
www.allitebooks.com

http://www.allitebooks.org

Delphi Cookbook

50 hands-on recipes to master the power of Delphi for
cross-platform and mobile development on Windows,
Mac OS X, Android, and iOS

Daniele Teti

BIRMINGHAM - MUMBAI

Delphi Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-958-9

www.packtpub.com

Cover image by Junaid Shah (junaidshah111@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Daniele Teti

Reviewers
Eric Van Feggelen

Sherwin John

Olivier Pons

Jorge H. Rodriguez

Commissioning Editor
Sam Birch

Acquisition Editor
Richard Harvey

Content Development Editors
Balaji Naidu

Pooja Nair

Technical Editors
Mrunal Chavan

Dennis John

Edwin Moses

Copy Editors
Roshni Banerjee

Adithi Shetty

Project Coordinator
Leena Purkait

Proofreaders
Bridget Braund

Paul Hindle

Amy Johnson

Indexers
Monica Ajmera Mehta

Tejal Soni

Graphics
Valentina D'silva

Abhinash Sahu

Production Coordinators
Aparna Bhagat

Manu Joseph

Cover Work
Aparna Bhagat

About the Author

Daniele Teti is a software architect, trainer, and consultant with over 18 years of
professional experience. He writes code in a number of languages but his preferred
language to compile native software is Object Pascal.

Daniele is a well-known Delphi and programming expert in the developer community. He's
the main developer and drives the development of some Delphi open source projects
(DelphiMVCFramework; DORM, "the Delphi ORM"; Delphi Redis Client; and so on). He wrote his
first program when he was 11 years old, and since then, he happily continues to write software
almost every day. Apart from Delphi, he's a huge fan of design patterns, expert systems, RESTful
architectures, and Android OS. When he is not busy writing software or programming (as his
job or hobby), he likes to play the guitar, write songs, and do voluntary activities. Currently, he
works as an R&D Director & Educational at bit Time Software (www.bittime.it), an Italian
representative of Embarcadero Technologies (www.embarcadero.com). He recently became
the CEO of bit Time Professionals, which is a spin-off company of bit Time Software; this
company specializes in consultancy, training, and development.

Being a software architect, consultant, and teacher for many Italian and European companies,
he travels very often around the world. He is the Technical Director of ITDevCon, the biggest
European Delphi conference (www.itdevcon.it). He's also an international speaker at
many technical conferences.

Daniele lives in Rome, Italy (where each photographer becomes an artist) with his beloved
wife, Debora, and their little boy, Mattia.

www.allitebooks.com

www.bittime.it
www.embarcadero.com
www.itdevcon.it
http://www.allitebooks.org

About the Reviewers

Eric van Feggelen is a passionate and experienced software consultant who delivers
high-quality solutions using the latest technologies available. He has about 15 years of
experience as a developer and has been interested in information technology his entire life.
In the past few years, he worked for major corporations, such as Microsoft and Avanade
and continues to serve the Microsoft Enterprise space as a private contractor for his own
company. At the time of writing this book, Eric has worked as a lead developer for a Microsoft
Dynamics start-up.

In 2013, Eric reviewed Mastering Windows 8 C++ App Development, Packt Publishing.

Olivier Pons is a developer who's been building websites since 1997. He is a teacher at
IngéSup (École Supérieure d'Ingénierie Informatique – http://www.ingesup.com/ and
http://www.y-nov.com), at the University of Sciences (IUT) in Aix-en-Provence, France.
At École d'Ingénieurs des Mines de Gardanne, he teaches state-of-the-art web techniques,
such as MVC fundamentals, Symfony, WordPress, PHP, HTML, CSS, jQuery/jQuery Mobile,
Node.js, AngularJS, Apache, Linux basics, and advanced Vim techniques. He has already
worked as a technical reviewer for Ext JS 4 First Look, jQuery Hotshot, jQuery Mobile Web
Development Essentials, WordPress Complete, and jQuery 2.0 for Designers Beginner's
Guide Second Edition. All these books were published by Packt Publishing. In 2011, he
left his full-time job as a Delphi and PHP developer to concentrate on his own company,
HQF Development (http://hqf.fr). He currently runs a number of websites including
http://www.battlesoop.fr, http://www.krystallopolis.fr/ (which will be
released soon), http://www.livrepizzas.fr, http://www.papdevis.fr, and
http://olivierpons.fr (his own web development blog). He also works as a consultant,
teacher, and project manager, and sometimes, helps big companies as a senior / highly
skilled developer.

http://www.ingesup.com/
http://www.y-nov.com
http://hqf.fr
http://www.battlesoop.fr
http://www.krystallopolis.fr/
http://www.livrepizzas.fr
http://www.papdevis.fr
http://olivierpons.fr

Jorge H. Rodriguez has a background in software development and more than 20 years
of experience under his belt, many of them working with Delphi.

Always on the lookout for new and exciting technologies, Jorge lives to code and spends much
of his spare time reading technical books and playing online chess. During winters, he likes to
go snowboarding with his only son, Camilo.

Jorge resides in Vancouver, Canada, awaiting his Colombian girlfriend, Shana. He can be
contacted at delphi.developer@shaw.ca.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Delphi Basics 7

Introduction 7
Changing your application's look and feel with VCL styles and no code 8
Changing the style of your VCL application at runtime 10
Customizing TDBGrid 14
Using the owner's draw combos and listboxes 20
Creating a stack of embedded forms 23
Manipulating JSON 26
Manipulating and transforming XML documents 32
I/O in the twenty-first century – knowing streams 38
Putting your VCL application in the tray 42
Creating a Windows service 48
Associating a file extension with your application on Windows 53

Chapter 2: Become a Delphi Language Ninja 59
Introduction 59
Fun with anonymous methods – using higher-order functions 59
Writing enumerable types 64
RTTI to the rescue – configuring your class at runtime 68
Duck typing using RTTI 72
Creating helpers for your classes 76
Checking strings with regular expressions 84

Chapter 3: Going Cross Platform with FireMonkey 91
Introduction 91
Giving a new appearance to the standard FireMonkey
controls using styles 92
Creating a styled TListBox 98

ii

Table of Contents

Impressing your clients with animations 102
Using master/details with LiveBindings 105
Showing complex vector shapes using paths 116
Using FireMonkey in a VCL application 122

Chapter 4: The Thousand Faces of Multithreading 129
Introduction 129
Synchronizing shared resources with TMonitor 129
Talking with the main thread using a thread-safe queue 137
Synchronizing multiple threads using TEvent 140
Displaying a measure on a 2D graph like an oscilloscope 143

Chapter 5: Putting Delphi on the Server 147
Introduction 147
Web client JavaScript application with WebBroker on the server 148
Converting a console service application to a Windows service 157
Serializing a dataset to JSON and back 160
Serializing objects to JSON and back using RTTI 165
Sending a POST HTTP request encoding parameters 171
Implementing a RESTful interface using WebBroker 174
Controlling remote applications using UDP 190
Using App Tethering to create a companion app 197
Creating DataSnap Apache modules 203

Chapter 6: Riding the Mobile Revolution with FireMonkey 213
Introduction 213
Taking a photo, applying effects, and sharing it 214
Using listview to show and search local data 222
Do not block the main thread! 227
Using SQLite databases to handle a to-do list 234
Using a styled TListView to handle a long list of data 239
Taking a photo and location and sending it to a server continuously 247
Talking to the backend 257
Making a phone call from your app! 264
Tracking the application's life cycle 269

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 7: Using Specific Platform Features 275
Introduction 275
Using Android SDK Java classes 276
Using iOS Objective-C SDK classes 282
Displaying PDF files in your app 286
Sending Android intents 291
Letting your phone talk – using the Android TextToSpeech engine 300

Index 305

www.allitebooks.com

http://www.allitebooks.org

Preface
If you've been a software developer for a long time, you certainly know how useful a
conversation can be with a colleague who already did something similar to what you are
doing, and can discuss it as he/she may have faced the same problem. It is not possible to
include all the possible situations that a developer may face in a book, but most problems are
similar at least in principle. This is the reason this book is organized as a cookbook; just like
how a combination of foods can be adapted and modified to be appropriate for different types
of meals. A programming recipe can provide the idea to solve many different problems.

This book is an advanced-level guide that will help Delphi developers become experts in their
every day job. The every day job and the quality of your deliverables is what contribute to the
quality of your professional life. It does not make sense to reinvent the wheel repeatedly,
especially when working with a well-established tool such as Delphi. The focus of this book is
to provide readers with comprehensive and detailed examples on how effectively the Delphi
software can be designed and written. All the recipes in this book are a result of years of
development, training, and consultancy activities in the most different fields of the IT industry,
from small systems with thousands of installations to large systems commissioned by any big
company or government. It is not a magic book that will solve all your development problems
(if you find it, tell me please!), but it can be a valid source of help to get a different point of
view on a specific problem, or a hint on how to solve problems.

Armed with the knowledge of advanced concepts, such as high-order functions and
anonymous methods, generics and enumerables, extended RTTI and duck typing,
LiveBindings, multithreading, FireMonkey, mobile development, server-side development
and many more, you will be pleasantly surprised as to how quickly and easily you can use
Delphi to write high quality, clean, readable, maintainable, and extensible code.

I have read too many boring programming books, so I tried to maintain a relaxed and light
exposition. A small applicability scenario, which describes a situation where a particular
technology, approach, or design pattern can be used successfully, introduces all the recipes.
The recipes are not too complex because otherwise the book may consist of thousands of
pages; however, it is also not trivial because the IT books landscape is already full of trivial
examples with a few direct applications. I tried to do a good trade-off and hope I succeeded.

Preface

2

Every time I start to read a new book, I ask myself, "Will the author have something interesting
to say?", "How much will this book change my point of view on the topics it talks about?",
or "Will it be worth the time to read this book?". Now that I'm on the other side of the river, I
worked hard to put as much good quality content as possible in this book, which I hope will
match your expectations.

On a final note, writing hundreds of pages about advanced programming is not an easy task.
However, I am very pleased to have done it, and I hope you will enjoy reading it as much as I
enjoyed writing it.

What this book covers
Chapter 1, Delphi Basics, talks about a set of general approaches that should not be ignored
by any Delphi programmer. Some recipes are simple, while some are not, but all of them
should be deeply understood. By the end of this chapter, you will be able to use some of the
fundamental Delphi techniques related to the RTL, VCL, and OS integration.

Chapter 2, Become a Delphi Language Ninja, focuses on the Object Pascal language. A
programming language is the way you talk to the machine, so you must be fluent and should
know all the possibilities offered. This chapter talks about higher-order functions, practical
utilization of the extended RTTI, regular expressions, and other things useful to augment the
power of your code and lower the amount of time spent on debugging.

Chapter 3, Going Cross Platform with FireMonkey, is dedicated to the FireMonkey framework
in general. What you will learn from this chapter can be used in many of the platforms
FireMonkey supports. Moreover, you will learn about nontrivial LiveBindings utilizations.

Chapter 4, The Thousand Faces of Multithreading, is one of the most complex chapters. It
talks about thread synchronization and the mechanisms used to obtain this synchronization,
including TMonitor, thread-safe queues, and TEvent. By the end of this chapter, you will be
able to create and communicate with background threads, leaving the main thread free to
update your GUI (or communicate with the OS).

Chapter 5, Putting Delphi on the Server, focuses on how well Delphi can behave when running
on a server. Some people think that Delphi is a client-only tool, but it is not true; the number
of Delphi server-side systems running all over the world prove it! In this chapter, we'll show
how to create powerful servers that offer services over a network. Then, in one of the recipes,
we'll also implement a JavaScript client that brings the database data to the user's browser.
The techniques explained in this chapter open a range of possibilities, especially in the mobile
and web area.

www.allitebooks.com

http://www.allitebooks.org

Preface

3

Chapter 6, Riding the Mobile Revolution with FireMonkey, is dedicated to mobile development
with Delphi and FireMonkey. If you are interested in mobile development, I think that this will
be your favorite chapter! Mobiles are everywhere and this chapter will explain how to write
software for your Android or iOS device, what are the best practices to use, how to save your
data on your mobile device, how to retrieve and update remote data, and how to integrate with
a mobile operating system.

Chapter 7, Using Specific Platform Features, shows you how to integrate your app with the
underlying mobile operating systems beyond what FireMonkey offers. You will learn how to
import Java and Objective-C libraries in your app and use the SDK classes from your Object
Pascal code.

What you need for this book
This book talks about Delphi, so you need Delphi. Not all recipes are available in all the Delphi
editions. Typically, the mobile projects can be compiled only if you have Delphi Enterprise or
better (or Delphi Professional plus the mobile add-on, or RAD Studio professional, or better).
All the projects are compiled and tested on Delphi XE6. Many of the recipes can also be
compiled on older versions.

If you want to run the mobile app on a phone or tablet, you can use the Android emulator or
iOS simulator, but it is strongly recommended that you use an actual device to see how the
app really behaves. To deploy an iOS app on your device, you also need an Apple computer
with Mac OS X. More information is provided in the related chapters.

Who this book is for
This book aims to help professional Delphi developers in their day-to-day jobs. This book will
teach you about the newest Delphi technologies and its hidden gems. It is not a book for a
newbie, but the practical approach will help you reach a new level in your Delphi skills. An
experienced developer will benefit from this book because nontrivial problems are solved
using the best practices. Where more than one way is available or the topics are too vast to be
explained in the available pages, references are provided that allow interested readers
to go deeper in that field. It is a book that'll hold on to your desk for the next few years.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The TStyleManager.
StyleNames property contains all names of the available styles."

Preface

4

A block of code is set as follows:

LogMessage('Your message goes here for SUCCESS',
 EVENTLOG_SUCCESS, 0, 1);

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

begin
 Application.Initialize;
 Application.MainFormOnTaskbar := True;
 TStyleManager.TrySetStyle('Iceberg Classico');
 Application.CreateForm(TMainForm, MainForm);
 Application.Run;
end.

Any command-line input or output is written as follows:

C:\<ExeProjectPath>\WindowsService.exe /install

C:\<ExeProjectPath>\WindowsServiceOrGUI.exe /GUI

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on Start, wait for the
confirmation, and the service should start to write its logfile."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

www.packtpub.com/authors
http://www.allitebooks.org

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

www.allitebooks.com

http://www.allitebooks.org

1
Delphi Basics

In this chapter, we will cover the following recipes:

 f Changing your application's look and feel with VCL styles and no code

 f Changing the style of your VCL application at runtime

 f Customizing TDBGrid

 f Using the owner's draw combos and listboxes

 f Creating a stack of embedded forms

 f Manipulating JSON

 f Manipulating and transforming XML documents

 f I/O in the twenty-first century – knowing streams

 f Putting your VCL application in the tray

 f Creating a Windows service

 f Associating a file extension with your application on Windows

Introduction
This chapter explains some of the day-to-day needs of a Delphi programmer. These are
ready-to-use recipes that will be useful every day and have been selected ahead of a lot of
others because although they may be obvious for some experienced users, they are still very
useful. Even if there is no specifically database-related code, many of the recipes can also be
used (or sometimes especially used) when you are dealing with data.

Delphi Basics

8

Changing your application's look and feel
with VCL styles and no code

VCL styles are a major new entry in the latest versions of Delphi. They have been introduced
in Delphi XE2 and are still one of the less-known features for the good old Delphi developers.
However, as usual, some businessmen say looks matter, so the look and feel of your
application could be one of the reasons to choose your product over one from a competitor.
Consider that with a few mouse clicks you can apply many different styles to your application
to change the look and feel of your applications. So why not give it a try?

Getting ready
VCL styles can be used to revamp an old application or to create a new one with a
nonstandard GUI. VCL styles are a completely different beast to FireMonkey styles.
They are both styles but with completely different approaches and behavior.

To get started with VCL styles, we'll use a new application. Let's create a new VCL application
and drag-and-drop some components onto the main form (for example, two TButton
components, one TListBox component, one TComboBox component, and a couple of
TCheckBox components).

The following screenshot is the resultant form that runs on a Windows 7 machine:

A form without style

How to do it...
Now we've to apply a set of nice styles. To do this, perform the following steps:

1. Navigate to Project | Options. In the resultant dialog, go to Application |
Appearance and select all the styles that we want to include in our application.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

9

2. Using the Preview button, the IDE shows a simple demo form with some controls, and
we can get an idea about the final result of our styled form. Feel free to experiment
and choose the style—or set of styles—that you like. Only one style will be used at a
time, but we can link the necessary resources to the executable and select the proper
one at runtime.

3. After selecting all the required styles from the list, we've to select one in the
combobox at the bottom of the screen. This style will be the default style for our form
and will be loaded as soon as the application starts. You can delay this choice and
make it at runtime using code if you prefer.

4. Click on OK and hit F9 (or navigate to Run | Run) and your application is styled! The
resultant form is shown in the following screenshot:

The same form as the preceding one but with the Iceberg Classico style applied

How it works…
Selecting one or more styles by navigating to Project | Options | Application | Appearance
can cause the Delphi linker to link the style resource to your executable. It is possible to link
many styles to your executable, but you can use only one style at time. So, how does Delphi
know which style you want to use when there are more than one styles? If we check the
Project file (the file with the .dpr extension) by navigating to Project | View Source,
you can see where and how this little magic happens.

The following lines are the interesting part:

begin
 Application.Initialize;
 Application.MainFormOnTaskbar := True;
 TStyleManager.TrySetStyle('Iceberg Classico');
 Application.CreateForm(TMainForm, MainForm);
 Application.Run;
end.

Delphi Basics

10

When we've selected the Iceberg Classico style as the default style, the Delphi IDE adds
a line just before the creation of the main form, setting the default style for the application
using the TStyleManager.TrySetStyle static method.

TStyleManager is a very important class when dealing with VCL styles. We'll see more about
it in the next recipe when we'll learn how to change a style at runtime.

There's more...
Delphi and C++Builder XE6 come with 29 VCL styles available in C:\Program Files
(x86)\Embarcadero\Studio\14.0\Redist\styles\vcl\ (with a standard installation).

Moreover, it is possible to create your own styles or modify the existing ones by using the
Bitmap Style Designer available at Tools | Bitmap Style Designer menu. The Bitmap Style
Designer also provides test applications to test VCL styles.

For more details on how to create or customize a VCL style, check the following link:

http://docwiki.embarcadero.com/RADStudio/XE6/en/Creating_a_Style_
using_the_Bitmap_Style_Designer

Changing the style of your VCL application
at runtime

VCL styles are a powerful way to change the appearance of your application, but using them
only as design-time tools is way too limited. One of the main features of a VCL style is the
ability to change the style while an application is running.

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Getting ready
Because a VCL style is simply a particular kind of binary file, we can allow our users to load
their preferred style at runtime, and we can even provide new styles—publishing them on a
website or sending them by an e-mail to our customers.

In this recipe, we'll be able to change the style while an application is running using a style
already linked at design time or let the user choose between a set of styles deployed inside
a folder.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Creating_a_Style_using_the_Bitmap_Style_Designer
http://docwiki.embarcadero.com/RADStudio/XE6/en/Creating_a_Style_using_the_Bitmap_Style_Designer
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

Chapter 1

11

How to do it…
Styles manipulation at runtime is done using the class methods of the TStyleManager class:

1. Create a brand new VCL application and add the Vcl.Themes and Vcl.Styles
units to the main implementation form. These units are required to use VCL styles
at runtime.

2. Drop on the form a TListBox component, two TButton components, and two
TOpenDialog components. Leave the default component names.

3. Go to Project | Appearance and select eight styles of your choice from the list. Leave
the Default style option to Windows.

4. The TStyleManager.StyleNames property contains all names of the available
styles. In the FormCreate event handler, we have to load the already linked styles
present in the executable to the listbox to let the user choose one of them. So, create
a new procedure called StylesListRefresh with the following code and call it
from the FormCreate event handler:
procedure TMainForm.StylesListRefresh;
var
 stylename: string;
begin
 ListBox1.Clear;
 // retrieve all the styles linked in the executable
 for stylename in TStyleManager.StyleNames do
 begin
 ListBox1.Items.Add(stylename);
 end;
end;

5. In the Button1Click event handler, we've to set the current style according to the
one selected from ListBox1 using the following code:
 TStyleManager.SetStyle(ListBox1.Items[ListBox1.ItemIndex]);

6. The Button2Click event handler should allow the user to select a style from
disk. So, we have to create a folder named styles at level of our executable and
copy a few .vsf files from the default style directory which is C:\Program Files
(x86)\Embarcadero\Studio\14.0\Redist\styles\vcl\ in RAD Studio XE6.

7. After copying the files, write the following code under the Button2Click event
handler. This code allows the user to chose a style file directly from the disk. Then you
can select one of the loaded styles from the listbox and click on Button1 to apply it to
the application. The code is as follows:
if OpenDialog1.Execute then
begin
 if TStyleManager.IsValidStyle(OpenDialog1.FileName) then

Delphi Basics

12

 begin
 //load the style file
 TStyleManager.LoadFromFile(OpenDialog1.FileName);
 //refresh the list with the currently available styles
 StylesListRefresh;
 ShowMessage('New VCL Style has been loaded');
 end
 else
 ShowMessage('The file is not a valid VCL Style!');
 end;
end;

8. Just to have an idea of how the different controls appear with the selected style, drag-
and-drop some controls to the right-hand side of the form. The following screenshot
shows an application with some styles loaded, some at design time and some from
the disk. Hit F9 (or go to Run | Run) and play with your application using and loading
styles from the disk.

The Style Chooser form with a Turquoise Gray style loaded

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

13

How it works…
The TStyleManager class has all the methods we need:

 f Inspect the loaded styles with TStyleManager.StyleNames

 f Apply an already loaded style to the running application using TStyleManager.
SetStyle('StyleName')

 f Check if a file is a valid style with TStyleManager.IsValidStyle('StylePathF
ileName')

 f Load a style file from disk using TStyleManager.LoadFromFile('StylePathFi
leName')

After loading new styles from the disk, these new styles are completely similar to the styles
linked to the executable during the compile and link phases and can be used in the same way.

There's more...
Other things to consider are third-party controls. If your application uses third-party controls,
take care with their style support. If your external components do not support styles, you will
end up with some controls styled (the original included in Delphi) and some not (your external
third-party controls)!

By navigating to Tools | Bitmap Style Designer and using a custom VCL style, we can also
perform the following actions:

 f Change the application's colors (for example, ButtonNormal, ButtonPressed,
ButtonFocused, ButtonHot, and so on)

 f Override the system's colors (for example, clCaptionText, clBtnFace,
clActiveCaption, and so on)

 f Change the font color and font name for particular controls (for example,
ButtonTextNormal, ButtonTextPressed, ButtonTextFocused,
ButtonTextHot, and so on)

Delphi Basics

14

The following screenshot shows the Bitmap Style Designer window while working on a
custom style:

The Bitmap Style Designer while it is working on a custom style

Customizing TDBGrid
The adage a picture is worth a thousand words refers to the notion that a complex idea can
be conveyed with just a single still image. Sometimes, even a simple concept is easier to
understand and nicer to see if it is represented by images. In this recipe, we'll see how to
customize the TDBGrid object to visualize graphical representation of data.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

15

Getting ready
Many VCL controls are able to delegate their drawing, or part of it, to user code. This means
that we can use simple event handlers to draw standard components in different ways. It is
not always simple, but TDBGrid is customizable in a really easy way. Let's say that we have
a class of musicians that have to pass a set of exams. We want to show the percentage of
musicians who have already passed exams with a progress bar, and if the percent is higher
than 50 percent, there should also be a check in another column.

How to do it…
We'll use a special in-memory table from the FireDAC library. FireDAC is a new data access
library from Embarcadero, which is included in RAD Studio since Version XE5. If some of the
code seems unclear at the moment, consider the in-memory table as a normal TDataSet
descendant. However, at the end of this section, there are some links to the FireDAC
documentation, and I strongly suggest you to read them if you still don't know FireDAC.
To customize TDBGrid, perform the following steps:

1. Create a brand new VCL application and drop on the form the TFDMemTable,
TDBGrid, TDataSource, and TDBNavigator component. Connect all these
components in the usual way (TDBGrid->TDataSource->TFDMemTable). Set the
TDBGrid font size to 24. This will create more space in the cell for our graphical
representation.

2. Using the TFDMemTable fields editor, add the following fields and then activate
the dataset setting by setting its Active property to True:

Field name Field datatype Field type
FullName String (size 50) Data
TotalExams Integer Data
PassedExams Integer Data
PercPassedExams Float Calculated
MoreThan50Percent Boolean Calculated

3. In a real application, we should load real data from some sort of database. But for
now, we'll use some custom data generated in code. We have to load this data into
the dataset with the following code:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 FDMemTable1.InsertRecord(
 ['Ludwig van Beethoven',30,10]);
 FDMemTable1.InsertRecord(

Delphi Basics

16

 ['Johann Sebastian Bach',24,10]);
 FDMemTable1.InsertRecord(
 ['Wolfgang Amadeus Mozart',30,30]);
 FDMemTable1.InsertRecord(
 ['Giacomo Puccini',25,10]);
 FDMemTable1.InsertRecord(
 ['Antonio Vivaldi',20,20]);
 FDMemTable1.InsertRecord(
 ['Giuseppe Verdi',30,5]);
end;

4. Do you remember? We've two calculated fields that need to be filled in some way.
Create the OnCalcFields event handler on the TFDMemTable component and
fill it with the following code:
procedure TMainForm.FDMemTable1CalcFields(
 DataSet: TDataSet);
var
 p: Integer;
 t: Integer;
begin
 p := FDMemTable1.FieldByName('PassedExams').AsInteger;
 t := FDMemTable1.FieldByName('TotalExams').AsInteger;
 if t = 0 then
 begin
 FDMemTable1.FieldByName('PercPassedExams').AsFloat := 0
 end
 else
 begin
 FDMemTable1.
 FieldByName('PercPassedExams').
 AsFloat := p / t * 100;
 end;

FDMemTable1.FieldByName('MoreThan50Percent').AsBoolean :=
FDMemTable1.
 FieldByName('PercPassedExams').AsFloat > 50;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

17

5. Run the application by hitting F9 (or navigating to Run | Run) and you will get the
following screenshot:

A normal form with some data

6. This is useful, but a bit boring. Let's start our customization. Close the application
and return to Delphi IDE.

7. Go to the TDBGrid properties and set DefaultDrawing to false.

Go to the TDBGrid event and create an event handler for OnDrawColumnCell. All
the customization code goes in this event.

Include the Vcl.GraphUtil unit and write the following code in the
DBGrid1DrawColumnCell event:
procedure TMainForm.DBGrid1DrawColumnCell(Sender: TObject; const
 Rect: TRect; DataCol: Integer; Column: TColumn;
 State: TGridDrawState);
var
 R: TRect;
 Grid: TDBGrid;
 S: string;
 WPerc: Extended;
 SSize: TSize;
 SavedPenColor: Integer;
 SavedBrushColor: Integer;
 SavedPenStyle: TPenStyle;
 SavedBrushStyle: TBrushStyle;
begin
 Grid := TDBGrid(Sender);
 if [gdSelected, gdFocused] * State <> [] then
 Grid.Canvas.Brush.Color := clHighlight;

Delphi Basics

18

 if Column.Field.FieldKind = fkCalculated then
 begin
 R := Rect;
 SavedPenColor := Grid.Canvas.Pen.Color;
 SavedBrushColor := Grid.Canvas.Brush.Color;
 SavedPenStyle := Grid.Canvas.Pen.Style;
 SavedBrushStyle := Grid.Canvas.Brush.Style;
 end;

 if Column.FieldName.Equals('PercPassedExams') then
 begin
 S := FormatFloat('##0', Column.Field.AsFloat) + ' %';
 Grid.Canvas.Brush.Style := bsSolid;
 Grid.Canvas.FillRect(R);
 WPerc := Column.Field.AsFloat / 100 * R.Width;
 Grid.Canvas.Font.Size := Grid.Font.Size - 1;
 Grid.Canvas.Font.Color := clWhite;
 Grid.Canvas.Brush.Color := clYellow;
 Grid.Canvas.RoundRect(R.Left, R.Top,
 Trunc(R.Left + WPerc), R.Bottom, 2, 2);
 InflateRect(R, -1, -1);
 Grid.Canvas.Pen.Style := psClear;
 Grid.Canvas.Font.Color := clBlack;
 Grid.Canvas.Brush.Style := bsClear;
 SSize := Grid.Canvas.TextExtent(S);
 Grid.Canvas.TextOut(
 R.Left + ((R.Width div 2) - (SSize.cx div 2)),
 R.Top + ((R.Height div 2) - (SSize.cy div 2)),
 S);
 end
 else if Column.FieldName.Equals('MoreThan50Percent') then
 begin
 Grid.Canvas.Brush.Style := bsSolid;
 Grid.Canvas.Pen.Style := psClear;
 Grid.Canvas.FillRect(R);
 if Column.Field.AsBoolean then
 begin
 InflateRect(R, -4, -4);
 Grid.Canvas.Pen.Color := clRed;
 Grid.Canvas.Pen.Style := psSolid;
 DrawCheck(Grid.Canvas,
 TPoint.Create(R.Left, R.Top + R.Height div 2),
 R.Height div 3);
 end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

19

 end
 else
 Grid.DefaultDrawColumnCell(Rect, DataCol,
 Column, State);

 if Column.Field.FieldKind = fkCalculated then
 begin
 Grid.Canvas.Pen.Color := SavedPenColor;
 Grid.Canvas.Brush.Color := SavedBrushColor;
 Grid.Canvas.Pen.Style := SavedPenStyle;
 Grid.Canvas.Brush.Style := SavedBrushStyle;
 end;
end;

8. That's all, folks! Hit F9 (or navigate to Run | Run) and we now have a nicer grid with
more direct information about our data:

The same grid with a bit of customization

How it works…
By setting the DBGrid property DefaultDrawing to false, we told the grid that we want
to manually draw all the data into every cell. The OnDrawColumnCell event allows us to
actually draw using the standard Delphi code. For each cell we are about to draw, the event
handler is called with a list of useful parameters to know which cell we're about to draw and
what data we have to read considering the column currently drawn. In this case, we want to
draw only the calculated columns in a customized way. This is not a rule, but this can be done
to manipulate all cells. We can draw any cell in the way we like. For the cells where we don't
want to do custom drawing, a simple DefaultDrawColumnCell call method passing the
same parameters we got from the event and the VCL code will draw the current cell as usual.

Delphi Basics

20

Among the event parameters, there is Rect (of the TRect type) that represents the specific
area we're about to draw, there is Column (of the TColumn type) that is a reference to the
current column of the grid, and there is State (of the TGridDrawState type) that is a set of
the grid cell states (for example, Selected, Focused, HotTrack, and so on). If our drawing
code ignores the State parameter, all the cells will be drawn in the same way and users
cannot see which cell or row is selected.

The event handler uses a sets intersection to know whether the current cell should be drawn
as a selected or focused cell:

 if [gdSelected, gdFocused] * State <> [] then
 Grid.Canvas.Brush.Color := clHighlight;

Remember that if your dataset has 100 records and 20 fields, the
OnDrawColumnCell method will potentially be called 2,000
times! So the event code must be fast, otherwise the application will
become less responsive.

There's more...
Owner drawing is a really large topic and can be simple or tremendously complex involving
much Canvas related code. However, often the kind of drawing you need will be relatively
similar. So, if you need checks, arrows, color gradients, and so on, check the procedures in
the Vcl.GraphUtil unit. Otherwise, if you need images, you could use a TImageList
class to hold all the images needed by your grid.

The good news is that the drawing code can be reused by different kind of controls, so try to
organize your code in a way that allows code reutilization avoiding direct dependencies to the
form where the control is.

The code in the drawing events should not contain business logic or presentation logic. If you
need presentation logic, put it in a separate and testable function or class.

Using the owner's draw combos and
listboxes

Many things are organized in a list. Lists are useful when you have to show items or when
your user has to choose among a set of possible options. Usually, standard lists are flat, but
sometimes you need to transmit more information in addition to a list of items. Let's think
about when you go to choose a font in an advanced text editor such as Microsoft Word or
OpenOffice.org. Having the name of the font drawn in the font style itself helps users to make
a faster and more reasoned choice. In this recipe, we'll see how to make listboxes more
useful. The code is perfectly valid also for a TComboBox.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

21

Getting ready
As we saw in the Customizing TDBGrid recipe, many VCL controls are able to delegate their
drawing, or part of it, to user code. This means that we can use simple event handlers to
draw standard components in different ways. Let's say that we have a list of products in our
store and we have to set discounts on these products. As there are many products, we want
to make it simple so that our users can make a fast selection between the available discount
percentages using a color code.

How to do it…
1. Create a brand new VCL application and drop on the form a TListBox component.

Set the following properties:

Property Value
Style lbOwnerDrawFixed

Font.Size 14

2. In the listbox Items property, add seven levels of discount. For example, you can
use the following: no discount, 10 percent discount, 20 percent discount, 30 percent
discount, 40 percent discount, 50 percent discount, and 70 percent discount.

3. Then, drop a TImageList component on the form and set the following properties:

Property Value
ColorDepth cd32Bit

DrawingStyle dsTransparent

Width 32

Height 32

4. The TImageList component is our image repository and will be used to draw an
image by index. Load seven PNG images (of 32 x 32 size) into TImageList. You
can find some nice PNG icons in the recipe's project folder (ICONS\PNG\32).

5. Create an OnDrawItem event handler for the TListBox component and write the
following code:
procedure TCustomListControlsForm.ListBox1DrawItem(
 Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var
 LBox: TListBox;
 R: TRect;
 S: string;

Delphi Basics

22

 TextTopPos, TextLeftPos, TextHeight: Integer;
const
 IMAGE_TEXT_SPACE = 5;
begin
 LBox := Control as TListBox;
 R := Rect;
 LBox.Canvas.FillRect(R);
 ImageList1.Draw(LBox.Canvas, R.Left, R.Top, Index);
 S := LBox.Items[Index];
 TextHeight := LBox.Canvas.TextHeight(S);
 TextLeftPos := R.Left +
 ImageList1.Width + IMAGE_TEXT_SPACE;
 TextTopPos := R.Top + R.Height div 2 - TextHeight div 2;
 LBox.Canvas.TextOut(TextLeftPos, TextTopPos, S);
end;

6. Run the application by hitting F9 (or navigate to Run | Run) and you will see the
following screenshot:

Our listbox with some custom icons read from TImageList

How it works…
The TListBox.OnDrawItem event handler allows us to customize the drawing of the listbox.
In this recipe, we used a TImageList component as the image repository for the listbox.
Using the Index parameter, we read the correspondent image in the image list and drawn on
the Canvas listbox. After this, all the other code is related to the alignment of image and text
inside the listbox row.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

23

Remember that this event handler will be called for each item in the list, so the code must
be fast and should not do too much slow Canvas writing. Otherwise, all your GUI will be
unresponsive. If you want to create complex graphics on the fly in the event, I strongly suggest
you to prepare your images the first time you draw the item and then put them in a sort of
cache memory (TObjectList<TBitmap> is enough).

There's more...
While you are in the OnDrawITem function, you can do whatever you want with the TListBox
Canvas. Moreover, the State parameter (of the TOwnerDrawState type) tells you in
which states the listbox item is (for example, Selected, Focused, HotTrack, and so on),
so you can use different kind of drawings depending on the item's state. You can check the
Customizing TDBGrid recipe to know about the TDBGrid owner drawing for an example of
the State parameter.

If you want to make your code aware of the selected VCL style, changing the color used
according to it, you can use StyleServices.GetStyleColor(), StyleServices.
GetStyleFontColor(), and StyleServices.GetSystemColor() into the
Vcl.Themes unit.

The icons used in this recipe are from the Icojam website (http://www.icojam.com).
The specific set used is available at http://www.icojam.com/blog/?p=259.

Creating a stack of embedded forms
Every modern browser has a tabbed interface. Also, many other kinds of multiple views
software have this kind of interface. Why? Because it's very useful. While you are reading one
page, you can rapidly check another page, and then still come back to the first one at the
same point you left some seconds ago. You don't have to redo a search or redo a lot of clicks
to just go back to that particular point. You simply have switched from one window to another
and back to the first. I see too many business applications that are composed by a bounce of
dialog windows. Every form is called with the TForm.ShowModal method. So, the user has to
navigate into your application one form at time. This is simpler to handle for the programmer,
but it's less user-friendly for your customers. However, providing a switchable interface to your
customer is not that difficult. In this recipe, we'll see a complete example on how to do it.

Getting ready
This recipe is a bit more complex than the previous recipes, so I'll not explain all the code but
only the fundamental parts. You can find the complete code in the book's code repository
(Chapter1\RECIPE05).

http://www.icojam.com
http://www.icojam.com/blog/?p=259

Delphi Basics

24

Let's say we want to create a tabbed interface for our software that is used to manage product
orders, sales, and invoices. All the forms must be usable at the same time without having to
close the previous one. Before we begin, the following screenshot is what we want to create:

The main form containing seven embedded child forms

How to do it...
The project is composed by a bounce of forms. The main form has a TTabControl
component that allows switching between the active forms. All embedded forms inherit
from EmbeddableForm. The most important is the Show method shown as follows:

procedure TEmbeddableForm.Show(AParent: TPanel);
begin
 Parent := AParent;
 BorderStyle := bsNone;
 BorderIcons := [];
 Align := alClient;
 Show;
end;

Note that all the forms apart from the main form have been removed
from the Auto-Create Form list (Project | Options | Forms).

All the other forms descend from the EmbeddableForm method and are added to the
TTabControl component on the main form with a line of code similar to the following:

procedure TMainForm.MenuOrdersClick(Sender: TObject);
begin
 AddForm(TForm1.Create(self));
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

25

The MainForm AddForm method is in charge of adding an actual instance of a form into the
tabs, keeping a reference of it. The following code shows you how this is done:

//Add a form to the stack
procedure TMainForm.AddForm(
 AEmbeddableForm: TEmbeddableForm);
begin
 AEmbeddableForm.Show(Panel1);
 //each tab show the caption of the containing form and
 //hold the reference to it
 TabControl1.Tabs.AddObject(
 AEmbeddableForm.Caption, AEmbeddableForm);
 ResizeTabsWidth;
 ShowForm(AEmbeddableForm);
end;

Other methods are in charge of bringing an already created form to the front when a
user clicks on the related tab and then to close a form when the related tab is removed
(check the ShowForm and WMEmbeddedFormClose methods).

How it works...
There is a bit of code, but the concepts are simple:

 f When we need to create a new form, add it in the TabControl1.Tabs property. The
caption of the form is the caption of the tab, and the object is the form itself. This is
what the AddForm method does with the following line:
TabControl1.Tabs.AddObject(
 AEmbeddableForm.Caption, AEmbeddableForm);

 f When a user clicks on a tab, we have to find the associated form cycling through the
TabControl1.Tabs.Objects list and bring it to the front.

 f When a form asks for closing (sending a WM_EMBEDDED_CLOSE message), we have
to set the ParentWantClose property and then call the Close method of the
correspondent form.

 f If a user wants to close a form by closing the correspondent tab (in the recipe code,
there is a TPopMenu component connected to the TabControl component, which
is used to close a form with a right-click), we have to call the Close method on the
correspondent form.

 f Every form frees itself in the OnClose event handler. This is done once for all in the
TEmbeddableForm.CloseForm event handler using the caFree action.

Delphi Basics

26

There's more...
Embedding a form into another TWinControl is not difficult and allows you to create
flexible GUIs without using TPageControl and frames. For the end user, this multitabbed
GUI is probably more familiar because all the modern browsers use it, and probably your
user already knows how to use a browser with different pages or screens opened. From
the developer point of view, the multitabbed interface allows for much better programming
patterns and practices. This technique can also be used for other scenarios where you have
to embed one screen into another.

More flexible (and complex) solutions can be created involving the use of Observers, but in
simple cases, this recipe's solution based on Windows Messaging is enough.

More information about the Observer design pattern can be found at
http://sourcemaking.com/design_patterns/observer/delphi.

Another interesting solution (that does not rely on Windows Messaging and so is also cross
platform) may be based on the System.Messaging.TMessageManager class. More
info about TMessageManager can be found at http://docwiki.embarcadero.com/
Libraries/XE6/en/System.Messaging.TMessageManager.

The code in this recipe can be used with every component that uses TStringList to show
items (TListBox, TComboBox, and so on) and can be adapted easily for other scenarios.

In the recipe code, you'll also find a nice way to show status messages generated by the
embedded forms and a centralized way to show application hints in the status bar.

Manipulating JSON
JavaScript Object Notation (JSON) is a lightweight data-interchange format. As the reference
site (http://www.json.org) says:

It is easy for humans to read and write. It is easy for machines to parse
and generate.

It is based on a subset of the JavaScript programming language, but it is not limited to
JavaScript in any way. Indeed, JSON is a text format that is completely language agnostic.
These properties make JSON an ideal data-interchange language for many utilizations. In
recent years, JSON has superseded XML in many applications, especially on data exchange
and in general when the data size matters, because of its intrinsic conciseness and simplicity.

www.allitebooks.com

http://sourcemaking.com/design_patterns/observer/delphi
http://docwiki.embarcadero.com/Libraries/XE6/en/System.Messaging.TMessageManager
http://docwiki.embarcadero.com/Libraries/XE6/en/System.Messaging.TMessageManager
http://www.json.org
http://www.allitebooks.org

Chapter 1

27

Getting ready
JSON provides the following five datatypes: string, number, object, array, Boolean, and null.

This simplicity is a plus when you have to read a JSON string into some kind of language-
specific structures, because every modern language supports JSON datatypes as simple
types, HashMap (in case of JSON object), or List (in case of JSON array). So, it makes sense
that a data format that is interchangeable with programming languages is also based on
these types and structures.

Since Version 2009, Delphi provides built-in support for JSON. The System.JSON.pas unit
contains all JSON types with a nice object-oriented interface. In this recipe, we'll see how to
generate, modify, and parse a JSON string.

How to do it…
1. Create a new VCL application and drop three TButton and a TMemo. Align all

the buttons as a toolbar at the top of the form and the memo to all the remaining
form client area.

2. From left- to right-hand side, name the buttons as btnGenerateJSON,
btnModifyJSON, and btnParseJSON.

3. We'll use static data as our data source. A simple matrix is enough for this
recipe. Just after the start of the implementation section of the unit, write
the following code:
type
 TCarInfo = (
 Manufacturer = 1,
 Name = 2,
 Currency = 3,
 Price = 4);

var
 Cars: array [1 .. 4] of
 array [Manufacturer .. Price] of string = (
 ('Ferrari','360 Modena','EUR', '250000'),
 ('Ford', 'Mustang', 'USD', '80000'),
 ('Lamborghini', 'Countach', 'EUR','300000'),
 ('Chevrolet', 'Corvette', 'USD', '100000')
);

Delphi Basics

28

4. The TMemo component is used to show our JSON and our data. To keep things clear,
create on the form a public property called JSON and map its setter and getter
to the Memo1.Lines.Text property. Use the following code for this:
//…other form methods declaration
private
 procedure SetJSON(const Value: String);
 function GetJSON: String;
public
 property JSON: String read GetJSON write SetJSON;
end;

//…then in the implementation section
function TMainForm.GetJSON: String;
begin
 Result := Memo1.Lines.Text;
end;

procedure TMainForm.SetJSON(const Value: String);
begin
 Memo1.Lines.Text := Value;
end;

5. Now, create event handlers for each button and write the following code. Pay
attention to the event names. The code is as follows:
procedure TMainForm.btnGenerateJSONClick(Sender: TObject);
var
 i: Integer;
 JSONCars: TJSONArray;
 Car, Price: TJSONObject;
begin
 JSONCars := TJSONArray.Create;
 try
 for i := Low(Cars) to High(Cars) do
 begin
 Car := TJSONObject.Create;
 JSONCars.AddElement(Car);
 Car.AddPair('manufacturer',
 Cars[i][TCarInfo.Manufacturer]);
 Car.AddPair('name', Cars[i][TCarInfo.Name]);
 Price := TJSONObject.Create;
 Car.AddPair('price', Price);
 Price.AddPair('value',
 TJSONNumber.Create(

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

29

 Cars[i][TCarInfo.Price].ToInteger));
 Price.AddPair('currency',
 Cars[i][TCarInfo.Currency]);
 end;
 JSON := JSONCars.ToString;
 finally
 JSONCars.Free;
 end;
end;

procedure TMainForm.btnModifyJSONClick(Sender: TObject);
var
 JSONCars: TJSONArray;
 Car, Price: TJSONObject;
begin
 JSONCars := TJSONObject.ParseJSONValue(JSON)
 as TJSONArray;
 try
 Car := TJSONObject.Create;
 JSONCars.AddElement(Car);
 Car.AddPair('manufacturer', 'Hennessey');
 Car.AddPair('name', 'Venom GT');
 Price := TJSONObject.Create;
 Car.AddPair('price', Price);
 Price.AddPair('value', TJSONNumber.Create(600000));
 Price.AddPair('currency', 'USD');
 JSON := JSONCars.ToString;
 finally
 JSONCars.Free;
 end;
end;

procedure TMainForm.btnParseJSONClick(Sender: TObject);
var
 JSONCars: TJSONArray;
 i: Integer;
 Car, JSONPrice: TJSONObject;
 CarPrice: Double;
 s, CarName, CarManufacturer, CarCurrencyType: string;
begin
 s := '';
 JSONCars := TJSONObject.ParseJSONValue(JSON)
 as TJSONArray;

Delphi Basics

30

 if not Assigned(JSONCars) then
 raise Exception.Create('Not a valid JSON');
 try
 for i := 0 to JSONCars.Size - 1 do
 begin
 Car := JSONCars.Get(i) as TJSONObject;
 CarName := Car.Get('name').JsonValue.Value;
 CarManufacturer := Car.Get('manufacturer')
 .JsonValue.Value;
 JSONPrice := Car.Get('price')
 .JsonValue as TJSONObject;
 CarPrice := (JSONPrice.Get('value').JsonValue
 as TJSONNumber).AsDouble;
 CarCurrencyType := JSONPrice.Get('currency')
 .JsonValue.Value;
 s := s + Format(
 'Name = %s' + sLineBreak +
 'Manufacturer = %s' + sLineBreak +
 'Price = %.0n%s' + sLineBreak +
 '-----' + sLineBreak,
 [CarName, CarManufacturer,
 CarPrice, CarCurrencyType]);
 end;
 JSON := s;
 finally
 JSONCars.Free;
 end;
end;

6. Run the application by hitting F9 (or navigate to Run | Run).

7. Click on the btnGenerateJSON button, and you should see a JSON array and some
JSON objects inside in the memo.

8. Click on the btnModifyJSON button and you should see one more JSON object inside
the outer JSON array in the memo.

9. Click on the last button and you should see the same data as before, but in a normal
text representation.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

31

10. After the third click, you should see something like the following screenshot:

Text representation of the JSON data generated and modified

There's more...
Although not the fastest or the most standard compliant on the market (at the time of writing),
it is important to know the JSON Delphi parser because other Delphi technologies such as
DataSnap use it. Luckily, there are a lot of alternative JSON parsers for Delphi if you find you
have trouble with the standard ones.

Other notable JSON parsers are as follows:

 f Superobject (https://code.google.com/p/superobject/)

 f The JSON Delphi library (http://sourceforge.net/projects/lkjson/)

 f The one included in the Delphi Web Script library (https://code.google.com/p/
dwscript/)

If your main concern is speed, then check the Delphi Web Script or the superobject parsers.

https://code.google.com/p/superobject/
http://sourceforge.net/projects/lkjson/
https://code.google.com/p/dwscript/
https://code.google.com/p/dwscript/

Delphi Basics

32

There are also a lot of serialization libraries that use JSON as a serialization format. In
general, every parser has its own way to serialize an object to JSON. Find your favorite. For
example, in the Serializing objects to JSON and back using RTTI recipe in Chapter 5, Putting
Delphi on the Server, you will see an open source library containing a set of serialization
helpers using the default Delphi JSON parser.

However, JSON is not the right tool for every interchange or data representation job. XML has
been creating other technologies that can help if you need to search, transform, and validate
your data in a declarative way. In JSON land, there is no such level of standardization apart
from the format itself. However, over the years, there is an effort to include at least the XML
Schema counterpart in JSON, and you can find more details at http://json-schema.org/.

Manipulating and transforming XML
documents

XML stands for eXtensible Markup Language (http://en.wikipedia.org/wiki/XML)
and is designed to represent, transport, and store hierarchical data in trees of nodes. You can
use XML to communicate with different systems to store configuration files, complex entities,
and so on. All of these use a standard and powerful format. Delphi has had good support for
XML for more than a decade now.

Getting ready
All the basic XML-related activities can be summarized with the following points:

 f Generating XML data

 f Parsing XML data

 f Parsing XML data and modifying it

In this recipe, we will see how to do all these activities.

How to do it…
1. Create a new VCL application and drop three TButton and a TMemo. Align all the

buttons as a toolbar at the top of the form and the memo to the remaining form
client area.

2. From left- to right-hand side, name the buttons as btnGenerateXML,
btnModifyXML, and btnParseXML.

3. The real work on the XML will be done by the TXMLDocument component. So, drop
one instance of the form and set its DOMVendor property to ADOM XML v4.

www.allitebooks.com

http://json-schema.org/
http://en.wikipedia.org/wiki/XML
http://www.allitebooks.org

Chapter 1

33

4. We'll use static data as our data source. A simple matrix is enough for this recipe.
Just after the implementation section of the unit, write the following code:
type
 TCarInfo = (
 Manufacturer = 1,
 Name = 2,
 Currency = 3,
 Price = 4);

var
 Cars: array [1 .. 4] of
 array [Manufacturer .. Price] of string = (
 (
 'Ferrari','360 Modena','EUR', '250,000'
),
 (
 'Ford', 'Mustang', 'USD', '80,000'
),
 (
 'Lamborghini', 'Countach', 'EUR','300,000'
),
 (
 'Chevrolet', 'Corvette', 'USD', '100,000'
)
);

5. We will use a TMemo component to display the XML and the data. To keep things
clear, create on the form a public property called XML and map its setter and
getter methods to the Memo1.Lines.Text property. Use the following code:
//…other form methods declaration
private
 procedure SetXML(const Value: String);
 function GetXML: String;
public
 property Xml: String read GetXML write SetXML;
end;

//…then in the implementation section
function TMainForm.GetXML: String;
begin
 Result := Memo1.Lines.Text;
end;

procedure TMainForm.SetXML(const Value: String);
begin
 Memo1.Lines.Text := Value;
end;

Delphi Basics

34

6. Now, create event handlers for each button. For the btnGenerateXML button, write
the following code:
procedure TMainForm.btnGenerateXMLClick(Sender: TObject);
var
 RootNode, Car, CarPrice: IXMLNode;
 i: Integer;
 s: String;
begin
 XMLDocument1.Active := True;
 try
 XMLDocument1.Version := '1.0';
 RootNode := XMLDocument1.AddChild('cars');
 for i := Low(Cars) to High(Cars) do
 begin
 Car := XMLDocument1.CreateNode('car');
 Car.AddChild('manufacturer').Text :=
 Cars[i][TCarInfo.Manufacturer];
 Car.AddChild('name').Text :=
 Cars[i][TCarInfo.Name];
 CarPrice := Car.AddChild('price');
 CarPrice.Attributes['currency'] :=
 Cars[i][TCarInfo.Currency];
 CarPrice.Text := Cars[i][TCarInfo.Price];
 RootNode.ChildNodes.Add(Car);
 end;
 XMLDocument1.SaveToXML(s);
 Xml := s;
 finally
 XMLDocument1.Active := False;
 end;
end;

7. Now we've to write the code to change the XML. In the btnModifyXML click event
handler, write the following code:
procedure TMainForm.btnModifyXMLClick(Sender: TObject);
var
 Car, CarPrice: IXMLNode;
 s: string;
begin
 XMLDocument1.LoadFromXML(Xml);
 try
 Xml := '';
 Car := XMLDocument1.CreateNode('car');
 Car.AddChild('manufacturer').Text := 'Hennessey';

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

35

 Car.AddChild('name').Text := 'Venom GT';
 CarPrice := Car.AddChild('price');
 CarPrice.Attributes['currency'] := 'USD';
 CarPrice.Text := '600,000';
 XMLDocument1.DocumentElement.ChildNodes.Add(Car);
 XMLDocument1.SaveToXML(s);
 Xml := s;
 finally
 XMLDocument1.Active := False;
 end;
end;

8. Write the following code under the btnParseXML click event handler:
procedure TMainForm.btnParseXMLClick(Sender: TObject);
var
 CarsList: IDOMNodeList;
 CurrNode: IDOMNode;
 childidx, i: Integer;
 CarName, CarManufacturer, CarPrice, CarCurrencyType: string;
begin
 XMLDocument1.LoadFromXML(Xml);
 try
 Xml := '';
 CarsList := XMLDocument1.
 DOMDocument.getElementsByTagName('car');
 for i := 0 to CarsList.length - 1 do
 begin
 CarName := ''; CarManufacturer := '';
 CarPrice := ''; CarCurrencyType := '';
 for childidx := 0 to
 CarsList[i].ChildNodes.length - 1 do
 begin
 CurrNode := CarsList[i].ChildNodes[childidx];
 if CurrNode.nodeName.Equals('name') then
 CarName := CurrNode.firstChild.nodeValue;
 if CurrNode.nodeName.Equals('manufacturer') then
 CarManufacturer := CurrNode.firstChild.nodeValue;
 if CurrNode.nodeName.Equals('price') then
 begin
 CarPrice := CurrNode.firstChild.nodeValue;
 CarCurrencyType :=
 CurrNode.Attributes.
 getNamedItem('currency').nodeValue;
 end;

Delphi Basics

36

 end;
 Xml := Xml +
 'Name = ' + CarName + sLineBreak +
 'Manufacturer = ' + CarManufacturer + sLineBreak +
 'Price = ' +
 CarPrice + CarCurrencyType + sLineBreak +
 '-----' + sLineBreak;
 end;
 finally
 XMLDocument1.Active := False;
 end;
end;

9. Run the application by hitting F9 (or navigate to Run | Run).

10. Click on the btnGenerateXML button and you should see some XML data in
the memo.

11. Click on the btnModifyXML button and you should see some more XML in the memo.

12. Click on the last button and you should see the same data as before, but in normal
text representation.

13. After the third click, you should see something like the following screenshot:

Text representation of the XML data generated and modified

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

37

How it works…
 f The first button generates the XML representation of the data in our matrix. We've

used some car information as sample data.

Note that the prices of the cars are not real.

 f To create an XML, there are three fundamental TXMLDocument methods:

 � XMLNode := XMLDocument1.CreateNode('node');

 � XMLNode.AddChild('childnode');

 � XMLNode.Attributes['attrname'] := 'attrvalue';

 f There are other very useful methods but these are the basics of XML generation.

 f The btnModifyXML button loaded the XML into the memo and appended some other
data (another car) to the list. Then, it updated the memo with the new updated XML.
The following are the most important lines to note:
//Create a node without adding it to the DOM
Car := XMLDocument1.CreateNode('car');

//fill Car XMLNode… and finally add it to the DOM
//as child of the root node
XMLDocument1.DocumentElement.ChildNodes.Add(Car);

 f The code under the btnParseXMLClick event handler allows you to read the data
in the XML tree as simple text.

There's more...
There are many things to say about XML ecospace. There are XML engines that provide
facilities to search data in an XML tree (XPath), validate an XML using another XML (XML
Schema or DTD), transform an XML into another kind of format using another XML (XSLT),
and for many others uses (http://en.wikipedia.org/wiki/List_of_XML_markup_
languages). The good thing is that, just like XML itself, the DOM object is also standardized,
so every library that is compliant to the standard has the same methods, from Delphi to
JavaScript and from Python to C#.

http://en.wikipedia.org/wiki/List_of_XML_markup_languages
http://en.wikipedia.org/wiki/List_of_XML_markup_languages

Delphi Basics

38

TXMLDocument allows you to select the DOMVendor implementation. By default, there are
three implementations available:

 f MSXML: This is from Microsoft and implemented as a COM object. This supports XML
transformations and is available only on Windows (so no Android, iOS, or Mac OS X).

 f ADOM XML: This is an open source Delphi implementation and does not support
transformations. This is available on all the supported Delphi platforms, so if you
plan to write XML handling code on a mobile or Mac, this is the way to go.

 f XSLT: This allows you to transform an XML into something else, using another XML
as a stylesheet. The following function loads an XML and an XSLT from two string
variables. Then, use the XSLT document to transform the XML document. The
following code shows the details:
function Transform(XMLData: string; XSLT: string): WideString;
var
 XML: IXMLDocument;
 XSL: IXMLDocument;
begin
 XML := LoadXMLData(XMLData);
 XSL := LoadXMLData(XSLT);
 XML.DocumentElement.TransformNode(XSL.DocumentElement, Result)
end;

This function doesn't know about the output format because it is defined by the XSLT
document. The result could be an XML, an HTML, a CSV, or a plain text, or whatever
the XSLT defines, the code doesn't change.

XSLT can be really useful—go to http://www.w3schools.com/xsl/xsl_
languages.asp for further details about the language.

I/O in the twenty-first century – knowing
streams

Many of the I/O related activities handle streams of data. A stream is a sequence of data
elements made available over time. According to Wikipedia:

A stream can be thought of as a conveyor belt that allows items to be processed
one at a time rather than in large batches.

At the lowest level, all the streams are bytes, but using a high-level interface could obviously
help the programmer to handle his data. This is the reason why a stream object usually has
methods such as read, seek, write, and many more, just to make the handling of byte
stream a bit simpler.

In this recipe, we'll see some streams utilization examples.

www.allitebooks.com

http://www.w3schools.com/xsl/xsl_languages.asp
http://www.w3schools.com/xsl/xsl_languages.asp
http://www.allitebooks.org

Chapter 1

39

Getting ready
In the good old Pascal days, there was a set of functions to handle the I/O (AssignFile,
Reset, Rewrite, CloseFile, and so on), now we've a bounce of classes. All Delphi streams
inherit from TStream and can be used as an internal stream of one of the adapter classes
(as adapter, I mean an implementation of the Adapter or Wrapper design pattern from the
famous Gang of Four, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Addison-Wesley Professional, book about design patterns).

There are 10 fundamental types of streams:

Class Use
System.Classes.TBinaryWriter This is a writer for binary data
System.Classes.TStreamWriter This is a writer for characters to stream
System.Classes.TStringWriter This is a writer for a string
System.Classes.TTextWriter This is a writer for sequence of characters; it is

an abstract class
System.Classes.TWriter This writes component data to an associated

stream
System.Classes.TReader This reads component data from an associated

stream
System.Classes.TStreamReader This is a reader for a stream of characters
System.Classes.TStringReader This is a reader for a string
System.Classes.TTextReader This is a reader for sequence of characters; it is

an abstract class
System.Classes.TBinaryReader This is a reader for binary data

You can check the complete list and their intended use directly on the Embarcadero website
at http://docwiki.embarcadero.com/RADStudio/XE6/en/Streams,_Reader_
and_Writers.

As Joel Spolsky (http://www.joelonsoftware.com/articles/Unicode.html) says,
"You can no longer pretend that plaintext is ASCII", so while we write streams, we've to pay
attention to which encoding our text has and which encoding our counterpart is waiting for.
One of the most frequent necessities is to efficiently read and write a text file using the
correct encoding.

"The Single Most Important Fact About Encodings"

It does not make sense to have a string without knowing what encoding it uses. You
can no longer stick your head in the sand and pretend that "plain" text is ASCII.

--Joel Spolsky

http://docwiki.embarcadero.com/RADStudio/XE6/en/Streams,_Reader_and_Writers
http://docwiki.embarcadero.com/RADStudio/XE6/en/Streams,_Reader_and_Writers
http://www.joelonsoftware.com/articles/Unicode.html

Delphi Basics

40

The point Joel is making is that the content of a string doesn't know about the type of
character encoding it uses.

When you think about file handling, ask yourself: could this file become 10 MB? And 100
MB? 1 GB? How will my program behave in that case? Handling a file one line at time and not
loading all the files contents in memory is usually a good insurance for these cases. A stream
of data is a good way to do this kind of thing. In this recipe, we'll see the practical utilization of
streams, stream writers, and streams readers.

How to do it…
The project is not complex, all the interesting stuff happens in the btnWriteFile and
btnReadFile files.

To write the file, we use TStreamWriter. The TStreamWriter class (as its counterpart
TStreamReader) is a wrapper for a TStream descendent and adds some useful high-level
methods to write to the stream. There are a lot of overloaded methods (Write/WriteLine)
to allow an easy writing to the underlying stream. However, you can access the underlying
stream using the BaseStream property of the wrapper. Just after writing the file, the
memo reloads the file using the same encoding used to write it and shows it. This is only a
fast check for this recipe, you don't need the TMemo component at all in your real project.
The btnReadFile file simply opens the file using a stream and passes the stream to a
TStreamReader that, using the right encoding, reads the file one line at time.

Now, let's do some checks. Run the program and with the encoding set to ASCII, click on
btnWriteFile. The memo will show garbage text, as shown in the following screenshot. This
is because we are using the wrong encoding for the data we are writing in the file.

Garbage text written to the file using the wrong encoding. No one line of text is equal to the original one.
It is necessary to know the encoding for the text before writing and reading it.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

41

Now select UTF8 from the RadioGroup and retry. Clicking on btnWriteFile, you will see the
correct text in the memo. Try to change the Current Encoding setting using ASCII and click
on btnReadFile. You will still get garbage text. Why? Because the file has been read with
the wrong encoding. You have to know the encoding before safely reading the file contents.
To read the text that we wrote, we have to use the very same encoding. Play with the other
encodings to see different behaviors.

There's more...
Streams are very powerful and their uniform interface helps us to write portable and generic
code. With the help of streams and polymorphism, we can write code that uses a TStream
component to do some work without knowing which kind of stream it is!

Also, a lesser known possibility, if you ever write a program that needs to access to the
good-old STD_INPUT, STD_OUTPUT, or STD_ERROR, you can use THandleStream
to wrap these system handles to a nice TStream interface with the following code:

program StdInputOutputError;
//the following directive instructs the compiler to create a
//console application and not a GUI one, which is the default.
{$APPTYPE CONSOLE}
uses
 System.Classes, // required for Stream classes
 Winapi.Windows; // required to have access to the STD_* handles
var
 StdInput: TStreamReader;
 StdOutput, StrError: TStreamWriter;
begin
 StdInput := TStreamReader.Create(
 THandleStream.Create(STD_INPUT_HANDLE));
 StdInput.OwnStream;
 StdOutput := TStreamWriter.Create(
 THandleStream.Create(STD_OUTPUT_HANDLE));
 StdOutput.OwnStream;
 StdError := TStreamWriter.Create(
 THandleStream.Create(STD_ERROR_HANDLE));
 StdError.OwnStream;
 { HERE WE CAN USE OURS STREAMS }
 // Let's copy a line of text from STD_IN to STD_OUT
 StdOutput.writeln(StdInput.ReadLine);
 { END - HERE WE CAN USE OURS STREAMS }
 StdError.Free;
 StdOutput.Free;
 StdInput.Free;
end.

Delphi Basics

42

Moreover, when you work with file-related streams, the TFile class (contained in System.
IOUtils.pas) is very useful, and it has some helper methods to write shorter and more
readable code.

Putting your VCL application in the tray
Some applications are designed to be always in the Windows tray bar. For almost all their
running time, the user knows where that particular application is in the tray. Think about
antivirus, custom audio processors, and video management tools provided by hardware
vendors and many other things. Instead, some other applications need to go in the tray only
when a long operation is running and the user should otherwise attend in front of a boring
please wait animation. In these cases, users will be very happy if our application is not
blocked and lets them do some other things. Then, a not intrusive notification will bring up an
alert if some thing interesting happens. Think about heavy queries, statistics, heavy report
generation, file upload or download, or huge data import or export. Think for a second: what
if Google Chrome showed one modal dialog with a message Please wait, while this 2 GB file
is downloading… stopping you to navigate to other pages? Crazy! Many applications could
potentially behave like this.

In such cases, the users knows that they have to wait, but the application should be so "polite"
as to let them do other things. Usually, programmers think that their software is the only
reason the user bought a computer. Very often, this is not the case. So, let's find a way
to do the right thing at the right moment.

Getting ready
This recipe is about creating a good Windows citizen application. Let's say our application
allows us to execute a huge search in a database. When the user starts this long operation,
the application UI remains usable. During the request execution, the user can decide to wait
in front of the form or minimize it to the taskbar. If the user minimizes the application window,
it also goes on the tray bar and when the operation finishes and it will alert the user with a
nonintrusive message.

How to do it…
1. Create a new VCL application and drop on it a TButton, a TLabel, a TTrayIcon, a

TApplicationEvents, a TImagelist, a TDataSource, and a TDBGrid component.
Connect the TDBGrid to the TDataSource. Leave the default component names
(I'll refer to the components using their default names). Use the disposition and
the captions to make the form similar to the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

43

The form and its components as they should look

2. In the implementation section of the unit, add the following units:

 � AnonThread: Add this unit to the project (this is located under C:\Users\
Public\Documents\Embarcadero\Studio\14.0\Samples\Object
Pascal\RTL\CrossPlatform Utils on my machine). You can avoid
adding this unit in the project and add the path to the IDE library path by
navigating to Tools | Options and then clicking on Delphi Options | Library.

 � RandomUtilsU: Add this unit to the project (this is located under the
Commons folder of the recipes).

 � FireDAC.Comp.Client: Add this unit in the implementation uses
section of the form.

3. We'll start with the code that will actually do the heavy work. In the Button1.
OnClick method, put this code:
procedure TMainForm.Button1Click(Sender: TObject);
var
 I: Integer;
 ds: TDataSet;
begin
 Button1.Enabled := False;

 if Assigned(DataSource1.DataSet) then
 begin
 ds := DataSource1.DataSet;

Delphi Basics

44

 DataSource1.DataSet := nil;
 RemoveComponent(ds);
 FreeAndNil(ds);
 end;

 Label1.Caption := 'Data retrieving... may take a while';
 TAnonymousThread<TFDMemTable>.Create(
 function: TFDMemTable
 var
 MemTable: TFDMemTable;
 I: Integer;
 begin
 Result := nil;
 MemTable := TFDMemTable.Create(nil);
 try
 MemTable.FieldDefs.Add('EmpNo', ftInteger);
 MemTable.FieldDefs.Add('FirstName', ftString, 30);
 MemTable.FieldDefs.Add('LastName', ftString, 30);
 MemTable.FieldDefs.Add('DOB', ftDate);
 MemTable.CreateDataSet;
 for I := 1 to 400 do
 begin
 MemTable.AppendRecord([
 1000 + Random(9000),
 GetRndFirstName,
 GetRndLastName,
 EncodeDate(1970, 1, 1) + Random(10000)
]);
 end;
 MemTable.First;
 //just mimic a slow operation
 TThread.Sleep(2*60*1000);
 Result := MemTable;
 except
 FreeAndNil(MemTable);
 raise;
 end;
 end,
 procedure(MemTable: TFDMemTable)
 begin
 InsertComponent(MemTable);
 DataSource1.DataSet := MemTable;
 Button1.Enabled := True;
 Label1.Caption :=

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

45

 Format('Retrieved %d employee',
 [MemTable.RecordCount]);
 ShowSuccessBalloon(Label1.Caption);
 end,
 procedure(Ex: Exception)
 begin
 Button1.Enabled := True;
 Label1.Caption := Format('%s (%s)',
 [Ex.Message, Ex.ClassName]);
 ShowErrorBalloon(Label1.Caption);
 end);
end;

4. Now, create the following event handler for the Tray1.OnBalloonClick method
and connect it to the Tra1.OnDoubleClick event handler:
procedure TMainForm.TrayIcon1BalloonClick(Sender: TObject);
begin
 TrayIcon1.Visible := False;
 WindowState := wsNormal;
 SetWindowPos(Handle, HWND_TOPMOST, 0, 0, 0, 0,
 SWP_NOSIZE or SWP_NOMOVE);
 SetWindowPos(Handle, HWND_NOTOPMOST, 0, 0, 0, 0,
 SWP_NOSIZE or SWP_NOMOVE);
end;

5. In the next step, the two raw SetWindowPos calls will be less obscure, believe me.

6. Now, to keep things clear, we need the following two procedures. Create them as
private methods of the form:
procedure TMainForm.ShowErrorBalloon(const Mess: String);
begin
 if TrayIcon1.Visible then
 begin
 TrayIcon1.IconIndex := 2;
 TrayIcon1.BalloonFlags := bfError;
 TrayIcon1.BalloonTitle := 'Errors occurred';
 TrayIcon1.BalloonHint := Label1.Caption;
 TrayIcon1.ShowBalloonHint;
 end;
end;

procedure TMainForm.ShowSuccessBalloon(const Mess: String);
begin
 if TrayIcon1.Visible then
 begin

Delphi Basics

46

 TrayIcon1.IconIndex := 0;
 TrayIcon1.BalloonFlags := bfInfo;
 TrayIcon1.BalloonTitle := 'Request terminated';
 TrayIcon1.BalloonHint := Label1.Caption;
 TrayIcon1.ShowBalloonHint;
 end;
end;

7. Create one last event handler for the ApplicationEvents1.OnMinimize method:
procedure TMainForm.ApplicationEvents1Minimize(
 Sender: TObject);
begin
 TrayIcon1.Visible := True;
 TrayIcon1.BalloonTitle := 'Employee Manager';
 TrayIcon1.BalloonHint :=
 'Employee Manager is still running in the tray.' +
 sLineBreak +
 'Reactivate it with a double click on the tray icon';
 TrayIcon1.BalloonFlags := bfInfo;
 TrayIcon1.ShowBalloonHint;
 TrayIcon1.IconIndex := 0;
end;

8. Run the application by hitting F9 (or navigate to Run | Run).

9. Click on the Get Employee button and then minimize the application (note that as
the GUI is responsive, you can resize, minimize, and maximize the form).

10. An icon is shown in the tray and shows a message about what the application
is doing.

11. As soon as the data has been retrieved, a Request terminated message will pop up.
Click on the balloon. The application will come to the front and you will see the data
in the TDBGrid.

12. Try to repeat the procedure without minimizing the window. All is working as usual
(this time without the tray messages) and the GUI is responsive.

How it works…
This recipe is a bit articulated. Let's start from the beginning.

The actual code that executes the request uses a nice helper class provided by Embarcadero
in the Samples folder of RADStudio (not officially supported, it is just an official sample). The
TAnonymousThread<T> constructor is a class that simplifies the process of starting a thread
and when the thread ends, this class updates the UI with data retrieved by the thread.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

47

The TAnonymousThread<T> constructor (there are other overloads, but this the most used)
expects three anonymous methods:

 f function: T: This function is executed in the background thread context created
internally (so you should avoid accessing the UI). Its Result value will be used after
the thread execution.

 f procedure (Value: T): This procedure is called after the thread is executed. Its
input parameter is the result value of the first function. This procedure is executed
in the context of the main thread, so it can update the UI safely. It is not called in the
case of an exception raised by the first function.

 f procedure (E: Exception): This procedure is called in the case of an
exception during the thread execution and is executed in the context of the main
thread, so it can update the UI safely. It is not called if there isn't an exception
during thread execution.

The background thread (the first function passed to the TAnonymousThread<T>
constructor) creates a memory table using the TFDMemTable component (we will talk about
this component in the FireDAC-related section) and then that object is passed to the second
anonymous method that adds it to the form's components using the InsertComponent()
method and binds it to the DBGrid causing the data visualization.

When the data is ready in the grid, a call to the ShowSuccessBalloon() function shows
a balloon message in the tray area, informing users that their data is finally available. If the
user clicks on the balloon (or double-clicks on the tray icon), the application is restored. The
balloon message is shown in the following screenshot:

The balloon message when the data are ready in DBGrid

If the user clicks on the balloon, the form is restored. However, since Windows XP (with
some variation in subsequent versions), the system restricts which processes can set the
foreground window. An application cannot force a window to the foreground while the user
is working with another window. The calls to SetWindowPos are needed to bring the form
to the front.

Delphi Basics

48

In the included code, there is also another version of the recipe
(20_VCLAppFlashNotification) that uses the most recent flash on the taskbar
to alert the user. Consider this approach when you want to implement an application
that, when minimized, has to alert the user in some way. The tray area may become
rapidly crowded with icons. So consider to flash your icons in the taskbar instead.

The other code is required to correctly handle the memory ownership of the TFDMemTable
instance.

There's more...
The use of a tray icon is a well-known pattern in Windows development. However, the concept
of I'll go into the background for a while, if you want, and I'll show you the notification as
soon something happens is used very often on Android, iOS, and Mac OS X. In fact, some
part of this recipe code is reusable also on Mac OS X, iOS, and Android. Obviously, using the
right system to alert the user when the background thread finishes (for example, on a mobile
platform) execution should use the notification bar. The thread handling of this recipe works
on every platform supported by Delphi.

Creating a Windows service
Some kind of application needs to be running H24. Usually, these are network servers or data
transfer / monitoring applications. In these cases, you probably start with a normal GUI or
console application; however, when the systems are to be used in production, you face a lot
of problems related to the Windows session termination, reboots, user rights, and other issues
related to the server environment.

Getting ready
The way to go, in the previous scenario, is to develop a Windows service. In this recipe, we'll
see how to write a good Windows service scaffold and this can be the skeleton for many other
services, so feel free to use this code as a template to create all services that you will need.

How to do it…
The project has been created starting from the default project template accessible from
File | New | Other | Delphi Projects | Service Application and then has been integrated
with a set of functionalities to make it real.

All the low-level interfacing with Windows Service Manager is done by the TService class. In
the ServiceU.pas component, there is the actual descendant of TService that represents
the Windows service we are implementing. Its event handlers are used to communicate with
the operating system.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

49

Usually, a service needs to respond to the Windows ServiceController commands
independently of what it is doing, so we need a background thread to do the actual work,
while the TService.OnExecute event should not do any real work (this is not a must, but
usually is the way to go). The unit named WorkerThreadU.pas contains the thread and the
main service needed to hold a reference to the instance of this thread.

The background thread starts when the service is started (the OnStart event) and stops
when the service is stopped (the OnStop event). The OnExecute event waits and handles
the ServiceController commands but doesn't do any actual functional work. This is done
using the ServiceThread.ProcessRequests(false); event in a while loop.

Usually, the OnExecute event handler looks like the following:

procedure TSampleService.ServiceExecute(Sender: TService);
begin
 while not Terminated do
 begin
 ServiceThread.ProcessRequests(false);
 TThread.Sleep(1000);
 end;
end;

The waiting time of 1000 milliseconds is not a must, but consider that the wait time should
be not too high because the service needs to be responsive to the Windows service controller
messages, and not too low because, otherwise, the thread context switch may waste resources.

The background thread writes a line in a logfile once a second. While it is in a Paused state,
the service stops writing. When the service continues, the thread will restart writing the log
line. In the service event handlers, there is a logic to implement this change of state:

procedure TSampleService.ServiceContinue(Sender: TService;
 var Continued: Boolean);
begin
 FWorkerThread.Continue;
 Continued := True;
end;

procedure TSampleService.ServicePause(Sender: TService;
 var Paused: Boolean);
begin
 FWorkerThread.Pause;
 Paused := True;
end;

Delphi Basics

50

In the thread, there is the actual logic to implement the Paused state and in this case, it is
fairly simple; we've to pause the writing of the logfile.

Here's an extract:

 Log := TStreamWriter.Create(
 TFileStream.Create(LogFileName,
 fmCreate or fmShareDenyWrite));
 try
 while not Terminated do
 begin
 if not FPaused then
 begin
 Log.WriteLine('Message from thread: ' + TimeToStr(now));
 end;
 TThread.Sleep(1000);
 end;
 finally
 Log.Free;
 end;

The boolean instance variable FPaused can be considered as a thread safe for this use.

Delphi services don't have a default description under Windows Service Manager. If we
want to give a description, we have to write a specific key in the Windows registry. Usually,
this is done in the AfterInstall event. In our service, write the following code in the
AfterInstall event handler:

procedure TSampleService.ServiceAfterInstall(
 Sender: TService);
var
 Reg: TRegistry; //declared in System.Win.Registry;
begin
 Reg := TRegistry.Create(KEY_READ or KEY_WRITE);
 try
 Reg.RootKey := HKEY_LOCAL_MACHINE;
 if Reg.OpenKey(
 '\SYSTEM\CurrentControlSet\Services\' + name,
 False {do not create if not exists}) then
 begin
 Reg.WriteString('Description',
 'My Fantastic Windows Service');
 Reg.CloseKey;
 end;
 finally
 Reg.Free;
 end;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

51

It is not necessary to delete this key in the AfterUnInstall event because Windows
deletes all the keys related to the service (under HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\<MyServiceName>) when it is actually uninstalled.

Let's try an installation. Build the project, open the Windows command prompt, and go to the
folder where the project has been built and run this command:

C:\<ExeProjectPath>\WindowsService.exe /install

If all is okay, you should see this message:

The service installation is okay

Now, you can check in the Windows Services Console. You should find the service installed.
Click on Start, wait for the confirmation, and the service should start to write its logfile.

Play with Pause, Continue, and check the file activity.

Some text editors could have problem with opening the logfile while the
service is writing. I suggest using a Unix tail clone for Windows.

There are many free choices. Here are some links:

 f http://sourceforge.net/projects/tailforwin32/
 f http://ophilipp.free.fr/op_tail.htm
 f http://www.baremetalsoft.com/baretail/

http://sourceforge.net/projects/tailforwin32/
http://ophilipp.free.fr/op_tail.htm
http://www.baremetalsoft.com/baretail/

Delphi Basics

52

There's more...
Windows services are very powerful. Using the abstractions that Delphi provides, you can also
create an application that can act as a normal GUI application or as a Windows service after
reading a parameter on the command line.

In the recipe folder, there is another recipe called 20_WindowsServiceOrGUI.

This application can be used as a normal Windows service using the normal command-line
switches used so far, but if launched with /GUI, it acts as a GUI application and can use
the same application code (not TService). In our example, the GUI version uses the same
worker thread as the service version. This can be very useful for debugging purposes.

Run the application with the following command:

C:\<ExeProjectPath>\WindowsServiceOrGUI.exe /GUI

You will get a GUI version of the service, as shown in the following screenshot:

The GUI version of the Windows service

Using the TService.LogMessage method
If something happens during the execution of your service which you want to log and you want
to log into the system logger, you can use the LogMessage method to save a message, which
can be viewed later using Windows built-in event viewer.

You can call the LogMessage method using appropriate logging type:

LogMessage('Your message goes here for SUCCESS',
 EVENTLOG_SUCCESS, 0, 1);

If you check the event in Event Viewer, you will find a lot of garbage text that complains about
the lack of description for the event.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

53

If you really want to use Event Viewer to view your log messages (when I can, I use a text
logfile and don't care about Event Viewer, but there are scenarios where Event Viewer
log is needed), you have to use the Microsoft Message Compiler.

The Microsoft Message Compiler is a tool able to compile a file of messages in a set of RC
files. Then those files must be compiled by a resource compiler and linked to your executable.

More information about message compiler and steps needed to provide the needed
description for the log event can be found at the following link:

http://www.codeproject.com/Articles/4166/Using-MC-exe-message-
resources-and-the-NT-event-lo

Associating a file extension with your
application on Windows

In some cases, your fantastic application needs to be opened with just a double-click on a
file with an extension associated with it. This is the case with MS Word, MS Excel, and many
other well-known pieces of software. If you have a file generated with a program, double-
click on the file and the program that generated the file will bring up pointing to that file. So,
if you click on a mywordfile.docx file, MS Word will be opened and the mywordfile.
docx file's content will be shown. This is what we'd like to do in this recipe. The association
can be useful also when you have multiple configurations for a program. Double-click on the
ConfigurationXYZ.myext file and the program will start using that configuration.

Getting ready
The hard work is done by the operating system itself. We have to instruct Windows to provide
the following information:

 f The file extension to associate

 f The description of file type (this will be shown by Windows Explorer describing the
file type)

 f The default icon for the file type (in this recipe, we'll use the application icon itself,
but it is not mandatory)

 f The application that we want to associate

Let's start!

http://www.codeproject.com/Articles/4166/Using-MC-exe-message-resources-and-the-NT-event-lo
http://www.codeproject.com/Articles/4166/Using-MC-exe-message-resources-and-the-NT-event-lo

Delphi Basics

54

How to do it…
1. Create a new VCL application and drop two TButton components and a TMemo

component. Align all the buttons as a toolbar at the top of the form and the memo
to all the remaining form client area.

2. The button on the left-hand side will be used to register a file type while the button on
the right-hand side will be used to unregister the association (cleaning the registry).

3. We have to handle some MS Windows-specific features, so we need some
Windows-related units. Under the implementation section of the unit, write
this use clause:
uses System.Win.registry, Winapi.shlobj, System.IOUtils;

4. In the implementation section, we need two procedures to do the real work; so
just after the uses clause, put this code:
procedure UnregisterFileType(
 FileExt: String;
 OnlyForCurrentUser: boolean = true);
var
 R: TRegistry;
begin
 R := TRegistry.Create;
 try
 if OnlyForCurrentUser then
 R.RootKey := HKEY_CURRENT_USER
 else
 R.RootKey := HKEY_LOCAL_MACHINE;

 R.DeleteKey('\Software\Classes\.' + FileExt);
 R.DeleteKey('\Software\Classes\' + FileExt + 'File');
 finally
 R.Free;
 end;
 SHChangeNotify(SHCNE_ASSOCCHANGED, SHCNF_IDLIST, 0, 0);
end;

procedure RegisterFileType(
 FileExt: String;
 FileTypeDescription: String;
 ICONResourceFileFullPath: String;
 ApplicationFullPath: String;
 OnlyForCurrentUser: boolean = true);
var
 R: TRegistry;
begin

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

55

 R := TRegistry.Create;
 try
 if OnlyForCurrentUser then
 R.RootKey := HKEY_CURRENT_USER
 else
 R.RootKey := HKEY_LOCAL_MACHINE;

 if R.OpenKey('\Software\Classes\.' + FileExt,
 true) then begin
 R.WriteString('', FileExt + 'File');
 if R.OpenKey('\Software\Classes\' + FileExt + 'File',
 true) then begin
 R.WriteString('', FileTypeDescription);
 if R.OpenKey('\Software\Classes\' +
 FileExt + 'File\DefaultIcon', true) then
 begin
 R.WriteString('', ICONResourceFileFullPath);
 if R.OpenKey('\Software\Classes\' +
 FileExt + 'File\shell\open\command',
 true) then
 R.WriteString('',
 ApplicationFullPath + ' "%1"');
 end;
 end;
 end;
 finally
 R.Free;
 end;
 SHChangeNotify(SHCNE_ASSOCCHANGED, SHCNF_IDLIST, 0, 0);
end;

5. These two procedures allows us to register (and unregister) a file type considering
only the current user or all the machine users. Note that if you want to register the
association for every user, write your data to the following location:
HKEY_LOCAL_MACHINE\Software\Classes

6. If you want to register the association for the current user only, write your data to the
following location:
HKEY_CURRENT_USER\Software\Classes

7. On the newest Windows versions, you need admin rights to register a file type for all
the machine users. The last line of the procedures tells Explorer (the MS Windows
graphic interface) to refresh its setting to reflect the changes made to the file
associations. As a result, for instance, the Explorer file list views will be updated.

Delphi Basics

56

8. We've almost finished. Change the left-hand side button name to btnRegister, the
right-hand side button name to btnUnRegister, and put the following code on their
onclick event handlers:
procedure TMainForm.btnRegisterClick(Sender: TObject);
begin
 RegisterFileType(
 'secret',
 'This file is a secret',
 Application.ExeName,
 Application.ExeName,
 true);
 ShowMessage('File type registered');
end;

procedure TMainForm.btnUnRegisterClick(Sender: TObject);
begin
 UnregisterFileType('secret', true);
 ShowMessage('File type unregistered');
end;

9. Now, when our application is invoked with a double-click, we'll get the file name
as a parameter. It is possible to read a parameter passed by Windows Explorer (or
command line) using the ParamStr(1) function. Create a FormCreate event
handler using the following code:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 if TFile.Exists(ParamStr(1)) then
 Memo1.Lines.LoadFromFile(ParamStr(1))
 else
 begin
 Memo1.Lines.Text := 'No valid secret file type';
 end;
end;

10. Now the application should be complete. However, a nice integration with the
operating system requires a nice icon as well. In the code, the associated file will get
the same icon as the main program, so let's change our default icon by navigating
to Project | Options | Application and choose a nice icon. Click on the Load Icon
button, choose an ICO file, and then select the third item from the resultant dialog:

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

57

Changing the default application icon for our application

11. Now, create some text files with our registered .secret extension.

12. These files will appear with the default Windows icon, but in some seconds, they will
have a brand new icon.

13. Run the application by hitting F9 (or navigate to Run | Run).

14. Click on the btnRegister button and close the application. Now the files get a new
icon, as shown in the following screenshot:

The files in Windows Explorer before and after having registered the .secret extension

Delphi Basics

58

15. Now, with the application not running, double-click on the .secret file. Our program
will be started by Windows itself, using the information stored in the registry about
the .secret file, and we'll get this form (the text shown in the memo is the text
contained into the file):

Our application, launched by the operating system, while showing the content of the file

There's more...
One application can register many file types. In some cases, I've used this technique to
register some specific desktop database files to my application (FirebirdSQL Embedded
database files or SQLite database files). So a double-click on such database file (registered
with an application-specific extension) was actually a connection to that database.

www.allitebooks.com

http://www.allitebooks.org

2
Become a Delphi

Language Ninja

In this chapter, we will cover the following recipes:

 f Fun with anonymous methods – using higher-order functions

 f Writing enumerable types

 f RTTI to the rescue – configuring your class at runtime

 f Duck typing using RTTI

 f Creating helpers for your classes

 f Checking strings with regular expressions

Introduction
This chapter explains some of the not-so-obvious features of the language and the RTL that
every Delphi programmer should know. There are ready-to-use recipes that will be useful
every day and have been selected over many others.

Fun with anonymous methods – using
higher-order functions

Since Version 2009, the Delphi language (or better, its Object Pascal dialect) supports
anonymous methods. What's an anonymous method? Not surprisingly, an anonymous
method is a procedure or a function that does not have an associated name.

Become a Delphi Language Ninja

60

An anonymous method treats a block of code just like a value so that it can be assigned to a
variable or used as a parameter to a method or returned by a function as its result value. In
addition, an anonymous method can refer to variables and bind values to the variables in the
context scope in which the anonymous method is defined. Anonymous methods are similar
to closures defined in other languages such as JavaScript or C#. An anonymous method is
declared as a reference to a method:

type
 TFuncOfString = reference to function(S: String): String;

Anonymous methods (or anonymous functions) are convenient to pass as an argument to a
higher-order function. What's a higher-order function?

Wikipedia gives the following explanation (http://en.wikipedia.org/wiki/Higher-
order_function):

In mathematics and computer science, a higher-order function (also functional
form, functional, or functor) is a function that does at least one of the following:

- Takes one or more functions as an input

- Outputs a function

All other functions are first-order functions.

Getting ready
In this recipe, you'll see how to use Delphi's anonymous methods with some of the more
popular and useful higher-order functions:

 f Map: This is available in many functional programming languages. This takes as
arguments a func function and a list of elements list, and returns a new list
with func applied to each element of list.

 f Reduce: This is also known as Fold. This requires a combining function, a starting
point of a data structure, and possibly some default values to be used under certain
conditions. The reduce function proceeds to combine elements of the data structure
using the injected function.

This is used to do operations on a set of values to get only one result (or a smaller set
of values) that represent the reduction of that initial data. For example, the values 1,
2, and 3 can be reduced to the single value 6 using criteria of SUM.

 f Filter: This requires a data structure and a filter condition. This returns all the
elements in the structure that match the filter condition.

www.allitebooks.com

http://en.wikipedia.org/wiki/Higher-order_function
http://en.wikipedia.org/wiki/Higher-order_function
http://www.allitebooks.org

Chapter 2

61

How to do it...
For the HigherOrderFunctions.dproj project, the actual high-order functions are
implemented in the HigherOrderFunctionsU.pas unit as generic class functions as
shown here:

type
 HigherOrder = class sealed
 class function Map<T>(InputArray: TArray<T>;
 MapFunction: TFunc<T, T>): TArray<T>;
 class function Reduce<T: record>(InputArray: TArray<T>;
 ReduceFunction: TFunc<T, T, T>; InitValue: T): T;
 class function Filter<T>(InputArray: TArray<T>;
 FilterFunction: TFunc<T, boolean>): TArray<T>;
 end;

Let's analyze each of these functions.

The Map function requires a list of T parameters as its input data structure and an anonymous
method that accepts and returns the same type of data T. For each element of the input data
structure, the MapFunction is called and another list of data is built to contain all its results.

This is the body of the Map function.

class function HigherOrder.Map<T>(InputArray: TArray<T>;
 MapFunction: TFunc<T, T>): TArray<T>;
var
 I: Integer;
begin
 SetLength(Result, length(InputArray));
 for I := 0 to length(InputArray) - 1 do
 Result[I] := MapFunction(InputArray[I]);
end;

The main form uses the Map function in the following way:

procedure TMainForm.btnMapCapitalizeClick(Sender: TObject);
var
 InputData, OutputData: TArray<string>;
begin
 //let's generate some sample data
 InputData := GetStringArrayOfData;

 //call the map function on an array of string
 OutputData := HigherOrder.Map<string>(
 InputData,

Become a Delphi Language Ninja

62

 function(Item: String): String
 begin
 //this is the "map" criteria that will be applied to each
 //item to capitalize the first word in the item
 Result := String(Item.Chars[0]).ToUpper + Item.Substring(1);
 end);

 //fill the related listbox with the results
 FillList(OutputData, lbMap.Items);
end;

The Reduce function requires a list of T as its input data structure and an anonymous
method that accepts two parameters of type T and returns a value of type T. It can also be
passed a DefaultFor each element of the input data structure, the ReduceFunction is
called passing the intermediate result calculated so far and the current element of the list.
After the last call, the result is returned to the caller function.

This is the body of the Map function:

class function HigherOrder.Reduce<T>(
 InputArray: TArray<T>;
 ReduceFunction: TFunc<T, T, T>; InitValue: T): T;
var
 I: T;
begin
 Result := InitValue;
 for I in InputArray do
 begin
 Result := ReduceFunction(Result, I);
 end;
end;

The main form uses the Reduce function in the following way:

procedure TMainForm.btnReduceSumClick(Sender: TObject);
var
 InputData: TArray<Integer>;
 OutputData: Integer;
begin
 InputData := GetIntArrayOfData;
 //sum the input data using as starting value 0
 OutputData := HigherOrder.Reduce<Integer>(InputData,
 function(Item1, Item2: Integer): Integer
 begin
 Result := Item1 + Item2;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

63

 end, 0);
 lbReduce.Items.Add('SUM: ' + OutputData.ToString);
end;

The last implemented function is Filter. The Filter function requires a list of T as its input
data structure and an anonymous method accepts a single parameter of type T and returns
a Boolean value. This anonymous method represents the filter criteria that will be applied to
the input data. For each element of the input data structure, the FilterFunction is called
and if it returns true, then the current element will be in the returning list, but not otherwise.
After the last call, the filtered list is returned to the caller function.

Here is the body of the Filter function:

class function HigherOrder.Filter<T>(InputArray: TArray<T>;
 FilterFunction: TFunc<T, boolean>): TArray<T>;
var
 I: Integer;
 List: TList<T>;
begin
 List := TList<T>.Create;
 try
 for I := 0 to length(InputArray) - 1 do
 if FilterFunction(InputArray[I]) then
 List.Add(InputArray[I]);
 Result := List.ToArray;
 finally
 List.Free;
 end;
end;

The main form uses the Filter function to filter only the even numbers. The code is
as follows:

procedure TMainForm.btnFilterEvenClick(Sender: TObject);
var
 InputData, OutputData: TArray<Integer>;
begin
 InputData := GetIntArrayOfData;
 OutputData := HigherOrder.Filter<Integer>(InputData,
 function(Item: Integer): boolean
 begin
 Result := Item mod 2 = 0; //gets only the even numbers
 end);
 FillList(OutputData, lbFilter.Items);
end;

In the recipe's code, there are other utilization samples related to higher-order functions.

Become a Delphi Language Ninja

64

There's more...
Higher-order functions are a vast and interesting topic, so in this recipe we only scratched
the surface. One of the main concepts is the abstraction of the internal loop over the data
structure. Consider this: abstracting the concept of looping, you can implement looping any
way you want, including implementing it in a way that scales nicely with extra hardware. A
good sample of what can be done using functional programming is the parallel extension
of the good OmniThreadLibrary (a nice library to simplify multithreading programming)
written by Primož Gabrijelčič (http://www.thedelphigeek.com/). This is a simple code
sample that executes a parallel function for defining the single iteration with an anonymous
method and runs it using multiple threads:

Parallel.ForEach(1, 100000).Execute(
 procedure (Const elem: integer)
 begin
 //check if the current element is
 //a prime number (can be slow)
 if IsPrime(elem) then
 MyOutputList.Add(elem);
 end);

Writing enumerable types
When the for..in loop was introduced in Delphi 2005, the concept of enumerable types was
also introduced into the Delphi language.

As you know, there are some built-in enumerable types. However, you can create your own
enumerable types using a very simple pattern.

To make your container enumerable, implement a single method called GetEnumerator,
that must return a reference to an object, interface, or record, that implements the following
three methods and one property (in the sample, the element to enumerate is TFoo):

 function GetCurrent: TFoo;
 function MoveNext: Boolean;
 property Current: TFoo read GetCurrent;

There are a lot of samples related to standard enumerable types, so in this recipe you'll look
at some not-so-common utilizations.

www.allitebooks.com

http://www.thedelphigeek.com/
http://www.allitebooks.org

Chapter 2

65

Getting ready
In this recipe, you'll see a file enumerable function as it exists in other, mostly dynamic,
languages. The goal is to enumerate all the rows in a text file without actual opening,
reading and closing the file, as shown in the following code:

var
 row: String;
begin
 for row in EachRows('..\..\myfile.txt') do
 WriteLn(row);
end;

Nice, isn't it? Let's start…

How to do it...
We have to create an enumerable function result. The function simply returns the actual
enumerable type. This type is not freed automatically by the compiler so you've to use a
value type or an interfaced type. For the sake of simplicity, let's code to return a record type:

function EachRows(const AFileName: String): TFileEnumerable;
begin
 Result := TFileEnumerable.Create(AFileName);
end;

The TFileEnumerable type is defined as follows:

type
 TFileEnumerable = record
 private
 FFileName: string;
 public
 constructor Create(AFileName: String);
 function GetEnumerator: TEnumerator<String>;
 end;
. . .
constructor TFileEnumerable.Create(AFileName: String);
begin
 FFileName := AFileName;
end;

function TFileEnumerable.GetEnumerator: TEnumerator<String>;
begin
 Result := TFileEnumerator.Create(FFileName);
end;

Become a Delphi Language Ninja

66

No logic here; this record is required only because you need a type that has a GetEnumerator
method defined. This method is called automatically by the compiler when the type is used
on the right side of the for..in loop.

An interesting thing happens in the TFileEnumerator type, the actual enumerator, declared
in the implementation section of the unit. Remember, this object is automatically freed by the
compiler because it is the return of the GetEnumerator call:

type
 TFileEnumerator = class(TEnumerator<String>)
 private
 FCurrent: String;
 FFile: TStreamReader;
 protected
 constructor Create(AFileName: String);
 destructor Destroy; override;
 function DoGetCurrent: String; override;
 function DoMoveNext: Boolean; override;
 end;

{ TFileEnumerator }

constructor TFileEnumerator.Create(AFileName: String);
begin
 inherited Create;
 FFile := TFile.OpenText(AFileName);
end;

destructor TFileEnumerator.Destroy;
begin
 FFile.Free;
 inherited;
end;

function TFileEnumerator.DoGetCurrent: String;
begin
 Result := FCurrent;
end;

function TFileEnumerator.DoMoveNext: Boolean;
begin
 Result := not FFile.EndOfStream;
 if Result then
 FCurrent := FFile.ReadLine;

end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

67

The enumerator inherits from TEnumerator<String> because each row of the file is
represented as a string. This class also gives a mechanism to implement the required methods.

The DoGetCurrent (called internally by the TEnumerator<T>.GetCurrent method)
returns the current line.

The DoMoveNext method (called internally by the TEnumerator<T>.MoveNext method)
returns true or false if there are more lines to read in the file or not. Remember that this
method is called before the first call to the GetCurrent method. After the first call to the
DoMoveNext method, FCurrent is properly set to the first row of the file.

The compiler generates a piece of code similar to the following pseudo code:

it = typetoenumerate.GetEnumerator;
while it.MoveNext do
begin
 S := it.Current;
 //do something useful with string S
end
it.free;

There's more…
Enumerable types are really powerful and help you to write less, and less error prone,
code. There are some shortcuts to iterate over in-place data without even creating an
actual container.

If you have a bounce or integers or if you want to create a not homogenous for loop over some
kind of data type, you can use the new TArray<T> type as shown here:

for i in TArray<Integer>.Create(2, 4, 8, 16) do
 WriteLn(i);
//write 2 4 8 16

TArray<T> is a generic type, so the same works also for strings:

for s in TArray<String>.Create('Hello','Delphi','World') do
 WriteLn(s);

It can also be used for Plain Old Delphi Object (PODO) or controls:

for btn in TArray<TButton>.Create(btn1, btn31,btn2) do
 btn.Enabled := false

Become a Delphi Language Ninja

68

See also
 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Declarations_

and_Statements#Iteration_Over_Containers_Using_For_statements:
This Embarcadero documentation will provide a detailed introduction to enumerable
types

RTTI to the rescue – configuring your class
at runtime

Since Delphi 2010, the Delphi RTTI has been greatly expanded. Now it is comparable to
what is called Reflection in other languages such as C# or Java. A much-improved RTTI can
dramatically change the way you write, or even think about, your code and your architecture.
Now, it is possible to write highly flexible code without too much effort.

Getting ready
What we want to do in this recipe is dynamically create a class looking for it by name among
the classes that have been linked in the executable (or loaded from dynamic packages). The
goal is to change the behavior of the program using only an external file without relying on a
lot of parameters and complex configuration code; just create the right class. Wonderful!

Let's say you've developed a program to do orders. Your program allows only one-line orders,
so you cannot buy different things in the same orders (this is a sample, man!). The form is
shown in this screenshot:

The main form

There is a dataset field connected to each of the TDBEdit in the form. The TOTAL field is a
calculated field and its value is calculated in the OnCalcFields dataset.

The calculation is simple: total = price * quantity * (1 – discount / 100)

The customer is happy and you are happy as well.

Now, a new big customer, the City Mall, want a customization, "If the total is greater than
$1000, apply another 10 percent discount." Ok, you can create the customized version
easily. So far so good, but now you have two different versions to maintain.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Declarations_and_Statements#Iteration_Over_Containers_Using_For_statements
http://docwiki.embarcadero.com/RADStudio/XE6/en/Declarations_and_Statements#Iteration_Over_Containers_Using_For_statements
http://www.allitebooks.org

Chapter 2

69

Now, another customer, the Country Road Shop says, "If there are more than 10 pieces, the
discount must be at least 50 percent." Another customer, Spark Industries, specifies, "Only at
the weekend, all the calculated prices will be cut by 50 percent."

Argh! Four customers and four different version of your software to maintain because of
customizations! You get the point; at the beginning things are simple, but when you start to
customize something, complexity (and bugs) can arise. Let's fix this problem in this recipe.

How to do it...
The simple customization is easy. However, the difficulty comes in when you have to handle
which customization you have to choose among those available. You can define some sort
of parameters, sure, but your code will get a lot of if just to understand which calculation
to apply. And, even worse, a change in one of your criteria could break something in another.
Bad approach!

We can configure our software without if statements using RTTI. In this recipe, all the
calculus engines are implemented in four different classes in four different units (you can
also define all the criteria in only one unit, but it is not mandatory).

In the following table, there is a summary of the customers and the customizations
implemented:

Customer Unit/class name Calculation criteria
Default

(no
customization)

CalculationCustomerDefaultU

TCalculationCustomerDefault

Result := (Price *
Quantity) * (1 -
Discount / 100);

City Mall CalculationCustomer_CityMall

TCalculationCustomer_CityMall

Result := (Price *
Quantity) * (1 -
Discount / 100);

if Result > 1000 then

 Result := Result
* 0.90;

Country Road
Shop

CalculationCustomer_CountryRoad

TCalculationCustomer_
CountryRoad

if Quantity > 10 then

 if Discount < 50

 then

 Discount := 50;

Result := (Price *
Quantity) * (1 -
Discount / 100);

Become a Delphi Language Ninja

70

Customer Unit/class name Calculation criteria
Spark
Industries

CalculationCustomer_Spark

TCalculationCustomer_Spark

Result := (Price *
Quantity) * (1 -
Discount / 100);

if DayOfTheWeek(Date)
in [1, 7] then

 Result :=

 Result * 0.50;

When the program starts, it looks for a configuration file. In the first line of the file, there is
a fully qualified class name (UnitName.ClassName) that implements the needed calculus
criteria. That string is used to create the related class and the instance will be used to
calculate the total price when needed. The interesting code is as follows:

procedure TMainForm.LoadCalculationEngine;
var
 TheClassName: string;
 CalcEngineType: TRttiType;
const
 CONFIG_FILENAME = '..\..\calculation.config.txt';
begin
 if not TFile.Exists(CONFIG_FILENAME) then
 TheClassName := 'CalculationCustomerDefaultU.' +
 'TCalculationCustomerDefault'
 else
 TheClassName := TFile.ReadAllLines(CONFIG_FILENAME)[0];

 CalcEngineType := FCTX.FindType(TheClassName.Trim);
 if not assigned(CalcEngineType) then
 raise Exception.CreateFmt('Class %s not found',
 [TheClassName]);
 if not CalcEngineType.GetMethod('Create').IsConstructor then
 raise Exception.CreateFmt('Cannot find Create in %s',
 [TheClassName]);

 FCalcEngineObj := CalcEngineType.GetMethod('Create').
 Invoke(CalcEngineType.AsInstance.MetaclassType, []).AsObject;
 FCalcEngineMethod := CalcEngineType.GetMethod('GetTotal');
 Label5.Caption := 'Current Calc Engine: ' + TheClassName;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

71

FCalcEngineObj is a TObject reference that holds your actual calculation engine, while
FCalcEngineMethod is an RTTI object that keeps reference to the method to call when the
calculus is needed.

Now in the dataset OnCalcFields event handler, there is this code:

procedure TMainForm.ClientDataSet1CalcFields(DataSet: TDataSet);
begin
ClientDataSet1TOTAL.Value :=
 FCalcEngineMethod.Invoke(FCalcEngineObj,
 [ClientDataSet1PRICE.Value,
 ClientDataSet1QUANTITY.Value,
 ClientDataSet1DISCOUNT.Value]).AsCurrency;
end;

Run the program and check which calculus engine is loaded. Then stop the program,
open the configuration file, and write another QualifiedClassName choosing from all
those available. Run the program. As you can see, the correct engine is selected and the
customization is applied without changing the working code.

On writing the CalculationCustomer_Spark.TCalculationCustomer_Spark class in
the file, you will get the following behavior:

The main form using the customized calculus engine specified in the configuration file

There's more…
RTTI is a really vast topic. There are endless possibilities to use it in smart ways.

Remember, however, that if the Delphi linker sees that your class is not used in the actual
code (because it is used only in the RTTI calls), it could eliminate the class from the
executable. So, to be sure that your class will be included in the final executable, write a (even
useless) line of code referring to the class. In this recipe, I've included a line of code similar to
the following one in every initialization section of the different calculus classes:

//. . . other code before

initialization

Become a Delphi Language Ninja

72

//Linker will not remove the class from the final executable
//because now it is used somewhere

TCalculationCustomer_CityMall.ClassName;

end.

See also
 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_

RTTI_Index: This documentation from Embarcadero gives more information
about extended RTTI

Duck typing using RTTI

"When I see a bird that walks like a duck and swims like a duck and quacks like a
duck, I call that bird a duck."

- James Whitcomb Riley

Clear, isn't it? What may not be so clear is that this approach can be used also in computer
programming. Yes, even without an actual duck!

Getting started
Referring to Duck typing, Wikipedia gives the following explanation (http://en.wikipedia.
org/wiki/Duck_typing):

In computer programming with object-oriented programming languages, duck typing is a style
of typing in which an object's methods and properties determine the valid semantics, rather
than its inheritance from a particular class or implementation of an explicit interface.

How can all these concepts be used in everyday programming? This is the question that this
recipe aims to answer.

Let's say that you have a form and you want to inform the user that something bad happened,
changing all the colorable components to clRed. I don't know what the property Color
means for any control that has that property, I only want to set all the properties named
Color to clRed. How can you achieve this? The naive approach could be to cycle the
Components property, check whether the current control is a control that I know that has
a Color property, and then cast that control reference to an actual TEdit (or TComboBox,
TListBox, or whatever) reference and change the Color property to clRed. However,
what if tomorrow you need to color another kind of control as well? Or you have to change
the Color property on TPanels but the Font.Color property on TEdits? You get the
point, I think.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_RTTI_Index
http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_RTTI_Index
http://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/Duck_typing
http://www.allitebooks.org

Chapter 2

73

Using the naive approach can raise the complexity of your code. A programmer should hate
complexity. More complexity means more time to handle and more time means more money
to spend. As usual, the KISS approach is the best one: Keep It Simple, Stupid!

How to do it...
The code in this recipe allows you to write code like the following snippets.

In this snippet, the Color property of all controls in the form will be set to clRed. I don't know
which kind of controls there are on the form, but if they have a property named Color, that
property will be set to clRed:

Duck.Apply(Self, 'Color', clRed);

In this snippet, the Caption property of the controls in the array; if it exists, will be set to
'Hello There':

 Duck.Apply(
 TArray<TObject>.Create(Button1, Button2, Edit1),
 'Caption',
 'Hello There');

The following code disables all the TDataSource on the form, preventing data editing:

 Duck.Apply(Self, 'Enabled', False,
 function(Item: TObject): boolean
 begin
 Result := Item is TDataSource;
 end);

The following code sets the font name to Courier New for some controls:

 Duck.Apply(TArray<TObject>.Create(Edit1, Edit2, Button2),
 'Font.Name', 'Courier New');

This code works for every kind of control. If you change the TButton in TSpeedButton, it
continues to work. If you change a TListBox with a TComboBox, the code still works. The
concept is simple, if you have a property X then I'll set that property independent of the actual
object type.

Let's see the code that actually does the job.

The main Duck class is a mere method container (this is because it doesn't start with the
usual T, so it is not a real type) declared as shown in the following code:

type
 Duck = class sealed
 class procedure Apply(ArrayOf: TArray<TObject>;

Become a Delphi Language Ninja

74

 PropName: string; PropValue: TValue;
 AcceptFunction: TFunc<TObject, boolean> = nil); overload;
 class procedure Apply(AContainer: TComponent;
 PropName: string; PropValue: TValue;
 AcceptFunction: TFunc<TObject, boolean> = nil); overload;
 end;

Methods are very similar and the second one adds some helper to work with TComponents;
the real job is done by the first one:

class procedure Duck.Apply(ArrayOf: TArray<TObject>;
PropName: string; PropValue: TValue;
 AcceptFunction: TFunc<TObject, boolean>);
var
 CTX: TRttiContext;
 Item, PropObj: TObject;
 RttiType: TRttiType;
 Prop: TRttiProperty;
 PropertyPath: TArray<string>;
 i: Integer;
begin
 CTX := TRttiContext.Create;
 try
 for Item in ArrayOf do
 begin
 if (not Assigned(AcceptFunction)) or
 (AcceptFunction(Item)) then
 begin
 RttiType := CTX.GetType(Item.ClassType);
 if Assigned(RttiType) then
 begin
 PropertyPath := PropName.Split(['.']);
 Prop := RttiType.GetProperty(PropertyPath[0]);
 if not Assigned(Prop) then
 Continue;
 PropObj := Item;
 if Prop.GetValue(PropObj).isObject then
 begin
 PropObj := Prop.GetValue(Item).AsObject;
 for i := 1 to Length(PropertyPath) - 1 do
 begin
 RttiType := CTX.GetType(PropObj.ClassType);
 Prop := RttiType.GetProperty(PropertyPath[i]);
 if not Assigned(Prop) then
 break;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

75

 if Prop.GetValue(PropObj).isObject then
 PropObj := Prop.GetValue(PropObj).AsObject
 else
 break;
 end;
 end;
 if Assigned(Prop) and (Prop.IsWritable) then
 Prop.SetValue(PropObj, PropValue);
 end;
 end;
 end;
 finally
 CTX.Free;
 end;
end;

This is not very simple, I know, but you can see all the pieces we've already talked about.
Obviously, we use RTTI to get names and set values of the properties.

The main loop cycles over the array parameter and asks the AcceptFunction whether
the object must be inspected or not. AcceptFunction is optional, so the value can be nil.
In this case, all the objects are inspected. To allow syntax such as Font.Name, there is a
small parser that splits the strings and walks through each piece to check whether there is a
property with that name. If the last piece (or the only one) is found, then check whether that
property is writable and if it is writable, set the property to the passed value. In this way, you
can write code that walks through a complex object graph with a simple syntax:

Duck.Apply(TArray<TObject>.Create(
DataSource1, DataSource2, Button2), 'DataSet.Active', true);

There's more…
Duck typing is a very broad topic and allows you to do wonderful things with a few lines of code.
In this recipe's code, there is a bonus project called DuckTypingUsingRTTIExtended.
dproj that contains an advanced version of the base recipe. It uses a fluent interface and
allows you to select the components that you want to change, and defines what type of change
to do on those components; something similar to the following code snippets:

Set all the Caption property of the components on the form to On All Captions:

Duck(Self).All.SetProperty('Caption').ToValue('On All Captions');

Become a Delphi Language Ninja

76

Set all the Text properties to 'Hello There' for the components with the name starting
with 'Edit' using an anonymous method as filter to select the components:

Duck(Self).Where(
function(C: TComponent): boolean
 begin
 Result := String(C.Name).StartsWith('Edit');
end)
.SetProperty('Text')
.ToValue('Hello There');

Set the Color property to clRed for all the TEdit components on the form. Use an
anonymous method to define what to do on the components:

Duck(Self).Where(TEdit).Map(
procedure(C: TComponent)
 begin
 TEdit(C).Color := clRed;
end);

In the bonus project, there are more examples. Feel free to experiment and expand it.

Creating helpers for your classes
As you know (and if you don't know, you can read the documentation about it), a class helper
is a type that can be associated to a class. When a class helper is associated with another
class, all the methods and properties defined in the helper are also available in the other
class and in its descendants. Helpers are a way to extend a class without using inheritance.
However, it is not the same thing as inheritance. In other words, if the TFooHelper helper is
in the same scope as TFoo, the compiler's resolution scope then becomes the original type
(TFoo), plus the helper (TFooHelper). So, if the TFoo helper defines the DoSomething
method and the helper of TFoo defines DoAnotherThing, when TFoo is used in the same
scope as the TFooHelper, then the TFoo instances, and all its descendants, have also the
DoAnotherThing method.

Getting ready
In this recipe, you'll see how to use class helpers to add iterators (or, a sort of) to the
TDataSet class, so that any other TDataSet descendants—even from another vendor—
automatically can support this kind of iterator. Moreover, you'll also add a SaveToCSV
method so that any TDataSet can be saved in CSV with only one line of code.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

77

How to do it...
For the DataSetClassHelpers.dproj project, let's start to talk about the simpler helper:
the SaveToCSV method.

The current compiler implementation of class helpers allows only one helper active at a
time. So if you need to add two or more helpers at the same time, you have to merge all the
methods and properties in a single helper class. Your TDataSet helper is contained in the
DataSetHelpersU.pas unit and is defined as follows:

 TDataSetHelper = class helper for TDataSet
 public
 procedure SaveToCSVFile(AFileName: String);
 function GetEnumerator: TDataSetEnumerator;
 end;

To use this helper with your TDataSet instances, you have to add the DataSetHelpersU
unit in the uses clause of the unit where you want to use the helper. The helper adds the
following features to all the TDataSet descendants:

Method name Description
SaveToCSV This allows any dataset to be saved as a CSV file. The first

row contains all the fieldnames.

All the string values are correctly quoted while the numeric
values aren't. The resultant CSV file is compatible with MS
Excel and can be opened directly with it.

GetEnumerator This enables the dataset to be used as enumerable type in
the for..in loops. This removes the necessity to cycle the
dataset using the usual while loop (so you cannot forget
the DataSet.Next call at the end of the loop).

The dataset is correctly cycled from the current position to
the end, and for each record the for loop is executed.

The enumerator item type is a wrapper type called
TDSIterator able to access the individual values of the
current record using a simplified interface.

Become a Delphi Language Ninja

78

To have an idea about what the helpers can do, check the following code:

//all the interface section before

implementation

uses
 DataSetHelpersU; //add the TDataSet helper to the compiler scope

procedure TClassHelpersForm.btnSaveToCSVClick(Sender: TObject);
begin
//use the SaveToCSVFile helper method
 FDMemTable1.SaveToCSVFile('mydata.csv');
 ListBox1.Items.LoadFromFile('mydata.csv');
end;

procedure TClassHelpersForm.btnIterateClick(Sender: TObject);
var
 it: TDSIterator; //this is the enumerator item type
begin
 //setup the ListBox with some nice headers
 ListBox1.Clear;
 ListBox1.Items.Add(
 Format('%-10s %-10s %8s',
 ['FirstName', 'LastName', 'EmpNo']));
 ListBox1.Items.Add(StringOfChar('-', 30));

 //iterate the dataset in a for..in loop using the helper

 for it in FDMemTable1 do
 begin
 ListBox1.Items.Add(
 Format('%-10s %-10s %8d',
 [
 it.Value['FirstName'].AsString, //using the default
 it.S['LastName'], //using the S[fieldname] for strings
 it.I['EmpNo'] //using the I[fieldname] for integers
]));
 end;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

79

Useful, isn't it? The following screenshot shows the the status of the demo application after
the SaveToCSV button was clicked. The demo application is seen as running.

The form after the SaveToCSV button is clicked; the generated CSV is reloaded in the listbox to show its contents

The following screenshot shows the output of the dataset iteration using the helper:

The form after the Iterate on DataSet button is clicked; the iteration is used to show dataset data in the listbox.

Become a Delphi Language Ninja

80

Let's see the implementation details.

The SaveToCSV method has been implemented as shown here:

procedure TDataSetHelper.SaveToCSVFile(AFileName: String);
var
 Fields: TArray<string>;
 CSVWriter: TStreamWriter;
 I: Integer;
 CurrPos: TArray<Byte>;
begin
 //save the current dataset position
 CurrPos := Self.Bookmark;

 Self.DisableControls;
 try
 //create a TStreamWriter to write the CSV file
 CSVWriter := TStreamWriter.Create(AFileName);
 try
 SetLength(Fields, Self.Fields.Count);

 for I := 0 to Self.Fields.Count - 1 do
 begin
 Fields[I] := Self.Fields[I].FieldName.QuotedString('"');
 end;

 //Write the headers line joining the fieldnames with a ";"
 CSVWriter.WriteLine(String.Join(';', Fields));

 //Cycle the dataset
 while not Self.Eof do
 begin
 for I := 0 to Self.Fields.Count - 1 do
 begin
 //DoubleQuote the string values
 case Self.Fields[I].DataType of
 ftInteger, ftWord, ftSmallint, ftShortInt,
 ftLargeint, ftBoolean, ftFloat, ftSingle:
 begin
 CSVWriter.Write(Self.Fields[I].AsString);
 end;
 else
 CSVWriter.Write(
 Self.Fields[I].AsString.QuotedString('"'));
 end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

81

 //if at the last columns, newline, otherwise ";"
 if I < Self.FieldCount - 1 then
 CSVWriter.Write(';')
 else
 CSVWriter.WriteLine;
 end;
 Self.Next; //next record
 end;
 finally
 CSVWriter.Free;
 end;

 finally
 Self.EnableControl;
 end;

 //return to the position where the dataset was before
 if Self.BookmarkValid(CurrPos) then
 Self.Bookmark := CurrPos;
end;

The other helper is a bit more complex, but all the concepts have been already introduced in
the Writing enumerable types recipe, so this should not be too complex to understand.

The method in the class helper simply returns TDataSetEnumerator by passing the
current dataset to the constructor:

function TDataSetHelper.GetEnumerator: TDataSetEnumerator;
begin
 Result := TDataSetEnumerator.Create(Self);
end;

Now, some magic happens in the TDataSetEnumerator! Methods to access the current
record are encapsulated in a TDSIterator instance. This class allows you to access the
field values using a limited and simpler interface (compared to the TDataSet one).

Here's the declaration of the enumerator and the iterator:

TDataSetEnumerator = class(TEnumerator<TDSIterator>)
 private
 FDataSet: TDataSet; //the current dataset
 FDSIterator: TDSIterator; //the current "position"
 FFirstTime: Boolean;
 public
 constructor Create(ADataSet: TDataSet);
 destructor Destroy; override;

Become a Delphi Language Ninja

82

 protected
 //methods to override to support the for..in loop
 function DoGetCurrent: TDSIterator; override;
 function DoMoveNext: Boolean; override;
 end;

//This is the actual iterator
TDSIterator = class
 private
 FDataSet: TDataSet;
 function GetValue(const FieldName: String): TField;
 procedure SetDataSet(const Value: TDataSet);
 function GetValueAsString(const FieldName: String): String;
 function GetValueAsInteger(const FieldName: String): Integer;
 public
 constructor Create(ADataSet: TDataSet);
 //properties to access the current record
 //values using the fieldname
 property Value[const FieldName: String]: TField read GetValue;
 property S[const FieldName: String]: String
 read GetValueAsString;
 property I[const FieldName: String]: Integer
 read GetValueAsInteger;
 end;

The TDataSetEnumerator handles the mechanism needed by the enumerable type.
However, instead of implementing all the needed methods directly (as you saw in the Writing
enumerable types recipe), you've inherited from the TEnumerator<T>, so the code to
implement is shorter and simpler. Here's the implementation:

{ TDataSetEnumerator }

constructor TDataSetEnumerator.Create(ADataSet: TDataSet);
begin
 inherited Create;
 FFirstTime := True;
 FDataSet := ADataSet;
 FDSIterator := TDSIterator.Create(ADataSet);
end;

destructor TDataSetEnumerator.Destroy;
begin
 FDSIterator.Free;
 inherited;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

83

function TDataSetEnumerator.DoGetCurrent: TDSIterator;
begin
 Result := FDSIterator;
end;

function TDataSetEnumerator.DoMoveNext: Boolean;
begin
 Result := not FDataSet.Eof;
 if Result then
 begin
 if not FFirstTime then
 FDataSet.Next;
 FFirstTime := False;
 end;
end;

It is clear that the current record is encapsulated by a TDSIterator instance that uses
the current dataset. This class is in charge to handle the real data access to the underlying
dataset fields. Here's the implementation:

{ TDSIterator }

constructor TDSIterator.Create(ADataSet: TDataSet);
begin
 inherited Create;
 FDataSet := ADataSet;
end;

function TDSIterator.GetValue(const FieldName: String): TField;
begin
 Result := FDataSet.FieldByName(FieldName);
end;

function TDSIterator.GetValueAsInteger(
const FieldName: String): Integer;
begin
 Result := GetValue(FieldName).AsInteger;
end;

function TDSIterator.GetValueAsString(
const FieldName: String): String;
begin
 Result := GetValue(FieldName).AsString;
end;

Become a Delphi Language Ninja

84

Let's summarize the relation between the three classes involved. The class helper
adds a method GetEnumerator to the TDataSet instance, which returns the
TDataSetEnumerator. The TDataSetEnumerator uses the underlying dataset to handle
the enumerable mechanism. The current element returned by the DataSetEnumerator
is a TDSIterator that encapsulates the dataset current position allowing the user code to
iterate the dataset using the for..in loop.

There's more...
What we discussed for class helper is valid for record helpers as well. If you find the content of
this chapter too difficult, you can refresh your understanding about the helpers by (re)reading
(and trying it by yourself) the Class and record helpers section in the Embarcadero docwiki
website (http://docwiki.embarcadero.com/RADStudio/XE6/en/Class_and_
Record_Helpers_(Delphi)).

Usually, when I talk about class and record helpers during my live training, just before showing
the samples, the attendees ask, "I understand the concepts, but in which cases should I
use them?"

See also
 f Now, you have seen some nice use cases. However, if you need some others too,

read this interesting thread on stack overflow at http://stackoverflow.com/
questions/253399/what-are-good-uses-for-class-helpers.

Checking strings with regular expressions
A regular expression (RegEx) is a sequence of characters that forms a search pattern where
some characters have a special meaning. It's mainly used to match patterns on strings. A
simple case is something like this: check whether the string A matches the criteria defined
in string B. Regular expressions follow a specific language to define the criteria. Regular
expressions are not present only in Delphi. Many languages have a regular expression
library in their standard built-in library. So, if you don't know what a regular expression is, you
can read the general documentation at http://en.wikipedia.org/wiki/Regular_
expression and then check the Delphi-specific built-in implementation at http://
docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions.

With regular expressions, you'll need an external tool to test the most complex ones (just like
you want to test a complex query using a database tool instead of change the SQL in your
code over and over again). There are a lot of sites offering such types of tool. One of the most
complete websites offering such tools is http://regex101.com.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Class_and_Record_Helpers_(Delphi)
http://docwiki.embarcadero.com/RADStudio/XE6/en/Class_and_Record_Helpers_(Delphi)
http://stackoverflow.com/questions/253399/what-are-good-uses-for-class-helpers
http://stackoverflow.com/questions/253399/what-are-good-uses-for-class-helpers
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions
http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions
http://regex101.com
http://www.allitebooks.org

Chapter 2

85

Getting started
This recipe is a small complete project with specific objectives. It contains a list of checks
that could be daunting to code from scratch but are trivial using regular expressions. Just one
thing to remember: you always require a RegEx string and an input string for the checks, and
the RegEx library gives back the result of the match. In this case, the result is true or false.

Here are some samples of very simple regular expressions with some input strings as a test.
In the last column, you can see the result of the match. (RegEx can be used to perform smart
string replace as well in order to find another string and so on, but the concept is the same as
the check. You have only to call the right method, as IsMatch, Split, Matches, and so on,
to give the right meaning to the RegEx.)

RegEx RegEx description Input string Result
rocks Contains rocks delphi rocks

rocks

rocks of the mountain

True

True

False
^rocks Starts with rocks delphi rocks

rocks of the mountain

False

True
^[ABC]3 Starts with A or B or C and

then there is a 3. Anything
after the 3 matches

A3

B3

C33

F3

A2

True

True

True

False

False

^[ABC][01]$ Starts with A or B or C and
then there is 0 or 1. Then
the input ends. No more
characters allowed.

A0

A1

A2

B1

AA0

C3

True

True

False

True

False

False

Become a Delphi Language Ninja

86

How to do it...
The test application is shown in the following screenshot:

The RegEx recipe main form with some checks on it

Each button checks the value written to the edit at its left. The checks are not 100 percent
foolproof for the sake of simplicity, and they don't test the real validity of the data inserted.
They only check the format validity (for example, if the e-mail address is formally valid, the
check returns true even if the address doesn't really exist).

Open the recipe project called RegEx.dproj in the IDE and show the code of the form.

In Delphi, the needed classes and records to work with regular expressions are contained
in the System.RegularExpressions.pas unit and follow the standard of the regular
expression as handled by the Perl language (one of the first languages that started to use
RegEx). The unit is included in the implementation section of the form. I suggest putting all
your validation code in a separated unit in some testable validator types. However, in this
recipe, the validation code is in the form under the event handler (please, do not do this in
your production software!).

Let's start from the IP check. Under the btnCheckIP click, you can see the following code:

procedure TRegExForm.btnCheckIPClick(Sender: TObject);
begin
 if TRegEx.IsMatch(EditIP.Text,
 '^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$') then
 ShowMessage('IPv4 address is valid')
 else
 ShowMessage('IPv4 address is not valid');
end;

The code is really simple, only the RegEx needs some more explanation. The regular
expression checks a string that starts with 1, 2, or 3 numbers from 0 to 9 ([0-9]{1,3}),
then expect a point. Consider that point character in the regex syntax means any character, so
if you simply want to check a point, you have to remove this meaning escaping the character.
This is because there is a \ before the point.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

87

RegEx continues with the same pattern repeated four times (for the four octets contained in
the IPv4 address). The last pattern doesn't expect a point.

Using the static TRegEx.IsMatch method, you can easily check whether a string matches
with a RegEx.

The second check is about the e-mail address. The code used is shown as follows:

procedure TRegExForm.btnCheckEmailClick(Sender: TObject);
begin
 // Email RegEx from
 // http://www.regular-expressions.info/email.html

 if TRegEx.IsMatch(
 EditEMail.Text,
 '^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$',
 [roIgnoreCase]) then
 ShowMessage('EMail address is valid')
 else
 ShowMessage('EMail address is not valid');
end;

In this case, the RegEx is a little bit more complicated. The string must start with at least a
letter from A to Z, with a number from 0 to 9, or with another of the admitted char (., _, %, +,
-). The sign + after the square brackets stands for at least one of…. Then there should be a
@ sign. After the @ sign, the RegEx checks for letters, numbers, dots, and the minus sign (the
domain part of the address) and, as last checks, it looks for two, three, or four letters (.com,
.it, .net, and so on). The RegEx syntax is case-sensitive, but an e-mail address validity
check must be case-insensitive, so I've put the roIgnoreCase modifier on the IsMatch
to make the RegEx case-insensitive ([A-Z] is considered as [A-Z/a-z]).

As you see, if you can read the RegEx syntax, you can easily understand what the RegEx
checks. Obviously, there are really complex RegExes, so before you use them, be sure to be
confident with what you are using.

The last button checks the Italian tax code. I also put this example because the criteria are
not so complex and it is good to understand the RegEx flexibility.

In Italy, there is a tax code called Codice Fiscale that is assigned to all citizens when they
reach a certain age. The criteria are the following:

 f 3 letters

 f 3 letters

 f 2 numbers

 f 1 letter

Become a Delphi Language Ninja

88

 f 2 numbers

 f 1 letter

 f 3 numbers

 f 1 letter

So, for instance, this is a formally valid Italian tax code: RSSMRA79S04H501V.

As you see, it is not complex; however, checking it using plain code Delphi can be boring and
error prone. Let's build together the RegEx to check it.

Start with 6 letters:

^[A-Z]{6}

Then, two numbers:

^[A-Z]{6}[0-9]{2}

Then, one letter and two numbers:

^[A-Z]{6}[0-9]{2}[A-Z][0-9]{2}

Then, one letter, three numbers, and another one letter. Then, the code must terminate:

^[A-Z]{6}[0-9]{2}[A-Z][0-9]{2}[A-Z][0-9]{3}[A-Z]$

Now, the check is really simple:

procedure TRegExForm.btnCheckItalianTaxCodeClick(
 Sender: TObject);
begin
 if TRegEx.IsMatch(EditTaxCodeIT.Text,
 '^[A-Z]{6}[0-9]{2}[A-Z][0-9]{2}[A-Z][0-9]{3}[A-Z]$',
 [roIgnoreCase]) then
 ShowMessage('This italian tax code is valid')
 else
 ShowMessage('This italian tax code is not valid');
end;

After some exercises, you can master the RegEx syntax and you will find it really useful to
check and manipulate strings and texts.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

89

The following screenshot shows the sample application while it is checking a wrong
e-mail address:

The RegEx sample application while is checking a not valid e-mail address

There's more...
RegEx can be used to do a lot of string-related tasks. You can match strings, search for strings
into another string, split a string using a RegEx as separator, and so on.

Remember to check the Delphi documentation about the built-in RegEx engine syntax at
http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions.

Some nice RegEx samples (not Delphi-related) can be found at http://www.regular-
expressions.info/examples.html.

As a bonus project, there is a RegEx tester called RegExTester.dproj in the attached code
that helps you to exploit all the functionalities. Play with it and become a RegEx Ninja!

http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions
http://www.regular-expressions.info/examples.html
http://www.regular-expressions.info/examples.html

www.allitebooks.com

http://www.allitebooks.org

3
Going Cross Platform

with FireMonkey

In this chapter, we will cover the following recipes:

 f Giving a new appearance to the standard FireMonkey controls using styles

 f Creating a styled TListBox

 f Impressing your clients with animations

 f Using master/details with LiveBindings

 f Showing complex vector shapes using paths

 f Using FireMonkey in a VCL application

Introduction
The FireMonkey FMX framework is the app development and runtime platform behind Delphi,
C++Builder, and Appmethod. FireMonkey is the first native GPU-powered application platform.
The IT world is becoming more multiplatform with each passing year. FireMonkey is a key
technology for Embarcadero because it is designed to build multidevice, true native apps for
Windows, Mac, Android, and iOS.

This chapter explains some of the great features of FireMonkey. What is exposed in these
recipes will be useful on every platform supported by the framework. Some of the OS-related
features may not be available everywhere, but the great part of the concepts are usable on
MS Windows, Mac OS X, Android, and iOS. There are ready-to-use recipes that will be useful
every day.

Going Cross Platform with FireMonkey

92

Giving a new appearance to the standard
FireMonkey controls using styles

Since Version XE2, RAD Studio includes FireMonkey. FireMonkey is an amazing library.
It is a really ambitious target for Embarcadero, but it's important for its long-term strategy.
VCL is and will remain a Windows-only library, while FireMonkey has been designed to be
completely OS and device independent. You can develop one application and compile it
anywhere (if anywhere is contained in Windows, OS X, Android, and iOS; let's say that is a
good part of anywhere).

Getting ready
One of the main features of FireMonkey is customization through styles. A styled component
doesn't know how it will be rendered on the screen, but the style. Changing the style, you can
change the aspect of the component without changing its code. The relation between the
component code and style is similar to the relation between HTML and CSS, one is the content
and another is the display. In terms of FireMonkey, the component code contains the actual
functionalities that the component has, but the aspect is completely handled by the associated
style. All the TStyledControl child classes support styles.

Let's say you have to create an application to find a holiday house for a travel agency. Your
customer wants a nice-looking application to search for the dream house for their customers.
Your graphic design department (if present) decided to create a semitransparent look-and-
feel, as shown in the following screenshot, and you've to create such an interface. How to
do that?

This is the UI we want

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

93

How to do it…
In this case, you require some step-by-step instructions, so here they are:

1. Create a new FireMonkey desktop application (navigate to File | New | FireMonkey
Desktop Application).

2. Drop a TImage component on the form. Set its Align property to alClient, and use
the MultiResBitmap property and its property editor to load a nice-looking picture.

3. Set the WrapMode property to iwFit and resize the form to let the image cover the
entire form.

4. Now, drop a TEdit component and a TListBox component over the TImage
component. Name the TEdit component as EditSearch and the TListBox
component as ListBoxHouses.

5. Set the Scale property of the TEdit and TListBox components to the following values:

 � Scale.X: 2

 � Scale.Y: 2

6. Your form should now look like this:

The form with the standard components

The actions to be performed by the users are very simple. They
should write some search criteria in the Edit field and click on
Return. Then, the listbox shows all the houses available for that
criteria (with a "contains" search). In a real app, you require a
database or a web service to query, but this is a sample so you'll
use fake search criteria on fake data.

Going Cross Platform with FireMonkey

94

7. Add the RandomUtilsU.pas file from the Commons folder of the project and add it
to the uses clause of the main form.

8. Create an OnKeyUp event handler for the TEdit component and write the following
code inside it:
procedure TForm1.EditSearchKeyUp(Sender: TObject;
 var Key: Word; var KeyChar: Char; Shift: TShiftState);
var
 I: Integer;
 House: string;
 SearchText: string;
begin
 if Key <> vkReturn then
 Exit;

 // this is a fake search...
 ListBoxHouses.Clear;
 SearchText := EditSearch.Text.ToUpper;

 //now, gets 50 random houses and match the criteria
 for I := 1 to 50 do
 begin
 House := GetRndHouse;
 if House.ToUpper.Contains(SearchText) then
 ListBoxHouses.Items.Add(House);
 end;
 if ListBoxHouses.Count > 0 then
 ListBoxHouses.ItemIndex := 0
 else
 ListBoxHouses.Items.Add('<Sorry, no houses found>');
 ListBoxHouses.SetFocus;
end;

9. Run the application and try it to familiarize yourself with the behavior.

10. Now, you have a working application, but you still need to make it transparent.
Let's start with the FireMonkey Style Designer (FSD).

Just to be clear, at the time of writing, the FireMonkey Style Designer
is far to be perfect. It works, but it is not a pleasure to work with it.
However, it does its job.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

95

11. Right-click on the TEdit component. From the contextual menu, choose Edit
Custom Style (general information about styles and the style editor can be found
at http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_
Style_Designer and http://docwiki.embarcadero.com/RADStudio/XE6/
en/Editing_a_FireMonkey_Style).

12. Delphi opens a new tab that contains the FSD. However, to work with it, you
need the Structure pane to be visible as well (navigate to View | Structure
or Shift + Alt + F11).

13. In the Structure pane, there are all the styles used by the TEdit control. You should
see a Structure pane similar to the following screenshot:

The Structure pane showing the default style for the TEdit control

14. In the Structure pane, open the editsearchstyle1 node, select the background
subnode, and go to the Object Inspector.

15. In the Object Inspector window, remove the content of the SourceLookup property.

The background part of the style is TActiveStyleObject. A
TActiveStyleObject style is a style that is able to show a part of an
image as default and another part of the same image when the
component that uses it is active, checked, focused, mouse hovered,
pressed, or selected. The image to use is in the SourceLookup
property. Our TEdit component must be completely transparent in
every state, so we removed the value of the SourceLookup property.

http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/XE6/en/Editing_a_FireMonkey_Style
http://docwiki.embarcadero.com/RADStudio/XE6/en/Editing_a_FireMonkey_Style

Going Cross Platform with FireMonkey

96

16. Now the TEdit component is completely invisible. Click on Apply and Close and run
the application. As you can confirm, the edit works but it is completely transparent.
Close the application.

17. When you opened the FSD for the first time, a TStyleBook component has been
automatically dropped on the form and contains all your custom styles. Double-click
on it and the style designer opens again.

18. The edit, as you saw, is transparent, but it is not usable at all. You need to see at
least where to click and write. Let's add a small bottom line to the edit style, just
like a small underline.

19. To perform the next step, you require the Tool Palette window and the Structure
pane visible. Here is my preferred setup for this situation:

The Structure pane and the Tool Palette window are visible at the same time using the docking mechanism;
you can also use the floating windows if you wish

20. Now, search for a TLine component in the Tool Palette window. Drag-and-drop
the TLine component onto the editsearchstyle1 node in the Structure pane.
Yes, you have to drop a component from the Tool Palette window directly onto
the Structure pane.

21. Now, select the TLine component in the Structure Pane (do not use the FSD
to select the components, you have to use the Structure pane nodes). In the
Object Inspector, set the following properties:

 � Align: alContents

 � HitTest: False

 � LineType: ltTop

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

97

 � RotationAngle: 180

 � Opacity: 0.6

22. Click on Apply and Close.

23. Run the application. Now, the text is underlined by a small black line that makes it
easy to identify that the application is transparent. Stop the application.

24. Now, you've to work on the listbox; it is still 100 percent opaque.

25. Right-click on the ListBoxHouses option and click on Edit Custom Style.

26. In the Structure pane, there are some new styles related to the TListBox class.
Select the listboxhousesstyle1 option, open it, and select its child style, background.

27. In the Object Inspector, change the Opacity property of the background style to 0.6.
Click on Apply and Close.

28. That's it! Run the application, write Calif in the Edit field and press Return. You
should see a nice-looking application with a semitransparent user interface showing
your dream houses in California (just like it was shown in the screenshot in the Getting
ready section of this recipe). Are you amazed by the power of FireMonkey styles?

How it works...
The trick used in this recipe is simple. If you require a transparent UI, just identify which
part of the style of each component is responsible to draw the background of the component.
Then, put the Opacity setting to a level less than 1 (0.6 or 0.7 could be enough for most
cases). Why not simply change the Opacity property of the component? Because if you
change the Opacity property of the component, the whole component will be drawn with
that opacity. However, you need only the background to be transparent; the inner text
must be completely opaque. This is the reason why you changed the style and not the
component property.

In the case of the TEdit component, you completely removed the painting when you removed
the SourceLookup property from TActiveStyleObject that draws the background.

As a thumb rule, if you have to change the appearance of a control, check its properties. If the
required customization is not possible using only the properties, then change the style.

There's more…
If you are new to FireMonkey styles, probably most concepts in this recipe must have been
difficult to grasp. If so, check the official documentation on the Embarcadero DocWiki at the
following URL:

http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_
FireMonkey_Applications_with_Styles

http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_FireMonkey_Applications_with_Styles

Going Cross Platform with FireMonkey

98

Creating a styled TListBox
As you saw in the previous recipe, it is possible to style styled controls and completely
change their appearance. While in the VCL, the TListBox control is a mere wrapper over
the correspondent control in the MS Windows API; in FireMonkey, the TListBox component
is a completely different beast. A TListBox component contains a list of TListBoxItem,
and a TListBox item is a TStyledControl descendant. This means that every single item
in a TListBox component can be styled! This feature opens a huge set of new possibilities
regarding the use of the control.

Getting started
In this recipe, you'll see a set of styled TListBoxItem component that when added
to TListBox, changes its appearance completely. Let's say you have a listbox containing
a log of events that happened in a monitored remote system. Some events are simply
informative, while other events can denote a malfunction. Different kinds of events are
shown with different graphics in the listbox. Here are the events:

Type Appearance
Normal This is the default option for TListBoxItem.
Hint This has blue colored text on a white background. The text is left aligned

but indented 40 pixels.
Warning This has black colored text on a white background. There is a small

yellow flag on the left-hand side.
Error This has red colored text over a white background. There is a small

red flag on the left.

What you require is shown in the following screenshot:

The listbox with some types of events logged

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

99

To achieve this result using VCL, you usually rely on owner drawing or some third-party controls.
However, with FireMonkey, all these customizations are a matter of style, so are simpler, faster
to implement, reusable, and more flexible.

How to do it…
Let's start creating our stunning FireMonkey GUI:

1. Create a new FireMonkey desktop application.

2. Drop four TButton components, a TListBox component, and a TStyleBook
component on the form.

3. Double-click on the TStyleBook component and open the style editor.

4. Show the Structure pane (navigate to View | Structure or press Shift + Alt + F11).

5. Drop three TLayout components to create three different styles.

6. Set the StyleName property of the three TLayout components as follows:

 � errorlistboxitem

 � hintlistboxitem

 � warninglistboxitem

The StyleName property allows you to reference to the style from your form, so we've
created three new styles usable from the main form.

7. Drop in every TLayout a TText so that every TLayout contains a TText. Set the TText.
Align property to alClient.

8. Set the StyleName property for each TText to eventtext. Pay attention; every TText
has the same value in the StyleName property. This allows you to use the StylesData
property independently of the applied style.

9. Now let's work on each style. Select the hintlistboxitem style from the
Structure pane.

10. Now, select the inner eventtext component (a TText component) and set its Color
property to Blue and its Margins.Left property to 40.

11. Select the warninglistboxitem style from the Structure pane.
12. Now, drop a TImage component into the style at the same level of TText.
13. Set TImage.Align to alMostLeft.
14. Load a small 32 x 32 icon showing a small yellow flag in its MultiResBitmap property

(some free icons are provided with the code of the book).
15. Set TImage.Width to 40.
16. Select the errorlistboxitem style from the Structure pane.
17. Set the TText.Color property to claRed.

Going Cross Platform with FireMonkey

100

18. Now, drop a TImage component into the style at the same level of TText.

19. Set TImage.Align to alMostLeft.

20. Load a small 32 x 32 icon showing a small red flag in its MultiResBitmap property.

21. Set TImage.Width to 40.

22. Now, your Structure pane should look like this:

23. Click on Apply and Close on the style designer toolbar.

24. Now, the TStyleBook component contains all the custom styles. However, currently
those styles are not used. Let's use them.

25. Go to the form class declaration and add the following private method:
procedure TForm1.AddEvent(EventType, EventText: String);
var
 LBItem: TListBoxItem;
begin
 LBItem := TListBoxItem.Create(ListBox1);
 LBItem.Parent := ListBox1;
 if EventType.Equals('normal') then
 begin
 LBItem.Text := EventText;
 end
 else
 begin
 LBItem.StyleLookup := EventType + 'listboxitem';
 LBItem.StylesData['eventtext'] := EventText;
 end;
 ListBox1.AddObject(LBItem);
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

101

26. Set the button names and captions to the following values:

 � btnNormal (Caption: Normal)

 � btnHint (Caption: Hint)

 � btnWarning (Caption: Warning)

 � btnError (Caption: Error)

27. Create four event handlers, one for each TButton component, as shown in the
following code:
procedure TForm1.btnNormalClick(Sender: TObject);
begin
 AddEvent('normal', 'This is a normal event');
end;

procedure TForm1.btnHintClick(Sender: TObject);
begin
 AddEvent('hint', 'This is an HINT');
end;

procedure TForm1.btnWarningClick(Sender: TObject);
begin
 AddEvent('warning', 'WARNING! This is a WARNING!');
end;

procedure TForm1.btnErrorClick(Sender: TObject);
begin
 AddEvent('error', 'ERROR! This is an ERROR!');
end;

28. Hit F9 (or go to Run | Run) and try to click on the buttons, and you should see
something like the Structure pane shown earlier.

How it works...
By clicking on each the button, a new TListBoxItem is created (in the AddEvent
method). Depending on the event type, the correct style is selected from the TStyleBook
component. There is no need to directly refer to TStyleBook, FireMonkey looks for all the
TStyleBook components currently visible. The StyleLookup property sets the style used for
TListBoxItem, while the StylesData indexed property contains the values for every style
component with StyleName. By setting StylesData['eventtext'], you are actually
setting the Text property of the inner TText component.

Going Cross Platform with FireMonkey

102

There's more…
FireMonkey styles are really powerful. The not-so-perfect style designer makes working with
styles a little bit harder, but once you grasp the foundation using FireMonkey, styles are
addictive! Some links to go deeper with styles are as follows:

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_
Style_Designer

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_
FireMonkey_Applications_with_Styles

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_
Native_and_Custom_FireMonkey_Styles

Impressing your clients with animations
Animations are a nice thing. A well-done animation, not too intrusive and with good visual
information, can explain what is happening on the UI better than 1,000 words. In this recipe,
you'll implement a dual list with the include<>exclude paradigm so that what is removed
from one list is included in the other list and vice versa. You'll use FireMonkey animations.

FireMonkey animations are really simple to use. Some kinds of property types can be
animated. Some of these types are color, bitmap, gradient, and floating point number. The
most used animation engine is the TFloatAnimation. This is used to animate floating point
values such as Opacity, Position.X, Position.Y, Width, Height, and many more.

How to do it…
What you want to create is shown in the following screenshot:

The dual list selection form

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/XE6/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_Native_and_Custom_FireMonkey_Styles
http://docwiki.embarcadero.com/RADStudio/XE6/en/Working_with_Native_and_Custom_FireMonkey_Styles
http://www.allitebooks.org

Chapter 3

103

There are three images in the left-hand side gray list and zero images in the red list on the
right-hand side. Clicking on an image; the clicked image will slide to the opposite list (gray to
red or red to gray) using a nice animation. The steps to reproduce the images are as follows:

1. Create a new FireMonkey desktop application.

2. Drop two TRectangle components on the form. Align the first one on the left-hand
side and the second one to the right-hand side, as shown in the screenshot in the
Getting ready section of this recipe.

3. Set the properties of the left-hand side rectangle like this:

 � Fill.Color: #FFE0E0E0

 � Fill.Kind: bkSolid

 � Stroke.Thickness: 5

 � Opacity: 0.5

 � XRadius: 10

 � YRadius: 10

4. Set the properties of the right-hand side rectangle as follows:

 � Fill.Color: Red

 � Fill.Kind: bkSolid

 � Stroke.Thickness: 5

 � Opacity: 0.5

 � XRadius: 10

 � YRadius: 10

5. Now, drop three TImage components on the form and align them into the left-hand
side TRectangle.

6. Load some kind of picture or icon into TImages. You can use the same images for
each TImage (as I did) or different images for each TImage. It depends on what kind
of information you want to transfer to your user.

In the included source code, you can find an image
called blackman.png that is the one that I used.

7. Now, for each image, drop TShadowEffect. The effect must be owned by the TImage
component so that in the Structure pane, the TImage component contains a subnode
named TShadowEffect. Perform the same action for each TImage.

8. Now, set the Distance property to 5 for each TShadowEffect.

Going Cross Platform with FireMonkey

104

9. Our UI is created. Now you've to write some code. Use the same event handler for all
the three TImage components. Let's create the event handler with a double-click on
the TImage1 component. Fill the event handler with this code:
procedure TDualListForm.Image1Click(Sender: TObject);
var
 Img: TImage;
const
 LEFT_LIMIT = 150; //must be inside the left rectangle
 RIGHT_LIMIT = 500; //must be inside the right rectangle
begin
 Img := (Sender as TImage);

 if Img.Tag = 0 then
 begin
 Img.Tag := 1;
 Img.AnimateFloat('Position.X',
 RIGHT_LIMIT, 0.8,
 TAnimationType.atOut,
 TInterpolationType.itElastic)
 end
 else
 begin
 Img.Tag := 0;
 Img.AnimateFloat('Position.X',
 LEFT_LIMIT, 0.8,
 TAnimationType.atOut,
 TInterpolationType.itElastic);
 end;

 Img.AnimateFloatDelay('Scale.X', 1.2, 0.2, 0.2);
 Img.AnimateFloatDelay('Scale.Y', 1.2, 0.2, 0.2);

 Img.AnimateFloatDelay('Scale.X', 1, 0.2, 1);
 Img.AnimateFloatDelay('Scale.Y', 1, 0.2, 1);
end;

10. In the preceding code, there are some values for LIMIT_LEFT and LIMIT_RIGHT.
Adjust them with values that are good for your form and make them aligned with
the rectangles. The objective is that when the image is clicked, it should start from
the left-hand side rectangle and should move to the right-hand side rectangle. If the
image is clicked a second time, it should return to the left-hand side (with the same
animation). In a more complex scenario, it's better to calculate these values instead
of putting them as fixed values.

11. As you can see, I've used the TImage.Tag property to keep track of the current
position. It would be better to have an external data model to hold this kind of visual
state instead of putting this information in the graphical components, but for this
demo, it's okay.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

105

12. Now, connect the same TImage1.OnClick event handler to TImage2.OnClick
and TImage3.OnClick as well. In this way, you can centralize the behavior in a
single event handler.

13. Run (navigate to Run | Run or press F9) and start clicking on the images.

How it works...
This recipe is very simple and is a good example of how animations can be used to gain not
only visual wow effect (that probably may even disturb your user in some cases), but also
some informative content.

The approach is simple: when the user clicks, communicate using animations that something
happened and make it mime the real physical world. This is about the eBook reader applications
on your smartphones. Is it strictly required to show a Turning page animation when you change
page? No! However, it makes it clear to the user what is happening. Your animation should be
used for the same goal.

There's more…
Some useful basic information about animations can be read on the Embarcadero DocWiki:

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_
Animation_Effects

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_
FireMonkey_Animation_Effects

Using master/details with LiveBindings
When you have a customer with his/her orders or an invoice with his/her items, you have a
master/details (M/D) relationship. In this recipe, you'll learn how to use the new LiveBindings
technology to show an M/D relationship.

Getting started
As explained in the Embarcadero wiki:

"LiveBindings is a data-binding feature supported by both the VCL and FireMonkey
frameworks in RAD Studio. LiveBindings is an expression-based framework,
which means it uses bindings expressions to bind objects to other objects or
to dataset fields."

http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Animation_Effects
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Animation_Effects
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_FireMonkey_Animation_Effects
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_FireMonkey_Animation_Effects

Going Cross Platform with FireMonkey

106

LiveBindings is a very nice technology and can be used in VCL applications also, but its main
targets are FireMonkey applications. Indeed, it is the only way to do automatic data binding in
the FireMonkey framework. If you don't know what LiveBindings is or what its strengths are,
I suggest you stop here and read the article in the Embarcadero wiki at http://docwiki.
embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio.

What we want to do in this recipe is create a simple but complete FireMonkey application
that handles a sort-of M/D relationship. Usually, this kind of thing involves the use of some
databases. In this case, however, we are abandoning the SQL-based approach (that uses two
or more datasets) in favor of a purely object-oriented approach. In other words, you'll use a list
of objects instead of a simple SQL query, and the relationships are child objects contained in
the main object, not another query.

The simple UML class diagram generated by Delphi is shown here:

The UML class diagram for the recipe

The main list of objects contains the TPerson instances. Each TPerson instance, as shown in
the preceding screenshot, contains a variable number of e-mails. So, the TPerson class has a
property called Emails that is a list of TEmail instances. Instead of filtering all the e-mails and
showing only the e-mails related to the selected person (as usually happens in the classic SQL
programming), you'll show only the e-mails of that person, no filters are involved. The e-mails
are already tied to the person. In this recipe, the difference between the TDataset approach
and the object-oriented approach will be cleared.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio
http://www.allitebooks.org

Chapter 3

107

The final application is shown in the following screenshot:

The final aspect of the M/D application that is able to manage people and the related e-mails

How to do it…
Let's start:

1. Create a new FireMonkey HD desktop application and name the main form
as MainForm.

2. Drop two TGrid components on the form and name them grdPeople and
grdEmails. Set both the AlternatingRowBackground properties to
True for both the components.

3. Drop two TProtypeBindSource components in the form and name them
bsPeople and bsEmails.

Going Cross Platform with FireMonkey

108

4. Double-clicking on bsPeople shows its field definitions. Using the Add (the first button
from the left-hand side) button, add four fields as shown in the following screenshot:

5. Close the field definition of bsPeople.

6. Double-clicking on bsEmails shows its field definitions. Using the Add (the first button
from the left-hand side) button, add the Address field as shown here:

7. Close the field definition of bsEmails.

8. Drop a TBindNavigator component on the form and connect its DataSource property
to bsPeople.

9. Drop another TBindNavigator component on the form and connect its DataSource
property to bsEmails. Then, set all the elements inside its VisibleButtons property
to False and set only nbInsert and nbDelete to true (this will allow you to insert
or remove any e-mail from a person).

10. Now, drop three TEdit components on the form and name them EditFirstName,
EditLastName, and EditAge.

11. Our UI is almost ready. Add some labels and arrange the controls.

12. Now the interesting part begins.

13. Go to View | LiveBindings Designer.

14. The window shows the famous LiveBindings Designer. All the LiveBindings Enabled
controls with their properties will be shown.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

109

15. On the left-hand side toolbar, there are a set of buttons useful to change the
disposition and zoom of the diagram. Use the buttons; they will save your sanity!

16. Identify the bsPeople element and drag-and-drop all its elements on grdPeople.
You can also drag only the * column, but (in this version of Delphi) columns are not
created at design time. So, if you want (as usually you will) to change the aspect of
the grid columns, drag every field one by one.

17. Perform the same action (as done for bsPeople) with the bsEmails and grdEmails.

18. Now, you've to connect the editable field of the bsPeople component to the TEdits
component.

19. Connect bsPeople.FirstName to EditFirstName.Text.

20. Connect bsPeople.LastName to EditLastName.Text.

21. Connect bsPeople.Age to EditAge.Text.

22. Do not connect the EmailsCount field. This field is a read-only field, mapped to a
read-only property, and used to show the number of the e-mail addresses related to
the current person. This technique can be quite useful when you have to show how
many rows are contained in an invoice, how many orders are related to a customer,
and so on.

23. If you run the application now, you will see some fake data is generated. You will also
notice that there is no M/D relationship between people and e-mails. We are about to
fix this in a moment. Close the application and go back to Delphi.

24. Add a new unit, name it BusinessObjectsU.pas, and add the following code into it:
unit BusinessObjectsU;

interface

uses System.Generics.Collections;

type
 TEmail = class
 private
 FAddress: String;
 procedure SetAddress(const Value: String);
 public
 constructor Create; overload;
 constructor Create(AEmail: String); overload;
 property Address: String
 read FAddress write SetAddress;
 end;

Going Cross Platform with FireMonkey

110

 TPerson = class
 private
 FLastName: String;
 FAge: Integer;
 FFirstName: String;
 FEmails: TObjectList<TEmail>;
 procedure SetLastName(const Value: String);
 procedure SetAge(const Value: Integer);
 procedure SetFirstName(const Value: String);
 function GetEmailsCount: Integer;
 public
 constructor Create; overload;
 constructor Create(const FirstName, LastName: string;
 Age: Integer); overload; virtual;
 destructor Destroy; override;
 property FirstName: String
 read FFirstName write SetFirstName;
 property LastName: String
 read FLastName write SetLastName;
 property Age: Integer read FAge write SetAge;
 property EmailsCount: Integer read GetEmailsCount;
 property Emails: TObjectList<TEmail> read FEmails; end;

implementation

uses System.SysUtils;

constructor TPerson.Create(const FirstName, LastName:
 string; Age: Integer);
begin
 Create;
 FFirstName := FirstName;
 FLastName := LastName;
 FAge := Age;
end;

// Called by LiveBindings to insert a new Person
constructor TPerson.Create;
begin
 inherited Create;
 FFirstName := '<name>';
 //initialize the emails list
 FEmails := TObjectList<TEmail>.Create(true);
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

111

destructor TPerson.Destroy;
begin
 FEmails.Free;
 inherited;
end;

function TPerson.GetEmailsCount: Integer;
begin
 Result := FEmails.Count;
end;

procedure TPerson.SetLastName(const Value: String);
begin
 FLastName := Value;
end;

procedure TPerson.SetAge(const Value: Integer);
begin
 FAge := Value;
end;

procedure TPerson.SetFirstName(const Value: String);
begin
 FFirstName := Value;
end;

constructor TEmail.Create(AEmail: String);
begin
 inherited Create;
 FAddress := AEmail;
end;

// Called by LiveBindings to insert a new Email
constructor TEmail.Create;
begin
 Create('<email>');
end;

procedure TEmail.SetAddress(const Value: String);
begin
 FAddress := Value;
end;

end.

Going Cross Platform with FireMonkey

112

25. Now, go to the TMainForm declaration and add the following code in the
private section:
private
 FPeople: TObjectList<TPerson>;
 bsPeopleAdapter: TListBindSourceAdapter<TPerson>;
 bsEmailsAdapter: TListBindSourceAdapter<TEmail>;
 procedure PeopleAfterScroll(Adapter: TBindSourceAdapter);
 procedure LoadData;

26. Create the PeopleAfterScroll and LoadData methods in the implementation
section (you can use Ctrl + Shift + C to generate the empty method body; check
all the others keyboard shortcuts at http://docwiki.embarcadero.com/
RADStudio/XE6/en/Default_Keyboard_Shortcuts):
procedure TMainForm.LoadData;
var
 I: Integer;
 P: TPerson;
 X: Integer;
begin
 for I := 1 to 100 do
 begin
 // create a random generated person
 P := TPerson.Create(
 GetRndFirstName,
 GetRndLastName,
 10 + Random(50));

 // add some email addresses (1..3) to the person
 for X := 1 to 1 + Random(3) do
 begin
 P.Emails.Add(
 TEmail.Create(P.FirstName.ToLower + '.' +
 P.LastName.ToLower +
 '@' + GetRndCountry.Replace(' ', '').ToLower +
 '.com'));
 end;
 FPeople.Add(P);
 end;
end;

procedure TMainForm.PeopleAfterScroll(
 Adapter: TBindSourceAdapter);
begin

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Default_Keyboard_Shortcuts
http://docwiki.embarcadero.com/RADStudio/XE6/en/Default_Keyboard_Shortcuts
http://www.allitebooks.org

Chapter 3

113

 bsEmailsAdapter.SetList(
 bsPeopleAdapter.
 List[bsPeopleAdapter.CurrentIndex].Emails, False);
 bsEmails.Active := True;
 bsEmails.First;
end;

27. On the main form, create the FormCreate and FormDestroy event handlers with
this code:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 Randomize;
 FPeople := TObjectList<TPerson>.Create(True);
 LoadData;
 bsPeopleAdapter.SetList(FPeople, False);
 bsPeople.Active := True;
end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
 FPeople.Free;
end;

28. Now, show the main form, select bsPeople, and create the event handler for the
OnCreateAdapter event. This event is called when the TPrototypeBindSource
method has to decide whether to use fake random-generated data or your real data.
You have to handle this event and plug the code to provide your data. Write the
following code in the event handler:
procedure TMainForm.bsPeopleCreateAdapter(Sender: TObject;
 var ABindSourceAdapter: TBindSourceAdapter);
begin
 bsPeopleAdapter := TListBindSourceAdapter<TPerson>.
 Create(self, nil, False);
 ABindSourceAdapter := bsPeopleAdapter;
 bsPeopleAdapter.AfterScroll := PeopleAfterScroll;
end;

29. On the main form, select bsEmails and create the event handler for the
OnCreateAdapter event:
procedure TMainForm.bsEmailsCreateAdapter(Sender: TObject;
 var ABindSourceAdapter: TBindSourceAdapter);
begin
 bsEmailsAdapter := TListBindSourceAdapter<TEmail>
 .Create(self, nil, False);
 ABindSourceAdapter := bsEmailsAdapter;
end;

Going Cross Platform with FireMonkey

114

30. If you run the application, you should see a working form showing an M/D relationship,
or better a "has a" relationship, because a person has a list of e-mails. Stop it and add
a small trick.

31. If you try to add a new e-mail, the new line is added in the TGrid component. I
hate data entry directly into grids! In some cases, it is a great feature, but in many
cases, it only shows a badly designed UI (this is not the case if you are developing a
spreadsheet!). So, let's create TBindSourceNavigator to show a dialog to add a
new e-mail.

32. Select the TBindSourceNavigator component named bnEmails, create
an event handler for the BeforeAction event, and then write the following code:
procedure TMainForm.bnEmailsBeforeAction(Sender: TObject;
 Button: TNavigateButton);
var
 email: string;
begin
 if Button = TNavigateButton.nbInsert then
 if InputQuery('Email', 'New email address', email) then
 begin
 bsEmailsAdapter.List.Add(TEmail.Create(email));
 bsEmails.Refresh; // refresh the emails list
 bsPeople.Refresh; // refresh the email count
 Abort; //inhibit the normal behavior
 end;
end;

33. Now, run the application and try to add a new e-mail; you'll see a nice dialog
comes up.

34. That's all folks!

How it works...
There are a few concepts involved in LiveBindings, but these concepts must be well
understood to create a working application. Let's analyze this application.

At the beginning, the TPrototypeBindSource components are initialized with the
TListBindSource<T> instances so that they show actual data instead of fake data.
Then in the FormCreate event handler, you created the actual list of objects that will
contain your people and load some data in it using the LoadData method. This method
loads some random data but in a real application, it should read data from some query
or from some web service. This is one of LiveBindings strengths; you can visualize your
data wherever its origin is. You are no longer tied to TDataSet!

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

115

After loading the data, you set the bsPeople list of objects to your people and then activated
it. This is okay for one single list of data, but how to handle the M/D relationship?

In the bsPeople.OnCreateAdapter event, you set an AfterScroll event handler for
bsPeopleAdapter (the internal adapter used by TPrototypeBindSource). This event
is called when the selected person changes. So, you can handle the data visualization on
the e-mails grid from this event. The code in this event handler is self-explanatory:

procedure TMainForm.PeopleAfterScroll(
 Adapter: TBindSourceAdapter);
begin
 //sets the email object list to the emails of the
 //selected person in the bsPeopleAdapter
 bsEmailsAdapter.SetList(
 bsPeopleAdapter.
 List[bsPeopleAdapter.CurrentIndex].Emails, False);
 //now the bsEmails is no more active, let's activate it
 bsEmails.Active := True;
 bsEmails.First;
end;

Usually, working with the internal adapter of TPrototypeBindSource is a bit messy
because you have to write something like this:

//sets a new list of objects as data source
(bsPeople.InternalAdapter as TListBindSourceAdapter<TPerson>).
SetList(MyList);

Saving a reference when you are creating the actual adapter in the OnCreateAdapter
method saves a lot of casting and makes code more readable. There are other solutions,
but I really like this one.

There's more…
LiveBindings is a new technology. It has changed a lot since its introduction in Delphi XE2,
at least in the high-level components. The good old Delphi programmer seems to not
completely understand its power (probably because TDataSet along with VCL really
does a good job for classic client/server applications), but there is still time to explore the
capabilities. However, when you use FireMonkey, LiveBindings is mandatory, so I strongly
suggest you try it because, sooner or later, you will have to use it for some mobile stuff or
some general FireMonkey applications.

Going Cross Platform with FireMonkey

116

There are many things to say about LiveBindings—we've only scratched the surface. For
example, if you are building a big project and you have to handle or show some kind
of recurrent entities, such as customers, orders, invoices, or users, you can create a
TListBindSourceAdapter<T> descendant, compile it in a package, and install it in the
tool palette so that every time you require it, you can simply drag-and-drop it on your data
module or form.

Here are some links where you can find more information about LiveBindings:

 f XE3 Visual LiveBindings: User defined objects at http://blogs.embarcadero.
com/jimtierney/2012/12/11/31961

 f LiveBindings GridColumns at http://www.youtube.com/
watch?v=K6Xu90Rtbys

 f TBindSourceDB at http://www.malcolmgroves.com/blog/?p=1072

 f TAdapterBindSource and binding to Objects at http://www.malcolmgroves.
com/blog/?p=1084

 f Updating Objects via an Adapter at http://www.malcolmgroves.com/
blog/?p=1186

 f Formatting your Fields at http://www.malcolmgroves.com/blog/?p=1226

 f XE3 Visual LiveBindings: Samples at http://blogs.embarcadero.com/
jimtierney/2012/10/21/31944

 f If you are interested in the core of LiveBindings, you can read an old article of mine
that is still valid: http://www.danieleteti.it/2011/08/30/in-the-core-
of-livebindings-expressions-of-rad-studio-xe2/

Showing complex vector shapes using paths
One of the biggest advantages of FireMonkey compared to VCL is its vector-based nature.
Various visual parts can be created in FireMonkey using vector-based graphics (even if in some
cases, using a bitmapped approach can be faster). In terms of vectorial graphics, there is a
nice language called Scalable Vector Graphics (SVG) that allows you to define primitive shapes
using a set of coordinates and not a raster image. So, you can stretch the image without losing
its resolution, because the image is not actually stretched, but completely redrawn using the
new coordinates. That's it; the SVG file is made up of coordinates and mathematical formulae
to join them.

Inside the SVG language, there is an element called SVG path. The path element is used to
define a path. So, what's a path?

A path is a sequence of instructions to draw something using primitives. Think of an SVG path
as a language into another language (let's say a sort of internal DSL).

www.allitebooks.com

http://blogs.embarcadero.com/jimtierney/2012/12/11/31961
http://blogs.embarcadero.com/jimtierney/2012/12/11/31961
 http://www.youtube.com/watch?v=K6Xu90Rtbys
 http://www.youtube.com/watch?v=K6Xu90Rtbys
 http://www.malcolmgroves.com/blog/?p=1072
 http://www.malcolmgroves.com/blog/?p=1084
 http://www.malcolmgroves.com/blog/?p=1084
 http://www.malcolmgroves.com/blog/?p=1186
 http://www.malcolmgroves.com/blog/?p=1186
 http://www.malcolmgroves.com/blog/?p=1226
 http://blogs.embarcadero.com/jimtierney/2012/10/21/31944
 http://blogs.embarcadero.com/jimtierney/2012/10/21/31944
http://www.danieleteti.it/2011/08/30/in-the-core-of-livebindings-expressions-of-rad-studio-xe2/
http://www.danieleteti.it/2011/08/30/in-the-core-of-livebindings-expressions-of-rad-studio-xe2/
http://www.allitebooks.org

Chapter 3

117

The following commands are available for path data:

 f M: This represents the moveto command (without drawing)

 f L: This represents the lineto command (like M but drawing)

 f H: This represents the horizontal lineto command

 f V: This represents the vertical lineto command

 f C: This represents the curveto command

 f S: This represents the smooth curveto command

 f Q: This represents the quadratic Bézier curve command

 f T: This represents the smooth quadratic Bézier curveto command

 f A: This represents the elliptical Arc command

 f Z: This represents the closepath command

All of the commands can also be expressed with lowercase letters. Uppercase letters mean
absolutely positioned and lowercase means relatively positioned.

So, the path M50 0 L100 100 L0 100 Z means:

 f MoveTo X50 Y0

 f LineTo X100 Y100

 f LineTo X0 Y100

 f ClosePath (draw a line to X150 Y0)

It draws a triangle like the following:

The triangle drawn by the sample path data

Getting started
In the FireMonkey framework, there is a component called TPath (it is defined in the
FMX.Objects.pas unit; do not confuse it with the TPath component defined in the
System.IOUtils.pas unit). The TPath component is able to interpret and show an
SVG path. In this recipe, you'll see how to use it to draw complex vector shapes and fonts.

Going Cross Platform with FireMonkey

118

Let's say you want to monitor a continuous stream of data, maybe a value read from some
kind of hardware or some value related to finance stock quotes. You want fresh data pushed
from the right-hand side and oldest data removed from the left-hand side. At any time, you will
see the last 20 values scrolling from the right-hand side to left-hand side. This is shown in the
following screenshot:

Scrolling data in a line graph; new data are pushed from the right-hand side and
old data are removed from the left-hand side

Usually, in order to write something like this, you require some third-party components or
you have to write a lot of code to write all the values and axes and deal with proportional
issues. Using the TPath component, you don't have to do all this! The TPath component
with a proper SVG PATH is completely in charge to stretch and redraw your graphic in
order to fit the drawing area.

How to do it…
1. Create a new FireMonkey desktop application.

2. Drop a TPanel component on to the form. In the TPanel component, put a TPath
component and set its Align property to alClient. Now, the TPath component
should fit into the TPanel component.

3. Drop another TPath component onto the first one and again, set its Align
property to alClient.

4. Now you should have TPanel with two nested TPath components inside it.

5. Show the structure of the form (Shift + Alt + F11).

6. Name the first TPath component as PathValues and the second TPath component
as PathAxis.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

119

7. Drop a TTimer component on the form and double-click on it. Into the OnTimer
event handler, write the following code:
procedure TMainForm.Timer1Timer(Sender: TObject);
begin
 FValuesQueue.Add(Trunc(Random * 100));
 RefreshGraph;
end;

8. Set the Interval property of the timer property to 50.

9. Now, go to the code editor and declare a private form instance variable:
FValuesQueue: TList<Integer>;

10. Create the FormCreate and FormDestroy event handlers and fill them
with the following code:
procedure TMainForm.FormCreate(Sender: TObject);
var
 I: Integer;
 svggrid: string;
begin
 FValuesQueue := TList<Integer>.Create;
 for I := 0 to 19 do
 FValuesQueue.Add(0);

 svggrid := '';
 for I := 0 to FValuesQueue.Count - 1 do
 svggrid := svggrid + ' M' + I.ToString + ',0 V100';
 for I := 1 to 10 do
 svggrid := svggrid + ' M0,' +
 IntToStr(I * 10) + ' H20';
 PathAxis.Data.Data := svggrid;
end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
 FValuesQueue.Free;
end;

11. So far, you've declared and initialized your data container (the TList<Integer>
item named FValuesQueue); now let's do something with its data. Create a private
procedure named RefreshGraph and fill it with the following code:
procedure TMainForm.RefreshGraph;
var
 I: Integer;
 svg: string;

Going Cross Platform with FireMonkey

120

begin
 svg := 'M0,100 ';
 if FValuesQueue.Count > 19 then
 begin
 svg := svg + 'L0,' +
 (100 - FValuesQueue.First).ToString;
 FValuesQueue.Delete(0); //remove the first
 end;

 for I := 0 to FValuesQueue.Count - 1 do
 begin
 svg := svg + ' L' + I.ToString + ',' +
 (100 - FValuesQueue[I]).ToString;
 end;

 svg := svg + ' L' +
 IntToStr(FValuesQueue.Count - 1) + ' 100 ';
 PathValues.Data.Data := svg;
end;

12. Run the application.

13. Are you disappointed with the performance? In this case, the debugger load
on the execution speed is heavy. So, to check the real drawing speed, run it
without the debugger (Shift + Ctrl + F9).

14. You should now see the graph scrolling at a good speed.

How it works...
The architecture is simple—the timer is the (fake) data producer that fills the list.
Then the list is used to draw the graph. After drawing the graph, the first list element
is removed while waiting for the next one.

In a real-world application, some tuning may be necessary and in this case, a classic
producer/consumer pattern is more suited to do this compared to a simple TTimer.
However, in this sample, a normal TTimer component is enough.

A good thing to note is that you have a fixed coordinate system when drawing the values
in the graph. You don't have to worry about form size, relative or absolute coordinates,
and so on. All the details are handled by the TPath component.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

121

So, if you need to add another scrolling graph of different size, you could use the same
SVG PATH data to show the same graph on another area.

Let's add another TPanel->TPath->TPath triad on the form and make the TPanel
component bigger than the previous one. With a little change in the code (the full code
is available), you can have something like this:

Another scrolling graph showing the same values added without changing the drawing code

There's more...
The SVG PATH data can be very useful. If you require complex SVG PATH data, I suggest that
you use a proper editor to generate the path. There is a nice online editor that can generate
this kind of information called Method Draw and it's available at http://editor.method.
ac/. The SVG PATH data can be also used to drive animations using the TPathAnimation
component.

The producer/consumer cited in this recipe is a classic concurrency pattern. You can
find more information on this at http://javarevisited.blogspot.it/2012/02/
producer-consumer-design-pattern-with.html.

http://editor.method.ac/
http://editor.method.ac/
http://javarevisited.blogspot.it/2012/02/producer-consumer-design-pattern-with.html
http://javarevisited.blogspot.it/2012/02/producer-consumer-design-pattern-with.html

Going Cross Platform with FireMonkey

122

Using FireMonkey in a VCL application
As you probably know, VCL is incompatible with FireMonkey. What does it mean? As
Embarcadero explains in the DocWiki:

FireMonkey (FMX) and the Visual Component Library (VCL) are not compatible
and should not be used together in the same module. That is, a module should be
exclusively one or the other, either FireMonkey or VCL. The incompatibility is caused
by framework differences between FireMonkey (FMX) and VCL.

However, there is still something that can be done to use FireMonkey functionalities in
a VCL application.

Getting started
It's very probable that a VCL application could gain benefits by using some components or
functionalities present only in the FireMonkey framework. So what could be the solution?
One solution is to create a Windows DLL that contains all the FireMonkey code and exposes
a set of raw functions to access them. Then, the VCL application can load the DLL and call
the exposed functions. Let's see this in action.

This recipe requires familiarity with some advanced Delphi concepts, so there will not be a
step-by-step section; I'll only talk about the project code.

How to do it...
Let's begin!

1. Open the recipe project group called UsingFMXfromVCL.groupproj. The group
contains two projects:

 � A VCL application (vclmainproject.exe) that is your legacy application

 � A DLL project (fmxproject.dll) that contains all the FireMonkey stuff

2. To have an idea about the projects, go to Project | Build all Projects, select the
vclmainproject.exe file, and hit F9 to run it. The fmxproject.dll file has
been compiled in the same folder of vclmainproject.exe. You should see
the form shown here:

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

123

The VCL form that will use the DLL containing the FireMonkey code

3. By clicking on the Call FireMonkey Form button, you can call the FireMonkey
DLL that will show a FireMonkey form that is able to send to the main form some
information using a callback (we'll talk about it in a moment). The callback makes
your project a little bit difficult, but being able to send something to the caller is a
fundamental part of any integration.

4. If you click on the button and play with the FMX controls, you should get something
like this:

The FireMonkey form used by the VCL application

Going Cross Platform with FireMonkey

124

How it works…
The CommonsU.pas unit is shared between the VCL and FMX projects and contains the
declaration for the callback function as shown here:

type
 TDLLCallback = procedure(const Value: String);

The DLLImportU.pas unit is used only by the VCL project (because it needs to import the
DLL functions). It is really simple and refers to the TDLLCallBack declaration:

unit DLLImportU;

interface

uses
 CommonsU;

procedure Execute(const Caption: String;
 Callback: TDLLCallback); stdcall; external 'fmxproject';

implementation

end.

These two files are the bridge between the VCL project and the FMX project. Now, let's see
how the VCL project calls the FireMonkey DLL.

Using the Project Manager, select the VCL project main form. The Button Click event
handler calls the Execute external function with the following code:

procedure MyCallBack(const Value: String);
begin
 VCLForm.ListBox1.Items.Add(Value);
 VCLForm.ListBox1.Update;
end;

procedure TVCLForm.btnCallFMXClick(Sender: TObject);
begin
 Execute('Called by VCL', MyCallBack);
end;

Notice that the MyCallBack procedure is not a form method but a simple procedure.
This is the reason why I had to use an instance name of the form, VCLForm, and cannot
use the implicit Self reference. Also, a normal string and a function pointer are passed
to the Execute function. Notice that the function pointer is MyCallBack and not
MyCallBack() (with parenthesis it means call the procedure and without parenthesis
it means the address of).

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

125

The VCL project doesn't require further explanation. Let's switch to the FMX DLL. Using the
Project Manager, select the fmxproject.dll file and go to Project | View Source.

The library project file contains the exported functions and the startup code to show the
FMX form. Its code is shown here:

library fmxproject;

uses
 System.ShareMem, Winapi.Windows,
 System.SysUtils,System.Classes,
 FMXMainForm in 'FMXMainForm.pas' {Form1},
 CommonsU in 'CommonsU.pas';

{$R *.res}

procedure Execute(const Caption: String;
 Callback: TDLLCallback); stdcall;
var
 frm: TForm1;
begin
 frm := TForm1.Create(nil);
 try
 frm.Caption := Caption; //use the passed string as Caption
 frm.FCallback := Callback; //link callback as form property
 frm.ShowModal;
 finally
 frm.Free;
 end;
end;

{ This is exported function that will be used by the VCL form }
exports Execute;

begin

end.

As you can see, the callback pointer has been assigned to a form property to be
accessible from it. How will the FMX form use the callback pointer? In this recipe, it
uses the callback pointer to send to the main VCL form some information about the
components on it.

This is the relevant code of the main VCL form:

type
 TForm1 = class(TForm)
 btnClose: TButton;
 Switch1: TSwitch;

Going Cross Platform with FireMonkey

126

 ComboTrackBar1: TComboTrackBar;
 procedure btnCloseClick(Sender: TObject);
 procedure Switch1Switch(Sender: TObject);
 procedure ComboTrackBar1Change(Sender: TObject);
 procedure FormShow(Sender: TObject);
 procedure FormClose(Sender: TObject;
 var Action: TCloseAction);
 private

 public
 {This is the function pointer to the main VCL form callback}
 FCallback: TDLLCallback;
 end;

implementation

{$R *.fmx}

procedure TForm1.ComboTrackBar1Change(Sender: TObject);
begin
 //send the value of TComboTrackBar
 FCallback('ComboTrackBar1 value is ' +
 ComboTrackBar1.Value.ToString);
end;

procedure TForm1.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 //inform the main form about FMX form closing
 FCallback('Form is about to close');
end;

procedure TForm1.FormShow(Sender: TObject);
begin
 //inform the main form about FMX form showing
 FCallback('Form is about to show');
end;

procedure TForm1.Switch1Switch(Sender: TObject);
begin
 //inform the main form about the state of the Switch
 FCallback('Switch1 is ' + Switch1.IsChecked.ToString);
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 3

127

The FMX-side code is not complex, and you can use whatever complex data structure you want
to send information from the FMX form to the VCL form. A good solution for this is to define a
simple textual protocol to allow a single callback to bring multiple types of information. For this
kind of thing, I used to use JSON-serialized string. If the values sent by the callback are many,
you can queue the values and process them as soon as possible; this is something like the
producer/consumer design pattern.

There's more…
This recipe follows the official approach and uses two different projects (one VCL and one
FireMonkey) to use the FireMonkey framework from a VCL application.

What if you have a legacy project where you'd like to use a FireMonkey DLL, but the legacy
project is not in Delphi VCL (let say it is in C#, Visual C++, Python, or any other language that
can load a DLL)? You can still use the same approach, but you cannot use Delphi-specific
data types. So your strings should be PChar and so on. You can find more information on
this at http://delphi.about.com/od/objectpascalide/a/dlldelphi.htm.

Just to be clear, keep in mind that mixing FireMonkey and VCL forms in the same application
isn't officially supported. However, there are a number of libraries that aim to integrate VCL
and FireMonkey forms in the same project.

Here's a short list in no particular order:

 f Delphisorcery: https://bitbucket.org/sglienke/dsharp
(using DSharp.Windows.FMXAdapter.pas)

 f firemonkey-container at https://code.google.com/p/firemonkey-
container/

 f MonkeyMixer updated for Delphi XE5 at http://delphi.org/2013/09/
monkeymixer-updated-for-delphi-xe5/

 f RemObjects Hydra4 at http://www.remobjects.com/hydra/

In the recipe, you used a function pointer as a callback. If you want to know more about this
type and others types of callback, check the following link:

http://www.delphi-central.com/callback.aspx

http://delphi.about.com/od/objectpascalide/a/dlldelphi.htm
https://bitbucket.org/sglienke/dsharp
https://code.google.com/p/firemonkey-container/
https://code.google.com/p/firemonkey-container/
http://delphi.org/2013/09/monkeymixer-updated-for-delphi-xe5/
http://delphi.org/2013/09/monkeymixer-updated-for-delphi-xe5/
http://www.remobjects.com/hydra/
http://www.delphi-central.com/callback.aspx

www.allitebooks.com

http://www.allitebooks.org

4
The Thousand Faces of

Multithreading

In this chapter, we will cover the following topics:

 f Synchronizing shared resources with TMonitor
 f Talking with the main thread using a thread-safe queue
 f Synchronizing multiple threads using TEvent
 f Displaying a measure on a 2D graph like an oscilloscope

Introduction
Multithreading can be your biggest problem if you cannot handle it with care. In this chapter,
we will discuss some of the main techniques to handle single or multiple background threads.
We'll talk about shared resources synchronization and thread-safe queues and events.
Multithreaded programming is a huge topic. So, after reading this chapter, although you will
not become a master of it, you will surely be able to approach the concept of multithreaded
programming with confidence and will have the basics to jump on to more specific stuff when
(and if) you require them.

Synchronizing shared resources with
TMonitor
TMonitor is a record used to synchronize threads. Just to be clear, we are talking about
System.TMonitor, not Vcl.Forms.TMonitor.

Since Delphi 2009, the TObject instance size has been doubled to make room for an
additional 4 bytes. What are these 4 bytes for? They provide TMonitor support!

The Thousand Faces of Multithreading

130

Now, every TObject descendant can be used as a lock. The type that allows this is the
System.TMonitor record, which implements a generic Monitor synchronization structure.

Getting ready
In this recipe, you'll face one of the classic multithreading problems—concurrent access to
a shared file. Specifically, you'll have a lot of threads writing some information on a file—the
same file—and all the threads have to be synchronized for this. Otherwise, the file will not be
accessible due to locking, which will cause exceptions in your program code. This problem can
be solved in a lot of ways, but TMonitor offers the simplest solution. Let's start.

How to do it…
Follow these step-by-step instructions to synchronize shared resources with TMonitor:

1. Create a new VCL Forms Application (navigate to File | New | VCL Forms
Application).

2. Drop a TButton, a TListBox, and a TTimer component on the form.

3. Name the TButton component as btnStart and change the value of Caption
to Multiple writes on a shared file.

4. Add a new unit to the project, call it FileWriterThreadU.pas, and add the
following code to it:
unit FileWriterThreadU;

interface

uses
 System.Classes, System.SyncObjs,
 System.SysUtils, System.IOUtils;

type
 TThreadHelper = class helper for TThread
 public
 function WaitFor(
ATimeout: Cardinal): LongWord; platform;
 end;

 TFileWriterThread = class(TThread)
 private
 FStreamWriter: TStreamWriter;
 protected
 procedure Execute; override;
 public

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

131

 constructor Create(
AStreamWriter: TStreamWriter);
 end;

implementation

{$IF Defined(MSWINDOWS)}
uses
 Winapi.Windows;
{$IFEND}

constructor TFileWriterThread.Create(
 AStreamWriter: TStreamWriter);
begin
 FStreamWriter := AStreamWriter;
 inherited Create(False);
end;

procedure TFileWriterThread.Execute;
var
 I: Integer;
 NumLines: Integer;
begin
 inherited;
 NumLines := 11 + Random(50);
 for I := 1 to NumLines do
 begin
 TThread.Sleep(200);
 //here we are locking the shared resource
 TMonitor.Enter(FStreamWriter);
 try
 FStreamWriter.WriteLine(
 Format('THREAD %5d - ROW %2d',
 [TThread.CurrentThread.ThreadID, I]));
 finally
 //unlock the shared resource
 TMonitor.Exit(FStreamWriter);
 end;
 if Terminated then
 Break;
 end;
end;

function TThreadHelper.WaitFor(
 ATimeout: Cardinal): LongWord;
begin

The Thousand Faces of Multithreading

132

{$IF Defined(MSWINDOWS)}
 Result := WaitForSingleObject(Handle, ATimeout);
{$ELSE}
 raise Exception.Create('Available only on MS Windows');
{$IFEND}
end;

initialization

Randomize; // we'll use Random function in the thread

end.

5. Go back to the form and add the following units in the interface uses section:

 � System.Generics.Collections

 � FileWriterThreadU

6. In the private section of the form, declare the following variables:
private
 FOutputFile: TStreamWriter;
 FRunningThreads: TObjectList<TFileWriterThread>;

7. In the FormCreate and FormClose event handlers, add the following code:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 FRunningThreads := TObjectList<TFileWriterThread>.Create;
 FOutputFile := TStreamWriter.Create(
 TFileStream.Create('OutputFile.txt',
 fmCreate or fmShareDenyWrite));
end;

procedure TMainForm.FormClose(Sender: TObject;
 var Action: TCloseAction);
var
 Th: TFileWriterThread;
begin
 for Th in FRunningThreads do
 Th.Terminate;
 FRunningThreads.Free; // Implicit WaitFor...
 FOutputFile.Free;
end;

With the preceding code, you created a data structure to hold the thread list and file
access. The FOutputFile variable is your shared resource for all the threads.

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

133

8. Create the OnClick event handler for btnStart and add the following code to it:
procedure TMainForm.btnStartClick(Sender: TObject);
var
 I: Integer;
 Th: TFileWriterThread;
begin
 for I := 1 to 10 do
 begin
 Th := TFileWriterThread.Create(FOutputFile);
 FRunningThreads.Add(Th);
 end;
end;

The preceding code creates 10 threads that will contend for the shared resource
FOutputFile.

9. Now, threads can run without problems but the UI doesn't have any information
about their jobs. We want to check whether a thread is still running or is already
terminated. So, let's create the event handler for the Timer1.OnTimer event
using the following code:
procedure TMainForm.Timer1Timer(Sender: TObject);
var
 Th: TFileWriterThread;
begin
 ListBox1.Items.BeginUpdate;
 try
 ListBox1.Items.Clear;
 for Th in FRunningThreads do
 begin
 if Th.WaitFor(0) = WAIT_TIMEOUT then
 ListBox1.Items.Add(
 Format('%5d RUNNING', [Th.ThreadID]))
 else
 ListBox1.Items.Add(
 Format('%5d TERMINATED', [Th.ThreadID]))
 end;
 finally
 ListBox1.Items.EndUpdate;
 end;
end;

The preceding code will iterate over the thread list and check the state of each of
them. The resultant check will fill the ListBox1 component.

The Thousand Faces of Multithreading

134

10. Run the application and click on the button that is available on the form. You should
see something like the following:

The main form showing thread statuses

11. ListBox1 contains thread statues. When all threads terminate, you can open the file
and see that each of them wrote information without interference from the others; no
crashes, no data loss. Your multithreading application is working alright.

12. If you want to see the file while the threads are writing it, you can use one of the Unix
tail clone options for Windows suggested in the Creating a Windows service recipe of
Chapter 1, Delphi Basics.

How it works…
The btnStart event creates 10 threads and puts each of them in a simple generic list
declared as TObjectList<TFileWriterThread>. This list will be used to iterate over the
threads when terminating or checking the status of threads. Threads are not configured with
FreeOnTerminate because we require a live reference to check their status.

The real work is done in the Execute method of TFileWriterThread. Let's check it out:

procedure TFileWriterThread.Execute;
var
 I: Integer;
 NumLines: Integer;
begin
 inherited;
 //decide how many numbers to write
 NumLines := 11 + Random(50);
 for I := 1 to NumLines do
 begin

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

135

 //wait a bit of time to simulate a higher workload
 TThread.Sleep(200);
 //acquire the lock on FStreamWriter.
 TMonitor.Enter(FStreamWriter);
 try
 //only one thread at a time can execute this code
 FStreamWriter.WriteLine(
 Format('THREAD %5d - ROW %2d',
 [TThread.CurrentThread.ThreadID, I]));
 finally
 //Be sure to release the lock. Otherwise all threads
 //will hang waiting to acquire the lock
 TMonitor.Exit(FStreamWriter);
 end;
 //if thread is terminated exit from the loop
 if Terminated then
 Break;
 end;
end;

Another important piece of code is under the TTimer event handler:

procedure TMainForm.Timer1Timer(Sender: TObject);
var
 Th: TFileWriterThread;
begin
 ListBox1.Items.BeginUpdate;
 try
 ListBox1.Items.Clear;
 for Th in FRunningThreads do
 begin
 //check if the thread if still running. Method WaitFor has
 //been introduced by a class helper in the
 //FileWriterThreadU.pas file, it is not part of TThread
 if Th.WaitFor(0) = WAIT_TIMEOUT then
 ListBox1.Items.Add(Format('%5d RUNNING',
 [Th.ThreadID]))
 else
 ListBox1.Items.Add(Format('%5d TERMINATED',
 [Th.ThreadID]))
 end;
 finally
 ListBox1.Items.EndUpdate;
 end;
end;

The Thousand Faces of Multithreading

136

The WaitFor method used in the TTimer event handler is not part of the standard TThread
class but has been introduced using a class helper. Why? Because the standard WaitFor
method present on the TThread class doesn't provide a timeout for the waiting, so it waits
forever. If you want to check whether a thread is terminated or simply if you want to have the
GUI responsive while waiting for the thread termination, you cannot do it using the WaitFor
method. So, we added a new WaitFor method that provides a timeout. When you are calling
WaitFor(0), you are only asking whether a thread is still running. This is another good
utilization of class helpers.

There's more…
Monitors are not a Delphi-specific concept; Wikipedia mentions it as follows:

"Monitors were invented by C. A. R. Hoare and Per Brinch Hansen, and were first
implemented in Brinch Hansen's Concurrent Pascal language."

To have a clear understanding of what a Monitor is and what's its main utilization,
please read the Wikipedia article at http://en.wikipedia.org/wiki/
Monitor_%28synchronization%29.

As a plus, a TMonitor class used in a smart way allows you to create a sort of "new language
construct". Consider the following code:

procedure ExecWithLock(const ALockObj: TObject;
 const AProc: TProc);
begin
 System.TMonitor.Enter(ALockObj);
 try
 AProc();
 finally
 System.TMonitor.Exit(ALockObj);
 end;
end;

Using the preceding code, it is possible to write something like the following:

 ExecWithLock(Obj,
 procedure
 begin
 //Here you have thread safe access to Obj
 end);

Cool, isn't it?

www.allitebooks.com

http://en.wikipedia.org/wiki/Monitor_%28synchronization%29
http://en.wikipedia.org/wiki/Monitor_%28synchronization%29
http://www.allitebooks.org

Chapter 4

137

Talking with the main thread using a
thread-safe queue

Using a background thread and working with its private data is not difficult, but safely
bringing information retrieved or elaborated by the thread back to the main thread to show
them to the user (as you know, only the main thread can handle the GUI in VCL as well as
in FireMonkey) can be a daunting task. An even more complex task would be establishing
a generic communication between two or more background threads. In this recipe, you'll
see how a background thread can talk to the main thread in a safe manner using the
TThreadedQueue<T> class. The same concepts are valid for a communication between
two or more background threads.

Getting ready
Let's talk about a scenario. You have to show data generated from some sort of device
or subsystem, let's say a serial, a USB device, a query polling on the database data, or a
TCP socket. You cannot simply wait for data using TTimer because this would freeze your
GUI during the wait, and the wait can be long. You have tried it, but your interface became
sluggish… you require another solution!

In the Delphi RTL, there is a very useful class called TThreadedQueue<T> that is, as the
name suggests, a particular parametric queue (a FIFO data structure) that can be safely used
from different threads. How to use it? In the programming field, there is mostly no single
solution valid for all situations, but the following one is very popular. Feel free to change
your approach if necessary. However, this is the approach used in the recipe code:

1. Create the queue within the main form.

2. Create a thread and inject the form queue to it.

3. In the thread Execute method, append all generated data to the queue.

4. In the main form, use a timer or some other mechanism to periodically read from
the queue and display data on the form.

How to do it...
Open the recipe project called ThreadingQueueSample.dproj. This project contains the
main form with all the GUI-related code and another unit with the thread code.

The FormCreate event creates the shared queue with the following parameters that will
influence the behavior of the queue:

 f QueueDepth = 100: This is the maximum queue size. If the queue reaches this
limit, all the push operations will be blocked for a maximum of PushTimeout, then
the Push call will fail with a timeout.

The Thousand Faces of Multithreading

138

 f PushTimeout = 1000: This is the timeout in milliseconds that will affect the
thread; in this recipe, it is the producer of a producer/consumer pattern.

 f PopTimeout = 1: This is the timeout in milliseconds that will affect the timer
when the queue is empty. This timeout must be very short because the pop call is
blocking in nature, and you are in the main thread that should never be blocked
for a long time.

The button labeled Start Thread creates a TReaderThread instance passing the already
created queue to its constructor (this is a particular type of dependency injection called
constructor injection).

The thread declaration is really simple and is as follows:

type
 TReaderThread = class(TThread)
 private
 FQueue: TThreadedQueue<Byte>;
 protected
 procedure Execute; override;
 public
 constructor Create(AQueue: TThreadedQueue<Byte>);
 end;

While the Execute method simply appends randomly generated data to the queue, note that
the Terminated property must be checked often so the application can terminate the thread
and wait a reasonable time for its actual termination. In the following example, if the queue is
not empty, check the termination at least every 700 msec ca:

procedure TReaderThread.Execute;
begin
 while not Terminated do
 begin
 TThread.Sleep(200 + Trunc(Random(500)));
 // e.g. reading from an actual device
 FQueue.PushItem(Random(256));
 end;
end;

So far, you've filled the queue. Now, you have to read from the queue and do something useful
with the read data. This is the job of a timer. The following is the code of the timer event on
the main form:

procedure TMainForm.Timer1Timer(Sender: TObject);
var
 Value: Byte;
begin

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

139

 while FQueue.PopItem(Value) = TWaitResult.wrSignaled do
 begin
 ListBox1.Items.Add(Format('[%3.3d]', [Value]));
 end;
 ListBox1.ItemIndex := ListBox1.Count - 1;
end;

That's it! Run the application and see how we are reading the data coming from the threads
and showing the main form. The following is a screenshot:

The main form showing data generated by the background thread

There's more
The TThreadedQueue<T> is very powerful and can be used to communicate between two
or more background threads in a consumer/producer schema as well. You can use multiple
producers, multiple consumers, or both. The following screenshot shows a popular schema
used when the speed at which the data generated is faster than the speed at which the
same data is handled. In this case, usually you can gain speed on the processing side using
multiple consumers.

Consumer Thread

Consumer Thread

Consumer Thread

Producer Thread

TThreadedQueue<T>

Single producer, multiple consumers

The Thousand Faces of Multithreading

140

Synchronizing multiple threads using TEvent
The synchronization details we discussed so far were related to a data flow that is generated
in the background thread context and has to be used in another thread. The other thread
can be the main thread or another background thread. In this recipe, you'll use a simple
synchronization mechanism called event that can be useful when you have to notify a new
state, not necessarily new data. Obviously, the new state could also mean there is new data
to handle. In such cases, the state change alerts you about new data being available.

Getting ready
The recipe scenario is simple: you have a lot of running threads that are doing something for
you. You want to know when all of them are terminated. In this case, you can use a TEvent
object (this is a tiny wrapper around OS Event object).

How to do it...
This recipe is a bit articulated, so we'll not discuss steps to recreate it. Please open the recipe
project code named ThreadsTermination.dproj; let's look at it together.

The GUI is minimal; there is a button to run the threads and a listbox to show the current state
of threads. The FormCreate event initializes a list to hold the threads that will be used later.
When you click on the button, the program launches five threads. Each thread waits for a
random amount of time then generates a random number that should represent your output
data. The main thread has to be notified about the thread termination. The thread code is
as follows:

unit MyThreadU;

interface

uses
 System.Classes, System.SyncObjs;

type
 TMyThread = class(TThread)
 private
 FEvent: TEvent;
 FData: Integer;
 protected
 procedure Execute; override;
 public
 constructor Create(AEvent: TEvent);
 destructor Destroy; override;

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

141

 property Event: TEvent read FEvent;
 function GetData: Integer;
 end;

implementation

uses System.SysUtils;

constructor TMyThread.Create(AEvent: TEvent);
begin
 FEvent := AEvent;
 inherited Create(False);
end;

destructor TMyThread.Destroy;
begin
 FreeAndNil(FEvent);
 inherited;
end;

procedure TMyThread.Execute;
begin
 TThread.Sleep(2000 + Random(4000));
 FData := Random(1000);
 // This call sets the internal event state to signaled
 FEvent.SetEvent;
end;

function TMyThread.GetData: Integer;
begin
 Result := FData;
end;

end.

In the thread, the constructor is injected a TEvent instance. When the thread does its job, it
calls the SetEvent method on the event instance. This call sets the internal event state to
signaled. What's that for? It is required because the main thread is waiting for this change.
To be more precise, it is waiting to know when all the threads have called their SetEvent
methods. The following function is used to check whether there are any running threads:

function TMainForm.AreThereThreadsStillRunning: Boolean;
var
 H: THandleObject;
begin
 Result := TEvent.WaitForMultiple(
 Handles, 1, True, H) = wrTimeout;
end;

The Thousand Faces of Multithreading

142

In the preceding code, the variable Handles is an array containing all the Events that have
to be checked for termination.

The button event handler requires a bit of explanation. The code is as follows:

procedure TMainForm.btnStartClick(Sender: TObject);
var
 i: Integer;
 Evt: TEvent;
begin
 if (FThreads.Count > 0) and AreThereThreadsStillRunning then
 begin
 ShowMessage('Please wait, there are threads still running');
 Exit;
 end;
 FThreads.Clear;
 for i := 0 to High(Handles) do
 begin
 Evt := TEvent.Create;
 Handles[i] := Evt;
 FThreads.Add(TMyThread.Create(Evt));
 end;
 ListBox1.Items.Add('Threads running');
 Timer1.Enabled := True;
end;

When the user clicks on the button, the application checks whether there are any running
threads from previous clicks. If so, inform the user with a ShowMessage and exit. If there are
no running threads, the code fills the thread list with five threads. Each thread has its own
TEvent instance to talk with. The reference to the TEvent variable is passed to the threads,
but the threads have a property of accessing it during its runtime.

What is the best way to read the thread status? In a TTimer class. The code under the
OnTimer event is the following; consider that this timer is normally disabled:

procedure TMainForm.Timer1Timer(Sender: TObject);
var
 th: TMyThread;
begin
 if not AreThereThreadsStillRunning then
 begin
 Timer1.Enabled := False;
 ListBox1.Items.Add('All threads terminated');
 for th in FThreads do
 begin
 ListBox1.Items.Add(

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

143

 Format('Th %4.4d = %4d', [th.ThreadID, th.GetData]));
 end;
 end;
end;

With this last procedure, you retrieved the thread status; when all threads finished running,
you also retrieved the calculated value.

There's more…
The event object is used to send a signal to a thread indicating that a particular event has
occurred inside another thread. The event does not carry information; it simply informs
that "something has happened". It is simple, but can be useful in creating very complex
synchronization mechanisms between two or more threads.

Events can be in a signaled state or not. If you want to have a deeper knowledge about the
event objects and its utilization, visit the following links:

 f http://msdn.microsoft.com/en-us/library/windows/desktop/
ms682655(v=vs.85).aspx

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Waiting_for_a_
Task_to_Be_Completed

Displaying a measure on a 2D graph like an
oscilloscope

An oscilloscope is a type of electronic test instrument that allows the observation of
constantly varying signal voltages. Usually, information is shown as a two-dimensional plot
graph of one or more signals as a function of time. In this recipe, you'll implement a type of
oscilloscope to display data generated by a background thread. Obviously, in this recipe, you'll
not create an accurate oscilloscope, rather a nice real-world utilization of retrieving data and
using it continuously in the GUI.

Getting ready
You'll use the TThreadedQueue<Extended> class to bring out data from the background
thread to the main thread. The approach is similar to that shown in the recipe Talking with
the main thread using a thread-safe queue, but in this case, we've to show data in a complex
way—on a 2D graph showing only the last n data retrieved.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
http://docwiki.embarcadero.com/RADStudio/XE6/en/Waiting_for_a_Task_to_Be_Completed
http://docwiki.embarcadero.com/RADStudio/XE6/en/Waiting_for_a_Task_to_Be_Completed

The Thousand Faces of Multithreading

144

How to do it...
This recipe has a background thread acting like an analogic signal generator that is able
to generate a sine style stream of data and a graph that plots these data. The resulting
application is as follows:

The main form showing a sine function generated by a background thread

You can adjust the resolution of the plot (number of points used to draw the sine) using the
trackbar on the left-hand side. Let's see the most important parts.

The thread used as signal generator is very simple. As shown in the following code, it uses the
System.Math.Sin function to generate a sine wave form. Every 10 milliseconds c.a., a new
value is appended to the queue; this value is the "sample" you get from the measured system.
The code is as follows:

procedure TSignalGeneratorThread.Execute;
var
 Value: Extended;
begin
 inherited;
 Value := 0;
 while not Terminated do
 begin
 TThread.Sleep(10);
 FQueue.PushItem(Sin(Value) * 100);
 Value := Value + 0.05;
 if Value >= 360 then
 Value := 0;
 end;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

145

Being a classic producer/consumer, this architecture has to deal with the classic problem
of a queue being full and not accepting any data until someone starts to dequeue from it. At
regular intervals, a TTimer dequeues all the values from the queue and appends them to a
different queue living in the main thread.

This queue must have a fixed size, so if there are more values than what is defined by the
resolution, the oldest values are dequeued until the queue size is equal to the maximum
length permitted. This adjustment is done in the timer event handler with the following code:

procedure TMainForm.Timer1Timer(Sender: TObject);
var
 Value: Extended;
 QueueSize: Integer;
begin
 // put read values in the display list...
 // max FMaxValuesCount values
 while FValuesQueue.PopItem(QueueSize, Value) = wrSignaled do
 begin
 FDisplayList.Add(Value);
 end;
 // remove values from the head of the list...
 while FDisplayList.Count > FMaxValuesCount do
 begin
 FDisplayList.Delete(0);
 end;
 // RefreshGraph;
 pb.Repaint;
end;

The actual values are plotted on a simple 2D graph using TPaintBox as canvas. Remember
that only the main thread should repaint and call paint procedures. The following is the code
in the OnPaint event used to draw the plot:

procedure TMainForm.pbPaint(Sender: TObject; Canvas: TCanvas);
var
 Values: TPolygon;
 I: Integer;
 XStep: Extended;
 YCenter: Integer;
begin
 Canvas.BeginScene;
 // prepare scene
 Canvas.Stroke.Thickness := 1;
 Canvas.Fill.Color := TAlphaColorRec.White;

The Thousand Faces of Multithreading

146

 Canvas.FillRect(RectF(0, 0, Canvas.Width, Canvas.Height),
 0, 0, [], 1);
 Canvas.Fill.Color := TAlphaColorRec.Blue;
 Canvas.FillText(RectF(10, 10, Canvas.Width, 40),
 'Resolution: ' + MaxValuesCount.ToString + ' points',
 false, 1, [], TTextAlign.taLeading, TTextAlign.taLeading);
 Canvas.FillText(RectF(10, 25, Canvas.Width, 40),
 'Currently used points: ' + FDisplayList.Count.ToString +
 ' points', false, 1, [],
 TTextAlign.taLeading, TTextAlign.taLeading);

 // drawing points
 Canvas.Stroke.Thickness := 2;
 Canvas.Stroke.Color := TAlphaColorRec.Red;
 SetLength(Values, FDisplayList.Count);
 XStep := Canvas.Width / FDisplayList.Count;
 YCenter := Canvas.Height div 2;
 for I := 0 to FDisplayList.Count - 1 do
 begin
 Values[I].X := XStep * I;
 Values[I].Y := YCenter - FDisplayList[I];
 end;
 Canvas.DrawPolygon(Values, 1);
 Canvas.EndScene;
end;

There's more…
Showing dynamically changing data is always a challenge and is a typical synchronization
problem if you have to read from a blocking and very fast data source. However, using
queues in an efficient way can help to reach the correct architecture. If you have very high
concurrency (many consumers or many producers) or a very high producer speed compared
to the consumer's speed, you may have some performance improvements using lock-free
data structures.

Unluckily, in Delphi there are no ready-to-use lock-free data structures; however, there are
very good libraries, even open source, that implement it in the context of multithreaded
programming. One of the most popular libraries is the open source OmniThreadLibrary
from Primož Gabrijelčič (https://code.google.com/p/omnithreadlibrary/).

www.allitebooks.com

https://code.google.com/p/omnithreadlibrary/
http://www.allitebooks.org

5
Putting Delphi
on the Server

In this chapter, we will cover the following recipes:

 f Web client JavaScript application with WebBroker on the server

 f Converting a console service application to a Windows service

 f Serializing a dataset to JSON and back

 f Serializing objects to JSON and back using RTTI

 f Sending a POST HTTP request encoding parameters

 f Implementing a RESTful interface using WebBroker

 f Controlling remote applications using UDP

 f Using App Tethering to create a companion app

 f Creating DataSnap Apache modules

Introduction
In this chapter, we'll see how nicely Delphi can behave when it runs on the server. Most
server-side technology today is scripted or managed, and this is usually a good thing.
However, Delphi can be used to create very powerful enterprise servers with no external
dependencies and great performances, and to do all these things you require much less
hardware power and memory as compared to, let's say, a J2EE server. Moreover, we'll see how
to handle some of the most common problems faced with web servers such as serialization,
MIME types, HTML encoding, and many more.

Putting Delphi on the Server

148

Web client JavaScript application with
WebBroker on the server

In this recipe, we'll learn how to use web client JavaScript application with WebBroker on the
server. We'll also look at retrieving the people's list, creating or updating a person's record,
deleting a person's record, and running the application.

Getting ready
This recipe uses two external open source projects:

 f DelphiMVCFramework: This is a powerful Delphi framework to develop RESTful
web services. This is written by Daniele Teti (me). The project website is
https://code.google.com/p/delphimvcframework/.

 f jTable: This is a jQuery plugin to create Ajax-based CRUD tables. This is written
by Halil İbrahim Kalkan. The project website is http://jtable.org/.

We'll start by downloading these libraries and put each ZIP file in a folder, let's say
C:\DelphiBook\Libs.

To download the DelphiMVCFramework (DMVCFramework for short), go to the project website
and download the development trunk using a subversion client. There are a lot of subversion
clients. A good general-purpose solution is TortoiseSVN, a well-integrated Windows shell
extension able to access remote and local SVN repositories directly from Windows Explorer
(TortoiseSVN can be downloaded from http://tortoisesvn.net/). You can also use the
command-line version and then use the following command line:

svn checkout http://delphimvcframework.googlecode.com/svn/trunk/

 delphimvcframework

Alternatively, you can use Delphi directly to download the repository. Go to File | Open from
version control….

www.allitebooks.com

https://code.google.com/p/delphimvcframework/
http://jtable.org/
http://tortoisesvn.net/
http://www.allitebooks.org

Chapter 5

149

Then, in the window that appears, write the following information and click on OK:

The dialog used to download the DMVCFramework project from its public SVN repository

Now, the wizard-integrated SVN client will download all the necessary files. At the end of the
process, the wizard will ask you about which project to open. Click on Cancel and close the
dialog. The DMVCFramework files have been downloaded in the C:\DEV\DMVCFramework
directory; configure the Delphi library path to point there.

Now, download the jTable.zip file from the URL http://jtable.org/Home/Downloads.

The latest version at the time of writing is Version 2.4.0, which is available directly from the
URL http://jtable.org/downloads/jtable.2.4.0.zip.

Download the most updated version. Unzip the ZIP file and put the folder in
C:\DelphiBook\Libs\jtable.2.4.0.

In the recipe project, there is a downloaded copy of the sources.
However, you can use this procedure if you want to download a
fresh version of the sources.
Now that you know how and where to retrieve the external
projects used in this recipe, let's start with the explanation.

How to do it...
1. Open the recipe project PhoneBookServer.dproj from this chapter's recipe folder.

This is a WebBroker project. WebBroker is a technology available since Delphi 4,
which helps in creating web server application in an HTTP/HTTPS interface.

http://jtable.org/Home/Downloads
http://jtable.org/downloads/jtable.2.4.0.zip

Putting Delphi on the Server

150

More information about WebBroker can be found at the following URLs:
 f http://docwiki.embarcadero.com/RADStudio/XE6/en/

Creating_Internet_server_applications_Index

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/
Using_Web_Broker_Index

2. In this recipe, we'll see a simple Create Retrieve Update and Delete (CRUD) for an
InterBase database table. Here's the final application running in a browser:

The final web application running in a browser

Take a look at the project folder. When you write WebBroker applications, the relative position
of the static files used by the web application is important, and we've to deliver some static
files to our clients.

The project folder layout

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Creating_Internet_server_applications_Index
http://docwiki.embarcadero.com/RADStudio/XE6/en/Creating_Internet_server_applications_Index
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_Web_Broker_Index
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_Web_Broker_Index
http://www.allitebooks.org

Chapter 5

151

The DCU folder contains all the generated DCUs, while the www folder will be our document's
root folder for the static files. In the www folder, you have an index.html file and a lib
folder. In the lib folder, there is a folder containing the jTable library. Our application is a web
client app, which means that what a user sees in the browser is not completely generated by
the server and sent to the client, but the client has only the initial HTML, it will use JavaScript
code to request data to the server using Ajax. When the server data are on the client (usually
the data are transferred as JSON), the JavaScript code assembles the data and HTML to
generate the final DOM. In this recipe, we'll use the jTable to avoid all boring HTML writing to
create a simple CRUD interface.

Let's start from the initial HTML file retrieved by the client. This is the file that starts our
application, and the JavaScript inside it will download the actual data to show. If you open it
using a normal text editor (better if with syntax highlighting), you will see that the following
external files are loaded:

 f The jQuery library from the Google CDN

 f The jQuery-UI library from http://code.jquery.com/

 f The jTable from a local copy

 f The jQuery-UI CSS for a specific theme from the http://code.jquery.com

 f The jTable CSS theme from our local copy

These files are required by our web client app. The jTable library allows you to generate
a complete grid with embedded editing functionalities, only providing specific URLs to be
invoked. We'll provide the following URLs in the WebBroker server:

 f /index.html: This delivers the main file.

 f /getpeople: This returns a JSON array of JSON objects with the database data.

 f /saveperson: This can be invoked to create or update a person on the database. If
there is an ID field, the person will be updated, otherwise created and a new ID will
be provided by the database.

 f /deleteperson: This deletes a person with a specified ID.

Note that this server is not a RESTful server. All the HTTP resources are invoked using a POST
method. We are using plain WebBroker here, and the DMVCFramework is used only to easily
serialize data retrieved from the database. A real RESTful server will be developed in the
Sending a POST HTTP request encoding parameters recipe of this chapter.

http://code.jquery.com/
http://code.jquery.com

Putting Delphi on the Server

152

Let's get back to Delphi and the recipe project. Open the WebModule, and the show its
Actions property. You should see something similar to the following screenshot:

The WebModule and its actions

The WebFileDispatcher is configured to point to the www folder as its main root folder. In
this way, all the files in that folder (that have permitted extensions) will be visible to the client.

FireDAC components are used to access the database. There's an FDConnection pointing
to a local InterBase database placed in the DATA folder (to run this project, you have to start
the InterBase service from the Service Control Panel). For each SQL statement, there is a
component dedicated apart from the DELETE that is executed directly on the connection.

At the startup, we've to activate the database connection. Here's the FDConnection
BeforeConnect event handler:

procedure TwmMain.ConnectionBeforeConnect(Sender: TObject);
begin
 Connection.Params.Values['Database'] :=
 TPath.GetDirectoryName(WebApplicationFileName) +
 '\..\..\DATA\SAMPLES.IB';
end;

Retrieving the people list
The client will issue a request to /getpeople and the server has to respond with a JSON
array of JSON objects. This request is handled by the action waGetPeopleAction.
The event handler contains the following code:

procedure TwmMain.wmMainwaGetPeopleAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

153

 var Handled: Boolean);
var
 JPeople: TJSONArray;
 SQL: string;
 OrderBy: string;
begin
 SQL := 'SELECT * FROM PEOPLE ';
 OrderBy := Request.QueryFields.Values['jtSorting'].Trim.ToUpper;
 if OrderBy.IsEmpty then
 begin
 SQL := SQL + 'ORDER BY FIRST_NAME ASC';
 end
 else
 begin
 if TRegEx.IsMatch(OrderBy, '^[A-Z,_]+[]+(ASC|DESC)$') then
 begin
 SQL := SQL + 'ORDER BY ' + OrderBy;
 end
 else
 raise Exception.Create('Invalid order clause syntax');
 end;

 // execute query and prepare response
 qryPeople.Open(SQL);
 try
 JPeople := qryPeople.AsJSONArray; //ObjectsMappers
 finally
 qryPeople.Close;
 end;
 PrepareResponse(JPeople, Response);
end;

This method executes a query on the PEOPLE table, and then serializes the dataset returned
using a class helper introduced by the ObjectsMappers.pas unit (which is part of the
DMVCFramework).

jTable can also handle the sorting on the grid columns. To do this, send another request to
the server with a parameter named jSorting containing the field and the direction of the
order in the form: first_name asc or last_name desc. This is a nice feature; however,
we cannot simply concatenate this string to the SQL. We've to sanitize it to avoid SQL injection
attack. So, there is a regular expression to check whether the jSorting parameter contains
only allowed characters and is composed by two words. We do not control the field on which
ordinate is a valid field because the select will issue an error in that case.

Putting Delphi on the Server

154

The PrepareResponse method is required to correctly prepare the response to
communicate with the jTable. If you want to understand the details, check the jTable
Getting Started page at http://jtable.org/GettingStarted.

Creating or updating a person
jTable allows the user to create a new record or modify a record already created. Here, the GUI
used to modify a person's request is shown as follows:

The Edit dialog generated by the web client app

When the data has been filled, the user can click on Save and then all the data are sent to
the server in a POST request. This request is handled by the action waSavePersonAction
invoked with the /saveperson path. Here's the code used to create or update a record:

procedure TwmMain.wmMainwaSavePersonAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
var
 InsertMode: Boolean;
 JObj: TJSONObject;
 LastID: Integer;
 HTTPFields: TStrings;
 procedure MapStringsToParams(AStrings: TStrings;
 AFDParams: TFDParams);
 var
 i: Integer;

www.allitebooks.com

http://jtable.org/GettingStarted
http://www.allitebooks.org

Chapter 5

155

 begin
 for i := 0 to HTTPFields.Count - 1 do
 begin
 if AStrings.ValueFromIndex[i].IsEmpty then
 AFDParams.ParamByName(AStrings.Names[i].ToUpper).Clear()
 else
 AFDParams.ParamByName(AStrings.Names[i].ToUpper).Value :=
 AStrings.ValueFromIndex[i];
 end;
 end;

begin
 HTTPFields := Request.ContentFields;
 InsertMode := HTTPFields.IndexOfName('id') = -1;
 if InsertMode then
 begin
 MapStringsToParams(HTTPFields, cmdInsertPerson.Params);
 cmdInsertPerson.Execute();
 LastID := Connection.GetLastAutoGenValue('GEN_PEOPLE_ID');
 end
 else
 begin
 MapStringsToParams(HTTPFields, cmdUpdatePerson.Params);
 cmdUpdatePerson.Execute();
 LastID := HTTPFields.Values['id'].ToInteger;
 end;

 // execute query and prepare response
 qryPeople.Open('SELECT * FROM PEOPLE WHERE ID = ?', [LastID]);
 try
 PrepareResponse(qryPeople.AsJSONObject, Response);
 finally
 qryPeople.Close;
 end;
end;

The simple trick used in this code to determine whether it requested an INSERT or an
UPDATE query is to check whether a field named ID is present in the POST fields. If an ID
field is present, then we have to generate an UPDATE, otherwise, an INSERT.

Putting Delphi on the Server

156

Deleting a person
Deleting a person's record is the simplest method. The code of the waDeletePerson action
is invoked with the /deleteperson path. Here's the code:

procedure TwmMain.wmMainwaDeletePersonAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
begin
 Connection.ExecSQL('DELETE FROM PEOPLE WHERE ID = ?',
 [Request.ContentFields.Values['id']]);
 PrepareResponse(nil, Response);
end;

Only one thing to note, we didn't use a specific command to issue the SQL statement but
directly made the connection.

Running the application
Hitting F9, you should see a console window informing you that a server is started. Open the
browser and point it to http://localhost:8080.

You should see what is shown in the first screenshot. If not, try to check the following:

 f Is the port 8080 free?

 f Is the InterBase database running correctly?

 f Is the URL written correctly?

There's more…
This is only a small introduction to what you can do with WebBroker and a number of
good JavaScript libraries. There are a lot of articles about WebBroker; some of them are
a bit old, but most are still applicable to XE6. After reading the current documentation on
the Embarcadero DocWiki, have a look to the article at http://delphi.about.com/
library/bluc/text/uc060901a.htm.

WebBroker can also create ISAPI DLLs for Microsoft Internet Information Server and Apache
module DLLs for the Apache httpd webserver. If you plan to deploy your web application on
a production public server, you should consider putting your application behind a full-flagged
web server such as Apache or IIS.

Another solution is to use the simple webserver created by Delphi and put a reverse proxy
(http://en.wikipedia.org/wiki/Reverse_proxy) in front of it.

However, if you use the application in your intranet, it is safe enough to publish it as a console
application, or (recommended) you can use this application as a Windows Service, directly on
a server in your LAN.

www.allitebooks.com

http://delphi.about.com/library/bluc/text/uc060901a.htm
http://delphi.about.com/library/bluc/text/uc060901a.htm
http://en.wikipedia.org/wiki/Reverse_proxy
http://www.allitebooks.org

Chapter 5

157

More good news is that WebBrokers WebModules are independent from the final program
type where they will be linked. So, you can develop a console application, debug it, and then
convert it into a Windows service, an Apache module, or an ISAPI DLL with few clicks.

Converting a console service application to
a Windows service

Writing and debugging a Windows service can be difficult and slow. In the Creating a Windows
service recipe in Chapter 1, Delphi Basics, we learned how to write and debug a Windows
service from scratch, but in some cases you already have a console or VCL application that
already does its job. However, it would be better if the console or VCL application could be
recreated as a Windows service.

Getting ready
In this recipe, we'll take the WebBroker application created in the previous recipe as a console
application and convert it to a full flagged Windows service. The same approach can be used
for any type of service-like application that currently is not built as a service.

As a bonus, we'll learn that if correctly architected, a project can be compiled as a console
or VCL application and, without much change, as a Windows service as well. WebBroker is
particularly well architected to do so, so our application will benefit from it.

How to do it...
Let's execute the following steps to convert a console service application to a
Windows service:

1. Create a new Service Application by going to File | New | Other… and then going to
Delphi Projects | Service Application.

2. As soon as Delphi creates the project template, save all the files with the
following names:

 � Save the project as PhoneBookService.dproj

 � Save the service module as ServiceU.pas

3. Show the object inspector for the service module and set the following properties:

 � AllowPause = False

 � DisplayName = PhoneBookService

Putting Delphi on the Server

158

4. Now, add to the project the web module from the Web client JavaScript application
with WebBroker on the server recipe (the file is named WebModuleU.pas and should
be under Chapter05\CODE\RECIPE01). This step allows us to reuse the same code
written for the console application, and for the service application as well.

5. Now, your Project Manager should look like the following screenshot:

The Project Manager after adding the WebModuleU.pas from the previous recipe

6. Now we've to wire some things. Open the ServiceU.pas file and add the
IdHTTPWebBrokerBridge unit in the uses clause. This allows us to create
an internal HTTP service in our Windows service.

7. Now in the private part of the TPhoneBook declaration, add the following lines
of code:
 private
 LServer: TIdHTTPWebBrokerBridge;

8. In the implementation section of the ServiceU.pas, add the following uses clause:
uses
 Web.WebReq, WebModuleU;

9. Now, we've to handle the TCP server and the class registration for the WebBroker.
Let's create some TPhoneService event handlers.

10. Create the OnCreate, OnStart, and OnStop event handlers and fill them with the
following code:
procedure TPhoneBook.ServiceCreate(Sender: TObject);
begin
 if WebRequestHandler <> nil then
 WebRequestHandler.WebModuleClass := WebModuleClass;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

159

end;

procedure TPhoneBook.ServiceStart(Sender: TService;
 var Started: Boolean);
begin
 LServer := TIdHTTPWebBrokerBridge.Create(nil);
 LServer.DefaultPort := 8080;
 LServer.Active := True;
end;

procedure TPhoneBook.ServiceStop(Sender: TService;
 var Stopped: Boolean);
begin
 LServer.Free;
end;

11. Build the project.

12. Copy the www folder from the previous recipe and put it at the same level of the
compiled service.

13. Our service should be ok. Start a command prompt as the administrator, go to the
folder where the service executable is, and write the following command line:
PhoneBookService.exe /install

14. A message dialog should inform you that the service has been installed correctly.

15. Now, go to the Services management console and you should see the new service
named PhoneBookService listed among the others. Start it and navigate with your
browser to the following URL:

http://localhost:8080

16. Now, you should see the WebBroker Phone Book page with some people listed.

17. If the peoples' list is not loading, probably the service didn't reach the
database. Check whether the database is running and if the code under the
OnBeforeConnect of the database connection sets the correct connection string.

How it works...
This recipe is really simple. The entire dirty job is done by the WebBroker framework and by
the TIdHTTPWebBrokerBridge class. As a general rule, when you have a TCP service that
should listen while the service is running, simply start the TCP service in the OnStart event
handler and stop it in the OnStop event handler. If your logic is more complex, you should
be able to separate all the things that make the service available (start) and put them in the
OnStart event handler, while all the things that make the service unavailable and free the
resources (stop) should be put in the OnStop event handler.

Putting Delphi on the Server

160

If you have to support the paused state as well, you have to find out what a paused state
means for your service. For this recipe, a paused state is equivalent to a stopped state,
so I simply removed the possibility to pause the service.

There's more...
Every application could have a different way to be converted as a Windows service; however,
you should be aware that your service runs in a different environment with respect to your
normal application. Two notable differences are as follows:

 f Services can run out of any user context, and they usually do. They usually run as
Local System Account (as the service in this recipe) but can be configured to run
as a particular user.

 f The current folder for a service is not the folder where the executable is, but the
System32 folder under C:\Windows\ for the 64-bit service, the same as for
32-bit services when run on 32-bit machines, and C:\Windows\SysWOW64 for
32-bit services that run on 64-bit machines.

Serializing a dataset to JSON and back
At the time when almost all the Delphi program was client/server, or in general, when the
Delphi program was always connected to the database server in a full-connected scenario,
the datasets' serialization was a niche topic. There were really few situations where you really
need this kind of functionality in the core of your application. Were the '90s!' Now, however,
making your data available to other programs or getting data from other software running
somewhere in the world is the normal. In some cases, the other "programs" are not written in
Delphi, so the DataSet.SaveToFile method (or other serialization that use a proprietary
or exotic format) is no longer enough. Let's say we've a JavaScript frontend for our Delphi
application server. Your data should be "dedelphized" (I've just coined this word) and should
be independent from the backend programming language or framework used. Delphi have
a lot of serialization facilities, but there isn't a well-known way to serialize a dataset in the
JSON standard format and deserialize a standard JSON in a DataSet (there are some units
containing JSON serialization stuff but the resultant JSON is very Delphi-oriented and not
well suited to be used to communicate with other non-Delphi programs). In the DataSnap
framework, there are classes devoted to do such things and are all contained in the
Data.DBXJSONCommon unit; however, at the time of writing, they are not designed to
be flexible enough to be used in heterogeneous scenarios. Don't be afraid. In this recipe,
we'll solve all these problems!

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

161

Getting ready
We'll use a subproject of the already mentioned DelphiMVCFramework (more information can
be found at https://code.google.com/p/delphimvcframework/) called Mapper.

The Mapper is a micro framework aimed at developers in mappings and conversions and will
be used in this recipe and in the next one. Firstly, get the DelphiMVCFramework using the
snapshot ZIP file (as mentioned in the project website) or the subversion repository. Then,
create a new VCL project to do some experiments. This recipe is not a complete project,
but a set of demos showing what you can do with your datasets using this open source
micro framework.

The Demo project is a simple list of buttons: a TDBGrid and a TMemo component to show the
last JSON serialization. This is shown in the following screenshot:

Demo for DataSets JSON serialization

How to do it...
Under each button, a particular mapper feature is used. The mapper serializes data in the
JSON format using a simple object or an array of objects. To be clear, a single record will be
serialized as a JSON object while a full dataset (or a set of records) are serialized as a JSON
array containing JSON objects, one for each serialized record. In the uses clause of the form,
there is a reference to the ObjectsMappers.pas unit. This unit adds some method to all
the TDataSet descendants and we'll use some of them in this project.

The first button converts the current dataset record (the dataset is called qryPeople and is
owned by a data module called dm) in a JSONObject; the code used for this is as follows:

 Log := dm.qryPeople.AsJSONObjectString;

https://code.google.com/p/delphimvcframework/

Putting Delphi on the Server

162

Log is a property used as a variable, but it writes its new value to the memo in its setter.
So, when you click on the button 1, you will have this situation in the form:

The memo shows the serialized version of the dataset current record

This is really simple! You don't even need to know how to access the serialization engine;
just include the ObjectsMappers unit and all your dataset are able to serialize and
deserialize themselves.

Button 2 serializes the dataset as a JSON array of JSON Objects, starting from the
current position:

 Log := dm.qryPeople.AsJSONArrayString;

Go to first record and click on the button 2. The memo will show a JSON array like the
following one:

[{"id":1,"first_name":"Daniele","last_name":"Teti",
 "work_phone_number":"(555) 8765432",
 "mobile_phone_number":"(456) 789456",
 "email":"daniele.teti@gmail.com"},
 {"id":3,"first_name":"Tommy","last_name":"Banner",
 "work_phone_number":"(555) 7894562",
 "mobile_phone_number":null,"email":
 "tommy.banner@gmail.com"},
 {"id":2,"first_name":"John","last_name":"Doe",
 "work_phone_number":"485-965-85",
 "mobile_phone_number":"325-78945621",
 "email":"johndoe@nowhere.org"},
 {"id":4,"first_name":"Jack","last_name":"Rossi",
 "work_phone_number":"(765)
 345677","mobile_phone_number":null,
 "email":"jack.rossi@thered.com"}]

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

163

As you can see, the mapper takes care of null fields and serializes them as JSON null.

The third button performs an update on the record using a JSON object:

 dm.qryPeople.Edit;
 dm.qryPeople.LoadFromJSONObjectString(
 Log,
 TArray<String>.Create('id'));
 dm.qryPeople.Post;

It uses the previously serialized data (contained in the Log property) to update the current
record. To use it, perform the following steps:

1. Go to the first record.

2. Click on the button 1 (the memo fills with the serialized data as JSON object).

3. Go to the record that you want to update.

4. Click on the button 3.

5. The record is updated!

You want to update all of the fields but the primary key. So, as the second parameter of
LoadFromJSONObjectString, we've to pass an array of strings representing the name of
the fields that we don't want to update in the dataset. In this case, we don't want to update
the ID field. So, when just after, call qryPeople.Post, the dataset sends an update to
the database.

The fourth button is similar, but it is used to create a new record starting from a JSON object.
The code is as follows:

 dm.qryPeople.Append;
 dm.qryPeople.LoadFromJSONObjectString(
 Log,
 TArray<String>.Create('id'));
 dm.qryPeople.Post;

To use the fourth button, perform the following steps:

1. Go to the first record (or another record that you want to clone).

2. Click on the button 1 (the memo fills with the serialized data as a JSON object).

3. Click on the button 4.

4. A new record is created!

Putting Delphi on the Server

164

Obviously, you can use any JSON object to create the new record. To prove this, follow
these steps:

1. Go to the first record.

2. Click on the button 1 (the memo fills with the serialized data as a JSON object).

3. In the memo, change a JSON property, let's say the last_name property. Look for
last_name:"some string" and change the value to something else.

4. Click on the button 4.

5. A new record is created with the new value!

The JSON object can arrive from everywhere and can directly be put in your database using
this simple json->dataset mapping. In the last year, I've used a lot of these techniques in
real-world web and mobile applications (the next recipe will focus on a more object-oriented
approach compared to this one, which is based on TDataSet).

The fifth button allows us to append a JSON array of JSON objects directly to the dataset:

 dm.qryPeople.AppendFromJSONArrayString(
 Log,
 TArray<String>.Create('id'));

There's more...
Serialization and deserialization are huge topics. All the Internet services, ultimately, depend
on some kind of serialization. The average Delphi user is very skilled on dataset and normally
tends to rely on some particular functionality present in the data access component suite
chosen. However, when the deserializer is not a Delphi program, some problems can arise.
The mapper framework resolves this kind of problem in a simple and elegant way (IMHO). As
a real example, the JSON format doesn't provide a specific type for dates and times. If you
try to blindly serialize TDate, TDateTime, and TTime Delphi data types in JSON (using the
underline double data type), you will get numbers that are perfectly valid for another Delphi
program but completely useless for JavaScript, Java, .NET, Python, and so on. So the mapper
takes care of this and other problems using the standard representation where JSON doesn't
provide specific data types. In this case, all DateTime data are serialized and deserialized
using the ISO format that can be understood by all the libraries and programming languages.
Moreover, the mapper is not dependant on the regional settings of the machine, so you can
generate a JSON on an English-speaking PC and deserialize it on an Italian speaking machine
without problems of decimal separator, date format, currency formatting, and so on.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

165

Serializing objects to JSON and back
using RTTI

When you are using a domain model pattern (and you should do most of the time for
non-trivial applications), the entities managed by your program are contained in objects.
An object has a state and methods to change its state, just like any actual object in the
real world.

Getting ready
As the datasets in the previous recipe is very popular with the needs to serialize an object in
a JSON object, send the object somewhere, and then recreate that object as it was before.
In this recipe, we'll use the new TJSON class present in Delphi XE6 and will extend it with
new functionalities.

How to do it...
Let's execute the following steps to serialize objects to JSON:

1. Create a new VCL forms application.

2. Drop four TButtons components and a TMemo component on the form. Organize
the TButton component in a single row as a sort of toolbar and align the TMemo
component to cover the remaining part of the form.

3. Name the TButton components as follows:

 � btnObjToJSON

 � btnJSONtoObject

 � btnListToJSONArray

 � btnJSONArrayToList

4. Add a new unit to the project, name it JSON.Serializer.pas, and fill it with the
following code:
unit JSON.Serialization;

interface

uses
 REST.JSON, System.Generics.Collections, System.JSON;

type
 TJSONUtils = class(TJSON)
 public

Putting Delphi on the Server

166

 class function
 ObjectsToJSONArray<T: class, constructor>(
 AList: TObjectList<T>): TJSONArray;
 class function
 JSONArrayToObjects<T: class, constructor>(
 AJSONArray: TJSONArray): TObjectList<T>;
 end;

implementation

uses
 System.SysUtils;

{ TJSONHelper }

class function TJSONUtils.JSONArrayToObjects<T>(
 AJSONArray: TJSONArray): TObjectList<T>;
var
 I: Integer;
begin
 Result := TObjectList<T>.Create(True);
 try
 for I := 0 to AJSONArray.Size - 1 do
 Result.Add(TJSON.JsonToObject<T>(AJSONArray.Get(I)
 as TJSONObject));
 except
 FreeAndNil(Result);
 raise;
 end;
end;

class function TJSONUtils.ObjectsToJSONArray<T>(
 AList: TObjectList<T>): TJSONArray;
var
 Item: T;
begin
 Result := TJSONArray.Create;
 try
 for Item in AList do
 Result.AddElement(TJSON.ObjectToJsonObject(Item));
 except
 FreeAndNil(Result);
 raise;
 end;
end;

end.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

167

5. Add another unit to the project and name it PersonU.pas.

6. In PersonU.pas, declare a class as follows and let Delphi autocreate the property
setters using Ctrl + Shift + C:
type
 TPerson = class
 public
 property ID: Integer;
 property FirstName: String;
 property LastName: String;
 property WorkPhone: String;
 property MobilePhone: String;
 property EMail: String;
 end;

7. After Ctrl + Shift + C, save the file and go back to the main form.

8. While on the main form code, hit Alt + F11 and add to the interface uses
clause the JSON.Serializer.pas unit. Repeat the procedure and add
the PersonU.pas unit.

9. Now, create a read/write property named Log in the main form. This
property does not have an internal field, but reads and writes its value from
the Memo1.Lines.Text property, acting like a proxy for it.

10. To have some objects to work with, we require some fake data. So, create a method
in the private section of the form called GetPeople with the following code:
 private
 function GetPeople: TObjectList<TPerson>;

11. Hit Ctrl + Shift + C and create the method body with the following code:
function TMainForm.GetPeople: TObjectList<TPerson>;
var
 P: TPerson;
begin
 Result := TObjectList<TPerson>.Create(True);
 P := TPerson.Create;
 P.ID := 1;
 P.FirstName := 'Daniele';
 P.LastName := 'Teti';
 P.WorkPhone := '555-4353432';
 P.MobilePhone := '(328) 7894562';
 P.EMail := 'me@danieleteti.it';
 Result.Add(P);

 P := TPerson.Create;
 P.ID := 2;

Putting Delphi on the Server

168

 P.FirstName := 'John';
 P.LastName := 'Doe';
 P.WorkPhone := '457-6549875';
 P.EMail := 'john@nowhere.com';
 Result.Add(P);

 P := TPerson.Create;
 P.ID := 3;
 P.FirstName := 'Jane';
 P.LastName := 'Doe';
 P.MobilePhone := '(339) 5487542';
 P.EMail := 'jane@nowhere.com';
 Result.Add(P);
end;

12. Now, create the event handlers for the four buttons using the following code:
procedure TMainForm.btnJSONtoObjectClick(Sender: TObject);
var
 JObj: TJSONObject;
 Person: TPerson;
begin
 JObj := TJSONObject.ParseJSONValue(Log) as TJSONObject;
 try
 Person := TJSONUtils.JsonToObject<TPerson>(JObj);
 try
 ShowMessage(Person.FirstName + ' ' +
 Person.LastName);
 finally
 Person.Free;
 end;
 finally
 JObj.Free;
 end;
end;

procedure TMainForm.btnListToJSONArrayClick(Sender:
 TObject);
var
 People: TObjectList<TPerson>;
 JArr: TJSONArray;
begin
 People := GetPeople;
 try
 JArr := TJSONUtils.ObjectsToJSONArray<TPerson>(People);

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

169

 try
 Log := JArr.ToString;
 finally
 JArr.Free;
 end;
 finally
 People.Free;
 end;
end;

procedure TMainForm.btnObjToJSONClick(Sender: TObject);
var
 People: TObjectList<TPerson>;
 JObj: TJSONObject;
begin
 People := GetPeople;
 try
 JObj := TJSONUtils.ObjectToJsonObject(People[0]);
 try
 Log := JObj.ToString;
 finally
 JObj.Free;
 end;
 finally
 People.Free
 end;
end;

procedure TMainForm.btnJSONArrayToListClick(Sender:
 TObject);
var
 JArr: TJSONArray;
 People: TObjectList<TPerson>;
 Person: TPerson;
 S: String;
begin
 JArr := TJSONObject.ParseJSONValue(Log) as TJSONArray;
 try
 People := TJSONUtils.JSONArrayToObjects<TPerson>(JArr);
 try
 S := '';
 for Person in People do
 S := S + sLineBreak +
 Person.FirstName + ' ' + Person.LastName;

Putting Delphi on the Server

170

 finally
 People.Free;
 end;
 finally
 JArr.Free;
 end;
 ShowMessage(S);
end;

13. Hit F9 and see the application running.

How it works...
The TJSON class of Delphi RTL contains two interesting methods.

class function ObjectToJsonObject(AObject: TObject): TJSOnObject;

The preceding method converts an object in its JSON representation.

class function JsonToObject<T: class, constructor>(AJsonObject:
 TJSOnObject): T;

The preceding method takes a JSONObject and recreates the related object.

Good, but it is not enough. Usually, we deal with a list of objects and an array of JSON objects.
This is the reason why the JSON.Serialization.pas unit extends the TJSON class,
because we have to serialize and deserialize a list of objects too.

Here's the public interface of TJSONUtils:

type
 TJSONUtils = class(TJSON)
 public
 class function ObjectsToJSONArray<T: class, constructor>(
 AList: TObjectList<T>): TJSONArray;
 class function JSONArrayToObjects<T: class, constructor>(
 AJSONArray: TJSONArray): TObjectList<T>;
 end;

With these four methods, we will be able to do the following serializations:

 f TObject -> TJSONObject

 f TJSONObject -> TObject

 f TObjectList<T> -> TJSONArray of TJSONObject

 f TJSONArray of TJSONObject -> TObjectList<T>

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

171

There's more...
The TJSON class allows us to define specific serialization and deserialization strategies
based on data types and field names. If you want to serialize a field in a specific way,
you can define a JSONReflect attribute on that field using the name of the class
descended from TJSONInterceptor. In the recipe folder, there is a bonus project called
JSONInterceptorSample that shows how even a stream can be serialized using an
interceptor and the JSONReflect attribute.

Sending a POST HTTP request encoding
parameters

The HTTP protocol supports some types of verbs. A verb is a way to ask something to a
remote server. Some of these verbs are GET, POST, PUT, DELETE, HEAD, PATCH, TRACE,
and OPTIONS. For a detailed description of the HTTP protocol, you can read the related
RFCs at the following URLs:

 f http://www.w3.org/Protocols/rfc2616/rfc2616.html: RFC2616 about
HTTP/1.1 protocol

 f http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html:
RFC2616-specific section about the available verbs in HTTP/1.1 protocol

When you write a URI in the browser address bar and hit return, you are issuing a GET request
to the remote HTTP server. However, when you have to send form data to the server, usually
the HTML form uses the POST method. POST is designed to allow a uniform method to send
a block of data, such as the result of submitting a form, to a data-handling process or to post
a message to a bulletin board, newsgroup, mailing list, or similar group of articles. In other
words, while GET is intended to retrieve a resource from the server, POST is intended to
transfer data from the client to the server. When sending data to the server, the client should
inform it about the type of the content (in case of body data). This information is transferred
in a specific request header called content type. If you are sending a JSON, the content type
should be application/json; if a browser is sending data that a user wrote in an HTML
form, the default content type is application/x-www-form-urlencoded. The content
type is used by the client to inform the server about the type of the content it is sending,
and it is used by the server to inform the client about the type of the content it is returning to.

To learn more about the different content types, check
http://en.wikipedia.org/wiki/Internet_media_type.

In this recipe, we'll learn how to send data to a remote web server using a POST method.

http://en.wikipedia.org/wiki/Internet_media_type

Putting Delphi on the Server

172

Getting ready
In this recipe, we'll use the web server created in the Web client JavaScript application with
WebBroker on the server recipe but this time, we're going to create a Delphi client to post
data to that server. The data sent will be stored in the database and will be available through
the already present web interface.

How to do it...
This recipe is really simple. So, start the WebBroker project created in the Web client
JavaScript application with WebBroker on the server recipe (run the executable without
debug) and follow these instructions:

1. Create a new VCL forms application.

2. On the main form, drop five TEdit components, one TButton component, one
TRESTClient component, and one TRESTRequest component. Organize the
controls as shown in the following screenshot:

The client form used to send POST data to the web server

3. Give meaningful names to the TEdit components to avoid confusion in the
next phase.

4. Set RESTClient1.BaseURL to http://localhost:8080.

5. Set the following properties on RESTRequest1:

 � RESTRequest1.Client = RESTClient1

 � RESTRequest1.Method = rmPOST

 � RESTRequest1.Resource = saveperson

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

173

6. Double-click on the TButton component and add the following code in its
OnClick event:
procedure TMainForm.btnSubmitClick(Sender: TObject);
begin
 RESTRequest1.AddParameter('FIRST_NAME',
 edtFirstName.Text);
 RESTRequest1.AddParameter('LAST_NAME',
 edtLastName.Text);
 RESTRequest1.AddParameter('WORK_PHONE_NUMBER',
 edtWorkPhone.Text);
 RESTRequest1.AddParameter('MOBILE_PHONE_NUMBER',
 edtMobilePhone.Text);
 RESTRequest1.AddParameter('EMAIL', edtEmail.Text);
 RESTRequest1.Execute;
end;

7. Run the program, write some data into the edits, and click on the button. That's
it! Your data has been saved on the database by the already created WebBroker
application. Simple, isn't it?

The TREST* components have been introduced in XE5 and are a fundamental part of a bigger
strategic technology from Embarcadero. So, while this recipe could be realized easily also with
a simple TidHTTP component, it's better to start to use these new components. In the recipe
folder, there is also the project that uses the TidHTTP component, you choose what to
use when.

How it works...
The URL where we've to send the data is http://localhost:8080/saveperson.
The HTTP request is automatically created and sent to the server by the TRESTRequest
and TRESTClient components. The TRESTClient component defines the endpoint for all
the requests, while the TRESTRequest define details for each different request. In this case,
the BaseURL property contains the server name with the port (http://localhost:8080),
while the request has only the Resource property set to the second part of the URL
to saveperson.

We are adding a set of POST parameters with their values. Do you remember?
RESTRequest1.Method is rmPOST, so will be created and sent a POST request.
The parameters' names depend on what the server expects and we have to know the
parameters' names to correctly build a request.

As the name says, the TREST* components are mainly to be used with REST services, but can
also be used with a normal HTTP service as this recipe showed.

Putting Delphi on the Server

174

There's more...
The REST client library is very powerful. To have more information about it and to know how to
use it when dealing with the RESTful web service, read the following entry in the DocWiki:

http://docwiki.embarcadero.com/RADStudio/XE6/en/REST_Client_Library

If you want to see the REST client library in action with different kinds of services, check the
RESTDemo sample at the following URL:

http://docwiki.embarcadero.com/CodeExamples/XE6/en/RESTDemo_Sample

Implementing a RESTful interface using
WebBroker

What's REST? Wikipedia defines it as follows (http://en.wikipedia.org/wiki/
Representational_state_transfer):

Representational state transfer (REST) is an architectural style consisting of a
coordinated set of architectural constraints applied to components, connectors,
and data elements, within a distributed hypermedia system. REST ignores the
details of component implementation and protocol syntax in order to focus on the
roles of components, the constraints upon their interaction with other components,
and their interpretation of significant data elements.

The term representational state transfer was introduced and defined in 2000 by
Roy Fielding in his doctoral dissertation at UC Irvine.

The REST architectural style is also applied to the development of web services as
an alternative to other distributed-computing specifications such as SOAP.

So, how to build a RESTful system in Delphi? There are a lot of solutions. However,
according to the mentioned definitions, RESTful is not a set of libraries or algorithms; it is an
architectural style, and as each style, can be respected at 100 percent, 60 percent, or 30
percent, and so on. There is a sort of scale used to measure how much a system is RESTful
or not. This scale was first introduced by Leonard Richardson at the QCon conference, so it is
called the Richardson Maturity Model (RMM). To get all the benefits that a RESTful approach
brings, you should tend to a RMM level 3. Be happy, the system we'll develop in this recipe is
compliant with RMM level 3.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/REST_Client_Library
http://docwiki.embarcadero.com/CodeExamples/XE6/en/RESTDemo_Sample
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.allitebooks.org

Chapter 5

175

Getting ready
Our REST service handles a database table called PEOPLE. It provides CRUD methods plus
some specific features to paginate the data. Remember that RESTful doesn't mean expose
a method to do CRUD on a table but expose a method to handle a resource. A resource can
or cannot have a representation on a database table. Moreover, a resource can be also
very complex with multiple nested objects. So while a table can be represented as a simple
resource, generally a resource is not a mere table but an object graph stored on one, two, or
more tables, or not stored at all. This is the HTTP REST interface that we'll implement:

HTTP Verb URL Description
GET /people This returns a JSON array containing one JSON

object for each record present in the PEOPLE
table. In each object, the property names are the
names of the fields, while the property values are
the values of the fields.

GET /people/($id)

$id is an URL parameter
This returns a JSON object representing the
specific person which have the ID = $id value.

POST /people This creates a new person in the table people.

This requires a request body containing the new
person to create as JSON object. The request
content-type must be application/json.

PUT /people/($id) This updates the person with ID = $id with the
data passed in the request body. This requires a
request body containing the new person to update
as a JSON object. The request content-type must
be application/json.

DELETE /people/($id) This deletes the person with ID = $id.
POST /people/searches

/people/
searches?page=[x]

This returns a JSON array containing JSON
objects. It executes a search over the PEOPLE
table, returning only the record that matches the
filter passed as a JSON object in the request body.

This requires a JSON object as request body. The
parameter is passed as property "TEXT" in the
request body, for example, {"TEXT":"ele"}

This recipe uses the DelphiMVCFramework, a Delphi open source framework based on
WebBroker that allows you to create powerful RESTful web services. You can find the project
code at https://code.google.com/p/delphimvcframework/.

https://code.google.com/p/delphimvcframework/

Putting Delphi on the Server

176

Check out the project using the instruction on the website and put it into a folder on your
filesystem. There are no components or controls, only units. Now, you have to configure
your IDE to find the DMVCFramework units.

Go to Tools | Options | Environment Options | Delphi Options | Library. Then,
click on the … on the Library Path edit and add the following paths one by one
(change C:\DEV\DMVCFramework with the appropriate path on your machine):

 f C:\DEV\DMVCFramework\sources

 f C:\DEV\DMVCFramework\lib\delphistompclient

 f C:\DEV\DMVCFramework\lib\luadelphibinding

 f C:\DEV\DMVCFramework\lib\iocpdelphiframework\Base

This recipe uses many DMVCFramework features and could be a little confusing if you
don't know the basics of REST and DMVCFramework. If so, please read the following
documentations before going ahead:

 f Building Web Services the REST Way at
http://www.xfront.com/REST-Web-Services.html

 f RESTful Web services: The basics at https://www.ibm.com/developerworks/
webservices/library/ws-restful/

 f DelphiMVCFramework Documentation at https://delphimvcframework.
googlecode.com/svn/trunk/docs/ITDevCON%202013%20-%20
Introduction%20to%20DelphiMVCFramework.pdf

 f DelphiMVCFramework Samples available in the \Samples folder in the project
root folder

From this point onwards, I'll not repeat concepts and information already explained in the
mentioned articles. So, read them with care.

How to do it...
1. Create a new Delphi project by going to Delphi Project | Web Broker |

Web Server Application.

2. Now, the wizard asks you what type of web server application you want to create. This
demo will be built as a console application. However, you can take advantage of the
flexibility of WebBroker and add another type of application, for instance, an ISAPI
DLL or a Windows Service. At this point, select Stand-alone console application and
click on Next.

3. The wizard proposes a TCP port where the service will listen. Click on Test port; if the
test port succeeded, use it. Otherwise, change the port until the test passes. In this
recipe, the port 8080 is used.

4. Click on Finish.

www.allitebooks.com

http://www.xfront.com/REST-Web-Services.html
https://www.ibm.com/developerworks/webservices/library/ws-restful/
https://www.ibm.com/developerworks/webservices/library/ws-restful/
 Documentation at https://delphimvcframework.googlecode.com/svn/trunk/docs/ITDevCON%202013%20-%20Introduction%20to%20DelphiMVCFramework.pdf
 Documentation at https://delphimvcframework.googlecode.com/svn/trunk/docs/ITDevCON%202013%20-%20Introduction%20to%20DelphiMVCFramework.pdf
 Documentation at https://delphimvcframework.googlecode.com/svn/trunk/docs/ITDevCON%202013%20-%20Introduction%20to%20DelphiMVCFramework.pdf
http://www.allitebooks.org

Chapter 5

177

5. Save all. Name the project PeopleManager.dproj and the web module
WebModuleU.pas.

6. We start from the business objects classes. This web service will manage people,
so let's create a new unit and declare the following class:
 TPerson = class
 public
 property ID: Integer;
 property FIRST_NAME: String;
 property LAST_NAME: String;
 property WORK_PHONE_NUMBER: String;
 property MOBILE_PHONE_NUMBER: String;
 property EMAIL: String;
 end;

7. Hit Ctrl + Shift + C to autocomplete the declaration, and then save the file as
PersonBO.pas. Note that in projects where you have a lot of different types of
classes (business objects, controllers, and data modules), it will be good to organize
the units in different folders. So, I saved the PersonBo.pas file in a folder named
BusinessObjects. Feel free to do it as you wish.

8. Now, it is time to create a DMVCFramework controller. This is the class where there
will be all the code to handle the HTTP requests and responses. Here, there should
not be any business logic code.

9. Create a new unit, name it PeopleControllerU.pas, and save it into the
Controllers folder.

10. Fill the PeopleControllerU.pas unit with the following code:
unit PeopleControllerU;

interface

uses MVCFramework, PeopleModuleU;

type
 [MVCPath('/people')]
 TPeopleController = class(TMVCController)
 private
 FPeopleModule: TPeopleModule;
 protected
 procedure OnAfterAction(Context: TWebContext;
 const AActionNAme: string); override;
 procedure OnBeforeAction(Context: TWebContext;
 const AActionNAme: string;
 var Handled: Boolean); override;
 public

Putting Delphi on the Server

178

 [MVCPath]
 [MVCHTTPMethod([httpGET])]
 procedure GetPeople(CTX: TWebContext);

 [MVCPath('/($id)')]
 [MVCHTTPMethod([httpGET])]
 procedure GetPersonByID(CTX: TWebContext);

 [MVCPath]
 [MVCHTTPMethod([httpPOST])]
 [MVCConsumes('application/json')]
 procedure CreatePerson(CTX: TWebContext);

 [MVCPath('/($id)')]
 [MVCHTTPMethod([httpPUT])]
 [MVCConsumes('application/json')]
 procedure UpdatePerson(CTX: TWebContext);

 [MVCPath('/($id)')]
 [MVCHTTPMethod([httpDELETE])]
 procedure DeletePerson(CTX: TWebContext);

 [MVCPath('/searches')]
 [MVCHTTPMethod([httpPOST])]
 [MVCConsumes('application/json')]
 procedure SearchPeople(CTX: TWebContext);
 end;

implementation

uses
 PersonBO, SysUtils, System.JSON, ObjectsMappers, System.Math;

procedure TPeopleController.CreatePerson(CTX: TWebContext);
var
 Person: TPerson;
begin
 Person := CTX.Request.BodyAs<TPerson>;
 try
 FPeopleModule.CreatePerson(Person);
 CTX.Response.Location := '/people/' +
 Person.ID.ToString;
 Render(201, 'Person created');
 finally

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

179

 Person.Free;
 end;
end;

procedure TPeopleController.UpdatePerson(CTX: TWebContext);
var
 Person: TPerson;
begin
 Person := CTX.Request.BodyAs<TPerson>;
 try
 Person.ID := CTX.Request.ParamsAsInteger['id'];
 FPeopleModule.UpdatePerson(Person);
 Render(200, 'Person updated');
 finally
 Person.Free;
 end;
end;

procedure TPeopleController.DeletePerson(CTX: TWebContext);
begin
 FPeopleModule.DeletePerson(
 CTX.Request.ParamsAsInteger['id']);
 Render(204, 'Person deleted');
end;

procedure TPeopleController.GetPersonByID(CTX: TWebContext);
var
 Person: TPerson;
begin
 Person := FPeopleModule.GetPersonByID(
 CTX.Request.ParamsAsInteger['id']);
 if Assigned(Person) then
 Render(Person)
 else
 Render(404, 'Person not found');
end;

procedure TPeopleController.GetPeople(CTX: TWebContext);
begin
 Render<TPerson>(FPeopleModule.GetPeople);
end;

procedure TPeopleController.OnAfterAction(Context:
 TWebContext;

Putting Delphi on the Server

180

 const AActionNAme: string);
begin
 inherited;
 FPeopleModule.Free;
end;

procedure TPeopleController.OnBeforeAction(Context:
 TWebContext;
 const AActionNAme: string;
 var Handled: Boolean);
begin
 inherited;
 FPeopleModule := TPeopleModule.Create(nil);
end;

procedure TPeopleController.SearchPeople(CTX: TWebContext);
var
 Filters: TJSONObject;
 SearchText, PageParam: string;
 CurrPage: Integer;
begin
 Filters := CTX.Request.BodyAsJSONObject;
 if not Assigned(Filters) then
 raise Exception.Create('Invalid search parameters');
 SearchText := Mapper.GetStringDef(Filters, 'TEXT');
 if (not TryStrToInt(CTX.Request.Params['page'], CurrPage))
 or (CurrPage < 1) then
 CurrPage := 1;
 Render<TPerson>(FPeopleModule.FindPeople(SearchText,
 CurrPage));
 CTX.Response.CustomHeaders.Values[
 'dmvc-next-people-page'] :=
 Format('/people/searches?page=%d', [CurrPage + 1]);
 if CurrPage > 1 then
 CTX.Response.CustomHeaders.Values[
 'dmvc-prev-people-page'] :=
 Format('/people/searches?page=%d', [CurrPage - 1]);
end;

end.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

181

11. Quite long, but all our RESTful interface is implemented in this unit. Now, we've to
write the part that actually accesses the database. In this recipe, we'll use a simple
design pattern called Table Data Gateway (TDG). TDG was defined for the first time
by Martin Fowler in his fundamental and highly recommended book Patterns of
Enterprise Application Architecture, Addison-Wesley Professional (http://www.
amazon.com/gp/product/0321127420). TDG is defined as follows: an object that
acts as a Gateway to a database table. One instance handles all the rows in the table
(http://martinfowler.com/eaaCatalog/tableDataGateway.html).

12. Let's create our TDG using a data module. Add a new data module, name it
PeopleModule, and save it into the Modules folder as PeopleModuleU.pas.

13. Now your Project Manager should looks like the following screenshot:

The Project Manager

14. Now, drop the components on the data module and link each other (this is an extract
of the dfm file):
 object Conn: TFDConnection
 Params.Strings = (
 'Database=C:\Delphi
 Cookbook\BOOK\Chapter05\DATA\SAMPLES.IB'
 'User_Name=sysdba'
 'Password=masterkey'
 'DriverID=IB')

http://www.amazon.com/gp/product/0321127420
http://www.amazon.com/gp/product/0321127420
http://martinfowler.com/eaaCatalog/tableDataGateway.html

Putting Delphi on the Server

182

 ConnectedStoredUsage = [auDesignTime]
 Connected = True
 LoginPrompt = False
 end
 object qryPeople: TFDQuery
 Connection = Conn
 UpdateObject = updPeople
 end
 object updPeople: TFDUpdateSQL
 Connection = Conn
 end
 object FDPhysIBDriverLink1: TFDPhysIBDriverLink
 end
end

15. Change the FDConnection parameter according to your machine.

16. Now, we've to configure some data access stuff.

17. Double-click on qryPeople and the component editor shows up. Write the query
SELECT * FROM PEOPLE, and click on Execute. Hold the window open. This will
be the query used to generate all the CRUD statements.

18. If you have correctly connected qryPeople.UpdateObject to updPeople,
you should see the UpdateSQL Editor button on the right side of the component
editor form.

The qryPeople component editor showing the SQL and the button to configure the
TFDUpdateSQL linked to the qryPeople

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

183

19. Click on the UpdateSQL Editor button and you will get another component editor.
This time it is related to the updPeople component.

20. Select fields as shown in the following screenshot, click on Generate SQL, and then
click on OK. Now your updPeople component has been configured with all the SQL
statements required to correctly update the PEOPLE table.

The updPeople component editor used to configure the INSERT, UPDATE and DELETE SQL statements

21. Now, we've to create the methods used to create, retrieve, update, and delete
records. Go to the PeopleModuleU.pas code view. Declare the following
method in the public section of the class:
 public
 procedure CreatePerson(APerson: TPerson);
 procedure DeletePerson(AID: Integer);
 procedure UpdatePerson(APerson: TPerson);
 function GetPersonByID(AID: Integer): TPerson;
 function FindPeople(ASearchText: String;
 APage: Integer): TObjectList<TPerson>;
 function GetPeople: TObjectList<TPerson>;
 end;

22. Hit Ctrl + Shift + C to autogenerate methods bodies and fill them with the
following code:
procedure TPeopleModule.CreatePerson(APerson: TPerson);
var
 InsCommand: TFDCustomCommand;

Putting Delphi on the Server

184

begin
 InsCommand := updPeople.Commands[arInsert];
 Mapper.ObjectToFDParameters(InsCommand.Params, APerson,
 'NEW_');
 InsCommand.Execute;
 APerson.ID := Conn.GetLastAutoGenValue('gen_people_id');
end;

procedure TPeopleModule.DeletePerson(AID: Integer);
var
 DelCommand: TFDCustomCommand;
begin
 DelCommand := updPeople.Commands[arDelete];
 DelCommand.ParamByName('OLD_ID').AsInteger := AID;
 DelCommand.Execute;
end;

function TPeopleModule.FindPeople(ASearchText: String;
 APage: Integer): TObjectList<TPerson>;
var
 StartRec, EndRec: Integer;
begin
 Dec(APage); // page 0 => 0,9, page 1 => 10,19, page 3 =>
 20,29
 StartRec := (10 * APage);
 EndRec := StartRec + 10 - 1;
 qryPeople.Open('SELECT * FROM PEOPLE WHERE ' +
 'FIRST_NAME CONTAINING :SEARCH_TEXT_1 OR ' +
 'LAST_NAME CONTAINING :SEARCH_TEXT_2 OR ' +
 'EMAIL CONTAINING :SEARCH_TEXT_3 ' +
 'ORDER BY LAST_NAME, FIRST_NAME ' +
 Format('ROWS %d TO %d', [StartRec, EndRec]),
 [ASearchText, ASearchText, ASearchText]);
 Result := qryPeople.AsObjectList<TPerson>;
end;

function TPeopleModule.GetPersonByID(AID: Integer): TPerson;
begin
 qryPeople.Open('SELECT * FROM PEOPLE WHERE ID = :ID',
 [AID]);
 Result := qryPeople.AsObject<TPerson>;
end;

function TPeopleModule.GetPeople: TObjectList<TPerson>;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

185

begin
 qryPeople.Open;
 Result := qryPeople.AsObjectList<TPerson>;
end;

procedure TPeopleModule.UpdatePerson(APerson: TPerson);
var
 UpdCommand: TFDCustomCommand;
begin
 UpdCommand := updPeople.Commands[arUpdate];
 Mapper.ObjectToFDParameters(
 UpdCommand.Params,
 APerson, 'NEW_');
 UpdCommand.ParamByName('OLD_ID').AsInteger := APerson.ID;
 UpdCommand.Execute;
end;

23. These methods will be called by the controller capping data retrieved by the HTTP
request. As you can see, the CRUD methods do not have reference to the HTTP
environment, JSON object, or whatever is related to the particular environment.
These methods, and the whole class itself, can be used everywhere—even in a classic
client/server application. Remember that the dependencies between the classes
should be reduced as much as you can. More on this will be covered in the How it
works... section of this recipe.

24. Add the ObjectsMappers unit in the implementation uses clause of the
TPersonModule.

25. Just one more thing to do in the TPersonModule. Create the OnBeforeConnect
event handler on the TFDConnection and write the following code. Then, adapt it
to point to the correct database path on your system. The code is as follows:
procedure TPeopleModule.ConnBeforeConnect(Sender: TObject);
begin
 inherited;
 Conn.Params.Values['Database'] := '..\..\..\..\DATA\SAMPLES.IB';
end;

26. We're about to finish. Go back to the WebModuleU.pas file and create the
OnCreate event handler. Here, we've to configure the DelphiMVCFramework
starting point. It is really simple, just two lines of code:
procedure TwmMain.WebModuleCreate(Sender: TObject);
begin
 MVC := TMVCEngine.Create(Self);
 MVC.AddController(TPeopleController);
end;

Putting Delphi on the Server

186

27. The MVC variable must be declared in the private section of the class, and you
have to add the PeopleControllerU unit in the implementation uses clause.

28. Now your project should compile. If not, check the dependencies between all
the units.

29. On running the project, you get a sad console window that informs you that an HTTP
server is running on port 8080. Launch a browser (Google Chrome or Mozilla Firefox
if possible) and request the following URL: http://localhost:8080/people.

30. Your browser should show all the data available in the PEOPLE table as JSON array
of JSON objects:

The JSON array of JSON object returned by the http call from the browser

31. If you want to try something different, get a valid person ID from the list of the
PEOPLE (search for the ID: <some number>) and append it to the URL after a
slash. This should be the effect:

The JSON object representing a single person returned by the HTTP call from the browser

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

187

How it works...
Wow! This recipe is very long! However, it summarizes all the concepts already seen in the
previous recipes, so it's worth it.

The application is organized in three layers:

 f Controller (TPeopleController)

 � This takes care of all the machinery required to deserialize the JSON data
into Delphi objects

 � This coordinates the job with the Table Module

 f TDG (TPeopleModule)

 � This handles all the persistence requirements

 � This gets objects and persists them

 � This retrieves datasets and convert them to objects

 f Business objects (TPerson)

 � This implements all the business logic required by the domain problem. In
this sample, we don't have business logic; however, if present, it should be
inside the TPerson class.

When an HTTP request arrives to the server, the DMVCFramework router starts to find a
suitable controller using the MVCPath attributes defined on all its controllers.

When a matching controller and action is found, the request and response object are packed
in a TWebContext object and passed to the selected action. Here, we can read information
from the request and build the response accordingly.

All the action methods perform the following tasks:

 f Read information from the HTTP request

 f Invoke some methods on the TPersonModule instance

 f Build the response for the client

Let's have a look at the following action used to create a new PERSON object:

[MVCPath]
[MVCHTTPMethod([httpPOST])]
[MVCConsumes('application/json')]
procedure CreatePerson(CTX: TWebContext);

. . .

Putting Delphi on the Server

188

procedure TPeopleController.CreatePerson(CTX: TWebContext);
var
 Person: TPerson;
begin
 //read information from the request
 Person := CTX.Request.BodyAs<TPerson>;
 try

 //invoke some methods on the TPeopleModule instance
 FPeopleModule.CreatePerson(Person);

 //build the response for the client
 CTX.Response.Location := '/people/' +
 Person.ID.ToString;
 Render(201, 'Person created');

 finally
 Person.Free;
 end;
end;

What's that CTX.Response.Location line for? One of the RESTful features is the use of
hypermedia controls. The point of hypermedia controls is that they tell us what we can do next
and the URI of the resource we have to manipulate to do it. Instead of having to know where to
get our newly created person, the hypermedia controls in the response tell us where to get the
new person.

Another interesting action is mapped to POST /people/searches. The following is
the code:

[MVCPath('/searches')]
[MVCHTTPMethod([httpPOST])]
[MVCConsumes('application/json')]
procedure SearchPeople(CTX: TWebContext);

. . .

procedure TPeopleController.SearchPeople(CTX: TWebContext);
var
 Filters: TJSONObject;
 SearchText, PageParam: string;
 CurrPage: Integer;
begin
 //read informations from the requests
 Filters := CTX.Request.BodyAsJSONObject;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

189

 if not Assigned(Filters) then
 raise Exception.Create('Invalid search parameters');
 SearchText := Mapper.GetStringDef(Filters, 'TEXT');
 if (not TryStrToInt(CTX.Request.Params['page'], CurrPage))
 or (CurrPage < 1) then
 CurrPage := 1;

 //call some method on the TPeopleModule
 Render<TPerson>(FPeopleModule.FindPeople(SearchText, CurrPage));

 //prepare the response (also if render has been already called)
 CTX.Response.CustomHeaders.Values['dmvc-next-people-page'] :=
 Format('/people/searches?page=%d', [CurrPage + 1]);
 if CurrPage > 1 then
 CTX.Response.CustomHeaders.Values['dmvc-prev-people-page'] :=
 Format('/people/searches?page=%d', [CurrPage - 1]);
end;

This action is a bit longer, but the three steps are still clearly defined. This action executes a
search on the people table using a pagination mechanism. The URL to get the next and the
previous pages is returned along with the response in the dmvc-next-people-page and
dmvc-prev-people-page headers. So, clients don't have to know which kind of call they
have to do to get the second page; they can simply navigate through the returned information.

Now, this is a last note about the TPersonModule that heavily uses the DataSet helpers
introduced in the Serializing a dataset to JSON and back recipe. Look at the following code
used to get a person object by ID:

function TPeopleModule.GetPersonByID(AID: Integer): TPerson;
begin
 qryPeople.Open('SELECT * FROM PEOPLE WHERE ID = :ID', [AID]);
 //uses the dataset helper to convert a record to an object
 Result := qryPeople.AsObject<TPerson>;
end;

This could not be simpler! Also, the method to create a new person is really simple when using
some of the Mapper methods:

procedure TPeopleModule.CreatePerson(APerson: TPerson);
var
 InsCommand: TFDCustomCommand;
begin
 //gets the Insert statement contained in the TFDUpdateSQL
 InsCommand := updPeople.Commands[arInsert];

 //Maps the object properties to the command parameters

Putting Delphi on the Server

190

 Mapper.ObjectToFDParameters(InsCommand.Params, APerson, 'NEW_');

 //execute the statement
 InsCommand.Execute;

 //retrieve the last assigned ID
 APerson.ID := Conn.GetLastAutoGenValue('gen_people_id');
end;

There's more...
What a huge topic in this recipe! To test the RESTful service that you will develop from now on,
you can use the RESTDebugger.exe program provided since Delphi XE5 (in the bin folder),
or the free POSTMan Chrome extension (http://alturl.com/6ycza). These tools allow
you to send all the HTTP VERB requests while the browser, using only the address bar, can
only issue the GET request.

Remember that if you don't know well the fundamental principle of REST, you could break
all the benefits. Don't be tempted to put verbs on the URL, such as http://server.com/
people/create or http://server.com/people/get. This is not REST. This is a sort of
remote procedure call. It is not necessarily bad, but it is another thing—it's not REST. Also, be
coherent with the HTTP VERB used. All the HTTP methods must be idempotent but POST
and PATCH. So if your request is executed once, twice, or 1,000 times, the system will not
change further.

Read this article for a good overview on idempotence in HTTP:
http://restcookbook.com/HTTP%20Methods/idempotency/

Controlling remote applications using UDP
What's UDP? UDP is a connectionless protocol used by everyone every day, but it seems
that not too many people know it. However, it can really be useful to solve particular network
problems. Like TCP, UDP works at transport layer in the TCP/IP model, but they have very
different uses.

UDP
Compared to TCP, UDP is a simpler message-based, connectionless protocol. Connectionless
protocols do not set up a dedicated end-to-end connection; instead, communication is
achieved by transmitting information in one direction from source to destination without
verifying the readiness or state of the receiver. However, one primary benefit of UDP over TCP
is the application to the voice-over-Internet protocol (VoIP) where latency and jitter are the
primary concerns. It is assumed in VoIP UDP that the end users provide any necessary
real-time confirmation that the message has been received.

www.allitebooks.com

http://alturl.com/6ycza
http://restcookbook.com/HTTP%20Methods/idempotency/
http://www.allitebooks.org

Chapter 5

191

Here are some features of UDP as exposed by Wikipedia (http://en.wikipedia.org/
wiki/User_Datagram_Protocol):

 f Unreliable: When a message is sent, it cannot be known if it will reach its
destination; it could get lost along the way. There is no concept of acknowledgment,
retransmission, or timeout.

 f Not ordered: If two messages are sent to the same recipient, the order in which they
arrive cannot be predicted.

 f Lightweight: There is no ordering of messages, no tracking connections, and so on.
It is a small transport layer designed on top of IP.

 f Datagrams: Packets are sent individually and are checked for integrity only if they
arrive. Packets have definite boundaries which are honored upon receipt, which
means a read operation at the receiver socket will yield an entire message as it
was originally sent.

 f No congestion control: UDP itself does not avoid congestion, and it's possible for
high bandwidth applications to trigger congestion collapse, unless they implement
congestion control measures at the application level.

Getting ready
In this recipe, we'll use UDP to autoconfigure an application in a LAN. Let's say you have
some classic client/server applications (however, the same approach is valid for any type
of applications) in a LAN or a big LAN. Every application uses a database on a specific
machine and uses internal web services. Usually, in this scenario, you have some kind of
configuration stored somewhere on the client PC that is read at the startup. However,
what if the database IP change because something is changed on the network? Or, what if
some part of the configuration could be subject to change for some external reasons? If the
change is only about the IP, a simple internal DNS does the job. However, what about a port
change? Furthermore, what if this changes something else? Ok, I think that you got the point;
you have to change the configuration on all the machines (if you don't have some type
of software distribution, this could be a daunting and boring task). Let's think about a
well-known network service, the DHCP (http://en.wikipedia.org/wiki/Dynamic_
Host_Configuration_Protocol).

When a machine with dynamic IP configuration starts, the operating system sends a
broadcast on the network to ask for an IP. It doesn't know who will send the IP, and it doesn't
know if someone can reply with an IP. It doesn't know anything! In this situation, the DHCP
server replies to the broadcast with the assigned IP for that machine. The machine gets its IP
and can join the network. This is the same approach that we'll use in this recipe. We have a
database application that doesn't know where the database it should connect to is. So, this
sends a broadcast on the network saying: "Hey, I'm application X, which database should I
connect to?".

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

Putting Delphi on the Server

192

On the network, there is another program called ConfigDispatcher that replies to the
broadcast with the correct connection information for that specific application. So, the client
reads the ConfigDispatcher reply and can happily connect to the correct database. No
config files, no default server, no hardcoded names, but a simple autoconfiguration. Wow, this
is the power of UDP.

How to do it...
This recipe is composed of two projects: the ConfigDispatcher and the real application.
Let's start with the ConfigDispatcher.

1. Create a new VCL forms application and save it as ConfigDispatcher.

2. Drop three TMemo components on the form and name them MemoLog,
MemoConfigApp1, MemoConfigApp2.

3. In the MemoConfigApp1.Lines property, add the following lines:
Database=employee
Server=localhost

4. In the MemoConfigApp2.Lines property, add the following lines:
Database=erpdb
Server=192.168.3.4

5. In this recipe, we'll use only the first configuration. However, for the sake of
completeness, there is also a second (fake) configuration available that will
remain unused.

6. Drop a TidUDPServer component then drop three TLabel and arrange them
in the form as show in the following screenshot:

The ConfigDispatcher main form

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

193

7. Now, set the idUDPServer1 properties as follows (this is the relevant part of the
form dfm, so it should not be difficult to read):
object IdUDPServer1: TIdUDPServer
 BroadcastEnabled = True
 DefaultPort = 8888
 Active = True
end

8. Now, create the OnUDPRead event handler for the idUDPServer1 component and
fill it with the following code:
procedure TMainForm.IdUDPServer1UDPRead(
 AThread: TIdUDPListenerThread;
 const AData: TIdBytes;
 ABinding: TIdSocketHandle);
var
 ClientCommand, ClientConfig: string;
 CommandPieces: TArray<string>;
begin
 ClientCommand := BytesToString(AData);
 MemoLog.Lines.Add(ClientCommand);
 CommandPieces := ClientCommand.Split(['#']);
 if (Length(CommandPieces) = 2) and
 (CommandPieces[0] = 'GETCONFIG') then
 begin
 if CommandPieces[1] = 'APP001' then
 begin
 ClientConfig := MemoConfigApp1.Lines.Text;
 end;
 if CommandPieces[1] = 'APP002' then
 begin
 ClientConfig := MemoConfigApp2.Lines.Text;
 end;
 ABinding.Broadcast(ToBytes(ClientConfig),
 9999, ABinding.PeerIP);
 end;
end;

9. At this time, the project doesn't compile. Add the idGlobal unit in the uses clause
interface section and it should.

Putting Delphi on the Server

194

The ConfigDispatcher is finished. Let's start the ClientDBApplication.

1. Add to the project group a new VCL forms application (by navigating to ProjectGroup
| Add New Project | VCL Forms Application).

2. Save the new project as ClientDBApplication and give a meaningful name to
the form.

3. Drop the following components on the main form and set their properties as follows:
object FDConnection1: TFDConnection
 Params.Strings = (
 'User_Name=sysdba'
 'Password=masterkey'
 'Protocol=TCPIP'
 'DriverID=IB')
 ConnectedStoredUsage = [auDesignTime]
 LoginPrompt = False
end

object FDQuery1: TFDQuery
 Connection = FDConnection1
 SQL.Strings = ('select * from customer')
end

object DataSource1: TDataSource
 DataSet = FDQuery1
end

object FDPhysIBDriverLink1: TFDPhysIBDriverLink
end

object FDGUIxWaitCursor1: TFDGUIxWaitCursor
end

object Timer1: TTimer
 Interval = 3000
end

object IdUDPServer1: TIdUDPServer
 DefaultPort = 9999
 Active = True
end

4. Drop TDBGrid and TDBNavigator components and hook them to DataSource1.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

195

5. Now, if you try to activate the FDQuery1, you should see the query data in the grid.

6. Double-click on the Timer1 and fill in the OnTimer event with the following code:
procedure TMainFormClient.Timer1Timer(Sender: TObject);
begin
 Caption := 'Waiting for configuration...';
 IdUDPServer1.Broadcast(
 ToBytes('GETCONFIG#APP001'), 8888);
end;

7. Include the idGlobal unit in the uses interface clause.

8. Now, create the OnUDPRead event handler for the idUDPServer1
component and fill it with the following code:
procedure TMainFormClient.IdUDPServer1UDPRead(
 AThread: TIdUDPListenerThread; const AData: TIdBytes;
 ABinding: TIdSocketHandle);
var
 ServerConfig: TStringList;
 i: Integer;
begin
 Timer1.Enabled := False;
 try
 Caption := 'Configuration OK...';
 ServerConfig := TStringList.Create;
 try
 ServerConfig.Text := BytesToString(AData);
 for i := 0 to ServerConfig.Count - 1 do
 begin
 FDConnection1.Params.Values[ServerConfig.Names[i]]
 :=
 ServerConfig.ValueFromIndex[i];
 end;
 finally
 ServerConfig.Free;
 end;
 FDConnection1.Open;
 FDQuery1.Open;
 Caption := 'Connected';
 except
 Caption := 'Wrong configuration or cannot connect';
 Timer1.Enabled := true;
 end;
end;

Putting Delphi on the Server

196

9. Now, check that the InterBase service is started on your machine. If it's not started,
start it.

10. Run the ConfigDispatcher without debugging and then run the
ClientDBApplication. After 3 seconds, you should see the data in the grid.
The configuration has been requested with a broadcast to the ConfigDispatcher,
then has been parsed, understood, and used to connect to the database.

11. You can try to start the ClientDBApplication first, wait for 6 seconds, and then
start the ConfigDispatcher. It just works.

How it works...
This is a long recipe but the behavior is really simple. The ConfigDispatcher uses two
memos to maintain the strings to send to the client that request a specific configuration.

When a client requests a configuration, the server receives a command string similar to
the following:

GETCONFIG#APP001

It parses the command and replies to the client with the contents of one of the memos.
For APP001, it sends the MemoConfigApp1 content, while for APP002 it sends the
contents of MemoConfigApp2. That's it, the ConfigDispatcher job is finished.

The client is simple too. When it starts, it waits for 3 seconds, gets configured in the timer, and
asks for a configuration. If some data arrive on the UDP server, the UDPRead event handler
is called. The code disables the timer, reads the data sent by the ConfigDiaspatcher,
and tries to use it to configure it to database connection. If the configuration is correct, the
ClientDBApplication connects to its database. Otherwise, the timer is re-enabled and
after 3 seconds, another configuration request is broadcasted and the cycle goes on until the
client is able to connect.

You can see that the application talks to each other without any kind of predefined knowledge
or configuration. This is the power of UDP!

There's more...
Network programming and network protocols are a really large topic. As a software
developer, you have to be aware—if not yet—of the possibilities that the standard
networking infrastructure offers to you.

The UDP protocol allows you to create strange applications that find and talk to each other
using broadcasts. You could even create a complex application protocol based on UDP to
remotely control some running applications. In the chapter devoted to mobile programming,
there is another sample of the UDP power.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

197

Here are some more Delphi samples of UDP programming:

 f Chat application with Delphi source at
http://delphi.about.com/library/weekly/aa101105a.htm

 f A fun utility to invoke fake and harmless BSODs on colleagues' machines at
http://www.atozed.com/indy/demos/10/index.en.aspx

Using App Tethering to create a companion
app

App Tethering is one of the features introduced in RAD Studio XE6. App Tethering allows
you to connect applications to exchange in a so-called serverless mode. In other words, this
gives to your applications the ability to interact with other applications running either on the
same machine or on a remote machine without using a server because the applications
communicate directly with each other.

Currently, App Tethering works between applications running on the same LAN, but
their features do not depend on a specific transport or protocol. New protocols can be
implemented using the app tethering API.

To enable an application to use app tethering, only two components are required:

 f TTetheringManager: This is used to discover other applications that are using app
tethering on the same LAN, or even on the same machine or devices

 f TTetheringAppProfile: This is used to define the actions and data that
your application shares with other applications previously paired using the
TTetheringManager

The App Tethering technology roughly follows the Bluetooth model, where there are a set of
Bluetooth devices that are able to interact with each other and each application exposes a
set of profiles usable by the other applications.

One of the strengths of this technology is that it is completely independent of the platform on
which the resultant application runs. You can use App Tethering to connect a VCL application
to a mobile app running on Android or iOS, or between a FireMonkey MacOSX application and
an iOS app, or even a VCL Windows service to a FireMonkey desktop application. I think you
got the point; you can use App Tethering to create an application network that is able to make
your applications more usable.

http://delphi.about.com/library/weekly/aa101105a.htm
http://www.atozed.com/indy/demos/10/index.en.aspx

Putting Delphi on the Server

198

App Tethering is designed to develop so-called companion apps. What's a companion app?
Well, a companion app is an app designed to make another application more usable. Let's
say you developed a media center running on an Android TV or on a PC. You can play videos
and music, but how to control the player while you are on the sofa? You require a remote
controller! Using App Tethering, you can create a companion app running on your phone able
to control the media center to play and stop a video, to go forward, or to go to the next video.
The remote controller is a typical companion app of your media center.

Getting ready
There are some nice examples of app tethering on the Internet and some others have been
provided by Embarcadero. In this recipe, we'll talk about a completely new app. We'll develop
a "presenter assistant" (I've just coined this term!). What's a presenter assistant? Well, during
my trainings, while I'm talking at conferences or while I present the new version of Delphi
to the Italian community, I use a lot of slides. So, I run my MS PowerPoint presentation (or
OpenOffice.org Impress) and talk over the slides about the new Delphi features. For the past
few years, I have been using a presenter pointer that allows me to go to the next slides easily
without going back to the PC and pressing the Space bar key (because I walk a lot during the
presentation, usually I'm too far from the PC to go back at each slide). A "presenter assistant"
is a small device with two buttons: NEXT and PREVIOUS. However, I love so much to talk
about programming (and Delphi) that often I run out of time. Here's the idea for this recipe: a
Presenter Assistant app running on my Android smartphone that allows me to go to the next
slide, to the previous slide, and also to display how many minutes I have before the end of the
speech. Here's the Presenter Assistant app while doing its job:

The Presenter Assistant app running on my Android phone

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

199

The Presenter VCL application is in charge of mimicking a keyboard key press when the
mobile app sends the proper commands and to send the remaining minutes to the mobile
app every 5 seconds (we don't require a clock; an update every 5 seconds is enough).
The following is the screenshot of the VCL application:

The VCL application that controls the desktop application showing the slides

In the App Tethering model, there isn't a server or a client. There is an application (or an app)
that connects to other apps, but then the two or more apps are peers.

Each application can do the following:

 f Share resources: When other apps subscribe to a shared resource, every time the
shared resource changes all the subscribed apps are notified following the publish/
subscribe model.

 f Share actions: An app can discover and invoke actions published by other apps.

 f Send strings: One of the apps can send a string to one of the other apps. The string
can contain anything, even a complex JSON object.

 f Send streams: One of the apps can send a stream to one of the other apps.
The stream can also contain binary data such as an image or an MP3 file.

The presenter assistant we're talking about is very simple. The mobile app has to send two
strings to the desktop application. The first when we want the next slide and the second when
we want the previous slide. The VCL application running on the PC has to publish a resource
showing the remaining minutes.

How to do it...
Open the project group in Chapter5\RECIPE08. There are two projects: Presenter.dproj
(the VCL application) and PresenterRemote.dproj (the Android app).

Putting Delphi on the Server

200

Let's start showing how the applications work. Run the presenter application, and then run
the PresenterMobile app on your phone and press Connect. If your phone is connected to the
same network as your PC, you should be able to connect and see something like Connected
to: 192.168.1.101$2020 on your phone. This means that the mobile app is connected to
the VCL application listening on port 2020. Now go to your desktop, write an integer number
in the SpinEdit, and press Start Speech. The application goes to the taskbar. Now, open MS
PowerPoint with a presentation (or another program which is sensible to the left and right
arrow, also the Delphi source code editor is good) and press repeatedly the left or right
button in the mobile app. You should see the slides (or the cursor) moving.

The following schema shows the communication between the mobile app and the VCL
application after the discovering and pairing phases.

The communication between the mobile app and the VCL application

When the PresenterMobile app sends the NEXT command (using SendString) the Presenter
application receives it and sends a VK_RIGHT Windows keyboard event. By sending a
Windows keyboard key event, the application is mimicking a user who is using the keyboard,
so the key sent is intercepted by the window which has got the focus in that moment (just
like a normal keyboard works). If in the foreground there is an MS PowerPoint (or OpenOffice.
org Impress) presentation, you get the next slide (because if you hit the right arrow during a
presentation, you go to the next slide). The same is applicable for the PREV command, which
in turn sends a VK_LEFT key to MS PowerPoint.

The relevant part about this message exchange is shown as follows:

const
 NEXT_SLIDE = Ord(VK_RIGHT);
 PREV_SLIDE = Ord(VK_LEFT);
 DEFAULT_MINUTES = 30;

procedure SendKey(const C: Word);
var
 kb: TInput;

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

201

begin
 kb.Itype := INPUT_KEYBOARD;
 kb.ki.wVk := C;
 kb.ki.wScan := MapVirtualKey(C, 0);
 kb.ki.dwFlags := 0;
 SendInput(1, kb, SizeOf(kb));
 kb.ki.dwFlags := KEYEVENTF_KEYUP;
 SendInput(1, kb, SizeOf(kb));
end;

procedure TMainForm.TetheringAppProfile1ResourceReceived(
 const Sender: TObject;
 const AResource: TRemoteResource);
var
 Cmd: string;
begin
 Caption := AResource.Value.AsString;
 if AResource.Hint.Equals('cmd') then
 begin
 Cmd := AResource.Value.AsString;
 if Cmd.Equals('prev') then
 SendKey(PREV_SLIDE)
 else if Cmd.Equals('next') then
 SendKey(NEXT_SLIDE);
 end;
end;

How about the connection between the applications? For this app, I've used the Group feature
of App Tethering. As you know, there are two ways to connect your applications:

 f Define two applications as belonging to the same group and use automatic
discovering and pairing. This approach is very simple, but not so flexible.

 f Obtain a list of discovered applications and then request to pair with specific
applications. This approach is more flexible but requires a bit of work.

Considering the scenario, I've used the Group property and the Autoconnect feature.
Here's the code under the Connect button in the mobile app:

procedure TMainForm.btnConnectClick(Sender: TObject);
begin
 TetheringManager1.AutoConnect(2000);
end;

In order to make the AutoConnect feature work properly, both the TetheringAppProfile
components must have the same value in the Group property. In our case, the value is com.
danieleteti.presenters.

Putting Delphi on the Server

202

Also, the presenter application shares a resource with the PresenterMobile. In order to
automatically subscribe to the resource update notification, the resource's name must
be the same on all the paired apps, as shown in the following screenshot:

The resources configuration

With this configuration, you can simply update the value of the resource in the desktop
application using the following code:

TetheringAppProfile1.Resources.
 FindByName('time').Value := MinutesLeft;

Updating the local resource time causes an update to the remote resource with the same
name and the following event handler is executed on the mobile app:

procedure TMainForm.TetheringAppProfile1Resources0ResourceReceived
 (const Sender: TObject; const AResource: TRemoteResource);
begin
 lblMinutes.Text := AResource.Value.AsString +
 sLineBreak + ' minutes left';
end;

There's more...
App Tethering is a nice technology. However, it is not a replacement for a full-fledged server,
but a good tool to easily create companion applications. Here's some documentation about it:

 f A fast introduction to App Tethering with Delphi XE6 at
https://www.youtube.com/watch?v=oeMQdvxi560

 f Using App Tethering at http://docwiki.embarcadero.com/RADStudio/XE6/
en/Using_App_Tethering

www.allitebooks.com

https://www.youtube.com/watch?v=oeMQdvxi560
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Using_App_Tethering
http://www.allitebooks.org

Chapter 5

203

 f Adding App Tethering to Your Application at http://docwiki.embarcadero.
com/RADStudio/XE6/en/Adding_App_Tethering_to_Your_Application

 f Connecting to Remote Applications Using App Tethering at http://docwiki.
embarcadero.com/RADStudio/XE6/en/Connecting_to_Remote_
Applications_Using_App_Tethering

 f Sharing and Running Actions on Remote Applications Using App Tethering at
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_and_
Running_Actions_on_Remote_Applications_Using_App_Tethering

 f Sharing Data with Remote Applications Using App Tethering at http://docwiki.
embarcadero.com/RADStudio/XE6/en/Sharing_Data_with_Remote_
Applications_Using_App_Tethering

 f Fun with Delphi XE6 App tethering and barcodes at http://fixedbycode.
blogspot.it/2014/04/fun-with-delphi-xe6-app-tethering-and.html

Creating DataSnap Apache modules
One of the Delphi features most awaited by server side Delphi developers is the support for
the building of Apache webserver module. Delphi XE6 brings this feature! The most recent
Apache versions supported are Versions 2.0, 2.2 and 2.4. An apache module is compatible
only with the specific version for which it has been compiled. So, be sure about the apache
version you have to deploy your module before creating the project. However, it's possible to
change the target apache version just by changing its unit name.

Getting ready
In this recipe, we'll create a very simple REST service with only one method, which returns a
list of people. The service will be built using the Embarcadero DataSnap framework and the
service itself will be packaged as an Apache Webserver module. The real goal of this
recipe is to show how to use the Delphi strength in creating Apache module, and a very
light introduction to DataSnap.

How to do it...
This recipe has the following steps:

1. The Apache HTTP Server (httpd) is a project of The Apache Software Foundation and
has been the most popular web server on the Internet since April 1996. On Windows,
one of the recommended binary distributions is maintained by the Apache Lounge
community. Go to http://www.apachelounge.com/download/ and download
the recently updated 2.4.x Version as a ZIP file. In this recipe, we'll use the Win32
Version, so download that one.

http://docwiki.embarcadero.com/RADStudio/XE6/en/Adding_App_Tethering_to_Your_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Adding_App_Tethering_to_Your_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Connecting_to_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Connecting_to_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Connecting_to_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_and_Running_Actions_on_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_and_Running_Actions_on_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_Data_with_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_Data_with_Remote_Applications_Using_App_Tethering
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sharing_Data_with_Remote_Applications_Using_App_Tethering
http://fixedbycode.blogspot.it/2014/04/fun-with-delphi-xe6-app-tethering-and.html
http://fixedbycode.blogspot.it/2014/04/fun-with-delphi-xe6-app-tethering-and.html
http://www.apachelounge.com/download/

Putting Delphi on the Server

204

2. Unzip the Apache distribution in a folder named Apache24 (for example,
C:\DEV\Apache24).

3. The Apache main configuration is contained in the httpd.conf file in C:\DEV\
Apache24\conf\. Open it with a good text editor. This file contains all the main
configurations and includes a bounce of other configuration files. Configuring Apache
is easy; however, in this recipe, we'll configure it to let it run our module. Let's start
with a very basic configuration; however, the http.conf syntax can be complex,
so pay attention to the following steps.

4. Look for ServerRoot. Currently, it should look like this:
ServerRoot "c:/Apache24"

5. Change the folder name to C:/DEV/Apache24. Please note that we're using
/ as folder separator and not \. Also, don't terminate the folder name with a
trailing slash. Now the line should look like this:
ServerRoot "c:/DEV/Apache24"

6. Look for DocumentRoot. This path is where static files are placed. Currently,
this should look like this:
DocumentRoot "c:/Apache24/htdocs"
<Directory "c:/Apache24/htdocs">

7. Change the folder name to C:/DEV/Apache24/htdocs on the two lines:
DocumentRoot "c:/DEV/Apache24/htdocs"
<Directory "c:/DEV/Apache24/htdocs">

8. Look for ServerName. The ServerName directive gives the name and port
that the server uses to identify itself. Currently, the line of code is commented
as follows:
#ServerName www.example.com:80

9. Just after the commented line, add the following line:
ServerName localhost:80

10. Let's test if our Apache is correctly configured. Open a command prompt,
go to the C:\DEV\Apache24 folder, and run the following command:
bin\httpd.exe

11. Errors will be printed on the standard output. If no errors have been printed, launch
a browser and navigate to http://localhost. You should get a white page with
It works! text on it. If so, your Apache installation is running correctly. Now, Apache
is running in application mode. It is possible to install it as a service with a simple
command that we'll see later.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

205

12. Note that we are configuring Apache just to run our modules. It is not configured to
be exposed on the Internet. So, please read carefully the documentation about the
configuration or ask some Apache expert before letting your server go into the wild!

13. Terminate Apache by pressing Ctrl + C, leave the command prompt for a moment,
and go back to Delphi.

14. Let's create our DataSnap WebBroker project as Apache 2.4 module.

15. Go to File | New | Other, and then go to Delphi Projects | DataSnap Server
| DataSnap WebBroker Application.

16. The wizard asks which kind of project we're about to create. Select Apache dynamic
link module and click on Next (as shown in the following screenshot).

The DataSnap Wizard. We choose the Apache module option

Putting Delphi on the Server

206

17. Then, the wizard asks which Apache version our module will be built for. Select
Apache version 2.4, name it datasnap_module, and click on Next.

The wizard allows us to define the Apache module name and the target Apache version for the module

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

207

18. On the next screen, the wizard asks about the functionalities that we want to include
in our DataSnap module. Leave the defaults and click on Next.

Let the wizard include some sample methods in the DataSnap module

Putting Delphi on the Server

208

19. In the next screen, select TDataModule and click on Finish.

Using the TDataModule as ancestor class we got a design surface without the overhead of the
IAppServer interface that we'll not use

20. Delphi has created a complete Apache 2.4 module containing a DataSnap REST
server. Wow! Now let's add some features to it.

21. Save the project using the default names.

22. Open ServerMethodsUnit1.pas, make the designer visible, and
drop on it a TFDConnection and a TFDQuery. Connect the TFDQuery to the
TFDConnection, and then configure the TFDConnection to point at the sample
database in the DATA folder contained in this recipe. The connection configuration
parameters should be similar to the following:
Database=C:\DEV\Chapter05\CODE\RECIPE08\DATA\SAMPLES.IB
User_Name=sysdba
Password=masterkey
DriverID=IB

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

209

23. Go to the code editor and declare the following method in the public section of the
TDataModule:
public
 . . . //other methods
 function GetEmployees: TJSONArray;
end;

24. Press Ctrl + Shift + C to implement the method body and fill it with the
following code:
function TServerMethods1.GetEmployees: TJSONArray;
begin
 FDQuery1.Open('SELECT * FROM PEOPLE');
 Result := FDQuery1.AsJSONArray;
end;

25. Go to the implementation uses clause and add the ObjectsMappers
unit (it is a unit contained in the DelphiMVCFramework project that we'll use
to do standard DataSet serialization).

26. Build the project. Now, our Apache module is ready, but how to test and debug it?
As the first thing, we've to put the compiled DLL in the right place. To allow Apache
loads, our module is useful to have it at the same level of the built-in modules. Go to
Project | Options | Delphi and write in the Output directory section, the C:\DEV\
Apache24\modules\ path as shown, then press OK:

Configure the project output directory to compile directly where Apache looks for modules

27. Compile the project and go back to the httpd.conf file.

Putting Delphi on the Server

210

28. Look for the LoadModule string in the file. You will find a lot of lines with this
directive and many of them are commented. Just after the last LoadModule line
(doesn't matter if it is commented or not), add the following lines and save the file:
 LoadModule datasnap_module modules/mod_datasnap.dll

 <Location /api>
 SetHandler mod_datasnap-handler
 </Location>

29. Now, go back to the command prompt. Go to the Apache24 folder under
C:\DEV\ and launch the following command:
bin\httpd.exe

30. Go to a browser, and navigate to the http://localhost/api/datasnap/rest/
TServerMethods1/getemployees URL. You should get the DataSnap JSON
response from the Apache module just created.

31. How to debug our module? Terminate Apache by pressing Ctrl + C from the
command line and go back to Delphi.

32. Go to Run | Parameters, configure the values as shown in the following screenshot,
and click on OK:

Let's set up the debugger to debug the module. Note the –X parameter passed to the
httpd.exe executable.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5

211

33. Now, Delphi will start Apache for us and we'll be able to debug the module as for any
Delphi program. The –X parameter passed to httpd.exe launches Apache in the
debug mode with only one worker, so Delphi doesn't need to debug the Web server
spawned processes.

34. Run the project. Apache will silently start, launched by Delphi, and our module is
loaded by the httpd.exe process. Now, we are able to debug the module using
breakpoints and all the ordinary things.

How it works...
Apache is configured to load a particular module, our module. That source code of that
module is opened in the Delphi IDE. When Delphi compiles the DLL module, it writes the
module where Apache is expecting. Just after the compilation, Delphi launches Apache in the
application mode with the –X parameters (avoiding spawned processes). Apache loads the
DLL as configured in the httpd.conf file, and Delphi attaches its debugger to the httpd.
exe process and to its datasnap_module.dll file. This approach is valid for any DLL that
is loaded at runtime by some other software, and it is still valid for every WebBroker program
compiled as Apache module or ISAPI DLL.

There's more...
There were a lot of concepts in this recipe. DataSnap is a complex and powerful framework
from Embarcadero able to create TCP/IP and HTTP/S servers. I have held many training
sessions on it, and suggest you to give it a try. It is also present in Delphi XE6 Enterprise
and more. Here are some links if you want to learn more:

 f DataSnap Overview and Architecture at http://docwiki.embarcadero.com/
RADStudio/XE6/en/DataSnap_Overview_and_Architecture

 f Using a DataSnap Server with an Application at http://docwiki.embarcadero.
com/RADStudio/XE6/en/Tutorial:_Using_a_DataSnap_Server_with_an_
Application

 f Using a REST DataSnap Server with an Application at http://docwiki.
embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_REST_
DataSnap_Server_with_an_Application

http://docwiki.embarcadero.com/RADStudio/XE6/en/DataSnap_Overview_and_Architecture
http://docwiki.embarcadero.com/RADStudio/XE6/en/DataSnap_Overview_and_Architecture
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_REST_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_REST_DataSnap_Server_with_an_Application
http://docwiki.embarcadero.com/RADStudio/XE6/en/Tutorial:_Using_a_REST_DataSnap_Server_with_an_Application

Putting Delphi on the Server

212

Now, let's look at something about the Apache webserver.

Apache HTTP Server security tips can be found at the following URL:

http://httpd.apache.org/docs/current/misc/security_tips.html

After you have configured and secured your Apache webserver, you can install it as a Windows
service using the following command line:

.\bin\httpd.exe -k install -n "My DataSnap Server"

To uninstall, use the following command line:

.\bin\httpd.exe -k uninstall -n "My DataSnap Server"

In this way, you can package a customized Apache distribution to deploy and run your custom
modules. I do it very often with my services that have to be published on the Internet, because
Apache is stronger and more secure compared to the Delphi built-in web server based on
INDY (to each his own).

However, even if in this recipe we've used a dedicated Apache installation to host our module,
you can also use an already deployed instance (and often you will do so). The deployment
process is the same: copy your module in some path accessible from the webserver, change
the httpd.conf file to load your module, and restart the server. That's it!

www.allitebooks.com

http://httpd.apache.org/docs/current/misc/security_tips.html
http://www.allitebooks.org

6
Riding the Mobile

Revolution with
FireMonkey

In this chapter, we will cover the following recipes:

 f Taking a photo, applying effects, and sharing it
 f Using listview to show and search local data
 f Do not block the main thread!
 f Using SQLite databases to handle a to-do list
 f Using a styled TListView to handle a long list of data
 f Taking a photo and location and sending it to a server continuously
 f Talking to the backend
 f Making a phone call from your app!
 f Tracking the application's life cycle

Introduction
In this chapter, we'll see how to develop mobile apps using Delphi. The recipes in this chapter
require a working development configuration of your PC and in the case of iOS, your Mac to
talk with the Android or iOS device. A detailed tutorial on how to properly configure your system
for this purpose can be found on the Embarcadero DocWiki. To develop and deploy an app for
iOS, you require an Apple computer and an actual iOS device, while to develop and deploy for
Android, you need to have only the device. There is also an emulator in the SDK where you can
deploy an app but, currently, it is very slow; if you want to really develop for Android, having an
actual device where deploying is faster than using an emulator is recommended.

Riding the Mobile Revolution with FireMonkey

214

Visit the following links for more information and relevant documentation that
will help you to configure different environments:

 f For Android configuration: The Set Up Your Development
Environment on Windows PC (Android) documentation can be found
at http://docwiki.embarcadero.com/RADStudio/XE5/
en/Mobile_Tutorial:_Set_Up_Your_Development_
Environment_on_Windows_PC_(Android)

 f For iOS configuration: The Set Up Your Development Environment
on the Mac (iOS) documentation can be found at http://
docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_
Tutorial:_Set_Up_Your_Development_Environment_on_
the_Mac_(iOS)

 f For Windows configuration: The Set Up Your Development
Environment on Windows PC (iOS) documentation can be found at
http://docwiki.embarcadero.com/RADStudio/XE5/
en/Mobile_Tutorial:_Set_Up_Your_Development_
Environment_on_Windows_PC_(iOS)

Taking a photo, applying effects, and
sharing it

This recipe will introduce the mobile development world using a simple app that shows how to
take a photo directly from the camera or from the photo library, apply some effects to it, and
then share it using one of the installed apps on the device.

Getting ready
This recipe makes an extensive use of Delphi actions. Actions are an implementation of the
GoF Command design pattern and are an important tool for the Delphi developer since the
initial versions of Delphi. You can use them as much as you can. In the mobile era, actions are
even more important and useful. Indeed, actions can be used to execute common tasks such
as taking a photo from camera, getting a photo from the library, or sharing some content with
the other apps. Here's how our app will look:

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Tutorial:_Set_Up_Your_Development_Environment_on_Windows_PC_(Android)
http://www.allitebooks.org

Chapter 6

215

The Photo with Effects app with buttons on the top; three out of four buttons are bound to standard actions

How to do it...
Now we are about to create our first FireMonkey mobile app. Let's start!

1. Create a new mobile app by navigating to File | New | FireMonkey mobile
application – Delphi.

2. Select the Header/Footer template and click on OK.

3. The IDE has just created a base for us. Name the form as MainForm and let's add
our logic and adapt the UI.

4. Select the HeaderLabel label and change its Text property to Photos with Effects.

5. Select the TToolbar component named Footer and delete it.

6. Now, drop a TPanel component and align it to the alTop value so that it'll be just
below the header.

7. Add four buttons to the just dropped TPanel component. Align three of them to
the left-hand side and the other one to the right-hand side. Now, starting from the
left-hand side, set the following values for their StyleLookup property:

 � cameratoolbutton

 � organizetoolbutton

 � composetoolbutton

 � actiontoolbutton

Riding the Mobile Revolution with FireMonkey

216

8. Now the buttons should look like the one in the previous screenshot.

9. Drop a TImage component in the center of the form and align it to Client. This
component will be our main working area.

10. Set TImage.MarginWrapMode to iwFit.

11. Drop a TListView component at the center of the form, make it a bit wider, and name
it lvEffects. This listview will be used to show the available effects to the user.

12. Drop a TActionList component, double-click on it, and then, from the little
menu button on the left-hand side, click on New Standard Action (or you
can use Ctrl + Ins).

13. From the resultant window, select TTakePhotoFromCameraAction and click
on OK. Repeat the process and add the TTakePhotoFromLibraryAction and
TShowShareSheetAction actions. Note that these actions are actually invisible
components with properties and events just like a persistent field in a dataset. In a few
moments, we'll be back to these components to customize their default behaviors.

14. Starting from the left-hand side, connect the following actions to the buttons placed
in the TPanel component at the top.

1. Set the first Action button to TakePhotoFromCameraAction1

2. Set the second Action button to TakePhotoFromLibraryAction1

3. Do not assign an action, but name it btnEffects

4. Set the fourth Action button to ShowShareSheetAction1

15. In the app, there will be a mechanism to dynamically load the available effects
inspecting the TFilterEffect descendants placed on the form. So, we can simply
drop some effects on the form and the app will automatically load them in a list
allowing the user to use them. Drop the following effects on the form: TEmbossEffect,
TRadialBlurEffect, TContrastEffect, TColorKeyAlphaEffect, TInvertEffect,
TSepiaEffect, TTilerEffect, TPixelateEffect, TToonEffect, TPencilStrokeEffect,
TRippleEffect, TWaveEffect, TWrapEffect, and TInnerGlowEffect.

16. Now we've to write some code. In the private section of the TMainForm class,
declare the following instance members:
private
 FItemsEffectsMap: TDictionary<Integer, TFilterEffect>;
 FUndoEffectsList: TObjectStack<TFilterEffect>;
 FUndoEffectItem: TListViewItem;
 FTopWhenShown: Extended;
 procedure LoadPhoto(AImage: TBitmap);
 procedure RecalcMenuPosition;
 procedure RemoveCurrentEffect(ARemoveFromList: boolean);
 function EffectNameByClassName(
 const AClassName: String): String;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

217

17. Hit Ctrl + Shift + C to create empty methods and fill them with the following code:
procedure TMainForm.LoadPhoto(AImage: TBitmap);
begin
 Label1.Text := '';
 RemoveCurrentEffect(False);
 FUndoEffectsList.Clear;
 Image1.Bitmap.Assign(AImage);
end;

procedure TMainForm.RecalcMenuPosition;
begin
 FTopWhenShown := ClientHeight / 2 - lvEffects.Height / 2;
 lvEffects.Height := ClientHeight / 2;
 lvEffects.Position.X := ClientWidth / 2 -
 lvEffects.Width / 2;
end;

procedure TMainForm.RemoveCurrentEffect(ARemoveFromList: boolean);
begin
 if FUndoEffectsList.Count = 0 then
 Exit;
 Image1.RemoveObject(FUndoEffectsList.Peek);
 if ARemoveFromList then
 FUndoEffectsList.Pop;
 Image1.Repaint;
end;

function TMainForm.EffectNameByClassName(
 const AClassName: String): String;
begin
 Result := AClassName.Substring(1);
 Result := TRegEx.Replace(Result, '[A-Z]', ' $0').TrimLeft;
end;

18. To compile this code, add System.Generics.Collections in the uses
interface section and System. RegularExpressions in the uses
implementation section. Build the project just to ensure that everything is alright.

19. Now create the OnCreate event handler for the form and add the following code:
procedure TMainForm.FormCreate(Sender: TObject);
var
 eff: TFmxObject;
 lbi: TListViewItem;
begin

Riding the Mobile Revolution with FireMonkey

218

 FItemsEffectsMap := TDictionary<Integer, TFilterEffect>.Create;
 FUndoEffectsList := TObjectStack<TFilterEffect>.Create(False);
 lvEffects.Position.Y := -lvEffects.Height;
 lvEffects.BeginUpdate;
 try
 FUndoEffectItem := lvEffects.Items.Add;
 FUndoEffectItem.Text := 'Undo';

 for eff in Children do
 begin
 //if it is an effect, add it to the listview and to the
 //dictionary. Use the class name to create a friendly name
 if eff is TFilterEffect then
 begin
 lbi := lvEffects.Items.Add;
 lbi.Text := EffectNameByClassName(eff.ClassName);
 FItemsEffectsMap.Add(lbi.Index, TFilterEffect(eff));
 end;
 end;
 finally
 lvEffects.EndUpdate;
 end;
 lvEffects.ApplyStyleLookup;
end;

20. Now create the FormResize and FormShow event handlers. In the body section of
these event handlers, call the RecalcMenuPosition procedure.

21. Select the listview and create the OnItemClick event handler. This event will be
called when the user selects an effect from the list. Now, we've to remove, with an
animation, the list from the form and apply the effect. Fill the event handler with
this code:
procedure TMainForm.lvEffectsItemClick(
 const Sender: TObject;const AItem: TListViewItem);
begin
 lvEffects.AnimateFloat(
 'Position.Y', -lvEffects.Height, 0.3,
 TAnimationType.&In,
 TInterpolationType.Quadratic);

 if AItem = FUndoEffectItem then // undo effect
 begin
 RemoveCurrentEffect(true);
 if FUndoEffectsList.Count > 0 then
 Image1.AddObject(FUndoEffectsList.Peek);

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

219

 end
 else
 begin // apply new effect
 RemoveCurrentEffect(False);
 FUndoEffectsList.Push(FItemsEffectsMap[AItem.Index]);
 Image1.AddObject(FUndoEffectsList.Peek);
 end;
 Image1.Repaint;
end;

Now we've to create something that is able to show the list of available effects
when the user needs to apply one of them. The effect list will drop down from the
top of the form with a bouncing effect and will go away in the same way (but in a
reversed manner).

22. Create btnEffects on the click event handler and fill it with the following code:
procedure TMainForm.btnEffectsClick(Sender: TObject);
begin
 if FUndoEffectsList.Count = 0 then
 FUndoEffectItem.Text := '<No effect to undo>'
 else
 FUndoEffectItem.Text := '[Undo ' +
 EffectNameByClassName(FUndoEffectsList.Peek.ClassName) +
 ']';
 lvEffects.AnimateFloat('Position.Y', FTopWhenShown, 0.6,
 TAnimationType.Out, TInterpolationType.Bounce);
 lvEffects.ApplyStyleLookup;
end;

23. We've to customize the actions' behaviors. Double-click on TActionList1, select the
ShowShareSheet1 action, create the OnBeforeExecute event handler, and then
fill it with the following code:
procedure TMainForm.ShowShareSheetAction1BeforeExecute(
 Sender: TObject);
begin
 if FUndoEffectsList.Count > 0 then
 FUndoEffectsList.Peek.ProcessEffect(nil, Image1.Bitmap, 0);
 ShowShareSheetAction1.Bitmap.Assign(Image1.Bitmap);
end;

24. Create the OnDidFinishTaking event handler for the
TakePhotoFromCameraAction1 and TakePhotoFromLibraryAction1 actions and fill
both with the following code:
procedure TMainForm.TakePhotoFromCameraAction1DidFinishTaking(
 Image: TBitmap);

Riding the Mobile Revolution with FireMonkey

220

begin
 LoadPhoto(Image);
end;

procedure TMainForm.TakePhotoFromLibraryAction1DidFinishTaking(
 Image: TBitmap);
begin
 LoadPhoto(Image);
end;

25. Select an available target in the Project Manager window (in your phone or an
available emulator in the case of Android) and run the app.

Tap the first button from the left-hand side and take a photo. The image should
be placed in the main area. Tap on the btnEffects button, and you should see the
listview falling from the top to allow you to choose effects. The first item should be
<No effect to undo>. Select an effect and see how the effect is applied to the photo.
Tap btnEffect again, and you should see the first item saying [Undo …]. Play with
the app by adding effects and using the undo features to sequentially go back to the
beginning. Note that the effects will not be added (so you cannot have Emboss along
with Blur applied at the same time). When you are satisfied with the result, tap on
the button on the right-hand side to share the photo with effects applied using an
installed app:

A photo taken from the camera with the Paper Sketch effect applied; the menu is visible
and ready to apply another effect

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

221

How it works…
When launched, the app loads the available effects inspecting all the TEffectFilter
descendants placed on the form and stores the component reference in a dictionary indexed
with the ListItem index in the list. To create a friendly effect name for the UI, the effect's class
name is used. Indeed, all the effect classes have the typical Pascal case naming convention
(just like all the other things in Delphi) and the EffectNameByClassName method uses
a regular expression to make a string such as TRadialBlurEffect in something like the
Radial Blur effect. To do it, the initial 'T' is removed and then it has been used a regular
expression to split the words as shown in the following code:

function TMainForm.EffectNameByClassName(
 const AClassName: String): String;
begin
 Result := AClassName.Substring(1);
 Result := TRegEx.Replace(Result, '[A-Z]', ' $0').TrimLeft;
end;

Another nice feature implemented is the UnDo stack. Each time a new effect is applied to the
image, the current one is pushed onto the stack. So, when you tap on Undo <current effect>,
the current effect is removed and the top of the stack is used to retrieve the last effect. With
this approach, which is used in multiple scenarios, we can go back to the beginning without
losing any steps.

The last note goes to the share functionality. The effects are applied by adding the related
components to the children controls' list of the image. Following the parenting relation,
FireMonkey performs all the drawing jobs; however, the image itself is not transformed,
only its visual representation is "effected." Now, if you try to read programmatically,
the bitmap contained by the TImage control, the image is not "effected", and you get
the original image. So how do you actually apply the effect to the image? Check the
ShowShareSheetAction1BeforeExecute event handler:

procedure TMainForm.ShowShareSheetAction1BeforeExecute(
 Sender: TObject);
begin
 if FUndoEffectsList.Count > 0 then
 FUndoEffectsList.Peek.ProcessEffect(nil, Image1.Bitmap, 0);
 ShowShareSheetAction1.Bitmap.Assign(Image1.Bitmap);
end;

As you can see, the effect component has a ProcessEffect method that actually
takes an image and applies the transformation to it. In this case, the effect is not only
visually applied but is actually applied. So, when you share the affected image, the image
is really affected.

Riding the Mobile Revolution with FireMonkey

222

There's more…
A lot of concepts are covered in this first mobile recipe. As you will see, the main approach
about the mobile development is not different from a normal FireMonkey application. This is
an extraordinary feature of FireMonkey: one framework for all platforms. If you are good at
FireMonkey, you are at least 80 percent good for all the supported platforms. However, in the
mobile scope, all the things get a bit more difficult and slow due to the platform limits and the
inherent slower edit/run/test loop.

To get more info about effects, you can check the following articles:

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_
Image_Effects

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Applying_
FireMonkey_Image_Effects

To get more information about regular expressions as implemented in Delphi, check the
following articles:

 f http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_
Expressions

 f http://docwiki.embarcadero.com/CodeExamples/XE6/en/RTL.
RegExpression_Sample

To get some information about the Command design pattern and the other 22 fundamental
patterns, you can read the classic book, Design Patterns: Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Addison Wesley
Professional (http://www.amazon.com/Design-Patterns-Elements-Reusable-
Object-Oriented/dp/0201633612).

Using listview to show and search local data
In many cases, on a mobile app, data is read from remote servers and then locally stored
to make it available without Internet connection. In this recipe, you'll see how to read
and write to a file as well as how to show and search that data in a listview.

Getting ready
This recipe is simple and short, but it is really useful because the concepts exposed are
reusable and allow you to gain confidence with some very important best practices. The final
aspect of the app is shown in the following screenshot. Note that the Delete button is visible
only when an item is selected.

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Image_Effects
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Image_Effects
http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions
http://docwiki.embarcadero.com/RADStudio/XE6/en/Regular_Expressions
http://docwiki.embarcadero.com/CodeExamples/XE6/en/RTL.RegExpression_Sample
http://docwiki.embarcadero.com/CodeExamples/XE6/en/RTL.RegExpression_Sample
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.allitebooks.org

Chapter 6

223

The Simple TODO app; when an item is selected, the Delete button is visible

How to do it...
1. Create a new mobile app by navigating to File | New | Other… | Delphi Projects |

FireMonkey Mobile Application.

2. Choose the Header/Footer template and click on OK.

3. As soon as Delphi creates the project template, save all the files with the
following names:

 � Save the project as SimpleTODO.dproj

 � Save the form as MainFormU.pas

4. Drop a TListView component on the form and set the following properties (the
relevant properties are extracted from the MainFormU.fmx file):
 object ListView1: TListView
 Align = Client
 ItemAppearance.ItemHeight = 80
 ItemAppearanceObjects.ItemObjects.Text.WordWrap = True
 ItemAppearanceObjects.ItemObjects.Accessory.Visible = False
 SearchVisible = True
 end

Riding the Mobile Revolution with FireMonkey

224

5. Drop a TActionList component on the form and add two actions. Name them acNew
and acDelete.

6. Create the OnExecute event handler for the two actions using the following code:
procedure TMainForm.acDeleteExecute(Sender: TObject);
begin
 if Assigned(ListView1.Selected) then
 ListView1.Items.Delete(ListView1.Selected.Index);
end;

procedure TMainForm.acNewExecute(Sender: TObject);
var
 Value: string;
begin
 if InputQuery('TODO', 'Write your new TODO', Value) then
 AddItem(Value);
end;

7. Directly on the ActionList1 component, create the OnUpdate event handler and fill it
with the following code. This code makes the Delete button invisible when no item is
selected on the list.
procedure TMainForm.ActionList1Update(Action: TBasicAction;
 var Handled: Boolean);
begin
 acDelete.Visible := Assigned(ListView1.Selected);
end;

8. Go to the main form declaration and in the private section, declare the
following variables:
private
 FDataFileName: String;
 procedure LoadFromFile;
 procedure SaveToFile;
 procedure AddItem(const TODO: String);

9. Hit Ctrl + Shift + C and fill the method bodies with the following code:
procedure TMainForm.LoadFromFile;
var
 FileReader: TStreamReader;
begin
 ListView1.ClearItems;
 if TFile.Exists(FDataFileName) then
 begin
 FileReader := TFile.OpenText(FDataFileName);
 try

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

225

 while not FileReader.EndOfStream do
 begin
 AddItem(FileReader.ReadLine);
 end;
 finally
 FileReader.Close;
 end;
 end;
end;

procedure TMainForm.SaveToFile;
var
 item: TListViewItem;
 FileWriter: TStreamWriter;
begin
 FileWriter := TFile.CreateText(FDataFileName);
 try
 for item in ListView1.Items do
 begin
 FileWriter.WriteLine(item.Text);
 end;
 finally
 FileWriter.Close;
 end;
end;

procedure TMainForm.AddItem(const TODO: String);
var
 item: TListViewItem;
begin
 item := ListView1.Items.Add;
 item.Text := TODO;
 ListView1.ItemIndex := item.Index;
end;

10. As you can see, the name of the file used to store the data is in the
FDataFileName variable.

11. Create the OnCreate and OnClose event handlers for the form:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 FDataFileName := TPath.Combine(
 TPath.GetDocumentsPath, 'datafile.txt');
 LoadFromFile;
end;
procedure TMainForm.FormClose(Sender: TObject;
 var Action: TCloseAction);

Riding the Mobile Revolution with FireMonkey

226

begin
 SaveToFile;
end;

12. The last thing to do is to connect the acNew and acDelete actions to two buttons.
Drop two TButton components on the lower TToolbar named Footer, name them
btnDelete and btnNew, and set the following properties:
 object btnDelete: TButton
 Action = acDelete
 Align = alLeft
 StyleLookup = 'trashtoolbutton'
 end
 object btnNew: TButton
 Action = acNew
 Align = alRight
 StyleLookup = 'additembutton'
 end

13. Run the app. For testing purposes, you can run the app using the Mobile
Preview option.

How it works...
When the app starts, it looks into its documents path for a file named datafile.txt. If it
exists, it is loaded and all the lines become items in the listview. Remember that Delphi allows
you to write cross-platform applications, so you must be aware about the way Delphi allows
you to normalize the differences between operating systems; otherwise, the risk is that you
could frustrate the Delphi and FireMonkey power. The TPath class is useful to be ignorant
about system default paths, path separator, and other stuff related to the filesystem. We
want to put our data into the documents folder. However, in Android, the document folder
is different from the iOS one (and if your code has to run in the desktop environment as well,
the paths are also different). So, using the TPath class, we can be completely ignorant about
where the file is actually stored. We can know the path, but we don't want to explicitly define it;
let TPath do its job. These are some well-known paths that TPath already knows. Whenever
you need the specific path, ask TPath:

 class function GetHomePath: string; static;
 class function GetDocumentsPath: string; static;
 class function GetSharedDocumentsPath: string; static;
 class function GetLibraryPath: string; static;
 class function GetCachePath: string; static;
 class function GetPublicPath: string; static;
 class function GetPicturesPath: string; static;
 class function GetCameraPath: string; static;
 class function GetMusicPath: string; static;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

227

 class function GetMoviesPath: string; static;
 class function GetAlarmsPath: string; static;

Let's go back to our app. When the items are loaded into the listview, the acNew and
acDelete actions allow the user to add and remove items from the list. When the form
is about to close, the FormClose event saves all the items—one item for a line—into the
datafile.txt file.

In a more complex situation, it is much better to have an in-memory representation of your
data model not bound to any visual control. Suppose you need to access the data in another
form. How to do that? If your data are bound to the GUI, you are bound to it too! The state of
your app should not be stored only on the visual controls. However, for a simple situation like
this recipe, it is not a big problem.

There's more...
Starting from XE5 Update 2, a very useful tool is available to debug mobile apps: Mobile
Preview. More information about Mobile Preview can be found at http://docwiki.
embarcadero.com/RADStudio/XE5/en/Mobile_Preview.

Do not block the main thread!
Long requests to external systems such as storage, databases, hardware, and network have
always been difficult to handle from a user experience point of view. For the programmers, it
is simple to run the long request and when finished (after seconds, minutes, or hours), inform
the user that their data are there. However, we should care about user experience, even more
in the mobile world.

Getting ready
If your app runs a long-running request and the UI is frozen, the user might think that
something is going wrong and start to tap here and there to try to unblock the app. After
some seconds, if not the operating system itself, the user will push the Home button to close
your app and then, usually, uninstall it. Yes, the user experience is one of the most important
things on the mobile. Consider that, also on a desktop, the user experience should be of
primary importance, but what I want to emphasize is this: while on desktop you may have
patient users because they are sitting in front of a PC (or a Mac), on the mobile you certainly
have impatient users who want immediate feedback from your app. Mobile apps can be used
in mobility, so the user may be busy doing something else while they are using your app, so
the app must be fast and should give feedback as soon as possible. If some long operation is
running, the app should inform the user and the GUI should never get frozen. In this recipe,
we'll see not how to have 0 seconds latency, but how to inform the user that something
completely regular is going on and that the app is actually working as expected, and so, the
only thing that the user should do is to wait!

http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Preview
http://docwiki.embarcadero.com/RADStudio/XE5/en/Mobile_Preview

Riding the Mobile Revolution with FireMonkey

228

How to do it...
The scenarios exposed in this recipe are very frequent, so this demo will have to face with
real timings and real problems. We'll do, as long-running request, a REST call to an open web
service that provides weather forecasts. I've used this app for a while and the forecasts even
seem accurate! Cool!

The service is provided by OpenWeatherMap.org and we'll issue the REST request at the
following endpoint:

http://api.openweathermap.org/data/2.5/forecast

All the parameters required for the request will be defined at runtime by the app. Let's start by
creating the app.

1. Create a new mobile app by navigating to File | New | Other… | Delphi Projects |
FireMonkey Mobile Application.

2. Choose the Header/Footer template and click on OK.

3. As soon as Delphi creates the project template, save all the files with the
following names:

 � Save the project as WeatherForecasts.dproj

 � Save the form as MainFormU.pas

4. Drop a TPanel component just below the header toolbar and align it to alTop.

5. Into the panel just dropped, drop two TEdits components and a TButton component
and name them EditCity, EditCoutry, and btnGetForecasts respectively.
Then, set the other properties as shown in the following code:
 object EditCity: TEdit
 Align = Left
 Text = 'Rome'
 TextPrompt = 'City'
 end
 object EditCountry: TEdit
 Align = Right
 Text = 'IT'
 TextPrompt = 'Country'
 end
 object btnGetForecasts: TButton
 Align = Right
 Text = 'btnGetForecasts'
 StyleLookup = 'refreshtoolbutton'
 end

www.allitebooks.com

OpenWeatherMap.org
http://api.openweathermap.org/data/2.5/forecast
http://www.allitebooks.org

Chapter 6

229

6. Drop a TAniIndicator component into the header toolbar and align it to alRight.

7. Drop a TListView component on the form's center and set the following properties
(the relevant properties extracted from the MainFormU.fmx file):
object ListView1: TListView
 AllowSelection = False
 Align = Client
 ItemAppearanceObjects.ItemObjects.Text.WordWrap = True
 ItemAppearanceObjects.ItemObjects.Text.Height = 50
 ItemAppearanceObjects.ItemObjects.Accessory.Visible = False
 CanSwipeDelete = False
end

8. Drop a TLabel component into the footer toolbar, align it to alClient, and name
it lblInfo.

9. Drop the TRESTClient and TRESTResponse components and leave the default
properties and names.

10. Your form at design time should look like the following:

The Weather forecasts form at design time

11. Now, let's write some code. In the private section of the form, declare a string
instance field called Lang.

Riding the Mobile Revolution with FireMonkey

230

12. Create the FormCreate event handler and fill it with the following code:
procedure TMainForm.FormCreate(Sender: TObject);
var
 LocaleService: IFMXLocaleService;
begin
 if TPlatformServices.Current.SupportsPlatformService(
 IFMXLocaleService) then
 begin
 LocaleService :=
 TPlatformServices.Current.GetPlatformService(
 IFMXLocaleService) as IFMXLocaleService;
 Lang := LocaleService.GetCurrentLangID;
 end
 else
 Lang := 'US';

 EditCountry.Text := Lang;
 RESTClient1.BaseURL := 'http://api.openweathermap.org/data/2.5';
 RESTRequest1.Resource :=
 'forecast?q={country}&mode=json&lang={lang}&units=metric';
 AniIndicator1.Visible := False;
end;

13. In the implementation section of uses, add the following units:
uses
 Data.DBXJSON, System.DateUtils, FMX.Platform;

14. Create an OnClick event handler for the btnGetForecasts button and fill it with the
following code:
procedure TMainForm.btnGetForecastsClick(Sender: TObject);
begin
 ListView1.ClearItems;
 RESTRequest1.Params.ParameterByName('country').Value :=
 String.Join(',', [EditCity.Text, EditCountry.Text]);
 RESTRequest1.Params.ParameterByName('lang').Value := Lang;
 AniIndicator1.Visible := True;
 AniIndicator1.Enabled := True;

 //Run the REST request in asynch mode. When ExecuteAsynch
 //returns, the anonymous method passed as parameter is called in
 //the main thread context
 RESTRequest1.ExecuteAsync(
 procedure
 var

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

231

 dt: TDateTime;
 jv: TJSONValue;
 JObj, MainForecast, ForecastItem, JObjCity: TJSONObject;
 Weather, Forecasts: TJSONArray;
 TempMin, TempMax: Double;
 WeatherDescription, Day, LastDay, AppRespCode: string;
 Item: TListViewItem;
 begin
 JObj := RESTRequest1.Response.JSONValue as TJSONObject;

 // check for errors
 AppRespCode := JObj.GetValue('cod').Value;
 if AppRespCode.Equals('404') then
 begin
 lblInfo.Text := 'City not found';
 Exit;
 end;
 if not AppRespCode.Equals('200') then
 begin
 lblInfo.Text := 'Error ' + AppRespCode;
 Exit;
 end;

 // parsing response...
 Forecasts := JObj.GetValue('list') as TJSONArray;
 for jv in Forecasts do
 begin
 ForecastItem := jv as TJSONObject;
 dt := UnixToDateTime((ForecastItem.GetValue('dt')
 as TJSONNumber).AsInt64);
 MainForecast := ForecastItem.GetValue('main')
 as TJSONObject;
 TempMin := (MainForecast.GetValue('temp_min')
 as TJSONNumber).AsDouble;
 TempMax := (MainForecast.GetValue('temp_max')
 as TJSONNumber).AsDouble;
 Weather := ForecastItem.GetValue('weather')
 as TJSONArray;
 WeatherDescription := TJSONObject(Weather.Items[0])
 .GetValue('description').Value;
 Day := DateToStr(DateOf(dt));
 if Day <> LastDay then
 begin

Riding the Mobile Revolution with FireMonkey

232

 Item := ListView1.Items.Add;
 Item.Purpose := TListItemPurpose.Header;
 Item.Text := Day;
 end;
 LastDay := Day;
 Item := ListView1.Items.Add;
 Item.Text := FormatDateTime('HH', dt) + ' '
 + WeatherDescription
 + Format(' (min %2.2f max %2.2f)', [TempMin, TempMax]);
 end;

 // display the city name at the bottom
 JObjCity := JObj.GetValue('city') as TJSONObject;
 lblInfo.Text := JObjCity.GetValue('name').Value + ', ' +
 JObjCity.GetValue('country').Value;

 // stop the waiting animation
 AniIndicator1.Visible := False;
 AniIndicator1.Enabled := False;
 end);
end;

15. The parsing code is not simple, but now you should have all the information needed
to correctly understand what's going on with this code.

16. Hit F9 and see the application running.

17. Insert a city name and a state code (such as Roma and IT), and you will get the
weather forecasts for the upcoming days organized day by day.

How it works...
This recipe is simple from an architectural point of view. There are two parameters the user
can enter. These parameters affect the request to the server that will respond with a JSON
structure. Apart from the parsing code, the interesting things happen when the request is
sent to the server. If we had sent a normal synchronous request to the server, the UI would be
blocked until the response arrives to the client. Using the ExecuteAsynch method executes
the actual request on a background thread so that the main thread remains free to update
the UI. When the request finishes the execution, an anonymous method is called in the
main thread context. The TAniIndicator component is started just before the request starts
and is stopped after the parsing is finished. In this way, the user is aware that something is
happening. Consider that any request to an external system could potentially last for hours.
Be aware of this!

The code used to fill the list uses the grouping feature of the TListView component to show
the forecasts organized day by day.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

233

Another thing to note is that the web service can use localized response for descriptive texts.
So, in the FormCreate event, we use the IFMXLocaleService service to read the current
system language. Later, we use that language code to inform the remote service about the
preferred localization language.

Here's the app running in the mobile preview on an Italian PC:

The Weather forecasts app running in the Mobile Preview on an Italian Windows PC

There's more...
Multithreading can be difficult, but the built-in features in the REST client library allow you to
send HTTP requests in a background thread in a very simple manner. You can use it as much as
you can. If you are not so confident with the new REST client library, here's some documentation:

 f Delphi XE5 Mobile REST Client Demo at https://www.youtube.com/
watch?v=OkRVbgF4VMI

 f REST Client Library at http://docwiki.embarcadero.com/RADStudio/XE6/
en/REST_Client_Library

Another topic that should be deeply understood to correctly design and implement FireMonkey
applications (and mobile apps are only a particular type of FireMonkey application) is the
FireMonkey platform services. More info on platform services can be found at: http://
docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Platform_Services.

https://www.youtube.com/watch?v=OkRVbgF4VMI
https://www.youtube.com/watch?v=OkRVbgF4VMI
http://docwiki.embarcadero.com/RADStudio/XE6/en/REST_Client_Library
http://docwiki.embarcadero.com/RADStudio/XE6/en/REST_Client_Library
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Platform_Services
http://docwiki.embarcadero.com/RADStudio/XE6/en/FireMonkey_Platform_Services

Riding the Mobile Revolution with FireMonkey

234

Using SQLite databases to handle
a to-do list

Usually, the mobile apps read or write data using the network. In many cases, however, you
need a local storage to save your data. A local database can be useful for a number of things:

 f To buffer information while the Internet connection is not available
 f To save information that will be realigned on the central server when back

to the office
 f To allow you a fast search on a relatively small set of data retrieved from the central

databases and stored on the device
 f To store some structured data.

In all these cases, you have to handle a database. This recipe will show you how to do it.

Getting ready
This recipe is about a to-do list. It is similar to the Using listview to show and search local
data recipe, but in this case, we'll use a SQL database and show data to the user using
LiveBindings. Moreover, we'll see how to create output converters for LiveBindings.

How to do it...
When you need a database on the mobile, you have two choices in Delphi: SQLite (an open
source embedded database) and InterBase ToGo.

RAD Studio XE6 includes InterBase XE3 ToGo and IBLite editions for embedded application
development. You can deploy your mobile applications to iOS or Android devices with a
InterBase ToGo license (at a cost) or IBLite license (free).

If your app is a bit complex or you need encryption, stored procedures, a number of data
types, you have to definitely go for InterBase ToGo. Otherwise, you can use SQLite. Consider
that IBLite is the same engine as InterBase ToGo, but limited on some extent. The biggest limit
is the lack of encryption. However, an app that uses IBLite doesn't require updates if you need
to scale to InterBase ToGo (change the license and you are okay).

This recipe is very simple in terms of database requirements, so we'll use SQLite. However,
the same concepts are applicable to InterBase ToGo and IBLite.

Open the TODOList.dproj project. The main form has all the components that are required
to access the database (in a real-world app, consider to use a data module for this, just
like the desktop applications). The app has been created using the Header/Footer mobile
template. The first TabItem contains the to-do lists, while the second TabItem allows you
to update an existing to-do list or create a new to-do list.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

235

When the application starts, the TFDConnection components connect to the database. If the
database file doesn't exist, the SQLite engine is configured to create a brand new database
file. This feature is very useful and can be configured by setting the OpenMode parameter
to CreateUTF8. (The UTF8 encoding is almost always the best choice for international
applications; in this case, it is the default setting for the TFDConnection components).
Here's the relevant part of the TFDConnection parameters:

The connection parameters

Another problem to solve is related to the database path. In Windows, you can develop your
mobile app using the Mobile Preview and a local path on your system; however, when the
app runs on the device, you have to use another path. How to solve this? In the connection
BeforeConnect event handler, the following code is the solution:

procedure TMainForm.ConnectionBeforeConnect(Sender: TObject);
begin
{$IF DEFINED(IOS) or DEFINED(ANDROID)}
 Connection.Params.Values['Database'] :=
 TPath.GetDocumentsPath + PathDelim + 'todos.sdb';
{$ENDIF}
end;

With this code, on the mobile, the database will be created in the proper iOS or Android
document folder.

Riding the Mobile Revolution with FireMonkey

236

The next problem is related to the database structure. When and how to create the table that
we need? Let's check the AfterConnect event handler on the connection:

procedure TMainForm.ConnectionAfterConnect(Sender: TObject);
begin
 Connection.ExecSQL('CREATE TABLE IF NOT EXISTS TODOS(' +
 ' ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, ' +
 ' DESCRIPTION CHAR(50) NOT NULL, ' +
 ' DONE INTEGER NOT NULL ' +
 ')');
 qryTODOs.Active := True;
end;

Just after the database is created, and at any subsequent run, the app tries to create the
database table if it doesn't exist yet. Then, open the dataset connected to the bind source
to show the data present. The listview is configured with the following code:

ItemAppearance.ItemAppearance = 'ListItemRightDetail'
ItemAppearance.ItemHeight = 100
SearchVisible = True

The second tab contains a TMemo component, a TSwitch component, and two TLabel
components. The TBindSourceDB data source connected to the qryTODO dataset is
connected to the list and to the detail component placed on the second TabItem
as well. This is shown in the following screenshot (integrated with some clarifying text):

The LiveBindings designer showing the binding connections between the Bindsource,
the listview, and the detail components

All the code used to handle the dataset is normal dataset-oriented code, just like the code
used to manage datasets on a desktop application.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

237

This recipe shows a nasty problem. SQLite doesn't have the Boolean field type, so the DONE
field in the TODO table is of type integer, where 1 means true and 0 means false. However,
we want to connect the DONE field to a TSwitch.IsChecked property of type Boolean. In
this situation, when you try to change the switch value, you will get an error like the following:

The exception raised by Delphi when you try to connect an Integer field to a Boolean component property

How to solve this? The LiveBindings engine has a powerful mechanism to convert data from
one type to another. When a result value is of type X and the property where that value
needs to be written is of type Y, the engine looks for a valid output converter that is able to
convert type X to type Y. The available output converters are shown on the BindingList1.
OutputConverters property.

To solve our problem, we've to register another OutputConverter object able to convert a
Boolean value (swtCompleted.IsChecked) to a string value (because LiveBindings use the
TField.SetText method to set a value of a field). This output converter is registered in the
BoolToStringConverterU.pas unit. The procedure is used to register the new converter
and makes it visible to the LiveBindings engine, as shown in the following code:

const
 sBoolToString = 'BoolToString';

procedure RegisterOutputConversions;
begin
 //unregister the default converter bool->string
 TValueRefConverterFactory.UnRegisterConversion(
TypeInfo(Boolean), TypeInfo(String));

 //register the new converter bool->string
 //This converter is able to handle 1=true and 0=false
 TValueRefConverterFactory.RegisterConversion(
 TypeInfo(Boolean), TypeInfo(String),
 TConverterDescription.Create(
 procedure(const InValue: TValue; var OutValue: TValue)
 begin
 if InValue.AsBoolean then

Riding the Mobile Revolution with FireMonkey

238

 OutValue := '1'
 else
 OutValue := '0';
 end, sBoolToString, sBoolToString, '',
 True, sBoolToString, nil));
end;

Now the app works correctly. However, be careful, now all the conversion from Boolean to
string will consider true when 1 and false when 0. This internal mechanism of LiveBindings
needs to be clearly understood, because it can cause a lot of headache if not in trivial cases.

On the second tab, there is a label that describes the meaning of the switch. When the
switch is checked, the label says The task is completed; otherwise, it says The task is
not completed. This feature has been implemented using LiveBindings expressions. Go
to the LiveBindings designer and select the arrow that connects the DONE field to the
lblCompleted.Text property. Now hit F11 to show the Object Inspector window and
check the CustomFormat property. Here, a logic used by the label. The expression is
reported as follows:

"The task is " + IfThen(value = 1, "completed","not completed")

This code is a relational expression that transforms a value read from a dataset field to a text
value shown in a label. Normally, the value is read from the source component and written on
the target property component. However, using the CustomFormat property, you can change
this default behavior to get more complex and useful information. This expression is a good
example of that.

There's more...
As you can see, mobile development is a mix of well-known things and new things. The
LiveBindings framework is a big new thing, and you can be frightened by it. However, don't be
afraid, all your needs are there. Here are some useful links to go deeper within the concepts
exposed in this recipe:

 f Another approach to the Integer-as-Boolean problem can be found at http://www.
malcolmgroves.com/blog/?p=1490

 f Information on formatting fields using LiveBindings can be found at http://www.
malcolmgroves.com/blog/?p=1226

 f Documentation about output converters can be found at http://docwiki.
embarcadero.com/RADStudio/XE6/en/LiveBindings_Output_Converters

 f Some tutorials on LiveBindings in RAD Studio can be found at http://docwiki.
embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio

www.allitebooks.com

http://www.malcolmgroves.com/blog/?p=1490
http://www.malcolmgroves.com/blog/?p=1490
http://www.malcolmgroves.com/blog/?p=1226
http://www.malcolmgroves.com/blog/?p=1226
http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_Output_Converters
http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_Output_Converters
http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/XE6/en/LiveBindings_in_RAD_Studio
http://www.allitebooks.org

Chapter 6

239

Using a styled TListView to handle a long
list of data

The TListBox control is very flexible. You can customize every aspect of each item in the list.
However, it is not suitable if you want to handle a long list of data, because flexibility comes
at the cost of the system being slow when data rows grow. Embarcadero specifies that you
should use TListView to display a collection of items in a list that is optimized for LiveBindings
and for fast and smooth scrolling.

Getting ready
In this recipe, we'll use the Do not block the main thread! recipe as a base to customize a
listview using custom styles. In that recipe, we get a list of weather forecasts from a REST web
service and then fill the listview with that data using a standard style. In this recipe, that data
will be nicely inserted in a custom listview with colors, alignment, and summary footer. There
is no design-time support with this approach, because all the controls created into each item
are created at runtime; however, this approach can be very useful if you want complete control
over the look and feel of your list. To be clear, the recommended approach in this case is to
write a custom style for the TListView component; put the component in a package, install
it into the IDE, and then use it from the Object Inspector window. To have two samples of
this approach, check the following projects provided as samples (the Sample folder on my
machine is C:\Users\Public\Documents\Embarcadero\Studio\14.0\Samples
where 14.0 is the version of the IDE).

Within the Sample folder, open Object Pascal\Mobile Samples\User Interface\
ListView\.

In this folder, you have a number of projects and packages that show you how to use some
advanced stuff related the TListView components. To see the new style, you have to install
the package and open the related demo project.

The package to install the RatingListItem list item style is
SampleListViewRatingsAppearancePackage.dproj.

The project that shows how to use the RatingListItem style is
SampleListViewRatingsAppearanceProject.dproj.

The package to install the MultiDetailItem list item style is
SampleListViewMultiDetailAppearancePackage.dproj.

The project that show how to use the MultiDetailItem style is
SampleListViewMultiDetailAppearanceProject.dproj.

Riding the Mobile Revolution with FireMonkey

240

It is not too complex create a custom list item style; however, there are these two samples
provided by Embarcadero that should be enough to start with. In this recipe, we'll create the
list item style element directly in the code. When you are satisfied by the result, you can
create the proper package as shown in the mentioned samples.

How to do it...
1. Copy the code of the Using SQLite databases to handle a to-do list recipe into a new

folder (or start reading from the beginning of the Using SQLite databases to handle
a to-do list recipe).

2. Open the project and save it as WeatherForecastsEx.dproj.

3. In the private section of the form declaration, add the following methods:
procedure SetupFooter(Item: TListViewItem;
 MinInTheDay, MaxInTheDay: Double);
procedure SetupHeader(Item: TListViewItem; TextLabel: String);
procedure SetupItem(Item: TListViewItem; dt: TDate;
 Description: String; TempMin, TempMax: Double);

4. Press Ctrl + Shift + C to create the method bodies, and then add the following code:
procedure TMainForm.SetupFooter(Item: TListViewItem;
 MinInTheDay, MaxInTheDay: Double);
var
 ItemSeparator: TListViewItem;
begin
 Item.Purpose := TListItemPurpose.Footer;
 Item.Text := Format('min %2.2f max %2.2f',
 [MinInTheDay, MaxInTheDay]);
 //separator
 ItemSeparator := Item.Parent.Items.Add;
 ItemSeparator.Height := 10;
 ItemSeparator.Purpose := TListItemPurpose.Footer;
end;

procedure TMainForm.SetupHeader(Item: TListViewItem;
 TextLabel: String);
begin
 Item.Purpose := TListItemPurpose.Header;
 Item.Text := TextLabel;
end;

procedure TMainForm.SetupItem(Item: TListViewItem;
 dt: TDate; Description: String;
 TempMin, TempMax: Double);

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

241

var
 lb: TListItemText;
begin
 Item.Objects.Clear;
 Item.Height := 24;

 lb := TListItemText.Create(Item);
 lb.PlaceOffset.X := 0;
 lb.TextAlign := TTextAlign.Leading;
 lb.Name := 'WeatherDescription';

 lb := TListItemText.Create(Item);
 lb.TextAlign := TTextAlign.Trailing;
 lb.TextColor := TAlphaColorRec.Blue;
 lb.Name := 'MinTemp';

 lb := TListItemText.Create(Item);
 lb.TextAlign := TTextAlign.Trailing;
 lb.TextColor := TAlphaColorRec.Red;
 lb.Name := 'MaxTemp';

 Item.Data['WeatherDescription'] :=
 FormatDateTime('HH', dt) + ' ' + Description;
 Item.Data['MinTemp'] := Format('m %2.2f', [TempMin]);
 Item.Data['MaxTemp'] := Format('M %2.2f', [TempMax]);
end;

5. Now we've to use these methods. In the btnGetForecastsClick method,
substitute the code with the following:
procedure TMainForm.btnGetForecastsClick(Sender: TObject);
begin
 ListView1.ClearItems;
 RESTRequest1.Params.ParameterByName('country').Value :=
 String.Join(',', [EditCity.Text, EditCountry.Text]);
 RESTRequest1.Params.ParameterByName('lang').Value := Lang;
 AniIndicator1.Visible := True;
 AniIndicator1.Enabled := True;
 RESTRequest1.ExecuteAsync(
 procedure
 var
 dt: TDateTime;
 jv: TJSONValue;
 JObj, MainForecast, ForecastItem, JObjCity: TJSONObject;
 Weather, Forecasts: TJSONArray;

Riding the Mobile Revolution with FireMonkey

242

 TempMin, TempMax, MinInTheDay, MaxInTheDay: Double;
 Day, LastDay, WeatherDescription: string;
 Item: TListViewItem;
 begin
 JObj := RESTRequest1.Response.JSONValue as TJSONObject;

 // check for errors
 if JObj.GetValue('cod').Value = '404' then
 begin
 Label1.Text := 'City not found';
 Exit;
 end;

 if JObj.GetValue('cod').Value <> '200' then
 begin
 Label1.Text := 'Error ' + JObj.GetValue('cod').Value;
 Exit;
 end;

 // parsing forecasts
 MinInTheDay := 1000;
 MaxInTheDay := -MinInTheDay;
 Forecasts := JObj.GetValue('list') as TJSONArray;
 for jv in Forecasts do
 begin
 ForecastItem := jv as TJSONObject;
 dt := UnixToDateTime((ForecastItem.GetValue('dt')
 as TJSONNumber).AsInt64);
 MainForecast := ForecastItem.GetValue('main')
 as TJSONObject;
 TempMin := (MainForecast.GetValue('temp_min')
 as TJSONNumber).AsDouble;
 TempMax := (MainForecast.GetValue('temp_max')
 as TJSONNumber).AsDouble;
 Weather := ForecastItem.GetValue('weather') as TJSONArray;
 WeatherDescription :=
 TJSONObject(Weather.Items[0]).
 GetValue('description').Value;
 Day := DateToStr(DateOf(dt));
 if Day <> LastDay then
 begin
 if not LastDay.IsEmpty then
 SetupFooter(ListView1.Items.Add,

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

243

 MinInTheDay, MaxInTheDay);
 SetupHeader(ListView1.Items.Add, Day);
 MinInTheDay := 1000;
 MaxInTheDay := -MinInTheDay;
 end;
 LastDay := Day;
 Item := ListView1.Items.Add;
 MinInTheDay := Min(MinInTheDay, TempMin);
 MaxInTheDay := Max(MaxInTheDay, TempMax);
 SetupItem(Item, dt, WeatherDescription, TempMin, TempMax);
 end; // for in

 if not LastDay.IsEmpty then
 SetupFooter(ListView1.Items.Add,
 MinInTheDay, MaxInTheDay);

 JObjCity := JObj.GetValue('city') as TJSONObject;
 Label1.Text := JObjCity.GetValue('name').Value + ', '
 + JObjCity.GetValue('country').Value;
 AniIndicator1.Visible := False;
 AniIndicator1.Enabled := False;
 end);
end;

6. The main difference between the Using SQLite databases to handle a to-do list recipe
and this recipe is the complete flexibility of data visualization. To get this flexibility,
we added individual controls to each list item. We defined all the needed properties,
width, alignment, colors, and so on. When the device goes into landscape orientation,
some alignment needs to be changed according to the larger horizontal space
available. For this situation, a very handy listbox UpdateObjects event handler is
available. Create an UpdateObjects event handler on the listbox and add this code:
procedure TMainForm.ListView1UpdateObjects(const Sender: TObject;
 const AItem: TListViewItem);
var
 MinTemp, MaxTemp: TListItemText;
 AQuarter: Double;
begin
 AQuarter := (AItem.Parent.Width –
 AItem.Parent.ItemSpaces.Left –
 AItem.Parent.ItemSpaces.Right) / 4;

 MinTemp := AItem.Objects.FindObject('MinTemp') as TListItemText;
 if Assigned(MinTemp) then
 begin

Riding the Mobile Revolution with FireMonkey

244

 MinTemp.PlaceOffset.X := AQuarter * 2;
 MinTemp.Width := AQuarter;
 end;

 MaxTemp := AItem.Objects.FindObject('MaxTemp') as TListItemText;
 if Assigned(MaxTemp) then
 begin
 MaxTemp.PlaceOffset.X := AQuarter * 3;
 MaxTemp.Width := AQuarter;
 end;

 if AItem.Purpose = TListItemPurpose.Footer then
 AItem.Objects.TextObject.TextAlign := TTextAlign.Center;
end;

7. With this adjustment, texts inside the list item are always aligned correctly.

8. Run the app. For testing purposes, you can run the app using the Mobile Preview
option. Here's the app running on an Android phone:

The Weather forecasts ex app running in portrait and in landscape modes on an Italian Android phone;
note how the temperature columns are realigned between the two orientations

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

245

How it works...
After reading the JSON using the TRESTClient component, in the parsing code, we added
controls to each item to represent the three columns we require. You cannot add every
kind of control into the TListViewItem component, so add only those that inherit from
TListItemObject. However, you can inherit your own class from TListItemObject to implement
all the advanced visualizations you require.

The relevant part about the customization happens in the SetupItem method:

procedure TMainForm.SetupItem(Item: TListViewItem; dt: TDate;
 Description: String; TempMin, TempMax: Double);
var
 lb: TListItemText;
begin
 Item.Objects.Clear; //remove objects already created
 Item.Height := 24;

 lb := TListItemText.Create(Item); //add the first column
 lb.PlaceOffset.X := 0;
 lb.TextAlign := TTextAlign.Leading;

 //name the control for future addressing
 lb.Name := 'WeatherDescription';

 lb := TListItemText.Create(Item); //add the second column
 lb.TextAlign := TTextAlign.Trailing;
 lb.TextColor := TAlphaColorRec.Blue;
 //name the control for future addressing
 lb.Name := 'MinTemp';

 lb := TListItemText.Create(Item); //add the third column
 lb.TextAlign := TTextAlign.Trailing;
 lb.TextColor := TAlphaColorRec.Red;
 //name the control for future addressing
 lb.Name := 'MaxTemp';

 //Write to the Data property of component 'WeatherDescription'
 Item.Data['WeatherDescription'] :=
 FormatDateTime('HH', dt) + ' ' +
Description;

 //Write to the Data property of component 'MinTemp'
 Item.Data['MinTemp'] := Format('m %2.2f', [TempMin]);

 //Write to the Data property of component 'MaxTemp'
 Item.Data['MaxTemp'] := Format('M %2.2f', [TempMax]);
end;

Riding the Mobile Revolution with FireMonkey

246

Here, as a first thing, all the already present controls in the items are removed using Item.
Objects.Clear. Then, all the new items are created and added to the ListViewItem
instance. Note that each control has a name. This name is used by the last three lines to
write text into the Data property of the control. So, just to be clear, if in the item you add
a TListItemText control named MinTemp, you can use Item.Data['MinTemp'] to read
and write (it depends on the actual object, but technically it is possible) generic data on the
MinTemp.Data property. As you know, the Data property is handled by each control with a
different meaning. In this specific case, all the Data properties represent the text written in
the controls.

Then, the problem related to the orientation change is handled by the very useful
UpdateObjects event on the listview. Here, we organize the horizontal space to split it
into four columns and give the first two columns to the weather description, the third to the
minimum temperature, and the fourth to the maximum temperature. You can organize all the
cool things you need in this event, because it's called every time there is an update in the
objects visualization. The code to perform these actions is as follows:

procedure TMainForm.ListView1UpdateObjects(const Sender: TObject;
 const AItem: TListViewItem);
var
 MinTemp, MaxTemp: TListItemText;
 AQuarter: Double;
begin
 //calculate the real available horizontal space
 //for the list item and divide it by 4
 AQuarter := (AItem.Parent.Width –
 AItem.Parent.ItemSpaces.Left –
 AItem.Parent.ItemSpaces.Right) / 4;

 //if MinTemp is created define its new offset and width
 MinTemp := AItem.Objects.FindObject('MinTemp') as TListItemText;
 if Assigned(MinTemp) then
 begin
 MinTemp.PlaceOffset.X := AQuarter * 2;
 MinTemp.Width := AQuarter;
 end;

 //if MaxTemp is created define its new offset and width
 MaxTemp := AItem.Objects.FindObject('MaxTemp') as TListItemText;
 if Assigned(MaxTemp) then
 begin
 MaxTemp.PlaceOffset.X := AQuarter * 3;
 MaxTemp.Width := AQuarter;
 end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

247

 //Set all the footers with centered alignment
 if AItem.Purpose = TListItemPurpose.Footer then
 AItem.Objects.TextObject.TextAlign := TTextAlign.Center;
end;

There's more...
Listviews are tremendously helpful in mobile development and you must be familiar with them
to implement good looking and efficient apps. Using the custom list item style in a package,
you also get the LiveBindings support, while the solution exposed in this recipe doesn't
provide this support. Consider developing a custom list item style and package it in a package
if you want the design-time support. This recipe gives you the starting point to develop custom
style for the listview items. When you are satisfied by the result, create the proper package as
shown in the samples provided by Embarcadero.

Taking a photo and location and sending it
to a server continuously

In this recipe, we'll talk about a lot of things. We'll see how to continuously get an image from
the camera, how to get location information, and how to send binary data to a web server.
Then, moving on to the server side, we'll see how to read binary data from the client and
how to generate content on the fly. All these things will be used to implement a simple
monitoring system.

Getting ready
This recipe is divided into client and server sides. The client side is a mobile app acting as
a special camera able to get image and location and then send it to a remote server. There
is also a live preview on the main form, so you can see what you are sending to the server.
The server simply gets the information and stores them in the filesystem. This recipe is quite
complex, so I avoided an actual SQL (or NoSQL) database to store all the information and
used the filesystem.

How to do it...
Launch two instances of Delphi and open one project in each of them (this will help in the
debug phase). The server project is named MonitorServer.dproj, while the client app is
named MonitorMobile.dproj.

Let's start with the client side.

Riding the Mobile Revolution with FireMonkey

248

The client side
On the main form, there are the TCameraComponent and TLocationSensor components;
the TSwitch control on the top of the form is used to activate them. As soon as the camera
has enough data to create a frame, the TCameraComponent calls its SampleBufferReady
event handler, and then the process begins. Here's the code in the SampleBufferReady
event handler:

procedure TMainForm.CameraComponent1SampleBufferReady(
 Sender: TObject; const ATime: Int64);
var
 Frame: TFrameInfo;
begin
 CameraComponent1.SampleBufferToBitmap(Image1.Bitmap, True);
 if SecondsBetween(now, FLastSent) >= 4 then
 begin
 Frame := TFrameInfo.Create;
 Frame.Bitmap := Image1.Bitmap;
 Frame.TimeStamp := now;
 Frame.Lat := CurrLocation.Latitude;
 Frame.Lon := CurrLocation.Longitude;
 FImagesQueue.PushItem(Frame);
 FLastSent := now;
 end;
end;

Listing 7.1

Information retrieved by the camera is converted into an actual bitmap using the handy
SampleBufferToBitmap method provided by TCameraComponent itself. Now we've
an image. But where does the location information come from? The TLocationSensor
component has the OnLocationChanged event that is called whenever the actual location,
considering the different ways to get the location (such as GPS, Wi-Fi, and GPS combined with
Wi-Fi), actually changes. In the LocationSensor1LocationChanged procedure, we save
the new location in a form field as shown in the following code:

procedure TMainForm.LocationSensor1LocationChanged(
 Sender: TObject; const OldLocation,
 NewLocation: TLocationCoord2D);
begin
 CurrLocation := NewLocation;
end;

Listing 7.2

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

249

Now, go back to Listing 7.1. The information is used to fill an instance of TFrameInfo and
then this instance is pushed on a TThreadedQueue<TFrameInfo> property shared with
a background thread. The main thread pushes the TFrameInfo instances into the queue,
while the background thread reads the TFrameInfo instances, creates a proper HTTP
request, and then sends it to the server. The TFrameInfo type contains all the information
required by the server:

type
 TFrameInfo = class
 private
 { . . . some private declarations . . . }
 public
 constructor Create;
 property Bitmap: TBitmap read FBitmap write SetBitmap;
 property Lat: Double read FLat write SetLat;
 property Lon: Double read FLon write SetLon;
 property TimeStamp: TDateTime read FTimeStamp
 write SetTimeStamp;
 end;

Listing 7.3

The complex stuff actually runs on the background thread. Let's see its Execute method:

procedure TImageSenderThread.Execute;
var
 Parameters: TIdMultiPartFormDataStream;
 HTTP: TidHTTP;
 FrameInfo: TFrameInfo;
 FileName, EncodedParams: string;

 procedure RemoveOldFiles;
 begin
 while FilesToDelete.Count > 1 do
 begin
 try
 TFile.Delete(FilesToDelete.First);
 FilesToDelete.Delete(0);
 except
 on E: EInOutError do
 begin
 FilesToDelete.Delete(0);
 end
 else

Riding the Mobile Revolution with FireMonkey

250

 begin
 // do nothing now, maybe the file is locked.
 //the file will be deleted the next time end;
 end
 end;
 end;

begin
 FilesToDelete := TList<String>.Create;
 HTTP := TidHTTP.Create(nil);
 HTTP.ConnectTimeout := 2000;
 HTTP.ReadTimeout := 1000;
 while not Terminated do
 begin
 if FImagesQueue.PopItem(FrameInfo) <> wrTimeout then
 begin
 FileName := TPath.ChangeExtension(
 TPath.GetTempFileName, '.png');
 try
 //save image to file
 FrameInfo.Bitmap.SaveToFile(FileName);
 //prepare an HTTP request to send the image to the server
 Parameters := TIdMultiPartFormDataStream.Create;
 Parameters.AddFile('file', FileName, 'image/png');
 EncodedParams := Format('ts=%s&lat=%s&lon=%s', [
 FormatDateTime('YYYY-MM-DD HH-NN-SS',
 FrameInfo.TimeStamp),
 FormatFloat('##0.00000000', FrameInfo.Lat),
 FormatFloat('##0.00000000', FrameInfo.Lon)]);
 EncodedParams := TIdURI.ParamsEncode(EncodedParams);
 //send actual HTTP POST request
 HTTP.Post(MONITORSERVERURL + '/photo?' +
 EncodedParams, Parameters);
 //add the file in the queue of
 //the files that needs to be deleted
 FilesToDelete.Add(FileName);
 RemoveOldFiles;
 except
 //the best way to handle this exception, and keep this
 //code simple, is to send the next frame.
 //The same approach of the video
 //streaming protocols: "in case of error, send the next

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

251

 //frame"
 //so, do nothing
 end;
 end;
 end;
end;

Listing 7.3

In the usual thread loop, we try to read the next TFrameInfo instance from the queue. If
such instance is present, we create an HTTP request using a simple HTTP POST method
with the image file in the request body and the other information in the querystring
parameter. Then, in order to avoid filling the storage after some minutes of work, we use a
mechanism to delete old files. See the RemoveOldFiles function in the recipe code for
details. In this code, you can note some suppressed exceptions (try..except with an
empty except block). Usually, this is not good. However, in this case, if we loose a frame
for some reason, the best way to fix the problem is to send the next one. So in some places,
the exceptions are suppressed because the next frame will solve the problem. Moreover, the
threaded queue had a size of only two elements. If the main thread tried to append a third
FrameInfo object in the queue, it is stopped for 500 milliseconds; if it still cannot append
the data, that data is lost. This is one of the approaches available when you are dealing
with queues: if the queue is full, new data is discarded until the queue consumes its current
content. To save space and battery energy, the image is resized before sending. The actual
resizing is done by the TFrameInfo object when the image taken by the camera is assigned
to its Bitmap property, as shown in the following code:

procedure TFrameInfo.SetBitmap(const Value: TBitmap);
var
 Prop: Extended;
 LongerSide: Double;
begin
 FBitmap.Assign(Value);
 Prop := 1;
 LongerSide := Max(FBitmap.Width, FBitmap.Height);
 if LongerSide > 640 then
 Prop := 640 / LongerSide;
 FBitmap.Resize(Trunc(FBitmap.Width * Prop),
 Trunc(FBitmap.Height * Prop));
end;

Listing 7.4

Riding the Mobile Revolution with FireMonkey

252

The server side
The serve side is a WebBroker project with only two actions configured, as shown in the
following table:

Action name PathInfo HTTP method
DefaultHandler / mtGet

waPhoto /photo mtPost

Note that this recipe cannot be compiled with Delphi XE6 without Update 1 because the
ReqMulti.pas unit is missing from the product (visit http://qc.embarcadero.com/
wc/qcmain.aspx?d=124366), but this recipe can be compiled in XE7, XE3, XE4, and XE5
Update 2.

The waPhoto action receives the client request, reads the data, and saves them on the
filesystem. This action saves two files:

 f The actual image file as a .png image file

 f Another file containing all the location information in JSON format

Here's the code for the waPhoto action

procedure TwmMain.wmMainwaPhotoAction(Sender: TObject; Request:
 TWebRequest; Response: TWebResponse; var Handled: Boolean);
var
 FS: TFileStream;
 fname: string;
 Lat, Lon: Double;
 Info: TJSONObject;

 procedure SaveInfoFile;
 begin
 Info := TJSONObject.Create;
 if TryStrToFloat(Request.QueryFields.Values['lat'], Lat) then
 Info.AddPair('lat', TJSONNumber.Create(Lat));
 if TryStrToFloat(Request.QueryFields.Values['lon'], Lon) then
 Info.AddPair('lon', TJSONNumber.Create(Lon));
 TFile.WriteAllText('images' + PathDelim + fname +
 '.info', Info.ToString);
 end;

begin
 if Request.Files.Count > 0 then
 begin

www.allitebooks.com

http://qc.embarcadero.com/wc/qcmain.aspx?d=124366
http://qc.embarcadero.com/wc/qcmain.aspx?d=124366
http://www.allitebooks.org

Chapter 6

253

 TDirectory.CreateDirectory('images');
 fname := Request.QueryFields.Values['ts'] + '.png';
 FS := TFileStream.Create('images' + PathDelim + fname,
 fmCreate);
 try
 FS.CopyFrom(Request.Files[0].Stream, 0);
 finally
 FS.Free;
 end;
 SaveInfoFile;
 Response.StatusCode := 200;
 DeleteFilesOlderThan(fname);
 end
 else
 begin
 Response.StatusCode := 400;
 end;
 Handled := true;
end;

Listing 7.5

Now, data is saved in a couple of files with names similar to the following:

 f 2014-04-27 23-14-53.png: This is a plain .png image file

 f 2014-04-27 23-14-53.png.info: This is a JSON text file containing location
information related to the previous file

Now, the DefaultHandler action is used to generate some HTML to let the remote user see
the image and location information. Here's the code for this action:

procedure TwmMain.WebModule1DefaultHandlerAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
var
 HTMLOut: TStringBuilder;
 FileName, JSONInfoString: string;
 Start, FileTimeStamp: TDateTime;
 Times: Integer;
 JSONInfo: TJSONObject;
 Lat, Lon: Double;
begin
 HTMLOut := TStringBuilder.Create;
 try
 HTMLOut.AppendLine('<html><head>');

Riding the Mobile Revolution with FireMonkey

254

 HTMLOut.AppendLine('<style>');
 HTMLOut.AppendLine(' body {font-family: Verdana; padding:
 50px 10px 50px 50px; }');
 HTMLOut.AppendLine(' pre {font-size: 200%;}');
 HTMLOut.AppendLine('</style>');
 HTMLOut.AppendLine('<meta http-equiv = "refresh"
 Content = "4">');
 HTMLOut.AppendLine('</head><body>');
 HTMLOut.AppendLine('<h1>Delphi Mobile Monitor</h1>');
 Start := Now;
 Times := 0;
 while true do
 begin
 Times := Times + 1;
 FileTimeStamp := Start - OneSecond * Times;
 FileName := 'images' + PathDelim +
 FormatDateTime(DATEFORMAT, FileTimeStamp) + '.png';
 if TFile.Exists(FileName) then
 begin
 HTMLOut.AppendFormat('<h3>Last update %s</h3>',
 [DateTimeToStr(FileTimeStamp)]);
 HTMLOut.AppendFormat('
', [FileName]);
 if TFile.Exists(FileName + '.info') then
 begin
 JSONInfoString := TFile.ReadAllText(FileName + '.info');
 JSONInfo := TJSONObject.ParseJSONValue(JSONInfoString)
 as TJSONObject;
 Lat := (JSONInfo.GetValue('lat') as TJSONNumber).
 AsDouble;
 Lon := (JSONInfo.GetValue('lon') as TJSONNumber).
 AsDouble;
 HTMLOut.AppendFormat('<pre>Lat: %3.8f Lon: %3.8f</pre>',
 [Lat, Lon]);
 end;
 Break;
 end
 else if Times >= 60 * 5 then
 begin
 HTMLOut.Append('<h2>No image available in the last 5
 minutes</h2>');
 Break;
 end;
 end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

255

 HTMLOut.AppendLine('</body></html>');
 Response.Content := HTMLOut.ToString;
 finally
 HTMLOut.Free;
 end;
end;

Listing 7.6

This method creates some HTML on the fly and looks for the most recent snapshot saved
on the server. When it finds an image, it inserts the image file name into the HTML to let the
browser request for it. Then, it opens the .info JSON file, reads the location information,
and inserts it in the HTML as well. Note that this monitoring app doesn't have a proper
synchronization mechanism between file writing and file reading, so in many parts of the code,
you see an empty try except block. For this recipe, it is enough. However, in more critical
systems, a proper mechanism (such as critical sections, monitors, or mutex) is required to
synchronize file access and avoid empty frames, especially with multiple clients.

To update the image displayed on the HTML page, there is a special meta tag in the HTML
document header, as follows:

<meta http-equiv = "refresh" Content = "4">

With this line, the page gets updated every 4 seconds (more information about the
http-equiv meta tags can be found at http://www.w3schools.com/Tags/att_meta_
http_equiv.asp).

To try the application, launch the server and navigate to the URL http://localhost:8080
on your browser.

You should see a page like the following:

The monitoring system page when it cannot find images for the last 5 minutes

http://www.w3schools.com/Tags/att_meta_http_equiv.asp
http://www.w3schools.com/Tags/att_meta_http_equiv.asp

Riding the Mobile Revolution with FireMonkey

256

Now, in the mobile project, open the ImageSenderThreadU.pas unit and locate const
MONITORSERVERURL. Change the const value to point to your machine IP. Note that the
phone (or the tablet) and your PC must be on the same Wi-Fi network. In my case, the
constant is configured as follows:

const
 MONITORSERVERURL = 'http://192.168.1.100:8080';

Replace the IP with yours, and leave the protocol (http) and the port (8080) as is.

In a real-world app, put a small configuration section in the mobile app to let the user enter
the actual URL where the server listens.

Run the mobile app, activate the camera using the switch on the top-right corner, and after
a couple of seconds, you should see an image and the location information coming up in the
web page. The final web page should look like the following:

The monitoring system running while showing a sort of recursive image of itself

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

257

There's more...
This recipe acts like a training for a lot of concepts. If you want to go deeper into them, you
can read the following articles and information:

 f Using Location Sensors at http://docwiki.embarcadero.com/RADStudio/
XE6/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_
Android)

 f Uses Permissions at http://docwiki.embarcadero.com/RADStudio/XE6/
en/Uses_Permissions

 f FMX.Media.TCameraComponent at http://docwiki.embarcadero.com/
Libraries/XE6/en/FMX.Media.TCameraComponent

Talking to the backend
This recipe will introduce you to the real-world business mobile apps and their related
application servers. It is not a simple world. It is full of well-known traps and full of specific
traps related to your infrastructure, your business logic, your application transactions, and
so on. Just to be clear, you have to take care of your design and the way you implement this
design in a much more extent compared to a classic client/server application. On going
deeper into the mobile programming (and in general, in all asynchronous scenarios), you will
see that things become harder than usual. In the mobile world, things can get messy really
fast and your customers will complain even faster. Be warned!

This recipe is a mobile client for the People Manager application server developed in the
Implementing a RESTful interface using WebBroker recipe in Chapter 5, Putting Delphi
on the Server.

Getting ready
As already mentioned, this recipe is composed by the application server and the mobile client.
The UI is not blocking so that all the REST requests are executed in a background thread using
the built-in features of RESTClient.

How to do it...
The app is based on the Header/Footer with Navigation mobile template. In the first TTabItem
object, there is a list of people. In the second TTabItem object, there are the selected person's
details. Data is read from the REST services exposed by the PeopleManager.dproj server.

http://docwiki.embarcadero.com/RADStudio/XE6/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
http://docwiki.embarcadero.com/RADStudio/XE6/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
http://docwiki.embarcadero.com/RADStudio/XE6/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
http://docwiki.embarcadero.com/RADStudio/XE6/en/Uses_Permissions
http://docwiki.embarcadero.com/RADStudio/XE6/en/Uses_Permissions
http://docwiki.embarcadero.com/Libraries/XE6/en/FMX.Media.TCameraComponent
http://docwiki.embarcadero.com/Libraries/XE6/en/FMX.Media.TCameraComponent

Riding the Mobile Revolution with FireMonkey

258

The client implements a simple CRUD operation and uses a subset of the server services. The
service used and the relative URL are mentioned in the following table (you can implement
search functionality as an exercise):

HTTP verb URL Description
GET /people This returns a JSON array containing one JSON object

for each record present in the PEOPLE table. In each
object, the property name is the name of the field,
while the property values are the value of the fields.

POST /people This creates a new person in the PEOPLE table.
This requires a request body containing the
new person's data to create a JSON object. The
content-type request must be application/
json.

PUT /people/{id} This updates the person with id with the data passed
in the request body. This requires a request body
containing the person to update as JSON object. The
content-type request must be application/
json.

DELETE /people/{id} This deletes the person with id.

The GET people/:id method is available from the server too, but the client doesn't use it
because the GET /people method already returns an array with all the complete entities.
In a real-world app, you perhaps have lots of entities, or a lot of entity attributes or nested
objects, so it makes sense to use the GET verb to get a single entity representation.

Locally, the data is stored in a TDataSet component, a TFDMemTable component (yes, I
love it) to be precise, and are loaded using the class helper declared in ObjectsMappers.
pas (contained in the DelphiMVCFramework project and already used in Chapter 5, Putting
Delphi on the Server).

All the logic is implemented in a data module created before the main form is created (go to
Project | Options | Forms to check the form creations order). Methods provided by the data
module to the main form are as follows:

 public
 procedure SavePerson(AOnSuccess: TProc;
 AOnError: TProc<Integer, String> = nil);
 procedure DeletePerson(AOnSuccess: TProc;
 AOnError: TProc<Integer, String> = nil);
 procedure LoadAll(AOnSuccess: TProc;
 AOnError: TProc<Integer, String> = nil);
 function CanSave: Boolean;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

259

CanSave is used to enable or disable UI actions depending on the dsPeople dataset state.
The LoadAll method is called from the FormShow event handler, and it requests data
to the server and populates the in-memory dataset. Seeing that all remote requests are
asynchronous, we need some callback to update the UI after the request is finished in order to
show data in the case of success, or to show error messages in the case of errors. Here's the
code for the data module LoadAll method:

procedure TdmMain.LoadAll(AOnSuccess: TProc; AOnError:
 TProc<Integer, String>);
begin
 if dsPeople.State in [dsInsert, dsEdit] then
 dsPeople.Cancel; //cancel all unposted data
 dsPeople.Close;

 RESTRequest.ClearBody;
 RESTRequest.Resource := 'people';
 RESTRequest.Method := TRESTRequestMethod.rmGET;

 //execute remote request asynchronously
 //WARNING! The anonymous method passed as parameter to the
 //ExecuteAsynch is execute within the main thread, so there is
 //no need to synchronize UI access
 RESTRequest.ExecuteAsync(
 procedure
 begin
 if RESTRequest.Response.StatusCode = 200 then
 begin
 //load response jsonarray in the dataset
 dsPeople.Active := True;
 dsPeople.AppendFromJSONArrayString(
 RESTRequest.Response.JSONValue.ToString);
 if Assigned(AOnSuccess) then
 //call the 'success' user callback
 AOnSuccess();
 end
 else
 begin
 if Assigned(AOnError) then
 //call the 'error' user callback
 AOnError(RESTRequest.Response.StatusCode,
 RESTRequest.Response.StatusText);
 end;
 end);
end;

Riding the Mobile Revolution with FireMonkey

260

This method is declared in the data module. How to call this method in the acRefreshData
action within the main form? Here's the code:

procedure TMainForm.acRefreshDataExecute(Sender: TObject);
begin
 DoStartWait('Please wait while retrieving the people list');
 dmMain.LoadAll(
 procedure
 begin
 DoEndWait;
 end,
 procedure(StatusCode: Integer; StatusText: String)
 begin
 DoEndWait;
 ShowError(Format('Error [%d]: %s',
 [StatusCode, StatusText]));
 end);
end;

Remember, a call to the LoadAll method is not blocking for the main thread. So, any code
after a call to LoadAll is executed as soon as possible (as the OS decides) and not after the
data is retrieved. This is the reason why we need the callbacks. The first anonymous method
is our success callback, and it is executed when data is already in the dataset and the user
can see it in the listview. The second anonymous method is our error callback, and it is
executed if some errors occur in the call. The other remote calls work in the same manner.

If you, for some reason, would like to use a different HTTP component to do the REST HTTP
calls and this library doesn't support asynchronous client requests, you can always rely on the
good old anonymous thread. The following code is included in the LoadAll method, but it is
commented to show an alternative way to do remote call without using the ExecuteAsynch
method:

 TThread.CreateAnonymousThread(
 procedure
 begin
 try
 //synch call, but executed in an anonthread
 RESTRequest.Execute;
 TThread.Synchronize(nil,
 procedure
 begin
 if RESTRequest.Response.StatusCode = 200 then
 begin
 dsPeople.Active := True;
 dsPeople.AppendFromJSONArrayString(
 RESTRequest.Response.JSONValue.ToString);

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

261

 if Assigned(AOnSuccess) then
 AOnSuccess();
 end
 else
 AOnError(RESTRequest.Response.StatusCode,
 RESTRequest.Response.StatusText);
 end);
 except
 on E: Exception do
 begin
 if Assigned(AOnError) then
 begin
 ErrMsg := E.Message;
 TThread.Synchronize(nil,
 procedure
 begin
 //Passing 'Zero' to the callback means that some
 //non-protocol related exception has been raised
 AOnError(0, ErrMsg);
 end);
 end
 end;
 end;
 end).Start;

An important feature of well-designed mobile apps is the feedback to the user. Your user must
know what your application is doing after their input; otherwise, he/she would probably stop it.
So, we need to show a Please wait screen. To do so, this app uses a TPopup component. This
component has a property called IsOpen that is used to show it or hide it. Just before each
request, we set an instance form variable to true and after the request, when the response
is visible somewhere in the UI, we set that variable to false. Here's the code to handle the
Please wait screen:

procedure TMainForm.DoEndWait;
begin
 FBackgroundOperationRunning := False;
end;

procedure TMainForm.DoStartWait(AWaitMessage: String);
begin
 //this label is placed inside the "Please wait" screen
 lblMessage.Text := AWaitMessage;
 FBackgroundOperationRunning := True;
end;

Riding the Mobile Revolution with FireMonkey

262

How to actually show the TPopup component? In the mobile Header/Footer with Navigation
template, there is a TControlAction component to update the header caption according to
the selected tab. Its OnUpdate event handler is a good source to update the UI when the app
is in idle state. Here's the code:

procedure TMainForm.TitleActionUpdate(Sender: TObject);
begin
 //this is the code generated by the template wizard
 if Sender is TCustomAction then
 begin
 if TabControl1.ActiveTab <> nil then
 TCustomAction(Sender).Text := TabControl1.ActiveTab.Text
 else
 TCustomAction(Sender).Text := '';
 end;

 //this is the code added
 acRefreshData.Enabled := (not FBackgroundOperationRunning) and
 (TabControl1.ActiveTab = TabItem1);
 AniIndicator1.Visible := FBackgroundOperationRunning;
 TabItem1.Enabled := not FBackgroundOperationRunning;
 ppMessage.IsOpen := FBackgroundOperationRunning;
end;

Data is linked to the UI using the LiveBindings engine. Here's the LiveBindings designer
showing the links:

The LiveBindings designer showing the links between the dsPeople and the UI

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

263

After launching the app, you will get this wait screen:

The wait screen

Then, when the data is retrieved, parsed, and loaded, this is the screen you will get:

The list of people loaded in the listview

Riding the Mobile Revolution with FireMonkey

264

If you tap an item, you will get the editing screen:

The editing screen showing the person's information

There's more...
A lot of topics in this recipe! Mobile apps can be really complex as this simple example
demonstrates. However, using the LiveBindings engine, the local storage offered by SQLite
and IBLite, and the nice Delphi components to load data in memory, you can create
mobile apps easily enough. Here are some other demos about the technologies involved
in developing these type of apps:

 f FireDAC IBLite with Delphi XE6 at https://www.youtube.com/
watch?v=jbRJCqNgNDc

 f Delphi XE5 Mobile REST Client Demo at https://www.youtube.com/
watch?v=OkRVbgF4VMI

 f Delphi XE5 Mobile REST Client Demo Source at http://delphi.org/2013/09/
delphi-xe5-mobile-rest-client-demo-source/

 f The New REST Client Library, A Tool of Many Trades at https://www.youtube.
com/watch?v=nPXYLK4JZvM

Making a phone call from your app!
Many mobile devices, especially in the consumer market, are phones or are devices that can
make phone calls. In some cases, your mobile app may have the ability to make a call or just
to monitor the incoming or outgoing calls.

www.allitebooks.com

https://www.youtube.com/watch?v=jbRJCqNgNDc
https://www.youtube.com/watch?v=jbRJCqNgNDc
https://www.youtube.com/watch?v=OkRVbgF4VMI
https://www.youtube.com/watch?v=OkRVbgF4VMI
http://delphi.org/2013/09/delphi-xe5-mobile-rest-client-demo-source/
http://delphi.org/2013/09/delphi-xe5-mobile-rest-client-demo-source/
https://www.youtube.com/watch?v=nPXYLK4JZvM
https://www.youtube.com/watch?v=nPXYLK4JZvM
http://www.allitebooks.org

Chapter 6

265

Getting ready
In this recipe, we'll see how to make a call and how to monitor the current calls as well. Also,
in this case, the useful FireMonkey platform services framework come handy.

How to do it...
1. Create a new mobile app by navigating to File | New | FireMonkey mobile

application – Delphi.

2. Select the Header/Footer template and click on OK.

3. Drop the following components on the main form:

 � TEdit (edtPhoneNumber)

 � TButton (btnCall)

 � TListBox (lbCalls)

 � TListBox (lbInfo)

4. Arrange the components as shown in the following screenshot:

The form with all the controls arranged

Riding the Mobile Revolution with FireMonkey

266

5. Put some labels to explain what the listboxes will contain, as shown in the preceding
screenshot.

6. Now, create the FormCreate event handler and fill it with this code:
procedure TMainForm.FormCreate(Sender: TObject);
begin
 lbInfo.Clear;
 if TPlatformServices.Current.
 SupportsPlatformService(IFMXPhoneDialerService,
 IInterface(FPhoneDialerService))
 then
 begin
 FPhoneDialerService.OnCallStateChanged := CallStateChanged;
 lbInfo.ItemHeight := lbInfo.ClientHeight / 4;
 lbInfo.Items.Add('Carrier Name: ' +
 FPhoneDialerService.GetCarrier.GetCarrierName);
 lbInfo.Items.Add('ISO Country Code: ' +
 FPhoneDialerService.GetCarrier.GetIsoCountryCode);
 lbInfo.Items.Add('Network Code: ' +
 FPhoneDialerService.GetCarrier.GetMobileCountryCode);
 lbInfo.Items.Add('Mobile Network: ' +
 FPhoneDialerService.GetCarrier.GetMobileNetwork);
 btnCall.Enabled := True;
 end
 else
 lbInfo.Items.Add('No Phone Dialer Service');
end;

7. In the form's private section, declare the following methods:
 private
 FPhoneDialerService: IFMXPhoneDialerService;
 procedure CallStateChanged(const ACallID: string;
 const AState: TCallState);
 function CallStateAsString(AState: TCallState): String;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

267

8. Press Ctrl + Shift + C and fill the methods just created with the following code:
function TMainForm.CallStateAsString(AState: TCallState): String;
begin
 case AState of
 TCallState.None:
 Result := 'None';
 TCallState.Connected:
 Result := 'Connected';
 TCallState.Incoming:
 Result := 'Incoming';
 TCallState.Dialing:
 Result := 'Dialing';
 TCallState.Disconnected:
 Result := 'Disconnected';
 else
 Result := '<unknown>';
 end;
end;
procedure TMainForm.CallStateChanged(const ACallID: string;
 const AState: TCallState);
begin
 lbCalls.Items.Add(Format('%-16s %s',
 [ACallID, CallStateAsString(AState)]));
end;

9. Now, create the OnClick event for the btnCall method and fill it with this code:
procedure TMainForm.btnCallClick(Sender: TObject);
begin
 if not edtPhoneNumber.Text.IsEmpty then
 FPhoneDialerService.Call(edtPhoneNumber.Text)
 else
 begin
 ShowMessage('No number to call, please type a phone number.');
 edtPhoneNumber.SetFocus;
 end;
end;

Riding the Mobile Revolution with FireMonkey

268

10. Run the app on your phone. Note the lbInfo method showing all the information
about your mobile network. Write a phone number in the editing area and click on
the Call button. Note what happens to the lbCalls method during the outgoing calls
and during the incoming calls. This activity is shown in the following screenshot:

The Phone Dialer app running on a phone, after some in/out calls; note the events in the first list

How it works...
This recipe is very simple. All the work is done at the beginning when the FormCreate event
handler asks the system whether it supports the IFMXPhoneDialerService interface. This
interface has the following methods:

 { Interface of Phone Dialer }
 IFMXPhoneDialerService = interface (IInterface)
 ['{61EE0E7A-7643-4966-873E-384CF798E694}']
 // Make a call by specified number
 function Call(const APhoneNumber: string): Boolean;
 // Get current carrier
 function GetCarrier: TCarrier;
 // Get all currrent calls. If the current calls aren't
 // present, the array will be empty
 // The developer shall delete array cells after use
 function GetCurrentCalls: TCalls;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

269

 // Getter, Setter and property for work with event of tracing
 // of state change of a call
 function GetOnCallStateChanged: TOnCallStateChanged;
 procedure SetOnCallStateChanged(
 const AEvent: TOnCallStateChanged);
 property OnCallStateChanged: TOnCallStateChanged
 read GetOnCallStateChanged
 write SetOnCallStateChanged;
 end;

There's more...
Using the monitor functionality, you can implement a system to track the phone calls' duration
and type (incoming or outgoing). Using this service, you can implement a list of contacts
centralized on a server and allow your user to call those contacts without having the contact
in the phone's address book. Another utilization is to monitor the allowed numbers to call,
and if some special blocked number is called, you can send a notification to a remote server.
There are endless possibilities—explore them yourself.

Tracking the application's life cycle
In the "safe" MS Windows desktop application development land, our application has a
life cycle but it is not so crucial take care of it. Usually, you have a set of events to handle
such as FormCreate, FormClose (at the form level), or Application OnRestore, or
application OnTerminate. In some cases, you have to handle the state where the main
application window is minimized, and this is still simple. In the mobile world, as usual, things
are a bit more complex. The concept of life cycle is an evidence. Just to make things messier,
the Android activity's life cycle is different from the iOS view life cycle. Remember, when an
app is in background, it can be completely destroyed.

Getting ready
But, hey! Why I should care about the life cycle? That's a very good point! There are a lot
of things that you should or must do while your application is switching from one state
to another.

Riding the Mobile Revolution with FireMonkey

270

Here are some examples:

 f Handle current input control's state. You can save or discard data, but you cannot
send the Do you want to save? message to the user. If a user touches the Home
button, you cannot stop them.

 f Stop or restart some CPU intensive work related to some calculation.

 f Look for some previously saved data on the filesystem.

 f Search some Bluetooth devices or App-Tethering-enabled applications.

 f Update a remote resource more frequently than when the app was running in
background. In background, you may check a particular HTTP resource once an
hour, while if the app is in foreground, you can decide to check that resource
once at minute.

 f Append a system notification to remind something to the user just before terminating
an app.

 f Stop the audio output (if applicable for your app).

 f Stop the GPS monitoring (if applicable for your app).

 f Going into power saving mode, whatever it means for your app, and many more.

As you can see, the application life cycle is very important. Let's see how we can hook to it.

How to do it...
This recipe is not a standard recipe. We'll not build a complete app, but a reference app. You
can launch this app every time you want to know which event (app event or form event) is fired
and when.

As the first thing, in the FormCreate event, we've to hook to the system FireMonkey
messaging system and subscribe to the TApplicationEventMessage message type:

procedure TMainForm.FormCreate(Sender: TObject);
begin
 TPlatformServices.Current.SupportsPlatformService
 (IFMXLoggingService, IInterface(FLoggingService));

 FSubscrID := TMessageManager.DefaultManager.
 SubscribeToMessage(TApplicationEventMessage,
 procedure(const Sender: TObject;
 const Msg: TMessage)
 var
 AppEvent: TApplicationEventMessage;
 begin
 AppEvent := TApplicationEventMessage(Msg);

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

271

 case AppEvent.Value.Event of
 TApplicationEvent.FinishedLaunching:
 LogEvent('App Finished Launching');
 TApplicationEvent.BecameActive:
 LogEvent('App Became Active');
 TApplicationEvent.WillBecomeInactive:
 LogEvent('App Will Become Inactive');
 TApplicationEvent.EnteredBackground:
 LogEvent('App Entered Background');
 TApplicationEvent.WillBecomeForeground:
 LogEvent('App Will Become Foreground');
 TApplicationEvent.WillTerminate:
 LogEvent('App Will Terminate');
 TApplicationEvent.LowMemory:
 LogEvent('App Low Memory');
 TApplicationEvent.TimeChange:
 LogEvent('App Time Change');
 TApplicationEvent.OpenURL:
 LogEvent('App Open URL');
 end;
 end);

 LogEvent('Event FormCreate');
end;

With this code, every time the system raises a message regarding our app, we'll be informed.
The System.Messaging.pas unit, added in the implementation uses clause, contains
the classes needed to access to the system's messaging system.

How does this messaging system work? Once you have an instance of TMessageManager,
you can subscribe message-handling methods to specific types of messages. Message-
handling methods may be methods of an object or anonymous methods. In our case, we've
used an anonymous method. This messaging mechanism can also be used in your app or
component as an independent messaging system. However, FireMonkey also uses it to send
system messages using the default messaging manager instance. In this recipe, we're using it
to subscribe to the system messages.

An instance of TApplicationEvent, the type on which we're doing the big case statement,
represents the application-related messages and may have any of the following values:

Event Description
BecameActive This indicates that an application has gained the focus.
EnteredBackground This indicates that the application is running in the

background because the user is no longer using it.

FinishedLaunching This indicates that the application has been launched.

Riding the Mobile Revolution with FireMonkey

272

Event Description
LowMemory This event is a warning for the application that the device is

running out of memory.

In this case, the application should reduce memory usage,
freeing structures and data that are not fundamental or that
can be reloaded as per requirements at a later point.

OpenURL This indicates that the application has received a request to
open a URL (only for iOS).

TimeChange This indicates that there has been a significant change in time
(only for iOS).

This event might happen, for example, when the day changes
or when the device changes to or from daylight savings time.

WillBecomeForeground This indicates that the user is now using the application, which
was previously running in the background.

WillBecomeInactive This indicates that the application is going to loose the focus
and become inactive.

WillTerminate This indicates that the user or the operating system is quitting
the application.

Remember, to be a good FireMonkey citizen, when you subscribe to a system notification,
you have to unsubscribe it too. We do it in the FormDestroy event just after logging—the
last thing:

procedure TMainForm.FormDestroy(Sender: TObject);
begin
 LogEvent('Event FormDestroy');
 TMessageManager.DefaultManager.Unsubscribe(
 TApplicationEventMessage, FSubscrID, True);
end;

The LogEvent method appends the message text to the listbox and writes the same
message to the system log as well using the reference to IFMXLoggingService retrieved in
the FormCreate event handler. Moreover, whereas the form events could be many, there is
a checkbox to exclude them from the logging. Here's the code for the LogEvent method:

procedure TMainForm.LogEvent(Msg: string);
begin
 if (not CheckBox1.IsChecked) and
 Msg.StartsWith('event', True) then Exit;
 Memo1.Lines.Add(Format('%s: %s', [TimeToStr(Now), Msg]));
 Memo1.GoToTextEnd; //memo goes to the last line
 if Assigned(FLoggingService) then
 FLoggingService.Log('LifeCycle: %s', [Msg]); //syslog
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 6

273

This is the infrastructure code, but what events are we waiting for? In the main form, there are
some test buttons that raise specific system and form events. Here's the app while it is logging
form events and system messages:

The app while it is logging form events and system messages

In the main form, every interesting event that could be raised, whether the app state changes
or not, is filled with code similar to the following one:

procedure TMainForm.FormActivate(Sender: TObject);
begin
 LogEvent('Event FormActivate');
end;

Now that everything is traced, app state changes and forms events. Now you can connect
your device, if it's not already connected, and launch the proper tool to see the device logger
(launch Monitor.bat for Android devices or see the device console for iOS devices). Start
the app and play with the buttons.

Try to tap the Open Form button and then close the newly opened form by tapping on the
Close button. As you can see in the list, only form events are called (FormDeactivate and
FormActivate) and this is reasonable. Now tap on the ShowMessage button and see
what happens. Form events are not raised but an app message arrives. Look! The app goes
in the inactive state for a ShowMessage call! This is the case where this sort of testing tool
is very handy. If you don't know exactly when an app switches its state from one to another,
you cannot rely to this state change to do anything useful and reliable. But now you have the
right tool!

Riding the Mobile Revolution with FireMonkey

274

There's more...
Experimenting with the life cycle, you can find interesting utilization that makes your user
happy with your app.

Another interesting thing that I suggest you to study is the messaging system based on a
variation of the well-known and more general Observer design pattern of the GoF fame.
Simply speaking, this messaging system is just something that triggers an event to which
anyone can listen. Different libraries offer different implementations and for different
purposes, but the basic idea is to provide a framework for issuing events and subscribing
to them.

More information about the System.Messaging.pas unit can be found in the
following articles:

 f Sending and Receiving Messages Using the RTL at http://docwiki.
embarcadero.com/RADStudio/XE6/en/Sending_and_Receiving_
Messages_Using_the_RTL

 f List of FireMonkey Message Types at http://docwiki.embarcadero.com/
RADStudio/XE6/en/List_of_FireMonkey_Message_Types

 f System.Messaging (Delphi) at http://docwiki.embarcadero.com/
CodeExamples/XE6/en/System.Messaging_(Delphi)

 f Where all the messaging system has begun: the Observer design pattern at
http://en.wikipedia.org/wiki/Observer_pattern

www.allitebooks.com

http://docwiki.embarcadero.com/RADStudio/XE6/en/Sending_and_Receiving_Messages_Using_the_RTL
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sending_and_Receiving_Messages_Using_the_RTL
http://docwiki.embarcadero.com/RADStudio/XE6/en/Sending_and_Receiving_Messages_Using_the_RTL
http://docwiki.embarcadero.com/RADStudio/XE6/en/List_of_FireMonkey_Message_Types
http://docwiki.embarcadero.com/RADStudio/XE6/en/List_of_FireMonkey_Message_Types
http://docwiki.embarcadero.com/CodeExamples/XE6/en/System.Messaging_(Delphi)
http://docwiki.embarcadero.com/CodeExamples/XE6/en/System.Messaging_(Delphi)
http://en.wikipedia.org/wiki/Observer_pattern
http://www.allitebooks.org

7
Using Specific Platform

Features

In this chapter, we will cover the following topics:

 f Using Android SDK Java classes

 f Using iOS Objective-C SDK classes

 f Displaying PDF files in your app

 f Sending Android intents

 f Letting your phone talk – using the Android TextToSpeech engine

Introduction
There are situations where if you need a particular Android or iOS feature, FireMonkey
doesn't help you. FireMonkey does a very good job in supporting all the common mobile
features, but it is still relatively young. This means that not all the APIs have been already
imported, polished, and wrapped in nice Object Pascal reusable classes or components.
So, what can you do in such cases? The good news is that you can import classes from the
underlying SDK (and NDK, in case of Android) and wrap them just like Embarcadero does
on the FireMonkey platform.

In this chapter, we'll see some classes import examples. Keep in mind that the code using
imported classes is not cross platform. That is, if you import an Android SDK class and your
code uses it, you lose the possibility to compile that specific code for iOS. However, you can, as
usual, use some IFDEFs to statically select the Android-specific code from the iOS-specific code.

Using Specific Platform Features

276

Using Android SDK Java classes
In this recipe, we'll talk about the mechanisms that the compiler offers to import classes from
the Android SDK and NDK. This is not a standard recipe, but is more of a showcase of the
possibilities offered by the Delphi compiler, and the processes needed to fully use them
when dealing with built-in libraries of the OS.

Getting ready
What we'll do is import a well-known Android class used everywhere in the Android
ecosystem—Toast. The Android documentation states the following:

"A toast provides simple feedback about an operation in a small popup. It only fills
the amount of space required for the message and the current activity remains
visible and interactive. For example, navigating away from an email before you send
it triggers a "Draft saved" toast to let you know that you can continue editing later.
Toasts automatically disappear after a timeout."

So, how do we use a Toast in a Delphi app?

The first thing to do is have a clear vision of the class methods and all the other types
involved in their definition. You can get this information from the official documentation at
http://developer.android.com/reference/android/widget/Toast.html. The
following tables show the most relevant class members as explained by the Android Java
SDK documentation.

The following table shows the Toast class constants:

Type Constant
int LENGTH_LONG

int LENGTH_SHORT

The following table shows the public instance methods of Toast:

Type Method
void cancel()

int getDuration()

int getGravity()

float getHorizontalMargin()

float getVerticalMargin()

View getView()

int getXOffset()

www.allitebooks.com

http://developer.android.com/reference/android/widget/Toast.html
http://www.allitebooks.org

Chapter 7

277

Type Method
int getYOffset()

void setDuration(int duration)

void setGravity(int gravity, int xOffset, int yOffset)

void setMargin(float horizontalMargin, float
verticalMargin)

void setText(int resId)

void setText(CharSequence s)

void setView(View view)

void show()

The following table shows public static methods of Toast (like the class methods in Delphi):

Type Method
Toast makeText(Context context, int resId, int duration)

Toast makeText(Context context, CharSequence text, int
duration)

This is the typical usage of the Toast class inside an Android activity:

Toast.makeText(getContext(),
"Hello Toast World",
Toast.LENGTH_LONG).show();

Now with this information, we can define our import Delphi class.

How to do it...
The Android Delphi compiler allows you to declare a specific class as a generic Java import
of an SDK Java class. The class that does this magic is declared within the Androidapi.
JNIBridge.pas unit as follows:

TJavaGenericImport<C: IJavaClass; T: IJavaInstance>

TJavaGenericImport is a generic class that we can use to make the declaration of
the imported Java object factories easier. Using this class, we split the class and instance
methods into two interfaces. This class blends the two interfaces into a single factory that
can produce instances of Java objects, or provide a reference to an instance representing
the Java class. Moreover, Android Java SDK uses Java String objects, while Delphi uses
strings. If you need to pass a string to a method imported from the SDK that expects a JString
(the type used by the Delphi compiler to match the Java String object), you have to use the
StringToJString function defined in Androidapi.Helpers.pas to convert it.

Using Specific Platform Features

278

So, the next step to use the Toast class is to define two interfaces. The first one declares
all the class methods (static in Java) with the same signature as that of the Java ones. The
second one declares all the instance methods with the same Java signature as well.

How to map Java types to the Delphi types? In the Delphi RTL, there are many samples
of the imported Java classes. The following table gives you a small summary of what you
can understand from the already imported classes and from the api-version.xml
file present in the Android SDK, which contains the declaration of all the SDK classes
(<Public Documents>\Embarcadero\Studio\14.0\PlatformSDKs\adt-bundle-
windows-x86-20131030\sdk\platform-tools\api\api-versions.xml):

Java type Delphi type
boolean Boolean

byte ShortInt

char WideChar

double Double

float Single

int Integer

long Int64

short SmallInt

void If used as return type, use
procedure instead of function

java/lang/CharSequence JCharSequence

android/view/View JView

java/lang/String JString

All the methods must be declared with the cdecl calling convention to be compatible with
the Java calling convention. Moreover, the interface declaring the interface methods must be
decorated with the JavaSignature RTTI attribute that defines the full Java package, where
the mapped class is declared in the SDK. It may seem complex, but the resultant code is not.
The following code is the final import declaration for the Toast class:

type
 [JavaSignature('android/widget/Toast')]
 JToast = interface(JObject)
 ['{AC116FB8-FE4D-47E8-BEC9-96E919A01CC7}']
 procedure cancel; cdecl;
 function getDuration: Integer; cdecl;
 function getGravity: Integer; cdecl;
 function getHorizontalMargin: Single; cdecl;
 function getVerticalMargin: Single; cdecl;
 function getView: JView; cdecl;

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

279

 function getXOffset: Integer; cdecl;
 function getYOffset: Integer; cdecl;
 procedure setDuration(duration: Integer); cdecl;
 procedure setGravity(gravity: Integer; xOffset:
 Integer; yOffset: Integer); cdecl;
 procedure setMargin(horizontalMargin: Single;
 verticalMargin: Single); cdecl;
 procedure setText(resId: Integer); cdecl; overload;
 procedure setText(s: JCharSequence); cdecl; overload;
 procedure setView(view: JView); cdecl;
 procedure show; cdecl;
 end;

 JToastClass = interface(JObjectClass)
 ['{127EA3ED-B569-4DBF-9BCA-FE1491FC615E}']
 function init(context: JContext): JToast; cdecl;
 function makeText(context: JContext; resId: Integer;
 duration: Integer): JToast; cdecl; overload;
 function makeText(context: JContext;
 text: JCharSequence;
 duration: Integer): JToast; cdecl; overload;
 end;

Now, with these two interfaces, we can declare our TJToast class inheriting it from
TJavaGenericImport, as shown in the following code:

 TJToast = class(TJavaGenericImport<JToastClass, JToast>)
 const
 LENGTH_LONG = 1;
 LENGTH_SHORT = 0;
 end;

As you can see, the body of the class is almost empty because all the methods will be used
with the help of an internally created object returning an interface reference. LENGTH_LONG
and LENGTH_SHORT are simple constants in Java, so I added them as const in the TJToast
declaration. The TJToast class can be used as follows using the same methods documented
for the Android Java SDK:

procedure TMainForm.Button3Click(Sender: TObject);
var
 Toast: JToast;
begin
 Toast := TJToast.JavaClass.makeText(SharedActivityContext,
 StrToJCharSequence('Hello World'), TJToast.LENGTH_SHORT);
 Toast.show();
end;

Using Specific Platform Features

280

However, if you run the preceding code, you will get the following exception:

Java.lang.RuntimeException: Can't create handler inside thread that has
not called Looper.prepare()

This is because the Toast must be synchronized with the UI thread. So, using the
CallInUiThread function declared into FMX.Helpers.Android.pas, we can
synchronize the call with the main thread. The following is the complete code:

procedure TMainForm.Button1Click(Sender: TObject);
begin
 CallInUiThread(
 procedure
 var
 Toast: JToast;
 begin
 Toast := TJToast.JavaClass.makeText(SharedActivityContext,
 StrToJCharSequence('Hello World'), TJToast.LENGTH_SHORT);
 Toast.show();
 end);
end;

Now the code works, but the utilization pattern is not too Delphi-like. Indeed, we're using
Java classes and methods using the Delphi syntax. However, we can write some helper code
to make the Toast utilization more similar to the Delphi RTL and the Delphi programmer
mind-set, as follows:

 interface

{$SCOPEDENUMS ON}

type
 TToastDuration = (Short = 0, Long = 1);
 TToastPosition = (Default = 0, TOP = 48,
 BOTTOM = 80, CENTER = 17,
 VerticalCenter = 16, HorizontalCenter = 1);
procedure ShowToast(const AText: string;
 const ADuration: TToastDuration = TToastDuration.Short;
 const APosition: TToastPosition = TToastPosition.Default);

implementation

uses
 FMX.Helpers.Android, AndroidAPI.Helpers;

procedure ShowToast(const AText: string;
 const ADuration: TToastDuration;
 const APosition: TToastPosition);

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

281

begin
 CallInUiThread(
 procedure
 var
 Toast: JToast;
 begin
 Toast := TJToast.JavaClass.makeText(SharedActivityContext,
 StrToJCharSequence(AText), Integer(ADuration));
 if APosition <> TToastPosition.Default then
 Toast.setGravity(Integer(APosition), 0, 0);
 Toast.show();
 end);
end;

In this version, we've used the setGravity method to define the Toast position on the
screen. We've used an enumerated type mapped to the same integer values defined in the
android.view.Gravity class. Also, check the call to SharedActivityContext to get
the activity context needed by the method.

Now, we can use the Toast class using a very Delphi-styled function. Here are some
sample calls:

 ShowToast('Hello Toast World');
 ShowToast('Hello Toast World', TToastDuration.Long,
 TToastPosition.Center);
 ShowToast('Hello Toast World', TToastDuration.Short);

As a suggestion, try to make your imports as intuitive as possible for your Delphi users (even if
you are the only user) because the rest of your code is written using the Delphi libraries. Stay
as homogeneous as possible; it's a good principle for whatever language you use. Encapsulate
the imported classes in proper Delphi code structures (classes, records, functions, and
whatever is appropriate) and the style of your code will benefit from it being much more
coherent with itself.

In the recipe code, there is a complete app showing different kinds of Toast utilization.

There's more...
Complex classes require more work to be imported, but there are tools that can help in this
hard work, for example, Java2Pas (http://www.softwareunion.lu/en/downloads/).

These tools do a good job and help in the boring methods declaration phase. However, you
cannot simply import a class and use it in your Delphi code. In many cases, you have to do
additional work to arrange a good class structure in your units to avoid circular unit references.

http://www.softwareunion.lu/en/downloads/

Using Specific Platform Features

282

However, if you are interested and want to know more, I suggest you check the wonderful
presentation held by Brian Long at the CodeRage 8 conference, where he talks about
accessing the Android and iOS APIs. The presentation can be found at the following URL:

http://blog.blong.com/2013/10/my-coderage-session-files.html

Delphi XE7 allows you to use your own or third-party Java libraries in RAD Studio applications
in a simpler way. Check the following link for more information:

http://docwiki.embarcadero.com/RADStudio/XE7/en/Using_a_Custom_Set_
of_Java_Libraries_In_Your_RAD_Studio_Android_Apps

As FireMonkey and the mobile "soul" of Delphi mature, third-party mobile components will
become available in the market. Even if you are not interested in native widgets, you can study
the code from the project D.P.F Delphi Android Native Components. It will really help to see
how to import complex Java classes into Delphi. You can find this at the following URL:

http://sourceforge.net/projects/dpfdelphiandroid/

Moreover, you can also use native NDK .so files. To get an idea on how to do this, check the
Androidapi.Log.pas unit, where the function used by the IFMXLoggingService service
on Android is declared. As you will see, there is a declaration very similar to the declaration
usually used for the Windows DLL:

const
 AndroidLogLib = '/usr/lib/liblog.so';

function __android_log_write(Priority: android_LogPriority;
 const Tag, Text: MarshaledAString): Integer; cdecl;
 external AndroidLogLib name '__android_log_write';

As time passes, Embarcadero will add more and more imports for the Android SDK, but until
then, if you need to use specific SDK classes or third-party Java classes (to be packaged in
the generated APK will require a bit of work), you can rely on the compiler support and the RTL
class TJavaGenericImport to declare and use it.

Using iOS Objective-C SDK classes
Just like we saw about Android in the previous recipe, Delphi can access the iOS SDK as well.
In this section, we'll talk about the mechanisms that the compiler offers to import classes
from the iOS SDK. This is not a standard recipe, but is more of a showcase of the possibilities
offered by the Delphi compiler, and the process needed to fully use them when dealing with
the OS built-in libraries. The mechanism is similar to the Android ones, but there are some
notable differences.

www.allitebooks.com

http://blog.blong.com/2013/10/my-coderage-session-files.html
http://docwiki.embarcadero.com/RADStudio/XE7/en/Using_a_Custom_Set_of_Java_Libraries_In_Your_RAD_Studio_Android_Apps
http://docwiki.embarcadero.com/RADStudio/XE7/en/Using_a_Custom_Set_of_Java_Libraries_In_Your_RAD_Studio_Android_Apps
http://sourceforge.net/projects/dpfdelphiandroid/
http://www.allitebooks.org

Chapter 7

283

Getting ready
In Objective-C, all the classes have NSObject as a common ancestor. The iOS SDK is
composed of some frameworks. The iOS framework comprises of a number of classes
specialized for a single purpose. For example, UIKit is the framework containing all the basic
classes related to the UI; the iAd framework contains all the stuff related to advertising, and
MapKit wraps up all the mapping-related classes.

Note that Objective-C uses the NSString objects while Delphi uses strings. If you need to
pass a string to an iOS API, which expects an NSString object, you can use the StrToNSStr
function defined in Macapi.Helpers.pas to convert it.

Let's say we need to use the UIDevice class from the iOS SDK (the process is applicable for
every class in the SDK). The Apple documentation states the following:

"The UIDevice class provides a singleton instance representing the current device.
From this instance you can obtain information about the device such as assigned
name, device model, and operating-system name and version."

How to do it...
The iOS Delphi compiler allows you to declare a specific class as a Generic Objective-C import
of an SDK class. The class that does this magic is declared within the Macapi.ObjectiveC.
pas unit as follows:

TOCGenericImport<C: IObjectiveCClass; T: IObjectiveCInstance>

TOCGenericImport is a generic class that we can use to make the declaration of the
imported Objective-C object factories easier. Using this class, we split the class and instance
methods into two interfaces. This class blends the two interfaces into a single factory that can
produce instances of Objective-C objects or provide a reference to an instance representing
the Objective-C class.

How do we define the methods in the two interfaces?

Reading the iOS documentation for the UIDevice class, you can read the signatures of the
methods and properties. Let's translate some of the most significant signatures.

The first property we want to translate is model. The model property returns the model of the
device (this can be iPhone or iPod touch or other values identifying the device model).
This property is read-only.

The following is the complete signature:

@property(nonatomic, readonly, retain) NSString *model

Using Specific Platform Features

284

In Object Pascal, it is translated as follows:

function model: NSString; cdecl;

As you can see, a read-only property is mapped to a function with the name of the property as
the function name, and with the Objective-C property type as the Object Pascal return value.
However, what about the R/W (read/write) properties?

The next property we want to translate is proximityMonitoringEnabled—an R/W
property of the type boolean indicating whether proximity monitoring is enabled or not.

The following is the complete signature:

@property(nonatomic,getter=isProximityMonitoringEnabled)
 BOOL proximityMonitoringEnabled

In Object Pascal the preceding code is translated as follows:

procedure setProximityMonitoringEnabled(
 proximityMonitoringEnabled: Boolean); cdecl;
function isProximityMonitoringEnabled: Boolean; cdecl;

An R/W property is mapped to a procedure (the setter) and function (the getter).
The procedure name starts with set followed by the Objective-C property name
(proximityMonitoringEnabled becomes setProximityMonitoringEnabled) and
accepts a parameter of the same type as the property. The function name is defined by the
property signature; in this case, it is isProximityMonitoringEnabled, returning a value
of the same type as the property. If the property signature does not impose the getter name,
the translation is similar to the following:

 f Objective-C:
@property(nonatomic, retain) NSString *accessibilityLabel

 f Delphi:
function accessibilityLabel: NSString; cdecl;
procedure setAccessibilityLabel(accessibilityLabel: NSString);
cdecl;

The UIDevice import looks like the following (only some methods were imported):

UIDeviceClass = interface(NSObjectClass)
 ['{A2DCE998-BF3A-4AB0-9B8D-4182B341C9DF}']
 function currentDevice: Pointer; cdecl;
end;

UIDevice = interface(NSObject)
 ['{70BB371D-314A-4BA9-912E-2EF72EB0F558}']
 function batteryLevel: Single; cdecl;

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

285

 function batteryState: UIDeviceBatteryState; cdecl;
 function isBatteryMonitoringEnabled: Boolean; cdecl;
 function isMultitaskingSupported: Boolean; cdecl;
 function isProximityMonitoringEnabled: Boolean; cdecl;
 function localizedModel: NSString; cdecl;
 function model: NSString; cdecl;
 function name: NSString; cdecl;
 function orientation: UIDeviceOrientation; cdecl;
 procedure playInputClick; cdecl;
 function proximityState: Boolean; cdecl;
 function systemName: NSString; cdecl;
 function systemVersion: NSString; cdecl;
 function uniqueIdentifier: NSString; cdecl;
 end;
 TUIDevice = class(TOCGenericImport<UIDeviceClass, UIDevice>)
 end;

Now, the UIDevice class can be used as follows (however, a single use is suggested,
using the currentDevice property as singleton; here, it is used as a normal instance
just to illustrate):

var
 device: UIDevice;
begin
 device := TUIDevice.Create;
 ShowMessage(NSStrToStr(device.model));
end;

Note that the class methods defined in the UIDevice class can also be used by Delphi. You
don't need to create an instance (just like normal class methods), but the returning pointer
must be wrapped in the appropriate class type:

var
 device: UIDevice;
 model: string;
begin
 //wraps the pointer to the proper type using the Wrap method
 device := TUIDevice.Wrap(TUIDevice.OCClass.currentDevice);
 model := NSStrToStr(device.model);
 ShowMessage(model);
end;

Using Specific Platform Features

286

There's more...
The topic about the Objective-C class imports is huge and a deep explanation of it is out of
the scope of this book. However, if you are interested and want to know more, I suggest you
check the wonderful presentation held by Brian Long at the CodeRage 8 conference where
he talks about accessing the iOS and Android APIs. The presentation can be found at the
following URL:

http://blog.blong.com/2013/10/my-coderage-session-files.html

As FireMonkey and the mobile "soul" of Delphi mature, third-party mobile components start to
be available to the market. Even if you are not interested in the native widget, you can study
the code from the project D.P.F Delphi iOS Native Components. It really helps to see how to
import complex Objective-C classes into Delphi (http://sourceforge.net/projects/
dpfdelphiios/).

Displaying PDF files in your app
In the mobile world, you often need to show PDF files to your user. Maybe these PDF files are
used as reports (usually generated by some reporting tool on the remote server), a statement
about something that the user should do, a small book, or simply as a products catalog. So,
how do we show a PDF that is deployed within the app or downloaded from some remote
server and stored locally? How do we do it on Android and iOS? This is the topic of this recipe.

Getting ready
Let's say we have to create an app that contains some PDF files. In this case, we don't
download the files but simply deliver them within the app. Later, we'll see how to download
them from the network.

To deploy additional files within our app, we have to use the Deployment Manager, which is
accessible by navigating to Project | Deployment. If you need to know how to use it, check
the Embarcadero documentation at (http://docwiki.embarcadero.com/RADStudio/
XE6/en/Deployment_Manager).

The additional file will be deployed in the private documents folder. Under Android, the
private documents folder is identified as ./asset/internal, while on iOS, it is identified
as .\Startup\Documents. Using the Deployment Manager, place a PDF file in these
folders for each platform so that it will be included in the generated app package.

www.allitebooks.com

http://blog.blong.com/2013/10/my-coderage-session-files.html
http://sourceforge.net/projects/dpfdelphiios/
http://sourceforge.net/projects/dpfdelphiios/
http://docwiki.embarcadero.com/RADStudio/XE6/en/Deployment_Manager
http://docwiki.embarcadero.com/RADStudio/XE6/en/Deployment_Manager
http://www.allitebooks.org

Chapter 7

287

How to do it...
All the required code to show the PDF is encapsulated in a single unit called xPlat.
OpenPDF.pas. The main form contains a button, which once clicked calls the function
OpenPDF passing the name of the file to be seen:

procedure TMainForm.btnOpenPDFClick(Sender: TObject);
begin
 OpenPDF('samplefile.pdf');
end;

Let's analyze the OpenPDF function in the xPlat.OpenPDF.pas unit. The following is the
complete code:

unit xPlat.OpenPDF;

interface

procedure OpenPDF(const APDFFileName: string);

implementation

uses
 System.SysUtils, IdURI, FMX.Forms, System.Classes,
 System.IOUtils, FMX.WebBrowser, FMX.Types, FMX.StdCtrls
{$IF defined(ANDROID)}
 , Androidapi.JNI.GraphicsContentViewText
 , FMX.Helpers.Android
 , Androidapi.Helpers
 , AndroidSDK.Toast
 , Androidapi.JNI.Net
 , Androidapi.JNI.JavaTypes
{$ENDIF}
{$IF defined(IOS)}
 , iOSapi.Foundation
 , Macapi.Helpers
 , FMX.Helpers.iOS
 , FMX.Dialogs
{$ENDIF}
 ;

{$IF defined(ANDROID)}

procedure OpenPDF(const APDFFileName: string);
var
 Intent: JIntent;

Using Specific Platform Features

288

 FilePath, SharedFilePath: string;
begin
 FilePath := TPath.Combine(TPath.GetDocumentsPath, APDFFileName);
 SharedFilePath := TPath.Combine(
 TPath.GetSharedDocumentsPath, APDFFileName);
 if TFile.Exists(SharedFilePath) then
 TFile.Delete(SharedFilePath);
 TFile.Copy(FilePath, SharedFilePath);

 Intent := TJIntent.Create;
 Intent.setAction(TJIntent.JavaClass.ACTION_VIEW);
 Intent.setDataAndType(
 StrToJURI('file://' + SharedFilePath),
 StringToJString('application/pdf'));
 try
 SharedActivity.startActivity(Intent);
 except
 on E: Exception do
 ShowToast('Cannot open PDF' + sLineBreak +
 Format('[%s] %s', [E.ClassName, E.Message]),
 TToastDuration.Long);
 end;
end;
{$ENDIF}

{$IF defined(IOS)}
type
 TCloseParentFormHelper = class
 public
 procedure OnClickClose(Sender: TObject);
 end;

procedure TCloseParentFormHelper.OnClickClose(Sender: TObject);
begin
 TForm(TComponent(Sender).Owner).Close();
end;

procedure OpenPDF(const APDFFileName: string);
var
 NSU: NSUrl;
 OK: Boolean;
 frm: TForm;
 WebBrowser: TWebBrowser;
 btn: TButton;
 evnt: TCloseParentFormHelper;
begin
 frm := TForm.CreateNew(nil);

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

289

 btn := TButton.Create(frm);
 btn.Align := TAlignLayout.Top;
 btn.Text := 'Close';
 btn.Parent := frm;
 evnt := TCloseParentFormHelper.Create;
 btn.OnClick := evnt.OnClickClose;
 WebBrowser := TWebBrowser.Create(frm);
 WebBrowser.Parent := frm;
 WebBrowser.Align := TAlignLayout.Client;
 WebBrowser.Navigate('file://' + APDFFileName);
 frm.ShowModal();
end;
{$ENDIF}

end.

Showing the PDF file on Android
To show the PDF file on Android, we've used an Android-specific mechanism called intents
(check the Sending Android intents recipe to learn more about Android intents). The file
is actually shown by an external app already installed on the device; if such an app is not
present, the PDF will not be shown, rather a message will be shown to the user. You can install
Adobe PDF Reader or another app capable of showing PDF files that is "intent-compatible"
with the one from Adobe. To comply with the Android I/O security and let another app read the
PDF file in our assets/internal folder, we have to copy the file from the private documents
folder, which is private to the app and not accessible from other apps, to the shared
documents folder (readable from all the other apps installed on the device).

Just after the copy, we create an intent and configure it to launch an app capable of showing
that PDF. The configuration is simple enough as shown:

//create the Intent directly from the Android SDK
Intent := TJIntent.Create;
//We need to show the PDF, so ACTION_VIEW is ok
Intent.setAction(TJIntent.JavaClass.ACTION_VIEW);
//Where is the file? Which mime type?
Intent.setDataAndType(
 StrToJURI('file://' + SharedFilePath),
 StringToJString('application/pdf'));
try
 //ask to the OS to find a proper app to handle the intent
 SharedActivity.startActivity(Intent);
except
 //TODO: there aren't apps able to show the PDF. Inform the user!
end;

Using Specific Platform Features

290

Showing the PDF file on iOS
On iOS, there aren't intents, but we can use another mechanism to show our PDF file. The
iOS WebView component can show PDFs, so we create a form on the fly containing WebView
and a button to close the form. The OpenPDF iOS implementation does not use iOS-specific
mechanisms apart from the WebView capabilities.

After having created the form at runtime (remember that if you don't have an fmx file
associated with the TForm instance, you cannot use TForm.Create() to create the form;
you'll have to use TForm.CreateNew()). The code is reported with some comments,
as shown:

 //create the form without an fmx
 frm := TForm.CreateNew(nil);
 //create the button used to close the form.
 //On iOS there is not a "back" button as in Android
 btn := TButton.Create(frm);
 btn.Align := TAlignLayout.Top;
 btn.Text := 'Close';
 btn.Parent := frm;
 evnt := TCloseParentFormHelper.Create;
 //set the Button OnClick event handler
 btn.OnClick := evnt.OnClickClose;
 //create the TWebBrowser component which wraps the iOS WebView
 WebBrowser := TWebBrowser.Create(frm);
 WebBrowser.Parent := frm;
 WebBrowser.Align := TAlignLayout.Client;
 //point the web browser to the local file under the private folder
 WebBrowser.Navigate('file://' + APDFFileName);
 frm.ShowModal();

There's more...
This code does its job. However, Android and iOS users don't have the same user experience.
On Android, you can use whatever app you have installed on the device to show the PDF, so
you can also change the file with annotations, highlights, and by drawing directly on the file.
Note that the file is also readable from other apps. This can be a problem in some situations.
On iOS, conversely, you cannot modify the PDF with annotations and so on. You also don't
have full control on the file and the file remains "private" for your app. These facts must be
carefully analyzed and you have to be aware of the pros and cons about every choice you
make. If you want to provide a uniform set of functionalities, additional work and third-party
components and libraries will be needed.

One particular mention is required for the TMS iCL component suite (http://www.
tmssoftware.com/site/tmsicl.asp). It is specific for FireMonkey on iOS (so that it
doesn't compile on Android) but contains a component called TTMSFMXNativePDFLib,
which can create new PDFs, open the existing PDF documents, and so on.

www.allitebooks.com

http://www.tmssoftware.com/site/tmsicl.asp
http://www.tmssoftware.com/site/tmsicl.asp
http://www.allitebooks.org

Chapter 7

291

Using Google Docs Viewer
If your PDF is located on a public URL, you can also use the PDF visualizer included in Google
Docs. Point WebView to the following URL and your PDF will show up:

"https://docs.google.com/gview?embedded=true&url="+PDFURL

Downloading the PDF file from the server
Let's say we have an application server that generates reports from some database data and
saves them as PDF files.

We can download these files simply by using a TidHTTP component and storing them locally
using something similar to the following code:

var
 FileStream: TStream;
 FilePath: String;
begin
 FilePath := TPath.Combine(
 TPath.GetSharedDocumentsPath, 'myreport.pdf');
 FileStream := TFileStream.Create(FilePath, fmCreate);
 try
 IdHttp1.Get(
 'http://www.myserver.com/reports/myreport.pdf', FileStream);
 finally
 FileStream := nil;
 end;
end;

Sending Android intents
One of the most useful things about the Android development is the dispatching mechanism
of intents. The Android developer site (http://developer.android.com/reference/
android/content/Intent.html) says:

"An intent is an abstract description of an operation to be performed.

...

An Intent provides a facility for performing late runtime binding between the code
in different applications. Its most significant use is in the launching of activities,
where it can be thought of as the glue between activities. It is basically a passive
data structure holding an abstract description of an action to be performed."

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html

Using Specific Platform Features

292

Intents are widely used in Android, and if you want to fully integrate your Delphi app
with the Android OS, you will probably have to deal with intents. Delphi uses intents
internally to deal with some fundamental Android services (TShareSheetAction,
TTakePhotoFromCameraAction, and so on). In this recipe, we'll see how to directly
use intents in our app with the help of some examples.

Getting ready
The primary, and mandatory, pieces of information in an intent are as follows:

 f action: This is the general action to be performed, such as ACTION_VIEW,
ACTION_EDIT, and ACTION_MAIN

 f data: This is the data to operate on such as a person's record in the contacts
database expressed as a URI

There are two kinds of intents: explicit and implicit. They are explained as follows:

 f Explicit intent: The app defines the target component directly in the intent

 f Implicit intent: The app asks the Android system to evaluate registered components
based on the intent data and other optional information

Using Java and the Android SDK you can send an implicit intent with the following code:

Intent myIntent = new Intent(
Intent.ACTION_VIEW, Uri.parse("http://www.danieleteti.it"));
startActivity(myIntent);

The preceding code asks the Android system to view a web page. If the OS finds that an
activity can handle this kind of information (based on the action and data), then that activity
will be started and the intent data will be passed to it.

Intents are also available to Delphi users. The previous Java code can be translated in Delphi
as follows:

var
 Intent: JIntent;
begin
 Intent := TJIntent.Create;
 Intent.setAction(TJIntent.JavaClass.ACTION_VIEW);
 Intent.setData(StringToJString('http://www.danieleteti.it'));
 SharedActivity.startActivity(Intent);
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

293

As you can see, the code is very similar to the Java version. Note that this code is no longer
compliable on any platform but Android, so if you want to add this code in a cross-platform
app (for Android, iOS, Windows, and Mac OS X), you will have to surround it with some IFDEFs.

There are a lot of components that can respond to some kind of intent. The Android
documentation is very good on this topic. In this recipe, we'll open a web page, start Google
Maps pointing to a specific address, open an e-mail client, open the Twitter app, and ask for
speech-to-text recognition.

How to do it...
In the main form, there are six buttons, a listbox, and some labels. The following is how the
form is rendered at runtime (after using it to recognize the phrase "this is a book"):

The app with the five buttons that will send intents

Let's open the project SendingAndroidIntents.dproj and start studying it.

The first four buttons, as you can see while reading the events handler, call a form method
called LaunchViewIntent passing a URI:

procedure TMainForm.btnMapsClick(Sender: TObject);
begin
 //launch Google Maps (or similar app)
 LaunchViewIntent(
 'geo://0,0?q=Piazza del Colosseo 1,00184 Roma');
end;

Using Specific Platform Features

294

procedure TMainForm.btnEmailClick(Sender: TObject);
begin
 //launch an email client with an empty email
 LaunchViewIntent('mailto:daniele.teti@gmail.com', false);
end;

procedure TMainForm.btnTwitterClick(Sender: TObject);
begin
 //launch twitter client (if installed)
 LaunchViewIntent('http://twitter.com/danieleteti');
end;

The LaunchViewIntent procedure is defined as follows:

procedure TMainForm.LaunchViewIntent(AURI: string;
AEncodeURL: boolean);
var
 Intent: JIntent;
 URI: JString;
begin
 if AEncodeURL then
 AURI := TIdURI.URLEncode(AURI);
 Intent := TJIntent.Create;
 Intent.setAction(TJIntent.JavaClass.ACTION_VIEW);
 URI := StringToJString(AURI);
 Intent.setData(TJnet_Uri.JavaClass.parse(URI));
 SharedActivity.startActivity(Intent);
end;

The preceding method executes all the steps needed to create an intent with the purpose
of showing something; indeed, the action ACTION_VIEW means, "I want to view something"
and asks the OS to show the information described in the data property (and other intent
properties, if present).

Firstly, we check if the URI needs to be encoded; if yes, we use the TidURI.URLEncode
method from the INDY library to perform the encoding. Then, an intent is created and
configured with ACTION_VIEW as the action and the passed URI as the data. Having the
intent configured, the last thing to do is ask the OS what the intent is for. In this case, we want
to start an activity capable of performing the work defined in the intent. The activity used by
the FireMonkey framework is accessible using the SharedActivity function from the RTL.
So the last line uses SharedActivity.startActivity to actually send the intent. This
kind of intent is the most simple.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

295

More complex intents – sending a full flagged e-mail
The fifth button with the caption Email Ex sends an e-mail just like the Email button but is
more powerful because the prepared e-mail will also have the subject, body, and CC and BCC
fields correctly filled. Let's see how it is possible.

In this case, the simple ACTION_VIEW with some data is not enough. The following is the
code used to send a more complex e-mail:

procedure TMainForm.btnEmailExClick(Sender: TObject);
var
 Intent: JIntent;
 URI: JString;
 AddressesTo: TJavaObjectArray<JString>;
 AddressesCC, AddressesBCC: TJavaObjectArray<JString>;
begin
 Intent := TJIntent.Create;
 Intent.setAction(TJIntent.JavaClass.ACTION_SENDTO);
 Intent.setData(
 TJnet_Uri.JavaClass.parse(StringToJString('mailto:')));
 AddressesTo := TJavaObjectArray<JString>.Create(2);
 AddressesTo.Items[0] := StringToJString('daniele.teti@gmail.com');
 AddressesTo.Items[1] := StringToJString('john.doe@nowhere.com');

 AddressesCC := TJavaObjectArray<JString>.Create(1);
 AddressesCC.Items[0] := StringToJString('jane.doe@nowhere.com');

 AddressesBCC := TJavaObjectArray<JString>.Create(1);
 AddressesBCC.Items[0] :=
 StringToJString('backup@mywebsite.com');

 Intent.putExtra(TJIntent.JavaClass.EXTRA_EMAIL, AddressesTo);
 Intent.putExtra(TJIntent.JavaClass.EXTRA_CC, AddressesCC);
 Intent.putExtra(TJIntent.JavaClass.EXTRA_BCC, AddressesBCC);
 Intent.putExtra(TJIntent.JavaClass.EXTRA_SUBJECT,
 StringToJString('Greetings from Italy'));
 Intent.putExtra(TJIntent.JavaClass.EXTRA_TEXT,
 StringToJString('I''m learning how to use Android Intents!'+
 sLineBreak + 'They are very powerful!' +
 sLineBreak + sLineBreak + 'See you...'));
 SharedActivity.startActivity(Intent);
end;

As you can see, we set more properties in the intent than the previous example. Also,
TJavaObjectArray<JString> is used to pass a Delphi wrapper of a Java array to the
intent. Also, note how generics can be used to talk to the Android SDK.

Using Specific Platform Features

296

By tapping this button, you will get a fully prepared e-mail, as shown in the following
screenshot; note how the subject, CC, and BCC fields have been filled using information
sent by the intent:

Gmail ready to send the e-mail prepared by our app

Starting an activity for results – the SpeechToText engine
Sometimes you may want to get a result back from an activity when it completes its job. For
example, you may start an activity that lets the user pick a photo from a photo gallery, and
after using it, returns the selected image, or select a person from a list of contacts, and after
using it, returns the contact that was selected.

To do this, we call the SharedActivity.startActivityForResult method. The result
will come back through a FireMonkey message readable using the global TMessageManager
instance.

The startActivityForResult method receives two parameters: the first one is the
intent itself, while the second is an integer value that identifies the request code. This
request code will be passed to the message handler when the activity ends. This is because
startActivityForResult is not blocking. When the launched activity ends, you have to
know from which request it had been launched.

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

297

When an activity exits, some data should be returned to its parent. It must always supply
result code, which can be the standard results RESULT_CANCELED and RESULT_OK, or any
custom values starting at RESULT_FIRST_USER (all these values are defined in the Android
documentation at http://developer.android.com/reference/android/app/
Activity.html). In addition, it can optionally return an intent containing any additional data
it wants. All of this information appears again on the parent message handler along with the
integer identifier it originally supplied.

The last button launches the SpeechToText engine activity, asks the user to say something,
and then ends, and sends the possible recognized phrases to the parent activity:

procedure TMainForm.btnSTTClick(Sender: TObject);
var
 Intent: JIntent;
 ReqCode: Integer;
const
 STT_REQUEST = 1001;
 ACTION_RECOGNIZE_SPEECH = 'android.speech.action.RECOGNIZE_SPEECH';
 EXTRA_LANGUAGE_MODEL = 'android.speech.extra.LANGUAGE_MODEL';
 EXTRA_RESULTS = 'android.speech.extra.RESULTS';
begin

 //assign a code to this request
 ReqCode := STT_REQUEST;
 //create and configure the intent (check android SDK docs)
 Intent := TJIntent.Create;
 Intent.setAction(StringToJString(ACTION_RECOGNIZE_SPEECH));
 Intent.putExtra(StringToJString(EXTRA_LANGUAGE_MODEL),
 StringToJString('en-US'));
 //when the launched activity ends, this handler will be called.
 //Here we've to read the data sent back from the launched activity
 TMessageManager.DefaultManager.SubscribeToMessage(
 TMessageResultNotification,
 procedure(const Sender: TObject; const Message: TMessage)
 var
 M: TMessageResultNotification;
 i: Integer;
 Words: JArrayList;
 TheWord: string;
 begin
 M := TMessageResultNotification(message);
 //is this request the right one?
 if M.RequestCode = ReqCode then

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

Using Specific Platform Features

298

 begin
 //The request returned OK?
 if (M.ResultCode = TJActivity.JavaClass.RESULT_OK) then
 begin
 Words := M.Value.getStringArrayListExtra(
 StringToJString(EXTRA_RESULTS));
 ListBox1.Clear;
 //if there are recognized words, fill the listbox
 if Words.size > 0 then
 begin
 ListBox1.BeginUpdate;
 try
 for i := 0 to Words.size - 1 do
 begin
 TheWord := JStringToString(JString(Words.get(i)));
 ListBox1.Items.Add(TheWord);
 end;
 finally
 ListBox1.EndUpdate;
 end;
 end
 else
 ShowToast('Some problems occurred');
 end
 else
 ShowToast('Nothing to recognize');
 end;
 end);

 //start the activity for result passing the specific ReqCode
 SharedActivity.startActivityForResult(Intent, ReqCode);
end;

The code is not simple, but the main parts are clearly identifiable. Firstly, we configure the
intent to launch the speech recognizer. Then, before launching the intent, we subscribe to
system messages of type TMessageResultNotification. This kind of message is sent by
FireMonkey when an Android activity has been launched with startActivityForResult.
Inside the message handler, we have to check if the message is from our launched activity
(so, we check ReqCode), and whether the activity is returned with errors (so, we check
RESULT_OK). If everything is okay, we can read the information contained in the returned
intent (this time, the intent is used to send back information from the launched activity to
the parent app).

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

299

The following screenshot shows the speech recognition activity:

The SpeechToText engine activity is listening

Play with the app and discover how different kinds of intents work.

There's more...
Intents are fundamental parts of the Android ecosystem. FireMonkey uses them in the
components and RTL; a developer who wants to deeply integrate his app with the Android
OS must know how intents work and the possibilities that they open up. Think, for example,
that every app installed on your device can be elegantly integrated into your app without too
much effort. A good point can be studying all the common intents available and usable in
your Android device. You will learn useful things and get in touch with many practical uses
of intents.

All the available "common" intents are explained in the article available at http://
developer.android.com/guide/components/intents-common.html.

http://developer.android.com/guide/components/intents-common.html
http://developer.android.com/guide/components/intents-common.html

Using Specific Platform Features

300

Letting your phone talk – using the Android
TextToSpeech engine

In this recipe, we'll do some fun stuff. On your Android phone, run an app with a listening UDP
server on it. When another application, in our case a VCL application, sends a UDP broadcast
with some text, the Android app will pronounce the text using the Android TTS engine.

Getting ready
The first thing to do is import the TTS classes from the Android SDK in our Delphi project.
This is not a simple task; however, luckily, someone already did the job. Indeed, Jeff Overcash,
the maintainer of the InterBase Express (IBX) components wrote Android Text To Speech
JNI Translation. His translation with a simple demo app is available at CodeCentral
(http://cc.embarcadero.com/item/29594).

In this recipe, we'll use the imported classes to let our Android device read the text sent via
a UDP broadcast. Note that the message will be read by each device that receives it. Thus, if
you have two, three, or four phones, you will be able to listen to the message read by all the
phones simultaneously.

How to do it...
Open the project group containing the mobile app and VCL application.

In the mobile app, we have an empty form with a label on it aligned to Client. In the form
startup (1 second after the form creation), we configure the TTS engine with the following code:

procedure TMainForm.Timer1Timer(Sender: TObject);
begin
 Timer1.Enabled := False;
 FTTS := TJTextToSpeech.JavaClass.init(
 SharedActivityContext, FTTSListener);
end;

The FTTSListener instance is a TJavaLocal descendant implementing the required
JTextToSpeech_OnInitListener interface. The TTS system gets initialized and, when
done, the listener OnInit method is called (check the TTSListenerU.pas unit). However, if
the TTS engine is correctly initialized, we have to configure it, setting the language to be used
when it will talk. So, in the listener constructor, I've added an anonymous method that will be
called by the listener to configure the engine after initialization. The code is written inside the
FormCreate event handler, as shown in the following code snippet:

constructor TMainForm.Create(AOwner: TComponent);
begin
 inherited;

www.allitebooks.com

http://cc.embarcadero.com/item/29594
http://www.allitebooks.org

Chapter 7

301

 FTTSListener := TttsOnInitListener.Create(
 procedure(AInitOK: boolean)
 var
 Res: Integer;
 begin
 if AInitOK then
 begin
 Res := FTTS.setLanguage(TJLocale.JavaClass.ENGLISH);
 if (Res = TJTextToSpeech.JavaClass.LANG_MISSING_DATA) or
 (Res = TJTextToSpeech.JavaClass.LANG_NOT_SUPPORTED) then
 Label1.Text := 'Selected language is not supported'
 else
 begin
 Label1.Text := 'READY To SPEAK!';
 IdUDPServer1.Active := True;
 end;
 end
 else
 Label1.Text := 'Initialization Failed!';
 end);
end;

If the configuration goes well, TidUDPServer, configured to listen on all interfaces on
port 9999, is activated. In the idUDPServer1.OnUDPRead event handler, there is a
hook between the data sent over the network and the TTS engine:

procedure TMainForm.IdUDPServer1UDPRead(
 AThread: TIdUDPListenerThread;
 const AData: TIdBytes; ABinding: TIdSocketHandle);
var
 bytes: TBytes;
begin
 bytes := TBytes(AData);
 Speak(TEncoding.ASCII.GetString(bytes));
end;

procedure TMainForm.Speak(const AText: string);
begin
 FTTS.Speak(
 StringToJString(AText),
 TJTextToSpeech.JavaClass.QUEUE_FLUSH, nil);
end;

Using Specific Platform Features

302

The method Speak is the entry point to the TTS engine. The mobile app is now completed.
Now, let's talk about the VCL application that has to send the UDP packets.

Open the VCLTTSClient project and you will see a form similar to the following screenshot:

The simple VCL form that will send the UDP messages to the mobile app

This application is even simpler than the mobile one. Shortly after, when the user clicks on the
button, the event handler sends the text entered in the textbox to all the available broadcast
addresses (considering its subnet as a Class C network). In other words, if the PC where the
application is running has a single IP address, let's say 192.168.1.50, the UDP packet is sent
to the broadcast address 192.168.1.255, and so on for each Ethernet interface configured
on the Windows machine (to get all the IP addresses, I've used a handy class named
TIdStackLocalAddressList that comes with INDY. Moreover, this is just a demo; if you
want to be sure about the broadcast addresses, you will have to do some additional work, but
this is a network-specific topic and is out of the scope of this book). To replace the last address
part (for example, .50 must become .255), I've used a simple regular expression to replace
the last octet. Note that the following code actually works only for IPv4 addresses:

procedure TMainForm.btnSendClick(Sender: TObject);
var
 CurrIP, BrdcstIP: string;
 i: Integer;
begin
 for i := 0 to FAddressesList.Count - 1 do
 begin
 if FAddressesList.Addresses[i].IPVersion = Id_IPv4 then
 begin
 CurrIP := FAddressesList.Addresses[i].IPAddress;
 BrdcstIP := FToIPv4Broadcast.Replace(CurrIP, '.255');
 IdUDPClient1.Broadcast(Edit1.Text, 9999, BrdcstIP);
 end;
 end;
end;

www.allitebooks.com

http://www.allitebooks.org

Chapter 7

303

procedure TMainForm.FormCreate(Sender: TObject);
begin
 FAddressesList := TIdStackLocalAddressList.Create;
 GStack.GetLocalAddressList(FAddressesList);
 FToIPv4Broadcast := TRegEx.Create('\.\d{1,3}$');
end;

That's it! Run the mobile app on your Android phone and check that it is currently connected
to the same Wi-Fi where the PC is connected. Then, run the VCL application on your PC, write
something in the textbox, and hit the button. Your Android device should now start talking.

There's more...
The option of setting up TCP or UDP servers on our mobile devices opens a great range of
possibilities. However, you should open ports on your phone conscientiously.

Thanks to Jeff Overcash, the TTS wrapper has greatly simplified the work required to let an
Android phone talk. If you want to go deeper when using the TTS engine, you should read the
following Android documentations:

 f The Java documentation about the main class used in this recipe
(http://developer.android.com/reference/android/speech/tts/
TextToSpeech.html)

 f The Java package where the classes have been imported from
(http://developer.android.com/reference/android/speech/tts/
package-summary.html)

 f An introduction to the TTS engine in Android (http://android-developers.
blogspot.it/2009/09/introduction-to-text-to-speech-in.html)

http://developer.android.com/reference/android/speech/tts/TextToSpeech.html
http://developer.android.com/reference/android/speech/tts/TextToSpeech.html
http://developer.android.com/reference/android/speech/tts/package-summary.html
http://developer.android.com/reference/android/speech/tts/package-summary.html
http://android-developers.blogspot.it/2009/09/introduction-to-text-to-speech-in.html
http://android-developers.blogspot.it/2009/09/introduction-to-text-to-speech-in.html

www.allitebooks.com

http://www.allitebooks.org

Index
A
actions 214
activity

starting, for results 296-299
ADOM XML 38
Android

PDF file, displaying on 289
Android2DelphiImport

URL 281
Android configuration

URL 214
Android intents

sending 291-294
Android SDK Java classes

using 276-281
Android Text To Speech JNI Translation 300
animations

about 102
clients, impressing with 102-105
references 105

anonymous methods 60
Apache HTTP Server

URL, for security tips 212
Apache Lounge community

URL, for downloading 203
Apache modules, DataSnap

creating 203-211
app

PDF files, displaying in 286
phone call, making from 265-268

application life cycle
tracking 269-273

applications
customizing, VCL styles used 8, 9

App Tethering
about 197
references 202, 203
used, for creating companion app 197-202

App Tethering model application
functionalities 199

B
backend

working with 257-264

C
callback, Delphi

URL 127
C++Builder XE6

VCL styles 10
class

configuring, at runtime 68-71
helpers, creating for 76-84

class helper
references 84

clients
impressing, with animations 102-105

Codice Fiscale 87
Command design pattern

reference link 222
companion app

creating, App Tethering used 197-202
complex intents 295
complex vector shapes

displaying, paths used 116-120
configuration, class

at runtime 68-71

306

console service application
converting, to Windows service 157-159

content types
reference link 171

Create Retrieve Update and
Delete (CRUD) 150

custom VCL style
using 13

D
datagrams 191
dataset

serializing, to JSON 160-163
DataSnap

about 211
Apache modules, creating 203-211
references 211

datatypes, JSON 27
default keyboard shortcuts

references 112
Delphi

references 64, 127
VCL styles 10

Delphi documentation, built-in RegEx
engine syntax

references 89
Delphi language 59
DelphiMVCFramework (DMVCFramework)

about 148
downloading 148
references 148, 149, 161, 176

Delphi samples, UDP programming
references 197

Delphisorcery
URL 127

Delphi Web Script library
URL 31

Delphi XE5 Mobile REST Client Demo
URL 233, 264

Delphi XE5 Mobile REST Client Demo Source
URL 264

Delphi XE7 282
Deployment Manager 286
deserialization 164

DHCP
reference link 191

DoGetCurrent method 67
DoMoveNext method 67
D.P.F Delphi Android Native Components

URL 282
draw combos

using 20-22
Duck typing

about 75
reference 72
RTTI used 72-75

E
enumerable types

about 67
references 68
writing 64-67

event 140
event objects

references 143
ExecuteAsynch method 232
explicit intent 292
extended RTTI

reference 72
eXtensible Markup Language. See XML
external open source projects

DelphiMVCFramework 148
jTable 148

F
file extension

associating, with application on
Windows 53-58

Filter function 60, 63
FireDAC components 152
FireDAC IBLite with Delphi XE6

URL 264
FireMonkey

about 92
references, for image effects 222
using, in VCL application 122-127

firemonkey-container
URL 127

www.allitebooks.com

http://www.allitebooks.org

307

FireMonkey controls
styles, used for customizing 92-97

FireMonkey Style Designer (FSD)
about 94
references 95

FireMonkey styles
references 97, 102

FMX.Media.TCameraComponent
reference link 257

FormCreate event
about 140
parameter 137, 138

FOutputFile variable 132
full flagged e-mail

sending 295
functionalities, App Tethering model

application
actions, sharing 199
resources, sharing 199
streams, sending 199
strings, sending 199

G
GetEnumerator method 64
Google Docs Viewer

using 291

H
helpers

creating, for classes 76-84
higher-order functions

Filter 60, 63
Map 60, 61
Reduce 60, 62
reference 60
using 60-64

http-equiv meta tags
URL 255

HTTP protocol
references 171

HTTP Verb
DELETE 175
GET 175
POST 175
PUT 175

I
Icojam

references 23
idempotence

reference link 190
implicit intent 292
intents

about 289, 299
explicit 292
implicit 292
reference link 299

intents, Android
reference link 291
sending 291-294

InterBase Express (IBX) 300
iOS

PDF file, displaying on 290
iOS configuration

URL 214
iOS Objective-C SDK classes

using 283-285
ISAPI DLLs 156

J
Java2Pas

URL 281
JavaScript Object Notation. See JSON
jQuery-UI CSS

reference link 151
JSON

about 26
dataset, serializing to 160-163
datatypes 27
manipulating 27-31
objects, serializing to 165-170
URL 26

JSON Delphi library
URL 31

JSON parsers
JSON Delphi library 31
Superobject 31

jTable
about 148, 153
references 148, 154

308

L
listboxes

using 20-22
listview

about 247
used, for displaying local data 222-227
used, for searching local data 222-227

LiveBindings
about 105, 115, 238
master/details (M/D) relationship,

using with 105-115
references 106, 116, 238

Location Sensors
reference link 257

M
Map function 60, 61
master/details (M/D) relationship

using, with LiveBindings 105-115
Method Draw

about 121
URL 121

methods, TDataSet descendants
GetEnumerator 77
SaveToCSV 77

Microsoft Message Compiler
about 53
reference 53

Mobile Preview
about 227
URL 227

Monitor
reference link 136

monitoring system implementation
about 247
client side 248-251
server side 252-256

MonkeyMixer, Delphi XE5
URL 127

MSXML 38
multiple threads

synchronizing, TEvent used 140-143
multithreading 129, 233

O
objects

serializing, to JSON 165-170
Observer design pattern

about 274
URL 26

OmniThreadLibrary
URL 146

OnDrawITem function 23
oscilloscope

implementing 143-145
owner drawing 20

P
packets 191
paths

used, for displaying complex vector
shapes 116-120

PDF files
displaying, in app 286
displaying, on Android 289
displaying, on iOS 290
downloading, from server 291

phone call
making, from app 265-268

photo
effects, applying 214-221
sharing 214-221
taking 214-221

Plain Old Delphi Object (PODO) 67
POST HTTP request encoding parameters

sending 171-173
POSTMan Chrome extension 190
PrepareResponse method 154
presentation, Android and iOS APIs access

URL 282, 286
producer/consumer design pattern

reference 121

R
record helper

references 84
Reduce function 60, 62

www.allitebooks.com

http://www.allitebooks.org

309

regular expression (RegEx)
about 84
references 84, 89, 222
strings, checking with 84-89

RemObjects Hydra4
URL 127

remote applications
controlling, UDP used 191-196

Representational state transfer (REST) 174
REST Client library

about 174
reference link 174, 233

RESTDemo sample
reference link 174

RESTful interface
implementing, WebBroker used 174-189

results
activity, starting for 296-299

reverse proxy
reference link 156

Richardson Maturity Model (RMM) 174
RTTI

about 71
objects, serializing to JSON 165-170

runtime
class, configuring at 68-71

S
Scalable Vector Graphic. See SVG
serialization 164
server

PDF file, downloading from 291
shared resources

synchronizing, with TMonitor 129-136
SQLite databases

used, for handling to-do list 234-238
stack of embedded forms

creating 23-25
startActivityForResult method 296
streams

about 38
utilization examples 39-41

streams types
System.Classes.TBinaryReader 39
System.Classes.TBinaryWriter 39
System.Classes.TReader 39

System.Classes.TStreamReader 39
System.Classes.TStreamWriter 39
System.Classes.TStringReader 39
System.Classes.TStringWriter 39
System.Classes.TTextReader 39
System.Classes.TTextWriter 39
System.Classes.TWriter 39

strings
checking, with regular expression

(RegEx) 84-89
stunning FireMonkey GUI

creating 99-101
styled TListBox

creating 98-101
styled TListView

used, for handling long data list 239-246
styles

used, for customizing FireMonkey
controls 92-97

Superobject
URL 31

SVG 116
SVG PATH data 121
System.Messaging.pas unit

reference link 274
System.Messaging.TMessageManager class

reference link 26

T
Table Data Gateway (TDG)

about 181
references 181

TActiveStyleObject style 95
TAnonymousThread<T> constructor, methods

function: T 47
procedure (E: Exception) 47
procedure (Value: T) 47

TApplicationEvent instance
BecameActive 271
EnteredBackground 271
FinishedLaunching 271
LowMemory 272
OpenURL 272
TimeChange 272
WillBecomeForeground 272

310

WillBecomeInactive 272
WillTerminate 272

TDBGrid
customizing 14-19

TEvent
used, for synchronizing multiple

threads 140-143
TextToSpeech engine

reference link 303
using 300-303

TFileEnumerable type 65
third-party Java libraries, RAD Studio

applications
URL 282

thread
block, avoiding 227-232

thread, on stack overflow
reference link 84

thread-safe queue
using 137-139

TJavaGenericImport class 277
TJSON class 171
TMemo component 28
TMonitor

about 129
shared resources, synchronizing 130-136

TMS iCL component suite
about 290
URL 290

toast
about 276
reference link 276

Toast class
constants 276
public instance methods 276, 277
public static methods 277

to-do list
handling, SQLite databases used 234-238

TortoiseSVN
URL, for downloading 148

TPathAnimation component 121
tray

VCL application, inserting in 42-48
tray icon

usage 48

TService.LogMessage method
using 52

TStreamWriter class 40
TStyleManager class

about 11
methods 13

TTetheringAppProfile component 197
TTetheringManager component 197
TThreadedQueue<T> class 137, 139
TXMLDocument, DOMVendor implementation

ADOM XML 38
MSXML 38
XSLT 38

U
UDP

about 190
features 191
used, for controlling remote

applications 191-196
UIDevice class 283
URLs, WebBroker server

/deleteperson 151
/getpeople 151
/index.html 151
/saveperson 151

Uses Permissions
reference link 257

V
VCL 122
VCL application

FireMonkey, using in 122-127
inserting, in tray 42-47
style, modifying at runtime 10-13

VCL styles
about 8
references 10
used, for customizing applications 8, 9

Visual Component Library. See VCL
voice-over-Internet protocol (VoIP) 190

www.allitebooks.com

http://www.allitebooks.org

311

W
waGetPeopleAction action 152
WebBroker

about 149
references 150, 151, 156
used, for implementing RESTful

interface 174-189
web client JavaScript application,

creating 149-152
web client JavaScript application

creating, with WebBroker 149-152
people list, retrieving 152
person's record, creating 154, 155
person's record, deleting 156
person's record, updating 154, 155
running 156

WebFileDispatcher 152
WebView component 290
Windows configuration

URL 214

Windows service
about 52
console service application, converting

to 157-159
creating 48-51

X
XML

about 32
documents, manipulating 32-37
documents, transforming 32-37
reference link 37

XML ecospace 37
XML Schema, JSON

URL 32
XSLT

about 38
references 38

www.allitebooks.com

http://www.allitebooks.org

Thank you for buying
Delphi Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

ASP.NET MVC 4 Mobile App
Development
ISBN: 978-1-84968-736-2 Paperback: 356 pages

Create next-generation applications for smart phones,
tablets, and mobile devices using the ASP.NET MVC
development framework

1. Learn and utilize the latest Microsoft tools and
technologies to develop mobile web apps with
a native feel.

2. Create web applications for the traditional and
mobile web.

3. Discover techniques used to overcome the pitfalls
of developing Internet-ready apps.

Instant RubyMotion App
Development
ISBN: 978-1-84969-652-4 Paperback: 54 pages

A jump start to quickly learn how to program iOS
applications with the elegance and simplicity of Ruby

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Learn the structure of iPhone and iPad
applications.

3. Discover how to simplify iOS apps with Ruby.

4. Get to grips with how to leverage Ruby libraries to
quickly and efficiently write apps!

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

Building Web and Mobile
ArcGIS Server Applications
with JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build exciting,
custom web and mobile GIS applications with the
ArcGIS Server

1. Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers
as well as the mobile platform.

2. Acquire in-demand GIS skills sought by
many employers.

3. Step-by-step instructions, examples, and
hands-on practice designed to help you learn
the key features and design considerations for
building custom ArcGIS Server applications.

Creating Mobile Apps with
Appcelerator Titanium
ISBN: 978-1-84951-926-7 Paperback: 298 pages

Develop fully-featured mobile applications using a
hands-on approach, and get inspired to develop more

1. Walk through the development of 10 different
mobile applications by leveraging your existing
knowledge of JavaScript.

2. Allows anyone familiar with some object-oriented
programming (OOP), reusable components, and
AJAX closures take their ideas and heighten their
knowledge of mobile development.

3. Full of examples, illustrations, and tips with
an easy-to-follow and fun style to make app
development fun and easy.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Delphi Basics
	Introduction
	Changing your application's look and feel with VCL styles and no code
	Changing the style of your VCL application at runtime
	Customizing TDBGrid
	Using the owner's draw combos and listboxes
	Creating a stack of embedded forms
	Manipulating JSON
	Manipulating and transforming XML documents
	I/O in the twenty-first century – knowing streams
	Putting your VCL application in the tray
	Creating a Windows service
	Associating a file extension with your application on Windows

	Chapter 2: Become a Delphi Language Ninja
	Introduction
	Fun with anonymous methods – using
higher-order functions
	Writing enumerable types
	RTTI to the rescue – configuring your class at runtime
	Duck typing using RTTI
	Creating helpers for your classes
	Checking strings with regular expressions

	Chapter 3: Going Cross Platform with FireMonkey
	Introduction
	Giving a new appearance to the standard FireMonkey controls using styles
	Creating a styled TListBox
	Impressing your clients with animations
	Using master/details with LiveBindings
	Showing complex vector shapes using paths
	Using FireMonkey in a VCL application

	Chapter 4: The Thousand Faces of Multithreading
	Introduction
	Synchronizing shared resources with TMonitor
	Talking with the main thread using a
thread-safe queue
	Synchronizing multiple threads using TEvent
	Displaying a measure on a 2D graph like an oscilloscope

	Chapter 5: Putting Delphi on the Server
	Introduction
	Web client JavaScript application with WebBroker on the server
	Converting a console service application to a Windows service
	Serializing a dataset to JSON and back
	Serializing objects to JSON and back
using RTTI
	Sending a POST HTTP request encoding parameters
	Implementing a RESTful interface using WebBroker
	Controlling remote applications using UDP
	Using App Tethering to create a companion app
	Creating DataSnap Apache modules

	Chapter 6: Riding the Mobile Revolution with FireMonkey
	Introduction
	Taking a photo, applying effects, and sharing it
	Using listview to show and search local data
	Do not block the main thread!
	Using SQLite databases to handle
a to-do list
	Using a styled TListView to handle a long list of data
	Taking a photo and location and sending it to a server continuously
	Talking to the backend
	Making a phone call from your app!
	Tracking the application's life cycle

	Chapter 7: Using Specific Platform Features
	Introduction
	Using Android SDK Java classes
	Using iOS Objective-C SDK classes
	Displaying PDF files in your app
	Sending Android intents
	Letting your phone talk – using the Android TextToSpeech engine

	Index

