
Data Integration
Life Cycle
Management
with SSIS

A Short Introduction by Example
—
Andy Leonard

www.allitebooks.com

http://www.allitebooks.org

Data Integration Life
Cycle Management

with SSIS
A Short Introduction by

Example

Andy Leonard

www.allitebooks.com

http://www.allitebooks.org

Data Integration Life Cycle Management with SSIS

ISBN-13 (pbk): 978-1-4842-3275-0		 ISBN-13 (electronic): 978-1-4842-3276-7
https://doi.org/10.1007/978-1-4842-3276-7

Library of Congress Control Number: 2017960764

Copyright © 2018 by Andy Leonard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484232750.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Andy Leonard
Farmville, Virginia, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3276-7
http://www.allitebooks.org

For Christy.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Introduction to DIML��1

Some History��2

SSIS Is a Software Development Platform���2

SSIS Is an Enterprise Data Integration Engine��3

SSIS Is Difficult to Learn ��4

Lifecycle Management���4

Solutions and Credit Where Credit Is Due���5

Chapter 2: �SSIS��7

The Demo���8

Adding Package Parameters��9

Adding Project Parameters��10

A Note About Variables, Parameters, and Scope��12

Adding an Execute SQL Task��12

A Note About SSIS Variable Scope��15

Adding a Script Task��15

Why C#? ��16

Why ProjectName and TaskName?���18

Testing .Net Code Compiles Before Closing the VSTA Editor��������������������������20

About the Author��ix

Acknowledgments��xi

Foreword��xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Testing Progress��22

Conclusion���24

Chapter 3: �Source Control���25

Source Control Client���26

Creating a Team Project���26

Configuring SSDT to Use TFS Online��29

Chapter 4: �Deploy to the SSIS Catalog���41

Deploying from SSDT���41

Deploying from the Command Line ���45

Deployment Failures��50

Conclusion���59

Chapter 5: �Configure the SSIS Catalog Project������������������������������������61

Configuring Projects���62

Configuring Connections��63

Overriding the Connection Configuration���65

Externalizing the Connection Configuration ��69

Creating an Environment��71

Configuring an Environment���73

Configuring a Reference���74

Configuring a Reference Mapping��76

Testing the Configuration���78

Conclusion���82

Chapter 6: �Catalog Browser���83

Why I Built DILM Suite, by Andy Leonard���83

Surfacing the SSIS Catalog��84

SSIS Catalog Environment Configuration���85

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

SSIS Catalog Project Configuration��85

Catalog Browser���87

Conclusion���94

Chapter 7: �SSIS Catalog Compare��95

Why I Built SSIS Catalog Compare, by Andy Leonard���95

SSIS Catalog Compare���96

Expanding the Differences���97

Catalog Properties��99

SSIS Catalog Compare Scripting��101

Chapter 8: �SSIS Framework Community Edition�������������������������������123

SSIS Framework Community Edition���124

Help for SSIS Catalog Projects Already Deployed���125

Viewing SSIS Catalog Reports��126

Viewing SSIS Framework Community Edition Metadata������������������������������128

Chapter 9: �Catalog Reports��131

Chapter 10: �BimlExpress Metadata Framework��������������������������������137

Downloading and Installing BimlExpress���138

Downloading BimlExpress Metadata Framework���142

Following the README File Instructions���146

Full Circle���175

Chapter 11: �Conclusion��177

Appendix A: �Links��179

�Index��181

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Andy Leonard is Chief Data Engineer at Enterprise Data & Analytics.

He also is an SSIS trainer, consultant, and developer. Andy is a Business

Intelligence Markup Language (Biml) developer and BimlHero. He is also

a SQL Server database and data warehouse developer, community mentor,

engineer, and farmer. Andy is a co-author of SQL Server Integration

Services Design Patterns and The Biml Book.

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments

I thank God first for He leads me in right paths for his name’s sake

(Psalm 23:3). I thank Christy, my lovely bride, and our children—Stevie

Ray, Emma, and Riley—for sacrificing some Dad time. Thanks to the

awesome team at Enterprise Data & Analytics for their patience and hard

work while I wrote: Kent Bradshaw, Nick Harris, and Penny Trupe. I also

have an awesome team at Apress: Jill Balzano kept the wheels on the bus

going ‘round and ‘round and Jonathan Gennick is the best editor in the

business.

www.allitebooks.com

http://www.allitebooks.org

xiii

Foreword

I’ve had the honor and privilege of knowing and working with Andy

Leonard for several years. Most of that time has been spent collaborating

on projects as independent contractors. We’ve watched and learned as SSIS

has matured through the years. Andy is one of the most knowledgeable and

technically savvy people that I’ve had the pleasure of working with. And,

with close to 40 years in the field, I’ve worked with a lot of people.

This book is filled with best practices we learned through years of trial

and error with the practical application of SSIS to solve real problems. We

learned by doing and then rethinking to look for better solutions. Things

change quickly so we learn new things all the time. We are constantly

reevaluating what we’ve done in the past and comparing it with what we’ve

learned since then.

Data Integration Life Cycle Management with SSIS grew out of

the many iterations working on various projects. It’s not just about

development but also the effort of ongoing maintenance. Understanding

both sides is critical in developing processes that work well in the

DevOps enterprise. This approach is a methodology that helps make the

development and deployment processes more efficient, effective, and

predictable. That makes us all a little happier.

This book is also about sharing what has been learned along the

journey with others who can benefit from it. Andy is all about that, and it’s

one of the things that I appreciate most about him. I sincerely hope that

you find this book helpful now and for a long to come.

Enjoy!

Kent Bradshaw

Providence Forge, VA

Summer 2017

www.allitebooks.com

http://www.allitebooks.org

1
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_1

CHAPTER 1

Introduction to DIML

DevOps is a combination of the words “Development” and “Operations.”

DevOps is about process improvement, which manifests in faster time to

market, higher quality, repeatable automation, and code that is easier to

support and maintain. Software testing is a major part of DevOps, starting

with unit-testing conducted by software developers. Software testing

occurs at all enterprise application tiers (Development, Quality Assurance,

User Acceptance, Production, etc.). DevOps developers support

Operations by surfacing process instrumentation and building repeatable

configurations scripts. Configurations scripting supports higher quality

and faster disaster recovery, and rapidly and reliably adding enterprise

application tiers.

Software developers follow best practices to build robust enterprise

software. For decades, developers have applied a collection of best

practices called application lifecycle management, or ALM, when building

applications. What is ALM? Application lifecycle management includes

design principles that support DevOps. An important development

concept is separation of concerns, design best practices including

externalization (parameterization) and decoupling.

Data integration is moving data from one location to another. Data

is often collected from disparate sources and loaded into a database to

support centralized reporting. The reporting databases are known by

different names in different enterprises: operational data store (ODS),

2

staging database, central repository, data warehouse (DW), or enterprise

data warehouse (EDW), to list a few.

Data integration is software development. Data integration lifecycle

management, or DILM, is the art and science of managing data integration

in the modern DevOps enterprise. In this book, I share what I’ve learned

managing SQL Server Integration Services (SSIS) data integration solutions

in enterprises large and small.

My goal in writing this book is to teach you how to manage SSIS in your

enterprise. As with all other software development platforms, lifecycle

management is a best practice with SSIS. As with all other software

development, it’s possible to practice DevOps with SSIS.

�Some History
SQL Server Integration Services (SSIS) was released in November 2005.

Development on SSIS started long before, and I’m told the product was

originally slated to be dubbed Data Transformation Services (DTS) 2.0.

Many assemblies sport the namespace “Dts.”

I want to introduce this book by making a few statements about SSIS.

�SSIS Is a Software Development Platform
I cannot recall how many times I’ve seen job postings for database

administrators “with SSIS experience.”

Database administrator, database developer, and SSIS developer are
different roles.

Chapter 1 Introduction to DIML

3

I cringe a little when I read said postings. SSIS is a software

development platform and I am a software developer. I am also a database

developer. I am not a database administrator (DBA). I’ve tried to do the job

of a DBA and failed. Miserably. It’s not that I don’t appreciate the role of

a DBA; I promise I do. Some of my best friends are DBAs. I want to begin

by expressing to you this simple truth: DBA, database developer, and SSIS

developer are different roles.

�SSIS Is an Enterprise Data Integration Engine
SSIS is designed to move data from one location to another, which is

the essence of data integration. Data integration can include reshaping,

cleansing, and transformation of data; but at its heart, data integration is

data relocation. The SSIS Data Flow Task was revolutionary when it was

introduced. In my humble opinion, it remains pretty slick technology. The

pipeline architecture surfaces most of the levers one needs to tweak to

achieve enterprise scale.

Is SSIS the perfect data integration engine for every data integration

need? No. But it is an amazingly flexible solution to most data integration

requirements.

A number of times I’ve accomplished what-cannot-be-done with

SSIS. Years ago I even got into a flame war online with a really smart,

internet-famous software developer who wrote a post listing all the things

wrong with SSIS. I shared with this individual that I teach people SSIS and

all my students know the solution to almost every item listed in the post.

Someone recently asked me, “When is Microsoft going to deliver
an enterprise data integration engine?” My response? “2005.”

– Andy Leonard

Chapter 1 Introduction to DIML

4

�SSIS Is Difficult to Learn
How do I know? I (and others) have made a living for more than a decade

teaching people how to use SSIS.

All software platforms have “corners,” - quirks and edge cases that

the language just isn’t the best at managing. SSIS has about 30 corners. I

describe the data flow task to students in this manner: “SSIS wants you to

think like a data flow and thinking like a data flow is hard.”

“SSIS wants you to think like a data flow.”

�Lifecycle Management
SSIS, even at the time of this writing, is difficult to manage in the enterprise

lifecycle. Exhibit A is comparing SSIS packages. SSIS is XML-based. XML

is a self-describing data format with less respect for order than traditional

data stores. For example, the following XML snippets are equivalent:

<Book>

 <Title>Data Integration Lifecycle Management</Title>

 <Author>Andy Leonard</Author>

 <Year>2017</Year>

</Book>

<Book>

 <Author>Andy Leonard</Author>

 <Title>Data Integration Lifecycle Management</Title>

 <Year>2017</Year>

</Book>

You may look at this example and quip, “But Andy, I can figure out

that these data are equivalent just by looking at them.” You are correct;

examining five rows of data is pretty simple. Imagine looking at five

Chapter 1 Introduction to DIML

5

hundred rows of XML, with tags and attributes in a different order, and you

begin to understand the complexity of comparing XML data.

XML is not bad or wrong. XML’s semi-structured nature makes SSIS

difficult to compare.

�Solutions and Credit Where Credit Is Due
The remainder of this book focuses on solutions. With the exception of the

BimlExpress Metadata Framework, Kent Bradshaw, Kevin Hazzard, and I

developed the solutions contained in this book. Scott Currie and his team

at Varigence, Inc. built Business Intelligence Markup Language (Biml) and

taught us how to author Biml. Some of what Scott and his team taught us

made its way into the BimlExpress Metadata Framework.

A more accurate rendering of the facts is that Kent, Kevin, and I learned

what we know from experience and from others. In a very real sense, none

of us is self-taught. Rather, we are community-taught.

Some of these solutions are simply ways of using the technology

Microsoft shipped “in the box” with SSIS. Some are best practices. Some

are manual and others are automated. Some are free tools and utilities

by vendors. Some are free utilities and tools the team at Enterprise Data

& Analytics (entdna.com), Tudor Data Solutions (tudords.com), and

DevJourney (devjourney.com) have developed; many are part of the

DILM Suite (dilmsuite.com). One, BimlExpress, is a third-party product

from Varigence (varigence.com). A couple, SSIS Framework Community

Edition and BimlExpress Metadata Framework, are free versions of for-sale

implemented solutions that Enterprise Data & Analytics sells as part of

consulting engagements.

Do we have all the answers? Goodness no! We have some. Like you,

we learn new stuff every day. Here in this book is some of what we know

today.

Chapter 1 Introduction to DIML

7
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_2

CHAPTER 2

SSIS

This book is not intended to teach you SSIS. If you read this book and work

through the examples, you may learn more about SSIS. That is my hope,

but it’s not my goal in writing this book to teach you SSIS. My goal is teach

you how to manage SSIS in your enterprise. If you desire to learn SSIS,

I recommend the Stairway to Integration Services at SQL Server Central

(sqlservercentral.com/stairway/72494/) for beginners and SQL Server

Integration Services Design Patterns (amazon.com/Server-Integration-

Services-Design-Patterns/dp/1484200837) for more advanced learning.

Learning by example is best. In this chapter, you will build an SSIS

project for demonstration purposes. This SSIS project will include one

SSIS package, a connection manager, variables, project parameters,

and package parameters. You will use this SSIS project, DILMSample,

throughout the remainder of this book. The SSIS project is built in SQL

Server Data Tools (SSDT). Please see Appendix A for links to the tools and

utilities you will use throughout this book.

I will discuss data integration instrumentation and messaging to

surface log messages during the execution of the SSIS package. These

messages serve people troubleshooting failed executions and surface

important data integration instrumentation metadata.

8

�The Demo
Open SSDT and create a new SSIS project named DILMSample. When

SSDT creates a new SSIS project, it loads a default SSIS project. The default

SSIS project includes

•	 Project parameters, stored in the Project.params file

•	 A virtual folder for project-scope connection managers

•	 A virtual folder for package parts

•	 A virtual folder for control flow package parts

•	 A virtual folder for miscellaneous items

•	 A default (empty) SSIS package named Package.dtsx

Rename Package.dtsx as SimplePackage.dtsx, as shown in Figure 2-1.

Figure 2-1.  The DILMSample SSIS project

Renaming the package communicates intent; leaving the default

package name communicates laziness.

Chapter 2 SSIS

9

�Adding Package Parameters
Since we plan to use this project and package to demonstrate lifecycle

management, let’s add parameters. To start, click the Parameters tab on

the SimplePackage.dtsx package. Add two package parameters with the

settings shown in Table 2-1.

Table 2-1.  Package Parameter Settings

Name Data type Value Sensitive Required Description

IntPkgParam Int32 42 False False

StringPkgParam String Hi There! False False

When completed, your Parameters tab should appear similar to that

shown in Figure 2-2.

Figure 2-2.  Package parameters

You add these demo parameters at the package scope. Scope

is an important concept in software development and lifecycle

management. The “Dev” part of DevOps focuses on building code that

is easily manageable by Operations. How does scope help? Later you

will externalize parameter values into Transact-SQL (T-SQL) scripts.

Operations personnel will ultimately manage externalized values

by deploying and maintaining T-SQL scripts. One goal of DevOps

development is to communicate as much information as possible to

Chapter 2 SSIS

10

Operations people, especially Operations people who have no idea how

SSIS works. Scoping parameters and variables to their proper level (no

higher or lower) communicates where and how parameter values are used

in the SSIS application, thus shedding some light on the “black box” of the

data integration project.

�Adding Project Parameters
Open the Project Parameters window by double-clicking the Project.

params artifact in Solution Explorer, shown in Figure 2-3.

Figure 2-3.  Project parameters

Add two project parameters with the settings from Table 2-2.

Chapter 2 SSIS

11

Table 2-2.  Project Parameter Settings

Name Data type Value Sensitive Required Description

IntProjParam Int32 -99 False False

StringProjParam String A project

parameter

False False

Figure 2-4.  Project parameters

When completed your Project Parameters tab should appear similar to

that shown in Figure 2-4.

SSIS parameters work a lot like SSIS variables. There are two important

distinctions:

	 1.	 SSIS variable values may be changed at any time,

before or during SSIS package execution. SSIS

parameter values may be changed before SSIS

package execution but not during SSIS package

execution.

	 2.	 SSIS parameter values may be marked as sensitive

or required. Sensitive parameters are encrypted.

Required parameters must be overridden before

SSIS package execution.

Chapter 2 SSIS

www.allitebooks.com

http://www.allitebooks.org

12

�A Note About Variables, Parameters, and Scope
Create SSIS variables for values that will change during SSIS package

execution, such as variables used in Foreach Loop container assignments.

Create package-scope parameters for values used in a single SSIS

package. Package-scope parameter values cannot change during SSIS

package execution. Create project-scope parameters for values that are

shared across all (or several) SSIS packages in the SSIS project.

Save and close the Project Parameters window.

�Adding an Execute SQL Task
Add an Execute SQL Task to the control flow of the SimplePackage.dtsx

SSIS package. Open the Execute SQL Task Editor and set the

ConnectionType property to ADO.NET. Click the Connection property and

then click <New connection…>. The ADO.Net Connection Manager Editor

opens. You can configure the ADO.Net connection manager to connect

to any SQL Server database you desire. You are going to execute a generic

query that will work with any SQL Server relational database.

I am using a virtual machine named vmDemo. I have an instance of

SQL Server 2016 installed named vmDemo\Demo. I configured my ADO.Net

connection manager to connect to a database named TestDB, as shown in

Figure 2-5.

Chapter 2 SSIS

13

Click OK until you return to the Execute SQL Task Editor. Click in the

Value textbox of the SQLStatement property and then click the ellipsis

to open the Enter SQL Query dialog. In this dialog enter the following

Transact-SQL statement:

Select Count(*) As TableCount

From [sys].[tables]

Why alias the value of Count(*)? The Execute SQL task expects return

values in a tabular format with column names, especially if assigned to an

SSIS variable (which is next).

Figure 2-5.  Configuring an ADO.Net connection manager

Chapter 2 SSIS

14

Change the ResultSet property from None to Single Row. Click

the Result Set page in the listbox on the left side of the Execute SQL

Task Editor. Click the Add button and change the Result Name from

NewResultName to 0. Click the dropdown in the Variable Name column

beside the 0 Result Name and click <New variable…> to open the Add

Variable dialog. Make sure the Container is set to SimplePackage. Name

the variable TableCount and set the Value type property to Int32. Supply

a default Value of 0. Your Add Variable dialog should appear as shown in

Figure 2-6.

Figure 2-6.  Adding a new SSIS variable

You may select the scope of the SSIS variable using the Container

dropdown in the Add Variable dialog. Pay attention to this setting. If the

Execute SQL task resides in a Sequence container, it is easy to accidentally

scope a variable to the host Sequence container instead of the SSIS

package.

Chapter 2 SSIS

15

�A Note About SSIS Variable Scope
Because SSIS variables are rarely scoped beneath the SSIS package, the

Microsoft SSIS Development Team changed the default behavior for

SSIS variable scope. Before the change, SSIS variable scope defaulted to

the executable with focus. SSIS variable scope now defaults to the SSIS

package, except in Add Variable dialogs.

Click the OK button. Your Execute SQL Task Editor’s Result Set page

should appear as shown in Figure 2-7.

Figure 2-7.  A Result Set, configured

Click the OK button to close the Execute SQL Task Editor. Right-click

the Execute SQL task and click Rename. Rename the task “SQL Get Table

Count”.

�Adding a Script Task
Add a Script task to SimplePackage.dtsx’s Control Flow. Rename it “SCR

Log Values” and connect an OnSuccess precedence constraint from the

SQL Get Table Count Execute SQL task to the SCR Log Values Script task.

Open the Script Task Editor. You can select Microsoft Visual Basic as the

ScriptLanguage property or accept the default of Microsoft Visual C#. The

demos in this book will use C#.

Chapter 2 SSIS

16

�Why C#?
Since late 2016 Microsoft has repeatedly communicated that Visual Basic

and C# language functionality will diverge (blogs.msdn.microsoft.com/

dotnet/2017/02/01/the-net-language-strategy/). Microsoft’s stated

opinion (from the link) is that it will continue to evolve C# as a “state of the

art programming language” while other features won’t be added to Visual

Basic because “they wouldn’t address a need or fit naturally in VB.” Please

read the post and the links contained therein. C# and VB will be different

moving forward, and C# will get features that will not be available in VB.

For a good tutorial on C#, please visit bimlscript.com and click
the C# Primer link in the Learn Biml Now! lesson.

Click in the Value textbox of the ReadOnlyVariables property of the

Script Task Editor, and then click the ellipsis to open the Select Variables

dialog. Check the checkboxes for the following variables:

•	 System::TaskName

•	 System::PackageName

•	 User::TableCount

•	 $Package::IntPkgParam

•	 $Package::StringPkgParam

•	 $Project::IntProjParam

•	 $Project::StringProjParam

When completed, your Select Variables dialog should appear similar to

that shown in Figure 2-8.

Chapter 2 SSIS

17

Figure 2-8.  The Select Variables dialog

Chapter 2 SSIS

18

�Why ProjectName and TaskName?
As the code below will reveal, you will use these variables to construct a

value in the subComponent .Net variable in your code. Do you absolutely

need this variable for SSIS development? No. But you absolutely need this

variable if you are going to help the Operations team monitor and report

messages and failures from SSIS logs. For the developer side of DevOps,

it’s a few lines of code. For the Operations side of DevOps, it surfaces one

more piece of execution metadata in the logs. Providing this kind and level

of process instrumentation is vital to the successful integration of DevOps

and SSIS.

Click the OK button to close the Select Variables dialog. Your Script

Task Editor should now appear as shown in Figure 2-9.

Figure 2-9.  The Script Task Editor

Click the Edit Script button to open the Visual Studio Tools for

Applications (VSTA) Editor. Edit the public void Main() method to read as

follows:

public void Main()

{

 �string packageName = Dts.Variables["System::Package

Name"].Value.ToString();

 �string taskName = Dts.Variables["System::Task

Name"].Value.ToString();

Chapter 2 SSIS

19

 string subComponent = packageName + "." + taskName;

 bool fireAgain = true;

 �int tableCount = Convert.ToInt32(Dts.Variables

["User::TableCount"].Value);

 �int intPkgParam = Convert.ToInt32(Dts.Variables

["$Package::IntPkgParam"].Value);

 �string stringPkgParam = Dts.Variables["$Package::

StringPkgParam"].Value.ToString();

 �int intProjParam = Convert.ToInt32(Dts.Variables

["$Project::IntProjParam"].Value);

 �string stringProjParam = Dts.Variables["$Project::

StringProjParam"].Value.ToString();

 �string msg = "Table Count: " + tableCount.ToString();

 �Dts.Events.FireInformation(1001, subComponent,

msg, "", 0, ref fireAgain);

 �msg = "Package Parameters: IntPkgParam = " +

intPkgParam.ToString() + " ; StringPkgParam = " +

stringPkgParam;

 �Dts.Events.FireInformation(1001, subComponent, msg,

"", 0, ref fireAgain);

 �msg = "Project Parameters: IntProjParam = " +

intProjParam.ToString() + " ; StringProjParam = " +

stringProjParam;

 �Dts.Events.FireInformation(1001, subComponent,

msg, "", 0, ref fireAgain);

 Dts.TaskResult = (int)ScriptResults.Success;

}

Chapter 2 SSIS

20

When completed the code in your VSTA Editor should appear similar

to that shown in Figure 2-10.

Figure 2-10.  Code in Your VSTA Editor

Figure 2-11.  Script task error in VSTA .Net code

�Testing .Net Code Compiles Before Closing
the VSTA Editor
Have you ever coded away in an SSIS Script task, only to close the VSTA

Editor and then close the Script Task Editor to see the error shown in

Figure 2-11?

Chapter 2 SSIS

21

Kevin Hazzard shared a handy way to test the viability of the .Net code

contained in the VSTA Editor before closing the editor. Click Build ➤ Build

ST_… (VSTA scripts are uniquely named), as shown in Figure 2-12.

Figure 2-12.  Preparing to build a VSTA script

When you click Build ST_…, the VSTA Editor attempts to build the

script. In the lower left corner of the screen you will see “Build started,” as

shown in Figure 2-13.

Figure 2-13.  Build started

If there is a bug in the .Net code, the build will fail. If there are no bugs

in the .Net code, the build will succeed, as shown in Figure 2-14.

Figure 2-14.  Build succeeds or fails

Chapter 2 SSIS

22

Close the VSTA Editor and click the OK button in the Script Task Editor.

SimplePackage.dtsx should now appear as shown in Figure 2-15.

Figure 2-15.  SimplePackage.dtsx

The demonstration SSIS package and project are complete.

�Testing Progress
“All software is tested. Some intentionally.”

– Andy Leonard, circa 2005

It’s a good idea to always execute your package in the SSIS debugger.

How else will you know that what you built works?

Chapter 2 SSIS

23

Press the F5 key to start the SSIS debugger. If all goes as planned, you

should see both tasks succeed, as shown in Figure 2-16.

Figure 2-17.  OnInformation messages

Figure 2-16.  Success!

If you click the Progress tab, you should see the OnInformation

messages raised by your script, as shown in Figure 2-17.

Chapter 2 SSIS

24

Your demo is now ready to begin an epic journey into data integration

lifecycle management.

�Conclusion
In this chapter, you built an SSIS package that you will use for the lessons

throughout this book. I discussed data integration instrumentation and

messaging to surface SSIS package execution log messages. It’s important

for us on the Dev side of DevOps to signal supporting personnel on

the Ops side. It takes minutes to write this code that may save hours of

troubleshooting.

Chapter 2 SSIS

25
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_3

CHAPTER 3

Source Control

Later in this book, I will discuss why SQL Server database backup and

restore of the SSISDB database is not a viable method of SSIS code

promotion. You should back up the SSISDB database just like you should

back up all databases. You should not back up the SSISDB database for

code promotion, and you should not back up the SSISDB database in lieu

of source control.

There are two types of developers: those who use source control and

those who will. People ask me, “Which source control engine is best,

Andy?” My response is, “The one that you use.” Please use source control.

This section is not an exhaustive tutorial on source control or using
Team Foundation Services. I do not advocate one source control
engine over another.

In this chapter, I will demonstrate using Team Foundation Services

via Visual Studio Online (visualstudio.com). I will use the terms “source

control” and “version control” interchangeably because modern source

control engines also manage software versions.

26

�Source Control Client
Depending on which source control (or version control) engine you desire

to use, you may or may not require a Visual Studio plug-in (or extension).

Many developers use Subversion, a popular open-source version control

system, with Tortoise SVN, a Subversion client implemented as a Windows

shell. Tortoise is a highly intuitive interface that integrates into Windows

Explorer to provide context-sensitive menus available by right-clicking

file system folders that contain project artifacts under Subversion source

control.

Git is a popular version control system created by Linus Torvalds (the

creator of Linux). Git is a distributed source control system, which means

each developer maintains a local working copy of the repository. Git relies

heavily on branching (making another - usually local - copy of the current

version of the code) and merging (the process of adding changes to the -

usually local - edited version into another version of the code).

In this chapter I use Team Explorer, the Visual Studio plug-in for Team

Foundation Services (TFS). You can learn more about Visual Studio plug-

ins for TFS at visualstudio.com/en-us/docs/tools.

�Creating a Team Project
In this section, I demonstrate how I use the free source control available

at Visual Studio Online. I like Visual Studio Online because it’s difficult to

beat the price (free) and the total cost of ownership (also free). After setting

up an account you can create a New Team Project from the dashboard.

Mine is shown in Figure 3-1.

Chapter 3 Source Control

27

You can think of Visual Studio Online source control as an extension

of the Visual paradigm. The red box in Figure 3-2 is drawn around an SSIS

package, which can be considered a Visual Studio project artifact. Project

artifacts are lowest in the hierarchy of Visual Studio objects. The next

level is the project, surrounded by a blue box in Figure 3-2. Visual Studio

projects contain one or more project artifacts. Visual Studio solutions, such

as the DILMSuite solution circled in green in Figure 3-2, contain one or

more projects.

Figure 3-1.  Preparing to create a new team project

Figure 3-2.  The Visual Studio paradigm

Chapter 3 Source Control

28

Team Foundation Server extends this paradigm an additional level:

TFS team projects contain one or more Visual Studio solutions.

Click the “Create team project” link to proceed to the Create New

Project page, shown in Figure 3-3.

Figure 3-3.  Creating a new team project

To configure the new team project, add a name and optional

description, and then select a version control engine (Team Foundation

Version Control or Git) and a work item process. Click the Create button to

create the team project and proceed to the Team Project page, as shown in

Figure 3-4.

Chapter 3 Source Control

29

A new team project is now ready to go.

�Configuring SSDT to Use TFS Online
Returning to SSDT, you next configure a connection to TFS Online. Begin

by clicking the Team dropdown and clicking Manage Connections, as

shown in Figure 3-5.

Figure 3-4.  New team project

Figure 3-5.  Managing source control connections

Chapter 3 Source Control

30

If you haven’t configured a connection already, you may first see the

Connect to Team Foundation Server window shown in Figure 3-6.

Figure 3-6.  Connecting to Team Foundation Server

Click the Servers button to open the Add/Remove Team Foundation

Server dialog, as shown in Figure 3-7.

Chapter 3 Source Control

31

Click the Add button to open the Add Team Foundation Server dialog,

as shown in Figure 3-8.

Figure 3-7.  Add/Remove Team Foundation Server

Figure 3-8.  Adding a Team Foundation Server

Chapter 3 Source Control

32

Enter the URL of your TFS Online account page in the “Name or URL of

Team Foundation Server” textbox. Click the OK button to proceed.

The Add Team Foundation Server dialog closes and the Add/Remove

Team Foundation Server dialog should now list your TFS Online

configuration and appear similar to that shown in Figure 3-9.

Figure 3-9.  Configured Add/Remove Team Foundation Server
dialog

Click the Close button to return to the Connect to Team Foundation

Server dialog.

When the Connect to Team Foundation Server dialog displays, select

your new team project, as shown in Figure 3-10.

Chapter 3 Source Control

33

Click the Connect button. The Connect page of Team Explorer should

now appear, similar to that shown in Figure 3-11.

Figure 3-10.  Selecting a team project

Figure 3-11.  Team Explorer connected to TFS Online

Chapter 3 Source Control

34

In Solution Explorer, right-click the project name (DILMSample),

hover over Source Control, and then click Add Project to Source Control, as

shown in Figure 3-12.

Figure 3-12.  Preparing to add the project to source control

The Add Solution <Solution Name> to Source Control dialog displays

and contains the name of your team project in the team Project Locations

listbox, as shown in Figure 3-13.

Chapter 3 Source Control

35

Click the OK button to add the DILMSample project to source control.

Once added, the solution artifacts are decorated with + symbols in

Solution Explorer. The + symbol indicates the file is “newly added” to

source control but not yet checked in, as shown in Figure 3-14.

Figure 3-13.  Adding a solution to source control

Chapter 3 Source Control

36

Check in the solution by right-clicking the project name, hovering over

Source Control, and clicking Check In, as shown in Figure 3-15.

Figure 3-14.  Newly added to source control

Figure 3-15.  Checking in the solution

The Team Explorer Pending Changes window displays. It is a best

practice to always add a version comment, as shown in Figure 3-16.

Chapter 3 Source Control

37

You may or may not be prompted to confirm the check-in, as shown in

Figure 3-17.

Figure 3-16.  Preparing to check in the project

Chapter 3 Source Control

38

Once checked in, Team Explorer’s Pending Changes page will appear

as shown in Figure 3-18.

Figure 3-17.  Check-in confirmation

Figure 3-18.  All checked in

Chapter 3 Source Control

39

In this chapter, I demonstrated how to use Team Foundation Services

(TFS) Online via the Visual Studio Online website. For more information,

please visit visualstudio.com.

Figure 3-19.  Checked-in solution artifacts

Once checked in, Solution Explorer will display lock decorations

beside checked-in artifacts, as shown in Figure 3-19.

Chapter 3 Source Control

41
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_4

CHAPTER 4

Deploy to the SSIS
Catalog

The SSIS catalog was released with SSIS 2012. Each release of SSIS since

2012 has featured upgrades to catalog functionality. There are several ways

to deploy an SSIS project to the SSIS catalog. In this chapter, I will present

two deployment options:

•	 Deploy from SSDT

•	 Deploy from an ISPAC file

A key tenet of DevOps is automation, and in this chapter I will discuss

and demonstrate automated SSIS deployments.

�Deploying from SSDT
Since the first release of the SSIS catalog, SSIS has been backwards-

compatible. Prior to 2012, the deployment model for SSIS had no name;

there was only one way to deploy SSIS and three targets: the file system, the

MSDB database, and the “SSIS Package Store” (which was, by default, one

folder in the file system and the MSDB database combined). Deployment

to the SSIS catalog is a new way to deploy SSIS packages, so we needed a

name for the “old way” as well as a name for the “new way.” The new way

42

is called “project deployment model” and the old way is called “package

deployment model.”

In this chapter (and book), I focus on the project deployment model.

The project deployment model is required to deploy SSIS packages to the

SSIS catalog.

To deploy your demo project, open the project in SSDT, right-click the

project name in Solution Explorer, and click Deploy, as shown in Figure 4-1.

Figure 4-1.  Deploying the DILMSuite SSIS project from SSDT

The Integration Services Deployment Wizard is an extremely functional

piece of software. The underlying executable, ISDeploymentWizard.exe,

sports a graphical user interface (GUI) and a command-line interface (CLI).

The utility supports deployment from ISPAC file to SSIS catalog as well as

SSIS catalog to SSIS catalog and, starting with SSIS 2016, supports package

deployment as well as project deployment. I won’t dive deeply into this

awesome application; just know that I truly appreciate the excellence

apparent in the Integration Services Deployment Wizard.

The Integration Services Deployment Wizard displays the Introduction

page or the Select Destination page (if you previously checked the “Do not

show this page again” checkbox on the Introduction page), as shown in

Figure 4-2.

Chapter 4 Deploy to the SSIS Catalog

www.allitebooks.com

http://www.allitebooks.org

43

If the Introduction page is displayed, click the Next button to proceed

to the Select Destination page.

Did I skip over the Select Source page? Yes. When started from inside
SSDT, the Integration Services Deployment Wizard already has the
information it needs about the source.

Enter the name of server that hosts your SSIS catalog. Click the Browse

button to select the target catalog folder. When completed your Select

Destination page should appear similar to that shown in Figure 4-3.

Figure 4-2.  The Integration Services Deployment Wizard
Introduction page

Chapter 4 Deploy to the SSIS Catalog

44

The Path value shown on the Select Destination page refers to the SSIS

catalog path of the SSIS project. SSIS catalog projects are contained in an

SSIS catalog folder, which is contained in an SSIS catalog (which is always

named SSISDB). SSIS packages are contained in SSIS catalog projects.

Click the Next button to proceed to the Review page, as shown in

Figure 4-4.

Figure 4-3.  The Integration Services Deployment Wizard Select
Destination page

Chapter 4 Deploy to the SSIS Catalog

45

It’s easy to skip right past the Integration Services Deployment Wizard

Review page without giving it a second glance, but I want you to pause

here with me for a moment because there is some information here that

may prove useful to you in the future (or present).

�Deploying from the Command Line
Deployment via CLI is powerful and useful for DevOps automation. The

Source and Destination information is self-explanatory. Please note in

the screenshot that I right-clicked the Command line to surface a context

menu with a single option: Copy. I’ve pasted the command line here:

Figure 4-4.  Reviewing deployment selections and options

Chapter 4 Deploy to the SSIS Catalog

46

Command line: /Silent /ModelType:Project /SourcePath:"E:\

Projects\DILMSample\DILMSample\bin\Development\DILMSample.

ispac" /DestinationServer:"vmDemo\Demo" /DestinationPath:

"/SSISDB/Test/DILMSample"

SSIS ships with a number of utilities, some of which may be called

from a command prompt. Any utility that can be called from a command

prompt may be scheduled using SQL Agent (provided command-line

execution is enabled), Windows Scheduler, or almost any other scheduling

service or utility.

In order to use the command line shared on the Integration Services

Deployment Wizard Review page, you need to know a couple things:

	 1.	 The location of the executable

	 2.	 The meaning of the switches and values

I installed the Demo instance of SQL Server on vmDemo’s E: drive so

the location of ISDeploymentWizard.exe is E:\Program Files\Microsoft

SQL Server\130\DTS\Binn\ISDeploymentWizard.exe, as shown in

Figure 4-5.

Figure 4-5.  The location of the ISDeploymentWizard.exe file

This is the same application that is currently open and executing; it is

the Integration Services Deployment Wizard executable. As mentioned

earlier, the executable exposes two interfaces: a GUI and a CLI. It’s possible

Chapter 4 Deploy to the SSIS Catalog

47

to execute the entire deployment of your SSIS project, DILMSuite, by

opening a command prompt, supplying the path to ISDeploymentWizard.

exe followed by the command line above. Don’t believe me? Check out

Figure 4-6.

Figure 4-6.  Deployment via the command line

Figure 4-7.  Deployment failure using the CLI

There’s good news and bad news here. The good news is this execution

succeeded. The bad news? There is no feedback provided if the execution

succeeds. How can you tell it succeeded? Well, it didn’t fail. What does a

failure look like? A failure may result in a prompt from the CLI that gives

you a list of the acceptable switches, as shown in Figure 4-7.

This isn’t the only failure response. For example, if you mistype the

name of the destination server, you will get a “Failed to connect” message

after ISDeploymentWizard.exe tries to contact the server for 30 seconds.

That message will appear similar to Figure 4-8.

Chapter 4 Deploy to the SSIS Catalog

48

Another way to detect success is to use SSMS to connect to the SSIS

catalog and check for the existence of your SSIS project, as shown in

Figure 4-9.

Figure 4-8.  Deployment failure due to connection error

Figure 4-9.  The SSIS project deployed to the SSIS catalog

If the SSIS project has been deployed before, though, you can check

by right-clicking the SSIS project in the catalog and clicking Versions, as

shown in Figure 4-10.

Figure 4-10.  Opening SSIS catalog project versions

Chapter 4 Deploy to the SSIS Catalog

49

The Project Versions dialog displays as shown in Figure 4-11.

Figure 4-11.  Viewing SSIS catalog project versions

The last deployment is marked as Current.

Returning to your deployment from SSDT, if you click the Deploy

button on the Integration Services Deployment Wizard Review page, the

Deployment Wizard will attempt to deploy your SSIS project to the SSIS

catalog you selected, into the SSIS catalog folder you specified, as shown in

Figure 4-12.

Chapter 4 Deploy to the SSIS Catalog

50

If all goes as hoped, the deployment will be a success.

�Deployment Failures
Sometimes bad things happen to good deployments. You may be reading

this book because you experienced a deployment failure triggered by a

good-faith effort to restore the SSIS catalog database, SSISDB.

Backup and restore is not a recommended method for promoting or
transferring SSIS projects between SSIS catalogs!

Figure 4-12.  Successful deployment

Chapter 4 Deploy to the SSIS Catalog

51

When you attempt to deploy an SSIS project (or package) to an SSIS

catalog after SSISDB was improperly restored, the deployment will not

succeed. Instead, your Integration Services Deployment Wizard Results

page will appear as shown in Figure 4-13.

Figure 4-13.  Failed SSIS project deployment

When you click the Failed link, the message box in Figure 4-13 will

display the error message,

Please create a master key in the database or open

the master key in the session before performing this

operation. (Microsoft SQL Server, Error: 15581)

Please find more information about backing up and restoring the SSIS

catalog database (SSISDB) on the SSIS Catalog page in the section titled

“Back up, Restore, and Move the SSIS Catalog” (docs.microsoft.com/

en-us/sql/integration-services/service/ssis-catalog). I blogged

about this scenario and the post includes a script one can use to restore

SSISDB. You can find my post titled “Deploying SSIS Projects to a Restored

Chapter 4 Deploy to the SSIS Catalog

52

SSIS Catalog” at andyleonard.blog/2017/07/29/deploying-ssis-

projects-to-a-restored-ssis-catalog-ssisdb. The script I use is the

following:

/*

 My script for restoring SSISDB to a SQL Server 2016 SP1

instance of SQL Server.

I followed the instructions found at https://msdn.microsoft.

com/en-us/library/hh213291(v=sql.130).aspx

Hope this helps,

Andy Leonard

*** Action is required where you see three asterisks "***"

*/

-- create the ##MS_SSISServerCleanupJobLogin## login if it does

not already exist.

USE [master]

GO

print '##MS_SSISServerCleanupJobLogin## login'

If Not Exists(Select [name]

From sys.sql_logins

Where [name] = '##MS_SSISServerCleanupJobLogin##')

begin

print ' – Creating the ##MS_SSISServerCleanupJobLogin## login'

CREATE LOGIN [##MS_SSISServerCleanupJobLogin##] WITH PASSWORD

=N'DWehrJfiRgMxEFaE=KxomUkF7fnV3poW/ZQPJ' -- *** change this,

please – Andy

, DEFAULT_DATABASE=[master]

, DEFAULT_LANGUAGE=[us_english]

, CHECK_EXPIRATION=OFF

, CHECK_POLICY=OFF

Chapter 4 Deploy to the SSIS Catalog

53

print ' – ##MS_SSISServerCleanupJobLogin## login created'

end

Else

print ' – ##MS_SSISServerCleanupJobLogin## already exists.'

GO

print ''

print ' – Disabling the ##MS_SSISServerCleanupJobLogin## login'

ALTER LOGIN [##MS_SSISServerCleanupJobLogin##] DISABLE

print ' – ##MS_SSISServerCleanupJobLogin## login disabled'

GO

USE [master]

GO

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

print 'dbo.sp_ssis_startup stored procedure'

If Exists(Select s.name + '.' + p.name

From sys.procedures p

Join sys.schemas s

On s.[schema_id] = p.[schema_id]

Where s.[name] = 'dbo'

And p.name = 'sp_ssis_startup')

begin

print ' – Dropping dbo.sp_ssis_startup stored procedure'

Drop PROCEDURE [dbo].[sp_ssis_startup]

print ' – dbo.sp_ssis_startup stored procedure dropped'

end

Chapter 4 Deploy to the SSIS Catalog

54

print ' – Creating dbo.sp_ssis_startup stored procedure'

go

 CREATE PROCEDURE [dbo].[sp_ssis_startup]

AS

SET NOCOUNT ON

/* Currently, the IS Store name is 'SSISDB' */

IF DB_ID('SSISDB') IS NULL

RETURN

IF NOT EXISTS(SELECT name FROM [SSISDB].sys.procedures WHERE

name=N'startup')

RETURN

/*Invoke the procedure in SSISDB */

/* Use dynamic sql to handle AlwaysOn non-readable mode*/

DECLARE @script nvarchar(500)

SET @script = N'EXEC [SSISDB].[catalog].[startup]'

EXECUTE sp_executesql @script

GO

print ' – dbo.sp_ssis_startup stored procedure created'

print ''

use master

go

print 'Enabling SQLCLR'

exec sp_configure 'clr enabled', 1

reconfigure

print 'SQLCLR enabled'

print ''

print 'MS_SQLEnableSystemAssemblyLoadingKey asymetric key'

If Not Exists(Select [name]

From sys.asymmetric_keys

Chapter 4 Deploy to the SSIS Catalog

55

Where [name] = 'MS_SQLEnableSystemAssemblyLoadingKey')

begin

print ' – Creating MS_SQLEnableSystemAssemblyLoadingKey'

Create Asymmetric key MS_SQLEnableSystemAssemblyLoadingKey

From Executable File = 'E:\Program Files\Microsoft SQL

Server\130\DTS\Binn\Microsoft.SqlServer.IntegrationServices.

Server.dll' -- *** check this, please – Andy

print ' – MS_SQLEnableSystemAssemblyLoadingKey created'

end

Else

print ' – MS_SQLEnableSystemAssemblyLoadingKey already exists.'

go

print ''

print 'MS_SQLEnableSystemAssemblyLoadingUser SQL Login'

If Not Exists(Select [name]

From sys.sql_logins

Where [name] = 'MS_SQLEnableSystemAssemblyLoadingUser')

begin

print ' – Attempting to create MS_

SQLEnableSystemAssemblyLoadingUser Sql login'

begin try

Create Login MS_SQLEnableSystemAssemblyLoadingUser

From Asymmetric key MS_SQLEnableSystemAssemblyLoadingKey

print ' – MS_SQLEnableSystemAssemblyLoadingUser Sql login

created'

print ' – Granting Unsafe Assembly permission to MS_SQL

EnableSystemAssemblyLoadingUser'

Grant unsafe Assembly to MS_SQLEnableSystemAssemblyLoadingUser

print ' – MS_SQLEnableSystemAssemblyLoadingUser granted Unsafe

Assembly permission'

end try

Chapter 4 Deploy to the SSIS Catalog

56

begin catch

print ' – Something went wrong while attempting to create the

MS_SQLEnableSystemAssemblyLoadingUser Sql login, but it''s

probably ok...'

-- nothing for now

end catch

end

Else

print ' – MS_SQLEnableSystemAssemblyLoadingUser Sql login

already exists.'

go

print ''

print 'Restoring SSISDB'

USE [master]

begin try

ALTER DATABASE [SSISDB] SET SINGLE_USER WITH ROLLBACK IMMEDIATE

end try

begin catch

-- ignore the error (usually happens because the database

doesn't exist...)

end catch

RESTORE DATABASE [SSISDB]

FROM DISK = N'E:\Andy\backup\SSISDB_SP1.bak' -- *** check

this, please – Andy

WITH FILE = 1,

MOVE N'data' To N'E:\Program Files\Microsoft SQL Server\

MSSQL13.TEST\MSSQL\DATA\SSISDB.mdf', -- *** check this,

please – Andy

Chapter 4 Deploy to the SSIS Catalog

57

MOVE N'log' TO N'E:\Program Files\Microsoft SQL Server\MSSQL13.

TEST\MSSQL\DATA\SSISDB.ldf', -- *** check this, please – Andy

NOUNLOAD

, REPLACE

, STATS = 5

ALTER DATABASE [SSISDB] SET MULTI_USER

GO

print ' – SSISDB restore complete'

print ''

print 'Set ProcOption to 1 for dbo.sp_ssis_startup stored

procedure'

EXEC sp_procoption N'[dbo].[sp_ssis_startup]', 'startup', '1'

print 'ProcOption set to 1 for dbo.sp_ssis_startup stored

procedure'

GO

print ''

Use SSISDB

go

print '##MS_SSISServerCleanupJobUser## user in SSISDB database'

If Not Exists(Select *

From sys.sysusers

Where [name] = '##MS_SSISServerCleanupJobUser##')

begin

print ' – Creating ##MS_SSISServerCleanupJobUser## user'

CREATE USER [##MS_SSISServerCleanupJobUser##] FOR LOGIN

[##MS_SSISServerCleanupJobLogin##] WITH DEFAULT_SCHEMA=[dbo]

print ' – ##MS_SSISServerCleanupJobUser## user created'

end

Chapter 4 Deploy to the SSIS Catalog

58

Else

print ' – ##MS_SSISServerCleanupJobUser## already exists.'

GO

print ''

/*

-- One method for restoring the master key from the file.

-- NOTE: You must have the original SSISDB encryption password!

Restore master key from file = 'E:\Andy\backup\SSISDB_SP1_

key' -- *** check this, please – Andy

Decryption by password = 'SuperSecretPassword' -- 'Password

used to encrypt the master key during SSISDB backup' -- ***

check this, please – Andy

Encryption by password = 'SuperSecretPassword' -- 'New

Password' -- *** check this, please – Andy

Force

go

*/

-- Another method for restoring the master key from the file.

-- NOTE: You must have the original SSISDB encryption password!

print 'Opening the master key'

Open master key decryption by password = 'SuperSecretPassword'

--'Password used when creating SSISDB' -- *** check this,

please – Andy

Alter Master Key

Add encryption by Service Master Key

go

print 'Master key opened'

print ''

print 'Checking the SSIS Catalog Schema Version'

exec [catalog].check_schema_version @use32bitruntime = 0

Chapter 4 Deploy to the SSIS Catalog

59

The Transact-SQL script listed above requires you to supply

the password used to create the SSIS catalog; replace the text

“SuperSecretPassword” with the password for your SSIS catalog. Each

place you see the comment, -- *** check this, please – Andy, please

check the preceding line of T-SQL.

�Conclusion
In this chapter, I demonstrated deploying an SSIS project to the SSIS

catalog. You examined the Integration Services Deployment Wizard’s GUI

and CLI. I discussed the importance of deployment in any enterprise that

practices DevOps.

Chapter 4 Deploy to the SSIS Catalog

61
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_5

CHAPTER 5

Configure the SSIS
Catalog Project

A key tenet of enterprise DevOps is externalization, which is the

configuration or parameterization of code. The configuration is stored

apart from the code itself. Externalization promotes code reuse and

supports decoupling, both best practices in software development. In this

chapter, I focus on externalizing SSIS connection manager connection

string properties because I believe it is an SSIS best practice to manage

SSIS project and package connection strings via external configurations.

Your DILMSample SSIS project is deployed to your SSIS catalog.

Expanding the Integration Services Catalogs node in SSMS’s Object

Explorer surfaces the view shown in Figure 5-1.

Figure 5-1.  The DILMSample SSIS project in the Integration Services
Catalogs node, as shown by SSMS’s Object Explorer

62

You see the SSIS catalog (SSISDB), two SSIS catalog folders

(Framework and Test), one SSIS catalog project in the Test catalog folder

(DILMSample), and one SSIS package in the DILMSample catalog project

(SimplePackage.dtsx).

Why do I write SSIS project in some places and SSIS catalog project in

other places? I am referring to two distinct objects.

	 1.	 An SSIS project exists in the context of SQL Server

Development Tools (SSDT). It is a (hopefully source-

controlled) project under development.

	 2.	 An SSIS catalog project is an SSIS project that has

been deployed to an SSIS catalog.

It will help to think of SSIS catalog projects as separate and distinct

objects, separated from the SSIS projects that exist outside the SSIS

catalog, especially when thinking of SSIS catalog project configuration. The

two are weakly coupled in this fashion: changes made to the SSIS project

may impact its related SSIS catalog project, and then only after deployment

to the SSIS catalog. Changes made to the SSIS catalog project in no way

impact the SSIS project.

�Configuring Projects
You have several options for configuring your SSIS catalog project. In SSMS

Object Explorer’s Integration Services Catalogs node, expand the subnodes

to the DILMSample project level. Right-click the DILMSample SSIS catalog

project and click Configure, as shown in Figure 5-2.

Chapter 5 Configure the SSIS Catalog Project

63

The Configure – DILMSample dialog opens.

�Configuring Connections
The SSIS catalog treats connection manager properties like parameters.

In fact, if you query the [catalog].[object_parameters] view, you will

find parameters with names like “CM.<SSIS Connection Manager Name>.

ConnectionString”. This is a connection manager parameter. I’m pretty

sure “CM” indicates “connection manager.” “<SSIS Connection Manager

Name>.ConnectionString” is a connection manager’s ConnectionString

property, for sure.

When the Configure – DILMSample window displays, click the

Connection Managers tab to view the connection’s configuration, as

shown in Figure 5-3.

Figure 5-2.  Preparing to configure the DILMSample catalog
project

Chapter 5 Configure the SSIS Catalog Project

64

Note the listbox below the Parameters and Connection Managers

tabs. It surfaces the container (a catalog project artifact) and name (of

the connection manager). My SSIS project contains a single connection

manager in SimplePackage.dtsx, so SimplePackage.dtsx is the container

and the connection manager name is vmDemo\Demo.TestDB1. The name

of your connection manager will almost certainly differ, as will your

ConnectionString property, to which you next turn your attention.

The value in the ConnectionString property is the value configured

at design time. The SSIS catalog will always have access to design-time

default values. If I execute the SimplePackage.dtsx SSIS package in

the SSIS catalog as it is currently configured, it will execute and attempt

to connect to the vmDemo\Demo instance of SQL Server and the TestDB

database. Because I’ve deployed this SSIS project to the SSIS catalog

hosted on the vmDemo\Demo SQL Server instance, the SimplePackage.dtsx

package should execute without issue.

But what happens when I deploy the DILMSample SSIS project to

a different SSIS catalog? SimplePackage.dtsx may or may not execute

successfully, depending on a number of factors that impact whether

processes executing on one server can connect to SQL Server instances

hosted on other servers.

Figure 5-3.  Viewing the connection manager’s configuration

Chapter 5 Configure the SSIS Catalog Project

65

One key thing to remember is this: as the SSIS project is configured

at this time, each time I deploy the DILMSample SSIS project, the

default value of the vmDemo\Demo.TestDB1 connection manager in

SimplePackage.dtsx will always be configured to connect to the vmDemo\

Demo instance of SQL Server and the TestDB database on that instance.

�Overriding the Connection Configuration
How does one change the connection configuration? Click the ellipsis

to the right of the ConnectionString property’s Value textbox, circled in

Figure 5-4.

Figure 5-4.  Preparing to open the ConnectionString’s Value
configuration

The Set Parameter Value dialog opens.

In the SSIS catalog, project parameters, package parameters, and
connection manager properties are all considered parameters.

Chapter 5 Configure the SSIS Catalog Project

66

Select and copy the design-time default value of the ConnectionString

property, found in the textbox beside the “Use default value from package”

option, and paste it into the “Edit value” textbox, as shown in Figure 5-5.

Figure 5-5.  Editing the ConnectionString property value

I made a couple changes to the ConnectionString after pasting it into

the Edit Value textbox. I deleted a Guid value from the Application Name

setting and I changed the data source from vmDemo\Demo to (local)\Demo.

The data source is technically the same as before. I made the change

so that I can later be certain which value is being used: the design-time

default or this literal override.

Click the OK button to proceed to the override page in Figure 5-6.

Chapter 5 Configure the SSIS Catalog Project

67

The ConnectionString value has been overridden by an SSIS catalog

literal override. This is indicated by the bold text decoration of the value.

You can think of a literal override as hard-coding a configuration value

into the SSIS catalog. Subsequent deployments of the DILMSample SSIS

project to this SSIS catalog will not change the value of the literal override,

even if you change the value of the connection manager’s design-time

default ConnectionString value. This is one reason I refer to an SSIS project

in SSDT and an SSIS catalog project or catalog project once it has been

deployed to an SSIS catalog.

As someone with permission to configure an SSIS catalog, you can

always revert any literal override to the design-time default value by

selecting the “Use default value from package” option in the Set Parameter

Value dialog, as shown in Figure 5-7.

Figure 5-6.  A catalog project literal override

Chapter 5 Configure the SSIS Catalog Project

68

The value text decoration returns to none and the value reverts to the

design-time default, as shown in Figure 5-8.

Figure 5-7.  Reselecting the design-time default

Chapter 5 Configure the SSIS Catalog Project

69

�Externalizing the Connection Configuration
So far you’ve examined two sources of SSIS catalog project configurations

settings: design-time defaults and literal overrides. You probably noticed

a third option on the Set Parameter Values dialog, one that was disabled.

“Use environment variable” is the third option but it requires additional

configuration before this option is enabled.

Before we jump into the next demo, let’s discuss how the SSIS

catalog manages externalization. Externalization is storing values in

some other location for use at runtime. The SSIS catalog’s mechanism

for externalization is SSIS catalog environments. Catalog environments

contain a collection of catalog environment variables which, in turn,

contain values that are used at runtime to override catalog project

parameter values.

That last paragraph is relatively short for the depth and importance of

the information contained therein. Please let it sink in before proceeding.

Let’s talk about the SSIS catalog’s externalization mechanism in more

detail. Let’s begin with an SSIS catalog environment, as shown in Figure 5-9.

Figure 5-8.  Reverted to design-time default

Chapter 5 Configure the SSIS Catalog Project

70

The SSIS catalog environment contains a collection of zero or more

SSIS catalog environment variables, as shown in Figure 5-10.

Figure 5-9.  A catalog environment (figuratively)

Figure 5-10.  A catalog environment variable in a catalog
environment

To connect an SSIS catalog environment to an SSIS catalog project,

the SSIS catalog uses a reference. A reference is simply a relationship that

connects a catalog project to a catalog environment, as shown in Figure 5-11.

Figure 5-11.  A reference relating an SSIS catalog project to an SSIS
catalog environment

Chapter 5 Configure the SSIS Catalog Project

71

In order for a parameter in a catalog project to consume a catalog

environment variable value, a reference mapping is created. A reference

mapping maps a value stored in an SSIS catalog environment variable to a

parameter in an SSIS catalog project, as shown in Figure 5-12.

Figure 5-12.  A reference mapping between an SSIS catalog project
parameter and an SSIS catalog environment variable

To restate, because this can be a challenging topic, you first create

and configure an SSIS catalog environment. Configuring the catalog

environment includes defining SSIS catalog environment variables. That’s

the first step in externalization.

You next create a reference between an SSIS catalog environment

and an SSIS catalog project. Creating a reference is the second step in

externalization.

You may then assign SSIS catalog environment variables to SSIS

catalog project parameters via the reference. This is reference mapping.

Mapping a parameter value to a catalog environment variable value via a

reference is the third step in externalization.

Let’s walk through this procedure in a demo.

�Creating an Environment
In the SSIS catalog, right-click the Environments virtual folder found in

the Test catalog folder and then click Create Environment, as shown in

Figure 5-13.

Chapter 5 Configure the SSIS Catalog Project

72

When the Create Environment dialog displays, provide an

environment name and optional description, as shown in Figure 5-14.

Figure 5-13.  Preparing to create a catalog environment

Figure 5-14.  Creating an SSIS catalog environment

Click OK to close the Create Environment dialog.

Chapter 5 Configure the SSIS Catalog Project

73

�Configuring an Environment
Expand the Environments virtual folder in the SSIS catalog. Right-click the

new catalog environment and click Properties, as shown in Figure 5-15.

Figure 5-15.  Preparing to configure the SSIS catalog environment
variables

Click the Variables page. Add a name for your catalog environment

variable (I named mine ConnectionString). Set the type to String. Add a

valid connection string to the Value field, as shown in Figure 5-16.

Chapter 5 Configure the SSIS Catalog Project

www.allitebooks.com

http://www.allitebooks.org

74

Click the OK button to close the Environment Properties dialog.

�Configuring a Reference
Right-click the DILMSample catalog project and click Configure. When the

Configure – DILMSample dialog opens, click the References page. Click the

Add button and select the catalog environment you just created beneath

the Local Folder (Test) virtual folder in the Browse Environments

dialog, as shown in Figure 5-17.

Figure 5-16.  Configuring an SSIS catalog environment variable

Chapter 5 Configure the SSIS Catalog Project

75

There are actually two “paths” to the envConnection1 catalog

environment available in the Browse Environments dialog. The Local

Folder path creates a “relative” reference in SSIS catalog parlance.

If you expand the SSISDB ➤ Test folder, you could select the same

envConnection1 catalog environment. This would create an “absolute”

reference.

Click the OK button to select the catalog environment for the reference.

The Configure – DILMSample references page will appear similar to that

shown in Figure 5-18.

Figure 5-17.  Selecting the catalog environment for the reference

Chapter 5 Configure the SSIS Catalog Project

76

Please note the “.” in the Environment Folder column; it indicates you

selected a local catalog environment, or a catalog environment from the

same catalog folder as the catalog project.

�Configuring a Reference Mapping
Click the Parameters page and then click the Connection Managers tab.

Click the ellipsis beside the ConnectionString property for your lone

connection manager to open the Set Parameter Value dialog. Please note

all three value configuration options are now enabled. Select the “Use

environment variable” option and then select the ConnectionString

catalog environment variable from the dropdown, as shown in Figure 5-19.

Figure 5-18.  Reference configured!

Chapter 5 Configure the SSIS Catalog Project

77

Click the OK button to create the reference mapping between the SSIS

catalog project parameter, SimplePackage.dtsx’s vmDemo\Demo\testDB1

connection manager ConnectionString, and the SSIS catalog environment

variable named ConnectionString found in the reference to the SSIS catalog

environment you created a few minutes ago. Your Configure – DILMSample

dialog should now appear similar to that shown in Figure 5-20.

Figure 5-19.  Selecting the catalog environment variable for the
reference mapping

Chapter 5 Configure the SSIS Catalog Project

78

Please note that the value of the ConnectionString property is now the

name of the SSIS catalog environment variable, and the text is decorated

with an underline.

�Testing the Configuration
To test your configuration, you will execute the SSIS package in the SSIS

catalog. Right-click SimplePackage.dtsx and click Execute, as shown in

Figure 5-21.

Figure 5-20.  Completed reference mapping!

Figure 5-21.  Executing SimplePackage.dtsx

Chapter 5 Configure the SSIS Catalog Project

79

You’ll see an error message at the top of the Execute Package dialog

when the Execute Package dialog displays. Click the error to see the error

message displayed in a message box, as shown in Figure 5-22.

Figure 5-22.  Displaying the execute package error message

To clear the error, follow the instructions included in the error

message. Check the Environment checkbox and select an SSIS catalog

environment from the dropdown, as shown in Figure 5-23.

Chapter 5 Configure the SSIS Catalog Project

80

The execute package error clears. Click the OK button to execute the

SimplePackage.dtsx SSIS package. A message box similar to that shown in

Figure 5-24 informs you that package execution has started and asks if you

would like to view the Overview Report.

Figure 5-24.  Overview Report prompt

Figure 5-23.  Select an SSIS catalog environment

Click the Yes button to display the Overview Report, shown in

Figure 5-25.

Chapter 5 Configure the SSIS Catalog Project

81

Please note the value for the vmDemo\Demo.TestDB1.ConnectionString

parameter. The value at runtime is the value of the ConnectionString

catalog environment variable you configured in the catalog environment

named envConnection1. This test verifies that the reference mapping is

configured and working properly.

Figure 5-25.  The Overview Report

Chapter 5 Configure the SSIS Catalog Project

82

�Conclusion
These are the three sources of values for SSIS parameters in the SSIS

catalog (with matching text decoration):

	 1.	 Design-time defaults

	 2.	 Literal overrides

	 3.	 Reference mappings

Design-time defaults remain stored in the SSIS catalog but may be

overridden using literal overrides or references and reference mappings to

catalog environments and environment variables, respectively.

Chapter 5 Configure the SSIS Catalog Project

83
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_6

CHAPTER 6

Catalog Browser

I was honored to be a Microsoft SQL Server MVP for five years (2007-2012).

One cool thing about being a Microsoft MVP was access to the internal

developer teams. Everyone could file Microsoft Connect items to report

bugs and make suggestions for product improvements. Many MVPs did so

only to have their bug reports marked as “works as designed” or “won’t fix”

and suggestions responded to with something similar. It was discouraging.

There are reasons many Connect items were addressed in this way. I am

happy to report the root cause (performance-based management, or PBM)

has been abandoned and the Microsoft Developer Teams are really and

truly listening and responding to requests from the field.

�Why I Built DILM Suite, by Andy Leonard
That doesn’t mean every suggestion is acted upon (I promise this is

not a complaint). It turns out that Microsoft is a software development

enterprise. As big as Microsoft is, it can’t possibly respond to every request.

When I realized this, I began thinking about how I might address gaps

I perceived. I’d cofounded a consulting company and we (collectively)

weren’t interested in becoming a software product company. But I was

very interested in developing products to address gaps in data integration

lifecycle management (DILM).

84

In 2015 I left the consulting company I cofounded and immediately

began developing the software I’d dreamed of building. In my opinion, the

most fair answers to the question of “Why?” are the following:

	 1.	 I came to believe the Microsoft SSIS Developer

Team would never address the things I perceived as

“gaps” in the product story.

	 2.	 I came to believe that the consulting company I

cofounded and I held irreconcilable visions of how

to address DILM issues.

Looking back with two years of perspective, I believe focusing on

DILM was the best long-term move for me. I started another consulting

company, Enterprise Data & Analytics (entdna.com), mostly to fund my

coding habit.

�Surfacing the SSIS Catalog
Let’s examine the SSIS catalog surface in the SSMS Object Explorer’s

Integration Services Catalogs node, shown in Figure 6-1.

Figure 6-1.  The SSIS catalog as shown in the SSMS Object Explorer
Integration Services Catalogs node

Chapter 6 Catalog Browser

85

Beneath the Integration Services Catalogs node we find the SSIS

catalog named SSISDB. Two catalog folders are displayed, Framework and

Test. The Test folder contains the Projects and Environments virtual

folders. The Projects virtual folder contains the SSIS catalog project

named DILMSample, which in turn contains the SSIS package named

SimplePackage.dtsx. The Environments virtual folder contains the catalog

environment named envConnection1.

You know, because you’ve done the work, that there’s more there than

meets the eye.

�SSIS Catalog Environment Configuration
If you double-click envConnection1, you can see details of your catalog

environment variable on the Variables page, shown in Figure 6-2.

Figure 6-2.  Viewing the Variables page of an SSIS catalog
environment

The Variables page contains details about SSIS catalog environment

variables including name, data type, description, value, and whether the

variable is sensitive.

�SSIS Catalog Project Configuration
The Parameters tab on the Parameters page of the SSIS Catalog Project

Configuration dialog lists SSIS project and package parameters, their

container name, and value by default, as shown in Figure 6-3.

Chapter 6 Catalog Browser

86

The Connection Managers tab of the Parameters page contains a list

of SSIS project and package connection managers and their properties, as

shown in Figure 6-4.

Figure 6-3.  Viewing project parameters and values for an SSIS
catalog project

Figure 6-4.  Viewing connection manager parameters and values for
an SSIS catalog project

Chapter 6 Catalog Browser

87

The References page of the SSIS Catalog Project Configure dialog

contains a list of SSIS catalog environments the SSIS catalog project may

reference at runtime, as shown in Figure 6-5.

Figure 6-5.  Viewing project references for an SSIS catalog project

That’s a lot of right- and double-clicking just to see what’s configured

in an SSIS catalog project.

�Catalog Browser
The SSIS catalog is filled with really cool and useful configuration

information, but one has to know where to look and, in some cases, where

to look isn’t so obvious.

Enter Catalog Browser, a free utility that is part of the DILM Suite and

available at dilmsuite.com/catalog-browser. Catalog Browser was built

to surface the contents of the SSIS catalog in a single view: a tree that

exposes all relevant SSIS catalog artifacts, properties, and configurations.

As shown in Figure 6-6, Catalog Browser surfaces the same metadata

as the SSMS Object Explorer Integration Services Catalogs node.

Chapter 6 Catalog Browser

88

Looking at Figure 6-6, though, you probably already see some

differences between Catalog Browser and the SSMS Object Explorer

Integration Services Catalogs node. Note the Project Parameters and

Project References virtual folders present beneath the SSIS catalog

project, in addition to the Packages virtual folder.

Expanding these virtual folders reveals the SSIS catalog project

parameters and reference, as shown in Figure 6-7.

Figure 6-6.  Catalog Browser surfacing part of the SSIS project and
configurations metadata

Chapter 6 Catalog Browser

89

Remember in Figure 6-3 the SSMS Object Explorer Integration Services

Catalogs node surfaced all parameters: SSIS catalog project parameters

and SSIS package parameters. Where are the package parameters? They’re

here in Catalog Browser. To view the package parameters, expand the

SimplePackage.dtsx SSIS package node, as shown in Figure 6-8.

Figure 6-7.  SSIS catalog project parameters and references

Chapter 6 Catalog Browser

90

Recall that connection manager properties are treated as parameters

in the SSIS catalog. They are prefixed with “CM.”. You can see that the

SSIS package connection manager vmDemo\Demo.TestDB1 connection

string property is mapped to an SSIS catalog environment variable named

ConnectionString.

To surface the reference used for the reference mapping, expand the

Package References virtual folder, as shown in Figure 6-9.

Figure 6-8.  Viewing SSIS package parameters

Chapter 6 Catalog Browser

91

Figure 6-9.  Viewing the package reference

Expanding the Package Reference virtual folder surfaces the Test/

envConection1 catalog environment. Expanding the Test/envConection1

catalog environment reveals that the catalog environment variable named

ConnectionString is mapped to the vmDemo\Demo.TestDB1 connection

string property.

But what’s the value of the ConnectionString catalog environment

variable? Expand the envConnection1 catalog environment in the

Environments virtual folder to view the collection of catalog environment

variables, their data types, and their values, as shown in Figure 6-10.

Chapter 6 Catalog Browser

92

SSIS package properties includes a Package Version property

constructed from the Version Major, Version Minor, and Version Build

properties of the SSIS package. Every time a developer saves an SSIS

package, the Version Build property increments. It’s possible to revise an

SSIS package and “trick” the Version Build property by manually setting it.

I have not yet found a valid use case for doing so to SSIS catalog-deployed

SSIS packages.

The Package Version property can be used to detect different versions

of SSIS packages deployed to an SSIS catalog. Because SSIS developers can

manually set the Version Build property, Package Version is not a reliable

indication.

The Package Properties virtual folder surfaces SSIS package

metadata, as shown in Figure 6-11.

Figure 6-10.  Catalog environment variables, data types, and values

Chapter 6 Catalog Browser

93

Catalog properties are handy for detecting differences in patch levels

(via the Schema Build property). Catalog Version is a property exposed by

Catalog Base, the custom catalog object that lies beneath Catalog Browser.

Catalog Base works with SSIS 2012, 2014, and 2016 catalogs.

The Catalog Properties virtual folder surfaces SSIS catalog metadata,

as shown in Figure 6-12.

Figure 6-11.  SSIS package properties

Chapter 6 Catalog Browser

94

�Conclusion
Catalog Browser surfaces SSIS catalog artifacts, configurations metadata,

and artifact properties in a single view.

Figure 6-12.  SSIS catalog properties

Chapter 6 Catalog Browser

95
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_7

CHAPTER 7

SSIS Catalog
Compare

Viewing the SSIS catalog contents, including SSIS catalog projects,

packages, environments, environment variables, references, and reference

mappings along with SSIS package and SSIS catalog properties, is helpful.

But what if you want to see the differences between the contents of one

SSIS catalog instance and another? Or, perhaps even more useful, how can

you know the enterprise QA and Production SSIS catalog instances match?

�Why I Built SSIS Catalog Compare, by Andy
Leonard
My team built a fairly complex data integration solution for a client using

SSIS. We tested the solution in two DevOps tiers, Test and UAT (User

Acceptance Testing). We identified some issues and corrected them. It was

then time to deploy to Production. My team and I were on standby during

the Production deployment and initial Production tests.

Initially, everything failed.

We identified the root causes and corrected the issues, but we had egg

on our collective faces with the business, and for good reason. We had

assured them “we were doing it right.” We were, with one exception. The

96

enterprise data architect identified the gap with one very good question,

“How can we know the Production and UAT SSIS catalogs are the same?”

My response at the time, “[Pregnant pause while thinking… then] I don’t know.”

I built SSIS Catalog Compare so I—and my customers, and you—can

answer that question.

�SSIS Catalog Compare
You can begin by thinking of SSIS Catalog Compare as two Catalog

Browsers. Like Catalog Browser, SSIS Catalog Compare uses Catalog Base,

a custom catalog object. In SSIS Catalog Compare, Catalog Base is used to

populate two trees, each representing a different SSIS catalog, as shown in

Figure 7-1.

Figure 7-1.  SSIS Catalog Compare

Once two catalogs are loaded, they may be compared by clicking the

Compare button. As shown in Figure 7-2, SSIS Catalog Compare uses the

italics font to indicate that a difference has been detected beneath a node

Chapter 7 SSIS Catalog Compare

97

and a different background color to indicate artifacts that are present in

one SSIS catalog but missing from the other.

Figure 7-2.  After a Compare operation

The Test catalog folder in the VmDemo\Demo catalog does not exist in

the vmDemo\Dev catalog, hence the background color on the vmDemo\Demo\

SSISDB\Test node. The “deeper differences” indications (italics fonts)

shown in Figure 7-2 indicate differences within the Framework catalog

folders and between the catalog properties.

�Expanding the Differences
One time-saver is Expand Differences, shown in Figure 7-3.

Chapter 7 SSIS Catalog Compare

98

Expand Differences will expand nodes above differences and the nodes

that are different. In large SSIS catalog projects, catalog projects with lots

of configurations metadata, or both, Expand Differences can reduce the

number of nodes expanded. Expanding the differences in the Framework

catalog folder for both catalogs, you see the Parent.dtsx SSIS package

Figure 7-3.  Expand Differences

Chapter 7 SSIS Catalog Compare

99

This is a really good thing because, if these values matched, framework

application executions in one catalog would start SSIS executions in

another catalog. That could be bad.

�Catalog Properties
I didn’t discuss catalog properties in the section about Catalog Browser

because I wanted to cover catalog properties here in more detail. If you

collapse the Framework catalog folder and expand Catalog Properties, you

see the difference is the Schema Build property, shown in Figure 7-5.

Figure 7-4.  Different ConnectionString property values

SSISDB connection manager’s ConnectionString property is configured for

each server’s local SQL Server instance, as shown in Figure 7-4.

Chapter 7 SSIS Catalog Compare

100

Note from the property just beneath Schema Build that both of these

SSIS catalogs are SSIS 2016. vmDemo\Demo’s Schema Build version tells us

that this catalog is the General Availability (or GA, formerly known as RTM

[Release to Manufacturing]) version of SSIS 2016. vmDemo\Dev’s catalog is

an SSIS 2016 SP1 Schema Build version.

The Catalog Base object is built to allow SSIS Catalog Compare to

compare SSIS catalogs from different releases and versions of SQL Server.

For example, I could compare the contents of an SSIS 2012 catalog to those

of an SSIS 2016 catalog. SSIS 2016 added a couple properties to the catalog

properties, so you would see a couple properties marked on the 2016 side

of the compare as missing from the 2012 side. But the Compare operation

would succeed and produce accurate and useful results.

Figure 7-5.  Different values for the SSIS catalog Schema Build
property

Chapter 7 SSIS Catalog Compare

101

�SSIS Catalog Compare Scripting
In many enterprises with two or more IT professionals, the professional

who develops the software is not permitted to deploy that software.

Large enterprises have entire teams dedicated to release management.

Lifecycle management will help enterprises of any size reduce downtime

and improve code supportability and maintainability. This holds for SSIS

because data integration lifecycle management is just as vital as web, GUI,

and middle-tier software lifecycle management.

SSIS Catalog Compare is designed to support DevOps and enterprise

DILM.

You can script individual artifacts using SSIS Catalog Compare, but

perhaps the more useful (and quicker) functionality is to script a catalog

folder and all its contents, as shown in Figure 7-6.

Figure 7-6.  Preparing to generate scripts for a catalog folder and its
contents

Chapter 7 SSIS Catalog Compare

102

When you click “Generate Scripts for Folder and Contents,” SSIS

Catalog Compare prompts you for a file system folder in which to store the

scripts, as show in Figure 7-7.

Figure 7-7.  Selecting a target file system folder for the scripts

When you select a file system folder, SSIS Catalog Compare generates

the scripts and ISPAC files to create the catalog folder and all its contents,

as shown in Figure 7-8.

Figure 7-8.  Viewing the target file system folder for the scripts

The scripts are numbered in an order that represents dependencies.

For example, you cannot deploy an SSIS project using the ISPAC file,

number 2, unless and until the SSIS catalog folder for that SSIS catalog

project exists, script number 1.

Chapter 7 SSIS Catalog Compare

103

Double-clicking the files in the order listed will create the Test catalog

folder (script 1) on the target SSIS catalog, deploy the DILMSample SSIS

project using the Integration Services Deployment Wizard GUI (you

will need to select the Test catalog folder as the target catalog folder

during deployment), create the envConnection1 catalog environment

and its catalog environment variable(s), create a reference between the

DILMSample SSIS project and envConnection1, and create another

reference with reference mapping(s) between the SimplePackage.dtsx

SSIS package and the envConnection1 catalog environment.

Why two reference files? Inside the SSIS catalog references for SSIS

catalog projects and SSIS packages are distinct artifacts.

�Creating a Catalog Folder

The scripts (and ISPAC) are idempotent, or re-executable, as shown in

Figure 7-9.

Figure 7-9.  Idempotent Transact-SQL scripts

Chapter 7 SSIS Catalog Compare

104

If the Test catalog folder does not exist, the script creates it. If the Test

catalog folder exists, the script outputs a message informing the executor

of this fact.

The output messages are written to be copied and pasted into a ticket’s

Notes field before the ticket is closed. The messages provide detailed

information about how and when the script was generated, by whom,

when and where the script was executed, and by whom, as shown in

Figure 7-10.

Figure 7-10.  Script output messages

Refreshing the SSIS catalog node in SSMS Object Explorer will reveal

the Test catalog folder has been created, as show in Figure 7-11.

Chapter 7 SSIS Catalog Compare

105

Figure 7-12 shows the results of the refresh: the Test catalog folder has

been created by the script.

Figure 7-11.  Refreshing the SSIS catalog node

Figure 7-12.  The Test catalog folder lives!

I began this section stating, “The scripts (and ISPAC) are idempotent…”

What happens if you re-execute the script you just used to create the Test

catalog folder? Let’s return to SSMS and try it. The results are shown in

Figure 7-13.

Chapter 7 SSIS Catalog Compare

106

Please note the message returned: “Test folder already exists.” The Test

catalog folder was not harmed by re-executing the script. The script simply

checks for the existence of the catalog folder and creates it if it does not

exist. If the catalog folder exists, the script returns a message. The Transact-

SQL that performs this operation is shown in Figure 7-14.

Figure 7-13.  Re-executing the Catalog Folder script

Chapter 7 SSIS Catalog Compare

107

If you refresh SSIS catalog Compare Catalog 2, you now see the Test

catalog folder, as shown in Figure 7-15.

Figure 7-14.  Transact-SQL that first checks for catalog folder
existence

Figure 7-15.  The Test catalog folder created

Chapter 7 SSIS Catalog Compare

108

�Deploying the SSIS Project

To deploy the SSIS project, double-click (or right-click and click Open) the

ISPAC file, as shown in Figure 7-16.

Figure 7-16.  Opening the ISPAC file

Figure 7-17.  The Integration Services Deployment Wizard Select
Source page

The Integration Services Deployment Wizard starts; this is the same

wizard used to deploy SSIS projects from SQL Server Data Tools (SSDT).

Stepping through the wizard, the first stop is the Select Source page shown

in Figure 7-17.

This page surfaces a lot of functionality. The Deployment Model

dropdown is used to select project or package deployment. Beginning with

SSIS 2016, operators have the option of deploying the entire SSIS project,

Chapter 7 SSIS Catalog Compare

109

which was the only option available in SSIS 2012 and 2014, or deploying

a single SSIS package. Operators may also select the type of SSIS project

source. There are two options available: a project deployment file or an

Integration Services catalog. Since you started this exercise by opening an

ISPAC file, the project deployment file option is selected for you.

If you select the Integration Services catalog option, the Select Source

page presents catalog project settings that may be configured for an SSIS

catalog project deployed to a different SSIS catalog, as shown in Figure 7-18.

Figure 7-18.  Deploying from one SSIS catalog to another

The remainder of the Integration Services Deployment Wizard pages

and process are the same as those covered in Chapter 4. On the Select

Destination page, enter the name of the SQL Server instance that hosts

the target SSIS catalog. You can then browse to the newly-created catalog

folder, shown in Figure 7-19.

Chapter 7 SSIS Catalog Compare

110

Step through the remainder of the Integration Services Deployment

Wizard until the SSIS project has been deployed, as shown in Figure 7-20.

Figure 7-19.  Browsing to the Test catalog folder recently created

Chapter 7 SSIS Catalog Compare

111

Refresh SSIS Catalog Compare to see that the SSIS catalog project now

exists, as shown in Figure 7-21.

Figure 7-20.  A successful deployment

Chapter 7 SSIS Catalog Compare

112

As with the Catalog Folder script, ISPAC files are re-executable. When

an ISPAC file is re-executed, a new version of the SSIS project is deployed

to the target SSIS catalog.

�Deploying the Literal Overrides and Catalog
Environment

SSIS catalog literal overrides and environment scripts are similar because

both contain values, either literal override values or values for catalog

environment variables. Value parameters reside at the top of the Transact-

SQL script generated and may be modified by the operator prior to

deployment to the target SSIS catalog, as shown in Figure 7-22.

Figure 7-21.  Viewing the DILMSample SSIS catalog project

Chapter 7 SSIS Catalog Compare

113

As with the SSIS Catalog Folder script, the Catalog Environment script

provides rich feedback messages, as shown in Figure 7-23.

Figure 7-22.  Editing an SSIS catalog environment script prior to
execution

Chapter 7 SSIS Catalog Compare

114

Please note the Catalog Environment script first checks for the

existence on the target catalog folder and provides feedback in message on

its existence. If the target folder does not exist, the Catalog Environment

script will fail. Catalog environment variables are created in the Catalog

Environment script.

�Deploying Project and Package References

Project Reference scripts check for the existence of the catalog folder,

catalog project, and catalog environment, as shown in Figure 7-24.

Figure 7-23.  Messages from the Catalog Environment Script
execution

Chapter 7 SSIS Catalog Compare

115

When executed for the first time, the Project Reference script returns

messages similar to those shown in Figure 7-25.

Figure 7-24.  The Project Reference script checks for catalog folder,
project, and environment

Chapter 7 SSIS Catalog Compare

116

If the Project Reference script is re-executed, the messages reveal that

the project reference already exists, as shown in Figure 7-26.

Figure 7-25.  Project Reference script feedback

Chapter 7 SSIS Catalog Compare

117

The Package Reference script is most complex among the scripts

generated by SSIS Catalog Compare. As shown in Figure 7-27, the Package

Reference script includes checks for catalog folder, project, environment,

and reference.

Figure 7-26.  Re-executing the Project Reference script

Chapter 7 SSIS Catalog Compare

118

The Package Reference script always clears the existing value in the

reference mapping before setting it.

As one might imagine, there are several messages returned from

execution of the Package Reference script and they are shown in

Figure 7-28.

Figure 7-27.  Existence checks in the Package Reference script

Chapter 7 SSIS Catalog Compare

119

�Testing with SSIS Catalog Compare

Return to SSIS Catalog Compare and right-click the Compare button to

“Refresh Both TreeViews and Compare,” as shown in Figure 7-29.

Figure 7-28.  Message returned from Package Reference script
execution

Figure 7-29.  Refreshing both TreeViews and comparing

Chapter 7 SSIS Catalog Compare

120

What’s this? Didn’t I just walk through deploying all these scripted

artifacts to the target SSIS catalog? Why doesn’t Figure 7-30 show

everything matching? Please remember you updated the value of the

ConnectionString catalog environment variable before you executed the

Catalog Environment script. Figure 7-30 shows the difference that exists

between the Test catalog folders in the SSIS catalog instances.

Figure 7-30.  Different data source values

Figure 7-31.  Opening SSIS Catalog Compare options

Now what? These values are, after all, supposed to be different. It’s bad

if they’re the same, in fact. Fear not. Click View ➤ Options, as shown in

Figure 7-31.

You can ignore catalog environment variable values by checking the

checkbox shown in Figure 7-32.

Chapter 7 SSIS Catalog Compare

121

Figure 7-32.  SSIS Catalog Compare options

Once catalog environment variable values are ignored, a re-compare

operation shows that the Test catalog folders in your catalogs match.

Expanding the envConnection1 catalog environment to view the values

of the ConnectionString catalog environment variable shows the values

have not changed; they’re still different, and merely ignored, as shown in

Figure 7-33.

Chapter 7 SSIS Catalog Compare

122

SSIS Catalog Compare may be purchased at dilmsuite.com/ssis-

catalog-compare.

Not discussed in this book is CatCompare, the CLI (Command-Line

Interface) for SSIS Catalog Compare. Learn more at dilmsuite.com/

ssis-catalog-compare.

Figure 7-33.  Catalog environment variable values, ignored

Chapter 7 SSIS Catalog Compare

123
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_8

CHAPTER 8

SSIS Framework
Community Edition

A best practice in SSIS development is to build small, unit-of-work SSIS

packages. There are several reasons for this:

•	 Decoupling: SSIS is software development and a best

practice with software development is separation of

concerns. Separation of concerns is primarily achieved

by decoupling. One way to decouple SSIS is to build

small, single-function SSIS packages.

•	 Testing: If an SSIS package contains seven data flow

tasks and the design of a source table changes and

breaks one data flow task, all tasks in the SSIS package

should be tested. Fewer data flow tasks means less and

quicker testing.

•	 Support: If all SSIS packages contain the minimum

number of data flow tasks (optimally one) and a

package execution fails in the middle of the night,

on-call support has a pretty good idea where to begin

troubleshooting.

124

While these are good and valid reasons to build SSIS solutions with

several smaller SSIS packages, following this advice causes other issues.

One issue is you now have a bunch of SSIS packages that require executing

in some order. What’s a data integration developer to do?

�SSIS Framework Community Edition
Consider the SSIS Framework Community Edition, a free and open-

source solution available at dilmsuite.com/ssis-framework-community-

edition. SSIS Framework Community Edition allows the execution of

one or more SSIS packages in a specified execution order by executing a

single stored procedure and passing it a single argument. For example, I

can execute a test framework application with the following Transact-SQL

statement:

exec custom.execute_catalog_parent_package @application_name =

'Framework Test '

Continuing my theme of “there’s no free lunch,” SSIS execution

frameworks greatly simplify execution commands like the one listed above

but they create another issue: the need to manage a lot of metadata. SSIS

Framework Community Edition relies on metadata to build a framework

application, mentioned earlier. A framework application is a collection

of SSIS packages configured to execute in a specified order. If you build

idempotent (re-executable) Transact-SQL that includes print statements

(to inform you of what the T-SQL is doing) and use any kind of formatting,

you’re looking at 30-40 lines of Transact-SQL per SSIS package. That’s a lot

of T-SQL.

Chapter 8 SSIS Framework Community Edition

125

�Help for SSIS Catalog Projects Already Deployed
Perhaps you are reading this and thinking, “That’s awesome, but I have a

bajillion SSIS packages already deployed to my SSIS catalog. What about

them?” I wrote a blog post called “Adding an SSIS Application to SSIS

Framework Community Edition” at andyleonard.blog/2017/07/26/

adding-an-ssis-application-to-ssis-framework-community-edition.

I included a script at the end of that post that uses three parameters

(Framework Application Name, Catalog Folder Name, and Catalog Project

Name) and from those three pieces of metadata loads the metadata for a

new framework application into SSIS Framework Community Edition’s

metadata tables, as shown in Figure 8-1.

Figure 8-1.  Building a framework application from an SSIS catalog
project

The script reads the SSIS catalog project metadata shown in Figure 8-2

and loads the framework application metadata into SSIS Framework

Community Edition metadata tables in a few seconds.

Chapter 8 SSIS Framework Community Edition

126

The framework application named “Load AdventureWorks2014 Stage”

that contains 71 SSIS packages can now be executed with the following

Transact-SQL statement:

exec custom.execute_catalog_parent_package @application_name =

'Load AdventureWorks2014 Stage'

�Viewing SSIS Catalog Reports
You can view the executions of these 71 SSIS packages using the Catalog

Reporting solution built into SSMS. To view all SSIS package executions,

right-click the SSMS Object Explorer Integration Services Catalogs node’s

SSISDB node, hover over Reports, hover over Standard Reports, and click

All Executions, as shown in Figure 8-3.

Figure 8-2.  The SSIS catalog project

Chapter 8 SSIS Framework Community Edition

127

The All Executions report displays and surfaces SSIS package

execution logs, as shown in Figure 8-4.

Figure 8-3.  Opening the built-in SSIS catalog reports

Figure 8-4.  The All Executions report

Chapter 8 SSIS Framework Community Edition

128

To summarize, you supplied three pieces of metadata to a Transact-

SQL script that built a framework application containing 71 SSIS packages,

and then executed those 71 SSIS packages by starting a single stored

procedure and passing it one parameter value.

�Viewing SSIS Framework Community Edition
Metadata
As mentioned, there’s quite a bit of metadata required for the SSIS

Framework Community Edition. The script we used earlier is a nice piece

of automation for entering SSIS Framework Community Edition metadata,

but what happens when we want to view the framework applications

already stored?

Enter Framework Browser, another free utility from DILM Suite that

you can download at dilmsuite.com/framework-browser, shown in

Figure 8-5.

Figure 8-5.  The framework application’s Load AdventureWorks2014
stage

Chapter 8 SSIS Framework Community Edition

129

A framework application is a collection of SSIS packages, called

application packages in the framework, that execute in a specified order.

Framework Browser lists application packages in the order they execute.

If you expand the Application Properties virtual folder, you see

framework application metadata. Expand the Application Package node

and the Application Package Properties node to surface application

package metadata, as shown in Figure 8-6.

Figure 8-6.  Surfacing application and application package
framework metadata

Framework Browser is another free utility from DILM Suite.

Chapter 8 SSIS Framework Community Edition

131
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_9

CHAPTER 9

Catalog Reports

You’ve looked at the SSMS Catalog Reports solution built into SQL Server

Management Studio (SSMS) a few times in your journey thus far, most

recently in the previous chapter. As a data integration architect, I find these

reports awesome, with a couple caveats:

	 1.	 I cannot select text for copy and paste.

	 2.	 In order to view SSMS Catalog Reports, one must

install SSMS.

Regarding the second point, there are people in the enterprise who

have a legitimate need to view the execution of data integration processes

in the enterprise Production environment, but have no business having

the remainder of SSMS installed on their machine, much less with access

to the enterprise Production environment. SSMS is a fantastic utility for

managing data and administering all aspects of SQL Server. To install

SSMS for the sole purpose of granting someone access to the SSMS Catalog

Reports is overkill.

Please take a look at Catalog Reports, a free and open-source solution

that’s part of the DILM Suite, at dilmsuite.com/catalog-reports.

Catalog Reports are designed to look and feel similar to the SSMS

version, but they reside in SQL Server Reporting Services (SSRS). Look at

the Executions Report shown in Figure 9-1.

132

DILM Suite Catalog Reports surface the same logs and data shown

in the SSMS Catalog Reports without requiring the installation of

SSMS. Because the solution is open source, SSRS developers can edit the

reports to add corporate logos, apply enterprise color schemes, or include

additional data.

Report viewers can select and copy text from their browser displaying

the reports. There are options for exporting the contents of the report, as

shown in Figure 9-2.

Figure 9-1.  DILM Suite Catalog Reports Executions Report

Chapter 9 Catalog Reports

133

The right side of the Executions Report contains links to other reports in

the solution: Overview, Messages, and Performance (shown in Figure 9-3).

Figure 9-2.  Report export options

Figure 9-3.  More fields in the Executions Report

Click the Overview link for the top-most SSIS package execution to

open the Overview Report. The Overview Report surfaces a summary of

SSIS package execution grouped by execution path (individual executables

in the SSIS package) in the table on the left side of the report. This table

is useful for determining the longest-running part of your SSIS package.

Chapter 9 Catalog Reports

134

The Execution Information table displays operational log data such as

SSIS package execution status, duration, start time, and the name of

the catalog environment referenced for this execution. The Execution

Parameters table displays SSIS catalog execution parameter settings and

any parameters overridden or referenced for this execution, as shown in

Figure 9-4.

Figure 9-4.  DILM Suite Catalog Reports Overview Report

The DILM Suite Overview Report includes navigation links at the top

of the report to facilitate navigation to the Executions, Performance, and

Messages reports. Click the Messages link to view the Messages Report, as

shown in Figure 9-5.

Figure 9-5.  DILM Suite Catalog Reports Messages Report

Chapter 9 Catalog Reports

135

The Messages report lists every message logged by the execution of the

SSIS package, when it was logged, the event that raised the message, and

the name of the executable that raised the event.

The Performance report displays a graph of execution durations for

previous successful executions, as shown in Figure 9-6.

Figure 9-6.  DILM Suite Catalog Reports Performance Report

The DILM Suite Catalog Reports solution is free and open-source, and

addresses a couple issues with SSMS Catalog Reports.

Chapter 9 Catalog Reports

137
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_10

CHAPTER 10

BimlExpress Metadata
Framework

Business Intelligence Markup Language (Biml) is an XML-based language

that increases data integration developer productivity and improves SSIS

code quality. BimlExpress is free and integrates into SQL Server Data Tools

(SSDT). The BimlExpress Metadata Framework is designed to encourage

thinking about the possibilities when one combines the power of Biml with

metadata.

You can learn more about Biml at varigence.com/biml and at

bimlscript.com. You can obtain BimlExpress at varigence.com/

bimlexpress. You can obtain a copy of the BimlExpress Metadata

Framework project at dilmsuite.com/biml-express-metadata-

framework.

When BimlExpress is installed, a developer can access the BimlExpress

menu in SSDT. The first document a developer should open is the

README file, shown in Figure 10-1.

138

The instructions in the README file walk a developer through the

steps required to use the BimlExpress Metadata Framework. I will follow

most of those steps in this chapter. You should follow them, too, if you

desire to use the BimlExpress Metadata Framework.

�Downloading and Installing BimlExpress
The first step is to download BimlExpress from varigence.com, as shown in

Figure 10-2.

Figure 10-1.  Viewing the BimlExpress Metadata Framework project
in SSDT

Chapter 10 BimlExpress Metadata Framework

139

When the download is complete, execute the .vsix file to install

BimlExpress, as shown in Figure 10-3.

Figure 10-2.  Downloading BimlExpress

Figure 10-3.  Installing BimlExpress

Accept the License Agreement, as shown in Figure 10-4.

Chapter 10 BimlExpress Metadata Framework

140

Click the Install button to install BimlExpress.

When the installation completes, the VSIX Installer will display a

notification similar to that shown in Figure 10-5.

Figure 10-4.  Accepting the License Agreement

Figure 10-5.  BimlExpress installation is complete

Chapter 10 BimlExpress Metadata Framework

141

Click the Close button and open SQL Server Data Tools (SSDT).

Click Tools ➤ Extensions and Updates, as shown in Figure 10-6.

Figure 10-6.  Opening Extensions and Updates

The Extensions and Updates dialog is where you manage BimlExpress

and other SSDT plugins, as shown in Figure 10-7.

Figure 10-7.  The Extensions and Updates dialog

If you see the BimlExpress menu item shown in Figure 10-8,

BimlExpress is installed and enabled.

Chapter 10 BimlExpress Metadata Framework

142

�Downloading BimlExpress Metadata Framework
Let’s next download the BimlExpress Metadata Framework code from

dilmsuite.com/biml-express-metadata-framework, as shown in

Figure 10-9.

Figure 10-8.  BimlExpress installed and enabled

Figure 10-9.  Downloading BimlExpress Metadata Framework

Figure 10-10.  The BimlExpress Metadata Framework file

The BimlExpress Metadata Framework file is a text file named

BimlExpressMetadataFramewor.renametozip.txt, shown in Figure 10-10.

Chapter 10 BimlExpress Metadata Framework

143

One the file is downloaded, rename it as shown in Figure 10-11.

Figure 10-11.  Preparing to rename the Biml Express Metadata
Framework Download file

Changing the file extension to “zip” will trigger the warning shown in

Figure 10-12.

Chapter 10 BimlExpress Metadata Framework

144

After renaming, the Biml Express Metadata Framework Download file

appears as shown in Figure 10-13.

Figure 10-13.  The renamed Biml Express Metadata Framework
Download file

Figure 10-14.  Preparing to extract the Biml Express Metadata
Framework file

Figure 10-12.  Warning about renaming a file and changing the
extension

Right-click the Biml Express Metadata Framework file and click Extract

All, as shown in Figure 10-14.

Chapter 10 BimlExpress Metadata Framework

145

The Extract Compressed (Zipped) Folders dialog displays as shown in

Figure 10-15.

Figure 10-15.  Choosing a folder for the extracted files

Click the Extract button to extract the compressed files.

After the contents of the zip file have been extracted, browse to the

folder and open the BimlExpressMetadataFramework.sln file, as shown in

Figure 10-16.

Chapter 10 BimlExpress Metadata Framework

146

�Following the README File Instructions
At the time of this writing, the README file included with the

BimlExpressMetadataFramework project reads as follows:

BimlExpressMetadataFramework Notes

0. Download and install BimlExpress (https://varigence.com/

BimlExpress)

1. Restore the BimlMetadata database.

2. Update the connection string in params.biml to aim it at

your BimlMetadata database.

3. Update connection strings in the di.Connections table aim

them at your AdventureWorks2014 database.

4. In Solution Explorer, multi-select the following Biml files

in the Miscellaneous virtual folder to create the destination

Database:

 - 0_00_BuildConnections.biml

 - 0_10_BuildDestinationDatabaseMain.biml

4a. Right-click in Solution Explorer (or dropdown the

BimlExpress menu) and click Generate SSIS Packages.

Figure 10-16.  Opening the BimlExpressMetadataFramework.sln file

Chapter 10 BimlExpress Metadata Framework

147

5. In Solution Explorer, multi-select the following Biml files

in the Miscellaneous virtual folder to create the destination

Schemas:

 - 0_00_BuildConnections.biml

 - 0_20_BuildDestinationSchemasMain.biml

5a. Right-click in Solution Explorer (or dropdown the

BimlExpress menu) and click Generate SSIS Packages.

6. In Solution Explorer, multi-select the following Biml files

in the Miscellaneous virtual folder to create the destination

Tables:

 - 0_00_BuildConnections.biml

 - 0_30_BuildDestinationTablesMain.biml

6a. Right-click in Solution Explorer (or dropdown the

BimlExpress menu) and click Generate SSIS Packages.

7. Execute the packages:

 - 10_Build_Destination_Databases.dtsx

 - 20_Build_Destination_Schemas.dtsx

 - 30_Build_Destination_Tables.dtsx

8. Delete all Project Connection Managers and Packages.

9. In Solution Explorer, multi-select the following Biml

files in the Miscellaneous virtual folder to create the SSIS

Packages:

 - 0_00_BuildConnections.biml

 - 0_10_BuildDestinationDatabaseMain.biml

 - 0_20_BuildDestinationSchemasMain.biml

 - 0_30_BuildDestinationTablesMain.biml

 - 1_99_Main.biml

9a. Right-click in Solution Explorer (or dropdown the

BimlExpress menu) and click Generate SSIS Packages.

We have completed Step 0 already.

Chapter 10 BimlExpress Metadata Framework

148

�Restoring the BimlMetadata Database

In SSMS Object Explorer, right-click the Databases node and click Restore

Database, as shown in Figure 10-17.

Figure 10-17.  Preparing to restore the BimlMetadata database

Select the Device option for Source and click the ellipsis to select

the backup file. Navigate to the file system folder you extracted

the BimlExpressMetadataFramework.zip file from and select the

BimlMetadata database backup file, as shown in Figure 10-18.

Chapter 10 BimlExpress Metadata Framework

149

Click the OK button to select the BimlMetadata database backup file

and return to the Restore Database dialog, as shown in Figure 10-19.

Figure 10-18.  Selecting the BimlMetadata database backup file

Chapter 10 BimlExpress Metadata Framework

150

Figure 10-19.  BimlMetadata backup file selected

Click the Files page and check the “Relocate all files to folder”

checkbox. Navigate to the Data and Log file folders, and double-check that

the “Restore As” paths match your selections for Data and Log file folders,

as shown in Figure 10-20.

Chapter 10 BimlExpress Metadata Framework

151

Figure 10-20.  Configuring restore file locations

On the Options page, check the “Overwrite the existing database

(WITH REPLACE)” checkbox, as shown in Figure 10-21.

Chapter 10 BimlExpress Metadata Framework

152

Click the OK button to begin the Database Restore operation.

If all goes as planned, you should see the message box shown in

Figure 10-22.

Figure 10-21.  Configuring the restore to overwrite the existing
database

Chapter 10 BimlExpress Metadata Framework

153

Refresh Object Explorer. You should now see the BimlMetadata

database listed, as shown in Figure 10-23.

Figure 10-22.  Successful restore!

Figure 10-23.  The BimlMetadata database

If you do not have a copy of the AdventureWorks2014 sample database,

search for a download of the Microsoft sample database, download it, and

restore or otherwise build it. At the time of this writing, you may obtain

a database back file of AdventureWorks2014 at msftdbprodsamples.

codeplex.com/downloads/get/880661, but Microsoft plans to shut down

CodePlex and migrate the code to GitHub.

Chapter 10 BimlExpress Metadata Framework

154

�Updating the Connection String Variable Value
in the Params.biml File

The next step in the README file is to update the connection string in the

params.biml file to aim it at your BimlMetadata database, as shown in

Figure 10-24.

Figure 10-24.  Updating the BimlMetadata connection string in
Params.biml

�Updating the di.Connections Table

The next step in the README file is update connection strings in the di.

Connections table to aim them at your AdventureWorks2014 database, as

shown in Figure 10-25.

Chapter 10 BimlExpress Metadata Framework

155

�Generating the Destination Database

In the BimlExpressMetadataFramework project, multi-select the 0_00_

BuildConnections.biml and 0_10_BuildDestinationDatabaseMain.biml

files. Right-click and click Generate SSIS Packages, as shown in Figure 10-26.

Figure 10-25.  Updating the Adventworks2014 connection strings in
the di.Connections table

Chapter 10 BimlExpress Metadata Framework

156

When the 0_00_BuildConnections.biml and 0_10_

BuildDestinationDatabaseMain.biml files execute, they create the

project connection manager named __master__AdventureWorks2014_

Stage and the SSIS package named 10_Build_Destination_Databases.

dtsx, as shown in Figure 10-27.

Figure 10-27.  Creating an SSIS package that builds the target
database

Figure 10-26.  Building the destination database SSIS package

Chapter 10 BimlExpress Metadata Framework

157

�Generating the Destination Schemas

In the BimlExpressMetadataFramework project, multi-select the 0_00_

BuildConnections.biml and 0_20_BuildDestinationSchemasMain.biml

files. Right-click and click Generate SSIS Packages, as shown in Figure 10-28.

Figure 10-28.  Building the destination schemas SSIS package

When the 0_00_BuildConnections.biml and 0_20_

BuildDestinationSchemasMain.biml files execute, they create the project

connection manager named AdventureWorks2014_Stage and an SSIS

package named 20_Build_Destination_Schemas.dtsx, as shown in

Figure 10-29.

Chapter 10 BimlExpress Metadata Framework

158

�Generating the Destination Tables

In the BimlExpressMetadataFramework project, multi-select the 0_00_

BuildConnections.biml and 0_30_BuildDestinationTablesMain.biml

files. Right-click and click Generate SSIS Packages, as shown in Figure 10-30.

Figure 10-29.  Creating an SSIS package that builds the destination
schemas

Chapter 10 BimlExpress Metadata Framework

159

The AdventureWorks2014_Stage project connection manager is

regenerated by the 0_30_BuildDestinationTablesMain.biml file. The

Confirm Overwritten Items dialog displays as shown in Figure 10-31.

Figure 10-30.  Building the destination tables SSIS package

Figure 10-31.  Confirm Overwritten Items dialog

Chapter 10 BimlExpress Metadata Framework

160

Click the Commit button to proceed.

When the 0_30_BuildDestinationTablesMain.biml file executes

and overwrites the project connection manager, it also overwrites the file

named AdventureWorks2014_Stage.conmgr, causing a reload operation,

as shown in Figure 10-32.

Figure 10-32.  Reloading the overwritten AdventureWorks2014_Stage
connection manager file

Click the Yes button to proceed.

When the 0_00_BuildConnections.biml and 0_30_

BuildDestinationTablesMain.biml files execute, they create the project

connection manager named AdventureWorks2014_Stage and an SSIS

package named 30_Build_Destination_Tables.dtsx.

�Executing the Create-Destination-Artifacts SSIS
Packages

Right-click the 10_Build_Destination_Databases.dtsx SSIS package to

create the target database, as shown in Figure 10-33.

Chapter 10 BimlExpress Metadata Framework

161

If all goes as planned, the 10_Build_Destination_Databases.dtsx

SSIS package executes successfully, as shown in Figure 10-34.

Figure 10-33.  Executing the 10_Build_Destination_Databases.dtsx
SSIS package

Figure 10-34.  Successful execution of the 10_Build_Destination_
Databases.dtsx SSIS package

Return to SSMS and refresh the Databases node in Object Explorer, as

shown in Figure 10-35.

Chapter 10 BimlExpress Metadata Framework

162

The AdventureWorks2014_Staging database now appears in the target

instance, but no schemas or tables have yet been created, as shown in

Figure 10-36.

Figure 10-35.  Refreshing the Databases node in Object Explorer

Chapter 10 BimlExpress Metadata Framework

163

Right-click the 20_Build_Destination_Schemas.dtsx SSIS package to

create the schemas in the target database, as shown in Figure 10-37.

Figure 10-36.  AdventureWorks2014_Staging with no schemas or
tables

Chapter 10 BimlExpress Metadata Framework

164

If all goes as planned, the 20_Build_Destination_Schemas.dtsx SSIS

package executes successfully, as shown in Figure 10-38.

Figure 10-37.  Executing the 20_Build_Destination_Schemas.dtsx
SSIS package

Chapter 10 BimlExpress Metadata Framework

165

Right-click the 30_Build_DestinationTables.dtsx SSIS package to

create the tables in the target database, as shown in Figure 10-39.

Figure 10-38.  Successful execution of the 20_Build_Destination_
Schemas.dtsx SSIS package

Chapter 10 BimlExpress Metadata Framework

166

If all goes as planned, the 30_Build_Destination_Tables.dtsx SSIS

package executes successfully, as shown in Figure 10-40.

Figure 10-39.  Executing the 30_Build_Destination_Tables.dtsx SSIS
package

Chapter 10 BimlExpress Metadata Framework

167

Return to SSMS and refresh the AdventureWorks2014_Staging Tables

node in Object Explorer, as shown in Figure 10-41.

Figure 10-40.  Successful execution of the 30_Build_Destination_
Tables.dtsx SSIS package

Chapter 10 BimlExpress Metadata Framework

168

The AdventureWorks2014_Staging database now contains schemas

and tables, as you can see in Figure 10-42.

Figure 10-41.  Refreshing the AdventureWorks2014_Staging Tables
node

Chapter 10 BimlExpress Metadata Framework

169

�Deleting Existing Artifacts

Delete the existing SSIS packages and project connection managers from

the SSIS project, as shown in Figure 10-43.

Figure 10-42.  The AdventureWorks2014_Staging database with
schemas and tables

Chapter 10 BimlExpress Metadata Framework

170

You do not have to delete the existing artifacts. If you do not delete the

existing artifacts, BimlExpress will prompt you to confirm overwrites of

existing artifacts.

�Generating SSIS Packages

Multi-select 0_00_BuildConnections.biml,

0_10_BuildDestinationDatabaseMain.biml,

0_20_BuildDestinationSchemasMain.biml, 0_30_

Figure 10-43.  Deleting the existing artifacts

Chapter 10 BimlExpress Metadata Framework

171

BuildDestinationTablesMain.biml, and 1_99_Main.biml. Right-click

and select Generate SSIS Packages, as shown in Figure 10-44.

Figure 10-44.  Generating SSIS packages

As before, when generating the Destination Tables SSIS package, you will

be prompted to overwrite the AdventureWorks2014_Stage project connection

manager and its file. The process generates 75 SSIS packages in all:

1 Create Destination database

1 Create Destination schemas

1 Create Destination tables

71 SSIS loaders, one for each table in the

AdventureWorks2014 database

1 controller that contains 71 Execute Package tasks,

one for each SSIS loader

Chapter 10 BimlExpress Metadata Framework

172

Please see Figure 10-45.

Figure 10-45.  AdventureWorks2014 Staging SSIS complete!

Chapter 10 BimlExpress Metadata Framework

173

�Executing the Controller

Execute the Controller SSIS package named 99_Execute_AdventureWorks

2014_Stage_Loader_Staging_Packages.dtsx, as shown in Figure 10-46.

Figure 10-46.  Executing the Controller SSIS package

Chapter 10 BimlExpress Metadata Framework

174

�Validating the Load

In SSMS, run a few test queries to validate the load process executed

successfully, as shown in Figure 10-47.

Figure 10-47.  Validating the load

Figure 10-48.  Preparing to deploy the BimlExpressMetadata
Framework ISPAC file

The load process is validated.

You should now be able to deploy the ISPAC file for the

BimlExpressMetadataFramework SSIS project, as shown in Figure 10-48.

Chapter 10 BimlExpress Metadata Framework

175

�Full Circle
You’ve come full circle in this demo. You deployed an SSIS project to an

SSIS catalog in Chapter 3. In Chapter 7, you executed a script that added

metadata to SSIS Framework Community Edition for an SSIS catalog

project, an SSIS project already deployed to an SSIS catalog, which

allowed you to execute all of the SSIS packages that were part of the SSIS

catalog project by calling a single stored procedure and passing it a single

parameter value.

Chapter 10 BimlExpress Metadata Framework

177
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_11

CHAPTER 11

Conclusion

As shipped, SQL Server Integration Services (SSIS) is ready for enterprise

data integration, but not as ready for enterprise DevOps and data

integration lifecycle management (DILM). Using the best practices,

tools, and utilities outlined in this book, you can deliver data integration

solutions that participate in enterprise DevOps.

The collection of free, free and open-source, and for-sale utilities

available at DILM Suite are built to support enterprise data integration

lifecycle management for enterprises using SSIS for data integration.

179
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7_12

APPENDIX A

Links

SQL Server Developer Edition

microsoft.com/en-us/sql-server/application-development

SQL Server Management Studio (SSMS)

docs.microsoft.com/en-us/sql/ssms/download-sql-

server-management-studio-ssms

SQL Server Data Tools (SSDT)

docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-

tools-ssdt

SQL Server Central Stairway to Integration Services

sqlservercentral.com/stairway/72494/

Visual Studio Online

visualstudio.com

Team Foundation Services (TFS)

visualstudio.com/en-us/docs/tools

“Deploying SSIS Projects to a Restored SSIS Catalog (SSISDB)”

andyleonard.blog/2017/07/29/deploying-ssis-projects-to-

a-restored-ssis-catalog-ssisdb

180

Catalog Browser

dilmsuite.com/catalog-browser

SSIS Catalog Compare

dilmsuite.com/ssis-catalog-compare

SSIS Framework Community Edition

dilmsuite.com/ssis-framework-community-edition

“Adding an SSIS Application to SSIS Framework Community Edition”

andyleonard.blog/2017/07/26/adding-an-ssis-application-

to-ssis-framework-community-edition

Framework Browser

dilmsuite.com/framework-browser

Catalog Reports

dilmsuite.com/catalog-reports

Biml

varigence.com/biml and bimlscript.com

BimlExpress

varigence.com/bimlexpress

BimlExpress Metadata Framework

dilmsuite.com/biml-express-metadata-framework

AdventureWorks2014

msftdbprodsamples.codeplex.com/downloads/get/880661

APPENDIX A Links

181
© Andy Leonard 2018
A. Leonard, Data Integration Life Cycle Management with SSIS,
https://doi.org/10.1007/978-1-4842-3276-7

Index

A
Application lifecycle management

(ALM), 1
Application packages, 129

B
BimlExpress Metadata Framework

downloading
BimlExpressMetadata

Framework.sln file,
open, 146

extract file, 144–145
file extension, 143
rename file, 143
text file, 142

installation
extensions and

updates, 141
license agreement,

accept, 140
README file instructions

controller execution, 173
deleting existing artifacts,

169–170
destination database, 155–156
destination schemas, 157–158
destination tables, 158–160

di.Connections table,
updating, 154–155

executing, destination-
artifacts SSIS packages (see
README file instructions,
destination-artifacts SSIS
packages)

load validation, 174
notes, 146
restoring, BimlMetadata

Database, 153
SSIS packages generating,

170–172
updating BimlMetadata

connection string, Params.
biml, 154

viewing, SSDT, 138
Branching, 26
Business Intelligence Markup

Language (Biml), 5, 137

C
Catalog browser

catalog properties, 94
description, 87
environment variables, data

types, and values, 92

182

package parameters, 89–90
package reference, 89, 91
SSIS package properties, 93
SSIS project and configurations

metadata, 88
Catalog reports

DILM Suite
executions report, 132
messages report, 135
overview report, 134
performance report, 135

export options, 133
fields, executions report, 133
SSMS, 131

Command-line interface (CLI), 42
Configurations scripting, 1
Configuration, SSIS Catalog Project

connection manager’s
configuration, 64

options, 62
overriding connection, 65
testing

execute package error
message, 79

executing SimplePackage.
dtsx, 78

report prompt, 80–81
SSIS catalog environment,

selection, 80
Connection configuration

externalization
catalog environment

variable, 70

configuring environment,
73–74

configuring reference, 74–76
environment creation, 71–72
reference mapping, 71, 76–77
SSIS catalog environment,

69–70
overriding

catalog project literal
override, 67

ConnectionString property
value, 66

ConnectionString’s Value, 65
design-time default, 68–69
value text decoration, 68

D
Data integration, 2
Data integration lifecycle

management (DILM),
83, 177

Data Transformation
Services (DTS), 2

Data warehouse (DW), 2
Deployment, CLI

deployment failure, 47–48
DevOps automation, 45
Integration Services

Deployment Wizard
Review page, 46

ISDeploymentWizard.exe file, 46
SSIS catalog project versions,

48–49

Catalog browser (cont.)

Index

183

SSIS project deployed, 48
Deployment failures, 50
Design-time default, 64, 66–67
DevOps, 1
DILMSample SSIS project, 8
DILM Suite Catalog Reports, 132, 135

E, F, G, H
Enterprise data warehouse

(EDW), 2
Environment configuration, SSIS

catalog, 85
Externalization, 69

I, J, K, L, M, N
Integration Services Deployment

Wizard, 43, 108

O
Operational data store (ODS), 1

P, Q
Package parameter settings, 9
Project deployment model

destination page, 44
DILMSuite SSIS project, 42
Integration Services

Deployment Wizard, 43
reviewing deployment

selections and options, 45

Project parameter settings, 11
Project reference scripts

catalog folder, project, and
environment, 115

existence checks, 118
feedback, 116
message returned, 119
re-executing, 117

R
README file instructions,

destination-artifacts SSIS
packages

AdventureWorks2014_Staging,
163, 168–169

10_Build_Destination_
Databases.dtsx SSIS
package, 161

20_Build_Destination_
Schemas.dtsx SSIS
package, 164–165

30_Build_Destination_Tables.
dtsx SSIS package, 166–167

refreshing, 162, 168
Reference mapping, 71, 76–78

S
Source control

client, 26
SSDT configuration, TFS online

add project, 34
add/remove TFS, 31

Index

184

checked-in solution, 39
check in, 36
check-in confirmation, 38
configured add/remove

dialog, 32
connection, 30
connections management,

29
newly added file, 36
solution, adding, 35
team explorer, 33
team project selection, 33

team project creation, 26–29
SQL Server Data Tools (SSDT),

108, 137
SQL server integration services

(SSIS)
adding package parameters, 9
adding project parameters, 10–11
description, 2
DILMSample SSIS project, 8
enterprise data integration

engine, 3
execute SQL task, 12–15
lifecycle management, 4
packages, 123
script task

C#, 16–17
.Net Code Compiles,

testing, 20–22
ProjectName and

TaskName, 18–20

software development
platform, 2–3

solutions and credit, 5
testing progress, 22–23

SQL Server Reporting Services
(SSRS), 131

SSIS Catalog Compare
Catalog Browser, 96
catalog properties, 99–100
compare button, 96
Compare operation, 97
expand differences, 97–99
scripting

catalog folder and
contents, 101

catalog folder
creation, 103–107

DevOps and enterprise
DILM, 101

Integration Services
Deployment Wizard
GUI, 103

literal overrides and catalog
environment, 112–114

project reference scripts (see
Project reference scripts)

SSIS project deployment, 108
target file system folder,

selection, 102
testing

catalog environment
variable values, 122

data source values, 120

Source control (cont.)

Index

185

options, 120–121
TreeViews and comparing,

119
SSIS catalog database (SSISDB), 51
SSIS catalog project, 126

configuration, 85–87
SSIS catalog surface, 84
SSIS Framework Community

Edition
catalog projects

framework application, 125
parameters, 125

metadata
application packages, 129
framework applications, 128
surfacing application and

application package
framework, 129

SSIS catalog reports, viewing,
126–127

SSIS packages, 124

T, U
Team foundation services (TFS)

online
add/remove, 31
configured add/remove, 32
connection, 30
selecting, team project, 33

Transact-SQL (T-SQL) scripts, 9

V, W, X, Y, Z
Visual Studio Tools for Applications

(VSTA), 18

Index

	Table of Contents
	About the Author
	Acknowledgments
	Foreword
	Chapter 1: Introduction to DIML
	 Some History
	 SSIS Is a Software Development Platform
	 SSIS Is an Enterprise Data Integration Engine
	 SSIS Is Difficult to Learn
	 Lifecycle Management
	 Solutions and Credit Where Credit Is Due

	Chapter 2: SSIS
	 The Demo
	 Adding Package Parameters
	 Adding Project Parameters
	 A Note About Variables, Parameters, and Scope

	 Adding an Execute SQL Task
	 A Note About SSIS Variable Scope

	 Adding a Script Task
	 Why C#?
	 Why ProjectName and TaskName?
	 Testing .Net Code Compiles Before Closing the VSTA Editor

	 Testing Progress
	 Conclusion

	Chapter 3: Source Control
	 Source Control Client
	 Creating a Team Project
	 Configuring SSDT to Use TFS Online

	Chapter 4: Deploy to the SSIS Catalog
	 Deploying from SSDT
	 Deploying from the Command Line
	 Deployment Failures
	 Conclusion

	Chapter 5: Configure the SSIS Catalog Project
	 Configuring Projects
	 Configuring Connections
	 Overriding the Connection Configuration
	 Externalizing the Connection Configuration
	 Creating an Environment
	 Configuring an Environment
	 Configuring a Reference
	 Configuring a Reference Mapping

	 Testing the Configuration
	 Conclusion

	Chapter 6: Catalog Browser
	 Why I Built DILM Suite, by Andy Leonard
	 Surfacing the SSIS Catalog
	 SSIS Catalog Environment Configuration
	 SSIS Catalog Project Configuration
	 Catalog Browser
	 Conclusion

	Chapter 7: SSIS Catalog Compare
	 Why I Built SSIS Catalog Compare, by Andy Leonard
	 SSIS Catalog Compare
	 Expanding the Differences
	 Catalog Properties
	 SSIS Catalog Compare Scripting
	 Creating a Catalog Folder
	 Deploying the SSIS Project
	 Deploying the Literal Overrides and Catalog Environment
	 Deploying Project and Package References
	 Testing with SSIS Catalog Compare

	Chapter 8: SSIS Framework Community Edition
	 SSIS Framework Community Edition
	 Help for SSIS Catalog Projects Already Deployed
	 Viewing SSIS Catalog Reports
	 Viewing SSIS Framework Community Edition Metadata

	Chapter 9: Catalog Reports
	Chapter 10: BimlExpress Metadata Framework
	 Downloading and Installing BimlExpress
	 Downloading BimlExpress Metadata Framework
	 Following the README File Instructions
	 Restoring the BimlMetadata Database
	 Updating the Connection String Variable Value in the Params.biml File
	 Updating the di.Connections Table
	 Generating the Destination Database
	 Generating the Destination Schemas
	 Generating the Destination Tables
	 Executing the Create-Destination-Artifacts SSIS Packages
	 Deleting Existing Artifacts
	 Generating SSIS Packages
	 Executing the Controller
	 Validating the Load

	 Full Circle

	Chapter 11: Conclusion
	Appendix A: Links
	Index

