode=:P55_
COCODE and coyear=:P55_COYEAR and
coanature=:P55 COANATURE;

if Vbudgetrecords = 0 then

Fetch last year's budget value for each financial account.

for coa_rec in coa_cur loop
Vcoacode := coa_rec.coacode;
SELECT budget _amount1,budget amount2,budget _amount3,budget
amount4,budget_amount5,budget_amount6,
budget _amount7,budget _amount8,budget _amount9,budget
amount10,budget_amount11,budget_amount12 INTO
Vbudget_amount1,Vbudget_amount2,Vbudget_amount3,Vbudget_
amount4,Vbudget_amount5,Vbudget amounté,
Vbudget_amount7,Vbudget_amount8,Vbudget_amount9,Vbudget_
amount10,Vbudget _amountii,
Vbudget_amount12
FROM gl budget where cocode=:P55 COCODE and coyear=:P55_COYEAR-1
and coacode=Vcoacode;
INSERT INTO gl budget VALUES (:P55_COCODE, :P55_
COYEAR,Vcoacode, :P55_COANATURE,null,Vbudget_amounti,
Vbudget_amount2, Vbudget amount3,Vbudget amount4,Vbudget _
amounts5,Vbudget amounté6,Vbudget amount7,
Vbudget_amount8,Vbudget_amount9,Vbudget_amount10,Vbudget_
amount11,Vbudget amount12,2);

commit;

Code for last year’s budget
end loop;

end if;
EXCEPTION

WHEN NO_DATA_FOUND THEN null;
END;

Last Year Actual

DECLARE
Vbudgetrecords number := 0;
Vcoacode varchar2(11);
Vpfrom date;
Vpto date;
Vbalance number := 0;
cursor coa_cur is
select coacode from gl coa where cocode=:P55 COCODE and coanature=:P55_
COANATURE and coalevel=4
order by coacode;
coa_rec coa_cur%ROWTYPE;
BEGIN

360

APPENDIX " BOOK CODE

select count(*) into Vbudgetrecords from gl budget where cocode=

:P55_COCODE and coyear=:P55_COYEAR and
coanature=:P55 COANATURE;
if Vbudgetrecords = 0 then
for coa_rec in coa_cur loop
Vcoacode := coa_rec.coacode;
for j in 1 .. 12 Loop

select pfrom,pto into Vpfrom,Vpto from gl fiscal year where

comonthid=j and cocode=:P55 COCODE and
coyear=:P55 COYEAR-1;
if :P55_COANATURE='Assets' or :
P55_COANATURE="Expenses' then
select sum(TD.vchdr)-sum(TD.vchcr)
into Vbalance
from gl tran_master TM,
gl tran_detail TD
where TM.cocode=TD.cocode and
TM.tran_no=TD.tran_no and
TM.cocode=:P55_ COCODE and
TD.coacode=Vcoacode and

Usually asset and expense
accounts have a debit balance:
therefore, in order to get a
positive value, a debit is deducted
from a credit. A reverse equation
is applied to capital, liabilities.
and revenue accouts.

TM.vchdate between Vpfrom and Vpto and

TM.closing=0;
end if;

if :P55_COANATURE='Capital' or :P55 COANATURE='Liabilities' or

:P55_COANATURE="Revenue' then

select sum(TD.vchcr)-sum(TD.vchdr) into Vbalance
from gl tran_master TM, gl tran_detail TD

where TM.cocode=TD.cocode and

TM.tran_no=TD.tran_no and
TM. cocode=:P55_COCODE and
TD.coacode=Vcoacode and

TM.vchdate between Vpfrom and Vpto and

TM.closing=0;
end if; First month’s budget amount
if j=1 then (budget_amountl) :Is |_nserted‘ while
) A figures for the remaining 11 months
insert into gl budget are updated on the same row.
(cocode, coyear, coacode,

coanature, cccode,budget_amount1,criterion) values

(:P55_COCODE, :P55_COYEAR,Vcoacode,
:P55_COANATURE,null,Vbalance,3);

elsif j=2 then
update gl budget set

Code for last year's actual values

budget_amount2=Vbalance where cocode=:P55 COCODE and

coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=3 then

361

APPENDIX " BOOK CODE

update gl budget set budget amount3=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=4 then
update gl budget set budget amount4=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=5 then
update gl budget set budget amount5=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=6 then
update gl budget set budget_amount6=Vbalance where
cocode=:P55 COCODE and coyear=:P55 COYEAR and
coacode=Vcoacode;
elsif j=7 then
update gl budget set budget amount7=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=8 then
update gl budget set budget amount8=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=9 then
update gl budget set budget amount9=Vbalance where
cocode=:P55 COCODE and coyear=:P55 COYEAR and
coacode=Vcoacode;
elsif j=10 then
update gl budget set budget amounti0=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
elsif j=11 then
update gl budget set budget amountii=Vbalance where
cocode=:P55_COCODE and coyear=:P55_COYEAR and
coacode=Vcoacode;
else
update gl budget set budget amounti2=Vbalance where
cocode=:P55 COCODE and coyear=:P55 COYEAR and
coacode=Vcoacode;
end if;
commit;
end loop;
end loop;
end if;
EXCEPTION
WHEN NO_DATA_FOUND THEN null;
END;

362

APPENDIX " BOOK CODE

Chapter 26

Generate Budget Report
DECLARE
Vactual number := 0;
Vbudget number := 0;
Vvariance number := 0;

Vpercent number := 0;
Vstatus varchar2(1);
Vpfrom date;

Vpto date;

Vcoacode varchar2(11);
Vcoatitle varchar2(50);
Vcoanature varchar2(11);
Vtotalbudget number := 0;
Vtotalactual number := 0;
Vtotalvariance number := 0;
Vtotalpercent number := 0;
VnetStatus varchar2(1);
Vconame varchar2(50);
VmonthName1 varchar2(9);
VmonthName2 varchar2(9);
VprintedOn timestamp;

cursor budget_cur is
select * from gl budget where coacode between :P75_ACCOUNTFROM and :P75_
ACCOUNTTO and
cocode=:P75_COCODE and coyear=:P75_COYEAR order by coacode;
budget_rec budget cur%ROWTYPE;
BEGIN
delete from gl budget report where upper(userid)=upper(:APP_USER);
-- Delete user’s existing budget report
commit;
select coname into Vconame from gl company where cocode=:P75_ COCODE;
select comonthname into VmonthNamel from gl fiscal_year where
cocode=:P75_COCODE and
coyear=:P75_COYEAR and comonthid=:P75 MONTHFROM;
select comonthname into VmonthName2 from gl fiscal year where
cocode=:P75_COCODE and
coyear=:P75_COYEAR and comonthid=:P75_MONTHTO;

select SYSDATE into VprintedOn FROM DUAL;
for budget_rec in budget_cur loop

Vcoacode := budget_rec.coacode;

Vcoanature := budget rec.coanature;

if :P75_MONTHFROM = :P75_MONTHTO THEN -- Report called for a

single month

363

http://dx.doi.org/10.1007/978-1-4842-2502-8_26

APPENDIX " BOOK CODE

select pfrom,pto into Vpfrom,Vpto from gl fiscal year where
cocode=:P75 COCODE and coyear=:P75 COYEAR and
comonthid=:P75 MONTHFROM;
Vbudget := 0;
if :P75_MONTHFROM=1 then

Vbudget := nvl(budget rec.budget amount1,0);
elsif :P75_MONTHFROM=2 then

Vbudget := nvl(budget rec.budget amount2,0);
elsif :P75_MONTHFROM=3 then

Vbudget := nvl(budget rec.budget amount3,0);
elsif :P75_MONTHFROM=4 then

Vbudget := nvl(budget rec.budget amount4,0);
elsif :P75 MONTHFROM=5 then

Vbudget := nvl(budget rec.budget amounts5,0);
elsif :P75_MONTHFROM=6 then

Vbudget := nvl(budget rec.budget amount6,0);
elsif :P75_MONTHFROM=7 then

Vbudget := nvl(budget rec.budget amount7,0);
elsif :P75_MONTHFROM=8 then

Vbudget := nvl(budget rec.budget amount8,0);
elsif :P75_MONTHFROM=9 then

Vbudget := nvl(budget rec.budget amount9,0);
elsif :P75_MONTHFROM=10 then

Vbudget := nvl(budget rec.budget amount10,0);
elsif :P75_MONTHFROM=11 then

Vbudget := nvl(budget rec.budget amount11,0);

else
Vbudget := nvl(budget rec.budget amounti2,0);
end if;
end if;
if :P75_MONTHTO > :P75_MONTHFROM THEN -- Report called for multiple

months
select pfrom into Vpfrom from gl fiscal year where cocode=:P75_
COCODE and coyear=:P75_COYEAR and
comonthid=:P75_MONTHFROM;
select pto into Vpto from gl fiscal year where cocode=:P75_ COCODE
and coyear=:P75_COYEAR and
comonthid=:P75_MONTHTO;

Vbudget := 0;
for J in :P75_MONTHFROM .. :P75_MONTHTO loop
if J=1 then
Vbudget := Vbudget + nvl Budget figures of all
(budget_rec.budget_amount1,0); months accumulated into

elsif J=2 then

Vbudget variable.
Vbudget := Vbudget + nvl

(budget_rec.budget_amount2,0);
elsif J=3 then

364

APPENDIX " BOOK CODE

Vbudget := Vbudget + nvl(budget rec.budget amount3,0);
elsif J=4 then

Vbudget := Vbudget + nvl(budget rec.budget_amount4,0);
elsif J=5 then

Vbudget := Vbudget + nvl(budget rec.budget amounts,0);
elsif J=6 then

Vbudget := Vbudget + nvl(budget rec.budget amount6,0);
elsif J=7 then

Vbudget := Vbudget + nvl(budget rec.budget amount7,0);
elsif J=8 then

Vbudget := Vbudget + nvl(budget rec.budget amount8,0);
elsif J=9 then

Vbudget := Vbudget + nvl(budget_rec.budget_amount9,0);
elsif J=10 then

Vbudget := Vbudget + nvl(budget rec.budget amount10,0);
elsif J=11 then

Vbudget := Vbudget + nvl(budget rec.budget amount11,0);
else

Vbudget := Vbudget + nvl(budget rec.budget amount12,0);
end if;

end loop;
end if;

Fetched actual
values from

if :P75_COANATURE='Assets' or :P75 COANATURE=
'Expenses’ then the transaction
select sum(TD.vchdr)-sum(TD.vchcr) into Vactual | tapjes. |
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=:P75_COCODE and

TD.coacode=Vcoacode and TM.vchdate between Vpfrom and
Vpto;

end if;
if :P75_COANATURE='Capital' or :P75_COANATURE='Liabilities' or
:P75_COANATURE="Revenue' then
select sum(TD.vchcr)-sum(TD.vchdr) into Vactual
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran no=TD.tran no and
TM.cocode=:P75_COCODE and
TD.coacode=Vcoacode and TM.vchdate between
Vpfrom and Vpto;
end if;
select coatitle into Vcoatitle from gl coa where coacode=Vcoacode and
cocode=:P75_COCODE;

Vvariance := Vbudget - Vactual; -- Variance = Budgeted figures
less Actual values
if Vbudget > 0 then -- avoid zero division error

Vpercent := (Vvariance/Vbudget) * 100;

365

APPENDIX " BOOK CODE

else
Vpercent := 0;

end if;

if Vbudget > Vactual then
Vstatus := 'U’';

end if;

if Vactual > Vbudget then
Vstatus := '0';

end if;
if nvl(Vactual,0) = nvl(Vbudget,0) then
Vstatus := '-';
end if; I One record inserted for each financial account

insert into gl budget_report values (Vcoacode,Vcoatitle,nvl(Vbudget,0)
,nvl(Vactual,0),nvl(Vvariance,0),
nvl(Vpercent,0),Vstatus,upper(:APP_USER),0,Vconame, :P75_ ACCOUNTFROM,
:P75_ACCOUNTTO, VmonthName1, VmonthName2,VprintedOn);
commit;
end loop;
select sum(budget) into Vtotalbudget from gl budget report where
upper (userid)=upper(:APP_USER);
select sum(actual) into Vtotalactual from gl budget report where
upper(userid)=upper(:APP_USER);
select sum(variance) into Vtotalvariance from gl_budget report where
upper (userid)=upper(:APP_USER);
if Vtotalbudget > 0 then -- avoid zero division error
Vtotalpercent := (Vtotalvariance/Vtotalbudget) * 100;
end if;
if Vtotalbudget > Vtotalactual then
Vnetstatus := 'U';
end if;
if Vtotalactual > Vtotalbudget then
Vnetstatus := '0';
end if;
insert into gl budget report values (' ','GRAND
TOTAL',nv1(Vtotalbudget,0),nvl(Vtotalactual,o0),nvl(Vtotalvariance,0),
nvl(Vtotalpercent,0),Vnetstatus,upper(:APP_USER),1,Vconame, :P75_
ACCOUNTFROM,
:P75_ACCOUNTTO, VmonthName1, VmonthName2,VprintedOn);
commit;
END;

366

APPENDIX " BOOK CODE

Chapter 27

Check Report Code

DECLARE
Vreportfound number := 0;
Verrortext varchar2(60);
BEGIN
if :P18 EXISTINGNEW='NEW' then
select count(*) into Vreportfound from gl fs setup
where cocode=:P18 COCODE and upper(reportcode)=upper(:P18_
REPORTCODE2);
if Vreportfound > 0 THEN

Verrortext := 'Report Code already exists in the database’;
end if;
return rtrim(Verrortext);
end if;

END;
Populate Report Code Value in Tabular Form

if :P18 EXISTINGNEW="NEW' then
FOR i IN 1 .. apex_application.g f02.COUNT LOOP
apex_application.g f03(i) := :P18 REPORTCODE2;
apex_application.g f04(i) := :P18 REPORTTITLE2;
END LOOP;
else
FOR i IN 1 .. apex_application.g f02.COUNT LOOP
apex_application.g f03(i) := :P18 REPORTCODE1;
apex_application.g _fo4(i) := :P18 REPORTTITLEZ1;
END LOOP;
end if;

367

http://dx.doi.org/10.1007/978-1-4842-2502-8_27

APPENDIX " BOOK CODE

Chapter 28

Generate Profit and Loss

DECLARE
VreportCode varchar2(4);
VreportTitle varchar2(50);
Vcocode number;
Vconame varchar2(50);
VcurrentYear number;
VpreviousYear number;
VcurrentFromDate date;
VcurrentToDate date;
Vcomonthname varchar2(9);
VpreviousFromDate date;
VpreviousToDate date;
VaccountFrom varchar2(11);
VaccountTo varchar2(11);
VcurrentSales number := 0;
VpreviousSales number := 0;
VcurrentOpeningStock number := 0;
VpreviousOpeningStock number := 0;
VcurrentClosingStock number := 0;
VpreviousClosingStock number := 0;
VcurrentCOG number := 0;
VpreviousCOG number := 0;
VcurrentGrossMargin number := 0;
VpreviousGrossMargin number := 0;
VcurrentAdmin number := 0;
VpreviousAdmin number := 0;
VcurrentSelling number := 0;
VPreviousSelling number := 0;
VcurrentFinancial number := 0;
VpreviousFinancial number := 0
VcurrentProfitloss number := 0
VpreviousProfitLoss number :=
Vvariance number := 0;
Vpercent number := 0;
Vpercent2 number := 0;

)
)
)

-- P&L Notest Variables
Vcoacode varchar2(11);
vcoatitle varchar2(50);
VcurrentBalance number := 0;
VpreviousBalance number := 0;
Vsrno number := 0;

368

The table gf /& report has a column named srro which Is populated with the
following serial numbers. These numbers are used to recognize and process
accounts in the financial statements and the corresponding notes.

P&L Statement
1 Sales
2 Cost of Goods
3 Gross Margin
4 Administrative Expenses
5 Selling Expenses
& Financial Charges

P&L Notes

101 Sales

104 Cost of Goods

108 Administrative Expenses
109 Selling Expenses

110 Financial Charges

Balance Sheet
Equities
202 Share Capital
203 Reserves
204 Profit/(Loss)

Liabilities

206 Trade Creditors fnegative fgures moved fo Trade Debts 223)

207 Accrued Expenses

208 Short Term Finance

209 Advance From Customers (negathve Mgures moved to Trade Debis 224)
211 Accurnulated Depreclation

212 Long Term Llabllitles

Fixed Astets

217 Bullding

218 Office Equipment
219 Vehicles

221 Stock in Trade

Current Assels
222 Trade Debls (hegative fgures moved to Advance From Custormers 210)
225 Cash & Bank (hegalive fgures moved fo Banks Overdralt 212)

http://dx.doi.org/10.1007/978-1-4842-2502-8_28

APPENDIX " BOOK CODE

Generate Profit & Loss process continued...=>

BEGIN
delete from gl fs report where upper(userid)=upper(:APP_USER);
-- Delete existing report of the user

commit;

if :APP_PAGE_ID = 76 then -- Financial Statements Page
Vcocode := :P76_COC0DE; This IF conditions evaluate which page this process was
Vconame := :P76_CONAME; called from. Note that it is called from Financial
VIePOItCOde - ?P76_REPORTCODE; Statements Page, Deskop, and Mobile Home Pages.

VcurrentFromDate := :P76_CURRENTFROMDATE;
VcurrentToDate := :P76_CURRENTTODATE;
VpreviousFromDate := :P76 PREVIOUSFROMDATE;
VpreviousToDate := :P76_PREVIOUSTODATE;
VcurrentYear := :P76_CURRENTYEAR;
Vcomonthname := :P76_COMONTHNAME;

elsif :APP_PAGE_ID = 1 then -- Desktop Dashboard
Vcocode := :P1_COCODE;
Vconame := null;
VreportCode := :P1_REPORTCODE;
VcurrentFromDate := :P1_CURRENTFROMDATE;
VcurrentToDate := :P1_CURRENTTODATE;
VpreviousFromDate := :P1 PREVIOUSFROMDATE;
VpreviousToDate := :P1_PREVIOUSTODATE;
VcurrentYear := :P1_CURRENTYEAR;
Vcomonthname := null;

else -- Mobile Home Page 6
Vcocode := :P6_COCODE;
Vconame := :P6_CONAME;
VreportCode := 'BSO1';
VcurrentFromDate := :P6_CURRENTFROMDATE;
VcurrentToDate := :P6_CURRENTTODATE;
VpreviousFromDate := :P6_PREVIOUSFROMDATE;
VpreviousToDate := :P6_PREVIOUSTODATE;
VcurrentYear := :P6_CURRENTYEAR;
VcomonthName := :P6_COMONTHNAME;

end if;

select distinct reportTitle into VreportTitle from gl fs_setup where

cocode=Vcocode and reportCode=VreportCode;

Generate Profit & Loss process continued...=>

-- Compute Sales
Vpercent := 0;
select AccountFrom,AccountTo into VaccountFrom,VaccountTo from gl fs_
setup
where cocode=Vcocode and fsaccount='Sales';
if VaccountFrom is not null and VaccountTo is not null then

369

APPENDIX " BOOK CODE

select sum(TD.vchcr)-sum(TD.vchdr) into VcurrentSales --Current
Year's Sales
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;
select sum(TD.vchcr)-sum(TD.vchdr) into VpreviousSales --Previous
Year's Sales
from gl tran master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VpreviousFromDate and VpreviousToDate
and TM.closing=0;
Vvariance := nvl(VcurrentSales,0) - nvl(VpreviousSales,0);
if VpreviousSales <> 0 and VpreviousSales is not null then -- To
avoid ORA-01476: divisor is equal to zero error
Vpercent := (Vvariance/VpreviousSales)*100;
end if;
end if;
insert into gl fs report values (VreportCode,VreportTitle,1,'Sales',nv1(V
currentSales,0),nv1(VpreviousSales,0),
nvl(Vpercent,0),upper(:APP_USER),Vconame,VCURRENTYEAR,Vcomonthname,0,0,0
,hull,null,o0);
commit;

-- Compute Cost of Goods
Vpercent := 0;
select AccountFrom,AccountTo into VaccountFrom,VaccountTo from gl fs_
setup where cocode=Vcocode and
fsaccount="Cost of Goods';
if VaccountFrom is not null and VaccountTo is not null then
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentCOG -- Current
Year's Cost
from gl tran master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;
select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousCOG -- Previous
Year's Cost
from gl tran _master TM, gl tran_detail TD

370

APPENDIX " BOOK CODE

where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VpreviousFromDate and VpreviousToDate
and TM.closing=0;
Vvariance := nvl(VcurrentCOG,0) - nvl(VpreviousC0G,0);
if VpreviousCOG <> 0 and VpreviousCOG is not null then
Vpercent := (Vvariance/VpreviousCOG)*100;
end if;
end if;
insert into gl fs report values (VreportCode,VreportTitle,3, 'Cost of Goods
',nv1(VcurrentC0G,0),nvl(VpreviousCOG,0),
nvl(Vpercent,0),upper(:APP_USER),Vconame, VCURRENTYEAR,Vcomonthname,0,0,0
,hull,null,o0);
commit;

VcurrentGrossMargin := nvl(VcurrentSales,0) - nvl(VcurrentC0G,0);

VpreviousGrossMargin := nvl(VpreviousSales,0) - nvl(VpreviousCOG,0);

Vvariance := nvl(VcurrentGrossMargin,0)-nvl(VpreviousGrossMargin,0);

if VpreviousGrossMargin <> 0 and VpreviousGrossMargin is not null then
Vpercent := (Vvariance/VpreviousGrossMargin)*100;

end if;

insert into gl _fs_report values (VreportCode,VreportTitle,7,'+....Gross

Margin',nvl(VcurrentGrossMargin,o),

nvl(VpreviousGrossMargin,0),nvl(Vpercent,0),upper(:APP_USER),Vconame, VCUR

RENTYEAR, Vcomonthname,

1,0,0,null,null,o0);

commit;

-- Compute Administrative Expenses
Vpercent := 0;
select AccountFrom,AccountTo into VaccountFrom,VaccountTo from gl fs_
setup where cocode=Vcocode and
fsaccount="Admin’;
if VaccountFrom is not null and VaccountTo is not null then
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentAdmin
-- Current Year's Admin Expenses
from gl tran master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;
select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousAdmin
-- Previous Year's Admin Expenses
from gl tran _master TM, gl tran_detail TD

371

APPENDIX " BOOK CODE

where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VpreviousFromDate and VpreviousToDate
and TM.closing=0;
Vvariance := nvl(VcurrentAdmin,0) - nvl(VpreviousAdmin,0);
if VpreviousAdmin <> 0 and VpreviousAdmin is not null then
Vpercent := (Vvariance/VpreviousAdmin)*100;
end if;
end if;
insert into gl fs report values (VreportCode,VreportTitle,8,'Administrati
ve Expenses',nvl(VcurrentAdmin,o0),
nvl(VpreviousAdmin,0), nvl(Vpercent,0),upper(:APP_USER),Vconame,VCURRENTY
EAR,Vcomonthname,0,0,0,null,null,0);
commit;

-- Compute Selling & Marketing Expenses
Vpercent := 0;
select AccountFrom,AccountTo into VaccountFrom,VaccountTo from gl fs_
setup where cocode=Vcocode and
fsaccount="Selling';
if VaccountFrom is not null and VaccountTo is not null then
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentSelling
-- Current Year's Selling Expenses
from gl tran master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;
select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousSelling
-- Previous Year's Selling Expenses
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VpreviousFromDate and VpreviousToDate
and TM.closing=0;
Vvariance := nvl(VcurrentSelling,0) - nvl(VpreviousSelling,0);
if VpreviousSelling <> 0 and VpreviousSelling is not null then
Vpercent := (Vvariance/VpreviousSelling)*100;
end if;
end if;
insert into gl fs report values (VreportCode,VreportTitle,9,'Selling Expe
nses',nvl(VcurrentSelling,0),
nvl(VpreviousSelling,0),nvl(Vpercent,0),upper(:APP_USER),Vconame,VCURRENT
YEAR,Vcomonthname,0,0,0,null,null,0);
commit;

372

APPENDIX " BOOK CODE

-- Compute Financial Charges
Vpercent := 0;
select AccountFrom,AccountTo into VaccountFrom,VaccountTo from gl fs_
setup where cocode=Vcocode and
fsaccount="'Financial';
if VaccountFrom is not null and VaccountTo is not null then
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentFinancial --
Current Year's Financial Expenses
from gl tran master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;
select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousFinancial --
Previous Year's Financial Expenses
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode between VaccountFrom and VaccountTo and
TM.vchdate between VpreviousFromDate and VpreviousToDate
and TM.closing=0;
Vvariance := nvl(VcurrentFinancial,0) - nvl(VpreviousFinancial,o0);
if VpreviousFinancial <> 0 and VpreviousFinancial is not null then
Vpercent := (Vvariance/VpreviousFinancial)*100;
end if;
end if;
insert into gl fs report values (VreportCode,VreportTitle,10,'Financial
Charges',nv1(VcurrentFinancial,o),
nvl(VpreviousFinancial,0),nv1(Vpercent,0),upper(:APP_USER),Vconame,VCURRE
NTYEAR,Vcomonthname,0,0,0,null,null,0);
commit;

VcurrentProfitloss := nvl(VcurrentGrossMargin,0)-nvl(VcurrentAdmin,0)+nvl
(VcurrentSelling,0)+nvl(VcurrentFinancial,0));
VpreviousProfitLoss := nvl(VpreviousGrossMargin,0) - (nvl(VpreviousAdmin,
0)+nv1(VpreviousSelling,0)
+nv1l(VpreviousFinancial,0));

Vvariance := nvl(VcurrentProfitloss,0) - nv1(VpreviousProfitLoss,0);
if VpreviousProfitloss <> 0 and VpreviousProfitlLoss is not null then

Vpercent := (Vvariance/VpreviousProfitloss)*100;
end if;
insert into gl fs report values (VreportCode,VreportTitle,11, 'Net Profit/
(Loss)',nvl(VcurrentProfitlLoss,0),
nvl(VpreviousProfitlLoss,0),nvl(Vpercent,0),upper(:APP_USER),Vconame,VCURR
ENTYEAR,Vcomonthname,

373

APPENDIX " BOOK CODE

0,1,0,null,null,1);
commit;

-- Sales Notes
declare
cursor sales_cur is
select coacode,coatitle from gl coa
where coacode between (select accountfrom from gl fs_setup where
cocode=Vcocode and reportcode=VreportCode
and fsaccount="'Sales') and (select accountto from gl fs_
setup where cocode=Vcocode
and reportcode=VreportCode and fsaccount='Sales') and
coalevel=4 and cocode=Vcocode
order by coacode;
sales_rec sales_cur%ROWTYPE;
begin
for sales_rec in sales_cur loop
Vcoacode := sales_rec.coacode;
Vcoatitle := sales rec.coatitle;
select sum(TD.vchcr)-sum(TD.vchdr) into VcurrentBalance
-- Current Year's Sales
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;

select sum(TD.vchcr)-sum(TD.vchdr) into VpreviousBalance
-- Previous Year's Sales
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran no=TD.tran no and
TM.cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VpreviousFromDate and
VpreviousToDate and TM.closing=0;
Vvariance := nvl(VcurrentBalance,0) - nvl(VpreviousBalance,0);
if VpreviousBalance <> 0 and VpreviousBalance is not null then
Vpercent := (Vvariance/VpreviousBalance)*100;
end if;
insert into gl fs report values (VreportCode,VreportTitle,101,'Sale
s',nvl(VcurrentBalance,0),nv1(VpreviousBalance,0),
nvl(Vpercent,0),upper(:APP_USER),Vconame, VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
commit;
end loop;
end;

374

APPENDIX " BOOK CODE

-- Cost of Goods Notes
declare
cursor cog_cur is
select coacode,coatitle from gl coa
where coacode between (select accountfrom from gl fs setup where
cocode=Vcocode and reportcode=VreportCode
and fsaccount="'Cost of Goods') and (select accountto from
gl fs_setup where cocode=Vcocode
and reportcode=VreportCode and fsaccount='Cost of Goods')
and coalevel=4 and cocode=Vcocode
order by coacode;
cog_rec cog_cur%ROWTYPE;
begin
for cog rec in cog cur loop
Vcoacode := cog_rec.coacode;
Vcoatitle := cog rec.coatitle;

select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentBalance
-- Current Year's Cost
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran no=TD.tran_no and
TM. cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;

select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousBalance
-- Previous Year's Cost
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VpreviousFromDate and
VpreviousToDate and TM.closing=0;

Vvariance := nvl(VcurrentBalance,0) - nvl(VpreviousBalance,0);
if VpreviousBalance <> 0 and VpreviousBalance is not null then
Vpercent := (Vvariance/VpreviousBalance)*100;
end if;
insert into gl fs_report values (VreportCode,VreportTitle,104, 'Cost
of Goods',nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),nv1(Vpercent,0),upper(:APP_USER),Vconame,VC
URRENTYEAR, Vcomonthname,0,0,1,
Vcoacode,Vcoatitle,0);
commit;
end loop;
end;

375

APPENDIX " BOOK CODE

-- Administrative Expenses Notes
Declare
cursor admin_cur is
select coacode,coatitle from gl coa
where coacode between (select accountfrom from gl fs setup where
cocode=Vcocode and reportcode=VreportCode
and fsaccount="Admin') and (select accountto from gl fs_
setup where cocode=Vcocode
and reportcode=VreportCode and fsaccount='Admin') and
coalevel=4 and cocode=Vcocode
order by coacode;
admin_rec admin_cur%ROWTYPE;
begin
for admin_rec in admin_cur loop
Vcoacode := admin_rec.coacode;
Vcoatitle := admin_rec.coatitle;
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentBalance
-- Current Year
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;

select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousBalance
-- Previous Year
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VpreviousFromDate and
VpreviousToDate and TM.closing=0;

Vvariance := nvl(VcurrentBalance,0) - nv1l(VpreviousBalance,0);
if VpreviousBalance <> 0 and VpreviousBalance is not null then
Vpercent := (Vvariance/VpreviousBalance)*100;

end if;
insert into gl fs report values (VreportCode,VreportTitle,108,'Admi
nistrative Expenses', nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),nv1(Vpercent,0),upper(:APP_USER),Vconame,VC
URRENTYEAR, Vcomonthname,0,0,1,
Vcoacode,Vcoatitle,0);
commit;

end loop;

end;

376

APPENDIX " BOOK CODE

-- Selling Expenses Notes
declare
cursor selling cur is
select coacode,coatitle from gl coa
where coacode between (select accountfrom from gl fs setup where
cocode=Vcocode and reportcode=VreportCode
and fsaccount="'Selling') and (select accountto from gl fs_
setup where cocode=Vcocode
and reportcode=VreportCode and fsaccount='Selling') and
coalevel=4 and cocode=Vcocode
order by coacode;
selling rec selling cur%ROWTYPE;
begin
for selling rec in selling cur loop
Vcoacode := selling rec.coacode;
Vcoatitle := selling rec.coatitle;
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentBalance
-- Current Year
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;

select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousBalance
-- Previous Year
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VpreviousFromDate and
VpreviousToDate and TM.closing=0;

Vvariance := nvl(VcurrentBalance,0) - nvl(VpreviousBalance,0);
if VpreviousBalance <> 0 and VpreviousBalance is not null then
Vpercent := (Vvariance/VpreviousBalance)*100;

end if;
insert into gl fs report values (VreportCode,VreportTitle,109,'Sell
ing Expenses',nvl(VcurrentBalance,0),
nvl (VpreviousBalance,0),nv1(Vpercent,0),upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
commit;

end loop;

end;

377

APPENDIX

BOOK CODE

-- Financial Charges
declare
cursor financial cur is
select coacode,coatitle from gl coa
where coacode between (select accountfrom from gl fs setup where
cocode=Vcocode and reportcode=VreportCode

and fsaccount='Financial') and (select accountto from

gl fs_setup where cocode=Vcocode

and reportcode=VreportCode and fsaccount='Financial') and
coalevel=4 and cocode=Vcocode

order by coacode;
financial_rec financial cur%ROWTYPE;

begin

for financial rec in financial cur loop

Vcoacode := financial rec.coacode;
Vcoatitle := financial rec.coatitle;
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentBalance
-- Current Year
from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VcurrentFromDate and VcurrentToDate
and TM.closing=0;

select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousBalance
-- Previous Year
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM.cocode=Vcocode and TD.coacode = Vcoacode and
TM.vchdate between VpreviousFromDate and
VpreviousToDate and TM.closing=0;

Vvariance := nvl(VcurrentBalance,0) - nv1l(VpreviousBalance,0);

if VpreviousBalance <> 0 and VpreviousBalance is not null then
Vpercent := (Vvariance/VpreviousBalance)*100;

end if;

insert into gl fs_report values (VreportCode,VreportTitle,110,'Fina

ncial Charges',nv1l(VcurrentBalance,0),

nvl(VpreviousBalance,0),nv1(Vpercent,0),upper(:APP_USER),Vconame,VC

URRENTYEAR, Vcomonthname,

0,0,1,Vcoacode,Vcoatitle,0);

commit;

end loop;

end;

378

APPENDIX " BOOK CODE

-- P&L Account Balances For Desktop and Mobile Home pages
if :APP_PAGE ID = 1 or :APP_PAGE _ID = 6 then -- Desktop dashboard
or mobile home page
declare
VaccountTitle varchar2(50);
cursor pl_cur is
select srno,currentbalance,previousbalance
from gl fs_report
where upper(userid)=upper(:APP_USER)
order by srno;
pl_rec pl_cur%ROWTYPE;
begin
delete from gl dashboard where upper(userid)=upper(:APP_USER);
commit;
for pl rec in pl cur loop
Vsrno := pl_rec.srno;
VcurrentYear := pl_rec.currentBalance;
VpreviousYear := pl_rec.previousBalance;
if Vsrno=1 then
VaccountTitle := 'Sales’;
elsif Vsrno=3 then
VaccountTitle := 'Cost of Goods';
elsif Vsrno=7 then

VaccountTitle := 'Gross Margin';
elsif Vsrno=8 then
VaccountTitle := 'Administrative Expenses';
elsif Vsrno=9 then
VaccountTitle := 'Selling Expenses';
elsif Vsrno=10 then
VaccountTitle := 'Financial Charges';
else
VaccountTitle := 'Net Profit/(Loss)';
end if;

insert into gl dashboard values (Vsrno,VaccountTitle,VcurrentYea
1,VpreviousYear,upper(:APP_USER),null,null,null);
commit;
end loop;
end;

-- P&L Ratio
declare
VcurrentGP number; VpreviousGP number; VcurrentNP number;
VpreviousNP number; VcurrentOP number;
VpreviousOP number; VcurrentGPratio number; VpreviousGPratio
number; VcurrentOPratio number;

379

APPENDIX " BOOK CODE

VpreviousOPratio number; VcurrentNPratio number; VpreviousNPratio
number;
begin
-- Gross Profit
select currentYear,previousYear into VcurrentGP,VpreviousGP from
gl_dashboard
where srno=7 and upper(userid)=upper(:APP_USER);
-- Net Sales
select currentYear,previousYear into VcurrentSales,VpreviousSales
from gl dashboard
where srno=1 and upper(userid)=upper(:APP_USER);
-- Admin Expenses
select currentYear,previousYear into VcurrentAdmin,VpreviousAdmin
from gl dashboard
where srno=8 and upper(userid)=upper(:APP_USER);
-- Selling Expenses
select currentYear,previousYear into VcurrentSelling,VpreviousSelli
ng from gl dashboard
where srno=9 and upper(userid)=upper(:APP_USER);
-- Net Profit
select currentYear,previousYear into VcurrentNP,VpreviousNP from
gl dashboard
where srno=11 and upper(userid)=upper(:APP_USER);

-- Calculate Operating Profit
VcurrentOP := (VcurrentGP-(VcurrentAdmin+VcurrentSelling));
VpreviousOP := (VpreviousGP-(VpreviousAdmin+VpreviousSelling));
-- Calculate GP Ratios
VcurrentGPratio := (VcurrentGP/VcurrentSales) * 100;
VpreviousGPratio := (VpreviousGP/VpreviousSales) * 100;
-- Calculate OP Ratios
VcurrentOPratio := VcurrentOP/VcurrentSales * 100;
VpreviousOPratio := VpreviousOP/VpreviousSales * 100;
-- Calculate NP Ratios
VcurrentNPratio := VcurrentNP/VcurrentSales * 100;
VpreviousNPratio := VpreviousNP/VpreviousSales * 100;

insert into gl dashboard values (50,'-",VcurrentGP,VpreviousGP,upp
er(:APP_USER),
'Gross Profit Ratio',VcurrentGPratio,VpreviousGPratio);
insert into gl dashboard values (52,'-',VcurrentOP,VpreviousOP,upp
er(:APP_USER),
'Operating Profit Ratio',VcurrentOPratio,VpreviousOPratio);
insert into gl dashboard values (53,'-',VcurrentNP,VpreviousNP,upp
er(:APP_USER),
‘Net Profit Ratio',VcurrentNPratio,VpreviousNPratio);
commit;
end;
end if;

380

APPENDIX " BOOK CODE

-- The REDIRECT_URL procedure of the APEX_UTIL package below redirects to
the page from where this application process

was called

if :APP_PAGE_ID = 76 then -- Financial Statements Report
apex_util.redirect url (p_url => 'f?p=8APP_ID.:76:&4SESSION.");

elsif :APP_PAGE_ID = 1 then -- Desktop Dashboard
apex_util.redirect url (p_url => 'f?p=8APP_ID.:1:&SESSION.');

else -- Mobile Home Page 6

apex_util.redirect url (p_url => 'f?p=8APP_ID.:6:84SESSION.");
end if;
END;

Generate Balance Sheet

DECLARE
VreportCode varchar2(4);
VreportTitle varchar2(50);
Vcocode number;
Vconame varchar2(50);
VcurrentYear number;
VpreviousYear number;
VcurrentFromDate date;
VcurrentToDate date;
Vcomonthname varchar2(9);
VpreviousFromDate date;
VpreviousToDate date;
VaccountFrom varchar2(11);
VaccountTo varchar2(11);
VcurrentSales number := 0;
VpreviousSales number := 0;
VcurrentOpeningStock number := 0;
VpreviousOpeningStock number := 0;
VcurrentClosingStock number := 0;
VpreviousClosingStock number := 0;
VcurrentCOG number := 0;
VpreviousCOG number := 0;
VcurrentGrossMargin number := 0;
VpreviousGrossMargin number := 0;
VcurrentAdmin number := 0;
VpreviousAdmin number := 0;
VcurrentSelling number := 0;
VPreviousSelling number := 0;
VcurrentFinancial number := 0;
VpreviousFinancial number :
VcurrentProfitlLoss number := 0;
VpreviousProfitLoss number := 0;
Vvariance number := 0;

o -

n
O O~
“ e

381

APPENDIX " BOOK CODE

Vpercent number := 0;

Vpercent2 number := 0;
Vcoacode varchar2(11);
vcoatitle varchar2(50);

VcurrentBalance number := 0;

)
VpreviousBalance number := 0;
Vsrno number := 0;
Vrecords number := 0;
VfsAccount varchar2(50);
VcurrentPL number := 0;
VpreviousPL number := 0;
VCURRENTMONTH number(2) := 0;
VTESTVALUE NUMBER := 0;
Vnotes number := 0;
VnotesCode varchar2(11);
-- Balance Sheet Notes
BEGIN
if :APP_PAGE_ID = 76 then
Vcocode := :P76_COCODE;
Vconame := :P76_CONAME;
VreportCode := :P76_REPORTCODE;
VcurrentToDate := :P76_CURRENTTODATE;
VpreviousToDate := :P76_PREVIOUSTODATE;
VcurrentYear := :P76_CURRENTYEAR;
VCURRENTMONTH := :P76_CURRENTMONTH;
VcomonthName := :P76_COMONTHNAME;
elsif :APP_PAGE_ID = 1 then -- Desktop Dashboard
Vcocode := :P1_COCODE;
Vconame := null;
VreportCode := :P1_REPORTCODE;
VcurrentToDate := :P1_CURRENTTODATE;
VpreviousToDate := :P1_PREVIOUSTODATE;
VcurrentYear := :P1_CURRENTYEAR;
VCURRENTMONTH := :P1_CURRENTMONTH;
VcomonthName := null;
else -- Mobile Home Page 6
Vcocode := :P6_COCODE;
Vconame := :P6_CONAME;
VreportCode := 'BSO1';
VcurrentToDate := :P6_CURRENTTODATE;
VpreviousToDate := :P6 PREVIOUSTODATE;
VcurrentYear := :P6_CURRENTYEAR;
VCURRENTMONTH := :P6_CURRENTMONTH;
VcomonthName := :P6_COMONTHNAME;
end if;

382

APPENDIX " BOOK CODE

declare
cursor fs cur is
select fsAccount,AccountFrom,AccountTo
from gl fs_setup
where reportcode=VreportCode;
fs_rec fs_cur%ROWTYPE;
begin
select count(*) into Vrecords from gl fs setup where
reportcode=VreportCode;
if Vrecords > 0 then
for fs_rec in fs_cur loop
VfsAccount := fs_rec.fsAccount;
VaccountFrom := fs_rec.AccountFrom;
VaccountTo := fs_rec.AccountTo;
Declare
Vcoacode varchar2(11);
vcoatitle varchar2(50);
VcurrentBalance number := 0;
VpreviousBalance number := 0;
VinsertSwitch number := 0;
VclosingEntry number := 0;
cursor coa_cur is
select coacode,coatitle
from gl _coa
where coacode between VaccountFrom and VaccountTo and
coalevel=4 and cocode=Vcocode
order by coacode;
coa_rec coa_cur%ROWTYPE;
Begin
for coa_rec in coa_cur loop
VinsertSwitch := 0;
Vcoacode := coa_rec.coacode;
Vcoatitle := coa_rec.coatitle;

-- Equities & Liabilities

if VfsAccount='Share Capital' or VfsAccount='Reserves' or

VfsAccount="Profit/(Loss)' or
VfsAccount="'Trade Creditors' or VfsAccount='Accrued
Expenses' or VfsAccount='Short Term Finance' or
VfsAccount="Advance From Customers' or
VfsAccount="Accumulated Depreciation' or
VfsAccount="'Banks Overdrafts' or VfsAccount='Long Term
Liabilities' then
if VfsAccount="'Profit/(Loss)' then

VclosingEntry := 0;

383

APPENDIX " BOOK CODE

select count(*) into VclosingEntry from gl tran_
master
where closing=1 and cocode=Vcocode and
coyear=VCURRENTYEAR;
if VclosingEntry = 0 then
select sum(TD.vchcr)-sum(TD.vchdr) into
VcurrentBalance -- Current Year
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.
tran_no and TM.cocode=Vcocode and
TD.coacode=Vcoacode and TM.vchdate
<= VcurrentToDate;
else
if VCURRENTMONTH = 12 then -- Exclude calculated
P&L value if it is the last month because the last
month
carries the closing entry with P&L figures.
update gl fs report set currentBalance=0 where
fsAccount like '%Profit/(Loss)%' and
upper (userid)=upper(:APP_USER) and
reportCode=VreportCode;

commit;
end if;
select sum(TD.vchcr)-sum(TD.vchdr) into
VcurrentBalance -- Current Year

from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_
no and TM.cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate
<= VcurrentToDate;
end if;
if VCURRENTMONTH = 12 then
update gl fs report set previousBalance=0 where
fsAccount like '%Profit/(Loss)%' and
upper (userid)=upper(:APP_USER) and
reportCode=VreportCode;

commit;
end if;
select sum(TD.vchcr)-sum(TD.vchdr) into
VpreviousBalance -- Previous Year

from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran no=TD.tran no
and TM.cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate
<= VpreviousToDate;
else -- Other than Profit/(Loss) account
select sum(TD.vchcr)-sum(TD.vchdr) into
VcurrentBalance -- Current Year

384

APPENDIX " BOOK CODE

from gl tran_master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran no=TD.tran_no
and TM.cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate
<= VcurrentToDate;
select sum(TD.vchcr)-sum(TD.vchdr) into

VpreviousBalance -- Previous Year
from gl tran master TM, gl tran detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no

and TM.cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate <=
VpreviousToDate;

end if;

if VfsAccount = 'Share Capital' then
insert into gl fs report values (VreportCode,VreportTi
tle,202, " '.......Share Capital', nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR,Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VfsAccount = 'Reserves' then
insert into gl _fs_report values (VreportCode,Vrepor
tTitle,203,'.......Reserves',nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;

if VfsAccount = 'Profit/(Loss)' then
insert into gl fs report values (VreportCode,VreportTit
le,204, " +c..0..Profit/(Loss)',nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;

if VfsAccount = 'Trade Creditors' then

if nvl(VcurrentBalance,0) >= 0 and

nvl(VpreviousBalance,0) >= 0 then
insert into gl fs report values (VreportCode,Vrepo
rtTitle,206, '¢sssss.Trade Creditors' nvl(VcurrentB
alance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,
VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

385

APPENDIX " BOOK CODE

386

end if;

if VcurrentBalance >= 0 and VpreviousBalance < 0 then
insert into gl fs_report values (VreportCode,Vrepor
tTitle,206, ' «cee...Trade Creditors',nvl(VcurrentBal
ance,0),
0,0, upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance < 0 and VpreviousBalance >= 0 then
nsert into gl fs report values (VreportCode,VreportT
itle,206,'cc.....Trade Creditors',0,
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,0,0,1,

Vcoacode, Veoatitle,0); | Nl b of roce e
end if;
if VcurrentBalance < 0 then
VcurrentBalance := VcurrentBalance-
(VcurrentBalance * 2);
insert into gl fs report values (VreportCode,VreportT
itle,223, " ssss0..Trade Debts',nvl(VcurrentBalance,0),
0,0, upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);
VinsertSwitch := 1;
end if;
if VpreviousBalance < 0 then
VpreviousBalance := VpreviousBalance-
(VpreviousBalance * 2);
if VinsertSwitch = 0 then
insert into gl fs_report values (VreportCode,Vre
portTitle,223,'«......Trade Debts',0,nvl(Vprevio
usBalance,0),
0,upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthn
ame,0,0,1,Vcoacode,Vcoatitle,0);

else
update gl fs report set previousBalance =
VpreviousBalance
where srno=223 and upper(userid)=upper(:APP_
USER);

end if;

end if;
end if;

APPENDIX " BOOK CODE

if VfsAccount = 'Accrued Expenses' then
insert into gl fs report values (VreportCode,VreportTit
le,207,'.......Accrued Expenses',nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame, VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Short Term Finance' then
insert into gl fs report values (VreportCode,VreportTi
tle,208, 'csse00.Short Term Finance',nvl(VcurrentBalan
ce,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Advance From Customers' then
if nvl(VcurrentBalance,0) >= 0 and
nvl(VpreviousBalance,0) >= 0 then
insert into gl fs report values (VreportCode,Vreport
Title,209,'¢eee...Advance From Customers',
nvl(VcurrentBalance,0),nv1(VpreviousBalance,0),0,upp
er (:APP_USER),Vconame, VCURRENTYEAR,
Vcomonthname,0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VcurrentBalance >= 0 and VpreviousBalance < 0 then
insert into gl fs report values (VreportCode,Vreport
Title,209,'¢cee...Advance From Customers',
nvl(VcurrentBalance,0),0,0,upper(:APP_
USER),Vconame, VCURRENTYEAR,
Vcomonthname,0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VcurrentBalance < 0 and VpreviousBalance >= 0 then
insert into gl fs report values (VreportCode,Vreport
Title,209,'¢eees..Advance From Customers',0,
nvl(VpreviousBalance,0),0,upper(:APP_
USER),Vconame, VCURRENTYEAR,
Vcomonthname,0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VcurrentBalance < 0 then
VcurrentBalance := VcurrentBalance-
(VcurrentBalance * 2);
insert into gl fs report values (VreportCode,Vrepo
rtTitle,224,'ccss...Trade Debts',nv1(VcurrentBalan
ce,0),
0,0, upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);

387

APPENDIX " BOOK CODE

VinsertSwitch := 1;
Negative balanes of Customer Advances
moved to Trade Debts section.

end if;
if VpreviousBalance < 0 then
VpreviousBalance := VpreviousBalance-
(VpreviousBalance * 2);
if VinsertSwitch = 0 then
insert into gl _fs_report values (VreportCode,Vrep
ortTitle,224,'.ces...Trade Debts',0,
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconam
e,VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

else
update gl fs report set previousBalance =
VpreviousBalance
where srno=224 and upper(userid)=upper(:APP_
USER);

end if;

end if;
end if;

if VfsAccount = 'Accumulated Depreciation’ then
insert into gl fs_report values (VreportCode,VreportTit
le,211,"'.¢ceeccAccumulated Depreciation’,
nvl(VcurrentBalance,0),nvl(VpreviousBalance,0),0,upper
(:APP_USER),
Vconame, VCURRENTYEAR, Vcomonthname,0,0,1,Vcoacode,Vcoat
itle,0);

end if;

if VfsAccount = 'Long Term Liabilities' then
insert into gl fs_report values (VreportCode,VreportTit
le,213, '¢cceccclong Texrm Liabilities',
nvl(VcurrentBalance,0),nv1(VpreviousBalance,0),0,upper(
:APP_USER),Vconame, VCURRENTYEAR,
Vcomonthname,0,0,1,Vcoacode,Vcoatitle,0);

end if;

commit;

end if;

if VfsAccount='Building' or VfsAccount='Office Equipment' or
VfsAccount="'Vehicles' or VfsAccount='Stock in Trade'
or VfsAccount='Trade Debts' or VfsAccount='Cash and Bank' then
select sum(TD.vchdr)-sum(TD.vchcr) into VcurrentBalance
-- Current Year
from gl tran _master TM, gl tran_detail TD

388

APPENDIX " BOOK CODE

where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate <=
VcurrentToDate;

select sum(TD.vchdr)-sum(TD.vchcr) into VpreviousBalance
-- Previous Year
from gl tran _master TM, gl tran_detail TD
where TM.cocode=TD.cocode and TM.tran_no=TD.tran_no and
TM. cocode=Vcocode and
TD.coacode = Vcoacode and TM.vchdate <=
VpreviousToDate;

if VfsAccount = 'Building' then
insert into gl fs report values (VreportCode,VreportTit
le,217,'.......Building' ,nv1(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame, VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Office Equipment' then
insert into gl fs report values (VreportCode,VreportT
itle,218, 'cees...0ffice Equipment',nvl(VcurrentBalan
ce,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Vehicles' then
insert into gl fs report values (VreportCode,VreportTit
le,219,'¢ces0q.Vehicles' ,nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame, VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Stock in Trade' then
insert into gl fs report values (VreportCode,VreportTi
tle,221,'csse00.Stock in Trade', nvl(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame, VCUR
RENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
end if;
if VfsAccount = 'Trade Debts' then
if nvl(VcurrentBalance,0) >= 0 and
nvl(VpreviousBalance,0) >= 0 then
insert into gl _fs_report values (VreportCode,Vrepo
rtTitle,222,'ssssss.Trade Debts' ,nvl(VcurrentBalan
CE,O),

389

APPENDIX " BOOK CODE

390

end if;

if VcurrentBalance < 0 then

nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance >= 0 and VpreviousBalance < 0 then
insert into gl _fs_report values (VreportCode,Vrepo
rtTitle,222,'¢sssss.Trade Debts' nvl(VcurrentBalan
ce,O),
0,0, upper (:APP_USER),Vconame,VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance < 0 and VpreviousBalance >= 0 then
insert into gl fs report values (VreportCode,Vrepor
tTitle,222,"'..cc....Trade Debts',0,nv1(VpreviousBala
nce,0),
0,upper (:APP_USER),Vconame,VCURRENTYEAR, Vcomonthname
,0,0,1,Vcoacode,Vcoatitle,0);

Negative Trade Debt balances moved to
Advance From Customers section.

VcurrentBalance := VcurrentBalance-
(VcurrentBalance * 2);
insert into gl _fs_report values (VreportCode,Vreport
Title,210,'.......Advance From Customers',
nvl(VcurrentBalance,0),0,0,upper(:APP_USER),Vconame,
VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
VinsertSwitch := 1;

end if;

if VpreviousBalance < 0 then

VpreviousBalance := VpreviousBalance-

(VpreviousBalance * 2);

if VinsertSwitch = 0 then
insert into gl fs report values (VreportCode,Vr
eportTitle,210, '¢ssesq.Advance From Customers',0,
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconam
e,VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

else
update gl fs report set previousBalance =
VpreviousBalance
where srno=210 and upper(userid)=upper
(:APP_USER);

end if;

APPENDIX " BOOK CODE

end if;
end if;

if VfsAccount = 'Cash and Bank' then

if nvl(VcurrentBalance,0) >= 0 and

nvl(VpreviousBalance,0) >= 0 then
insert into gl fs report values (Vrepor
tCode,VreportTitle,225,'ccc....Cash and
Bank',nv1(VcurrentBalance,0),
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconame,V
CURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance >= 0 and VpreviousBalance < 0 then
insert into gl fs report values (Vrepor
tCode,VreportTitle,225,"'+cessss.Cash and
Bank',nv1(VcurrentBalance,0),
0,0, upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance < 0 and VpreviousBalance >= 0 then
insert into gl fs report values (VreportCode,Vrepor
tTitle,225,"'ccc....Cash and Bank',0,nv1(VpreviousBa
lance,0),
0, upper (:APP_USER),Vconame,VCURRENTYEAR, Vcomonthname
,0,0,1,Vcoacode,Vcoatitle,0);

end if;

if VcurrentBalance < 0 then
VcurrentBalance := VcurrentBalance-
(VcurrentBalance * 2);
insert into gl fs_report values (VreportCode,Vrepor
tTitle,212, '+cee...Banks Overdrafts',nvl(VcurrentBa
lance,0),
0,0, upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthna
me,0,0,1,Vcoacode,Vcoatitle,0);

MNegative Bank balances moved to Bank
VinsertSwitch := 1; Overdrafts section.
end if;
if VpreviousBalance < 0 then
VpreviousBalance := VpreviousBalance-
(VpreviousBalance * 2);
if VinsertSwitch = 0 then
insert into gl fs report values (VreportCode,Vrep
ortTitle,212,'.ec....Banks Overdrafts',o,
nvl(VpreviousBalance,0),0,upper(:APP_USER),Vconam
e,VCURRENTYEAR, Vcomonthname,
0,0,1,Vcoacode,Vcoatitle,0);
else

391

APPENDIX " BOOK CODE

update gl fs report set previousBalance =
VpreviousBalance
where srno=212 and upper(userid)=upper(:APP_
USER);
end if;
end if;
end if;
commit;
end if;
end loop;
End;
end loop;

-- Incorporate current Profit/(Loss) into Balance Sheet

if VreportCode like 'BS%' then
select currentBalance,previousBalance into VcurrentPL,VpreviousPL
from gl_fs_report
where fsAccount='Net Profit/(Loss)' and upper(userid)=upper(:APP_
USER);
insert into gl fs_report values (VreportCode,VreportTit
le,204,"....... Profit/(Loss)',nv1(VcurrentPL,0),nv1(VpreviousPL,0),
0,upper (:APP_USER),Vconame, VCURRENTYEAR, Vcomonthname,0,0,1,null,nu
11,0);
commit;

end if;

delete from gl fs report where currentbalance=0 and previousbalance=0;
if :APP_PAGE_ID=76 and VreportCode like 'BS%' then
delete from gl fs_report where srno < 200 and
upper (userid)=upper(:APP_USER);
commit;
end if;
update gl fs report set srno=209 where srno=210 and
upper (userid)=upper(:APP_USER);
update gl fs report set srno=222 where srno=223 or srno=224 and
upper (userid)=upper(:APP_USER);
commit;

end if;
end;

== Club Balance Sheet Accounts
declare
cursor fs_report cur is
select srno,fsaccount,sum(currentbalance) currentbalance,sum(previou
sbalance) previousbalance

392

APPENDIX " BOOK CODE

from gl fs_report

where reportcode = VreportCode and upper(userid) = upper(:APP_USER)

group by srno,fsaccount

order by srno;

fs_report_rec fs_report cur%ROWTYPE;

begin

select distinct reportTitle into VreportTitle from gl fs setup where

cocode=Vcocode and reportCode=VreportCode;

if VreportCode like 'BS%' then

for fs_report rec in fs_report_cur loop
Vsrno := fs_report_rec.srno;
VfsAccount := fs_report rec.fsAccount;
VcurrentBalance := fs_report rec.currentBalance;
VpreviousBalance := fs_report rec.previousBalance;
insert into gl fs report values
(VreportCode,VreportTitle,Vsrno,VfsAccount,VcurrentBalance,Vprev
iousBalance,0,upper(:APP_USER),
VCONAME , VCURRENTYEAR , VCOMONTHNAME , 0,0,0,null,null,0);
commit;
end loop;
end if;
end;

-- Calculate Balance Sheet Variance/Percentage
declare
cursor fs_report cur is
select srno,fsaccount,currentbalance,previousbalance,notes,notescode
from gl fs_report
where reportcode = :P76 _REPORTCODE and upper(userid) = upper(:APP_
USER)
order by srno;
fs_report rec fs_report cur%ROWTYPE;
begin
for fs_report rec in fs_report cur loop
Vsrno := fs_report_rec.srno;
VfsAccount := fs_report rec.fsAccount;
VcurrentBalance := fs_report rec.currentBalance;
VpreviousBalance := fs_report rec.previousBalance;
Vnotes := fs_report_rec.notes;
VnotesCode := fs_report rec.notesCode;
Vvariance := VcurrentBalance - VpreviousBalance;
if VpreviousBalance <> 0 then

Vpercent := (Vvariance/VpreviousBalance) * 100;
else

Vpercent := 0;
end if;

393

APPENDIX " BOOK CODE

if Vnotes=1 then
update gl fs report set percent=Vpercent where srno=Vsrno and
notes=Vnotes and notescode=VnotesCode
and reportCode=:P76 REPORTCODE and upper(userid)=upper(:APP_
USER);

else
update gl fs report set percent=Vpercent where srno=Vsrno and
notes=0 and reportCode=:P76_REPORTCODE
and upper(userid)=upper(:APP_USER);

end if;

commit;

end loop;
end;

-- Insert Balance Sheet Headings & Grant Totals
declare
VcurrentCapital number := 0;
VpreviousCapital number := 0;
VcurrentAsset number := 0;
VpreviousAsset number := 0;
begin
IF :P76_REPORTCODE Like 'BS%' then
select sum(currentbalance) into VcurrentCapital
from gl_fs_report
where reportcode = :P76 REPORTCODE and upper(userid)
USER) and srno between 202 and 213
and notes=0;

upper (:APP_

select sum(previousbalance) into VpreviousCapital

from gl fs_report

where reportcode = :P76 REPORTCODE and upper(userid) = upper(:APP_
USER) and srno between 202 and 213

and notes=0;

select sum(currentbalance) into VcurrentAsset

from gl fs_report

where reportcode = :P76 REPORTCODE and upper(userid) = upper(:APP_
USER) and srno between 217 and 225

and notes=0;

select sum(previousbalance) into VpreviousAsset

from gl fs_report

where reportcode = :P76 REPORTCODE and upper(userid) = upper(:APP_
USER) and srno between 217 and 225

and notes=0;

394

APPENDIX " BOOK CODE

insert into gl _fs_report values (:P76_REPORTCODE,VreportTitle,201,’
CAPITAL AND LIABILITIES',null,null,null,upper

(:APP_USER), :P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME,0,0,0,nu
11,null,1);

insert into gl fs report values (:P76 REPORTCODE,VreportTitle,205,"
LIABILITIES',null,null,null,upper

(:APP_USER), :P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME,0,0,0,nu
11,null,1);

insert into gl fs report values (:P76 REPORTCODE,VreportTitle,214,
'"TOTAL CAPITAL AND
LIABILITIES',VcurrentCapital,VpreviousCapital,0,upper(:APP_

USER), :P76_CONAME, :P76_CURRENTYEAR,
:P76_COMONTHNAME,0,1,0,null,null,1);

insert into gl fs report values (:P76 REPORTCODE,VreportTitle,215,"
ASSETS',null,null,null,upper(:APP_USER),
:P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME,0,0,0,null,null,1);

insert into gl fs report values (:P76_
REPORTCODE,VreportTitle,216,'...FIXED ASSETS',null,null,null,
upper (:APP_USER), :P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME, 0,0
,0,null,null,1);

insert into gl fs report values (:P76_
REPORTCODE,VreportTitle,220,"'...CURRENT ASSETS',null,null,null,
upper (:APP_USER), :P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME, 0,0
,0,null,null,1);

insert into gl fs_report values (:P76_REPORTCODE,VreportTitle,226,"
TOTAL ASSETS',VcurrentAsset,VpreviousAsset,0,
upper (:APP_USER), :P76_CONAME, :P76_CURRENTYEAR, :P76_COMONTHNAME,0, 1
,0,null,null,1);
commit;
end if;
end;

-- Balance Sheet Ratios
if :APP_PAGE_ID = 1 or :APP_PAGE_ID = 6 then -- Desktop dashboard
or mobile home page
declare
VcurrentCA number;
VpreviousCA number;
VcurrentCL number;
VpreviousCL number;

395

APPENDIX " BOOK CODE

VcurrentQCA number;
VpreviousQCA number;
Vcurrent_CurrentRatio number;
Vprevious_CurrentRatio number;
Vcurrent_NWC number;
Vprevious_NWC number;
Vcurrent QuickRatio number;
Vprevious QuickRatio number;
begin
-- Current Assets
select sum(currentBalance), sum(previousBalance) into VcurrentCA,
VpreviousCA from gl_fs_report
where notes=0 and (srno=221 or srno=222 or srno=225);
-- Current Liabilities
select sum(currentBalance), sum(previousBalance) into VcurrentCL,
VpreviousCL from gl fs report
where notes=0 and (srno=206 or srno=207 or srno=208 or SrNo=209 O
srno=211 or srno=212);
-- Quick Current Assets
select sum(currentBalance), sum(previousBalance) into VcurrentQCA,
VpreviousQCA from gl fs_ report
where notes=0 and (srno=222 or srno=225);
-- Current Ratio
Vcurrent_CurrentRatio := VcurrentCA / VcurrentCL;
Vprevious_CurrentRatio := VpreviousCA / VpreviousCL;
-- Net Working Capital
Vcurrent_NWC := VcurrentCA - VcurrentCL;
Vprevious NWC := VpreviousCA - VpreviousCL;
-- Quick Ratio
Vcurrent QuickRatio := VcurrentQCA / VcurrentCL;
Vprevious QuickRatio := VpreviousQCA / VpreviousCL;
insert into gl dashboard values (60, 'Current Assets',VcurrentCA,Vpr
eviousCA,upper(:APP_USER),
"Current Ratio',Vcurrent CurrentRatio,Vprevious CurrentRatio);
insert into gl dashboard values (61,'Current Liabilities',VcurrentC
L,VpreviousCL,upper(:APP_USER),
"Current Liabilities',1,1);
insert into gl dashboard values (62, 'Net Working Capital',Vcurrent
NWC, Vprevious NWC,upper(:APP_USER),
‘Net Working Capital',Vcurrent NWC,Vprevious_NWC);
insert into gl dashboard values (63, 'Quick Current Assets',Vcurrent
QCA,VpreviousQCA,upper(:APP_USER),
'Quick Ratio',Vcurrent QuickRatio,Vprevious QuickRatio);
commit;
end;
end if;
-- The REDIRECT URL procedure of the APEX _UTIL package below redirects to
the page from where this application process

396

was called

APPENDIX " BOOK CODE

if :APP_PAGE _ID = 76 then -- Financial Statements Report

apex_util.redirect url (p_url => 'f?p=8APP_ID
elsif :APP_PAGE_ID = 1 then -- Desktop Dashboard
apex_util.redirect url (p_url => 'f?p=8APP_ID
else -- Mobile Home Page 6
apex_util.redirect url (p_url => 'f?p=8APP_ID
end if;
END;

.:76:8SESSION.");
.:1:8SESSION.");

.:6:8SESSION.");

397

Index

A headings & grant totals, 84-85
incorporate current profit/loss, 82
Access, 10 notes, 72-73
Accounting system, 3 ratios, 85-87
ACCOUNTTO column attributes, 247 variance/percentage, 83-84
Application feedback Bank reconciliation
administrator and its users, 277 bank statement, 189
input form, 277-278 outstanding opening
report page, 279 transactions, 191-192
table and sequence, 277 page creation, 189-190
Application security parameters from, 189-190
application segments, 297 transactions region, 193-194
authorization, 297 Bank reconciliation page, 183
authorization schemes Bank reconciliation report
for buttons, 300-303 check, 199
main menu, 297-299 interactive report, 201
Oracle APEX, 310 output, 204
test buttons authorization, 304 parameters form, 200-201
test menu authorization, 300 PDF report, 203
test page authorization, 302 reconciliation report
Application segments generation process, 202-203
branch, 47 table, 199
Create Button, 45-46 trial balance report, 199
LOVs, 42 unsettled transactions, 199
modification, 44 BI Publisher Desktop, 153
setup page creation, 43 Budget allocation, 49
table and sequence, 41 budget processes, 227
testing, 47-48 description, 221
tree view region, 45 output, 227-228
validation, 46 page and parameters form, 222-224
table for company,
B year and account, 221
tabular form, 225-226
Balance sheet, 259-260, 263, 265 Budget report, 53-56
club balance sheet accounts, 82-83 computations, 235
equities & liabilities, 73, 75-78, 80-82 interactive report, 236-237
generate, 71-72 output, 238-239
© Riaz Ahmed 2016 399

R. Ahmed, Cloud Computing Using Oracle Application Express,
DOI 10.1007/978-1-4842-2502-8

INDEX

Budget report (cont.)
page and parameters
form, 231, 233-235
PDF report, 237
process, 237
table for stores budget
report values, 231
Budget report generation process, 237
Button attributes, 195

C

Chart of accounts (COA)
check account type, 108
copy, 114-116
copy pages, 99
execution, 109-110
form page modification, 100, 102
group-level accounts, 97
highlight rule, 109
LOV, 98
modify/create dynamic
actions, 103, 105-107
modify validations, 107-108
process modifications, 109
report page, 100
Check child level, 17, 20
Check child segment, 8
Check data, 29, 32, 37
Check debit credit, 26, 38
Check in transaction, 18, 21
Check months closure, 42, 48
Check parent level, 17, 19-20
Check permanent year closure, 43
Check report code, 57
Check segment, 8
Check source COA, 23
Check target COA, 24
Check temporary year end date, 48
Check transaction, 6-7
Check voucher details, 25
Closing entry, 44, 46-47
Cloud computing
application, 6-7
types, 2
COA. See Chart of accounts (COA)
COACODE attributes, 226
Company setup
application tables, creation, 15
pages, creation, 16-17
Company year month, 11

400

Control buttons, 27
Control navigation buttons, 27
Copy COA, 24-25
Cost centers
delete button modification, 87
dynamic action, 89
modified page item, 88
page, creation, 85-87
validation
check child level, 90
check level, 89
check parent level, 90

disallow code modification, 91-92

transaction, 91
Custom functions, 11

D

Default validations, 185-186
Delete record, 22
Desktop navigation menu
creation
attribute values, 10
closing, 12
reports, 12
setup, 11
utilities, 11
modify/adding, 12-13
Disallow code modification, 18, 21
Drilled down voucher, 33

E

Enterprise resource planning (ERP), 4
Enter vouchers
add/modify items, 125-126
add validations, 127-128
button modifications, 130
detail page modification, 123-125
execution, 130-131
hidden items, 122
LOVs, 119
master page modification, 121
page, creation, 119-120
process attributes, 129
process modifications, 129
tables, 117-118
validation modifications, 126
ERP. See Enterprise resource
planning (ERP)
Evaluate level, 17, 19

INDEX

Evaluate nature, 19 G
Executive dashboard
chart regions, 271-275 General ledger system, 4
chart subregion, 269 Cloud Accountant, 5
hidden item, 270 ERP, 4
Home Page, 267-268 objectives, 4
output, 275-276 Generate fiscal year, 1-2
Regions node, 269 GL_USERS table
stakeholders, 267 switch company, year and month
table for database, 267 button Attributes, 80
Expenses trend attributes, 290 create/modify items, 65-66

execution, 67-68
Global Page, 82

F page, creation, 77-79
Fetch fiscal year, 3-6 process attributes, 67
Financial statements Update User Profile Process, 81
balance sheet, 251 validation, 80
blank page and its components, 261 Gross profit ratio attributes, 291
branches, 260
column link, 262 H
computations, 257-258
description, 241 Handle branches, 146
enter vouchers, 264 Highlight rule, 203
interactive report
and buttons, 256-257 | J K
list of values, 241-242 »
on-demand processes, 259-260 Infrastructure as a Service (IaaS), 2
output, 249, 264-265 Interactive report attributes, 201
page and page Interactive report region, 164, 256
items, 242, 244-245, 251-255 Interactive report region attributes, 207
P&L statement, 251 IR SQL query, 30-31
PDF report, 262-264
process, 248 L
table for accounts, 241
table for database, 251 Ledger report, 180
tabular form, 245-247 formatting, 164-165
validations, 247-248 in PDE, 165-166
Fiscal year, 43-44 page creation, 161-163
branch attributes, 29 parameters form, 161-163
button values, 25 Lists of values (LOVSs), 20
delete process, 27
dynamic action, 27-28 M
hide buttons, 29-32
hold months/dates, 24 Match passwords, 13
LOVs, 20 Microsoft Word, 153-154
parameters region, 21-22 Mobile version
process attributes, 26 Balance Sheet button, 294
region values, 23 copy computations and branches, 287
save process, 27 interface, 281-282
testing, 32-33 mobile navigation menu, 287
validation attributes, 28 Mobile Report Pages, 289, 291-294

401

INDEX

Mobile version (cont.)
profit and loss statement
report, 288-289
region and page items, 282, 284-287
web applications, 281
Month closure
add validation, 207
blank page and its items, 205-206
description, 205
hide buttons, 209-210
month process, 208-209
unverified vouchers, 206-207

N

Net profit ratio attributes, 292
Net working capital attributes, 293
New group creation, 9

(0

On-demand process attributes, 259
Opening bank transactions
default validations, 185-186
page creation, 183
region source query, 184-185
validation, 186
Operating profit ratio attributes, 291

P

Page-rendering process, 144
P&L accounts, 249
Parameters and interactive
report regions, 200

Parameters form, 149, 151-152
PDF report query, 31-32
Permanent year closure, 47
Permanent year end (PYE)

output, 219

page and its items, 217

process, 218

validations, 218
Platform as a Service (PaaS), 2
PL/SQL function modifications, 210
Print request, 158
Process attributes, 195, 202
Profit and loss

administrative expenses notes, 66

compute administrative

expenses, 61-62

402

compute cost of goods, 60-61
compute financial charges, 63-64
compute sales, 59
compute selling &
marketing expenses, 62
cost of goods notes, 65-66
desktop and mobile
home pages, 69
financial charges, 68
process, 59
ratio, 69-70
sales notes, 64
selling expenses notes, 67
Profit and loss
compute sales, 60
generate, 58-59
process, 59
statement, 251, 260, 264
Public vs. private cloud, 2

Q

Quick ratio attributes, 293

R

Radio group page item, 223
Reconcile opening form, 192
Reconciliation report, 39-41
Report layout, 157
Report query, 28
Report Query creation, 152-153
Reset password
authentication scheme, 74
custom function, 69-70
page, creation, 70-72
update password process, 74
user ID and match
password validations, 73

S

Save fiscal year, 2-3
Save record, 18, 22
Search transactions
dynamic action, 137
execution, 138
interactive report region, 135-136
parameters region and
page creation, 133-135
Software as a Service (SaaS), 2

INDEX

Source voucher refresh region, 59
interactive report, 166-167 tables, 49
page creation, 167-168 tree region, 57
SQL queries, 11, 290 User 1D, 12
Switch company, 14 User profile, 16

Switch month, 15

Switchyear, 14-15 V W X
H H

T Validation attributes, 208
Voucher balancing, 26
Tabular form, 57 Vouchers report
Template formatting, 155-157, 180 parameters form, 149, 151-152
Temporary year-end (TYE) PDF printing, 149
closing entry, 216 Query, 152-153
fiscal year process, 215 Report Template, 153-154
output, 216 validation, 159
page and items, 213, 215 values list, 149
validation, 215 Vouchers verification
Trial balance, 34, 36-37 addition processes, 145
Trial balance report authorized person, 139
formatting, 175-176 deletion, 143-144
interactive report region, 174 deletion processes, 145
List of Values, 171 handle branches, 146
page creation, 172-174 interactive report region, 141-142
parameters, 172-174 modification, 143-144
in PDE 179 page buttons, 143-144
process, 175 page creation, 139-141
process creation, 177-178 parameters, 139-141
selected level, 176 validations, 145
table, 171 wizard, 143
template formatting, 180 Voucher types
validation, 179 Check Transaction, 38-39
zero balances, 177 LOV, 35

pages, creation, 36-37

U
Y

Unverified payment voucher, 207

Update password, 13 Year-end processes
User groups actions, 211
allow/revoke segment, 59 opening balances, 211-213
classic report region, 58 output, 216
deletion, 55 PYE (see Permanent year end (PYE))
execution, 60-61 TYE (see Temporary year-end (TYE))
new group process, 54
page and parameters V4
region, 50, 52-53
privileges region, 56 Zero balances, 177

403

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction to Cloud Computing and the Application Project
	1.1 An Introduction to Cloud Computing
	1.2 Public vs. Private Cloud
	1.3 What Is Accounting?
	1.4 Accounting System
	1.5 General Ledger
	1.6 The Cloud Accountant General Ledger Project
	1.7 Development Environment
	1.8 Application Segments
	1.9 Summary

	Chapter 2: Application Navigation
	2.1 Create the Main Application Menu
	2.2 Modify/Add Navigation Bar Entries
	2.3 Summary

	Chapter 3: Companies
	3.1 Create Application Tables
	3.2 Create Pages for Company Setup
	3.3 Summary

	Chapter 4: Fiscal Year
	4.1 Create List of Values
	4.2 Create Page and Parameters Region
	4.3 Create a Fiscal Year Grid
	4.4 Add Items to Hold Months/Dates
	4.5 Create Buttons to Generate, Save, and Remove a Fiscal Year
	4.6 Generate Fiscal Year Process
	4.7 Save Fiscal Year Process
	4.8 Delete Fiscal Year Process
	4.9 Fetch Fiscal Year Dynamic Action
	4.10 Create Validation: Check Transaction
	4.11 Create Branch
	4.12 Dynamic Actions to Hide Buttons
	4.13 Test Your Work
	4.14 Summary

	Chapter 5: Voucher Types
	5.1 Create List of Values
	5.2 Create Pages for Voucher Types Setup
	5.2.1 Convert Text Item to Radio Group

	5.3 Create Validation: Check Transaction
	5.4 Test Your Work
	5.5 Summary

	Chapter 6: Application Segments
	6.1 Create LOVs
	6.2 Create Segments Setup Pages
	6.3 Modify Segments Form
	6.4 Add Tree View Region
	6.5 Create Buttons
	6.6 Create Validations
	6.7 Create Branch
	6.8 Test Your Work
	6.9 Summary

	Chapter 7: User Groups
	7.1 Page and Parameters Region
	7.2 Buttons
	7.3 New Group Process
	7.4 Delete Group Button
	7.5 Delete Group Process
	7.6 Group Privileges Region
	7.7 Tree Region
	7.8 Add Classic Report Region
	7.9 Dynamic Action to Refresh Region
	7.10 Add Button and a Process to Allow/Revoke Segment Access Right
	7.11 Test Your Work
	7.12 Summary

	Chapter 8: Create Users
	8.1 Create Pages
	8.2 Create/Modify Items
	8.3 Create a Process to Set Company, Year, and Month
	8.4 Test Your Work
	8.5 Summary

	Chapter 9: Reset Password
	9.1 Add Custom Functions
	9.2 Create Page
	9.3 Check User ID and Match Password Validations
	9.4 Update Password Process
	9.5 Change Authentication Scheme
	9.6 Summary

	Chapter 10: Switch Company, Year, and Month
	10.1 Create Page
	10.2 Add Button
	10.3 Add Validations
	10.4 Update User Profile Process
	10.5 Display Company, Year, and Month
	10.6 Summary

	Chapter 11: Cost Centers
	11.1 Create Pages
	11.2 Delete Processes
	11.3 Modify Delete Button
	11.4 Add Button
	11.5 Modify Page Items
	11.6 Add Dynamic Action: Evaluate Level
	11.7 Validation: Check Level
	11.8 Validation: Check Parent Level
	11.9 Validation: Check Child Level
	11.10 Validation: Check in Transaction
	11.11 Validation: Disallow Code Modification
	11.12 Process: Save Record
	11.13 Process: Delete Record
	11.14 Add Button: Refresh
	11.15 Test Your Work
	11.16 Summary

	Chapter 12: Chart of Accounts
	12.1 Create Three Lists of Values
	12.2 Copy Pages
	12.3 Modify the Report Page (Page 15)
	12.4 Modify the Form Page (Page 16)
	12.5 Modify/Create Dynamic Actions
	12.6 Modify Validations
	12.7 Create Validation: Check Account Type
	12.8 Modify Processes
	12.9 Create a Highlight Rule
	12.10 Test Your Work
	12.11 Summary

	Chapter 13: Copy Chart of Accounts
	13.1 Create Page
	13.2 Add Button
	13.3 Add Validations
	13.4 Copy COA Process
	13.5 Test Your Work
	13.6 Summary

	Chapter 14: Enter Vouchers
	14.1 Create List of Values
	14.2 Create Pages
	14.3 Modify the Master Page (Page 42)
	14.4 Add Items (Page 42)
	14.5 Modify Button (Page 42)
	14.6 Modify the Detail Page (Page 43)
	14.7 Add/Modify Items
	14.8 Modify Validations on Page 43
	14.9 Add Validations to Page 43
	14.10 Modify Process
	14.11 Create Process
	14.12 Control Buttons
	14.13 Test Your Work
	14.14 Summary

	Chapter 15: Search Transactions
	15.1 Create Page and Parameters Region
	15.2 Create an Interactive Report Region
	15.3 Add a Dynamic Action
	15.4 Test Your Work
	15.5 Summary

	Chapter 16: Vouchers Verification
	16.1 Create Page and Parameters Region
	16.2 Create Interactive Report Region
	16.3 Create Verification Page
	16.4 Modify, Delete, and Create Page Buttons
	16.5 Modify Page-Rendering Process
	16.6 Delete Validations
	16.7 Delete Processes
	16.8 Add Processes
	16.9 Handle Branches
	16.10 Test Your Work
	16.11 Summary

	Chapter 17: Vouchers Report
	17.1 Create a List of Values
	17.2 Create the Parameters Form
	17.3 Create Report Query
	17.4 Download and Install BI Publisher Desktop
	17.5 Create Report Template in Microsoft Word
	17.6 Template Formatting
	17.7 Create the Report Layout
	17.8 Attach the Report Layout to Report Query
	17.9 Send the Print Request
	17.10 Create Validation
	17.11 Test Your Work
	17.12 Summary

	Chapter 18: Ledger Report
	18.1 Create Page and Parameters Form
	18.2 Create an Interactive Report Region
	18.3 Formatting Ledger Report
	18.4 Get Ledger Report in PDF
	18.5 Drill Down to Source Voucher
	18.5.1 Create Link in Interactive Report
	18.5.2 Create Voucher Page

	18.6 Test Your Work
	18.7 Summary

	Chapter 19: Trial Balance Report
	19.1 Trial Balance Report Table
	19.2 Create a List of Values
	19.3 Create Page and Parameters Form
	19.4 Create the Interactive Report Region
	19.5 Create a Process to Generate Trial Balance
	19.6 Formatting the Trial Balance Report
	19.7 Print the Selected Level
	19.7.1 Create Process

	19.8 Eliminate Zero Balances
	19.8.1 Create a Process

	19.9 Create a Validation
	19.10 Get the Trial Balance Report in PDF
	19.10.1 Template Formatting

	19.11 Drill Down to the Ledger Report
	19.12 Test Your Work
	19.13 Summary

	Chapter 20: Opening Bank Transactions
	20.1 Create Page
	20.2 Modify Region Source Query
	20.3 Handling Default Validations
	20.4 Add Validation
	20.5 Test Your Work
	20.6 Summary

	Chapter 21: Bank Reconciliation
	21.1 Create Page and Parameters Form
	21.2 Display Outstanding Opening Transactions
	21.3 Modify Reconcile Opening Form
	21.4 Current Transactions Region
	21.4.1 Create a Button and a Process

	21.5 Test Your Work
	21.6 Summary

	Chapter 22: Bank Reconciliation Report
	22.1 The Bank Reconciliation Report Table
	22.2 Create the Parameters Form
	22.3 Create the Interactive Report
	22.4 Create the Reconciliation Report Generation Process
	22.5 Format the Reconciliation Report
	22.6 Generate the PDF Report
	22.7 Test Your Work
	22.8 Summary

	Chapter 23: Month Closure
	23.1 Create Page and Page Items
	23.2 Show Unverified Vouchers
	23.3 Add Validation
	23.4 Close Month Process
	23.5 Hide Buttons
	23.6 Summary

	Chapter 24: Year-End Processes
	24.1 Enter Opening Balances
	24.2 Temporary Year-End (TYE)
	24.3 Create the Page and Page Items
	24.4 Create a Validation
	24.5 Generate the Fiscal Year Process
	24.6 A Process to Generate a Closing Entry
	24.7 Test Your Work
	24.8 Permanent Year End (PYE)
	24.9 Create the Page and Page Items
	24.10 Create the Validations
	24.11 A Process to Close the Year Permanently
	24.12 Test Your Work
	24.13 Summary

	Chapter 25: Budget Allocation
	25.1 Budget Allocation Table
	25.2 Create the Page and Parameters Form
	25.3 Create a Tabular Form
	25.4 Budget Processes
	25.5 Test Your Work
	25.6 Summary

	Chapter 26: Budget Report
	26.1 Budget Report Table
	26.2 Create Page and Parameters Form
	26.3 Create Computations
	26.4 Create Interactive Report
	26.5 Budget Report Generation Process
	26.6 Generate PDF Report
	26.7 Test Your Work
	26.8 Summary

	Chapter 27: Set Up Accounts for Financial Statements
	27.1 Accounts Table for the Financial Statements
	27.2 Create a List of Values
	27.3 Create Page and Page Items
	27.4 Create a Tabular Form
	27.5 Create Validations
	27.6 Create Process
	27.7 Test Your Work
	27.8 Summary

	Chapter 28: Financial Statements
	28.1 Financial Statements Table
	28.2 Create Page and Page Items
	28.3 Create Interactive Report and Buttons
	28.4 Create Computations
	28.5 Create On-Demand Processes
	28.6 Create Branches
	28.7 Create Page for Financial Statements Notes
	28.8 Create Column Link
	28.9 Generate PDF Report
	28.10 Enter Vouchers
	28.11 Test Your Work
	28.12 Summary

	Chapter 29: Executive Dashboard
	29.1 Dashboard Table
	29.2 Copy Components to the Home Page
	29.3 Create Regions
	29.4 Create Chart Subregion
	29.5 Create a Hidden Item
	29.6 Copy Chart Regions
	29.7 Test Your Work
	29.8 Summary

	Chapter 30: Application Feedback
	30.1 Application Feedback Table
	30.2 Create Feedback Input Form
	30.3 Create Feedback Report Page
	30.4 Test Your Work
	30.5 Summary

	Chapter 31: Mobile Version
	31.1 Create an Interface for a Mobile Application
	31.2 Region and Page Items
	31.3 Copy Computations and Branches
	31.4 Add Entries to Mobile Navigation Menu
	31.5 Create Profit and Loss Statement Report
	31.6 Create Other Mobile Report Pages
	31.7 Test Your Work
	31.8 Summary

	Chapter 32: Application Security
	32.1 Authorization Schemes for the Main Menu
	32.2 Test Menu Authorization
	32.3 Authorization Schemes for Application Pages
	32.4 Test Page Authorization
	32.5 Authorization Schemes for Buttons
	32.6 Test Buttons Authorization
	32.7 Summary
	32.8 Conclusion

	Appendix: Book Code
	 Chapter 4
	 Chapter 5
	 Chapter 6
	 Chapter 7
	 Chapter 8
	 Chapter 9
	 Chapter 10
	 Chapter 11
	 Chapter 12
	 Chapter 13
	 Chapter 14
	 Chapter 17
	 Chapter 18
	 Chapter 19
	 Chapter 20
	 Chapter 22
	 Chapter 23
	 Chapter 24
	 Chapter 25
	 Chapter 26
	 Chapter 27
	 Chapter 28

	Index

