
Complete Guide
to Open Source
Big Data Stack

—
Michael Frampton

www.allitebooks.com

http://www.allitebooks.org

Complete Guide
to Open Source Big

Data Stack

Michael Frampton

www.allitebooks.com

http://www.allitebooks.org

Complete Guide to Open Source Big Data Stack

ISBN-13 (pbk): 978-1-4842-2148-8 ISBN-13 (electronic): 978-1-4842-2149-5
https://doi.org/10.1007/978-1-4842-2149-5

Library of Congress Control Number: 2018930257

Copyright © 2018 by Michael Frampton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Technical Reviewer: Olav Jodens
Coordinating Editor: Rita Fernando
Copy Editor: Deanna Hegle

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484221488. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michael Frampton
Paraparaumu, New Zealand

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2149-5
http://www.allitebooks.org

I would like to dedicate this book to my wife and son whose support
has enabled me to complete this project.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Chapter 1: The Big Data Stack Overview �� 1
What Is Big Data? �� 2

Limitations of Approach �� 4

Why a Stack? �� 5

NoSQL Overview ��� 6

Development Stacks ��� 7

LAMP Stack ��� 7

MEAN Stack ��� 7

SMACK Stack ��� 7

MARQS Stack ��� 7

Book Approach �� 8

Chapter 2 – Cloud Storage �� 9

Chapter 3 – Release Management – Brooklyn �� 9

Chapter 4 – Resource Management �� 10

Chapter 5 – Storage �� 10

Chapter 6 – Processing ��� 10

Chapter 7 – Streaming �� 11

Chapter 8 – Frameworks ��� 11

Chapter 9 – Data Visualisation �� 11

Chapter 10 – The Big Data Stack ��� 11

www.allitebooks.com

http://www.allitebooks.org

vi

The Full Stack ��� 11

Cloud or Cluster �� 13

The Future ��� 15

Chapter 2: Cloud Storage �� 17
CloudStack Overview �� 18

Server Preparation �� 20

Minimum System Requirements ��� 20

Check CentOS Install ��� 22

Secure Shell (SSH) Access �� 22

Configure Network ��� 23

Check Hostname FQDN�� 23

Configure SELinux ��� 24

Configure NTP �� 24

Configure CloudStack Package Repository ��� 25

Configure NFS (Network File System) ��� 25

CloudStack Server Install �� 28

MySQL Server Install ��� 28

MySQL Connector Installation ��� 29

Management Server Installation ��� 30

System Template Setup ��� 30

KVM Setup and Installation ��� 31

Prerequisites ��� 31

Create Repository File ��� 32

KVM Installation ��� 32

KVM QEMU (Quick Emulator) Configuration ��� 32

Libvirt Configuration �� 33

Check KVM Running �� 33

Host Naming �� 34

CloudStack Cluster Configuration ��� 35

Adding Hosts to the Cloud ��� 40

Adding an Instance to the Cloud �� 44

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

Registering an ISO with CloudStack �� 44

Creating an Instance from an ISO �� 46

Advanced Zone Creation ��� 51

Problem-Solving ��� 55

CloudStack Log Files ��� 56

CloudStack Storage ��� 56

CloudStack System VMs �� 57

CloudStack Firewall Issues �� 57

Conclusion �� 58

Chapter 3: Apache Brooklyn ��� 59
Brooklyn Install ��� 59

Brooklyn Overview �� 69

Blueprints �� 70

REST API �� 71

Policy Management ��� 72

Monitoring ��� 73

Operations ��� 73

Modelling With Blueprints ��� 74

Application Installs �� 74

Server-Based Install �� 75

Cloud-Based Install ��� 85

Conclusion �� 95

Chapter 4: Apache Mesos ��� 97
Mesos Architecture ��� 98

Mesos Install ��� 99

Overview �� 99

Building Mesos �� 100

Starting Mesos �� 108

Mesos User Interface ��� 109

Build Errors �� 114

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Mesosphere DCOS �� 115

Overview �� 115

SSH configuration �� 115

Install Prerequisites ��� 117

Install Server ��� 121

Master Server �� 124

Agent Server �� 126

User Interfaces �� 127

Logging and Problem Investigation ��� 131

Build Errors �� 132

Project Myriad ��� 135

Myriad Architecture ��� 135

Conclusion �� 137

Chapter 5: Stack Storage Options ��� 139
HDFS Mesos Framework ��� 141

Source Software �� 141

Start Scheduler �� 142

Create and Start HDFS Nodes �� 144

Use HDFS Mesos Framework �� 148

Riak Mesos Framework �� 151

VirtualBox Install �� 152

Vagrant Install�� 154

Install Framework �� 154

Use Framework ��� 160

Cassandra Mesos Framework ��� 164

Install Prerequisites ��� 165

Install X Windows �� 165

Install VirtualBox and Vagrant �� 166

Install Vagrant-Based DCOS �� 167

Install Cassandra ��� 172

Conclusion �� 175

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Chapter 6: Processing �� 177
Stack Architecture ��� 178

Server Preparation �� 179

Mesos and Spark �� 181

Build Mesos Part 1 �� 181

Build Mesos Part 2 �� 182

Build Mesos Part 3 �� 183

Building the Mesos Source �� 184

Starting Mesos �� 186

Installing the HDFS Framework ��� 187

Running Spark ��� 192

DCOS and Spark �� 198

DCOS Build Part 1 �� 198

DCOS Build Part 2 �� 199

DCOS Build Part 3—Install Server ��� 200

DCOS Master Server Install ��� 203

DCOS Agent Server Install ��� 203

User Interfaces �� 204

DCOS CLI Command Install �� 205

Running a Spark Application ��� 209

Problem Tracking ��� 213

Conclusion �� 217

Chapter 7: Streaming �� 219
DCOS Issues �� 221

Port Conflict Issues �� 221

Firewall Issues ��� 222

Network Time Synchronisation �� 223

ZooKeeper Issues �� 224

The Kafka System ��� 225

Installing Kafka ��� 227

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

x

DCOS UI Kafka Install ��� 227

DCOS CLI Kafka Install ��� 232

Kafka Management Using the CLI ��� 236

Kafka Management Using Spark ��� 246

Conclusion �� 257

Chapter 8: Frameworks �� 259
Akka �� 261

OOP Overview �� 261

Distributed Systems Issues ��� 262

Akka Architecture �� 264

Actors �� 267

Networking �� 270

Streams ��� 273

Other Modules ��� 276

Enterprise Offerings��� 277

Netty�� 277

Spring�� 282

RabbitMQ Overview ��� 283

Kafka or RabbitMQ? ��� 284

Messaging Protocols ��� 284

Languages ��� 285

Clustering �� 286

Enterprise Support��� 287

Routing �� 288

Plug-ins ��� 290

Administration ��� 291

Conclusion �� 293

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

xi

Chapter 9: Visualisation ��� 295
Apache Zeppelin ��� 296

Interpreters �� 297

Worked Example �� 299

Graph Options �� 304

Notebook Import �� 307

Dynamic Forms ��� 308

Scheduling Notebook �� 310

Sharing Session Output ��� 311

Helium ��� 312

Multi-user Support �� 316

Possible Extensions ��� 316

Grafana ��� 316

Datadog ��� 324

Conclusion �� 336

Chapter 10: The Big Data Stack �� 339
Hardware Architecture �� 340

Chapter Topics �� 342

Chapter 2 Cloud ��� 343

Chapter 3 Brooklyn �� 343

Chapter 4 Resource Management ��� 344

Chapter 5 Storage �� 345

Chapter 6 Processing �� 345

Chapter 7 Queueing ��� 346

Chapter 8 Frameworks �� 347

Chapter 9 Visualisation �� 347

Table of ConTenTs

xii

Application Architecture �� 348

Application Submission��� 348

Brooklyn and DCOS ��� 349

Stack Monitoring ��� 352

Visualisation �� 354

Cloud or Cluster �� 354

Conclusion �� 355

 Index ��� 357

Table of ConTenTs

xiii

About the Author

Michael Frampton has been in the IT (information

technology) industry since 1990, working in a variety of

roles (tester, developer, support, quality assurance), and

in many sectors (telecoms, banking, energy, insurance).

He has also worked for major corporations and banks as a

contractor and a permanent member of the staff, including

Agilent, BT, IBM, HP, Reuters, and JP Morgan Chase. The

owner of Semtech Solutions, an IT/Big Data consultancy,

Mike Frampton currently lives by the beach in Paraparaumu,

New Zealand, with his wife and son. Mike has a keen interest

in new IT-based technologies and the way that technologies integrate. Being married

to a Thai national, Mike divides his time between Paraparaumu or Wellington in New

Zealand and their house in Roi Et, Thailand.

xv

About the Technical Reviewer

Olav Jordens is the technical lead in the big data space at

a data-driven telco in New Zealand. His experience in big

data has branched out from a decade working in advanced

mathematical modelling in investment banking, to applying

NoSQL systems in health care informatics, to his current role

centered on the Hadoop ecosystems integrated into the core

data center of the telco.

xvii

Acknowledgments

I would like to thank my wife and son without whose support I don’t think a writing

project like this would be possible. I would also like to thank the Apress publishing team

(Rita Fernando, Laura Berendson, Susan McDermott) and the reviewers (Olav Jordens,

Sumit Pal) for their help in developing this book. Finally, I would like to thank all of the

people who gave their time to answer my questions and assist me.

Although I was already aware of the importance of Apache Mesos as a cluster

manager for Apache Spark, I would also like to thank some of the staff at Basho.com. In

the time that this book has taken to develop, Basho ran out of funding and was placed

into receivership. However, I would like to thank former Basho staff members Pavel

Hardak and Stephen Condon. It was while working with them on MARQS (the Mesos/

Riak-based big data stack) that I was inspired to write this book.

xix

Introduction

I have developed this book to investigate Mesos-based cluster development and

integration. I found that data center operating system (DCOS; and it’s command-line

interface [CLI]) was a natural progression from basic Mesos; so you will find that the

later chapters of this book concentrate on that. Within the limits of the funding and

time available to me, I have investigated each element of a Mesos-based big data

stack, starting with a local cloud on Apache CloudStack followed by Apache Brooklyn

for release management. Chapters are topic specific covering Mesos-based resource

management, storage, processing, and queueing. I examine application frameworks like

Akka and Netty; and finally, I cover visualisation.

As with previous book projects, I have taken an integration-based approach,

investigating how to make systems work together. I found that it was quite a challenge

to create a viable and reliable DCOS-based cluster, but the result was worth the effort.

DCOS provides a functionally rich and robust system once the learning curve is

mastered.

This book is aimed at anyone who is interested in big data stacks based on Apache

Mesos and Spark. It would be useful to have some basic knowledge of Centos Linux

and Scala. But don’t be deterred if you don’t; I believe that if you are interested in these

topics and willing to learn, you will succeed. Most chapters contain examples that you

can follow to gain a better understanding. I would advise completing the practical

examples yourself to increase confidence.

This book covers each topic to the extent that time and resources have allowed.

Having completed the book, I am aware that there are many other topics that I would

have liked to have examined such as DCOS framework development, Mesos framework

intercommunication, and Brooklyn releases to DCOS. I hope that I will be able to

address these topics at some point in the future.

In the first chapter, I will provide a fuller introduction to the book architecture and

chapter contents. I will describe the big data stack structure as well as extended topics

such as scaling and “cloud or cluster.”

xx

 Contact the Author
As with previous books, I am happy for people to contact me, although I don’t guarantee

that I will have the time or resources to investigate your problems. Details about my

books can be found on my author page on Amazon by following this link:

amazon.com/Michael-Frampton/e/B00NIQDOOM/

I can also be contacted via the LinkedIn web site at the following address:

nz.linkedin.com/pub/mike-frampton/20/630/385

I am happy for you to connect with me there. I also maintain a series of big-data

based, easy to understand presentations here:

slideshare.net/mikejf12/presentations

Feel free to take a look and even suggest subjects that you might like to see covered.

Finally, you can contact me via my web site (semtech-solutions.co.nz) or email at

info@semtech-solutions.co.nz

I am always interested in new technology, new opportunities, and any type of big

data integration. We all have to earn a living, so if you have any projects that you need

help with, by all means contact me.

Remember that if you encounter problems, try to find your own solution, keep trying

possible solutions, and keep moving. Try joining groups and mailing lists related to the

system that you are having the problem with. Join the community and ask for help as

well as try to help others. By solving your own problems and just “keeping at it,” you will

become a more confident person. If you have a question, try to present it with a number

of possible solutions.

InTroduCTIon

1
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_1

CHAPTER 1

The Big Data Stack
Overview
This is my third big data book, and readers who have read my previous efforts will know

that I am interested in open source systems integration. I am interested because this is

a constantly changing field; and being open source, the systems are easy to obtain and

use. Each Apache project that I will introduce in this book will have a community that

supports it and helps it to evolve. I will concentrate on Apache systems (apache.com)

and systems that are released under an Apache license.

To attempt the exercises used in this book, it would help if you had some

understanding of CentOS Linux (www.centos.org). It would also help if you have some

knowledge of the Java (java.com) and Scala (scala-lang.org) languages. Don’t let these

prerequisites put you off, as all examples will be aimed at the beginner. Commands will

be explained so that the beginner can grasp their meaning. There will also be enough

meaningful content so that the intermediate reader will learn new concepts.

So what is an open source big data stack? It is an integrated stack of big data

components, each of which serves a specific function like storage, resource

management, or queuing. Each component will have a big data heritage and community

to support it. It will support big data in that it will be able to scale, it will be a distributed

system, and it will be robust.

It would also contain some kind of distributed storage, which might be Hadoop or

a NoSQL (non-relational Structured Query Language) database system such as HBase,

Cassandra, or perhaps Riak. A distributed processing system would be required, which in this

case would be Apache Spark because it is highly scalable, widely supported, and contains

a great deal of functionality for in-memory parallel processing. A queuing system will be

required to potentially queue vast amounts of data and communicate with a wide range of

data providers and consumers. Next, some kind of framework will be required to create big

data applications containing the necessary functionality for a distributed system.

http://www.centos.org/

2

Given that this stack will reside on a distributed cluster or cloud, some kind of

resource management system will be required that can manage cluster-based resources,

scale up as well as down, and be able to maximize the use of cluster resources. Data

visualisation will also be very important; data will need to be presentable both as

reports and dashboards. This will be needed for data investigation, collaborative

troubleshooting, and final presentation to the customer.

A stack and big data application release mechanism will be required, which needs

to be cloud and cluster agnostic. It must “understand” the applications used within

the stack as well as multiple cloud release scenarios so that the stack and the systems

developed on top of it can be released in multiple ways. There must also be the

possibility to monitor the released stack components.

I think it is worth reiterating what “big data” is in generic terms, and in the next

section, I will examine what major factors affect big data and how they relate to each

other.

 What Is Big Data?
Big data can be described by its characteristics in terms of volume, velocity, variety, and

potentially veracity as Figure 1-1 shows in the four V’s of big data.

Figure 1-1. The four V’s of big data

Chapter 1 the Big Data StaCk Overview

3

Data volume indicates the overall volume of data being processed; and in big data,

terms should be in the high terabytes and above. Velocity indicates the rate at which data

is arriving or moving via system ETL (extract, transform, and load) jobs. Variety indicates

the range of data types being processed and integrated from flat text to web logs, images,

sound, and sensor data. The point being that over time, these first three V’s will continue

to grow.

If the data volume is created by or caused by the Internet of things (IoT), potentially

sensor data, then the fourth V needs to be considered: veracity. The idea being that

whereas the first three V’s (volume, velocity, and variety) increase, the fourth V (veracity)

decreases. Quality of data can decrease due to data lag and degradation, and so

confidence declines.

While the attributes of big data have just been discussed in terms of the 4 V’s,

Figure 1-2 examines the problems that scaling brings to the big data stack.

Figure 1-2. Data scaling

The figure on the left shows a straight line system resource graph over time with

resource undersupply shown in dark grey and resource oversupply shown in light grey.

It is true the diagram is very generic, but you get the idea: resource undersupply is bad

while oversupply and underuse is wasteful.

The diagram on the right relates to the IoT and sensor data and expresses the idea

that for IoT data over time, order of magnitude resource spikes over the average are

possible.

These two graphs relate to auto scaling and show that a big data system stack must

be able to auto scale (up as well as down). This scaling must be event driven, reactive,

and follow the demand curve closely.

Chapter 1 the Big Data StaCk Overview

www.allitebooks.com

http://www.allitebooks.org

4

Where do relational databases, NoSQL databases, and the Hadoop big data system

sit on the data scale? Well if you image data volume as a horizontal line with zero data on

the left most side and big data on the far right, then Figure 1-3 shows the relationship.

Figure 1-3. Data storage systems

Relational database management systems (RDBMs) such as Oracle, Sybase, SQL

Server, and DB2 reside on the left of the graph. They can manage relatively large data

volumes and single table sizes into the billions of rows. When their functionality is

exceeded, then NoSQL databases can be used such as Sybase IQ, HBase, Cassandra, and

Riak. These databases simplify storage mechanisms by using, for instance, key/value

data structures. Finally, at the far end of the data scale, systems like Hadoop can support

petabyte data volumes and above on very large clusters. Of course this is a very stylized

and simplified diagram. For instance, large cluster-based NoSQL storage systems could

extend into the Hadoop range.

 Limitations of Approach
I wanted to briefly mention the limitations that I encounter as an author when trying

to write a book like this. I do not have funds to pay for cloud-based resources or cluster

time; although a publisher on accepting a book idea will pay an advance, they will not

pay these fees. When I wrote my second book on Apache Spark, I paid a great deal in

AWS (Amazon Web Services) EC2 (Elastic Compute Cloud) fees to use Databricks. I am

hoping to avoid that with this book by using a private cloud and so releasing to my own

multiple rack private cluster.

Chapter 1 the Big Data StaCk Overview

5

If I had the funds and/or corporate sponsorship, I would use a range of cloud-based

resources from AWS, SoftLayer, CloudStack, and Azure. Given that I have limited funds,

I will create a local private cloud on my local cluster and release to that. You the reader

can then take the ideas presented in this book and extend them to other cloud scenarios.

I will also use small-data volumes, as in my previous books, to present big data ideas.

All of the open source software that I demonstrate will scale to big data volumes. By

presenting them by example with small data, the audience for this book grows because

ordinary people outside of this industry who are interested to learn will find that this

technology is within their reach.

 Why a Stack?
You might ask the question why am I concentrating on big data stacks for my third book?

The reason is that an integrated big data stack is needed for the big data industry. Just

as the Cloudera Distribution Including Apache Hadoop (CDH) stack benefits from the

integration testing work carried out by the BigTop project, so too would stack users

benefit from preintegration stack test reliability.

Without precreated and tested stacks, each customer has to create their own and

solve the same problems time and again, and yes, there will be different requirements

for storage load vs. analytics as well as time series (IoT) data vs. traditional non-IoT data.

Therefore, a few standard stacks might be needed or a single tested stack with guidance

provided on how and when to swap stack components.

A pretested and delivered stack would provide all of the big data functionality that

a project would need as well as example code, documentation, and a user community

(being open source). It would allow user projects to work on application code and allow

the stack to provide functionality for storage, processing, resource management, queues,

visualisation, monitoring, and release. It may not be as simple as that, but I think that

you understand the idea! Preintegrate, pretest, and standardize.

Given that the stack examined in this book will be based on Hadoop and NoSQL

databases, I think it would be useful to examine some example instances of NoSQLs. In

the next section, I will provide a selection of NoSQL database examples providing details

of type, URL, and license.

Chapter 1 the Big Data StaCk Overview

6

 NoSQL Overview
As this book will concentrate on Hadoop and NoSQL for big data stack storage, I

thought it would be useful to consider what the term NoSQL means in terms of storage

and provide some examples of possible types. A NoSQL database is non-relational; it

provides a storage mechanism that has been simplified when compared to RDBMs like

Oracle. Table 1-1 lists a selection of NoSQL databases and their types.

Table 1-1. NoSQL Databases and Their Types

Name Type URL License

accumulo column accumulo.apache.org apache v2

Cassandra column cassandra.apache.org apache v2

CouchDB document couchdb.apache.org apache v2

hbase column hbase.apache.org apache v2

MongoDB document mongodb.org Dual gNU

Neo4j graph neo4j.com Dual gpLv3

OrientDB key/value orientdb.com apache v2

riak tS key/value basho.com apache v2

titan graph titan.thinkaurelius.com apache v2

More information can be found by following the URLs listed in this table. The point

I wanted to make by listing these example NoSQL databases is that there are many

types available. As Table 1-1 shows, there are column, document, key/value, and graph

databases among others. Each database type processes a different datatype and so uses a

specific format. In this book, I will concentrate on column and key/value databases, but

you can investigate other databases as you see fit.

Having examined what the term NoSQL means and what types of NoSQL database

are available, it will be useful to examine some existing development stacks. Why were

they created and what components do they use? In the next section, I will provide details

of some historic development and big data stacks.

Chapter 1 the Big Data StaCk Overview

accumulo.apache.org
cassandra.apache.org
couchdb.apache.org
hbase.apache.org
http://mongodb.org
http://neo4j.com
http://orientdb.com
http://basho.com
http://titan.thinkaurelius.com

7

 Development Stacks
This section will not be a definitive guide to development stacks but will provide some

examples of existing stacks and explain their components.

 LAMP Stack
The LAMP stack is a web development stack that uses Linux, Apache web server, MySQL

database, and the PHP programming language. It allows web-based applications and

web sites with pages derived from database content to be created. Although LAMP uses

all open-source components, the WAMP stack is also available, which uses MS Windows

as an operating system.

 MEAN Stack
The MEAN stack uses the MongoDB NoSQL database for storage; it also uses Express.

js as a web application framework. It uses Angular.js as a model view controller (MVC)

framework for running scripts in web browser Javascript engines; and finally, this stack

uses Node.js as an execution environment. The MEAN stack can be used for building

web-based sites and applications using Javascript.

 SMACK Stack
The SMACK stack uses Apache Spark, Mesos, Akka, Cassandra, and Kafka. Apache Spark

is the in-memory parallel processing engine, while Mesos is used to manage resource

sharing across the cluster. Akka.io is used as the application framework, whereas Apache

Cassandra is used as a linearly scalable, distributed storage option. Finally, Apache Kafka

is used for queueing, as it is widely scalable and supports distributed queueing.

 MARQS Stack
The last stack that I will mention in this section is Basho’s MARQS big data stack that

will be based on their Riak NoSQL database. I mention it because Riak is available in

both KV (Key Value) and TS (Time Series) variants. Given that the data load from

the IoT is just around the corner, it would seem sensible to base a big data stack on a

TS- based database, Riak TS. This stack uses the components Mesos, Akka, Riak, Kafka

for Queueing, and Apache Spark as a processing engine.

Chapter 1 the Big Data StaCk Overview

8

In the next section, I will examine this book’s contents chapter by chapter so that you

will know what to expect and where to find it.

 Book Approach
Having given some background up to this point, I think it is now time to describe the

approach that will be taken in this book to examine the big data stack. I always take a

practical approach to examples; if I cannot get an install or code-based example to work,

it will not make it into the book. I will try to keep the code examples small and simple

so that they will be easy to understand and repeat. A download package will also be

available with this book containing all code.

The local private cluster that I will use for this book will be based on CentOS

Linux 6.5 and will contain two racks of 64-bit machines. Figure 1-4 shows the system

architecture; for those of you who have read my previous books, you will recognize the

server naming standard.

Figure 1-4. Cluster architecture

Chapter 1 the Big Data StaCk Overview

9

Because I expect to be using Hadoop at some point (as well as NoSQLs) for storage in

this book, I have used this server naming standard. The string “hc4” in the server name

means Hadoop cluster 4; the r value is followed by the rack number, and you will see

that there are two racks. The “m” value is followed by the machine number so the server

hc4r2m4 is machine 4 in rack 2 of cluster 4.

The server hc4nn is the name node server for cluster 4; it is the server that I will use

as an edge node. It will contain master servers for Hadoop, Mesos, Spark, and so forth. It

will be the server that hosts Brooklyn for code release.

In the rest of this book, I will present a real example of the generic big data stack

shown in Figure 1-5. I will start by creating a private cloud and then move on to installing

and examining Apache Brooklyn. After that, I will use each chapter to introduce one

piece of the big data stack, and I will show how to source the software and install it. I will

then show how it works by simple example. Step by step and chapter by chapter, I will

create a real big data stack.

I won’t consider Chapter 1, but it would be useful I think to consider what will be

examined in each chapter so that you will know what to expect.

 Chapter 2 – Cloud Storage
This chapter will involve installing a private cloud onto the local cluster using Apache

CloudStack. As already mentioned, this approach would not be used if there were greater

funds available. I would be installing onto AWS, Azure, or perhaps SoftLayer. But given

the funding available for this book, I think that a local install of Apache CloudStack is

acceptable.

 Chapter 3 – Release Management – Brooklyn
With the local cloud installed, the next step will be to source and install Apache

Brooklyn. Brooklyn is a release management tool that uses a model, deploy, and monitor

approach. It contains a library of well-known components that can be added to the

install script. The install is built as a Blueprint; if you read and worked through the

Titan examples in my second book, you will be familiar with Blueprints. Brooklyn also

understands multiple release options and therefore release locations for clouds such

as SoftLayer, AWS, Google, and so forth. So by installing Brooklyn now, in following

chapters when software is needed, Brooklyn can be used for the install.

Chapter 1 the Big Data StaCk Overview

10

This is somewhat different from the way in which Hadoop was installed for the

previous two books. Previously, I had used CDH cluster manager to install and monitor

a Hadoop-based cluster. Now that Brooklyn has install and monitoring capability, I

wonder, how will it be integrated into cluster managers like CDH?

 Chapter 4 – Resource Management
For resource management, I will use Mesos (mesos.apache.org) and will examine

the reasons why it is used as well as how to source and install it. I will then examine

mesosphere.com and see how Mesos has been extended to include DNS (domain name

system) and Marathon for process management. There is an overlap of functionality here

because Mesos can be used for release purposes as well as Brooklyn, so I will examine

both and compare. Also, Mesosphere data center operating system (DCOS) provides

a command-line interface (CLI). This will be installed and examined for controlling

cluster-based resources.

 Chapter 5 – Storage
I intend to use a number of storage options including Hadoop, Cassandra, and Riak. I

want to show how Brooklyn can be used to install them and also examine how data can

be moved. For instance, in a SMACK (Spark/Mesos/Application Framework/Cassandra/

Kafka) architecture, it might be necessary to use two Cassandra clusters. The first would

be for ETL-based data storage, while the second would be for the analytics work load.

This would imply that data needs to be replicated between clusters. I would like to

examine how this can be done.

 Chapter 6 – Processing
For big data stack data processing, I am going to use Apache Spark; I think it is maturing

and very widely supported. It contains a great deal of functionality and can connect

(using third-party connectors) to a wide range of data storage options.

Chapter 1 the Big Data StaCk Overview

11

 Chapter 7 – Streaming
I am going to initially concentrate on Apache Kafka as a big data distributed queueing

mechanism. I will show how it can be sourced, installed, and configured. I will then

examine how such an architecture might be altered for time series data. The IoT is just

around the corner, and it will be interesting to see how time series data queueing could

be achieved.

 Chapter 8 – Frameworks
In terms of application frameworks, I will concentrate on spring.io and akka.io, source

and install the code, examine it, and then provide some simple examples.

 Chapter 9 – Data Visualisation
For those of you who read the Databricks chapters in my second Spark-based book,

this chapter will be familiar. I will source and install Apache Zeppelin, the big data

visualsation system. It uses a very similar code base to databricks.com and can be used

to create collaborative reports and dashboards.

 Chapter 10 – The Big Data Stack
Finally, I will close the book by examining the fully built, big data stack created by

the previous chapters. I will create and execute some stack-based application code

examples.

 The Full Stack
Having described the components that will be examined in the chapters of this book,

Figure 1-5 shows an example big data stack with system names in white boxes.

Chapter 1 the Big Data StaCk Overview

12

These are the big data systems that will be examined in this book to make an

example of a big data stack reality. Of course there are many other components that

could be used, and it will depend on the needs of your project and new projects that are

created by the ever-changing world of apache.org.

In terms of storage, I have suggested HDFS (Hadoop Distributed File System),

Riak, Cassandra, and Hbase as examples. I suggest these because I know that Apache

Spark connectors are available for the NoSQL databases. I also know that examples

of Cassandra data replication are easily available. Finally, I know that Basho are

positioning their Riak TS database to handle time series data and so will be well

positioned for the IoT.

I have suggested Spark for data processing and Kafka for queuing as well as Akka

and Spring as potential frameworks. I know that Brooklyn and Mesos have both release

and monitoring functionality. However, Mesos is becoming the standard for big data

resource management and sharing, so that is why I have suggested it.

I have suggested Apache Zeppelin for data visualisation because it is open source

and I was impressed by databricks.com. It will allow collaborative, notebook-based data

investigation leading to reports and dashboards.

Finally, for the cloud, I will use Apache CloudStack; but as I said, there are many

other options. The intent in using Brooklyn is obviously to make the install cloud

agnostic. It is only my lack of funds that force me to use a limited local private cloud.

Figure 1-5. The big data stack

Chapter 1 the Big Data StaCk Overview

13

 Cloud or Cluster
The use of Apache Brooklyn as a release and monitoring system provides many release

opportunities in terms of supported cloud release options as well as local clusters.

However, this built-in functionality, although being very beneficial, causes the question

of “cloud vs. cluster” to require an immediate answer. Should I install to a local cluster or

a cloud provider? And if so, what are the criteria that I should use to make the choice? I

tried to begin to answer this in a presentation I created under my SlideShare space.

slideshare.net/mikejf12/cloud-versus-physical-cluster

What factors should be used to make the choice between a cloud-based system, a

physical cluster, or a hybrid system that may combine the two? The factor options might

be the following:

• Cost

• Security

• Data volumes/velocity

• Data peaks/scaling

• Other?

There should be no surprise here that most of the time it will be cost factors that

cause the decision to be made. However, in some instances, the need for a very high level

of security might cause the need for an isolated physical cluster.

As already explained in the previous section, which describes big data where there

is a periodic need to scale capacity widely, it might be necessary to use a cloud-based

service. If periodic peaks in resource demand exist, then it makes sense to use a cloud

provider, as you can just use the extra resource when you need it.

If you have a very large resource demand in terms of either physical data volume or

data arriving (velocity), it might make sense to use a cloud provider. This avoids the need

to purchase physical cluster-based hardware. However, depending on the actual size,

this might not be the saving that it appears to be. For very large volumes, many cloud

providers require that you contract for a fixed period, potentially over a number of years.

I have added an “Other” option in the preceding list because there may be other

considerations that will affect your choice of service. For instance, you might choose the

SoftLayer cloud provider because you need physical, cloud-based, “bare metal” rather

than virtual servers to squeeze that extra bit of performance from your Spark cluster.

Chapter 1 the Big Data StaCk Overview

14

If cost is your main priority, as it probably will be, make sure that you completely

understand all of the costs involved for each option. Remember to add in the costs to

move off of a physical cluster as well as a cloud-based system into your calculations.

Remember that most cloud-based providers will charge you to move your data off of

their systems. This cost could be considerable depending on the volume involved.

Try also to research what your competitor and brother companies are doing when

making this choice. If they have moved to the cloud only to later move back to a co-

located/shared physical cluster, investigate why they made the choice so that you can

avoid making a costly mistake.

So in closing this section, I will say that you should do some thorough research

before making a choice. If you are concentrating on cost, and you likely will be, then try

to make a list of items to consider for each option you look at, such as the following:

• Costs to move data

• Costs to mothball system

• Costs associated with location

• Taxes/tax benefits

• Any vendor lock in involved?

• Cost of hardware

• Cost of hardware failures

• Energy and rental

• Personnel costs

• Data transmission

• Networking

• Other?

There will always be other costs, so try to build your lists and from there your

multiyear spreadsheets to compare your options. Do the work to compare the choice

of cloud vs. cluster so that you can logically support your choice from the data that you

have accumulated.

Chapter 1 the Big Data StaCk Overview

15

 The Future
The aim of this book is to show how a big data stack might be created and what

components might be used. It attempts to do this with currently available Apache

full and incubating systems. The aim is to introduce these components by example

and show how they might work together. I think that in the very near future, some of

the biggest participants in the big data scene will take this kind of approach to make

an investigation like this a reality. They will create open-sourced big data stacks for

IoT and analytics that will be thoroughly tested and can be trusted. They will enrich

the basic components by providing extra example code and documentation. Finally,

their approach will make sense and be adopted because user projects will save money

through reuse and reduced configuration and coding.

Although I may not be able to create a fully integrated and tested big data stack in

the short time available, they will create stacks for big data time series and analytics. I

think that technologies such as Mesos, Spark, Kafka, and Zeppelin as well as NoSQL are

important and will be used in such a stack.

Chapter 1 the Big Data StaCk Overview

17
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_2

CHAPTER 2

Cloud Storage
In this chapter, I will source and install Apache CloudStack onto my physical cluster.

Remember I am not suggesting that this is the best choice for cloud-based processing;

it is just because my resources are limited, and I want to examine cloud-based installs

using Apache Brooklyn as well as physical cluster-based installs.

I have included the big data stack diagram from Chapter 1 here to remind the

reader where Apache CloudStack fits into the architecture (see Figure 2-1). It provides

a cloud installed on physical servers, and Apache Brooklyn can then be used for system

component release to that cloud.

Although this chapter involves the install of Apache CloudStack, it should not be

considered to be an in-depth reference. In this chapter, I will show how to source and

install CloudStack as well as examine it’s functionality to understand it and keep it

running. The primary purpose here is to create a cheap and highly functional cloud that

can be used locally and let the rest of the book progress. For those people who want

more detail on CloudStack, please check the Apache-based project web site at

cloudstack.apache.org

Figure 2-1. The big data stack

18

This will provide further documentation as well as connect you with the project

community so that you can investigate and ask questions. Before diving straight into

Linux server preparation, I thought it might be useful to examine some of the concepts

on which Apache CloudStack is based. The next section will cover this briefly; for further

information, examine the CloudStack web site.

 CloudStack Overview
Apache CloudStack is an enterprise-level, open-source system for setting up highly

scalable infrastructure as a service (IaaS) systems. CloudStack can scale to many

thousands of servers and support geographically distributed data centers. CloudStack

uses hypervisor software on each server to support virtualisation. At the time of this

writing, the current version of CloudStack is 4.10.0.0, and the supported hypervisors are

as shown in Table 2-1.

To give an overview of CloudStack, its architecture, and terms, I will use an

architectural diagram based on the docs.cloudstack.apache.org web page as shown in

Figure 2-2.

Table 2-1. CloudStack Supported Hypervisors

Hypervisor Type/Provider URL

BareMetal (via IPMI) Standard various implementors

Hyper-V Microsoft microsoft.com

KVM Open Source linux-kvm.org

LXC GNU LGPLv2.1+ linuxcontainers.org

vSphere (via vCenter) VMware vmware.com

Xenserver Open Source xenserver.org

Xen Project Open Source xenproject.org

CHaPter 2 CLOUd StOraGe

http://microsoft.com
http://linux-kvm.org
http://linuxcontainers.org
http://vmware.com
http://xenserver.org
http://xenproject.org

19

The CloudStack IaaS system is described in terms of regions, zones, pods, clusters,

hosts, and primary/secondary storage. Regions are the largest organisational unit within

CloudStack and a means of providing fault tolerance and disaster recovery. A region is

a grouping of zones in the same geographical area. A zone can be considered to be a

data center and may contain one or more pods as well as secondary storage. Secondary

storage can be shared by all of the pods within the zone. Zones can be public or private,

with public zones being visible to all users.

Pods are equivalent to racks and are contained within zones; all hosts within the pod

are on the same subnet. Pods contain one or more clusters and one or more primary

storage servers. A cluster within CloudStack provides a means to group hosts. For

instance, there might be multiple types of hypervisor used, so there would be a group of

KVM (Kernel-based Virtual Machine) hosts as well as a XenServer server pool.

A host is the smallest organisational unit within CloudStack and represents a single

server that will have hypervisor software like KVM installed. Hosts provide resources

to support virtual machines. While hosts may be from different manufacturers and

in different locations, all of the hosts in a single cluster must have the same resource

features, that is, CPU, RAM, and so forth.

Figure 2-2. CloudStack architecture

CHaPter 2 CLOUd StOraGe

20

Having given a brief overview of CloudStack, it is now time to attempt to install the

management and agent software for CloudStack. Before this can be done, there are

prerequisites that are required on each host. In the next section, I will examine these

prerequisites and show what must be installed for CloudStack to operate correctly.

 Server Preparation
The current server preparation guide for CloudStack can be found at the cloudstack.

apache.org web site by following these steps:

• Go to cloudstack.apache.org

• Choose Menu Documentation ➤ Installation Docs

Before working through a server checklist for server preparation, it makes sense

to consider the minimum system requirements for both the management servers and

cluster hosts for CloudStack. From the “Installation Docs” page selected previously,

it is possible to select the option “Minimum System Requirements” under “General

Installation.” The next section will consider these requirements.

 Minimum System Requirements
This section will cover the requirements for both the management server and the

hypervisor host servers.

 Management Server Requirements

The requirements for a management server for CloudStack are as follows:

• Operating System

• CentOS/RHEL 6.3+ or Ubuntu 14.04(.2)

• I will be using CentOS Linux 6.8

• Server type and cores

• 64-bit x86 CPU (more cores results in better performance)

• Memory

• 4 GB minimum

CHaPter 2 CLOUd StOraGe

21

• Storage

• 250 GB minimum, 500 GB recommended

• Network

• At least one network interface controller (NIC)

• IP (Internet protocol) addressing

• Must be statically allocated

• Hostname

• Must use fully qualified domain name (FQDN)

 Hypervisor Host Requirements

The requirements for a hypervisor server for CloudStack are as follows:

• Must support HVM (hardware virtual machine; Intel-VT or AMD-V

enabled)

• Enable in BIOS (basic input/output system) under processor

menu

• Server type and cores

• 64-bit x86 CPU (more cores results in better performance)

• Memory

• 4 GB minimum

• Storage

• 36 GB minimum

• Network

• At least one NIC

All hypervisor hot fixes must have been applied to the server, and there must be no

virtual machines running when CloudStack is installed. Also, recall from the overview

that all servers within a CloudStack cluster must be homogeneous. This means that they

must all have the same characteristics—that is, the same CPU, hard disk size, memory,

and so forth.

CHaPter 2 CLOUd StOraGe

22

Having worked through these lists and checked that the servers are ready for

CloudStack, it is time to do some server preparation prior to software installs. The

documentation for this can be found on the CloudStack site as follows:

 1. Go to cloudstack.apache.org

 2. Choose Menu Documentation ➤ Installation Docs

 3. Left Hand Menu ➤ Quick Installation Guide for CentOS 6

The following sections describe the server preparation checklist options.

 Check CentOS Install
Given that I am using CentOS Linux for this project, there is a minimum requirement of

CentOS version 6.3. I can check this from the server hc4nn using the cat command to list

the contents of the /etc/centos-release file.

[hadoop@hc4nn ~]$ cat /etc/centos-release

CentOS release 6.8 (Final)

 Secure Shell (SSH) Access
During CloudStack installation, it is necessary to be able to SSH between servers as root.

This option should be disabled when a system moves into production. The following

commands show how this is checked:

[hadoop@hc4nn ~]$ su -

Password:

[root@hc4nn ~]# ssh hc4r1m1

Last login: Sat May 7 15:19:48 2016 from 192.168.1.103

[root@hc4r1m1 ~]# exit

logout

Connection to hc4r1m1 closed.

I have used the Linux su (switch user) command to switch the user from the Hadoop

account to root. Then I have accessed the server hc4r1m1 via an SSH session as root.

Having done this successfully, I have received a session prompt on that server.

I have used the exit command to exit the remote server SSH session. Passwordless SSH

CHaPter 2 CLOUd StOraGe

23

login can be set up using the SSH-based commands ssh-keygen and ssh-copy-id. The

ssh-keygen command will create a set of cryptographic keys, whereas the ssh-copy-id

command can be used to copy those keys to a remote server. Check Red Hat Enterprise

Linux (RHEL)/CentOS sites for the steps to configure passwordless SSH login.

 Configure Network
I generally configure the network interface for my servers from the machine console;

so to meet the minimum network interface option, I know that I have eth0 (Ethernet

instance 0) available. I can check this using the Linux ifconfig command as shown here.

[root@hc4nn sysconfig]# ifconfig

eth0 Link encap:Ethernet HWaddr D4:85:64:14:0E:30

 inet addr:192.168.1.109 Bcast:192.168.1.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:816 errors:0 dropped:0 overruns:0 frame:0

 TX packets:417 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:84458 (82.4 KiB) TX bytes:64590 (63.0 KiB)

 Interrupt:19 Memory:f0500000-f0520000

As the root user on host hc4nn, I have used the ifconfig command to ensure that

the eth0 NIC exists and is running.

 Check Hostname FQDN
Many systems require not just a server name to be defined but an associated domain

name as well. When preparing my servers, I set this up by default.

[root@hc4nn sysconfig]# grep hc4nn /etc/hosts

192.168.1.109 hc4nn.semtech-solutions.co.nz hc4nn

[root@hc4nn sysconfig]# hostname --fqdn

hc4nn.semtech-solutions.co.nz

CHaPter 2 CLOUd StOraGe

24

The Linux grep (global regular expression print) command here shows how the

entry for hc4nn has been defined in the file /etc/hosts, IP address followed by long name

then a short name. The Linux hostname command with a --fqdn switch ensures that the

fully qualified domain name is defined.

 Configure SELinux
To install CloudStack, SELinux (Security Enhanced Linux) needs to be in permissive

mode, so some changes need to be made to the file /etc/selinux/config.

[root@hc4nn ~]# cd /etc/selinux; cat config

This file controls the state of SELinux on the system.

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.

disabled - SELinux is fully disabled.

SELINUX=permissive

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Only targeted network daemons are protected.

strict - Full SELinux protection.

SELINUXTYPE=targeted

To make SELinux change to permissive mode in the current session, use the

setenforce (set enforcement) command (shown following) if SELinux is not disabled.

[root@hc4nn selinux]# setenforce 0

Otherwise these changes will take effect when the server is rebooted.

 Configure NTP
The NTP (Network Time Protocol) service needs to be installed so that all cloud server

clocks can be synchronized. This service is installed using the yum (Yellowdog updater,

modified) command using the root account as follows. The -y switch avoids the need for

confirmation during the install:

[root@hc4nn selinux]# yum -y install ntp

CHaPter 2 CLOUd StOraGe

25

I won’t paste the yum command output here—as long as the command finishes

with the “Complete!” line, then you have succeeded. Now ensure that the NTP service

starts when the server starts by using the chkconfig command with the service name

"ntpd" and the on switch. Finally, start the service using the service command with

the start switch.

[root@hc4nn selinux]# chkconfig ntpd on

[root@hc4nn selinux]# service ntpd start

Starting ntpd: [OK]

 Configure CloudStack Package Repository
To install CloudStack using the Linux yum command, it is necessary to provide a

configuration file for yum so that it knows how to source the install. The following

command shows the file cloudstack.repo being created under /etc/yum.repos.d using

the vi command:

[root@hc4nn ~]# vi /etc/yum.repos.d/cloudstack.repo

[cloudstack]

name=cloudstack

baseurl=http://cloudstack.apt-get.eu/centos/6/4.9/

enabled=1

gpgcheck=0

The contents of the file indicate the remote server to use when sourcing software

using yum as well as the system name and version to source.

 Configure NFS (Network File System)
I am following the Apache CloudStack quick install guide, which advises to set up

primary and secondary file system mounts for storage purposes. I plan to create these

file systems on the server hc4nn, which I will reserve as the cloud master host. All of

the servers from rack one of my cluster will then be added to the cloud as hypervisor

host resources. The primary and secondary storage directories from the cloud master

CHaPter 2 CLOUd StOraGe

26

host will be mounted onto those hosts. To set this up and test it, the network file system

utilities package must be installed using yum as follows:

[root@hc4nn ~]# yum -y install nfs-utils

Two directories are created under the root partition for CloudStack primary and

secondary storage using the Linux mkdir command on the server hc4nn as follows. The

-p switch causes mkdir to create all parent directories as needed:

[root@hc4nn ~]# mkdir -p /export/primary

[root@hc4nn ~]# mkdir /export/secondary

The /etc/exports file is then modified by adding the following lines to make sure that

these directories are available as mounts:

vi /etc/exports

/export/secondary *(rw,async,no_root_squash,no_subtree_check)

/export/primary *(rw,async,no_root_squash,no_subtree_check)

(Consult the RHEL/CentOS documentation for the various options.)

Now export the /exports directory using the exportfs command in the current session.

[root@hc4nn ~]# exportfs -a

NFS V4 on CentOS 6.x needs the client domain setting to be the same on all servers.

Edit the file /etc/idmapd.conf and set the domain setting to be the server domain name

as follows. (Change this value to match your server domain name.) Do this on the

management server hc4nn and the hypervisor hosts:

vi /etc/idmapd.conf

Domain = semtech-solutions.co.nz

Now edit the NFS file /etc/sysconfig/nfs and uncomment the following lines used to

define port values:

vi /etc/sysconfig/nfs

LOCKD_TCPPORT=32803

LOCKD_UDPPORT=32769

MOUNTD_PORT=892

RQUOTAD_PORT=875

STATD_PORT=662

STATD_OUTGOING_PORT=2020

CHaPter 2 CLOUd StOraGe

27

To ensure that the Linux server firewall will accept these changes, modify the file

/etc/sysconfig/iptables and add the following lines at the end of the file. Make sure that

the “COMMIT” line in this file terminates the file. Normally during a non-production

server install, I would switch off the iptables firewall. However, to function correctly

during the install, iptables must be enabled:

vi /etc/sysconfig/iptables

Add entries for Apache Cloudstack4.9

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p udp --dport 111 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 111 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 2049 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 32803 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p udp --dport 32769 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 892 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p udp --dport 892 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 875 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p udp --dport 875 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p tcp --dport 662 -j ACCEPT

-A INPUT -s 192.168.1.0/24 -m state --state NEW -p udp --dport 662 -j ACCEPT

Make sure that you change the preceding IP address to match your servers. Now the

firewall service iptables can be restarted to pick up these changes using the Linux service

command as root:

[root@hc4nn ~]# service iptables restart; chkconfig iptables on

The rpc and nfs services also need to be started in the same way, and then the server

must be rebooted. Do this on the hypervisor host and the master on which the manager

file systems will be mounted.

[root@hc4nn ~]# service rpcbind restart; service nfs restart

[root@hc4nn ~]# chkconfig rpcbind on; chkconfig nfs on

[root@hc4nn ~]# reboot

After the reboot, the primary and secondary file systems must be mounted (and then

unmounted) on the hypervisor host to test that the configuration is good. It is important

to carry out this section correctly and ensure that the mounts work to avoid many

storage-related problems later.

CHaPter 2 CLOUd StOraGe

28

[root@hc4nn ~]# mkdir /primary

[root@hc4nn ~]# mount -t nfs4 hc4nn:/export/primary /primary

[root@hc4nn ~]# df -kh

Filesystem Size Used Avail Use% Mounted on

/export/primary 186G 917M 176G 1% /primary

[root@hc4nn ~] umount /primary

[root@hc4nn ~] mkdir /secondary

[root@hc4nn ~] mount -t nfs4 hc4nn:/export/secondary /secondary

[root@hc4nn ~]# df -kh

Filesystem Size Used Avail Use% Mounted on

/export/secondary 186G 917M 176G 1% /secondary

[root@hc4nn ~] umount /secondary

This test is most useful when adding a new host to the cluster; it tests that the storage

mounts on the storage server can be mounted on the new host. With these prerequisites

taken care of, the CloudStack management server can be installed. This will be

attempted in the next section.

 CloudStack Server Install
To maintain server metadata, the CloudStack management server uses a MySQL

instance. So before the management server is installed, MySQL will be installed and

configured. These steps will be carried out on the management server hc4nn.

 MySQL Server Install
MySQL will be installed using the Linux yum command as root:

[root@hc4nn ~]# yum -y install mysql-server

A successful install finishes with the “Complete!” line, and it is now time to configure

the install. I will use the same settings as defined on the CloudStack quick install guide.

The file my.cnf under /etc needs to be changed as following via the root account using vi:

[root@hc4nn ~]# vi /etc/my.cnf

CHaPter 2 CLOUd StOraGe

29

The file section called “mysqld” needs to be extended with the following options

innodb_rollback_on_timeout=1

innodb_lock_wait_timeout=600

max_connections=350

log-bin=mysql-bin

binlog-format = 'ROW'

The chkconfig command is then used to ensure the MySQL server mysqld starts on

server reboot using the “on” switch. The server is then started using the Linux service

command with the start option.

[root@hc4nn ~]# chkconfig mysqld on

[root@hc4nn ~]# service mysqld start

Starting mysqld: [OK]

 MySQL Connector Installation
Now the MySQL python connector needs to be installed. Create a repository

configuration file called mysql.repo using the vi command as shown here:

vi /etc/yum.repos.d/mysql.repo

[mysql-connectors-community]

name=MySQL Community connectors

baseurl=http://repo.mysql.com/yum/mysql-connectors-community/

el/$releasever/$basearch/

enabled=1

gpgcheck=1

Note that gpgcheck has been enabled for the mysql connector in the preceding

file (gpgcheck=1), so a gpg (GNU Privacy Guard) key needs to be imported. Import the

public GPG key from the MySQL repository to enable the install to be verified.

rpm --import http://repo.mysql.com/RPM-GPG-KEY-mysql

Then install the python MySQL connector using the yum command with a “-y” switch:

yum -y install mysql-connector-python

Now that MySQL is installed, the CloudStack management server that uses it can be

installed.

CHaPter 2 CLOUd StOraGe

30

 Management Server Installation
The management server will be installed using the yum command as the root user; the

install will refer to the repo configuration file that was created earlier.

[root@hc4nn ~]# yum -y install cloudstack-management

With the Apache CloudStack Manager software installed, the Manager MySQL

database can be set up using the following command:

[root@hc4nn ~]# cloudstack-setup-databases cloud:password@localhost

--deploy-as=root

You should see a success line that states that the database has been set up and that

identifies the db.properties file as following:

CloudStack has successfully initialized database, you can check your

database configuration in

/etc/cloudstack/management/db.properties

The CloudStack management server installation can now be finalized by using the

following script as root:

[root@hc4nn ~]# cloudstack-setup-management

If this script runs successfully, you should see the line

CloudStack Management Server setup is Done!

Given that the Apache CloudStack management server is now installed, thought

must be given to system template installation. This will be examined next.

 System Template Setup
The CloudStack quick start guide now advises that system templates need to be

downloaded to support various hypervisors. These will be downloaded with the

following command:

[root@hc4nn ~]# cd /usr/share/cloudstack-common/scripts/storage/secondary/

[root@hc4nn ~]# ./cloud-install-sys-tmplt\

 -m /export/secondary\

CHaPter 2 CLOUd StOraGe

31

 -u http://cloudstack.apt-get.eu/systemvm/4.6/systemvm64template-4.6.0-kvm.

qcow2.bz2\

 -h kvm -F

The backslash characters that terminate the preceding command lines just allow the

command to be split across multiple lines and make it easier to comprehend. The resulting

templates are stored to the directory /export/secondary/template on the local server.

That concludes the Apache CloudStack server install. Now it is time to install a

KVM hypervisor to support virtual instances. In the next section, I will show how this

can be done.

 KVM Setup and Installation
Apache CloudStack supports many types of hypervisors, as previously mentioned,

to enable virtual machines to be created and run on cloud hosts. In this example of

a hypervisor install, I will use KVM; as we are on a CentOS 6.x Linux host, it seems

appropriate. KVM means Kernel-based Virtual Machine, and it is available as part of the

CentOS 6.x install. The steps provided in this section must be carried out on the hosts

that will be added to the cloud that we create. I will execute these commands on the

server hc4nn.

Again, I will follow the CloudStack KVM Hypervisor quick install steps to complete

this KVM install. There are a number of points to be considered, and they are discussed

in the following sections.

 Prerequisites
The prerequisites for this host have already been met, but if the KVM hypervisor is

installed on other cloud hosts, then the following points must be considered. Use the

“Minimum System Requirements” section to make the necessary changes.

• The network must be configured.

• The hostname must be defined in FQDN format.

• SELinux must be configured as permissive.

• NTP must be installed.

• The CloudStack package repository file must be installed.

CHaPter 2 CLOUd StOraGe

32

 Create Repository File
The CloudStack repository file must be created on the hypervisor host so that the

CloudStack agent can be installed:

[root@hc4nn ~]# vi /etc/yum.repos.d/cloudstack.repo

[cloudstack]

name=cloudstack

baseurl=http://cloudstack.apt-get.eu/centos/6/4.9/

enabled=1

gpgcheck=0

 KVM Installation
The KVM hypervisor agent can be installed as root using yum with the following

command:

[root@hc4nn ~]# yum -y install cloudstack-agent

With the agent installed, KVM now needs to be configured, and there are a few parts

to this.

 KVM QEMU (Quick Emulator) Configuration
KVM uses the Linux libvirt (library virtualisation) library to support virtualisation,

and it is the qemu hypervisor driver within the libvirt library that needs to be

configured. The file /etc/libvirt/qemu.conf needs to be modified so that the

following line exists and is not commented out. Make sure that the double quotes

shown here exist:

[root@hc4nn ~]# vi /etc/libvirt/qemu.conf

vnc_listen="0.0.0.0"

CHaPter 2 CLOUd StOraGe

33

 Libvirt Configuration
The libvirt, installed as part of the agent install, now needs to be configured to listen for

unsecured tcp (Transmission Control Protocol) connections. This is possible by making

the following changes to the libvirt deamon file /etc/libvirt/libvirtd.conf:

[root@hc4nn ~]# vi /etc/libvirt/libvirtd.conf

listen_tls = 0

listen_tcp = 1

tcp_port = "16059"

auth_tcp = "none"

mdns_adv = 0

The parameters sent to the libvirt deamon also need to be changed in the file

/etc/sysconfig/libvirtd. The following line needs to be uncommented:

[root@hc4nn ~]# vi /etc/sysconfig/libvirtd

LIBVIRTD_ARGS="--listen"

Finally, the libvirtd service needs to be restarted to pick up these changes as root

as follows:

[root@hc4nn ~]# chkconfig libvirtd on; service libvirtd restart

Stopping libvirtd daemon: [OK]

Starting libvirtd daemon: [OK]

 Check KVM Running
Now it is possible to check that the KVM hypervisor is running using the Linux lsmod

command and grepping the output for the string “kvm.” As shown here, all seems to be

working:

[root@hcnn secondary]# lsmod | grep kvm

kvm_intel 55464 0

kvm 345038 1 kvm_intel

To add a server to an Apache CloudStack cluster, the KVM installation section needs

to be completed (assuming the hypervisor is KVM). This starts with the installation of

the CloudStack agent software.

CHaPter 2 CLOUd StOraGe

34

 Host Naming
It is also necessary to ensure that the host is named correctly and has an entry in the

/etc/hosts file that includes its fully qualified domain name. See the entries following

from my server hc4nn:

[root@hc4nn ~]# cat /etc/hosts

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

192.168.1.109 hc4nn.semtech-solutions.co.nz hc4nn

192.168.1.113 hc4r1m1.semtech-solutions.co.nz hc4r1m1

192.168.1.114 hc4r1m2.semtech-solutions.co.nz hc4r1m2

192.168.1.115 hc4r1m3.semtech-solutions.co.nz hc4r1m3

192.168.1.116 hc4r1m4.semtech-solutions.co.nz hc4r1m4

192.168.1.117 hc4r1m5.semtech-solutions.co.nz hc4r1m5

192.168.1.118 hc4r2m1.semtech-solutions.co.nz hc4r2m1

192.168.1.119 hc4r2m2.semtech-solutions.co.nz hc4r2m2

192.168.1.120 hc4r2m3.semtech-solutions.co.nz hc4r2m3

192.168.1.121 hc4r2m4.semtech-solutions.co.nz hc4r2m4

192.168.1.122 hc4r2m5.semtech-solutions.co.nz hc4r2m5

I have ensured that the server hostnames contain the domain name as well; this

means that it is the FQDN that appears when the hosts are added to CloudStack.

[root@hc4nn ~]# cat /etc/sysconfig/network

NETWORKING=yes

HOSTNAME=hc4nn.semtech-solutions.co.nz

Given that the CloudStack manager and agent software has been installed, and the

steps to add a host to a CloudStack cluster have been examined, it is now time to access

the CloudStack system. In the next section, I will examine the creation of a CloudStack

cluster using the web-based CloudStack user interface.

CHaPter 2 CLOUd StOraGe

www.allitebooks.com

http://www.allitebooks.org

35

 CloudStack Cluster Configuration
Now that the CloudStack manager has been installed on the CentOS 6.x server hc4nn,

and the CloudStack agent is running on that host, the CloudStack user interface can be

accessed to finish the install. It is available at

http://hc4nn:8080/client/

The default account is called “admin” with a preset password value of “password.”

Once logged in, choose the “Continue With Basic Install” option. You will then be

prompted to enter and reenter a new password for the admin account. Enter new values,

and then choose “Save and Continue.”

Next click OK to add a zone; I have called my zone “Zone1” and specified DNS

(domain name system) addresses supplied by Google as shown in Figure 2-3.

Click Continue, followed by OK to add a Pod; remember that a zone can be

considered to be equivalent to a data center, and a pod could be considered to be a

rack cabinet within that data center. When creating a pod, an IP address range must be

supplied for the cluster-based hosts that will exist in the Pod (see Figure 2-4).

Figure 2-3. CloudStack Add zone

CHaPter 2 CLOUd StOraGe

36

The pod in Figure 2-4 called Pod1 has been supplied with a gateway IP address to

access the rest of the cluster and a netmask value. It has also been supplied with an

initial IP address range of 192.168.1.20–30. Click Continue to add a guest network

(see Figure 2-5).

The guest network that has been created in the Figure 2-5 has the same gateway and

netmask IP addresses used during pod creation. The guest network IP address range

has been set to be 192.168.1.131–140. These are the IP addresses that will be used when

creating virtual instances later. Click Continue to progress, followed by OK to add a

cluster. Remember that within a pod, a cluster is a group of hosts that will use the same

Figure 2-5. CloudStack Add guest network

Figure 2-4. CloudStack Add Pod

CHaPter 2 CLOUd StOraGe

37

hypervisor. Given that the OS being used in this project will be CentOS minimal installs,

then the hypervisor to be used will be KVM. This happens naturally, as KVM is supplied

with CentOS. A KVM-based cluster called Cluster1 has been created in Figure 2-6.

Click Continue followed by OK to add a host to the KVM-based cluster that was just

created. Remember that the CloudStack agent and KVM steps must be followed to add

extra hosts. Also, the /etc/hosts file must be set up, and the hostname should be defined

as an FQDN value in /etc/sysconfig/network.

Figure 2-6. CloudStack Add Cluster

Figure 2-7. CloudStack Add Host

Figure 2-7 shows the host hc4nn being added to the cluster Cluster1; by default, it is

a KVM-based host, as that is the type defined by the cluster. Root access has been used

to add the host to the cluster. Click Continue, followed by OK, to add primary storage.

Remember that primary storage is used by hosts, whereas secondary storage is available

at the zone level. It is a place to store needed data like templates and ISOs for host

instance creation.

CHaPter 2 CLOUd StOraGe

38

Figure 2-8 shows primary storage being added to the cluster from server hc4nn using

the path /export/primary. The protocol used is NFS; click Continue to progress, followed

by OK to add secondary storage.

Note that I have used an IP address for the server hc4nn (192.168.1.109) to add

secondary storage. As long as you have the correct entries in your /etc/hosts, you could

use either method.

The path for zone-wide secondary storage is /export/secondary from the server

hc4nn, and the method used is again NFS (see Figure 2-9). Click Continue to progress.

As the configuration has now been completed, the CloudStack system is ready to be

launched. Click launch on the next page to start the creation of the cluster; if any errors

occur, then use the back button to go back and change your cluster options. Some typical

errors that may occur are

• Incorrect naming of hosts to be added

• Incorrect IP address ranges

• Pod and guest network IP address ranges overlapping (they should not)

Figure 2-8. CloudStack Add Primary Storage

CHaPter 2 CLOUd StOraGe

39

• Failure to set up /etc/hosts files correctly

• Failure to ensure that CloudStack agent is running on hypervisor hosts

Figure 2-9. CloudStack Add Secondary Storage

Figure 2-10. CloudStack launch cloud

If all goes well, you should see a screen like Figure 2-10, followed by a screen that

indicates “Cloud Setup Successful.” Choose the launch option to access the cloud

instance user interface.

Now the cloud that has been created, it may be examined and managed in the

Apache CloudStack cloud user interface shown in Figure 2-11.

CHaPter 2 CLOUd StOraGe

40

A dashboard is displayed on entry that shows command options on the left, alerts on

the top of the screen, and system capacity graphs on the bottom of the screen.

When adding a host to a cluster in Apache CloudStack, the steps in the section “KVM

Setup and Installation” must be followed. In the next section, I will show how to install

hosts into the cloud using this section to prepare the hosts that will be added to the cloud.

 Adding Hosts to the Cloud
Following the previous discussion, a private Apache CloudStack cloud has now been

created as a target location for software installs later in the book using Apache Brooklyn.

However, a cloud with a single host for storage purposes will not suffice, and so more hosts

will need to be added. In this section, I will expand the cloud by adding more hosts to it.

As stated at the end of the last section, to add hosts to the cloud, each server must

be prepared by ensuring that KVM is available and that the Apache CloudStack agent

is installed. Follow the steps in the “KVM Setup and Installation” section, and then

proceed from here.

Figure 2-11. CloudStack cloud user interface

CHaPter 2 CLOUd StOraGe

41

To add a host to the cloud, select the “Infrastructure” menu option on the left of

the CloudStack manager user interface, and then select “View All” under hosts

(see Figure 2- 12). Finally, click the “+ Add Host” button on the top right of the screen.

An add host window will appear.

Figure 2-12. CloudStack Add Host

I have added this host to Zone1 ➤ Pod1 ➤ Cluster1; and given that I am creating a

small cloud for demonstration purposes, I will add all of the hosts to a single,

KVM- based cluster (see Figure 2-13). If a real production cloud was being created, there

would potentially be multiple regions and zones (data centers) containing multiple pods

(racks) that would contain multiple clusters of various types of hypervisor (KVM, Xen,

HyperV).

For now, I will repeat this process to add all of the hosts in a rack of my servers to the

KVM-based cluster, Cluster1.

CHaPter 2 CLOUd StOraGe

42

As you can see, I now have servers hc4nn and hc4r1m1 to hc4r1m5 added to a

KVM- based, Apache CloudStack cluster, Cluster1. You can see from the preceding host

list that it is possible to determine both the host state and cluster location from the host

list details. The full server names on the left of the list are taken from the hostname

defined in the file /etc/sysconfig/network on each server.

By clicking on the Quick View plus (+) icon on the right of each list server, it is

possible to gain both some extra information about each server and manage each server

in the list.

Figure 2-13. CloudStack Cluster1 completed

CHaPter 2 CLOUd StOraGe

43

The details in Figure 2-14 give me the internal cloud ID of each host as well as details

like its state. It also gives me some command options; for instance, I could disable the

host and place it in maintenance mode if, say, a disk was failing.

Before moving on, I will mention a final point about the host list. Next to the “+ Add

Host” button above the list, there is a Metrics button. Clicking that button provides the

host details shown in Figure 2-15.

Figure 2-14. CloudStack host quick view

Figure 2-15. CloudStack host metrics

CHaPter 2 CLOUd StOraGe

44

As you can see from the list in this figure, the performance metrics are

comprehensive in terms of CPU, memory, and network. This form alone could be useful

when trying to monitor or track a resource issue in the cloud. Notice that the instances

column lists zero for each host; no virtual KVM-based guest instances have been created

on the cloud yet. That will be tackled in the next section.

 Adding an Instance to the Cloud
Now that a KVM-based cloud has been created and hosts have been added to it to

provide the resource necessary to support it, virtual instances need to be created that will

be used for software installs within the cloud by external systems like Apache Brooklyn.

This section will tackle a single creation of an instance that can then be repeated to add

as many instances as the cloud can support. Use the metrics refers to Figure 2- 15 host

metrics as instances are added to determine the load on the hosts and the free resources

available to support the addition of further instances.

 Registering an ISO with CloudStack
New instances can be created from existing templates within Apache CloudStack or from

ISO images. Given that I want to create instances using a 6.x minimal version of CentOS,

I will register an ISO. From the Apache CloudStack interface, choose the left menu

option “Templates.” At the top of the screen, change the “Selected View” menu to “ISO.”

On the right of the screen select the “+ Register ISO” button. This brings up the Register

ISO form shown in Figure 2-16, which I have already completed.

CHaPter 2 CLOUd StOraGe

45

Note that this is a CentOS 6.8 minimal install ISO to be available to all zones in the

cloud, which will be bootable. It will be downloaded via URL from

http://vault.centos.org/6.8/isos/x86_64/CentOS-6.8-x86_64-minimal.iso

Due to the length of time taken to write this book CentOS 6 has been deprecated

in favour of CentOS 7. Hence the CentOS 6 ISO suggested above is now sourced from

vault.centos.org.

http://mirror.xnet.co.nz/pub/centos/7/isos/x86_64/

The ISO has been given an OS Type of CentOS 6.5 because that was the latest version

available within CloudStack. By clicking OK, CloudStack will download the ISO, store it,

and therefore it will be available for creating new KVM based instances.

Once an ISO-based template has been created, CloudStack needs to download the

ISO file for it to be used in instance creation. By selecting the ISO in the ISO templates list

and clicking on the Zones tab, you can see the download state for that ISO. Figure 2- 17

shows a compounded view of an ISO being downloaded in Zone1; and for another, the

download is complete, and the ISO is in ready state.

Figure 2-16. CloudStack Register ISO form

CHaPter 2 CLOUd StOraGe

http://vault.centos.org/6.8/isos/x86_64/CentOS-6.8-x86_64-minimal.iso
vault.centos.org
http://mirror.xnet.co.nz/pub/centos/7/isos/x86_64/

46

Now that the process to download an ISO has been carried out, a virtual instance can

be created using that ISO.

 Creating an Instance from an ISO
To create a KVM-based virtual instance on this private cloud, the CloudStack manager

menu option “Instances” can be used on the user interface. On the top right side of this

page, there is an option button “+ Add Instance” to add an instance to the cloud. Click

that and a wizard is started, which is shown in Figure 2-18.

Figure 2-17. CloudStack ISO download state

Figure 2-18. CloudStack Add instance

CHaPter 2 CLOUd StOraGe

47

Section (1) of this wizard will lead you through the selection of the zone, Zone1, and

the choice of either a template or ISO install. In this case, we will choose ISO to match

the centOS 6.8 ISO that was just downloaded. Click Next to continue.

Section (2) of this wizard controls the selection of the install template to be used;

select the “My ISO’s” tab and select the centOS 6.8 ISO that was just created. Click Next

to continue.

Section (3) of this wizard controls the selection of compute offerings in terms of the

instance size; I selected small instances. Click Next to continue.

Section (4) of this wizard controls the selection of instance disk offerings, which

allows the size of the virtual disk that the instance will have. Either select 5, 20, or 100 GB

or set a custom value. Click Next to continue.

Section (5) of this wizard controls affinity groups; as I have no affinity groups, click

Next to continue.

Section (6) of this wizard controls the instance network; I chose the default network.

Click Next to continue.

Section (7) of this wizard controls instance SSH or secure shell; I have none. Click

Next to continue.

Section (8) of this wizard allows a review of the instance configuration: the possibility

to edit options and set the keyboard. When you are sure that all options are correct,

you can click “Launch VM” to create and start the virtual guest instance on your private

cloud. The result is shown in Figure 2-19.

Figure 2-19. CloudStack instance list

Note that the instance is running and has a name, a display name, an associated

zone, but no IP address yet. There is a quick view option for the instance on the right

of the list in Figure 2-19. The command options available depend on the state of the

instance, that is, Running or Stopped. Figure 2-20 shows the options to control the

instance for both states.

CHaPter 2 CLOUd StOraGe

48

The options on the left of Figure 2-20 are for a started instance, while those on the

right are for a stopped instance. Those that are of immediate use are the options to start

and stop the instance as well as connect to the console so that the CentOS Linux install

within the instance can be managed.

Note that Figure 2-20 shows the option to connect an ISO. When an instance is

created, it has an ISO file connected to it, and this is used for the instance install. When

you first connect to the instance via the console, a CentOS 6.8 install must be carried out.

I won’t display that here, as it is fairly standard. However, some points should be noted.

• When the instance install is completed, the instance should be

shut down using the preceding options; and the ISO should be

disconnected from the instance. Otherwise, the instance will try to

reinstall again. Once this is done, restart the instance.

• Set the instance name in /etc/sysconfig/network so that it can be

referenced externally.

• The network for the instance for Ethernet configuration eth0 needs

to be configured. It will have been installed to use DHCP (Dynamic

Host Configuration Protocol)—this will be examined following.

• The instance /etc/hosts file will need to be configured to represent

the instance hostname and IP address. Again, this will be examined

following.

• A static IP address will need to be assigned to the instance within the

cloud so that the instance can be accessed externally from the cloud.

Figure 2-20. CloudStack instance quick view options

CHaPter 2 CLOUd StOraGe

49

The single, cloud-based instance, centOS-6-8-instance-1, that has been created so

far has automatically been assigned an IP address because its Ethernet configuration

has been set up to use DHCP. If I open the instance console and examine the Ethernet

configuration in the file

/etc/sysconfig/network-scripts/ifcfg-eth0,

I can see, as shown in Figure 2-21, the network configuration for eth0. I can see

that it will be started at boot (ONBOOT=yes), that it is network manager controlled

(NM_CONTROLLED=yes), and that an IP address will be automatically assigned

(BOOTPROTO=dhcp).

It is important to consider this network configuration because this instance will

automatically be assigned the first IP address available. That does not mean that it

will always keep the same IP address when restarted or rebooted. The changing of an

instance’s IP address would be a problem, as I need to build a cloud-based cluster where

each machine within the cloud and externally are able to address each other. So each

virtual cluster instance member needs to have a static and unchanging IP address.

I can determine this instance’s IP address by using the Linux command “ifconfig -a”

to show all of the instance’s configured network interface information. Figure 2-22 shows

the output and indicates that the instance’s IP address is 192.168.1.136.

Figure 2-21. CloudStack instance Ethernet configuration

Figure 2-22. CloudStack instance Ethernet configuration

CHaPter 2 CLOUd StOraGe

50

What I need to do is ensure that the instance’s IP address is defined as a static value

so that other virtual instances within the cloud and servers external to the cloud can

always reach it as the same address. This is important because many big data systems are

clustered, and nodes within each system-based cluster need to be static. This is achieved

by changing the instance’s Ethernet configuration for eth0 as shown in Figure 2-23.

You can see that the instance’s network configuration has now been changed

to static (BOOTPROTO=static) and that a static IP address has been assigned

(IPADDR=192.168.1.136). Also, values have been assigned for the netmask, gateway,

and DNS servers. I can now follow this same process to statically assign IP addresses to

KVM- based instances as they are created. What I have done is allocate the same IP address

that was dynamically assigned to the instance from the range of values available.

So now that the process to create and configure an instance has been shown to work,

the instance’s position in a hybrid network must be considered. I mean that there will be

servers within the cloud as well as outside of it. Can the instance “see” an external server

and can an external server “see” the instance? I will use the Linux ping command to test

this. I will test the server hc4r2m5, which is outside the cloud, and see whether it can ping

the instance. I will then try to ping this server from the instance. Figures 2-24 and 2-25

show the results.

Figure 2-23. CloudStack instance static Ethernet configuration

CHaPter 2 CLOUd StOraGe

51

From the ping commands shown here it can be seen that the instance centos-6-6-

instance-1 can reach the external server because data is returned when the instance

pings hc4r2m5. Also, the host hc4r2m5 being outside the cloud can see the instance;

when it pings, the instance data is returned.

We have now seen how to create a basic zone within CloudStack and add hosts to a

KVM cluster. The method for creating ISO template-based instances has been used to

create virtual KVM-based CentOS 6.x guest instances within a cluster. It has also been

shown that the instances that are created are visible from within and external to the

cloud. Using these techniques, the cloud-based cluster can be expanded by adding more

hosts to the cloud and more instances to create as large a virtual cluster as desired.

You may have noticed that when creating Zone1, the basic option for creation was

selected in the form-based wizard. In the next section, I would like to briefly examine an

advanced zone creation.

 Advanced Zone Creation
An advanced zone creation provides greater control of the options used to create the

zone. For instance, extra modules can be added when creating network interfaces. Many

of the steps carried out to create a new zone have already been covered, so I will just

mention them and fully examine the new steps.

Figure 2-24. CloudStack instance ping hc4r2m5

Figure 2-25. CloudStack hc4r2m5 ping instance

CHaPter 2 CLOUd StOraGe

52

On the left-hand CloudStack menu, choose Infrastructure; and on the Zones icon

on the right-hand display, click “View All.” On the top right of the page, click the “+ Add

Zone” button. As Figure 2-26 shows, select the Advanced install option. Click Next.

The zone form will be filled out as per Figure 2-3, only this time the zone will be

called Zone2. The hypervisor will again be KVM. Set the DNS values to 8.8.8.8 and

8.8.4.4, and then click Next. The next step is new: Step 3 involves a physical network set

up as shown in Figure 2-27.

Figure 2-26. CloudStack advanced zone install

CHaPter 2 CLOUd StOraGe

53

I haven’t changed any of the options here; the important part is that there is a public

component to the physical network that has been set up. Click Next to assign an IP

address range to the network as per Figure 2-28. Enter form details as per Figure 2-28,

click add, and then next to move to the next form.

Figure 2-27. CloudStack physical network setup

Figure 2-28. CloudStack add IP address range

CHaPter 2 CLOUd StOraGe

54

The next form involves defining a pod for Zone2 and is the same as the step

described by Figure 2-4. Just fill in the form the same way, call the pod “Pod2,” and

choose a new IP address range. I have chosen the range 192.168.1.151–160. Click Next to

move to the next form.

The next form defines the integer-based identification number (ID) range for virtual

LANs (local area networks) or VLANs. Figure 2-29 shows that the range has been set to

100–199. Fill out this form and select Next.

Figure 2-29. CloudStack add VLAN ID range

The next form, Step 4 in the process, involves defining the KVM-based cluster name

Cluster2. Set these values and click Next.

On the next form, the first host for the new zone is added; this will be the server

hc4r1m1 that was used for the NFS mount testing previously. Figure 2-30 shows the

details; click Next to continue.

Figure 2-30. CloudStack add host to cluster

CHaPter 2 CLOUd StOraGe

55

Primary and secondary storage are added to this zone as per Figures 2-8 and 2-9, the

only difference being that the names have changed to Primary2 and Secondary2. Click

Next to continue from each form.

You will now see a cloud ready to launch; follow the same steps as previously to

launch the new zone-based architecture.

Before going any further, make sure that the system VMs start correctly; this is why so

much attention and care was taken with storage and NFS mounts. Go to

Infrastructure ➤ System VMs

Make sure that the system VMs are in the started state as per Figure 2-31. Make

sure that the VM names do not change. Constantly incrementing names would imply a

storage problem.

Now extra hosts can be added to Zone2 as per Figure 2-12; install template ISOs can

be added to the zone as per Figure 2-16; and instances can be created in the new zone as

per Figure 2-17 onward.

Having shown how virtual clusters can be created within CloudStack, I thought it

would be useful to examine problem solving next.

 Problem-Solving
Apache CloudStack has a characteristic of silently failing when problems occur, and so

some skills are needed to be able to investigate issues that might exist. This section will

provide you with some tools and techniques to enable you to examine your problems.

Some indications that problems exist will be

• System VM instances will not start.

• System VM instances will constantly change state and name, the

number in the name incrementing.

• Downloaded ISO files are not in ready state.

Figure 2-31. CloudStack system VMs

CHaPter 2 CLOUd StOraGe

56

• Downloaded ISO files are not available for instance creation.

• System VM and instance consoles are not accessible.

To tackle some of these problems, the first area to check should be the CloudStack

user interface events list. However, if there is no detail there, the CloudStack log files

should be checked.

 CloudStack Log Files
The log files available on a CloudStack host will depend on the components installed on

that host. Remember that CloudStack is a master- and agent-based system with agents

installed on each cloud host. The pwd (print working directory) and ls (list segments)

commands following show that the logs are available under the directory /var/log/

cloudstack. They also show that the management and ipallocator logs are only available

on the management server hc4nn. This should be your first area to check in case of a

problem. Check log file contents for errors and java core dumps.

[root@hc4r1m1 cloudstack]# pwd ; ls

/var/log/cloudstack

agent

[root@hc4nn cloudstack]# pwd ; ls

/var/log/cloudstack

agent ipallocator management

 CloudStack Storage
Remember that secondary storage is allocated at the zone level, while primary storage

is allocated at the host level. If there is a problem with ISO-based template downloads,

it could be due to a storage-based issue. When CloudStack agents start, they mount

storage from the NFS-based service. The listing following is an example of this.

[root@hc4r1m1 cloudstack]# df -kh

Filesystem Size Used Avail Use% Mounted on

192.168.1.109:/export/primary

 186G 6.7G 170G 4% /mnt/f219b84d-3491-3c1b-bb50-7729622e2888

CHaPter 2 CLOUd StOraGe

57

Within Cloudstack storage an internal ID is given, in this case “/f219b84d-3491-

3c1b-bb50-7729622e2888.” The preceding listing using the Linux df (disk free) command

shows primary storage from hc4nn mounted onto the server hc4r1m1. It is worth

manually checking that these host-based mounts exist in case of a problem.

Also, secondary storage is generally not allowed to be provided internally within the

cluster. A machine outside of the cluster should be used. As I have a limited number of

machines to use, I have used the machine hc4nn within the cluster for storage. To do

this, I need to change the global settings value secstorage.allowed.internal.sites. This

value can be found by selecting the left menu global settings option. Then search for the

option value. I set it as follows:

secstorage.allowed.internal.sites 192.168.1.109

That is the IP address of the name node server hc4nn.

 CloudStack System VMs
Generally, CloudStack system VMs can be accessed using the quick view “view console”

option available in both instance and VM lists. The root account can be used with a

password of either “password” or the value that was set when creating the cloud.

Figure 2-32 shows the secondary storage mounted on the VM s-2-VM from the

management server hc4nn. In the case of a VM-based problem, it is worth checking that

these mounts exist.

 CloudStack Firewall Issues
It is also a good idea to check that firewalls are configured correctly. Try pinging between

hosts and virtual instances. A badly configured host firewall can cause many of the issues

described previously.

Figure 2-32. CloudStack system VMs secondary storage

CHaPter 2 CLOUd StOraGe

58

 Conclusion
I have shown in this chapter how Apache CloudStack can be sourced as well as installed.

I have also examined the prerequisites for cloud management as well as host cloud

members. I have examined basic as well as advanced zone creation as well as the

architecture of the cloud.

The aim of this chapter was to provide enough detail about Apache CloudStack to

enable a cloud-based cluster to be created, and that has been achieved. Some techniques

have also been introduced for problem-solving. If you encounter issues, make the

Apache CloudStack web site at cloudstack.apache.org your first point of reference. Check

the install documentation thoroughly, and register with the mailing lists.

The next chapter will examine Apache Brooklyn and will show how Brooklyn uses a

blueprint-based process to install components to the cloud that has just been created.

CHaPter 2 CLOUd StOraGe

59
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_3

CHAPTER 3

Apache Brooklyn
In this chapter, I will examine the Apache Brooklyn project, which is a system for

modelling, installing, and monitoring applications based on YAML (Yet Another Markup

Language) blueprint configurations. I will start by giving an overview of the Brooklyn

product and then provide some detail about blueprints. Then I will source and install

Apache Brooklyn, and I will also show how the user interface can be remotely accessed.

The user interface will be examined to explain how Brooklyn supports the process of

modelling, deployment, and monitoring. Finally, some applications will be installed to

both cloud and server locations by modelling them using blueprints.

To investigate Brooklyn, I will first need to install it; the next section will show how

that is done.

 Brooklyn Install
In this section, I will source and install the Apache Brooklyn system on the CentOS 6.x

server hc4r2m1. I will concentrate on downloading and installing the Brooklyn binaries

as well as the client cli (command-line interface) application. I will use the Linux-based

wget (web get) command to source the Brooklyn binaries. Because I am using a CentOS

minimal install, many commands like wget are not installed with the operating system.

The following command shows how the wget command can be installed using the Linux

yum command. The “-y” flag just means that it is not necessary to confirm the install.

[root@hc4r2m1 ~]# yum -y install wget

I will download the Brooklyn binaries to a temporary directory /tmp/brooklyn,

which can be created as follows:

[root@hc4r2m1 ~]# cd /tmp; mkdir brooklyn; cd brooklyn

60

Then both the Apache Brooklyn binaries and the cli package can be downloaded

using wget as follows. These commands are sourcing Brooklyn version 0.9, the most

stable version at the time of this writing. The Brooklyn source code and a vagrant-based

install can also be sourced from the same location on this server.

[root@hc4r2m1 brooklyn]# wget http://www-eu.apache.org/dist/brooklyn/

apache-brooklyn-0.9.0/apache-brooklyn-0.9.0-bin.tar.gz

[root@hc4r2m1 brooklyn]# wget http://www-eu.apache.org/dist/brooklyn/

apache-brooklyn-0.9.0/apache-brooklyn-0.9.0-client-cli-linux.tar.gz

These packages are gzipped (GNU zipped) compressed tar (Tape ARchive) files,

so they need to be unpacked. The downloaded files are shown here; the Linux gunzip

command is then used to uncompress the files to create .tar files.

[root@hc4r2m1 brooklyn]# ls -l

total 57692

-rw-r--r--. 1 root root 57152333 Apr 12 23:39 apache-brooklyn-0.9.0-bin.

tar.gz

-rw-r--r--. 1 root root 1919346 Apr 12 23:39 apache-brooklyn-0.9.0-client-

cli-linux.tar.gz

[root@hc4r2m1 brooklyn]# gunzip *.gz

[root@hc4r2m1 brooklyn]# ls -l

total 81204

-rw-r--r--. 1 root root 77834240 Apr 12 23:39 apache-brooklyn-0.9.0-bin.tar

-rw-r--r--. 1 root root 5314560 Apr 12 23:39 apache-brooklyn-0.9.0-client-

cli-linux.tar

Next the Linux tar command is used to unpack the two tar archives; the options

passed to the tar command are x (extract), v (verbose), and f (file). The long file listing

using the ls command then shows that the tar archives still exist as well as the two

unpacked directory structures.

[root@hc4r2m1 brooklyn]# tar xvf apache-brooklyn-0.9.0-bin.tar

[root@hc4r2m1 brooklyn]# tar xvf apache-brooklyn-0.9.0-client-cli-linux.tar

[root@hc4r2m1 brooklyn]# ls -l

total 81212

drwxr-xr-x. 5 1000 1000 4096 Apr 8 21:48 apache-brooklyn-0.9.0-bin

Chapter 3 apaChe Brooklyn

61

-rw-r--r--. 1 root root 77834240 Apr 12 23:39 apache-brooklyn-0.9.0-bin.tar

drwxrwxr-x. 2 1000 1000 4096 Apr 9 00:07 apache-brooklyn-0.9.0-client-

cli-linux

-rw-r--r--. 1 root root 5314560 Apr 12 23:39 apache-brooklyn-0.9.0-client-

cli-linux.tar

These Brooklyn binary directory trees currently reside under the /tmp temporary

directory. They need to be moved to a better, more permanent location. That is what

the next commands do. The Linux mv or move command is used to move the new

software directories to the /opt file system. The Linux ln command is then used to create

symbolic links to those software directories so that the final paths to reach them are

simplified.

[root@hc4r2m1 brooklyn]# mv apache-brooklyn-0.9.0-bin /opt

[root@hc4r2m1 brooklyn]# mv apache-brooklyn-0.9.0-client-cli-linux /opt

[root@hc4r2m1 brooklyn]# cd /opt

[root@hc4r2m1 opt]# ln -s apache-brooklyn-0.9.0-bin brooklyn

[root@hc4r2m1 opt]# ln -s apache-brooklyn-0.9.0-client-cli-linux brooklyn- cli

Now that Brooklyn is installed I will check that the server is working by running

the “brooklyn” binary with the help option. The binary is found in the bin directory as

follows. If all is well, the output should appear as follows. Usage information is displayed

as well as some common command options:

[root@hc4r2m1 opt]# cd brooklyn/bin; ./brooklyn help

OpenJDK 64-Bit Server VM warning: ignoring option MaxPermSize=256m; support

was removed in 8.0

usage: brooklyn [(-v | --verbose)] [(-q | --quiet)] [-D <defines1>...]

<command>

 [<args>]

The most commonly used brooklyn commands are:

cloud-blobstore Access blobstore details of a given cloud

cloud-compute Access compute details of a given cloud

copy-state Retrieves persisted state

generate-password Generates a hashed web-console password

help Display help for available commands

Chapter 3 apaChe Brooklyn

62

 info Display information about brooklyn

 launch Starts a server, optionally with applications

 list-objects List Brooklyn objects (Entities, Policies,

Enrichers and Locations)

See ‘brooklyn help <command>’ for more information on a specific command.

That looks fine, so now I will start the Brooklyn binary by using the launch command

as follows. The & or ampersand character at the end of the line just runs the command in

the background and frees up the terminal session later for other commands:

[root@hc4r2m1 bin]# ./brooklyn launch &

The logged output in the session window is minimal but should be examined, as it

tells the user how to access the Brooklyn user interface. Look for the line that contains

the text “Started Brooklyn console at”; this shows that the console can be accessed on

the local server at http://127.0.0.1:8081/.

OpenJDK 64-Bit Server VM warning: ignoring option MaxPermSize=256m; support

was removed in 8.0

 _ _ _

| |__ _ __ ___ ___ | | _| |_ _ _ __ (R)

| '_ \| '__/ _ \ / _ \| |/ / | | | | '_ \

| |_) | | | (_) | (_) | <| | |_| | | | |

|_.__/|_| ___/ ___/|_|__|__, |_| |_|

 |___/ 0.9.0

2016-09-17 15:20:05,733 INFO No security provider options specified.

Define a security provider or users to prevent a random password being

created and logged.

2016-09-17 15:20:05,733 INFO Starting Brooklyn web-console with

passwordless access on localhost and protected access from any other

interfaces (no bind address specified)

2016-09-17 15:20:05,734 INFO Allowing access to web console from localhost

or with brooklyn:XHZfyuNpqf

2016-09-17 15:20:07,847 INFO Started Brooklyn console at

http://127.0.0.1:8081/, running classpath://brooklyn.war@

2016-09-17 15:20:07,870 INFO Persistence disabled

Chapter 3 apaChe Brooklyn

63

2016-09-17 15:20:07,870 INFO High availability disabled

2016-09-17 15:20:11,843 INFO Launched Brooklyn; will now block until

shutdown command received via GUI/API (recommended) or process interrupt.

The line in the preceding output that contains the text “Allowing access to web

console” provides a username and password for accessing this Brooklyn session. The

Apache Brooklyn log files are also available under the install directory within the bin

subdirectory as the Linux ls command following shows. These logs should be examined,

as if, like me, you want to know how to access Brooklyn across a network; you will need a

username and password to gain access:

[root@hc4r2m1 bin]# pwd

/opt/brooklyn/bin

[root@hc4r2m1 bin]# ls

brooklyn brooklyn-client-cli brooklyn.info.log

brooklyn.bat brooklyn.debug.log brooklyn.ps1

If you access the preceding Brooklyn URL on the local machine, then you will not

be prompted for a username and password. However, if, like me, you access Brooklyn

across a network, as I suspect most people will, then you must look for the following line

in the log files:

brooklyn.info.log:2016-09-17 15:36:24,717 INFOo.a.b.r.s.p.BrooklynUserWith

RandomPasswordSecurityProvider [main]: Allowing access toweb console from

localhost or with brooklyn: XHZfyuNpqf

This provides you with the necessary access details to access the user interface; the

password will be randomly generated with each restart of the Brooklyn server. Once

you have logged in, you will be presented with the user interface home page shown in

Figure 3-1.

Chapter 3 apaChe Brooklyn

64

There are options here to add locations and applications: both items can be defined

in terms of blueprints, which we will examine later. Locations define where applications

will be installed, while application definitions define what will be installed. The home

page also provides a list of currently running applications. Finally, it shows the status of

the Brooklyn server.

By choosing to add a location, you can either add a cloud-based location, BYON

(bring your own node), to specify an existing server or specify an advanced option.

Locations must be created so that they can be used in the blueprints that will be created

in this chapter. Applications and the policies necessary to install and control them can

then be created. Figure 3-2 shows the form that is displayed when creating a location.

Figure 3-1. Brooklyn home page

Chapter 3 apaChe Brooklyn

www.allitebooks.com

http://www.allitebooks.org

65

By choosing to add an application from the user interface, I am prompted with a

number of template options. These options are taken from the catalog applications

template list (see Figure 3-3). Select a template—I will choose the simplest one—and

select the YAML composer button to move to the composer window (see Figure 3-4).

Figure 3-2. Brooklyn add a location

Figure 3-3. Brooklyn add an application

Chapter 3 apaChe Brooklyn

66

Notice that you can deploy the blueprint from the composer but that there is a

warning here that indicates that the location has not been completed. Fill in the missing

details and cloud-based credentials before attempting to deploy.

The Catalog tab on the Brooklyn home page (and the Catalog button in the

Composer) provides access to the Brooklyn blueprint catalog, which has four main

sections: Applications, Entities, Policies, and Locations, as Figure 3-5 shows. The catalog

after install is populated with quite a few default blueprints. The Applications section

contains application-type templates as shown previously, which you can use to write

blueprints. The Entities section contains composable elements that can be added to your

blueprints.

Figure 3-4. Brooklyn complete a template

Chapter 3 apaChe Brooklyn

67

The Policies section contains some default policies that can be added to your

blueprints to manage failure, scaling, and connection management. You will need to

write further policies, and a link was provided above the default policies to suggest how

this might be carried out in Java.

The Locations section in Figure 3-5 is empty by default but can be added to. Also,

there are many example blueprints, which include ideas for location values in the

GitHub-based links following:

https://github.com/brooklyncentral/blueprint-library

https://github.com/apache/incubator-brooklyn

The Script tab on the Brooklyn user interface describes the REST (representational

state transfer) based user interface or allows the user to create Groovy-based scripts to

be run against the Brooklyn server. This provides part of the operations interface that

was mentioned earlier.

Figure 3-5. Brooklyn: the catalog

Chapter 3 apaChe Brooklyn

https://github.com/brooklyncentral/blueprint-library
https://github.com/apache/incubator-brooklyn

68

Figure 3-6 shows the Script REST interface description expanded for the /access

REST API (application programming interface) function.

Finally, Figure 3-7 shows the Script tab Groovy edit window, which will enable you to

send Groovy scripts to the Brooklyn server.

Figure 3-6. Brooklyn script: REST API

Chapter 3 apaChe Brooklyn

69

I will close this section here because the rest of this chapter will provide more detail

about the use of Brooklyn. In the next section, I will give a Brooklyn overview to give a

wider perspective. After that, I will move on to creating a blueprint and using the user

interface to deploy it.

 Brooklyn Overview
Apache Brooklyn (brooklyn.apache.org) is an open sourced deployment and monitoring

system that uses blueprints to model applications that are then released using those

blueprints. It offers a model, deploy, and monitor application life cycle, which supports

the OASIS CAMP (Cloud Application Management Platforms; see www.oasis-open.org/

committees/tc_home.php?wg_abbrev=camp) standard.

Figure 3-7. Brooklyn script: Groovy

Chapter 3 apaChe Brooklyn

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp

70

 Blueprints
Brooklyn offers a composable blueprint-based approach; blueprints can be defined as

repository elements, which can be added to a blueprint that you create to deploy your

system. While the elements define individual components to be deployed, your system

will be modelled from multiple software components within Brooklyn, which could be

clustered.

The following blueprint example has been sourced from the GitHub Brooklyn central

project at

https://github.com/brooklyncentral/blueprint-library.

It is called cassandra-blueprint.yaml and models the deployment of a Cassandra

NoSQL database node. I have included the YAML section of the file without the

comments to save space. This GitHub repository has been released under an Apache 2.0

license. The blueprint starts by defining the name of the Cassandra application:

name: cassandra-cluster-app

Then it defines the services that this deployment will provide; the type is defined as

a Cassandra cluster. The initial cluster size is defined as five nodes, while the quorum

size is defined as three nodes. Those familiar with ZooKeeper will understand that

the quorum size is the minimum number of nodes needed for voting and reaching

an agreement. There is also a section that determines the provisioning in terms of

minimum properties:

services:

- type: brooklyn.entity.nosql.cassandra.CassandraCluster

 name: Cassandra Cluster

 brooklyn.config:

 cluster.initial.size: 5

 cluster.initial.quorumSize: 3

 provisioning.properties:

 minCores: 4

 minRam: 8192

Chapter 3 apaChe Brooklyn

https://github.com/brooklyncentral/blueprint-library

71

Finally, the location is defined as Amazon AWS cloud; in this case, EC2 will be used

with the zone being eu-west-1. The EC2 service provides dynamically allocated, cloud-

based hosts.

location: aws-ec2:eu-west-1

It is also important to note that blueprints are composable: one blueprint can refer

to another that is already in the Brooklyn repository. For instance, the blueprint snippet

following refers to the CouchbaseCluster entity in the Brooklyn repository:

Services:

-type: brooklyn.entity.nosql.couchbase.CouchbaseCluster

 initialSize 5

 REST API
The Brooklyn user interface is composed of REST interface elements built using Swagger.

Many of the paths that you see generated as you navigate around the user interface

can be used as a pure REST API to extract information from Brooklyn. For instance, the

Brooklyn URL for listing my applications is

http://192.168.1.118:8081/#v1/applications,

while the REST-based Brooklyn equivalent is as follows:

http://192.168.1.118:8081/v1/applications,

which would currently return nothing, as no applications exist yet. To examine the

Brooklyn catalogue entity load-balancer, the URL would be

http://192.168.1.118:8081/#v1/catalog/entities/load-balancer:0.9.0.

And the Brooklyn REST equivalent, which returns JSON (JavaScript Object Notation)

based data for the load balancer would be

http://192.168.1.118:8081/v1/catalog/entities/load-balancer:0.9.0.

So you could use the Brooklyn REST interface to extract information without using

the Brooklyn user interface if you needed to.

Chapter 3 apaChe Brooklyn

72

 Policy Management
Brooklyn has a number of built-in policies that can be added to blueprints, and these can

be found from the user interface. Select the catalog tab and choose the Catalog Policies

section. The predefined polices are as follows:

org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy:0.9.0

org.apache.brooklyn.policy.ha.ConnectionFailureDetector:0.9.0

org.apache.brooklyn.policy.ha.ServiceReplacer:0.9.0

org.apache.brooklyn.policy.ha.ServiceRestarter:0.9.0

org.apache.brooklyn.policy.ha.SshMachineFailureDetector:0.9.0

So there are predefined policies here to auto scale and detect failures in connections

and services. There are also policies to replace and restart services. I can determine a

little more information about these services if I use the REST interface. For instance, if I

look at the auto scaler using the following path

/v1/catalog/policies/org.apache.brooklyn.policy.autoscaling.

AutoScalerPolicy:0.9.0

I get the following JSON output giving more details about the policy:

{

 "symbolicName": "org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy",

 "version": "0.9.0",

 "name": "Auto-scaler",

 "javaType": null,

 "planYaml": "brooklyn.policies: [{ type: org.apache.brooklyn.policy.

autoscaling.AutoScalerPolicy }]",

 "description": "Policy that is attached to a Resizable entity and

dynamically adjusts its size in response to either keep a metric within a

given range, or in response to POOL_COLD and POOL_HOT events",

 "deprecated": false,

 "links": {

 "self": "\/v1\/catalog\/policies\/org.apache.brooklyn.policy.

autoscaling.AutoScalerPolicy:0.9.0\/0.9.0"

 },

Chapter 3 apaChe Brooklyn

73

 "id": "org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy:0.9.0",

 "type": "org.apache.brooklyn.policy.autoscaling.AutoScalerPolicy"

}

 Monitoring
The Brooklyn model involves a cycle of model in blueprints, deploy, and monitor,

but how does the monitoring occur? Well, blueprints can contain policies, as already

described previously, and it is the policies that connect to “sensors” in the entities. You

can either use predefined policies or write your own in Java as the link following advises:

https://brooklyn.apache.org/v/latest/java/policy.html

For instance, later in this chapter, a blueprint will be created to deploy Mule ESB

(enterprise service bus), the ETL tool, to a server. The deployed Mule runtime will then

be monitored along with the Mule application deployed within the runtime using Mule’s

JMX (Java Management Extensions) interface. Then the operations that are defined both

within the blueprint and its entities will be used for both application monitoring and

management.

 Operations
So in practice, how can Brooklyn be used for operations or for creating and controlling

the systems that the blueprints describe? The following list is taken from the Brooklyn

web site, and I have expanded it to provide more detail:

• The User Interface

The user interface either as a GUI (graphical user interface)

or the REST interface can be used for system deployment and

management. Blueprints can be composed of existing objects or

new blueprints can be developed/pasted into the catalog.

Chapter 3 apaChe Brooklyn

https://brooklyn.apache.org/v/latest/java/policy.html

74

• High Availability

I would include persistence in this topic as well. If I build an entity

cluster and use Brooklyn to monitor it and ensure it is available,

then Brooklyn becomes a single point of failure. However,

Brooklyn can persist its state to storage so that when it restarts, it

can pick up from the point of failure.

Also for clustered apps and master/slave clustered systems,

Brooklyn supports policies for standby nodes and promotes to

master in case of a master failure.

To this point, I have shown you how to install Apache Brooklyn, and I have examined

the user interface and given an overview of its functionality. Now it is time to carry out a

practical example of blueprint development. Brooklyn bases its management life cycle

on blueprints, so I think that the bulk of this chapter should concentrate on blueprint

development. The next section will involve an example of server-based (BYON) and

cloud- based blueprint location development and deployment.

 Modelling With Blueprints
This section will concentrate on some real examples allowing for blueprint development

as well as providing a chance to examine Java JVM (Java virtual machine) code, which

will support Brooklyn deployments.

 Application Installs
Cluster-based storage mechanisms such as Hadoop, Cassandra, and Riak all need data

delivery mechanisms to be populated. Mule ESB from Mulesoft is a popular option

because it has an open-source community version available. This means that small

organisations can use the Mule open-source version before migrating to an enterprise

option later. The first development example following attempts to deploy Mule using

blueprints.

Chapter 3 apaChe Brooklyn

75

 Server-Based Install
I thought that a deployment of Mule ESB (mulesoft.com) would be a good example

of a server-based Brooklyn install. To deploy an instance of Mule, I will need a YAML

file to model the release and a JVM, which will provide functionality to support the

deployment. Luckily the guys at Ricston (ricston.com) have already tackled this problem

and provided sample code. With their permission, I will reproduce their work here. The

original link is

www.ricston.com/blog/mule-brooklyn/

They have modified the brooklyn.entity.webapp.tomcat.TomcatServer entity and

saved the code to GitHub at the following URL:

github.com/ricston-git/brooklyn-mule-entity

The Ricston Brooklyn Mule code is stored in a github.com repository. To access

it, I will need to install a Linux GitHub client. I will do that using the Linux yum install

command. The following git command then shows that the install worked and that

version 1.7.1 of the git client is installed:

[root@hc4r2m1 bin]# yum -y install git

Complete!

[root@hc4r2m1 bin]# git --version

git version 1.7.1

I will now use the git client to clone or copy the Ricton Mule repository to the local

machine and store the resulting code to the directory /opt/mule/ricston.

[root@hc4r2m1 ricston]# git clone https://github.com/ricston-git/brooklyn-

mule- entity

If the clone is successful, the repository called brooklyn-mule-entity will have been

copied to the preceding ricston directory. As the Linux ls command following shows, the

repository now exists, and a src directory structure exists, which contains the code that

will be used in this section:

[root@hc4r2m1 ricston]# ls

brooklyn-mule-entity

Chapter 3 apaChe Brooklyn

http://www.ricston.com/blog/mule-brooklyn/

76

[root@hc4r2m1 ricston]# cd brooklyn-mule-entity/

[root@hc4r2m1 brooklyn-mule-entity]# ls

blueprints pom.xml README.md src TODO.md

The existence of a file called pom.xml indicates that this source directory structure

will need to be built using Maven. To do that, I will need to install Maven onto the local

server. The commands following show that I have sourced a Maven repo (repository

configuration file) from the server repos.fedorapeople.org using wget. This allows me to

use the yum command to install Maven, as yum now knows, using the repo file, where

to find the package. The final command following shows that Version 3.3.9 of Maven has

been installed:

[root@hc4r2m1 brooklyn-mule-entity]# wget http://repos.fedorapeople.org/

repos/dchen/apache-maven/epel-apache-maven.repo -O /etc/yum.repos.d/epel-

apache- maven.repo

[root@hc4r2m1 brooklyn-mule-entity]# yum -y install apache-maven

[root@hc4r2m1 brooklyn-mule-entity]# mvn --version

Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-

11T05:41:47+13:00)

Now it is possible to build the Ricston Mule, JVM-based source code using the Maven

mvn command. A clean of the source tree is carried out at the same time to ensure that

all objects are recompiled.

[root@hc4r2m1 brooklyn-mule-entity]# mvn clean assembly:assembly

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 04:28 min

[INFO] Finished at: 2016-09-27T19:39:37+13:00

[INFO] Final Memory: 49M/620M

[INFO] --

Chapter 3 apaChe Brooklyn

77

Now that the source tree has been built, I can navigate to the target directory from

which I can launch the Brooklyn and Mule applications.

[root@hc4r2m1 brooklyn-mule-entity]# cd ./target/brooklyn-mule-entity-

0.0.1-SNAPSHOT-dist/

[root@hc4r2m1 brooklyn-mule-entity]# cd brooklyn-mule-entity-0.0.1-

SNAPSHOT/

The Linux ls command following shows the contents of the snapshot directory.

Brooklyn will be launched using the start.sh script, which will call Mule-based

functionality in the jar (Java ARchive) file:

[root@hc4r2m1 brooklyn-mule-entity-0.0.1-SNAPSHOT]# ls

brooklyn-mule-entity-0.0.1-SNAPSHOT.jar conf start.sh

brooklyn-mule-entity.debug.log lib

brooklyn-mule-entity.info.log README.txt

Before starting Brooklyn, I thought it might be useful to show how the start.sh script

launches Brooklyn by setting up the class path to access conf, patch, and lib directories.

It also calls the class brooklyn.entity.mule.main.BrooklynMuleMain from the preceding

jar file. It passes all arguments to the start.sh bash script to the Java-based command via

the “$@” option.

$JAVA -Xms256m -Xmx1024m -XX:MaxPermSize=1024m\

 -classpath "conf/:patch/*:*:lib/*"\

 brooklyn.entity.mule.main.BrooklynMuleMain\

 "$@"

The command following executed from the source tree snapshot directory uses the

start.sh script to start Brooklyn by passing it the launch parameter. The “&” character

means that the command is executed as a background process, and so the terminal

session is freed for further commands:

[root@hc4r2m1 brooklyn-mule-entity-0.0.1-SNAPSHOT]# ./start.sh launch &

For Brooklyn-based deployment to work on the local server and potentially other

servers, passwordless ssh (secure shell) access must be set up. I will set it up on the

local server by first issuing the ssh-keygen command and accepting all default options.

Chapter 3 apaChe Brooklyn

78

This creates a .ssh directory under $HOME as shown following. Public and private RSA

(Rivest, Adi Shamir) based keys are created:

[root@hc4r2m1 mule]# ssh-keygen

[root@hc4r2m1 mule]# ls $HOME/.ssh

authorized_keys id_rsa id_rsa.pub

Next I will use the ssh-copy-id command to allow the root user passwordless ssh

access to the local server. This may seem counterintuitive, but Brooklyn creates an ssh

session on the local server when deploying (as do many clustered systems) and so needs

to be able to SSH to the local server for installs on localhost. I also test the ssh connection

and exit from the new session that I have successfully created.

[root@hc4r2m1 mule]# ssh-copy-id root@hc4r2m1

[root@hc4r2m1 mule]# ssh hc4r2m1

Last login: Sat Oct 1 14:41:31 2016 from 192.168.1.4

[root@hc4r2m1 ~]# exit

logout

Having logged into the Brooklyn user interface at http://192.168.1.118:8081 using

the username and password supplied in the session output as shown earlier, it can now

be seen that the MuleServerApp class supplied in the Ricston GitHub code exists in the

Brooklyn catalog as shown in Figure 3-8.

Figure 3-8. Brooklyn Catalog: Mule class

Chapter 3 apaChe Brooklyn

79

Now a YAML file can be used to call this class and so install a version of Mule. The

YAML-based blueprint that I will use is based on the Ricston example, but it installs a

later version of Mule, Version 3.8.1.

name: Simple Mule blueprint

location: localhost

services:

- type: brooklyn.entity.mule.app.MuleServerApp

 name: Simple Mule blueprint

 period: 5000ms

 brooklyn.config:

 install.dir: /opt/mule/runtime/

 run.dir: /opt/mule/runtime/mule-standalone-3.8.1

version: 3.8.1

The preceding blueprint is a simple example; it names the application to be deployed

as “Simple Mule blueprint.” It specifies a single install location as localhost. It specifies

the install via a service with the type specified as the catalog-based MuleServerApp. The

configuration is specified in terms of an install and run directory under/opt. Finally, the

version of Mule to be installed is defined as 3.8.1, a current version.

I also needed to change the following code in the Ricston repository to make Version

3.8.1 the default value to get this to work. The pwd command following shows the

location in the source tree. The vi commands show the two Java files that I changed. The

source code beneath each vi command shows the changes that I made. I also specified

the default install path to be under/opt:

[root@hc4r2m1 mule]# pwd

/opt/mule/ricston/brooklyn-mule-entity/src/main/java/brooklyn/entity/mule

[root@hc4r2m1 mule]# vi MuleServer.java

 ConfigKey<String> SUGGESTED_VERSION = ConfigKeys.newConfigKeyWithDefault

(SoftwareProcess.SUGGESTED_VERSION, "3.8.1");

[root@hc4r2m1 mule]# vi app/MuleServerApp.java

 addChild(EntitySpec.create(MuleServer.class).

configure(SoftwareProcess.INSTALL_DIR, "/opt/mule/runtime/")

 .configure(SoftwareProcess.RUN_DIR, "/opt/mule/runtime/

mule-standalone-3.8.1")

Chapter 3 apaChe Brooklyn

80

Figure 3-9 shows the YAML blueprint being executed. To reach this form, select

the Applications tab. Then select the black plus button in the Applications section.

Then select the YAML tab on the pop-up form. Selecting the Finish button now causes

Brooklyn to attempt to deploy the Mule application. Brooklyn will source Mule from the

following path, as this is embedded with the Ricston source:

repository-master.mulesoft.org/nexus/content/repositories/releases/org/

mule/distributions/mule-standalone/3.8.1/mule-standalone-3.8.1.tar.gz

Figure 3-9. Brooklyn: Execute the YAML blueprint

Figure 3-10. Brooklyn: Mule install

Chapter 3 apaChe Brooklyn

81

Figure 3-10 shows the Mule-based application being installed by Brooklyn; you can

tell it is installing because the icon next to the MuleServer.Eqmb text under Applications

consists of revolving green dots.

After a successful install, the icons related to the application will change to a solid

green as shown in the Figure 3-11. Also, the application will have a RUNNING state. The

pwd and ls Linux commands following show that Mule 3.8.1 has been installed under/opt:

[root@hc4r2m1 runtime]# pwd

/opt/mule/runtime

[root@hc4r2m1 runtime]# ls

BROOKLYN mule-standalone-3.8.1 mule-standalone-3.8.1.tar.gz

[root@hc4r2m1 runtime]# ls mule-standalone-3.8.1

apps docs logs

bin domains MIGRATION.txt

brooklyn-jmxmp-agent-shaded-0.7.0-incubating.jar examples README.txt

conf lib src

console.log LICENSE.txt

Figure 3-11. Brooklyn: Mule successful install

Chapter 3 apaChe Brooklyn

82

Apache Brooklyn has installed and executed Mule for use as the (filtered) Linux ps

(process status) command output following shows:

[root@hc4r2m1 runtime]# ps -ef | grep mule

root 5157 5104 0 17:24? 00:00:00 /bin/sh /opt/mule/runtime/

mule-standalone-3.8.1/./bin/mule console

A single Mule runtime server is of little use without some applications running

within it to collect data. Figure 3-12 shows the Brooklyn application-based effectors that

can be used to manage the Mule runtime. There are options to start and stop the runtime

as well as deploy and undeploy Mule applications within it.

I have created a simple Mule application to access the weather.com site via its API

and retrieve daily weather data for Wellington. I won’t dwell on Mule workflows because

this chapter is supposed to be about Brooklyn. Figure 3-13 shows the configuration of the

Mule application.

Figure 3-13. Brooklyn: Mule application configuration

Figure 3-12. Brooklyn: Mule application effectors

Chapter 3 apaChe Brooklyn

83

The Mule application flow shown in Figure 3-14 uses an HTTP requestor to access

weather.com. It polls this site and retrieves data daily. It then converts the data to a

string, logs the attempt, and writes the data to the file system.

I have exported this flow to a zip file called weather2.zip and saved it to my web site

at the URL following. I will now use the Brooklyn deploy effector for the Mule runtime

class to deploy this Mule-based flow to the Brooklyn-based Mule runtime.

http://www.semtech-solutions.co.nz/mule/weather2.zip

Figure 3-15 shows the pop-up window that appears when the Brooklyn Mule

runtime application deploy effector is selected. It takes two parameters: the URL to the

zipped Mule application and the target name of the application. As shown in Figure 3-15,

fill in these options and select the red Invoke button.

Figure 3-14. Brooklyn: Mule application flow

Figure 3-15. Brooklyn: Mule application deploy

Chapter 3 apaChe Brooklyn

http://www.semtech-solutions.co.nz/mule/weather2.zip

84

As shown in Figure 3-16, a successful Brooklyn application Mule deploy causes a

completed state with a green icon. The times to start and finish are also shown, as well as

an ID and the action name.

The Mule-based application deployment can also be checked on the local server

because Mule applications are deployed to the runtime apps directory. As the Linux

listing shows following, the weather2 Mule flow exists and has been unpacked by the

Mule runtime:

[root@hc4r2m1 mule-standalone-3.8.1]# pwd

/opt/mule/runtime/mule-standalone-3.8.1

[root@hc4r2m1 mule-standalone-3.8.1]# ls apps

default default-anchor.txt weather2 weather2-anchor.txt

Also, the first thing this flow will try to do is access the weather.com site API and try

to download some data. The data will be stored in xml format under the /opt/mule/

data/weather directory. As the Linux pwd and ls commands following show, all is

working, as data has been retrieved.

[root@hc4r2m1 weather]# pwd

/opt/mule/data/weather

Figure 3-16. Brooklyn: Successful mule application deploy

Chapter 3 apaChe Brooklyn

85

[root@hc4r2m1 weather]# ls -l

total 60

-rw-r--r--. 1 root root 58582 Oct 1 18:17 Wellington.20161001061716.xml

So what conclusion can be drawn from using a Mule deployment as a Brooklyn

blueprint-based example? Brooklyn has provided the functionality to simply model and

deploy both the Mule runtime as well as Mule-based applications. The process becomes

simple, and Brooklyn provides an interface with which to monitor the Mule-based

deployment.

This install example has shown how Brooklyn blueprints can be used to install to

servers, but what about installs to the cloud? This will be tackled in the next section by

deploying Cassandra nodes to cloud-based instances on Apache CloudStack.

 Cloud-Based Install
As already mentioned, this section will use CentOS-based virtual instances on Apache

CloudStack for blueprint-based Cassandra deployment. The first example will deploy

a single Cassandra node; and when that is shown to be successful, then a Cassandra

cluster will be created.

Remember that Apache CloudStack is being used as an example of a cloud-based

system. Large-scale enterprise customers would probably use a better known cloud-

based system such as Azure, Cloudsoft, Amazon AWS, or Google cloud. But this example

is still relevant; the idea is that the cloud-based location for deployment becomes

generic and part of the deployment.

Figure 3-17 shows three virtual instances that I have created using a CentOS 6 ISO. I

won’t repeat the details of the instance creation here, as that was covered in the last

chapter. The servers are named Server1, Server2, and Server3. Server1 will initially be

used for a single Cassandra install, and then a Cassandra Cluster will be created using all

of these instances.

Figure 3-17. CloudStack instances for deployment

Chapter 3 apaChe Brooklyn

86

Remember that instances can always be examined by selecting the left menu

Instances option in the CloudStack user interface. Figure 3-17 shows that all instances

to be used in this section are running and that they are all associated to Zone1. They all

have IP addresses allocated, and they are all accessible from the server on which Apache

Brooklyn is running via passwordless ssh.

In this case, Apache Brooklyn is running on the host hc4r2m1; and as shown

following, Server1 with IP address 192.168.1.139 is accessible both using ping and ssh.

This means that once Cassandra is installed using Brooklyn, I can access each virtual

instance and examine the Cassandra-based install and use Cassandra tools to check that

the install is working:

[root@hc4r2m1 ~]# ping 192.168.1.139

PING 192.168.1.139 (192.168.1.139) 56(84) bytes of data.

64 bytes from 192.168.1.139: icmp_seq=1 ttl=64 time=2001 ms

64 bytes from 192.168.1.139: icmp_seq=2 ttl=64 time=1002 ms

[root@hc4r2m1 ~]# ssh 192.168.1.139

Last login: Sun Nov 27 16:01:11 2016 from 192.168.1.118

[root@server1 ~]#

To ensure ssh access from the Brooklyn server to the virtual instances, I had to use

the Linux ssh-copy-id command with a parameter of root@192.168.1.139 from the

Brooklyn server. I also needed to set up the network on each virtual instance to ensure

that it was visible from outside of the cloud. The example following shows how virtual

instance Server1 was set up.

[root@server1 ~]# cd /etc/sysconfig/network-scripts

[root@server1 network-scripts]# cat ifcfg-eth0

DEVICE=eth0

BOOTPROTO=static

ONBOOT=yes

NETMASK=255.255.255.0

IPADDR=192.168.1.139

NAME="System eth0"

GATEWAY=192.168.1.1

DNS1=8.8.8.8

DNS2=8.8.4.4

Chapter 3 apaChe Brooklyn

87

NM_CONTROLLED=yes

TYPE=Ethernet

UUID=ec8800b4-7d03-44a8-b7f6-615ff649170f

The important parts to the preceding configuration are the NETMASK, IPADDR

(IP address), GATEWAY, and DNS values. They ensure that the instance is visible outside

the cloud, and the preceding ping command shows that this is true. When these changes

are made, the instance network service needs to be restarted for the changes to take

effect. The Linux service command following executed as root on the instance shows

how this is done:

[root@server1 service network restart

Given that the instances have been created, are running, and are visible on the

network, a Cassandra-based cloud install can now be attempted using Brooklyn

blueprints. Note that static instances are being used in this chapter; it is also possible

to use dynamic instances. This means that the blueprints can also be used to create

the virtual instances on which they deploy, but it is simpler in CloudStack to introduce

cloud-based deployment in this way.

The blueprint that will be used for this deployment is shown following, the

application name in Brooklyn will be called “Cassandra Simple Cluster Node.” The

deployment location is defined as a BYON, server Server1 with IP address 192.168.1.139:

name: Cassandra Simple Cluster Node

location:

 byon:

 user: root

 hosts:

 - 192.168.1.139

services:

- type: org.apache.brooklyn.entity.nosql.cassandra.CassandraNode

 start.timeout: 30m

 stopIptables: true

 brookyn.policies:

 - type: org.apache.brooklyn.policy.ha.ServiceRestarter

 brooklyn.enrichers:

 - type: org.apache.brooklyn.policy.ha.ServiceFailureDetector

Chapter 3 apaChe Brooklyn

88

The service that will be deployed will be a single CassandraNode, and I have also

included an example policy ServiceRestarter and an enricher ServiceFailureDetector to

show that the blueprint can be extended with catalog-based, predefined functionality.

Last, two other CassandraNode attributes have been added. A start.timeout value

has been defined so that sufficient install time will be allowed, and stopIptables has

been defined to ensure that the instance firewall will be down after the install to allow

simplified networking.

This simple blueprint is pasted into the composer section of the Apache Brooklyn

user interface, and the deploy button is selected.

As Figure 3-18 demonstrates, the deployment has been successful, indicated by the

green icons for both the application name “Cassandra Simple Cluster Node” and the

Apache Cassandra Node. Apache Brooklyn has used passwordless ssh access that was

previously set up to the cloud instance to install Cassandra. It should now be possible to

examine the install on the virtual instance Server1.

As already shown, I can access the instance Server1 from the Brooklyn server

hc4r2m1 using ssh.

[root@hc4r2m1 .ssh]# ssh 192.168.1.139

The first problem that I face is knowing where Cassandra has been installed. Given

that I know that cqlsh is a Cassandra command, I can search for it on the instance using

the Linux find command as shown following. I will search all locations under the root

file system /.

Figure 3-18. Brooklyn: CloudStack Cassandra Node deploy

Chapter 3 apaChe Brooklyn

89

 [root@server1 ~]# find / -name cqlsh

/root/brooklyn-managed-proc.esses/apps/TMV6HR2u/entities/CassandraNode_

mPt0ICvo/bin/cqlsh

/root/brooklyn-managed-processes/apps/v3kKblic/entities/CassandraNode_

aYGMy6Mv/bin/cqlsh

/root/brooklyn-managed-processes/installs/CassandraNode_1.2.16/apache-

cassandra- 1.2.16/bin/cqlsh

The resulting output of this command shows multiple Brooklyn apps exist under the

Linux file system path.

/root/brooklyn-managed-processes/apps/

This is due to multiple attempted installs of Cassandra. I will use the latest installed

application, which is called TMV6HR2u. Following, I have used the Linux cd (change

directory) command to move to the Cassandra Node bin directory. The Linux ls

command then shows the Cassandra-based commands that are available within the

Server1 instance Cassandra application.

[root@server1~]# cd /root/brooklyn-managed-processes/apps/

[root@server1~]# cd TMV6HR2u/entities/CassandraNode_mPt0ICvo/bin/

[root@server1 bin]# ls

cassandra cqlsh.bat sstable2json.bat sstablesplit

cassandra.bat debug-cql sstablekeys sstablesplit.bat

cassandra-cli debug-cql.bat sstablekeys.bat sstableupgrade

cassandra-cli.bat json2sstable sstableloader sstableupgrade.bat

cassandra.in.sh json2sstable.bat sstableloader.bat stop-server

cassandra-shuffle nodetool sstablemetadata.bat

cassandra-shuffle.bat nodetool.bat sstablescrub

cqlsh sstable2json sstablescrub.bat

Moving up one level in the Cassandra application installation file system shows the

subdirectories within the installed application. As expected, there is a Cassandra bin

directory as well as conf (configuration), data, lib (library), log files, and a tools directory.

Chapter 3 apaChe Brooklyn

90

[root@server1 CassandraNode_mPt0ICvo]# cd .. ; ls

bin cassandra.log interface tools

brooklyn_commands commitlog lib

brooklyn-jmxmp-agent-shaded-0.9.0.jar conf pylib

cassandra-console.log data saved_caches

To finalize this simple example, I will prove that this Cassandra node is installed

and running by using the Cassandra nodetool command available in the preceding bin

directory. I know that by default the Cassandra JMX port is 7199, so that will be used to

check the Cassandra install. I have used the nodetool command following to obtain the

Cassandra node status. I have simplified both the ID and Rack names to ensure that the

data fits on the page. The output following shows that the Cassandra node is running

with a Normal state on Rack1:

[root@server1 CassandraNode_mPt0ICvo]# ./bin/nodetool -p 7199 status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Owns Host ID Rack

UN 192.168.1.139 14.03 KB 100.0% 57c0d5f3 3283980 rack1

This installed application instance can be removed from the Brooklyn interface

simply by selecting the application advanced option expunge. I have expunged this

install to tackle a Cassandra cluster install next. It is interesting to install a simple

Cassandra node using blueprints, but Cassandra is a distributed application; so to be

useful, it would need to operate in a cluster. The next example will show that a whole

Cassandra cluster can be created in the same way using a simple blueprint.

I only have three cloud-based instances on which to install my Cassandra cluster,

servers Server1 to Server3. That means that my initial Cassandra cluster size will be

limited to three nodes. The blueprint following will be used to create the cluster:

name: Cassandra Simple Cluster

location:

 byon:

 user: root

Chapter 3 apaChe Brooklyn

91

 hosts:

 - 192.168.1.139

 - 192.168.1.135

 - 192.168.1.137

services:

 - type: org.apache.brooklyn.entity.nosql.cassandra.CassandraDatacenter

 cassandra.cluster.name: 'my cluster'

 cluster.initial.size: 3

 start.timeout: 30m

 stopIptables: true

 brooklyn.policies:

 - type: org.apache.brooklyn.policy.ha.ServiceRestarter

 brooklyn.enrichers:

 - type: org.apache.brooklyn.policy.ha.ServiceFailureDetector

Note that the install location is very similar to the last example except that extra

locations have been added for the three virtual server instances Server1–Server3. Also,

the service to be used this time is called CassandraDataCenter, which is provided by

default within the Brooklyn catalog entity list.

This cluster-based entity (CassandraDataCenter) creates a Cassandra cluster by

using the CassandraNode entity that was used in the previous blueprint. Given that it

uses CassandraNode, we should not be surprised that CassandraNode attributes like

start.timeout are used in this blueprint. Also, the policies used in this blueprint remain

unchanged, that is, FailureDetection and ServiceRestarter.

Paste this blueprint into the composer window on the Brooklyn interface and select

deploy. If all goes well, the deployment-based icons in the Brooklyn interface should

display as green tokens as shown in the figure below following. The display has been

expanded to show that the Brooklyn-based application is now called “Apache Cassandra

Datacenter Cluster.” Each of the three Cassandra nodes are shown in the figure below the

application. Each node has been assigned a system-generated name.

Chapter 3 apaChe Brooklyn

92

Brooklyn indicates, as shown in Figure 3-19, that the Cassandra cluster has been

installed and is running. This can be tested, as in the last example, by accessing a

CloudStack- based virtual instance and using Cassandra-based tools to prove that the

Cassandra cluster is running correctly.

Using ssh from the Brooklyn server, I have accessed the virtual instance Server3. It is

important to note at this point that there may be multiple applications installed on this

instance or multiple application instances created through repeated install attempts.

[root@hc4r2m1 ~]# ssh 192.168.1.135

[root@server3 ~]# find / -name nodetool

/root/brooklyn-managed-processes/apps/WdrHs1o7/entities/CassandraNode_

bV0qjYtd/bin/nodetool

/root/brooklyn-managed-processes/apps/FPIUKIjY/entities/CassandraNode_

S5pdcs9T/bin/nodetool

/root/brooklyn-managed-processes/apps/wa8XQH4n/entities/CassandraNode_

XoHNOSHK/bin/nodetool

/root/brooklyn-managed-processes/apps/H7Q3CCpJ/entities/CassandraNode_

yDmK6Clp/bin/nodetool

/root/brooklyn-managed-processes/apps/l2QcHnDD/entities/CassandraNode_

bQkNSrFR/bin/nodetool

Figure 3-19. Brooklyn: CloudStack Cassandra cluster deploy

Chapter 3 apaChe Brooklyn

93

/root/brooklyn-managed-processes/apps/dBoE2ktC/entities/CassandraNode_

Z66wLVTU/bin/nodetool

/root/brooklyn-managed-processes/apps/fvqw2TnY/entities/CassandraNode_

RPCxpHhU/bin/nodetool

/root/brooklyn-managed-processes/apps/x0JVT6U5/entities/CassandraNode_

OVBDNFcT/bin/nodetool

/root/brooklyn-managed-processes/installs/CassandraNode_1.2.16/apache-

cassandra- 1.2.16/bin/nodetool

As this search on the instance Server3 shows when searching for the nodetool

command using the Linux-based find command, there are multiple instances of the

application CassandraNode installed on this virtual server. Given that I have only created

one running CassandraNode install, I know that I will be looking for the latest install.

[root@server3 ~]# cd /root/brooklyn-managed-processes/apps/

 [root@server3 apps]# ls -lrt

total 32

drwxr-xr-x. 3 root root 4096 Nov 27 17:46 FPIUKIjY

drwxr-xr-x. 3 root root 4096 Nov 27 18:03 H7Q3CCpJ

drwxr-xr-x. 3 root root 4096 Nov 27 18:19 fvqw2TnY

drwxr-xr-x. 3 root root 4096 Nov 27 18:27 dBoE2ktC

drwxr-xr-x. 3 root root 4096 Nov 27 18:43 wa8XQH4n

drwxr-xr-x. 3 root root 4096 Nov 27 18:50 x0JVT6U5

drwxr-xr-x. 3 root root 4096 Nov 27 18:51 l2QcHnDD

drwxr-xr-x. 3 root root 4096 Nov 27 18:58 WdrHs1o7

By moving to the apps directory using the Linux cd command and creating a date

based listing of the system assigned CassandraNode application installs, I can see that

the latest install is named WdrHs1o7. That is the install that I will be interested in.

[root@server3 apps]# cd WdrHs1o7/entities/CassandraNode_bV0qjYtd

[root@server3 CassandraNode_bV0qjYtd]# ls

bin cassandra.log data saved_

caches

brooklyn_commands cassandra.pid interface tools

brooklyn-jmxmp-agent-shaded-0.9.0.jar commitlog lib

cassandra-console.log conf pylib

Chapter 3 apaChe Brooklyn

94

To move further into the install hierarchy, I used the Linux cd command to change

the directory to the installed CassandraNode. As before, there are bin (binary) and conf

(configuration) directories, among others. By moving into the bin directory, I can use the

CassandraNode installed commands.

[root@server3 CassandraNode_bV0qjYtd]# cd bin

[root@server3 bin]# ls

cassandra cqlsh.bat sstable2json.bat sstablesplit

cassandra.bat debug-cql sstablekeys sstablesplit.bat

cassandra-cli debug-cql.bat sstablekeys.bat sstableupgrade

cassandra-cli.bat json2sstable sstableloader sstableupgrade.bat

cassandra.in.sh json2sstable.bat sstableloader.bat stop-server

cassandra-shuffle nodetool sstablemetadata.bat

cassandra-shuffle.bat nodetool.bat sstablescrub

cqlsh sstable2json sstablescrub.bat

The Cassandra nodetool status command following shows that the Cassandra

cluster is running and that it has the expected three nodes. Also as expected, they have

state normal and exist on Cassandra rack rack1:

[root@server3 bin]# ./nodetool -p 7199 status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Owns Host ID Token Rack

UN 192.168.1.135 14.04 KB 33.3% 6cd06dd5 6808581 rack1

UN 192.168.1.137 10.78 KB 33.3% 6cb57e90 6596671 rack1

UN 192.168.1.139 14.02 KB 33.3% 5101d16a 5489247 rack1

As previously, the nodetool status output has been clipped in terms of host and

token IDs to make it fit on the page. Finally, the nodetool command has been used with

the ring option following to show that the Cassandra three-node cluster is up.

Chapter 3 apaChe Brooklyn

95

[root@server3 bin]# ./nodetool -p 7199 ring

Datacenter: datacenter1

==========

Address Rack Status State Load Owns Token

192.168.1.135 rack1 Up Normal 14.04 KB 33.33% 6808581890

192.168.1.137 rack1 Up Normal 10.78 KB 33.33% 6596671994

192.168.1.139 rack1 Up Normal 14.02 KB 33.33% 5489247491

The preceding output shows that for datacenter1, each of the three Cassandra

cluster nodes has a status of Up and a state of Normal. That’s quite powerful; with a

simple Cassandra-based blueprint, it has been possible to define, create, and monitor

a Cassandra cluster in the cloud. This will save time and money not only in cluster

creation but support as well. Obviously there is more work to be done to define cluster

attributes via the blueprint, but the potential I hope is obvious.

 Conclusion
This chapter has introduced Apache Brooklyn, shown how it can be sourced, and

how it can be installed. The Brooklyn user interface has been examined in terms of its

components and functionality. The idea that Brooklyn blueprints can be created by

choosing building blocks from the catalog has been examined. Also, simple blueprints

have been created and executed to show that real-world systems can be modelled,

deployed, and monitored easily.

Blueprint-based simple examples have been created for basic servers and cloud-

based instances. These have, I think, been useful and practical examples because Mule

ESB is used in big data systems as an ETL tool to feed data into clusters. Also, Cassandra

clusters are used as a NoSQL storage solution. Being able to model, automatically install,

and then monitor these systems using blueprints is both interesting and worthwhile.

In the next chapter, I will examine Mesos-based resource management.

Chapter 3 apaChe Brooklyn

97
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_4

CHAPTER 4

Apache Mesos
In this chapter, I will examine the Apache Mesos project (mesos.apache.org), which is an

open-source, distributed, cluster management system that enables multiple systems or

frameworks to share a cluster by providing resource isolation and security. It is designed

to operate on data center scale clusters and is in use by some of the world’s largest

organisations, for example, PayPal and eBay.

I will examine the means by which Mesos can be sourced and built from source; I

will also show how it can be tested once built. Having reached that point, I will examine

the possibility of sourcing Mesos binary releases.

Given that I believe that a chapter like this would not be complete without

examining the Mesosphere project (mesosphere.com), I will also source and install

that system. Mesosphere is a data center scale operating system (DCOS) providing an

integrated environment that is based on Mesos but with added tools and interfaces. It

provides cluster management, scheduling, DNS, and a range of tools that make cluster

management and support more manageable.

Finally, to close this chapter, I will examine the Apache Myriad project, which

is an incubator project that aims to integrate Mesos and Yarn, the Hadoop-based

resource negotiator. Currently, it is possible to use Hadoop HDFS with Mesos but

not Yarn. If a cluster is going to be managed, which system would manage it, Mesos

or Yarn? Which would schedule and actually allocate resources? The Myriad project

is attempting to integrate Yarn with Mesos by having Mesos manage Yarn. This will

provide greater integration opportunities in the future between existing Hadoop stack

providers and Mesos.

The next section will briefly examine the Mesos system architecture in terms of

Mesos masters and agents as well as ZooKeeper and Mesos clients.

98

 Mesos Architecture
Figure 4-1 is based on the one on the mesos.apache.org site and is reproduced here

to give a general overview of the Mesos architecture. Full details can be found at the

following URL:

http://mesos.apache.org/documentation/latest/architecture/

Mesos runs master processes, which in turn connect to agent processes running on

each node in the cluster. The agents run frameworks (which are containerized) on each

agent node in which the workloads run. Client processes connect to the master process

to schedule and execute workloads. To enable high availability, it is possible to configure

multiple Mesos masters with all but one being in standby mode. A ZooKeeper quorum is

then used to manage failover.

Mesos makes resource offerings to frameworks that they can accept, for instance, if

their data locality needs are met. If a resource offer is accepted by a framework, then the

client process will schedule the framework-based Mesos task.

The next section will examine a Mesos source system download and build to show

how an individual Mesos node can be built.

Figure 4-1. Mesos architecture

Chapter 4 apaChe Mesos

http://mesos.apache.org/documentation/latest/architecture/

99

 Mesos Install
In this section, I will provide a brief overview of the big data stack components

introduced to date and then show how Mesos can be sourced and built on a single node.

I will then examine the possibility of a Mesos binary release.

 Overview
Before I delve into the process of sourcing and building the latest Mesos code set, I

thought it would be useful to step back and remind the user where Mesos will fit into

the big data stack. Figure 4-2 shows the original stack diagram presented in Chapter 1

with the components that have not yet been examined grayed out. In Chapter 2, a local

cloud was created and the idea raised that a hybrid cluster could be created from cloud-

based instances and local servers. Chapter 3 introduced Apache Brooklyn, a means by

which systems that are going to be released to those cloud-based or local servers could

be modelled, released, and monitored using blueprints. Now Apache Mesos is being

investigated: it will provide a means by which the cluster that is being created can be

managed. It will allow multiple frameworks or systems to share the cluster effectively

without resource contention.

Figure 4-2. Big data stack architecture

The next section will source and build Apache Mesos and will conclude with an

execution of a test Framework to ensure that the built Mesos node is operating correctly.

Chapter 4 apaChe Mesos

100

 Building Mesos
I am using CentOS 6.8 minimal Linux servers to build Mesos, and I am following the

suggested Mesos build path from the Apache Mesos web site following:

https://mesos.apache.org/getting-started/

I know that the guide in the preceding URL suggests that it is supplied for CentOS 6.6;

but by following the steps and notes following, Mesos can be sourced, built, installed,

and run successfully.

The next section will examine the system requirements that need to be met on a

Centos 6.8 Linux server before Mesos can be installed. They originate from the preceding

Mesos URL but have been extended to cover any issues that have been encountered.

 Mesos System Requirements

The CentOS Linux kernel needs to be updated to support process isolation; RPM (RPM

packaged management) based packages need to be sourced from the elrepo.org web site

using the Linux rpm commands following:

$ rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org

$ rpm -Uvh http://www.elrepo.org/elrepo-release-6-6.el6.elrepo.noarch.rpm

The Linux yum command is then used to install the Linux kernel update with a

-y switch to ensure that yum does not stop processing to obtain confirmation to proceed.

$ yum --enablerepo=elrepo-kernel install -y kernel-lt

Once the new kernel is installed, the Linux grub, boot loader, config file is changed

using the following sed (stream editor) command to ensure that the new Linux kernel

will be used. The reboot command is then issued as the root user to force a reboot and

so use the new kernel.

$ sed -i 's/default=1/default=0/g' /boot/grub/grub.conf

$ reboot

It is now necessary to install some components like tar and wget using the Linux

yum command, which this Mesos install will depend on. The update of the nss

(name service switch) component will support java bindings, allowing them to build

Chapter 4 apaChe Mesos

https://mesos.apache.org/gettingstarted/

101

properly. The -y switch used with the yum command will just avoid the need for install

confirmation.

$ yum -y install tar wget git which nss

When using a Mesos release that is greater than 0.21.0, a C++ compiler is needed,

which provides full C++11 support. (C++11 is an ISO standard for C++-based

development.) This Mesos install will use Mesos 1.1.0, which is the latest available

version at this time (December 2016). The GCC (GNU Compiler Collection) compiler

will be used with a version number greater than 4.8, which is available in the yum-based

component devtoolset-2. To install this, a yum repo file needs to be sourced from the

CERN.ch web site. This is what the Linux-based wget command does following. It creates

the repo file /etc/yum.repos.d/slc6-devtoolset.repo:

$ wget -O /etc/yum.repos.d/slc6-devtoolset.repo \

 http://linuxsoft.cern.ch/cern/devtoolset/slc6-devtoolset.repo

Recall that the back slash character (\) in the preceding command just allows me

to spread the command over multiple lines and make it more legible. Next, the CERN-

based gpg key needs to be imported using the Linux rpm command. This will allow for

the devtoolset component to be validated once it is sourced later using yum.

$ rpm --import http://linuxsoft.cern.ch/cern/centos/7/os/x86_64/RPM-GPG-

KEY-cern

It is now necessary to source a yum Apache Maven repo file to support a Maven

install. Maven will be one of the tools used to build Apache Mesos. The Linux wget

command following sources the repo file /etc/yum.repos.d/epel-apache-maven.repo.

$ wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-apache-

maven.repo \

 -O /etc/yum.repos.d/epel-apache-maven.repo

When the version of the Mesos system used is greater than 0.21.0 (we are using

1.1.0), then a version of the source code, control system subversion is required with

release version greater than 1.8. Also, the development release of subversion is needed.

Chapter 4 apaChe Mesos

102

To support this install, a WANdisco SVN (subversion) repo file must be created as shown

following. The file will be created (using a bash here document) as /etc/yum.repos.d/

wandisco-svn.repo:

$ bash -c 'cat > /etc/yum.repos.d/wandisco-svn.repo <<EOF

[WANdiscoSVN]

name=WANdisco SVN Repo 1.8

enabled=1

baseurl=http://opensource.wandisco.com/centos/6/svn-1.8/RPMS/$basearch/

gpgcheck=1

gpgkey=http://opensource.wandisco.com/RPM-GPG-KEY-WANdisco

EOF'

Next, the development tools package is installed using the Linux yum command;

this will install many of the essential tools needed to build Mesos and avoid the need to

install them individually.

$ yum groupinstall -y "Development Tools"

It is worth noting at this point that to get this install sequence to work, I executed

it many times. During one instance, the SVN WANdisco-based install failed with the

following error:

Error Downloading Packages:

 subversion-1.8.17-1.x86_64: failure: x86_64/subversion-1.8.17-1.x86_64.

rpm from WANdiscoSVN: [Errno 256] No more mirrors to try.

I think that this was an isolated issue, and it only occurred once. I also think it was

caused by yum- and gpg-based error checking. The solution was to set gpgcheck=0 in

the preceding repo file and reinstall the development tools package.

The version of subversion, the source code control system that has been installed,

can now be checked. This is done by calling the Linux svn command with the --version

switch. Remember that a version greater than 1.8 is required; and as the output following

shows, Version 1.8.17 is installed:

$ svn --version

svn, version 1.8.17 (r1770682)

 compiled Dec 1 2016, 13:36:09 on x86_64-unknown-linux-gnu

Chapter 4 apaChe Mesos

103

Next, the yum-based package “devtoolset-2-toolchain” will be installed, which includes

the GCC compiler Version 4.8.2 and a number of other needed development packages.

$ yum install -y devtoolset-2-toolchain

Now a range of yum-based packages will be installed to support the Mesos install;

some obvious packages in the list following are Maven, Python, and Java:

$ yum install -y apache-maven python-devel java-1.7.0-openjdk-devel

$ yum install -y zlib-devel libcurl-devel openssl-devel cyrus-sasl-devel

$ yum install -y cyrus-sasl-md5 apr-devel subversion-devel apr-util-devel

Now a shell session is created using the scl (software collections) command,

which allows access to the software collection environment. This allows access to the

“devtoolset-2” package that was just installed in a Linux bash shell. The g++ command

executed following with a --version flag is used to check that the version of g++ installed

is greater than 4.8. As you can see, Version 4.8.2 has been installed, so that’s fine:

$ scl enable devtoolset-2 bash

$ g++ --version # Make sure you've got GCC > 4.8!

g++ (GCC) 4.8.2 20140120 (Red Hat 4.8.2-15)

Copyright (C) 2013 Free Software Foundation, Inc.

Process isolation in Mesos uses cgroups that are managed by cgconfig on Linux. The

cgconfig service is not started by default on CentOS 6.8 and so needs to be installed,

configured, and started, which is what the following commands do.

The default configuration for cgroups in the file /etc/cgconfig.conf does not attach

the perf_event subsystem. To set this up, add the line

perf_event = /cgroup/perf_event

to the file. The full contents of my version of the file is as follows:

mount {

 cpuset = /cgroup/cpuset;

 cpu = /cgroup/cpu;

 cpuacct = /cgroup/cpuacct;

 memory = /cgroup/memory;

Chapter 4 apaChe Mesos

104

 devices = /cgroup/devices;

 freezer = /cgroup/freezer;

 net_cls = /cgroup/net_cls;

 blkio = /cgroup/blkio;

 perf_event = /cgroup/perf_event;

}

Now the libcgroup module is installed using the Linux yum command with a -y switch

to avoid install confirmation.

$ yum install -y libcgroup

The cgconfig service can then be started using the Linux service command as root

with a start option. The output from the command following shows that it has started

correctly. I have also issued a chkconfig command with an on switch for the cgconfig

service to ensure that it is automatically started if the server reboots.

$ service cgconfig start

Starting cgconfig service: [OK]

$ chkconfig cgconfig on

Finally, I have disabled the firewall on my server by stopping the iptables service.

If you are creating a production install, you will not want to do this; but I just want to

simplify the process. I have also issued a chkconfig command to ensure that the iptables

service is not started if the server is rebooted.

$ service iptables stop

$ chkconfig iptables off

With the prerequisites for an Apache Mesos build covered, the Mesos source can

now be obtained and a build attempted. This will be examined in the next section.

 Mesos Build

I will create a temporary area when sourcing Mesos, extract the code, and then move the

extracted code to a good location under /opt. From there I can execute the build, run

tests, and install Mesos. The following Linux mkdir (make directory) command creates a

directory /tmp/mesos and moves to that location:

Chapter 4 apaChe Mesos

105

$ mkdir /tmp/mesos ; cd /tmp/mesos

Then version 1.0.0 of the Mesos source is obtained using the following wget

command. Mesos is obtained as a gzipped tar package of type .tar.gz:

$ wget http://www.apache.org/dist/mesos/1.1.0/mesos-1.1.0.tar.gz

The downloaded Mesos source package is then extracted using the Linux tar

command with the -zxf switches. The f option specifies the file to extract, the x option

means extract, and the z option allows the extraction of the gzipped format.

$ tar -zxf mesos-1.1.0.tar.gz

Given that the code is now extracted to a subdirectory called mesos-1.1.0, I will move

that directory to /opt and then change directory to /opt.

$ mv mesos-1.1.0 /opt ; cd /opt

To simplify the path that I must use to access the Mesos system in the future, I

will create a symbolic link called /opt/mesos that points to the package directory that

was just moved /opt/mesos-1.1.0. This link is created using the Linux ln (make link)

command with a -s switch. The following listing command ls -l shows that the link has

been created:

$ ln -s mesos-1.1.0 mesos

$ ls -l

total 8

lrwxrwxrwx. 1 root root 11 Dec 28 20:34 mesos -> mesos-1.1.0

drwxr-xr-x. 9 501 wheel 4096 Nov 5 01:59 mesos-1.1.0

We will now use that link to change the directory into the Mesos release directory.

$ cd mesos

It is possible to build the Mesos code from a git-based repository; I will expand

on that later. If you were to do that, you would need to use the bootstrap command to

prepare the release. That is,

$./bootstrap.

Chapter 4 apaChe Mesos

106

I won’t do that now, as I have downloaded the source, but I thought I would mention

the command’s use and meaning. To support the release, the JAVA_HOME variable

needs to be defined. The following export command defines the variable to match the

Java package that was just installed:

$ export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.121.x86_64

The Mesos build needs to be able to find $JAVA_HOME/bin/java; otherwise errors

like this can occur:

checking value of Java system property 'java.home'... /usr/lib/jvm/java-

1.8.0-openjdk-1.8.0.111-0.b15.el6_8.x86_64/jre

configure: error: could not guess JAVA_HOME

Next, a build directory /opt/mesos/build is created using the Linux mkdir command

to execute the Mesos build. The Linux cd command is then used to change directory into

that location.

$ mkdir build

$ cd build

From the build directory, the Mesos configure script is then called with a relative

path of ../ or the directory above the current location. This script will prepare the build

environment and set up make files.

$../configure

I can then use those make files by executing the following make command; the -j

option specifies that the build will use two cores, while the V option will silence the

build. You may remove the V option if you wish to see more output from the build.

$ make -j 2 V=0

When the build has completed, you can run the make check command following

from the build directory. This will install the test framework commands that are

necessary later in this chapter:

$ make check

Chapter 4 apaChe Mesos

107

You can ensure that the test framework has been created by executing the following

commands from the build directory. As shown, the test framework exists, so the make

check command has succeeded:

$ pwd ; ls -l src/test-framework

/opt/mesos/build

-rwxr-xr-x. 1 root root 7814 Dec 28 22:00 src/test-framework

Finally, a make install command will be executed to move Mesos components into

standard locations so that they will be automatically found when Mesos is run.

$ make install

With the Mesos system built, I will examine the top-level directories under the

build directory. The pwd command following shows the current location, whereas the

ls command shows the content of the build directory. The contents of the bin and src

directories will be used shortly:

$ pwd

/opt/mesos/build

$ ls

3rdparty config.log config.status libtool mesos.pc src

bin config.lt include Makefile mpi

The following ls command shows the contents of the build/bin directory; the

mesos-master.sh and mesos-agent.sh scripts will be used later to start a Mesos master

and slave agent. The prefixes shown following, gdb and lldb, are used for debugging

Mesos, while valgrind is a programming tool for memory debugging.

$ ls bin

gdb-mesos-agent.sh lldb-mesos-tests.sh mesos-slave.sh

gdb-mesos-local.sh mesos-agent-flags.sh mesos-tests-flags.sh

gdb-mesos-master.sh mesos-agent.sh mesos-tests.sh

gdb-mesos-slave.sh mesos-local-flags.sh valgrind-mesos-agent.sh

gdb-mesos-tests.sh mesos-local.sh valgrind-mesos-local.sh

lldb-mesos-agent.sh mesos-master-flags.sh valgrind-mesos-master.sh

lldb-mesos-local.sh mesos-master.sh valgrind-mesos-slave.sh

lldb-mesos-master.sh mesos.sh valgrind-mesos-tests.sh

lldb-mesos-slave.sh mesos-slave-flags.sh

Chapter 4 apaChe Mesos

108

Before attempting to start Mesos, I will create some system directories for it to

support logging and runtime data. The mkdir commands following create Mesos

working directories under /var/log and /var/lib:

$ mkdir /var/lib/mesos

$ mkdir /var/log/mesos

In the next section, I will examine how to start Mesos on a single node and show that

it is running.

 Starting Mesos
Like many of the distributed big data systems, such as Hadoop and Spark, Mesos is a

master/slave-based system. A single master component (or multiple masters if high

availability (HA) is used) manage a cluster of Mesos slave or agent components. The

commands following show how a single Mesos master and agent can be started:

To launch the master component, the mesos-master.sh script is used in the bin

directory. A --ip switch is used to specify the IP address of the host. I have used the

server’s IP address, as I intend to access Mesos remotely. A --work_dir switch has been

used to specify the directory that Mesos should store runtime data. Finally, redirection

has been used to store the command’s output to a file called master.log.

$./bin/mesos-master.sh --ip=192.168.56.3 --work_dir=/var/lib/mesos >

./master.log 2>&1 &

The agent start command is much the same as the master. The script is now called

mesos-agent.sh, and a --master option is used to identify the Mesos master component

on the local server at port 5050. The only difference here is that a --launcher option has

been used of type posix (portable operating system interface). This tells the agent to look

for cgroup information under the directory /cgroup and not /sys/cgroup.

$./bin/mesos-agent.sh --master=192.168.56.3:5050 --launcher=posix --work_

dir=/var/lib/mesos > ./agent.log 2>&1 &

Chapter 4 apaChe Mesos

109

It is now possible to prove that these scripts are running from the command line

using the grep command. The Linux ps -ef command gives a full Linux process

listing; the grep commands following then search that content for the Mesos master

and agent scripts. As you can see, the master and agent are running with process

numbers 1373 and 1397:

$ ps -ef | grep mesos-master

root 1373 1358 0 17:09 pts/0 00:00:10 /opt/mesos/build/src/.libs/

lt-mesos-master --ip=192.168.56.3 --work_dir=/var/lib/mesos

root 1483 1358 0 19:19 pts/0 00:00:00 grep mesos-master

$ ps -ef | grep mesos-agent

root 1397 1358 0 17:09 pts/0 00:00:01 /opt/mesos/build/src/.libs/

lt-mesos-agent --master=192.168.56.3:5050 --launcher=posix --work_dir=/var/

lib/mesos

root 1485 1358 0 19:19 pts/0 00:00:00 grep mesos-agent

Given that Mesos is now running, its user interface can be accessed from a web

browser at port 5050 using the local server’s IP address, which is 192.168.56.3:

http://192.168.56.3:5050

The next section will examine the Mesos web-based user interface.

 Mesos User Interface
The main Mesos user interface (Figure 4-3) is accessed by the URL given at the end of the

last section on port 5050.

Chapter 4 apaChe Mesos

110

The front page of the Mesos user interface has four main menu options: Mesos,

Frameworks, Agents, and Offers. The Mesos option in Figure 4-3 shows active,

completed, and orphaned tasks. It also shows all of the states that those tasks may be

in, from Staging through to Orphan. It shows the number of activated and deactivated

agents as well as some details about the version of the Mesos build. (I have manipulated

this image to make it fit the page—the resources section should really be at the bottom

of the left-hand menu.) It shows the cluster-based resource details in terms of CPU, GPU

(graphics processing unit), memory, and disk.

I will examine frameworks a little later when a test Mesos framework is run. The next

Figure 4-4 shows the Mesos Agents menu option; in this case, a single agent is shown

running on the local host.

Figure 4-3. Mesos user interface

Chapter 4 apaChe Mesos

111

The Agents page lists the agents in the cluster in terms of their IDs, the hosts that

they run on, and the resources allocated to them. It also shows master registration times

to give an indication of how long this agent has been running.

Given that Mesos is now running, and its user interface is accessible, it is time to try

and run a test framework. The “make check” build command run earlier created the

necessary frameworks as part of the build. The Mesos quick start has further details of

frameworks to be run. From the /opt/mesos/build/ directory, I will run the following

Mesos test framework as root. The example framework following is a C++ framework:

$ pwd

/opt/mesos/build/

$./src/test-framework --master=192.168.56.3:5050

Once run, the Mesos user interface can be used to check the frameworks menu

option. This will show the frameworks that have been run on the Mesos cluster; see

Figure 4-5 following.

Figure 4-4. Mesos user interface: Agents

Chapter 4 apaChe Mesos

112

Figure 4-5 is an extract from the Mesos frameworks page and shows the completed

C++ framework that was just run. It shows the framework ID, host, user, and name. It also

shows role, principal, as well as registration details.

By selecting the framework ID in Figure 4-5, it is possible to view task details for that

framework. Figure 4-6 following shows an example of a completed framework’s tasks.

Figure 4-6 shows that the C++ framework that was run contained five tasks that

completed with a status of FINISHED. Start and stop times are provided as well as the

host and environment that they ran in.

Figure 4-6. Mesos user interface: Tasks

Figure 4-5. Mesos user interface: Frameworks

Chapter 4 apaChe Mesos

113

I would like to close this section by providing a little more information on the Mesos

file system. For instance, when running frameworks, I found the log files associated with

a given framework under the following directory:

/var/lib/mesos/slaves/14ff691b-3231-4790-8d18-ef33a18f8073-S0/

frameworks/14ff691b-3231-4790-8d18-ef33a18f8073-0004/executors/default/

runs/latest

This path shows the logs for the slave or agent b3073deb-533f-46df-a322-

a43999d47193- S0. The framework run instance ID is 14ff691b-3231-4790-8d18-

ef33a18f8073- 0004. Logs for the framework run are found in the latest subdirectory in

this path; they are called “stderr” and “stdout.” The Linux more commands following

show their content. These log files are very useful: if a framework fails, they may show the

reason why:

$ more stdout

Registered executor on hc4r2m2

Starting task 0

Finishing task 0

Starting task 1

Finishing task 1

Starting task 2

Finishing task 2

Starting task 3

Finishing task 3

Starting task 4

Finishing task 4

$ more stderr

I1227 09:19:21.513962 29638 exec.cpp:162] Version: 1.1.0

I1227 09:19:21.539650 29644 exec.cpp:237] Executor registered on agent

14ff691b-3231-4790-8d18-ef33a18f8073-S0

I1227 09:19:25.647706 29644 exec.cpp:414] Executor asked to shutdown

Chapter 4 apaChe Mesos

114

There are also a couple of other test frameworks available that can be run: a Java and

a Python framework. The commands to run them are shown following. Just change the

IP address to match your server(s):

$./src/examples/java/test-framework 192.168.56.3:5050

$./src/examples/python/test-framework 192.168.56.3:5050

The next section will cover some potential errors that may occur during the build.

 Build Errors
I thought it would be useful to provide a section to cover some of the errors that may be

encountered when building and using Mesos. The error following occurred because I

had not set up an entry in /etc/hosts for my local server:

WARNING: Logging before InitGoogleLogging() is written to STDERR

I1224 17:50:34.481420 26356 main.cpp:243] Build: 2016-12-24 16:42:26 by root

I1224 17:50:34.481608 26356 main.cpp:244] Version: 1.1.0

Failed to obtain the IP address for 'hc4r2m2'; the DNS service may not be

able to resolve it: Name or service not known

The next error occurred because the Mesos agent when run expected cgroups to be

under /sys rather than /cgroups. The solution was to use a “--launcher=posix” switch

when starting the agent to indicate that the local host had a posix cgroup format.

Failed to create a containerizer: Could not create MesosContainerizer:

Failed to create launcher: Failed to create Linux

launcher: Failed to mount cgroups hierarchy at '/sys/fs/cgroup/freezer':

Failed to create directory '/sys/fs/cgroup/freezer': No such file or

directory

The next section will consider the Mesosphere system, an integrated, Mesos-based

cluster management system.

Chapter 4 apaChe Mesos

115

 Mesosphere DCOS
When writing a chapter on Mesos, I don’t think it would be complete without

considering Mesosphere, which is an integrated Mesos-based system for cluster

management. It includes tools for long-term and batch scheduling such as Marathon

and Chronos. It provides web-based user interfaces for application and cluster

management as well as a command line interface (CLI).

DCOS is an acronym for Data Center Operating System. As per Mesos in the previous

section, the aim is to allow multiple frameworks to share the resources of a cluster with

Mesos managing those resources via a system of resource offers. In this section, I will

install DCOS from the site dcos.io and carry out an advanced CLI install. I have chosen

this approach because it allows me command line access, and I can also install master

servers and agents separately.

The following sections will separate the install into manageable sections such as

creating the install server, considering prerequisites, and installing the master and agent

nodes. Finally, the resulting interfaces and possible error conditions will be examined.

 Overview
I will install DCOS using three machines: an install server (192.168.1.119/hc4r2m2), a

master server (192.168.1.120/hc4r2m3), and an agent or slave server (192.168.1.121/

hc4r2m4). Of course in a data center install, there could be thousands of servers and

multiple master servers, but this minimal install will illustrate the process. The following

sections will start by considering the SSH configuration used and the prerequisites

needed. Each server will then be installed separately. This install will be carried out on

CentOS 7.2 (required by DCOS) 64-bit minimal servers. The details for this install can be

found on the dcos.io site at

https://dcos.io/docs/1.8/administration/installing/custom/

 SSH configuration
Given that I have only three servers in use for this mini Mesosphere install, I will enable

SSH (secure shell) access between them. This will enable me to move between them

easily during the setup. I will enable SSH access from the install server to the master and

agent. I will also enable SSH access from the master server to its agent.

Chapter 4 apaChe Mesos

116

On the install server (192.168.1.119/hc4r2m2) as the root user, I execute the

following command to generate SSH RSA (Rivest-Shamir-Adleman) based keys:

$ ssh-keygen

Entering empty responses to prompts creates an RSA-based key that will be used

for the install. This creates an SSH configuration under $HOME/.ssh on the local server.

Now I copy the newly generated key to all servers (even the local one) using the

ssh- copy- id command. The root password must be entered when prompted.

$ ssh-copy-id root@192.168.1.119

$ ssh-copy-id root@192.168.1.120

$ ssh-copy-id root@192.168.1.121

I test this by trying to access each server using the ssh command. I should not be

prompted for a password to gain access. If prompted to accept the server, I type yes.

$ ssh hc4r2m2

$ ssh hc4r2m3

$ ssh hc4r2m4

To exit each session I type exit to return to the original install server session. SSH

access is configured on the master server (192.168.1.120/hc4r2m3) in the same way. An

RSA key is created using ssh-keygen. Then the key is copied to both the master and agent

servers. Finally, ssh access is tested. You should not be prompted for a password.

$ ssh-keygen

$ ssh-copy-id root@192.168.1.120

$ ssh-copy-id root@192.168.1.121

$ ssh hc4r2m3

$ ssh hc4r2m4

Assuming that the SSH access configuration is successful, it is now time to consider

the prerequisites for a DCOS install.

Chapter 4 apaChe Mesos

117

 Install Prerequisites
In this section, I will cover the prerequisites for the DCOS install; these actions should be

carried out on each server (including the install server).

Do not try to minimize the machines used by not using a separate install
server. The install server should not be one of the master or agent machines.

I will begin by installing some of the required yum-based packages for the install.

I will use the -y switch to avoid the need for install prompts.

$ yum -y install tar xz unzip ipset curl

Next I will install Docker, which supports Mesos containerisation. The details for this

Docker install can be found on the dcos.io site at the following URL:

https://dcos.io/docs/1.7/administration/installing/custom/system-

requirements/install-docker-centos/

Before continuing, a yum upgrade will be executed to make sure that all yum-

based packages on the server are up to date. This may take quite a while (mine took

30 minutes), so be patient. The -y switch avoids the need for install prompts, and

--assumeyes assumes that all responses will be yes. The --tolerant option just makes

yum tolerant of command line errors.

$ yum -y upgrade --assumeyes --tolerant

Before continuing, it is necessary to ensure that the kernel is at least 3.10. Remember

that in the Mesos install earlier in this chapter, the kernel had to be updated to support

Mesos. The Linux uname command with a -r switch provides kernel release details. Note

that we have a 3.10 kernel.

$ uname -r

3.10.0-327.el7.x86_64

Chapter 4 apaChe Mesos

118

To support Mesos Docker use, a storage overlay must be used. The following

command creates a config file called overlay.conf under the directory /etc/modules-

load.d/. It contains a single command word, overlay:

$ tee /etc/modules-load.d/overlay.conf <<-'EOF'

overlay

EOF

This change will take effect on a server reboot, so start the reboot with the Linux

reboot command reboot as the root user.

$ reboot

Log back into the server as root and verify that the overlay change has been effective

with the following lsmod (list modules) command. If the output shows an overlay line as

in the following, then it has worked:

[root@hc4r2m2 ~]# lsmod | grep overlay

overlay 42451 0

Now create the yum.repo configuration file for Docker so that the Docker engine can

be installed using yum. A file called docker.repo will be created under /etc/yum.repos.d/

using the following command. Note that the baseurl in this repo file supports a CentOS 7

Docker install:

$ tee /etc/yum.repos.d/docker.repo <<-'EOF'

[dockerrepo]

name=Docker Repository

baseurl=https://yum.dockerproject.org/repo/main/centos/7/

enabled=1

gpgcheck=1

gpgkey=https://yum.dockerproject.org/gpg

EOF

Now configure Docker to use the overlay just created by creating an override.conf file

under /etc/systemd/system/docker.service.d/. Note that the original install instructions

advise that a virtual device option (-H fd://) should be added to the end of the ExecStart

line. I removed this to avoid Docker start errors.

Chapter 4 apaChe Mesos

119

$ mkdir -p /etc/systemd/system/docker.service.d

$ tee /etc/systemd/system/docker.service.d/override.conf <<- EOF

[Service]

ExecStart=

ExecStart=/usr/bin/docker daemon --storage-driver=overlay

EOF

Also, to avoid Docker install warnings, I precreated the docker directory /var/lib/docker/:

$ mkdir /var/lib/docker

Next disable SE Linux by changing the file /etc/sysconfig/selinux; set SE Linux

disabled as shown following. If this is not done, then Docker will issue errors when

installing. Also the DCOS master and agent scripts will fail:

$ vi /etc/sysconfig/selinux

SELINUX=disabled

To avoid the need to reboot the server to pick up the changes, also set SE Linux to

permissive with the following command, which will allow DCOS to work:

$ setenforce 0

A check of the SE Linux configuration mode using the sestatus (SELinux status)

command following shows that in the current session SE Linux is in permissive mode,

whereas the configuration file that was just changed is in disabled mode. Either will work

for Mesos:

$ sestatus | grep -i mode

Current mode: permissive

Mode from config file: disabled

Now install the docker engine using the Linux yum command; this will use the repo

file that was just created to locate the Docker binaries.

$ yum -y install --assumeyes --tolerant docker-engine

Chapter 4 apaChe Mesos

120

Enable docker daemon using the systemctl command following so that future

reboots of the server will cause Docker to be started. For CentOS 7, systemctl now

performs the same function that chkconfig did for CentOS 6:

$ systemctl enable docker

Now start the Docker daemon to support the support the rest of the DCOS Mesos

install.

$ systemctl start docker

Verify that Docker is installed and running by issuing a docker info command to

obtain install configuration information from a running Docker server.

$ docker info

I won’t include the whole output of the docker info command here to save space.

As long as you see an info output list like that following, you are OK to proceed:

Containers: 1

 Running: 0

 Paused: 0

 Stopped: 1

Images: 2

Server Version: 1.12.6

Storage Driver: overlay

......

Insecure Registries:

 127.0.0.0/8

I will also install the network time protocol (NTP) component so that each server

synchronizes its system time using ntpd.

$ yum -y install ntp

Then enable the NTP daemon using the systemctl command so that it starts on

reboot and start the service.

$ systemctl enable ntpd.service

$ systemctl start ntpd

Chapter 4 apaChe Mesos

121

Another prerequisite for the Mesos DCOS master and agent is that a group called

nogroup exists in the /etc/group configuration file. To meet this, I have manually added

the group using the vi editor as shown following. Then I prove that it exists by using the

getent (get entries) command:

vi /etc/group

nogroup:x:5000:

$ getent group nogroup

nogroup:x:5000:

That completes the list of necessary prerequisites to allow the DCOS master and

agent installs to complete. Now the install server (hc4r2m2) can be prepared to progress

the DCOS advanced CLI install.

 Install Server
As previously mentioned, my install server (192.168.1.119/hc4r2m2) will be used to

source the DCOS scripts and prepare for the DCOS CLI advanced install. Each master

and agent install will use this server to source install scripts. To progress this install,

I will create a temporary directory under /opt/ called dcos_tmp. I will then move to that

directory using the cd command. Finally, I will create a directory called genconf that will

be used to support the DCOS install.

$ mkdir /opt/dcos_tmp/

$ cd /opt/dcos_tmp/

$ mkdir genconf

The DCOS install needs a way of detecting the IP address on each server. To do this,

a script called ip-detect needs to be created under the genconf directory. Given that all

servers being used here are installed with CentOS 7.2, then the command “ip addr” can

be used to determine network interfaces. Given that I know from experience that the

network interface that I am interested in will start with enp, then I can use the following

command to get the enp-based interface name that I want:

$ ip addr | grep enp

2: enp0s25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP qlen 1000

 inet 192.168.1.119/24 brd 192.168.1.255 scope global enp0s25

Chapter 4 apaChe Mesos

122

The preceding output shows that IP address 192.168.1.119 is associated with network

interface enp0s25. I need to know that to create an ip-detect script for DCOS.

$ cat <<EOF > /opt/dcos_tmp/genconf/ip-detect

#!/usr/bin/env bash

set -o nounset -o errexit

export PATH=/usr/sbin:/usr/bin:$PATH

echo $(ip addr show enp0s25| grep -Eo '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.

[0-9]{1,3}' | head -1)

EOF

$ chmod 755 ./genconf/ip-detect

The preceding cat command creates a file called genconf/ip-detect, which contains a

simple bash script to determine the server’s IP address. The chmod script just makes the

script executable. As you can see in the following, the script works and will be transferred

to the other servers as the master and agent are installed.

$./genconf/ip-detect

192.168.1.119

A simple yaml-based configuration file now needs to be created called genconf/

config.yaml to support the DCOS install. The cat command following dumps this text to

the new file. It defines a bootstrap URL that other servers will use to connect to the install

server. It names the cluster and defines which servers are masters. It also defines the

names of the DNS servers that will be used.

$ cat <<EOF > /opt/dcos_tmp/genconf/config.yaml

bootstrap_url: http://192.168.1.119:9000

cluster_name: 'cluster1'

exhibitor_storage_backend: static

ip_detect_filename: /opt/dcos_tmp/genconf/ip-detect

master_discovery: static

master_list:

- 192.168.56.3

Chapter 4 apaChe Mesos

123

resolvers:

- 8.8.4.4

- 8.8.8.8

EOF

Now the curl (“see” URL) command is used to download the script dcos_generate_

config.sh from the dcos.io site. This is a big file weighing in at around 550 MB, so it will

take some time to download. This script has a lot of embedded data like a DCOS tar

file for later installs. Once downloaded, the chmod command is used to make the script

executable. The script is then executed using the bash command.

$ cd /opt/dcos_tmp/

$ curl -O https://downloads.dcos.io/dcos/EarlyAccess/commit/14509fe1e7899f4

39527fb39867194c7a425c771/dcos_generate_config.sh

$ chmod 755 dcos_generate_config.sh

$ bash ./dcos_generate_config.sh

I have severely limited the output of this script to display a few lines following;

the actual output covers many pages. As long as you receive no errors and see the

“Generating” line at the end, you should be fine:

Extracting image from this script and loading into docker daemon, this step

can take a few minutes

dcos-genconf.14509fe1e7899f4395-3a2b7e03c45cd615da.tar

c56b7dabbc7a: Loading layer 5.041 MB/5.041 MB

cb9346f72a60: Loading layer 22.73 MB/22.73 MB

bc3f3016e472: Loading layer 4.063 MB/4.063 MB

24e0af39909a: Loading layer 129.5 MB/129.5 MB

fd56668380be: Loading layer 2.048 kB/2.048 kB

90755ec2374c: Loading layer 415.4 MB/415.4 MB

58ae10cff6df: Loading layer 4.608 kB/4.608 kB

.....

Package filename: packages/dcos-metadata/dcos-metadata--setup_

baffb473b10beb8312459104d944e4c03222bb6b.tar.xz

Generating Bash configuration files for DC/OS

Chapter 4 apaChe Mesos

124

Now the DCOS install package is hosted using the nginx Docker container using the

following docker command from the dcos_tmp directory:

$ cd /opt/dcos_tmp

$ docker run -d -p 9000:80 -v /opt/dcos_tmp/genconf/serve:/usr/share/nginx/

html:ro nginx

The output looks like this:

:/usr/share/nginx/html:ro nginx

Unable to find image 'nginx:latest' locally

latest: Pulling from library/nginx

75a822cd7888: Pull complete

0aefb9dc4a57: Pull complete

046e44ee6057: Pull complete

Digest: sha256:fab482910aae9630c93bd24fc6fcecb9f9f792c24a8974f5e46d8ad625ac2357

Status: Downloaded newer image for nginx:latest

77bb9b824edbce6408507a52b8a78263d10444aa0f49130d4e8f67b122e7594c

The install server is now ready to be used to install DCOS master and agent servers.

In this example, a single master and agent are being installed, but you could need to

install thousands of servers. The next step will involve installing the DCOS master server.

 Master Server
As the root user on the DCOS master server (192.168.1.120 / hc4r2m3), create a

temporary directory /tmp/dcos and move to it.

$ mkdir /tmp/dcos

$ cd /tmp/dcos

Now use the curl command to download the dcos_install script from the install

server:

$ curl -O http://192.168.1.119:9000/dcos_install.sh

Chapter 4 apaChe Mesos

125

The output following shows the result of the curl command as the file is downloaded:

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 13410 100 13410 0 0 4966k 0 --:--:-- --:--:-- --:--:-- 6547k

Change the permissions on the install script so that it is executable using the chmod

command.

$ chmod 755 dcos_install.sh

Now run the script with a master parameter so that it will configure the current

server as a DCOS master.

$ bash ./dcos_install.sh master

I would not normally add the output of this script here, as I think generally that this

wastes space. However, in this case, I will make an exception, as this output provides a

list of all the install tests that DCOS uses. If any one of these fails, then the install will fail.

Starting DC/OS Install Process

Running preflight checks

Checking if DC/OS is already installed: PASS (Not installed)

PASS Is SELinux disabled?

Checking if docker is installed and in PATH: PASS

Checking docker version requirement (>= 1.6): PASS (1.12.6)

Checking if curl is installed and in PATH: PASS

Checking if bash is installed and in PATH: PASS

Checking if ping is installed and in PATH: PASS

Checking if tar is installed and in PATH: PASS

Checking if xz is installed and in PATH: PASS

Checking if unzip is installed and in PATH: PASS

Checking if ipset is installed and in PATH: PASS

Checking if systemd-notify is installed and in PATH: PASS

Checking if systemd is installed and in PATH: PASS

Checking systemd version requirement (>= 200): PASS (219)

Checking if group 'nogroup' exists: PASS

Checking if port 80 (required by mesos-ui) is in use: PASS

Checking if port 53 (required by mesos-dns) is in use: PASS

Chapter 4 apaChe Mesos

126

Checking if port 15055 (required by dcos-history) is in use: PASS

Checking if port 5050 (required by mesos-master) is in use: PASS

Checking if port 2181 (required by zookeeper) is in use: PASS

Checking if port 8080 (required by marathon) is in use: PASS

Checking if port 3888 (required by zookeeper) is in use: PASS

Checking if port 8181 (required by exhibitor) is in use: PASS

Checking if port 8123 (required by mesos-dns) is in use: PASS

Checking Docker is configured with a production storage driver: WARNING:

bridge-nf-call-iptables is disabled

WARNING: bridge-nf-call-ip6tables is disabled

PASS (overlay)

Creating directories under /etc/mesosphere

Creating role file for master

Configuring DC/OS

Setting and starting DC/OS

Created symlink from /etc/systemd/system/multi-user.target.wants/dcos-

setup.service to /etc/systemd/system/dcos-setup.service.

As long as the last line (“setup.service”) is shown and the preceding output shows

that all of the tests have passed, then I can move on and install an agent.

 Agent Server
The DCOS agent install is very similar to the master install; the server used will be

192.168.1.121 or hc4r2m4. Initially I will create a working directory on this server

called /tmp/dcos and move into that directory.

$ mkdir /tmp/dcos && cd /tmp/dcos

As with the master install, the config.yaml bootstrap URL is used to download the

dcos_install.sh script to the agent server.

$ curl -O http://192.168.1.119:9000/dcos_install.sh

The downloaded script is then made executable using the Linux chmod command.

$ chmod 755 dcos_install.sh

Chapter 4 apaChe Mesos

127

The script is then executed in a bash shell as follows. It is possible to give the script

the option of slave or slave_public. I have chosen the public option to make a publicly

visible slave node.

$ bash dcos_install.sh slave_public

Again, the install script runs a series of checks, the same set that was carried out for

the master install. The output looks very similar, so I have clipped it here:

Starting DC/OS Install Process

Running preflight checks

...

Setting and starting DC/OS

Created symlink from /etc/systemd/system/multi-user.target.wants/dcos-

setup.service to /etc/systemd/system/dcos-setup.service.

Assuming that the install completes without error and that the last line of the

preceding output indicates that it is setting up the service (“setup.service”), then the

DCOS interface should be available. This will be examined in the next section.

 User Interfaces
The DCOS Mesos Exhibitor ZooKeeper user interface should now be accessible at the

following URL. Note that the IP address used for this URL is for the master server:

http://192.168.1.120:8181/exhibitor/v1/ui/index.html

When accessed, the ZooKeeper Exhibitor DCOS user interface is shown in Figure 4- 7.

This provides access to the control panel showing the state of the Mesos master servers.

Only one server is in operation currently (192.168.1.120), and it has an operation green

state as shown following.

Chapter 4 apaChe Mesos

128

The interface offers a cluster explorer, a configuration detail section, and a logging

section. It offers the ability to enable automatic master server restarts and well as log

cleanup.

I think that you can try this install for yourself and investigate the configuration

and logging options. I will cover access to logging output more fully in the next section.

However, I thought that the explorer section warrants further investigation, as it also

supplies details about some of the tools available in DCOS.

Figure 4-8 shows the Exhibitor Explorer option. Although I haven't included it here,

each option in the preceding list also has associated path, stats, and data details. What

is interesting here is the path/tool details available. Marathon is the scheduler for long-

running applications. Cronos is the scheduler for tasks of shorter duration. ZooKeeper

you are probably already familiarly with; it is used for configuration and master election.

The Mesos interface provides an interface to the Mesos cluster and provides details of

frameworks and offers.

Figure 4-7. DCOS Exhibitor for ZooKeeper

Chapter 4 apaChe Mesos

129

The DCOS Marathon user interface is available at the following master URL:

http://192.168.1.120:8080/ui/#/apps/

The current interface (Figure 4-9) shows an empty Marathon scheduler. It has

the ability to show the status of running apps as well as the resources and health

of applications. It offers the ability to create applications and groups, search for

applications, and organize running applications by their attributes.

Figure 4-8. DCOS Exhibitor Explorer

Figure 4-9. DCOS Marathon

Chapter 4 apaChe Mesos

130

The DCOS Mesos interface is the same as that shown in the previous section where

Mesos was built from source code. It is shown here to make the point that it is the same

application that DCOS/Mesosphere uses: DCOS is an integrated environment based on

Mesos but with added tools and interfaces. Mesos is available via the URL

http://192.168.1.120:5050/#/.

The DCOS Mesos user interface (Figure 4-10) offers options to examine frameworks

that are running or have run on the Mesos managed cluster. It offers the ability to

examine the Mesos cluster slave (or agents) that reside on cluster nodes, and it allows

the offers that Mesos makes to frameworks to be examined.

Remember that the frameworks are the clustered/distributed systems that will share

the Mesos cluster with the help of Mesos. The offers are the resource offers from Mesos

to those frameworks that, if accepted, allow the frameworks to run on the cluster. The

slaves or agents are the nodes in the Mesos cluster that the frameworks will run on.

Examples of potential frameworks might be associated with storage, for instance,

Hadoop, Cassandra, or Riak. They might be associated with Apache Spark or Yarn.

They might be associated with web-based processing. However, most corporations will

probably have a variety of these in operation.

Those of you who are observant might have noticed that I mentioned Apache Yarn on

Mesos just now when actually Yarn and Mesos scheduling conflict with one another. This

is a topic that I will tackle later in this chapter by examining the Apache Myriad project.

Figure 4-10. DCOS Mesos

Chapter 4 apaChe Mesos

131

The DCOS install is complicated: it requires multiple nodes and resources as well as

time to be completed. I thought that it would be useful to provide sections to cover the

issues encountered when installing DCOS and the resources used to solve them. The

next two sections will list both the resources and the issues found. I will also expand on

why those issues occurred.

 Logging and Problem Investigation
Installing DCOS was not a simple process; it took many attempts and much investigation

of issues before I finally created a working DCOS system. Given the complexity of

the task, I thought that it would be sensible to create a section in this chapter that

documented the resources that I used to solve problems apart from Google searches and

just asking people. The DCOS troubleshooting page is very useful as it provides journal

and logging information associated with each DCOS server. The URL is

https://dcos.io/docs/1.7/administration/installing/custom/troubleshooting/.

DCOS uses the journalctl command to query the systemd CentOS journal. It uses

this approach rather than creating log files under /var/log/ like most other Apache

systems. The following journal command examples extract journal information for each

DCOS server. It was in this way that I tracked and solved many DCOS-related issues. The

following command extracts journal entries for the DCOS ZooKeeper Exhibitor; the -b

options means extract since boot time.

$ journalctl -u dcos-exhibitor -b | more

The following command extracts journal information for the Mesos master server.

Piping the output to more just allows me to page through the lines of event information

that are provided:

$ journalctl -u dcos-mesos-master -b | more

The following command lists journal entries for the Mesos DNS server:

$ journalctl -u dcos-mesos-dns -b | more

The following command lists journal entries for the Mesos Marathon server:

$ journalctl -u dcos-marathon -b | more

Chapter 4 apaChe Mesos

132

The following command lists journal entries for the Mesos admin router server:

$ journalctl -u dcos-nginx -b | more

The following command lists journal entries for the Mesos gen-resolvconf service,

which helps agents locate master servers:

$ journalctl -u dcos-gen-resolvconf -b | more

The following commands list journal entries for the Mesos slave (or agent) servers

whether they are public or not:

$ journalctl -u dcos-mesos-slave -b | more

$ journalctl -u dcos-mesos-slave-public -b | more

It is also possible to determine the exhibitor cluster status as shown by the URL

following. The output shows that the current master is running and is serving the

cluster. It shows that the cluster master is leading; but this is not surprising, as there is

only one master:

http://192.168.1.120:8181/exhibitor/v1/cluster/status

[{"code":3,"description":"serving","hostname":"192.168.1.120","isLeader":true}]

Given the time available to investigate the DCOS system, this is as far as I will

take my investigation. I will leave it up to the reader to create applications and launch

frameworks onto the DCOS cluster. In the next section, I will investigate some of the

errors that occurred during this build.

 Build Errors
I think that it is useful to examine the errors that I encountered when attempting to

install the DCOS software. It can be helpful to understand why these errors occurred

and how they can be resolved. The following error occurred because Docker was not

installed when I tried to install DCOS. I assumed that DCOS would install Docker for me:

$ bash ./dcos_generate_config.sh

docker should be installed and running. Aborting.

Chapter 4 apaChe Mesos

133

The next warning occurred because by default, the initial Docker install that I was

using used a loopback device. The solution was to use the DCOS Docker install shown

here and layerFS:

WARNING: Usage of loopback devices is strongly discouraged for production

use. Use `--storage-opt dm.thinpooldev` to specify a custom block storage

device.

The next error occurred because my Docker configuration file, docker.service.d, used

a virtual device in its configuration. Following I show the error displayed on investigation

by checking Linux journal entries; and following that, I show the original and changed

entries for the ExecStart line in the file docker.service.d. The change fixed the problem:

$ journalctl -xe

Jan 08 17:09:57 hc4r2m2 dockerd[16236]: time="2017-01-

08T17:09:57.663752772+13:00" level=fatal msg="Error starting daemon: error

initializing graphdriver: devicemapper: Error running device

Jan 08 17:09:57 hc4r2m2 polkitd[10209]: Unregistered Authentication Agent

for unix-process:16230:1246567 (system bus name :1.42, object path /org/

freedesktop/PolicyKit1/AuthenticationAgent,

ExecStart=/usr/bin/docker daemon --storage-driver=overlay -H fd://

ExecStart=/usr/bin/docker daemon --storage-driver=overlay

Given more time, I would investigate the Docker configuration further and create

dedicated, file-system-based logical volumes that Docker could use for storage. The next

error seems complicated due to the volume of errors produced, but was quite simple.

The install server must be running when trying to install the master and agent. It is the

location from which the master and agent DCOS installs source DCOS:

$ bash ./dcos_install.sh master

$ journalctl -xe

Jan 09 16:25:52 hc4r2m2 curl[11516]: * Failed connect to 192.168.56.3:9000;

Connection refused

Jan 09 16:25:52 hc4r2m2 curl[11516]: * Closing connection 0

Jan 09 16:25:52 hc4r2m2 curl[11516]: curl: (7) Failed connect to

192.168.56.3:9000; Connection refused

Chapter 4 apaChe Mesos

134

The next error occurred due to the Docker configuration when installing the master

and agent. The master and agent DCOS installs run through a series of checks to

determine whether components are installed and Docker is configured correctly. The

solution was to use layerFS in the Docker install:

Docker is configured to use the devicemapper storage driver with a loopback

device behind it. This is highly recommended against by Docker and the

community at large for production use[0][1]. See the docker documentation on

selecting an alternate storage driver, or use alternate storage than

loopback

for the devicemapper driver.

The next error occurred again because the install server was not available; ignore

the IP address change used here. Some of the DCOS install investigation was carried out

using Oracle VirtualBox while travelling, and the IP addresses used reflect that:

Jan 12 16:08:00 hc4r2m3 curl[10623]: * Failed connect to 192.168.56.7:9000;

No route to host

Jan 12 16:08:00 hc4r2m3 curl[10623]: * Closing connection 0

Jan 12 16:08:00 hc4r2m3 curl[10623]: curl: (7) Failed connect to

192.168.56.7:9000; No route to host

Jan 12 16:08:00 hc4r2m3 systemd[1]: Failed to start Pkgpanda: Download DC/OS

to this host..

-- Subject: Unit dcos-download.service has failed

I will close this section here having given some flavor of the types of problems that

occurred while trying to install and configure DCOS. The DCOS install is much more

complicated than the basic Mesos code build, but it offers a wealth of extra tools to

support a Mesos-based environment. In the next section, I will examine how Apache

Yarn and Mesos can be integrated to avoid scheduler contention.

Chapter 4 apaChe Mesos

135

 Project Myriad
This chapter has shown how Mesos can be built from source and then how the complex

DCOS tool-rich system can be sourced and installed. A Mesos-based cluster control

system offers the possibility of running multiple frameworks on a single large cluster and

sharing resources between them using Mesos. There might be a Hadoop-based data lake

as well as an Apache Spark framework. There might also be a web services framework

and possibly a business intelligence layer.

Those of you who have more experience or had noticed comments earlier in this

chapter might have noticed a problem. How can you have both Mesos resource-based

scheduling and Hadoop-based Yarn scheduling? Won't those two resource schedulers

be in conflict? The answer is yes: without some extra layer of integration, there will be

conflict between the two systems.

However, a group of people in the big data world have already started investigating

the problem and have launched the Apache Myriad project (myriad.apache.org). This is

an incubating Apache project that allows the Yarn resource manager and node managers

to run inside Mesos containers. Running Yarn on Mesos by using Myriad will enable

multiple workloads to share a single cluster. Cluster resources can then be allocated

to frameworks on demand as needed. This would also avoid the need to have multiple

clusters and move data between them.

I won’t install Myriad in this chapter due to a shortage of time, but I want to make

you aware of it and allow you to investigate. It is the necessary link between Mesos and

Yarn that should allow you to run a full Hadoop stack within a framework on Mesos.

 Myriad Architecture
Figure 4-11 is based on the one used on the Apache Myriad web site wiki; just follow the

wiki link at myriad.apache.org/docs/.

Chapter 4 apaChe Mesos

136

Figure 4-11 shows how Apache Myriad integrates with Apache Mesos so that Mesos

manages cluster resources while Yarn is then able to operate via a Myriad executor. The

architectural process flow is as follows:

• To launch, a Node Manager Myriad passes the configuration and task

launch information to the Mesos Master (1).

• Mesos Master passes this information on to the Mesos Slave (1).

• The Mesos Slave launches a Myriad executor, which manages the life

cycle of the Node Manager.

• The Myriad Executor configures the Node Manager resources and

launches it (1).

• Upon startup, the Node Manager advertises its configured resources

to the Yarn Resource Manager. [Some resources are reserved for

Myriad (2).]

• The Yarn Resource Manager can now launch containers (C1 and C2)

to process Yarn-based jobs. The containers are mounted under the

CentOS kernel cgroups hierarchy (3).

Figure 4-11. Apache Myriad architecture

Chapter 4 apaChe Mesos

137

Although I have not had the time to cover Apache Myriad installation and integration

with Mesos in this section, I thought that it was important and should be mentioned. I

know that I will certainly investigate the install at a later date. I hope that by making you

aware of this project, you will be empowered to investigate further.

 Conclusion
In this chapter, I have investigated large-scale, cluster-based resource management and

sharing by examining the Apache Mesos product. My previous books examined the

Apache Hadoop tool eco system and the Apache Spark in memory parallel processing

system. Each of these systems could reside within a framework running on Mesos, each

carrying out a separate function within an overall corporate computational architecture.

I think that Apache Mesos would be a very useful corporate-wide tool to allow these

systems to coexist and share resources.

I have concentrated on integration in the big data world because I think it is a bigger

problem than some of the other issues, for instance, scaling or security. For example,

Apache Spark can use either Yarn or Mesos as its cluster manager. The Myriad project

now allows Yarn to integrate with Mesos, but how might that affect a Spark cluster?

I investigated the DCOS project via dcos.io because I think that it provides a much

richer tool set than a Mesos source-based build. It is much more complex to use and

more difficult to install. I hope that by giving you a basic overview and install guide,

I have enabled you to investigate further.

When looking at this chapter in total, I have shown you that Mesos can manage very

large clusters and can be the primary resource management system for the cluster.

I have shown that multiple types of functional framework can be made to coexist within

the Mesos cluster. I have also shown you that a full, Hadoop-based data lake can exist

within a Mesos cluster by integrating the Myriad project into your cluster. This means

that Yarn- based Hadoop cluster management within a Framework is achievable.

There will be more work to do to create a productionized, cluster-based Mesos

system. I’m sure that each corporation will have different requirements and have

different framework-based needs. However, I hope that you can use this chapter as a

basis to investigate further.

In Chapter 5, I will examine storage-based Mesos frameworks and how they can be

created and launched onto a Mesos cluster.

Chapter 4 apaChe Mesos

139
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_5

CHAPTER 5

Stack Storage Options
In this chapter, I will examine Mesos-based storage frameworks. I will cover multiple

types of framework to show that different types of storage can be used in an Apache

Mesos-based big data stack. If you wish to install a traditional Hadoop eco-system-based

stack from Hortonworks, Cloudera, or MapR, you just obtain their latest release and

install. However, with a Mesos framework, you need to find a suitable framework and

install that on Mesos. So whereas a Hortonworks big data stack might install multiple

Hadoop eco system tools, a Mesos HDFS framework will only install HDFS. I’m sure

that in time the range of frameworks will expand, and companies like Hortonworks will

evolve their offerings to include Mesos. However, at this point in time, I will limit my

examples to the Mesos-based frameworks available.

So in this chapter, I will show how to obtain and build an HDFS framework on an

existing Mesos cluster. You can check the last chapter to determine how to start your

cluster. I will examine storage options for HDFS, Riak, and Cassandra. This should

provide the reader with a good foundation from which to investigate further.

To remind the reader where this chapter fits in the big data stack architecture, I have

again included the big data stack diagram following in Figure 5-1. The components in a

gray background have not yet been examined. You will notice that the STORAGE option

has now changed the background color to white, as we investigate it in this chapter.

Figure 5-1. Stack architecture

140

Chapter 2 showed how to install Apache CloudStack, create virtual instances, and

make them visible to the cluster. To make the point that hybrid clusters can be created

to include virtual and physical servers, I have created two CloudStack instances as

shown in Figure 5-2. Chapter 2 explains how they can be created, so I will not repeat the

instructions here.

This chapter will use the two preceding virtual CentOS instances as well as two

physical machines with CentOS 6.8 installed to create a Mesos cluster with one master and

four agent nodes. Again, Chapter 4 explains how to create a Mesos cluster, so look there for

a reminder. So for the HDFS framework on Mesos, the following servers will be used:

192.168.1.135 centos-6-8-instance-1 (cloud)

192.168.1.140 centos-6-8-instance-2 (cloud)

192.168.1.118 hc4r2m1 (server) (mesos master)

192.168.1.119 hc4r2m2 (server)

Server hc4r2m1 will be the Mesos master. Riak from basho.com will be installed

using a combination of Vagrant and VirtualBox onto the following virtual node:

192.168.42.42 vagrant

Finally, for Cassandra, Vagrant and VirtualBox will again be used to create the

following virtual instances. Where m1 is the DCOS master, a1 is a public agent, p1 is a

private agent, and boot is the boot server.

m1 192.168.65.90

a1 192.168.65.111

p1 192.168.65.60

boot 192.168.65.50

The next section will examine the Mesos HDFS framework installation.

Figure 5-2. Virtual CloudStack instances

Chapter 5 StaCk Storage optionS

141

 HDFS Mesos Framework
This HDFS Mesos framework example is taken from the Apache 2 licensed Elodina

hdfs- mesos example provided on git by Joe Stein at

https://github.com/elodina/hdfs-mesos.

To make this build more coherent, I will break it up into a number of stages, starting

with sourcing software and ending with the use of the HDFS framework.

 Source Software
I will store all of the system software under /opt, creating symbolic links if necessary

to make directory paths easier to read. Before starting the framework install, I have

changed the directory to the /opt directory and provided a listing.

$ cd /opt

$ ls

mesos mesos-1.1.0 rh

This shows that Mesos is already installed and running on this node (and all of

the nodes used for this example). Next, I will use the git clone command to source the

Elodina hdfs-mesos GitHub-based code. I then change the directory into the newly

created hdfs-mesos directory.

$ git clone https://github.com/elodina/hdfs-mesos.git

$ cd hdfs-mesos

The wget command will now be used to get the GitHub-based Elodina hdfs-mesos

jar file hdfs-mesos-0.0.1.0.jar. The following long listing just shows that this file has been

downloaded successfully:

$ wget https://github.com/elodina/hdfs-mesos/releases/download/0.0.1.0/

hdfs-mesos-0.0.1.0.jar

$ ls -l

total 4852

-rw-r--r-- 1 root root 4967994 Mar 18 2016 hdfs-mesos-0.0.1.0.jar

Chapter 5 StaCk Storage optionS

142

I will also use wget to source the Hadoop Version 1.2.1 jar file hadoop-1.2.1.tar.gz.

The following Linux ls command now shows the contents of the hdfs-mesos directory:

$ wget https://archive.apache.org/dist/hadoop/core/hadoop-1.2.1/

hadoop- 1.2.1.tar.gz

$ ls

build.gradle hadoop-1.2.1.tar.gz lib src

gradle hdfs-mesos-0.0.1.0.jar LICENSE vagrant

gradlew hdfs-mesos.sh README.md

The eagle-eyed among you may have noticed a couple of points regarding this

approach. I have not built the hdfs-mesos module from source, and I am using Hadoop

V1 (Version 1.2.1) rather than V2. As ever when writing a book chapter, I always have

limited time. I would like to investigate and solve every issue. When building the hdfs-

mesos code, I encountered a build error that I did not have time to solve.

/opt/hdfs-mesos/src/java/net/elodina/mesos/hdfs/Node.java:205: error:

reference to Base64 is ambiguous

 if (Scheduler.$.config.driverV1()) data = Base64.encode(data);

When attempting to use Hadoop Version 2.7.2 in this example, the framework

scheduler prompted me to use Version 1.2.1.

Exception in thread "main" java.lang.IllegalStateException: Supported

hadoop versions are 1.2.x, current is 2.7.2

It is still Hadoop HDFS, so the example is still valid; but given the choice, I would

prefer to use Hadoop V2. I also cloned the source from GitHub so that scripts like hdfs-

mesos.sh would be available. It will be used throughout this example. The next step will

start the framework scheduler.

 Start Scheduler
Before starting the framework scheduler, I will create some variables using the Linux

export command to define MESOS_HOME, native library locations, and LIBPROCESS_

IP to ensure that the scheduler receives resource offers from Mesos.

Chapter 5 StaCk Storage optionS

143

$ export MESOS_HOME=/opt/mesos

$ export MESOS_NATIVE_LIBRARY=/opt/mesos/build/src/.libs/libmesos.so

$ export LIBPROCESS_IP=192.168.1.118

I will now start the framework scheduler using the hdfs-mesos.sh script. The first

parameter specifies that the scheduler should be started. The second parameter defines

the API value to be used for adding HDFS nodes to the framework. The third parameter

is the address of the Mesos Master node. The fourth parameter defines the Linux

account to be used. Finally, command output is directed to a log file (> hdfs-mesos.log).

Standard error output is redirected to standard out (2>&1), and the command is run as a

background task (&).

$./hdfs-mesos.sh scheduler \

 --api=http://192.168.1.118:7000 \

 --master=192.168.1.118:5050 \

 --user=root > hdfs-mesos.log 2>&1 &

Now I can check the Mesos user interface, examined in the last chapter by using the

following URL and selecting the Frameworks option:

http://192.168.1.118:5050

The Mesos cluster master node is running on the server 192.168.1.118, and

its http port number is 5050. The output following in Figure 5-3 shows that the

framework is running on the host hc4r2m1, which has the preceding IP address

ending in 118. This figure also provides framework details such as user ID, name,

tasks, resources, and so forth.

The next step will involve adding HDFS name nodes and data nodes to the

framework.

Figure 5-3. Mesos HDFS framework

Chapter 5 StaCk Storage optionS

144

 Create and Start HDFS Nodes
The framework script hdfs-mesos.sh will be used to first add an HDFS name node (nn)

to the framework and then three data nodes (dn0, dn1, and dn2). Note the structures of

the parameters to the script. The “--api” value is again used to allow the script to connect

to the framework scheduler. The first parameter is “node” followed by an action “add nn”

then a type of node “--type=namenode.”

$./hdfs-mesos.sh node add nn --type=namenode --api=ht

tp://192.168.1.118:7000

node added:

 id: nn

 type: namenode

 state: idle

 resources: cpus:0.5, mem:512

The preceding command output shows that an HDFS framework name node called

nn has been added. It also shows the state of that node and the resources that the Mesos

cluster will need to offer it so that it can run. The next commands add the three data nodes.

$./hdfs-mesos.sh node add dn0 --type=datanode --api=ht

tp://192.168.1.118:7000

node added:

 id: dn0

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

./hdfs-mesos.sh node add dn1 --type=datanode --api=ht

tp://192.168.1.118:7000

./hdfs-mesos.sh node add dn2 --type=datanode --api=ht

tp://192.168.1.118:7000

Chapter 5 StaCk Storage optionS

145

The preceding commands are very similar to the namenode command except for the

fact that the node names have changed, and the type is now “--type=datanode.” So now

the nodes have been added to the framework, but they are in an idle state. The options

available for the script hdfs-mesos.sh can be checked using a help parameter as follows:

$./hdfs-mesos.sh help

Commands:

 help [cmd [cmd]] - print general or command-specific help

 scheduler - start scheduler

 node - node management

Run `help <cmd>` to see details of specific command

$./hdfs-mesos.sh help node

$./hdfs-mesos.sh help node list

I won’t provide all of the output for the preceding help commands, but you can

investigate the various options to determine how to use all of the commands. I can now

use the node list command to show that the HDFS framework nodes are idle.

$./hdfs-mesos.sh node list * --api=http://192.168.1.118:7000

nodes:

 id: nn

 type: namenode

 state: idle

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:http=31000,ipc=31001

 id: dn0

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31002,http=31000,ipc=31001

Chapter 5 StaCk Storage optionS

146

 id: dn1

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31004,http=31002,ipc=31003

 id: dn2

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31005,http=31003,ipc=31004

I can use “node start” script options to start the HDFS framework nodes followed

by the same preceding list command to show that the HDFS framework-based cluster is

starting.

$./hdfs-mesos.sh node start * --api=http://192.168.1.118:7000

$./hdfs-mesos.sh node list * --api=http://192.168.1.118:7000

nodes:

 id: nn

 type: namenode

 state: running

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:http=31000,ipc=31001

 runtime:

 task: 9b232b3f-33e7-45f4-b47b-0bfe75e8f928

 executor: e59da7b2-aa79-4004-ad7d-b37cb8d0cb40

 slave: 4db94e29-59c2-431f-8cc8-92e63abd0110-S3 (hc4r2m1.semtech-

solutions.co.nz)

 id: dn0

 type: datanode

 state: running

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31002,http=31000,ipc=31001

Chapter 5 StaCk Storage optionS

147

 runtime:

 task: ba9b2504-0217-42ee-81f9-038d187df8eb

 executor: af91c9f9-ebff-4a59-9971-6d7b5231d481

 slave: 4db94e29-59c2-431f-8cc8-92e63abd0110-S0 (hc4r2m2.semtech-

solutions.co.nz)

 id: dn1

 type: datanode

 state: running

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31004,http=31002,ipc=31003

 runtime:

 task: f28051f8-9119-47fa-8dc7-99c40831a1eb

 executor: 52358505-0860-4753-8b4f-f4d051ed074e

 slave: 4db94e29-59c2-431f-8cc8-92e63abd0110-S3 (hc4r2m1.semtech-

solutions.co.nz)

 id: dn2

 type: datanode

 state: starting

 resources: cpus:0.5, mem:512

 reservation: cpus:0.5, mem:512, ports:data=31002,http=31000,ipc=31001

 runtime:

 task: 6db01083-97b7-4bd1-9e13-9c93c414cad5

 executor: f388c8c0-e565-42b6-ab41-e36310937e73

 slave: 4db94e29-59c2-431f-8cc8-92e63abd0110-S2 (centos-6-8-instance-

2.semtech-solutions.co.nz)

I have included all of the output for the preceding node list, even though it takes up

space, because it provides useful information. For each node, the name and starting or

running status is shown as well as the resources used. Also, details of the task, executor,

and slave are given. So given that the HDFS-based cluster is running, I should be able

to access it, shouldn’t I? The example shows the use of the hadoop command, so I will

search the Linux host on which I installed the framework for that command.

Chapter 5 StaCk Storage optionS

148

 Use HDFS Mesos Framework
I will use the Linux find command to search the whole file tree starting at the root

directory (/) and looking for files (-type f). I will also specify the file name to look for

(hadoop).

$ find / -type f -name hadoop

This provides a very long path name to each instance of the HDFS framework hadoop

command. The path is defined by the slave, framework, executor, and run IDs for this

instance of the framework.

/var/lib/mesos/slaves/63894cca-fd52-4082-91c1-0a9de578f40c-S0/

frameworks/63894cca-fd52-4082-91c1-0a9de578f40c-0000/executors/ab80f19a-

02eb-44ea-abd6-5e3c7b8dce82/runs/4e453d13-ef12-4634-82ce-d42592f599e9/

hadoop-1.2.1/bin/hadoop

/var/lib/mesos/slaves/4db94e29-59c2-431f-8cc8-92e63abd0110-S3/

frameworks/63894cca-fd52-4082-91c1-0a9de578f40c-0000/executors/52358505-

0860-4753-8b4f-f4d051ed074e/runs/70ab7b3e-c769-45fc-ae94-e668f9fae332/

hadoop-1.2.1/bin/hadoop

/var/lib/mesos/slaves/4db94e29-59c2-431f-8cc8-92e63abd0110-S3/

frameworks/63894cca-fd52-4082-91c1-0a9de578f40c-0000/executors/e59da7b2-

aa79-4004-ad7d-b37cb8d0cb40/runs/bbd9a0e9-7e47-43fd-a6da-48095133dc6e/

hadoop-1.2.1/bin/hadoop

I need to define the value of JAVA_HOME to continue; given that I have Java 1.8

installed, my value is defined using the Linux export command.

$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk.x86_64

Also, to simplify the access commands to the HDFS-based cluster that has just been

created, I will create a variable called HADOOP_HOME, which will contain most of the

path to one of the hadoop command instances. I will define the variable using the Linux

export command.

Chapter 5 StaCk Storage optionS

149

$ export HADOOP_HOME=/var/lib/mesos/slaves/63894cca-fd52-4082-91c1-

0a9de578f40c-S0/frameworks/63894cca-fd52-4082-91c1-0a9de578f40c-

0000/executors/ab80f19a-02eb-44ea-abd6-5e3c7b8dce82/runs/4e453d13-ef12-

4634-82ce-d42592f599e9/hadoop-1.2.1

The commands needed to access the HDFS cluster now become more readable

using the preceding variable. Also note that when listing the preceding node status, the

namenode port values were given as ipc port = 31001 and http port = 31000. The ipc

port value will be used in the following commands to access the HDFS cluster. First a

directory will be created on HDFS called /misc using the -mkdir option. Then a listing

option will be used (-ls) to provide a long listing of the created directory.

$ $HADOOP_HOME/bin/hadoop fs -mkdir hdfs://192.168.1.118:31001/misc

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.118:31001/

Found 1 items

drwxr-xr-x - root supergroup 0 2017-01-28 12:58 /misc

Next the script hdfs-mesos.sh will be copied from the local file system to the HDFS-

based directory /misc. Then an HDFS-based long listing (-ls) will be obtained to show

that file on HDFS.

$ $HADOOP_HOME/bin/hadoop fs \

 -copyFromLocal ./hdfs-mesos.sh hdfs://192.168.1.118:31001/misc

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.118:31001/misc

Found 1 items

-rw-r--r-- 3 root supergroup 307 2017-01-28 13:01 /misc/hdfs-

mesos.sh

The preceding output shows that it is possible to use the Mesos framework-based

HDFS cluster to create directories and provide HDFS-based listings to add files. It is a

fully working, HDFS-based cluster. The HDFS name node, web-based user interface is

available on the host on which the framework was installed (192.168.1.118). The http

port for the name node was 31000, so the http access URL will be

http://192.168.1.118:31000/.

Chapter 5 StaCk Storage optionS

150

Those of you who are familiar with HDFS will recognize this user interface. I added

an image of it here (Figure 5-4) not to concentrate on the details but to show that it exists

and is accessible on the Mesos HDFS-based framework.

Given that the Mesos HDFS-based framework is running and has been shown to

work, the final task will be to shut it down. The framework-based script hdfs-mesos.

sh can again be used for this. The parameters are again the (--api) value for framework

scheduler access. The action is now “stop,” and the nodes are identified by a wild card

value (*) to match all available nodes.

Figure 5-4. Mesos HDFS Framework NameNode UI

Chapter 5 StaCk Storage optionS

151

$./hdfs-mesos.sh node stop * --api=http://192.168.1.118:7000

nodes stopped:

 id: nn

 type: namenode

 state: idle

 resources: cpus:0.5, mem:512

 id: dn0

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

 id: dn1

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

 id: dn2

 type: datanode

 state: idle

 resources: cpus:0.5, mem:512

The output from the preceding command now shows that all of the cluster nodes are

idle. In the next section, I will examine the installation of Basho’s Riak Mesos framework.

 Riak Mesos Framework
The Riak database is an open-source distributed database developed by Basho (basho.

com). Whereas the previous example showed an HDFS framework on Mesos, the Riak-

based example will be on DCOS. DCOS (dcos.io) is a Mesosphere-based system that is

built on top of Mesos but contains many extra tools such as the Marathon scheduler,

DNS, and a command line interface (CLI). The main database systems developed by

Basho are Riak KV (key value) and TS (time series); TS is the distributed, time-series

database variant. This example will deploy Riak KV.

Chapter 5 StaCk Storage optionS

152

This example will be demonstrated using the Oracle virtualisation tool VirtualBox

and the Vagrant environment creation tool. This approach is being taken because the

Basho Riak framework is released with a DCOS-based Vagrant environment. This means

that this example can use the Vagrant environment supplied and will save time in that

DCOS will not have to be installed.

The first step in this process will be the installation of the VirtualBox software on

CentOS 7.

 VirtualBox Install
To install Oracle’s VirtualBox Linux on CentOS 7, I will need to obtain the appropriate

yum repository configuration file. To do that, I must first install the wget command. Then

I will use the Linux wget command to obtain a copy of the file virtualbox.repo and save it

to /etc/yum.repos.d/.

$ yum -y install wget

$ cd /etc/yum.repos.d/

$ wget http://download.virtualbox.org/virtualbox/rpm/rhel/virtualbox.repo

Next I will carry out an update via yum to ensure that all yum-based packages are

up-to-date. This can take up to 30 minutes, so be patient.

$ yum -y update

Having done that, I need to check that the rpm-based kernel version matches the

release information for the operating system kernel. Reboot the machine if the values

do not match. The rpm command lists the installed kernel versions, while the uname

command lists the current one. DCOS requires a minimum kernel version of 3.10, so this

check ensures that a 3.10 kernel is installed and current.

$ rpm -qa kernel |head -1

kernel-3.10.0-514.6.1.el7.x86_64

$ uname -r

 3.10.0-514.6.1.el7.x86_64

Chapter 5 StaCk Storage optionS

153

Next I will install the epel repository using the Linux rpm command; the options used

are upgrade (U), verbose (v), and hash (h) to print hash marks.

$ rpm -Uvh http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-

release-7-9.noarch.rpm

Now VirtualBox Version 5.1 can be installed using the Linux yum command with a

-y switch to avoid the need for confirmations. This install is supported by the repo file

that was just downloaded.

$ yum -y install VirtualBox-5.1

Now rebuild kernel modules using the VirtualBox script vboxdrv.sh under /user/lib/

virtualbox/ with a setup parameter.

$ /usr/lib/virtualbox/vboxdrv.sh setup

If this command fails with an error like this, then execute the following yum-based

commands to install gcc, make, and kernel modules.

vboxdrv.sh: Building VirtualBox kernel modules.

This system is not currently set up to build kernel modules (system extensions).

$ yum -y install gcc make

$ yum -y install kernel-devel-3.10.0-514.6.1.el7.x86_64

$ /usr/lib/virtualbox/vboxdrv.sh setup

vboxdrv.sh: Building VirtualBox kernel modules.

vboxdrv.sh: Starting VirtualBox services.

Now add the VirtualBox user to the group vboxusers using the Linux usermod

command. I am using the root account, but if you are creating a productionized system,

you might want to create a user account for VirtualBox.

$ usermod -a -G vboxusers root

I will now check that that the VirtualBox install can be found by using the Linux type

command. This shows that VirtualBox exits under /usr/bin/.

$ type VirtualBox

VirtualBox is /usr/bin/VirtualBox

Chapter 5 StaCk Storage optionS

154

So now I can start VirtualBox as following and run the command as a background

process (&) to free up the console for further commands.

$ VirtualBox &

Now that VirtualBox is installed, I can move on to installing the Vagrant package; this

will be tackled in the next section.

 Vagrant Install
This was a very simple install using the Linux rpm command with a -i switch for install.

Version 1.9.1 of Vagrant, a 64-bit variant, was chosen from the Hashicorp site.

$ rpm -i https://releases.hashicorp.com/vagrant/1.9.1/vagrant_1.9.1_

x86_64.rpm

It is that simple. Now, by using the Linux type command, I can see that the Vagrant

executable is available under /usr/bin/.

$ type vagrant

vagrant is /usr/bin/vagrant

So the Riak Mesos framework that will be used in this section is released with a

Vagrant configuration, which describes a DCOS environment. The Vagrant application

that I have just installed will read that configuration and create the environment to

support the framework. The VirtualBox application will be used by Vagrant to create the

actual DCOS-based virtual environment.

Now that the necessary supporting software has been installed, the actual Riak

Mesos framework can be sourced, installed, and examined. This will be tackled in the

next section.

 Install Framework
In this section, I will source and install the Riak Mesos framework; the details for this

approach are found on the Basho GitHub site at

https://github.com/basho-labs/riak-mesos/blob/master/docs/DEVELOPMENT.md

Chapter 5 StaCk Storage optionS

155

To support the install, I first need to install the Linux git command using yum with

a -y switch to avoid confirmations.

$ yum -y install git

Next, I will use the git command to source the Riak-Mesos package from the GitHub

site. I will install it to /opt; so I will change the directory to that location first using the

Linux cd command.

$ cd /opt

$ git clone https://github.com/basho-labs/riak-mesos

Next, I will change the directory using the Linux cd command to the Riak-

Mesos code-base directory that was just downloaded. I will then update each of the

submodules within the package using the Linux git command with a submodule

parameter. The init option will initialize any uninitialized modules and the recursive

option will update any nested sub modules.

$ cd /opt/riak-mesos

$ git submodule update --init --recursive

Now that the Riak-Mesos code base and all of its submodules have been updated, the

Vagrant-based Linux virtual environment supplied with the framework can be started.

The Lunux pwd command following shows that the current location is /opt/riak-mesos/.

The following Linux ls command shows the contents of that directory. The point that

I wish to make here is that the Riak-Mesos framework contains a Vagrant directory and

a Vagrant configuration file called VagrantFile. The contents of the Vagrant directory

is shown following. When the Vagrant application is started, it is this configuration

information that will be used to create the virtual environment:

$ pwd

/opt/riak-mesos

$ ls

docs LICENSE packages tools Vagrantfile

framework Makefile README.md vagrant

$ ls vagrant

mesos-dns-config.json mesos-dns-marathon.json provision.sh README.md

Chapter 5 StaCk Storage optionS

156

The Vagrant-based virtual environment that contains DCOS can now be started from

within the /opt/riak-mesos/ directory using the Linux-based vagrant command with a

single parameter “up” as follows:

$ vagrant up

Bringing machine 'ubuntu' up with 'virtualbox' provider...

==> ubuntu: Box 'ubuntu/trusty64' could not be found. Attempting to find

and install...

 ubuntu: Box Provider: virtualbox

 ubuntu: Box Version: >= 0

.....

==> ubuntu: Successfully uninstalled jsonschema

==> ubuntu: Successfully installed riak-mesos docopt dcos click pager

pygments six toml jsonschema

==> ubuntu: Cleaning up...

I have included some of the preceding output to show you what to expect; as long as

you see the command output terminate with the preceding Success line, you should be

OK. However, be warned: the first time that this environment is brought up, you should

expect a lengthy delay, as many required supporting packages are installed. It took my

environment around 50 minutes to start the first time.

Now that the virtual Vagrant-based environment has started, it can be accessed via

the Linux vagrant command with a secure shell (ssh) option. The environment is called

Vagrant and is accessed as follows:

$ vagrant ssh

Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 3.13.0-107-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Tue Jan 31 17:41:42 UTC 2017

 System load: 0.07 Users logged in: 0

 Usage of /: 13.5% of 39.34GB IP address for eth0: 10.0.2.15

 Memory usage: 13% IP address for eth1: 192.168.42.42

 Swap usage: 0% IP address for docker0: 172.17.0.1

 Processes: 131

Chapter 5 StaCk Storage optionS

157

I have included some useful information from the output of the (preceding) vagrant

command. The first point is that the virtual environment that has just been started

is based on Ubuntu Version 14.04. The second point is the network address for the

network interface eth1 (192.168.42.42). It is this address that will be used to access this

environment’s web-based user interfaces. I will use this address later, but first I will build

the Vagrant-based development environment on the virtual environment as follows:

$ cd /vagrant/

$ make dev

OK

Building index...

OK

Validating index...

OK

The preceding commands build the development environment on the virtual server

within the /vagrant/ directory. Next, a directory path $HOME/.config/riak-mesos/ is

created using the Linux mkdir command. The -p switch just causes the whole directory

tree to be created. The ~ character is equivalent to $HOME.

$ mkdir -p ~/.config/riak-mesos

$ ln -nsf /vagrant/tools/riak-mesos-tools/config/config.local.json \

 ~/.config/riak-mesos/config.json

The preceding Linux ln command now creates a symbolic link from the preexisting

JSON-based config file config.local.json under /vagrant/tools/riak-mesos-tools/config/.

It creates this link named config.json under the directory path that was just created. Now

that my virtual environment exists and the development environment has been built,

I will test the framework. To do this, I will change the directory to the riak-mesos-tools

subdirectory. I will then use the Linux make command to build an environment called

env. Finally, I will source an active file under env/bin to set up the working environment.

Chapter 5 StaCk Storage optionS

158

$ cd /vagrant/tools/riak-mesos-tools/

$ make env

virtualenv -q /vagrant/tools/riak-mesos-tools/env --prompt='(riak-mesos)'

echo "Virtualenv created."

Virtualenv created.

$ source env/bin/activate

Before installing and running the Riak Mesos framework on this DCOS-based virtual

environment, I will make some changes that were kindly advised by Basho’s developer

Michael Coles. I have modified the file config.local.json under /vagrant/tools/riak-

mesos-tools/config/. My scheduler, executor, node, and director sections in this file now

look like this. Mesos-based resource requirements for Riak are defined in terms of CPU

(cpus), memory (mem), and disk space (disk).

"scheduler": {

 "cpus": 0.5,

 "mem": 512.0,

 "constraints": ""

 },

 "executor": {

 "cpus": 0.1,

 "mem": 512.0

 },

 "node": {

 "cpus": 1.0,

 "mem": 512.0,

 "disk": 1000.0

 },

 "director": {

 "use-public": false,

 "cpus": 0.5,

 "mem": 512.0

 }

Chapter 5 StaCk Storage optionS

159

I decreased the resource requirements for the Riak-based cluster in the framework

to ensure that the Riak nodes that will shortly be created would start. I also changed the

constraints line in the scheduler section. Now I can install the Riak Mesos framework as

follows using the riak-mesos command. Then I can start the framework and add it to the

Marathon scheduler as a long-running process. The second command following does

this and uses a time-out to allow for a slow response:

$ riak-mesos framework install

Finished adding riak to marathon.

$ riak-mesos framework wait-for-service --timeout 1200

Riak Mesos Framework is ready.

The Marathon DCOS environment scheduler can now be accessed via the following

URL:

http://192.168.42.42:8080/

Figure 5-5 shows the Marathon scheduler user interface with the Mesos-DNS and

Riak framework processes running.

Figure 5-5. Marathon DCOS scheduler

Chapter 5 StaCk Storage optionS

160

Now that the Riak Mesos is installed and running on the virtual Vagrant-based

environment, it can be accessed and used. The next section will show how this is

achieved.

 Use Framework
The Riak Mesos framework is accessed using the riak-mesos command, which can be

found in the following directory:

/vagrant/tools/riak-mesos-tools

Riak Mesos framework help can be found by using the --help option with the

riak- mesos command at multiple levels. For instance, at the topmost level, options

and commands are displayed.

$ riak-mesos --help

Usage: riak-mesos [OPTIONS] COMMAND [ARGS]...

 Command line utility for the Riak Mesos Framework / DCOS Service. This

 utility provides tools for modifying and accessing your Riak on Mesos

 installation.

Options:

 --home DIRECTORY Changes the folder to operate on.

 --config PATH Path to JSON configuration file.

 -v, --verbose Enables verbose mode.

 --debug Enables very verbose / debug mode.

 --info Display information.

 --version Display version.

 --config-schema Display config schema.

 --framework TEXT Changes the framework instance to operate on.

 --json Enables json output.

 --insecure-ssl Turns SSL verification off on HTTP requests

 --help Show this message and exit.

Chapter 5 StaCk Storage optionS

161

Commands:

 cluster Interact with Riak clusters

 config Interact with configuration.

 director Interact with an instance of Riak Mesos...

 framework Interact with an instance of Riak Mesos...

 node Interact with a Riak node

 riak Command line utility for the Riak Mesos...

Now the same help option can be used to determine how to use the Riak Mesos

framework cluster option.

$ riak-mesos cluster --help

There are also options to determine the version of the framework (1.4) and

information about the command riak-mesos.

$ riak-mesos --info

Start and manage Riak nodes in Mesos.

$ riak-mesos --version

Riak Mesos Framework Version 1.4.0

I can now create a Riak-based cluster on the framework by using the options cluster

and create with the riak-mesos command. The cluster will be called riak-kv1, and the

version of Riak used will be riak-kv-2-2 (Version 2.2 of Riak KV).

$ riak-mesos cluster create riak-kv1 riak-kv-2-2

{"success":true}

I can add nodes to the Riak cluster using the cluster and add-node options with the

riak-mesos command. The final parameter in the following commands will be the Riak

node name:

$ riak-mesos cluster add-node riak-kv1-1

{"success":true}

$ riak-mesos cluster add-node riak-kv1-2

{"success":true}

Chapter 5 StaCk Storage optionS

162

If I now call the riak-mesos command with the cluster and info options followed

by the cluster name riak-kv1, I can determine the structure of the cluster that was just

created.

$ riak-mesos cluster info riak-kv1

{"riak-kv1":{"nodes":[

{"name":"riak-riak-kv1-2",

"status":"requested","container_path":"","persistence_id":""},

{"name":"riak-riak-kv1-1",

"status":"requested","container_path":"","persistence_id":""}

],"name":"riak-kv1","riak_version":"riak-kv-2-2",

"riak_config":null,"advanced_config":null,"generation":3}

}

Note that the preceding nodes are in the requested state and that the node names

have been created as “riak-riak-kv1-1” and “riak-riak-kv1-2.” If I wait awhile, the Riak

nodes will start. I have used the cluster and list options following to show that the first

node now has a status of starting:

$ riak-mesos cluster list

{"clusters":[{"nodes":[

{"name":"riak-riak-kv1-2",

"status":"starting","container_path":"data","persistence_id":

"43f20f78-e5b3-4074-a9a9-3c046761fe3e"},

{"name":"riak-riak-kv1-1",

"status":"reserved","container_path":"data","persistence_id":

"8d90574b-933e-4c7c-aa02-d7343090e5ba"}

],"name":"riak-kv1","riak_version":"riak-kv-2-2”,

"riak_config":null,"advanced_config":null,"generation":3}]}

If I now check the Riak cluster endpoints using the cluster, endpoints, and cluster

name riak-kv1 option, I can see that both Riak nodes have started.

$ riak-mesos cluster endpoints riak-kv1

{"riak-riak-kv1-1": {"status": "started", "pb_direct": "ubuntu.

local:31491", "alive": true, "http_direct":

Chapter 5 StaCk Storage optionS

163

"ubuntu.local:31490"}, "riak-riak-kv1-2": {"status": "started",

"pb_direct": "ubuntu.local:31718", "alive": true,

"http_direct": "ubuntu.local:31717"}}

From previous sections in this chapter, and previously, I know that the Mesos user

interface in this DCOS-based environment should be available on port 5050. In fact, the

URL to access the interface is

http://192.168.42.42:5050/

Figure 5-6 shows the active tasks section of the Mesos DCOS-based environment user

interface. It shows that there are two tasks running on the Mesos framework: riak and

mesos-dns. These tasks match those that were shown in the Marathon scheduler earlier.

The last item that I will mention here is the http_direct information that was displayed

in the preceding cluster endpoint commands. They show that there are two http-based

interfaces available for the Riak nodes at ports 31490 and 31717. Figure 5- 7 shows the

options available on that user interface for each Riak node. As Figure 5-7 shows, there is a

rich list of options for determining information on this Riak node.

Figure 5-6. Mesos DCOS user interface

Chapter 5 StaCk Storage optionS

164

I will conclude the examination of Basho’s Mesos Riak framework here to examine

the Mesos Cassandra framework. This will be covered in the next section.

 Cassandra Mesos Framework
This section examines the creation and install of a Vagrant-based DCOS environment

created by mesosphere.io. It will show how to install Cassandra onto the DCOS

environment using the DCOS CLI. I am using a Linux-based CentOS 7.2 environment

for this install. Many of the Mesos-based framework providers seem to be moving to

Vagrant-based DCOS environments since DCOS was open sourced. Given that the DCOS

Figure 5-7. Framework Riak node http direct interface

Chapter 5 StaCk Storage optionS

165

environment is complex, this section will by necessity concentrate on environment

preparation. The install of Cassandra at the end of the section is minimal compared to

the amount of preparation needed to reach that point.

This section is based on the Apache 2 licensed mesosphere.io, github-based,

dcos- vagrant module maintained by Karl Isenberg at

https://github.com/dcos/dcos-vagrant/tree/master/examples/oinker

The following sections walk through the environment preparation.

 Install Prerequisites
This section covers the prerequisite packages that need to be installed before moving on

to prepare the environment. I’ve included a couple of graphics tools in this section such

as GIMP (GNU Image Manipulation Program) and KSnapshot (K desktop environment

[K] snapshot). When things go wrong, I find that screenshots can be very useful. There

isn’t much to this section: just install gcc, wget, git, and make using the Linux yum

command. I always use the -y switch to avoid the need for confirmations.

$ yum -y install git wget gcc make

Next, install firefox, ksnapshot, and gimp in the same way. The Firefox browser will

be needed to both authenticate and examine the DCOS GUI environment.

$ yum -y install firefox ksnapshot gimp

The next section will examine the preparation of a minimal X Windows system to

support the X-based tools used in this section.

 Install X Windows
Given that the DCOS environment is resource hungry when installing CentOS,

I generally choose a minimal CentOS release. This means that there is no X Windows

system included. Given that many of the tools used in this section—that is, VirtualBox—

have an X interface, then an X Windows system needs to be installed to support them.

However, this will not be a full desktop install. Only those components needed will be

installed, leaving more resources for DCOS.

Chapter 5 StaCk Storage optionS

166

All Linux yum-based installs in this section will use the -y switch to avoid

confirmation prompts. First, I will do a group install of the “X Windows System,” followed

by an install of Gnome classic and Gnome terminal. (Gnome is the name of the CentOS-

based X Windows system.)

$ yum -y groupinstall "X Window System"

$ yum -y install gnome-classic-session gnome-terminal

Next, I will install the nautilus open terminal, the control center, and some fonts.

$ yum -y install nautilus-open-terminal control-center liberation-mono- fonts

The next command unlinks the systemd default target and then creates a new

symbolic link (ln -sf) to the file graphical.target. This sets up the environment to boot

with an X Windows-based GUI. It groups together components like the Gnome display

manager and the accounts service. Finally, the host is rebooted.

$ unlink /etc/systemd/system/default.target

$ ln -sf /lib/systemd/system/graphical.target

 /etc/systemd/system/default.target

$ reboot

The last action in this section is to execute a yum update command to ensure that all

yum packages are up-to-date. This can take up to 30 minutes but provides an up-to-date

environment from which to continue.

$ yum -y update

The next section will cover the installation of Vagrant and Oracle VirtualBox

virtualisation tool.

 Install VirtualBox and Vagrant
To recap, many Mesos-based framework providers offer their frameworks as Vagrant- or

Docker-based environments. This does not mean that they advise that Vagrant-based

environments be used in a production environment, but it does provide a shortened

path to bring up a DCOS-based environment.

Chapter 5 StaCk Storage optionS

167

Vagrant provides a way to configure a virtual environment and release that

configuration as part of the framework release. Vagrant-configured environments can

be used in association with other virtualisation tools like VirtualBox (as in this case, or

AWS). The Riak Mesos framework showed how to install VirtualBox and Vagrant, so

I will not repeat the steps here. I will, however, mention that I installed Version 5.0 of

VirtualBox instead of Version 5.1, having seen some warnings in the install output. So I

installed VirtualBox as follows:

$ yum -y install VirtualBox-5.0

I also installed the Vagrant hostmanager plug-in for managing host files in a multi-

machine environment.

$ vagrant plugin install vagrant-hostmanager

Installing the 'vagrant-hostmanager' plugin. This can take a few minutes...

Fetching: vagrant-hostmanager-1.8.5.gem (100%)

Installed the plugin 'vagrant-hostmanager (1.8.5)'!

The next section will show how Vagrant DCOS can be installed.

 Install Vagrant-Based DCOS
The Vagrant-based DCOS install will be sourced from the Apache 2 licensed GitHub-

based path dcos/dcos-vagrant. It has been developed by mesosphere.io and will be

cloned from GitHub using the Linux git command.

$ cd /opt

$ git clone https://github.com/dcos/dcos-vagrant

Cloning into 'dcos-vagrant'...

remote: Counting objects: 2147, done.

remote: Total 2147 (delta 0), reused 0 (delta 0), pack-reused 2146

Receiving objects: 100% (2147/2147), 14.97 MiB | 1.47 MiB/s, done.

Resolving deltas: 100% (1283/1283), done.

Moving into the dcos-vagrant directory followed by a Linux ls shows the directory

contents. Of initial interest are the Vagrant yaml-based config files that will specify how

the DCOS-based environment is created.

Chapter 5 StaCk Storage optionS

168

$ cd dcos-vagrant

ls

ci LICENSE VagrantConfig-1m-3a-1p.yaml

dcos-versions.yaml NOTICE VagrantConfig-3m-1a-1p.yaml

docs patch VagrantConfig-3m-6a-3p.yaml

etc provision Vagrantfile

examples README.md

lib VagrantConfig-1m-1a-1p.yaml

The file that Vagrant will use needs to be copied to VagrantConfig.yaml. In this case,

one master, one private agent, and one public agent node (1m-1a-1p) will be created.

$ cp VagrantConfig-1m-1a-1p.yaml VagrantConfig.yaml

Finally, the Vagrant-based environment is started with the vagrant up command;

this can take a long time, as many extra packages are installed.

$ vagrant up

At this point, Oracle VirtualBox can be checked to see whether the DCOS-based

environments exist.

Figure 5-8 taken from the VirtualBox tool shows that the environments a1.dcos,

p1.dcos, m1.dcos, and boot.dcos have been created. This image was captured before the

environment was fully started, so these virtual instances are still powered off. Examining

the yaml-based configuration file provides some insight into the node resources.

Figure 5-8. DCOS-based VirtualBox environments

Chapter 5 StaCk Storage optionS

169

$ more VagrantConfig.yaml

m1:

 ip: 192.168.65.90

 cpus: 2

 memory: 1024

 type: master

a1:

 ip: 192.168.65.111

 cpus: 4

 memory: 6144

 memory-reserved: 512

 type: agent-private

p1:

 ip: 192.168.65.60

 cpus: 2

 memory: 1536

 memory-reserved: 512

 type: agent-public

 aliases:

 - spring.acme.org

 - oinker.acme.org

boot:

 ip: 192.168.65.50

 cpus: 2

 memory: 1024

 type: boot

It can be seen in the preceding that each node has been described in terms of an

IP address, aliases, CPUs, memory, and a type. From this point, the DCOS-based GUI

can be accessed at the URL

http://m1.dcos/.

Chapter 5 StaCk Storage optionS

170

However, before that is done, the DCOS CLI tool should also be sourced because

both the GUI and the CLI will be used in tandem. Change directory using the Linux cd

command to /usr/bin/. Then use curl to download Version 1.8 of the DCOS CLI tool

from the site dcos.io.

$ cd /usr/bin/

$ curl -O https://downloads.dcos.io/binaries/cli/linux/x86-64/dcos-1.8/dcos

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 8674k 100 8674k 0 0 1336k 0 0:00:06 0:00:06 --:--:-- 1794k

Next make the DCOS CLI executable using the Linux chmod command (+x means

add execute).

$ chmod +x dcos

Next, configure the DCOS CLI tool to use the DCOS master node URL. This sets the

dcos core.dcos_url configuration value.

$./dcos config set core.dcos_url http://m1.dcos

[core.dcos_url]: set to 'http://m1.dcos'

It should be noted at this point that the DCOS install alters the /etc/hosts file to

define the Vagrant node names and IP addresses.

$ tail /etc/hosts

vagrant-hostmanager-start id: 72624615-2568-40c8-929a-e4f0639e18ce

192.168.65.90 m1.dcos

192.168.65.111 a1.dcos

192.168.65.60 p1.dcos

192.168.65.60 spring.acme.org oinker.acme.org

192.168.65.50 boot.dcos

vagrant-hostmanager-end

When accessing the URL http://m1.dcos, the user is now presented with DCOS

login options for Google, GitHub, and Microsoft (Figure 5-9).

Chapter 5 StaCk Storage optionS

http://m1.dcos/

171

As I have a GitHub account, I used those credentials to log in. Once logged in, I was

able to obtain an authentication token, which is then used to authenticate a dcos cli

command line session as follows. The authentication token obtained from the DCOS

GUI on first login is a very long alphabetic string. Use the auth and login parameters

to the dcos cli command and follow the prompts. Enter the authentication string

obtained from the DCOS GUI. I have truncated my auth string to save space. Look for the

success line following:

$./dcos auth login

Please go to the following link in your browser:

http://m1.dcos/login?redirect_uri=urn:ietf:wg:oauth:2.0:oob

Enter OpenID Connect ID Token:eyJ0TRPRVpGTO60lp0S8P8KtJ4v9KZ9f2iDFpmA

Login successful!

This DCOS CLI session is now authenticated with the DCOS master node, and so

further commands can be executed to modify the DCOS-based Vagrant environment.

The next section will show how Cassandra can be installed.

Figure 5-9. DCOS login options

Chapter 5 StaCk Storage optionS

172

 Install Cassandra
Compared to the setup of the Vagrant-based DCOS environment, the installation of the

DCOS Cassandra framework is trivial. A JSON-based Cassandra DCOS configuration

file is created as cassandra.json under the /tmp directory (see following). The statement

following uses the Linux cat command to concatenate all of the text between the EOF

(end-of-file) markers into the file:

$ cat >/tmp/cassandra.json <<EOF

{

 "service": {

 "cpus": 0.1,

 "mem": 512,

 "heap": 256

 },

 "executor": {

 "cpus": 0.1,

 "mem": 512,

 "heap": 256

 },

 "nodes": {

 "cpus": 0.5,

 "mem": 2048,

 "disk": 4096,

 "heap": {

 "size": 1024,

 "new": 100

 },

 "count": 1,

 "seeds": 1

 },

 "task": {

 "cpus": 0.1,

 "mem": 128

 }

}

EOF

Chapter 5 StaCk Storage optionS

173

This cassandra json configuration file defines the Cassandra nodes in terms of CPU,

memory, disk, and heap space. I have executed a Linux long listing following to show

that the file exists:

$ ls -l /tmp/cassandra.json

-rw-r--r-- 1 root root 538 Feb 6 16:26 /tmp/cassandra.json

Now in the already authenticated DCOS CLI session, the Cassandra package can

be installed using the cassandra.json file created previously. The package option allows

DCOS packages to be managed. The install option will install Cassandra, while the

--options attribute allows the configuration file to be used. Cassandra is the DCOS

package to be installed, while the --yes option switches off interactive mode.

$ dcos package install --options=/tmp/cassandra.json cassandra --yes

DC/OS Cassandra Service default configuration requires 3 nodes each with

1.5 CPU shares, 5376MB of memory and 11264MB of disk for running Cassandra

Nodes. And, 1 node with 0.5 CPU shares, 2048MB of memory for running the

service scheduler.

Installing Marathon app for package [cassandra] version [1.0.24-3.0.10]

Installing CLI subcommand for package [cassandra] version [1.0.24-3.0.10]

New command available: dcos cassandra

DC/OS Apache Cassandra has been successfully installed!

There are a couple of points to make here: to be installed, the Cassandra package must

be available in the DCOS user interface. Figure 5-10 taken from the DCOS user interfaces

packages page shows the available DCOS GUI menu options and their meaning.

Figure 5-10. DCOS menu icons (left)

Chapter 5 StaCk Storage optionS

174

Having selected the packages option in the GUI, it can be seen without filtering that

the Cassandra package is available for install. So what the preceding dcos cli install

command did was install this package via the CLI with extra configuration specified.

Check the DCOS services page at the following URL to monitor the Cassandra DCOS

service status. The Cassandra package with the configuration shown in Figure 5-11

should deploy one scheduler task and one Cassandra node on private DCOS nodes.

Check the service details to see more information about these tasks.

http://m1.dcos/#/services/

I am fully aware that that this section has concentrated more on the installation and

preparation of the DCOS environment rather than Cassandra. However, with DCOS

being as complex as it is, that was unavoidable. As I progress through the later chapters

in this book, I will begin to link some of the frameworks into a cohesive whole and use

them in concert.

Figure 5-11. DCOS available packages

Chapter 5 StaCk Storage optionS

175

 Conclusion
My intention in this chapter was to introduce some of the possible big data frameworks

available in Mesos and DCOS. I have concentrated on HDFS, Basho’s Riak-distributed

database, and Cassandra. I have also examined the Vagrant-based release options

offered by organisations such as Basho and mesosphere.io. Although I would like to

delve more deeply into the actual use of these frameworks, the complexity of setting

up the environments to support them limits this. I have a time and size limit when

writing this chapter, and I also need to provide a repeatable set of instructions for the

reader to use. In later chapters, I will show how frameworks can be accessed to use the

functionality that they contain.

You may have noticed already that the Mesos frameworks that are being used in the

chapters to this point are being developed by organisations that maintain or support a

product. For instance, Basho has created the Mesos-based Riak database frameworks. In

this way, the people that know and understand the product create the Mesos framework

that will deploy it to a Mesos-based cluster.

The Vagrant-based environments used in this chapter have been possible because

the framework suppliers release Vagrant modules within their frameworks. Such

modules might be offered for Vagrant or say Docker. They might use Oracle VirtualBox or

perhaps AWS for the underlying virtualisation. These approaches provide a quick means

to enable a development or test environment to be created to access the framework.

They are not intended for production release but for preproduction use, development,

and testing of the framework that they support.

The next chapter will examine a Mesos-based processing framework to add the next

layer to the big data processing stack.

Chapter 5 StaCk Storage optionS

177
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_6

CHAPTER 6

Processing
In this chapter, I will examine the processing function within a big data stack. I will

concentrate on Apache Spark because it integrates well with both Apache Mesos and

DCOS (dcos.io). I will expand on the work carried out in Chapter 4 to show how both

Mesos and DCOS can be installed so that Apache-Spark-based frameworks can be

installed into those environments and used.

This chapter will not teach you how to use Apache Spark; the aim here is to show

how it can be integrated into a Mesos/DCOS environment and made ready to use.

There are many books available that explain the Spark-based modules, including mine,

Mastering Apache Spark (Packt, 2015).

To recap on the topics covered thus far in terms of a big data stack, the same stack

architecture diagram is shown in Figure 6-1. The processing component, which specifies

Apache Spark, has now been highlighted in white to indicate that it will be covered in

this topic.

Figure 6-1. Stack architecture

178

Figure 6-1 describes the big data stack at a very high level. I think it is worth briefly

examining the relationships between the stack components and how they can be used

together. I have said previously that I will not explain how to use Spark here, but I will

provide a little detail about its modules and cluster management options. The next

section will cover these areas.

 Stack Architecture
Apache Spark is shown as the main processing module for this big data stack; but

why is that? Spark is an open-source, distributed cluster processing system that offers

in- memory processing. It allows a wide range of cluster management options, that is,

Standalone, Yarn (client and server), and Mesos. In this case, Mesos will be used as the

Spark-based cluster manager, as it is already being used as a stack component. Spark

has been widely adopted, is widely supported, and is the successor to Map/Reduce,

being many times faster and far more flexible as a processing paradigm.

Spark provides a wide range of functionality within its modules. The mllib

(machine learning library) library provides a range of machine-learning functions,

while the streaming module can be used to process streamed data. The SQL module

allows in-memory tables to be created and SQL to be used against them. Finally the

GraphX module allows graph processing to be executed against the data. The modules

can be used in sequence within an application, for instance, streamed data can be

accessed via SQL.

Figure 6-2 shows a simplified Spark application and attempts to show how the

functions of the application relate to the big data stack components. As already stated,

the Spark-based cluster will use Mesos as its Cluster Manager. The application will

connect to storage either via a URL (HDFS) or via a supplier connector library (Riak/

Cassandra). The application might be written in Java or Scala and would use a connector

library to access queueing like the Kafka system. Frameworks such as Akka and Spring

would then supply extra canned functionality.

Chapter 6 proCessing

179

Using the same format as Chapter 4, Apache Mesos, I want to show and compare two

methods for using Mesos and Spark together in this chapter. The first method will build

and install Mesos onto a cluster; the second will install DCOS, the Data Center Operating

System, the aim being to show how DCOS improves on a basic Mesos install.

The next section will examine the creation of a Mesos-based environment for the use

of Apache Spark after having briefly examined server preparation. The examples shown

here will expand on the work carried out in Chapter 4 and provide extra detail.

 Server Preparation
Before moving on to the Mesos-based cluster management system installs, it is worth

considering the preparation of the servers used for these installs. The previous chapters

have already covered many of these topics in detail, but I think a recap is a good idea.

• Operating System

Many people have a favorite operating system; I prefer CentOS

Linux—it is free, widely supported, and robust. I use Centos 6.x

and 7.x in this book and chapter.

• FQDN Server Names

Fully qualified domain names need to be used for the servers;

each machine must have a name and a domain name, e.g.,

hc4nn.semtech-solutions.co.nz. You can test this by using the

"hostname -f" command.

Figure 6-2. Spark application architecture

Chapter 6 proCessing

180

• Install NTP

I always install the NTP (network time protocol) service on my

machines. Some systems such as DCOS require it.

• Auto SSH Login

Many Apache Master/Slave-based systems like Hadoop and

Mesos require passwordless SSH-based access between the

master- and slave-based machines (and between the install server

and all master and slave servers for DCOS). If necessary, I set this

up using commands like "ssh-keygen" and "ssh-copy-id".

• Disable SE Linux

Many Apache-based systems operate better with SE

Linux disabled; I edit the file /etc/selinux/config and set

SELINUX=disabled.

• Java Install

I always install the Open JDK (Java Development Kit) version of

Java on my servers, being careful to install the version required by

the system that it will support.

• Set Up Hosts File

Finally I set up the /etc/hosts file on each server to ensure that

every machine hosts file has an entry describing every machine

in the cluster. I am reiterating these points because Mesos, and

especially DCOS-based environments, are complex. By spending

time now to properly prepare the cluster servers, time can be

saved later by avoiding problems that are hard to track and solve.

The next section will examine the install and build of a Mesos-based environment

followed by the install and use of Apache Spark. This work builds on and extends that

presented in Chapter 4.

Chapter 6 proCessing

181

 Mesos and Spark
This section will use three servers to support the Mesos build: hc4nn (192.168.1.109),

hc4r1m1 (192.168.1.113), and hc4r1m2 (192.168.1.114). The first server will be used for

the master process, whereas all servers will be used to run Mesos agents. This section will

provide a simplified list of commands based on those used in Chapter 4. For further detail

of their meaning, please consult that chapter. I have divided the Mesos environment build

into a number of logical sections to reduce complexity. The following Build Steps will be

carried out on all servers used. The build will be carried out by the root user.

 Build Mesos Part 1
This section of the build starts with a newly installed CentOS 6.8 server along with the

extra steps described in the "Server Preparation" section. It then modifies the kernel to

support the use of Mesos and ends with a server reboot. The first step involves using the

Linux rpm command to import some updated kernel files.

$ rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org

$ rpm -Uvh http://www.elrepo.org/elrepo-release-6-6.el6.elrepo.noarch.rpm

The Linux yum command is then used to install and enable the kernel updates.

$ yum --enablerepo=elrepo-kernel install -y kernel-lt

The Linux sed command is used to modify the /boot/grub/grub.conf file; this is the

grub boot loader config file. The "-i" sed option allows files to be edited in place. This

will cause the new Linux kernel to be used after a reboot, which is initiated by the last

command following:

$ sed -i 's/default=1/default=0/g' /boot/grub/grub.conf

$ reboot

Chapter 6 proCessing

182

 Build Mesos Part 2
After each server has been rebooted, log back into the server as root and continue. Use

the Linux yum command to install the tar, wget, git, which, and nss commands. The

-y options avoids the need for confirmation prompts.

$ yum -y install tar wget git which nss

Next obtain a yum-based repository file for the devtoolset component that will

support the install of a wide range of functionality like GCC. The Linux wget command is

used to obtain repo file and supporting GPG key from the Linuxsoft site.

$ wget -O /etc/yum.repos.d/slc6-devtoolset.repo http://linuxsoft.cern.ch/

cern/devtoolset/slc6-devtoolset.repo

$ rpm --import http://linuxsoft.cern.ch/cern/centos/7/os/x86_64/RPM-GPG-

KEY-cern

Next wget is used to get a yum-based repo file for Apache Maven, sourced from the

repos.fedorapeople.org site.

$ wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-apache-

maven.repo -O /etc/yum.repos.d/epel-apache-maven.repo

A WANdisco SVN repo file is then created as wandisco-svn.repo under the directory

/etc/yum.repos.d. This is to support the use and install of SVN source control with Mesos.

$ bash -c 'cat > /etc/yum.repos.d/wandisco-svn.repo <<EOF

[WANdiscoSVN]

name=WANdisco SVN Repo 1.8

enabled=1

baseurl=http://opensource.wandisco.com/centos/6/svn-1.8/RPMS/$basearch/

gpgcheck=1

gpgkey=http://opensource.wandisco.com/RPM-GPG-KEY-WANdisco

EOF'

The next step uses the Linux yum command to carry out a group install of the

"Development Tools" module. This will install a set of tools such as gcc, flex, make, and

so forth.

$ yum groupinstall -y "Development Tools"

Chapter 6 proCessing

183

The devtoolset-2-toolchain module is then installed using yum to install

development and debugging tools.

$ yum install -y devtoolset-2-toolchain

The next three yum commands install a range of modules to support the Mesos build,

starting with Apache Maven:

$ yum install -y apache-maven python-devel java-1.7.0-openjdk-devel

$ yum install -y zlib-devel libcurl-devel openssl-devel cyrus-sasl-devel

$ yum install -y cyrus-sasl-md5 apr-devel subversion-devel apr-util-devel

Finally, in this section, a devtoolset-2 bash session is started using the Linux scl

command. This command allows the execution of applications not located in the root

file system.

$ scl enable devtoolset-2 bash

 Build Mesos Part 3
This section sets up the cgconfig.conf file under the /etc/ directory. A perf_event line is

added to the file to support the use of config groups.

$ vi /etc/cgconfig.conf

mount {

 cpuset = /cgroup/cpuset;

 cpu = /cgroup/cpu;

 cpuacct = /cgroup/cpuacct;

 memory = /cgroup/memory;

 devices = /cgroup/devices;

 freezer = /cgroup/freezer;

 net_cls = /cgroup/net_cls;

 blkio = /cgroup/blkio;

 perf_event = /cgroup/perf_event;

}

Chapter 6 proCessing

184

The libcgroup (control group library) module is then installed using the Linux yum

command; this library abstracts CentOS group management.

$ yum install -y libcgroup

Finally, in this section, the cgconfig service is started and configured to start after

reboot using the chkconfig (check configuration) command. The same process is

carried out for the CentOS 6.x firewall service iptables. This is only done for environment

development simplification and because this is not a productionized server.

$ service cgconfig start ; chkconfig cgconfig on

$ service iptables stop ; chkconfig iptables off

 Building the Mesos Source
Having prepared the CentOS 6-based server and installed all of the prerequisite

components, the Mesos system itself can now be sourced and built. At the time of this

writing (March 2017), Mesos Version 1.1 is the latest available. I will build the source

under /tmp and so create a temporary directory and move to that location. Then I use

wget to source Version 1.1 of the Mesos code from apache.org in a gzipped and tarred

format.

$ mkdir /tmp/mesos ; cd /tmp/mesos

$ wget http://www.apache.org/dist/mesos/1.1.0/mesos-1.1.0.tar.gz

The code package is unpacked in a single step using the Linux tar command with

the options f (file), x (extract), and z (gzip). This creates an unpacked directory called

mesos-1.1.0, which contains the unbuilt code.

$ tar -zxf mesos-1.1.0.tar.gz

I move this directory to /opt so that it has a more appropriate permanent home and

cd to that location.

$ mv mesos-1.1.0 /opt ; cd /opt

Chapter 6 proCessing

185

I also create a symbolic link using the Linux ln command called mesos under /opt

to point to the new Mesos-based source directory. Then I use that link to move into the

Mesos source directory.

$ ln -s mesos-1.1.0 mesos

$ cd mesos

Now I execute the bootstrap command, which is required when building from a

git-based repository. I also set the JAVA_HOME variable to ensure that it exists and is

assigned to the version of Java that is installed (1.7).

$./bootstrap

$ export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131.x86_64

The next step involves creating a build directory to support the Mesos code build and

changing the directory to that location.

$ mkdir build

$ cd build

The configure script (run from the level above the build directory) is executed to

prepare the build environment, creating make files and allowing the build to be started.

$../configure

Now the source can be built using the make command following; the -j switch allows

the number of cores present to be specified. The V option specifies the verbose level.

This stage of the build will take at least 30 minutes.

$ make -j 2 V=0 # time aprox 30 mins

The make check command executed next will run unit tests against the Mesos build

and then create the necessary binaries for Mesos to be run. This will also create the

src/test-framework tree under the build directory.

$ make check

Chapter 6 proCessing

186

Finally, the make install option run next will install Mesos components, binaries, and

libraries into the expected CentOS-based system locations so that when running Mesos,

all of its components are easily found.

$ make install

Mesos is now ready to use as the next section will show.

 Starting Mesos
Now that Mesos has been built, checked, and installed, a Mesos-based cluster can be

started. I have used the Linux cd command to ensure that I am in the /opt/mesos/build/

directory. I have then used the ./bin/mesos-master.sh script to start a Mesos master server.

$ cd /opt/mesos/build

$./bin/mesos-master.sh \

 --ip=192.168.1.109 \

 --advertise_ip=192.168.1.109 \

 --advertise_port=5055 \

 --work_dir=/var/lib/mesos > ./master.log 2>&1 &

This master server has been started on the server hc4nn, IP address 192.168.1.109.

The --ip switch allows the master IP address to be specified. The next two options

allow the IP address and port to be advertised to the Mesos agents that will connect

to this master. The work_dir options specifies that all data should reside under /var/

lib/mesos. While the redirection option redirects output to the log file master.log.,

STDERR (standard error) is redirected to the log as well (2>&1), and the server is run as a

background task (&).

It is possible to ensure that the Mesos master server is running correctly on the node

hc4nn by using the Linux ps command to create a process listing and piping this to grep

with a search for mesos-master as shown following:

$ ps -ef | grep mesos-master

root 8027 2514 0 15:05 pts/0 00:00:00 /opt/mesos/build/src/.libs/

lt-mesos-master --ip=192.168.1.109 --work_dir=/var/lib/mesos

Chapter 6 proCessing

187

This provides the Mesos master process listing (process 8027) as shown previously.

On each server that will host a Mesos agent process, an agent is started, as shown

following. The execution location is again under /opt/mesos/build/, and again the agent

script is executed in the same way.

$ cd /opt/mesos/build

$./bin/mesos-agent.sh \

 --master=192.168.1.109:5050 \

 --launcher=posix \

 --work_dir=/var/lib/mesos > ./agent.log 2>&1 &

A working directory is specified as well as a log file (agent.log). A posix launcher

option is used to specify a posix-based location of Linux cgroups. Also a master switch is

used to tell the Mesos agent process which IP address and port number to use to access

the Mesos master. As with the master process, the Mesos agent process can be checked

to ensure it is running.

$ ps -ef | grep mesos-master

root 8027 2514 0 15:05 pts/0 00:00:00 /opt/mesos/build/src/.libs/

lt-mesos-master --ip=192.168.1.109 --work_dir=/var/lib/mesos

The Mesos user interface can now be accessed from the following URL using the

master IP address and port specified when starting the master process. I won’t provide

any Mesos user interfaces images here because they have already been shown in

previous chapters.

http://192.168.1.109:5050

The next steps will involve installing a Hadoop HDFS framework on Mesos and

then installing Apache Spark and showing how the two frameworks can be used

together on Mesos.

 Installing the HDFS Framework
I will install the HDFS Mesos framework under the /opt directory on the master node

hc4nn, so initially I cd to that location.

$ cd /opt

Chapter 6 proCessing

188

I then use the git command to clone a copy of the Elodina hdfs-mesos code to a

directory under /opt. This creates a source directory called hdfs-mesos.

$ git clone https://github.com/elodina/hdfs-mesos.git

I cd to the new HDFS Mesos directory hdfs-mesos using the Linux cd command and

then examine the README.md file in that directory.

$ cd hdfs-mesos

$ vi README.md

This readme file explains how the HDFS-Mesos framework can be used. It provides

the details of its dependencies.

Project requires:

- Mesos 0.23.0+

- JDK 1.7.x

- Hadoop 1.2.x or 2.7.x

This readme file provides a few methods for using the framework, that is, a Vagrant-

based environment, downloading the framework binary or the method that I will use

building the framework using the gradlew (gradle wrapper) script. I chose to build the

framework rather than download a hdfs-mesos binary from GitHub because when I tried

that, I encountered an error when starting the scheduler, which stated the following:

Exception in thread "main" java.lang.IllegalStateException: Supported

hadoop versions are 1.2.x, current is 2.7.2

I was attempting to use a Hadoop V2 binary, and I found that the only way to do so

without error was to follow the gradlew approach to the build. Remember that similar

errors were encountered in the last chapter when using HDFS-Mesos. The framework is

built using gradlew as follows:

$./gradlew jar

Version 2.7.2 of the hadoop binary is then downloaded to the HDFS-Mesos directory

using the wget command from the archive.apache.org site.

$ wget https://archive.apache.org/dist/hadoop/core/hadoop-2.7.2/hadoop- -

2.7.2.tar.gz

Chapter 6 proCessing

189

Some variables are now set up to support the running of the HDFS-Mesos scheduler

process. The MESOS_HOME variable indicates where the Mesos system has been installed.

The MESOS_NATIVE_LIBRARY variable provides the path to the lib mesos library, while

the LIBPROCESS_IP variable provides the IP address of the Mesos master host. All of these

variables are defined in the current session using the Linux export command.

$ export MESOS_HOME=/opt/mesos

$ export MESOS_NATIVE_LIBRARY=/opt/mesos/build/src/.libs/libmesos.so

$ export LIBPROCESS_IP=192.168.1.109

The HDFS-Mesos scheduler process is started using the hdfs-mesos.sh script with

the first parameter as scheduler. The second parameter defines the host and port on

which the scheduler will be accessible. The master parameter defines the host and port

for Mesos access, while the user parameter states that the scheduler will be run as root.

Output is redirected to the log hdfs-mesos.log.

$./hdfs-mesos.sh scheduler \

 --api=http://192.168.1.109:7000 \

 --master=192.168.1.109:5050 \

 --user=root > hdfs-mesos.log 2>&1 &

Now that the hdfs-mesos framework is running as well as Mesos, a Hadoop cluster

can be created. First a name node is created using the following command:

$./hdfs-mesos.sh node add nn --type=namenode

--api=http://192.168.1.109:7000

Again the hdfs-mesos.sh script is called but with the add command this time. The

next parameter is nn, which provides the name of the Hadoop Name Node. The type

parameter specifies that it is a Name Node, while the api parameter provides access to

the HDFS-Mesos framework scheduler.

Once the Hadoop Name Node is created, Hadoop Data Nodes can be created in the

same way. This time the type is datanode, and the Data Node names are dn0 to dn2.

$./hdfs-mesos.sh node add dn0 --type=datanode --api=http://192.168.1.109:7000

$./hdfs-mesos.sh node add dn1 --type=datanode --api=http://192.168.1.109:7000

$./hdfs-mesos.sh node add dn2 --type=datanode --api=http://192.168.1.109:7000

Chapter 6 proCessing

190

Once the Hadoop cluster has been created on the HDFS-Mesos framework that is

running on Mesos, the cluster must be started. This is carried out as follows:

$./hdfs-mesos.sh node start * --api=http://192.168.1.109:7000

The command is again node, but this time the next option is start, followed by an

escaped wild card character (*). This means start all, whereas we could have replaced

this wild option with actual cluster member names (nn dn0 dn1 dn2). Once started, we

can check the status of the cluster using the list option.

$./hdfs-mesos.sh node list nn --api=http://192.168.1.109:7000

The preceding command lists the status of the Name Node and provides the output

following. This is useful because it shows the state is running, the resources used, as well as

the node the Name Node is running on and the ports used. These details will be used shortly.

node:

 id: nn

 type: namenode

 state: running

 resources: cpus:0.5, mem:512

 stickiness: period:30m, hostname:hc4nn.semtech-solutions.co.nz

 failover: delay:3m, max-delay:30m

 reservation: cpus:0.5, mem:512, ports:http=31000,ipc=31001

 runtime:

 task: 909829e1-f6ba-430a-a03c-2fcf37d877f2

 executor: 479dde06-c9e8-462e-b412-2d04447512b6

 slave: 23dfd5f6-f354-4008-9054-4d50907898c5-S2 (hc4nn.semtech- solutions.

co.nz)

The IPC port for the Name Node is 31001, and the host name is hc4nn, so I know the

IP address is 192.168.1.109. Now if I use the same list command with a wild card and

grep for state, I can see that all Hadoop cluster nodes that were just created are running.

$./hdfs-mesos.sh node list * --api=http://192.168.1.109:7000 | grep state

 state: running

 state: running

 state: running

 state: running

Chapter 6 proCessing

191

Those of you that are familiar with Hadoop may have realized that by starting the

Hadoop cluster in this way, I have no control over where the cluster nodes will be started

on a Mesos cluster. So how can I access Hadoop if I don’t know where it’s cluster nodes

exist ? Well luckily, the preceding list command showed the host and port by which the

Hadoop Name Node could be accessed, hc4nn. So we can search on that host using the

Linux find command following to find the hadoop command:

$ find / -type f -name hadoop

This provides the following output, which represents a Hadoop task running on the

HDFS-Mesos framework, which is itself running on the Mesos cluster.

/var/lib/mesos/slaves/23dfd5f6-f354-4008-9054-4d50907898c5-S2/

frameworks/23dfd5f6-f354-4008-9054-4d50907898c5-0000/executors/479dde06-

c9e8- 462e-b412-2d04447512b6/runs/696e38fb-1ff8-4ddc-8963-cb30e1b13376/

hadoop-2.7.2/bin/hadoop

This path can be used to specify a HADOOP_HOME variable as follows, which will

simplify Hadoop access. The variable is defined using the Linux export command as

shown following:

$ export HADOOP_HOME=/var/lib/mesos/slaves/23dfd5f6-f354-4008-9054-

4d50907898c5- S2/frameworks/23dfd5f6-f354-4008-9054-4d50907898c5-0000/

executors/479dde06-c9e8-462e-b412-2d04447512b6/runs/696e38fb-1ff8-4ddc-

8963-cb30e1b13376/hadoop-2.7.2

Before attempting to access Hadoop, I ensure that JAVA_HOME is set and if not,

assign it to a Java 1.7-based path.

$ echo $JAVA_HOME

$ export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131.x86_64

Now I can access the hadoop command using the HADOOP_HOME variable as

shown following. The fs option means "file system," whereas the -ls option is for a long

listing of HDFS. The command following will not provide any output because the HDFS/

file system is empty:

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.109:31001/

Chapter 6 proCessing

192

The HDFS-based command following creates a directory on HDFS called /misc,

while the following ls-based hdfs command shows that it exists:

$ $HADOOP_HOME/bin/hadoop fs -mkdir hdfs://192.168.1.109:31001/misc

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.109:31001/

drwxr-xr-x - root supergroup 0 2017-03-14 13:33

hdfs://192.168.1.109:31001/misc

Note that Hadoop HDFS is being access via port 31001, the IPC port on hc4nn

provided in the list command for the preceding Name Node. Like any Hadoop

installation, the Hadoop Name Node user interface can be access via the Name Node

host name and port, in this case

http://192.168.1.109:31000.

The next step will be to obtain a version of Apache Spark that will be compatible with

the version of Hadoop that was just installed and run. First, I will create a directory

/spark on HDFS in the same way that I created the /misc directory previously. I will then

list the directories to show that they both exist.

$ $HADOOP_HOME/bin/hadoop fs -mkdir hdfs://192.168.1.109:31001/spark

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.109:31001/

Found 2 items

drwxr-xr-x - root supergroup 0 2017-03-14 13:33

hdfs://192.168.1.109:31001/misc

drwxr-xr-x - root supergroup 0 2017-03-14 13:35

hdfs://192.168.1.109:31001/spark

 Running Spark
I now create a directory /opt/spark/ on the Linux file system as a working directory and

home for Apache Spark. I will download Version 2.1.0 of Spark for Hadoop 2.7 using the

wget command as shown following:

$ cd /opt ; mkdir spark ; cd spark

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz

Chapter 6 proCessing

193

Then I check the downloaded Spark package using the Linux ls command, which

shows that it is in .tgz format or gzipped tar.

$ ls -l spark*.tgz

-rw-r--r-- 1 root root 195636829 Dec 29 13:49 spark-2.1.0-bin-hadoop2.7.tgz

I now copy the Spark package to HDFS into the /spark directory using the Hadoop

put command.

$ $HADOOP_HOME/bin/hadoop fs -put ./spark*.tgz hdfs://192.168.1.109:31001/

spark/

I then check it is on HDFS using the Hadoop ls command; as shown following, the

package resides in the /spark directory:

$ $HADOOP_HOME/bin/hadoop fs -ls hdfs://192.168.1.109:31001/spark/

-rw-r--r-- 3 root supergroup 195636829 2017-03-14 13:45

hdfs://192.168.1.109:31001/spark/spark-2.1.0-bin-hadoop2.7.tgz

Now to use Spark, I need to set up some variables: MESOS_NATIVE_JAVA_LIBRARY

specifies the path to the libmesos library. The SPARK_EXECUTOR_URI variable specifies

the path to the Spark package on HDFS.

$ export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so

$ export SPARK_EXECUTOR_URI=hdfs://192.168.1.109:31001/spark/spark-2.1.0-

bin- hadoop2.7.tgz

I will now unpack the Spark package using the gunzip command initially to create

the Spark tar file following shown by the Linux ls command:

$ gunzip spark-*.tgz

$ ls -l

total 219512

-rw-r--r-- 1 root root 224778240 Dec 29 13:49 spark-2.1.0-bin-hadoop2.7.tar

I then use the Linux tar command to unpack the tar file that was just created. I’m

doing this because I want access to the Spark-based spark-shell command so that I can

run a Spark shell that will access Spark on HDFS/Mesos. The tar command following

Chapter 6 proCessing

194

unpacks the tar package to the directory spark-2.1.0-bin-hadoop2.7, and I use the Linux

ln command to create a symbolic link called spark. This points to the Spark package

directory and simplifies Spark access.

$ tar xf spark-*.tar

$ ln -s spark-2.1.0-bin-hadoop2.7 spark

The Linux ls long listing following shows the original tar file, the Spark package

directory, and the link that was just created:

$ ls -l

total 219516

lrwxrwxrwx 1 root root 25 Mar 14 13:48 spark -> spark-2.1.0-bin-

hadoop2.7

drwxr-xr-x 12 500 500 4096 Dec 16 15:18 spark-2.1.0-bin-hadoop2.7

-rw-r--r-- 1 root root 224778240 Dec 29 13:49 spark-2.1.0-bin- hadoop2.7.tar

To run Apache Spark against Mesos, I need to set up some Spark configuration files.

The first file to be set up will be spark-env.sh. I use the Linux cd command to move to the

Spark conf directory. I then create the spark-env.sh file from its template via Linux cp.

$ cd /opt/spark/spark/conf

$ cp spark-env.sh.template spark-env.sh

I vi this new file and add the following lines to the bottom of the file:

$ vi spark-env.sh

export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so

export SPARK_EXECUTOR_URI=hdfs://192.168.1.109:31001/spark/spark-2.1.0-bin-

hadoop2.7.tgz

This specifies the location of the libmesos library (as before) and the location

on HDFS of the Spark package. Next, I set up the file spark-defaults.conf in the same

directory, again creating it from its preexisting template file using the Linux cp (copy)

command. The following lines are added to the bottom of the new file using a vi session:

$ cp spark-defaults.conf.template spark-defaults.conf

$ vi spark-defaults.conf

Chapter 6 proCessing

195

spark.master mesos://192.168.1.109:5050

spark.executor.uri hdfs://192.168.1.109:31001/spark/spark-2.1.0-bin-

hadoop2.7.tgz

This specifies the URL for the Spark master; note that this a Mesos-based URL. The

Spark cluster manager is now Mesos! The spark.executor.ui variable specifies the full

path to the Spark package on HDFS. The next step is to create the file spark-env.cmd in

the conf directory. I use the touch command for this. I then make the file executable

using the Linux chmod command.

$ touch spark-env.cmd ; chmod 755 spark-env.cmd

Using a vi session, I edit the file

$ vi spark-env.cmd

and add the following lines, which define the HADOOP_HOME variable, define the

PATH variable, and set the SPARK_DIST_CLASSPATH to be the Hadoop classpath:

export HADOOP_HOME=$HADOOP_HOME

export PATH=$HADOOP_HOME/bin:$PATH

assign output of this command

$HADOOP_HOME/bin/hadoop classpath

to the variable SPARK_DIST_CLASSPATH

export SPARK_DIST_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`

I am now ready to run a Spark shell as follows: I move to the /opt/spark/spark/ directory

and execute the ./bin/spark-shell command. The master option indicates that the Spark

cluster manager will be Mesos followed by the Mesos master IP address and port.

$ cd /opt/spark/spark/

$./bin/spark-shell --master mesos://192.168.1.109:5050

I have limited the output from the spark shell start up following to save space, but

you will recognize the Spark shell credentials with the Mesos master URL:

I0314 13:55:30.260362 8327 sched.cpp:330] New master detected at

master@192.168.1.109:5050

Spark context Web UI available at http://192.168.1.109:4040

Chapter 6 proCessing

196

Spark context available as 'sc' (master = mesos://192.168.1.109:5050, app

id = 23dfd5f6-f354-4008-9054-4d50907898c5-0001).

Spark session available as 'spark'.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 2.1.0

 /_/

Using Scala version 2.11.8 (OpenJDK 64-Bit Server VM, Java 1.7.0_131)

Type in expressions to have them evaluated.

Type :help for more information.

scala> :quit

Now that I have Spark running against Mesos, I can run a Scala shell script against

it. The file test1.scala shown by the Linux cat command following just lists the first one

hundred positions in the Fibonacci series:

$ cat test1.scala

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

 val appName = "Fibonacci 1"

 val conf = new SparkConf()

 conf.setAppName(appName)

 val sparkCxt = new SparkContext(conf)

 var seed1:BigInt = 1

 var seed2:BigInt = 1

 val limit = 100

 var resultStr = seed1 + " " + seed2 + " "

Chapter 6 proCessing

197

 for(i <- 1 to limit){

 val fib:BigInt = seed1 + seed2

 resultStr += fib.toString + " "

 seed1 = seed2

 seed2 = fib

 }

 println()

 println("Result : " + resultStr)

 println()

I execute this script against Spark and Mesos using the Spark shell command

following with a Mesos master URL as described previously. The "-i" option allows the

test1.scala file to be included at the command line:

$./bin/spark-shell -i test1.scala --master mesos://192.168.1.109:5050

The output from the script is the list of Fibonacci values.

Result : 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040

1346269 2178309 3524578 5702887 9227465 14930352 24157817 39088169

63245986 102334155 165580141 267914296 433494437 701408733 1134903170

1836311903 2971215073 4807526976 7778742049 12586269025 20365011074

32951280099 53316291173 86267571272 139583862445 225851433717 365435296162

591286729879 956722026041 1548008755920 2504730781961 4052739537881

6557470319842 10610209857723 17167680177565 27777890035288 44945570212853

72723460248141 117669030460994 190392490709135 308061521170129

498454011879264 806515533049393 1304969544928657 2111485077978050

3416454622906707 5527939700884757 8944394323791464 14472334024676221

23416728348467685 37889062373143906 61305790721611591 99194853094755497

160500643816367088 259695496911122585 420196140727489673 679891637638612258

1100087778366101931 1779979416004714189 2880067194370816120

4660046610375530309 7540113804746346429 12200160415121876738

19740274219868223167 31940434634990099905 51680708854858323072

83621143489848422977 135301852344706746049 218922995834555169026

354224848179261915075 573147844013817084101 927372692193078999176

Chapter 6 proCessing

198

So Spark has been successfully run against Mesos using a Mesos cluster built from

source and manually installed on each node. In the next section, DCOS (Data Center

Operating System) will be built and can be compared against this section and the

approach used.

 DCOS and Spark
DCOS is the open-sourced data center operating system that has been created and

released via the dcos.io site. It was introduced in Chapter 4; the work presented in this

chapter will build on the earlier work and go further. As per the previous section, the

DCOS installation here will be a trimmed-down version of that presented in Chapter 4.

However, this section will go further, showing how to use the DCOS CLI and install and

use DCOS modules like HDFS and Spark. The servers used in this section have been

prepared as described in the "Server Preparation" section. Each server has been installed

with CentOS 7.2 and Java 1.8.

I have divided the DCOS server build into three parts to simplify the process, each

of which is described by a section following. This install will use an install server hc4nn

(192.168.1.109), a master server hc4r1m1 (192.168.1.113), and a number of agents

hc4r1m2 (192.168.1.114) to hc4r1m5 (192.168.1.117). The next sections will describe the

parts of the DCOS install.

 DCOS Build Part 1
This section of the build installs some prerequisite components via yum, runs an

upgrade, and sets up an overlay file to support the later Docker install. It ends with a

server reboot and is executed on all servers. The first command installs tar, xz, unzip,

ipset, and curl using the Linux yum command.

$ yum -y install tar xz unzip ipset curl wget

This is followed by a Linux yum upgrade command to ensure that all yum-based

components are up-to-date.

$ yum -y upgrade --assumeyes --tolerant

A file called overlay.conf is then created under /etc/modules-load.d/ to contain a

single word "overlay." This is needed to support Docker.

Chapter 6 proCessing

199

$ tee /etc/modules-load.d/overlay.conf <<-'EOF'

overlay

EOF

Finally, the server is rebooted to enable the changes.

$ reboot

 DCOS Build Part 2
The commands in this section are executed on all servers. It creates the configuration

for Docker and then installs and executes Docker. Docker will provide container support

for DCOS. The first command creates a repository configuration file called docker.repo

under /etc/yum.repos.d/. This will support the later yum-based Docker install.

$ bash -c 'cat > /etc/yum.repos.d/docker.repo <<EOF

[dockerrepo]

name=Docker Repository

baseurl=https://yum.dockerproject.org/repo/main/centos/7/

enabled=1

gpgcheck=1

gpgkey=https://yum.dockerproject.org/gpg

EOF'

The next command creates a directory docker.service.d under /etc/systemd/system/

using the Linux mkdir command. The -p option means that any subdirectory in the path

is also created.

$ mkdir -p /etc/systemd/system/docker.service.d

A file called override.conf is then created within this directory, which specifies how

the Docker service will start and that it will use the overlay file system created earlier for

storage.

$ bash -c 'cat > /etc/systemd/system/docker.service.d/override.conf <<EOF

[Service]

ExecStart=/usr/bin/docker daemon --storage-driver=overlay

EOF'

Chapter 6 proCessing

200

Next, a directory /var/lib/docker/ is created using mkdir to contain Docker libraries,

and setenforce is used to ensure that SELinux is disabled.

$ mkdir /var/lib/docker/

$ setenforce 0

Docker engine is then installed using the Linux yum command; it is enabled with

systemctl and executed via a systemctl start command.

$ yum -y install --assumeyes --tolerant docker-engine

$ systemctl enable docker

$ systemctl start docker

Finally, a group called "nogroup" is added to the Linux groups file /etc/group to

support DCOS install checks.

$ echo "nogroup:x:5000:" >> /etc/group

 DCOS Build Part 3—Install Server
This section forms the third part of the DCOS install and is only carried out on the

install server, in this case, hc4nn (192.168.1.109). The install server is only used during

the DCOS install and acts to provide services and configuration scripts to the other

DCOS machines during installation, as you will see. The first set of commands creates a

working directory /opt/dcos_tmp/ using mkdir. The current directory is then changed to

that location, and a subdirectory called genconf is created.

$ mkdir /opt/dcos_tmp/

$ cd /opt/dcos_tmp/

$ mkdir genconf

Now a script called ip-detect is created under the genconf directory. The important

line in this file is the last line, starting with the echo command. This line uses the CentOS

7-based "ip addr show" command to list the IP address information for the network port

enp0s25. The grep command then searches the output for an IP address, while the head

command limits the output to one line, the IP address.

Chapter 6 proCessing

201

$ cat <<EOF > /opt/dcos_tmp/genconf/ip-detect

#!/usr/bin/env bash

set -o nounset -o errexit

export PATH=/usr/sbin:/usr/bin:$PATH

echo $(ip addr show enp0s25| grep -Eo '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.

[0-9]{1,3}' | head -1)

EOF

Take care with the preceding script, as your network entry may not be called enp0s25

on CentOS 7. Check under the directory /etc/sysconfig/network-scripts for files called

ifcfg-*. The contents of these files will start with the line

TYPE=Ethernet,

And the full file name will indicate the value to be used in the "ip addr show"

command shown previously. For instance, my file is called ifcfg-enp0s25. The next

command makes the ip-detect script executable.

$ chmod 755 ./genconf/ip-detect

When run, this script returns the IP address of the server on which it is executed; for

instance, the output following run on hc4nn returns 192.168.1.109:

$./genconf/ip-detect

192.168.1.109

The next cat command creates the file /opt/dcos_tmp/genconf/config.yaml, which is

the DCOS cluster yaml-based configuration file. It specifies a bootstrap address and port

to be used by all other servers in the cluster during installation. It specifies the cluster

name and static storage type. It specifies the location of the ip-detect script as well as the

location of the Mesos master and DNS server values.

$ cat <<EOF > /opt/dcos_tmp/genconf/config.yaml

bootstrap_url: http://192.168.1.109:9000

cluster_name: 'cluster1'

exhibitor_storage_backend: static

ip_detect_filename: /opt/dcos_tmp/genconf/ip-detect

Chapter 6 proCessing

202

master_discovery: static

master_list:

- 192.168.1.113

resolvers:

- 8.8.4.4

- 8.8.8.8

EOF

Now the dcos_generate_config.sh command shell script is downloaded to the

directory /opt/dcos_tmp/ using curl. This is a large script that will take some time to

completely download, as it contains binary data.

$ cd /opt/dcos_tmp/

$ curl -O https://downloads.dcos.io/dcos/EarlyAccess/commit/14509fe1e7899f4

39527fb39867194c7a425c771/dcos_generate_config.sh

The script is made executable via a Linux chmod (change mode) command and then

executed via a bash shell.

$ chmod 755 dcos_generate_config.sh

$ bash ./dcos_generate_config.sh

Finally, nginx, the high-performance http server, is executed in a Docker container to

support DCOS.

$ cd /opt/dcos_tmp

$ docker run -d -p 9000:80 -v /opt/dcos_tmp/genconf/serve:/usr/share/nginx/

html:ro nginx

Now that the DCOS install server is running, the remaining DCOS servers can have

their installs completed. That means that the DCOS master server needs to be prepped

first, and then the agent servers will be prepared. The next sections will describe how

this is done.

Chapter 6 proCessing

203

 DCOS Master Server Install
There may be multiple DCOS master servers, but in this cluster, I will only create one,

as I have limited machines. This install will be carried out on the server hc4r1m1

(192.168.1.113). The DCOS Build part 1 and part 2 sections will already have been

carried out on this server. The final step involves downloading a DCOS install script from

the install server and running it. The first command involves creating a directory /opt/

dcos using mkdir and moving to that location.

$ mkdir /opt/dcos && cd /opt/dcos

The curl command is then used to obtain the script dcos_install.sh from the install

server using the bootstrap URL defined in the yaml file earlier.

$ curl -O http://192.168.1.109:9000/dcos_install.sh

Finally, the script is made executable using the chmod command and executed in a

bash shell. The master parameter indicates that this node is the DCOS master server.

$ chmod 755 dcos_install.sh

$ bash ./dcos_install.sh master

The DCOS master server is now running and is ready to receive agents into the

DCOS cluster. The next section will complete that process.

 DCOS Agent Server Install
This section will be executed for all agent servers to be added to the DCOS cluster. The

DCOS Build part 1 and part 2 sections will already have been carried out on these servers.

The final steps for the agents are similar to those of the master. The first command

involves creating a directory /opt/dcos using mkdir and moving to that location.

$ mkdir /opt/dcos && cd /opt/dcos

The curl command is then used to obtain the script dcos_install.sh from the install

server using the bootstrap URL defined in the yaml file earlier.

$ curl -O http://192.168.1.109:9000/dcos_install.sh

Chapter 6 proCessing

204

Finally, the script is made executable using the chmod command and executed in a

bash shell. The dcos_install.sh script can be executed with the parameter slave_public

or slave. The first option creates a public slave or agent node, whereas the second creates

a private node. I found that the nodes had to be private to execute DCOS-framework-

based tasks.

$ chmod 755 dcos_install.sh ; ls -l

$ bash ./dcos_install.sh slave

DCOS can now be accessed via a series of web- based user interfaces as shown in

Chapter 4.

 User Interfaces
The ZooKeeper Exhibitor interface is available at the following URL, based on the

IP address of the master host hc4r1m1 (192.168.1.113) at port 8181.

http://192.168.1.113:8181/exhibitor/v1/ui/index.html

The DCOS Marathon scheduler application is available at the following URL, again

based on the IP address of the master host hc4r1m1 (192.168.1.113) at port 8080.

http://192.168.1.113:8080/ui/#/apps/

The DCOS user interface can be accessed from the master server via the URL

following.

http://192.168.1.113/

Finally the Mesos web based user interface is available on port 5050 on the master

server IP address.

http://192.168.1.113:5050/#/

To gain more information about and access to the DCOS cluster, the DCOS CLI tool

needs to be installed. The next section will show how this is carried out.

Chapter 6 proCessing

205

 DCOS CLI Command Install
The DCOS CLI tool can be installed as a binary from the mesosphere.com site and allows

command line access to the DCOS system. It is useful because it allows greater control of

functionality like installs. It also appears to provide a greater level of debug information

when installs fail. The detail for this CLI install can be found at the following URL:

https://docs.mesosphere.com/1.8/usage/cli/install/

I will install the DCOS CLI binary on the DCOS master node hc4r1m1. The first step

is to create a directory called bin under /opt/dcos/ using the mkdir command. The curl

command is then used to obtain the dcos binary from the dcos.io site.

$ cd /opt/dcos ; mkdir bin ; cd bin

$ curl -O https://downloads.dcos.io/binaries/cli/linux/x86-64/dcos-1.8/dcos

The Linux chmod command is then used to make the dcos command executable.

$ chmod +x dcos

To connect to the installed DCOS system, the CLI needs to know where the master

node is located. This is determined by setting the CLI variable core.dcos_url to the web-

based URL for DCOS as follows:

$./dcos config set core.dcos_url http://192.168.1.113

Next, a DCOS authorized login session needs to be set up so that later CLI

commands are authorized to access DCOS. This is possible by executing the DCOS CLI

binary (dcos) and passing two parameters, auth and login.

$./dcos auth login

The output to this command is shown following; it provides the web-based login

URL that you should use to access DCOS. This in turn will provide you with a DCOS

Connect ID Token that you can enter at the prompt. You will see that I have pasted my

alphanumeric connect string following. The ID is truncated to save space:

Please go to the following link in your browser:

 http://192.168.1.113/login?redirect_uri=urn:ietf:wg:oauth:2.0:oob

Enter OpenID Connect ID Token:eyJ0eXAiOiJKV1QiLCJh.......ko9-spjldck8q_cuwA

Chapter 6 proCessing

206

If the login is successful, you will see a success message like that shown following:

Login successful!

Now you can use the DCOS CLI to install DCOS packages like Spark as shown

following. The DCOS CLI binary has been executed with the package option followed by

the install command and the name of the package to install "spark."

$./dcos package install spark

The output for the Spark install is shown following; note that I encountered an error,

shown here, which stated that the virtualenv component was missing:

Unable to install CLI subcommand. Missing required program 'virtualenv'.

Please see installation instructions: https://virtualenv.pypa.io/en/latest/

installation.html

This was corrected by installing virtualenv using the Python (Pip installs Python)

pip-based command following:

$ pip install virtualenv

This provided the following output after a successful install:

Installing collected packages: virtualenv

Successfully installed virtualenv-15.1.0

After a successful install of the DCOS Spark package using the CLI you

should see the following output.

Installing Marathon app for package [spark] version [1.0.9-2.1.0-1]

Installing CLI subcommand for package [spark] version [1.0.9-2.1.0-1]

New command available: dcos spark

DC/OS Spark is being installed!

 Documentation: https://docs.mesosphere.com/current/usage/service-

guides/spark/

 Issues: https://docs.mesosphere.com/support/

Chapter 6 proCessing

207

Chapter 4 provided quite a few images of the DCOS user interface, so I don’t want to

waste space here by repeating detail that was already provided. However, when DCOS

private agent nodes are deployed and working correctly, you will see resource-based

activity on the UI. Figure 6-3, taken from the Nodes menu option, shows resource usage

in terms of the CPU allocation rate.

The same UI Nodes-based page shows the status of the DCOS agent nodes in terms

of the resources used by each agent server on the cluster. Figure 6-4 shows the health of

each agent along with the number of tasks and the resources used. One agent is shown

as unhealthy because it was still starting.

Figure 6-4. DCOS UI agent status

Figure 6-3. DCOS UI CPU allocation

Chapter 6 proCessing

208

The DCOS UI Services menu option shows the status of the services that are

currently installed. As Figure 6-5 shows, I currently have three services installed:

Marathon, HDFS, and Spark. The health of each service is shown as well as the number

of tasks involved. Finally, the resources used by each service are displayed.

The last image that I will include in this section is from the Marathon UI showing

the Marathon application status. Figure 6-6 shows that spark has been deployed and is

running. It also shows that the HDFS package is deploying.

Now that the Apache Spark framework is running on DCOS, it can be used to run a

Spark application. The next chapter will show how this can be done as well as how the

supporting tools can be installed.

Figure 6-5. DCOS UI services status

Figure 6-6. DCOS Marathon Applications

Chapter 6 proCessing

209

 Running a Spark Application
In this section, I will show how to run a Scala-based application against the Apache

Spark framework that has been installed on DCOS. I will use the SBT (Simple Build

Tool) to install the application, so I will show how these tools are installed and how to

build the code. To create a yum-based repository file on CentOS 7.2 to support the sbt

command install, do the following:

$ curl https://bintray.com/sbt/rpm/rpm | tee /etc/yum.repos.d/bintray-

sbt- rpm.repo

The preceding curl command downloads the bintray-sbt-rpm.repo file from the

bintray.com site and saves it to the /etc/yum.repos.d/ directory. This means that when

the Linux yum command following is run, yum knows where to find the executable. The

tee command used previously allows the output of the curl command to be piped to the

.repo file as well as the console.

$ yum -y install sbt

A quick check using sbt to get its installed version shows that Version 0.13.13 of SBT

is installed.

$ sbt -version

Getting org.scala-sbt sbt 0.13.13 ...

The SBT tool provides the method to compile and package the Scala code into a

library, but now the Scala application is needed to support compilation. I change the

directory to /tmp/ and use wget to source the scala-2.11.6.rpm Scala install package.

$ cd /tmp/

$ wget http://downloads.typesafe.com/scala/2.11.6/scala-2.11.6.rpm

I then use rpm to install the scala-2.11.6.rpm package and clean up afterward by

removing the unneeded package file once Scala is installed. A check of the Scala version

shows that Scala version 2.11.6 is installed.

$ rpm -ivh ./scala-2.11.6.rpm

$ rm -f scala-2.11.6.rpm

Chapter 6 proCessing

210

$ scala -version

Scala code runner version 2.11.6 -- Copyright 2002-2013, LAMP/EPFL

To provide continuity, I will run the same Scala-based example code on the DCOS-

based Spark framework as I did for the Mesos cluster example. The Scala example code

will list the first 100 entries of the Fibonacci series. I have created an sbt source code

structure called ex1 on the DCOS master server hc4r1m1 as shown following:

$ pwd

/opt/src

$ ls

ex1

The sbt-based example code directory ex1 exists under the /opt/src/ directory. As the

listing of the ex1 directory shows following, the ex1 directory contains an sbt configuration

file called example1.sbt whose contents have been listed via a Linux cat command:

$ ls ex1

example1.sbt project src target

$ cat ex1/example1.sbt

name := "Example1"

version := "1.0"

scalaVersion := "2.11.6"

libraryDependencies += "org.apache.hadoop" % "hadoop-mapreduce-client-core"

% "2.1.0" from "file:///root/.dcos/spark/dist/spark-2.1.0-1-bin-2.6/jars/

hadoop-mapreduce-client-core-2.6.4.jar"

libraryDependencies += "org.apache.hadoop" % "hadoop-client" % "2.1.0" from

"file:///root/.dcos/spark/dist/spark-2.1.0-1-bin-2.6/jars/hadoop-client- -

2.6.4.jar"

libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0" from

file:///root/.dcos/spark/dist/spark-2.1.0-1-bin-2.6/jars/spark-core_2.11- -

2.1.0.jar

Chapter 6 proCessing

211

$ ls ex1/src/main/scala

example1.scala

The example1.sbt sbt configuration file provides the name, version, and Scala

version of the application. It also provides paths to Hadoop and Spark jar files needed

for the compilation. The application source itself exists under the ex1/src/main/scala/

directory and is called example1.scala.

I won’t dwell on the Scala application code itself, as you have seen it before. But I

have listed it following via the Linux cat command. My intention here is to show that

Spark is working and can be used. Any Spark application would provide that proof:

$ cat ex1/src/main/scala/example1.scala

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

import org.apache.spark.SparkConf

object example1 extends App

{

 val appName = "example 1"

 val conf = new SparkConf()

 conf.setAppName(appName)

 val sparkCxt = new SparkContext(conf)

 var seed1:BigInt = 1

 var seed2:BigInt = 1

 val limit = 100

 var resultStr = seed1 + " " + seed2 + " "

 for(i <- 1 to limit){

 val fib:BigInt = seed1 + seed2

 resultStr += fib.toString + " "

 seed1 = seed2

 seed2 = fib

 }

Chapter 6 proCessing

212

 println()

 println("Result : " + resultStr)

 println()

 sparkCxt.stop()

} // end application

The Scala-based application can be compiled via the sbt command using the

package option. This will compile the source, download any required modules, and

package the result into a jar file.

$ cd ex1 ; pwd

/opt/src/ex1

$ sbt package

Upon successful compilation, the jar file for the application can be found under the

./target/scala-2.11/ directory within the ex1 sbt directory.

$ ls target/scala-2.11

classes example1_2.11-1.0.jar

This jar file and the application it contains can now be used to test the Spark cluster

framework running on DCOS. I will use the DCOS CLI to execute the application.

$ /opt/dcos/bin/dcos spark run --submit-args='-Dspark.mesos.coarse=true

--driver-cores 1 --driver-memory 1024M --class example1 /opt/src/ex1/

target/scala-2.11/example1_2.11-1.0.jar'

The preceding command shows how the DCOS CLI binary under the /opt/dcos/

bin/ directory is used to execute the Spark submit. The DCOS CLI binary receives two

parameters, spark and run, followed by a final parameter submit-args, which contains

the bulk of the call detail.

The spark.mesos.coarse option means that each Spark executor runs as a Mesos

task. The driver-cores options sets the number of cores to be used for the driver

process. The driver memory options sets a memory limit for the driver process.

Finally, the application class example1 is specified as well as the full path to the jar file

Chapter 6 proCessing

213

example1_2.11-1.0.jar, which contains that application. Upon successful execution, you

will see output like that following:

Run job succeeded. Submission id: driver-20170331221309-0001

I won’t provide any further detail here, as the Mesos section showed the output

of this task. The important issue is that the method of installing Apache Spark on a

DCOS cluster has been provided. A method of compiling a Scala-based application and

launching onto the Spark cluster has also been provided and shown to work.

I will discuss the comparison between the Mesos and DCOS clusters at the end of

this chapter, but I hope that this brief introduction to DCOS has shown you that it has

more to offer that a basic Mesos cluster. It provides an integrated cluster management

environment, schedulers, and a range of pre-provided applications.

The next section examines the approach to problem investigation if an error is

encountered with your DCOS system.

 Problem Tracking
This section will examine the steps needed to track problems with DCOS-based systems.

The steps in this section will be executed at the command line level, involving searching

process logs and ensuring DCOS components are operating correctly.

 Check IP Detect

It is important that the detect_ip script is running correctly. On each node in the cluster,

execute the command detect_ip, which resides under /opt/mesosphere/bin/ as shown

following. Ensure that it returns the IP address of the host:

$ /opt/mesosphere/bin/detect_ip

192.168.1.114

 Check FQDN

On each node in the cluster, check that the FQDN is defined correctly. Execute the

hostname command with a -f switch as shown following. Make sure that it returns a full

hostname with domain name as shown here:

$ hostname -f

hc4r1m5.semtech-solutions.co.nz

Chapter 6 proCessing

214

 Check Exhibitor Log

Attempt to access the ZooKeeper-based Exhibitor user interface at the master server as

shown following:

http://192.168.1.113:8181/exhibitor/v1/ui/index.html

If the interface is not accessible or the DCOS server is not shown with a green state,

then check the exhibitor status using the journalctl command as shown following:

$ journalctl -flu dcos-exhibitor

 Check /tmp

Verify that /tmp is mounted without noexec (not execute). If it is mounted with noexec,

Exhibitor will fail to bring up ZooKeeper. To repair /tmp, use the following command:

$ mount -o remount,exec /tmp

 Check Leader

Check that the correct number of Mesos master processes exist and that a leader

has been elected. The /exhibitor/v1/cluster/status path can be used to obtain this

information as shown following from the Mesos master server. The output in JSON

format shows that a single Mesos master as a leader exists as expected:

$ curl -fsSL http://localhost:8181/exhibitor/v1/cluster/status

[{"code":3,"description":"serving","hostname":"192.168.1.113","isLeader":true}]

 Check ready.spartan Process

Make sure that the ready.spartan entity is pingable on the Mesos cluster by executing the

following command:

$ ping ready.spartan

If an error occurs, then check the spartan log via the following journalctl

command.

$ journalctl -flu dcos-spartan

Chapter 6 proCessing

215

 Check leader.mesos and master.mesos

Make sure that the leader.mesos and master.mesos entities are pingable on the Mesos

cluster. Execute the following commands:

$ ping leader.mesos

$ ping master.mesos

If an error occurs, then check the mesos dns log via the following journalctl

command:

$ journalctl -flu dcos-mesos-dns

 Check Mesos master

Next check the Mesos master log via the following journalctl command:

$ journalctl -flu dcos-mesos-master

 Check Mesos DNS

Next check the Mesos dns log via the following journalctl command:

$ journalctl -u dcos-mesos-dns -b

 Check DC/OS Marathon

The marathon scheduler process is started on the Mesos master nodes; use the following

journalctl command to check the marathon log:

$ journalctl -u dcos-marathon -b

 Check Admin Router

The Admin router is started on the master nodes and provides authentication to services

within the cluster. Use the following journalctl command to check the Admin log.

$ journalctl -u dcos-adminrouter -b

Chapter 6 proCessing

216

 Check gen_resolvconf

This is a process that helps agent nodes locate the master node; use the following

journalctl command to check the gen_resolvconf log:

$ journalctl -u dcos-gen-resolvconf -b

 Check Slaves

You can check the slave logs depending on their type, public or private. The following

two journalctl-based commands show how the logs can be checked:

$ journalctl -u dcos-mesos-slave -b

$ journalctl -u dcos-mesos-slave-public -b

 Check /var/log/messages

You can also check the contents of the following message logs:

/var/log/messages*

On each node, look for potential errors.

 Check NTP

Use the following NTP-based command to ensure that the NTP service is running on

CentOS 7:

$ ntptime

 Check User Interfaces

Finally, check the user interfaces to make sure that they are accessible and contain no

obvious errors. DCOS can be accessed via the master nodes, that is,

http:/ 192.168.1.113/.

Mesos can be accessed via the master node via its DNS path.

http://192.168.1.113/mesos/

Chapter 6 proCessing

217

Marathon can be accessed at the master node using its DNS-based name.

http://192.168.1.113/marathon/

If an error is encountered, then solve the problem and start at the top of the list again

to ensure that no further problems exist.

 Conclusion
This chapter has shown two methods of adding a processing component to a big data

stack based on Apache Spark. Much of the work shown in this chapter has involved

preparing the cluster on which Spark and the Spark application would run. I think that

this is necessary because if a small mistake is made or a detail missed, then it can be very

difficult to track and solve problems.

I have shown two methods of building a Mesos-based cluster. The first involved

building Mesos from source. The second involved installing the DCOS Mesos-based

open-source system from dcos.io. I hope that it is apparent to you that DCOS is the more

functionally complete and resilient system. I worked through the two approaches to

provide a contrast. DCOS provides a series of management tools such as Marathon, DNS,

and Cosmos. It provides a series of user interfaces through which you can monitor your

system. Also, more importantly it has a large user community that can be approached

when hard-to-resolve problems are encountered.

Chapter 7 will examine queuing in a Mesos-based big data stack and build on the

work carried out so far.

Chapter 6 proCessing

219
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_7

CHAPTER 7

Streaming
In this chapter, I concentrate on the queueing/streaming component of the big data

stack provided by Apache Kafka—certainly one of the most successful Apache projects

in this area. After a brief overview of the Kafka project, this chapter presents installation

procedures using either the DCOS UI or directly from the command line. Both are

informative, and the chapter includes detailed discussion on some of the issues that

may arise in integrating this component into the big data stack. Management of the

Kafka cluster is discussed as well as looking at various ways of producing and consuming

records in Kafka topics. The chapter ends with a discussion of how one can use Scala

to interact with Kafka topics. This chapter highlights the value created through the

use of DCOS in cluster management, which facilitates both Kafka installation and

management.

For big-data-based queue processing, the queueing component must have a “big data”

heritage. A big data queueing component must

• Be able to process large data volumes

• Be able to scale

• Offer distributed processing

• Integrate with other big data components

I have reproduced the big data stack diagram (Figure 7-1) seen in other chapters as a

reminder. Note that the queueing component has changed color from gray to white; this

stack module will be the subject of this chapter.

220

The big data queueing component Kafka (https://kafka.apache.org/) will provide

the queueing functionality for the queueing module described in this stack. It has been

chosen because it meets the criteria discussed previously and has been designed by

Apache. It has the following attributes:

• Processing large data volumes

As of 2015, the Kafka-based system at linkedin.com processed 800

billion messages a day or 175 terabytes of data.

• Scaling

Kafka scales by using a system of broker processors to process

queued data in a distributed fashion. By 2015, there were 1,100

Kafka brokers in use at linkedin.com. Linear scaling for Kafka is

achieved by scaling the number of active brokers and reassigning

Kafka topic partitions across the Kafka broker cluster.

• Distributed processing

As mentioned previously, Kafka offers distributed topic, queue

data processing by using brokers. Queue-based data and the

actions on it are dispersed across a network of broker processors.

• Integration

Apache Kafka integrates with Apache Spark, which will be

demonstrated later in this chapter. Library functionality has been

built into Apache Spark to enable Kafka-based stream processing.

Figure 7-1. Stack architecture

Chapter 7 Streaming

https://kafka.apache.org/

221

The preceding section describes the attributes of the queueing module needed for

the big data stack. It also explains why Apache Kafka has been chosen. More detail will

be provided for Kafka in subsequent sections. I just wanted to explain the direction that

this chapter will take before we get started. In the big data, open-source world, when

people think about distributed configuration, ZooKeeper is an obvious choice. Where

big-data-based, open-source queueing is needed, then in the same way Kafka is an

obvious choice.

Before delving into the detail of Kafka, I wanted to remind you that this big data stack

is based on Spark for processing and Mesos for cluster management. Spark can be run in

a number of cluster management modes, for example, standalone, yarn (client/cluster),

and Mesos/ZooKeeper. Given that Mesos is being used as the cluster manager for this

stack, then it makes sense that Mesos will act as the Spark cluster manager.

This chapter will be based on DCOS (dcos.io), the open-source, Mesos-based, big

data processing environment. Although there is overhead to learning and installing

DCOS, it is worth it. DCOS provides a more robust and self-healing, scaling, Mesos-

based environment. I have already explained how to install a DCOS cluster; but before

I move on to examining the Kafka project, I wanted to point out some potential issues

with a DCOS-based install and system. The next section will examine DCOS and some

potential issues with its install and use.

 DCOS Issues
The process of writing this book has taken more than a year, largely due to the

complexity of Mesos-based clusters, particularly DCOS. As I develop each chapter, I have

installed the latest version of DCOS available. I wanted to point out some issues that

have become apparent with DCOS across versions. This issues list assumes that you are

using CentOS 7.2 and DCOS 1.7–1.9.

 Port Conflict Issues
From DCOS 1.8 onward, there is a port conflict in that port 53, which is needed by the

CentOS dnsmasq process, is also used by the dcos-spartan.service process. Without

any remedial action, the result of this conflict for a DCOS cluster are dns-related issues

and routing issues. It means that DCOS-based processes cannot communicate, and the

Chapter 7 Streaming

222

DCOS user interface cannot be reached remotely. The solution to this problem is to do

as follows. Use the Linux yum command to install the psmisc module. This makes the

fuser command available.

$ yum -y install psmisc

Use the fuser command to check the port number 53; this will probably show that

the dnsmasq is using that port.

$ fuser -v 53/tcp

If the preceding command does return some process-based output, do as follows.

Use the systemctl command to disable and stop the dnsmasq process.

$ systemctl disable dnsmasq && systemctl stop dnsmasq

If necessary, use the killall command to kill all dnsmasq-related processes.

$ killall dnsmasq

Now remove the dnsmasq process using the yum command as follows:

$ yum -y remove dnsmasq

Restart the ntpd (NTP daemon) process for NTP processing. The network-based time

across the Mesos-based cluster needs to be in sync for DCOS to function properly.

$ service ntpd restart

Check that the NTP process is working correctly by using the ntptime command. The

output should show no errors.

$ ntptime

 Firewall Issues
There can also be firewall-related issues between CentOS 7.x servers and DCOS

1.8+-based clusters. At least on my nonproduction DCOS clusters, I prefer to disable

the CentOS firewall. I would prefer to have a firewall outside of the cluster between the

Chapter 7 Streaming

223

Internet and the cluster. I would prefer this arrangement to reduce complexity. So on my

nonproduction systems, I do as follows on each server. I use the systemctl command to

disable and stop the iptables process.

$ systemctl disable iptables && systemctl stop iptables

Because I restart my DCOS-based cluster multiple times when writing a book like this,

after each restart, I need to flush the firewall configuration on each server after startup. If I

don’t do this as follows, then server routing will not work, and DCOS dns will fail.

$ iptables -F

 Network Time Synchronisation
I wanted to mention DCOS network time-based synchronisation, as it can cause issues.

Part of the DCOS installation requires that the NTP server ntpd be installed on each

CentOS 7.2 server. Although DCOS is generally a self-healing system, meaning that over

time it can solve issues itself, timing issues can occur.

An indication of this is that the DCOS navstar process can fail. This can be seen on

the DCOS user interface when the navstar process is no longer healthy. The log output

that identifies the error can be found either from the DCOS user interface or from the

Linux DCOS cluster server command line using the journalctl command as shown

following:

$ journalctl -u dcos-navstar

May 07 13:01:21 hc4r1m4.semtech-solutions.co.nz systemd[1]: Starting

Navstar: A distributed systems & network overlay orchestration engine...

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz check-time[670]: Checking

whether time is synchronized using the kernel adjtimex API.

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz check-time[670]: Time

can be synchronized via most popular mechanisms (ntpd, chrony, systemd-

timesyncd, etc.)

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz check-time[670]: Time is

not synchronized / marked as bad by the kernel.

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz systemd[1]: dcos-navstar.

service: control process exited, code=exited status=1

Chapter 7 Streaming

224

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz systemd[1]: Failed to start

Navstar: A distributed systems & network overlay orchestration engine.

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz systemd[1]: Unit dcos-

navstar.service entered failed state.

May 07 13:01:22 hc4r1m4.semtech-solutions.co.nz systemd[1]: dcos-navstar.

service failed.

The preceding log error shows that although we are using the ntpd service on each

DCOS-based server, time is not synchronized across servers. If this issue does not

resolve itself over time, then the solution is to install the chrony service on the offending

server(s) as follows:

$ yum -y install chrony

 ZooKeeper Issues
In nonproduction DCOS-based clusters that may be frequently restarted, there can be

associated ZooKeeper issues. I know that when writing, I constantly stop and start my

cluster to make changes. I mention this to assist the reader in the full knowledge that

production-based systems would be configured to run without interruption.

Frequently when restarting a DCOS cluster, I have found that the exhibitor process or

Mesos-based master would not start; the master would indicate red and not green. The

exhibitor can be found at the following address:

http://<master>:8181/exhibitor/v1/ui/index.html

Here “<master>” is either the IP address or name of one of your master servers. I

found that this might be because ZooKeeper did not restart properly and left an old “pid”

file or process identification file from the last session. The solution would be to do as

follows on each master that is in a red state:

$ cd /var/lib/dcos/exhibitor; rm -f zk.pid

That would remove the old “pid” file and allow the exhibitors and so the Mesos

master and finally the DCOS UI to start.

Having examined some potential issues that would impact a DCOS cluster’s

operation, I will now examine the Kafka system. It is important for this chapter to

progress that DCOS be functioning without error.

Chapter 7 Streaming

225

 The Kafka System
Kafka has been designed as a best of breed, open-source, distributed big data queueing/

streaming system. It has been developed under the Apache umbrella and is distributed

via an Apache V2 license (kafka.apache.org). It is a ubiquitous big data system, so much

so that when people think of big data queueing/streaming, they think of Kafka. It is not

my intention of rewrite the contents of the Kafka web site (see preceding link). But before

I move on to use Kafka with DCOS and Spark, I should provide an overview. See the

Kafka web site for further reading and access to the Kafka community.

Figure 7-2 shows an overview of a Kafka cluster.

Kafka is formed from a cluster of broker processors that manage streams of record-

based data called topics. Each record in a topic is comprised of a key, a value, and a

timestamp.

As shown in the preceding diagram, Kafka has four main APIs: producer, consumer,

streams, and Connector. The API details are as follows:

• The producer API allows providers of data to publish a stream of

records to Kafka-based topic queues.

• The consumer API allows stream-based record consumers to register

to read topic-based queues.

Figure 7-2. Kafka Architecture (Source: https://kafka.apache.org/
documentation/)

Chapter 7 Streaming

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

226

• The stream’s API allows an application to read input topic queues,

process the data, and send the resulting stream data to output

queues. It could be performing some ETL against the queue to

process the data.

• The connector API allows the creation of reusable producers or

consumers to connect to storage systems. In this way, a storage

system could populate or be populated by a Kafka based topic queue.

Kafka topic queues are divided into partitions of ordered sequenced records.

Figure 7-3 shows the structure of a Kafka topic.

Records are written to partitions in a sequential manner, with each record being

given a unique offset number. Depending on the retention policy for the topic, the record

will be available for consumption in a topic partition before finally being removed. This

is a publish/subscribe-based system, so there can be multiple producers and consumers.

The number of partitions for a topic is defined when the topic is created or scaled.

It is the responsibility of the message producer to assign messages to topic partitions.

Partitions are assigned to topic consumers, and the assignment is rebalanced as

consumers come and go.

Figure 7-3. Kafka topic (Source: https://kafka.apache.org/
documentation/)

Chapter 7 Streaming

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

227

Figure 7-4 shows how multiple consumers of a topic partition use the stream-based

record offset to maintain their read position in the queue. Producers will always write to

the end of a partition, while multiple consumers will have a unique read position in the

topic partition.

I will not go into any further detail for Kafka queueing. If you would like to gain

further insight, then please read the Kafka site. Also, connect with the Kafka community

and ask questions. I think it is much more important to provide practical examples. The

next section will explain how to install Kafka on DCOS.

 Installing Kafka
There are two main ways to install Kafka on DCOS: the first is via the DCOS user

interface and the second is by using the DCOS CLI. I will show both, as both can be

useful. It is worthwhile learning to use the DCOS CLI, especially when building and

launching Spark-based tasks.

In this section, I will first install Kafka via the web-based user interface; then I will

remove the application and install using the CLI.

 DCOS UI Kafka Install
Due to the nature of this user interface install, it will mostly involve images of the DCOS

user interface. From the DCOS UI Universe ➤ Packages option, find the Kafka package

and click install (Figure 7-5).

Figure 7-4. Kafka topic offsets (Source: https://kafka.apache.org/
documentation/)

Chapter 7 Streaming

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

228

A DCOS package install is defined via a JSON-based configuration file. The next step

allows the installer to install a default configuration or change the JSON configuration

via an advanced install (Figure 7-6).

Figure 7-5. Kafka package install: Step 1

Figure 7-6. Kafka package install: Step 2

Chapter 7 Streaming

229

Step 3 of the install, having chosen the advanced option, will allow the installer to

alter the install configuration (Figure 7-7). This actually presents the contents of the

JSON configuration file divided into four sections: service, brokers, executors, kafka.

Upon selecting the “REVIEW AND INSTALL” button, the installer is able to check

the full JSON configuration for the install and start the actual install (Figure 7-8). There

is also a useful option here to download the JSON-based configuration file, which I have

already done. This can then be used for a later DCOS CLI-based Kafka install.

Figure 7-7. Kafka package install: Step 3

Chapter 7 Streaming

230

If the install goes well, the installer will be prompted with a success message

(Figure 7-9).

Figure 7-8. Kafka package install: Step 4

Figure 7-9. Kafka package install: Step 5

Chapter 7 Streaming

231

Now by selecting the Universe ➤ Installed DCOS UI menu option, it can be seen that

the Kafka package 1.1.19.1 has been installed (Figure 7-10).

Finally, by selecting the DCOS UI menu option Services ➤ Services and selecting

the installed Kafka service (Figure 7-11), it is possible to see the components within the

service.

Figure 7-10. Kafka package install: Step 6

Figure 7-11. Kafka package install: Step 7

Chapter 7 Streaming

232

Figure 7-11 shows three Kafka brokers and a Kafka process running along with their

resource usage in terms of CPUs and memory used. The default configuration for the

DCOS Kafka install involves the use of three brokers. I will now remove this installation

from the DCOS menu Universe ➤ Installed and proceed with a DCOS CLI Kafka install

in the next section.

 DCOS CLI Kafka Install
Previous chapters have shown how to install the DCOS CLI binary, so I will not repeat

that step here. I have Version 1.9 of the DCOS CLI binary installed under the directory

/opt/dcos/bin. I have installed the binary on every server in my DCOS cluster.

$ pwd

/opt/dcos/bin

$ ls -l

total 13168

lrwxrwxrwx 1 root root 8 Jul 29 18:14 dcos -> dcos_1_9

-rwxr-xr-x 1 root root 13483440 Jul 29 18:14 dcos_1_9

I also use a symbolic link called dcos to link the name dcos to a binary named

dcos_1_9. This serves to remind me that I am using a version of the binary that matches

my DCOS cluster version. The next step involves altering the Linux server environment

variable PATH to add the value /opt/dcos/bin/. This means that the DCOS CLI

executable is now accessible no matter where I execute commands in the file system.

$ export PATH=$PATH:/opt/dcos/bin/

To use the CLI, it is necessary to log in to DCOS; this is done with the following

command using the auth login dcos options:

$ dcos auth login

Please go to the following link in your browser:

 http://192.168.1.112/login?redirect_uri=urn:ietf:wg:oauth:2.0:oob

Use the link provided in the preceding output to obtain a login token for the DCOS

CLI. There are three DCOS login options: Google, GitHub, and Microsoft. I generally

Chapter 7 Streaming

233

use the GitHub option, as I have an account. This will provide a long token that can be

entered at the command line as shown.

Enter OpenID Connect ID Token:eyJ0eXAiOiJKV1QiLC

Login successful!

The DCOS CLI session is now authenticated and able to access the DCOS cluster.

During the previous DCOS UI Kafka install, I downloaded a copy of the Kafka JSON

configuration file, which I have stored as /opt/dcos/json/kafka-config1.json. I will now

use this file as follows to install Kafka via the CLI:

$ dcos package install --options=/opt/dcos/json/kafka-config1.json kafka

Installing Marathon app for package [kafka] version [1.1.19.1-0.10.1.0]

Installing CLI subcommand for package [kafka] version [1.1.19.1-0.10.1.0]

New command available: dcos kafka

DC/OS Kafka Service is being installed.

 Documentation: https://docs.mesosphere.com/current/usage/service-

guides/kafka/

 Issues: https://dcosjira.atlassian.net/projects/KAFKA/issues

Note that the preceding install states that it has also installed the CLI kafka

command. This make commands like “dcos kafka” possible via the CLI. If this had to be

done manually, then the command would be as follows:

$ dcos package install --cli kafka

Installing CLI subcommand for package [kafka] version [1.1.19.1-0.10.1.0]

New command available: dcos kafka

It may be necessary to wait a short time while the Kafka application actually installs.

This can be checked via the Kafka UI as in the previous section. The functionality of the

DCOS CLI kafka command can be checked using the --help option as shown following:

dcos kafka --help

usage: kafka [<flags>] <command> [<args> ...]

Deploy and manage Kafka clusters

Chapter 7 Streaming

234

Flags:

 -h, --help Show context-sensitive help (also try --help-long and

 --help-man).

 --version Show application version.

 -v, --verbose Enable extra logging of requests/responses

 --info Show short description.

 --force-insecure Allow unverified TLS certificates when querying service

 --custom-auth-token=DCOS_AUTH_TOKEN

 Custom auth token to use when querying service

 --custom-dcos-url=DCOS_URI/DCOS_URL

 Custom cluster URL to use when querying service

 --custom-cert-path=DCOS_CA_PATH/DCOS_CERT_PATH

 Custom TLS CA certificate file to use when querying

 service

 --name="kafka" Name of the service instance to query

Commands:

 help [<command>...]

 Show help.

 config list

 List IDs of all available configurations

 config show <config_id>

 Display a specified configuration

 config target

 Display the target configuration

 config target_id

 List ID of the target configuration

 connection [<type>]

 View connection information (custom types: address, dns)

 plan

 Display full plan

 continue

 Continue a currently Waiting operation

 interrupt

 Interrupt a currently Pending operation

 force <phase> <step>

Chapter 7 Streaming

235

 Force the current operation to complete

 restart <phase> <step>

 Restart the current operation

 state framework_id

 Display the mesos framework ID

 state status <name>

 Display the TaskStatus for a task name

 state task <name>

 Display the TaskInfo for a task name

 state tasks

 List names of all persisted tasks

 broker list

 Lists all running brokers in the service

 broker replace [<broker_id>]

 Replaces a single broker job, moving it to a different agent

 broker restart [<broker_id>]

 Restarts a single broker job, keeping it on the same agent

 topic create [<flags>] [<topic>]

 Creates a new topic

 topic delete [<topic>]

 Deletes an existing topic

 topic describe [<topic>]

 Describes a single existing topic

 topic list

 Lists all available topics

 topic offsets [<flags>] [<topic>]

 Returns the current offset counts for a topic

 topic partitions [<topic>] [<count>]

 Alters partition count for an existing topic

 topic producer_test [<topic>] [<messages>]

 Produces some test messages against a topic

 topic unavailable_partitions

 Gets info for any unavailable partitions

 topic under_replicated_partitions

 Gets info for any under-replicated partitions

Chapter 7 Streaming

236

The preceding list provides all of the commands available to manage the Mesos-

based Kafka framework using the DCOS CLI. In the next section, I will use some of these

commands to show by example how these commands work.

 Kafka Management Using the CLI
Before using the DCOS CLI to manage the Kafka framework, it is important to ensure

that the Kafka Framework is running correctly. This can be checked by using the DCOS

Marathon scheduler URL

http://<master>:8080/ui/#/apps,

where <master> is the full name or IP address of your DCOS master server. Select the top

most “Applications” menu option, and you should see the Kafka framework in the state

shown in Figure 7-12.

Figure 7-12 shows the Kafka framework in a green and running state. That means

that if CLI commands are run, they should connect to the framework without error.

This may not provide a full indication of the Kafka framework state. To check that the

Kafka framework is running correctly, the Mesos user interface should be checked at

the following URL:

http://<master>/mesos/#/

Figure 7-12. Marathon Kafka framework state

Chapter 7 Streaming

237

Note that Figure 7-13 shows a Kafka framework task running as well as three brokers.

I encountered a situation with the Kafka framework where the brokers were not

created when Kafka was installed. I solved this by executing the following steps:

• From the DCOS UI, go to Universe ➤ Installed menu option and

destroy Kafka.

• Examine the ZooKeeper Exhibitor at the following URL:

http://<master-ip>:8181/exhibitor/v1/ui/index.html

• Expand the Explorer section

• Remove the dcos-service-kafka entry

• Reinstall Kafka via the DCOS UI

Figure 7-14 shows the Exhibitor interface and gives you an idea of the entry that you

will need to delete if you encounter the same issue.

Figure 7-13. Mesos Kafka Active Tasks

Chapter 7 Streaming

238

So now the Kafka framework is running correctly, the DCOS CLI can be used to

access it. By default, three Kafka brokers are created when Kafka is installed; the plan

command used with the CLI gives details of the Kafka architecture and status in a JSON

format.

$ dcos kafka plan

{

 "phases": [

 {

 "id": "2d43c64f-e143-4f9a-acd1-1b642e5e0714",

 "name": "Reconciliation",

 "steps": [

 {

 "id": "1996303a-64e7-46ef-9772-42d7dd49e534",

 "status": "COMPLETE",

 "name": "Reconciliation",

 "message": "Reconciliation complete"

 }

Figure 7-14. Exhibitor Kafka Explorer entry

Chapter 7 Streaming

239

],

 "status": "COMPLETE"

 },

 {

 "id": "fe40d43b-9bbf-44ec-a978-5f48017700f9",

 "name": "Deployment",

 "steps": [

 {

 "id": "68ea1529-5ae7-42c1-8775-dad3e76ce37d",

 "status": "COMPLETE",

 "name": "broker-0",

 "message": "Broker-0 is COMPLETE"

 },

 {

 "id": "9d3d39fe-ca76-498e-b29e-83e59629ef25",

 "status": "COMPLETE",

 "name": "broker-1",

 "message": "Broker-1 is COMPLETE"

 },

 {

 "id": "89677ede-6caa-4e27-ac38-50f07372f1c0",

 "status": "COMPLETE",

 "name": "broker-2",

 "message": "Broker-2 is COMPLETE"

 }

],

 "status": "COMPLETE"

 }

],

 "errors": [],

 "status": "COMPLETE"

}

Chapter 7 Streaming

240

The preceding output shows the broker names, statuses, and identification numbers.

It also shows that the brokers are numbered 0, 1, and 2. The CLI broker list command

following displays the current Kafka brokers:

$ dcos kafka broker list

[

 "0",

 "1",

 "2"

]

The CLI allows the brokers in the Kafka cluster to be controlled; they can be either

restarted or replaced. Restarting a broker causes the broker on a given DCOS agent to

be restarted. If a broker is replaced, then a broker is stopped on one DCOS agent and

started on another. Here are some examples of broker restarts and replacements.

$ dcos kafka broker restart 0

[

 "broker-0__dd7bac31-b37a-4806-bb7d-5c8cafb7f16e"

]

$ dcos kafka broker replace 0

Remember that Kafka streamed data is stored in queues, which are called topics,

and each topic is automatically partitioned. Currently no topics have been created in

the Kafka cluster created on this DCOS system, as the DCOS CLI topic list command

shows following:

$ dcos kafka topic list

[]

If you attempt to use the CLI to create topics, then the brokers must be installed and

running. I mentioned an error earlier in this section where they were not installed. The

result of this installation error caused the following error when trying to create a topic

called “topic1” as follows:

$ dcos kafka topic create topic1

{

 "message": "Output: Error while executing topic command :

 replication factor: 3 larger than available brokers: 0\n

Chapter 7 Streaming

241

 Error: [2017-08-21 12:57:45,919] ERROR

 org.apache.kafka.common.errors.InvalidReplicationFactorException:

 replication factor: 3 larger than available brokers: 0\n

 (kafka.admin.TopicCommand$)\n"

}

Once the Kafka cluster framework was running along with its three brokers, topics

could be created. The cluster state can be checked using the kafka plan command

shown previously or by checking the Mesos, Marathon, or DCOS UI Service interfaces.

The command following shows the topic “topic1” successfully being created, followed

by “topic2.”

$ dcos kafka topic create topic1

{

 "message": "Output: Created topic \"topic1\".\n"

}

dcos kafka topic create topic2

{

 "message": "Output: Created topic \"topic2\".\n"

}

The topic list CLI command is then used to list the current Kafka topics that exist and

the result is the two that have just been created.

$ dcos kafka topic list

[

 "topic1",

 "topic2"

]

It is also possible to specify attributes when creating a topic. The following example

creates a topic, “topic3,” with two partitions and a replication factor of two. So data in the

queue is duplicated across brokers.

$ dcos kafka topic create topic3 --partitions 2 --replication 2

{

 "message": "Output: Created topic \"topic3\".\n"

}

Chapter 7 Streaming

242

The official DCOS Kafka documentation shows how the Kafka CLI command can be

used. The details can be found by using this URL for DCOS 1.9:

https://github.com/dcos/examples/tree/master/kafka/1.9

To follow the example that DCOS provides, an ssh-agent must be running. When

started, the agent dumps some variable values to standard output.

$ ssh-agent

Copy and execute the definitions for the variables SSH_AUTH_SOCK and SSH_

AGENT_PID. The actual values in your instance will vary.

$ SSH_AUTH_SOCK=/tmp/ssh-SiHwHNP2AIzP/agent.6251; export SSH_AUTH_SOCK;

$ SSH_AGENT_PID=6252; export SSH_AGENT_PID;

Run the CLI kafka connection command to determine broker names, IP addresses,

and the vip value. Remember these values for later in this section.

$ dcos kafka connection

{

 "address": [

 "192.168.1.122:9529",

 "192.168.1.109:9609",

 "192.168.1.117:9680"

],

 "zookeeper": "master.mesos:2181/dcos-service-kafka",

 "dns": [

 "broker-0.kafka.mesos:9529",

 "broker-1.kafka.mesos:9609",

 "broker-2.kafka.mesos:9680"

],

 "vip": "broker.kafka.l4lb.thisdcos.directory:9092"

}

Now use the DCOS CLI node command to ssh to the master leader server. I have

specified the root account for the ssh access. Remember that a Mesos cluster will always

have an odd number of master processes. By a system of voting, the masters will elect a

single leader server.

Chapter 7 Streaming

https://github.com/dcos/examples/tree/master/kafka/1.9

243

$ dcos node ssh --master-proxy --leader --user=root

Running `ssh -A -t root@192.168.1.112 - `

root@192.168.1.112's password:

Last login: Mon Aug 21 14:42:07 2017 from hc4r2m1.semtech-solutions.co.nz

[root@hc4r1m0 ~]#

The ssh CLI command has now moved the session to the master node in my cluster

called hc4r1m0. As per the DCOS documentation, I now run the Docker kafka-client to

gain access to Kafka client scripts and commands.

$ docker run -it mesosphere/kafka-client

Unable to find image 'mesosphere/kafka-client:latest' locally

latest: Pulling from mesosphere/kafka-client

efd26ecc9548: Pull complete

a3ed95caeb02: Pull complete

d1784d73276e: Pull complete

52a884c93bb2: Pull complete

070ee56a6f7e: Pull complete

f8b8b1302b4f: Pull complete

e71221cc9598: Pull complete

349c9e35d503: Pull complete

0686c3f0e36a: Pull complete

Digest: sha256:92eacfe5cf19bb194d3b08e92a3bde985777da765a3aa5398f275cfc8d7e27c7

Status: Downloaded newer image for mesosphere/kafka-client:latest

Using the kafla client script kafka-topic.sh like this, I am able to list details of the

three topics that have been created: topic 1, 2, and 3.

$./bin/kafka-topics.sh --describe --zookeeper master.mesos:2181/dcos-

service- kafka --topic topic1

Topic:topic1 PartitionCount:1 ReplicationFactor:3 Configs:

 Topic: topic1 Partition: 0 Leader: 0 Replicas: 0,1,2

Isr: 0,1,2

$./bin/kafka-topics.sh --describe --zookeeper master.mesos:2181/dcos-

service- kafka --topic topic2

Chapter 7 Streaming

244

Topic:topic2 PartitionCount:1 ReplicationFactor:3 Configs:

 Topic: topic2 Partition: 0 Leader: 1 Replicas: 1,2,0

Isr: 1,2,0

$./bin/kafka-topics.sh --describe --zookeeper master.mesos:2181/dcos-

service- kafka --topic topic3

Topic:topic3 PartitionCount:2 ReplicationFactor:2 Configs:

 Topic: topic3 Partition: 0 Leader: 2 Replicas: 2,0

Isr: 2,0

 Topic: topic3 Partition: 1 Leader: 0 Replicas: 0,1

Isr: 0,1

Note that “topic3” has two partitions, as were defined when it was created. The

documentation states that I can use the kafka-console-producer.sh and kafka-console-

consumer.sh scripts within this Docker-based client to send data to Kafka queues and

read data from queues. An example of this would be the command following that echos

some text to the kafka-console-producer.sh script. This script uses the Kafka cluster vip

value and port number to send this data to the topic1 queue.

$ echo "message1" | ./bin/kafka-console-producer.sh --broker-list broker.

kafka.l4lb.thisdcos.directory:9092 --topic "topic1"

I could never get this to work; remember that the Kafka client is running within a

Docker session on the DCOS master server. In my environment, the client session could

never see the Kafka brokers, and I received errors such as this:

[2017-08-21 03:16:34,417] ERROR Error when sending message to topic

topic1 with key: null, value: 8 bytes with error: Failed to update

metadata after 60000 ms. (org.apache.kafka.clients.producer.internals.

ErrorLoggingCallback)

To populate the Kafka-based queues that I had created, I decided to exit out of the

Docker-based Kafka client as follows and try a different approach.

$ exit

Chapter 7 Streaming

245

I downloaded a version of Kafka as follows that matches the version that was

installed on DCOS. I decided to install it under the directory /opt/kafka on my DCOS

master server. I used the mkdir command to set up the directory structure and the wget

command to obtain the tarred package.

$ mkdir -p /opt/kafka ; cd /opt/kafka

$ wget http://download.nextag.com/apache/kafka/0.10.1.0/kafka_2.11- -

0.10.1.0.tgz

I then used the tar command with the options x (extract) and f (file) to unpack the

binaries. I then changed the directory into the unpacked package.

$ tar xf kafka_2.11-0.10.1.0.tgz

$ cd kafka_2.11-0.10.1.0/bin

Using two separate sessions on my master server, I was now able to both populate

the queue “topic1” using the kafka-console-producer.sh script. I specified the Kafka vip

value and port number as well as the topic name. I then entered a series of message data

lines that were sent to the queue “topic1.”

$./kafka-console-producer.sh --broker-list broker.kafka.l4lb.thisdcos.

directory:9092 --topic topic1

message1

message2

message3

message4

message5

message6

message7

Having populated the Kafka queue-based topic, I needed to try to read from the

queue. The kafka-console-consumer.sh script following was used this time with the

master Mesos value and port number of 2181. The ZooKeeper/Exhibitor Kafka service

name of dcos-service-kafka was also specified. A topic queue name was added to the

command (“topic1”); and finally, a flag was used (--from-beginning) to receive all data

in the queue.

Chapter 7 Streaming

246

$./kafka-console-consumer.sh --zookeeper master.mesos:2181/dcos-service-

kafka --topic topic1 --from-beginning

Using the ConsoleConsumer with old consumer is deprecated and will be

removed in a future major release. Consider using the new consumer by

passing [bootstrap-server] instead of [zookeeper].

message1

message2

message3

message4

message5

message6

message7

Processed a total of 7 messages

As you can see, the command was successful, as all data that was added to the queue

was also read from it. That completes this section and explains how the DCOS kafka CLI

command can be used to manage queues. The next step will involve writing Spark Scala-

based code to access Kafka-based queues.

 Kafka Management Using Spark
So now that a DCOS Kafka cluster has been created and Apache Spark is already running

on DCOS, it is time to create some Spark Scala code to show how Kafka can be used

from Spark. In this section, a development environment will be set up using SBT, Spark,

and Scala. (SBT, the Simple Build Tool is an open-source build tool for Scala and Java

projects, similar to Java’s Maven and Ant.) On my DCOS install server, I have created an

SBT project directory as follows:

$ pwd

/opt/dev/kafcom1

$ ls

build.sbt project src

Chapter 7 Streaming

247

A project directory called “kafcom1” has been created along with project and src

subdirectories. The build process to create the Kafka-based class needs to create a “fat”

jar file. What I mean by that is that everything that this class needs must reside in this jar

file. To achieve this build, the following extra SBT configuration file is needed:

$ more project/assembly.sbt

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.12.0")

The assembly.sbt file within the project subdirectory contains a reference to sbt-

assembly, which will be used during the build to include all linked classes. The main

build.sbt build configuration file looks like this:

$ cat build.sbt

lazy val root = (project in file(".")).

 settings(

 name := "kafcom1",

 version := "1.0",

 scalaVersion := "2.11.8",

 mainClass in Compile := Some("myPackage.MyMainObject")

)

libraryDependencies ++= Seq(

 "org.apache.kafka" % "kafka-clients" % "0.10.1.0" from

"file:///opt/dev/kafka_2.11-0.10.1.0/libs/kafka-clients-0.10.1.0.jar",

 "org.apache.spark" % "spark-core" % "2.1.1" from

"file:///opt/dev/spark-2.1.1-bin-hadoop2.6/jars/spark-core_2.11-2.1.1.jar"

)

// META-INF discarding

mergeStrategy in assembly <<= (mergeStrategy in assembly) { (old) =>

 {

 case PathList("META-INF", xs @ _*) => MergeStrategy.discard

 case x => MergeStrategy.first

 }

}

Chapter 7 Streaming

248

This is similar to previous .sbt files used in my other books in that the project name,

version, and Scala version have been defined. Also, library dependencies have been

defined for kafka-clients and spark-core. A merge strategy has been defined for the

assembly process. Now let’s look at the Scala code that will access the Kafka queue data.

A Scala source file called kafcom1.scala has been created under the project directory

within a subdirectory called src/main/scala. I will dump the file using the cat command

and then explain it line by line.

$ cat src/main/scala/kafcom1.scala

import scala.collection.JavaConverters._

import java.util.{Properties,Collections}

import org.apache.kafka.clients.consumer.KafkaConsumer

The preceding section imports the classes to be used, that is, the Kafka queue

consumer, collection, and properties classes. The object class KafCom1 is then defined.

object KafCom1 extends App {

 // set up some Kafka configuration values

 val broker4 = "broker.kafka.l4lb.thisdcos.directory:9092"

 val brokerList = broker4

 val groupId = "test-consumer-group"

 val consTimeOut = "5000"

 val zooConTimeOut = "6000"

 val topicName = "topic1"

 val pollPeriod = 500

 var printStr = ""

Properties and variables have been defined for the Kafka queue access task.

A properties object is then created, and the preceding properties are assigned to it.

Key and value deserializer classes are also specified to be able to read the Kafa queue

data. Remember that a queue record contains a key, value, offset, and timestamp.

Chapter 7 Streaming

249

 // define the kafka properties

 val properties = new Properties()

 properties.put("bootstrap.servers", brokerList)

 properties.put("group.id", groupId)

 properties.put("consumer.timeout.ms", consTimeOut)

 properties.put("zookeeper.connection.timeout.ms", zooConTimeOut)

 properties.put("key.deserializer",

 "org.apache.kafka.common.serialization.StringDeserializer")

 properties.put("value.deserializer",

 "org.apache.kafka.common.serialization.StringDeserializer")

A consumer is then created from the KafkaConsumer class, and that is used to

subscribe to the Kafka topic, “topic1.” Note that a group ID has also been specified.

 val consumer = new KafkaConsumer[String, String](properties)

 consumer.subscribe(Collections.singletonList(topicName))

Now the consumer is polled using a poll period value specified earlier to obtain

queue-based data for the given topic name and group ID. While records are found, the

record key, value, and offset are printed.

 while(true) {

 val records=consumer.poll(pollPeriod)

 for (record<-records.asScala){

 printStr = "Read record - "

 printStr = printStr + " key='" + record.key() + "' "

 printStr = printStr + " value='" + record.value() + "' "

 printStr = printStr + " offset='" + record.offset() + "' "

 println(printStr)

 } // for

 } // while

} // end KafkaConsumer

Chapter 7 Streaming

250

Note also that if no group ID is specified, then the following error will occur when the

DCOS Spark task is executed.

ERROR AbstractCoordinator: Attempt to join group failed due to fatal

error: The configured groupId is invalid Exception in thread "main" org.

apache.kafka.common.errors.InvalidGroupIdException: The configured groupId

is invalid

This task can now be built using the sbt command with an assembly option; this will

build a “fat” jar file as follows:

$ sbt assembly

[info] Assembly up to date: /opt/dev/kafcom1/target/scala-2.11/kafcom1-

assembly- 1.0.jar

[success] Total time: 1 s, completed Aug 24, 2017 12:31:17 PM

You may be familiar with running Spark tasks on non-DCOS Spark clusters. In that

case, Spark will distribute your class jar file for you. However, when running on DCOS,

you need to place your jar file in a location from which it will be accessible. I placed mine

in a subdirectory of my web site as follows:

http://www.semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar

To submit this task to the DCOS-based Spark cluster, I will use the DCOS Spark CLI

command. Note that I have added the export and “dcos auth login” commands here to

remind you of the steps that are needed to set a DCOS CLI session for use:

$ export PATH=$PATH:/opt/dcos/bin/

$ dcos auth login

$ dcos spark run --verbose \

--submit-args=' --driver-cores 1 --driver-memory 1024M --class KafCom1

http://www.semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar'

The Spark task execution uses the DCOS spark run command, and most of the

submission detail is specified with the “submit-args” option. The number of cores

and memory to be used for the task are specified. Also, the class to be called and the

Chapter 7 Streaming

http://www.semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar

251

location of the “fat” jar file is given. When submitted, and because a verbose option

has been used, the following output is dumped to the terminal (I have clipped the

output to save space):

127.0.0.1 - - [24/Aug/2017 14:29:42] "POST /v1/submissions/create HTTP/1.1" 200

Stderr:

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.

properties

17/08/24 14:29:42 INFO RestSubmissionClient: Submitting a request to launch

an application in mesos://localhost:44760.

17/08/24 14:29:42 INFO RestSubmissionClient: Submission successfully

created as driver-20170824022942-0002. Polling submission state...

17/08/24 14:29:42 INFO RestSubmissionClient: Submitting a request for the

status of submission driver-20170824022942-0002 in mesos://localhost:44760.

17/08/24 14:29:42 INFO RestSubmissionClient: State of driver

driver-20170824022942-0002 is now QUEUED.

17/08/24 14:29:42 INFO RestSubmissionClient: Server responded with

CreateSubmissionResponse:

{

 "action" : "CreateSubmissionResponse",

 "serverSparkVersion" : "2.2.0",

 "submissionId" : "driver-20170824022942-0002",

 "success" : true

}

Run job succeeded. Submission id: driver-20170824022942-0002

The preceding output states that the task has been queued and gives the Mesos

cluster address “mesos://localhost:44760.” It also gives the resulting submission ID of

the task that was created “driver-20170824022942-0002.” This submission ID can be used

to obtain further details on this task’s run. Access the Marathon UI at the following:

http://<master>:8080/ui/#/apps

Chapter 7 Streaming

252

Select the applications menu option, and then select the “spark” application. Finally,

select the instance ID of the spark application within Marathon; for example, mine was

called “spark.c6e7ba9d-8861-11e7-b0a0-8ee2450f1bf1.” Within this Marathon spark

page, you will see Spark endpoints specified. Clicking on one of these provides the Spark

cluster Drivers UI as shown in Figure 7-15.

Figure 7-15 shows two instances of this task running 0001 and 0002. The 0001 task

instance has started because it has a start date and time. The second instance 0002 is

queued and waiting for cluster resources. I used the DCOS Spark CLI to kill off the first

instance of this job because it was poorly configured and hanging. This is how I did it

using the submission ID:

$ dcos spark kill driver-20170824014604-0001

127.0.0.1 - - [24/Aug/2017 15:14:46] "POST /v1/submissions/kill/

driver-20170824014604-0001 HTTP/1.1" 200 -

Kill job succeeded.

Message: Killing running driver

Once the first instance was killed, the second instance started, and the driver details

page from Figure 7-15 gave the Mesos agent node on which it was being executed as

follows:

Node 192.168.1.113 (aab74aa6-d66e-422c-8598-437f664336ee-S0)

Figure 7-15. DCOS Spark cluster driver UI

Chapter 7 Streaming

253

I wanted to access the Mesos agent cluster node to access the task log files as they

are created. I did this because generally these are short-running tasks. For long-running

tasks, it is possible to access spark task logs using the following command for a given

submission ID:

$ dcos spark log <submissionId>

By using the dcos node command and piping (|) the output to the grep command,

I am able to determine the Mesos agent IP address for the node S0. I can then get the

hostname (hc4r1m1) for this IP address from the host configuration file on my servers

(/etc/hosts).

$ dcos node | grep S0

192.168.1.113 192.168.1.113 aab74aa6-d66e-422c-8598-437f664336ee-S0

$ grep 113 /etc/hosts

192.168.1.113 hc4r1m1.semtech-solutions.co.nz hc4r1m1

This allows me to navigate to that host using the ssh command and the host name

as follows:

$ ssh hc4r1m1

I know that when a DCOS Spark job runs, it downloads the class jar file to be used

to the Mesos agent node. So to find the Spark task logs, I needed to search for the jar

file kafcom1-assembly-1.0.jar that was created earlier. I will use the following find

command to do this:

$ find / -name kafcom1-assembly-1.0.jar

This provides the following path-based output from which I can see the second value

relates to the driver ID “driver-20170824022942-0002” that I am interested in:

/var/lib/mesos/slave/slaves/aab74aa6-d66e-422c-8598-437f664336ee-S0/

frameworks/abb0418b-f79f-4c41-88ed-e32309de0957-0000/executors/

driver-20170824014604-0001/runs/70f75bb1-8a5a-4155-afd7-45c6223ca7c8/

kafcom1-assembly-1.0.jar

/var/lib/mesos/slave/slaves/aab74aa6-d66e-422c-8598-437f664336ee-S0/

frameworks/abb0418b-f79f-4c41-88ed-e32309de0957-0000/executors/

driver-20170824022942-0002/runs/74d9f6ab-1316-473b-b820-4968a4cac503/

kafcom1-assembly-1.0.jar

Chapter 7 Streaming

254

I navigate to that directory using the cd (change directory) command:

cd /var/lib/mesos/slave/slaves/aab74aa6-d66e-422c-8598-437f664336ee-S0/

frameworks/abb0418b-f79f-4c41-88ed-e32309de0957-0000/executors/

driver-20170824022942-0002/runs/74d9f6ab-1316-473b-b820-4968a4cac503/

This gives me access to the task logs as shown by the log listing of the task directory

following. I am only interested in two log files: stderr to obtain task error messages and

stdout to obtain the task’s non-error output:

$ ls -lh

total 19M

-rw-r--r-- 1 root root 19M Aug 24 15:15 kafcom1-assembly-1.0.jar

-rw-r--r-- 1 root root 6.5K Aug 24 15:15 stderr

-rw-r--r-- 1 root root 234 Aug 24 15:15 stderr.logrotate.conf

-rw-r--r-- 1 root root 255 Aug 24 15:15 stderr.logrotate.state

-rw-r--r-- 1 root root 85 Aug 24 15:15 stdout

-rw-r--r-- 1 root root 234 Aug 24 15:15 stdout.logrotate.conf

-rw-r--r-- 1 root root 255 Aug 24 15:15 stdout.logrotate.state

If you remember in the last section I installed the Kafka client package on the master

server under the directory /opt/kafka/kafka_2.11-0.10.1.0/. I have used the kafka-

console- producer.sh script from the bin directory following to populate the Kafka-based

queue “topic1” for the Kafka broker “roker.kafka.l4lb.thisdcos.directory:9092.” The queue

is populated with message values message1 . . . message5:

$./kafka-console-producer.sh --broker-list broker.kafka.l4lb.thisdcos.

directory:9092 --topic topic1

message1

message2

message3

message4

message5

I then use the Linux tail command with a -f switch (continuous updates) to monitor

the task output in the file stdout. As you can see, the messages populated to the topic

queue “topic1” have been read by this task and output. The queue records have been

output as key, value, and offset parameters as the Scala code specified.

Chapter 7 Streaming

255

$ tail -f stdout

Registered docker executor on 192.168.1.113

Starting task driver-20170824022942-0002

Read record - key='null' value='message1' offset='7'

Read record - key='null' value='message2' offset='8'

Read record - key='null' value='message3' offset='9'

Read record - key='null' value='message4' offset='10'

Read record - key='null' value='message5' offset='11'

The stderr log file contains any errors that occur as well as details of the task

execution in terms of activities associated with the task jar file:

I0824 15:15:07.883760 13100 fetcher.cpp:442] Fetching URI 'http://www.

semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar'

I0824 15:15:07.883774 13100 fetcher.cpp:283] Fetching directly into the

sandbox directory

I0824 15:15:07.883791 13100 fetcher.cpp:220] Fetching URI 'http://www.

semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar'

I0824 15:15:07.883807 13100 fetcher.cpp:163] Downloading resource from

'http://www.semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar' to

'/var/lib/mesos/slave/slaves/aab74aa6-d66e-422c-8598-437f664336ee-S0/

frameworks/abb0418b-f79f-4c41-88ed-e32309de0957-0000/executors/

driver-20170824022942-0002/runs/74d9f6ab-1316-473b-b820-4968a4cac503/

kafcom1-assembly-1.0.jar'

It also specifies the full Kafka consumer configuration for this task; I have trimmed

the output following to save space:

I0824 15:15:23.672859 13118 exec.cpp:162] Version: 1.2.1

I0824 15:15:23.679325 13125 exec.cpp:237] Executor registered on agent

aab74aa6-d66e-422c-8598-437f664336ee-S0

17/08/24 03:15:25 INFO ConsumerConfig: ConsumerConfig values:

 auto.commit.interval.ms = 5000

 auto.offset.reset = latest

 bootstrap.servers = [broker.kafka.l4lb.thisdcos.directory:9092]

 check.crcs = true

Chapter 7 Streaming

256

 client.id =

 connections.max.idle.ms = 540000

 enable.auto.commit = true

 exclude.internal.topics = true

 fetch.max.bytes = 52428800

 fetch.max.wait.ms = 500

 fetch.min.bytes = 1

 group.id = test-consumer-group

 heartbeat.interval.ms = 3000

Finally, there are some queue-based actions for the topic and consumer group that

may be of interest. The stderr file should be examined first to check for task issues before

the stdout file is checked. Also, the task status should be checked in the DCOS services

and Marathon user interfaces.

17/08/24 03:15:25 INFO AppInfoParser: Kafka version : 0.10.1.0

17/08/24 03:15:25 INFO AppInfoParser: Kafka commitId : 3402a74efb23d1d4

17/08/24 03:15:26 INFO AbstractCoordinator: Discovered coordinator

192.168.1.117:9486 (id: 2147483647 rack: null) for group test-consumer- group.

17/08/24 03:15:26 INFO ConsumerCoordinator: Revoking previously assigned

partitions [] for group test-consumer-group

17/08/24 03:15:26 INFO AbstractCoordinator: (Re-)joining group test-

consumer- group

17/08/24 03:15:26 INFO AbstractCoordinator: Successfully joined group test-

consumer- group with generation 1

17/08/24 03:15:26 INFO ConsumerCoordinator: Setting newly assigned

partitions [topic1-0] for group test-consumer-group

The preceding Scala code consumed Kafka-based topic data. Before closing this

section, I wanted to provide a link to a blog that shows how queues can be populated.

With Marcin Kuthan’s permission I am providing a link (following) to his blog, which

describes how to create Kafka producer Scala code to write to a Kafka queue:

http://mkuthan.github.io/blog/2016/01/29/spark-kafka-integration2/

This concludes the Scala-based Kafka queue access. This section has shown that

Scala code can be written to consume Kafka queue-based messages. Check the Kafka

web site (kafka.apache.org) for further information.

Chapter 7 Streaming

http://mkuthan.github.io/blog/2016/01/29/spark-kafka-integration2/

257

 Conclusion
This chapter has examined potential issues with a DCOS-based build using DCOS

Version 1.9. It has examined how the DCOS CLI and the Kafka client package can be

used to create, manage, and populate Kafka topic-based queues. Finally, a Scala-based

section has shown how Kafka client code can be written and submitted to Apache Spark

on DCOS to read from these queues. These are simple examples, and you will need to

investigate further to use DCOS, Spark, and Kafka in depth. Remember that the Google

DCOS group is available at the following URL:

https://groups.google.com/a/dcos.io/forum/#!forum/users

Even though my original big data stack diagram specified the use of Mesos, my use

of DCOS was inevitable. I say that because dcos.io open sourced their cluster-based

operating system, and it provides a rich and robust Mesos-based experience. Although,

as I have shown, there are issues associated with its use, it is worth investigating. It is

self-healing, provides powerful user interfaces, and is more robust and rich than Mesos

alone. I think that inevitably it will become the go to Mesos-based environment.

Having said that, I must express that I have found it difficult, very time consuming,

and expensive to complete this chapter due to the complexity of a DCOS-based

environment in comparison to say a standalone Spark cluster or a Hadoop stack. It has

taken months to build a cluster and successfully install frameworks and tasks to run on

it. I am glad to have completed the task, but individuals and corporations need to be

aware of the potential costs involved.

The next steps or chapters in this book will involve examining library-based

packages that will provide extra task functionality such as Akka and Spring. After that,

visualisation of data needs to be considered, and this will be accomplished by examining

the Zeppelin package. Finally, the last chapter will look at the big data stack as a whole.

Chapter 7 Streaming

https://groups.google.com/a/dcos.io/forum/#!forum/users

259
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_8

CHAPTER 8

Frameworks
In this chapter, I will concentrate on frameworks that can be used to create and extend

distributed systems. When I mention frameworks, I mean third-party, open-source,

and private suppliers of libraries for developing big data and distributed system-related

applications. The term framework is already used in Mesos clusters to describe systems

that are deployed onto the cluster. The frameworks described in this chapter are quite

different and are used to extend and aid the development of large-scale distributed

systems. I will refer to the big data stack diagram (Figure 8-1) that has been used

throughout previous chapters.

The introduction to the Akka library illustrates many of the issues that will be faced

when developing distributed applications. Actor-based programming extends the well-

known object-oriented paradigm to deal with the intricacies of concurrency at scale

required by distributed systems. Interactions with Kafka and Cassandra explored in

earlier chapters are also mentioned. Also explored in this chapter are Netty and Spring

(RabbitMQ/AMQP), which reinforces the scalability of concurrency required in distributed

systems. The chapter will be very interesting to those with a Java/Scala background; and

even without this, the concepts and examples are well grounded and explained.

Figure 8-1. Stack architecture

260

Note that the stack architecture described by this diagram is almost complete. The

only component missing so far is visualisation for big data, and that will be covered in

the next chapter. The stack has covered the major functional big data areas, for instance

• Storage—HDFS

• Processing—Spark on DCOS/Mesos

• Queueing—Kafka with Spark on DCOS

• Release Management—Brooklyn/DCOS

• Monitoring—Brooklyn/Mesos/DCOS

• Resource Management—Mesos

Visualisation has not yet been covered, but the next chapter will examine the

notebook-based Zeppelin system, which integrates well with Apache Spark. Zeppelin

evolved out of the Databricks system, which was covered in my book, Mastering Apache

Spark (Packt, 2015).

There are many frameworks that could be used to develop big data applications that

could be executed on this stack. I name a few that are already provided by either Spark or

Kafka:

• Kafka-client

• Spark SQL

• Spark Streaming

• Spark GraphX

• Spark MLlib

The Kafka-Client library was used in the last chapter to consume records from a

Kafka-based queue. My point in mentioning the preceding list is to state that many

of the big data stack components used in the preceding stack will have libraries that

contain useful classes for stack manipulation. However, my aim in writing this chapter

is to examine some suppliers of libraries that offer functionality that cannot be found

within the stack. For this reason, this chapter will examine the Akka library from akka.

io and some parts of the spring.io offering related to big data. The next section will

examine Akka.

Chapter 8 Frameworks

261

 Akka
Lightbend (lightbend.com) is the company that developed Akka and open sourced

it; you can see an overview of how Akka fits into their fast data platform via the URL

following:

https://www.lightbend.com/products/fast-data-platform

The Akka system from akka.io is designed to make the process of building concurrent

distributed systems simpler. It offers a methodology and set of supporting classes that

describe an approach designed with distributed systems in mind. Before delving into the

Akka system, it would be useful to describe current object-oriented programming (OOP)

and some of the issues that arise when developing distributed systems.

 OOP Overview
This section will examine some of the features of OOP languages (with Java in mind).

The list following presents a feature list with descriptions of both OOP in general and

with some Java attributes:

• Objects and Classes

Objects are instances of classes, whereas classes encapsulate

data and the methods that act on the data. A level of privacy is

also maintained, with some methods and data being public while

some are private to the class.

• Encapsulation

Data and the methods that act on the data are encapsulated

within a class, and data can only be accessed by public functions

provided by the class. So data security is maintained because data

access mechanisms have been designed and are the only access

available.

Chapter 8 Frameworks

https://www.lightbend.com/products/fast-data-platform

262

• Privacy

The privacy level controls class data and method access. For

instance, Java defines the privacy levels Public, Protected, and

Private. These levels in turn determine class, package, subclass,

and world access.

• Inheritance

Classes as they are defined can be created in a hierarchy so that a

child class can be said to extend the functionality of the parent. Child

classes "inherit" the data and classes of their parent(s). They may

override parent classes and add extensions to increase functionality.

• Polymorphism

Polymorphism is the ability of a method to take many forms.

For instance, Java dynamic run time polymorphism means that

methods might be overloaded at runtime using instance methods.

• Interfaces

An interface, as used in Java, defines a set of class definitions that

an implementation must instantiate. This is useful to consider

when by comparison showing how Akka works in later sections.

Akka uses protocols to manage actor dialogues. The next section

will examine the issues that distributed systems face.

 Distributed Systems Issues
There are many issues that require consideration when developing distributed systems.

In this section, I want to examine some of the issues at a high level before moving on to

examine the Akka system.

• Time Synchronisation

All servers in a cluster-based or distributed system need to be

time synchronized. This can be critical for event management in a

distributed environment, as different event orders could have different

outcomes. Synchronisation can be handled at the operating system

level by services like the Network Time Protocol Daemon (ntpd).

Chapter 8 Frameworks

263

• Locking

Resource-based locking might work for single server-based

systems or systems that are very minimally distributed, but this

approach would inhibit scaling when used for large cluster-based

systems. Resource locking information needs to be distributed

to every node in a cluster. Consensus needs to be gained for lock

access, and deadlocks need to be avoided. As will be shown later,

Akka takes a completely different approach using actors and

protocols.

• Resource Management

When using distributed systems, a cluster-wide approach needs

to be taken to resource management. Resources need to be

shared across the cluster, and a cluster manager is used to allocate

resources to tasks. Using Mesos as an example, task resource

requirements can then be matched to the resources available

across cluster-based agent nodes.

• Queueing

As shown in the last chapter, the use of Apache Kafka queueing for

big data systems needs to be approached in a distributed manner.

Kafka uses a publish–subscribe approach to queue-based data

stream management. Queue-based data is then distributed across

a broker-based collection of topics.

• Message Stream Processing

The last bullet point examined queue-based management of data

in distributed systems. This point considers the need to be able to

process continuous streams of data in distributed systems. Both

Akka and Apache Spark offer stream-processing capability. Spark

manages the distribution of data across a cluster based on data

partitioning and control by its cluster manager.

Chapter 8 Frameworks

264

• Configuration Management

A distributed system needs distributed configuration

management as was seen in the last chapter and when using

DCOS; both DCOS and Kafka use Apache ZooKeeper. The DCOS

exhibitor server is ZooKeeper-based and supports multiple

systems by maintaining their configuration information.

Distributed systems need distributed configuration management.

• Error Management

Distributed systems take error management beyond the bounds of

traditional OOP, for instance, as expressed in Java. It is no longer

enough for an error to occur and a class-calling hierarchy to be

dumped via a stack trace. In a distributed system, the flow of

control in a process instance might occur across multiple server

nodes and through multiple threads. Akka maintains an actor

hierarchy and protocol-based system that aids distributed-system

error management.

• Scaling

Distributed systems need to scale both in terms of cluster-based

agent nodes and also by the number of concurrent processes that

can be run in a cluster. The issues raised in the preceding bullet

points will impact the ability of distributed systems to scale, as

will the design of the cluster-based processes. Akka offers actor-

based functionality to aid cluster-based system development and

cluster- based stream processing. The next section will examine

Akka at a high level.

 Akka Architecture
The Akka system is comprised of an actor hierarchy; actors are the basic functional

unit of the system. Actors form hierarchies and encapsulate data, methods, state,

and processing. A hierarchy of actors is formed with a predefined root guardian actor

preexisting, which becomes the parent of all user- and system-created actors. A natural

process of delegation is formed in which parent actors are simplified by delegating tasks

to child actors.

Chapter 8 Frameworks

265

Figure 8-2 gives an example actor hierarchy. It shows the preexisting root guardian

at the top of the tree. The actorOf method is used to add actors to the tree using some

context, that is, context.actorOf(). However, when first adding actors, the first actors are

added using the system context, that is, system.actorOf().

As actors are created, they are assigned a context and URL within the hierarchy. For

instance, the user guardian actor has a path of /user. There is also a /system URL for

internally created actors that Akka uses for management purposes.

 Actor Attributes

The preceding section mentions actor references or contexts that might be system or an

actual context value. Each actor as it is created is assigned a unique actor reference. Each

actor is a container for state, behavior, a mailbox, child actors, and a supervisor strategy.

An actor is responsible for managing it’s children and is also responsible for terminating

them when they reach end of life.

Figure 8-2. Actor hierarchy (Source: https://doc.akka.io/docs/akka/2.5/
scala/guide/tutorial_1.html)

Chapter 8 Frameworks

https://doc.akka.io/docs/akka/2.5/scala/guide/tutorial_1.html
https://doc.akka.io/docs/akka/2.5/scala/guide/tutorial_1.html

266

• Actor State

An actor’s state will be implementation-dependent but must

be maintained by the actor. Upon actor failure, it can either be

reassigned to a starting value or recovered from the last known

state.

• Actor Behavior

The behavior of an actor to messages received will be dependent

on its state, and current behaviors may set new states. For

instance, an actor may be asleep or be out of service.

• Actor Mailbox

Actors process messages from other actors and from external

sources; these messages are queued in the actors mailbox. There

are multiple processing strategies that can be set for queue

management like FIFO (first in first out) or prioritisation.

• Child Actors

Actors may delegate tasks and so create child actors to carry out

a sequence of jobs. It is the responsibility of the actor to manage

the life cycle of the child actor and terminate it when its task is

complete. A child may be stopped by executing a command such

as context.stop(child).

• Supervision Strategy

An actor’s fault handling strategy is static once that actor has been

created. An actor’s response to a subordinate fault will depend

on the strategy used. The subordinate actor might suspend itself

and all of its child actors and report the fault to the parent actor.

The parent actor might restart the child, maintaining the previous

state or stop it permanently.

Chapter 8 Frameworks

267

• Actor Termination

When an actor terminates itself, is stopped by a parent, or fails

in a nonrecoverable manner, all of its resources are freed up. Its

mailbox drains to the system dead letter box. All new messages are

then sent to the system mailbox and are forwarded on the event

stream as DeadLetters. This approach aids in system testing and

helps with the debugging of failed tests.

 Actor References

The actor reference is a subtype of type ActorRef, which is the top-level reference to an

existing actor and which is created when the actor is created. This type also includes

actor paths and addresses.

• Actor Path

Actors exist in hierarchies, with a guardian actor above a parent actor and a tree of

subsequent child actors. Actors in separate actor trees may communicate and so need

paths and addresses that uniquely identify them. A path can exist without an actor

existing, whereas for a given ActorRef, an actor must exist.

Some examples of actor paths taken from the akka.io web site are given following.

They include a protocol ("akka," "akka.tcp"), a hierarchical path describing the actor

parent–child path in the tree ("/my-sys/user/service-a/worker1") and the fact that

potentially an actor can be remote ("my-sys@host.example.com:5678").

"akka://my-sys/user/service-a/worker1" // purely local

"akka.tcp://my-sys@host.example.com:5678/user/service-b" // remote

Note that in the remote example of the preceding path, the remote actor was

identified by a host, port, and remote actor name ("my-sys") given that the protocol

used was "tcp".

 Actors
Actor classes working together can be explained by example by using the pingpong Scala

code example provided on the Akka site at the following address:

http://doc.akka.io/docs/akka/current/scala/actors.html#creating-actors

Chapter 8 Frameworks

http://doc.akka.io/docs/akka/current/scala/actors.html#creating-actors

268

The code sample starts by importing the necessary classes for actor, language, and

concurrency.

import akka.actor.{ ActorSystem, Actor, ActorRef, Props, PoisonPill}

import language.postfixOps

import scala.concurrent.duration._

It then defines the two case objects that will be used to represent the actor messages;

in this example, ping and pong:

case object Ping

case object Pong

The actor class Pinger is then defined by extending the class Actor. The receive

method is defined to specify actions for each type of message to be received. In this case,

the Pong message is acted on. A countDown value is decremented if it is above zero,

and a message is output to indicate the result. If the counter hits zero, then both actors

are terminated via the PoisonPill method. If a Pong message is received, then a Ping

message is returned to the sender.

class Pinger extends Actor {

 var countDown = 100

 def receive = {

 case Pong =>

 println(s"${self.path} received pong, count down $countDown")

 if (countDown > 0) {

 countDown -= 1

 sender() ! Ping

 } else {

 sender() ! PoisonPill

 self ! PoisonPill

 }

 }

}

Next the Actor class Ponger is defined in the same way and acts on the message Ping.

If received, a message is printed, and a Pong message is returned to the sender.

Chapter 8 Frameworks

269

class Ponger(pinger: ActorRef) extends Actor {

 def receive = {

 case Ping =>

 println(s"${self.path} received ping")

 pinger ! Pong

 }

}

Finally, this system is activated by creating a system class called pingpong by calling

the ActorSystem method. The pinger actor is then started by using the system.actorOf

method. This creates the pinger actor to be a child of the pingpong actor. In the same

way, the pongor actor is created. Note that the Props class has been used to define the

properties of each actor.

val system = ActorSystem("pingpong")

val pinger = system.actorOf(Props[Pinger], "pinger")

val ponger = system.actorOf(Props(classOf[Ponger], pinger), "ponger")

Finally, a call to the scheduleOnce class is executed, which calls the Ponger actor and

sends it a Ping message. Remember that Pinger receives a Pong message, then sends a

Ping; and Ponger receives a Ping message, then sends a Pong message.

import system.dispatcher

system.scheduler.scheduleOnce(500 millis) {

 ponger ! Ping

}

This may seem like a simple example, but it explains parent and child actors,

messaging, and actor control in a simple example. It can also be executed on the

preceding Akka page, and some of the output in the final stages of execution are

shown following:

akka://pingpong/user/ponger received ping

akka://pingpong/user/pinger received pong, count down 2

akka://pingpong/user/ponger received ping

akka://pingpong/user/pinger received pong, count down 1

akka://pingpong/user/ponger received ping

akka://pingpong/user/pinger received pong, count down 0

Chapter 8 Frameworks

270

Note that the full path including default protocol used has been output for each

method. For instance, the following message indicates that actor ponger received a ping

message. It shows that the protocol used for the message was akka and the message

system actor was pingpong, while the user actor was ponger. It also shows, due to the

path, that the ponger actor is a child of the pingpong actor.

akka://pingpong/user/ponger received ping

Similarly, the message following shows the same path and protocol information. It

shows that the actor pinger is a child of the actor pingpong.

akka://pingpong/user/pinger received pong, count down 2

 Networking
When giving a very simple overview of actor-based networking, the best approach would

be by providing a cluster-based example. Akka-based clusters are fault tolerant, peer-

to- peer clusters that have no single point of failure or bottleneck. Akka uses "gossip"

protocols and automatic failure detection for cluster management.

Akka clusters use seed nodes so that new cluster node members communicate with

seed nodes when joining the cluster. The cluster can be deemed to have reached gossip

convergence when every node in the cluster has "seen" every other node, that is, for

every node, all nodes are in the seen state. After convergence, a cluster leader can be

selected that can manage cluster membership.

Chapter 8 Frameworks

271

Figure 8-3 shows an example of a cluster member state life cycle. Obviously, the

initial state would be joining, as perhaps the cluster or the node starts up. At any time, a

node might be unreachable, for instance, due to failure or network issues. A node could

be up or down and could follow a leaving/exiting process.

The following code shows an example application.conf file that defines cluster and

cluster actors. It defines cluster seed nodes and cluster configuration. This example was

taken from the Akka Networking page:

akka {

 actor {

 provider = "cluster"

 }

 remote {

 log-remote-lifecycle-events = off

 netty.tcp {

 hostname = "127.0.0.1"

 port = 0

 }

 }

Figure 8-3. Cluster member state diagram (Source: https://doc.akka.io/docs/
akka/2.5/scala/common/cluster.html)

Chapter 8 Frameworks

https://doc.akka.io/docs/akka/2.5/scala/common/cluster.html
https://doc.akka.io/docs/akka/2.5/scala/common/cluster.html

272

 cluster {

 seed-nodes = [

 "akka.tcp://ClusterSystem@127.0.0.1:2551",

 "akka.tcp://ClusterSystem@127.0.0.1:2552"]

 # auto downing is NOT safe for production deployments.

 # you may want to use it during development, read more about it in the docs.

 #

 # auto-down-unreachable-after = 10s

 }

}

Disable legacy metrics in akka-cluster.

akka.cluster.metrics.enabled=off

Enable metrics extension in akka-cluster-metrics.

akka.extensions=["akka.cluster.metrics.ClusterMetricsExtension"]

Sigar native library extract location during tests.

Note: use per-jvm-instance folder when running multiple jvm on one host.

akka.cluster.metrics.native-library-extract-folder=${user.dir}/target/

native

Note that the seed nodes have both been specified as IP address 127.0.0.1, that is, the

localhost. If different nodes are to be used, then the actual IP addresses of the machines

would need to be used. An example of an actor written in Scala and taken from the Akka

site is as follows. First a package is defined and classes are imported:

package scala.docs.cluster

import akka.cluster.Cluster

import akka.cluster.ClusterEvent._

import akka.actor.ActorLogging

import akka.actor.Actor

Next, an actor class is defined called SimpleClusterListener, which extends the Actor

class and includes logging. It creates a cluster instance using the Cluster method.

class SimpleClusterListener extends Actor with ActorLogging {

 val cluster = Cluster(context.system)

Chapter 8 Frameworks

273

The preStart and preStop classes are overridden to carry out actions before the

cluster starts and before it stops.

 // subscribe to cluster changes, re-subscribe when restart

 override def preStart(): Unit = {

 cluster.subscribe(self, initialStateMode = InitialStateAsEvents,

 classOf[MemberEvent], classOf[UnreachableMember])

 }

 override def postStop(): Unit = cluster.unsubscribe(self)

Finally, the receive method is defined to process cluster-based messages as in the

previous example. It should not be a surprise to see messages such as MemberUp,

UnreachableMember, and MemberRemoved here.

 def receive = {

 case MemberUp(member) =>

 log.info("Member is Up: {}", member.address)

 case UnreachableMember(member) =>

 log.info("Member detected as unreachable: {}", member)

 case MemberRemoved(member, previousStatus) =>

 log.info(

 "Member is Removed: {} after {}",

 member.address, previousStatus)

 case _: MemberEvent => // ignore

 }

}

 Streams
In the world of big data, many systems offer stream processing like Akka, Apache Spark,

and Kafka. This allows a data set that may be too big to handle as a whole to be processed

discretely as a stream of data. Given that the area of Akka streaming is a big subject, I will

examine it by working through a sample of Scala code from the akka.io web site.

import akka.NotUsed

import akka.actor.ActorSystem

import akka.stream.ActorMaterializer

import akka.stream.scaladsl._

Chapter 8 Frameworks

274

Initially, Akka-based classes are imported for actor and stream as well as a NotUsed

value. Then Author, Hashtag, and Tweet values are defined as final case classes. The

Author and Hashtag values are defined as strings, whereas the Tweet includes an author

name, a timestamp, and a tweet body string that contains a Hashtag.

final case class Author(handle: String)

final case class Hashtag(name: String)

final case class Tweet(author: Author, timestamp: Long, body: String) {

 def hashtags: Set[Hashtag] = body.split(" ").collect {

 case t if t.startsWith("#") => Hashtag(t.replaceAll("[^#\\w]", ""))

 }.toSet

}

Next, an AkkaTag is defined as a Hashtag string "#akka." All streams in Akka must

start with a data source; and in this case, the data source called "tweets" contains a

sequence of tweets.

val akkaTag = Hashtag("#akka")

val tweets: Source[Tweet, NotUsed] = Source(

 Tweet(Author("rolandkuhn"), System.currentTimeMillis, "#akka rocks!") ::

 Tweet(Author("patriknw"), System.currentTimeMillis, "#akka !") ::

 Tweet(Author("bantonsson"), System.currentTimeMillis, "#akka !") ::

 Tweet(Author("drewhk"), System.currentTimeMillis, "#akka !") ::

 Tweet(Author("ktosopl"), System.currentTimeMillis, "#akka on the

rocks!") ::

 Tweet(Author("mmartynas"), System.currentTimeMillis, "wow #akka !") ::

 Tweet(Author("akkateam"), System.currentTimeMillis, "#akka rocks!") ::

 Tweet(Author("bananaman"), System.currentTimeMillis, "#bananas rock!") ::

 Tweet(Author("appleman"), System.currentTimeMillis, "#apples rock!") ::

 Tweet(Author("drama"), System.currentTimeMillis, "we compared #apples

to #oranges!") ::

 Nil)

The next two lines create an actor system called "reactive-tweets," while the

materializer line actually creates the actor that processes the tweets.

Chapter 8 Frameworks

275

 implicit val system = ActorSystem("reactive-tweets")

 implicit val materializer = ActorMaterializer()

Next, the tweets are grouped into a set with duplicates removed. The set is then

converted into a stream of hashtags that are converted to uppercase.

 tweets

 .map(_.hashtags) // Get all sets of hashtags ...

 .reduce(_ ++ _) // ... and reduce them to a single set, removing

duplicates across all tweets

 .mapConcat(identity) // Flatten the stream of tweets to a stream of

hashtags

 .map(_.name.toUpperCase) // Convert all hashtags to upper case

 .runWith(Sink.foreach(println)) // Attach the Flow to a Sink that will

finally print the hashtags

Finally, a flow is attached to a sink in the last line to print a unique set of hashtags.

It is an important point to note for Akka streams that a "source" of tweets has been

connected to a "flow" of data, which has connected to a "sink," which has printed the

data. The preceding Scala code produces the hashtag data result following:

RESULT

#AKKA

#BANANAS

#APPLES

#ORANGES

That was a worked example of Akka streams, which can be executed at the following

URL; you can even change the Scala code:

http://doc.akka.io/docs/akka/current/scala/stream/stream-quickstart.html

Before closing this section, I wanted to mention back pressure, which is unique to

Akka streams. As shown previously, an Akka stream has at a minimum a source, a flow,

and a sink. There can be multiple sources and potentially multiple sinks for data in

streams. So data producers act at the source to provide data, while data consumers act

at the sink(s) to consume the data. What happens, however, if the consumers cannot act

fast enough to consume the streamed data?

Chapter 8 Frameworks

http://doc.akka.io/docs/akka/current/scala/stream/stream-quickstart.html

276

This is where the concept of Akka back pressure is used. The consumers are forced to

operate at the rate of the producers implicitly in Akka streaming.

tweets

 .buffer(10, OverflowStrategy.dropHead)

 .map(slowComputation)

 .runWith(Sink.ignore)

The preceding example taken from the Akka site shows a source of tweets from

the previous example and an explicit buffer size of 10 elements. The sink is defined via

the runWith command. The important point here is that an overflow strategy has been

defined to drop the oldest element when the buffer fills.

 Other Modules
The Akka actor system, networking, and streams have been mentioned, but there are

other modules available. This is a list taken from the akka.io site.

• Akka HTTP

A full server and client-side HTTP stack on top of akka-actor and

akka-stream.

• Alpakka

Various Akka Streams connectors, integration patterns, and data

transformations for integration use cases.

• Akka streams Kafka

Akka Streams Kafka, also known as Reactive Kafka, is an Akka

Streams connector for Apache Kafka.

• Cassandra Plugins for Akka Persistence

A replicated Akka Persistence journal backed by Apache

Cassandra.

• Akka Management

Utilities for managing a running Akka Cluster.

Chapter 8 Frameworks

277

 Enterprise Offerings
Given that users will create production systems based on Akka, it is worth mentioning

that Lightbend has some enterprise offerings to help Akka users. Details can be found at

the Lightbend site via the following URL:

https://www.lightbend.com/products/enterprise-suite

They have offerings for application management and intelligent monitoring as well

as enterprise integration. It is interesting, given the content of this book, that they offer

deployment capabilities to DCOS and offer Docker support.

There is such a wide wealth of information available that needs to be consumed to

gain an in-depth understanding of Akka that it is difficult to provide an overview. I have

tried to provide a very high-level examination of Akka without delving too deeply into

the detail available. For more information about its API and content, please consult the

akka.io web site. As a starting point, look through the getting started guide at

http://doc.akka.io/docs/akka/current/scala/guide/index.html

Also work through the code-based examples (in either Java or Scala) of a simple

actor-based system. This is useful, as it is builds by example in a stepwise manner with

the logic behind each step explained. The next section will examine the Netty messaging

system.

 Netty
Having examined Akka, I have added a section on Netty because as of Apache Spark

Version 1.6, Spark discontinued using Akka and instead uses Netty. This was because

of upstream Akka, dependency-based issues. For instance, when writing my last book

and trying to implement Spark-based Scala code to connect to the Titan graph database

using Spark, I encountered Akka versioning issues.

Netty (netty.io) is an NIO (nonblocking I/O) framework for server and client network

application development. It has been developed by Norman Maurer (normanmaurer.

me) as an open-source system released under an Apache V2 license. A class and

interface hierarchy tree can be found at the link following:

http://netty.io/4.0/api/io/netty/channel/package-tree.html

Chapter 8 Frameworks

https://www.lightbend.com/products/enterprise-suite
http://doc.akka.io/docs/akka/current/scala/guide/index.html
http://netty.io/4.0/api/io/netty/channel/package-tree.html

278

The netty.io site provides the following system architecture diagram (Figure 8-4)

for Netty, which shows that Netty offers transport services, protocol support, and a

multicomponent core.

The best way to examine the Netty architecture is by using an example; I will use the

Discard Java example from the netty.io site. The following three elements are needed to

create a Netty connection:

• NioEventLoopGroup

Creates a NIO (nonblocking I/O) selector-based channel

• Bootstrap

Bootstraps a channel for use with clients

• Channel

A channel for client operations, that is, read, write, bind, connect

• Channel Initializer

Initializes channel for client access

• Decoder

Process received messages

Figure 8-4. Netty system architecture

Chapter 8 Frameworks

279

• Encoder

Process sent messages

• Handler

Determines how to handle received data

So now the preceding list can be examined in detail by listing the discard server Java

example taken from the netty.io site. See the following URL for further detail:

http://netty.io/wiki/user-guide-for-4.x.html

Initially, the package name is defined, and Netty classes for bootstrap and channel

are imported.

package io.netty.example.discard;

import io.netty.bootstrap.ServerBootstrap;

import io.netty.channel.ChannelFuture;

import io.netty.channel.ChannelInitializer;

import io.netty.channel.ChannelOption;

import io.netty.channel.EventLoopGroup;

import io.netty.channel.nio.NioEventLoopGroup;

import io.netty.channel.socket.SocketChannel;

import io.netty.channel.socket.nio.NioServerSocketChannel;

Next, the DiscardServer class is defined along with a port value data item that will be

the communications port for server data.

public class DiscardServer {

 private int port;

 public DiscardServer(int port) {

 this.port = port;

 }

The public run method is defined, and two NioEventLoopGroups are created. The

boss value accepts the incoming connection, while the worker value handles the traffic

on the connection.

Chapter 8 Frameworks

http://netty.io/wiki/user-guide-for-4.x.html

280

 public void run() throws Exception {

 EventLoopGroup bossGroup = new NioEventLoopGroup();

 EventLoopGroup workerGroup = new NioEventLoopGroup();

The bootstrap sets up the server.

 try {

 ServerBootstrap b = new ServerBootstrap();

 b.group(bossGroup, workerGroup)

NioServerSocketChannel instantiates a new channel to accept incoming connections.

 .channel(NioServerSocketChannel.class)

The ChannelInitializer class helps a user configure a new channel. Note the handler

DiscardServerHandler has been added to the channel data pipeline. This class will be

defined later.

 .childHandler(new ChannelInitializer<SocketChannel>() {

 @Override

 public void initChannel(SocketChannel ch) throws Exception {

 ch.pipeline().addLast(new DiscardServerHandler());

 }

 })

Options are now set to determine the number of connections queued and to specify

keep alive packets that can be used to determine the status of the channel.

 .option(ChannelOption.SO_BACKLOG, 128)

 .childOption(ChannelOption.SO_KEEPALIVE, true);

Now the port is bound to the channel and the server is started to accept incoming

connections.

 ChannelFuture f = b.bind(port).sync();

Now wait until the server socket is closed; in this example, this does not happen, but

you can do that to gracefully terminate.

Chapter 8 Frameworks

281

 // shut down your server.

 f.channel().closeFuture().sync();

 } finally {

 workerGroup.shutdownGracefully();

 bossGroup.shutdownGracefully();

 }

 }

Finally, the main method is defined to set the port value to a parameter or a default

value of 8080. An instance of the preceding DiscardServer class is then created.

 public static void main(String[] args) throws Exception {

 int port;

 if (args.length > 0) {

 port = Integer.parseInt(args[0]);

 } else {

 port = 8080;

 }

 new DiscardServer(port).run();

 }

} // end class DiscardServer

That completes the definition of the Discard server. But what about the discard

message handler? The following code taken from the same example receives and

discards each message received. Initially, the package name is defined and Netty buffer

and channel classes are imported.

package io.netty.example.discard;

import io.netty.buffer.ByteBuf;

import io.netty.channel.ChannelHandlerContext;

import io.netty.channel.ChannelInboundHandlerAdapter;

Next, the DiscardServerHandler class is defined, which extends the

ChannelInboundHandlerAdapter class. This class provides a series of message

event handlers.

public class DiscardServerHandler extends ChannelInboundHandlerAdapter {

Chapter 8 Frameworks

282

The channelRead method is overridden to discard the received message, which is of

type ByteBuf.

 @Override

 public void channelRead(ChannelHandlerContext ctx, Object msg) {

 ((ByteBuf) msg).release();

 }

The exceptionCaught method is overridden to print a stack trace of an exception and

close the connection after the stack trace has been printed.

 @Override

 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)

{

 cause.printStackTrace();

 ctx.close();

 }

}

This gives a simple Netty server example that can be compared to the previous Akka

examples. It can be seen that the Netty implementation is simpler than Akka.

The next section will discuss some of the big data functionality of the spring.io

system.

 Spring
The RabbitMQ system (rabbitmq.com) is a messaging system that is open source and

was originally developed by Rabbit Technologies Ltd. but is now owned by Pivotal

(pivotal.io). It was developed in the Erlang language and has been open sourced under

a variety of licenses. The RabbitMQ system is released by Pivotal under an MPL (Mozilla

Public License), whereas the code for the rabbitmq.com web site on GitHub at

https://github.com/rabbitmq/rabbitmq-website

is released under an Apache V2 license. Pivotal also maintain trademarks. I have named

this section Spring after the Spring framework because RabbitMQ is also implemented

via Spring AMQP (Advanced Message Queueing Protocol). The Spring framework

Chapter 8 Frameworks

https://github.com/rabbitmq/rabbitmq-website

283

contains an extensive range of projects, and I cannot cover it all here. (Check the spring.

io web site for details.) I thought that a combination of RabbitMQ and AMQP would be

informative and fit well with the other topics covered in this chapter.

 RabbitMQ Overview
Figure 8-5 gives a simple, high-level overview of the RabbitMQ broker architecture. It

describes RabbitMQ in terms of the producer, broker, and consumer.

Figure 8-5 further describes the messaging broker in terms of the exchange, message

queues, and the binding between exchanges and message queues. A message producer

publishes a message to an exchange. The exchange must route that message to a given

queue. So the message is bound from the exchange to a given queue. The message is

then read from the queue by a consumer. There might be many types of binding or

messaging protocol. For instance, the message might be peer to peer, from a single

producer to a given consumer. It might use publish/subscribe, that is, it might be from

a given producer to multiple consumers. Otherwise the message might use complex

routing, or the contents of the message might dictate its routing.

Figure 8-5. RabbitMQ architecture

Chapter 8 Frameworks

284

 Kafka or RabbitMQ?
The last chapter showed how Apache Kafka could be deployed on DCOS; it showed

how queues could be populated and data consumed. However, what is the difference

between Kafka and RabbitMQ, and when should each be used? This section seeks to

compare the two messaging options (Table 8-1).

So Kafka can be used for stream processing in a publish/subscribe manner where

each consumer tracks its queue consumption position. The logic of consumption is

maintained by the client consumer. Conversely, RabbitMQ uses a complex broker

system and simple consumer. The broker offers support for multiple protocols and

routing methods. RabbitMQ can also route messages by message content.

 Messaging Protocols
RabbitMQ supports a number of messaging protocols, which are described following:

• AMQP < 1.0 (Advanced Messaging Queueing Protocol)

AMQP is a binary protocol; RabbitMQ was originally designed to

support this protocol.

• AMQP 1.0

This version of AMQP for RabbitMQ differs from earlier versions

in that the protocol is more complex.

Table 8-1. Kafka vs. RabbitMQ

Kafka RabbitMQ

Dumb broker smart broker

smart consumer Dumb consumer

Consumer tracks queue offset Broker keeps track of consumer state

publish/subscribe only multiple communications patterns

Fewer plug-ins; mainly open source many plug-ins available

stream processing message processing

No complex routing Complex routing options

Chapter 8 Frameworks

285

• HTTP (Hypertext Transfer Protocol)

RabbitMQ can transmit messages over HTTP via a management

plug-in, a web STOMP (see definition following) plug-in, or a

JSON RPC (remote procedure call) channel plug-in.

• MQTT (Message Queue Telemetry Transport)

A lightweight binary protocol supported via a plug-in for publish/

subscribe messaging.

• STOMP (Simple Text Oriented Messaging Protocol)

A simple, text-based messaging protocol supporting via a plug-in.

 Languages
For a full list of the RabbitMQ languages, operating systems, and clients supported,

please see the RabbitMQ web site at

https://www.rabbitmq.com/devtools.html

To give an idea of the languages supported, the preceding URL lists the following

languages as supporting or integrating with the RabbiotMQ system:

• C/C++

• Clojure

• Erlang

• Go

• Groovy

• Java

• JavaScript

• JRuby

• .NET

• Objective-C

Chapter 8 Frameworks

https://www.rabbitmq.com/devtools.html

286

• Perl

• PHP

• Python

• Ruby

• Scala

• Unity3D

 Clustering
Clustered nodes must have the same versions of RabbitMQ and Erlang, as they use

Erlang message passing. These nodes form a single logical broker, with all nodes able to

see all queues.

When examining clustering for RabbitMQ, a distinction must be made for clustering

across the LAN and WAN. For instance, are all cluster nodes on the same intranet, or are

they dispersed across different geographic locations? For local LAN nodes, RabbitMQ

supports clustering; and for WAN dispersed nodes, RabbitMQ supports Federation and

the Shovel:

Federation allows an exchange or queue on one broker to connect to an exchange or

queue on another broker. The connection is a point to point AMQP link.

The Shovel is a low-level, queue-based system for forwarding queue messages one

way from one broker to another.

The clustering comparison table (Table 8-2) best describes the different clustering

options for RabbitMQ and the differences between them. I have reproduced it here

for clarity.

Chapter 8 Frameworks

287

 Enterprise Support
Although much of my work and research in recent years has evolved around open source

and apache.org, enterprise support may make sense especially in support of production

systems and services. Enterprise support may be needed in terms of level-three backup

and technical advice when things go wrong. Extensions may be needed for user

authentication and authorisation.

Hosting of RabbitMQ may be the preferred choice so that a third party either takes

care of the service itself or the nodes that it resides on. RabbitMQ can run on AWS and

Azure as well. Companies such as Pivotal, CloudAMQP, and Google Cloud Platform also

provide support for cloud hosting for this messaging system.

Table 8-2. Clustering Comparison (Source: RabbitMQ, https://www.rabbitmq.

com/distributed.html)

Federation/Shovel Clustering

Brokers are logically separate and may have different

owners.

a cluster forms a single logical broker.

Brokers can run different versions of rabbitmQ and

erlang.

Nodes must run the same version of

rabbitmQ, and frequently erlang.

Brokers can be connected via unreliable waN links.

Communication is via amQp (optionally secured by

ssL [secure sockets Layer]), requiring appropriate

users and permissions to be set up.

Brokers must be connected via reliable

LaN links. Communication is via erlang

internode messaging, requiring a shared

erlang cookie.

Brokers can be connected in whatever topology you

arrange. Links can be one- or two-way.

all nodes connect to all other nodes in both

directions.

Chooses availability and partition tolerance (ap) from

the Cap theorem.

Chooses Consistency and partition

tolerance (Cp) from the Cap theorem.

some exchanges in a broker may be federated, while

some may be local.

Clustering is all-or-nothing.

a client connecting to any broker can only see queues

in that broker.

a client connecting to any node can see

queues on all nodes.

Chapter 8 Frameworks

https://www.rabbitmq.com/distributed.html
https://www.rabbitmq.com/distributed.html
http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem

288

 Routing
It has already been mentioned in the preceding comparison that one of the main

differences between Kafka and RabbitMQ is RabbitMQ’s ability to provide complex

message routing options. In this section, I will concentrate on the four exchange types

available for RabbitMQ brokers—direct, fanout, headers, and topic. These routing types will

be explained with the aid of adjusted diagrams from the RabbitMQ (rabbitmq.com) site.

In all of the example diagrams used in this section, messages are created by

producers (P) and consumed by consumers (C, C1, C2). Exchanges (X) receive producer

messages and through binding route the messages to queues. Consumers retrieve the

messages from queues.

 Direct Exchange

Messages go to the queue whose binding exactly matches the routing key of the message

for direct routing (Figure 8-6).

 Fanout Exchange

The fanout exchange type is essentially a publish/subscribe method of routing (Figure 8- 7).

Figure 8-6. Direct exchange (Source: https://www.rabbitmq.com/tutorials/
tutorial-four-python.html)

Chapter 8 Frameworks

https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html

289

This method of routing publishes all messages received to all queues.

 Headers Exchange

When using a headers exchange type, messages are routed using the contents of the

message header. A header may have a series of fields, and routing will depend on

binding. The special field below "x-match" can have two values: "any" and "all." The

"any" value means at least one field must match. The "all" value means that all values

must match.

The routing in Figure 8-8 shows that messages with header field "key1" matching

"value1" go to the consumer1 queue. Headers with field "key2" matching "value2" go to

the consumer2 queue.

Figure 8-8. Headers exchange (Source: https://www.rabbitmq.com/tutorials/
tutorial-four-python.html)

Figure 8-7. Fanout exchange (Source: https://www.rabbitmq.com/tutorials/
tutorial-four-python.html)

Chapter 8 Frameworks

https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html
https://www.rabbitmq.com/tutorials/tutorial-four-python.html

290

 Topic Exchange

When using a topic exchange type, messages have a routing key that contains a series of

words delimited by dot ". " characters, for instance, "big.orange.rabbit" in Figure 8-9.

The binding key is then generated in the same way with the addition of special

characters. The "#" and "*" characters can be used instead of words in a string to replace

exactly one word and zero or more words, respectively. So using the diagram in Figure 8- 9

• Message "big.orange.lizard" would route to queue1.

• Message "big.blue.rabbit" would route to queue2.

• Message "lazy.lizard" would route to queue2.

 Plug-ins
One of the strengths of RabbitMQ is the option to enable plug-ins to extend its

functionality. The URL following lists the current plug-ins supported.

http://www.rabbitmq.com/plugins.html

At the time of this writing, the current release is 3.6.11, and an administration

command is provided to manage plug-ins called "rabbitmq-plugins." To enable a plug-

in, use the "enable" option with the <plugin-name>.

rabbitmq-plugins enable <plugin-name>

To disable a plug-in, use the "disable" option with the <plugin-name>.

rabbitmq-plugins disable <plugin-name>

Figure 8-9. Topic exchange (https://www.rabbitmq.com/tutorials/tutorial-
five- php.html)

Chapter 8 Frameworks

http://www.rabbitmq.com/plugins.html
https://www.rabbitmq.com/tutorials/tutorial-five-php.html
https://www.rabbitmq.com/tutorials/tutorial-five-php.html

291

Finally, to retrieve a list of enabled RabbitMQ plug-ins, use the "list" option.

rabbitmq-plugins list

It may be that the list of plug-ins available from the preceding RabbitMQ URL does

not meet your needs. The RabbitMQ site offers a development guide for plug-ins at the

URL following to allow you to develop your own:

https://www.rabbitmq.com/plugin-development.html

Finally, I would say that the RabbitMQ site plug-ins page offers a list of supported

and experimental plug-ins. Obviously the experimental offerings may not be as robust

as the supported offerings. It may also be worth searching for third-party offerings; for

instance, I found the following delayed message plug-in:

https://github.com/rabbitmq/rabbitmq-delayed-message-exchange

 Administration
The RabbitMQ management plug-in allows the system user to manage a RabbitMQ

server. Check the RabbitMQ URL following for the latest management plug-in updates:

http://www.rabbitmq.com/management.html

This plug-in is released as a part of the RabbitMQ distribution.

 Management Plug-in

Given that management functionality on a RabbitMQ server is released as a plug-in, it

must be enabled before it can be used, that is

rabbitmq-plugins enable rabbitmq_management.

This allows the user to access a management user interface at the URL

http://<server-name>:15672/,

where "15672" is the port number to use, and <server-name> is the name of the node

on which you installed RabbitMQ. The web-based user interface uses an HTTP API to

execute commands. This will be described in the next section. You can also execute the

same functionality using this API.

Chapter 8 Frameworks

https://www.rabbitmq.com/plugin-development.html
https://github.com/rabbitmq/rabbitmq-delayed-message-exchange
http://www.rabbitmq.com/management.html

292

 HTTP API

At the time of this writing, the latest version of RabbitMQ is 3.6.11. The RabbitMQ URL

supplied at the start of this section specifies an HTTP API URL, which defines the full

HTTP API.

https://rawcdn.githack.com/rabbitmq/rabbitmq-management/rabbitmq_v3_6_11/

priv/www/api/index.html

I have listed the current 3.6.11 API URL; note that by the time you read this, a new

version may be available. Most of the API commands will return a JSON string containing

the returned information. Some examples of API HTTP commands would be the following:

/api/overview

/api/nodes

/api/connections

So for instance, to get a server overview, you might use

http://<server-name>:15672/api/overview.

 Statistics Database

Each RabbitMQ server has an in-memory statistics database. Although the management

user interface can be used to access management statistics from this database, the HTTP

API can also be used to access it directly. The URLs supplied in this section will allow

you to access the latest API commands list as well as details on how to restart server

databases if you need to.

 Monitoring

The preceding sections describe the RabbitMQ server management plug-in, user

interface, and HTTP API. The standard installation then gives you a number of

monitoring options for a RabbitMQ server:

• The user interface

Use the following URL as described previously to access the user

interface for a single server:

http://<server-name>:15672/

Chapter 8 Frameworks

https://rawcdn.githack.com/rabbitmq/rabbitmq-management/rabbitmq_v3_6_11/priv/www/api/index.html
https://rawcdn.githack.com/rabbitmq/rabbitmq-management/rabbitmq_v3_6_11/priv/www/api/index.html

293

• The HTTP API

Use commands from the HTTP API (URL example preceding

this) to access JSON-based RabbitMQ server information. The

command following gives an overview:

http://<server-name>:15672/api/overview

• The rabbitmqctl command

Use the "rabbitmqctl" control command to obtain the RabbitMQ

server status, that is,

rabbitmqctl status.

I generally attempt to remain within the open-source world,

but I think it is also worth noting that there are some third-

party suppliers of administration and monitoring tools for

RabbitMQ. You will need to carry out your own search (and

research), but some examples are the following:

• DataDog (https://www.datadoghq.com/)

• NewRelic (https://newrelic.com/) via a plug-in

 Conclusion
The aim of this chapter has been to introduce some frameworks for big data, stack

application development. Akka and Netty were introduced due to the fact that both

Apache Hadoop and Spark have used them in historic releases. Anyone who has

previously investigated Hadoop logs will be familiar with Akka log messages.

Although Netty, Akka, and RabbitMQ have been investigated as examples of

potential frameworks, there may be many more both now and in the future that may be

available. Obviously try to match your requirements to those frameworks that you find

when searching. Also, try to keep integration in mind when choosing a framework. Will

the framework that you choose integrate with, for instance, Apache Spark?

Chapter 8 Frameworks

https://www.datadoghq.com/
https://newrelic.com/

294

Might there also be wider integration issues when trying to connect systems

together? For instance, as I previously mentioned, I had tried to connect the Titan graph

database to an earlier version of Apache Spark using Scala. This failed because at the

time, both Titan and Spark were using different versions of Akka.

The next chapter will examine visualisation when using a big data stack. Management

loves graphs, and it is often easier to understand a graph than pages of data.

Chapter 8 Frameworks

295
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_9

CHAPTER 9

Visualisation
In this chapter, I will examine the visualisation options available for Mesos-based

clusters. As you will see from the stack architecture diagram (Figure 9-1) that has been

used throughout this book, data visualisation is the last element to be considered before

the final chapter is used to consider the stack as a whole.

Given that big data systems will contain a wide variety of structured and

nonstructured data in large volumes, a method of visualisation is needed that integrates

with the preceding stack and allows data to be visualized in a variety of ways. The

data might form a stream or a relational table; it might be necessary to allow group

collaboration or send visualisation results to remote parties.

The data visualisation options offered by the Apache Mesos-based system DCOS will

be examined in this chapter. I concentrate on DCOS because it offers a robust Mesos-

based environment and has large community support. This ensures that it will continue

to evolve in the years to come.

This chapter will initially examine data visualisation options using Apache Zeppelin,

the Notebook-based visualisation tool.

Figure 9-1. Stack architecture

296

 Apache Zeppelin
Apache Zeppelin is a notebook-based, collaborative, data visualisation tool that is

released under an Apache V2 license. It offers a wide variety of scripting and integration

options by supporting many interpreters, which I will examine later. The Zeppelin web

site is at the following URL:

https://zeppelin.apache.org/

I have installed Zeppelin from within the DCOS Version 1.9.1 environment, and so

I am using Version 0.5.6-2. The current version of Zeppelin available from the Zeppelin

web site at the time of this writing (September 2017) is 0.7.3. This will be shown to be

important later, as Version 0.7.x has extra functionality, which I will discuss.

Zeppelin is installed, as with all DCOS-based applications, from the Universe ➤

Packages option on the left-hand menu on the DCOS user interface. I just accepted the

default configuration, which installed Zeppelin onto a single node. For information, the

default Zeppelin DCOS JSON-based configuration looks like this:

{

 "service": {

 "name": "zeppelin",

 "zeppelin_java_opts": "-Dspark.mesos.coarse=true -Dspark.mesos.

executor.home=/opt/spark/dist"

 },

 "spark": {}

}

You can see that the service name and Java options are set, as well as a couple of Spark

Mesos variables. You could add extra variables to this string as needed. There is also an

empty placeholder for spark configuration. Once installed on DCOS, the Zeppelin user

interface can be accessed from the DCOS Service/Services menu. Select the Zeppelin

service, then select the running service ID. (Mine was named zeppelin.00ad09c0-

a0be-11e7-91a2-f6d02ba4c4a5.) Then select one of the active “ENDPOINT” values. For

instance, my DCOS assigned Zeppelin user interface URL is the following:

http://192.168.1.109:26225/#/

This gives the Zeppelin user interface shown in Figure 9-2. I have modified this

image to make it fit the page.

Chapter 9 Visualisation

https://zeppelin.apache.org/

297

Note that the interface is very simple; there are notebook and interpreter menus. The

interpreter menu allows you to configure the environment for each interpreter available.

Each interpreter allows you to use a different processing engine when running scripts

within a notebook. That will be examined later.

The Notebook menu option allows you to create a new notebook or examine an

example notebook called “Zeppelin Tutorial.” The tutorial is useful, as it shows how to

run Spark scripts in Zeppelin and create tables. You can see also from Figure 9-2 that it is

possible to save and import notebooks. Let us look at interpreter options first.

 Interpreters
This version of Zeppelin (0.5.6-2) offers the following interpreters:

• Spark (%spark (default), %pyspark, %sql, %dep)

• md (%md)

• angular (%angular)

• sh (%sh)

• hive (%hive)

• tajo (%tajo)

• flink (%flink)

Figure 9-2. Zeppelin user interface

Chapter 9 Visualisation

298

• lens (%lens)

• ignite (%ignite, %ignite.ignitesql)

• cassandra (%cassandra)

• psql (%psql)

• phoenix (%phoenix)

• kylin (%kylin)

• elasticsearch (%elasticsearch)

The preceding % options allow an interpreter to be activated within a Zeppelin

notebook and a script following this tag to be executed. For instance, %spark (which

is the default value) could be followed by a Scala script. The latest version of Zeppelin

(0.7.3) now uses an interpreter plug-in, which offers more options and allows you to

define your own interpreters to be used within Zeppelin.

Figure 9-3 shows the latest Zeppelin interpreters; Apache Beam, Scio, and Apache

Pig are also available for notebook-based scripting. It can be seen that in Zeppelin

interpreter terms, things have changed dramatically as of Version 0.7.x. So it is worth

taking note of the version of Zeppelin that you are using.

Figure 9-3. Latest Zeppelin interpreters

Chapter 9 Visualisation

299

It is time to examine Zeppelin using a worked example; to do this, a new notebook

must be created. This is simple: choose the Notebook/“Create new note” menu option.

Specify a name for the new notebook; I called mine “example1.” Then click the “create

note” button. This new notebook can then be accessed from the notebook menu option.

 Worked Example
Having selected the preceding “example1” notebook, a notebook session user interface

opens as shown in Figure 9-4. This allows you to interactively and collaboratively create

multiple interpreter-based scripts and run them. You will see by examining the user

interface that the notebook session contains a series of source and output cells.

Note the green connected icon in the top right corner of the interface to indicate that

this session is connected to the interpreter (in this case Spark) and not offline. There

are a number of notebook-based menu options here that need to be examined before

moving on to a worked example and some graphs. The first block of menu options is

shown in Figure 9-5.

The first option allows all code within the notebook to be run, while the second

option allows all code to be hidden. The third icon allows all output to be hidden, while

the fourth clears all output. The last three icons allow the notebook to be removed,

cloned, and exported. The export option allows the notebook to be saved and imported

Figure 9-4. Example notebook

Figure 9-5. Notebook menu icons (1)

Chapter 9 Visualisation

300

to a later DCOS Zeppelin session. The notebook is exported as a JSON file with a file

name that matches the notebook name. The remaining notebook menu icons are shown

in Figure 9-6.

These options allow you to list short cuts, examine notebook-based interpreter

binding, and change the layout of the notebook—the options are default, simple, and

report. It is worth mentioning the bound interpreters at this point because these are the

interpreters that can be used in this notebook session. For instance, Figure 9-7 shows the

interpreter options that can be used in this notebook.

These options should be familiar from your previous big data experience (i.e.,

spark, hive, cassandra). There are also options here for adding notebook text (md)

and connecting to a Postgresql database (psql). Having explained the notebook user

interface, it is time for a worked example. I will use the default option Apache Spark for

processing. I have Spark running on DCOS as well as Zeppelin. I have sourced some

csv (comma-separated values) data related to assault crimes from the following NZ

government web site:

http://www.stats.govt.nz

Figure 9-6. Notebook menu icons (2)

Figure 9-7. Notebook bound interpreters

Chapter 9 Visualisation

http://www.stats.govt.nz/

301

Any data would be fine; this will just be used to process, create a table, and create

graphs from the data. I have created the following Spark Scala script, which is based on

the Zeppelin tutorial provided with Zeppelin. First, I import Java and Apache commons

libraries.

import org.apache.commons.io.IOUtils

import java.net.URL

import java.nio.charset.Charset

Next, I load the assault csv data from a Spark subdirectory on my web site semtech-

solutions.co.nz. This data is split by line and placed into a variable assaultText.

val assaultText = sc.parallelize(

 IOUtils.toString(

 new URL("http://www.semtech-solutions.co.nz/spark/assaults-2015-

csv.csv"),

 Charset.forName("utf8")).split("\n"))

A case class called Assault is then created to represent the csv-based data line.

case class Assault(

 Index: Integer,

 Area_unit_2013_code: Integer,

 Area_unit_2013_label: String,

 Victimisations_calendar_year_2015: Integer,

 Population_mid_point_2015: Integer,

 Rate_per_10000_population: Integer,

 Rate_ratio_NZ_average_rate: Double,

 Urban_area_2013_code: Integer,

 Urban_area_2013_label: String,

 Urban_area_type: String,

 Territorial_authority_area_2013_code: Integer,

 Territorial_authority_area_2013_label: String,

 Region_2013_code: Integer,

 Region_2013_label: String

)

Chapter 9 Visualisation

302

The columns in the csv data are then split into a variable called assault. Data values

are converted to integer, string, and double as needed. Also the csv header row (starting

with “Index”) is ignored. This is then converted to a Spark Scala data frame.

val assault = assaultText.map(s => s.split(",")).filter(s => s(0) !=

"Index").map(

 s => Assault(

 s(0).toInt,

 s(1).toInt,

 s(2).toString,

 s(3).toInt,

 s(4).toInt,

 s(5).replaceAll("-", "").replaceAll(" ", "").toInt,

 s(6).replaceAll("-", "").replaceAll(" ", "").toDouble,

 s(7).toInt,

 s(8).toString,

 s(9).toString,

 s(10).toInt,

 s(11).toString,

 s(12).toInt,

 s(13).toString

)

).toDF()

Finally, the data in the assault variable is converted to a Spark-based table called

assault. This can then be used in Spark-based SQL.

assault.registerTempTable("assault")

Note that the %spark value was not used in this script; but because it is the default

value, it was inferred. Most of the notebook session menu options as shown in Figure 9- 8

will be familiar. However, the last option (the cogged wheel) controls the notebook

session.

Chapter 9 Visualisation

303

The options available can be seen in Figure 9-8 to move the session, insert new, clear,

run, and remove. Note also the state of the session shown previously (“Finished”). This

might also be “Pending” or “Running.” Note also that the width of the session can be

changed; it is currently 12. By running the following Spark SQL-based script, I can now

access the Spark SQL-based table assault created previously.

%sql select sum(Victimisations_calendar_year_2015) as victims, Urban_area_

type

from assault

group by Urban_area_type

order by Urban_area_type

Figure 9-8. Notebook session options

Chapter 9 Visualisation

304

This just sums victims for the year 2015 against urban area type; an order by clause is

used to sort the data, and a group by clause is used to group the summed values by area.

When the preceding SQL is run against the Spark table, the output is shown in Figure 9- 9.

Note that there are a number of graphing option icons shown in Figure 9-9. They will

be explained in the next section.

 Graph Options
By selecting the Zeppelin notebook session display icons, the data from the SQL

statement can be presented in a number of ways. By selecting the second display icon

“bar chart,” the data can be presented as shown in Figure 9-10.

Figure 9-9. Notebook session output

Figure 9-10. Notebook session bar chart

Chapter 9 Visualisation

305

Note that the data value on the y axis has been defined to be the numeric sum

“victims,” while the key is defined as the “Urban_area_type.” Selecting the next icon

displays the data as a pie chart, as shown in Figure 9-11.

Choosing the solid graph icon changes the graph format to Figure 9-12.

Choosing the line graph option creates a similar graph to the solid option (Figure 9- 13).

It is perhaps a little clearer, neater, and easier to comprehend.

Figure 9-11. Notebook session pie chart

Figure 9-12. Notebook session solid graph

Figure 9-13. Notebook session line graph

Chapter 9 Visualisation

306

The next option creates a scatter graph of points; this would be useful if you wanted

perhaps to determine clustering in the data (Figure 9-14).

The final point I wanted to make is in relation to pivot or grouped graphs. To create

this example, I need to change the SQL used to access the assault table.

%sql select sum(Victimisations_calendar_year_2015) as victims,

Territorial_authority_area_2013_label, Urban_area_type

from assault

where Territorial_authority_area_2013_label like "%Kapiti%"

group by Territorial_authority_area_2013_label,Urban_area_type

order by Territorial_authority_area_2013_label,Urban_area_type

As you can see from the preceding SQL, I am now selecting a third data column

called Territorial_authority_area_2013_label. This allows me to have city and district

area names as well as area types. I can now pivot or group the data by area type. I have

also used a where clause to limit the data to the Kapiti region.

Figure 9-14. Notebook session scatter graph

Chapter 9 Visualisation

307

The example output shown in Figure 9-15 has the same data value victims and a key

of Territorial_authority_area_2013_label. The data has now been grouped by the urban

area type.

 Notebook Import
Previously, I showed how a notebook could be exported to a JSON-based file so that

the notebook’s information could be saved between Zeppelin sessions. In this section,

I will show how the saved JSON file can be imported. In this case, I will import the file

example1.json to recreate the notebook example1. Note that if the notebook already

exists, then Zeppelin will recreate a new notebook with the same name.

Figure 9-15. Notebook session pivot graph

Figure 9-16. Zeppelin icon

Chapter 9 Visualisation

308

Clicking the Zeppelin icon on the top left of the Zeppelin user interface (shown in

Figure 9-16) takes the user to the home page.

On this page, there is an “import note” option, which if selected will let the user

choose the previously exported notebook-based JSON file and so recreate a saved

notebook session (Figure 9-17).

 Dynamic Forms
Having examined the many forms of graphs that Zeppelin has to offer, I thought that it

would also be useful to examine dynamic graphs. These are graphs that can be changed

by the user entering form data. For instance, the graph can contain an input field or

menu where the user can either make a selection or add data to change the graph’s

appearance. Making a selection or data change forces the graph to refresh and so the

underlying SQL script to rerun.

The following SQL creates a menu that allows me to choose area data for Auckland,

Kapiti, and Wellington dynamically. This menu is acting on the data from the select

statement that is already in memory:

%sql select sum(Victimisations_calendar_year_2015) as victims,

Territorial_authority_area_2013_label, Urban_area_type

from assault

where Territorial_authority_area_2013_label="${item=Auckland,Auckland|Kapi

ti Coast District|Wellington City}"

group by Territorial_authority_area_2013_label,Urban_area_type

order by Territorial_authority_area_2013_label,Urban_area_type

Figure 9-17. Import notebook

Chapter 9 Visualisation

309

Figure 9-18 shows the menu that has been created, which resides between the SQL

statement and the SQL results. It can be seen that the resulting data table matches the

menu option. The menu options are formed as a bar (“|”) separated list in the preceding

SQL statement with the term “Auckland,” forming an initial menu option.

I can change the preceding SQL so that a form field is created instead of a menu so

that I can now filter the data by entering a search string. The SQL line is now changed to

where Territorial_authority_area_2013_label="${item=Auckland}"

This creates a form with a text field shown in Figure 9-19. Of course, if the string

value entered does not match data values, then no data will be returned.

It is also possible to separate the display values from data values in a dynamic menu.

The sample code following creates a dynamic menu with options A, B, and C, where A is

the default value. However, the actual data items used in the SQL would be 1, 2, and 3.

value="${item=A,1(A)|2(B)|3(C)}"

Figure 9-18. Dynamic menu

Figure 9-19. Dynamic form field

Chapter 9 Visualisation

310

This would be useful when dealing with numeric dimension values where the

dimension has a logical meaning, that is, 1=Wellington, 2=Auckland. It would make the

menu more meaningful for the user.

 Scheduling Notebook
Selecting the clock icon at the top of the Zeppelin notebook session (shown grayed in

Figure 9-20) causes a schedule menu to appear. This menu allows the user to specify a

schedule for a notebook and so cause it to refresh to a given period. The options shown

following allow for a schedule of 1 or 5 minutes; 1, 3, 6, or 12 hours; and finally daily.

The user can also enter a cron-based scheduling string; those familiar with Linux will

understand this. However, details of cron-based strings can be found by selecting the

“cron expression” option in the preceding menu or using this URL:

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/

crontrigger

Scheduling allows for a notebook to be periodically refreshed without user

intervention, which makes the notebook more realistically represent the current data

state. This is useful from a reporting point of view when sharing a notebook. This will be

examined in the next section.

Figure 9-20. Notebook scheduling

Chapter 9 Visualisation

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

311

 Sharing Session Output
Each paragraph within a notebook can be linked externally by using the rightmost menu

icon option in the paragraph and choosing “Link this paragraph” (Figure 9-21). This

creates a new window that shows the output of the paragraph only. This is useful for

providing for instance management reports.

This does assume that the remote user has access to the intranet within which

Zeppelin resides. For instance, linking one of the notebook example1 paragraphs from

the last section provided this URL:

http://192.168.1.113:7055/#/notebook/2CV44QMXU/paragraph/20170925-

021044_2089430645?asIframe

Figure 9-21. Paragraph linking menu

Chapter 9 Visualisation

312

This provides access to the following data-only, paragraph-based report in Figure 9- 22.

This URL could then be embedded into a separate web site or sent via an html-based

email. If the notebook were scheduled, then the data would be periodically refreshed.

 Helium
Before closing this section, I wanted to mention the Helium framework that has been

introduced in Zeppelin 0.7 (remember that we are using Version 0.5.6-2). The Helium

framework allows plug-ins to be loaded into Zeppelin to provide extra functionality, for

instance, for visualisation or interpreters. Full information can be found at the Zeppelin

web site using the following URL:

https://zeppelin.apache.org/helium_packages.html

As Helium-based visualisation plug-ins are added to Zeppelin, they are added to

the list of visualisation options that were examined in previous sections. This is a very

powerful framework, as it extends Zeppelin’s functionality and is only limited by what

the community can conceive and develop. A new plug-in is developed and enabled

in Zeppelin using npm (node package manager) repository at npmjs.com. The next

sections will explain how this is accomplished.

 Enable Plug-in

To be aware of a plug-in, Zeppelin 7.x searches for Helium package files in the local

registry, by default the helium directory within the Zeppelin installation. It searches for

JSON files such as helium/zeppelin-example-horizontalbar.json, an example file found

at the preceding Helium URL. It looks like this:

Figure 9-22. Paragraph linking

Chapter 9 Visualisation

https://zeppelin.apache.org/helium_packages.html

313

{

 "type" : "VISUALIZATION",

 "name" : "zeppelin_horizontalbar",

 "description" : "Horizontal Bar chart (example)",

 "artifact" : "./zeppelin-examples/zeppelin-example-horizontalbar",

 "license" : "Apache-2.0",

 "icon" : "<i class='fa fa-bar-chart rotate90flipX'></i>"

}

It specifies the plug-in type, name, description, location, license, and icon type.

When found, it allows the plug-in to be visible in the Zeppelin Helium plug-ins list, from

where it can be enabled via a toggled button. When enabled, an extra visualisation icon

button appears in the Zeppelin data visualisation. An example is shown in Figure 9-23

for the horizontal bar chart (grayed icon).

 Develop Plug-in

To create a new Helium plug-in, you need to create a new Helium npm package. This

is started by creating a package.json file. An example is shown following taken from the

Zeppelin Helium web site:

{

 "name": "zeppelin_horizontalbar",

 "description" : "Horizontal Bar chart",

 "version": "1.0.0",

 "main": "horizontalbar",

 "author": "",

 "license": "Apache-2.0",

 "dependencies": {

 "zeppelin-tabledata": "*",

 "zeppelin-vis": "*"

 }

}

Figure 9-23. Helium icons

Chapter 9 Visualisation

314

You can see that there are some extensions in the preceding JSON compared to the

last example. A version and license value have been added, as well as a main function

call reference. There are also two dependencies specified: zeppelin-vis for visualisation

and zeppelin-tabledata for data management.

Next, the actual visualisation file needs to be created in Javascript. Some example

URLs to provide sample code are the following:

• github.com/apache/zeppelin/blob/master/zeppelin-web/src/app/

visualisation/visualisation.js

• github.com/apache/zeppelin/tree/master/zeppelin-examples/

zeppelin-example-horizontalbar

• github.com/apache/zeppelin/tree/master/zeppelin-web/src/app/

visualisation/builtins

Then you need to create a Helium package file, an example of which was provided

in the last section. This tells Helium where to find the plug-in, what the icon is, and what

to call the plug-in. Finally, place this file in the helium registry directory. I think it would

be useful to examine some example plug-ins to show what Helium in Zeppelin can offer.

The next section will provide this detail.

 Example Plug-ins

Be careful to check the licensing for Helium Zeppelin plug-ins, as not all plug-ins are

released under an Apache 2 license. Also, many plug-ins have different licensing options

depending on commercial or private use. The zeppelin-bubblechart graph shown in

Figure 9-24 allows data to be presented as a series of colored bubbles.

Figure 9-24. Bubble graph

Chapter 9 Visualisation

315

The ultimate heat map option allows data to be presented as a color-coded heat map

(Figure 9-25). Data values can be added to the graph or hidden.

The ultimate-pie-chart plug-in takes pie chart data visualisation to a new level,

allowing for standard pie charts, chart cutout sections, and ring charts as shown in

Figure 9-26.

Figure 9-25. Ultimate heat map

Figure 9-26. Ultimate pie chart

Chapter 9 Visualisation

316

 Multi-user Support
One weakness of Zeppelin in the past has been user access and access control. Zeppelin

7.x now supports multi-user mode; it allows interpreters to be instantiated in global,

note, or user mode. It can then be scoped per note or per user. This provides access

and scoping control and so provides extra data security while still enabling group

collaboration. Zeppelin 7.x also supports LDAP (Lightweight Directory Access Protocol)

integration for user authentication.

 Possible Extensions
A possible extension for Zeppelin would be to provide the option to send notebook-

based results in conjunction with the scheduler to external intranet sources. For

instance, a remote collaborator could receive a periodic email containing a pdf report

containing a snapshot of the notebook’s data content.

The next section will examine Grafana-based visualisation.

 Grafana
Grafana is an open-source system used for data visualisation and monitoring. It is

provided by default with DCOS 1.9.x. It is easy to install within DCOS. Previous chapters

have shown DCOS application installation many times, so I will not include details again

here. Just find Grafana within the DCOS user interface under the Universe/Packages left-

side menu option and select install.

Once installed, you can find Grafana in the DCOS installed services list under

Services/Services. Select the Grafana service and navigate to the endpoint value, which

you can select to access the Grafana login interface shown in Figure 9-27.

Chapter 9 Visualisation

317

The default login account and password is admin/admin, which gives access to the

Grafana (Version 4.5.2-03) user interface shown in Figure 9-28. Under the Grafana menu

option Admin/Preferences, it is possible to change the “UI Theme.” I have changed the

value from “Dark” to “Light” for the rest of this section in the hope that the Grafana-

based screenshots will be more legible.

Figure 9-27. Grafana login

Figure 9-28. Grafana user interface

Chapter 9 Visualisation

318

It is my intention to create a simple interface within Grafana and show how data

can be streamed into panel-based graphs within a dashboard. The useful thing about

Grafana is that it can be used to monitor data streams in real time. So in this section,

I will create a data stream, feed that data into a database, and then use a data source

within Grafana to consume and graph that data.

I have also installed InfluxDB (Version 0.13-0.1) to use as a data source. Once

installed onto DCOS, two InfluxDB endpoints are created: the first provides access to

the InfluxDB user interface, while the second provides the means by which data can be

written to InfluxDB.

As you can see from Figure 9-29, the default InfluxDB account and password are

root/root. The host and port values are the second endpoint value used for data access to

InfluxDB. I have used a create database query to create a database called “data” that will

be used in this example. This provides somewhere to store data, but now I need a data

source. The bash script following provides the data to drive this example:

while [1 -eq 1]; do

 ps aux | sort -nrk 5,5 | head -n 5 | cut -c1-100 | sed 's/-/ /g' | \

 awk '{print "process,proc="$11" value="$5}' | \

 curl -i -XPOST 'http://192.168.1.109:24053/write?db=data' --data-binary @-

 sleep 5

done

Figure 9-29. InfluxDB user interface

Chapter 9 Visualisation

319

It runs continuously on any machine in the cluster and uses the Linux ps command

to list processes running on that server. The data is sorted by the fifth column (VSZ)

Virtual Size. The top five values are then selected. The data is cleaned to remove

unwanted characters and limit data width, and then the process name (column 11) and

the size value (column 5) are selected. This data is then written to InfluxDB using the

host and port value shown in Figure 9-29. The preceding script creates a table called

“process” in the data database with columns proc and value.

Figure 9-30. InfluxDB data

Chapter 9 Visualisation

320

Figure 9-30 shows the InfluxDB user interface with the data database selected. A

query has been used to select the data that was created by the preceding script. Note

that InfluxDB automatically assigns a time value to each record. The preceding query

lists all of the data available in the process table for the last 20 minutes. Now that data is

available, a data source can be created within Grafana.

By selecting the “Add Data Source” option, I can now create a Grafana data source

to connect to the InfluxDB table process in the database data that was just created.

Figure 9-31 shows the create data source form.

A name and type must be assigned to the data source as well as http settings. I

will not use a proxy to access InfluxDB and so will set the “Access” value to “Direct”

and the “URL” value to the http string used in the bash script previously, that is,

“http://192.168.1.109:24053.” It is worth noting at this point that the “Type” menu on this

Figure 9-31. Grafana data source

Chapter 9 Visualisation

321

form lists the data source types that can be used with this version of Grafana. There are

also a range of official and community-built data source plug-ins available at

https://grafana.com/plugins?type=datasource

I will set it to “influxdb,” but Figure 9-32 shows all possibilities.

Selecting “Add” then saves the changes and provides a new set of options as shown

in Figure 9-33. There is now an option to delete or save and test the data source.

Having selected “Save & Test,” if all goes well, a green banner should appear as

shown in Figure 9-34 If this is not the case, then return to the data source form and check

your details. Ensure that your endpoint matches the value from InfluxDB. Also ensure

that your database is running.

Figure 9-32. Grafana data source options

Figure 9-33. Grafana data source test

Figure 9-34. Grafana data source test results

Chapter 9 Visualisation

322

Now that a working data source exists, a Grafana dashboard can be created to display

the data. Selecting the “Create your first dashboard” option from the main Grafana

menu opens an empty dashboard. Figure 9-35 shows the empty dashboard as well as the

functional options available.

Functional icons are available to present data as a graph, a single statistic, a table, or

heat map. There are also options for text addition and lists. A single data row is shown

in Figure 9-35 into which these icons can be dragged. Extra display rows can be created

using the “Add Row” button at the bottom of the form. A panel menu is available on the

left-hand side of the panel display denoted by three vertical dots. Figure 9-36 shows the

panel menu options.

Figure 9-35. Grafana empty dashboard

Figure 9-36. Grafana dashboard panel menu

Chapter 9 Visualisation

323

You can see that there are options to move a panel within a dashboard, add a new

panel, collapse the display, and examine panel options. Having dragged a graph into a

panel row, it can be edited by clicking on the panel title and selecting edit as shown in

Figure 9-37. This allows the data source for the graph to be defined.

This displays a series of panel options that can be used to define the data source for

the panel as well as the graph appearance. Figure 9-38 shows the Metrics tab from those

edit options. It shows that I have defined InfluxDB as my data source. Also, the process

table has been selected in the FROM clause. The value field has been chosen in the

SELECT clause, so it is the numeric data item that will be displayed in these graphs.

Figure 9-37. Grafana dashboard graph edit

Figure 9-38. Grafana dashboard panel definition

Chapter 9 Visualisation

324

The data is grouped by time and formatted as time series data, that is, a stream of

data items over time. I added a graph, a table, and a heat map to my dashboard using

the same data source and refreshed the data using the refresh icon in the top right of the

form. The result is shown in Figure 9-39.

I think that Grafana has a powerful way to monitor a data stream in real time,

providing multiple ways to view facets of the data at the same time. This section has only

examined a small sample of the functional capabilities of Grafana. However, I hope that

I have given you some idea of the possibilities that it offers for data analysis. For more

information, check the Grafana site at grafana.com. The next section will examine the

Datadog application.

 Datadog
In this section, I will examine the Datadog (datadoghq.com) application. Normally,

I concentrate on open-source and distributed systems. However, Datadog is not an

open-source product. I have included it in this chapter because it ships with DCOS

as an application, and as you will see provides very effective cluster monitoring and

visualisation. To write this section, I used the free, 14-day trial offered on the Datadog

web site. On accepting the terms, I was asked to provide my email address, name,

company name, a password, and my phone number. The setup process leads to the

choice of platform used, in my case Centos, followed by instructions to install Datadog

agents on cluster nodes. Figure 9-40 shows the install instructions along with a wide

range of supported platforms.

Figure 9-39. Grafana dashboard

Chapter 9 Visualisation

325

The install instructions, shown following, for the Datadog Agent on Centos use the

Linux curl command to download the agent and a bash shell to execute the install. The

variable DD_API_KEY specifies the key needed for the session to enable the Datadog

Agent to run.

DD_API_KEY=xxxxxxxxxxxxx bash -c "$(curl -L https://raw.githubusercontent.

com/DataDog/dd-agent/master/packaging/datadog-agent/source/install_agent.sh)"

The install creates a Datadog Centos service called datadog-agent as shown in the

listing following:

$ cd /etc/init.d ; ls

datadog-agent functions netconsole network README

For some reason, the agent install was not set up to auto start on cluster server

reboot, but that is easily fixed. Use the Linux chkconfig command as shown following

with the service name and “on” as parameters:

$ chkconfig datadog-agent on

Note: Forwarding request to 'systemctl enable datadog-agent.service'.

Created symlink from /etc/systemd/system/multi-user.target.wants/datadog-

agent.service to /usr/lib/systemd/system/datadog-agent.service.

Figure 9-40. Datadog Agent setup

Chapter 9 Visualisation

326

Logs for this agent can be found under /var/log/datadog, and the agent-based

service can be restarted using the service command as shown following:

$ service datadog-agent restart

Restarting datadog-agent (via systemctl): [OK]

As the Datadog Agents are installed on the cluster servers, they automatically register

with the datadoghq.com web site as shown in Figure 9-41.

Much of this section was then driven by the “Get Started” menu provided at the top

of the datadoghq.com user interface. It provides a suggested order of actions as shown in

Figure 9-42.

Figure 9-41. Datadog Agent registration

Figure 9-42. Datadog get started menu

Chapter 9 Visualisation

327

So having installed agents and proved that they have all registered with the Datadog

user interface, the next suggested step is to create a dashboard. Selecting this option

from the preceding menu presents the user with a form that allows a dashboard to be

named and its type chosen. A dashboard can be a “TimeBoard” or a “ScreenBoard.” The

first offers time-synchronized metrics and event graphs with an automatic layout. The

second allows the user to create a custom layout and mix widgets and timeframe graphs.

Figure 9-43 shows the empty dashboard that has been created; I called my

dashboard “dash1.” I have elected to create a “TimeBoard” dashboard so I don’t have

to worry about layout. I just drag the available icons, that is, Timeseries, onto the

dashboard editing pane denoted by a dotted line. Note that the left-hand menu also has

a Dashboards option.

Dragging a timeseries icon onto the dashboard creates a form that allows the

visualisation type, metrics, and title to be chosen for the graph.

Figure 9-43. Datadog empty dashboard

Chapter 9 Visualisation

328

For instance, Figure 9-44 shows a sample graph indicating potential appearance,

timeseries visualisation, and system load as the metric. Use the Save button to add this

graph to the dashboard, and repeat this process for other graphs. With these options, it is

possible to quickly create a meaningful dashboard.

The dashboard (dash1) shown in Figure 9-45 now contains three graphs showing

overall system load, a color-coded server heat map, and an IO await bar chart. The time

period covered by the dashboard can easily be changed by using the show menu; and

historical data can be displayed using forward, reverse, and pause buttons.

Figure 9-44. Datadog dashboard graph

Chapter 9 Visualisation

329

The leftmost Integrations menu option shows the standard application integration

available using Datadog. This means that Datadog can monitor applications running

on the cluster as well as the cluster itself. I counted well over one hundred application

integration icons available, many of which relate to apache.com software. Given that this

book is based on Apache Mesos-based big data stacks, I will elect to install the Mesos

integration. (A Marathon application integration is also available.)

Selecting the Mesos integration application and choosing the Configuration option

shows how the application can be installed. It involves creating a configuration file that

the Datadog Agent uses to monitor Mesos. There is an option for the Mesos master

servers and a different option for the Mesos slaves, as shown in Figure 9-46.

Figure 9-45. Datadog dashboard multiple graphs

Chapter 9 Visualisation

330

There are example files already provided with the Mesos agent under the directory

/etc/dd-agent/conf.d as shown following:

$ cd /etc/dd-agent/conf.d

$ ls *mesos*

mesos_master.yaml.example mesos_slave.yaml.example mesos.yaml.example

I used the example file on my Mesos master server and specified my servers IP

address to monitor Mesos. I copied the mesos_master file from its example file name to

an active .yaml-based file name. I then changed the localhost value in the file to use my

server’s IP address, that is

Figure 9-46. Datadog Mesos application

Chapter 9 Visualisation

331

$ cp mesos_master.yaml.example mesos_master.yaml

$ cat mesos_master.yaml

init_config:

 default_timeout: 10

instances:

 - url: http://192.168.1.112:5050

The port number 5050 shown in the preceding refers to the port number used by

the Mesos master service. Once this change has been made, the Datadog Agent on each

server needs to be restarted.

$ service datadog-agent restart

If you now use the leftmost Datadog menu option Infrastructure/Infrastructure List,

you will see an infrastructure status. This will include icons that show a color-coded

status for the Mesos application across nodes as well.

Note that in the infrastructure list in Figure 9-47, the server hc4r1m0 is my Mesos

master server, while all others are slave Mesos servers, with the exception of hc4r2m1,

which is an install server. Note that as well as system application icons like ntp and

system, there are also Mesos-based icons as well.

Figure 9-47. Datadog infrastructure status

Chapter 9 Visualisation

332

The menu option Infrastructure/Host Map provides a color-coded heat map of your

cluster, which provides an instant visual reference for potential problems. Figure 9-48

shows a status “green” cluster due to the fact that it is idle, but it could have been orange

due to a CPU utilisation problem.

Each element in the grid represents a cluster server. Although it may be hard to see

in Figure 9-48, the server name is overlaid on each element. The applications being

monitored on each server (mesos, ntpd, system) are shown as status green blocks within

each server.

It is also possible to change the appearance of the hosts heat map by using the menu

options above the heat map display. For instance, the item being displayed (i.e., CPU) in

Figure 9-48 can be changed using the “Fill By” menu.

Figure 9-48. Datadog infrastructure host map

Chapter 9 Visualisation

333

Dashboards can be created in an ad hoc manner using the Dashboards menu

option. For instance, in Figure 9-49, a dashboard has been created for the master server

hc4r1m0.

Figure 9-49 automatically shows a myriad of color-coded time series information.

The graphs cover CPU, disk, and memory usage, as well as swap. There is a process

memory usage map as well as Mesos-related graphs. Dashboards like this can quickly

be created and adjusted using the menu options at the top of the form. The dashboard

display can also scroll through historic data using the forward and reverse icons.

The next thing that I wanted to cover that Datadog handles well is monitors. It is

not enough to have a dashboard that will display an issue, because there might not be

a person available to see that event. An alert is needed when an event occurs to contact

people and make them aware.

Figure 9-49. Datadog master server dashboard

Chapter 9 Visualisation

334

The Datadog Monitors menu option allows a monitor to be created by selecting a

hostname, specifying the alert conditions, specifying a message to explain the issue, and

finally, to specify who should receive the alert. I created the Mesos server monitoring

alert (called “Mesos Node Error”) shown in Figure 9-50 to raise an issue if any of my

Mesos servers were not available.

At the end of each day’s work, I close down my cluster to reduce costs and decrease

the heat, noise, and vibration caused by all of these servers. Because Datadog is a service

in the cloud, the monitor I created previously is still operating, even when my cluster

goes down. Given that the Mesos servers were down, I received a series of Datadog alert

messages generated by the monitor. A sample message is shown in Figure 9-51.

Figure 9-50. Datadog monitors

Chapter 9 Visualisation

335

The last thing that I wanted to cover in this section is the Datadog Metrics menu

option. This allows you to monitor a vast variety of provided metrics for the cluster

or individual servers. You can specify the type of aggregation to be used on the data,

and you also have menu options to scroll through data and show preset time periods.

Figure 9-52 shows cluster system memory used over the last hour. There are also options

to save the graph to a timeboard.

Figure 9-51. Datadog monitor alert

Chapter 9 Visualisation

336

I hope that this gives a flavor of the functionality available within Datadog. It offers

cluster and server-based monitoring and visualisation as well as alerting in the case

of cluster-based issues. It has a wide range of integrations available, including some

notable Apache offerings like Mesos, Hadoop, Cassandra, and Kafka. It is an impressive

product that seems to fill a much-needed function. I hope that this section has given

some idea of Datadog’s functionality. More information can be found at datadoghq.com.

 Conclusion
This chapter has examined some of the visualisation and monitoring options available

within the DCOS system. As data volumes grow, the problem of data comprehension

increases. Visualisation and monitoring methods are needed to examine data trends

over time. Dashboards are needed to offer a snapshot in time of related data items.

Rich functionality is needed to present data in a variety of forms: for instance, line

graphs, heat maps, and bar and pie charts. Methods are needed to send reports in a

scheduled manner to remote parties in a variety of formats.

Figure 9-52. Datadog metrics

Chapter 9 Visualisation

337

Three visualisation and monitoring applications were examined in this chapter:

Zeppelin, Grafana, and Datadog. Whereas the first two are open-source applications,

the third is a commercial offering. This is offset by the fact that it is an excellent product

offering much needed cluster/application monitoring and alerting. The collaborative

notebook development approach of Zeppelin was interesting, along with the Helium

plug-in technology that it is now using.

By the time that you read this chapter, there may be more visualisation options

available within DCOS. I selected those available at the time of this writing (October

2017). I hope that this chapter has provided enough interest that you will carry out your

own research into the options available.

The next chapter will sum the Mesos-based big data stack as a whole. It will examine

the interfaces between stack elements and bring the information presented in previous

chapters together to form a whole.

Chapter 9 Visualisation

339
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5_10

CHAPTER 10

The Big Data Stack
Chapter 10 provides a summary of each of the components explored in detail in earlier

chapters as well as raising deeper issues for consideration and looking at potential

further work that has not yet been explored. Reading this final chapter reminds one of

the tremendous amount that has been achieved on this journey, from starting with a

physical bare metal cluster; to setting up a private cloud; and then methodically building

a complete functional, manageable, and scalable big data stack able to handle large

batch loads as well as real-time stream processing.

This chapter will cover all of the subjects examined in the previous chapters and

discuss the interfaces in the stack architecture diagram (Figure 10-1). It will bring the

topics described in previous chapters together to form a whole.

Figure 10-1. Stack architecture

340

I feel that the Data Center Operating System (DCOS) created by mesosphere.com

provides a much more robust and functional environment than Mesos alone. I think

that the Mesos-based chapters covered so far in this book show this. DCOS is robust in

that it is self-healing: there is an excellent user interface to manage the system and track

problems. There are also a wide range of applications that are provided that are easy to

install and configure. Before moving on to the topics covered by Chapters 2 to 9, I wanted

to examine the hardware architectures that were used during the development of this

book. The next section will cover this.

 Hardware Architecture
In Chapter 1, the introduction, I specified the server architecture that I would use in

this book. This is shown in Figure 10-2, and this is the architecture that was used in

Chapters 2 and 3 when creating a cloud and release management systems using Apache

Brooklyn. However, this architecture did not meet the needs of DCOS, the Mesos-based

cluster control system.

Figure 10-2. Server architecture

Chapter 10 the Big Data StaCk

341

As is the case with all authors, the work presented in a developed book represents a

fraction of the work carried out. When creating a hardware architecture for Mesos and

DCOS, I tried many configurations of hardware and software. I used architectures with

multiple Mesos masters and single Mesos masters. I tried systems with an install server

and without. The architecture that you see in Figure 10-3 worked well and allowed me to

install multiple frameworks onto Mesos at the same time.

Figure 10-3. Stack architecture Mesos

Note that I used a Dell PowerEdge 2950 blade as a master server to provide extra

master-based resources and core-based power. As I stated in previous chapters, I am

limited in what I can try and research by a lack of funding. Having worked through

the previous chapters, you may have noticed that I did not use Mesos or DCOS in

combination with a cloud. I would have liked to have tried this, but I did not have the

necessary servers. If I wanted to create a Mesos-based cluster with a suitable number of

slaves or agents, I did not have any spare servers for a cloud.

I am also limited by running these servers in a home-based environment. Apart

from the cost of running them, they also generate a lot of heat, noise, and vibration. My

optimum architecture is shown in the Figure 10-4 with extra racks for a low-cost cloud.

Perhaps at some future time when the funds are available or I find a corporate sponsor,

this might be possible.

Chapter 10 the Big Data StaCk

342

I have needed to use more servers for this book project compared to my previous

books. For instance, in a cloud-based environment like Apache CloudStack, hosts

are added to the cloud to provide cloud-based resources. When multiple virtual host

instances are created, then multiple hosts are needed to provide the necessary resources.

Similarly, when installing multiple frameworks onto a Mesos-based cluster, multiple

Mesos slaves are needed to provide the resources, and so multiple servers are required.

Before closing this section, I also wanted to note the versions of the CentOS

operating system used in this book. Given that it has taken more than a year to write, I

started by using CentOS 6.5 and ended Chapter 9 with CentOS 7.3 server installs. Having

covered hardware architectures, I will now move on to examine the topics raised in the

previous chapters of this book and provide an overview.

 Chapter Topics
Each of the following sections will examine the content of Chapters 2 to 9 and provide an

overview in terms of the big data stack.

Figure 10-4. Optimum stack architecture

Chapter 10 the Big Data StaCk

343

 Chapter 2 Cloud
As I stated in Chapter 2, the only reason that I did not use a cloud-based service like

AWS for this project was due to the financial costs involved. I preferred to use what

resources I have to purchase physical servers rather than pay for cloud-based services.

Local servers can be reused for multiple projects. Also, given that this book has taken

more than a year to write, the cloud-based costs would have been considerable. I think

that the compromise of using Apache Cloudstack to create a local cloud was a good one.

Cloudstack is an enterprise standard system. As Chapter 2 showed, the functionality

that it introduced could be scaled to cover multiple data centers. The cloud that was

created in Chapter 2 was then used as a target release location for Chapter 3 on Apache

Brooklyn, which I will cover in the next section.

 Chapter 3 Brooklyn
In Chapter 3, Apache Brooklyn was installed and examined as a release management

and system monitoring component of the stack. It was shown to support an internal

catalogue of applications, entities, policies, and locations. So external applications like

Mule ESB, the ETL tool, could be modelled as an entity within the catalog. It was shown

that YAML-based scripts could then be created to have Brooklyn release entities to

generic locations.

Brooklyn would then treat a server or a cloud location as a generic location and

use them as a generic install site. This is interesting because it suggests that hybrid

systems could be created using multiple clouds and on-site servers. Scale into the cloud

as demand increases or contracts. In fact, Brooklyn has policies for scaling released

applications. As you spend time investigating Brooklyn, you might develop your own

policies to support your systems.

I showed by example the release of a Mule-based system using Brooklyn in Chapter 3.

If you examine the code that was used for this, you might consider doing something

similar to have Brooklyn release to DCOS. The DCOS CLI allows command line release

of frameworks. These simple commands could be embedded into a Brooklyn entity.

As I stated previously, Brooklyn has not been used in this book beyond Chapter 3.

I either had to use my limited servers for a cloud or a Mesos cluster. Also, this book has

taken more than a year to write, and I need to finish it. The Brooklyn to DCOS interface

will have to form a later project once this book has been released.

Chapter 10 the Big Data StaCk

344

It should be noted that if Brooklyn treats cloud-based servers as just another generic

location, then the dependence on any given cloud provider is diminished. Cloud

providers could be chosen where there is perhaps a price advantage. It might be possible

to build systems using multiple providers and move data between providers as the cost

landscape changes. This approach would negate or perhaps mitigate against using

higher level cloud-based services like databases. Vendor lock in would not seem to be

desirable.

The next section will examine resource management using Mesos and DCOS.

 Chapter 4 Resource Management
Chapter 4 examined resource management in a big data stack in terms of a stand-alone

Mesos install followed by a DCOS install. In Mesos terms, this chapter, and I hope later

chapters, show you that the DCOS environment is more functionally rich and more

robust. It offers a wide range of standard applications that can be installed with a few

mouse clicks. It also offers the ability to define new frameworks using JSON to install

your own applications.

As I said previously, it is more robust than Mesos alone, which will become apparent

if you need to restart your servers. It is also self-healing and offers some very good user

interfaces for the ZooKeeper-based exhibitor and DCOS itself. It is possible to examine

cluster server state and errors.

I also briefly examined the Myriad project, which intends to enable the Hadoop-

based Yarn scheduler to work within a Mesos-based environment. A Myriad executor

would allow Yarn to interface with the Mesos slave. I examined this project to make you

aware of potential future changes.

Also, it is worth noting that in Apache Spark terms, Mesos and ZooKeeper in

combination are one of the main cluster management options for Apache Spark; the

others being Yarn Client, Yarn cluster, and stand-alone. For more information, see my

previous books:

https://www.amazon.com/Michael-Frampton/e/B00NIQDOOM

The next section will examine storage in a big data stack.

Chapter 10 the Big Data StaCk

https://www.amazon.com/Michael-Frampton/e/B00NIQDOOM

345

 Chapter 5 Storage
Chapter 5 and other chapters provided examples of Mesos-based storage frameworks

for Riak, Cassandra, and HDFS. It should be noted that in Mesos and DCOS terms, the

components of a Hadoop stack are installed separately. So for instance, HDFS is offered

as a framework, and the Apache Myriad project will offer Yarn.

It should also be noted that Mesos clusters are not persistent; for instance, if a cluster

is restarted, a framework might be redeployed. This is different from say a Hadoop stack,

which if restarted, should not lose data.

In this case, it is possible and perhaps probable that a redeploy will cause a loss of

data that was previously stored. In enterprise terms, the use of multiple masters and a

large number of Mesos slaves minimizes this risk. However, it is worth noting this point

and being aware to incorporate it when considering system design and processes.

The storage options used here are all for distributed systems; however, DCOS offers

many more. For instance, the visualisation chapter used InfluxDB as a time series data

store, and Postgresql is also available. You might need a big data cluster as well as a

relational business intelligence server to receive aggregated data from your stack. You

might then need to create reports from smaller data pools as your big data stack grows.

The next section will give an overview of the processing chapter for the Mesos-based

big data stack.

 Chapter 6 Processing
Chapter 6 showed how Apache Spark-based applications can be run against Mesos and

DCOS clusters. Chapter 7 also includes a Spark-based example and shows how Scala sbt

assembly can be used to create a fat jar file to run a Spark-based application. At the time

of this writing, DCOS 1.9.x does not support the Spark submit --jars option, so all jar files

needed for an application need to be packaged into a single fat jar file.

I hope that this chapter and previous chapters show an integration trend. I mean

that in my first Hadoop book, I started by building and installing Hadoop from source

and ended with integrated stacks from Cloudera and Hortonworks. In my second

Spark-based book, I started with raw Spark builds and ended with databricks.com, the

notebook-based online system that supports Spark.

Chapter 10 the Big Data StaCk

346

I think that it is always better to use integrated systems and think about wider

integration options. Integrated stacks are more robust than single components brought

together to create a system. They have been designed to work together and tested to

prove that they do.

You might ask “why Apache Spark”: why not an alternative big data system like

perhaps Storm? I’m always interested in integration possibilities for the big data

components that I use. I know that a system like Storm has a large community and a

strong following. However, I like Spark for the range of functionality that it offers and the

systems that it will work with. It is widely supported and has a strong future.

The next section will examine big data queueing in a big data stack.

 Chapter 7 Queueing
For this section of the big data stack, I decided to use Apache Kafka: when people think

of big data queueing, it is Kafka that comes to mind. It is designed to scale and integrates

well with components like Spark and storage mechanisms like HDFS. It works with

multiple producers and consumers as well as now being designed to access databases

and act as a stream processor as well. Check the kafka.apache.org web site for the latest

Kafka details.

I showed the use of Kafka with DCOS as well as the DCOS CLI and showed how

Kafka-based data could be accessed via the CLI as well as Spark. Chapter 8 examined

the Spring RabbitMQ framework. Kafka is a publish/subscribe messaging system that is

able to store data. RabbitMQ offers many ways to route data based on header, content,

or publish/subscribe. This offers the interesting possibility of using RabbitMQ and Kafka

together if needed. RabbitMQ does not store data but uses a broker to just forward it.

Using RabbitMQ and Kafka together would allow for data to be routed by content

and then published to various topics based on content waiting for various endpoints to

consume. If that was of interest, the question would be this: can RabbitMQ scale as well

as Kafka? It is an interesting possibility though!

The next section will examine the frameworks chapter.

Chapter 10 the Big Data StaCk

347

 Chapter 8 Frameworks
Although I did not have the time or resources to implement application frameworks

during this project, I used Chapter 8 to investigate some of the possibilities. I examined

Akka and Netty frameworks because they both have or are being used by Apache Spark.

I then examined the Spring RabbitMQ framework because it is related to the previous

chapter. It may well be used in big data systems for time series processing or to route

data based on content.

It is interesting to examine both Akka and Netty to understand how they allow

distributed systems to be developed and how they support messaging within those

systems. If you create an app or multiple big data applications for say stream processing,

you might need to use these frameworks.

The next section will examine the final chapter, visualisation.

 Chapter 9 Visualisation
I used this chapter to examine data visualisation possibilities available within a standard

DCOS-based install. (I’m currently using DCOS Version 1.9.1.) Given that big data offers

vast data sizes, variety and velocity, and possibly reduced veracity, the ability to visualize

data and data streams becomes ever more important.

I show within this chapter practical examples of graph- and dashboard-based

visualisation as well as the use of Spark within Zeppelin as a notebook-based processing

engine for preparing data to visualize. The ability of Grafana to create real-time

dashboards was examined along with its ability to present the data in a range of forms. It

was apparent that Grafana is supported by a large community and offers a wide range of

plug-ins.

I normally concentrate on open source distributed systems, but system and cluster

monitoring in enterprise systems is critical. Datadog is offered as a default option

within DCOS; and as this chapter shows, it is an impressive offering. It easily monitors

cluster servers and the applications running on them like Mesos. It provides graphs and

dashboards and handles streamed data. It also offers monitoring and alerting to make

team members aware of problems. From an enterprise perspective, it is easily capable of

monitoring a big data stack.

Chapter 10 the Big Data StaCk

348

 Application Architecture
Figure 10-5, taken from Chapter 6, the processing chapter, shows a possible big data

stack application structure. It shows how big data stack applications built to run against

Apache Spark will incorporate the use of multiple resources to access each layer of the

big data stack.

Figure 10-5. Application architecture

For instance, to access Cassandra, an application would use a connector library;

whereas access to the HDFS framework would be possible using an HDFS-based

URL. The actual data processing to be carried out would be possible in either Java or

Scala using Spark, although if you have followed my books, you will see that I favor Scala

and sbt (I use sbt assembly as well in this book).

The application could then be monitored as a Spark framework task in the Mesos

user interface. The task could be executed using the DCOS CLI as shown in Chapter 7.

That will be examined in the next section.

 Application Submission
This example code taken from Chapter 7, the queueing chapter, shows how an

application built as a fat jar file using sbt assembly can be submitted to the DCOS-based

Apache Spark framework. The PATH value is updated to include the location of the

DCOS CLI command. The auth login option is used with the CLI to authorize the session

to access DCOS. Then the DCOS CLI Spark run option is used to execute the application

class within the jar file. The fat jar file that is used will not be distributed by a DCOS

framework-based Apache Spark. The jar file is placed in a web-based location that all

Spark servers can access.

Chapter 10 the Big Data StaCk

349

$ export PATH=$PATH:/opt/dcos/bin/

$ dcos auth login

$ dcos spark run --verbose \

--submit-args=' --driver-cores 1 --driver-memory 1024M --class KafCom1

http://www.semtechsolutions.co.nz/spark/kafcom1-assembly-1.0.jar'

The diagram following (Figure 10-6) gives a visual interpretation of this control flow.

In Step (1), the login authorisation is obtained via a DCOS CLI “auth login” call. The jar

file needs to be within a location that Spark can access, in this case, a web URL. Also,

the submit-args string can be extended with extra command options for Spark; this is a

simple example.

Figure 10-6. Application architecture

This describes how Apache Spark-based application code developed for the big

data stack can be launched against a Spark framework running on Mesos. How does

Brooklyn, examined in Chapter 3, and also Brooklyn-based locations, relate to a DCOS

environment? Remember that a Brooklyn location can either be a physical server or a

cloud-based server. The next section will examine this topic.

 Brooklyn and DCOS
Due to a lack of time, the necessary servers, and funding issues, it was not possible to

extend this work to integrate Apache Brooklyn with DCOS and cloud-based locations. It

was also not possible to consider application- or Mesos-based framework scaling from

a Brooklyn point of view. However, this section can be used to examine these topics and

perhaps a later version of this book can expand on these areas.

Chapter 10 the Big Data StaCk

350

Remember that when creating a Mesos or DCOS cluster, master and agent locations

are specified. It would be quite possible to have Mesos or DCOS agents in the cloud

registering with cloud-or server-based masters. So a Mesos-based cluster could scale

into the cloud.

When creating Brooklyn-based components, DCOS CLI authorisation (auth login)

could be a problem. How would Brooklyn know what the authorisation string would be?

This problem could be solved by having the DCOS CLI installed on the same server as

Apache Brooklyn and authorizing the session manually. This would be a long-running

session valid for as long as DCOS is up.

If you examine the Ricston Mule code for a Brooklyn entity from Chapter 3, you

will see it as a good blueprint and example for future development of Brooklyn-based

entities and policies. Remember that entities model the unit elements from which

Brooklyn yaml scripts are created. Brooklyn policies then define how these entities will

act or be controlled.

The Ricston Mule ESB code examined in Chapter 3 used embedded, mule-based

paths and commands to source a Mule runtime, execute it, and to launch a packaged

Mule application onto the runtime that Brooklyn could then monitor. How does that

assist us when wishing to use Brooklyn to develop entities, policies, and yaml code

to launch and monitor applications against DCOS? Well, using the Mule code as an

example, we can embed command line options in Brooklyn modules.

• DCOS CLI commands for MESOS-based frameworks can be

embedded in Brooklyn code. If the DCOS CLI session is already

authorized, this simplifies the process.

• Mesos frameworks need to be well designed and enabled via the

CLI: not just for install but also for status. Brooklyn can then use CLI

commands like status to provide framework monitoring.

• Chapter 3 showed how an application could be launched from

Brooklyn onto a Mule runtime running via Brooklyn. It is not a stretch

of the imagination to extend this analogy to launching Spark-based

applications via Brooklyn onto a Spark framework.

Chapter 10 the Big Data StaCk

351

• In Brooklyn policy terms, scaling needs to be considered. How can

a framework or an application (if it is distributed) be scaled via

Brooklyn? Well the DCOS CLI Marathon command offers group

scaling, and there is also a Marathon REST API available. For

instance, Version 1.9 is available at

https://dcos.io/docs/1.9/deploying-services/marathon-api/#.

This is an area of work that needs further time and effort spent on it to create some

real-world practical examples. It will have to wait for a future project though.

Figure 10-7 shows visually what was discussed in the preceding section. The units

developed within the Brooklyn catalogue, that is, entities and policies, can access both

the DCOS CLI and the Marathon REST API. By doing this, they can manage both Mesos

frameworks and tasks within those frameworks.

Figure 10-7. Brooklyn DCOS

The next section will examine big data stack monitoring.

Chapter 10 the Big Data StaCk

https://dcos.io/docs/1.9/deploying-services/marathon-api/#

352

 Stack Monitoring
The previous chapters have shown many ways to monitor Mesos-based servers,

frameworks, and tasks. I think at this point a recap is needed to list all of the options and

see how they compare.

• CloudStack User Interface

If you remember in Chapter 2, it was shown that within an Apache

CloudStack user interface it was possible to obtain cloud server

metrics. This showed the resource usage and load on cloud-

based servers. It was a useful place to examine the load on the

cloud when troubleshooting. You probably won’t use CloudStack,

but your cloud user interface would be a useful place to seek

information about your cloud.

• Brooklyn User Interface

The Brooklyn user interface was shown to be a good point to

examine applications from a Brooklyn point of view. The amount

of information retrieved would be dependent on the way that the

policy or entity was designed. I think that this interface would

provide a high-level view and might be a first point of call to

investigate a problem.

• DCOS User Interface

The DCOS user interface is a useful interface for examining DCOS

node status, DCOS processes, and accessing Mesos framework-

related interfaces from a single point. Log files can be accessed

from here as well as the Marathon scheduler. This might be the

second place you look to track a problem.

• Mesos User Interface

Mesos is the resource manager used for this big data stack. From

here, we can examine what frameworks are running and what

tasks exist within those frameworks. It is possible to see whether

a task or framework has had multiple failures and to check its log

files. This might be the third location to check. You can see that we

are moving down the stack layers to investigate a problem.

Chapter 10 the Big Data StaCk

353

• Marathon User Interface

From the Marathon user interface, running under DCOS, we can

see the DCOS-based applications that Marathon has scheduled.

Their configuration, state, and logs can be checked from this

point. Applications can also be paused, scaled, and restarted from

within Marathon. Be careful though to think about persistence, as

restarting or scaling an application might cause data loss.

• Spark User Interface

From the Spark application, both the Spark executors and Spark-

based tasks can be examined. Their log files can be checked for

process flow and errors.

• Log Files

At the lowest level, file system-based log files can be checked.

Many times during the previous chapters, it was shown that

Mesos-based task stdout and stderr log files could be checked to

determine information about the task at the lowest level.

• Datadog

The last monitoring system that I will mention in this section is

Datadog. It is not an open source system, but it is impressive. It

offers cluster-based monitoring, dashboard creation, and the

ability to graph real-time data. It offers something that all of the

other monitoring methods do not. It is able to create alerts and

raise awareness of issues. This applies to both the cluster servers

as well as the applications, like Mesos, running on the cluster. It

will need significant configuration, but it will be a very useful tool.

I hope you can see a trend in the monitoring described in this section; while tracking

a problem, you will probably access all levels of the stack to find information sources.

Apart from Datadog, you might start at the Brooklyn or Cloud level and work your way

through the stack layers to raw data files or error logs.

The next section will examine visualisation.

Chapter 10 the Big Data StaCk

354

 Visualisation
In Chapter 9, I presented three visualisation options: Zeppelin, Grafana, and Datadog.

I generally try to stay in the open source domain, but Datadog was impressive, and it

was offered within DCOS. It provides a function that none of the other applications do:

cluster-based monitoring and alerting.

The visualisation that you choose will depend on the type of data that you have and

where it resides. For instance, Grafana has a limited number of integration data source

options. Will you require real-time graphs and dashboards?

Last, how will you get your graphs and dashboards to your customers and

management? Will you expect them to log into your cluster and application, or will they

reside in a remote country and expect e-mailed pdf files?

Will the tool that you use need the ability to periodically refresh your graphs and

dashboards, and will it be expandable by plug-ins? The Helium plug-in system offered

by Zeppelin seems to be an interesting area to watch in the future.

You may use one of these tools or a future DCOS offering. I hope that the ideas raised

in Chapter 9 will assist you in your choice of visualisation application and your creation

of graphs.

The next section will briefly examine the choice of platform architecture.

 Cloud or Cluster
I briefly raised the issue of how to choose the platform on which to build your distributed

systems. I think that this is an area that requires much more investigation and metrics

gathering. Perhaps it is a future project.

As I had previously mentioned, I think that the criteria for your choice of platform, be

it cloud or physical cluster, needs to be considered at an early stage. Should it be price or

some other criteria like security or perhaps reliability?

Remember that with big data systems, the data pool is going to grow over time and

be substantial. It is likely that corporations will want to retain data for the future and

build future service offerings against it. It would therefore be wise to consider what will

happen to that data pool at system end of life. Many cloud-based service providers allow

free deposit of data but charge to move data off of the service. These charges need to be

considered when planning. They may impact the choice that this section describes.

Chapter 10 the Big Data StaCk

355

Also, when creating cost models to compare a multiyear costing of a cloud-based

system against a physical cluster, you are examining a multidimensional problem.

No two examples will be the same due to different costs associated with hardware,

personnel, taxes, location, and architecture. These are just a few attributes; there are

many more.

I think that this subject needs to be examined at an early stage and thoroughly so

that architectural platform choices are logical and can be defended metrically.

 Conclusion
As I have already explained, there are many areas that could be examined in greater

depth in relation to Mesos-based big data stacks: for instance, the use of Brooklyn with

DCOS and cloud; the development of Brooklyn-based components to use both the

DCOS CLI and the Marathon REST API; and the development of frameworks for Mesos

that are designed to scale, provide status, and work with Brooklyn.

I have attempted to examine each element and layer within a Mesos-based big data

stack and provide worked examples where possible. As with many of my books, I start

with the least integrated solution and work toward integrated solutions. So, for instance,

I have shown the use of Mesos on its own followed by DCOS. I hope that you can see that

the more integrated solutions like DCOS are more functional, robust, and reliable.

Depending on your project needs, you may have to integrate systems outside of

DCOS to create your wider systems. You would need to consider these areas at the outset

of your project planning. Examine integration options, create new frameworks, use the

Marathon API, or create a new Marathon application using JSON.

I hope that you find the building blocks and examples presented in these chapters

useful. You should be able to expand on the work carried out here to create full-scale

systems.

Having examined all of the Spark-based, cluster management, architectural options

in this and my previous two books, I plan to tackle an AI (artificial intelligence) based

book in the future. It will use the systems and architectures described in these books

as well as visual ETL tools to source data as streams. It will then use AI techniques to

examine the data. Given the scale of this project, the funding required, and the size of the

cluster needed, I think I would need corporate sponsorship and group involvement.

Chapter 10 the Big Data StaCk

356

However, this is a task for another year. I hope that you have enjoyed reading this

book and found the examples useful. I find that as each book progresses, the projects

that I undertake require more time, greater effort, and larger clusters. As ever I am happy

to connect with people on LinkedIn at

nz.linkedin.com/pub/mike-frampton/20/630/385

Details of my books can be found on my author page on Amazon:

amazon.com/Michael-Frampton/e/B00NIQDOOM

And I can be contacted via e-mail at the following address:

info@semtech-solutions.co.nz

I may not have the time to tackle every problem, but it is interesting to hear about

reader projects. Remember, try to solve your own problems and come up with a few

suggestions as to the source of problems. If you just keep at it, anyone, given enough time,

can solve any problem. Best Wishes.

Mike Frampton
November 2017

Chapter 10 the Big Data StaCk

357
© Michael Frampton 2018
M. Frampton, Complete Guide to Open Source Big Data Stack, https://doi.org/10.1007/978-1-4842-2149-5

Index

A
Advanced zone creation, CloudStack

add host to cluster, 54
Advanced install option, 52
IP address range, 53
physical network setup, 52–53
system VMs, 55
VLAN ID range, 54

Agent server, 126
Akka framework

actor classes, 267–270
architecture

actor attributes, 265–267
actor hierarchy, 265
actor references, 267

distributed systems issues
configuration management, 264
error management, 264
locking, 263
message stream

processing, 263
queueing, 263
resource management, 263
scaling, 264
time synchronisation, 262

enterprise offerings, 277
Lightbend, 261
modules, 276
networking, 270–273
OOP, 261–262
streams, 273–276

Apache Brooklyn
blueprints, 70–71
installation (see Brooklyn installation)
modelling with blueprints, 74
monitoring, 73
operations, 73–74
policy management, 72
REST API, 71
server-based install (see Server- based

Brooklyn install)
Apache CloudStack, see CloudStack
Apache Mesos

architecture, 98
installation process

agent start command, 108
building, 100
directories, 107
grep command, 109
memory debugging, 107
mkdir command, 104, 106
overview, 99
system requirements, 100–104
test framework, 107

Mesosphere DCOS (see Data Center
Operating System (DCOS))

Myriad project, 135
system requirements

cgconfig service, 103–104
devtoolset component, 101
error, 102
g++ command, 103

https://doi.org/10.1007/978-1-4842-2149-5

358

rpm commands, 100
yum commands, 100

user interface
agents, 111
error, 114
framework, 112
log files, 113
tasks, 112

Apache Myriad project
architecture, 135–136
overview, 135

B
Big data stack

AI techniques, 355
Apache project, 1
application architecture, 348–349
application submission, 348–349
architecture, 339
Brooklyn, 9, 343–344
CentOS Linux, 1
cluster architecture, 8–9
cloud-based resources, 5
cloud storage, 9, 343
cloud vs. cluster

costs, 14, 355
data pool, 354
factor options, 13
SoftLayer, 13

components, 1, 11–12, 15
data scaling, 3
data storage systems, 4
data visualisation, 2, 11, 347
distributed processing system, 1
frameworks, 11, 347
functionality, 5

IoT and sensor data, 3
Java and Scala, 1
LAMP stack, 7
limitations, 4–5
LinkedIn, 356
MARQS stack, 7
MEAN stack, 7
NoSQL databases and types, 6
optimum stack architecture, 341–342
precreated and tested stacks, 5
processing, 10, 345
queueing, 11, 346
RDBMs, 4
resource management, 10, 344
server architecture, 340
SMACK stack, 7
stack architecture Mesos, 341
storage, 10, 345
volume, velocity, variety, and

veracity, 2–3
Brooklyn and DCOS, 349–351
Brooklyn installation

add applications, 65
add locations, 64–65
binaries and cli package, 59–60
Catalog tab, 66–67
command options, 61
composer window, 65–66
Groovy scripts, 68–69
home page, 63–64
launch command, 62
Linux ln command, 61
Linux tar command, 60
log files, 63
Script REST interface, 68
source code, 60
user interface, 62
username and password, 63

Apache Mesos (contd.)

Index

359

C
Cassandra Mesos framework

boot server, 140
DCOS

-based VirtualBox environments, 168
CLI tool, 170
GUI, 171
menu icons, 173–174
packages, 174
Vagrant-based, 167

end-of-file, 172–173
prerequisite packages, 165
Vagrant, 167
VirtualBox, 167
X Windows system, 165

Cloud-based installation, Brooklyn
Cassandra bin directory, 89
Cassandra cluster, 90–92
CassandraDataCenter, 91
CassandraNode install, 93
Cassandra node status, 90
Cassandra nodetool status, 94
Cassandra Simple Cluster Node, 87–88
Cassandra tools, 86
CloudStack instances for

deployment, 85
host hc4r2m1, 86
Linux cd command, 93
Linux file system path, 89
Linux find command, 88
Linux ssh-copy-id command, 86
multiple application instances, 92
NETMASK, IPADDR (IP address),

GATEWAY, and DNS values, 87
servers, 85
virtual instance Server1, 86
WdrHs1o7, 93

CloudStack
architecture, 17–20
hypervisors, 18
KVM setup and installation (see

Kernel-based Virtual
Machine (KVM))

web site, 17
CloudStack cluster configuration

add cluster, 37
add guest network, 36
add host, 37, 40–41
add instances, 44
add Pod, 35
add zone, 35
default account, 35
host metrics, 43
host quick view, 42–43
instances

Add Instance button, 46
Ethernet configuration, 49–50
list, 47
ping hc4r2m5, 50–51
quick view

options, 47–48
wizard controls, 46–47

KVM-based cluster, 41–42
launch option, 39
primary storage, 38
Register ISO, 44–46
secondary storage, 38–39
typical errors, 38
user interface, 39–40

CloudStack server installation
management, 30
MySQL connector, 29
MySQL server, 28
system template setup, 30

Command line interface (CLI), 115

Index

360

D, E
Data Center Operating System (DCOS)

agent servers, 126, 203
Apache Spark framework, 348
Brooklyn, 343, 349–351
Cassandra Mesos framework (see

Cassandra Mesos framework)
CLI, 205–208
Docker, 199–200
execution, 209, 211–213
Exhibitor ZooKeeper, 127–129
genconf directory, 121
installation, 117–119, 121
install Docker, 132–134
install server, 200–202
journalctl command, 131
Linux yum, 198
Kafka, 346
Marathon, 129–130
master server, 124, 126, 203
mesos, 131, 341
overview, 115
problem tracking, 213, 215–217
resource management, 344
self-healing, 340
server installation, 121, 123–124
SSH configuration, 115–116
storage options, 345
user interface, 204, 352
visualisation, 347, 354

Datadog
Agent registration, 326
Agent setup, 324–325
dashboard graph, 328
dashboard multiple graphs, 328–329
description, 324
empty dashboard, 327
Get Started menu, 326

infrastructure host map, 332
infrastructure status, 331
master server dashboard, 333
Mesos integration application, 329–330
metrics, 335–336
monitor alert, 334–335
monitors, 334

DCOS, see Data Center Operating System
(DCOS)

Docker
configuration, 133
install, 132
Oracle VirtualBox, 134

F
Frameworks

Akka (see Akka framework)
Kafka-Client library, 260
Mesos clusters, 259
Netty (see Netty)
spring (see RabbitMQ)
stack architecture, 259
visualisation, 260

Fully Qualified Domain Name (FQDN),
23–24

G
Grafana

dashboard, 324
graph edit, 323
panel definition, 323
panel menu, 322

data source, 320
options, 321
test, 321
test results, 321

empty dashboard, 322

Index

361

InfluxDB data, 319–320
InfluxDB user interface, 318–319
login, 316–317
user interface, 317

H, I, J
Hadoop eco system, 139
Hadoop Distributed File

System (HDFS), 12
HDFS Mesos framework

create node, 144–145
Elodina hdfs-mesos GitHub-based

code, 141
hadoop command, 148
name node UI, 149–150
scheduler, 142–143
servers, 140
start node, 146–147
wget command, 141

Helium
bubble graph, 314
develop plug-in, 313–314
enable plug-in, 312
icons, 313
ultimate heat map, 315
ultimate pie chart, 315
Zeppelin 0.7, 312
zeppelin-vis and zeppelin-tabledata,

314
Hypervisors, 18

K
Kafka

architecture, 225
connector API, 226
consumer API, 225
DCOS CLI, 232

DCOS UI
brokers, 232
components, service, 231
download JSON-based

configuration file, 229–230
install package, 228
package 1.1.19.1, installed, 231
packages option, 227–228
REVIEW AND INSTALL button, 229
service, brokers, executors and

kafka, 229
success message, 230

description, 225
management using CLI

active tasks, 237
broker restarts and

replacements, 240
CLI kafka connection

command, 242
ConsoleConsumer, 246
DCOS CLI topic list command,

240–241
Exhibitor Kafka Explorer entry,

237–238
framework state, 236
Kafka brokers, 238, 240
kafka-client, 243–244
kafka-console-consumer.sh

script, 245
master processes, 242
ssh-agent, 242

management using Spark
consumer configuration, 255
DCOS services and Marathon user

interfaces, 256
export and dcos auth login

commands, 250
jar file, 250

Index

362

kafka-console-producer.sh
script, 254

KafkaConsumer class, 249
Kafka web site, 256
Linux tail command, 254
Mesos agent cluster node, 253
Mesos cluster address, 251
properties and variables, 248
SBT configuration file, 247–248
SBT project directory, 246
Scala source file, 248
Spark cluster drivers UI, 252
stderr log file, 255
submit-args option, 250–251
task logs, 253–254

producer API, 225
stream’s API, 226
topic, 226
topic offsets, 227

Kernel-based Virtual Machine (KVM)
CentOS 6.x Linux host, 31
create repository file, 32
host naming, 34
installation, 32
libvirt configuration, 33
prerequisites, 31
QEMU configuration, 32
running, 33

L
LAMP stack, 7

M
Marathon DCOS, 129–130, 159–160
MARQS stack, 7

Master server, 124, 126
MEAN stack, 7
Mesos

CentOS 6 server, 184–185
CentOS 6.8 server, 181
execution, 192–197
HDFS framework, 187–192
Linux yum, 182, 183

N
Netty

Apache Spark Version 1.6, 277
bootstrap and channel

classes, 279
buffer and channel classes, 281
ChannelInitializer class, 280
channelRead method, 282
connection, 278
description, 277
DiscardServer class, 279, 281
exceptionCaught method, 282
options and connections, 280
public run method, 279
server socket, 280
system architecture, 278

Network file system (NFS), 25, 27–28
Network time protocol (NTP), 24

O
Object-oriented programming (OOP)

encapsulation, 261
inheritance, 262
interfaces, 262
objects and classes, 261
polymorphism, 262
privacy, 262

Kafka (contd.)

Index

363

P
Problem-solving, CloudStack

firewalls, 57
indications, 55
log files, 56
primary and secondary

storage, 56–57
system VMs, 57

Processing function
server preparation, 179–180
stack architecture, 177–179

Q
Queueing module, big data stack

attributes, 220
DCOS issues

firewall, 222–223
network time synchronisation,

223–224
port conflict, 221–222
ZooKeeper, 224

description, 219
Spark, 221
stack architecture, 219–220 See also

Kafka

R
RabbitMQ

administration
HTTP API, 292
management plug-in, 291
monitoring, 292–293
statistics database, 292

architecture, 283
clustering, 286–287
definition, 282

enterprise support, 287
vs. Kafka, 284
languages, 285
messaging protocols, 284–285
plug-ins, 290–291
routing

direct exchange, 288
exchange types, 288
fanout exchange, 288–289
headers exchange, 289
topic exchange, 290

Relational database management systems
(RDBMs), 4, 6

Riak Mesos framework
active tasks, 163
env, 157
http direct interface, 164
install framework, 154–157, 159–160
Marathon DCOS environment

scheduler, 159–160
nodes, 162
riak-mesos command, 160–161
submodules, 155
VagrantFile, 155
Vagrant install, 154
VirtualBox install, 152–153
virtual node, 140

S, T, U
Secure Shell (SSH) access, 22–23

Mesosphere DCOS, 115–116
Security Enhanced Linux (SELinux), 24
Server-based Brooklyn install

brooklyn-mule-entity, 75
catalog, Mule class, 78
JVM-based source code, 76
Linux GitHub client, 75

Index

364

Linux ls command, 77
Maven repo (repository configuration

file), 76
Mule application

configuration, 82
deploy, 83
effectors, 82
flow, 83

Mule install, 80–81
Mule runtime, 84
Mule successful install, 81
pwd and ls Linux commands, 81
Ricston (ricston.com), 75
ssh-copy-id command, 78
ssh-keygen command, 77
successful mule application deploy, 84
username and password, 78
YAML blueprint, 79–80

Server preparation, CloudStack
check CentOS install, 22
check hostname FQDN, 23–24
cloudstack.apache.org web site, 20
configure

CloudStack package repository, 25
network interface, 23
NFS, 25, 27–28
NTP, 24
SELinux, 24

hypervisor host requirements, 21
management server requirements,

20–21
processing function, 179–180
SSH access, 22–23

SMACK stack, 7
Stack

processing component, 177, 179
processing function, 178

Stack monitoring
Brooklyn user interface, 352
CloudStack user interface, 352
Datadog, 353
DCOS user interface, 352
log files, 353
Marathon user interface, 353
Mesos user interface, 352
Spark user interface, 353

Stack storage
architecture, 139
Cassandra framework (see Cassandra

Mesos framework)
HDFS framework (see HDFS Mesos

framework)
Riak (see Riak Mesos framework)
virtual cloudstack instances, 140

V, W
Vagrant, Riak Mesos framework, 154
VirtualBox, Riak Mesos framework,

152–153
Visualisation, 354

Apache Mesos, 295
Apache Zeppelin (see Zeppelin)
stack architecture, 295

X, Y
X Windows system, 165

Z
Zeppelin

Datadog (see Datadog)
DCOS-based applications, 296
dynamic forms, 308–310

Server-based Brooklyn install (contd.)

Index

365

Grafana (see Grafana)
graph options

bar chart, 304
line graph, 305
pie chart, 305
pivot graph, 306–307
scatter graph, 306
solid graph, 305

helium (see Helium)
icon, 307–308
import notebook, 307–308
interpreters, 297–298
multi-user support, 316
Notebook menu option, 297
paragraph linking menu, 311–312
possible extensions, 316
scheduling notebook, 310

user interface, 296–297
web site, 296
worked example

assault variable, 302
case class Assault, 301
csv (comma-separated values), 300
data values, 302
example notebook, 299
import Java and Apache commons

libraries, 301
notebook bound interpreters, 300
notebook menu icons, 299–300
notebook session options, 302–303
notebook session output, 304
Spark Scala script, 301
variable assaultText, 301

ZooKeeper, Exhibitor for, 127–129

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Big Data Stack Overview
	What Is Big Data?
	Limitations of Approach
	Why a Stack?
	NoSQL Overview
	Development Stacks
	LAMP Stack
	MEAN Stack
	SMACK Stack
	MARQS Stack

	Book Approach
	Chapter 2 – Cloud Storage
	Chapter 3 – Release Management – Brooklyn
	Chapter 4 – Resource Management
	Chapter 5 – Storage
	Chapter 6 – Processing
	Chapter 7 – Streaming
	Chapter 8 – Frameworks
	Chapter 9 – Data Visualisation
	Chapter 10 – The Big Data Stack

	The Full Stack
	Cloud or Cluster
	The Future

	Chapter 2: Cloud Storage
	CloudStack Overview
	Server Preparation
	Minimum System Requirements
	Management Server Requirements
	Hypervisor Host Requirements

	Check CentOS Install
	Secure Shell (SSH) Access
	Configure Network
	Check Hostname FQDN
	Configure SELinux
	Configure NTP
	Configure CloudStack Package Repository
	Configure NFS (Network File System)

	CloudStack Server Install
	MySQL Server Install
	MySQL Connector Installation
	Management Server Installation
	System Template Setup

	KVM Setup and Installation
	Prerequisites
	Create Repository File
	KVM Installation
	KVM QEMU (Quick Emulator) Configuration
	Libvirt Configuration
	Check KVM Running
	Host Naming

	CloudStack Cluster Configuration
	Adding Hosts to the Cloud
	Adding an Instance to the Cloud
	Registering an ISO with CloudStack
	Creating an Instance from an ISO

	Advanced Zone Creation
	Problem-Solving
	CloudStack Log Files
	CloudStack Storage
	CloudStack System VMs
	CloudStack Firewall Issues

	Conclusion

	Chapter 3: Apache Brooklyn
	Brooklyn Install
	Brooklyn Overview
	Blueprints
	REST API
	Policy Management
	Monitoring
	Operations

	Modelling With Blueprints
	Application Installs
	Server-Based Install
	Cloud-Based Install

	Conclusion

	Chapter 4: Apache Mesos
	Mesos Architecture
	Mesos Install
	Overview
	Building Mesos
	Mesos System Requirements
	Mesos Build

	Starting Mesos
	Mesos User Interface
	Build Errors

	Mesosphere DCOS
	Overview
	SSH configuration
	Install Prerequisites
	Install Server
	Master Server
	Agent Server
	User Interfaces
	Logging and Problem Investigation
	Build Errors

	Project Myriad
	Myriad Architecture

	Conclusion

	Chapter 5: Stack Storage Options
	HDFS Mesos Framework
	Source Software
	Start Scheduler
	Create and Start HDFS Nodes
	Use HDFS Mesos Framework

	Riak Mesos Framework
	VirtualBox Install
	Vagrant Install
	Install Framework
	Use Framework

	Cassandra Mesos Framework
	Install Prerequisites
	Install X Windows
	Install VirtualBox and Vagrant
	Install Vagrant-Based DCOS
	Install Cassandra

	Conclusion

	Chapter 6: Processing
	Stack Architecture
	Server Preparation
	Mesos and Spark
	Build Mesos Part 1
	Build Mesos Part 2
	Build Mesos Part 3
	Building the Mesos Source
	Starting Mesos
	Installing the HDFS Framework
	Running Spark

	DCOS and Spark
	DCOS Build Part 1
	DCOS Build Part 2
	DCOS Build Part 3—Install Server
	DCOS Master Server Install
	DCOS Agent Server Install
	User Interfaces
	DCOS CLI Command Install
	Running a Spark Application
	Problem Tracking
	Check IP Detect
	Check FQDN
	Check Exhibitor Log
	Check /tmp
	Check Leader
	Check ready.spartan Process
	Check leader.mesos and master.mesos
	Check Mesos master
	Check Mesos DNS
	Check DC/OS Marathon
	Check Admin Router
	Check gen_resolvconf
	Check Slaves
	Check /var/log/messages
	Check NTP
	Check User Interfaces

	Conclusion

	Chapter 7: Streaming
	DCOS Issues
	Port Conflict Issues
	Firewall Issues
	Network Time Synchronisation
	ZooKeeper Issues

	The Kafka System
	Installing Kafka
	DCOS UI Kafka Install
	DCOS CLI Kafka Install

	Kafka Management Using the CLI
	Kafka Management Using Spark
	Conclusion

	Chapter 8: Frameworks
	Akka
	OOP Overview
	Distributed Systems Issues
	Akka Architecture
	Actor Attributes
	Actor References

	Actors
	Networking
	Streams
	Other Modules
	Enterprise Offerings

	Netty
	Spring
	RabbitMQ Overview
	Kafka or RabbitMQ?
	Messaging Protocols
	Languages
	Clustering
	Enterprise Support
	Routing
	Direct Exchange
	Fanout Exchange
	Headers Exchange
	Topic Exchange

	Plug-ins
	Administration
	Management Plug-in
	HTTP API
	Statistics Database
	Monitoring

	Conclusion

	Chapter 9: Visualisation
	Apache Zeppelin
	Interpreters
	Worked Example
	Graph Options
	Notebook Import
	Dynamic Forms
	Scheduling Notebook
	Sharing Session Output
	Helium
	Enable Plug-in
	Develop Plug-in
	Example Plug-ins

	Multi-user Support
	Possible Extensions

	Grafana
	Datadog
	Conclusion

	Chapter 10: The Big Data Stack
	Hardware Architecture
	Chapter Topics
	Chapter 2 Cloud
	Chapter 3 Brooklyn
	Chapter 4 Resource Management
	Chapter 5 Storage
	Chapter 6 Processing
	Chapter 7 Queueing
	Chapter 8 Frameworks
	Chapter 9 Visualisation

	Application Architecture
	Application Submission
	Brooklyn and DCOS
	Stack Monitoring
	Visualisation
	Cloud or Cluster
	Conclusion

	Index

