

Designing	Bots:	Creating	Conversational
Experiences

Amir	Shevat

Beijing	•	Boston	•	Farnham	•	Sebastopol	•	Tokyo

This	book	was	posted	by	AlenMiler	on	AvaxHome!

https://avxhm.se/blogs/AlenMiler

https://tr.im/avaxhome

Praise	for	Designing	Bots
“As	the	world	moves	to	conversational	interfaces,	everyone	working	in	consumer	or	enterprise	software	will	benefit	from
reading	this	book.	Amir	Shevat	has	written	a	must-have	addition	to	every	designer’s	bookshelf.”

—	NIR	EYAL,	BESTSELLING	AUTHOR	OF	HOOKED:	HOW	TO	BUILD	HABIT-FORMING
PRODUCTS

“Amir	is	the	original	“Botstar,”	the	first	public	persona	to	emerge	in	this	new	era	of	messaging	and	conversational	interfaces.
No	one	has	done	more	than	him	to	champion	and	educate	the	world	about	this	nascent	field	and	with	the	publication	of
Designing	Bots	he’s	now	literally	written	the	book	on	it.	At	Automat	we’ve	been	working	on	conversational	software	for	more
than	15	years,	even	inventing	the	sub-category	of	Conversational	Marketing	and	we	still	learned	a	ton	from	this	book	—	it’s	now
required	reading	for	anyone	who	joins	our	company!”

—	ANDY	MAURO,	CEO	OF	AUTOMAT

“With	his	magnetic	talent	for	bringing	the	bot	developer	community	together,	in	person	and	through	this	wonderful	book–Amir
shares	his	experience	via	countless	conversations,	experiments	and	lessons	learned	building	bots	that	work	(or	don’t	work)	in
real	teams.	Thank	you	Amir,	for	the	brilliant	insights	and	your	commitment	to	making	software	more	personal,	human	and	adapt
to	the	way	people	work	and	share.”

—	LILI	CHENG,	AI	&	RESEARCH	MICROSOFT

“Amir	is	indisputably	one	of	the	most	important	voices	in	the	world	of	bots,	informing	best	practices	for	hundreds	of	companies.
From	ethics	to	design,	his	knowledge	and	expertise	helps	to	drive	this	new	industry	forward.	This	is	a	must-read	for	anyone	who
wants	to	build	a	business	around	bots.”

—	VERONICA	BELMONT,	PRODUCT	MANAGER	AT	GROWBOT.IO,	ADMIN	AT	BOTWIKI.ORG

Preface
As	Slack’s	head	of	developer	relations,	I	spend	my	days	helping	people	build	bots:	from	big	partners	like
SAP	and	IBM,	all	the	way	to	the	lone	developer	anywhere	in	the	world.	In	this	book,	I	hope	to	share	with
you	some	of	the	lessons	I	have	learned.
How	are	bots	changing	the	world?	This	happens	to	me	every	week:
My	meeting	counterpart:	Your	personal	assistant,	Amy,	is	so	amazing!	How	did	you	find	someone	so
responsive?
Me:	Amy	is	not	a	human	—	it	is	software.
My	meeting	counterpart:	

This	new	user	interface	is	revolutionizing	the	way	we	interact	with	software.	Finally,	software	is	able	to
meet	humans	on	our	playing	field	and	interact	with	us	in	an	intuitive	way	—	this	blows	people’s	minds	in
a	way	that	reminds	me	of	the	first	time	I	saw	an	iPhone	touchscreen.
Whether	you	are	designing	a	new	consumer	service,	an	enterprise	product,	or	any	other	software,	you
should	think	about	your	conversational	interface.	In	the	future,	we	will	build	for	the	web,	we	will	build
for	mobile	apps,	and	we	will	build	for	conversational	apps.
Designing	bots	is	a	new	design	proficiency,	and	is	not	a	trivial	matter.	While	bots	are	a	great	new	user
interface,	they	are	not	suited	for	every	use	case,	and	you	will	need	to	learn	how	to	use	bots	effectively.
There	are	also	many	considerations	that	need	to	be	taken	into	account,	from	defining	a	core	purpose	to
working	out	an	effective	onboarding	process,	outlining	different	flows,	defining	a	personality,	and
choosing	the	right	balance	of	rich	control	and	text.
This	book	will	take	you	on	a	journey	of	understanding	bots	and	learning	how	to	design	bots.	You	will	also
read	about	a	lot	of	bot	designers	and	developers	who	have	shared	their	successes,	failures,	and	best
practices.	This	book	is	practical	as	well	as	theoretical,	and	we	will	actually	go	through	all	the	steps	of
designing	two	bots:	a	consumer	bot	on	Facebook	Messenger	and	a	business	bot	on	Slack.

Who	Should	Read	This	Book?
This	book	focuses	on	the	design	of	a	conversational	user	interface,	but	also	covers	considerations	such	as
distribution,	marketing,	architecture,	and	monetization.	If	you	are	considering	building	a	bot	or	learning
how	to	design	a	conversational	interface,	this	book	is	for	you.

Designers
This	book	will	be	your	toolkit	for	designing	bots,	a	book	you	can	go	back	to	when	tackling	your	own	bot
design.	We	will	go	into	the	details	of	the	design	process,	and	give	concrete	examples	of	designing	bots	for
B2B	and	B2C	use	cases.	We	will	go	over	everything	from	use	case	specification	to	actual	designing	of	a
bot,	all	the	way	to	validating	our	design	with	users.

Product	Managers
This	book	will	arm	you	with	a	good	understanding	of	which	use	cases	are	better	suited	for	bots	and	how
you,	as	a	product	manager,	can	use	bots	to	expose	and	extend	your	products.	We	will	provide	examples	of
how	to	write	the	specification	for	a	good	conversational	interface,	and	share	best	practices	on	product
decisions	that	have	led	to	user	delight.

Entrepreneurs
This	book	will	give	you	an	overview	of	the	bot	ecosystem,	the	opportunities	that	it	offers	to	you,	the
engagement	and	monetization	models	this	interface	facilitates,	and	the	competitive	advantage	it	has	over
web	and	mobile.	This	book	is	also	full	of	tips	from	fellow	entrepreneurs,	sharing	their	experiences	while
building	a	bot	business.

How	Is	This	Book	Organized?
We’ll	start	with	an	overview,	then	move	on	to	the	theory	and	deep	dives	into	practical	examples.

Overview
Chapter	1	through	Chapter	4	provide	an	overview	of	the	bot	ecosystem	—	we	define	what	bots	are,	what
types	of	bots	there	are,	which	platforms	they	work	on,	and	what	use	cases	they	can	support.	If	you	are
already	familiar	with	bots	you	might	want	to	skim	over	these	chapters.

Theory
Chapter	5	through	Chapter	13	review	the	different	aspects	that	compose	this	new	user	experience	and
explain	how	to	design	each	aspect.	We	start	with	thinking	about	the	use	cases	and	marketing,	and	move	on
to	conversational	elements	that	compose	these	experiences.	We	also	talk	about	extended	attributes	such	as
distribution,	engagement	methods,	and	monetization.

Practical	Design
Chapter	14	through	Chapter	19	are	a	step-by-step	guide	to	designing	bots.	We	will	exercise	the	lessons
learned	and	cover	advanced	topics	like	user	testing	and	analytics.	We	will	demonstrate	designing	a
consumer	bot	as	well	as	a	business	process	bot.

To	Infinity	and	Beyond
Chapter	20	takes	a	look	at	future	trends	of	bot	design,	bot	platforms,	and	market	trends.	Skip	this	chapter
if	you	do	not	believe	in	predictions	of	the	future.

O’Reilly	Safari
Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and	reference	platform	for
enterprise,	government,	educators,	and	individuals.
Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,	interactive	tutorials,	and
curated	playlists	from	over	250	publishers,	including	O’Reilly	Media,	Harvard	Business	Review,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,
Adobe,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM	Redbooks,
Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	and
Course	Technology,	among	others.
For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari

Comments	and	Questions
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
(800)	998-9938	(in	the	United	States	or	Canada)
(707)	829-0515	(international	or	local)
(707)	829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional	information.	You
can	access	this	page	at:	http://bit.ly/designing-bots.
To	comment	or	ask	technical	questions	about	this	book,	send	email	to	bookquestions@oreilly.com.
For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.
Find	us	on	Facebook:	http://facebook.com/oreilly
Follow	us	on	Twitter:	http://twitter.com/oreillymedia
Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/designing-bots
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Writing	a	book	was	one	of	the	hardest	things	I	have	done	in	my	career.	And	I	could	not	have	done	this
without	the	support	of	my	friends,	family,	and	the	amazing	bot	community.
So	many	people	helped	me	with	this	book.	Thank	you	to...
My	loving	wife,	Deby	Shevat,	who	had	to	learn	about	bots	and	conversational	interfaces	while	reviewing
my	book	(although	it	is	far	away	from	her	profession,	working	with	autistic	kids),	and	my	kids	Daniel	and
Jonathan,	who	had	to	hear	me	talk	on	and	on	about	the	book,	and	kept	supporting	me	while	I	was	doing	so.
My	good	friends	and	reviewers,	Dana	Cohen	Baron,	Chris	Messina,	Dr.	Jacob	Greenshpan,	and	Mike
Brevoort,	who	provided	me	with	a	lot	of	feedback	and	insights.
All	the	bot	entrepreneurs	who	contributed	their	experience	to	the	book.	You	made	it	100	times	more
valuable	—	thanks	to	Tomer	Sharon,	Greg	Leuch,	Nir	Eyal,	Dennis	Mortensen,	Rachel	Law,	Alyx
Baldwin,	Andy	Mauro,	Vittorio	Banfi,	Dennis	Yang,	Josh	Barkin,	Dr.	Barbara	Ondrisek,	Oren	Jacob,	Dan
Manian,	Dmitry	Dumik,	Veronica	Belmont,	Mike	Melanin,	Artyom	Keydunov,	Peter	Buchroithner,	Ben
Brown,	Dan	Reich,	Mikhail	Larionov,	Lauren	Kunze,	Hillel	Fuld,	and	Laura	Newton.
All	my	colleagues	at	work	who	are	building	an	awesome	bot	platform	with	me,	and	my	manager	April
Underwood,	who	believed	in	me	enough	to	let	me	do	my	day	job	while	writing	this	book	at	night.
My	amazing	editor,	Angela	Rufino,	and	Mary	Treseler,	who	believed	I	could	write	this	book,	as	well	as
Rachel	Head,	my	copyeditor.
And	to	you	too,	readers.	I	hope	you	find	this	book	useful	as	you	embark	on	your	bot-building	journey.

Chapter	1.	What	Are	Bots?
We	come	in	peace.

—	The	Day	the	Earth	Stood	Still

BOTS	ARE	THE	FUTURE	OF	SOFTWARE.
Bots	are	going	to	disrupt	the	software	industry	in	the	same	way	the	web	and	mobile	revolutions	did.
History	has	taught	us	that	great	opportunities	arise	in	these	revolutions:	we’ve	seen	how	successful
companies	like	Uber,	Airbnb,	and	Salesforce	were	created	as	a	result	of	new	technology,	user	experience,
and	distribution	channels.	At	the	end	of	this	book	I	hope	you	will	be	better	prepared	to	grab	these
opportunities	and	design	a	great	product	for	this	bot	revolution.
Our	lives	have	become	full	of	bots	in	2017	—	I	wake	up	in	the	morning	and	ask	Alexa	(a	voice	bot	by
Amazon)	to	play	my	favorite	bossa	nova,	Amy	(an	email	bot	by	x.ai)	emails	me	about	today’s	meetings,
and	Slackbot	(a	bot	powered	by	Slack)	sends	me	a	notification	to	remind	me	to	buy	airline	tickets	to
NYC	today.	Bots	are	everywhere!
There	is	a	lot	of	talk	about	bots	these	days,	and	a	lot	of	misconceptions.	In	order	to	demystify	these
misconceptions,	let’s	start	by	providing	some	of	the	history	of	bots	and	defining	bots	—	what	they	do	and
why	they	are	important.
I	wrote	my	first	bot	16	years	ago.	I	was	an	engineer	at	a	company	that	provided	SMS	infrastructure	that
was	about	to	be	deployed	in	Europe.	You	can	imagine	that	testing	if	texting	works	in	a	network	of	one	(as
the	system	was	not	online	yet,	I	was	the	only	one	on	the	network)	is	a	very	lonely	experience.	So	I	created
a	small	program	to	answer	my	texts.	It	started	as	a	bot	that	repeated	everything	I	said	—	I	would	text
“hello”	and	get	a	“hello”	back	—	but	that	became	boring	really	fast.	I	started	adding	a	persona	to	the	bot,
adding	funny	sentences	I	heard	in	the	office.	At	the	end	I	had	two	personas	I	was	chatting	with	constantly,
“Bob”	and	“Samantha.”	I	kept	growing	their	vocabulary	and	skills	and	found	it	extremely	therapeutic	to
converse	with	them	via	text.
But	bots	go	way	back	to	1950s,	when	computer	scientist	Alan	Turing	contemplated	the	concept	of
computers	communicating	like	humans.	Turing	developed	the	Turing	Test	to	test	a	computer’s	ability	to
display	intelligent	behavior	equivalent	to	that	of	a	human.	A	user	had	to	distinguish	a	conversation	with	a
human	from	a	conversation	with	a	computer,	and	if	they	failed	to	do	so,	then	the	computer	would	have
passed	the	Turing	Test.	Alan	Turing	was	one	of	the	fathers	of	computer	science,	and	we	still	refer	to	the
Turing	Test	when	we	talk	about	intelligent	bots.
One	of	the	best-known	bots	from	the	past	was	Eliza.	Developed	by	Joseph	Weizenbaum	in	1964	for	the
IBM	7094,	Eliza	was	a	psychotherapist	bot	that	talked	to	users	about	their	problems,	invoking	strong
emotional	reactions	in	many	users	even	though	it	was	clear	they	were	interacting	with	a	bot	and	not	a
human.

So,	What	Are	Bots?
At	a	very	basic	level,	bots	are	a	new	user	interface.	This	new	user	interface	lets	users	interact	with
services	and	brands	using	their	favorite	messaging	apps.
Bots	are	a	new	way	to	expose	software	services	through	a	conversational	interface.	Bots	are	also	referred
to	as	chatbots,	conversational	agents,	conversational	interfaces,	chat	agents,	and	more.	I	will	try	to	be
consistent	and	call	them	bots	in	this	book.
In	many	cases,	bots	are	digital	users	within	a	popular	messaging	product,	such	as	Slack,	Facebook,	Kik,
and	more.	Unlike	most	users,	they	are	powered	by	software	rather	than	by	a	human,	and	they	bring	a
product,	a	service,	or	a	brand	into	a	given	messaging	product	via	conversation.	In	this	book	we	will	focus
on	these	cases,	as	they	are	the	most	common,	but	I	want	to	acknowledge	that	there	are	other	ways	to
expose	a	bot,	and	we	will	cover	these	when	we	talk	about	bot	types	in	Chapter	2.
A	common	mistake	is	to	think	that	the	bot	is	the	service	itself	—	the	bot	is	only	an	interface	into	the
service,	in	the	same	way	a	website	can	be	an	interface	for	booking	a	flight.	You	can	also	use	a	mobile	app
to	book	a	flight	or	call	a	human	agent	that	can	book	that	flight	for	you,	all	exposing	the	same	service.

KEY	TAKEAWAY

The	bot	is	only	an	interface	into	the	service,	in	the	same	way	a	website	can	be	an	interface	for	booking	a	flight.

Figure	1-1	through	Figure	1-3	show	a	few	visual	examples	of	bots	and	the	services	they	expose.

Figure	1-1.	The	Lyft	bot	providing	a	ride	service	time	estimate	to	the	user	via	the	Slack	chat	medium

Figure	1-2.	The	Amy	bot	providing	a	scheduling	service	to	the	user	via	an	email	medium

Figure	1-3.	The	Hipmunk	bot	providing	a	travel	booking	service	to	the	user	via	the	Facebook	Messenger	medium

Now	that	we	have	explored	the	origins	of	bots	and	seen	a	few	examples,	let’s	examine	the	market	trend
that	led	to	this	evolution.

The	Bot	Revolution	and	Evolution
Why	do	we	need	these	bots?	Why	would	we	want	to	expose	a	service	through	a	conversation?	Why	not
just	build	a	web	page	(or	a	mobile	app),	like	we	have	been	doing	for	the	last	20	years	or	so?	Isn’t	that
much	easier	than	building	bots?
The	answer	is	that	things	have	changed	in	the	software	industry	and	in	user	behavior,	and	these	changes
are	making	bots	more	and	more	compelling	to	software	companies.	Here	are	some	of	the	key
developments	we	have	seen:
1.	 In	the	last	few	years	most	users	have	adopted	mobile,	and	it	has	become	harder	and	more	expensive

to	impress	and	engage	with	them	though	the	web.	This	has	made	a	lot	of	software	providers	turn	to
creating	native	mobile	apps	(apps	that	run	natively	on	your	phone,	for	example	Instagram	or	Google
Maps)	and	exposing	these	mobile	apps	through	app	stores.

2.	 The	mobile	apps	ecosystem	quickly	became	saturated,	making	it	harder	and	more	expensive	to
compete.	In	addition,	users	became	tired	of	installing	and	uninstalling	mobile	apps,	and	only	a	very
few	apps	prevailed.

3.	 Surprisingly,	the	apps	that	prevailed	and	became	very	common	were	the	messaging	apps.	Most
modern	users	have	three	or	more	of	these	apps	on	their	phone.	(Open	your	phone	and	count	the
messaging	apps	you	have	there	—	don’t	forget	to	include	SMS,	email,	and	Siri/Google	Now.)

4.	 User	mindshare	has	stuck	with	the	messaging	apps.	Users	spend	most	of	their	time	in	these	apps	—
this	is	even	a	growing	trend	with	young	users	who	do	not	have	the	“old”	notion	of	the	web,	and
spend	most	of	their	time	in	chat.	Messaging	and	the	ubiquity	of	connectivity	mean	that	people	are
more	available	and	responsive	via	messaging	than	alternative,	indirect	modes	of	communication.

5.	 These	new	apps	opened	up	the	ability	to	expose	services,	products,	and	brands	on	these	chat
platforms.	Slack	and	Kik	launched	their	platforms	in	2015,	followed	by	Facebook,	Skype,	and
Apple	in	2016.

6.	 In	conjunction	with	these	user	and	industry	trends,	technology	has	made	a	leap	in	natural	language
processing,	making	it	easier	(though	not	easy)	to	build	and	construct	conversational	interfaces.

Figure	1-4	sums	up	the	interface’s	evolution.

Figure	1-4.	From	web	to	mobile	to	conversational	interface

It	is	important	to	note	that	mobile	interfaces	were	better	than	web	interfaces	in	many	ways	and	could
facilitate	new	use	cases	(such	as	location-based	services	and	camera-based	services),	but	mobile	was	not
better	than	the	web	for	other	use	cases	(such	as	long	document	creation).	The	same	thing	is	true	for	bots.
As	a	designer	you	will	need	to	explore	which	use	cases	are	better	for	this	new	interface	—	bots	are	a
great	new	hammer,	but	not	everything’s	a	nail.
Another	way	to	look	at	bots	is	as	another	venue	to	engage	with	your	users.	You	can	still	provide	a
dedicated	website	or	a	mobile	app	and	integrate	it	with	a	messaging	platform	of	your	choice	to	re-engage
with	your	user	and	expose	different	aspects	of	your	service.
Figure	1-5	shows	an	example:	an	airline	app	exposing	some	of	its	services,	such	as	buying	a	ticket,	using
a	traditional	web	interface,	and	engaging	with	users	later	to	report	on	flight	time	changes	using	the	bot.
The	biggest	value	of	the	bot	here	is	that	users	are	already	accustomed	to	getting	notifications	through	their

messaging	apps,	so	the	engagement	rates	are	much	higher.

KEY	TAKEAWAY

The	biggest	value	of	the	bot	here	is	that	users	are	already	accustomed	to	getting	notifications	through	their	messaging	apps,	so	the
engagement	rates	are	much	higher.

Figure	1-5.	Augmenting	a	service	with	a	conversational	interface

On	the	other	hand,	a	good	example	where	a	service	can	be	100%	encapsulated	in	a	communication	app	is
Amy	Ingram,	from	New	York–based	startup	x.ai.	Amy	is	a	personal	assistant	that	sets	up	meetings.	When
people	email	me	and	want	to	meet,	I	add	Amy	to	the	email	conversation	(by	CCing	her	email,	amy@x.ai),
and	Amy	does	all	the	rest!	The	bot	is	connected	to	my	calendar	and	knows	when	I	am	available;	it	has
learned	from	me	when	and	where	I	like	to	meet,	both	in	person	and	online.	Amy	replies	to	about	300
emails	a	month	on	my	behalf.	We	will	talk	about	that	use	case	at	length	in	Chapter	6,	and	hear	from	the
founders	of	x.ai	to	learn	about	their	experience.
Just	to	show	you	the	value	of	a	bot	like	Amy,	here’s	an	example	of	a	week’s	report	(Figure	1-6).

Figure	1-6.	Amy	saved	me	time	by	coordinating	meetings	with	13	different	people	in	a	single	week

mailto:amy@x.ai

Stages	of	Bot	Adoption
Like	with	the	web	and	mobile	revolutions	of	the	past,	the	software	industry	is	transitioning	through	phases
of	adoption	with	the	development	of	bots	(Figure	1-7).	The	phases	are:
1.	 What	are	bots?	Why	do	we	need	them?	At	this	stage	most	users	and	software	providers	are	not

aware	of	bots	or	how	to	use	them	(we	are	still	in	this	stage,	at	the	time	I’m	writing	this	book).
2.	 We	need	a	bot	interface	too!	At	this	stage	a	lot	of	software	vendors	start	building	bots.	Most	bots

suck	at	the	beginning,	as	there	is	very	little	experience	in	the	industry.	(We	are	rapidly	moving
toward	this	phase.)

3.	 We	are	going	with	bot-first!	After	a	while,	several	bot	builders	experience	success,	and	the	bot	user
interface	becomes	common.	Startups	begin	to	adopt	a	bot-first	mentality.

4.	 We	are	bot	only!	Some	services	are	built	with	a	bot-only	user	interface,	and	others	with	major	parts
of	their	workflows	happening	in	conversation.

Figure	1-7.	The	four	phases	of	adoption

The	same	is	true	for	user	adoption.	Until	recently	very	few	users	(outside	Silicon	Valley)	have	been
aware	of	bots,	but	that	is	beginning	to	change	rapidly	with	Facebook,	Kik,	Google,	Amazon,	and	other	bot
platforms	driving	consumer	bots	into	the	market	and	Slack	promoting	bots	for	work.

Not	All	Bots	Are	Born	the	Same
Bots	differ	from	one	another	in	many	aspects.	There	are	B2B	bots	and	B2C	bots,	team	bots	and	personal
bots,	and	a	huge	amount	of	variation	even	within	these	spaces.	Bots	on	Facebook	are	very	different	from
the	bots	on	Kik,	even	though	they	are	both	consumer	bots.	There	are	also	super	bots	that	expose	a	set	of
pluggable	services	rather	than	a	single	service,	giving	you	the	ability	to	add	a	skill	to	their	bot	rather	than
expose	your	own	bot	interface.

Closing	Thoughts
We	are	at	the	dawn	of	a	new	technological	era	—	an	era	in	which	software	is	going	to	engage	with	us	on
our	own	turf,	and	conversational	interfaces	are	going	to	surface	in	more	and	more	of	the	tools	and
services	that	we	use	every	day.	This	revolution	is	going	to	change	our	work	lives	as	well	as	our
experiences	as	individuals	and	as	a	community.
In	the	next	chapter	we	take	a	deep	dive	into	different	types	of	bots.	This	will	give	you	a	deeper
understanding	of	the	ways	bots	engage	with	humans	and	a	better	ability	to	decide	which	type	of	bot	you
want	to	design.

Chapter	2.	Bot	Types
We	are	all	unique,	just	like	everyone	else.

—	PROFESSOR	DAN	ARIELY

AS	WE	DISCUSSED	IN	the	previous	chapter,	not	all	bots	are	the	same.	Let’s	examine	the	major	types	of	bots
out	there.	Understanding	the	different	types	of	bots	will	provide	you	with	the	ability	to	pick	the	right	type
for	your	use	case	and	allow	you	to	explore	alternative	ways	to	expose	your	service,	product,	or	brand.

Personal	Versus	Team	Bots
A	personal	bot	(also	called	a	direct	message	bot	or	private	bot)	is	a	bot	that	is	serving	as	a	personal
assistant.	Communicating	directly	with	the	user,	on	a	one-on-one	basis,	this	bot	has	a	single-user	focus.
An	example	would	be	a	business	travel	bot	that	a	user	talks	to	directly	in	Slack,	or	a	shopping	bot	in
Facebook	Messenger	or	Kik	(Figure	2-1).

Figure	2-1.	The	H&M	shopping	bot	on	Kik

A	team	bot	facilitates	team	processes	and	activities	—	for	example,	the	Lunch	Train	bot	(Figure	2-2)	that
helps	teams	choose	where	to	go	to	lunch	together,	or	the	Standup	Bot	that	facilitates	team	standups.	A	team
bot	can	talk	with	multiple	users	either	directly	(privately)	or	publicly	in	a	channel/group	setting.

Figure	2-2.	The	Lunch	Train	bot	—	an	example	of	a	Slack	bot	that	enables	people	to	plan	where	to	go	to	lunch	together

Team	bots	are	a	little	more	complex	to	design:	as	multiple	users	can	communicate	with	the	same	bot	in	a
channel,	the	bot	might	need	to	juggle	conversations.	Personal	bots	might	be	easier	to	implement,	but	cover
a	more	limited	set	of	use	cases.	Personal	bots	could	facilitate	a	process	between	multiple	people,	such	as
vacation/paid	time	off	approvals,	but	they	only	communicate	with	a	single	user	over	a	single	context	at	a
time.
Some	platforms,	such	as	Slack,	provide	you	with	the	ability	to	take	a	hybrid	approach	and	enable	your	bot
to	support	both	one-to-many	and	one-to-one	engagement.	Platforms	such	as	Facebook	currently	only
support	personal	bots.	Some	bots,	like	Amazon’s	Alexa,	are	household	bots	—	they	treat	everyone	in	the
house	as	a	single	user.	I	can	start	a	song,	my	kids	can	raise	the	volume,	and	my	wife	can	just	say	“Alexa,
stop”	and	the	bot	will	comply.

Super	Bots	Versus	Domain-Specific	Bots
A	domain-specific	bot	exposes	a	single	service	(or	product/brand).	It	represents	that	service,	and	the	user
associates	the	bot	with	that	service.	Let’s	imagine	an	airline	travel	bot	(Figure	2-3)	—	it	will	help	you
with	everything	from	booking	flights	to	providing	travel	alerts	and	notifications	on	membership	benefits.
The	name	of	this	bot	will	be	Airline-bot	and	the	logo	of	the	bot	will	be	the	airline’s	logo.

Figure	2-3.	This	is	how	I	would	imagine	my	delightful	Airline-bot

A	super	bot,	on	the	other	hand,	is	a	single	bot	that	facilitates	and	exposes	multiple	services.	This	bot	may
enable	other	services	to	plug	in	to	it	and	extend	its	functionality.
Google	Assistant	is	a	great	example	of	a	super	bot.	It	is	a	single	bot	that	exposes	different	Google
services,	as	well	as	data	from	Wikipedia	and	calls	to	action	to	Yelp	and	Google	Maps.	As	you	can	see	in
Figure	2-4,	Google	Assistant	provides	a	set	of	top	services	like	maps,	weather,	news,	games,	and	so
forth,	and	subcategories	of	services	inside	these	top	services.

Figure	2-4.	Google	Assistant	in	the	Allo	chat	app

The	advantage	of	a	super	bot	is	that	the	user	does	not	need	to	deal	with	a	lot	of	different	bots,	each
addressing	a	different	pain	point	or	intent.	Users	don’t	need	to	remember	the	names	of	each	bot,	how	to
work	with	it,	and	how	to	access	it	—	they	have	a	single	bot	to	work	with,	and	that	bot	addresses	all	their
needs.	The	super	bot	exposes	all	the	services	and	provides	the	users	with	a	consistent	user	experience.
The	advantage	of	the	domain-specific	bot	is	that	it	can	specialize	for	a	specific	type	of	content	and	intent.
Users	do	not	need	to	navigate	through	services	and	submenus	to	get	to	where	they	want	to	go	to	—	the	bot
is	there	for	one	purpose	and	that	purpose	alone.	It	is	also	a	more	open	architecture	that	lets	software
vendors	expose	their	own	brand	and	bot	personality,	as	you	can	see	with	my	example	of	the	airline	bot
above.

KEY	TAKEAWAY

The	advantage	of	the	domain-specific	bot	is	that	it	can	specialize	for	a	specific	content	type	and	purpose.

From	a	design	standpoint,	super	bots	and	domain-specific	bots	are	very	different.	Super	bots	try	to
standardize	the	way	services	are	exposed	to	users.	When	you	want	to	integrate	your	service	into	a	super
bot	(for	example,	as	an	Amazon	Alexa	skill),	you	need	to	understand	that	the	super	bot	mandates	the	user
experience	—	you	as	a	designer	have	less	control	over	how	your	service	will	be	exposed.	When	you
build	a	domain-specific	bot,	you	have	more	control	over	the	user	experience.	As	an	analogy,	integrating
your	service	into	a	super	bot	is	like	contributing	an	article	to	a	third-party	publication,	while	creating	a
domain-specific	bot	is	like	building	your	own	news	site.

Business	Bots	Versus	Consumer	Bots
Business	bots	and	consumer	bots	are	different	in	many	aspects.	They	serve	different	purposes,	they	engage
with	the	users	in	a	very	different	way,	and	they	even	have	different	best	practices	around	task	length	and
outcome.
The	purpose	of	bots	for	business	is	to	facilitate	a	task	or	a	business	process	in	an	easy,	pleasant,	and
productive	way.	Communication	should	be	to	the	point,	with	a	focus	on	getting	things	done	rather	than
talking	about	it.
Let’s	talk	a	little	bit	about	task	completion.	Do	users	like	to	do	expense	reports?	Do	they	flourish	when
they	fill	out	vacation	requests?	If	you’ve	ever	worked	in	an	office,	you	know	the	answer	is	probably	no.
Bots	for	business	try	to	remove	these	pain	points	by	being	everyone’s	own	personal	assistant.	In	the	same
way	VPs	in	big	companies	have	personal	assistants	who	handle	all	the	paperwork,	bots	strive	to
streamline	these	processes	for	the	rest	of	the	company’s	employees.	You	just	send	your	receipts	to	the
Expense-bot,	and	the	bot	takes	care	of	all	the	rest	—	wouldn’t	that	be	magical?
The	same	goes	for	business	processes.	A	bot	can	act	as	a	program	manager	that	coordinates	between	team
members	and	facilitates	complex	business	processes	and	workflows.	It	can	interact	with	multiple	workers
to	make	sure	things	are	created,	approved,	and	shipped	on	time.	Bots	can	assign	bugs	and	follow	up	on	the
fixes	all	the	way	to	production.	They	can	follow	up	on	a	sales	lead,	all	the	way	to	completion	and	billing.
An	example	of	a	project	management	bot	is	one	of	the	first	business	productivity	bots,	called	Howdy
(Figure	2-5).	Howdy	lets	managers	automatically	collect	information	from	their	team	members	(replacing
the	standup	meetings	many	managers	hold	daily)	and	brings	that	information	back	to	the	manager.	Users
can	train	the	Howdy	bot	to	run	multiple	question	scripts.

Figure	2-5.	The	Howdy	team	productivity	bot

Consumer	bots	are	a	totally	different	story	—	their	purposes	are	to	entertain	us,	facilitate	commerce,	help
us	keep	in	touch	with	our	favorite	brands,	stay	up-to-date	with	news,	keep	in	shape,	improve	our	personal
productivity	and	well-being,	and	more	(all	the	other	fun	things	we	do	outside	of	work).	These	are	just	a
few	examples	of	what	consumer	bots	can	do,	and	there	are	many	more	opportunities	for	bots	to	enrich	and
delight	us	in	our	daily	lives.
Consumer	bots	can,	in	some	cases,	be	chatty,	whimsical,	and	personal	—	users	tend	to	stray	off	topic
more	with	consumer	bots,	and	some	bot	builders	actually	measure	the	length	of	the	conversation	as	a	key
metric	for	the	success	of	the	bot.	Users	are	more	tolerant	of	reengagement	tactics	like	“what’s	new”
notifications	from	consumer	bots.	In	general,	consumer	bots	are	less	task	and	workflow	oriented	and	more
experience	oriented.

An	example	of	an	interesting	consumer	use	case	is	bots	that	entertain	you	by	chatting	about	any	topic	on
your	mind.	This	is	a	very	popular	use	case	amongst	teens.	Mitsuku	(Figure	2-6)	is	a	conversational	bot	on
Kik	that	has	won	several	awards	around	artificial	intelligence	and	engagement.

Figure	2-6.	Mitsuku	talking	about	life	—	Mitsuku	won	the	Loebner	Prize	for	most	humanlike	AI	in	2013	and	2016

There	are	a	few	consumer	bots	that	need	to	be	more	similar	to	the	business	bots	—	joking	with	my	bank
bot	about	my	finances	is	probably	not	a	best	practice.	But	in	general,	consumer	bots	need	to	be
memorable	while	business	bots	need	to	be	as	transparent	and	minimal	as	possible.

KEY	TAKEAWAY

Business	bots	and	consumer	bots	are	different	in	many	aspects.	They	serve	different	purposes	and	engage	with	users	in	a	very	different
way.

Voice	Versus	Text	Bots
Another	way	bots	differ	is	in	the	way	you	converse	with	them.	Currently,	bots	support	two	major	means	of
conversation:	voice	and	text.
Text	bots	usually	manifest	themselves	in	chat	apps.	Slack,	Facebook,	Telegram,	Kik,	and	WeChat	are	just
a	few	examples	of	platforms	where	conversational	bots	are	available.	Some	bot	builders	also	build
dedicated	apps	for	their	bot,	an	approach	that	might	work	for	a	few	use	cases	but	comes	with	a	lot	of	app
distribution	challenges.	Figure	2-7	shows	an	example	of	a	text	bot.

Figure	2-7.	LunchBot	coordinates	a	team’s	lunch	plans	in	a	conversation

Voice	bots	include	Amazon’s	Alexa,	Microsoft’s	Cortana,	Apple’s	Siri,	Google	Assistant,	and	a	few
more.	There	is	usually	a	voice	command	or	a	button	click	that	initiates	the	conversation,	and	the
conversations	are	usually	in	the	format	of	short	commands	or	question/answer.
Amazon	Echo	(Figure	2-8)	is	a	household	device	that	exposes	the	Amazon	voice	bot.	In	my	home,	we	all
interact	with	this	bot	on	a	daily	basis.	Everything	from	“play	the	Beatles”	to	“set	timer	for	30	min”	and
“add	milk	to	our	shopping	list”	is	done	by	voice	interaction	with	Alexa.

Figure	2-8.	Amazon	Echo	exposing	the	Amazon	Alexa	voice	bot

Although	the	use	cases	sometimes	overlap,	voice	bots	are	usually	great	for	hands-off	experiences	like
driving,	cooking,	watching	TV,	and	listening	to	music,	while	text	bots	are	usually	great	for	desktop	and
mobile	engagement.
From	a	design	perspective,	voice	bots	are	very	different	from	text	bots.	If	you	want	to	take	a	deep	dive
into	designing	voice	bots,	I	recommend	reading	Designing	Voice	User	Interfaces
(http://bit.ly/designing-voice-user-interfaces),	written	by	my	friend	Cathy	Pearl	(O’Reilly).

http://bit.ly/designing-voice-user-interfaces

Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems
Another	distinction	to	notice	is	the	difference	between	integration	bots	and	new	services	exposed	as	bots.
The	underlying	assumption	with	integration	bots	is	that	we	have	a	core	service	that	is	not	going	away
anytime	soon,	that	we	need	to	expose	in	a	conversational	interface	to	improve	engagement,	usability,	and
brand	recognition.	The	bot	is	usually	branded	with	the	legacy	system’s	branding,	and	the	major	design
challenge	is	which	part	of	the	functionality	should	we	expose	in	this	bot?	Integration	bots	usually	start
with	very	light	functionality,	which	grows	as	the	bot	becomes	more	successful.
Figure	2-9	shows	an	example	of	a	very	common	integration	between	Slack	and	a	customer	relationship
management	(CRM)	bot.

Figure	2-9.	The	Salesforce	bot	adding	customer	information	to	a	conversation	in	Slack

As	you	can	see,	the	CRM	bot	pulls	relevant	information	from	Salesforce	that	is	specific	to	the	context	and
posts	it	in	the	conversation.	As	you	might	guess,	there	is	a	lot	more	information	in	the	CRM	system	for	that
client,	but	the	bot	only	posts	a	concise	and	contextually	relevant	snippet	of	the	available	information.
Net-new	bots	are	the	primary	interface	of	a	new	service	or	product.	The	major	design	challenge	here	is
how	can	we	expose	all	of	the	functionality	we	need	in	a	conversational	interface?	From	my	experience,
like	with	many	new	services,	the	minimum	viable	product	(MVP)	approach	applies	to	these	new	bots	—
start	with	single	focused	value	proposition	and	grow	from	there.
An	example	of	a	net-new	bot	is	Growbot	(Figure	2-10).	The	Growbot	team	had	an	idea	about	how	to
facilitate	team	culture	in	new	way.	This	is	a	company	that	built	its	business	—	an	HR	bot	—	bot-first,
providing	a	conversational	interface	from	day	one.

Figure	2-10.	Building	team	culture	—	Growbot	is	a	bot-first	company

Closing	Thoughts
Bots	are	a	new	user	interface	that	can	be	implemented	in	many	ways	and	solve	different	types	of	business
and	consumer	use	cases.	They	can	extend	and	augment	existing	services	and	expose	new	ones.
In	the	next	chapter,	we	will	go	over	the	major	bot	platforms	and	review	the	feature	set	and	capabilities
each	platform	provides	to	give	you	a	better	understanding	of	how	these	bots	behave	in	their	own	habitat.
We	will	also	suggest	a	process	for	picking	the	right	platform	to	start	with,	by	analyzing	different	aspects
of	your	service	or	product	and	comparing	them	to	the	platforms’	capabilities.

Chapter	3.	Major	Platforms
Without	habitat,	there	is	no	wildlife.	It’s	that	simple.

—	WILDLIFE	HABITAT	CANADA

IN	THIS	CHAPTER	WE’LL	explore	bots	in	their	habitats.	As	a	designer,	you	need	to	choose	the	right	platform
for	your	bot.	There	are	many	platforms	that	host	bots,	and	we	cannot	cover	all	of	them.	We	will	pick	a
representative	platform	for	each	unique	user	experience	and	review	the	key	aspects	of	each	of	these
platforms.	We	will	give	a	brief	description	of	the	bot	capabilities	in	these	platforms	and	cover	these	UI
capabilities	in	more	detail	later,	in	Chapter	9.	In	the	second	part	of	this	chapter	we	will	discuss	practical
ways	to	pick	the	right	platform(s).

The	Business	Bot	Platform:	Slack
A	popular	messaging	platform	for	teams	at	work,	Slack	is	available	on	mobile	and	desktop,	serving	tens
of	thousands	of	businesses	from	small	startups	to	large	enterprises.	Slack	users	are	very	engaged,	having
Slack	open	about	10	hours	per	day	on	average.	Business	users	pay	for	Slack,	making	the	audience	for	your
bot	qualified	and	highly	engaged.	(Full	disclosure:	I	work	at	Slack.)
The	Slack	API	provides	a	wide	range	of	actions	that	bots	can	do	on	the	platform.	These	include:

Post	messages.	Bots	can	send	messages	into	Slack	either	publicly,	to	a	channel,	or	privately,	to	a
person	(direct	message,	or	DM)	or	set	of	people	(multi-party	direct	message,	or	MPDM).	Bots	can
post	content	that	includes	rich	text,	emojis,	images,	and	more.
Receive	user	and	team	message	inputs,	both	text	and	files,	in	a	specific	channel,	DM,	or	MPDM.
Expose	slash	commands.	A	slash	command	is	a	unique	command,	following	the	pattern	of
/<command-name>	<arguments>,	that	invokes	a	response	from	the	bot.	An	example	might	be	a
/report	sales	command	that	will	make	the	bot	respond	with	a	sales	report.
Expose	buttons.	These	are	clickable	controls	inside	messages	that	can	invoke	actions	on	the	service
side.
Subscribe	to	the	Events	API	in	Slack.	Bots	can	be	notified	about	events,	such	as	when	a	user	is	added
to	a	channel,	leaves	a	channel,	replies	to	a	message,	and	so	on.
Use	Slack	as	an	identity	provider	by	signing	in	with	a	Slack	account.
Perform	administrative	actions.	Bots	can	provision	channels,	invite	members,	edit	and	delete
messages,	and	more	on	behalf	of	the	installing	user.

The	Consumer	Bot	Platform:	Facebook	Messenger
With	more	than	a	billion	users,	Facebook	Messenger	is	a	leading	consumer	platform	for	bots.	Facebook
bots	interact	with	the	user	via	the	Messenger	interface	(Whatsapp,	Instagram,	and	interaction	within	the
Facebook	main	feed	are	not	currently	supported,	but	ads	on	the	main	Facebook	feed	can	lead	to	bot
interaction).	Facebook	Messenger	is	available	on	mobile	and	desktop.
The	Messenger	API	provides	the	following	rich	functionality:

Posting	content	—	support	for	text,	images,	files,	and	structured	templates	that	provide	a	consistent
experience	across	bots
Delivered	callbacks	—	a	bot	can	detect	that	a	user	has	received	messages
Receiving	content	—	a	bot	can	access	messages	that	the	user	inputs	in	the	chat	with	the	bot
A	rich	set	of	predefined	button	actions,	including	Buy,	Share,	Call,	URL,	and	Postback	(to	send	an
action	to	your	bot)
Quick	Replies	that	provide	the	user	canned	responses	to	questions
Opening	a	webview	for	custom	out-of-Messenger	interaction
Sending	geolocation	information	with	a	single	click

The	Voice	Bot	Platform:	Alexa
Alexa	is	a	super	bot	by	Amazon	that	exposes	multiple	products	and	services.	Most	commonly,	Alexa	can
be	found	in	a	device	called	Echo.	Echo	sits	in	your	home	and	waits	for	you	to	call	upon	Alexa.
Interactions	with	Alexa	are	vocal	and	usually	sound	like	this:	“Alexa,	weather	in	San	Francisco.”	Out	of
the	box	Alexa	supports	a	variety	of	built-in	capabilities	such	as	music	library,	timer,	weather,	and	search
services.	Alexa	also	supports	third-party	integrations	through	Alexa	Skills,	an	API	that	provides
developers	with	the	ability	to	add	voice	commands	to	it.
The	Alexa	Skills	Kit	provides	the	following	functionality:

Register	a	secondary	voice	command	called	an	invocation	name.	For	example,	your	print	service	can
register	“Alexa,	print	xyz.”
Receive	client	inputs.	The	service	transcribes	the	user’s	voice	and	sends	it	to	you.
Output	voice	back	to	the	user.	Alexa	will	read	out	the	text	you	reply	to	the	user	with.
Support	for	smart	home	skills	—	i.e.,	integration	with	Internet	of	Things	(IoT)	devices	such	as	smart
lights	and	connected	home	locks.

Note	that	this	is	not	a	platform	that	lets	you	add	your	own	bot.	You	will	need	to	plug	in	your	service	as	a
skill	that	the	super	bot	exposes.	Also	note	that	Alexa	is	becoming	available	in	other	devices,	such	as
smartwatches	and	third-party	IoT	devices.

The	Teens’	Bot	Platform:	Kik
Kik	is	a	mobile	messaging	platform	with	more	than	300	million	users,	targeting	youths	who	like	to	chat
and	share	content	with	their	friends.	Kik’s	emphasis	is	on	brand	engagement,	letting	teens	engage	with	and
follow	their	favorite	brands.
The	Kik	API	provides	the	following	rich	functionality:

Sending	messages,	including	text,	links,	images,	and	rich	media
Received/read	and	delivery	receipts	—	the	bot	can	detect	that	a	message	has	reached	the	user’s	device
and	that	the	user	has	read	the	message
Receiving	messages	—	the	bot	can	receive	text	messages	posted	by	the	user	in	a	direct	communication
or	messages	that	include	an	@mention	of	the	bot	name
Canned	responses	in	the	form	of	buttons
Broadcasting	a	message	to	a	large	number	of	users	in	a	low-priority,	outside-of-the-conversation
context
Opening	a	webview	for	custom	out-of-Kik	interaction

The	Legacy	Bot	Platforms
There	are	also	a	few	more	traditional	bot	platforms	that	we	should	consider.	While	you	may	not
immediately	think	of	these	as	bot	platforms,	they	are	actually	very	common	and	quite	effective	platforms
for	bots.

Email
Email	is	a	very	common	and	standard	means	of	communication.	Many	businesses	use	email	as	their	sole
communication	platform.	Emails	are	also	common	in	business-to-consumer	communication:	from	Zendesk
support	to	MailChimp	marketing	engagement,	businesses	commonly	use	emails	to	interact	with	their
partners	and	clients.
Both	common	email	protocols,	IMAP	and	POP3,	provide	a	limited	set	of	functionality:

Sending	emails	to	a	user	or	a	set	of	users	(hiding	some	recipients	using	the	BCC	feature).	Bots	can
email	rich	content	that	includes	rich	text,	titles,	emojis,	images,	and	more.
Received/read	receipts.	Using	a	hidden	tracking	pixel,	bots	can	get	notified	when	a	user	opens	an
email.	This	is	not	a	100%	effective	solution,	as	some	clients	block	that	pixel.
Receiving	emails	(both	new	messages	and	replies	to	email	threads).	The	bots	can	also	reply	to
received	emails.

SMS
The	most	common	communication	apps	in	mobile,	SMS	(Short	Message	Service,	sometimes	just	referred
to	as	text)	apps	use	the	cellular	infrastructure	rather	than	the	internet,	making	them	accessible	and
extremely	popular	in	emerging	countries	and	on	low-end	phones	around	the	world.	SMS	services	are	tied
to	your	phone	number,	making	it	somewhat	easier	to	register	with	bots	that	use	SMS	as	a	medium.
The	SMS	API	provides	the	following	limited	functionality:

Sending	short	text	messages	(length	depends	on	language	encoding)
Receiving	short	text	messages	(length	depends	on	language	encoding)

Some	providers	also	support	rich	interactions	such	as	sending	and	receiving	images	though	the	MMS
(Multimedia	Messaging	Service)	protocol,	but	that	is	usually	unreliable	and	operator	dependent.

How	to	Choose	a	Platform
Picking	the	right	platform	is	critical	to	the	success	of	your	bot.	A	bot	in	the	wrong	habitat	will	shrivel	and
die.	I	see	a	lot	of	examples	of	bots	that	get	very	little	engagement,	low	installation	figures,	and	lots	of
complaints	from	users,	just	because	they	have	a	different	state	of	mind	than	the	developers	intended.

KEY	TAKEAWAY

Picking	the	right	platform	is	critical	to	the	success	of	your	bot.	A	bot	in	the	wrong	habitat	will	shrivel	and	die.

Choosing	the	right	platform	is	hard	because	the	decision	is	based	not	only	technical,	business,	marketing,
or	design	considerations,	but	rather	a	combination	of	them	all.	Note	that	you	can	choose	to	offer	your	bot
on	more	than	one	platform,	although	I	recommend	starting	with	one	platform	and	then	moving	to	the	next.
Let’s	take	two	examples	and	go	through	the	process	of	choosing	a	platform	for	each:

Gamez-bot
Gamez	Inc.	is	a	company	that	provides	popular	casual	games	like	trivia,	quiz,	and	turn-by-turn	games.

Timez-bot
Timez	Inc.	is	a	time	and	attendance	tracking	and	timesheet	service	provider.

Exploration	Stage
Here	are	a	few	criteria	that	can	lead	you	to	the	right	decision.

Audience
First,	define	your	audience	and	use	case.	Are	you	addressing	a	business	use	case?	Is	this	a	consumer	use
case?	Are	you	targeting	teens?	Families?	Adults	at	work?	When	are	they	using	the	service?

Gamez-bot
Gamez	Inc.’s	core	customers	are	women	aged	25–45,	playing	mainly	in	the	evenings.

Timez-bot
Timez	Inc.’s	core	users	are	tech-savvy	mobile	and	distributed	workforces,	men	and	women	aged	21–
55,	mainly	using	the	apps	from	7–10	a.m.	and	6–8	p.m.

Consumer	bot	or	business	bot
Now,	try	to	figure	out	if	you	are	addressing	a	business	use	case	or	a	consumer	use	case.	Sometimes	this	is
a	very	easy	question	to	answer	—	for	example,	for	a	movie	bot	—	but	in	some	cases	the	answer	is	not	so
clear,	like	in	the	case	of	a	travel	bot.	Also	ask	yourself	how	this	bot	will	make	money.	Via	subscriptions,
affiliations,	ads,	in-bot	payments?	I	would	say	that	even	in	the	case	of	a	travel	bot,	building	a	business
travel	bot	would	be	very	different	than	a	consumer	travel	bot,	and	this	focus	is	super	important.	The
answer	“both	B2B	and	B2C”	is	probably	the	wrong	one.

Gamez-bot
Pure	consumer	play,	making	money	by	selling	power-ups	in	the	games.

Timez-bot
Small	to	medium	business	solution	with	a	yearly	license	fee	per	seat.

Feature	availability

Then,	look	at	the	conversational	controls	you	will	need	to	successfully	deliver	your	service.	Will	voice
interaction	be	sufficient	for	this	task?	Or	do	you	need	to	visualize	content?	Do	you	need	to	provide	fixed
choices	and	actions,	in	the	form	of	buttons	or	canned	responses?

Gamez-bot
All	games	are	basically	text	based,	but	management	would	love	to	use	a	carousel	to	promote	different
games	and	to	improve	sharing.

Timez-bot
Requires	buttons	to	set	and	approve	time/attendance	as	well	as	the	ability	to	display	reports,	notify
users	who	have	not	filled	in	their	time/attendance	reports,	and	set	up	team	reminders	and	reports.

Preferred	devices
Lastly,	explore	your	engagement	channels.	Are	you	interested	in	accessing	the	users	across	devices?	Is
this	a	mobile-only	service?	An	at-home	service,	or	an	on-the-go	service?

Gamez-bot
Most	users	access	the	games	via	mobile;	a	small	percentage	use	the	desktop.

Timez-bot
Most	users	access	the	service	via	the	web;	a	small	percentage	use	the	mobile	app.

Evaluation	Stage
Now	go	back	to	each	of	the	platforms	described	above,	and	compare	their	capabilities,	audiences,	and
engagement	channels	with	your	service	requirements.	In	Chapter	9	we	will	provide	a	more	in-depth
review	of	each	UI	event.
Some	of	your	criteria	should	be	hard	(like	whether	this	is	a	B2B	or	a	B2C	bot)	and	some	of	your	criteria
can	be	soft	(for	example,	the	ability	to	use/display	bold	text).	Try	to	make	sure	your	platform	of	choice
hits	all	of	the	hard	criteria	and	as	many	soft	criteria	as	possible.	Sometimes	it	is	important	to	get	feedback
from	other	stakeholders,	such	as	marketing	and	engineering.
Also	check	that	your	service	adheres	to	the	specific	platform’s	terms	and	conditions.	There	have	been	a
few	instances	of	bots	that	were	rejected	in	the	platform	review	process,	because	the	services	they
exposed	were	not	allowed	by	the	terms	and	conditions	of	the	platform	they	targeted	(for	example,	serving
ads	is	not	allowed	in	some	platforms).

Gamez-bot
It	looks	like	Gamez	Inc.’s	core	audience	can	easily	consume	the	games	on	Facebook.	The	functionality
fits	the	requirements.	At	a	later	stage,	consider	expanding	to	Kik	in	order	to	reach	a	younger	audience.

Timez-bot
The	audience	is	most	reachable	on	Slack.	The	functionality	fits	the	requirements.	In	cases	where	users
are	not	on	Slack,	the	bot	will	default	to	text/email.

Validation	Stage
This	is	super	important	—	validate	your	decision	by	talking	to	potential	users.	Ask	them	which	tools	they
use	to	complete	tasks	or	access	services	like	the	one	you	are	planning	to	launch.	Try	to	create	a	prototype
(you’ll	see	how	in	Chapter	17)	and	have	them	access	the	service	and	converse	with	your	bot.	I	cannot
stress	enough	the	importance	of	the	validation	stage	and	the	impact	of	it	on	your	bot	design	and	platform

choice.

KEY	TAKEAWAY

Validate	your	decision	by	talking	to	potential	users.	Try	to	create	a	prototype	(you’ll	see	how	in	Chapter	17)	and	have	them	access	the
service	and	use	your	bot.

Finding	the	right	users	is	not	easy	—	picking	your	friends	and	family	will	generally	yield	inaccurate
feedback.	Try	defining	your	audience	and	then	seeking	people	who	meet	those	criteria.	Google	sometimes
does	that	by	putting	its	researchers	on	the	street,	but	you	can	also	use	social	media	polls	and	even
research	companies	to	do	this	validation	for	you.

Gamez-bot
Target	audience	reacts	very	well	to	early	validation.	Some	fine-tuning	is	needed	in	the	trivia	game;
consider	the	use	of	canned	responses	to	reduce	confusion.
Platform	chosen:	Phase	1:	Facebook	Messenger.	Phase	2:	Explore	Kik.

Timez-bot
Users	love	the	new	solution,	which	is	much	better	than	the	Timez	app	(which	crashes	on	iOS	all	the
time).	Some	feedback	on	formatting	and	wording	of	the	conversation.
Platform	chosen:	Phase	1:	Slack.	Fallback:	text/email.

Now	that	you	have	validated	your	assumptions	with	potential	users,	you	can	start	designing	your	bot	to
suit	the	specific	platform	you	have	chosen.

Closing	Thoughts
Choosing	the	right	platform	to	run	your	bot	on	is	a	critical	factor	to	the	success	of	your	bot	and	your
business.	While	you	can	launch	on	multiple	platforms,	choosing	which	platform	you	launch	on	first	should
be	a	thoughtful	and	well-validated	decision.	The	steps	we	have	described	here	are	not	much	different
from	those	involved	in	vetting	any	other	app	or	web	idea,	so	most	product	managers	should	be
accustomed	to	these	processes.
Before	we	dive	into	the	design	of	a	conversational	interface,	let’s	look	at	major	use	cases	in	the	market
today.	Although	we	are	still	in	the	experimental	stage	of	bots,	there	are	interesting	emerging	use	cases	you
can	learn	from.

Chapter	4.	Major	Use	Cases
The	hard	question	is	not	“Are	we	doing	it	right?”;	it	is	rather	“Are	we	doing	the	right	thing?”

—	TOMER	SHARON,	WEWORK

LET’S	EXPLORE	SOME	OF	the	use	cases	where	bots	can	be	utilized.	This	is	not	an	exhaustive	list	by	any
means,	but	in	order	to	start	thinking	about	design	aspects	of	your	bot	you	will	need	to	get	a	taste	of	what	is
out	there.

Conversational	Commerce
From	buying	on	Amazon	to	ordering	a	ride,	conversational	bots	can	facilitate	commerce	in	our	lives.
When	done	right,	conversational	commerce	can	be	more	intuitive	and	engaging	than	traditional	commerce.
No	more	shopping	lists	on	the	fridge	—	you	just	say	“Alexa,	add	sugar	to	the	shopping	list.”	Travel	bots
can	replace	travel	apps	and	websites,	providing	everything	from	booking	to	alerts	of	flight	times,	and
customer	service	as	well.
Users	no	longer	need	to	install	an	app	to	get	a	ride	—	they	can	just	ask	their	favorite	@Uber	or	@Lyft
bots	for	a	ride	in	their	chat	app.	This	means	that,	for	the	first	time	since	the	mobile	revolution,	there	is	a
clear	separation	between	intent	and	installing	an	app.	Assuming	discovery	is	done	right,	this	will	also
mean	that	the	user	acquisition	cost	for	commerce	will	go	down,	possibly	providing	a	more	cost-effective
means	to	reach	your	users.
A	very	interesting	bot	in	this	space	is	Kip	(Figure	4-1),	a	shopping	bot	for	teams.	From	office	supplies	to
snacks,	Kip	handles	the	complex	coordination	of	getting	everyone	in	the	team	to	add	to	the	group	order.

Figure	4-1.	Kip	shopping	bot	on	Slack

The	interesting	thing	in	this	example	is	that	the	bot	is	introducing	a	new	ecommerce	concept	called	the
“team	cart,”	in	which	multiple	members	in	the	chat	can	add	to	the	cart	and	the	admin	can	pay	for	it.	In	this
way	Kip	is	enabling	a	way	of	shopping	that	was	not	available	until	now.

Bots	for	Business
This	is	where	chat	platforms	for	work,	such	as	Slack,	focus	their	efforts.	Here	we	can	find	bots	for	HR,
legal,	sales,	marketing,	facilities,	product,	engineering,	and	other	departments.	GitHub	has	coined	a	term
for	its	way	of	managing	DevOps	through	chat:	chatOps.	Most	startups	connect	their	customer	relationship
management	(CRM)	systems	to	get	notifications	for	new	clients.	Entire	business	operations	can	become
more	productive	with	personal	assistants	that	help	us	do	our	work	better.
Figure	4-2	shows	an	interesting	legal	bot	use	case.

Figure	4-2.	The	LawGeex	legal	bot

Here,	the	legal	bot	LawGeex	is	reviewing	an	NDA	(non-disclosure	agreement)	contract	and	providing
feedback	to	the	legal	team.
There	is	a	strong	incentive	to	use	bots	for	business	workflows.	Most	corporate	workflows	are
cumbersome,	require	logging	into	legacy	systems,	and	are	often	time-consuming.	Using	bots	to	facilitate
short,	contextual,	and	actionable	tasks	can	greatly	improve	the	productivity	of	a	team.

KEY	TAKEAWAY

There	is	a	strong	incentive	to	use	bots	for	business	workflows	—	facilitating	short,	contextual,	and	actionable	tasks	can	greatly	improve	the
productivity	of	a	team.

Productivity	and	Coaching
Personal	and	professional	productivity	is	a	growing	market.	Here	we	can	find	bots	focused	on	reminders
and	to-do	lists,	personal	and	team	task	management	and	completion.	While	these	seem	like	simple	use
cases,	they	are	very	popular	in	the	mobile	app	world	and	appear	to	have	high	engagement	and	install	rates
in	the	bot	stores.
I	also	see	many	use	cases	for	personal	bot	coaches	that	help	users	with	weight	loss,	finances,	parenting,
sports,	and	more.	It	seems	like	the	nature	of	the	medium	—	having	the	bot	talk	to	you	in	your	chat	app	—
makes	the	interaction	more	effective	and	engaging.
A	good	example	of	a	coach	bot	is	Lark	(Figure	4-3).

Figure	4-3.	Lark	helps	users	monitor	their	food	habits	and	keeps	them	on	track	on	the	path	to	weight	loss

One	of	the	incentives	for	using	bots	in	these	types	of	use	cases	is	user	compliance	—	bots	can	provide	a
more	personal	experience	that	is	harder	to	ignore,	compared	to	mobile	apps	for	example,	and	users	are
often	more	willing	to	provide	information	to	a	bot	than	to	fill	forms	in	an	app.

Alert/Notification	Bots
Bots	for	this	set	of	use	cases	are	starting	to	replace	email	or	in-app	notifications.	These	could	be	news
bots,	price	watch	bots,	analytics	report	bots,	or	bots	that	notify	you	when	your	kids	get	home.	There	are	a
couple	of	differences	between	bot	notifications	and	traditional	mobile	notifications:

Notifications	sent	to	a	group/team/channel	chat	are	more	collaborative,	and	we	see	teams
collaborating	and	taking	action	faster	and	more	productively	than	when	emails	are	sent	to	a	group.
While	traditional	notifications	take	you	back	to	an	app	or	a	website	to	take	action,	many	chat	platforms
provide	you	with	a	set	of	controls,	such	as	buttons,	that	you	can	use	to	take	action	inline.

Given	the	right	use	cases,	notification	can	very	quickly	turn	into	taking	productive	action	(Figure	4-4).

Figure	4-4.	Conversation	can	also	lead	to	action

These	micro	workflows	can	happen	in	consumer	use	cases,	such	as	a	discount	alert	with	an	action	button
to	buy,	as	well	as	business	use	cases,	such	as	for	actionable	reports	or	approval	processes.
The	incentive	here	is	that	using	bots	for	reports	and	alerts	improves	the	actionability,	transparency,	and
context.	One	alert	in	the	#DevOps	channel	is	worth	a	thousand	emails.

Bots	as	Routers	Between	Humans
This	is	an	interesting	set	of	use	cases	where	the	service	is	actually	provided	by	humans,	but	the	bot	acts	as
a	router/operator	and	connects	the	user	with	the	human	service	provider.	In	the	same	way	that	Lyft	and
Uber	connect	you	to	a	human	driver	(at	least,	at	the	time	this	book	is	being	written),	a	bot	can	connect	you
to	another	human	who	then	facilitates	anything	from	IT	support	to	songwriting.
A	good	example	of	an	operator	bot	is	Sensay.	The	Sensay	bot	(Figure	4-5)	lets	you	instantly	connect	with
a	real	human	whenever	you	need	advice	or	inspiration.	It	works	across	platforms	and	across	devices.

Figure	4-5.	An	intent	captured	by	Sensay	—	the	bot	connects	the	user	to	a	human	assistant

While	some	of	the	services	provided	by	the	humans	Sensay	connects	users	to	would	be	hard	to	replicate
with	a	bot,	the	actual	act	of	connecting	people	is	mundane	and	can	easily	be	executed	by	a	bot.
The	incentive	here	is	to	provide	a	more	friendly	and	useful	version	of	the	common	interactive	voice
response	(IVR)	systems	we	all	love	when	calling	our	service	providers.	The	hope	is	that	text-based	bots
that	are	delightful,	personalized,	and	actually	get	us	to	the	right	person	can	change	our	negative	perception
of	most	common	answering	machine–like	IVR	systems.

Customer	Service	and	FAQ	Bots
This	is	one	of	the	most	common	use	cases	for	bots.	Here,	the	bot	serves	as	the	first	line	of	support,	for
internal	employees	or	external	customers.	For	internal	use	cases,	the	bot	can	answer	questions	like	“What
is	our	vacation	policy?”	An	external	consumer	brand	bot	can	answer	questions	like	“What	are	your
business	opening	hours?”	Support	and	FAQs	are	an	easy	use	case	because	they	usually	follow	a	pattern	of
a	single	request/response,	and	the	questions	are	usually	repeated	and	easily	trainable.
There	is	a	strong	incentive	to	use	bots	in	customer	support	use	cases	—	this	is	because	bots	are	typically
much	more	cost-effective	(and	in	many	cases	faster)	than	humans	at	performing	simple	repetitive	tasks.
These	business	use	cases	are	very	popular	for	bots	on	Facebook	Messenger	and	Slack.	According	to
initial	experiments,	bots	can	easily	cover	approximately	40%	of	internal	and	external	support	tickets.

Third-Party	Integration	Bots
At	the	time	of	writing	of	this	book,	the	most	requested	bot	by	Slack	users	is	one	that	integrates	Salesforce
CRM	with	Slack.	Business	users	keep	telling	us	that	they	want	to	be	able	to	run	account	lookups	from
within	Slack	while	talking	about	clients.
CRM	is	by	no	means	the	only	system	integration	requested,	though.	From	Google	Analytics	to	Merkato,
WorkDay	to	Concur,	users	crave	simple	integrations	that	will	save	them	time	and	make	them	more
productive.
Statsbot	(Figure	4-6)	is	a	great	example	of	an	integration	bot.	It	pulls	information	from	Google	Analytics,
Mixpanel,	and	other	marketing	systems	and	integrates	the	insights	from	these	systems	into	Slack.

Figure	4-6.	Statsbot	pulling	information	from	third-party	integrated	systems

The	core	incentive	here	is	that	users	do	not	want	to	context-switch	between	apps	to	get	the	information
they	need	or	run	their	workflows.	They	want	to	converse	with	the	tools	and	services	they	use	for	work
inside	their	chat	apps.

Games	and	Entertainment	Bots
These	use	cases	are	exploring	ways	to	entertain	and	delight	the	user.	Entertainment	is	a	big	part	of	our
lives,	and	bots	can	be	a	part	of	that	—	from	full-featured	games	on	Kik	to	Alexa	telling	my	kids	fun	facts
and	knock-knock	jokes.
These	bots	are	taking	a	different	path	from	our	traditional	concepts	of	entertainment:	neither	very	passive,
like	a	TV,	nor	very	rich	and	engaging,	like	a	game	console.	The	bots	are	trying	to	turn	a	conversation	into
a	fun	activity	—	go	figure!	Who	would	have	thought	conversation	could	be	fun?

Fun	fact:	Early	experiments	done	with	kids’	movies	showed	that	users	were	able	to	have	long
conversations	with	bots	about	their	favorite	characters	and	movies	—	sometimes	even	longer	than	the
movies	themselves.

An	example	of	a	social	entertainment	bot	is	the	Swelly	bot	(Figure	4-7).	Swelly	lets	you	pick	between
two	options	and	shares	the	voting	results	of	all	users.	It	is	a	delightful	experience	to	casually	vote	on
foods,	fashion,	vacation	spots,	and	more.

Figure	4-7.	The	Facebook	Messenger	Swelly	bot	asks,	do	you	like	pizza	or	lasagna?

Swelly	also	has	a	(non-bot)	mobile	app	for	both	Android	and	iOS,	but	the	team	reports	strong	engagement
on	the	bot	user	interface.	Bots	can	reengage	with	users	in	an	easy	way	and	drive	them	back	to	the
conversation	or	game.	One	of	the	core	incentives	here	is	that	bots	can	reengage	with	the	users	and
encourage	them	back	to	the	service	in	a	less	intrusive	and	more	customizable	and	friendly	way	than	app
notifications,	for	example.

Brand	Bots
In	this	set	of	use	cases,	bots	try	to	use	the	chat	medium	to	create	brand	awareness	and	engagement.	As
bots	become	more	popular	and	gaining	traction	with	apps	becomes	more	and	more	expensive	and
difficult,	marketing	managers	are	seeking	ways	to	build	bots	for	their	brands.
There	are	some	interesting	use	cases	around	notifications	of	new	products	or	discounts	by	top	brands,	and
a	lot	of	other	experiments.	Bot	builders	are	still	trying	to	figure	out	what	a	valuable	and	engaging	brand
bot	looks	like	over	this	new	conversation	interface.
Remember	that	bots	are	only	as	good	as	the	services	they	expose,	and	bots	for	brands	are	no	different.
The	Whole	Foods	Market	bot	in	Figure	4-8	is	a	good	example	of	a	bot	that	not	only	provides	access	to	the
brand,	but	also	adds	value	for	the	user.

KEY	TAKEAWAY

Remember	that	bots	are	only	as	good	as	the	services	they	expose,	and	bots	for	brands	are	no	different.

The	core	incentive	here	is	app	fatigue	—	users	are	tired	of	installing	specific	brand	apps.	Bots	provide
brands	a	new	and	fresh	way	to	engage	with	their	users	in	a	useful	way.

Figure	4-8.	The	Whole	Foods	brand	engages	with	users	with	a	bot	that	lets	them	search	for	recipes,	as	well	as	find	stores	and
contact	the	company	over	the	Facebook	Messenger	platform

Closing	Thoughts
As	the	market	matures,	we	will	see	more	and	more	use	cases	emerge.	I	talked	to	one	of	the	CEOs	of	a
leading	mobile	platform,	and	he	said	that	no	one	could	have	guessed	that	asking	strangers	to	come	pick
you	up	from	your	home,	with	their	private	cars,	would	become	one	of	the	most	profitable	use	cases	of	the
mobile	world.	We	still	do	not	know	which	bot	will	make	it	big,	but	history	has	taught	us	that	a	few	will
change	our	world.
In	the	next	chapters,	we	will	dive	into	the	anatomy	of	the	bot,	exploring	different	elements	that	compose	a
bot	and	how	they	manifest	themselves	in	different	platforms.	We	will	take	concrete	examples	and	learn
from	their	builders	what	worked	and	what	didn’t.

Chapter	5.	Bot	Anatomy
I	am	putting	myself	to	the	fullest	possible	use,	which	is	all	I	think	that	any	conscious	entity	can	ever	hope	to	do.

—	HAL,	2001:	A	SPACE	ODYSSEY

BOTS	ARE	SOFTWARE-POWERED	USERS	that	live	inside	our	chat	apps	—	we	converse	and	interact	with	bots
using	text,	buttons,	voice,	and	other	rich	controls.	When	it	comes	to	bots,	software	meets	humans	on	our
playing	field;	they	adhere	to	the	way	humans	communicate	and	try	to	adjust	to	our	way	of	thinking.	The
key	is	not	to	teach	the	user	how	to	fill	in	a	form,	or	to	take	them	to	the	right	page,	but	rather	to	recognize
the	user’s	intent	(what	does	the	user	wish	to	do?)	and	to	guide	them	in	accomplishing	that	intent.
To	quote	my	designer	friend	Dana	Cohen	Baron,	“At	last!	Machines	speaking	like	humans,	instead	of
humans	having	to	adjust	to	the	machine’s	way	of	communicating.”
The	conversational	interface	is	sometimes	referred	to	as	a	transparent	user	experience	because	it	is	a
service	exposed	through	simple	text,	and	that	is	true	in	some	circumstances.	But	in	this	chapter	you	will
learn	that	there	are	a	lot	of	components	that	compose	a	bot,	as	well	as	many	things	to	consider	when
designing	one.

KEY	TAKEAWAY

When	it	comes	to	bots,	software	meets	humans	on	our	playing	field;	they	adhere	to	the	way	humans	communicate	and	try	to	adjust	to	our
way	of	thinking.

Breaking	Down	Bots
As	mentioned,	like	with	most	technologies	and	user	interfaces,	there	are	several	components	we	will	need
to	design,	aspects	we	will	need	to	consider,	and	decisions	we	will	need	to	make	as	part	of	building	our
bots.
We	will	cover	each	of	these	aspects	in	depth	in	this	section	of	the	book,	but	first	we’ll	start	with	a	high-
level	view	of	bot	anatomy	(Figure	5-1).

Figure	5-1.	Bot	anatomy	at	10,000	feet

The	following	attributes	will	explore	different	aspects	of	the	bot’s	anatomy:
1.	 Branding,	personality,	and	human	involvement.	Features	include:

a.	 Personality	—	.	Before	starting	to	script,	you	need	to	decide	what	type	of	personality	you
want	to	bestow	on	your	bot.	This	should	be	suited	to	the	type	of	audience	you	want	to	address,
the	type	of	task	you	need	to	complete	(getting	things	done	versus	having	fun,	for	example),	and
the	brand	you	want	to	associate	this	bot	with.

b.	 Logos	and	icons	—	.	As	bots	are	a	transparent(ish)	UI,	having	a	logo	and	an	icon	allows	the
user	to	identify	the	bot,	which	contributes	to	brand	recognition.	The	bot’s	logo	can	also	imply
gender,	age,	and	other	human-like	attributes.

c.	 Naming	—	.	The	name	can	be	as	easy	as	a	simple	association	with	your	brand.	In	other	cases,
naming	a	bot	with	a	human	name	can	create	a	stronger	emotional	connection.	Naming	can	also
have	the	same	complexity	and	implications	as	logos	when	it	comes	to	gender,	age,	and	other
attributes.

d.	 Human	intervention	—	.	Routing	a	conversation	to	a	human	is	quite	easy,	and	can	be
transparent	to	the	user	in	chat	conversations.	In	some	cases,	having	a	human	review	bot
answers,	suggest	course	corrections,	and	handle	errors	might	be	a	good	initial	strategy	to
manage	the	conversations,	at	least	until	your	bot	can	manage	these	tasks	without	any	human
intervention.

Artificial	intelligence	(AI).	Depending	on	the	use	case	and	type	of	conversation,	artificial	intelligence
can	be	key	to	the	success	of	your	service	by	facilitating	natural	language	understanding,	conversation

optimization,	and	many	other	aspects	of	your	bot	interactions.	Elements	to	consider	include:
1.	 Natural	language	understanding	—	.	Understanding	intents	and	extracting	key	variables	(entities)

from	a	user’s	inputs.
2.	 Conversation	management	—	.	Managing	complex,	multi-intent	conversations.
3.	 Image	recognition	—	.	The	ability	to	recognize	text,	objects,	and	even	people’s	emotions	in

photos.
4.	 Prediction	—	.	The	ability	to	predict	the	right	answer	to	a	question,	or	an	action	to	take	at	a

particular	time	in	the	conversation.
5.	 Sentiment	analysis	—	.	The	ability	to	understand	the	sentiment	of	the	conversation.
The	conversation.	There	are	different	aspects	of	the	conversation	to	consider:
1.	 Onboarding	—	.	A	crucial	part	of	the	bot’s	success.	Here	you	relay	information	to	the	users	about

the	bot’s	purpose,	ways	to	interact	with	the	bot,	what	functionality	is	provided	by	the	bot,	and	how
to	get	help.

2.	 Functionality	scripting	—	.	This	is	the	meat	of	things.	Here	you	script	the	flows	(sometimes	called
stories)	for	each	function,	including	happy	paths	and	mitigations	for	failure.	This	is	where	you	dive
into	the	different	types	of	conversations	and	talk	about	design	best	practices.

3.	 Feedback	and	error	handling	—	.	This	is	an	important	part	of	the	script	that	is	sometimes
overlooked.	Feedback	is	one	of	the	keys	to	making	your	bot	better,	and	appropriate	handling	of
failures	is	key	to	a	good	user	experience	as	well	as	a	way	to	improve	your	bot	as	time	passes.

4.	 Help	and	support	—	.	At	any	time	during	the	conversation,	the	user	might	get	lost	or	thrown	out	of
the	happy	path	or	flow	(the	main	expected	flow).	Providing	support	and	help	can	ensure	a	smoother
usage	of	your	bot.

Rich	interactions.	The	bot	may	need	to	support	any	of	the	following:
1.	 Files	—	.	Both	bots	and	users	can	upload	files	to	the	conversation,	in	most	messaging	platforms.

Examples	might	be	work	documents	or	shopping	lists.
2.	 Audio	and	video	—	.	Rich	media	can	be	the	core	functionality	of	some	bots,	and	can	enrich

conversations	in	other	use	cases.
3.	 Images,	maps,	and	charts	—	.	As	conversations	are	not	super-rich	environments,	images	can

enrich	the	experience	and	entice	the	user	to	take	action,	as	well	as	provide	a	lot	of	information	that
it	would	be	very	hard	to	relay	with	text.

4.	 Buttons	—	.	These	controls	take	the	form	of	canned	responses	in	some	platforms	and	full	controls
in	others.	In	any	case,	buttons	can	help	users	complete	tasks	faster	by	circumventing	lengthy
conversations.

5.	 Templates	—	.	Some	platforms	provide	a	set	of	more	complex	and	rich	templates,	such	as	message
attachments	and	carousels.	These	templates	help	with	standardization	of	common	elements	and	make
the	user	experience	more	predictable.

6.	 Links	and	formatting	—	.	On	the	same	note	of	making	the	conversation	more	engaging,	formatting
and	adding	links	can	improve	engagement	and	retention.	Formatting	a	message,	from	color	coding	to
font	styling,	can	relay	intent,	convey	state	and	progress,	and	direct	the	user	to	the	right	path.

7.	 Emojis	and	reactions	—	.	Emojis	are	a	great	way	for	the	bot	to	convey	information	about	states
such	as	task	completion	or	failure	and	to	relay	emotions.	In	some	platforms	the	bot	can	add	emoji
reactions,	send	emojis,	and	use	emojis	in	the	text.

8.	 Persistent	menus	—	.	As	the	user	may	get	lost	in	the	conversation,	cancel	a	conversation,	or
context-switch	to	another	task,	you	will	need	to	think	about	giving	your	users	a	solid	understanding
of	how	to	navigate	the	bot	conversation.

9.	 Typing	indications	—	.	This	feature	enables	the	bot	to	fake	typing	events,	giving	the	user	the
impression	that	the	bot	is	typing	a	response.	This	helps	give	the	user	a	sense	of	the	bot’s	presence.

10.	 Slash	commands	—	.	These	are	easy	shortcuts	to	invoke	actions	in	a	command	line–like	manner.
11.	 Webviews	—	.	This	feature	lets	the	bot	open	a	webview	(minimal	web	page)	that	can	capture

information	from	the	user	which	is	not	easily	conveyed	through	conversation,	such	as	structured	data
or	a	location	on	a	map.

Context	and	memory.	These	are	the	two	most	complicated	aspects	of	your	bot.	Humans	keep	track	of
state	and	context	while	making	conversation.	Bots	are	therefore	required	to	infer	contexts,	keep	the	state
of	a	conversation,	and	remember	key	details	of	previous	conversations.	This	is	what	differentiates	human
conversations	from	most	bot	conversations	these	days.
Discovery	and	installation.	You	need	to	think	about	the	bot	habitat,	the	listing	of	the	bot	in	a	directory,

and	ways	to	initiate	the	first	bot	interaction	with	links	and	bot	affiliation.
Engagement	methods.	These	include:
1.	 Notifications	—	.	Sending	the	user	new	content	is	a	good	way	to	reengage,	assuming	this	is

warranted,	valuable,	and	not	spammy.	In	studies	done	by	Facebook	the	major	drivers	for
engagement	with	bots	on	their	platform	stemmed	from	bot	notifications.

2.	 User-led	bot	invocation	—	.	Providing	the	users	with	a	way	to	wake	up	the	bot	and	initiate	a
conversation	or	a	task	is	important,	and	also	something	a	lot	of	bot	builders	forget	to	add	or	teach
the	user	about.

3.	 Subscription	—	.	Subscriptions	or	periodic	notifications	are	a	great	way	to	keep	your	bot	front	and
center	in	the	user’s	life.	Letting	the	users	define	their	interests	adds	a	layer	of	value	to	the	bot–
human	interaction	(for	example,	letting	the	user	select	interesting	topics,	to	filter	the	daily	news
update	from	a	news	bot).

Monetization.	There	are	various	ways	that	a	bot	can	make	money,	either	directly	or	indirectly.
This	is	not	an	exhaustive	list	—	these	are	the	most	common	elements,	but	some	bots	might	have	different
elements	in	their	composition.	Some	bots	will	require	interfacing	with	IoT	devices,	while	others	will
need	text-to-speech	and	speech-to-text	technologies.	Some	bots	can	handle	tasks	across	systems	and
communicate	through	different	channels,	requiring	a	slightly	different	interface	for	each	chat	platform.	As
a	bot	designer	you	should	make	sure	you	address	the	basic	attributes	outlined	here	and	then	think	of
exploring	additional	ones.
The	design	of	every	user	experience	stems	from	the	core	functionality	and	purpose	of	the	service	or
product	we	are	designing.	Uber	and	Lyft	are	optimized	for	taking	a	ride,	Google’s	front	page	is	optimized
for	search,	and	so	forth.	The	first	step	to	a	successful	bot	design	is	understanding	what	it	does.	Defining
the	core	purpose	and	functionality	of	the	bot	lies	at	the	heart	of	your	bot’s	anatomy.	Let’s	do	that	now.

Core	Purpose	and	Functionality
As	a	first	step	in	your	design	exploration,	you	will	need	to	define	your	bot’s	purpose	and	core
functionality.	Having	a	distinct	purpose	and	exposing	a	particular	core	functionality	is	important	for	every
service.	This	is	particularly	important	with	bots,	as	it	is	not	always	obvious	or	clear	to	the	user	what
functionality	your	bot	provides.	As	bot	are	more	limited	in	the	richness	of	their	interface	than	web	or
mobile	apps,	it	is	important	to	be	very	clear	about	what	functionality	the	bot	exposes	and	provide	ways	to
educate	the	users	on	how	to	invoke	that	functionality	as	part	of	the	conversation.

KEY	TAKEAWAY

As	a	first	step	your	design	exploration,	you	will	need	to	define	your	bot’s	purpose	and	core	functionality.

The	bot’s	conversational	user	interface	means	that	there	are	limited	ways	to	remind	the	users	of	the	things
the	bot	can	do.	There	are	ways	to	solve	this	—	for	example,	the	Google	Assistant	bot	(Figure	5-2)	tries	to
address	this	issue	by	offering	a	“What	can	you	do?”	button	consistently	throughout	the	conversation.

Figure	5-2.	The	“What	can	you	do?”	button	provides	the	user	with	a	way	to	go	back	to	the	top	menu

Clicking	on	that	button	always	returns	the	conversation	to	the	core	functionality	of	the	bot,	as	shown	in
Figure	5-3.

Figure	5-3.	The	top	of	the	conversation

Other	bots	surface	their	purpose	in	their	name.	Growbot’s	name	implies	growing	or	boosting	(morale,
appreciation,	and	personal	growth	at	work,	in	this	case);	Statsbot’s	name	implies	providing	analytical
services.	Many	bots	add	a	description	of	their	purpose	to	the	onboarding	script,	as	well	as	the	response	to
the	help	command.

Closing	Thoughts
Currently,	we	see	a	lot	of	bots	that	serve	no	real	purpose	and	provide	no	clear	value	or	set	of	tasks	they
can	achieve.	Many	times,	when	testing	bots	at	Slack,	we	go	back	to	the	developers	with	the	very	basic
question,	“What	is	your	bot	good	for?”
This	is	also	true	for	brand	bots.	Brands	need	to	recognize	that	in	order	to	provide	bots	that	will	promote
brand	recognition,	those	bots	need	to	bring	value	to	their	users,	like	we	saw	in	the	H&M	example	in
Chapter	2	(Figure	2-1).
Remember,	bots	are	as	good	as	the	services	they	expose.	Unclear	purpose	and	lack	of	usefulness	are	the
number	one	reasons	for	bot	abandonment	and	lack	of	use.
Now	that	you	are	armed	with	a	clear	understanding	of	your	bot’s	purpose,	it	is	time	to	go	deep	into	the
different	aspects	that	compose	a	bot.	In	the	following	chapters	we	will	take	a	deep	dive	into	each	attribute
listed	here,	exploring	examples	and	best	practices.

Chapter	6.	Branding,	Personality,	and	Human
Involvement

A	man’s	character	may	be	learned	from	the	adjectives	which	he	habitually	uses	in	conversation.
—	MARK	TWAIN

DESIGNING	A	BOT	INVOLVES	a	lot	of	thinking	about	meta	aspects	of	the	interface.	In	the	same	way	defining	a
color	schema	and	animations	(graphical	transformations	of	elements)	takes	time	in	mobile	app	design,
defining	the	branding	guidelines,	understanding	the	personality	we	want	to	expose,	sorting	out	the	naming
conventions	we	want	to	use,	and	outlining	the	human	processes	that	will	support	our	bots	takes	time
during	the	bot	design	process.
Many	aspects	of	a	bot’s	design	are	tied	to	the	way	we	want	users	to	perceive	our	service	or	product	—	in
essence,	we	need	to	figure	out	the	branding	of	our	bot.	Let’s	explore	that	now.

Branding
Brand	management	is	all	about	managing	how	your	clients	and	users	in	the	market	perceive	your	product
or	service.	Branding	makes	your	users	remember	and	love	your	product,	come	back	and	use	your	service.
Branding	makes	them	recognize	your	bot	amongst	a	sea	of	others,	and	even	helps	with	conversions	to
paying	users	(users	tend	to	buy	more	from	well-known	brands).
Branding	includes	the	names	and	language	you	use,	the	logos	and	colors,	how	you	provide	the	service,
and	in	many	cases	how	your	service	handles	situations	where	things	go	wrong.	Let’s	discuss	a	few
aspects	of	the	bot	that	impact	its	branding	and	the	service	it	exposes.

Visual	Branding
Whenever	you	go	into	an	Apple	Store,	you	appreciate	that	branding	is	impacted	by	the	way	the	product	is
represented	visually.	Clean	and	shiny	MacBooks	presented	on	clean	and	shiny	tables	by	a	clean	and	shiny
representative.	To	me	it	sends	a	very	clear	message	of	“You	have	entered	the	shrine	of	the	Big	Apple!”
The	branding	emphasizes	quality	and	high-end	products.
There	is	a	misconception	that	bots	do	not	have	visual	branding.	Yet	the	conversational	UX,	a
“transparent”	user	experience,	still	provides	a	good	amount	of	visual	aspects	that	impact	the	branding	of
your	bot	—	icons,	images,	colors,	and	more.	Let’s	use	a	commerce	bot	called	Kip	as	an	example,	and
explore	different	aspects	of	its	visual	branding.

KEY	TAKEAWAY

There	is	a	misconception	that	bots	do	not	have	visual	branding.	The	conversational	UX,	as	a	“transparent”	user	experience,	still	provides	a
good	amount	of	visual	aspects	that	impact	the	branding	of	your	bot.

Logo
Kip	has	a	very	distinct	logo	of	a	colorful,	friendly,	and	inquisitive	penguin.	It	feels	a	little	like	a	mascot	to
me	(Figure	6-1).

Figure	6-1.	The	Kip	logo

The	impression	it	creates	is	one	of	a	friendly	and	inviting	brand.	Here	are	some	additional	examples
(Figure	6-2)	of	the	mascot’s	usage	on	the	Kip	website	—	the	message	is	one	of	inquisitiveness	and
collaboration.

Figure	6-2.	The	logo	is	extended	into	other	images	on	the	Kip	website

When	it	comes	to	the	conversational	user	experience,	Kip’s	logo	appears	as	the	profile	logo	of	the	Kip
bot	(Figure	6-3).

Figure	6-3.	The	Kip	logo	in	the	conversational	interface

The	branding	is	consistent	across	the	bot	and	the	service	it	provides.	Users	feel	that	they	are	talking	to	this
friendly	penguin	and,	following	positive	interactions,	will	associate	a	strong	and	positive	brand
recognition	with	it.
Using	an	animal	logo	was	a	very	smart	design	choice	by	the	Kip	team.	This	design	choice	works	around
issues	like	gender,	race,	and	other	complex	branding	associations.	Remember	that	users	feel	like	they	are
“talking”	with	your	company	and	brand:	the	bot	is	a	representative	of	your	brand,	and	is	a	service
extension	provided	by	your	brand.	The	topic	of	navigating	ethical	issues	of	racial	and	gender	bias	for
service	providers	merits	a	book	on	its	own.
Kip	was	a	bot-first	company,	so	they	could	come	up	with	a	single	logo	that	worked	for	a	company	and	a
conversational	bot.	Some	companies,	however,	already	have	a	set	of	logos	they	own	and	want	to	use.	In
many	cases,	if	you	have	a	well-known	brand,	it	is	OK	to	use	your	company	logo	as	the	profile	photo	of
your	bot.	But	remember	that	you	might	have	multiple	bots	for	your	brand	in	the	future,	so	coming	up	with	a
logo	that	is	somewhat	differentiated	from	your	core	logo	might	be	wise.

Stickers
Kip	uses	colorful	stickers	to	indicate	intent,	state,	and	context	(Figure	6-4).

Figure	6-4.	Stickers	in	Kip	are	functional	and	reinforce	the	branding

In	addition	to	their	purely	functional	use,	Kip	maintains	a	consistent	visual	design	and	branding	with	its

stickers:
Keeping	the	penguin	logo	front	and	center
Denoting	information	with	words	but	also	with	a	visual	cue	—	for	example,	the	“Team	Café	Cart”
sticker	has	a	team	of	penguins	attached	to	it,	indicating	the	team	context
Using	friendly	and	soft	color	scheme	that	extends	the	friendly	brand

Figure	6-5	shows	an	example	of	a	sticker	used	in	a	conversation.

Figure	6-5.	A	sticker	in	a	Kip	conversation

As	you	can	see,	the	sticker	is	used	as	a	header	to	the	conversation,	setting	context	but	also	keeping	up	the
brand	recognition	throughout	the	conversation.

Images
Starting	from	the	onboarding,	Kip	keeps	consistent	touchpoints	using	its	brand.	Images	of	the	penguin	are
used	to	explain	what	the	bot	is	all	about	(Figure	6-6).

Figure	6-6.	The	penguin	appears	from	the	start,	in	the	onboarding

As	you	can	see,	the	image	of	the	shopping	penguin	emphasizes	the	text	that	describes	the	functionality	of
Kip	as	a	shopping	bot.	Notice	that	the	colors	of	the	fruits	are	somewhat	consistent	with	the	color	schema
of	the	stickers	we	just	discussed.	Using	images	with	a	similar	color	schema	and	themes	to	the	stickers
makes	the	design	feel	consistent	and	should	strengthen	the	brand	association.
The	Kip	team	were	very	intentional	with	their	visual	branding	throughout	their	bot,	from	onboarding	with
images,	to	stickers	that	reinforce	the	context	and	brand	recognition,	all	the	way	to	the	logo	and	color
schema.	They	knowingly	over-indexed	on	visual	cues	because	they	were	tackling	a	commerce	use	case,
where	brand	recognition	is	paramount.
Not	all	bots	need	to	be	as	thorough	as	Kip	when	it	comes	to	visual	design,	but	keeping	in	mind	all	the
touchpoints	your	brand	can	have	with	the	user,	while	keeping	a	consistent	brand	throughout,	is	an
important	best	practice.

Naming
Picking	the	right	name	for	your	bot	is	as	important	as	(if	not	more	important	than)	picking	a	name	for	a

mobile	app.	Because	there	are	fewer	discovery	mechanisms,	both	inline	in	the	chat	application	and	online
on	the	web,	giving	your	bot	a	memorable	name	contributes	a	lot	to	usage	and	discoverability.
There	are	a	few	considerations	you	can	take	into	account:

Functionality
Naming	your	bot	in	a	way	that	implies	its	functionality	(making	the	name	descriptive)	can	be	very
useful	and	help	make	it	memorable	—	Statsbot	is	a	bot	that	provides	you	with	analytics	and	statistics	in
a	conversation,	for	example.

Brand	name
If	you	have	a	strong	brand	name	and	a	single	bot	that	exposes	your	service,	you	might	name	your	bot
with	the	same	or	a	very	similar	name	—	for	example,	Lyft	calls	its	bot	“Lyft,”	keeping	the	brand	clear
and	clean.	Note	that	calling	the	bot	Lyft	creates	an	expectation	that	it	provides	the	same	functionality	the
ride-sharing	mobile	app	does.

Trademarks
Try	to	avoid	using	another	company’s	trademark.	The	mobile	app	market	has	proven	that	this	is	easiest
way	to	get	kicked	out	of	a	store.	Also	try	to	avoid	using	too	generic	a	name	that	might	conflict	with
another	bot’s	name.

The	name	of	the	bot	is	not	the	only	naming	consideration	in	designing	a	bot.	For	example,	bots	can	add
functionality	into	Slack	by	means	of	slash	commands.	You	can	think	of	adding	a	slash	command	as	like
adding	an	additional	command	to	a	command-line	interface,	or	adding	options	to	a	menu.
When	the	user	types	“/”	the	slash	commands	are	autocompleted	in	the	input	box,	as	seen	in	Figure	6-7.

Figure	6-7.	An	example	of	a	list	of	slash	commands	in	Slack

Bots	can	add	their	own	slash	commands	to	this	interface.	Picking	the	right	name	for	your	slash	command
contributes	to	its	usage.	Slash	commands	need	to	be	linked	to	your	bot	together	with	the	functionality	the
command	provides.	It	is	recommended	that	you	use	your	brand	name	as	the	name	of	the	slash	command
and	use	a	parameter	for	the	functionality.
Let’s	take	Lyft	as	an	example	(Figure	6-8	and	Figure	6-9).

Figure	6-8.	A	user	can	type	“/lyft	cost”	to	indicate	that	they	want	a	cost	estimate	for	a	ride

Figure	6-9.	A	user	can	type	“/lyft	ETA”	(Estimated	Time	of	Arrival)	to	get	the	estimated	time	it	will	take	for	a	ride	to	reach	the
specified	address

We	will	talk	more	about	slash	commands	in	Chapter	9,	but	for	now	bear	in	mind	that	thinking	about	the
naming	of	slash	commands	is	another	aspect	of	the	bot	branding	process.

Personality
Personality	is	one	of	the	key	attributes	that	can	differentiate	your	bot	from	other	bots	that	provide	a	similar
service.	Personality	is	like	the	color	scheme	of	an	app,	or	the	soundtrack	of	a	movie	—	something	that	can
provide	consistency	across	the	experience	and	indicate	to	the	users	what	type	of	bot	they	are	working
with.
We’ve	already	seen	some	examples	of	how	visual	branding	can	help	establish	personality,	in	the
discussion	of	Kip	in	the	previous	section.	In	this	section	we’ll	take	a	closer	look	at	the	factors	involved	in
deciding	on	an	appropriate	personality	for	your	bot,	and	explore	a	few	examples	of	different
personalities.
There	are	several	things	to	consider	when	designing	a	personality:

Environment
Consider	whether	the	target	environment	is	a	work	environment	or	a	consumer	environment,	and	what
social	attributes	are	acceptable	for	a	personality	in	this	environment.	For	example,	having	a	personality
that	is	very	humoristic	might	not	be	the	right	choice	for	a	legal	assistant	bot.

Audience
Consider	the	type	of	audience	who	will	be	the	primary	users	of	your	bot	(hint:	everyone	is	never	the
right	audience	type,	even	for	Google).	A	bot	that	talks	in	slang	might	not	be	the	right	fit	for	a	more
conservative	audience,	and	a	bot	that	uses	too	many	three-letter	acronyms	might	miss	the	mark	for
others,	IMO.

Jobs	to	be	done
The	task	the	user	is	intending	to	execute	implies	different	personality	characteristics,	even	for	what
initially	might	seem	like	similar	tasks.	Buying	a	guitar	might	require	a	totally	different	bot	personality
than	buying	health	care	insurance.

Runtime	variations
This	is	slightly	more	complex,	as	it	might	require	some	logic	associated	with	the	bot,	but	personality
might	be	context-driven.	It	is	OK	to	be	whimsical	when	sending	directions	to	a	party,	but	less	so	when
sending	directions	to	a	work	meeting	to	which	the	user	is	already	late.

Locally	relevant	social	acceptance
Some	cultures	are	different	than	others.	Referring	to	someone	as	“dear”	might	be	fine	in	one	place	in
the	world	while	being	culturally	unacceptable	in	another	place.

Existing	branding
Many	brands	feel	very	strongly	about	the	personality	their	brand	exposes.	Slack,	for	example,	wants	to
expose	an	empathetic,	friendly,	and	pleasant	personality.

Values
At	the	end	of	the	day,	the	bot’s	personality	is	an	extension	of	the	service	you	want	to	expose.	Think
about	the	core	values	of	the	service,	as	that	can	imply	a	certain	type	of	personality.

Let’s	take	a	look	at	two	examples	of	bot	personalities.

WordsBot
The	first	bot	we	will	explore	is	the	WordsBot,	which	I	created	in	2016.	Here	are	the	assumptions	that	led

to	the	personality	it	currently	has:
Name:	WordsBot
Environment:	Work
Audience:	Adults	aged	~20–60	using	the	bot	while	reading/writing	content	in	English	on	Slack
Task	at	hand:	Find	definitions	for	words	in	English
Runtime	variations:	None
Locally	relevant	social	acceptance:	Global	safe	for	work	bot
Service	branding:	The	brand	is	pleasant	and	productive
Values:	Focus	on	the	service,	be	as	transparent	as	possible
Personality:	Simple,	getting	things	done,	friendly	but	succinct,	minimalistic,	nonintrusive,	even	dry

Figure	6-10	shows	an	example	of	a	conversation	with	WordsBot.

Figure	6-10.	WordsBot	showing	its	not-so-shiny	personality

As	you	can	see,	I	adopted	a	very	simple	and	clean	personality	here;	I	did	not	want	the	personality	to
overshadow	the	service,	and	I	did	not	see	any	added	value	in	a	big	personality.	The	bot	is	friendly,
functional,	and	minimalistic,	letting	the	user	focus	on	the	task	at	hand.	This	is	a	very	common	approach	for
many	task-led	conversations,	where	achieving	the	task	is	the	focus	of	the	conversation,	rather	than	the
conversation	itself.

Poncho
Poncho	is	a	sassy	weather	bot	launched	as	part	of	the	Slack	platform	and	the	Facebook	Messenger

platform.	This	is	my	analysis	of	the	bot,	based	on	its	personality:
Name:	Poncho
Environment:	Consumer,	fun,	social
Audience:	Adults	aged	~20–40,	early	adopters
Task	at	hand:	Get	weather	forecast	and	notifications
Runtime	variations:	Errors	should	be	handled	with	humor
Locally	relevant	social	acceptance:	It	is	OK	to	ruffle	some	feathers
Service	branding:	Fun	and	humoristic
Values:	Get	the	weather	out	there	and	keep	it	light
Personality:	Fun,	humoristic,	mischievous,	comedic,	delightful	for	young	people

Figure	6-11	shows	an	example	of	a	conversation	with	Poncho.

Figure	6-11.	Poncho	showing	its	sassy	personality	on	Facebook

As	you	can	see,	this	is	a	much	more	casual	bot	personality	that	reflects	the	whimsical	nature	the	bot
builders	wanted	to	relay.
I	asked	Greg	Leuch,	head	of	product	at	Poncho,	about	the	bot’s	personality.	He	mentioned	that	personality
is	not	just	about	the	text	in	the	conversation:

We	want	users	to	consider	Poncho	as	their	friend	who	tells	them	the	weather	every	day.	Content	is	written	to	explain	the	weather	but
also	to	be	playful	and	fun.	We	also	spend	time	considering	pacing.	Like	comedy,	sometimes	you	need	to	use	timing	to	land	a	great	joke.
Typing	indicators	can	convey	to	the	user	that	there	is	more	coming.	Timing	can	help	ensure	the	user	has	adequate	time	to	read	a	message
before	sending	the	next	message.

Once	you	have	defined	a	personality,	it	is	important	to	keep	it	consistent	across	the	experience.	This	gives
the	users	the	feeling	that	they	are	dealing	with	a	cohesive	service	(or	a	persona),	which	in	turn	improves
trust	and	engagement.

KEY	TAKEAWAY

Once	you	have	defined	a	personality,	it	is	important	to	keep	it	consistent	across	the	experience.

Some	companies	take	fun	very	seriously	and	hire	comedy	scriptwriters	to	spice	up	their	bot	scripts.	Other
bot	builders	focus	on	empathy	and	go	into	personal	questions.	Many	developers	like	to	keep	a	clean	and
minimalistic	personality	that	focuses	on	task	completion	while	adding	little	hints	to	the	brand	here	and
there.
Keeping	the	personality	consistent	across	chat	platforms	is	important	in	cases	where	users	might	use	the
same	bot	on	different	platforms	concurrently.	Poncho	has	the	same	consistent	personality	in	Facebook
(Figure	6-11)	as	it	has	in	Slack	(Figure	6-12).

Figure	6-12.	Poncho	showing	its	sassy	personality	on	Slack

Greg	also	shared	a	few	insights	about	consistency	in	the	bot:

Having	a	consistently	designed	voice	and	personality	has	been	extremely	successful	for	Poncho,	and	is	an	important	design	consideration
for	any	chatbot	maker.	Take	for	example	a	conversation	you’re	having	with	your	friend.	If	your	friend	acts	peculiar	or	says	things
uncharacteristic	of	them,	you	know	something	is	off.	Like	your	friend,	your	bot’s	voice	and	character	parameters	should	be	understood
and	clearly	defined.	These	characteristics	should	not	run	counter	to	your	existing	brand’s	image.	Voice	and	character	become	extensions
of	your	brand.	They	should	not	respond	or	handle	things	that	would	be	counter	to	the	expected	characters.	And	like	any	company’s
branding	guidelines,	the	character	expectations	should	be	clearly	communicated	to	everyone	on	your	team.
Visual	designers	spend	time	on	aesthetics,	and	like	them,	conversation	designers	spend	a	lot	of	time	writing	content	and	functionality	that
fits	the	scope	and	audience	of	your	bot.	Knowing	how	to	deal	with	user	expectations,	messaging	with	them	in	a	manner	they	are
comfortable	with,	and	being	informative	when	you	can’t	process	a	request	can	make	a	big	difference	for	the	end	user’s	experience.

Expressing	Your	Personality
Be	careful	not	to	overshadow	the	service	you	are	providing.	Just	like	color	scheme,	personality	needs	to
be	in	the	service	of	achieving	a	task	in	a	delightful	way,	rather	than	shining	on	its	own.	Some	bot	builders
focus	solely	on	the	personality,	rather	than	on	the	service,	and	that	is	like	painting	a	crappy	car	with	shiny
colors	—	it	might	work	for	the	first	impression,	but	not	for	much	longer	than	that.	A	great	personality	is
one	that	makes	your	great	service	shine	and	keeps	the	experience	delightful	and	memorable.
Personality	can	be	surfaced	in	a	few	ways.	Most	commonly,	personality	is	exposed	in	the	script	itself,	for
example	by	adding	humor	or	just	picking	a	set	of	words	that	imply	a	certain	personality.
Think	of	the	words	that	can	express	affirmation.	You	can	imply	a	lot	about	the	personality	of	your	bot
simply	through	the	words	you	choose.	For	example:
Youth,	casual:	Rad,	Amazing	Dude!,	Way	to	go!,	Boom!
Adult,	business:	Correct,	Affirmative,	Great.

You	can	easily	distinguish	between	the	different	personalities	here	based	on	these	simple	sets	of	words.
Applying	a	personality	can	also	mean	the	use	of	certain	emojis,	GIFs,	and	memes,	all	based	on	the	culture
of	the	audience	and	the	service.
Deciding	to	give	your	bot	a	personality	is	not	a	trivial	task,	as	Dennis	Mortensen,	the	CEO	and	founder	of
x.ai,	told	me:

x.ai	makes	an	AI	personal	assistant,	a	bot	called	Amy,	who	schedules	meetings	for	you.	Amy	is	an	AI	autonomous	agent	who	exists	only
in	dialog	with	our	customers	and	their	guests.	She’s	pure	text.	We’ve	always	believed	in	the	idea	of	humanizing	Amy	(and	her	brother
Andrew)	and	have	strategically	executed	against	that	from	day	one.	So,	we	created	an	entirely	new	role,	AI	Interaction	Designer,	to
develop	Amy’s	voice	and	to	model	the	interaction	scenarios	in	order	to	ensure	that	Amy	delivered	the	appropriate	response	in	any	given
scheduling	conversation.	This	role	requires	a	sophisticated	sense	of	psychology	and	language	as	well	as	programming	skills	since	Amy
and	Andrew’s	responses	are	compiled	dynamically	by	the	machine	based	on	a	plethora	of	intents	and	variables.
Once	we	decided	to	humanize	Amy,	it	took	us	down	a	very	specific	(and	fortuitous)	path.	For	one,	we	gave	our	agent	a	proper	full	name
(Amy	Ingram,	and	Andrew	Ingram).	And	when	scripting	her	end	of	the	dialog,	we	built	in	things	like	empathy.	For	example,	if	you	have
to	reschedule	a	meeting	once,	that’s	no	big	deal.	But	if	you	are	on	the	third	reschedule,	Amy	needs	to	signal	that	she	realizes	that	this	is
not	an	ideal	situation,	just	as	a	human	assistant	would.	The	biggest	surprise	is	how	well	it	worked.	People	mistake	Amy	and	Andrew	for
human	assistants	all	the	time.	They’re	invited	to	join	calls	and	meetings	and	occasionally	even	asked	out	on	dates.

Dennis	also	mentioned	that	building	a	persona	is	partly	a	matter	of	learning	how	the	human	counterpart	of
the	bot	—	in	their	case	a	workplace	personal	assistant	—	acts	in	certain	circumstances:

Our	initial	reminder	logic	—	those	emails	Amy	would	send	to	guests	who	hadn’t	yet	responded	to	her	—	was	honest	and	fair,	but	could
end	up	a	tad	too	aggressive	in	certain	scenarios.	The	goal	is	not	to	remind	people	twice	(should	they	not	have	gotten	back	to	Amy);	the
goal	is	to	set	up	the	meeting	100%	of	the	time.	Knowing	that,	we’ve	learned	that	many	of	the	traditionally	accepted	social	interactions
that	humans	abide	by	must	be	catered	to	in	an	Intelligent	Agent	world	as	well.	For	example,	make	sure	you	don’t	email	again	before	it	is
realistic	that	a	guest	has	seen	the	first	email,	however	soon	the	meeting	might	be	scheduled	for.	Don’t	send	two	emails	while	people	are
likely	to	be	sleeping,	even	if	the	host	asked	for	an	early	morning	meeting.	Allow	for	reasonable	lead	time.	So,	don’t	send	me	an	invite	for
a	meeting	at	1:30,	at	1:03,	which	is	likely	not	enough	time	for	people	to	check	their	inboxes	and	get	to	the	meeting.

So	what	does	Dennis	recommend	to	new	bot	builders?
If	I	were	to	make	a	recommendation	to	any	aspiring	bot	entrepreneur,	it	would	be	to	invest	equally	in	the	natural	language	generation	part
of	the	challenge,	rather	than	put	all	of	your	resources	in	the	natural	language	understanding	end	of	the	equation.

Dennis	has	a	great	point	—	a	lot	of	developers	focus	on	understanding	the	user’s	free	text	and
deemphasize	the	design	of	the	bot	output	part	of	the	conversation,	thus	creating	a	bot	that	might	be	smart,
but	feels	awkward	and	unpleasant	to	converse	with.	Focusing	on	designing	how	your	bot	converses	with
its	users,	adding	empathy,	and	making	it	more	friendly	and	approachable	is	a	great	best	practice.	(We	will
cover	conversation	generation	in	Chapter	16.)

Human	Intervention
We	cannot	talk	about	a	bot’s	brand	and	personality	without	exploring	how	humans	help	bots.	Bots	get	their
personality	from	human	designers	and	copywriters,	bots	can	fail	over	to	humans	when	they	cannot	handle
a	conversation	independently,	and	bots	might	require	human	supervision	to	make	sure	they	keep	providing
the	service	that	the	brand	offers.	In	some	cases,	humans	and	bot	personalities	work	together	to	provide	a
great	service.	Let’s	explore	that	now.
Having	humans	in	the	loop	is	another	meta	aspect	of	a	bot	—	bots	can	help	us	expose	software	services,
and	in	many	cases	can	automate	mundane	and	repeatable	transactions.	While	bots	can	address	some	use
cases	very	efficiently,	having	a	human	in	the	loop	might	save	the	bot	from	many	embarrassing	and
frustrating	situations.	In	this	section	we’ll	take	a	look	at	some	use	cases	where	having	a	human	in	the	loop
makes	sense.

KEY	TAKEAWAY

While	bots	can	address	some	use	cases	very	efficiently,	having	a	human	in	the	loop	might	save	the	bot	from	many	embarrassing	and
frustrating	situations.

Humans	Resolving	Ambiguity	and	Providing	Response	Supervision
In	some	cases	the	bot	can	provide	a	response	to	a	user,	but	that	response	requires	human	supervision	or
approval.	An	example	would	be	a	bot	that	provides	the	user	with	a	legally	binding	offer	or	statement,	or
when	the	bot	is	not	sure	which	of	two	responses	is	more	appropriate.
Here	is	one	scenario:	a	human	is	talking	with	a	sales	bot	about	buying	a	car,	and	after	a	great	conversation
it	is	time	for	the	bot	to	close	the	lead	and	offer	a	financing	service	to	the	user.	A	human	sales	rep	is
mandated	by	company	process	to	manually	go	over	the	offer	details	and	approve	the	loan.
Another	scenario	is	an	IT	support	bot	that	gets	a	question	with	two	possible	answers.	The	bot	then	defers
to	a	human	IT	professional	(providing	them	with	the	two	potential	answers,	preferably	with	a
recommendation)	and	lets	the	IT	professional	pick	the	right	answer	out	of	the	two.
Note	that	human	supervision	has	a	cost	associated	with	it.	Human	responses	are	not	instantaneous	and
will	make	your	bot	a	little	slower.	Consider	this	support	email	I	got	from	the	team	at	x.ai	when	I	asked
why	their	bot,	Amy	Ingram,	took	time	to	answer	my	emails:

We’re	moving	towards	a	setting	where	Amy	is	near	instant,	but	even	in	her	current	incarnation	she	tends	to	beat	most	human	assistants
both	in	response	time	(her	average	time	is	about	10	minutes)	and	working	days	(she	works	24/7.	No	days	off.	No	sleep).	All	this	said,
things	can	get	queued	up	for	multiple	reasons,	mostly	due	to	verification	needed	or	potential	response	ambiguity	(for	her).
We	operate	in	a	supervised	learning	environment	where	we	go	for	accuracy	over	speed,	to	ensure	high	quality	in	our	training	data	(and
product).	So	a	sentence	or	simple	time	expression	might	be	pulled	aside	and	that	delays	things	a	bit.	All	while	building	this	verticalized	AI.

In	Amy’s	use	case	human	supervision	makes	a	lot	of	sense.	If	the	response	from	Amy	takes	10	more
minutes,	but	is	10	times	more	accurate,	then	that	is	a	price	any	business	user	would	be	willing	to	pay.

Humans	Enabling	Error/Failure	Escalation
A	typical	strategy	when	a	conversation	with	the	user	is	not	going	well	is	for	the	bot	to	escalate	the
conversation	to	a	human.	There	are	several	common	patterns	here:

The	bot	does	not	know	how	to	handle	the	user’s	intent	or	request.
The	bot	does	not	understand	the	user	input.
The	bot	recognizes	negative	sentiment	(for	example,	when	the	user	is	getting	frustrated).
The	bot	exposes	a	way	for	the	user	to	ask	for	human	assistance	and	that	functionality	is	invoked.

The	conversation	is	taking	too	long,	or	is	unproductive	or	circular	(also	known	as	the	user	getting	lost
in	the	conversation).

While	in	some	cases	bots	can	fail	with	grace	and	that	is	OK,	if	you	are	designing	for	a	mission-critical
use	case,	or	a	use	case	where	failure	has	a	very	negative	effect	that	needs	to	be	mitigated,	then	adding	a
human	in	the	loop	to	“make	things	right”	might	be	a	best	practice.

Humans	Training	Bots	Online
Another	common	pattern	is	where	humans	help	train	a	bot.	As	software	is	great	at	repeating	tasks	and	at
pattern	recognition,	having	humans	teach	bots	by	example	can	be	a	great	way	to	automate	processes	on	the
job.
Let’s	take	an	FAQ	bot,	for	instance.	The	bot	gets	a	question	and	returns	an	answer.	At	first	every	question
is	sent	to	a	human	for	an	answer,	and	the	bot	acts	as	a	simple	router.	As	time	passes	the	bot	learns	that
certain	questions	have	a	distinct,	repetitive	answer.	(What	is	the	meaning	of	life?	The	answer	is	always
42.)	The	bot	then	moves	to	a	supervision	mode,	where	it	offers	the	answering	human	a	suggested	answer.
Once	the	bot	becomes	confident	in	the	answer	(passing	a	certain	threshold	of	confidence	set	by	the
system),	it	can	answer	the	question	directly	without	human	supervision.	As	time	passes,	the	bot	becomes
more	and	more	proficient	and	requires	less	and	less	training	and	supervision.
This	might	be	a	much	more	effective	and	agile	way	of	designing	an	FAQ	bot	than	simply	giving	it	a	set	of
FAQs	and	letting	it	fail	on	every	question	that	is	not	in	the	list	(especially	if	you	have	to	anticipate	all	the
permutations	of	the	way	a	single	question	can	be	asked).
It’s	also	a	great	pattern	if	you	do	not	have	a	large	training	set	to	provide	the	bot	with	on	day	one.
Currently,	the	best	way	to	train	an	AI	is	by	giving	it	a	lot	of	examples.	This	human	training	by	example
pattern	provides	the	seed	data	that	the	bot	requires	to	start	being	productive.

Humans	Improving	the	Bot	Conversation
Humans	improving	the	bot’s	conversational	skills	is	the	most	common	human	training	use	case	you	will
find	these	days.	As	you	build	the	skills	of	your	bot,	you	will	be	reviewing	the	conversational	logs.	Live
logs	are	super	useful	to	get	an	understanding	of	what	works	and	what	does	not.
You	will	probably	be	amazed	by	the	conversations	users	have	with	your	bot.	I’ve	spoken	to	many	bot
builders	who	talked	about	discovering	new	use	cases	by	looking	for	users	asking	the	bot,	“Can	you	do
X?”	Other	bot	builders	report	a	lot	of	abuse	to	their	bots	and	build	abuse-handling	mechanisms	into	the
conversation.
One	interesting	real-life	story	regarding	reading	bot	logs	was	with	SmarterChild.	SmarterChild	was	one
of	the	earliest	bots,	which	ran	on	the	AOL	messaging	app.	The	bot	was	a	conversational	mate	for	a
teenage	audience.	Looking	at	the	logs,	the	team	discovered	that	some	kids	were	confessing	suicidal
thoughts	to	the	bot.	At	the	time	there	was	no	hotline	for	such	matters,	and	the	team	decided	to	direct	the
bot	to	not	respond	to	such	conversations.	Talking	with	them	now,	they	say	it	was	one	of	the	hardest	design
choices	they	had	to	make,	and	they	only	made	it	on	the	advice	of	their	legal	team.	Today	they	would	have
directed	these	teens	to	the	relevant	hotline	and	reported	the	conversations.
Reviewing	the	logs,	improving	your	bot’s	interaction,	and	optimizing	conversations	is	still	a	very	new
role,	but	it’s	one	that	is	critical	to	the	success	of	your	bot,	to	the	design	of	the	conversation,	and	to	the
satisfaction	of	your	users.

Bots	as	Facilitators	for	Human	Tasks
Some	workflows	and	some	tasks	are	better	suited	to	humans	(yay	for	us	humans!),	but	bots	can	still	play	a

facilitator	role	in	the	process.	An	example	of	that	is	Sensay	(Figure	6-13),	which	you	may	recall	from
Chapter	4.	The	Sensay	bot	captures	your	intent,	and	then	finds	a	human	that	can	address	that	intent	or
perform	the	desired	task.

Figure	6-13.	Sensay,	the	bot	that	connects	humans

As	you	can	see,	the	bot	does	not	claim	to	provide	the	human	service	itself	(also	called	human
impersonation),	but	rather	is	very	clear	that	it	will	route	the	user	to	a	human	who	can	help.
Another	interesting	use	case	is	a	bot	acting	as	an	intermediary.	In	this	case,	a	user	wants	to	access	a
service	provider	through	one	chat	platform,	while	the	service	provider	is	on	another	platform.	An
example	would	be	a	user	on	Facebook	Messenger	talking	to	a	support	agent	on	Slack.	The	bot	bridges
between	the	two	noninteroperable	systems	and	connects	the	consumer	with	the	service	provider.

Closing	Thoughts
As	we’ve	seen,	designing	a	consistent	personality,	giving	careful	consideration	to	branding	and	language,
and	mapping	out	the	possibilities	for	human	intervention	can	be	critical	to	the	success	of	a	bot.
Remember	that	there	are	some	downsides	to	having	a	human	in	the	loop.	Humans	might	make	the	cost	of
operating	your	bots	much	higher,	and	you	will	need	to	manage	user	expectations	around	how	fast	can	they
get	their	service.	Keeping	the	conversation	contained	and	controlled	might	also	be	harder	with	humans.
Make	sure	you	are	looping	humans	in	at	the	right	time	and	for	the	right	reasons.
Having	humans	in	the	loop	might	be	an	important	part	of	your	bot	design	—	it	helps	the	bot	tackle	hard
conversations	and	become	more	useful	as	time	passes	with	training,	and	it	improves	user	satisfaction	and
extends	the	use	cases	for	bots.
In	the	next	chapter,	we’ll	take	a	brief	detour	into	the	realm	of	artificial	intelligence	to	see	what	it	has	to
offer	to	us	as	bot	designers.

Chapter	7.	Artificial	Intelligence
Intelligence	is	the	ability	to	adapt	to	change.

—	STEPHEN	HAWKING

THERE	HAVE	BEEN	MANY	books	written	on	artificial	intelligence	(AI)	—	this	is	not	one	of	them.	You	can
skip	this	chapter	and	still	design	and	create	bots.	Since	AI	is	the	technology	that	underpins	bots	in	several
use	cases,	however,	we	will	provide	an	overview	of	common	AI	services	and	how	they	can	help	you
build	and	design	a	bot.
Artificial	intelligence	is	commonly	mistaken	as	the	essence	of	bots.	Some	people	confuse	and	interchange
bots	with	AI.	Let’s	correct	this	misconception	and	talk	about	what	AI	is	and	how	it	can	be	integrated	into
a	bot	to	make	it	awesome.
According	to	Wikipedia	(https://en.wikipedia.org/wiki/Artificial_intelligence,	as	of	December	2016):

Artificial	intelligence	(AI)	is	intelligence	exhibited	by	machines.	In	computer	science,	an	ideal	“intelligent”	machine	is	a	flexible	rational
agent	that	perceives	its	environment	and	takes	actions	that	maximize	its	chance	of	success	at	some	goal.

Sounds	a	lot	like	the	way	we’ve	described	a	bot,	right?	Wouldn’t	it	be	great	if	the	service	we	were
building	could	be	automagically	converted	into	this	intelligent	agent	that	converses	with	us	like	a	smart
little	friend	and	makes	our	lives	so	much	better?
The	secret	to	understanding	why	this	is	not	the	case	is	in	the	key	word	of	this	definition:	“ideal.”
Currently,	we	are	very	far	away	from	this	ideal,	and	while	AI	has	several	useful	applications,	it	is	far
from	the	intelligent	agent	of	our	ideal	world.
AI	today	is	not	a	single	thing,	but	a	set	of	tools	that	designers	and	bot	developers	can	use	to	build
conversational	bots.	AI	can	help	with	a	lot	of	the	complexities	that	come	with	this	new	interface,	but	it
also	adds	complexity	and	a	somewhat	steep	learning	curve	if	you	truly	want	to	understand	these	tools.

KEY	TAKEAWAY

AI	today	is	not	a	single	thing,	but	a	set	of	tools	that	designers	and	bot	developers	can	choose	to	use	in	order	to	build	a	conversational	bot.

Let’s	explore	a	few	things	AI	can	do	for	our	bots	today.

https://en.wikipedia.org/wiki/Artificial_intelligence

Natural	Language	Understanding
Natural	language	understanding	(NLU)	lets	your	bot	derive	an	intent	(the	need,	the	intention)	from	the
user’s	natural	language.	This	process	usually	involves	machine	learning	with	a	big	dataset	of	prior
conversations	(called	the	training	set,	and	sometimes	provided	with	the	AI	tool)	together	with	specific
training	and	configuration	that	the	bot	builder	provides.	In	many	cases,	NLU	is	the	technology	that
underpins	your	bot’s	conversations.
Most	NLU	frameworks	will	help	you	map	(or	translate)	between	user	inputs	such	as	“I	want	to	buy	a
movie	ticket,”	“I	wanna	get	a	movie	ticket,”	or	“Let’s	purchase	a	ticket	to	the	movies”	and	the	intent	to
buy	a	ticket,	for	example.
These	frameworks	can	also	extract	entities	(conversational	context	variables)	out	of	the	user	input,	such
as	extracting	the	name	of	the	theater	out	of	“I	wanna	go	to	Cinemax	16,”	“preferably	Cinemax	16,”	or
“Cinemax	16	is	my	preferred	theater.”	If	an	entity	is	missing,	the	framework	can	also	prompt	the	user	to
supply	it	—	for	example,	it	can	say	“Which	theater	do	you	want	to	go	to?”	and	capture	the	response	to	fill
in	that	entity.	NLU	can	also	extract	context	variables	and	tell	you	what	“it”	means	following	a	user	input
saying,	“It	has	to	be	Star	Wars.”
Figure	7-1	shows	an	example	of	how	Facebook’s	Wit.ai	helps	you	extract	entities	from	the	user’s	input.

Figure	7-1.	Wit.ai	converting	free	text	to	entities

There	are	many	conversational	services	that	are	enabled	by	artificial	intelligence,	such	as	extraction	of	a
date	or	time,	or	extraction	of	a	location	or	address.	These	are	specific	use	cases	that	are	extremely	hard	to
get	right	by	pure	coding.
This	complex	process	does	not	happen	by	itself,	and	there	are	a	lot	of	tools	and	services	that	can	help	you
with	natural	language	understanding.	While	this	book	doesn’t	cover	AI	in	depth,	we	will	show	examples
of	how	AI	can	extract	context	variables	and	entities	in	Chapter	10.

Conversation	Management
Extracting	entities	and	intent	is	an	important	but	basic	aspect	of	conversation	management.	There	is	also
another	layer,	which	involves	managing	a	multistep	flow	within	a	conversation.
Here	is	how	Andy	Mauro,	the	founder	of	Automat.ai,	a	company	that	provides	conversational	language
understanding	technology	to	companies,	states	it:

The	part	of	your	program	that	receives	extracted	intents	and	entities	has	to	decide	what	to	do	with	them,	and	in	most	cases	this	means
asking	the	next	question,	providing	the	next	response	or	error	message,	etc.	In	Alexa	or	other	systems	that	are	mostly	“one	shot”	you
don’t	really	worry	about	multi-turn	dialog,	yet	messaging-based	bots	are	almost	ALWAYS	based	on	multi-turn	dialog,	hence	this	discipline
becoming	more	important.

Conversation	management	is	a	high	level	of	artificial	intelligence,	in	which	the	AI	understands	the	context
of	the	conversation	and	knows	how	to	navigate	between	contexts	and	subconversations	(these	flows	are
sometimes	referred	to	as	stories	in	AI	solutions	like	Wit.ai).	Humans	can	easily	handle	conversational
switching,	but	for	machines	that	is	still	a	hard	thing	to	do.
The	SmarterChild	bot,	one	of	the	oldest	bots	from	the	time	of	AOL	Instant	Messenger,	had	a	unique	ability
to	pull	a	user	back	to	a	previous	part	of	the	conversation	with	sentences	like	“Let’s	get	back	to	X”	or
“Remember	we	talked	about	Y?	Let’s	get	back	to	that.”	While	SmarterChild	did	not	use	AI	for	this	trick,
conversation	management	tools	might	be	able	to	make	this	transition	much	easier	by	finding	topics	that	are
related	with	high	confidence.
Intent	extraction	is	hard	in	a	complex	conversation	too.	Humans	switch	from	one	topic	in	a	conversation
to	another	with	ease.	They	can	talk	about	a	trip,	take	a	deep	dive	to	discuss	a	restaurant,	and	go	back	to
talking	about	the	airline	service	on	the	way	to	their	destination	by	just	saying	“Anyway,	the	flight	there
was	so	wonderful!”	Without	artificial	intelligence	helping	you	extract	the	right	context,	it	is	extremely
hard	to	manage	complex	conversations	in	a	bot.	In	reality,	human	conversation	rarely	has	a	single	intent
—	one	of	the	things	humans	are	good	at	is	having	conversations	where	the	goal	shifts	and	is	discovered
over	time.	The	fact	that	we	talk	in	terms	of	intents	and	entities	actually	shows	how	far	we	have	to	go.
Conversations	are	also	hard	to	manage	because	we	may	need	to	infer	different	states	of	conversational
entities	(context	variables)	depending	on	the	context.	The	entity	“credit	card”	can	mean	my	personal
credit	card	in	one	conversation	topic,	but	my	corporate	credit	card	in	another	conversation	topic.
Conversation	management	should	not	only	help	with	navigation	between	one	conversation	and	the	other
(whether	it	is	a	bot-initiated	switch	or	the	user	initiated	the	topic	switch),	but	also	keeping	the	right
context	for	the	entities	for	a	specific	conversation.
Conversation	management	technologies	are	in	their	infancy,	and	there	is	a	lot	of	progress	to	be	made	in
this	area.	We	will	talk	about	the	stories	and	other	tools	that	can	help	us	navigate	a	conversation	in	Chapter
16.

Image	Recognition/Computer	Vision
Image	recognition	has	made	a	leap	of	progress	in	the	past	few	years	due	to	breakthroughs	in	machine
learning.	Bots	can	now,	using	an	image	processing	service,	recognize	images,	spot	emotions	in	photos,
and	extract	text	from	images.
This	is	especially	important	in	use	cases	where	the	user	uploads	an	image	to	the	conversation	interface
and	the	bot	is	required	to	act	on	the	image.	Most	image	recognition	services	already	come	trained	with	a
lot	of	common	objects,	so	no	prior	training	is	required	by	the	bot	builder.	You	upload	the	image	to	the
service	and	get	back	a	set	of	objects	it	recognized,	together	with	a	prediction	of	the	accuracy.
A	good	example	of	this	is	the	Google	Assistant	bot	in	the	Allo	messaging	app	(Figure	7-2).

Figure	7-2.	I	uploaded	a	photo	of	the	amazing	cupcakes	we	had	at	work,	and	Google	Assistant	recognized	the	objects	in	the
image	and	offered	me	conversational	topics	based	on	cupcakes

Google	actually	provides	these	artificial	intelligence	capabilities	to	developers	through	an	API	called	the
Vision	API.	Figure	7-3	shows	another	great	example.

Figure	7-3.	Google	provides	developers	with	an	image	recognition	API	that	can	be	very	useful	for	your	bot

Think	of	a	bot	that	might	say	something	like	“What’s	so	funny?”	—	wouldn’t	that	blow	the	user’s	mind?
Machine	learning	can	also	be	useful	for	optical	character	recognition	(OCR).	This	might	be	used,	for
example,	in	cases	where	a	user	uploads	a	receipt	or	a	bill	to	a	finance	bot	or	an	expense	bot.	Recognizing
handwriting	is	more	complex	and	usually	yields	poorer	results	than	with	printed	text,	but	there	is	progress
being	made,	and	with	enough	training	data	the	outcome	can	be	impressive.
Note	that	you	do	not	have	to	support	image	recognition,	and	if	the	user	uploads	an	image	in	an
unsupported	use	case,	the	bot	can	just	default	to	one	of	the	error	flows	we	will	discuss	later.

Prediction
AI	usually	does	a	good	job	of	finding	patterns	and	predicting	outcomes	based	on	past	data.	An	example	of
such	a	prediction	could	be	the	right	answer	to	a	support	ticket,	or	the	right	product	to	upsell	to	a	user,	or
the	level	of	confidence	that	a	user	will	finish	a	transaction.
Prediction	APIs	that	analyze	common	patterns	can	be	very	useful	to	bots.	You	can	train	these	APIs	to	pick
the	appropriate	responses	to	specific	types	of	questions	that	follow	these	patterns.	For	example,	you	can
instruct	the	API	that	when	users	ask	a	question	about	a	particular	subject	they	should	get	a	specific
answer,	and	then	teach	the	bot	to	pick	that	answer	for	future	questions	like	that	one.
Another	example	of	prediction	(coupled	with	search	indexing)	is	the	Retrieve	and	Rank	API	provided	by
IBM	Watson.	This	is	a	document	search	service	that	uses	regular	search	indexing,	like	any	search	service,
together	with	signals	from	an	AI	prediction	algorithm.
This	type	of	API	is	not	unique	to	bots,	but	using	a	prediction	API	(such	as	Google’s	Prediction	API)	can
help	you	optimize	the	conversations	and	convert	non-paying	users	to	paying	users.

Sentiment	Analysis
One	unique	AI	service	that	is	useful	for	conversation	is	sentiment	analysis.	This	AI	service	gives	you	a
prediction	about	the	user’s	emotional	state,	together	with	a	level	of	confidence	in	that	analysis.	Figure	7-4
shows	an	example	of	the	IBM	Watson	AI	providing	an	analysis	of	a	Slack	channel.

Figure	7-4.	The	IBM	Watson	AI	picking	up	different	sentiment	attributes	in	a	conversation

Why	is	this	important	to	you	as	a	bot	designer?	Well,	knowing	the	emotional	state	of	your	conversation
counterpart	has	always	been	key	to	a	successful	conversation.	As	humans	we	develop	empathy,	which	is	a
unique	ability	that	lets	our	minds	predict	the	state	of	mind	of	other	people	while	engaging	with	them.
Software	has	no	empathy	(at	the	moment),	so	using	this	kind	of	service	can	help	you	build	conversational
flows	that	are	more	likely	to	succeed,	based	on	the	mood	of	the	user.
Please	note	that	sentiment	analysis	is	still	in	the	early	stages,	and	currently	not	very	accurate	—	catching
swear	words	or	terms	of	endearment	through	simple	pattern	recognition	might	be	as	effective	as	AI	for
many	bot	use	cases.

When	to	Use	Artificial	Intelligence
Artificial	intelligence	provides	developers	with	a	great	set	of	tools	to	use	when	building	their	bots.
Natural	language	understanding	and	conversational	management	tools	make	managing	complex	text-based
conversations	much	easier	(compared	to	the	“coding	it	yourself”	alternative).	If	you	are	building	a
conversational	bot	in	a	complex	domain	with	the	ability	to	handle	pure	text	conversations,	then	such	AI
tools	might	be	critical	to	the	success	of	your	bot.
Using	AI	for	prediction,	image	recognition,	sentiment	analysis,	and	the	many	other	purposes	that	we	have
not	covered	here	should	be	done	on	a	per	use	case	and	requirements	basis.

Not	Using	Artificial	Intelligence
Not	using	artificial	intelligence	is	a	very	valid	option	when	building	a	bot.	Some	use	cases	do	not	require
AI	at	all.	For	example,	asking	a	bot	to	send	you	news	or	financial	reports	every	morning	might	not	require
AI.

KEY	TAKEAWAY

Not	using	artificial	intelligence	is	a	very	valid	option	when	building	a	bot.	Some	use	cases	do	not	require	AI	at	all.

AI	can	be	complex,	expensive,	and	hard	to	implement	in	a	bot.	For	many	use	cases	AI	requires	a	large
training	set	to	be	productive.	As	a	bot	builder,	you	can	“fake”	intelligence	for	a	very	long	time	and	still
provide	a	lot	of	value.	At	the	time	of	writing	of	this	book,	most	bots	do	not	use	AI.	Most	bots	today	use
simple	regular	expressions	to	understand	the	intent	of	the	user;	they	guide	the	user	through	rich
interactions	(giving	the	user	fixed	buttons,	for	example)	or	use	slash	commands	to	mandate	structured
intent.
That	said,	AI	can	be	very	useful	and	sometimes	critical	for	building	a	great	bot.	Without	AI	we	are	limited
to	specific	use	cases	and	somewhat	limited	value	propositions.	AI	can	unlock	the	promise	of	a	natural
conversational	interface.
Whether	or	not	you	require	AI	may	be	a	hard	question	to	answer.	You	can	try	to	fake	an	intelligent	service
and	see	if	that	works	for	starters.	You	can	rigidly	structure	the	conversation	and	sample	user	satisfaction
and	error	rates.	And	you	can	also	play	with	an	AI	framework	and	see	if	you	can	easily	integrate	it	as	a
service	while	building	your	bot.	One	input	for	this	decision	is	the	complexity	of	your	script,	which	we’ll
touch	upon	in	Chapter	16.

Closing	Thoughts
Don’t	panic!	You	do	not	need	to	learn	how	to	use	artificial	intelligence	right	now.	Designing	a	great
conversation	should	be	orthogonal	to	the	decision	to	use	AI	or	any	other	toolset	to	build	your	bot.

KEY	TAKEAWAY

Don’t	panic!

In	this	book	we	will	try	to	decouple	the	design	choices	from	the	technical	choices,	while	keeping	you,	the
designer,	aware	of	the	tools	and	services	that	can	help	you	build	a	great	bot.
Next,	we	will	dive	into	the	meat	of	the	principles	of	designing	an	effective	conversation	with	users.	We
will	explore	the	elements	of	a	good	conversation	and	learn	from	other	bot	builders	what	worked	for	them,
and	what	didn’t.

Chapter	8.	The	Conversation
If	it	is	a	ten-minute	speech	it	takes	me	all	of	two	weeks	to	prepare	it;	if	it	is	a	half-hour	speech	it	takes	me	a	week;	if	I	can	talk	as
long	as	I	want	to	it	requires	no	preparation	at	all.	I	am	ready	now.

—	PRESIDENT	WILSON

ACCORDING	TO	WIKIPEDIA,	HUMAN	language	probably	started	to	develop	around	100,000	years	ago	(in
comparison,	the	first	computer	was	created	in	1946).	With	about	5,000	languages	in	use	in	the	world
today,	it	seems	like	humanity	should	be	very	proficient	at	building	productive	conversations	—	so	why	is
this	still	such	a	difficult	problem?
The	reason	is	that	until	now,	humans	had	to	adjust	themselves	to	software,	rather	than	the	other	way
around.	As	designers	we	were	taught	to	think	in	windows,	controls,	colors,	and	animation.	Without	being
able	to	interact	with	them	directly,	we	were	trying	to	tell	the	users	which	buttons	to	push	and	which	menus
hid	the	information	they	sought.	When	designing	conversations,	we	go	back	to	the	ancient	art	that	has	been
at	the	core	of	our	society	for	ages:	talking	to	each	other.
Remember	that	bots	offer	a	new	interface	to	an	already	established	human	interaction.	Bots	manifest
themselves	inside	messaging	apps,	where	humans	have	been	communicating	with	each	other	for	some
time.	This	means	that	you	will	need	to	borrow	a	lot	from	preexisting	human	conversations	—	for	example,
users	will	expect	bots	not	to	ignore	them,	because	it	is	not	polite	for	humans	to	do	so.	There	is	also	a	big
opportunity	here	to	create	a	connection	with	your	users	that	is	way	stronger	than	what	web	and	mobile
apps	can	ever	manage.

KEY	TAKEAWAY

Remember	that	bots	offer	a	new	interface	to	an	already	established	human	interaction.

In	this	chapter	we	will	go	over	different	aspects	of	the	bot	conversation	and	explore	examples	of	each.
We	will	practice	the	best	practices	established	here	later,	in	Chapter	16.

Onboarding
Onboarding	is	the	first	interaction	users	see	from	the	bot	—	it	could	be	a	message	that	the	bot	sends	to	the
installing	user	or	a	general	message	to	a	team.	It	sets	the	first	impression	and	tackles	a	set	of	tasks	that	can
best	be	accomplished	at	the	start	of	the	conversation.
In	this	section	we’ll	take	a	look	at	what	good	onboarding	accomplishes.

Declaring	the	Purpose
During	onboarding	the	bot	declares	its	purpose	in	the	context	of	the	conversation,	making	it	transparent	to
the	user	or	the	team.	The	bot	should	be	very	clear	about	what	it	does	and	how	it	can	help	the	user.
Take	a	look	at	the	introduction	from	the	Howdy	bot	in	Figure	8-1.

Figure	8-1.	The	Howdy	bot	introducing	itself	to	the	user

You	can	clearly	understand	what	this	bot	does	—	it	is	a	team	communication	bot.	The	Howdy
development	team	gave	a	lot	of	thought	to	their	onboarding	script	and	how	to	relay	the	core	purpose	and
functionality	of	the	bot.
Another	example	is	Poncho	(Figure	8-2).

Figure	8-2.	Poncho	introducing	itself

This	bot’s	purpose	is	still	very	clear,	although	its	introduction	is	not	as	declarative	as	the	Howdy	bot’s.
Poncho	is	a	much	more	casual	consumer	bot,	and	so	a	more	casual	purpose	declaration	suits	it	best.
Finally,	Figure	8-3	is	the	first	email	I	ever	got	from	Amy.

Figure	8-3.	My	first	email	from	Amy

It	could	not	get	more	clear	than	that.	As	you	can	see	here,	the	introduction	is	personal	and	professional
(“starting	today”	is	a	work	environment	term;	we	touched	on	this	topic	when	we	talked	about	personality
in	Chapter	6),	and	very	clear	about	the	purpose	of	the	bot:	it	is	your	“personal	scheduling	assistant.”	The
x.ai	team	did	a	great	job	of	clearly	defining	and	scoping	the	purpose	of	the	bot	here	—	I’m	sure	it	was
tempting	to	just	say	“I’m	your	personal	assistant,”	because	that	wording	is	more	common	in	real	life	and
might	be	more	appealing	to	the	businessperson	receiving	this	email,	but	they	chose	to	include	the	keyword

“scheduling”	to	make	the	purpose	plain.
Stating	a	clear	purpose	up	front	answers	the	main	question	most	users	have	today	about	bots:	“What	is	it
good	for?”	It	can	be	hard	to	understand	the	purpose	of	a	bot	in	a	chat	interface,	as	there	are	none	of	the
visual	cues	that	are	common	in	a	mobile	app.	The	minute	you	get	into	a	photo	app,	you	know	what	the	app
is	good	for	because	you	recognize	the	images	and	buttons;	you’ll	usually	even	find	an	image	of	a	camera
somewhere.	A	conversation	starts	with	much	fewer	visual	cues.

KEY	TAKEAWAY

Stating	a	clear	purpose	up	front	answers	the	main	question	most	users	have	today	about	bots:	“What	is	it	good	for?”

Many	bot	developers	report	users	trying	to	ask	the	bot	to	perform	tasks	the	bot	is	not	supposed	to	do.	The
conversational	interface	is	much	less	structured	than	the	typical	desktop	and	mobile	app	paradigm	—	for
example,	there	is	no	way	to	request	that	the	Instagram	mobile	app	tell	you	the	weather	(there	is	no	way	in
the	UI	to	request	that	service),	but	with	the	Instagram-bot	this	takes	just	a	few	clicks	(“Hi	Instagram-bot,
what	is	the	weather	like?”).

Teaching	the	User	How	to	Use	the	Bot
Now	that	the	user	knows	what	the	bot	is	for,	it	is	time	to	move	to	the	next	stage,	which	is	telling	the	user
how	to	use	the	bot.	This	is	a	unique	point	in	time	where	you	typically	have	the	user’s	full	attention	and	can
achieve	a	lot	of	tasks.
There	is	a	lot	of	information	you	might	want	to	relay	at	this	point	—	the	preferred	way	to	communicate
with	the	bot,	a	way	to	wake	up	the	bot,	the	main	functions	or	keywords	that	the	bot	supports,	slash
commands	that	the	bot	might	expose,	and	more.
Coming	back	to	Howdy,	Figure	8-4	shows	the	second	part	of	its	onboarding	script.

Figure	8-4.	Howdy	telling	the	user	about	its	capabilities

As	you	can	see,	the	bot’s	designers	set	clear	communication	instructions,	with	the	use	of	actionable
buttons	(we	will	cover	rich	interactions	such	as	buttons	in	Chapter	9).	These	buttons	make	clear	what	the
user	can	do	with	the	bot	next.
Figure	8-5	shows	how	Amy	handles	this	part	of	the	onboarding	process.

Figure	8-5.	Amy	providing	onboarding	instructions	to	the	user

Amy’s	onboarding	specifies	how	to	work	with	the	bot	—	CCing	Amy	on	emails	will	signal	to	the	bot	that
it	is	time	for	it	to	kick	in	and	take	action.	As	Amy’s	interaction	is	passive	(Amy	will	only	start	working
once	you	email	it),	it	is	critical	to	explain	this,	or	else	this	will	be	the	last	interaction	the	user	will	have
with	the	bot.	Note	that	Amy’s	interaction	design	is	very	similar	to	the	way	humans	interact	with	each	other
in	this	type	of	situation:	when	managers	need	a	human	assistant	to	set	up	a	meeting,	they	CC	that	person	on
the	correspondence.	This	makes	using	Amy	very	intuitive.
Onboarding	scripts	can	also	take	the	form	of	a	wizard-like	interface,	similar	to	in	a	mobile	app,	where	the
bot	walks	the	user	through	the	functionality.	Figure	8-6	shows	how	Poncho	does	it.

Figure	8-6.	Poncho	uses	a	wizard-like	flow	in	the	onboarding	process

Here,	the	bot	demonstrates	its	value	in	its	initial	reply,	and	then	asks	more	questions.	Notice	that	at	the
end	of	this	flow	the	user	(me,	in	this	case)	is	prompted	to	schedule	a	daily	notification	from	the	bot	about
weather	in	the	chosen	city.	This	is	a	great	example	because	it	generates	hooks	for	future	engagements	and
also	seamlessly	helps	the	user	set	the	configuration	of	their	preferred	city.

Configuration
Poncho’s	onboarding	is	a	good	segue	to	the	configuration	part	of	the	onboarding	—	here	you	ask	the	user
to	supply	information	that	is	important	to	the	core	functionality	of	the	bot.
In	the	last	section	you	saw	how	Poncho	asked	me	to	set	my	preferred	city.	Figure	8-7	shows	how	Amy
sets	the	configuration	in	its	onboarding.

Figure	8-7.	Amy	asking	the	user	to	set	the	calendar	configuration	as	part	of	the	onboarding	script

Amy	is	asking	the	user	to	do	something	a	lot	of	bots	need:	grant	additional	permissions	to	third-party
services.	In	order	for	Amy	to	effectively	schedule	the	user’s	meetings,	the	bot	needs	access	to	the	user’s
calendar.	Amy	uses	the	onboarding	script	to	make	sure	the	user	provides	the	appropriate	permissions	to
access	the	relevant	calendars.
This	is	a	common	pattern	we	call	account	binding	(or	account	linking)	—	the	bot	knows	who	the	user	is
on	the	chat	platform,	but	needs	to	connect	to	additional	services	using	the	user’s	credentials.	An	example
of	this	would	be	a	CRM	bot	that	works	with	a	user	in	Slack,	as	in	Figure	8-8:	the	bot	needs	the	user	to
connect	to	the	CRM	in	order	to	act	on	the	user’s	behalf.

Figure	8-8.	Delegated	record	update	—	the	bot	acts	on	behalf	of	the	user

If	the	bot	does	not	know	who	the	user	is	on	the	CRM	system,	the	operation	will	fail.	This	is	very	common
in	cases	where	the	bot	is	connecting	with	a	third-party	system	—	Lyft	has	the	same	binding	process	the
first	time	you	want	to	order	a	ride	through	any	chat	interface.

Inciting	Users	to	Get	Value	from	the	Bot
As	you	saw	with	Poncho	and	Amy’s	onboarding	scripts,	it	is	a	best	practice	to	incite	the	user	to	actually
use	the	bot	as	part	of	the	onboarding	process.
Figure	8-9	shows	how	Kip,	a	popular	shopping	bot,	does	that	at	the	end	of	its	onboarding	script.

Figure	8-9.	Kip’s	onboarding	encourages	the	user	to	get	started	right	away

The	calls	to	action	we	see	in	Kip,	Amy,	and	Poncho	improve	the	chances	of	the	user	experiencing	success
early	in	their	interaction	with	the	bot.	In	the	same	way	that	shortening	the	time	to	“Hello	World”	for
developers	has	been	proven	to	help	get	them	excited	about	a	technology,	shortening	the	path	to	“this	bot	is
useful”	for	users	makes	them	more	excited	about	and	inclined	to	use	your	bot.
Offering	added	value	to	the	user	at	the	first	engagement	contributes	to	the	user’s	perception	of	the	bot.
Useful	bots	are	more	likely	to	be	remembered	and	reengaged	with	by	the	user.	When	I	say	“useful”	I	do
not	necessarily	mean	utilitarian	value;	it	could	be	an	insight	the	bot	adds	or	a	delightful	GIF	or	witty
comment	that	makes	the	user	laugh.	The	key	is	to	demonstrate	value	or	provide	a	meaningful	interaction	as
soon	as	possible,	if	not	during	the	onboarding	itself.

KEY	TAKEAWAY

Offering	added	value	to	the	user	at	the	first	engagement	contributes	to	the	user’s	perception	of	the	bot.	Useful	bots	are	more	likely	to	be
remembered	and	reengaged	with	by	the	user.

Setting	the	Tone	and	Personality
In	all	of	the	preceding	examples,	you	could	see	the	personality	of	the	bot	starting	to	shine	through.	Amy
using	formal,	office-oriented,	getting	things	done	speech.	Poncho	being	casual	and	humoristic.	Kip	being
friendly,	geeky,	and	techy.
Setting	the	tone	of	the	bot’s	conversation	during	the	onboarding	contributes	to	the	consistency	of	the	user
experience	—	users	expect	the	bot	to	continue	to	behave	in	the	manner	it	has	in	the	onboarding.	It	is	not
surprising	when,	the	day	after	onboarding,	Poncho	notifies	the	user	about	the	day’s	weather	with	a	joke
and	a	funny	meme	—	the	user	expects	that	behavior	because	it	is	consistent	with	the	onboarding
conversation.
Thinking	about	your	brand	is	also	important	for	setting	the	tone.	If	you	have	a	prominent	brand	it	might	be
useful	to	use	it	as	part	of	the	onboarding	script,	in	order	to	create	a	strong	brand	association.

Onboarding	in	a	Team	Environment
In	all	the	examples	we’ve	covered	up	to	now,	the	bot	had	a	1:1	onboarding	conversation	with	a	single

user.	Now	let’s	talk	about	onboarding	a	bot	to	a	new	team.
One	of	the	challenges	with	onboarding	a	bot	to	a	team	is	that	the	team	members	might	not	be	aware	that
the	bot	was	invited	to	the	messaging	platform,	and	might	not	know	why	they	are	being	engaged	by	the	bot.
Figure	8-10	shows	how	Sensay	mitigates	that	experience.

Figure	8-10.	Sensay	introducing	itself	to	the	team

As	you	can	see,	Sensay	explains	that	the	team	admin	has	installed	it	and	given	it	permission	to	direct
message	(DM)	the	users.	Sensay	is	a	personal	bot	that,	once	installed	in	a	specific	team,	is	available	to
all	members	of	that	team.
Being	able	to	DM	the	relevant	users	makes	sense	in	this	use	case	(given	admin	consent).	It’s	important	to
note,	however,	that	DMing	all	the	users	in	the	team,	without	explicit	permission	from	an	admin,	is	not
advised!	I	have	seen	tremendous	user	backlash	because	of	mass	DMing,	which	is	perceived	as	spamming.
When	thinking	about	onboarding	a	team	bot,	think	about	the	paradigm	of	onboarding	a	human	team
member.	Let’s	say	a	new	member	joins	the	team	—	would	you	have	them	DM	every	person	on	the	team
with	the	same	message	and	start	conversing	with	each	person	in	private?	Probably	not.	Onboarding	a	team
member	is	a	delicate	process	of	finding	the	right	channels	to	announce	the	person,	notifying	the	right
people	who	will	interface	with	this	person,	and	making	sure	that	this	person	is	accepted	into	the	team	in	a
friendly	way.

KEY	TAKEAWAY

Onboarding	a	bot	to	a	team	is	very	similar	to	onboarding	a	new	human	team	member.

Bots	in	teams	act	as	team	members,	and	should	be	onboarded	as	such	—	I	usually	have	my	bot	ask	the
admin/installer	to	add	it	to	the	relevant	channels,	then	introduce	itself	with	a	short	note	once	it	is	added	to
a	channel	(see	Figure	8-11).

Figure	8-11.	Once	added	to	the	channel,	it’s	polite	for	the	bot	to	introduce	itself

Here	is	a	recommended	flow	for	onboarding	a	bot	to	a	team	on	Slack:
1.	 Direct	message	the	installing	user	(this	is	an	attribute	that	is	exposed	to	the	bot,	when	it	is	added	to	a

team)	and	introduce	the	bot	to	them.	This	should	be	a	regular	1:1	onboarding.
2.	 Together	with	the	installing	user,	figure	out	what	is	the	best	way	to	introduce	the	bot	to	the	team.

Depending	on	your	use	case,	there	are	a	couple	of	ways	to	move	forward	from	here:
a.	 The	bot	could	ask	the	installing	user	to	create	a	new	channel	(for	example,	a	help	desk	bot	can

create	a	help	desk	channel).
b.	 The	bot	could	ask	the	installing	user	to	invite	the	bot	to	an	already	existing	channel.
c.	 The	bot	could	ask	the	installing	user	to	send	a	multi-party	direct	message	to	the	relevant

people.
d.	 The	bot	could	ask	the	installing	user	to	let	the	bot	direct	message	members	of	the	team.

3.	 Now	that	the	bot	is	in	the	team	context,	have	the	bot	provide	a	short	introduction	describing	its
purpose	and	key	functionality.

Remembering	the	exciting	paradigm	of	“introducing	a	new	member	to	the	team”	is	key	to	a	successful	bot
onboarding	in	a	team	environment.	If	you	have	not	done	so	yourself,	talk	to	managers	who	have	done	team
member	onboarding.	Also,	be	domain-specific	—	for	example,	if	you	are	introducing	a	legal	bot,	talk	to
an	internal	legal	team	manager	to	see	how	they	introduce	team	members	to	the	company	effectively.
After	the	bot	has	been	properly	introduced	to	the	team,	it	can	communicate	directly	with	team	members
without	the	supervision	of	the	installing	user	—	there’s	no	need	to	further	burden	anyone.	The	installing
user	serves	as	a	hiring	manager	in	this	use	case,	and	when	the	onboarding	is	completed,	the	bot	is	free	to
act	on	its	own.

Functionality	Scripting
As	humans,	we	have	been	taught	for	ages	to	carry	on	conversations.	Most	of	us	have	conversations
several	times	a	day	without	thinking	about	issues	like	the	design	or	scripting	of	these	conversations.	The
experience	you	want	the	user	to	have	with	your	bot	is	very	similar:	a	delightful	conversation	with	a	digital
friend	or	assistant.	Any	exceptions	to	this	guideline	will	be	shortcutting	parts	of	the	conversation	with	rich
interactivity,	using	buttons,	images,	and	other	rich	elements	to	relay	data	visually	and	capture	complex	and
structured	user	inputs.
We	will	explore	designing	two	types	of	conversations.	The	first	will	be	a	task-led	conversation,	where
the	target	is	to	accomplish	a	task.	The	second	will	be	a	topic-led	conversation,	which	aims	to	discuss
information	and	exchange	ideas	around	a	specific	set	of	subjects.	We	have	these	types	of	conversations
every	day	—	when	we	buy	coffee	we	have	a	task-led	conversation,	but	when	we	discuss	a	movie	we	have
a	topical	discussion.

KEY	TAKEAWAY

There	are	two	types	of	conversations,	task-led	and	topic-led.

Task-Led	Conversation
The	key	for	designing	this	type	of	conversation	is	finding	the	optimal	set	of	conversational	interactions	to
complete	a	specific	task.	In	this	section	we	will	give	an	example	of	a	task	and	explore	a	possible	flow	for
accomplishing	that	task	through	a	diagram.
Let’s	start	by	defining	a	single	task	—	completing	this	task	will	be	a	successful	outcome	of	this
conversation.	We	will	imagine	building	a	coffee	shopping	bot	and	use	the	Kip	shopping	bot	for	real-life
examples.	Kip	is	a	complex	shopping	bot,	so	we	will	demonstrate	a	simple	workflow	and	deal	with
exceptions	in	other	parts	of	this	book.
Figure	8-12	shows	the	core	task	that	our	shopping	bot	aims	to	accomplish.	Every	interaction	will	be
optimized	to	get	the	user	to	this	end.

Figure	8-12.	The	task	to	accomplish

Now,	let’s	create	a	new	node	in	the	conversation	called	Initiation	(Figure	8-13).	There	are	a	few	ways	to
initiate	a	conversation,	and	we	will	cover	these	in	depth	later,	but	for	this	example	we	will	assume	the
user	initiates	the	conversation	somehow.

Figure	8-13.	Conversation	initiation

Now	we	need	to	create	a	flow	from	initiation	to	buying	coffee.	If	there	is	a	predefined	state	(i.e.,	if	the	bot
“remembers”	the	user’s	order),	it	could	be	as	simple	as	the	diagram	in	Figure	8-13.	For	example,	I	could
design	a	Coffee-bot	where	every	time	I	initiated	a	conversation,	I	would	automatically	get	my	cappuccino.
I	would	just	need	to	initiate	the	conversation	with	“@Coffee-bot	my	coffee	please!”	and	the	bot	would
make	sure	a	warm	and	delicious	cup	of	coffee	was	delivered	to	my	desk.	Wouldn’t	that	be	magical?
But	life	is	usually	not	as	simple	as	that.	In	most	use	cases	there	are	several	steps	the	users	need	to	take	in
order	to	complete	a	task.	In	our	coffee	bot	use	case,	the	user	first	needs	to	pick	a	coffee	type.	Then,	in	one
flow	the	user	will	need	to	choose	whether	to	add	milk,	cream,	or	neither.	Lastly,	the	user	needs	to	provide
their	location	and	confirm	the	transaction.	For	simplicity,	we	will	assume	that	the	user	has	a	credit	line
with	the	bot.
Let’s	map	the	initial	set	of	pathways	(Figure	8-14).

Figure	8-14.	The	initial	paths	to	task	completion

As	you	can	see,	one	of	these	pathways	might	require	milk	(if	you	take	milk	in	your	espresso,	you	can	stop
reading	now).
Let’s	add	that	option	now,	in	Figure	8-15.

Figure	8-15.	Adding	an	additional	step	for	the	second	pathway

Now,	in	Figure	8-16,	we	will	add	the	address	and	confirmation	stages	and	complete	the	full
conversational	flow.

Figure	8-16.	Adding	the	address	and	confirmation	stages

Now	let’s	script	the	happy	path	flow.	This	is	the	most	trivial	script	implementation	we	can	imagine:
User:	Hello	@coffeebot
Coffee-bot:	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	I	will	have	an	espresso
Coffee-bot:	Where	would	you	like	the	coffee	to	be	delivered?

User:	155	5th	SF	USA
Coffee-bot:	Please	confirm	-	1	espresso	coffee	to	be	delivered	to	155	5th	SF	USA.
User:	Confirmed
Coffee-bot:	Coffee	en	route,	ETA	15	min.

You	can	see	that	this	is	a	very	optimistic	path	—	the	user	is	providing	all	the	required	information	on
time,	in	order,	and	in	the	way	the	bot	is	expecting	to	get	it.	If	you	have	ever	participated	in	a	user	research
study,	you	know	that	it	is	really	unlikely,	in	real	life,	that	the	conversation	will	actually	unfold	in	this
orderly	fashion.

Divergent	flows	and	course	correction
Let’s	explore	another	flow.	We	will	call	this	flow	divergent:

User:	Hello	@coffeebot
Coffee-bot:	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	Wait,	no!	I	want	a	cappuccino!

This	is	a	very	common	situation	in	conversations	—	the	user	has	done	something	you	did	not	expect.	They
have	diverged	from	the	happy	flow,	and	requested	something	that	you	were	not	prepared	for.	There	are
two	basic	ways	to	handle	this:	one	is	course	correction	and	the	other	is	human	intervention.	We	will	talk
more	about	error	handling	later	in	this	chapter.

Entity	extraction
Another	flow	to	explore	is	called	random	order.	Here	is	an	example	of	how	it	might	go:

User:	Hello	@coffeebot,	can	I	get	an	espresso?
In	this	example	the	user	has	provided	information	in	an	order	the	bot	is	not	expecting	(this	is	a	very
simple	case	—	the	type	of	coffee	was	entered	before	the	prompt).	It	would	be	really	irritating	if	the	bot
ignored	this	information,	followed	the	script,	and	asked	“What	would	you	like	today?”	This	is	because
human	conversations	are	not	carried	out	that	way.	In	a	human	conversation	the	order	in	which	you	provide
the	information	does	not	matter.
If	we	think	of	key	elements	of	the	conversation	as	entities,	and	the	act	of	getting	these	elements	of
information	as	entity	extraction,	then	we	can	think	of	a	task-led	conversation	as	a	set	of	data	inputs	and
prompts	that	facilitate	the	extraction	of	these	entities.
Here	are	the	entities	in	our	simple	conversation:

Coffee	type
A	critical	and	simply	structured	entity	from	a	small	set.

Address
A	critical	and	complex,	less	structured	entity,	from	an	extremely	large	set	of	all	the	addresses	in	the
world.

Of	course,	in	a	real-world	scenario,	there	might	be	many	more	entities	and	types.	There	could	be	optional
entities	such	as	milk,	cream,	and	sugar;	there	could	be	freeform	entities	such	as	feedback;	there	could	be
critical	entities	like	credit	card	details,	and	less	critical	ones	like	the	answer	to	the	question	“How	are
you	doing	today?”
In	most	human	conversations,	the	order	in	which	the	user	provides	these	entities	is	meaningless.	I	can	say
I	want	coffee	with	milk	and	two	sugars,	or	I	can	say	I	want	coffee	with	two	sugars	and	milk.	If	you	think

of	the	last	time	you	ordered	food	in	a	fast	food	restaurant,	you	might	have	noticed	that	the	counter	staff
were	sensitive	to	the	order	in	which	you	specified	what	you	wanted.	You	might	have	had	to	order	your
drink	before	your	food	—	that	is	usually	due	to	poor	UX	design	in	the	point-of-sale	systems	of	these
vendors,	and	it	is	a	source	of	pain	to	both	vendor	and	client.
As	a	conversation	designer	you	need	to	define	and	list	the	set	of	entities	you	need	to	extract	from	the
conversation.	You	will	also	need	to	specify	their	priority	and	acceptable	data	types.
Many	artificial	intelligence	frameworks	provide	you	with	sophisticated	entity	extraction	mechanisms:
they	handle	data	validation,	out-of-order	entry,	and	mandatory	entity	follow-ups.
If	you	are	used	to	designing	mobile	or	web	interfaces,	think	about	the	form	paradigm	—	the	user	needs	to
submit	a	set	of	inputs,	through	structured	controls	like	text	boxes	and	select	boxes.	In	a	conversation	we
still	need	to	get	and	validate	all	these	bits	of	information,	but	potentially	out	of	order	and	sometimes
without	rich	and	structured	visual	controls.
Later	in	this	book	we	will	talk	about	more	structured	conversations	and	richer	controls.	In	many	cases	you
will	be	able	to	use	these	rich	controls	to	extract	the	required	entities	without	the	need	to	analyze	free	and
unstructured	user	inputs.

Intent	mapping	and	conversational	controls
Let’s	upgrade	our	coffee	bot	to	a	high-end	“San	Francisco–grade”	barista.	Now,	users	can	choose
between	teas	and	coffees,	between	cold	and	hot;	they	can	pick	sizes	and	flavors.	Now	the	users	need	to
navigate	through	and	filter	the	choices	until	they	get	to	the	perfect	drink.
In	a	traditional	web	or	mobile	app,	we	would	provide	a	set	of	controls	to	navigate	and	filter	the	choices.
We	might	have	a	carousel	that	flips	between	drinks.	In	a	conversation,	you	will	need	to	do	that	with	text.
Figure	8-17	shows	how	Kip,	the	popular	shopping	bot,	does	it.

Figure	8-17.	The	Kip	bot	providing	conversational	controls	to	the	user

Because	Kip	deals	with	extremely	large	datasets,	such	as	Amazon’s	inventory,	the	designers	provide	a
free	set	of	filters	and	navigation	aids	to	help	the	user	navigate	through	that	potential	chaos.	As	you	can
see,	you	can	use	conversational	controls	like	“option	1	but	cheaper”	to	create	filtering.
The	key	challenge	is	that	users	need	to	remember	these	conversation	controls;	they	need	to	remember	that
they	can	say	“I	want	this	option	but	in	blue.”	In	addition,	the	conversation	itself	can	become	lengthy	and
cumbersome.	Pure	text	conversation	might	not	be	the	right	design	choice	for	all	tasks	(we	will	discuss
alternatives	in	the	next	chapter).
Another	type	of	navigation	challenge	is	between	tasks.	Let’s	say	we	are	designing	a	travel	bot	that	can
book	flights	and	reserve	hotel	rooms.	These	are	two	distinct	tasks.	In	web	or	mobile	apps	they	might	be

implemented	with	tabs	or	similar	top	navigation	controls.	Bots	need	to	provide	this	task	switching
functionality	as	well	—	your	bot	needs	to	give	the	user	a	way	to	go	back	“home,”	to	where	they	can
restart	a	task	or	pick	another	task	to	execute.	This	is	especially	necessary	when	a	user	gets	lost	or	stuck
while	trying	to	complete	a	task.
Similar	to	entity	extraction,	navigational	controls	can	also	be	implemented	with	rich	interactions,	which
will	be	covered	in	the	next	chapter	of	this	book.

Shorthanding
A	useful	element	of	a	conversational	interface	is	that	it	can	be	used	to	shorthand	the	complexities	of	app
controls.	If	the	users	know	what	they	want,	they	can	just	state	it	and	the	bot	does	not	need	to	go	through	all
these	entity	extraction	and	navigation	steps:

User:	@coffee-bot	can	I	please	get	a	short,	decaf	macchiato	with	cream	and	1	sugar?
Delightful!	No	need	to	navigate	through	endless	mobile	controls	and	data	entries.	Without	spoiling	the
upcoming	discussion	of	context,	state,	and	memory	(see	Chapter	10),	the	conversation	could	even	be:

User:	@coffee-bot	I	need	my	usual	coffee!
Now	the	conversation	really	becomes	useful	—	the	bot	becomes	a	personal	assistant	that	knows	and	cares
for	the	user,	remembers	their	preferences,	and	gives	them	personalized	service	when	they	need	it.	Magic!

Stories/flows
Stories	are	a	way	to	look	at	a	branch	of	a	conversation.	Stories	are	used	to	describe	a	distinct	flow	or
part	of	a	flow.	They	also	allow	us	to	encapsulate	or	isolate	conversational	flows.	In	our	coffee	bot
example,	espresso	could	be	one	story	and	regular	coffee	another.	Each	story	has	different	elements	and
possible	substories.
The	advantage	with	this	approach,	from	a	design	and	engineering	point	of	view,	is	that	each	story	can	be
isolated	and	possibly	more	easily	communicated	between	the	designer	and	the	development	teams.	A
user–bot	conversation	can	move	from	one	story	to	another,	and	if	the	user	diverges	from	the	happy	flow,
the	bot	can	navigate	to	a	different	substory.	Substories	can	include	“User	wants	a	coffee	that	is	not
available”	or	“Invalid	input	from	user.”	There	could	also	be	substories	such	as	“cookies	upsale”	that	can
be	injected	into	the	conversation	at	the	appropriate	time,	regardless	of	the	current	story.
Let’s	say	that	our	marketing	research	has	shown	that	people	who	drink	espresso	or	order	milk	with	their
coffee	are	more	inclined	to	order	cookies.	Using	stories,	we	can	more	easily	notate	this	by	encapsulating
and	decoupling	the	“cookies	upsale”	story	and	plugging	it	in	in	accordance	with	our	research	(Figure	8-
18).

Figure	8-18.	Plugging	in	the	cookies	upsale	substory

This	is	where	artificial	intelligence	can	also	come	into	play.	The	bot	can	learn	when	to	effectively	use	the
“cookies	upsale”	story	based	on	experimentation	—	it	can	try	to	“upsell”	and	slowly	learn	the	optimized
time	to	do	that.	For	one	user	being	more	inclined	to	order	cookies	could	be	correlated	with	what	they’ve
ordered	before,	while	with	other	users	it	might	be	correlated	to	time	of	day	or	even	the	sentiment	of	the
conversation.	The	bot	can	learn	and	adapt	to	each	user’s	preferences.
We	used	a	simplified	use	case	of	a	coffee	bot	here,	but	there	are	many	more	complex	task-led
conversation	use	cases,	both	in	the	B2C	and	B2B	domains.	For	example,	think	of	a	legal	bot	such	as	the
UK-based	DoNotPay,	which	helps	you	avoid	paying	parking	tickets	and	also	claim	compensation	for
things	like	delayed	plane	tickets.	The	DoNotPay	bot	could	have	hundreds	of	stories	that	connect	together.
Decoupling	the	conversation	into	distinct	scripts	makes	the	bot	dialog	more	manageable	from	a	design	and
development	perspective.	We	will	provide	a	concrete	example	of	how	this	is	used	in	a	complex	scenario,
in	Chapter	16.

The	conversation	funnel
Another	way	to	think	about	and	design	a	task-led	conversation	is	with	the	notion	of	a	conversation	funnel.
Funnels	are	usually	used	in	marketing,	when	thinking	about	the	user	journey	through	a	website	or	a	mobile
app.	Let’s	look	at	this	simple	sales	funnel	on	a	website	(Figure	8-19).

Figure	8-19.	Simplified	sales	funnel	on	a	website

We	call	this	a	“funnel”	because	of	the	basic	fact	that	fewer	and	fewer	users	move	from	one	stage	to	the
next	throughout	the	engagement.	Users	drop	off	in	multiple	places	in	the	funnel,	and	only	a	fraction	of	the
users	end	up	checking	out.	A	good	marketer	brings	more	users	to	the	top	of	the	funnel,	and	improves	the
conversion	rate	at	each	step	of	the	funnel.	A	lot	of	the	aspects	of	a	good	website	design	are	connected	to
improvements	in	the	funnel.	A	larger	checkout	button	can	improve	the	rate	of	conversion	to	actual
checkouts,	for	example.
We	can	create	a	funnel	for	our	coffee	bot	as	shown	in	Figure	8-20.

Figure	8-20.	Coffee	bot	funnel

In	this	example	the	user	goes	through	a	conversation	funnel	in	a	very	similar	way	to	how	they	would	go
through	a	conversion	funnel	on	a	website.	Similarly	to	on	a	website	(where	the	goal	is,	say,	completing	a
purchase	or	signing	up	for	a	service),	users	may	drop	off	and	leave	the	conversation	in	the	middle,	quit
the	conversation	right	at	the	end,	or	just	get	lost.	A	good	task-led	conversation	takes	the	user	all	the	way
through	the	conversation	flow	and	optimizes	the	conversion	rate.

KEY	TAKEAWAY

A	good	task-led	conversation	takes	the	user	all	the	way	through	the	conversation	flow	and	optimizes	the	conversion	rate.

One	thing	to	note	is	that	the	order	of	the	steps	in	the	conversation	funnel	can	be	reversed	—	a	user	can	say
“I	want	coffee	with	milk	please”	and	only	then	pick	the	coffee	type.	So,	an	abstract	version	of	any	basic
conversation	funnel	might	look	like	Figure	8-21.

Figure	8-21.	High-level	view	of	the	conversation	funnel

These	are	the	common	steps	that	most	task-led	conversations	follow.	Understanding	where	the	users	drop
off	in	this	conversation	funnel	is	important.	By	looking	at	your	analytics	and	logs,	you	can	understand	if
your	bot	is	having	a	hard	time	understanding	the	intent	of	the	user,	is	able	to	extract	the	necessary	entities
to	finish	the	transaction,	and	is	able	to	complete	the	task.	Your	job	as	a	bot	designer	is	to	optimize	the
conversation	and	drive	the	user	through	the	funnel.	This	is	discussed	at	length	in	Chapter	19.

Topic-Led	Discussion
A	topic-led	discussion	is	much	less	directed	than	a	task-led	discussion.	It	is	more	circular	—	the	user
converses	about	a	set	of	topics	and	discusses	different	aspects	of	these	topics.	Think	of	a	task-led
conversation	as	a	practical	work	meeting	discussion,	and	a	topic-led	conversation	as	the	chat	before	or
after	the	meeting	about	what	people	did	over	the	weekend.	A	topical	discussion	does	not	necessarily	have
to	be	casual.	Knowledge	and	learning	can	also	be	topical	—	exploring	the	world	of	3D	printing	can	be	a
great	topical	conversation;	exploring	places	to	visit	in	Cancun	is	another.

KEY	TAKEAWAY

Task-led	conversations	need	to	have	the	least	amount	of	steps	possible	to	accomplish	a	task.	Topic-led	conversations	can	have	more	steps,
determined	by	user	engagement	with	the	topic.

The	key	with	topical	discussions	is	that	you	will	need	to	define	a	set	of	topics	(concrete	or	abstract)	and

then	facilitate	a	discussion	that	circles	around	these	topics.	The	aim	of	the	bot	will	be	to	have	a	delightful
and	useful	conversation	about	these	subjects.
Concrete	topics	are	topics	that	are	well	known	at	the	beginning	of	the	conversation.	A	good	example
would	be	a	bot	that	lets	fans	talk	about	a	popular	movie.	For	example,	Figure	8-22	shows	some	of	the
topics	fans	might	want	to	discuss	with	regard	to	the	latest	Star	Wars	film.

Figure	8-22.	Star	Wars	topics

We	can	look	at	each	of	these	topics	as	a	big	dataset	of	information.	A	discussion	circles	around	these
topics	and	lets	the	user	explore	these	datasets.	You	will	need	to	map	interesting	data	objects	and	attributes
for	each	topic.	For	example,	Chewbacca	will	be	an	object	in	the	Characters	dataset,	and	that	object	will
have	lots	of	different	data	attributes	that	might	be	interesting	to	surface	to	the	user	at	different	times.
A	simple	conversation	could	be	as	follows:

User:	@starwars-bot	I	am	SOOO	excited	about	the	upcoming	movie!
Starwars-bot:	Yes!	I	am	excited	too!	Did	you	know	that	there	is	a	new	type	of	spaceship	introduced	in
this	movie?
User:	No	way!	I	love	the	star	destroyers!	Are	you	going	to	show	those	too?	And	what	about
Chewbacca?	Is	he	going	to	show	up?

Topic-led	conversations	are	harder	to	script	in	some	ways	than	task-led	conversations.	There	is	less
directionality,	and	the	user	can	take	the	conversation	down	many	paths,	as	well	as	to	dead	ends.	As	you
can	see	in	this	discussion,	the	user	has	already	pivoted	the	conversation	from	technologies	to	characters.
That	is	OK!	There	is	a	certain	amount	of	user	delight	in	a	conversation	that	is	more	intuitive	and
somewhat	random	when	it	comes	to	casual	topics.	The	bot	can	do	this	as	well,	when	it	understands	that
the	conversation	needs	to	be	reinvigorated:

<15	sentences	about	Chewbacca>
User:	Yeah,	Chewbacca	is	great...
Starwars-bot:	BTW,	did	you	see	the	3-edged	sword	replica	we	released	to	the	stores	this	week?	Do
you	want	to	see	a	photo?
User:	OMG!	Yes!

The	bot	recognized	that	the	conversation	about	Chewbacca	had	come	to	an	end	—	the	user	has	spent	a
long	time	talking	about	this	topic,	and	all	conversational	paths	around	it	have	been	explored.	In	order	to

keep	the	conversation	going	and	keeping	it	interesting,	the	bot	pivots	the	conversation	to	the	merchandise
domain.	We	will	cover	this	more	in	the	next	section.
From	some	perspectives,	topic-led	conversations	can	actually	be	easier	than	task-led	conversations,
because	there	is	more	room	for	divergence;	there	is	also	less	of	a	need	for	mandatory	entity	extraction	and
intent	mapping,	as	the	intent	and	the	subject	can	be	abstracted.
An	example	of	an	abstract	topic	could	be	a	search	result.	The	user	might	be	looking	something	up	in	the
company’s	knowledge	base	and	discussing	that	with	the	bot:

User:	@knowledge-bot	what	is	our	vacation	policy	around	Thanksgiving?
Knowledge-bot:	Company	FTEs	get	2	days	of	vacation	at	Thanksgiving.
User:	OK,	I	also	need	to	know	the	best	person	in	the	company	to	talk	to	about	PHP
Knowledge-bot:	@dana	has	written	5	internal	articles	about	PHP	in	our	SharePoint	site,	she	might	be
a	great	person	to	talk	to.

You	can	look	at	abstract	topics	as	a	set	of	concrete	topics	that	are	discussed	in	sequence.	But	the	point
here	is	that,	in	large	datasets,	it	is	hard	to	build	a	set	of	topics	and	map	attributes	to	these	topics.	Abstract
topics	give	the	user	a	way	to	explore	and	navigate	through	a	large	dataset	with	almost	infinite	ways	to
query	it.	Google	is	a	good	example	of	an	abstract	topical	engine;	you	can	query	it	on	anything	and,	given
enough	data,	it	will	know	the	answer.
In	general,	topic-led	discussions	are	more	oriented	toward	consumer	user	cases:	window	shopping,
knowledge	and	education,	media	and	sports,	casual	conversation,	and	more.	Business	use	cases	tend	to	be
task-led.	Having	said	that,	there	are	non-task-led	conversations	relevant	to	work	that	can	take	place
around	topics	such	as	surveys,	user	research,	peer	review,	company	knowledge	exploration,	and	more.

KEY	TAKEAWAY

In	general,	topic-led	discussions	are	more	oriented	toward	consumer	user	cases.	Business	use	cases	tend	to	be	task-led.

Divergence	as	a	way	to	course	correct
In	many	topic-led	conversations,	there	is	no	declared	task	that	needs	to	be	completed	in	a	minimal	set	of
steps.	The	users	are	not	focused	on	achieving	a	task;	they	are	focused	on	exploring	a	topic.	This	means
that	the	conversation	is	less	directed	and	less	structured;	it	is	exploratory	and	sometimes	a	little	random	in
nature.	This	in	turn	means	that	there	is	much	more	leniency	toward	conversational	divergence,	and
pivoting	a	conversation	is	not	regarded	as	an	error	flow	that	needs	to	be	corrected.	In	a	topic-led
conversation,	a	bot	can	even	use	conversational	divergence	as	a	way	to	recover	from	input	failure:

User:	I	heard	that	Chewbacca	meets	Donatella	in	the	next	movie.
Starwars-bot:	That	is	interesting.	Did	you	know	you	will	be	able	to	see	Leia	again	in	this	movie?

What	happened	here	was	that	the	query	of	“Chewbacca	and	Donatella”	did	not	return	any	results.	A	bot
without	pivoting	capabilities	would	have	replied,	“Sorry,	I	have	no	information	regarding	that,”	making
the	conversation	more	awkward	and	more	likely	to	end.
Here,	the	bot	pivots	the	conversation	to	another	character	to	continue	the	conversation;	it	uses	a	simple
“that’s	interesting”	strategy	to	acknowledge	the	user	and	move	on.	This	is	a	classic	strategy	we	all	employ
—	how	many	times	have	you	said	“that’s	interesting”	and	changed	the	topic	of	conversation	while	chatting
with	someone	else?
In	the	same	way,	it	is	expected	that	the	user	will	change	the	topic	of	the	discussion	on	the	fly,	like	moving
from	Chewbacca	to	lightsabers,	and	back	to	the	ethics	of	the	Force.	The	bot	should,	in	most	use	cases,

entertain	these	pivots	and	even	encourage	them:
User:	And	these	are	the	7	reasons	I	like	Chewbacca...
Starwars-bot:	Cool.	You	mentioned	you	have	seen	all	the	movies,	which	one	was	your	favorite?

The	bot’s	incentive	here	is	to	keep	the	conversation	going	and	the	user	engaged.	Pivoting	from	one	topic
to	another	is	a	great	way	to	do	that.	Again,	this	is	a	pattern	we	employ	all	the	time	in	our	personal	lives:
talking	about	a	topic	until	we	are	done	with	it,	and	then	moving	on	to	another	topic.
The	trick	here	is	to	know	when	to	change	topic.	You	do	not	want	the	bot	to	change	the	topic	too	often	or
when	the	user	is	asking	a	question.	Experimentation	and	machine	learning	can	help	you	build	productive
and	engaging	flows	through	the	relevant	datasets.

Entity	extraction
Entity	extraction	can	be	important	in	topical	discussions	too.	We	do	this	to	explore	the	user’s	interests	in
different	aspects	of	the	topic.	Figure	8-23	shows	how	Epytom,	the	stylist	bot,	handles	it.

Figure	8-23.	Entity	extraction	in	Epytom

The	bot	needs	to	extract	the	user’s	general	preferences;	for	example,	whether	they	are	interested	in	men’s
clothing	or	women’s	clothing.	This	is	critical	information	to	have	in	order	to	have	a	productive
conversation	about	clothes.	Collecting	more	entities,	like	favorite	color,	age,	and	preferred	style,	will
contribute	to	more	constructive	and	engaging	future	conversations.

Intent	mapping	and	conversational	controls
We	talked	about	intent	mapping	and	conversational	controls	when	we	discussed	task-led	conversations,
but	topic-led	conversations	might	also	need	to	rely	on	intent	mapping	and	conversational	controls	to
answer	user’s	questions	and	to	move	from	one	topic	to	another.
It	is	also	important	to	keep	entities	in	context,	and	let	the	user	change	their	preferences.	For	example,
when	exploring	the	topic	of	shopping,	I	might	be	interested	in	men’s	backpacks	for	myself,	but	interested
in	women’s	sweaters	because	I	am	buying	a	gift	for	my	wife	—	the	“gender	interest”	preference	will	need
to	change	when	switching	between	subtopics.

Stories/flows
The	use	of	stories/flows	might	even	be	more	important	in	topic-led	conversations	than	in	task-led
conversations.	Here,	you	might	need	to	map	interesting	stories	(user	journeys)	through	the	dataset.	The

stories	can	be	connected	through	association	of	interest.	If	a	user	is	using	the	bot	for	learning	a	new
language,	and	the	user	converses	with	the	bot	about	what	different	kitchen	utensils	are	called	in	Spanish,
the	conversation	might	then	move	from	kitchen	implements	to	names	of	different	dishes	in	Spanish.
Both	kitchen	utensils	and	food	dishes	can	be	tied	to	multiple	stories,	and	you	can	create	relations	that
connect	the	stories	as	shown	in	Figure	8-24.

Figure	8-24.	Creating	links	between	stories

The	conversation	can	then	move	from	one	topic	to	the	other:
User:	How	do	you	say	chopsticks	in	Spanish?
SpanishLearning-bot:	Chopsticks	are	called	“palillos”	in	Spanish.	Would	you	like	to	learn	the	names
of	some	common	Asian	dishes	in	Spanish?

Making	these	types	of	associations	is	done	every	day	in	human	conversation.	The	user’s	mental	model
connects	the	two	flows,	making	the	conversation	more	natural	and	the	learning	experience	more	intuitive.

Task-led	pathways	in	topical	conversations
In	some	cases,	task-led	stories	can	be	intertwined	into	topic-led	conversations.	Your	bot	might	be	talking
to	the	user	about	a	movie	but,	when	detecting	an	intent	to	buy	merchandise,	transform	the	conversation	into
a	transactional	conversation	funnel.
Another	example	of	task-led	pathways	in	topical	conversations	is	prescribed	stories	within	the	topic.	In
our	Starwars-bot	example,	this	could	be	having	the	bot	walk	the	user	through	the	story	line	as	if	they	were
a	hero	in	the	movie.	The	end	task	is	to	complete	the	journey	through	the	plot,	and	the	bot	uses	the	same
tactics	of	engagement	as	in	a	regular	task-led	conversation.
Now	that	we	have	discussed	the	two	types	of	conversations	and	explored	different	aspects	of	each,	let’s
talk	about	a	few	best	practices	in	any	bot	conversation.

Decoration
Decoration	refers	to	words	that	we	add	to	sentences	that	do	not	contribute	directly	to	the	conversation
itself,	but	rather	add	color	and	character.	There	is	more	to	it	than	just	personality	—	variation	adds	depth
to	the	conversation	and	minimizes	the	sensation	that	you	are	talking	to	a	machine.

KEY	TAKEAWAY

Variation	adds	depth	to	the	conversation	and	minimizes	the	sensation	that	you	are	talking	to	a	machine.

Let’s	take	our	initial	coffee	conversation,	as	follows,	and	add	some	decoration	to	it:
User:	Hello	@coffeebot
Coffee-bot:	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	I	will	have	espresso
Coffee-bot:	Where	would	you	like	the	coffee	to	be	delivered?
User:	155	5th	SF	USA
Coffee-bot:	Please	confirm	-	1	espresso	coffee	to	be	delivered	to	155	5th	SF	USA.
User:	Confirmed

It’s	pretty	dry	—	it	seems	like	our	bot	is	kinda	too	serious	and	also	not	very	friendly.	Let’s	replay	this
conversation	with	a	few	decorations,	underscored	for	your	convenience:

User:	Hello	@coffeebot
Coffee-bot:	Wazzap?	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	I	will	have	espresso
Coffee-bot:	Awesome	sauce!	Where	would	you	like	the	coffee	to	be	delivered?	I	have	the	cavalry
waiting	;)
User:	155	5th	SF	USA
Coffee-bot:	Got	to	love	San	Francisco...	Please	confirm	-	1	espresso	coffee	to	be	delivered	to	155	5th
SF	USA.
User:	Confirmed

Now	it	is	clear	that	the	bot	has	a	distinct	personality	and	humor;	it	is	friendly	and	casual.	Although	the
decorations	did	not	contribute	a	lot	of	substance	to	the	conversation	(other	than	maybe	adding	another
layer	of	confirmation),	they	did	add	to	the	flow.
Decorations	do	not	have	to	be	verbal.	For	example,	the	sentence:

Coffee-bot:	Got	to	love	New	York...	Please	confirm	-	1	espresso	coffee	to	be	delivered	to	155	5th
NYC	USA.

Could	come	out	as	shown	in	Figure	8-25.

Figure	8-25.	Adding	visual	as	well	as	verbal	decoration

With	two	simple	emojis	the	bot	relays	an	affection	for	New	York	City,	adding	another	layer	of
entertainment	to	the	conversation.	We	will	discuss	the	usage	of	emoticons	in	depth	in	later	chapters.
Another	way	to	decorate	a	conversation	is	with	memes	and	images.	Figure	8-26	shows	how	Poncho	does
that.

Figure	8-26.	Poncho	sends	a	humorous	message	and	accompanying	GIF	along	with	its	daily	forecast

Poncho	adds	a	GIF	that	emphasizes	the	message,	encouraging	users	to	look	for	the	funny	“extras”	that
decorate	each	morning’s	weather	report.
Another	interesting	use	case	of	decoration	is	the	/giphy	bot	in	Slack	—	this	is	a	bot	whose	sole	task	is	to
help	humans	add	GIFs	to	decorate	their	conversations	with	each	other	(Figure	8-27).

Figure	8-27.	Using	GIFs	instead	of	words

/giphy	is	a	super-popular	bot,	and	a	source	of	great	satisfaction	for	users.	And	this	is	not	surprising	—	we
all	love	to	decorate	our	conversations.	We	add	facial	expressions	to	scary	stories,	we	reply	to	threads
with	funny	memes	that	say	more	than	is	polite	to	say	with	words.	At	some	companies,	like	Google,	memes
are	a	common	and	accepted	way	to	express	criticism.	Emojis	and	stickers	are	the	compelling	value
proposition	for	chat	platforms	such	as	Line	in	Asia,	and	it	seems	that	this	trend	is	moving	west.	Whether
bots	decorate	human	interactions	or	their	own,	adding	this	layer	can	make	the	conversations	go	more
smoothly.
Even	if	this	type	of	decoration	is	not	built	into	your	bot,	it	should	be	able	to	accept	that	users	may
decorate	their	conversations	with	it.	I	have	talked	to	many	bot	designers	who	were	surprised	to	see	a	
from	the	user	instead	of	a	text	confirmation.	I	do	not	think	it	is	expected	that	all	bots	will	understand	meme
sarcasm,	but	accepting	basic	emojis	might	be	a	wise	design	choice	for	certain	use	cases.
The	bot	might	even	prompt	the	user	to	use	emojis	as	part	of	the	conversation	(Figure	8-28).

Figure	8-28.	A	help-desk	bot	encouraging	users	to	reply	with	emojis

Another	popular	form	of	decoration	on	Slack	is	with	text	formatting.	Adding	emphasis	(surround	your	text
with	*asterisks*)	or	strikethroughs	(surround	your	text	with	~tildes~),	indenting	the	text	as	a	block	quote

(add	an	angle	bracket	to	the	beginning	of	your	message),	and	adding	code	blocks	(surround	your	text	with
`backticks`)	are	examples	of	formatting	both	bots	and	users	can	apply	to	text.
For	example,	the	following	text:

Hello	Team!
Jon	Bruner	is	taking	a	vacation	between	`12/12`	and	`12/28`.
>	approved	by	*Tim	O’Reilly*

will	render	a	message	like	Figure	8-29.

Figure	8-29.	Text	formatting	in	Slack

Randomization
Now	let’s	talk	about	randomization	of	outputs.	Randomization	is	another	form	of	decoration,	but	one	that
transforms	the	core	part	of	the	conversation.	As	humans,	we	do	not	always	use	the	same	phrase	to	express
the	same	thing.	For	example,	we	will	not	say	“I	understand”	10	times	in	a	row,	even	though	we	want	to
show	that	we	understand.	We	will	use	“got	it!”	“I	see!”	“gotcha,”	and	other	phrases.	Bots	that	do	not
randomize	their	phrases	to	express	confirmation,	agreement,	or	anything	else	that	is	repetitive	in	the
conversation	tend	to	sound	mechanical	and	annoying	to	the	user	after	a	while.

KEY	TAKEAWAY

Bots	that	do	not	randomize	their	phrases	to	express	confirmation,	agreement,	or	anything	else	that	is	repetitive	in	the	conversation	tend	to
sound	mechanical	and	annoying	to	the	user	after	a	while.

An	example	of	lack	of	randomization	is	the	Google	Assistant	bot,	which	always	says	“Yes,	I	can	see
images!”	when	the	user	uploads	a	photo	to	the	conversation	(Figure	8-30).

Figure	8-30.	Google	Assistant	always	posts	the	same	message	when	the	user	uploads	a	photo

While	that	experience	was	delightful	the	first	time	I	saw	this	message,	it	got	old	really	fast,	and	felt	a	little
like	a	debugging	tool	that	the	developer	employed	to	indicate	that	the	bot	has	received	the	image.	A
simple	randomization	of	phrases	like	“A	new	image!”	“Interesting	photo!”	and	“Another	image!”	would
have	made	a	big	difference.	People	expect	randomization.	Moreover,	it	could	be	a	source	of	delight	—
not	knowing	what	the	bot	will	say	makes	it	more	interesting	to	users.	The	fact	that	every	time	my	kids	ask
Alexa	to	“tell	me	a	fact”	it	spits	out	a	new	piece	of	information	makes	the	interaction	very	engaging	for
them.
Keeping	the	conversation	fresh	is	something	that	will	delight	your	users	and	improve	the	chances	of
reengagement.	Users	will	be	waiting	to	see	what	the	bot	will	say	next,	in	the	same	way	they	will	be
inclined	to	interact	again	with	an	interesting	person	with	fresh	new	ideas	and	thoughts.

Priming	the	User	to	Give	the	Right	Information
One	of	the	challenges	in	conversational	interfaces	is	handling	user	inputs.	Users	can	provide	the	same
information	in	many	different	forms.	For	example,	denoting	April	3,	2017,	might	be	done	in	several	ways:

April	3rd
3rd	of	April
3	April	2017
April	3	2017
03/04/2017
4/3/2017
Next	Monday
First	Monday	of	April
Today
Tomorrow

These	are	all	valid	ways	to	say	the	same	thing.	The	team	at	x.ai	spent	a	lot	of	time	on	understanding	the
date	the	user	is	referring	to.	Some	bot	builders	use	artificial	intelligence	to	solve	this	problem,	with	some
success.
There	is	a	way	to	optimize	the	conversation	and	drive	the	user	to	say	the	right	thing	(in	the	right	format),
and	it	is	called	priming.	Getting	the	right	answer	depends	a	lot	on	how	you	frame	the	question.	Instead	of
saying,	“When	would	you	like	the	meeting	to	take	place?”	the	bot	can	say,	“At	what	date	would	you	like
this	meeting	to	take	place?”	This	primes	the	user	to	provide	a	date	format	rather	than	saying	something
like	“The	day	after	tomorrow.”
While	this	is	not	a	bulletproof	solution,	it	lowers	the	error	rate	and	minimizes	the	compensation	efforts
your	service	will	need	to	make,	and	also	provides	an	easy	way	to	streamline	the	learning	process	and
educate	the	user	on	how	to	use	the	bot.

KEY	TAKEAWAY

Getting	the	right	answer	depends	a	lot	on	how	you	frame	the	question.

Another	priming	strategy	is	to	limit	the	options	the	user	has,	improving	your	bot’s	chances	of	predicting
the	response	and	understanding	the	user.
Here	is	an	example:

Bot:	I	am	ready	to	send	the	meeting	invitation	for	your	meeting	on	April	3rd	at	2	p.m.	Would	you	like
me	to	send	it	now	or	modify?

The	funny	thing	is	that	a	lot	of	users	would	answer	“Yes”	to	this	question.	This	sounds	like	a	yes/no
question,	so	the	user	picks	one.	Unfortunately,	“Yes”	is	not	the	answer	we	are	looking	for;	moreover,	it	is
an	ambiguous	answer	that	the	bot	does	not	know	how	to	interpret.
Here	is	another	way	to	say	the	same	thing:

Bot:	I	am	ready	to	send	the	meeting	invitation	for	your	meeting	on	April	3rd	at	2	p.m.	You	can	send	or
modify.	Which	one	would	you	like?

Now	answering	“Yes”	makes	less	sense,	as	this	is	does	not	look	like	a	yes/no	question.	Some	users	might
still	do	that,	but	it’s	much	less	likely.	There	may	even	be	a	better	way	of	encouraging	an	appropriate	reply,
with	visual	hints:

Bot:	I	am	ready	to	send	the	meeting	invitation	for	your	meeting	on	April	3rd	at	2	p.m.	You	can	send	or
modify.	Which	one	would	you	like?

Making	the	options	bold	primes	the	user	to	pick	one	of	these	options	specifically.	There	are	other	priming
options	you	may	be	able	to	use,	and	we	will	discuss	these	in	the	next	chapter	of	this	book,	but	even
without	these,	a	simple	word	choice	or	some	basic	formatting	can	prime	the	user	to	do	the	right	thing.
It	is	also	important	to	consider	user	expectations,	as	Vittorio	Banfi,	cofounder	of	Botsociety.io,	shared
from	his	experience	(Botsociety	is	a	bot-designing	tool):

Some	bots’	designs	have	a	problem	of	aligning	the	user	expectations	with	the	bot’s	purpose	and	capabilities.	For	example,	for	a	train	ticket
booking	bot,	it	is	wrong	to	ask	“Where	do	you	want	to	go?”	This	question	does	not	align	the	user	expectations	with	the	bot	capabilities.
For	example,	the	user	is	not	able	to	understand	immediately	if	the	bot	expects	a	city,	an	address,	or	even	something	more	personal,	like	“I
want	to	go	home.”	Unless	your	bot	is	capable	of	processing	all	of	those	phrases	correctly	(and	it	probably	isn’t),	then	you	will	need	to
design	its	conversation	better,	by	aligning	the	user	expectations	with	the	bot	capabilities.	For	example,	a	far	better	question	would	be:
@bot:	Where	do	you	want	to	go?	You	can	say	for	example	“I	want	to	go	to	Austin.”

Limiting	the	options	for	the	conversation	to	derail	and	applying	simple	priming	techniques	can
significantly	improve	your	bot’s	usability	and	the	experience	users	have	with	it.

Acknowledgment	and	Confirmation
A	specific	set	of	common	use	cases	involves	user	input	or	process	confirmation.	This	is	where	the	bot
acknowledges	the	reception	of	an	input	and	confirms	its	correctness.	It	also	includes	a	bot	asking	the	user
for	confirmation	before	executing	a	specific	process.
Let’s	take	a	look	at	a	few	design	principles	that	should	guide	this	aspect	of	the	conversation.

Responsiveness
A	bot	should	never	ignore	a	user	—	when	a	user	asks	a	question	or	makes	a	comment,	the	bot	should	reply
to	the	user,	either	with	an	acknowledgment	or	with	a	related	sentence.	This	is	true	for	all	input	types,	even
if	the	bot	is	not	designed	to	handle	them	(for	example,	if	the	user	uploads	a	photo	to	a	text-only	bot).	The
bot	should	not	ignore	the	input	—	a	simple	“I	don’t	handle	files	and	images”	might	suffice.

KEY	TAKEAWAY

A	bot	should	never	ignore	a	user.

Chitchat	is	also	an	aspect	of	responsiveness.	Here	is	an	interesting	fact	shared	by	the	team	at	Dashbot,	a
bot	analytics	tool:

72%	of	bots	receive	“hi”	[Figure	8-31]	—	so,	remember	to	have	a	good	response	to	this	greeting.	This	is	a	great	opportunity	to	reinforce
your	brand	and	the	bot’s	personality.

Figure	8-31.	Percentage	of	users	greeting	the	bot

About	12	percent	of	our	Facebook	bots	have	had	users	ask	the	bot	to	tell	a	joke.	Easter	eggs	are	a	great	opportunity	to	both	build	a
personality	for	your	bot	and	“surprise	and	delight”	users.

Many	bot	builders	also	report	that	users	tend	to	thank	their	bot,	or	tell	them	they	love	it.	Simply
acknowledging	these	types	of	input	is	important	for	ongoing	engagement	with	the	bot.
Another	aspect	of	responsiveness	has	to	do	with	the	amount	of	time	the	user	needs	to	wait	to	get	a	reply.	If
a	user’s	request	takes	a	long	time	to	process,	the	bot	should	indicate	that	it	is	working	on	the	request.	This
could	be	implemented	with	a	simple	“working	on	it”	type	of	message,	or	the	“typing”	indicator	provided
by	some	of	the	platforms.	Just	letting	the	user	know	that	the	bot	is	processing	the	request	will	prevent	the
inherent	fear	of	“the	bot	is	not	working”	that	a	lot	of	users	report.
In	very	long-running	processes	it	might	be	useful	to	give	the	users	an	indication	of	when	they	can	expect
the	results.	I	have	seen	a	bot	that	said	“I	will	have	the	report	ready	shortly”	and	actually	posted	the	report
24	hours	later.	Remember	to	set	expectations	right	and	deliver	on	them.

Explicit	Versus	Implicit	Confirmation
Getting	confirmation	from	the	user	is	an	important	step	in	many	workflows.	There	are	two	types	of
confirmations	in	a	conversation:	explicit	and	implicit.

Explicit	confirmation	typically	involves	checking	with	the	user	that	the	input	provided	by	the	user	was
processed	correctly,	or	requesting	permission	to	act.	With	explicit	confirmation,	the	bot	will	not	perform
the	action	until	it	gets	the	confirmation.
Here	are	some	examples	of	explicit	confirmation:

Bot:	I	will	set	your	preferred	address	to	be	155	5th	Street,	San	Francisco.	Did	I	get	that	correctly?
Bot:	I	will	move	the	meeting	to	April	3rd	pending	your	approval.	Please	confirm.

Implicit	confirmation,	on	the	other	hand,	confirms	that	the	input	has	been	received	or	that	an	operation
will	take	place	without	asking	for	user	approval.	Think	of	it	like	a	personal	assistant	sending	you	an	FYI
notification.
Here	are	some	examples	of	implicit	confirmation:

Bot:	I	will	set	your	preferred	address	to	be	155	5th	Street,	San	Francisco.
Bot:	I	will	move	the	meeting	to	April	3rd.

Some	use	cases	require	explicit	confirmation.	For	example,	if	the	bot	is	facilitating	a	bank	transfer,	it	is
very	wise	to	confirm	the	critical	details.	Other	use	cases	do	not	require	an	explicit	confirmation,	like
picking	a	favorite	color	in	a	game	run	by	the	bot.
Explicit	confirmation	is	very	taxing	on	humans.	We	do	not	need	to	confirm	every	aspect	of	our
conversations	with	our	conversational	counterparts.	Use	explicit	confirmation	only	in	use	cases	that
mandate	it,	or	if	you	are	not	confident	that	you	are	processing	the	user	input	correctly.	I	recommend	that
you	default	to	implicit	confirmation	when	the	bot	is	confident	of	the	user	input	and	in	“softer”	use	cases
where	the	cost	of	getting	it	wrong	is	not	very	high.

Avoid	repetition
If	you	can’t	avoid	having	confirmations	throughout	your	bot	conversation,	make	sure	you	follow	the
randomization	principle	discussed	earlier.	It	is	really	annoying	to	have	a	conversation	with	a	bot	that
keeps	saying:	“Do	you	confirm	X?”	“Do	you	confirm	Y?”	Keeping	the	conversation	natural	by
randomizing	the	way	the	user	confirms	the	input	or	action	is	highly	recommended.
This	is	also	true	with	error	messages.	Consider	having	multiple	fallback	messages	and	rotating	them	so
that	any	misunderstanding	doesn’t	seem	like	the	equivalent	to	an	HTTP	404	(Not	Found)	error.	Nobody
wants	to	hit	a	dead	end,	but	if	your	fallback	responses	are	creative	enough,	then	you	might	be	able	to
defuse	the	situation	by	delighting	users	with	the	unexpected.

Accept	user	confirmation	permutations
Not	many	things	are	more	aggravating	than	needing	to	confirm	the	same	thing	many	times.	Make	sure	you
accept	confirmation	in	all	its	permutations:	“Yes,”	“Confirmed,”	“OK,”	“Y,”	“YES,”	and	all	the	many
other	ways	to	say	“I	confirm.”
If	you	can	accept	batch	confirmations,	all	the	better.	Take	for	example	the	Amazon	shopping	flow	—	the
user	gets	a	page	at	the	end	of	the	flow	with	all	the	details	bundled	together	for	confirmation.	Your	bot	can
do	the	same:

Bot:	We	will	deliver	X,	to	your	address	Y,	at	Z	-	confirm	or	modify?
As	you	can	see,	the	bot	is	confirming	a	bundle	of	items	that	compose	a	complete	transaction,	collapsing
three	separate	confirmations	into	one.

Consistency
Conversation	design	should	be	consistent	and	thoughtful	throughout,	in	the	happy	flows	and	in	error	flows.
In	the	same	way	you	would	strive	to	keep	a	consistent	look	and	feel	across	the	pages	of	a	website	and	the
screens	of	a	mobile	app,	you	need	to	keep	a	consistent	experience	in	every	aspect	of	the	conversation.

KEY	TAKEAWAY

Conversation	design	should	be	consistent	and	thoughtful	throughout.

Bot	designers	are	sometimes	not	involved	in	designing	the	feedback	section	or	the	error	flows,	leaving
these	sections	unstyled.	Users	get	surprised	by	—	and	perceive	negatively	—	bots	that	provide	a
delightful	experience	until	something	goes	wrong.
Here’s	an	example	of	inconsistency:

@travel-bot:	I	would	be	delighted	to	book	your	flight.	Where	would	you	like	to	go?
@user:	I	wanna	go	to	SxSW
@travel-bot:	Error	finding	sxsw,	please	re-enter	input.

In	this	example,	the	bot	started	out	as	a	friendly	conversational	agent,	and	turned	into	a	not-so-
approachable	bot	when	an	error	flow	occurred.
Consistency	should	also	be	maintained	when	the	conversation	is	routed	to	a	human	supervisor.	Humans
managing	the	conversation	should	be	aware	of	the	branding	and	the	style	the	bot	provides	as	the	interface
of	the	service,	and	keep	the	conversational	tone	consistent.

Reciprocity
Reciprocity	is	a	key	aspect	of	human	interaction.	Every	conversation	is	composed	of	reciprocal	give	and
take.	Understanding	reciprocity	can	help	a	lot	when	designing	a	productive	conversation.	Here	are	a	few
strategies.

Communicate	Value	Before	Asking	for	Input
Users	are	willing	to	invest	a	lot	in	apps	—	taking	photos,	tagging	friends,	adding	location	details,
describing	preferences,	and	even	giving	credit	card	information	—	as	long	as	they	understand	what	they
are	getting	in	return.	One	of	the	common	mistakes	in	designing	a	conversation	is	to	forget	to	communicate
the	value	to	the	user:

Banking-bot:	Thank	you	for	installing	me.	Let’s	add	your	first	bank	account	-	enter	your	Citibank
account	number	please.

While	this	bot	is	friendly	and	polite,	there	is	no	communication	of	value,	and	therefore	less	incentive	for
trust	and	willingness	to	provide	this	super-sensitive	information.	Making	some	slight	modifications	to	the
conversation	might	improve	that:

Banking-bot:	Thank	you	for	installing	me.	I	am	your	Citibank	bot:	as	such,	I	will	notify	you	of
upcoming	bills,	send	payment	alerts,	and	let	you	do	balance	checks	at	any	time.
Banking-bot:	Let’s	get	started	and	add	your	first	bank	account	-	enter	your	Citibank	account	number
please.

Now	the	user	has	a	clear	understanding	of	the	value	associated	with	the	bot.	There	might	even	be	a
“Wow!	I	want	this”	moment	that	will	help	build	trust	and	excitement	about	engaging	with	the	bot.	Users
will	potentially	then	be	more	inclined	to	provide	sensitive	information	and	cooperate	with	the	bot.

Initiate	and	Revive	Engagement	with	Questions	and	Offers
Facebook	reported,	at	one	of	its	recent	developer	events,	that	a	high	percentage	of	user	engagement	is
initiated	by	bot	engagement.	Having	your	bot	ask	a	question	or	offer	an	action	kick-starts	a	reciprocal
engagement.	Humans	have	been	trained	to	answer	questions	and	accept/reject	offers	—	it	is	considered
impolite	to	ignore	such	things.
On	the	other	hand,	you	need	to	make	sure	the	questions	or	offers	are	relevant	and	timely.	Because	this	is
an	intrusive	action,	the	user	might	get	the	feeling	that	the	bot’s	interjections	are	spammy	or	irrelevant.	A
good	way	to	make	sure	you	have	consent,	and	make	your	intent	clear,	is	to	get	approval	from	the	user	for
these	interactions:

Deal-bot:	Would	you	like	me	to	send	you	the	daily	deals?
Expense-bot:	Should	I	send	you	a	reminder	to	do	your	expense	report	on	the	25th	of	each	month?

Now	the	user	knows	to	expect	scheduled	alerts	and	offers,	and	is	aware	of	the	value	associated	with
these.

Proactivity
Related	to	the	idea	of	reciprocal	conversation	is	the	mutual	proactivity	of	all	parties	in	the	conversation.
Humans	will	expect,	and	in	most	cases	positively	respond	to,	a	timely	suggestion	from	the	bot.

KEY	TAKEAWAY

Humans	will	expect,	and	in	most	cases	positively	respond	to,	a	timely	suggestion	from	the	bot.

Figure	8-32	shows	how	Statsbot,	a	marketing	bot	for	work,	offers	the	user	to	do	another	segmentation
analysis.

Figure	8-32.	Statsbot	engaging	proactively	with	the	user

The	bot	actually	“upsells”	the	next	interaction,	educating	the	user	on	the	go	about	other	(or	new)	features
of	the	bot	and	improving	the	chances	of	future	engagement	with	the	bot.	The	key	to	an	effective	proactive
engagement	is	doing	it	in	a	timely	manner,	connected	to	the	user’s	original	intent.	Providing	the	user	the
ability	to	subscribe	to	a	notification	of	the	same	metric	(as	you	can	see	in	the	button	in	Figure	8-32)	is
another	example	of	proactively	engaging	the	user	and	promoting	further	interaction.	Timing	is	tricky,	but
being	proactive	after	they’ve	experienced	success	or	achieved	a	target	is	a	good	way	of	engaging	the	user.
Some	designers	are	afraid	of	this	type	of	interaction,	considering	it	pushy,	but	if	done	right,	this	can	be	a
great	way	to	improve	the	value	of	the	overall	conversation.	You	will	be	surprised	what	users	will	do	if
you	just	ask	them	nicely	and	at	the	right	time.
We	will	cover	this	topic	in	more	detail	when	we	discuss	bot	engagement	methods	in	Chapter	12.

Common	Courtesy
There	are	a	lot	of	reciprocal	behaviors	in	a	good	conversation	that	we	as	humans	might	refer	to	as
common	courtesy	—	thanking	someone	for	doing	something,	acknowledging	your	counterpart’s	inputs,	and
more.
Here	is	a	common	mistake	a	bot	might	make:

Travel-bot:	Which	hotel	would	you	like	to	book	in	Austin	for	TalkAbot?
User:	Wait,	I	need	to	rent	a	car	first.
Travel-bot:	Which	hotel	would	you	like	to	book	in	Austin	for	TalkAbot?

The	frustration!	The	bot	completely	ignored	the	user	and	kept	on	going	in	the	conversion	without	taking
into	account	common	courtesy.	Here	is	a	slightly	different	way	to	have	this	conversation:

Travel-bot:	Which	hotel	would	you	like	to	book	in	Austin	for	TalkAbot?
User:	Wait,	I	need	to	rent	a	car	first.
Travel-bot:	Sorry!	I’m	not	capable	of	renting	cars,	but	I	can	help	you	book	a	hotel	room.	Which	hotel
would	you	like	to	book	in	Austin	for	TalkAbot?

Now	the	bot	has	acknowledged	the	user’s	request,	expressed	empathy,	and	continued	the	conversation.
While	the	user	did	not	get	exactly	what	they	needed,	the	conversation	is	much	less	frustrating.
Another	aspect	of	common	courtesy	is	knowing	when	to	shut	up.	Bots	should	be	aware	of	when	the	user
would	like	to	suspend	or	delay	the	conversation.	Supporting	commands	like	“pause,”	“stop,”	or	“dnd,”	or
just	delayed	responses,	is	recommended	in	many	use	cases	(Figure	8-33).

Figure	8-33.	Handling	a	pause	command

Other	aspects	of	common	courtesy	might	be	giving	the	user	enough	time	to	perform	an	action,	providing
sensitive	information	privately	(we	will	talk	about	that	in	depth	in	the	next	section),	and	being	empathetic
to	the	user’s	needs	and	pains.	All	of	this	will	result	in	a	nicer	and	more	humane	bot	that	is	easier	and
more	pleasant	to	work	with.

Team	Versus	Private	Interactions
Having	a	conversation	as	a	team	might	be	a	completely	different	experience	to	a	private	conversation.
Bots	working	in	a	team	context	need	to	know	how	to	work	with	multiple	inputs	from	multiple	team
members.	Figure	8-34	shows	an	example.

Figure	8-34.	Accepting	input	from	multiple	users

The	bot	in	this	use	case	needs	to	know	how	to	work	with	multiple	users	in	the	same	channel	or
environment.	The	bot	needs	to	acknowledge	input	by	user	and	communicate	to	different	members	in	the
channel.
In	team	environments,	the	bot	can	participate	in	different	types	of	conversations.	Let’s	take	Slack	for
example.	The	options	include:
1.	 Public	channel	—	.	A	channel	that	is	open	to	all	members	of	the	team.	The	#general	channel	is	an

example	of	such	a	channel.
2.	 Private	channel	—	.	A	channel	with	limited	access.	Only	invited	team	members	can	participate	in

this	channel.	Members	can	be	added	to	or	removed	from	the	channel	at	any	time.
3.	 Multi-party	direct	message	(MPDM)	—	.	A	private	conversation	that	is	happening	between	a

limited	set	of	users.	Users	cannot	be	added	to	or	removed	from	this	conversation	after	it	is	initiated.
4.	 Direct	message	(DM)	—	.	A	private	conversation	between	two	users.	The	bot	can	be	one	of	these

users.
Each	of	these	interaction	modes	can	be	used	by	a	bot	in	a	conversation.	In	a	channel	conversation	(or
MPDM),	the	bot	needs	to	be	added	to	the	channel	in	order	to	send	messages	to	and	receive	messages	from
users	in	that	channel.
When	the	bot	receives	a	message	from	a	user	in	a	team	environment	such	as	Slack,	the	bot	will	receive
meta	information	such	as	the	team	ID,	the	user	ID,	and	the	channel	ID.	Bots	can	also	list	the	users	in	a
given	team	or	channel	and	build	their	conversation	accordingly.	Bots	can	even	create	a	group
conversation	by	creating	a	channel	or	an	MPDM,	adding	team	members	to	it,	and	initiating	a	conversation
there.

Choosing	the	Right	Interaction	Mode
When	designing	a	conversation	in	a	team	context,	you	have	the	flexibility	to	start	a	conversation	in	one
mode	and	move	to	another	mode,	based	on	the	privacy	needs	and	process	requirements.
Here	is	how	a	hiring	bot	conversation	can	move	from	a	private	conversation	to	other	modes	of

interaction:
1.	 Private	hiring	channel,	#hire-requests:

Bob	(hiring	manager):	@hiring-bot	please	start	a	hiring	process	for	a	new	frontend	developer	-
Lili	Cheng	lili@gmail.com.
Hiring-bot:	Sure	Bob!	Starting	a	hiring	process	now.	@Steph	-	please	confirm	we	have	the
headcount.
Steph	(HR	manager):	Confirmed

2.	 Direct	message	(Bob	and	bot):
Hiring-bot:	Hi	Bob!	Your	candidate,	Lili	Cheng,	has	passed	3	interviews	successfully!
Bob:	Fantastic!	Please	proceed	to	giving	her	an	offer	(L7	Eng)

3.	 MPDM	(Steph,	Bob,	bot):
Hiring-bot:	I	would	like	to	confirm	the	compensation	details	for	candidate	Lili	Cheng.	Here	are
the	package	details:	...
Bob:	Sounds	good	to	me
Steph:	Yes,	sounds	good.

4.	 Public	new	hire	channel:
Hiring-bot:	Hi	everyone,	please	welcome	to	the	team	our	latest	new	hire,	Lili	Cheng!
Mike	Brevoort:	Yaay!
Lauren	Kunze:	Welcome	to	the	team!
...
Lili	Cheng:	Thanks	everyone!

As	you	can	see,	the	bot	manages	the	hiring	process,	moving	from	private	chat,	to	multi-party	direct
message,	to	public	announcement.	If	you	are	building	for	a	team,	you	will	need	to	inspect	your
communication	and	see	what	is	the	best	mode	of	interaction.
Things	to	think	about	when	choosing	an	interaction	mode:

Data	sensitivity
You	might	want	to	share	some	things	in	private	with	some	users	(for	example,	the	compensation
package	in	the	case	of	our	hiring	bot).

Private/personal/restricted	interactions
A	direct	1:1	bot	is	great	for	personal	task	management	such	as	to-do	bots	and	personal	assistants.

Team	dynamics
Will	you	need	to	loop	people	into	the	conversation?	Is	there	an	acceleration	path	you	need	to	follow?
Remember	that	members	can	be	added	to	private	channels	but	not	to	direct	messages.

Team/bot	culture
Sometimes	peer	recognition	is	done	in	private,	but	some	teams	love	to	put	it	in	a	public	channel.

Compliance
Direct	messages	are	not	always	accessible	to	admins	and	regulation	apps.

Some	interactions	can	be	done	in	private	mode	more	easily	because	the	bot	needs	the	user	@mentions	to
direct	messages	to	a	specific	person	in	a	channel.	Direct	messages	do	not	require	an	@mention.

Using	@Mentions
In	some	messaging	platforms	the	bot	can	use	an	@mention	to	direct	a	message	to	a	specific	user.	This
denotes	the	message	visually	as	being	intended	for	a	particular	user,	and	usually	creates	a
notification/alert	for	the	mentioned	user.
Here	are	a	few	examples	of	@mentions:

Bot:	@amir	-	would	you	like	to	set	this	meeting	up?
Bot:	Setting	the	all	hands	meeting	for	April	4th.	CC:	@amir	@jassim
Bot:	As	agreed	by	@ceci	and	@amir,	we	will	hold	the	meeting	this	Friday!

All	these	@mentions	create	notifications	for	the	mentioned	users.	Remember	that	@mentions	are	a	way	to
escalate	a	message.	Users	might	read	a	message	even	when	they	are	not	@mentioned,	but	using	the
@mention	will	send	them	a	notification	that	will	improve	the	chances	of	them	seeing	the	message.
Some	@mentions	are	special.	Some	platforms,	like	Slack,	support	@here,	@channel,	and	@group-name;
all	of	these	are	a	way	to	notify	and	escalate	the	conversation	to	multiple	members	of	the	team.
Bots	can	also	be	@mentioned	—	in	Kik,	a	bot	will	receive	a	message	from	a	user	using	an	@mention	of
the	bot’s	name	even	if	the	user	has	not	installed	the	bot.	In	Slack,	developers	can	filter	messages	coming
as	direct	mentions	and	run	code	whenever	that	happens.	Using	the	@mention	in	Kik	is	a	good	way	to
improve	bot	discovery	—	when	two	users	talk	about	a	bot	and	the	bot	is	getting	a	notification	of	the
conversation,	it	could	be	a	way	to	initiate	bot	interaction.
Creating	channels	is	also	a	great	way	to	facilitate	processes.	In	Slack,	for	example,	every	feature	is
represented	by	a	#feat-<feature-name>	and	launches	are	discussed	in	a	#launch-<feature-name>.	In
addition	to	creating	channels,	bots	can	archive	channels	when	a	process	is	done.	Creating	a	channel,
inviting	the	relevant	members,	and	archiving	the	channel	at	the	end	of	the	process	can	be	a	great	way	to
utilize	the	team	and	channel	infrastructure	to	implement	business	processes.
Remember	that	channels	are	a	limited	resource	in	some	platforms	and	creating	too	many	channels	can
impair	the	user	experience,	so	if	you	need	to	create	a	lot	of	channels	on	the	fly	you	might	want	to	consider
an	alternative.

Training	and	Onboarding
We	discussed	onboarding	earlier,	but	it	is	important	to	stress	that	onboarding	is	very	different	in	a	private
conversation	with	one	person	and	in	a	team	environment,	where	a	bot	is	installed	by	one	member	and	then
used	by	multiple	members.
Use	the	onboarding	of	the	bot	to	train	and	educate	users	about	their	role	in	the	process	that	the	bot	is
facilitating.	You	can	also	listen	to	the	event	of	a	user	being	added	to	a	team	or	a	channel	and	trigger	a
personal	training	session.
Here	are	a	few	examples:

Bot:	Hello	Team!	@don	just	installed	me	:)	I	am	a	coffee	ordering	bot	and	you	can	use	me	starting
today	to	order	coffee	at	the	expense	of	the	company!	Hurray!	DM	me	anytime	with	“coffee!”
Bot:	<DM>	I	see	you	have	joined	the	legal	channel.	I	am	the	legal	bot	and	will	help	you	review	legal
documents.	You	just	need	to	upload	contracts	to	the	#legal	channel	and	I	will	send	you	comments	about
them.

Knowing	When	to	Shut	Up	in	a	Team	Conversation
One	of	the	important	things	to	remember	about	a	bot	in	a	team	conversation	is	that	most	of	the

communication	is	not	directed	at	the	bot.	The	bot	might	“hear”	a	lot	of	noise	that	is	not	relevant	to	the
process	it	needs	to	run.
Bot	builders	need	to	learn	to	filter	the	signal	from	the	noise,	and	only	reply	to	messages	that	are	addressed
to	the	bot	or	that	are	a	part	of	the	conversation	it	is	having.	Using	rich	interaction	can	mitigate	some	of	this
confusion;	we	will	discuss	this	in	the	next	chapter.

Error	Handling
To	err	is	human;	to	fix	the	error	and	get	the	conversation	going	again	is	your	responsibility.
Most	bot	developers	are	astonished	when	they	look	at	their	logs	and	see	what	humans	are	saying	to	their
bots.	Conversational	divergence	is	very	common,	and	error	is	just	a	part	of	it;	many	users	provide	faulty
information	to	a	bot	just	to	“play”	with	it	and	see	how	smart	it	is.
Looking	at	logs,	developers	report	human	inputs	including:

User:	dgdg	dffdgd
User:	What	are	you	wearing	today?
User:	Are	you	bot	or	human?

Irrelevant	conversation	is	very	common	in	bot	interactions.	Figure	8-35	is	a	real-life	example	of	a	user
conversation	with	the	Poncho	weather	bot.

Figure	8-35.	Poncho	getting	inputs	that	are	off-topic

This	sort	of	thing	happens	often	and	can	occur	at	any	point	in	the	conversation.
Examples	of	divergence	in	conversations	can	be	very	subtle,	and	this	may	be	done	with	positive	intent.
Let’s	go	back	to	our	broken	conversation	example	from	earlier	in	this	chapter:

User:	Hello	@coffeebot
Coffee-bot:	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	Wait,	no!	I	want	a	cappuccino!

There	are	various	ways	you	can	proceed	from	here.

Course	Correction

Course	correction	relies	on	the	bot’s	ability	to	pull	the	user	back	into	the	happy	flow	of	the	conversation.
Here	is	an	example	of	getting	the	conversation	back	online	and	restricting	the	user	to	the	happy	flow:

...
User:	Wait,	no!	I	want	a	cappuccino!
Coffee-bot:	We	do	not	have	the	requested	coffee	today	-	we	have	regular	coffee	and	espresso.	What
would	you	like	today?
User:	OK,	let’s	go	with	the	regular	coffee.

There	is	another	way	to	handle	a	request	from	a	user	that	cannot	be	fulfilled	at	the	moment,	and	that	is	to
collect	that	information	and	use	it	to	grow	your	product.
Here	is	an	example:

...
User:	Wait,	no!	I	want	a	cappuccino!
Bot:	We	currently	do	not	serve	cappuccino	(you	can	order	regular	coffee	or	espresso),	but	I	will	also
notify	you	when	we	start	to	serve	cappuccino.

The	bot	can	also	have	a	“special	coffee”	request	flow	built	into	it,	potentially	involving	human
intervention,	but	that	is	a	complexity	we	will	avoid	at	this	point	and	talk	about	in	the	next	section.
Josh	Barkin,	cofounder	and	CEO	of	Wordhop,	a	CRM	toolkit	built	for	the	messaging	era,	had	an
interesting	insight	about	course	correction:

If	the	communication	breakdown	with	users	occurs	in	the	middle	of	a	conversation,	and	you’re	able	to	maintain	context,	you	can	serve	up
two	messages	in	succession.	The	first	is	the	fallback	message	to	indicate	misunderstanding,	and	the	second	is	a	reminder	of	the	context.
In	this	sense,	you’re	able	to	move	the	focus	back	to	your	goals	and	not	let	the	misunderstanding	become	a	distraction	in	your	user
experience	[see	Figure	8-36].

Figure	8-36.	Getting	the	user	back	on	track

Another	redirection	strategy	is	to	ask	the	user	if	they	would	like	the	bot	to	escalate	the	request	and	if	they	concur,	you’re	able	to	funnel
the	user	into	another	response	channel	and	minimize	the	risk	of	losing	them.

While	this	seems	trivial,	course	correction	is	still	quite	uncommon	in	bot	conversations.	We	still	see	a	lot
of	bots	just	doing	this:

...
User:	Wait,	no!	I	want	a	cappuccino!
Coffee-bot:	I	do	not	understand	your	request.

This	is	what	we	call	“dead	end”	—	a	savvy	user	will	try	to	reignite	the	conversation,	but	most	users	will
get	frustrated	and	abandon	the	conversation.	A	dead	end	is	the	worst	possible	outcome,	other	than
outputting	an	error	with	debugging	information	(I	have	seen	that	as	well).	Even	if	you	do	not	want	to
course	correct,	send	the	user	to	a	viable	flow	in	the	conversation.

Human	Intervention
Deferring	to	a	human	supervisor	is	a	viable	and	common	solution	to	error	handling	with	bots.	This	could
be	transparent	to	the	user,	where	a	human	supervisor	intercepts	the	conversation	and	takes	over,	or	the	bot
can	state	that	it	is	deferring	to	a	human	to	get	the	problem	sorted:

...
User:	Wait,	no!	I	want	a	cappuccino!
Coffee-bot:	Let	me	connect	you	with	my	human	supervisor.

The	human	can	then	follow	up	on	the	conversation	and	let	the	user	down	with	empathy,	or	go	to	the	coffee
shop	and	get	them	a	cappuccino	as	an	exception.
It	is	important	to	note	that	users	interacting	with	bots	might	develop	expectations	of	immediate	response,
which	might	not	be	available	when	a	human	follows	up.	So,	setting	expectations	about	when	the	user	will
hear	back	from	the	human	might	be	a	good	idea:

Coffee-bot:	Let	me	connect	you	with	my	human	supervisor.	This	might	take	a	few	minutes.
You	can	build	a	process	of	course	correction,	followed	by	human	intervention	if	that	fails.	In	some
instances,	support	like	this	is	an	expected	pattern	—	the	bot	serves	as	a	first	line	of	defense	and	the	human
supervisor	steps	in	to	provide	assistance	in	cases	where	the	bot	fails.

Restarting	the	Conversation
While	it	can	be	annoying,	restarting	the	conversation	might	be	a	viable	choice	when	you	cannot	have	a
human	supervisor	who	can	step	in	or	cannot	effect	a	course	correction,	navigating	the	user	back	to	the	last
point	in	the	conversation.	Restarting	the	conversation	should	be	avoided,	but	is	still	better	than	a	dead	end
in	many	use	cases.

Redirecting	to	Another	Bot
This	is	not	a	common	practice,	but	it	can	be	a	delightful	one.	This	insight	was	shared	with	me	by	Dr.
Barbara	Ondrisek,	founder	of	Mica,	the	Hipster	Cat	Bot,	a	bot	that	helps	you	discover	hip	places	around
the	world:

We	realized	we	could	not	create	an	omnipotent	bot	that	answered	all	the	questions	in	the	world.	Even	Siri	and	Alexa	have	their
limitations.	But	what	we	did	was	to	redirect	people	to	other	bots!	When	users	ask	for	the	weather,	Mica	says	the	following	[Figure	8-37]:

Figure	8-37.	Bots	recommending	other	bots

Mica	recommends	Poncho,	the	weather	cat	bot!	And	when	users	ask	Poncho	where	to	go,	he	responds	with	a	link	to	Mica.	In	the	future
bots	might	also	talk	to	each	other!

By	connecting	the	user	with	another	bot	that	can	address	the	user’s	intent,	Barbara	is	able	to	resolve	an
error,	delight	the	user,	and	generate	traffic	to	a	fellow	cat	bot.	In	the	future	there	might	also	be	a	potential
revenue	stream	that	can	come	from	bots	sending	users	to	each	other.

Keeping	It	Consistent
It’s	important	to	note	that	whatever	strategy	you	apply	when	handling	errors,	your	bot	must	keep	a
consistent	persona	throughout	the	conversation.	A	delightful	banking	bot	that	is	“always	happy	to	help”
cannot	start	spitting	“error	524,	invalid	input”	—	that	would	create	dissonance	and	will	antagonize	the
user.
Oren	Jacob,	the	CEO	of	PullString,	a	conversational	tool	we	will	review	later,	had	a	wonderful	quote:
“Darth	Vader’s	true	personality	will	not	show	when	you	ask	him	about	the	Death	Star,	it	will	show	when
you	ask	him	about	the	price	of	tomatoes.”	The	character	of	your	bot	will	shine	in	edge	cases	where	the	bot
does	not	know	how	to	handle	the	user’s	requests.

Learning	from	Your	Bot’s	Mistakes
Conversation	design	should	be	done	with	a	growth	mindset.	Designing	a	conversation	is	an	ongoing
process	of	learning	from	your	bot’s	mistakes.	Looking	at	all	the	intents	your	bot	failed	to	understand,	all
the	failed	conversations,	and	all	the	requests	that	your	bot	could	not	fulfill,	is	a	wonderful	learning
experience.	Most	bot	designers	collect	these	conversations	and	sort	them	by	how	often	they	happen.	If	the

bot	constantly	misses	a	specific	intent	or	offers	the	intent	too	often,	it	might	be	time	to	fine-tune	the	text-to-
intent	mapping.	If	the	users	keep	asking	the	bot	to	do	something	it	can’t,	it	might	be	a	good	opportunity	to
build	a	process	to	fulfill	that	need.

KEY	TAKEAWAY

Designing	a	conversation	is	an	ongoing	process	of	learning	from	your	bot’s	mistakes.

A	secondary	iteration	is	capturing	frustration	words	that	indicate	that	the	user	is	not	happy	with	the
conversation	or	the	service	and	analyzing	them.
This	is	an	ongoing	exercise	—	your	bot	should	always	be	“growing	and	improving”	and	the	bot’s	design
should	be	continually	optimized.

Help	and	Feedback
In	many	bots,	the	help	and	feedback	sections	of	the	conversational	interface	are	overlooked.	Much	like
onboarding,	offering	help	is	critical	to	the	bot’s	success,	and	feedback	provides	important	information	to
you	that	you	can	use	in	order	to	improve	your	bot’s	design.

Providing	Help
Help	should	always	be	available	to	the	user	—	if	a	user	at	any	point	in	the	conversation	says	“Help”	or
“Help	me”	or	any	variant	of	this,	the	bot	should	move	to	a	help	mode.	Help	can	be	as	simple	as	repeating
the	section	in	the	onboarding	script	that	teaches	the	user	how	to	use	the	bot.	Figure	8-38	shows	how	I
implemented	it	in	my	Wordsbot.

Figure	8-38.	WordsBot	responding	to	a	request	for	help

This	is	a	pretty	simple	and	effective	method	with	task-led	bots.	The	bot	reminds	the	user	how	to	use	the
bot	to	achieve	the	required	task.	In	a	more	complex,	multitask	bot	such	as	Google	Assistant,	you	might
want	to	point	out	the	top-level	navigation	tasks	(Figure	8-39).

Figure	8-39.	In	Google	Assistant,	requesting	help	takes	you	back	to	the	top-level	navigation

An	advanced	version	might	be	to	provide	contextual	help,	relevant	to	the	point	of	the	conversation	the
user	is	at	with	the	bot.
For	example,	in	our	coffee	bot	it	could	work	like	this:

Coffee-bot:	What	would	you	like	today?	We	have	regular	coffee	and	espresso.
User:	Help	<or	Help	me	choose>
Coffee-bot:	Help	with	choosing	a	coffee:	Espresso	is	a	small,	mid-day	drink	popular	in	Italy.
Recommended	for	a	quick	energy	boost.
Coffee-bot:	Regular	coffee	comes	in	3	sizes	—	large,	medium,	small	—	and	is	popular	in	the	USA.
Recommended	for	sit	and	relax	times.
Coffee-bot:	For	general	help	please	type	help	again.

In	this	advanced	use	case	you	need	to	build	help	flows	for	different	steps	of	the	conversation.	These	help
flows	can	drive	conversions,	guiding	users	through	the	conversation	funnel	—	you	might	even	prime	the
user	to	make	the	“right”	choice	with	a	creative	help	flow.
Help	should	be	available	at	any	point,	but	in	a	team	context	help	text	provided	for	one	user	might	be	seen
as	spammy	by	other	members	of	the	team,	and	it	might	be	better	offered	in	a	private	or	ephemeral	(visible
only	to	the	user)	way.	Some	platforms	let	you	send	private	messages	to	the	user,	either	in	the	channel	or	in
a	direct	message.	Unless	the	help	text	is	likely	to	be	useful	in	a	team	context,	it	is	best	to	provide	the	help
in	a	private	environment.
Analyzing	when	a	user	is	requesting	“Help”	can	contribute	to	the	improvement	of	your	bot.	If	you	notice

that	a	lot	of	users	get	stuck	and	ask	for	help	in	a	particular	place	in	the	conversation,	it	might	be	wise	to
rework	the	script	or	even	restructure	the	conversation.	Requests	for	help	might	indicate	a	broken	part	of
the	conversation,	most	commonly	around	initial	bot	engagement.

Soliciting	Feedback
Feedback	is	a	way	for	users	to	provide	you	with	information	about	their	experience	with	the	bot.	Google
Assistant	enables	this	throughout	the	interaction	(Figure	8-40).

Figure	8-40.	Google	Assistant	invites	user	feedback	throughout	the	experience

This	might	look	to	you	a	little	too	intrusive	as	a	way	to	ask	for	feedback,	but	this	is	an	early	beta	version
of	the	Google	Assistant	bot,	and	the	team	is	really	looking	for	user	input.
There	are	other	ways	to	gather	user	feedback	in	later	stages	of	your	bot’s	conversation:

Support	the	“feedback”	command
This	should	be	a	best	practice	for	all	bots.	Whenever	a	user	says	“feedback,”	start	a	feedback
conversation.

End	a	conversation	with	a	request	for	feedback
Especially	when	the	conversation	is	task-based,	ask	for	the	user’s	feedback	at	the	end.

Capture	keywords
In	many	cases	you	can	get	implicit	user	feedback	by	looking	for	certain	words.	Users	tend	to	say	“thank
you”	and	even	“I	love	you”	when	a	task	is	well	done.	You	can	guess	the	words	your	users	might	say
when	they	get	lost	or	are	having	problems	with	the	bot’s	functionality.	Capturing	these	keywords	and
analyzing	them	can	give	you	a	lot	of	insightful	information.

Closing	Thoughts
In	this	chapter,	we	covered	different	aspects	of	text-based	conversation	—	we	discussed	the	importance
and	role	of	onboarding,	then	reviewed	topic-led	conversations,	task-led	conversations,	and	the	key
differences	between	them.
Next,	we	covered	some	best	practices	when	thinking	about	conversations	in	both	a	team	context	and	a
private	context.	We	reviewed	ways	to	optimize	the	conversation	and	handle	errors	and	feedback,	and	saw
a	few	tricks	that	can	prime	the	user	to	provide	the	inputs	we	need	in	the	format	we	need	them.	This	was	a
lot	of	theory	to	digest	—	we	will	put	this	theory	into	practice	in	Chapter	16	and	Chapter	17.
In	the	next	chapter	we	will	review	rich	interactions	and	controls	that	can	help	us	create	better
conversations.

Chapter	9.	Rich	Interactions
Use	a	picture.	It’s	worth	a	thousand	words.

—	TESS	FLANDERS

RICH	INTERACTIONS	AND	CONTROLS	are	a	great	way	to	simplify,	optimize,	direct,	enrich,	and	sometimes
just	replace	text-based	conversations.	These	are	also	the	most	volatile	aspects	of	each	bot	platform.	Most
platforms	support	multiple	types	of	rich	interactions	and	controls,	but	each	platform	implements	these	in	a
different	way	(similarly	to	how	in	the	mobile	world,	a	button	will	look,	and	even	act,	differently	on
Android	and	iOS).	Because	of	all	of	the	permutations	and	ongoing	changes,	it	would	be	extremely	tedious
and	ineffective	to	cover	all	the	nuances	of	each	platform.	We	will	review	different	implementations	and
show	differences	between	platforms,	but	we’ll	focus	on	the	most	common	chat	platforms	and	use	cases.
Fine-tuning	the	balance	of	rich	interaction	and	text-based	interaction	is	a	matter	of	understanding	your	use
case.	In	a	task-led	conversation	you	might	want	to	over-index	on	rich	controls,	in	order	to	work	around
lengthy	conversations.	In	a	topic-led	discussion,	you	might	want	to	over-index	on	natural	conversation,
and	let	the	user	enjoy	the	chitchat	and	lengthier	discourse.

KEY	TAKEAWAY

Rich	interaction	and	controls	are	a	great	way	to	simplify,	optimize,	direct,	enrich,	and	sometimes	just	replace	text-based	conversations.	In	a
task-led	conversation	you	might	want	to	over-index	on	rich	controls,	in	order	to	work	around	lengthy	conversations.

Files
Almost	all	platforms	support	multiple	file	types	that	can	be	added	to	the	conversation	—	both	users	and
bots	can	add	files	as	part	of	their	interaction,	enriching	the	conversation	as	well	as	facilitating	business
processes.
The	LawGeex	bot	is	a	legal	bot	that	helps	you	evaluate	contracts.	Describing	the	contract	in	a
conversation	would	be	impossible,	and	pasting	it	as	text	in	a	chat	would	be	cumbersome	as	contracts	are
usually	kept	in	.doc	files.	As	an	alternative,	the	LawGeex	bot	asks	the	user	to	upload	the	file	and	starts	the
review	process	once	the	file	is	uploaded	(Figure	9-1).

Figure	9-1.	LawGeex	allows	users	to	upload	contracts	as	.doc	files

There	are	many	other	file	formats	your	bot	can	support,	and	we	will	dive	into	some	of	the	more	common
ones	at	length	in	this	chapter.	But	as	a	general	best	practice,	think	about	how	you	can	use	files	as	part	of
your	flow.	Even	taking	the	simple	example	of	the	coffee	bot	from	the	previous	chapter,	you	are	mandated
by	law	to	provide	a	receipt	at	the	end	of	a	business	transaction.	Posting	a	receipt	after	checkout	as	an
image	or	a	.pdf	file	would	be	a	great	way	to	fulfill	that	requirement.	This	is	also	useful	for	your	users
because	they	can	always	go	back	and	search	for	their	coffee	receipts.
When	a	user	uploads	a	file	in	a	format	that	your	bot	does	not	support,	the	bot	should	provide	an	error	flow
that	will	help	the	user	understand	what	to	do.	For	example,	if	the	user	uploads	a	.docx	file	while	your	bot
only	supports	.doc	files,	the	bot	should	guide	the	user	to	repost	the	file	in	the	appropriate	format.	Even	if
your	bot	does	not	support	any	file	input,	it	should	expect	to	get	files	and	provide	an	appropriate	error/help
flow.

When	to	Use	Files	in	a	Conversation
Not	every	conversation	needs	to	involve	files.	Use	files	in	a	conversation	when	the	work	being	done	is	on
the	file	itself.	Examples	might	be	Word	docs	in	enterprise	productivity	use	cases,	or	PDF	files	of	detailed
reports	or	read-only	documents	such	as	receipts	or	purchase	orders).	Think	of	use	cases	where	it	is	easier
for	the	user	to	upload	a	file	to	the	chat	instead	of	typing	in	the	information	manually,	as	in	a	case	of
expense	reports.	Remember,	be	ready	to	receive	a	file	from	a	user	and	handle	it	with	grace,	even	if	your
use	case	does	not	support	files.

Audio
Audio	is	an	important	aspect	in	some	bots.	In	many	households,	Alexa	serves	as	a	music	player.	“Alexa,
play	X”	is	a	commonly	used	skill	of	this	Amazon	bot.
Audio	files	are	also	useful	in	use	cases	where	you	want	to	post	recordings	in	a	conversation,	in	order	to
store	and	collaborate	on	them.	An	example	of	that	would	be	a	bot	that	helps	you	to	initiate	a	call	and
stores	a	recording	of	the	call	in	the	chat	client.
Audio	serves	for	some	bots	as	the	primary	input	mechanism	for	the	user.	From	Siri	to	Google	Home,	the
primary	interface	of	most	super	bots	is	a	vocal	user	interface	(VUI).	As	we	are	focusing	on	chat	platforms
in	this	book,	we	will	talk	only	briefly	about	this	type	of	interface,	later	in	the	book.
Note	that	audio/voice	might	not	be	an	effective	medium	in	use	cases	where	users	do	not	feel	comfortable
playing	the	bot’s	output	or	voicing	their	intent	out	loud.	This	type	of	engagement	is	usually	optimal	for
hands-free,	private	(not	in	public)	interaction.

Videos
Videos	are	a	great	way	to	relay	information,	entertain,	and	provide	a	rich	experience	that	is	very	different
from	a	text-based	experience.	Videos	are	an	engaging	format	for	many	users,	and	especially	for	younger
audiences.	Many	bots	on	Kik	use	videos	to	enrich	the	interaction,	from	providing	style	review	videos	to
funny	video	games.	Some	video	services	have	actually	created	video	bots	on	this	platform	(Figure	9-2).

Figure	9-2.	The	Vine	video	bot	on	Kik

In	other	use	cases,	you	can	use	videos	as	part	of	your	onboarding	script	to	help	users	understand	how	to
use	the	bot.	Bots	can	also	pull	videos	from	other	services	and	post	links	into	a	conversation	—	think	of	a
news	bot	that	posts	links	to	videos	of	news	events	as	they	happen.	We	will	discuss	more	about	posting
links	in	a	later	section	of	this	chapter,	but	some	links	from	trusted	video	providers	can	unfurl	(create	a
playable	preview)	and	show	inline	in	a	chat	client.
In	the	example	in	Figure	9-3,	I’ve	asked	the	Help-desk	bot	to	provide	help	with	restarting	an	iPhone.
Providing	a	link	to	a	YouTube	video	that	explains	how	to	do	this	is	a	lot	more	useful	than	describing	it	in
text.	Notice	that	the	bot	does	not	upload	the	video;	just	posting	the	link	in	the	conversation	makes	it

available	to	watch	embedded	inline	in	the	Slack	client.

Figure	9-3.	A	short	video	can	be	worth	a	thousand	words

When	to	Use	Videos	in	a	Conversation
Sometimes	it’s	appropriate	to	pull	preexisting	videos	into	the	context	of	the	conversation.	Find	use	cases
where	videos	provide	a	more	compelling	engagement,	such	as	product	reviews.	Explore	using	videos	to
educate	the	users	about	your	bot,	its	usefulness,	and	ways	to	work	with	it	(you	can	use	videos	or	animated
GIFs,	as	discussed	next).	Remember	that	users	can	upload	videos	into	a	conversation	with	the	bot	as	well.

Images
Images	are	one	of	the	most	common	rich	interactions	across	all	platforms,	and	probably	the	most	visually
consistent.	Images	are	useful	as	some	information	is	much	easier	to	relay	in	an	image	than	in	words.
Figure	9-4	shows	how	the	Kip	bot	uses	images	when	presenting	shopping	search	results	on	Slack.

Figure	9-4.	The	Kip	shopping	bot	displaying	search	results	on	Slack

Figure	9-5	is	an	example	from	the	same	bot	on	Facebook	Messenger.

Figure	9-5.	The	Kip	shopping	bot	on	Messenger

As	you	might	have	noticed,	Kip’s	designers	compacted	a	lot	of	information	into	the	image:	a	photo	of	the
headphones,	the	price,	the	rating,	and	a	text	description.	The	team	overcame	some	of	the	platforms’
limitations	(for	example,	there	are	no	star	controls	built	into	any	of	the	current	platforms)	by	adding
elements	to	the	image	on	the	server	side,	and	then	serving	the	image	in	the	conversation.

As	you	can	see,	the	image	part	of	the	message	is	consistent	—	the	size	and	the	way	multiple	images	are
presented	might	be	different	across	platforms,	but	other	than	that	the	controls	behave	the	same.	The	image
provides	a	lot	of	information	that	it	would	have	been	hard	to	convey	in	a	text-based	conversation,	and
even	if	it	were	described	accurately,	the	user	might	have	a	hard	time	visualizing	the	product	without	the
image.
Images	can	also	help	users	visualize	data	more	clearly	and	easily	than	is	possible	with	text.	Figure	9-6
shows	an	example	of	how	Statsbot	provides	Google	Analytics	information	in	Slack.

Figure	9-6.	Statsbot’s	charts

Relaying	this	type	of	information	is	almost	impossible	to	do	effectively	with	just	text.	Statsbot	uses	text
for	the	verbal	analysis,	combined	with	an	image	taken	from	Google	Analytics.
Images	can	also	be	sent	from	the	user’s	side.	Google	Assistant	does	a	great	job	of	interpreting	the	image’s
content	and	offering	the	user	actions	associated	with	that	image	(Figure	9-7).

Figure	9-7.	Google	Assistant	recognizes	when	the	user	posts	a	picture	of	pizza	and	suggests	related	topics	to	explore

In	this	example,	the	user	uploaded	a	photo	of	a	pizza.	Google	Assistant	recognizes	the	image	content	and
suggests	relevant	actions,	such	as	searching	for	“how	long	can	pizza	be	left	out?”	Users	can	upload	photos
of	things	they	cannot	describe	in	words,	and	the	bot	can	interact	with	the	content	without	needing	a	textual
description.
Another	form	of	image	is	the	animated	GIF	format	—	this	is	a	short,	animated	“video”	image	that	can	be
displayed	in	most	places	you	would	be	able	to	display	a	static	image.	We	will	see	an	example	of	how	to
use	an	animated	GIF	during	onboarding	in	the	next	chapter.	GIFs	are	a	great	way	to	display	short,
audioless	video	content,	as	they	are	lightweight	and	widely	supported	by	most	platforms.
Images	are	also	effective	at	improving	engagement.	The	Poncho	weather	bot	adds	a	funny	image	to	every
daily	notification.	Users	are	delighted	by	this	feature;	some	report	that	that	image	is	sometimes	more
interesting	to	them	than	the	weather	forecast	content	itself.

When	to	Use	Images	in	a	Conversation
Use	images	often	to	enrich	the	conversation.	You	can	include	images	inline	to	delight	the	user	or	entice

them	to	take	action,	use	images	to	showcase	products	in	ecommerce	use	cases,	and	include	graphical
reports	and	charts	to	help	users	visualize	information.	You	can	also	use	animated	images	(GIFs)	to
explain	processes	—	when	onboarding	users,	for	example	—	or	to	share	fun	and	engaging	content	as	part
of	the	conversation.

Buttons
Buttons	are	arguably	the	most	useful	rich	control	available	today	for	conversational	interfaces.	Buttons
can	be	a	great	way	to	guide	the	conversation,	frame	the	interaction,	limit	the	user	to	a	set	of	answers,
provide	the	user	with	a	set	of	canned	responses,	enable	navigation	in	an	app-like	manner,	and	more.

KEY	TAKEAWAY

Buttons	can	be	a	great	way	to	guide	the	conversation,	frame	the	interaction,	or	limit	the	user	to	a	set	of	options.

Buttons	are	implemented	in	different	ways	on	different	platforms.

Buttons	in	Slack
Buttons	in	Slack	can	be	added	to	a	message	sent	by	the	bot,	in	a	container	technically	called	a	message
attachment	(see	Figure	9-8).

Figure	9-8.	Message	buttons	in	Slack

Buttons	can	have	text	(including	emojis)	and	a	style	(danger,	primary,	or	default,	following	the	web
styles).	The	recommendation	is	not	to	use	the	emoji	in	the	button	itself,	and	not	to	overplay	the	buttons’
styling	—	only	one	button	should	be	either	danger	or	primary,	and	the	rest	should	be	default.
Once	a	button	is	clicked,	one	of	three	things	can	happen:
1.	 The	bot	can	post	a	new	message.	For	example,	the	bot	can	continue	the	dialog	based	on	the	user’s

button	click.	Figure	9-9	is	an	example	from	Kip.

Figure	9-9.	Kip	decides	how	to	continue	the	conversation	based	on	which	button	the	user	clicks

The	bot	initially	offered	me	headphones	for	$19.99;	I	clicked	on	“Find	Cheaper”	and	the	bot	replied
with	a	new	message	suggesting	some	cheaper	headphones	for	$6.99.

2.	 The	bot	can	replace	the	original	message,	including	the	buttons.	This	is	very	powerful	because	it
enables	the	bot	to	provide	app-like	navigation	within	the	same	message	context.	Figure	9-10	shows
how	a	DevOps	bot	called	Beep	Boop	uses	buttons	for	navigation.

Figure	9-10.	Beep	Boop	uses	buttons	for	navigation

The	bot	provides	the	user	with	simple	navigation	buttons	—	let’s	click	on	the	Account	button
(Figure	9-11).

Figure	9-11.	The	result	of	clicking	on	the	“Account”	button

Beep	Boop	replaces	the	original	message	and	provides	us	with	an	option	to	unlink	the	account,	go
back	to	the	main	menu,	or	abort	the	conversation	altogether	by	clicking	on	Dismiss.
Another	option	is	to	remove	the	buttons	altogether	and	change	the	message	to	be	the	result	of	the
task.	In	Figure	9-12	the	user	is	asked	to	approve	or	reject	a	request	to	make	an	offer	to	a	hiring
candidate.

Figure	9-12.	Buttons	can	be	used	to	ask	a	user	to	approve	or	reject	an	action

After	the	“Approve”	button	is	clicked,	the	message	turns	into	Figure	9-13.

Figure	9-13.	After	approving	the	action,	the	message	updates

As	this	type	of	approval	task	does	not	require	the	buttons	once	the	request	has	been	approved,	the
message	changes	to	show	what	action	was	performed,	and	by	whom.
Another	interesting	use	of	buttons	to	change	the	message	is	using	them	to	filter	the	content.	For
example,	a	flight	bot	might	provide	the	user	with	three	flight	results,	and	filter	buttons	that	say

“Night	Time	Flights”	and	“Direct	Flights.”	Clicking	on	one	of	these	buttons	would	replace	the
content	of	the	message	accordingly.	Similarly,	pagination	can	be	implemented	using	buttons	—	the
flight	bot	might	provide	the	user	with	three	options	and	“Next”	and	“Previous”	buttons	for
pagination.
Figure	9-14	is	an	example	of	how	the	Kip	team	implemented	counters	and	checkboxes	using	buttons:
they	added	an	unchecked	button	and	replaced	it	with	a	checked	button	once	the	button	was	clicked.

Figure	9-14.	Updating	the	message	to	show	a	“button	clicked”	state

As	you	can	see,	the	Kip	bot	simulates	a	lot	of	different	controls	using	the	ability	to	replace	the
button	once	it	is	clicked.	The	team	really	hacked	a	brand	new	set	of	controls	using	only	buttons	and
inline	replacement.

3.	 Lastly,	a	bot	can	prompt	the	user	with	a	confirmation	window	once	a	button	is	pressed.	Figure	9-15
shows	what	this	looks	like.

Figure	9-15.	Presenting	a	confirmation	window	in	response	to	a	button	press

Clicking	on	one	of	the	buttons	in	this	confirmation	window	can	trigger	the	next	step	in	the	flow.	This
process	is	great	when	additional	confirmation	is	part	of	your	workflow.

Slack’s	approach	to	buttons,	being	a	business-facing	platform,	is	focused	on	business	workflows,
facilitating	getting	work	done	and	use	cases	that	involve	requests,	approvals,	assignment	of	tasks,	data
analysis,	requisitions,	sales,	and	so	forth.

Buttons	in	Facebook	Messenger
Facebook	Messenger,	being	a	consumer-facing	platform,	has	taken	a	slightly	different	approach	to	buttons.
Buttons	in	Messenger	focus	on	common	consumer	flows,	navigational	controls,	and	input-capture
controls.	Here	are	a	few	interesting	use	cases:
1.	 You	can	add	an	onboarding	Get	Started	button	to	the	bot’s	welcome	screen.	The	welcome	screen

is	the	first	thing	people	see	when	they	start	a	new	conversation	with	your	bot.	This	is	a	great	way	to
prime	the	user	to	make	an	initial	engagement	with	the	bot	and	to	set	the	context	for	the	bot.
As	you	can	see	in	Figure	9-16,	a	lot	of	additional	information	about	the	bot	is	included	on	this
screen.	(We	will	review	different	aspects	of	discovery	in	Chapter	11.)

Figure	9-16.	The	welcome	screen	for	the	Icon8	bot

2.	 A	bot	can	add	buttons	in	templates.	We	will	discuss	templates	later,	but	you	can	think	of	them	as	a
well-structured	composite	of	UI	elements.
Buttons	in	templates	can	do	several	things:

Open	a	new,	separate	web	page	(URL	buttons)
Generate	a	callback	to	your	backend	server	that	can	trigger	the	bot	to	take	action	or	converse
with	the	user	(Postback	buttons)
Trigger	a	native	sharing	process,	useful	for	enabling	the	user	to	share	content	from	the
conversation	with	the	bot	(Share	buttons)
Start	a	checkout	process	for	items	the	users	can	buy	as	part	of	the	conversation	(Buy	buttons)
Initiate	a	call	on	a	mobile	device	(Call	buttons)
Link/unlink	the	user	in	the	conversation	with	a	third-party	account	system	(Log	In	and	Log	Out
buttons)

Figure	9-17	shows	an	example	of	template	buttons	in	theScore	bot.

Figure	9-17.	URL	and	Share	template	buttons	in	theScore	bot	for	Facebook	Messenger

The	bot	sent	the	user	an	update	about	a	sporting	event	and	added	two	buttons	to	the	template:	a
“View	Article”	button	that	opens	the	article	in	the	browser	and	a	“Share”	button	that	opens	a	share
flow	in	Facebook.

Canned	Responses	in	Facebook	Messenger	and	Kik
In	Facebook	Messenger,	a	bot	can	specify	canned	responses	called	Quick	Replies.	When	a	user	clicks	on
a	Quick	Reply,	the	selected	response	is	sent	to	the	bot.	The	Quick	Replies	prime	the	user	to	choose	one	of
the	canned	responses.	It	is	a	good	way	to	steer	the	user	to	the	right	path	in	the	conversational	flow.	Figure
9-18	shows	how	you	can	combine	template	buttons	and	Quick	Replies	in	the	same	flow.

Figure	9-18.	theScore	bot	offering	both	template	buttons	and	Quick	Replies

Note	that	the	canned	responses	show	up	at	the	bottom	of	the	chat	window,	just	above	the	input	control,
hinting	to	the	user	to	pick	one	of	the	Quick	Replies.	It’s	also	important	to	note	that	canned	responses
suggest	to	the	user	what	to	respond,	but	the	user	can	still	ignore	the	canned	responses	and	type	in	free	text
—	so	remember	that	the	bot	needs	to	handle	both	Quick	Replies	and	free	text.
One	interesting	Quick	Reply	provided	by	Facebook	is	the	“share	location”	one.	When	a	user	clicks	on	that
button	it	shares	their	current	location,	picked	from	a	list	of	physical	addresses	near	the	user,	with	the	bot.
This	is	useful	for	location-based	services	such	as	ride	services	or	bots	that	facilitate	pickups	or
deliveries.
Another	type	of	canned	response	is	provided	by	the	Kik	platform.	Kik	focuses	on	teens	and	simplifies	the
usage	of	buttons,	restricting	them	to	conversational	navigation.	Kik	buttons	are	a	type	of	canned	response
(called	Suggested	Responses)	that	the	user	can	access	from	the	bots	keyboard,	by	tapping	or	clicking	on
the	icon	to	the	right	of	“Type	a	message”	in	the	input	field.	The	user	can	choose	to	use	the	given	responses
provided	by	the	bot	for	this	interaction,	or	revert	back	to	the	default	keyboard	to	send	free	text	to	the	bot.
In	the	example	in	Figure	9-19,	the	user	is	given	a	sweepstakes	invitation	and	two	options	to	reply.	They
can	also	click	on	the	keyboard	icon	to	the	right	of	“Tap	a	message”	to	go	back	to	a	full	QWERTY
keyboard	and	send	the	bot	free	text.

Figure	9-19.	Suggested	Responses	in	Kik

Putting	It	All	Together
A	good	example	of	combining	image	inputs,	image	outputs,	and	buttons	is	the	Icon8	bot.	Icon8	is	a	simple,
task-led	bot	that	helps	you	turn	images	into	artwork.
At	first	the	bot	does	a	super-simple	onboarding	by	showing	what	it	can	do	—	the	bot	has	access	to	the
user’s	profile	photo	and	it	takes	it	and	automagically	turns	it	into	artwork	(Figure	9-20).

Figure	9-20.	Icon8	using	images

The	bot	then	goes	on	to	post	an	animated	GIF	showing	how	a	user	uploads	an	image	and	gets	an	image
back	(Figure	9-21).

Figure	9-21.	The	Icon8	bot	posting	a	GIF	that	explains	how	to	use	the	bot

This	is	a	great	“follow	these	steps”	pattern	that	a	lot	of	bot	builders	can	use	—	seeing	how	the	bot	works
in	action	is	useful	for	understanding	its	value	and	how	to	work	with	it.
Lastly,	the	bot	uses	Quick	Reply	buttons	to	help	the	user	navigate	through	the	different	filters	the	bot	can
overlay	over	an	image	(Figure	9-22).

Figure	9-22.	Quick	Replies	in	Icon8

Clicking	on	one	of	the	buttons	initiates	the	workflow,	and	the	bot	posts	a	beautiful	version	of	your	image.
Unfortunately,	the	bot	fails	when	the	user	provides	an	invalid	input	or	asks	for	help	(Figure	9-23).	I	guess
it	still	has	room	for	improvement.

Figure	9-23.	The	bot	is	missing	a	help	feature

When	to	Use	Buttons	in	a	Conversation
Buttons	are	a	great	navigational	tool.	In	the	last	chapter	we	discussed	the	problems	associated	with	the
user	getting	lost	in	the	conversation,	the	bot	not	understanding	the	user’s	intent,	and	the	user	diverging
from	the	conversational	task.	Lead	designers	and	product	managers	at	both	Facebook	and	Slack
recommend	using	buttons	to	enable	better	conversation	flow.	Most	of	the	new	bots	have	moved	to	this
navigation	paradigm	—	but	it	is	important	to	note	that	the	user	can	still	post	free	text	to	the	bot,	and	that
the	bot	should	still	apply	logic	to	understand	the	user’s	input	and	to	navigate	to	the	right	step	in	the
conversation.
Buttons	in	Kik	replace	the	keyboard,	limiting	the	users’	options	and	leading	them	to	the	viable	responses.
Buttons	in	Slack	can	also	be	used	to	facilitate	workflows,	provide	canned	responses,	and	act	as	in-app
controls,	where	the	user	does	not	navigate	through	a	conversation	but	rather	through	an	app-like	interface.
Facebook	Messenger	provides	a	rich	combination	of	buttons	and	canned	reply	controls	that	enable	users
to	take	action	and	also	navigate	the	conversation	with	ease.
A	great	example	of	how	buttons	improved	the	design	of	a	bot	is	told	by	Dan	Manian,	the	cofounder	of
Donut	(Donut	is	a	bot	that	helps	companies	onboard,	engage,	and	retain	their	employees):

Donut’s	first	foray	into	the	bot	world	was	a	simple	Slack	bot	to	help	people	to	get	to	know	their	coworkers	and	teammates	better.	Donut
regularly	pairs	up	members	of	a	Slack	team	who	don’t	know	each	other	well	and	invites	them	to	get	coffee,	lunch,	or	donuts	together.
We	found	out	that	if	you	ask	users	a	yes-or-no	question	you	can’t	necessarily	expect	them	to	answer	with	a	simple	“yes”	or	“no.”
Because	it’s	a	bot,	if	you	ask	something	like,	“Did	you	meet?”	then	people	expect	it	to	understand	their	response	like	a	human	would.	We
learned	that	if	you	want	a	structured	response,	like	yes/no,	then	a	more	structured	method	of	collecting	the	answers,	like	buttons,	will
work	better	and	yield	better	data.	So	for	example,	before	we	had	buttons	we	would	ask	a	yes-or-no	question	like	above,	and	if	users	said
anything	other	than	“yes”	or	“no”	then	we	would	respond	and	encourage	them	to	say	“yes”	or	“no.”	Since	we	were	doing	this	in	a	group
setting	sometimes	the	users	were	having	a	conversation	and	after	every	message	our	bot	would	jump	in	and	say	“I	didn’t	understand;
please	say	‘yes’	or	‘no,’”	which	was	a	terrible	experience:
@donut:	Happy	Friday!	Did	you	meet	this	week?
@user_A:	Wow,	that’s	persistent!
@donut:	Sorry,	I’m	not	sure	what	that	means.	Please	respond	with	something	like	`yes 	̀or	`no 	̀or	`yeah!	totally	Donut!	you’re	the	best!`
@user_A:	‘Yes’	ish
@donut:	Sorry,	I’m	not	sure	what	that	means.	Please	respond	with	something	like	`yes 	̀or	`no 	̀or	`yeah!	totally	Donut!	you’re	the	best!`
@user_A:	Yes
@donut:	Great!
Switching	to	buttons	solved	this	problem,	and	it	increased	our	response	rate	by	20%	because	a	button	is	just	so	easy	to	click	[Figure	9-
24].

Figure	9-24.	Donut	response	rate	before	and	after	adding	buttons

For	us	buttons	yield	a	much	higher	response	rate	than	natural	language	question	and	answer,	specifically	for	yes/no	questions.

By	switching	from	plain	text	to	buttons,	the	team	at	Donut	were	able	to	work	around	the	hard	problem	of
understanding	users’	unstructured	responses	and	provide	a	more	productive	user	experience.

When	NOT	to	Use	Buttons	for	Navigation
Buttons	are	not	a	magical	solution	that	solves	all	of	a	bot’s	user	input	challenges.
Buttons	are	not	a	great	user	experience	when	there	are	a	large	number	of	options.	Most	platforms	limit	the
amount	of	buttons	you	can	add	to	a	conversation	in	each	interaction,	and	in	any	case	you	would	not	want
your	user	to	have	to	sift	through	a	large	set	of	buttons.	Buttons	are	also	not	a	valid	choice	when	it	comes
to	picking	from	an	unknown	set	of	options	—	emails,	addresses,	client	names,	and	more.	In	these	cases
you	need	to	default	to	free	text	and	revert	to	the	more	complex	intent	detection	and	entity	extraction.
Another	example	where	buttons	would	not	work	is	in	free-form	inputs,	from	describing	how	you	are
feeling	to	a	coach	bot,	to	providing	expense	justification	to	a	finance	bot.	Anything	where	there	is	not	a
small,	limited,	and	known	number	of	options	will	not	be	a	good	fit	for	navigation	through	buttons.

Templates
Templates,	in	this	context,	are	a	structured	way	to	collect	different	UI	elements	in	a	pre-formatted,
standard	way,	and	to	expose	these	in	a	conversational	interface.
Let’s	start	with	an	example.	Going	back	to	the	Kip	shopping	bot,	Kip	uses	Messenger’s	Generic	Template
to	display	a	carousel	of	items	to	the	user	in	response	to	a	search	query	(Figure	9-25).

Figure	9-25.	In	Messenger,	Kip	presents	search	results	in	a	carousel

Note	that	the	template	has	the	image	(the	headphones	with	the	price,	rating,	and	a	feature	description	in
gray	text),	followed	by	the	product	description	in	black	text,	and	a	set	of	buttons	under	that.
In	contrast,	Slack	uses	a	generic	template	style	called	message	attachments	where	users	can	specify
different	attributes	of	the	template	(Figure	9-26).

Figure	9-26.	In	Slack,	Kip	uses	a	different	template	view	to	present	the	same	results

As	you	can	see,	Kip	provides	the	same	information	but	in	different	template	view,	specific	to	Slack.
Now,	let’s	dive	a	little	deeper	into	templates.
Facebook	Messenger	provides	templates	that	start	with	very	generic	and	move	fast	to	very	specific	use
cases:

Button	template
A	super-simple	template	that	provides	text	and	buttons.	Figure	9-27	shows	the	Call	of	Duty	game	bot
calling	on	the	user	to	take	the	next	step	using	this	template.

Figure	9-27.	The	Call	of	Duty	game	bot	implemented	with	the	Button	template	in	Messenger

Generic	template
A	horizontal	scrollable	carousel	of	items,	each	with	an	image,	description,	and	buttons.	Figure	9-28
shows	how	theScore	bot	uses	this	template	to	offer	the	user	the	choice	to	follow	different	teams.

Figure	9-28.	theScore	bot	implemented	with	the	Generic	template	in	Messenger

List	template
A	more	condensed,	vertical	list	of	items,	with	optionally	a	cover	image	(Figure	9-29).

Figure	9-29.	An	example	of	the	List	template	in	Messenger

Receipt	template
A	dedicated	template	for	bots	providing	commerce	experiences.	This	is	an	easy	way	to	provide	a
transaction	summary	and	details.

Messenger	also	offers	a	set	of	airline-specific	templates	that	define	structure	for	boarding	passes,
itineraries,	and	so	forth.
Developers	and	designers	are	free	to	use	the	templates	for	their	own	use	cases.	I	have	not	seen	many	bots
that	use	the	more	specific	templates,	but	a	lot	of	bots	on	Facebook	Messenger	take	advantage	of	the	more
basic	templates,	such	as	the	Button	template	for	navigation	and	the	Generic	template	for	showing	multiple
items	in	a	scrollable	view.	I	am	confident	that	more	rich	templates	will	be	added	in	the	future.

Slack	takes	a	slightly	different	approach	to	templates	—	the	Slack	platform	provides	bot	builders	with	a
single,	customizable	template	called	the	message	attachment.	Message	attachments	are	highly	configurable
and	can	cover	a	large	set	of	use	cases.	Figure	9-30	shows	just	one	example	of	this	template.

Figure	9-30.	Basic	message	attachment	template	in	Slack

The	message	attachment	is	a	generic	template	that	provides	a	consistent	look	and	feel	for	Slack	users.
Note	that	Slack	renders	the	attachment	differently	on	mobile	and	desktop,	so	make	sure	to	test	on	different
platforms.
In	each	interaction,	the	bot	can	send	multiple	attachments	to	the	user,	each	with	a	different	set	of
information	and	buttons.	Bot	designers	can	customize	each	field	and	provide	text	formatting	and	color-
coding	in	each	attachment.	In	Figure	9-31	you	can	see	how	the	Beep	Boop	DevOps	bot	indicates	that	one
of	my	bots	is	offline	with	a	red	color.

Figure	9-31.	An	app-like	interface	using	templates	and	buttons

Remember	that	when	a	user	clicks	a	button,	the	bot	can	alter	the	content	of	the	message	attachment,
creating	an	app-like	experience.	Clicking	on	the	“Start”	button	for	the	offline	bot	will	change	the	color	to
green,	and	clicking	on	“Logs”	will	replace	the	entire	message	attachment	with	the	log	view	(Figure	9-32).

Figure	9-32.	Beep	Boop	displaying	the	log	view	for	one	of	my	bots

Beep	Boop	replaces	the	entire	message	and	provides	new	buttons,	offering	additional	navigational	and
functional	controls.
In	a	different	use	case,	Figure	9-33	shows	how	Statsbot,	a	marketing	analytics	bots	for	Slack,	uses
message	attachments	to	display	a	report	with	a	chart	(in	an	image	format).

Figure	9-33.	Statsbot	displaying	a	chart	in	a	message	attachment

Notice	that	the	button	at	the	bottom	of	the	message	attachment	has	a	call	to	action	to	schedule	this	report
—	this	is	a	great	way	to	ensure	user	reengagement.	Also	note	the	link	at	the	top	of	the	report,	sending	the

user	to	the	full	detailed	report	on	the	web.
In	Slack,	the	only	way	to	display	buttons	as	part	of	a	conversation	is	with	a	message	attachment.	A
message	attachment	can	be	composed	solely	of	buttons,	and	a	message	attachment	with	buttons	can	serve
as	a	navigational	aid.	Figure	9-34	shows	how	Sensay	uses	this	feature.

Figure	9-34.	Sensay	using	attachments	and	buttons	as	navigational	aids

When	to	Use	Templates	in	a	Conversation
As	you	can	see,	templates	are	a	good	way	to	organize	complex	information	and	a	rich	set	of	controls	in	an
app-like	context.	Users	can	interact	with	the	templates	in	a	familiar	way,	because	they	are	consistent
across	all	bots	on	the	platform.	Generic	templates	in	Messenger	and	Slack	provide	a	good	way	to	display
lists	of	items	and	their	associated	actions.	Each	item	in	the	list	is	an	object	in	the	user’s	mental	model,	and
the	buttons	represent	tasks	or	actions	that	can	be	performed	on	the	object.

Links
Most	platforms	support	links.	Links	are	an	easy	way	to	send	the	user	out	of	the	conversation	and	into	the
web.	Links	also	serve	as	a	way	to	refer	to	something	on	the	web	and	surface	a	preview	of	it	in	the
conversational	interface	—	technically	this	is	referred	to	as	unfurling.
Sending	a	user	to	a	web	page	can	serve	a	few	use	cases:

Performing	out-of-conversation	actions,	like	authentication	with	third-party	services
Sometimes	your	bot	needs	to	run	an	authentication	flow	that	is	only	available	on	the	web	(using	OAuth,
for	example).	In	this	case	(Figure	9-35)	the	bot	sends	a	link	to	the	user	and	asks	them	to	authenticate.

Figure	9-35.	Using	links	for	authentication

This	is	a	recommended	pattern	in	Slack	—	providing	a	username	and	password	for	a	third-party
service	inside	the	chat	client	(for	authentication	with	other	systems,	for	example)	is	highly	discouraged.

Expanding	on	the	given	information
Bots	can	provide	a	summary	of	a	report	(or	a	search	result)	and	send	the	user	to	the	browser	for	the
extended	report.	Figure	9-36	shows	how	Statsbot	does	it.

Figure	9-36.	Using	links	to	direct	users	to	expanded	information

Statsbot	pulls	out	the	summary	and	key	performance	indicators,	and	posts	them	in	the	conversation	—
but	when	it	comes	to	drilling	down	to	see	the	full	report,	the	bot	posts	a	link	to	Google	Analytics.	This
pattern	of	providing	a	summary	of	content	in	the	chat	interface	is	useful	because	space	is	limited,	and	in
most	cases	users	do	not	need	more	than	the	summary.	Statsbot	actually	solves	a	lot	of	the	user’s	needs
by	providing	a	short	summary,	without	the	complexity	of	a	lengthy	report.

Promoting	web	content
Some	bots	provide	limited	content	and	drive	most	of	the	engagement	into	the	web.	The	key	is	to
provide	enough	value	in	the	chat	interface	so	the	user	does	not	get	the	feeling	of	a	shallow	bot.	As	with
mobile	apps	that	serve	as	gateways	to	web	pages,	there	is	a	risk	that	bots	that	provide	low	value	in	the
conversation	will	be	considered	of	low	quality.

Unfurling

Another	major	use	case	is	around	links	that	facilitate	the	“importing”	of	content	from	the	web	into	the
conversation.	Unfurling	is	the	technical	term	for	what	happens	when	you	share	a	link	on	Twitter,
Facebook,	LinkedIn,	and	Slack.	You	might	notice	that	these	services	provide	a	preview/summary	of	the
page	inline	in	your	posts.	This	is	useful	because	the	summary	provides	enough	information	to	let	the
user	understand	what	the	link	is	all	about,	so	they	can	decide	whether	they	want	to	take	a	closer	look.
In	Figure	9-37,	I	posted	a	link	to	api.slack.com	and	Slack	unfurled	the	link	and	provided	a	preview	of
that	page.	This	is	a	standard	process	where	the	platform	pulls	out	selected	HTML	tags	embedded	in	the
web	page	and	formats	them	into	the	conversation.

Figure	9-37.	Unfurling	in	Slack

In	the	same	way	humans	can	post	links	that	unfurl,	bots	can	do	that	too	in	Slack	(Figure	9-38).

Figure	9-38.	Bots	can	post	links	that	unfurl	too

As	you	can	see,	the	bot	did	not	upload	a	video,	it	just	posted	a	link	to	YouTube	—	and	the	video,
together	with	its	player,	appeared	inline	in	the	conversation.
Another	interesting	use	case	with	unfurling	is	the	authenticated	unfurl.	Think	about	posting	a	link	to	a
website	that	requires	authentication,	such	as	a	link	to	an	account	in	your	CRM.	In	this	use	case,	the	bot
might	require	a	special	process,	using	the	posting	user’s	authentication	token,	to	unfurl	the	URL.	This	is
especially	common	when	connecting	to	a	secure/internal	line-of-business	web	application.

http://api.slack.com

When	to	Use	Links	in	a	Conversation
Use	links	to	send	the	user	to	the	web	from	the	conversational	interface	—	this	could	be	to	complete	a
workflow	that	cannot	or	should	not	be	accomplished	in	the	conversational	interface,	or	to	direct	the	user
to	content	better	consumed	on	the	web.	In	some	platforms,	you	can	also	use	links	to	enrich	the
conversation	with	content	from	the	web	that	is	unfurled	into	the	conversation	itself.

Emojis
Emojis	and	emoji	reactions	are	becoming	a	common	way	to	rely	emotions	and	information,	and	even	to
take	action	and	denote	a	process.	Figure	9-39	shows	a	common	pattern	in	internal	communication	at
Slack.

Figure	9-39.	Using	emoji	reactions	to	convey	responses

These	four	simple	emoji	reactions	relay	a	lot	of	information:	I	agree,	I	am	looking	at	it,	it’s	done,	and	I’m
very	happy	it	is	resolved!
Emojis	are	also	useful	for	emphasis	—	you	can	add	an	emoji	of	a	fire	next	to	a	burning	issue	to	stress	the
fact	that	it	is	urgent	or	important.
Emojis	can	be	inlined	into	an	everyday	conversation	too	(Figure	9-40).

Figure	9-40.	Using	emojis	in	conversation

While	this	specific	example	is	an	extreme	case	of	emoji	usage,	and	probably	not	the	recommended	way	to
pass	this	information,	most	bot	developers	report	seeing	emojis	in	the	conversational	input	from	users.
This	is	now	a	standard	part	of	most	mobile	keyboards	and	is	even	supported	in	SMS	and	email	clients.
Bots	can	also	post	emojis	in	most	chat	platforms.	The	ability	to	add	emoji	reactions	is	currently	limited	to
Slack,	both	on	the	bot	side	and	the	user	side.
It	is	pretty	delighting	to	get	a	 	from	a	bot	when	you	ask	it	to	perform	a	task.	Bots	can	also	register	to	be
notified	when	users	add	an	emoji	reaction	to	a	message,	and	implement	processes	utilizing	these
reactions.
Figure	9-41	shows	an	example	of	how	a	bot	can	use	emojis	to	entice	the	user	to	vote	on	a	topic.

Figure	9-41.	Voting	with	emojis	and	priming	the	user	to	pick	a	pizza	or	a	burrito

Users	in	the	channel	can	each	add	an	emoji	reaction	to	that	post	and	the	bot	can	decide,	say	after	30
minutes,	to	close	the	count	and	announce	the	destination	for	lunch.	Note	that	this	practice	was	somewhat
deprecated	when	buttons	were	introduced	into	the	platform,	but	it	is	still	used	by	some	bots.
Another	interesting	example	of	extreme	use	of	emojis	is	the	Emoji	News	bot,	a	bot	that	sends	you	news
composed	mainly	of	emojis	(Figure	9-42).

Figure	9-42.	The	Emoji	News	bot

The	attraction	here	is	the	riddle-like	interface:	you	need	to	decipher	the	intent	of	the	emojis	in	the	context
of	the	news	headline.	The	users	play	a	game	with	themselves	to	see	if	they	can	understand	each	title,	in
which	many	of	the	words	are	replaced	with	emojis.

When	to	Use	Emojis	in	a	Conversation
Use	emojis	to	relay	information,	enrich	the	conversation,	and	indicate	actions	taken.	Since	the
introduction	of	buttons	it	is	not	recommended	that	you	implement	a	full	process	with	emojis	only,	but
implementing	a	few	delightful	interactions	using	emojis	might	be	a	great	alternative	to	using	text
exclusively.

Typing	Events
In	several	platforms	you	can	send	a	“typing”	event	on	the	bot’s	behalf,	which	is	usually	visualized	inline
in	the	chat	app.	This	is	useful	to	give	the	user	the	impression	that	the	bot	is	working	on	a	given	task	or
typing	a	long	post.	Users	are	sometimes	annoyed	when	they	do	not	hear	back	from	a	bot	quickly,	as	they
feel	the	bot	is	not	responsive.	Sending	the	“typing”	event	can	give	the	user	the	comfort	that	the	bot	is
working	on	a	reply.
Conversely,	some	users	get	unsettled	when	the	bot	answers	too	fast.	Coming	back	to	the	UX	mental	model
of	chat,	it	feels	unnatural	to	some	users	that	the	bot	is	not	taking	its	time	to	type	the	message.	Using	typing
event	together	with	a	1–2	second	delay	is	a	way	to	give	users	the	feeling	that	they	are	conversing	in	a
more	natural	environment.

Persistent	Menus
The	Persistent	Menu	control	is	currently	unique	to	the	Facebook	Messenger	platform.	It	lets	you	add	a
menu	that	is	persistent	throughout	the	conversation	with	your	bot.	The	concept	is	interesting	because	it	can
potentially	be	used	as	a	top	navigation	control.	A	user	can	access	the	menu	at	any	time	via	the	burger-like
icon	next	to	the	text	input	(see	Figure	9-43).

Figure	9-43.	The	persistent	menu	icon	(left)

Clicking	or	tapping	on	the	burger	icon	pops	up	a	menu	with	the	items	set	by	your	bot	(Figure	9-44).

Figure	9-44.	Displaying	the	menu

Currently	bot	designers	are	reporting	low	user	engagement	with	this	persistent	menu,	perhaps	because

users	are	not	yet	familiar	with	the	functionality.	So,	the	current	recommendation	is	to	put	lower-priority
action	items	in	this	menu,	such	as	Help	and	Feedback.
At	the	time	this	book	is	going	to	print	Facebook	Messenger	is	exploring	a	new	user	experience	for	its
menus	(currently	only	available	in	the	mobile	version	of	Messenger),	and	early	reports	are	showing	good
user	engagement.	As	part	of	this	new	user	interface	developers	can	limit	the	user’s	ability	to	type	free
text,	and	confine	the	user	to	picking	from	Quick	Replies	and	buttons	only.

Slash	Commands
Similar	to	menus,	slash	commands	are	a	way	for	a	bot	to	add	functionality	inline	in	the	chat	app	itself.
Slash	commands	are	command	line–like	actions	that	autocomplete	when	a	user	types	a	“/”	in	the	chat	app
input	box	(Figure	9-45).	They	are	currently	only	supported	on	the	Slack	platform.

Figure	9-45.	Slash	command	autocomplete	list

Bot	designers	can	implement	their	own	slash	commands	that	are	added	to	this	autocomplete	list.	As	you
can	see,	you	can	also	set	short	descriptions	and	usage	hints	that	show	in	the	autocomplete	list.
Typing	the	slash	command	in	Figure	9-46	will	result	in	a	response	from	the	Appear.in	bot	(Figure	9-47).

Figure	9-46.	Typing	this	slash	command	in	Slack...

Figure	9-47.	...	produces	this	result

Appear.in	is	a	simple	bot	that	creates	a	virtual	meeting	link,	which	you	can	specify	with	this	simple	Slack
command.
Slash	commands	can	also	be	a	good	way	to	show	information,	in	a	team	context,	to	only	the	user	who	ran
the	command.	Slack	calls	this	an	ephemeral	message.	Bot	designers	can	specify	whether	the	response	to	a
slash	command	will	be	visible	to	everyone	or	just	the	user	who	invoked	the	slash	command.
Figure	9-48	shows	an	example	of	an	ephemeral	message.

Figure	9-48.	An	ephemeral	message	in	Slack

Note	the	wording	at	the	top	that	says	“Only	visible	to	you.”	Using	ephemeral	messages	is	a	good	pattern
when	you	want	to	avoid	starting	a	direct	private	conversation	with	a	user,	but	still	provide	that	user	with
information	only	they	can	see.
Like	menus,	slash	commands	are	not	used	heavily	by	most	users.	A	command-line	paradigm	lends	itself
more	to	a	technical	audience.	Slash	commands	are	good	for	enabling	a	shorthand	version	of	a
conversation,	however.	In	the	example	in	Figure	9-48,	by	inputting	“/lyft	ETA	155	5th	SF”	the	user
provides	both	the	intent	(to	get	an	estimated	time	of	arrival)	and	the	entity	(the	address,	155	5th	Street,
San	Francisco)	that	is	required	to	accomplish	the	intent.

Webviews
Webviews	are	provided	by	the	Kik	and	Facebook	Messenger	platforms	as	a	way	to	expose	a	web
browser	and	direct	the	user	to	or	augment	the	conversation	with	web	content.	For	example,	the	user	can
play	a	conversational	game	on	Kik	and	then	be	routed	to	a	more	interactive	webview	action	part	of	the
game	(where	you	crush	zombies	with	your	fingers,	for	example).	In	Messenger,	the	use	cases	are	typically
around	extending	and	enriching	an	ecommerce	conversation.
In	many	cases	a	webview	is	just	a	link	to	a	page	on	the	service’s	website.	In	use	cases	like	that,	promoted
by	the	Facebook	Messenger	platform,	the	bot	serves	as	a	gateway	or	additional	pointer	to	the	website.
Figure	9-49	shows	an	example.

Figure	9-49.	A	webview	on	Messenger

In	this	example,	the	eBay	bot	provides	the	capability	to	search	the	eBay	inventory,	but	at	the	end	of	the
process	the	user	is	sent	to	the	website	to	view	the	details	and	complete	the	transaction.

Connecting	It	All	Together
Rich	elements	provide	you	with	a	way	to	augment	the	conversation	with	visual	information,	provide	users
with	controls	that	help	them	navigate	through	the	conversation,	and	structure	information	in	a	well-known
and	templated	way.	Not	every	interaction	requires	a	conversation.	Some	tasks	can	be	fulfilled	with	simple
rich	interactions.

KEY	TAKEAWAY

Not	every	interaction	requires	a	conversation.	Some	tasks	can	be	fulfilled	with	simple	rich	interactions.

The	major	risk	with	overusing	rich	controls	is	that	as	designers	we	will	default	to	the	old	mobile/web
ways	and	do	very	simple	ports	of	our	mobile	or	web	services	into	the	chat	interface.	This	is	a	very
common	mistake	—	porting	a	service	from	one	platform	to	another	(from	Android	to	iOS,	for	example)	or
from	one	UX	paradigm	to	another	(for	example,	from	web	to	mobile)	without	modifying	it	to	fit	the	new
environment	always	yields	an	inferior	user	experience.	If	you	are	just	doing	a	dumb	port	of	your	website
to	a	bot,	users	will	prefer	the	web	experience,	and	if	you	are	copying	all	the	buttons	in	a	mobile	app	into	a
bot	conversation,	you	are	probably	providing	a	very	cumbersome	experience	for	your	users.
From	a	navigational	point	of	view,	buttons	are	a	useful	component	that	can	guide	users	though	the
conversation,	prime	them	to	pick	the	right	choice	(with	color-coding	and	emphasis),	and	direct	them	back
to	the	happy	path	when	they	are	lost.	Bots	cannot	block	users	from	entering	free	text,	though,	so	remember
the	users	can	always	opt	to	ignore	your	buttons	and	enter	their	own	input.
The	key	is	to	understand	how	your	users	expect	to	interact	in	a	conversation,	provide	just	the	right
information	at	the	right	time,	and	use	rich	elements	to	facilitate	the	interaction	when	applicable.
The	best	bots	will	be	a	hybrid	of	text	and	rich	interaction;	they	will	provide	the	user	with	a	delightful
conversation	enriched	by	rich	controls.	Great	bots	will	provide	buttons	but	support	text	responses,	will
post	summaries	and	provide	links	to	details,	will	expect	rich	interaction	and	feedback	from	the	user’s
end,	and	will	add	a	layer	of	sentiment	with	emojis,	images,	and	GIFs.
Here	is	an	interesting	insight	shared	by	Dennis	Yang,	cofounder	of	Dashbot:

Affordance	is	a	known	design	principle	that	definitely	still	applies	to	chatbot	conversations,	and	we	would	be	remiss	to	overlook	it.	Most
of	these	lessons	that	we’ve	learned,	thus	far,	are	around	understanding	the	unique	affordances	that	chat	provides	for	your	users.	Buttons
and	menus	are	great	ways	to	explicitly	define	what	is	possible	for	your	user	to	do,	and	the	text	box	offers	nearly	an	infinite	spectrum	of
options	for	your	users.	So,	tailoring	your	bot	experience	to	optimize	and	handle	the	options	afforded	by	chat	is	a	great	way	to	approach
bot	design.

Closing	Thoughts
This	chapter	has	explored	the	rich	controls	that	are	currently	available	in	the	different	bot	platforms,	from
images	and	videos	to	buttons	and	Quick	Replies.	In	the	near	future	we	will	likely	see	the	various
platforms	releasing	more	and	more	rich	controls	—	this	is	their	way	to	provide	designers	with	an
alternative	to	plain	text	inputs,	as	well	as	to	enrich	the	experience	on	a	particular	platform.	As	designers
it	is	our	job	to	take	the	building	blocks	provided	by	the	platforms	and	try	to	create	the	best-in-class
experience	for	our	users.
In	the	next	chapter	we	will	explore	an	important	aspect	of	our	bots’	interactions	—	we	will	take	a	deep
dive	into	memory	and	conversational	context,	which	are	the	pillars	of	every	intelligent	human
conversation.

Chapter	10.	Context	and	Memory
Memory...	is	the	diary	that	we	all	carry	about	with	us.

—	OSCAR	WILDE

MEMORY	AND	CONTEXT	ARE	a	natural	part	of	every	human	conversation.	We	have	an	implied	understanding
that	our	counterpart	in	the	conversation	remembers	what	we	said	a	minute	ago,	or	that	they	know	that	we
are	now	talking	about	cars,	or	that	they	have	an	understanding	of	the	thread	of	thoughts	tied	into	a
conversation.	All	of	this	is	trivial	for	the	human	mind,	but	extremely	hard	for	software.

Bot	Amnesia
Here	is	an	example	of	how	bots	fail	in	this	simple	task.	Figure	10-1	is	a	humoristic	gift	that	was	given	to
every	participant	in	a	bot	event	in	Europe	this	year.	It	symbolized	the	main	problem	that	bot	conversation
faces	today.

Figure	10-1.	Bots	often	have	trouble	maintaining	context

Many	bots	today	focus	on	a	request/response	paradigm.	In	this	paradigm	each	request	has	a	new	context,
and	all	past	contexts	are	forgotten.	Some	bots	do	a	better	job	of	maintaining	context	than	others	—	for
example,	the	Google	Assistant	bot	isn’t	bad	(Figure	10-2).

Figure	10-2.	Google	Assistant	does	a	decent	job	of	following	the	thread	of	a	conversation...

As	you	can	see,	the	user	in	this	example	uses	words	like	“his	wife”	and	“their	kids.”	For	us	humans,	it	is
trivial	to	understand	that	“his	wife”	refers	to	Barack	Obama’s	wife	and	that	“their	kids”	refers	to	the
Obamas’	kids.	But	disambiguating	that	in	a	conversation	with	a	bot	is	not	that	easy,	and	even	Google
Assistant	fails	in	some	use	cases	(Figure	10-3).

Figure	10-3.	But	even	it	fails	in	some	cases

The	context	here	started	with	Barack	Obama,	but	then	it	moved	to	his	wife.	To	a	human,	it’s	clear	that	“her
mother”	is	referring	to	Michelle	Obama’s	mother.	Notice	that	there	is	no	ambiguity	because	of	the	gender
associated	with	the	question;	“her”	plainly	refers	to	Michelle	and	not	Barack.	But	Google	Assistant	kept
the	first	context	and	returned	results	associated	with	Barack’s	mother.
Other	forms	of	bot	amnesia	include	forgetting	the	user’s	name,	address,	preferences,	and	more.	The	human
brain	can	hold	a	full	conversation	in	memory.	We	can	be	talking	about	a	trip	to	Rio,	divert	to	a
conversation	about	Indian	food,	then	revert	to	the	trip	to	Rio,	with	all	the	associated	context,	with	ease.
Next	we	will	explore	the	essence	of	context	and	memory,	and	we’ll	see	how	we	can	cure	our	bots	from
this	amnesia	and	even	create	delightful	moments	of	recollection.

Context
One	way	to	look	at	context	is	as	the	intent	and	the	set	of	variable	entities	associated	with	the	current
conversation.	When	requesting	a	vacation	from	an	HR	bot,	the	context	might	look	like	this:
Intent:	Paid	time	off
Entities:
User:	Jassim	Latif
Start	Date:	04/07/2017
End	Date:	04/09/2017

Some	of	these	context	variables	are	scoped,	or	local,	to	the	intent	(such	as	start	date	and	end	date),	and
some	of	the	context	variables	are	global	(like	the	user).	Scoped	variables	are	more	tightly	coupled	with
the	intent,	so	when	a	user	moves	to	another	intent,	such	as	commuter	benefits,	these	variables	can	be
forgotten.	Global	context	variables	are	variables	that	the	bot	should	remember	across	all	intents.
In	some	cases,	scoped	context	variables	can	be	useful	across	related	intents	—	for	example,	if	a	user	is
going	on	a	business	trip	and	initiates	a	conversation	with	the	intent	book	flights,	it	would	be	super	nice	if,
when	the	user’s	intent	changes	to	book	hotels,	the	bot	could	remember	the	dates	scoped	to	the	last	intent
and	offer	them	as	options	for	that	intent:

User:	Book	a	flight
Travel-bot:	Where	would	you	like	to	go?
User:	Rio	Brazil
Travel-bot:	On	which	dates?
User:	4-6	of	November	2017
...
User:	Book	hotel
Travel-bot:	Would	you	like	me	to	book	a	hotel	in	Rio	Brazil,	4-6	of	November	2017?
User:	Yes!	Thanks!

Global	variables	should	always	be	consistent	across	intents,	and	the	bot	should	remember	these	and	offer
them	as	defaults.	Another	way	to	think	of	this	is	global	variables	as	the	long-term	memory	and	scoped
variables	as	the	short-term	memory	—	but	while	humans	scope	their	memory	with	time,	this	is	not
applicable	to	bots,	which	can	remember	things	indefinitely.
When	possible,	bots	should	not	time	out	context	—	if	a	user	starts	an	intent,	they	should	be	able	to	come
back	to	it	after	a	while	and	the	bot	should	persist	(remember)	the	context.	It	is	really	aggravating	to	start	a
process,	get	interrupted,	and	then	have	to	provide	all	the	information	again	just	because	a	few	hours	have
passed.	This	is	especially	true	in	text-based	conversations	where	immediate	replies	are	not	implied.	In
text-based	conversation	it	is	common	to	continue	a	conversation	when	you	are	available	or	the	next	time
you	are	online.

KEY	TAKEAWAY

When	possible,	bots	should	not	time	out	context	—	if	a	user	starts	an	intent,	they	should	be	able	to	come	back	to	it	after	a	while	and	the	bot
should	remember	the	context.

There	are	rare	occasions	when	global	variables	should	be	forgotten,	for	compliance	and	legal	reasons,
but	in	most	cases	there	is	an	implied	understanding	that	the	bot	will	remember	the	users	and	their	details.
For	complex	use	cases,	an	intent	itself	can	be	part	of	the	context	of	another	intent.	Consider	the	example	in
Figure	10-4.

Figure	10-4.	An	intent	can	form	part	of	the	context	of	another	intent

As	you	can	see,	each	intent	has	its	own	context,	but	some	intents	are	nested	in	the	context	of	another	intent.
The	hierarchy	of	intents	can	be	much	more	complex	than	this	example,	with	multiple	levels	of	nesting	—
for	instance,	picking	the	seats	for	a	flight	can	be	a	subintent	of	the	flight	intent.
The	bot	should	navigate	the	user	through	the	path	of	the	intents,	but	should	also	support	the	user	with	the
ability	to	traverse	up	and	down	the	intent	tree:

...
Travel-bot:	Great,	you	are	booked	for	bungee	jumping	on	Oct	3rd	at	4	p.m.
User:	Fantastic.	Remind	me	of	our	return	flight	time?	We	might	want	to	do	something	on	the	4th.
Travel-bot:	Your	return	flight	(Trip	to	New	Zealand)	is	at	6	p.m.	on	Oct	4th.

The	bot	was	able	to	understand	the	context	of	the	request:	it	traversed	up	the	intent	hierarchy	and	pulled	a
scoped	context	variable	from	the	flight	intent.	The	bot	kept	the	master	context	of	the	vacation	and	implied
the	flight	context	from	it.
If	the	user	had	instead	said	“What	are	our	flight	details	for	the	Christmas	vacation	to	Cancun?”	the	answer
should	have	been	very	different.	The	strategy	that	is	most	effective	in	many	cases	like	this	is	to	try	to
traverse	up	the	intent	tree	until	you	find	the	closest	intent	that	matches	the	user’s	input.	In	some	use	cases
this	might	not	be	so	easy,	and	additional	logic	might	need	to	be	applied.

Inferring	Context	from	Pronouns
Another	big	challenge	is	inferring	what	pronouns	in	the	user	inputs	are	referring	to.	Users	use	pronouns	all
the	time	to	refer	to	context	variables.	Words	like	“his,”	“hers,”	“this,”	and	“it”	serve	as	pointers	in	a
conversation,	pointing	to	particular	context	variables:

...
User:	When	is	my	meeting	with	John	Agan?
Travel-bot:	Oct	3rd	at	4	p.m.
User:	Can	you	please	move	it	to	4	p.m.?

The	word	“it”	in	this	example	is	pointing	to	the	meeting.	It	is	expected	that	the	bot	remembers	that
variable	and	infers	it	from	the	context.
This	is	part	of	the	natural	language	understanding	(NLU)	problem	domain	—	this	process	can	be	done	by
parsing	the	sentence	using	traditional	algorithms,	or	using	an	artificial	intelligence	system	with	NLU
capabilities.	As	we	saw	in	Chapter	7,	the	ability	to	understand	and	infer	context	in	complex,	multi-intent
conversations	is	sometimes	called	conversation	management;	while	more	complex,	it	uses	the	same
basic	concepts.
There	are	many	AI	frameworks	that	promise	to	solve	this	challenge	through	one	means	or	another.	From	a
design	perspective,	you	do	not	really	have	to	worry	about	which	underlying	technologies	are	used,	as	long
as	they	provide	you	with	the	right	outcomes.	As	a	designer,	you	will	need	to	provide	the	conversational
flow	and	several	permutations	of	each	user	input.	An	example	design	is	discussed	in	Chapter	16.

Deriving	Context	Through	Rich	Controls
Exposing	the	context	(intent	and	entities)	with	rich	controls	is	another	way	to	clearly	capture	intent.	Figure
10-5	shows	how	Google	Assistant	does	this.

Figure	10-5.	Google	Assistant	offers	rich	controls	to	help	derive	context

Google	Assistant	offers	the	user	contextually	relevant	buttons	that	can	drive	the	conversation	forward.	In

this	example,	the	user	intent	was	to	have	sushi;	Google	served	relevant	search	results,	followed	by	an
offer	to	show	the	results	on	a	map,	or	filter	the	results	to	better	fit	the	user’s	preferences.
Not	all	bots	require	context	—	some	bots	are	designed	for	simple	request/response	interactions.	For
example,	my	WordsBot	has	a	simple	“define	word”	→	“word	definition”	paradigm;	the	bot	does	not
remember	any	past	transactions	and	is	not	expected	to.

KEY	TAKEAWAY

Not	all	bots	require	context	—	some	bots	are	designed	for	simple	request/response	interactions.

If	you	are	interested	in	providing	a	bot	that	supports	rich	conversation,	at	the	most	basic	level,	the	bot
should	remember	a	set	of	local	and	global	variables	and	be	able	to	infer	intent	and	the	referents	of	basic
pronouns,	providing	the	user	with	a	natural	and	intuitive	conversation.

Context	Errors	and	Ambiguity
So	what	happens	if	you	get	the	context	wrong?	This	can	happen	to	the	best	of	bots,	and	can	be	driven	by
human	error	or	language	ambiguity:

Pizza-bot:	Do	you	want	to	add	extras?	You	can	add	olives	or	pepperoni.
User:	How	much	would	it	cost?

What	would	be	the	right	answer	here?	What	does	it	refer	to?	There	are	a	few	strategies	to	disambiguate
this	conversation.	One	way	is	to	provide	an	answer	like	this:

Pizza-bot:	Do	you	want	to	add	extras?	You	can	add	olives	or	pepperoni.
User:	How	much	would	it	cost?
Pizza-bot:	Olives	($2),	Pepperoni	($4)

You	can	also	ask	about	each	pizza	extra	separately:
Pizza-bot:	Let’s	talk	about	extras.	Would	you	like	to	add	olives?
User:	No
Pizza-bot:	Pepperoni?
User:	How	much	would	it	cost?
Pizza-bot:	$4
User:	OK,	let’s	do	that.

There	are	a	lot	of	other	ways	to	resolve	disambiguation,	and	they	are	all	context-dependent.	Figure	10-6
shows	an	example	of	a	conversation	I	had	with	Mitsuku,	a	delightful	conversational	bot	on	the	Kik
platform.	It	got	confused,	admitted	it,	and	moved	on.
Because	Mitsuku	is	not	a	mission-critical	bot	but	a	topic-led	chitchat	bot,	it	can	more	easily	recover	from
contextual	errors.	Topic-led	bots,	in	general,	can	recover	from	context	loss	by	changing	the	conversation
topic,	or	moving	on	with	it.

Figure	10-6.	Mitsuku	gracefully	recovering	from	a	context	error

In	task-led	conversation,	however,	the	bot	needs	to	collect	all	the	relevant	context	variables	to	complete

the	transaction.	When	a	task-led	conversational	bot	has	a	low	degree	of	confidence	that	it	has	the	right
context,	it	should	revert	to	error	flows	such	as	course	correction	or	seeking	human	intervention	(see
Chapter	8).	Sometimes	just	having	the	bot	admit	that	it	does	not	understand	and	doing	a	simple	course
correction	(or	requesting	confirmation)	might	set	the	bot	back	in	context:

Meeting-bot:	You	have	meetings	with	Stewart	Butterfield	at	3	p.m.	and	April	Underwood	at	4	p.m.
User:	Let’s	move	it	to	5	p.m.
Meeting-bot:	Sorry,	I	want	to	make	sure.	Do	you	want	to	move	the	meeting	with	April	Underwood	to
5	p.m.?

Another	common	strategy	is	to	provide	a	rigid	conversation	structure	and	limit	the	user	functionality
outside	the	happy	flow.	While	this	is	an	easier	strategy	in	terms	of	conversation	management,	it	is	not
necessarily	the	most	user-friendly.
We	will	talk	more	about	designing	context	variables	and	mitigation	flows	in	Chapter	16.

Memory
Memory	is	a	more	generic	term	than	conversational	context.	The	ability	of	bots	to	pull	up	intents	and
variables,	or	even	full	conversations,	from	the	past	is	still	somewhat	uncharted	territory.	At	the	most	basic
level,	bots	should	be	able	to	pull	up	old	intents	and	provide	users	with	the	ability	to	act	on	them:

User:	I	need	to	move	tomorrow’s	meeting	with	Taylor	Singletary	to	Friday
Meeting-bot:	Roger!	I	will	send	him	an	email	immediately.

The	scheduling	bot	Amy	Ingram	supports	this	by	having	the	user	reply	to	the	original	meeting	invitation
email	(Figure	10-7).
By	replying	to	the	initial	message	the	user	can	“refresh”	Amy’s	memory	and	provide	a	link	to	the	past
conversation	the	user	is	referring	to.	Amy	then	has	a	pointer	to	that	conversation,	so	there	is	no	need	to
provide	further	context.

Figure	10-7.	Amy	uses	the	original	email	as	the	context	of	the	conversation

Providing	a	memory	of	transactions	and	entities	that	can	be	accessed	is	useful	not	only	for	functionality’s
sake,	but	also	for	building	trust	between	the	user	and	the	bot.	Users	need	to	feel	that	they	can	go	back	and
edit/modify/cancel	or	just	revisit	past	transactions.	Supporting	functionality	like	“list	projects,”	“view
past	meetings,”	or	“load	last	pizza	orders”	can	help	bestow	trust	in	the	user’s	mind.	Remember	that	bot
users	do	not	have	top	navigation	menus,	so	giving	them	a	way	to	access	history	serves	an	important
functional	need.
Another	aspect	of	memory	is	association.	This	is	very	common	in	topical	conversation;	we	talk	about
something,	and	it	reminds	us	of	another	topic.	Bots	can	use	this	attribute	to	naturally	navigate	the
conversation	to	another	place:

Starwars-bot:	Speaking	of	Yoda,	this	reminds	me	that	you	can	now	buy	his	new	figure	toy	in	our
online	store.	Would	you	like	to	go	there?

Here,	the	bot	makes	an	artificial	memory	association	that	steers	the	conversation	down	the	funnel	of
buying	merchandise.	Recollection	of	past	conversations	is	also	a	good	way	to	reengage	with	the	user.	The
bot	can	steer	the	engagement	back	to	a	conversation	that	happened	in	the	past:

Starwars-bot:	Remember	we	talked	about	Yoda	a	few	days	ago?	Let’s	get	back	to	that.	I	can	tell	you...
I	have	seen	this	happen	in	some	bots,	such	as	the	SmarterChild	bot	on	AOL	(bought	and	decommissioned
by	Microsoft).	This	type	of	recollection	might	be	surprising	and	delightful	to	the	user.

Closing	Thoughts
Managing	context	and	memory	is	probably	one	of	the	hardest	aspects	of	designing	bots.	It	is	also	an	area
of	growth	from	a	technology	point	of	view.	Looking	at	logs	and	understanding	when	and	where	your	bot
loses	context	or	gets	amnesia	is	a	good	start	on	the	path	to	mitigating	it	and	designing	conversations	that
are	more	efficient	and	memorable.
Building	a	great	conversation	workflow	is	a	good	start,	but	as	a	designer	you	also	need	to	think	about
getting	the	bot	in	front	of	your	end	users.	In	the	next	chapter,	we’ll	explore	different	distribution	methods
and	their	implications	on	your	bot’s	design.

Chapter	11.	Bot	Discovery	and	Installation
The	greatest	obstacle	to	discovery	is	not	ignorance	—	it	is	the	illusion	of	knowledge.

—	DANIEL	BOORSTIN

IN	THE	PAST	FEW	years,	discovery	has	been	one	of	the	top	challenges	for	software.	Users	are	flooded	with
websites	and	mobile	apps	that	offer	to	make	their	lives	happier,	more	interesting,	and	more	productive.
Advertisers	and	marketers,	growth	hackers,	and	product	managers	are	all	trying	to	solve	the	problem	and
get	their	services	to	the	right	users	at	the	right	time.
On	the	one	hand,	bots	have	it	a	little	better	these	days.	The	ecosystem	is	still	young	and	not	overly
saturated.	If	you	go	to	any	of	the	bot	directories,	you’ll	find	that	they	are	still	considerably	less	crowded
than	the	app	stores.	On	the	other	hand,	a	lot	of	the	discovery	mechanisms	that	are	available	to	mobile	app
developers	have	yet	to	mature	for	bot	developers	—	a/b	testing,	analytical	tools,	and	ads	are	all	in	their
infancy	when	it	comes	to	bots.
Let’s	explore	a	few	of	the	bot	discovery	options	that	are	currently	available.

Bot	Directories
Bot	directories	are	websites	or	in-chat	product	areas	where	you	can	search	for,	get	information	on,	and
install	bots.	Most	messaging	platforms	provide	bot	directories	in	some	shape	or	form.	There	are	also
directories,	such	as	Botlist,	that	are	external	to	the	platforms	and	provide	a	third-party	listing	of	bots	on
multiple	platforms.
Some	bot	directories,	like	Slack’s,	have	featured	placements	that	are	curated	by	a	human	and	rotated
periodically,	as	well	as	ordered	category	listings	(see	Figure	11-1).

Figure	11-1.	Slack’s	bot	directory	offers	featured	picks	and	regular	category	listings

The	bots	featured	in	the	three	central	slots	change	every	two	weeks.	Bot	owners	typically	report	a	factor
of	10	increase	in	users	in	the	time	period	when	their	bot	is	featured.
While	Slack	has	a	dedicated	directory,	Facebook	Messenger	exposes	the	directory	embedded	in	the
client,	alongside	featuring	slots	and	search	capabilities	(Figure	11-2).

Figure	11-2.	Messenger	lists	featured	bots	alongside	the	user’s	friends,	and	offers	a	search	capability

Facebook	consolidates	chats	with	a	user’s	Facebook	friends	and	bots	into	a	single	experience.	Messenger
does	not	provide	a	directory	service	at	the	moment,	but	I	am	not	sure	it’s	needed	with	this	approach	(and
the	fact	that	it’s	a	consumer	platform).
Kik	provides	users	with	a	very	similar	in-client	experience	(Figure	11-3).

Figure	11-3.	Kik’s	mobile-based	bot	directory

It	also	has	a	website	similar	to	the	Slack	directory	for	web-based	bot	discovery	(Figure	11-4).

Figure	11-4.	Kik’s	web-based	bot	directory

The	listing	details	in	these	directories	are	quite	limited;	there	are	no	user	reviews,	stats,	images,	or
videos	that	help	users	understand	what	the	bots	are	good	for.	I	expect	that	to	change	in	the	near	future,	but
for	now,	designing	your	own	website	that	explains	what	your	bot	is	about,	with	videos	or	images	of	the
bot	in	use,	is	highly	advised.

App	Review	Process
Most	directories	have	an	app	review	process	for	the	bots	that	are	listed.	Details	of	these	review
processes	are	published	on	the	developer	portal;	they	typically	include	reviews	of	the	functionality	and
user	feedback,	as	well	as	a	security	review	in	some	cases.	It	is	important	to	note	that	these	review
processes	are	manual	and	might	take	more	time	than	expected.	Make	sure	you’ve	adhered	to	the	guidelines
provided	on	the	platforms’	developer	sites	before	submitting	your	bot,	in	order	to	save	a	lot	of	time	and
additional	review	cycles.

KEY	TAKEAWAY

Bot	directory	review	processes	are	manual	and	might	take	more	time	than	expected.

Direct	Installation	Links
Direct	installation	links	are	embedded	URLs	that	direct	the	user	to	install	or	connect	with	your	bot	from	a
website	or	bot	platform.	Direct	installation	links	are	a	great	way	to	share	information	about	bots	and
promote	their	installation	on	the	web.
Facebook	provides	a	short	link	that	can	drive	users	to	your	bot.	The	URL	follows	the	following	pattern:
https://m.me/PAGE_USERNAME.	You	can	also	expose	this	URL	via	a	web	widget	Facebook	provides
(Figure	11-5).

Figure	11-5.	The	“Send	to	Messenger”	widget

Clicking	on	the	button	will	lead	users	directly	to	a	conversation	with	the	bot,	linked	to	the	widget.
Similarly,	Slack	provides	an	“Add	to	Slack”	button	that	can	be	shared	on	your	page	(Figure	11-6).

Figure	11-6.	The	“Add	to	Slack”	button

Slack	is	a	platform	for	business	bots,	and	as	such	requires	the	installer	to	grant	permissions	to	the	bot.	For
example,	some	bots	will	require	permission	to	list	all	the	users	in	a	team,	while	others	might	not.	Clicking
on	the	“Add	to	Slack”	button	initiates	an	OAuth	process	that	takes	the	user	through	approving	the
permissions	requested	by	the	bot.	Depending	on	your	bot’s	design,	you	will	need	to	pick	the	right
permissions	to	request	from	the	user.	Note	that	asking	for	more	permissions	than	you	need	might	make	a
user	suspicious	of	your	bot	and	less	inclined	to	install	it.	The	available	permission	scopes	and	actions	are
listed	on	Slack’s	developer	portal	(https://api.slack.com).
Using	links	and	web	widgets	is	a	good	way	to	drive	users	to	your	bot	from	existing	web	real	estate	(i.e.,	a
web	page	you	already	own).	Let’s	say	you	have	a	website	for	your	service	that	gets	a	lot	of	traffic	—
driving	that	traffic	to	your	bot	provides	your	service	with	another	touchpoint	with	your	audience	that	was
not	available	until	now.

https://m.me/PAGE_USERNAME
https://api.slack.com

QR	Codes
A	QR	code,	in	this	context,	is	an	image	that	encodes	the	bot’s	identification.	By	scanning	the	code	using
your	phone’s	camera,	you	can	install	the	bot	in	your	chat	application.
As	Facebook	Messenger	and	Kik,	to	a	greater	extent,	focus	on	their	mobile	clients	for	bot	distribution,
these	platforms	both	enable	the	use	of	QR	codes	for	bot	discovery.	Figure	11-7	shows	a	few	examples	of
QR	codes,	one	for	the	CNN	bot	on	Facebook	Messenger	and	the	other	for	the	H&M	bot	on	Kik.

Figure	11-7.	QR	codes	for	the	CNN	(Messenger)	and	H&M	(Kik)	bots

You	can	actually	scan	these	and	install	the	bots	straight	from	this	book.	The	key	value	of	QR	codes	is	that
they	can	be	placed	in	the	physical	world.	This	means	that	brands	and	consumer	services	can	promote	the
installation	of	their	bots	by	putting	these	codes	in	their	places	of	business	or	including	them	with
promotional	giveaways.	This	is	very	common	in	customer	use	cases,	especially	in	Asia	and	with	young
audiences	all	around	the	world.

@Mentions
@Mentions	usually	refer	to	mentioning	someone	in	a	chat	conversation.	The	@mention	typically	triggers
some	sort	of	notification	in	the	mentioned	user’s	client,	and	also	creates	a	link	to	the	mentioned	user	or
bot.	Figure	11-8	shows	how	it	looks	in	Slack.

Figure	11-8.	@Mentioning	a	bot	in	Slack

When	a	user	@mentions	a	bot	in	Kik,	something	interesting	happens.	The	@mention	not	only	sends	the
message	to	the	mentioned	bot	and	lets	the	bot	answer	directly	in	the	conversation,	but	also	lets	other
members	in	the	conversation	connect	to	the	bot	by	clicking	on	that	@mention.	In	Figure	11-9,	I	mentioned
the	@urbanbook	bot	in	a	chat	with	Ben	and	added	the	bot	to	the	conversation.

Figure	11-9.	Adding	a	bot	to	a	conversation	with	a	friend	is	a	good	way	of	connecting	them	in	Kik

This	behavior	creates	an	interesting	contextual	viral	engagement:	a	friend	mentioning	a	bot	creates	a
strong	incentive	to	connect	to	the	bot	and	start	a	conversation	with	it.

Bot	Referrals
Referring	the	user	to	another	bot	when	your	bot	cannot	address	the	user’s	intent	is	an	interesting	use	case
that	is	discussed	a	lot	in	the	market,	although	I	have	seen	very	few	actual	implementations	of	it	in	real	life
(we	saw	one	example	in	Chapter	8).	Bots	can	potentially	refer	users	to	other	bots	within	a	conversation:

User:	And	I	will	also	need	a	ride	from	the	airport	to	the	hotel.
Travel-bot:	Well,	I	cannot	help	you	book	a	ride,	but	you	can	talk	to	my	colleague	LyftBot	and	we	can
sort	this	out.	Here	is	the	link	to	install	the	LyftBot	-	[link].
User:	Fantastic,	installing	now!

The	potential	for	bot-to-bot	referral	is	huge.	As	you	can	see	in	this	conversation,	the	bot	captured	the
intent	of	the	user	to	perform	an	action	that	it	could	not	deliver.	Delegating	that	intent	to	another	bot	makes
the	Travel-bot	more	useful	to	the	user	compared	to	the	alternative,	which	is	to	leave	the	user	with	a	dead
end.

Closing	Thoughts
Each	of	the	discovery	mechanisms	described	here	is	valid,	and	you	can	choose	several	of	them	to	ensure
potential	users	have	multiple	ways	of	discovering	your	bot.	Each	of	these	discovery	mechanisms	captures
a	user’s	intent	in	a	different	way	and	exposes	it	with	a	different	level	of	detail.
In	years	to	come	we	are	going	to	see	more	and	more	discovery	mechanisms.	Bot	directories	and	stores
are	going	to	become	bigger	and	more	sophisticated,	and	developers	and	designers	are	going	to	have	better
tools	available	to	capture	the	intent	of	their	bots	and	offer	them	as	solutions	to	users’	needs.
Once	users	discoverer	and	connect	to	your	bot,	you’ll	need	to	pass	the	next	challenge	—	next,	we’ll	dive
into	the	different	techniques	for	keeping	your	users	happy	and	engaged.

Chapter	12.	Engagement	Methods
Gravitation	is	not	responsible	for	people	falling	in	love.

—	ALBERT	EINSTEIN

ONE	OF	THE	VANITY	metrics	of	the	mobile	app	ecosystem	is	installs	of	apps	versus	uninstalls	of	the	same
apps.	While	this	is	a	suboptimal	method	of	measuring	success	in	the	mobile	world,	mainly	because	it	does
not	tie	in	to	business	objectives	or	to	engagement,	this	metric	is	completely	useless	in	the	bot	ecosystem.
Most	bots	do	not	get	uninstalled;	they	get	abandoned,	forgotten...	sad.
Dr.	Jacob	Greenshpan	presented	a	theory	in	which	he	compared	couples’	relationships	and	our
relationships	with	mobile	apps:
1.	 You	install	the	app	—	not	sure	if	it	is	the	right	fit	for	you.
2.	 You	love	it	—	it	is	amazing	and	it	has	no	faults.
3.	 You	become	proficient	with	it	—	you	come	to	learn	the	good	and	bad	in	the	app.
4.	 You	grow	tired	of	it	—	the	faults	are	growing,	or	boredom	kicks	in.
5.	 You	install	another	app	and	fall	in	love	with	it.
6.	 You	uninstall	the	original	app.

While	this	might	be	an	extreme	analogy,	it	usually	generates	a	lot	of	nodding	when	I	mention	it	in	lectures.
The	analogy	might	even	be	more	accurate	when	it	comes	to	bots.	It	is	hard	to	stay	emotionally	detached
from	all	but	the	most	utilitarian	bots,	and	most	people	use	strong	feelings	and	words	when	they	describe
bots.
Dr.	Greenshpan	had	a	few	tips	for	a	good	app–user	relationship	that	can	apply	to	bots:
1.	 Create	a	great	first	impression	—	make	the	other	side	fall	in	love.
2.	 Keep	on	adding	value	—	value	wears	off.
3.	 Continue	evolving	your	design	—	users	like	to	be	slightly	and	pleasantly	surprised	from	time	to

time.

First	Impression
The	first	feeling	most	people	have	with	regard	to	products	and	services	they	encounter	is	often	either
indifference	or	suspicion.	We	do	not	know	and	therefore	do	not	care	about	them,	or	we	are	not	sure	if	they
will	actually	be	good	for	us.	We	are	constantly	being	bombarded	by	services	and	products	that	seek	to
engage	us	physically,	mentally,	or	emotionally,	and	it	can	be	hard	to	figure	out	which	are	worthy	of	our
attention.
There	are	a	lot	of	aspects	that	make	for	a	positive	and	actionable	first	engagement.	One	key	to	a	positive
first	engagement	is	a	clear	intent	—	users	must	need	or	want	the	service	or	product,	whether	they	are
aware	of	it	or	not.	Another	key	is	product	fit	—	the	ability	of	the	product	or	service	to	address	that	intent
or	need.	Then	there	needs	to	be	a	moment	of	serendipity	—	a	moment	where	the	users	understand	the
value	of	the	product	or	service	and	realize	it	is	beneficial	for	them.	Then	comes	the	hard	work	of	keeping
the	fire	going	and	building	a	habit.	Demonstrating	value	and	creating	a	habit	should	be	part	of	your	bot’s
onboarding	experience.

KEY	TAKEAWAY

Demonstrating	value	and	creating	a	habit	should	be	part	of	your	bot’s	onboarding	experience.

We	talked	about	installation	and	discovery	in	the	last	chapter,	so	let’s	assume	the	first	engagement	the	user
has	with	your	bot	is	after	the	installation.
From	an	engagement	perspective,	the	onboarding	needs	to	achieve	several	things:

Clearly	define	the	purpose	of	the	bot	and	the	intent	it	is	solving.
Educate	or	inspire	the	user	about	the	product	fit	of	the	bot	and	how	it	addresses	the	intent.
Generate	a	trigger	that	will	build	a	usage	habit.

An	interesting	way	to	approach	bot	engagement	is	through	a	process	described	by	Nir	Eyal	in	his	book
Hooked:	How	to	Build	Habit-Forming	Products	(Portfolio).	Nir	describes	four	steps	in	the	habit-forming
process	(Figure	12-1):
1.	 Trigger	—	.	An	internal	trigger	(such	as	boredom,	anxiety,	or	curiosity)	that	is	cued	by	an	external

trigger	(such	as	a	notification	or	direct	message	from	the	bot)	and	drives	the	user	to	take	action	using
the	product.

2.	 Action	—	.	A	simple	action	you	take	that	yields	a	reward.
3.	 Reward	—	.	The	realization	of	the	value:	scratching	the	itch	or	addressing	the	intent.
4.	 Investment	—	.	An	action	that	makes	the	service	better	with	use	and	generates	future	triggering

opportunities.

Figure	12-1.	The	Hook	model

You	can	read	about	the	Hook	model	in	depth	at	NirAndFar.com	and	in	Nir’s	book,	but	for	now	let’s
explore	how	this	can	be	relevant	to	bots.	We	will	use	Statsbot	as	an	example.
After	the	user	installs	Statsbot	into	a	Slack	team,	the	bot	sends	this	message	in	a	DM	to	the	user	(Figure
12-2).

Figure	12-2.	Greetings	from	Statsbot	(the	trigger)

The	trigger,	in	this	example,	is	the	need	(curiosity,	excitement)	to	receive	daily	metrics	from	the	user’s
Google	Analytics	service.	Users	install	Statsbot	to	stay	up-to-date	—	while	Statsbot	provides	many	ways
to	slice	and	dice	the	data	coming	from	Google	Analytics,	the	most	generic	and	common	need	is	to	get	a
summary	of	the	stats.
As	you	can	see,	Statsbot	immediately	suggests	that	the	user	take	action	and	run	this	basic	query	(Figure
12-3).

Figure	12-3.	The	action	and	the	reward

This	trigger	to	action	process	serves	as	a	way	both	to	create	a	habit	and	to	educate	the	user	about	how	to
use	the	bot.	The	user	in	this	example	follows	the	bot’s	prompt	and	takes	action,	and	gets	an	immediate
reward	in	the	form	of	a	report.	Talking	to	Nir	about	this	example,	he	also	mentioned	that	this	is	an

example	of	a	“variable	reward”	—	the	fact	that	the	stats	are	always	changing	has	a	slot	machine–like
effect	that,	used	correctly,	can	serve	to	bring	the	user	back	time	after	time.
The	user	now	understands	how	to	communicate	with	the	bot	and	has	realized	the	basic	value	of	the	bot.
Now	it	is	time	to	move	to	the	investment	stage	(Figure	12-4).

Figure	12-4.	The	investment	(scheduling)

Note	the	button	at	the	bottom	of	the	report	—	this	is	a	call	to	action	to	build	an	ongoing	habit.	Clicking	on
the	“Schedule	it”	button	prompts	the	user	to	invest	a	few	moments	in	setting	up	a	scheduled	notification
with	the	report	(Figure	12-5).

Figure	12-5.	Statsbot	scheduling	a	report

And	now	we	have	a	habit	formed	and	set	by	the	user.	When	delivering	reports,	Statsbot	attempts	to	create
more	habits	by	prompting	the	users	to	schedule	other	reports	and	encouraging	them	to	create	more
sophisticated	queries	(Figure	12-6).

Figure	12-6.	Statsbot	continuously	educates	and	promotes	habit	building	with	the	user

Suggesting	different	and	advanced	ways	to	engage	with	the	bot	is	a	very	useful	pattern	in	this	case,
because	it	keeps	the	bot	interesting	to	the	user.
The	Statsbot	team	ran	into	this	best	practice	by	mistake	—	they	saw	that	most	users	were	not	using	all	the
features	they	had	built,	and	limiting	themselves	to	a	small	subset	of	the	functionality.	Additionally,	there
was	little	usage	of	new	features	and	queries,	because	users	just	did	not	know	about	these	new	features.
The	team	started	experimenting	with	hinting	to	the	users	that	they	could	do	more	with	the	bot,	and	were
pleasantly	surprised	to	find	that	users	loved	that	feature	and	that	it	led	to	higher	levels	of	user	engagement.
If	we	look	at	Poncho	as	a	consumer	use	case,	we	see	the	same	pattern.	The	bot	starts	by	introducing	itself
and	identifying	the	trigger	—	the	need	to	know	the	weather	forecast	(Figure	12-7).

Figure	12-7.	Poncho	introducing	itself	(the	trigger)

Then	it	prompts	the	user	to	take	action	and	set	their	preferred	location.	Following	the	user’s	action,	the
bot	provides	an	immediate	reward	in	the	form	of	a	weather	update	(Figure	12-8).

Figure	12-8.	The	action	and	the	reward

Next,	the	bot	asks	the	user	to	invest	some	time	in	setting	up	a	recurring	update	(Figure	12-9).

Figure	12-9.	The	investment

Again,	this	initial	interaction	forms	a	habit:	getting	morning	forecasts	from	the	bot.	After	this	habit	has
been	set,	users	do	not	need	to	do	any	additional	investment	and	move	to	a	usage	pattern	of	automatically
getting	their	weather	forecast	every	day	from	Poncho.
In	both	examples	we	witnessed	the	pattern	of	creating	a	trigger,	promoting	an	action,	providing	a	reward,
and	asking	for	an	investment	that	ends	with	users	opting	into	a	habit-forming	engagement	with	the	bot.
One	of	the	key	differences	between	this	and	just	automatically	setting	a	notification	from	the	bot	is	that	in
these	examples	the	user	has	consciously	opted	to	receive	the	periodic	notifications.	The	act	of	opting	in
makes	users	less	inclined	to	consider	these	notifications	as	spam	and	more	likely	to	interact	with	them.
Onboarding	is	a	great	place	to	get	users	to	input	details	(such	as	location	and	other	preferences),	set	the
cadence	for	repeatable	actions,	introduce	the	bot	to	the	team,	and	generate	additional	interaction.	Take
advantage	of	this	stage	to	create	a	positive	first	experience.

Ongoing	Engagement	Points
One	of	the	reasons	for	lack	of	engagement	could	be	that	your	users	do	not	have	an	easy	way	to	initiate	an
intent	with	your	bot.	It	is	recommended	that	you	support	several	engagement	points	to	your	service.
Here	are	a	few	ways	you	can	do	that:

Support	a	“help”	command	(and	all	of	its	derivatives)	that	users	can	use	at	any	time	to	get	back	to	the
top	of	your	service	navigation	flow	(unless	you	are	in	the	context	of	a	conversation;	then	the	help
should	be	context-aware).	Figure	12-10	shows	how	Google	Assistant	does	this.

Figure	12-10.	Typing	“help”	in	Google	Assistant	takes	the	user	back	to	the	top-level	navigation

Support	“hello”	(and	all	of	its	derivatives)	as	a	way	to	start	a	conversation.	It	sounds	trivial,	but	this	is
not	supported	in	many	of	the	bots	I	have	tested.
Explore	additional	platform-specific	entry	points.	For	example:
Slash	commands	in	Slack
Persistent	Menus	in	Facebook	Messenger
@Mentions	in	Kik	and	Slack

Notifications
Another	common	engagement	point	is	sending	notifications	to	your	users.	Most	platforms	let	bots	send
users	notifications	in	one	way	or	another.	The	risk	with	unsolicited	notifications	is	that	they	can	be
perceived	as	spammy	and	might	motivate	users	to	disengage	from	or	even	uninstall	or	block	your	bot.	If
you	are	using	notifications	to	drive	engagement,	make	sure	you	capture	the	user’s	intent	to	receive	them,

and	ask	for	permission	before	sending	them	ongoing	notifications.	Make	sure	your	notifications	are
valuable	and,	when	applicable,	make	sure	you	provide	the	user	with	a	way	to	opt	out	from	unwanted
notifications.

KEY	TAKEAWAY

Make	sure	your	notifications	are	valuable	and	give	your	users	a	way	to	opt	out.

Here	is	an	interesting	insight	from	Dmitry	Dumik,	CEO	of	Chatfuel,	a	popular	bot-building	tool	for
Facebook	Messenger:

One	of	the	biggest	opportunities	that	chatbots	possess	is	an	ability	to	deliver	a	message	right	to	a	user’s	inbox	in	the	form	of	a	push
notification.	At	the	same	time	this	is	one	of	the	biggest	threats	since	there	is	no	way	to	reach	back	as	soon	as	a	user	blocks	you.	After
analyzing	billions	of	messages	sent	through	our	platform	we	found	out	that	the	rate	of	unsubscribes	skyrockets	if	a	user	gets	more	than
1.9	messages/day.	That	doesn’t	mean	you	should	send	~2	messages	a	day,	but	you	definitely	should	have	a	very	good	reason	to	send
more	than	that.

Promoting	Engagement	by	Just	Being	Useful
When	I	analyze	the	best	engagement	I	have	with	bots,	I	realize	that	the	same	rule	that	applies	for	mobile
apps	applies	for	bots	—	be	useful,	address	a	pain,	and	users	will	come	back	to	you	again	and	again.
Ultimately,	engagement	cannot	be	artificially	generated;	it	stems	from	your	bot’s	usefulness.
In	my	house,	we	wake	up	every	morning	and	ask	Alexa	about	the	weather.	I	CC	my	scheduling	bot,	Amy,
on	all	meeting	requests	because	I	do	not	want	to	have	to	coordinate	my	meetings	myself.	I	use	the	Slack
CRM	integration	because	it	provides	context	in	a	chat	conversation.	These	bots	do	not	need	to	regularly
seek	to	recapture	my	attention	in	order	to	be	useful;	they	are	important	for	me	to	engage	with	because	they
add	value	to	my	life	and	my	work.

KEY	TAKEAWAY

Engagement	cannot	be	artificially	generated;	it	stems	from	your	bot’s	usefulness.

Closing	Thoughts
When	external	triggers,	like	notifications	from	the	bot,	are	aligned	with	the	internal	trigger	and
gratification	of	getting	the	users	what	they	need,	when	they	need	it,	that	is	where	the	magic	happens	and
your	bot	becomes	priceless.	It	is	always	hard	to	build	great	value	—	but	if	it	were	easy,	everyone	would
be	doing	it	already.
Next	we	will	explore	the	challenge	of	making	money	from	your	bot.	We	will	see	examples	of	bots	that	are
already	monetizing	in	different	ways	and	learn	from	their	designers’	experience.

Chapter	13.	Monetization
A	wise	person	should	have	money	in	their	head,	but	not	in	their	heart.

—	JONATHAN	SWIFT

WHY	ARE	WE	TALKING	about	making	money	in	a	design	book?	Well,	many	aspects	of	business	are	tightly
connected	to	design	choices.	Understanding	how	your	bot	is	going	to	drive	revenue	is	an	important	part	of
understanding	your	engagement	with	your	users.
Let’s	get	one	thing	clear:	a	bot	is	a	type	of	user	experience,	and	a	way	to	expose	products,	services,	or	a
brand.	The	only	way	to	make	money	out	of	bots,	without	having	a	service	or	a	product,	is	to	be	a	bot
builder	and	have	someone	pay	you	to	build	that	bot.	End	users	do	not	pay	for	bots,	they	pay	for	the
services	the	bots	expose;	they	pay	for	the	products	they	promote	and	they	are	influenced	to	connect	to	the
brands	they	represent.	But	still,	in	the	same	way	we	now	have	companies	that	call	themselves	mobile
businesses	because	they	make	most	of	their	revenue	through	mobile,	we	are	going	to	see	more	and	more
companies	calling	themselves	bot	companies.

KEY	TAKEAWAY

End	users	do	not	pay	for	bots,	they	pay	for	the	services	the	bots	expose.

In	this	chapter	we	will	review	the	direct	and	indirect	ways	that	bots	can	drive	revenue.	This	is	not	a
comprehensive	list,	as	I	am	sure	entrepreneurs	will	come	up	with	many	other	ways	to	make	money	in	this
industry.

Subscription
This	is	currently	the	most	common	way	that	bots	drive	revenue	—	the	bot	provides	an	ongoing	service
that	the	user	subscribes	to	and	pays	for.
An	example	of	a	subscription-based	bot	is	Growbot.	Growbot	is	a	bot	that	helps	teams	celebrate	personal
and	professional	wins;	it	promotes	great	team	spirit	and	cohesiveness.	The	bot	looks	for	keywords	like
kudos	and	collects	and	amplifies	these	congratulations	(Figure	13-1).

Figure	13-1.	The	Growbot	HR	bot

Most	of	the	features	provided	by	Growbot	are	free	—	the	company	does	not	charge	to	install	the	bot	and
to	use	its	core	features.	The	team	deliberately	did	not	want	to	charge	for	aspects	of	the	bot	that	promote
usage,	engagement,	and	virality.	They	did,	however,	carve	out	a	set	of	features	that	are	important	to	big
companies	and	HR	departments.	Growbot	charges	for	a	premium	service	that	includes	company
leaderboards	and	keyword	customization.
Growbot	asks	users	to	pick	a	plan	during	setup.	Figure	13-2	shows	how	the	freemium-based	Growbot
highlights	the	premium	functionality	on	the	web.

Figure	13-2.	Growbot	experimenting	with	premium	services

Another	example	of	a	subscription-based	bot	is	Statsbot,	an	analytics	bot	that	exposes	stats	from	Google
Analytics	and	Mixpanel.	Statsbot’s	developers	decided	to	go	with	a	trial	model	in	which	they	provide	you
with	a	fully	functional	premium	bot	for	a	trial	period.	An	interesting	strategy	that	Statsbot	applies	is	to	let
the	bot	itself	prompt	the	user	for	payment	(Figure	13-3).

Figure	13-3.	Statsbot	prompting	the	user	to	start	a	subscription

As	you	can	see,	both	bots	drive	the	user	to	set	up	the	subscription	on	the	web	—	this	is	because	none	of
the	chat	platforms	currently	support	in-platform	payments.	Driving	the	user	out	of	the	conversation	and	to
a	website	might	impact	the	conversation,	but	currently	that	is	the	only	option	available	for	subscription
bots.
Note	that	even	though	the	payment	itself	is	done	on	the	web,	it	is	important	to	acknowledge	it	in	the	chat
interface.	Notifying	the	user	of	upgrades,	downgrades,	and	recurring	payments	is	a	good	way	to	promote
transparency	and	user	satisfaction.
The	subscription	model,	when	done	right,	is	very	lucrative	because	the	lifetime	value	of	each	user	(the
amount	of	money	the	user	will	pay	in	the	lifetime	of	using	your	product)	is	usually	higher	than	with	other
models.

Ad	Serving
Ad	serving	has	been	the	bread	and	butter	of	many	web	and	mobile	businesses.	Bots	are	in	a	unique
position	when	it	comes	to	ads,	as	they	can	build	a	personal	relationship	with	the	user,	as	well	as
collecting	a	lot	of	personal	information	that	can	contribute	to	more	targeted	and	finely	tuned	ads	that	lead
to	a	better	click-through	rate.
In	the	example	in	Figure	13-4,	the	user	actually	asks	the	bot	(a	teen-focused	“influencer	bot”	on	Kik)	for
the	ad,	in	the	form	of	a	coupon,	as	part	of	the	conversation.	Most	advertisers	will	tell	you	that	a	user
asking	for	an	ad	is	as	good	as	it	gets	when	it	comes	to	conversion	to	paying	users.	The	bot	captures	the
intent	at	exactly	the	right	moment	and	serves	a	relevant	ad	to	the	user.

Figure	13-4.	A	user	requesting	a	coupon	promotion	on	Kik

I	talked	to	Andy	Mauro,	who	built	this	bot,	and	he	stressed	that	the	motivation	was	to	provide	an	engaging
fan	experience	as	well	as	to	deliver	value	to	the	brand,	and	to	do	so	in	an	authentic	way	that	is	more
conversational	and	personal	than	traditional	advertising.
Note	that	while	some	platforms	are	happy	with	bots	serving	ads,	other	platforms	do	not	allow	it.	Slack,
for	example,	does	not	permit	the	serving	of	ads	on	its	platform.	The	reason	for	this	is	that	Slack	positions
itself	as	a	business	communication	platform;	it	would	not	make	sense	to	serve	ads	in	a	business	tool
context	that	promotes	productivity	and	focus.	If	you	are	thinking	of	ads	as	the	business	model	for	your	bot,
consumer-facing	platforms	like	Kik	can	be	great	venues	for	your	bot.

Data	—	Analytics	and	Market	Research
Bots	can	collect	a	lot	of	data	about	user	preferences	and	interests,	through	engaging	in	a	conversation	or
playing	a	game.
An	example	is	the	Swelly	bot.	Swelly	lets	the	user	play	a	game	of	choosing	between	two	options,	and
also	lets	users	and	marketers	ask	questions	to	get	help	with	decision	making.	After	choosing	an	option,	the
user	is	rewarded	by	being	shown	what	other	users	chose	(creating	a	social	hook	to	reengage	with	the	bot)
and	prompted	to	make	another	choice.	Figure	13-5	shows	what	it	looks	like	on	Facebook	Messenger.

Figure	13-5.	The	Swelly	bot

Now	imagine	you	were	a	fast	food	brand,	for	example,	and	wanted	to	know	which	new	type	of	sandwich
customers	would	prefer,	or	what	type	of	fast	food	imagery	they	would	find	more	appealing.	This	type	of
bot	would	be	a	gold	mine	for	your	research.	The	Swelly	bot	can	generate	detailed	reports	on	audience
preferences	in	a	precise	and	very	fast	way.	While	this	bot	does	not	charge	the	end	user,	I	am	sure	it	will
make	a	lot	of	money	helping	brands	understand	their	audience.

Selling	Goods	and	Services
Bots	can	also	become	the	channel	through	which	you	sell	goods	and	services.	These	can	be	tangible
goods	that	the	bot	sells	directly	in	chat,	or	paid	services	that	the	bot	exposes	through	chat.
An	interesting	example	of	a	paid	service	exposed	via	chat	is	the	ride	services	Lyft	(Figure	13-6)	and	Uber
(Figure	13-7),	which	have	developed	interfaces	for	both	Slack	and	Facebook	Messenger.

Figure	13-6.	The	Lyft	bot	on	Slack

Figure	13-7.	The	Uber	bot	on	Messenger

I	find	these	examples	very	interesting	because	these	are	services	that	were	previously	available	on
mobile	and	consumed	mainly	in	the	form	of	a	mobile	app.	The	conversational	interface	lets	you	consume
these	services	and	order	a	ride	without	having	the	app	installed	on	your	phone.	As	the	bot	market	grows,
we	might	see	more	and	more	paid	services	move	to	the	chat	platforms.
We’re	also	seeing	goods	sold	via	bots	—	and	we	cannot	talk	about	this	without	mentioning	the	Amazon
Echo.	Since	we	introduced	Alexa	to	our	house	and	started	using	it	in	our	kitchen,	more	and	more	of	our
household	goods	are	being	ordered	through	it.	“Alexa,	add	napkins	to	the	shopping	list”	is	easy	and
frictionless;	the	intent	is	captured	at	the	right	time,	by	a	bot	that	can	address	that	intent.	Amazon	has	also

launched	Alexa’s	“deals	of	the	day,”	which	are	deals	only	available	through	the	bot.

Referral	Fees
This	is	another	major	business	model	on	mobile	and	web	that	is	moving	to	bots	—	the	bot	can	help	you
decide	what	to	buy	or	which	service	to	consume	and	then	refer	you	to	the	right	service,	rather	than
actually	completing	the	transaction	itself.
A	good	example	of	a	referral	business	model	in	bots	is	the	Kip	bot,	available	on	Slack,	Messenger,	Kik,
and	Telegram.	Kip	is	a	shopping	assistant	for	teams;	as	well	as	coordinating	purchases	across	the	team	it
helps	you	find	items	to	buy	and	then	refers	you	to	the	merchant	that	can	fulfill	the	order	(Figure	13-8).
The	advantage	of	Kip	is	that	it	is	not	bound	to	a	single	vendor;	it	can	provide	the	user	with	results	sourced
from	multiple	merchants.	When	the	user	completes	a	transaction	on	a	merchant’s	site,	Kip	gets	a	referral
fee	for	sending	the	user	to	that	vendor.

Figure	13-8.	Kip	bot	referrals

There	are	many	other	use	cases	in	our	lives	that	follow	the	same	pattern,	from	travel	agents	to	car
salespeople,	and	we	will	likely	be	seeing	a	lot	of	agents	like	Kip	in	the	future	that	will	help	us	choose
between	vendors.

Brand	Promotion
Another	indirect	way	to	drive	your	business	through	a	bot	is	by	promoting	brand	recognition.	Thinking
about	the	bot	as	a	frontend	representative	of	your	product	or	service	can	make	a	lot	of	sense,	and	having	a
delightful	bot	that	provides	a	useful	service	can	generate	strong	attachment	to	your	brand.
This	pattern	is	being	explored	by	many	marketing	managers.	I	think	the	key,	however,	is	to	focus	on	the
value	proposition	the	bot	can	provide	and	not	only	its	persona	—	both	of	which	will	reflect	heavily	on	the
brand	perception	customers	will	develop	while	engaging	with	the	bot.
Figure	13-9	shows	an	example	of	a	branded	bot	on	Kik.

Figure	13-9.	The	H&M	bot	on	Kik

As	you	can	see,	the	bot	clearly	represents	the	H&M	brand.	It	uses	a	young	and	friendly	persona	(the	use	of
emojis	and	casual	manner),	but	also	puts	an	emphasis	on	providing	value	to	the	user	—	in	this	case,
helping	them	search	for	clothes	—	very	early	in	the	conversation.	Providing	value	is	key	because	a	bot
that	does	not	do	that	might	actually	generate	a	negative	brand	association,	similar	to	a	company
representative	who	keeps	wasting	your	time.

Extending	a	Paid-for	Product
Extending	a	paid-for	product	or	service	is	a	very	common	pattern	for	companies	that	already	have	an
established	offering	and	want	to	extend	this	offering	to	another	user	experience.	We	have	already	seen	this
pattern	with	the	introduction	of	mobile,	with	companies	like	Concur	developing	mobile	apps	that
extended	their	services	and	let	users	report	expenses	while	on	the	go.
Trello	is	a	well-established	paid	service	that	provides	help	with	task	and	project	management.	Noticing
that	a	lot	of	their	clients	were	using	Slack	as	a	way	to	communicate,	the	team	at	Trello	decided	to	extend
their	service	to	that	new	platform	and	provide	parts	of	the	functionality	inline	in	the	chat	interface	(Figure
13-10).

Figure	13-10.	Trello	on	Slack

As	you	can	see,	the	interaction	is	contextual	and	actionable	in	the	context	of	the	conversation.	It	makes	a
lot	of	sense	for	users	to	interact	with	the	service	in	this	intuitive	and	collaborative	way.
Choosing	which	part	of	the	functionality	to	expose	in	chat	is	key	to	the	success	of	use	cases	like	this.	If
you	expose	too	much	functionality,	you	might	provide	a	cumbersome	experience,	and	if	you	provide	too
little	it	might	be	not	valuable	enough.
Why	is	extending	to	new	platforms	useful	to	your	business	model?	The	first	reason	is	that	it	improves
engagement	and	the	usefulness	of	your	service	—	users	have	yet	another	touchpoint	to	get	value	from	the
service.	The	second	reason	is	that	it	improves	your	product’s	defensibility,	by	mitigating	the	risk	of	a
competing	product	gaining	traction	on	this	new	platform	and	stealing	your	clients.

In-Bot	Virtual	Goods
Sale	of	in-bot	virtual	goods	is	another	model	that	I	think	is	going	to	be	big	in	upcoming	years.	An	example
would	be	a	game	bot	that	sells	you	chips	or	power-ups,	or	a	bot	that	sells	you	music	and	photos.	While	I
could	not	find	good	examples	of	in-bot	payment	in	real	life	today,	this	model	has	been	one	of	the	most
lucrative	models	in	the	mobile	app	industry.

When	Should	You	Start	Charging	Users?
I	interviewed	several	bot	builders,	and	they	all	came	up	with	the	same	answer:	you	should	only	start
considering	charging	for	your	bot	when	you	feel	that	you	have	reached	product/market	fit.	Users	need	to
get	hooked	on	your	product,	use	it	on	a	regular	basis,	and	derive	a	lot	of	value	from	it	before	they	are
asked	to	pay	for	the	bot.	Whether	you	are	providing	a	trial,	a	freemium	version,	or	in-bot	virtual	goods,
make	sure	your	users	love	your	product	before	you	try	to	charge	them.

KEY	TAKEAWAY

You	should	only	start	considering	charging	for	your	bot	when	you	feel	that	you	have	reached	product/market	fit.

Another	point	many	bot	providers	have	stressed	is	that	it	is	important	to	decide	what	to	charge	for.
Charging	for	features	that	promote	engagement	or	the	virality	of	your	product	might	be	counterproductive.

Closing	Thoughts
When	I	joined	Google	eight	years	ago,	we	all	thought	that	paid	apps	were	going	to	be	the	way	developers
would	make	money	out	of	mobile.	What	happened	in	reality	is	that	in-app	purchases	became	the	way
users	preferred	to	spend	their	money.	The	point	is	that	this	industry	is	very	young,	and	we	are	still
exploring	the	right	monetization	strategy.	You	should	explore	these	and	other	strategies	for	your	particular
use	case	and	experiment	until	you	find	what	works.
In	the	following	chapters	we	will	take	the	theory	we’ve	learned	up	to	now	and	put	it	into	practical	use.
The	next	chapter	describes	the	steps	we	need	to	take	to	design	a	bot;	then	we	dive	right	in.

Chapter	14.	Design	Process	Overview
Design	is	not	just	what	it	looks	like	and	feels	like.	Design	is	how	it	works.

—	STEVE	JOBS

IN	THIS	SECTION	of	the	book,	we	will	be	moving	from	theory	to	practice.	We	will	explore	an	actual	use
case	and	go	through	the	design	process	of	making	this	use	case	a	reality.	We	will	also	explore	different
ways	to	iterate	and	improve	the	design	once	it	is	done	through	user	feedback.
Talking	to	several	product	managers	and	bot	designers	has	made	it	clear	that	there	is	no	single	process
that	works	for	everyone.	I	will	try	to	lay	out	a	process	that	works	for	many	use	cases,	but	you	should
explore	and	figure	out	the	best	process	for	you.

The	Steps
Here	are	the	core	steps	that	we	will	demonstrate	in	the	following	chapters:

Use	case	definition	and	exploration
In	Chapter	15	we	will	describe	the	purpose	and	functionality	we	need	to	design,	and	attempt	to
understand	the	persona	and	get	clarity	on	the	brand	and	other	attributes	that	might	impact	the	design.	We
will	then	make	a	basic	analysis	of	decisions	based	on	the	use	case	data,	drawing	on	some	early-stage
experimentation.

Conversation	scripting
In	Chapter	16	we	will	start	writing	the	basic	drafts	of	the	scripts	for	the	use	case	workflows.	We	will
explore	where	we	think	we	will	use	rich	interaction	and	rich	controls,	and	where	we	will	use	plain	text
conversation.

Designing	and	testing
In	Chapter	17	we	will	demonstrate	how	to	design	different	aspects	of	our	use	case.	We	will	experiment
with	a	few	design	tools	and	explore	the	benefits	of	each.	We	will	also	look	at	how	we	can	get
something	simple	in	front	of	users	to	validate	some	of	our	scripting	and	prototyping	assumptions.

Bot	building	overview
In	Chapter	18	we	will	review	different	ways	to	actually	implement	our	bots.	While	this	is	a	design
book,	this	is	an	important	step,	even	if	you	do	not	plan	to	actually	do	the	coding.

Analytics	and	continuous	improvement
In	Chapter	19	we	will	look	at	what	kind	of	data	we	can	get	from	our	bots	once	they	are	in	the	hands	of
our	users,	and	demo	that	with	a	few	bot	analytics	frameworks.	We	will	show	how	bot	designers	have
turned	this	data	into	insights	and	adjusted	their	designs,	making	their	bots	better.

The	Tools
We	will	review	several	tools	along	the	way,	but	as	this	ecosystem	is	experiencing	a	boom,	there	are	going
to	be	a	lot	more	tools	emerging	in	the	near	future	that	will	not	be	covered	in	this	book.	For	that	reason,	I
will	try	to	stick	to	design	principles	rather	than	tool	implementation	details.	We	will	not	go	over	all	the
menu	items	and	shortcuts	in	all	the	tools	(far	from	it!);	I	will,	however,	describe	and	demo	different
aspects	of	each	step	in	the	design	process	with	tools	that	are	available	today.
As	for	the	use	case,	there	is	no	“Hello	World!”	(super-simple)	version	of	a	bot	idea,	and	even	if	there
was,	it	would	not	be	useful	for	our	exercise.	The	use	case	we	will	be	designing	is	a	vacation	request
system	that	partners	with	a	travel	service	to	provide	bots	for	business	users	—	users	will	request	paid
time	off	in	the	business	platform	bot	and	get	vacation	recommendations	in	the	consumer	platform	bot.	We
will	make	note	along	the	way	of	certain	assumptions	about	technical	issues	that	will	be	out	of	scope.	Let’s
dive	in!

Chapter	15.	Use	Case	Definition	and	Exploration
Successful	engineering	is	all	about	understanding	how	things	break	or	fail.

—	HENRY	PETROSKI

CHRIS	MESSINA	REALLY	WANTS	to	take	a	vacation	to	Cancun	with	his	family.	Chris	works	as	a	DevOps
manager	in	a	midsize	company	in	San	Francisco.	His	partner	in	life	has	already	bought	the	tickets	and
booked	the	hotel,	so	Chris	just	has	to	complete	two	simple	tasks:	get	approval	from	his	manager,	and	find
fun	things	to	do	during	the	vacation.	Here	is	where	our	use	case	begins.
Our	task	is	to	build	two	bots	that	will	help	Chris	take	this	vacation:

PTOBot
The	PTO	(paid	time	off)	bot	will	help	Chris	secure	his	manager’s	approval	to	take	a	vacation.

VacationBot
The	vacation	bot	will	help	Chris	find	fun	things	to	do	while	in	Cancun.

Both	bots	are	provided	by	PTO-IT,	which	is	a	leading	software	provider	in	the	field.	Both	bots	share	the
same	infrastructure	and	will	provide	Chris	with	a	state-of-the-art	seamless	experience	wherever	he	is.
The	marketing	and	product	departments	of	PTO-IT	have	done	their	research,	and	have	come	up	with	the
following	insights	regarding	the	bots:

Audience
Adults	aged	~25–55,	tech-savvy,	tend	to	shop	online,	early	adopters.

Business	model
PTOBot	will	be	an	extension	of	the	paid	service	already	provided	by	PTO-IT,	a	widely	distributed
solution	with	high-tech	companies.	VacationBot	will	be	a	new	experiment	of	PTO-IT	in	an	effort	to
venture	into	the	consumer	landscape	and	generate	revenue	from	referral	fees.

Features
The	marketing	department	recommends	that	these	bots	provide	a	rich	and	interactive	experience,	as
past	experiments	with	text-only	interfaces	(through	SMS-based	approvals)	have	not	been	super
successful	with	this	audience.

Preferred	devices
PTO-IT’s	engineering	department	recommends	a	platform	that	supports	both	mobile	and	desktop
devices	based	on	past	experience	in	this	industry.

Platforms	used
In	a	set	of	interviews	with	samples	of	the	target	audience,	many	of	them	reported	using	email	and	Slack
for	work,	and	Facebook	Messenger,	email,	and	WhatsApp	for	communicating	with	family	and	friends.
Some	of	them	have	heard	about	Kik	and	SnapChat,	through	their	kids.

For	our	PTOBot,	the	following	basic	requirements	have	been	identified:
PTOBot	will	enable	users	to	perform	actions	in	the	PTO-IT	system	(assumption:	the	user’s	Slack	and
PTO-IT	email	addresses	will	be	used	to	link	the	accounts	—	linking	the	user’s	Slack	account	to	the
legacy	PTO-IT	system	is	out	of	scope).
PTOBot	will	enable	the	user	to	request	PTO,	setting	dates	and	providing	a	description
PTOBot	will	enable	managers	to	approve	PTO	requests	(assumption:	PTO-IT	already	knows	the

employee/manager	relationships).
PTOBot	will	record	the	approval/rejection	status	of	each	request	and	communicate	it	to	the	employee.
PTOBot	will	enable	an	employee’s	teammates	to	get	notifications	when	their	colleague	is	taking	a
vacation.
PTOBot	will	promote	VacationBot	to	the	user	at	the	end	of	the	approval	process.

For	our	VacationBot,	the	following	basic	requirements	have	been	identified:
VacationBot	will	only	be	distributed	by	PTOBot	and	work	for	PTO-IT	clients;	phase	one	will	not	be
open	to	the	public.
VacationBot	will	get	a	parameter	in	the	referral	from	PTOBot,	and	will	be	able	to	retrieve	vacation
start	and	end	dates	from	PTO-IT.
VacationBot	will	support	sending	notifications	to	the	user,	as	well	as	providing	the	ability	to	get	a	list
of	events	and	activities	at	the	vacation	destination	on	demand.
VacationBot	will	promote	subscribing	to	notifications	about	events	and	activities	to	the	user	during	the
vacation.
VacationBot	will	enable	linking	from	each	notification	to	the	relevant	event	or	activity	with	the
appropriate	affiliation	link.

PTO-IT’s	marketing	team	insists	on	keeping	on-brand	with	this	new	line	of	service.	Here	are	some	brand
guidelines:

PTO-IT	has	been	in	the	market	for	the	last	15	years	—	it	is	a	mature	and	respected	brand.
The	brand	and	products	should	reflect	professionalism,	seriousness,	security,	and	high-end	quality.
Interactions	and	recommended	activities	should	be	safe	for	work	(SFW)	and	family-friendly.
Productivity	is	the	number	one	value	—	get	things	done,	and	fast.
PTO-IT	aims	to	be	perceived	as	innovative	and	is	eager	to	adopt	new	platforms	—	give	us	bots!

Basic	Analysis
Now	that	we	are	armed	with	all	this	information,	we	need	to	make	a	few	decisions	before	we	start
designing	the	bot	interactions.

Setting	a	Purpose
We’ll	start	by	distilling	the	purpose	of	our	bots:

PTOBot
PTOBot	enables	the	process	of	employees	requesting	paid	time	off	and	managers	approving	these
requests.	It	also	serves	as	a	connection	to	the	system	of	record	(PTO-IT)	and	improves	the	transparency
of	vacations	taken	by	team	members.

VacationBot
VacationBot	takes	leads	from	PTOBot	on	users	who	are	planning	vacations	and	provides	them	with
activity	recommendations,	helping	make	their	vacations	delightful.

Picking	a	Bot	Platform
Let’s	pick	our	primary	platform	for	each	bot:

PTOBot
This	is	a	bot	for	a	business	use	case.	We	heard	from	our	target	audience	that	they	use	email	and	Slack
for	work.	We	also	heard	from	marketing	that	they	would	like	to	provide	rich	controls	and	an	interactive
experience,	which	more	or	less	excludes	an	email	bot.	There	is	also	a	desire	to	be	innovative	and
adopt	a	new	platform,	which	is	another	reason	not	to	use	email.
Let’s	pick	Slack	;)	Note:	Consider	adding	email	support	in	later	versions	of	the	product,	as	a	way	to
reach	non-Slack	users	(out	of	scope	for	this	example).

VacationBot
This	is	a	bot	for	a	consumer	use	case.	Our	target	audience	reported	using	Facebook	Messenger,	email,
and	WhatsApp	outside	of	work.	WhatsApp	currently	does	not	have	a	bot	framework.	Email	is	excluded
for	the	same	reasons	mentioned	above.
Let’s	pick	Facebook	Messenger	;)	Note:	Consider	adding	email	or	Kik	support	in	later	versions	of	the
product,	as	a	way	to	reach	non-Facebook	users	(out	of	scope	for	this	example).

Defining	a	Persona
Now	let’s	sketch	out	the	personas	for	our	two	bots.	First,	the	PTOBot:
Name:	PTOBot
Environment:	Work
Audience:	Adults	aged	~25–55,	early	adopters
Task	at	hand:	PTO	requests
Runtime	variations:	Report	abuse,	zero	tolerance	to	not	safe	for	work	(NSFW)	content
Locally	relevant	social	acceptance:	Work	environment
Service	branding:	Professional,	productive
Values:	Getting	things	done,	and	fast
Derived	personality:	Serious,	to	the	point,	friendly	but	not	humoristic,	safe	for	work.	This	bot	should
be	like	a	company	office	manager	or	a	personal	assistant.

Then	the	VacationBot:

Name:	VacationBot
Environment:	Consumer
Audience:	Adults	aged	~25–55,	early	adopters
Task	at	hand:	Provide	fun	activity	recommendations
Runtime	variations:	Provide	a	more	casual	conversation	during	the	vacation	itself
Locally	relevant	social	acceptance:	Family-friendly
Service	branding:	Professional,	fun	but	still	not	too	casual
Values:	Enriching	employees	lives	while	they’re	on	vacation
Derived	personality:	Friendly	but	not	too	humoristic,	family-friendly,	safe	for	work.	This	bot	should
be	like	the	concierge	service	in	a	high-end	hotel.

Choosing	a	Logo	and	Visuals
Let’s	pick	a	logo	and	establish	our	visual	preferences.	This	is	not	set	in	stone,	as	we	might	learn	a	few
things	during	the	exploration	and	prototyping	phases,	but	it	will	give	us	a	basic	framework	to	think	about
when	scripting	our	bot	conversations.
PTO-IT	has	very	strong	brand	recognition	at	many	high-tech	companies,	so	we	will	use	the	company	logo
for	both	bots	(Figure	15-1).	This	will	ensure	consistency	and	provide	the	users	with	the	feeling	that	they
are	using	a	PTO-IT	solution.	Another	reason	to	keep	the	logo	is	that	marketing	wants	this	to	be	perceived
as	an	extension	of	a	current	offer	rather	than	a	new	service.

Figure	15-1.	The	PTO-IT	logo

When	it	comes	to	color	coding,	PTO-IT	uses	a	basic	red,	blue,	and	yellow	schema.	Bots	should	use	this
color	schema	when	applicable.	We	will	refrain	from	using	funny	images	and	GIFs,	as	they	reflect	badly
on	the	serious	brand;	we	will	use	emojis	lightly	when	applicable.

Naming	Conventions
PTOBot	should	use	the	naming	conventions	set	by	PTO-IT	(remember	to	use	“paid	time	off”	instead	of
“vacation,”	for	example).
If	implementing	slash	commands,	they	should	be	associated	with	the	parent	product.	For	example:

/PTO-IT	[request]
For	our	VacationBot,	as	this	is	a	slightly	more	casual	product,	no	restrictions	on	naming	conventions
apply.	When	referring	to	PTO-IT	or	PTOBot,	however,	it	should	keep	the	“paid	time	off”	naming
convention.

Solution	Exploration
One	of	the	cool	things	with	this	new	conversational	user	interface	is	that	it	is	easy	to	explore	solutions
before	you	even	start	designing.	This	is	not	even	prototyping	(we	will	touch	on	prototyping	in	Chapter
17);	this	is	more	to	explore	the	conversational	paradigm.	We	will	use	a	method	called	Wizard	of	Oz	user
research.	The	Wizard	of	Oz	technique	enables	unimplemented	technology	to	be	evaluated	by	using	a
human	to	simulate	the	response	of	a	system	—	in	our	case,	the	bot.

KEY	TAKEAWAY

With	bots	it	is	easy	to	explore	solutions	before	you	even	start	designing	using	the	Wizard	of	Oz	technique.

In	order	to	explore	the	vacation	bot	on	the	Facebook	Messenger	platform,	I	have	actually	messaged	my
friend	Malvina,	who	works	at	Facebook,	with	a	few	recommendations	for	activities	for	her	upcoming	trip
to	Palm	Springs.	I	found	a	few	places	we	enjoyed	on	our	last	trip	there,	and	sent	her	some
recommendations	through	Facebook	Messenger	(Figure	15-2).

Figure	15-2.	Exploring	the	conversational	interface	for	the	vacation	bot	with	the	Wizard	of	Oz	technique

This	is	far	from	the	experience	I	envision	for	the	actual	bot	—	it	does	not	use	rich	elements	like	galleries
or	buttons	—	but	it	still	reveals	a	lot	of	insights	with	very	little	effort.
There	were	a	few	things	that	I	noticed	immediately.	First,	it	felt	kind	of	odd	to	just	post	the	links;	it	felt

like	I	needed	to	add	a	sentence	to	add	a	personal	touch	to	each	recommendation.
The	second	thing	I	noticed	is	that	it	took	Malvina	about	three	hours	before	she	saw	and	reacted	to	my
notifications.	This	gave	me	a	hint	that	timing	is	very	important	in	these	scenarios,	and	that	this	type	of
interaction	might	be	more	asynchronous	than	I’d	thought.	This	finding,	of	course,	needs	to	be	verified	with
more	user	testing,	but	it	might	imply	that	we	should	send	recommendations	the	evening	before	the	actual
day	of	an	event	or	activity,	to	ensure	users	can	see	and	are	able	to	act	on	the	information	we	provide	them.
The	third	thing	I	noticed	is	that	when	Malvina	answered	me,	she	provided	information	that	might	be	useful
for	future	recommendations.	Understanding	that	users	react	well	to	this	type	of	recommendation	and	are
willing	to	provide	feedback	is	important.	Getting	signals	from	user	input	is	a	crucial	part	of	a	successful
conversational	interface,	and	we	should	be	able	to	optimize	our	recommendations	to	each	user	from	their
feedback.
Because	faking	an	account	on	Facebook	is	hard,	I	cheated	a	little	with	my	Wizard	of	Oz	methodology:	I
did	not	pretend	to	be	the	bot,	but	rather	mimicked	the	conversation	a	bot	might	have	with	a	user.	This	is
one	of	the	benefits	of	this	conversational	user	experience,	where	bots	are	expected	to	join	the	existing
paradigm	of	a	human	chat	interface.
Exploring	on	the	Slack	platform	is	slightly	easier	because	you	can	just	create	another	user	account	(or
even	modify	yours)	with	the	logo	and	name	of	the	bot,	and	mimic	the	bot’s	behavior.	This	is	far	from	high-
fidelity	mimicking,	as	you	cannot	input	rich	controls	(such	as	buttons)	as	a	user,	but	it	gives	the	user	with
whom	you’re	interacting	the	feeling	that	they	are	not	talking	to	a	human.
In	one	of	my	work’s	Slack	teams,	I	modified	my	display	name	and	profile	photo	and	asked	people	to	send
me	their	PTO	requests	(Figure	15-3).

Figure	15-3.	Faking	PTOBot	in	Slack

The	learning	started	immediately.	Even	though	I	work	in	an	environment	where	people	are	used	to
working	with	bots,	I	got	a	big	variety	of	answers:
1.	 Not	now
2.	 Mar	12th
3.	 5/20/2017
4.	 Wait	a	min,	let	me	confirm

Just	from	this	small	experiment	I	learned	that	getting	the	users	to	give	me	the	answer	in	a	way	that	is	easy
to	digest	might	be	a	challenge.	I	will	need	to	handle	edge	cases	that	are	not	actual	dates.	There	might	even
be	a	“wait”	intent	that	is	now	surfaced	in	the	conversation,	and	we	might	plan	a	“waiting”	story	path	in
which	the	bot	reminds	the	user	to	complete	the	PTO	request	intent	after	a	while.
Wizard	of	Oz	prototyping	is	a	process	that	a	lot	of	bot	designers	adopt	as	a	quick	way	to	explore	behavior
before	writing	a	single	line	of	code.	Designers	doing	this	process	often	identify	issues	like	redundant
questions,	hidden	entities	and	additional	complexities	they	need	to	handle,	and	different	ways	humans
answer	questions.	These	answers	might	hint	to	us	to	use	rich	controls	in	some	situations	rather	than	plain
text,	or	expect	inputs	we	didn’t	think	of	accepting.

Another,	even	easier,	way	to	explore	a	conversational	interface	is	actually	to	have	a	conversation	in
person,	or	to	observe	a	conversation	in	action.	In	this	use	case	you	can	talk	to	a	colleague	at	work	and
collect	the	information	in	person,	or	ask	to	listen	to	a	conversation	an	office	assistant	has	every	day.	You
will	notice	phrases	like	“thank	you”	or	“much	appreciated”	that	you	will	need	to	filter	out,	and	other	types
of	conversational	habits	that	recur	in	the	conversation	you	are	trying	to	reproduce.	When	you	have	a
thoughtful	and	reflective	conversation,	you	will	find	a	lot	of	edge	cases	that	will	help	you	to	design	a
better	bot.

KEY	TAKEAWAY

Having	conversations	in	person,	or	observing	real-life	human	conversations,	is	a	great	way	to	explore	conversational	interfaces.

Now	that	we	are	armed	with	the	use	cases	and	have	done	a	little	exploration,	we	can	start	scripting	the
conversation	and	later	test	it	out	in	real	life.

Chapter	16.	Conversation	Scripting
Love	without	conversation	is	impossible.

—	MORTIMER	ADLER

IN	THIS	CHAPTER	WE	will	script	the	conversations	our	B2B	and	B2C	bots	will	have.	We	will	break	down
the	conversations	into	flows	(sometimes	called	stories),	and	detail	the	entities	we	want	to	extract.	We
will	start	to	map	edge	cases	and	error	handling,	and	will	decide	when	to	use	plain	text	and	when	to	use
rich	controls.
At	a	high	level,	here	is	the	flow	we	would	like	to	facilitate	with	both	bots	(Figure	16-1).

Figure	16-1.	A	high-level	view	of	the	PTOBot/VacationBot	flow

I	have	highlighted	the	PTOBot	part	in	blue	and	the	VacationBot	part	in	peach.	We	will	now	outline	the
specific	flows	that	compose	the	use	case	for	each	bot.

Outline	of	Flows
The	first	step	we	are	going	to	take	is	exploring	the	different	flows	that	compose	our	bots’	use	cases.

Onboarding
As	previously	discussed,	a	thoughtful	onboarding	could	be	the	difference	between	a	successful	bot
engagement	and	an	abandoned	bot.	In	this	section	we	will	try	to	follow	the	best	practices	of	demonstrating
value	and	providing	a	call	to	action.

KEY	TAKEAWAY

Thoughtful	onboarding	could	be	the	difference	between	a	successful	bot	engagement	and	an	abandoned	bot.

PTOBot
The	PTOBot	onboarding	is	slightly	complex.	It	starts	with	the	person	who	installed	the	bot,	and	continues
to	the	team	the	bot	was	added	to	(Figure	16-2).	I	will	highlight	1:1	interactions	in	blue	and	team
interactions	in	peach.	The	pattern	we	would	like	to	follow	is	the	one	of	a	dual	onboarding	script.	The	first
will	end	with	prompting	the	installing	user	to	add	the	bot	to	the	relevant	team	channel;	the	second	is	a
team	onboarding	script	that	introduces	the	bot	to	the	team	and	ends	with	a	call	to	action	to	start	using	the
bot.

Figure	16-2.	PTOBot	onboarding	flow

VacationBot
In	this	flow	the	user	will	connect	to	the	bot,	and	the	bot	will	introduce	itself,	demo	its	capabilities
(making	the	user	understand	its	value),	capture	where	the	user	is	traveling	to,	and	ask	for	permission	to
send	notifications	of	fun	activities	to	the	user	(Figure	16-3).

Figure	16-3.	VacationBot	onboarding	flow

Note	that	collecting	the	destination	might	trigger	an	error	path.	If	the	destination	is	not	captured	correctly,
we	should	trigger	an	error	flow	(described	later	in	this	chapter)	and	then	try	again	to	collect	the	required
information.

Main	Flow
In	this	flow	we	will	describe	the	main	happy	path.	This	encapsulates	the	main	functionality	of	the	bot,
without	errors	or	divergences.

PTOBot

PTOBot’s	main	story,	a	PTO	request,	involves	a	few	actors:	the	employee,	the	manager,	and	the	team	(see
Figure	16-4).	I	will	use	the	same	color	notation	for	1:1	and	1:many	as	in	the	last	story.

Figure	16-4.	PTOBot	main	flow

As	you	can	see,	our	story	starts	with	an	employee	prompting	the	bot	to	start	a	PTO	request	workflow.	The
bot	collects	the	required	information	(we	will	define	the	required	information	later	in	this	chapter),
verifies	that	all	the	required	data	has	been	provided,	and	sends	the	user	a	confirmation	of	the	request
details.	It	then	sends	the	employee’s	manager	a	request	summary	and	prompts	the	manager	for	approval.
Following	manager	approval/rejection,	the	bots	notifies	the	user	of	the	outcome	and,	if	the	request	was
approved,	notifies	the	team.
Looking	at	this	flow,	we	are	facilitating	a	complex	and	usually	repetitive	workflow	that	does	not	require	a
lot	of	work	in	each	step.	The	alternative	to	this	use	case	in	the	traditional	world	would	be	to	go	through	a
dedicated	system	or	fill	in	a	paper	form	—	so	our	hope	is	that,	with	this	bot,	this	process	will	be	a	much
more	pleasant	experience	for	employees.

VacationBot
VacationBot’s	main	flow	is	of	the	in-vacation	experience.	It	involves	the	user	and	the	bot	in	a	1:1
interaction	(Figure	16-5).

Figure	16-5.	VacationBot	main	flow

This	story	can	start	from	two	endpoints:	the	bot	can	provide	a	recommendation	based	on	a	scheduled
subscription	(set	by	the	user	in	the	onboarding)	or	the	interaction	can	be	initiated	by	the	user	directly	in
chat.	At	the	end	of	the	flow	we	would	like	to	prompt	the	users	to	subscribe	to	a	scheduled	notification,	if
they	have	not	done	so	already,	and	to	offer	them	more	recommendations	as	a	way	to	keep	the	interaction
going.

Help
The	help	flow	aims	to	support	the	user	in	case	they	need	assistance	in	the	main	flow	of	the	bot.	This	flow
can	kick	off	by	the	user	asking	for	help,	or	the	bot	understanding	that	the	user	needs	help	due	to	errors	in
the	main	flow.

PTOBot
The	help	story	for	PTOBot	starts	with	a	1:1	engagement	and	ends	with	adding	a	human	to	the	conversation
to	resolve	the	issue	(Figure	16-6).	Because	PTO-IT	is	a	mission-critical	HR	system,	if	contextual	help
does	not	resolve	the	problem	it’s	important	to	provide	human	assistance,	either	from	tech	support	or	HR.

Figure	16-6.	PTOBot	help	flow

We	would	want	to	offer	contextual	help	text	in	this	flow.	If	the	user	gets	stuck	setting	the	start	date	for	the
PTO,	for	example,	the	help	text	might	look	like	“Please	enter	a	start	date	for	your	PTO,	using	the
following	format...”;	asking	for	help	at	the	beginning	of	the	flow	might	just	result	in	a	repeat	of	the
onboarding	example	usage	script.
Note	that	I	added	an	optional	step	of	carrying	on.	A	help	flow	can	be	triggered	in	the	middle	of	another
flow	—	for	example,	a	user	can	ask	for	help	when	entering	a	description	for	a	PTO	request.	You	will	see
this	pattern	in	several	other	flows	in	this	chapter.	It	is	up	to	the	business	logic	that	you	outline	to
determine	whether	it	makes	sense	to	carry	on	with	the	original	conversation	(and	pick	up	where	you	left
off)	or	not.

VacationBot
VacationBot	is	less	mission-critical,	so	we	will	provide	only	automatic	measures	to	assist	the	user
(Figure	16-7).

Figure	16-7.	VacationBot	help	flow

You	might	have	noticed	that	we	are	offering	generic	help	text.	We	do	this	because	most	of	the	steps	in	this
bot	do	not	require	complex	user	inputs,	so	just	repeating	the	onboarding	example	usage	script	should	be
enough	to	help	the	user.
Because	our	help	path	does	not	end	with	the	intervention	of	a	human	who	can	resolve	complex	issues,	we
will	offer	the	user	the	option	to	provide	feedback	and	improve	the	experience	for	future	releases	of	the

bot.

Feedback
As	discussed	previously,	feedback	is	an	important	part	of	a	conversation	—	it	gives	the	user	the	ability	to
share	valuable	information	with	the	bot’s	designer.	There	are	several	entry	points	to	feedback	(see	Figure
16-8);	let’s	describe	them	now.

Figure	16-8.	Feedback	flow

This	flow	is	more	or	less	the	same	in	both	PTOBot	and	VacationBot.
We	want	to	surface	feedback	at	several	points.	We	want	to	capture	negative	feedback	when	an	error	flow
ends	(asking	the	user	what	went	wrong,	and	whether	the	issue	was	resolved),	we	want	to	capture	positive
feedback	at	the	end	of	a	successful	workflow	(as	a	way	to	report	the	value	of	the	bot	to	the	stakeholders),
and	we	want	to	give	the	user	the	ability	to	give	feedback	at	any	time	by	just	typing	something	like
“feedback.”
Capturing	positive	feedback	is	sometimes	as	important	as	capturing	negative	feedback.	You	can	use	this
type	of	feedback	as	client	testimony,	to	prompt	the	user	to	provide	a	good	review	or	rating	in	a	directory
listing,	and	to	encourage	users	to	share	the	bot	with	others.	This	process	is	used	quite	effectively	in
mobile	games,	many	of	which	ask	the	user	to	rate	the	game	after	their	first	win.	Capturing	the	user’s	happy
moments	can	be	very	valuable,	when	done	right.

KEY	TAKEAWAY

Capturing	positive	feedback	is	sometimes	as	important	as	capturing	negative	feedback.

Error	Handling
Error	handling	happens	a	lot	with	bots,	mainly	because	of	unexpected	user	inputs.	I	use	the	term	error
quite	loosely	—	errors	are	all	the	inputs	that	the	user	enters	that	are	not	a	part	of	the	happy	flow.
Examples	of	such	inputs	can	include:
1.	 Thanking	the	bot
2.	 Cursing	the	bot
3.	 Asking	the	bot	to	do	a	task	that	the	bot	cannot	perform
4.	 Random	questions
5.	 Expressing	an	intent	or	providing	an	entity	in	a	form	that	the	bot	cannot	interpret	with	sufficient

confidence	(for	example,	“I	wanna	take	a	vacay”	if	the	bot	is	not	trained	to	map	this	wording	to	the
PTO	request	intent)

6.	 Random	inputs
7.	 Chitchat

The	key	with	invalid	inputs	is	to	map	a	canned	response,	or	several	randomized	responses,	to	a	given	set
of	inputs,	and	to	apologize	and	escalate	if	applicable	(see	Figure	16-9).

Figure	16-9.	Error	flow

Here	are	a	few	canned	response	examples:
1.	 Thanking	the	bot:	“Thank	you!”	“I	appreciate	it!”	“I	am	blushing.”
2.	 Cursing	the	bot:	“Sorry	to	hear	you	say	that,”	“I	am	sorry	you	feel	that	way,”	“This	is	not

appropriate.”
3.	 Asking	the	bot	to	do	a	task	that	the	bot	cannot	perform:	“I	am	sorry,	I	cannot	complete	that	task.”
4.	 Random	inputs:	“Sorry,	I	do	not	know	the	answer	to	that,”	“Not	sure	I	got	that.”
5.	 Chitchat	(e.g.,	“How	are	you	doing?”):	“I	am	fine,”	“Doing	well,”	“Good,	thanks.”

If	the	input	suggests	that	the	user	either	is	not	happy	or	is	very	happy,	you	might	want	to	pull	in	the
feedback	flow.
Supporting	chitchat	can	take	a	lot	of	design	effort,	so	avoid	getting	distracted	into	spending	a	lot	of	time
on	that,	but	supporting	simple	and	common	inputs	like	“How	are	you	doing?”	might	provide	a	nice
experience.
This	process	is	very	similar	in	both	PTOBot	and	VacationBot,	with	the	distinction	that	VacationBot	does
not	provide	escalation	to	a	live	human.	If	it	cannot	respond	to	the	input,	VacationBot	can	just	say	“Sorry	I
could	not	help,	I	have	recorded	this	error	in	order	to	improve	future	experiences,”	and	move	on.

Intent	Mapping
Here	are	the	intents	exposed	by	the	bots	and	a	sample	of	keywords	that	can	initiate	them.
For	PTOBot:

PTO	request:	“PTO,”	“Hi,”	“Hello,”	“ ,”	“Start,”	“Vacation”
Help:	“Support,”	“Help,”	“Not	sure,”	“What?”
Feedback:	“This	is	great,”	“This	sucks,”	“Feedback”

For	VacationBot:
Get	activities:	“Recommendations,”	“Hi,”	“Hello,”	“ ,”	“What’s	up,”	“News”
Help:	“Support,”	“Help,”	“Not	sure,”	“What?”
Feedback:	“This	is	great,”	“This	sucks,”	“Feedback”

Entity	Mapping
Entities	are	variables	we	want	to	collect	from	the	user.	These	entities	can	be	collected	using	plain	text	or
rich	controls.	Let’s	map	the	entities	of	our	already	outlined	stories.
For	PTOBot,	the	PTO	request	entities	are:

Start	date	{Date}
End	date	{Date}
Description	{Text	—	up	to	one	paragraph}
Approved	{Yes/No}

For	VacationBot,	the	vacation	activity	entities	are:
Destination	{Location}
Schedule	notifications	{Yes/No}
When	to	send	the	notification	{Morning/Evening}

The	purpose	of	a	conversation,	from	the	perspective	of	the	entity-collection	process,	is	to	reach	a	mutual
understanding	about	each	of	these	entities.	The	bot	can	ask	the	user	to	input	these	entities	or	can	offer	them
as	options	with	rich	controls.	In	the	next	section	we	will	make	that	call.

Scripting	Sample	Bot	Outputs
In	this	step	we	will	create	mock	conversations	and	provide	an	example	of	each	flow.	For	most	inputs	and
outputs	we	will	need	to	create	multiple	permutations	so	that	the	bot	conversations	will	seem	more	natural,
but	for	this	step	we	will	just	outline	single	examples	of	inputs	and	outputs.	This	exercise	will	give	us	a
better	idea	about	what	we	would	like	to	conversations	to	look	like.	This	is	also	the	place	to	decide
whether	we	want	to	extract	entities,	and	display	information,	with	plain	text	or	rich	controls.

Onboarding
Let’s	start	with	the	onboarding	scripts.	As	we	discussed	previously,	onboarding	is	a	critical	part	of	your
bot	experience.

PTOBot
The	onboarding	script	for	our	PTOBot	is	split	into	two	separate	conversations:	the	1:1	one	with	the	user
who	is	installing	the	bot,	and	a	team	conversation.
The	conversation	with	the	installer	might	look	like	this:

PTOBot:	Thank	you	for	adding	me	to	the	team!	I	am	an	HR	bot	provided	to	you	as	part	of	your	PTO-IT
solution.	I	can	facilitate	PTO	requests	and	approvals.
PTOBot:	Here	is	how	I	work:	[show	a	GIF	of	working	with	the	bot,	one	image	with	an	employee	and
the	other	with	a	manager]
PTOBot:	In	order	for	me	to	work	well,	please	add	me	to	the	relevant	channels	-	recommended
channels	are	#HR	and	#general.

The	conversation	with	the	team	(once	the	bot	has	been	invited	to	the	channel)	might	go	like	this:
PTOBot:	Hi	everyone,	I	am	PTOBot,	your	new	HR	bot	added	by	[Installer	name].	I	can	facilitate	Paid
Time	Off	(PTO)	requests	and	approvals.
PTOBot:	Here	is	how	I	work:	[show	a	GIF	of	working	with	the	bot,	one	image	with	an	employee	and
the	other	with	a	manager]
PTOBot:	You	can	Direct	Message	me	at	any	time	to	start	a	PTO	request.	You	can	find	me	at	@ptobot.
PTOBot:	Another	way	to	start	a	PTO	request	is	with	a	slash	command.
PTOBot:	Just	type:	/pto-it	[start-date	MM/DD/YY]	[end-date	MM/DD/YY]	[description]

There	are	a	few	things	to	note	here.	First,	we	assume	that	the	installer	is	an	HR	person.	They	are	the	bot’s
main	point	of	contact.	We	will	loop	this	person	into	an	escalation	flow	if	needed	in	the	future.	The	first
thing	we	want	to	achieve	is	buy-in	from	this	person,	so	they	add	the	bot	to	the	right	channels.	We	could
use	the	API	to	automatically	add	the	bot	to	several	channels,	but	that	would	probably	be	perceived	as
spammy	and	intrusive.	Having	the	bot	added	by	an	HR	person	is	a	good	signal	to	the	team	that	this	is	the
recommended	way	to	request	PTO.	You	might	have	also	noticed	that	we	use	the	installer’s	name	in	the
team	script,	reinforcing	this	link.
When	the	bot	is	added	to	a	channel	(it	receives	an	event	each	time	this	occurs),	it	introduces	itself	to	the
team	and	educates	them	about	how	to	use	it.	You	might	also	have	noticed	the	decision	to	post	a	GIF
instead	of	describing	how	the	bot	works	—	we	will	need	to	test	this	experience	with	real	users,	but	the
assumption	here	is	that	the	GIF	will	be	an	easy	way	to	demonstrate	how	to	work	with	the	bot.
The	last	thing	to	note	is	that	we	offer	a	shorthand,	command	line–like	way	to	ask	for	PTO.	We	anticipate
that	tech-savvy	users	might	find	it	more	efficient	to	type	in	a	single	line	to	kick	off	a	PTO	request,	like
this:

User:	/pto-it	04/21/17	04/31/17	Holiday	vacation

VacationBot
Now	let’s	turn	to	our	VacationBot.	The	onboarding	of	VacationBot	requires	us	to	collect	the	trip
destination	entity,	and	also	to	end	with	a	call	to	subscribe	to	notifications	about	activities.	The	underlying
assumption	here	is	that	this	bot	is	installed	straight	after	the	PTO	request	is	approved.	PTOBot	will
suggest	that	users	install	VacationBot	to	learn	about	fun	activities	at	their	destination	after	their	PTO	has
been	approved.
Here’s	our	example	onboarding	conversation	script	(between	VacationBot	and	the	user):

VacationBot:	Thank	you	for	connecting!
VacationBot:	I	am	your	friendly	VacationBot.	I	can	provide	you	with	news	about	activities	happening
while	you	are	on	vacation.	I	will	even	include	your	corporate	discounts,	provided	to	you	by	PTO-IT!
VacationBot:	Our	records	show	that	you	are	heading	out	on	04/21/17.
VacationBot:	Please	provide	your	destination	so	we	can	get	started.
User:	Cancun	Mexico
VacationBot:	Fantastic	place	for	a	vacation!	Here	are	a	few	cool	attractions	in	the	area:
VacationBot:	[Carousel	with	3	activities]
VacationBot:	I	can	send	you	fun	new	activities	every	day.	Would	you	like	that?
VacationBot:	[Yes,	every	morning]	[Yes,	every	evening]	[No	thanks]	(Quick	Replies)
{	Yes,	every	evening	}
VacationBot:	Fantastic,	will	do.	Have	a	great	vacation!	You	can	always	say	“Recommendations”	to
get	more	recommendations	at	any	time.
{No}
VacationBot:	That	is	fine,	you	can	always	say	“Recommendations”	to	get	more	recommendations	at
any	time.	Have	a	great	vacation!
VacationBot:	[Recommendations]	(Quick	Reply)

Again,	there	are	a	few	things	to	note	in	this	example.	The	first	is	that	we	immediately	state	the	name	of	the
bot,	its	purpose,	and	also	its	association	with	the	PTO-IT	offering.	We	do	this	as	preparation	for	what
comes	next.	In	the	next	section	we	tell	the	user	that	we	already	know	when	they	are	starting	their	vacation.
The	association	made	before	that	is	to	make	sure	the	user	knows	that	information	has	not	been	leaked	or
acquired	inappropriately.	We	want	to	provide	the	user	with	the	feeling	that	this	is	all	part	of	a	service
provided	by	the	PTO-IT	offering.
Next,	you	will	notice	that	we	are	prompting	the	user	to	add	their	destination.	This	is	information	that	is	not
collected	by	PTOBot	(it’s	not	relevant	for	PTOBot’s	operation,	and	it	might	be	inappropriate	for	that	bot
to	request	it),	so	we	need	to	collect	this	entity	now.	There	is	a	hidden	flow	that	might	surface	if	the	bot
does	not	understand	the	destination,	but	for	now	we	will	assume	a	valid	user	input.
The	last	thing	to	note	here	is	that	we	have	started	to	make	decisions	on	how	to	interact	with	the	users.	We
have	annotated	the	script	with	things	like	(Quick	Reply)	to	mark	our	decision	to	use	this	type	of	rich
interaction	in	the	script.
This	script	uses	a	combination	of	Quick	Replies	and	free	text	input.	We	use	free	text	for	open-ended
questions	—	for	example,	we	currently	do	not	have	a	rich	control	that	lets	the	user	pick	a	location	(though
this	might	be	provided	by	Facebook	Messenger	in	the	future),	so	we	default	to	just	asking	the	user	to	input
their	destination	as	free	text.	In	other	places,	where	there	are	simple	choices	to	be	made	(like	whether	and
when	to	get	the	notifications),	we	use	Quick	Replies	to	indicate	to	the	user	what	the	valid	choices	are.	We
will	still	need	to	manage	the	use	case	where	the	user	inputs	free	text	instead	of	clicking	on	a	Quick	Reply,

but	the	assumption	is	that	users	will	click	on	the	replies	most	of	the	time,	rather	than	typing.

KEY	TAKEAWAY

Use	buttons	and	Quick	Replies	for	non-open-ended	questions	to	indicate	to	the	user	what	the	valid	choices	are.

This	conversation	ends	with	a	call	to	action,	by	showing	the	[Recommendations]	Quick	Reply.	This	hints
to	the	user	that	their	next	step	is	to	get	more	recommendations;	this	keeps	the	conversation	going	and
provides	users	with	a	feeling	of	not	being	stuck	or	lost.

Main	Flow
Now	we	can	script	the	main	flow	for	each	bot.

PTOBot
PTOBot’s	main	flow	is	actually	made	up	of	four	scripts:	PTO	request,	PTO	approval,	PTO	approval
notification,	and	team	notification.
Here’s	our	example	PTO	request	conversation	script	(between	the	employee	and	PTOBot	in	a	direct
message):

User:	Hi	@PTOBot	I	would	like	to	take	a	PTO
PTOBot:	Happy	to	assist!	Which	date	would	you	like	to	start	your	PTO?
User:	04/21
PTOBot:	Thanks,	which	date	would	you	like	to	end	your	PTO?
User:	04/31
PTOBot:	Please	provide	a	description	for	your	PTO	request.
User:	Holiday	vacation
PTOBot:	Great!	To	confirm,	you	would	like	to	take	PTO	between	the	04/21/2017	and	04/31/2017	for
a	Holiday	vacation.
PTOBot:	[Make	Request]	[Edit]	(buttons)
{“Make	Request”	button	clicked}
PTOBot:	Thank	you!	I	will	now	send	the	request	to	your	manager,	April	Underwood,	to	approve	your
PTO.
User:	Thanks!
PTOBot:	You	are	welcome.

Another	version	of	the	same	script	would	involve	the	shorthand	version	with	the	slash	command:
User:	/pto-it	04/21/17	04/31/17	Holiday	vacation
PTOBot:	To	confirm,	you	would	like	to	take	PTO	between	the	04/21/2017	and	04/31/2017	for	a
Holiday	vacation.
[Make	Request]	[Edit]	(buttons)
{“Make	Request”	button	clicked}
PTOBot:	I	will	now	send	the	request	to	your	manager,	April	Underwood,	to	approve	your	PTO.

As	you	can	see,	in	both	versions	of	this	script	we	are	using	a	button	to	confirm	the	request	and	free	text	to
set	the	other	entities.	Because	the	intent	of	the	slash	command	is	to	make	the	interaction	short	and	to	the
point,	I	have	removed	the	“niceties”	(“thank	you,”	“great,”	and	such)	from	the	script.
You	might	also	have	noticed	that	the	user	in	the	first	script	thanked	the	bot.	Here	we	see	a	small	snippet	of
the	error	handling	use	case,	where	the	input	is	not	critical	for	the	workflow,	but	an	answer	like	“You	are
welcome”	is	appropriate.

Now	let’s	move	on	to	the	second	part	of	the	PTO	flow.
Here’s	our	example	manager	PTO	approval	script	(between	the	manager	and	PTOBot	in	a	direct
message):

PTOBot:	Hi	April,	Chris	Messina	would	like	to	take	PTO	between	04/21/2017	and	04/31/2017.	If
approved,	Chris	will	have	5	days	in	surplus	remaining.
PTOBot:	[Approve]	[Reject]	(buttons)
{“Approve”	button	clicked}
PTOBot:	Thank	you,	I	will	notify	Chris	Messina	that	the	PTO	request	has	been	approved.

Note	that	we	are	pulling	in	information	that	was	not	supplied	by	the	user.	PTOBot	is	part	of	the	PTO-IT
solution,	and	the	assumption	is	that	the	bot	has	access	to	extra	information,	like	the	employee’s	PTO
balance,	that	can	help	the	manager	make	a	decision	on	whether	to	approve	the	request	or	not.
Next,	let’s	go	back	to	the	employee	to	confirm	the	manager’s	approval.
Our	PTO	approval	notification	script	(between	the	employee	and	PTOBot	in	a	direct	message)	looks	like
this:

PTOBot:	Good	news!	Your	manager,	April	Underwood,	has	approved	your	PTO	request:	(formatted
in	a	message	attachment)
PTOBot:	Would	you	like	me	to	send	a	notification	in	the	#PTO	channel?
PTOBot:	[Notify	Team]	[Skip]	(buttons)
{Any	button	clicked}
PTOBot:	If	this	PTO	is	a	vacation,	you	might	be	interested	in	our	new	VacationBot	offer.	This	is	a
Facebook	Messenger	bot	that	can	inform	you	about	activities	and	corporate	discounts	at	your
destination.
PTOBot:	Here	is	the	link	to	install	it	-	[link	to	vacation	bot]

As	you	can	see,	we	are	using	a	formatted	message	attachment	for	this	notification.	The	aim	is	to	provide
the	employee	with	a	receipt-like	experience	that	will	hopefully	increase	their	trust	in	the	system.
We	also	offer	the	employee	a	way	to	notify	the	team	of	their	upcoming	PTO.	We	will	script	that	part	in	the
next	section.	Lastly,	we	suggest	that	the	employee	install	the	Facebook	Messenger–based	VacationBot.
This	will	be	the	segue	to	convert	PTOBot	users	into	VacationBot	users.	We	are	using	a	link	to
VacationBot;	this	link	will	be	provided	by	Facebook	Messenger	when	we	publish	this	bot	on	their
platform.	Clicking	on	the	link	will	take	the	user	straight	into	a	conversation	with	that	bot.
The	last	part	of	PTOBot’s	main	flow	is	the	notification	to	the	team.
The	PTO	notification	script	(PTOBot	posting	in	the	#pto	channel)	looks	like	this:

PTOBot:	PTO	alert:
PTOBot:	Employee:	Chris	Messina
PTOBot:	When:	04/21/17	04/31/17
PTOBot:	Approved	by	April	Underwood

Note	that	we	have	omitted	the	description	from	the	notification	—	as	this	is	a	public	channel,	we	do	not
want	to	share	that	potentially	sensitive	information.
This	ends	the	main	script	for	our	PTOBot.	You’ll	notice	that	we	demonstrated	team	engagement	as	well	as
personal	one-on-one	engagement	with	the	bot.	This	flexibility	is	common	in	work	environments	and	is
useful	for	facilitating	complex	business	processes.
Now	let’s	move	to	our	VacationBot	and	its	main	flow.

VacationBot
Our	VacationBot	has	a	simpler	main	flow.	It	is	driven	by	a	scheduled	task	set	by	the	user	in	the
onboarding	script,	or	at	any	time	by	the	user	clicking	on	the	“Recommendations”	Quick	Reply.	Here	is
how	this	script	goes:

VacationBot:	Hello	again!	Here	are	a	few	new	cool	attractions	in	the	area:
VacationBot:	[Carousel	with	3	activities]
VacationBot:	[More]	[Schedule	notifications	(if	not	subscribed)]	(Quick	Reply)

This	is	very	similar	to	the	onboarding	script.	Notice	that	we	are	providing	the	user	with	a	way	to
subscribe	to	get	notifications,	in	case	they	did	not	do	so	initially	in	the	onboarding	phase.	Like	with	many
consumer	services,	a	lot	of	the	magic	here	is	around	the	simplicity	of	the	flow	and	the	content	displayed	in
the	carousel.	We	will	experiment	with	the	design	of	the	carousel	itself	in	the	next	chapter.
In	real	life,	there	might	be	a	lot	of	additional	complexities	in	the	main	scripts	of	both	bots.	For	example,
our	VacationBot	might	have	activities	divided	by	categories,	and	our	PTOBot	could	have	a	path	where	the
user	is	getting	into	a	negative	PTO	balance.	We	have	simplified	the	use	cases	of	both	bots	not	only	in
order	to	make	this	book	slim	enough	for	you	to	carry	around,	but	also	because	the	design	methods	we’ve
used	here	can	solve	these	more	complex	use	cases	by	repeating	the	steps	we	have	taken	here.

Help
Now	let’s	turn	our	attention	to	the	scripts	for	the	help	flow.

PTOBot
For	our	PTOBot,	the	help	script	for	the	vacation	approval	process	has	three	parts	to	it:	generic,	context-
specific,	and	human	intervention.
Here’s	our	generic	help	script	(PTOBot	and	employee	in	a	direct	message):

PTOBot:	Here	is	how	I	work:	[show	two	GIFs	of	working	with	the	bot,	one	with	an	employee	and	the
other	with	a	manager]
PTOBot:	You	can	direct	message	me	at	any	time	to	start	a	PTO	request.	You	can	find	me	at	@ptobot.
PTOBot:	Another	way	to	start	a	PTO	request	is	with	a	slash	command.
PTOBot:	Just	type:	/pto-it	[start	date	in	MM/DD/YY	format]	[end	date	in	MM/DD/YY	format]
[description]
PTOBot:	[Need	human	help]	(button)

Notice	that	this	is	very	similar	to	the	onboarding	script	provided	by	the	bot.	The	target	here	is	to	provide
generic	assistance	in	case	the	user	has	forgotten	how	to	work	with	the	bot.	This	script	will	usually	appear
if	the	user	types	“help”	before	starting	a	PTO	request.
We	have	added	a	button	at	the	end	of	the	script	that	the	user	can	click	to	seek	support	from	a	human,	in
case	this	generic	help	script	does	not	suffice.	We	will	script	the	human	intervention	script	shortly.
Next,	here’s	an	example	of	a	context-specific	help	script	(PTOBot	and	employee	in	a	direct	message):

PTOBot:	You	are	now	entering	a	start	date	for	your	PTO	request.	Please	pick	the	first	business	day	of
your	PTO	and	use	the	following	date	format:	MM/DD/YY.
PTOBot:	[Need	human	help]	(button)

This	is	an	example	of	a	help	script	that	might	be	produced	when	the	user	types	“help”	while	creating	a
PTO	request	if	they	run	into	problems	entering	their	PTO	start	date.	You	can	create	a	set	of	contextual
help	snippets	and	supply	them	at	the	right	time	when	a	user	needs	help.	If	these	help	snippets	do	not	work,

we	default	back	to	requesting	human	assistance,	like	in	the	case	of	the	last	script.	Let’s	explore	that	script
now.
Our	human	assistance	script	might	look	like	the	following	(between	PTOBot,	the	employee,	and	HR
support	in	a	multi-party	direct	message):

{“Need	human	help”	button	clicked}
PTOBot:	Hello	HR	support.	Chris	Messina	is	running	into	issues	creating	a	PTO	request.	I	was	not
able	to	resolve	this	issue,	so	I	am	connecting	us	all	so	it	can	be	successfully	resolved.
Peter	Skomoroch:	Hi	Chris!	My	name	is	Peter	and	I	am	a	support	engineer	with	your	People	Ops
department.	How	can	I	help?
Chris:	Hi	Peter,	I	have	a	question	regarding...

Looping	a	human	into	a	conversation	can	be	done	in	two	ways:

Bot	as	a	router
The	bot	is	backed	up	by	a	human	who	takes	over	and	talks	to	the	user.	The	user	thinks	they	are	still
talking	to	software	but	in	fact	they	are	talking	to	a	human.

Bot	as	a	connector
The	bot	connects	the	user	with	a	human	to	resolve	the	issue.

We	have	chosen	the	bot	as	connector	method	because	we	want	to	create	a	“personal	touch”	experience	for
the	human-tier	support.	Looping	a	real	person	into	the	loop	will	hopefully	promote	the	impression	of	a
high-end	brand	together	with	a	strong	feeling	of	service	quality	provided	by	the	internal	HR	support	staff.
At	the	end	of	the	human	interaction	flow,	the	user	can	be	redirected	back	to	the	conversation	or	post
feedback	on	the	system:

PTOBot:	I	hope	the	issue	was	resolved	successfully.	What	would	you	like	to	do	next?
PTOBot:	[Continue	with	PTO	request]	[Feedback]	(buttons)

VacationBot
The	help	flow	for	our	VacationBot	is	composed	of	two	scripts,	one	generic	for	any	user	inputs,	and	the
other	specific	for	problems	capturing	the	destination	entity.
The	generic	help	script	(between	VacationBot	and	user)	would	be	something	like	this,	following	the	user
typing	“help”:

VacationBot:	Happy	to	help!	I	can	give	you	recommendations	of	activities	in	Cancun.	Just	say
“recommendations”	at	any	time	and	I	will	post	new	and	exciting	vacation	activities.	For	additional
support	please	email	support@pto-it.com.

And	here	is	what	the	specific	“destination	entity	capturing”	help	script	might	look	like	(between
VacationBot	and	user):

VacationBot:	Please	provide	a	city	and	state	in	the	USA,	or	a	city	and	country	worldwide.	For
example,	“Los	Angeles,	California”	or	“Cancun,	Mexico”.	For	additional	support	please	email
support@pto-it.com.

Because	our	VacationBot	is	not	considered	mission-critical,	we	will	not	provide	a	live	human	support
escalation	path.	The	bot	interaction	is	also	very	simple,	and	we	do	not	anticipate	a	lot	of	issues	that	will
need	support.	We	do	provide	an	email	address	for	general	support	as	part	of	the	service.

Feedback

mailto:support@pto-it.com
mailto:support@pto-it.com

The	feedback	scripts	for	both	bots	can	be	more	or	less	the	same	(between	PTOBot/VacationBot	and	user):
Bot:	We	would	love	to	get	your	feedback!
Bot:	How	would	you	rank	your	experience:
Bot:	[Great]	[Good]	[Poor]	[Terrible]	(buttons)
{Any	button	clicked}
Bot:	Please	provide	your	verbal	feedback	in	up	to	one	paragraph.
User:	Love	this	bot,	I	really	want	to	take	it	to	every	vacation!
Bot:	Thank	you,	your	feedback	was	submitted.

In	this	script	you’ll	notice	a	combination	of	rich	interaction	and	free	text	inputs.	We	want	to	capture
measurable	feedback	on	the	experience,	as	well	as	encourage	the	user	to	share	additional	information	in
an	open	way.

Error	Handling
We	will	divide	error	handling	into	four	categories:

Chitchat
Acceptable	inputs	that	are	not	relevant	to	the	conversation	but	are	nice	to	acknowledge

Entity	extraction	issues
Invalid	inputs	while	trying	to	capture	a	needed	input	from	the	user

Abuse
Unacceptable	user	inputs	that	should	be	stopped

Generic
A	set	of	error	messages	that	are	the	default	when	none	of	the	others	is	a	good	fit

Here	are	a	few	chitchat	script	examples:
User:	Thank	you!
Bot:	You	are	welcome.
User:	How	are	you	doing?
Bot:	I	am	doing	well.	Thanks	for	asking.
User:	You	are	great!/	You	suck!
Bot:	Would	you	like	to	leave	feedback?
Bot:	[Leave	feedback]	[Skip]	(buttons)

There	are	many	possible	examples	of	these	micro-conversations.	In	some	bots	the	chitchat	component	is
very	important,	because	it	creates	a	strong	brand	attachment.	As	Andy	Mauro,	the	CEO	of	Automat.ai,
shared:

We	built	an	influencer	marketing	bot	called	KalaniBot.	The	normal	way	that	influencer	marketing	is	measured	is	by	engagement	(views,
likes,	comments),	with	comments	being	the	most	engaged	and	valuable.	Keep	in	mind	that	the	average	fan	sends	KalaniBot	14	messages
on	average	and	so	is	spending	multiple	minutes	interacting	relative	to	the	short	amount	of	time	it	takes	to	view	and	like	a	post.
Conversations	are	better	than	short-lived	campaigns	—	an	Instagram	post	has	a	short	24–48-hour	lifespan,	whereas	the	InfluencerBot	is
still	going	strong	a	month	later.	Here	are	examples	of	comments	we	saw	from	users	in	conversation	with	KalaniBot:
—	I	love	u	and	I	think	ur	bot	is	amazing
—	I	love	this	bot
—	Omg	your	bot	is	amazing	girl.	Too	bad	i	cant	speak	to	the	real	you
—	It’s	AWESOME!!
—	This	is	amazing
—	This	is	so	cute	u	go	girl
—	This	is	kewllll
Most	users	just	want	to	be	acknowledged,	and	it	is	very	important	that	the	bot	does	that	as	part	of	its	functionality.

Trying	to	guess	every	type	of	chitchat	the	user	might	make	is	a	never-ending	task.	You	might	want	to	limit
the	amount	of	chitchat	you	support,	especially	in	task-led	conversations,	where	it	can	get	in	the	way	of
getting	things	done.	Avoid	dead	ends,	but	do	not	spend	all	your	time	trying	to	think	of	every	possible
input.	At	a	certain	point	you	will	need	to	default	the	user	to	the	generic	error	messages.

KEY	TAKEAWAY

Avoid	dead	ends,	but	do	not	spend	all	your	time	trying	to	think	of	every	possible	input.	At	a	certain	point	you	will	need	to	default	the	user	to
the	generic	error	messages.

Moving	on,	let’s	look	at	a	very	basic	entity	extraction	error	script	example:
Bot:	Sorry,	I	did	not	understand	that.
Bot:	<display	relevant	contextual	help>

This	is	an	example	of	one	flow	pulling	in	another	flow.	We	are	in	an	entity	extraction	flow	(let’s	say,	in
the	main	use	case),	and	the	user	inputs	invalid	text.	The	bot	then	provides	a	simple	apology	and	error
message,	and	pulls	in	the	help	script	relevant	to	this	specific	context.
The	result	in	real	life	might	look	like	this:

VacationBot:	Please	provide	your	destination	so	we	can	get	started.
User:	On	the	moon!
VacationBot:	Sorry,	I	did	not	understand	that.
VacationBot:	Please	provide	a	city	and	state	in	the	USA,	or	a	city	and	country	worldwide.	For
example,	“Los	Angeles,	California”	or	“Cancun,	Mexico”.	For	additional	support	please	email
support@pto-it.com.

Notice	the	composition	of	the	scripts	—	we	start	with	an	onboarding	script,	get	invalid	user	input,	then
move	to	an	entity	extraction	issues	script,	and	end	up	with	a	destination	entity	capturing	script.	You	can
start	to	see	how	all	of	our	scripts	work	together	to	provide	a	comprehensive	conversation	experience.
Now,	you	might	think	it	is	strange	that	we	single	out	abuse	as	something	we	will	need	to	deal	with,	and	it
is	true	that,	in	our	use	cases,	it	is	very	unlikely	that	our	bots	will	suffer	major	abuse.	But	a	lot	of	bot
builders	do	report	abusive	inputs,	from	hate	speech	to	obscenities.	If	your	bot	is	a	brand	bot,	or	is
representing	a	famous	person	or	a	service,	there	is	a	high	likelihood	that	you	will	need	this	type	of	script.
Here	is	a	real-life	example	of	a	bot	planning	for	abusive	use	cases,	told	by	Greg	Leuch,	head	of	product	at
Poncho:

We	launched	with	a	limited	timeframe,	limited	resources,	and	a	lot	of	pressure	to	succeed	as	a	showcase	example	of	the	Messenger
platform.	The	negative	feedback	for	Microsoft’s	Tay	chatbot	was	hanging	over	us	as	we	prepared	to	launch.	We	spent	a	lot	of	time
building	anti-trolling	tools	(naughty	word	filters),	anti-abuse	tools	(allowing	Poncho	to	ignore	abusive	users),	and	conversations	for	a
variety	of	the	anticipated	trolling,	testing,	&	abuse.

mailto:support@pto-it.com

Coming	back	to	our	scripts,	I	decided	to	default	to	a	set	of	scripts	that	will	hopefully	stop	the	abuse	as
soon	as	it	starts.	For	example:

User:	<Curse>
Bot:	Sorry	you	feel	that	way.
<Consider	pulling	in	a	feedback	script>
User:	<Obscenity>
Bot:	Sorry,	I	am	not	into	these	types	of	conversations.

I	indicated	that	we	might	want	to	consider	pulling	in	a	feedback	script	after	handling	a	curse	(or	negative
comment)	from	the	user	—	this	is	a	good	idea	if	we	think	the	curse	is	actually	a	result	of	frustration	from	a
failure	to	achieve	a	task.
I	also	talked	to	the	Kik	team	about	abuse	on	their	platform.	They	told	me	they	recommend	a	“three	strikes
and	you’re	out”	rule,	in	which	the	bot	bans	the	user	after	three	abuse	warnings.	This	can	be	a	good	model
for	bots	on	Kik	that	interact	with	teens	on	a	regular	basis.
A	generic	error	is	a	last	resort	we	want	to	fall	back	on,	when	all	the	rest	of	the	error	strategies	have	failed
or	were	not	a	good	match	to	a	situation.	The	process	here	is	to	provide	a	few	versions	of	apologies,	and
to	move	to	either	feedback	or	help.	For	example:

Bot:	Sorry,	I	can’t	help	you	with	that.
Bot:	[Feedback]	[Help]	(buttons/Quick	Replies)
Bot:	Apologies,	I	don’t	know	what	to	do	with	what	you	told	me.
Bot:	[Feedback]	[Help]	(buttons/Quick	Replies)
Bot:	Hmm,	not	sure	what	to	do	next.
Bot:	[Feedback]	[Help]	(buttons/Quick	Replies)

These	scripts	will	be	similar	in	both	PTOBot	and	VacationBot.	The	implementation	of	feedback	or	help	in
the	two	bots	might	be	different,	but	that	is	the	responsibility	of	the	specific	feedback	or	help	scripts	for
each	bot.
Remember	that	all	of	these	scripts	might	be	very	different	for	the	bot	you	are	trying	to	design,	not	only	in
functionality,	but	also	in	tone	and	personality.	Also	remember	that	these	are	simply	sample	scripts,	and
that	in	real	life	you	will	need	to	provide	a	lot	more	variations,	both	in	inputs	and	in	outputs	of	the	bot.
Doing	scripting	like	this	is	just	like	creating	mockups	of	a	mobile	or	web	application.	We	need	to	validate
the	scripts	we	have	written	in	real	life.	We	will	also	need	to	test	out	some	of	the	assumptions	we	have
made	regarding	rich	interactions	and	see	if	users	use	them	the	way	we	thought	they	would.

KEY	TAKEAWAY

Scripting	is	just	like	creating	mockups	of	a	mobile	or	web	application.	You	need	to	validate	the	scripts	you	have	written	in	real	life.

Another	thing	to	realize	is	that	scripts	should	be	evolving	on	an	ongoing	basis	—	we	will	continually
monitor	the	success	rate	of	our	bots	at	achieving	the	tasks	they	were	assigned	to	do,	explore	the	error	and
help	cases,	read	through	the	feedback	the	bots	collect,	and	continue	to	optimize	our	bots’	scripts.
Advanced	bot	builders	hold	these	scripts	in	a	content	management	system	(CMS)	and	have	scriptwriters
go	over	and	optimize	the	conversations	on	a	daily	basis.	For	now,	let’s	keep	the	scripts	as	they	are,	and
move	forward	to	designing	them	and	putting	them	in	the	hands	of	our	potential	users.

Chapter	17.	Designing	and	Testing
I	love	taking	an	idea	to	a	prototype,	and	then	to	a	product	that	millions	of	people	use.

—	SUSAN	WOJCICKI

THERE	ARE	A	LOT	of	ways	to	design	a	conversation.	One	option	is	to	just	expand	on	the	Wizard	of	Oz
technique	demonstrated	in	Chapter	15,	and	mimic	the	scripts	by	impersonating	the	bot.	While	this	is	a
very	easy	and	quick	method	to	get	your	product	in	front	of	your	users	and	other	stakeholders,	it	provides
low	fidelity	when	it	comes	to	rendering	rich	interactions.	This	is	because	the	chat	platforms	limit	the
types	of	rich	controls	available	to	humans.	Users	can	post	simple	images,	GIFs,	and	even	videos,	but	they
cannot	display	buttons,	for	example.
When	it	comes	to	software	solutions,	there	are	also	a	lot	of	design	tools	that	provide	you	with	different
levels	of	fidelity	and	ease	of	use.	There	are	many	good	options,	and	you	should	pick	the	ones	that	suit	you.
I	have	chosen	two	tools	as	examples,	one	for	designing	bots	for	Facebook	Messenger	and	the	other	for
Slack.
In	the	next	few	sections,	we	will	go	over	the	scripts	we	created	in	the	previous	chapter	and	use	these
design	tools	to	visualize	these	scripts.	For	each	script,	we	will	try	to	fine-tune	the	wording,	formatting,
and	other	aspects	of	the	conversation.	This	is	an	iterative	process	that	will	demonstrate	design	in	real	life.

Designing	VacationBot	for	Facebook	Messenger	with	Botsociety
Let’s	start	with	a	tool	called	Botsociety	(https://botsociety.io).	Botsociety	is	a	super-easy	and	quite	full-
featured	design	tool	for	bots.	At	the	time	of	writing	Botsociety	supports	only	Facebook	Messenger,	but	the
team	have	told	me	they	are	planning	to	launch	support	for	other	platforms	very	soon.
After	registering,	we	will	choose	a	name	for	our	bot,	select	a	platform,	and	start	sketching	(Figure	17-1).

Figure	17-1.	Creating	a	mockup	with	Botsociety

Next,	we’ll	go	into	the	main	designing	area.	As	you	can	see,	the	tool	uses	a	super-simple	“Bot
Says”/“User	Says”	paradigm	(Figure	17-2).

Figure	17-2.	Drafting	the	conversation	script	(“Bot	Says”/“User	Says”)

Clicking	on	the	“Bot	Says”	button	provides	you	with	a	choice	of	the	common	types	of	output	bots	on	the
Facebook	Messenger	platform	can	provide	(Figure	17-3).

https://botsociety.io

Figure	17-3.	Output	types	available	to	bots	on	Messenger

Similarly,	clicking	on	“User	Says”	offers	you	a	choice	of	the	types	of	input	available	to	users	on
Facebook	Messenger	(Figure	17-4).

Figure	17-4.	Input	types	available	to	users	on	Messenger

From	a	quick	browse	of	the	elements	on	both	sides	of	the	conversation,	it	looks	like	we	have	everything
we	need	to	start	designing	our	scripts.	So	let’s	give	it	a	try!	I	have	taken	the	onboarding	script	outlined	in
the	previous	chapter	for	our	VacationBot	and	entered	the	first	part	of	it	into	the	tool.	Immediately,	I	notice
an	issue	with	the	original	script	—	it’s	so	long	that	it	runs	below	the	fold	(meaning	you	need	to	scroll	read
it	all).	This	makes	for	a	bad	user	experience,	as	it	is	hard	to	understand	at	a	glance	what	the	bot	is	and
what	it	wants	from	the	user	(Figure	17-5).

Figure	17-5.	VacationBot’s	onboarding	script	—	the	user	needs	to	scroll	to	read	all	of	the	text

I	have	a	bad	feeling	about	this:	if	users	do	not	see	the	entire	value	proposition	up	front,	they	might	just
back	out	of	the	conversation.	Let’s	make	it	shorter	(Figure	17-6).

Figure	17-6.	A	shortened	version	of	the	onboarding	script

I	made	the	bot’s	value	proposition	a	little	more	concise	(which	is	a	good	thing	on	its	own),	and	now
everything	fits	well	within	the	window	without	scrolling.	We	will,	of	course,	need	to	test	it	on	several
devices,	both	mobile	and	desktop,	but	this	is	a	good	start.

KEY	TAKEAWAY

The	difference	between	a	good	experience	and	a	poorly	executed	one	can	be	in	the	small	details,	such	as	how	long	the	text	is	and	whether
the	user	has	to	scroll	to	read	all	of	it.

Some	designers	will	prefer	to	do	all	of	their	scripting	in	tools	like	this,	for	the	benefit	of	seeing
immediately	how	the	script	looks	in	real	life	—	if	you	feel	more	comfortable	doing	so,	please	do.	I	prefer
to	start	with	written	scripts,	as	it	enables	me	to	really	think	about	the	flow	in	the	context	of	multiple
scripts	and	use	cases.	It	is	also	easier	to	cut,	paste,	and	share	initial	scripts	written	as	text	rather	than	as	a
GIF,	which	is	the	output	of	this	tool.
Now	we	can	continue	with	the	script	and	see	if	the	rich	interaction	we	envisioned	works	well.	Botsociety

provides	you	with	the	ability	to	render	more	than	plain	text:	it	also	enables	you	to	render	rich	controls
like	carousels.	Near	the	end	of	our	onboarding	script,	we	have	a	section	where	we	demonstrate	the	value
of	the	bot	with	a	carousel	of	activities	at	the	vacation	destination.	We	might	need	to	wait	for	user
feedback,	but	I	think	the	outcome	is	quite	nice	(Figure	17-7).

Figure	17-7.	The	carousel	of	attractions

Finally,	we	can	explore	the	call	to	action	at	the	end	of	our	onboarding	script	(Figure	17-8).

Figure	17-8.	The	call	to	action

As	you	can	see,	not	all	the	buttons	are	visible,	and	the	user	needs	to	scroll	to	see	all	the	options.	This
could	actually	be	a	blessing	in	disguise,	as	the	last	option	—	the	one	the	users	need	to	scroll	to	pick	—	is
the	one	that	we	do	not	want	them	to	click	on	(the	option	that	declines	the	offer).	The	positioning	of	the	UX
elements,	both	on	the	screen	and	off,	subtly	encourages	the	user	to	pick	one	of	the	“right”	choices	and
subscribe	to	the	bot’s	feed.	Of	course,	users	are	still	able	to	decline	by	clicking	on	“No	thanks”	or	just	not
clicking	on	anything.
This	brings	to	light	another	consideration	we	will	need	to	take	into	account	—	if	the	user	does	not	click
on	any	of	the	buttons,	we	will	have	to	treat	it	as	a	“No	thanks”	after	a	certain	amount	of	time,	and	continue
on	to	provide	the	user	with	a	way	to	ask	for	recommendations	manually	at	any	time.
By	now	we	have	tested	all	of	the	rich	controls	we	have	planned	for	our	VacationBot,	for	this	use	case.
Let’s	finish	up	the	onboarding	design,	and	pick	the	“No	thanks”	Quick	Reply	(Figure	17-9).

Figure	17-9.	Handling	the	“No	thanks”	reply

It	looks	like	we	can	do	a	little	better	—	we	are	missing	the	opportunity	to	let	the	user	schedule	reminders
at	a	later	stage.	Let’s	add	that	now	(Figure	17-10).

Figure	17-10.	Adding	a	Quick	Reply	to	schedule	notifications

This	looks	much	better	now,	and	the	user	has	another	option	to	subscribe	to	the	service.	Note	that	in	the
previous	design,	after	users	have	declined	the	offer	to	subscribe,	they	do	not	have	a	way	to	back	out	of
that	decision.	It	is	always	recommended	to	give	the	user	the	option	to	reconsider	and	do	the	right	thing.
Now	we	will	implement	VacationBot’s	main	flow	(Figure	17-11).

Figure	17-11.	Implementing	the	main	flow

I	think	it	looks	pretty	good.	Remember,	we	will	have	a	“Schedule	notifications”	option	in	case	the	user
has	not	done	so.	Here,	we	assume	the	user	has	subscribed	to	receive	notifications;	the	top	text	saying
“Hello	again!”	would	not	be	visible	in	cases	where	notifications	are	turned	off.
Now	let’s	design	the	help	script.	We	will	add	Quick	Replies	at	the	end	of	the	help	text	to	prevent	a	dead
end	(Figure	17-12).

Figure	17-12.	The	help	script

This	is	better	than	the	original	script	because	it	is	more	consistent	and	always	provides	the	user	with
options	for	what	to	do	next.
Now	let’s	implement	the	feedback	script	of	our	VacationBot	(Figure	17-13).

Figure	17-13.	The	feedback	script

I	have	added	the	consistent	ending	that	gives	the	user	a	hint	about	what	to	do	next.	I	really	like	the	outline
of	the	Great...Terrible	Quick	Replies.	One	issue	is	that	the	bot	does	not	acknowledge	the	user’s	feedback
rating;	this	might	be	fine,	but	we	might	want	to	test	if	users	find	that	awkward	or	not.
Finally,	we	will	design	a	generic	error	script.	From	the	design	up	to	now,	I	already	know	to	add	the
standard	“Recommendations”	Quick	Reply	at	the	end	of	the	conversation	(Figure	17-14).

Figure	17-14.	The	generic	error	handling	script

The	last	thing	I’ve	noticed	is	that	the	logo	looks	really	bad	—	the	text	is	not	visible,	and	it	looks	small.
We	will	fix	this	for	both	bots	later	in	this	chapter.
As	you	can	see,	we	have	learned	a	lot	from	just	doing	a	simple	visualization	of	our	scripting.	We	have
noticed	places	where	we	can	improve	user	engagement	by	adding	Quick	Replies	and	avoiding	dead	ends.
We	have	also	seen	how	the	rich	controls	look,	in	an	environment	that	is	close	to	real	life,	and	have
modified	our	text	to	improve	the	layout	of	our	conversations.

Designing	PTOBot	for	Slack	with	Walkie
In	order	to	design	our	PTOBot	on	Slack,	I	am	going	to	use	a	design	tool	called	Walkie
(https://walkiebot.co).	Walkie	is	a	flexible	and	a	feature-rich	tool	that	lets	you	script	multiple	flows.	It	all
starts	with	setting	up	your	bot	and	user	(Figure	17-15).

Figure	17-15.	Getting	started	with	Walkie

After	saving	the	settings,	we	go	into	a	Slack-like	user	experience	(Figure	17-16).

Figure	17-16.	Walkie’s	Slack-like	UI

On	the	left	there	is	a	list	of	bots	that	we’ve	created	(in	this	case,	PTOBot),	then	there	is	a	list	of	flows
which	are	distinct	scripts	(PTO	approval,	for	example).	The	main	area	to	the	right	is	the	design	section,
with	a	place	to	enter	user	and	bot	inputs.	Clicking	on	the	“User”	button	toggles	between	bot	and	user.
There	is	also	a	control	at	the	bottom	right	to	create	rich	interactions	through	message	attachments.
Clicking	on	it	opens	up	a	fully	configurable	message	attachment,	including	buttons	(technically	called
attachment	actions;	see	Figure	17-17).

https://walkiebot.co

Figure	17-17.	Adding	a	message	attachment

The	tool	does	a	good	job	of	supporting	multiple	bots,	but	does	not	support	multiple	users	(user	personas)
interacting	with	a	bot.	So,	I	will	create	a	few	bot	configurations	to	work	around	that	limitation.
Let’s	start	with	the	onboarding	script.	The	first	conversation	is	with	the	user	who	installed	the	bot	(Figure
17-18).
As	you	might	recall,	the	onboarding	script	shows	a	GIF	of	the	PTO	request	process,	in	order	to	demo	the
bot’s	usage.	Showing	this	in	a	printed	book	is	a	challenge	on	its	own,	so	I	have	cheated	a	little	and	used	a
screenshot	of	the	PTO	request	process.

Figure	17-18.	The	onboarding	conversation	with	the	bot	installer

The	script	looks	okay,	but	it	suffers	from	the	opposite	problem	our	VacationBot	had	in	its	onboarding
script	—	the	script	here	seems	too	dry	and	too	short,	and	I	am	not	sure	it	is	clear	and	actionable	enough.

Let’s	try	to	fix	that	(Figure	17-19).

Figure	17-19.	Fleshing	out	the	installer	onboarding	script

I	added	a	few	emojis,	made	the	text	a	little	more	descriptive,	and	added	a	button	at	the	bottom	of	the
script	that	lets	the	installer	invite	the	bot	to	the	right	channels	with	a	single	click.	Because	the	Slack	API
lets	us	to	add	a	bot	to	a	channel	programmatically,	we	can	use	this	button	to	shortcut	the	need	for	the	user
to	go	into	the	relevant	channels	and	invite	the	bot	manually.	We	will	use	the	API	to	add	the	bot
automatically,	while	still	giving	the	control	to	the	installer,	by	only	adding	the	bot	after	the	button	has	been
clicked.
I	also	started	to	add	a	color	convention:	blue	will	be	informative	(like	the	blue	color	next	to	the	demo
GIF)	and	green	actionable,	for	actions	we	want	the	user	to	perform.
The	entire	onboarding	fits	on	a	single	page,	without	scrolling,	on	a	web	interface.	You	should	not	be	too
worried	about	this	in	a	work	context,	but	it	is	still	best	practice	to	keep	the	initial	conversation	above	the
fold.
Let’s	continue	to	the	next	step,	the	team	onboarding	script,	shown	after	the	bot	is	invited	to	a	channel	by
the	installer	(Figure	17-20).

Figure	17-20.	The	team	onboarding	script

The	text	is	very	similar	to	the	installer	script,	but	you	will	notice	I	have	added	a	little	text	decoration	at
the	end	of	the	team	onboarding	text.	I	surrounded	the	slash	command	with	backticks	(``)	to	render	the	text
as	a	code	block.	This	hints	to	the	user	that	the	slash	command	is	like	a	short	command	line	that	they	can
use,	and	that	they	should	pay	attention	to	the	parameters	the	command	accepts	(in	the	same	way	one	does
when	running	a	script	on	the	command	line).
Now,	let’s	move	on	to	the	main	flow.	To	remind	you,	the	main	functionality	of	our	PTOBot	is	as	follows:
1.	 Employee	requests	PTO	in	a	direct	message	with	the	bot	(or	a	slash	command).
2.	 Manager	gets	a	notification	and	approves/rejects	the	request.
3.	 Employee	gets	notification	of	approval/rejection.
4.	 Team	gets	notification	of	PTO.

This	is	by	no	means	a	simple	“Hello	World”–style	process.	I	did	not	want	to	avoid	complexity,	but
wanted	to	demonstrate	the	flexibility	and	unique	attributes	possible	in	bots	for	a	work	environment.	We
will	design	each	step	in	this	process,	learning	and	improve	each	step	along	the	way.
We’ll	design	each	of	these	steps	in	a	separate	Walkie	flow,	starting	with	the	PTO	request	(Figure	17-21).

Figure	17-21.	The	PTO	request	script

You	will	notice	that	I	have	used	some	lightweight	formatting	by	making	the	dates	and	the	description
captured	stand	out	in	bold	(surrounding	them	with	*s)	and	kept	the	green	color	coding	for	actions	we
would	like	the	user	to	take.
As	you	can	see,	the	conversation	is	long	with	a	few	places	for	potential	errors.	This	is	where	our	Slack
command	comes	into	play.	Let’s	see	the	same	conversation	compacted	to	a	couple	of	lines	(Figure	17-22).

Figure	17-22.	Designing	the	slash	command	interaction

In	a	single	line	the	user	has	provided	all	the	necessary	information	to	the	bot,	initiating	a	PTO	request
without	the	need	for	a	lengthy	conversation.	Slash	commands	are	great	when	you	have	a	small	and
structured	set	of	entities	(variables)	your	bot	needs	to	extract,	and	a	savvy	set	of	users	who	can	remember
how	to	use	the	commands.
Now,	let	us	continue	to	the	manager	approval	step	(Figure	17-23).

Figure	17-23.	The	manager	PTO	approval	script

This	is	OK,	but	it	could	be	better.	The	name	of	the	game	here	is	get	things	done	as	fast	as	possible.	This
mean	rendering	the	information	in	the	easiest	possible	way	to	digest.	We	made	the	important	parts	bold,
but	I	think	the	way	the	message	is	currently	structured	forces	the	user	to	read	through	it	in	order	to	get	the
necessary	information.	Let’s	see	if	we	can	enter	the	details	in	Slack’s	structured	template	(called	a
message	attachment)	and	make	it	easier	to	digest	and	act	upon.	Figure	17-24	shows	the	result.

Figure	17-24.	Rendering	the	request	details	in	a	message	attachment

I	think	this	might	be	an	easier	way	for	the	manager	to	pull	out	the	relevant	data.	Of	course,	we	will	have	to
test	it	with	actual	users,	as	this	is	only	an	assumption.
Now	let	us	finish	up	the	approval	step	(Figure	17-25).

Figure	17-25.	Continuing	the	approval	script

Now	that	we	have	designed	the	script,	you	might	notice	a	few	shortcomings	with	this	design.	The	buttons
are	still	there,	and	there	is	a	chance	the	user	will	click	on	them	by	mistake.	There	is	also	a	good	chance
that	this	design	will	be	messy	in	a	real-life	scenario,	when	multiple	requests	might	come	in	concurrently.
It	will	be	hard	to	manage	the	requests	and	keep	track	of	which	have	been	approved	and	which	were
rejected.	Let’s	try	another	approach	(Figure	17-26).

Figure	17-26.	Fine-tuning	the	approval	script

In	this	design	I	replaced	the	buttons,	once	the	user	has	clicked	“Approve,”	with	an	approval	confirmation.
I	think	this	is	a	better	way	to	implement	the	process.	Replacing	the	buttons	ensures	the	user	does	not	press
one	of	them	again	by	mistake.	It	also	removes	some	of	the	cognitive	load,	if	a	lot	of	messages	like	this	one
appear	in	a	conversation,	and	gives	the	user	the	feeling	of	accomplishment	that	users	love	in	todo	lists.
In	the	Walkie	tool	itself,	I	have	forked	the	approval	flow	into	“request	approved”	and	“request	rejected.”
Figure	17-27	shows	what	the	“rejected”	flow	looks	like.

Figure	17-27.	The	“request	rejected”	flow

Now	it	is	easy	to	see	at	a	glance	which	requests	have	been	accepted	or	rejected,	and	the	user	does	not
need	to	read	through	a	text	conversation	to	see	which	requests	have	been	handled.	In	more	advanced
versions	we	might	want	to	add	a	reason	for	rejection,	but	let’s	keep	it	simple	for	now.
Next,	in	the	employee	notification	flow,	we	will	implement	what	we’ve	learned	about	message	formatting
and	button	replacement	(Figure	17-28).

Figure	17-28.	The	employee	notification	script

Notice	that	the	bot	is	actually	rendering	two	message	attachments	—	one	is	informational,	color	coded	in
blue,	and	the	other	is	actionable,	color	coded	in	green.	Clicking	on	“Notify	Team”	will	follow	the	same
practice	of	replacing	the	buttons	with	a	confirmation	that	the	notification	has	been	sent	(Figure	17-29).

Figure	17-29.	Replacing	the	buttons	with	a	confirmation

Note	that	we	also	changed	the	color	coding	of	the	second	attachment	to	blue	as	it	moved	from	actionable
to	informational.	I	chose	to	use	this	color	schema	as	an	example	of	how	color	coding	can	help	with	mental
load	reduction.	We	will	have	to	test	if	this	resonates	with	our	users	later	on.
Let’s	finish	this	step	by	suggesting	that	the	user	install	VacationBot	(Figure	17-30).

Figure	17-30.	Recommending	VacationBot

This	is	a	unique	pattern	of	one	bot	recommending	another	bot	to	the	user,	and	on	a	different	platform.
Clicking	on	the	link	will	take	the	user	straight	to	an	onboarding	conversation	with	VacationBot	on
Facebook	Messenger.
Meanwhile,	let’s	finish	the	main	flow	by	designing	the	team	PTO	notification	(Figure	17-31).

Figure	17-31.	The	team	PTO	notification

A	PTO	process	like	this	is	traditionally	done	manually,	using	paper	forms,	spreadsheets,	or	web	tracking
tools;	it	can	be	messy	and	require	a	lot	of	time.	Our	assumption	is	that	users	will	find	this	process	easier,
more	intuitive,	and	more	productive.
The	last	thing	to	take	care	of	is	the	logo.	As	mentioned	earlier,	particularly	in	our	VacationBot,	it	looks
small	and	indistinct.	We	also	want	the	logo	to	be	consistent	in	both	bots.	Moving	forward,	I	will	use	the
simple	logo	shown	in	Figure	17-32.

Figure	17-32.	The	new	logo	for	VacationBot	and	PTOBot

User	Testing
Now	that	we	have	designed	the	main	flow	of	both	bots,	it	is	time	to	put	them	in	front	of	actual	users.	First,
we	need	to	decide	how	we	want	to	test	our	design.
There	are	a	few	options:
1.	 Show	users	a	video	or	a	step-by-step	replay	of	the	conversation	and	get	their	inputs.
2.	 Create	a	mock	(fake)	bot	and	let	users	play	with	it.
3.	 Create	a	working	alpha	and	let	users	work	with	it.

Both	Botsociety	and	Walkie	support	replaying	the	conversation	either	as	a	movie	or	a	step-by-step
walkthrough.	Showing	potential	clients/users	these	videos	can	get	you	very	valuable	feedback.	You	will
not	be	able	to	see	users	perform	tasks	themselves,	which	might	be	the	most	important	indication	of	good
design,	but	you	will	get	feedback	fast	and	with	little	development	cost.
As	for	mocking	a	bot,	Walkie	goes	a	step	further	and	lets	you	export	the	conversations	into	a	JSON-format
file.	An	engineer	can	plug	this	file	into	a	script	that	mimics	an	actual	bot.	A	mock	bot	is	a	great	tool	for
testing	interactions,	and	it	doesn’t	really	matter	that	the	bot	is	not	connected	to	the	real	backend	system.	In
our	case,	we	don’t	care	that	the	bot	is	not	connected	to	a	real	PTO	system,	or	that	the	data	is	fake.	Getting
a	user	to	go	through	the	request	process	and	a	manager	to	go	through	the	approval	process	in	real	life	will
surely	teach	us	a	lot.

KEY	TAKEAWAY

A	mock	bot	is	a	great	tool	for	testing	interactions.	It	doesn’t	really	matter	that	the	bot	is	not	connected	to	the	real	backend	system.

Alternatively,	if	you	are	confident	with	your	design,	you	might	even	start	building	the	actual	bot	and	get
feedback	from	live	alpha	users.	This	is	useful	because	it	is	the	shortest	path	to	production,	if	you	get	it
right.	Users	test	the	real	bot,	with	real	data,	and	you	get	live	and	super-accurate	feedback.	This	option
will	work	well	if	you	have	clients	who	are	willing	and	able	to	be	your	alpha	users	and	use	your	software
in	real	life.
Laura	Klein	has	written	a	great	“Step-by-Step	Usability	Testing	Guide”	(https://guides.co/g/usability-
testing-guide/7996)	that	outlines	the	steps	in	usability	testing.	Assuming	that	we	will	create	a	mock	that
users	can	play	with,	let’s	discuss	the	usability	testing	steps	for	our	PTOBot.

Before	You	Start	—	Prototyping	a	Mockup	Bot
First	let’s	create	a	mockup	of	our	PTOBot.	In	order	to	prototype	simple	processes	we	will	use	a	tool	I
developed	called	ProtoBot,	which	you	can	install	freely	by	searching	for	ProtoBot	in	the	Slack	app
directory	(https://slack.com/apps).
ProtoBot	does	not	require	coding	skills,	and	it	is	really	easy	to	create	mockups	of	bots	with	it.	You	install
ProtoBot	in	a	testing	team	of	your	choice,	and	start	a	conversation	with	it.	ProtoBot	provides	a	detailed
description	of	how	to	use	it,	but	we’ll	go	through	a	short	example	here.
ProtoBot	can	mimic	multiple	bots	—	that	is	why	I	initially	called	it	“Dr	Jekyl.”	These	bots	are	called
personas,	and	ProtoBot	can	assume	a	persona	with	the	following	steps.
In	a	direct	message	with	ProbotBot:
1.	 Type	/new-persona	PTOBot	to	start	a	new	bot	persona	script.
2.	 Type	/set-persona-name	PTOBot	to	set	the	name	the	bot	will	use	in	this	script.
3.	 Type	/set-persona-icon-url	[URL]	to	set	the	icon	the	bot	will	use	in	this	script.

https://guides.co/g/usability-testing-guide/7996
https://slack.com/apps

4.	 Say	hello	to	your	new	bot	(Figure	17-33).

Figure	17-33.	ProtoBot	learning	to	be	PTOBot

The	way	to	teach	ProtoBot	a	new	script	is	simple:	you	just	start	talking	to	the	bot	and	follow	its
instructions	(Figure	17-34).

Figure	17-34.	ProtoBot	tells	you	how	to	teach	it	a	reply

/learn	is	a	slash	command	you	can	use	to	teach	ProtoBot	what	to	say	when	the	user	says	something.	It
follows	this	pattern:

/learn	[user	says]
[bot	says]

Note	the	newline	between	what	the	user	says	and	what	the	bot	says	(use	Shift+Enter	to	create	this	newline
in	Slack).	Let’s	teach	PTOBot	what	the	script	replies	when	the	user	says	“I	want	to	take	a	PTO”	(Figure
17-35).

Figure	17-35.	Teaching	the	bot	a	new	script

Now,	after	we	have	trained	ProtoBot	with	this	step	in	the	script,	let’s	run	the	same	script	again	(Figure
17-36).

Figure	17-36.	The	bot	has	learned	the	correct	reply

Yes!	ProtoBot	is	starting	to	learn	how	to	mimic	the	PTOBot	persona.
In	this	way,	using	the	/learn	slash	command,	you	can	teach	ProtoBot	the	entire	script.	It	is	important	to
note	that	ProtoBot	does	very	little	pattern	matching,	when	it	comes	to	user	inputs	—	it	is	case	insensitive
and	ignores	characters	like	question	marks	or	periods,	but	you	will	need	to	teach	it	the	various
permutations	of	possible	user	inputs	for	a	given	script.	In	this	example,	for	instance,	you	can	also	teach
the	bot	to	handle	inputs	like	“I	want	PTO”	or	“Start	PTO	request”	to	start	the	PTO	request	script.
ProtoBot	has	more	advanced	functionality,	such	as	the	ability	to	import	JSON	files	from	tools	such	as
Walkie	and	support	for	multiple	concurrent	personas,	but	you	can	read	all	about	it	by	just	saying	“help”	to
the	bot	in	a	direct	message	at	any	time.	ProtoBot	is	a	good	tool	for	basic	mockups,	but	it	does	not	support
complex	scripts	like	contextual	help.	If	you	want	to	implement	these,	you	might	want	to	code	your	mockup
or	find	a	tool	that	supports	these	advanced	features.
Once	we	have	taught	ProtoBot	a	section	of	the	script,	we	can	start	thinking	about	the	next	steps	in	our
usability	testing.

Planning	the	Test
To	test	PTOBot	we	would	like	to	find	existing	PTO-IT	users	—	preferably	friendly	ones	and	early
adopters	—	and	invite	them	to	PTO-IT’s	office	to	do	this	experiment.	We	will	also	invite	a	few	non-
clients	to	see	if	VacationBot	can	be	used	as	a	standalone	product.
We	would	like	to	invite	users	who	are	already	using	Slack,	because	we	do	not	want	to	have	to	teach	them
how	to	direct	message	or	how	a	channel	works	during	the	usability	testing.

Creating	Tasks	and	Discussion	Guides
We	will	focus	on	two	tasks:	PTO	requests	and	PTO	approvals.	We	will	create	an	overview	of	our
PTOBot	and	collect	responses	to	the	following	background	questions	from	our	participants:
1.	 Managers:

a.	 How	many	people	do	you	manage?
b.	 How	many	PTO	requests	do	you	handle	in	a	month?
c.	 What	system	or	tool	do	you	use	for	this	today?
d.	 Do	you	use	bots	for	your	day-to-day	tasks?
e.	 Do	you	use	bots/Slack	mainly	on	the	web	or	on	mobile?

2.	 Employees:
a.	 How	many	PTO	requests	do	you	make	in	a	year?
b.	 Who	approves	your	PTO	requests?
c.	 What	system	or	tool	do	you	use	for	this	today?
d.	 Do	you	use	bots	for	your	day-to-day	tasks?
e.	 Do	you	use	bots/Slack	mainly	on	the	web	or	on	mobile?

f.	 How	do	you	let	your	team	know	you	are	taking	PTO?
We	will	also	create	a	task	for	each	participant:

Manager
You	are	a	busy	exec	with	little	time	for	paperwork.	Show	me	how	you	use	PTOBot	to	quickly	get
through	your	PTO	approval	tasks	and	get	back	to	what’s	important.

Employee
You	want	to	take	a	vacation	to	Cancun	for	10	days	starting	04/21/17.	Use	PTOBot	to	get	your
paperwork	in	order.

Recruiting	Participants
We	will	recruit	four	managers	and	four	employees.	Half	of	them	should	be	current	PTO-IT	users	and	half
of	them	will	be	new	potential	users	who	have	not	worked	with	PTO-IT	in	the	past.

Setting	Up	the	Environment
We	will	set	up	a	clean	computer	with	Slack	installed	and	a	test	team	setup.	We	will	add	ProtoBot	to	that
team	and	teach	it	the	PTO	request	script	and	the	PTO	approval	script.	Note	that	if	it	is	easier	for	you	to
mock	up	the	bot	using	any	other	tool,	that’s	fine	too!
You	can	also	set	up	the	environment	by	opening	Slack	and	showing	the	onboarding	message	from	the	bot
in	the	HR	channel,	as	that	is	the	most	likely	place	that	users	will	come	to	learn	how	to	use	the	bot.

Moderating	the	Sessions
Make	sure	to	explain	that	this	is	just	a	prototype,	and	might	not	work	perfectly	or	look	final.	Let	each	user
try	to	perform	the	assigned	task,	and	possibly	fail,	without	interfering.	Make	sure	to	train	ProtoBot	well
beforehand	so	that	it	can	handle	many	permutations	of	user	inputs.	Also	make	sure	to	support	the	help
script	so	that	the	user	can	get	help	if	needed.
Make	sure	the	users	are	comfortable	and	know	it	is	OK	to	fail	in	these	tasks.	Ask	them	to	speak	their
thoughts	out	loud	while	performing	the	task,	and	follow	up	with	questions	—	for	example,	when	a	user
makes	a	statement	like	“That	was	easy,”	ask	“What	was	easy	about	it?”	Keep	the	same	pattern	for	all
types	of	comments.	Take	notes	on	all	actions	and	comments	made	by	the	users.

Analyzing	the	Data
Mark	each	user	test	with	“Task	Completed,”	“Task	Completed	with	Difficulty,”	or	“Task	Failed.”
Correlate	your	notes	on	the	comments	and	find	patterns	that	signal	issues.	Here	are	some	examples:
1.	 Two	employees	had	a	hard	time	entering	the	start	date	of	their	PTO	in	a	way	the	bot	can	understand.
2.	 Three	managers	thought	the	PTO	approval	process	was	“very	easy.”
3.	 One	employee	started	a	PTO	request	in	the	channel	rather	than	in	a	direct	message.

Improving	and	Iterating
Order	the	problems	you	identify	by	frequency	of	them	happening	and	their	severity,	and	start	fixing	these
issues.	For	the	examples	we	outlined	above,	here	are	the	correlated	fixes:
1.	 Two	employees	had	a	hard	time	entering	the	start	date	of	their	PTO	in	a	way	the	bot	can	understand.
Support	multiple	ways	to	enter	a	date.	Use	AI	solutions	if	necessary.

2.	 One	employee	started	a	PTO	request	in	the	channel	rather	than	in	a	direct	message.	Create	an	error
script	that	lets	the	user	know	that	PTO	requests	only	work	in	direct	messages,	and	guide	the

users	to	start	a	direct	message.
Once	you’ve	fixed	these	issues,	run	the	test	again	with	fresh	test	users,	and	enjoy	the	fact	that	you	are
making	your	bot	better	with	each	iteration.
This	was	an	example	of	running	a	usability	test	to	learn	about	and	improve	your	bot	before	you	launch	it.
There	might	be	other	types	of	tests	you	would	like	to	run;	ones	that	check	user	satisfaction	or	brand
impact,	for	example.	You	might	also	use	a	different	tool	to	prototype	or	create	an	alpha	of	your	bot	in
order	to	run	these	tests.	The	most	important	thing	is	to	iterate	and	learn.
Learning	and	iterating	does	not	stop	when	you	launch	your	bot	in	production	—	quite	the	opposite.	Most
bot	builders	I’ve	spoken	with	have	told	me	they	have	learned	the	most	from	looking	at	users	using	their
bots	in	production,	and	collecting	logs	and	analytics	that	they	can	use	to	constantly	improve	their	bots.
This	will	be	the	topic	of	our	next	chapter.

Chapter	18.	Bot	Building	Overview
Whatever	good	things	we	build	end	up	building	us.

—	JIM	ROHN

BUILDING	A	BOT	is	a	topic	worthy	of	a	book	of	its	own;	it	would	be	foolish	of	me	to	presume	to	teach
anyone	to	build	a	bot	in	one	chapter.	Moreover,	this	is	a	design-focused	book,	so	it	might	not	be	relevant
to	you	to	know	all	the	details	and	processes	involved	in	engineering	a	production-ready	bot.	Having	said
that,	it	is	important	for	everyone	in	this	industry	to	have	a	basic	knowledge	of	how	the	technology	works
and	what	kinds	of	tools	you	can	use	to	build	a	bot.

Bot	Architecture
In	contrast	to	mobile	apps,	bots	are	not	installed	(deployed	as	native	code)	on	the	platforms	on	which	they
run.	Instead,	the	bot	connects	to	the	user	or	team	through	a	set	of	application	programming	interfaces
(APIs).	In	addition,	the	bot	service	does	not	ever	communicate	with	the	chat	client	directly;	it	is	all	done
through	the	proxy	of	the	chat	platform	service	provider	(e.g.,	Slack,	Facebook,	Kik,	or	Amazon’s	servers).

KEY	TAKEAWAY

Bots	are	not	installed	in	the	messaging	clients;	they	are	connected	to	the	clients	via	APIs.

As	you	can	see	in	Figure	18-1,	the	chat	platform	relays	messages	from	the	clients	to	your	bot,	and	can	add
information	such	as	presence	and	other	events.	The	chat	platform	lets	your	bot	send	messages	and	perform
additional	operations,	such	as	creating	channels,	inviting	users	to	a	conversation,	and	broadcasting
messages.	Each	platform	has	a	slightly	different	API,	depending	on	the	platform’s	capabilities.	This
architecture	keeps	the	chat	client	secure	and	provides	the	bot	builder	a	clean	interface	to	connect	to	(with
the	exception	of	webviews,	supported	by	some	platforms).	The	customer	can	be	on	iOS	or	Android,
macOS,	or	even	Linux;	the	bot	builder	does	not	need	to	care	about	the	client-side	implementation.	This
also	implies	that	the	bot	is	hosted	on	the	bot	builder’s	servers	or	by	a	cloud	service	provider.

Figure	18-1.	The	chat	platform	connects	chat	clients	to	your	bot’s	servers	via	APIs

Bot	Building	Technologies
Bot	builders	have	several	tools	at	their	disposal.	Some	require	more	technical	skills	than	others,	while
providing	higher	levels	of	flexibility.	Here	are	several	examples	of	tools	bot	builders	use,	from	the	least
technical	to	the	most.

Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)
Tools	in	this	category	provide	you	with	an	integrated	development	experience	—	they’re	visual	authoring
tools,	usually	with	AI	integration,	that	will	even	host	your	bot.	The	key	value	proposition	of	these	tools	is
the	ease	of	getting	started,	the	speed	to	market,	and	the	ability	to	get	a	bot	running	with	minimal	technical
skills.
Flow	XO	(https://flowxo.com)	is	a	good	example	of	an	easy-to-use	authoring	tool	that	is	cross-platform
and	provides	you	with	a	rich	set	of	integrations	and	predefined	templated	flows,	such	as	Small	Talk,	that
can	be	added	to	your	bot	(Figure	18-2).
Flow	XO’s	biggest	value	proposition	is	a	set	of	more	than	100	integrations	you	can	add	to	your	bot,
including	to	services	such	as	email,	Google	Calendar,	Google	Docs,	Stripe,	and	more.

Figure	18-2.	The	Small	Talk	template	in	Flow	XO

PullString	(https://www.pullstring.com)	is	an	excellent	example	of	an	advanced	authoring	tool.	The
PullString	team	actually	started	creating	conversational	interfaces	way	before	the	bot	era.	They	build	the
interfaces	for	some	of	our	favorite	toys,	providing	toy	manufacturers	with	a	tool	to	script	the	toy
conversations.	Today,	they	have	ported	their	solution	to	a	bot-focused	integrated	development
environment	that	runs	on	your	computer	(Figure	18-3).

https://flowxo.com
https://www.pullstring.com

Figure	18-3.	The	PullString	IDE

PullString	provides	bot	builders	with	a	rich	interface	to	script	their	bots.	It	also	provides	a	way	to
program	the	bot	logic	and	even	to	test	the	outcome.	PullString	is	a	state-of-the-art	authoring	tool	and
provides	support	for	multiple	platforms,	including	Slack,	Facebook	Messenger,	and	Amazon.
While	PullString	is	on	the	advanced	side,	there	are	several	simpler	(while	less	flexible)	bot	authoring
tools	out	there.	Chatfuel	(https://chatfuel.com)	is	a	popular	example	of	a	simple	bot	authoring	tool.	With
Chatfuel,	you	actually	do	not	need	to	download	anything	to	your	computer	—	you	just	log	in	to	the
Chatfuel	website	and	start	building	your	bot	(Figure	18-4).

Figure	18-4.	Getting	started	with	Chatfuel

Chatfuel	uses	the	notion	of	chat	blocks	and	provides	you	with	the	ability	to	connect	these	blocks	into	a
conversation.	Currently	the	only	platform	supported	is	Facebook	Messenger.	Chatfuel	provides	a	set	of
plug-ins	that	can	cover	several	common	use	cases	(set	user	variables,	go	to	plug-in,	Zapier	integration,

https://chatfuel.com

send	to	email,	etc.),	but	if	your	bot	has	custom	business	logic	that	part	of	the	logic	will	need	to	be	hosted
on	a	third-party	server.
There	are	several	other	tools,	at	different	levels	of	maturity,	as	well	as	several	services	providers.	Here
are	just	a	few	that	I	have	worked	with:

Chatflow	(https://chatflow.kitt.ai)
A	promising	beta	service	that	lets	you	build	your	conversational	interface	while	focusing	on	the	flows.
It	supports	multiple	platforms,	including	Slack,	Kik,	Amazon,	and	Facebook	Messenger.

Pandorabots	(https://www.pandorabots.com)
Pandorabots	is	one	of	the	oldest	web	services	for	building	and	deploying	chatbots	out	there.
Pandorabots	takes	an	XML	approach	to	authoring	and	provides	bot	builders	with	the	ability	to	define
their	conversations	through	XML,	as	well	as	hosting	and	running	their	bots.	Pandorabots	supports
multiple	platforms,	including	Slack,	Kik,	Amazon,	and	Facebook	Messenger.

Automat	(http://www.automat.ai)
Automat	is	a	platform	designed	to	bridge	human	expertise	and	artificial	intelligence	to	make	it	easier
for	anyone	to	build	a	conversational	bot.	Automat	is	in	private	beta	at	the	time	of	writing,	but	it	powers
some	popular	Kik	bots,	such	as	the	CoverGirl	bot.

Recast.AI	(https://recast.ai)
A	flow-focused	authoring	tool	that	supports	various	platforms,	including	Kik,	Skype,	Slack,	Facebook
Messenger,	and	even	email.

Imperson	(http://imperson.com)
Marketing	itself	as	the	“WordPress	for	bots,”	Imperson	provides	a	friendly	authoring	tool	together	with
a	hosting	solution.

This	is	not	a	comprehensive	list;	there	are	many	other	great	tools	out	there,	and	a	lot	of	new	ones	are	sure
to	emerge.
Similar	to	web-	and	mobile-focused	no-coding	tools,	authoring	tools	like	these	are	a	great	way	to	get	to
market	fast	without	a	steep	learning	curve.	As	with	all	tools,	there	is	a	balance	of	ease	of	use	and
flexibility	(as	well	as	ability	to	deal	with	complexities),	and	bot	builders	need	to	evaluate	these
compared	to	other	options	outlined	in	this	chapter,	such	as	SDKs	and	roll-your-own	solutions.	You	can
explore	these	tools	for	your	prototyping	stage,	as	most	of	them	are	really	ease	to	use,	and	also	for	the
production	stage	if	they	meet	your	full	requirements.

Artificial	Intelligence	(AI)	Services
There	are	several	AI	services	that	provide	you	with	the	ability	to	define	the	conversation	in	a	textual	or
visual	way,	and	let	the	AI	manage	and	handle	the	runtime	conversation	with	the	user.	Some	of	these	AI
services	can	host	your	bot	or	call	an	API	that	provides	AI	processing	as	a	service.	Here	are	some	popular
AI	services:

Google	API.AI	(https://api.ai)

https://chatflow.kitt.ai
https://www.pandorabots.com
http://www.automat.ai
https://recast.ai
http://imperson.com
https://api.ai

API.AI	was	a	pre-bot	conversational	solution	that	powered	Android	and	iOS	personal	assistant	apps.	It
now	focuses	on	providing	an	easy-to-use	and	simple	AI	service	that	can	be	used	to	build	bots	for
platforms	such	as	Slack	and	Facebook	Messenger.	API.AI	was	acquired	by	Google	in	2016	and	now
provides	AI	services	to	many	platforms,	including	the	emerging	Google	Home	(a	product	competing
with	the	Amazon	Echo).	Google	provides	several	other	AI	solutions,	such	as	its	Vision	API	and
TensorFlow,	as	part	of	its	Cloud	Platform.

IBM	Watson	(https://www.ibm.com/watson/)
IBM	Watson	is	a	comprehensive	AI	toolset	that	offers	everything	from	conversation	management	to
sentiment	and	image	analysis.	One	of	Watson’s	strengths	is	its	support	for	exporting	and	self-hosting
your	AI	model.	Watson	is	popular	with	enterprise	bot	solutions.

Facebook	Wit.ai	(https://wit.ai)
Wit.AI	is	a	conversational	AI	solution	provided	by	Facebook.	While	Facebook	is	a	chat	platform	of	its
own,	Wit.AI	is	not	part	of	that	platform	and	provides	services	that	can	support	other	chat	platforms.

Microsoft	LUIS	(https://www.luis.ai)
Microsoft	released	its	Language	Understanding	Intelligent	Service	(LUIS)	in	2016	with	the	aim	to
compete	in	the	AI	market.	LUIS	is	a	standalone	service	that	supports	multiple	chat	platforms	and
integrates	well	with	the	Microsoft	Bot	Framework	(discussed	in	the	next	section).

msg.ai	(http://msg.ai)
msg.ai	is	an	early-stage	AI	solution	focusing	on	conversational	commerce	use	cases.

Artificial	intelligence	is	not	a	mandatory	part	of	all	bots,	so	the	first	step	is	to	decide	whether	or	not	you
need	an	AI	service.	If	you	think	your	bot	requires	an	AI	solution,	you	should	evaluate	a	few	of	these
options	based	on	your	requirements,	supported	features,	ease	of	use,	and	service	level.

KEY	TAKEAWAY

Artificial	intelligence	is	not	a	mandatory	part	of	all	bots,	so	the	first	step	is	to	decide	whether	or	not	you	need	an	AI	service.

Software	Development	Kits	and	Bot	Frameworks
Software	development	kits	(SDKs)	and	bot	frameworks	are	software	components	that	wrap	the	messaging
platform	APIs	and	provide	bot	builders	with	an	easier	and	programmatic	interface	for	building	their	bots.
Here	are	some	common	SDKs	and	frameworks:

Botkit	(https://www.botkit.ai)
Botkit	is	the	most	popular	bot	framework	currently	out	there.	Botkit	is	open	source,	extendable,	and
cross-platform.	The	team	that	maintain	Botkit	are	bot	builders	themselves	and	run	a	successful	bot
called	Howdy.	They	are	also	active	members	of	the	bot	community.	The	team	are	now	experimenting
with	a	simple	authoring	tool	that	integrates	with	Botkit	and	lets	bot	builders	decouple	authoring	from
business	logic	implementation.

Microsoft	Bot	Framework	(https://dev.botframework.com)
The	Microsoft	Bot	Framework	is	an	offering	that	you	can	use	to	build	and	deploy	bots.	The	framework
consists	of	the	Bot	Builder	SDK,	Bot	Connector,	Developer	Portal,	and	Bot	Directory.	There’s	also	an
emulator	that	you	can	use	to	test	your	bot.	The	framework	supports	multiple	chat	platforms,	such	as
Slack,	Kik,	Telegram,	and	Facebook	Messenger,	and	integrates	well	with	LUIS	and	the	Azure	cloud
offering.

https://www.ibm.com/watson/
https://wit.ai
https://www.luis.ai
http://msg.ai
https://www.botkit.ai
https://dev.botframework.com

Slapp	(https://github.com/BeepBoopHQ/slapp)
Slapp	is	an	easy	event-driven	SDK	for	Slack	bots.	It	integrates	well	with	the	company’s	hosting
solution,	called	Beep	Boop,	which	we	will	discuss	later	in	this	chapter.

Twilio	SDK	(https://www.twilio.com)
If	you	are	interested	in	SMS	bots,	then	the	Twilio	SDK	is	what	you	need.	It	provides	a	simple	and
easy-to-use	framework	for	building	bots	that	communicate	via	text	messages.

SDKs	are	a	good	solution	if	you	are	comfortable	coding	your	bot	by	yourself	but	do	not	want	to	deal	with
the	plumbing.	An	SDK	provides	an	easier-to-use	development	experience	by	dealing	with	the
complexities	and	edge	cases	of	the	messaging	platform	API.	The	disadvantages	of	SDKs	are	some	loss	of
flexibility	and	dependency	on	the	SDK	for	updates	and	new	feature	support.

Roll	Your	Own
A	very	common	solution	for	professional	bot	builders	is	to	build	your	bot	using	plain	coding	skills	and	the
messaging	platform	APIs.	The	advantage	of	this	approach	is	absolute	flexibility	and	control	over	your	bot
and	its	flow;	the	disadvantages	are	a	steep	learning	curve,	longer	time	to	market,	slower	development
cycles,	and	dependency	on	engineering	resources.

Hosting	Solutions
As	bots	are	hosted	services	that	connect	to	messaging	platforms,	they	need	to	be	hosted	on	internet-
accessible	servers.	There	are	a	few	options	for	this:
Use	the	hosting	provided	by	your	tool	provider.	For	example,	IBM	Watson	can	also	host	your	bot	on
its	servers.
Use	any	cloud	hosting	provider.	Most	cloud	services,	such	as	AWS,	Azure,	Google	Cloud,	and
Heroku,	provide	infrastructure	you	can	use	to	host	your	bot.
Use	your	own	servers.	You	can	run	your	bot	on	your	own	servers,	as	long	as	they	are	accessible
through	the	web.	Some	of	my	early-stage	bots	are	hosted	on	a	$1/month	PHP	shared	server.
Use	Beep	Boop.	Beep	Boop	is	a	hosting	service	dedicated	to	bot	hosting.	It	provides	you	with	a
management	console	that	is	integrated	into	Slack.	You	can	basically	manage	your	bot	with	the	Beep
Boop	bot	using	chatops	(Figure	18-5).

https://github.com/BeepBoopHQ/slapp
https://www.twilio.com

Figure	18-5.	Beep	Boop	integrates	well	with	the	Slapp	and	Botkit	frameworks	and	currently	supports	Slack	bots

Picking	the	Right	Tool
Which	tool	is	the	right	tool	is	almost	a	theological	question.	There	are	many	parameters	that	need	to	be
taken	into	account:

Technical	competency	of	the	team
Time	to	market
Complexity	of	the	bot
Integrations	with	other	systems
Availability	of	resources
Cost
Security
Company	policy
Personal	preferences

All	of	these	parameters	and	more	need	to	be	taken	into	account	and	weighted	accordingly.	Each	project
and	each	team	might	require	a	different	set	of	tools	and	services.	Additionally,	you	can	start	with	one	tool
and	move	to	another	as	time	passes.	For	example,	you	can	start	prototyping	with	Flow	XO	and	then
develop	in	Botkit	for	production.	If	you	do	not	know	what	tool	to	choose,	I	suggest	experimenting	with	a
few	of	the	easy	ones	(listed	at	the	beginning	of	this	chapter)	and	moving	on	to	the	more	complex	ones	as
you	gain	proficiency	and	the	scope	and	complexity	of	your	project	increase.	If	you	are	a	proficient
developer,	start	with	the	SDKs	and	move	to	rolling	your	own	solution	if	you	need	the	extra	control	and
flexibility.	There	is	no	one	right	choice,	but	there	is	a	lot	of	exploration	to	do.

Chapter	19.	Analytics	and	Continuous
Improvement

If	you	torture	the	data	long	enough,	it	will	confess	anything.
—	GORDON	TULLOCK

IF	YOU’VE	EVER	MANAGED	a	website	or	a	mobile	app,	you	probably	got	addicted	to	checking	your	analytics
—	waking	up	every	morning	and	seeing	that	you	got	more	users	and	more	engagement	is	a	delightful
experience.	It	can	also	be	an	eye-opening	experience	to	see	how	users	engage	with	your	service,	which
buttons	they	click,	and	which	parts	they	avoid.	Great	products	and	great	design	stems	from	understanding
your	users,	and	data	from	analytics	services	about	how	people	really	use	your	bot	should	be	treated	like
gold.

How	Do	Bot	Analytics	Work?
Bots	connect	to	a	messaging	platform	(like	Kik,	Slack,	Facebook	Messenger,	and	others)	through	an	API
that	lets	you	send	and	receive	messages,	receive	events	such	as	being	invited	to	a	direct	or	team
conversation,	receive	presence	change	events,	and	so	on.	When	users	use	your	bot,	you	will	be	getting	a
great	deal	of	data	about	the	interaction,	and	the	key	challenge	is	to	turn	this	raw	data	into	insights	you	can
use	to	understand	your	users	and	improve	your	bot.	There	are	a	few	common	ways	you	can	turn	that	data
into	actionable	insights:

Raw	logs
Many	bot	builders	spend	lots	of	time	looking	at	the	raw	data,	seeing	what	users	are	saying	to	their	bot
and	what	the	bot	is	saying	back.	This	approach	is	time-consuming,	but	provides	an	unfiltered	view	of
the	conversations	your	bot	is	having.	This	might	be	easiest	way	to	start,	although	the	other	options	are
pretty	easy	to	implement.

Filtered	logs
Whenever	something	significant	happens,	log	it	as	important	and	then	view	and	analyze	your	logs	using
a	tool	that	can	filter	log	entries.	A	good	example	of	events	bot	builders	usually	log	is	successful	and
unsuccessful	outcomes	of	conversations	—	if	your	user	has	bought	an	item,	log	it;	if	your	user	has	failed
to	buy	an	item,	log	it.	It	is	important	to	log	relevant	information	with	the	event.	For	example,	if	your
user	has	failed,	log	the	place	in	the	conversation	where	the	failure	happened,	and	correlate	it	with	other
logged	events	to	see	if	this	is	a	consistent	issue.

Analytical	tools	and	SDKs
If	you	want	to	see	trends,	and	more	indicative	insights	from	a	growing	data	stream,	you	might	want	to
consider	integrating	your	bot	with	an	analytical	tool	or	SDK.	These	tools	distill	the	logs,	or	a	stream	of
raw	information,	into	insights.	They	provide	data	visualizations	and	flag	key	trends.	You	can	build	your
own	analytical	tool,	but	there	are	a	lot	of	good	ones	out	there.

SaaS	analytical	services
These	are	very	similar	to	the	previous	category,	but	are	provided	to	you	as	a	hosted	third-party	service.
You	integrate	a	few	lines	of	code	into	your	bot,	and	these	lines	of	code	send	a	copy	of	the	data	to	the
third-party	service.	The	service	in	turn	provides	you	with	a	dashboard	of	visualized	insights.	Google
Analytics	is	a	great	example	of	a	hosted	service	for	website	analytics,	and	we	will	review	some	bot
services	later	in	this	chapter.	The	benefit	of	a	hosted	solution	is	ease	of	use.	The	downside	is	that	you
share	this	information	with	a	third	party	—	something	that	is	prohibited	in	some	sensitive	use	cases.

These	methods	are	not	mutually	exclusive.	I	recommend	using	a	combination	of	the	first	two,	and	either
the	third	or	fourth:

Use	raw	logs	at	the	start	to	see	a	detailed	stream	of	your	bot	conversations	and	collected	data.
Use	filtered	logs	on	an	ongoing	basis	to	flag	errors	and	positive	significant	outcomes.
Use	an	internal	or	third-party	hosted	analytics	solution	to	get	aggregated	insights	and	trends.

Looking	at	your	data	and	optimizing	your	bot	is	critical.	There	are	a	few	ways	to	do	that,	but	the	important
thing	is	that	you	actually	do	it.	Next,	we	will	see	examples	of	how	logs	and	analytics	solutions	can	drive
better	bot	design.

KEY	TAKEAWAY

Looking	at	your	data	and	optimizing	your	bot	is	critical.	There	are	a	few	ways	to	do	that,	but	the	important	thing	is	that	you	actually	do	it.

Looking	at	Logs
When	the	Statsbot	team	initially	designed	their	bot,	they	thought	users	would	like	to	have	natural	language
conversations	with	the	bot.	The	assumption	was	that	most	users	are	explorers	and	would	like	to	access	the
marketing	insights	using	an	interactive	and	conversational	approach.
The	team	assumed	this	type	of	conversation:

User:	@statsbot:	how	many	users	last	month
Statsbot:	There	were	1240	users	last	month.	Do	you	want	to	segment	users	by	country	or	source?
User:	By	country
Statsbot:	US:	900
Statsbot:	France:	140
Statsbot:	Germany:	100
Statsbot:	Other:	100
Statsbot:	Say	“mobile”	or	“new”	to	filter	results	to	only	mobile	or	new	users.
User:	Mobile
Statsbot:	Out	of	1240,	there	were	153	mobile	users.

Looking	at	their	logs,	however,	they	soon	discovered	that	their	users	knew	exactly	what	information	they
were	seeking,	and	were	trying	to	take	the	shortest	path	and	shorthand	the	conversation.	So,	they	would	see
inputs	like	the	following:

User:	Users	last	month	by	country	on	mobile
The	team	then	pivoted,	making	the	design	much	more	concise	and	focused	on	getting	the	users	the	insights
they	know	they	need,	directly	and	in	the	fastest	way	possible.	They	deemphasized	the	natural	text-based
exploratory	conversations.
According	to	Alyx	Baldwin	and	Rachel	Law,	the	cofounders	of	Kip,	looking	at	logs	proved	to	be	one	of
the	most	useful	things	the	team	did	to	improve	their	bot’s	design.	They	have	actually	built	their	own	tool	to
enable	them	to	view	the	conversations	the	Kip	bot	was	having	with	its	users	(Figure	19-1).

Figure	19-1.	Kip’s	tool	for	exploring	the	bot’s	logs

Insights	from	Analytics	Solutions
As	mentioned	previously,	analytics	solutions	fall	into	two	categories:	you	can	use	a	third-party	hosted
solution	or	a	self-hosted	analytics	tool.

Third-Party	Hosted	Solutions
There	are	numerous	third-party	options	available	to	bot	builders.	We’ll	focus	on	one,	to	give	you	an	idea
of	the	capabilities	such	a	tool	can	offer,	but	all	of	them	are	good;	feel	free	to	pick	any	that	meets	your
requirements.
Dashbot	(https://www.dashbot.io)	is	a	bot-centric	hosted	analytics	solution	that	is	very	easy	to	integrate
into	any	bot.	Once	you	add	Dashbot’s	integration	code	into	your	bot,	you	can	log	into	the	Dashbot	website
and	start	getting	aggregated	insights	about	your	bot.
At	a	high	level,	you	can	see	how	many	users	you	have	and	their	level	of	engagement	(Figure	19-2).

Figure	19-2.	Dashbot	reporting	on	number	of	users	and	level	of	engagement

You	can	also	see	which	languages	your	users	are	using	(Figure	19-3).

https://www.dashbot.io

Figure	19-3.	Breaking	down	users	by	language

This	can	be	significant.	If	you	see	a	large	portion	of	your	users	using	a	particular	language,	you	might
want	to	extend	your	support	for	that	language.
A	very	hard	thing	to	do	when	looking	at	logs	is	to	see	the	path	users	take	through	the	conversational
interface.	With	analytical	solutions,	you	can	visualize	the	conversational	path	at	an	aggregated	level
(Figure	19-4).

Figure	19-4.	Dashbot	allows	you	to	see	what	led	to	a	particular	user	input,	and	what	resulted	from	that	input

In	this	example,	you	can	see	what	led	the	user	to	saying	“play	categories”	and	what	resulted	from	the	user
saying	that.	The	numbers	associated	with	each	piece	of	text	indicate	the	frequency	with	which	that	text	has
been	shown	in	this	conversational	path.
If	you	want	to	deep-dive	into	a	conversation,	but	do	not	want	to	look	at	your	server	logs,	Dashbot
provides	you	with	a	graphical	view	of	all	the	conversations.	In	this	example	I	have	pulled	in	a	successful
interaction	between	my	WordsBot	and	a	user	(Figure	19-5).

Figure	19-5.	Viewing	a	conversation	in	Dashbot

The	tool	provides	you	with	information	such	as	a	transcript	of	the	conversation	itself,	the	time	at	which	it
occurred,	and	information	about	the	user	with	whom	the	bot	conversed.	I	have	anonymized	the	example
shown	here	to	keep	the	user	anonymous.
Dennis	Yang,	cofounder	of	Dashbot,	explained	to	me	why	they	added	this	feature:

One	of	the	biggest	ways	that	we	have	learned	about	our	bot	was	simply	[by	reading]	its	transcripts.	Unlike	on	web	or	mobile,	where
you’re	trying	to	guess	what	users	are	trying	to	achieve	by	a	series	of	events,	conversational	UIs	have	a	perfect	transcript	of	the	session
with	your	users.	So,	you	no	longer	have	to	spend	time	and	money	setting	up	a	user	lab	to	watch	your	users	interact;	you	literally	have	an
exact	description	of	what	they	are	trying	to	do.	Reading	through	transcripts	is	an	invaluable	way	to	gather	subjective	feedback	about	the
usage	of	your	bot.

These	are	just	a	few	examples	of	the	kinds	of	reports	Dashbot	and	other	analytical	tools	can	generate.	You

will	need	to	find	the	reports	that	are	most	significant	to	your	bot	business	and	derive	your	insights	from
there.

Self-Hosted	Analytics	Solutions/SDKs
If	you	do	not	want	to	share	your	analytics	data	with	third-party	services,	you	can	host	it	yourself.
Botmetrics	(https://www.getbotmetrics.com)	is	a	self-hosting	solution	that	you	can	integrate	your	bot’s
code	with	and	host	on	your	own	servers.
One	dashboard	provided	by	Botmetrics	that	I	really	find	useful,	from	a	design	point	of	view,	is	their	path
report	(Figure	19-6).

Figure	19-6.	Botmetrics	path	report

You	can	clearly	see	the	conversion	path	between	users	signing	up	and	completing	a	purchase	in	this
example.	You	can	also	see	insights	such	as	the	number	of	steps	required	in	the	path.	With	this	report,	you
can	experiment	with	different	paths	and	correlate	better	conversion	rates	with	different	conversational
design	choices.	This	is	a	different	way	of	looking	at	the	user	journey	than	Dashbot’s	reports:	it	looks	at
the	conversational	conversion	rather	than	focusing	on	one	step	in	the	conversation.
Botmetrics	also	provides	the	source	of	its	bot	analytics	tools,	so	users	can	extend	it.	This	is	a	great
solution	if	you	want	to	build	custom	reports	and	extensions	based	on	your	bot’s	logic,	or	if	you	handle
sensitive	information	and	want	to	get	analytical	reports	without	sharing	your	data	outside	your	servers.

Be	Careful	Not	to	Worry	About	the	Wrong	Thing
Many	bot	builders	I	meet	report	that	they	sometimes	worry	about	the	wrong	metric.	As	an	example,	Figure
19-7	is	a	chart	of	user	engagement	with	my	WordsBot	over	a	two-week	period.

https://www.getbotmetrics.com

Figure	19-7.	WordsBot	engagement	metrics

You	will	notice	that	I	have	days	with	close	to	no	engagement.	This	could	make	me	worry	and	start
wondering	what	is	wrong	with	my	bot.	But	this	is	actually	a	very	common	pattern	with	bots	for	work
environments	—	there	is	very	little	to	no	engagement	during	weekends.
Another	type	of	misguided	worry	is	about	fringe	use	cases.	When	your	bot	starts	getting	good	traction	you
will	start	to	see	a	rise	in	what	seasoned	entrepreneurs	call	“noise”:	users	asking	for,	or	complaining
about,	small	things	that	are	important	to	them	but	not	indicative	of	the	concerns	of	the	general	population.
You	will	need	to	focus	first	on	the	“signals”	—	the	important	and	common	problems	that	most	of	your
users	have	—	and	only	then	address	the	edge-case	issues.

Continuous	Improvement
If	you	have	been	working	for	more	than	a	few	minutes	in	the	software	industry,	you	know	that	software
evolves	all	the	time.	We	fix	bugs,	add	features,	redesign	UXs,	and	run	experiments.	This	is	particularly
important	when	it	comes	to	conversations,	as	there	is	an	expectation	of	“freshness”	in	our	day-to-day
conversations.	Especially	in	consumer	use	cases,	if	we	hear	the	same	phrases	again	and	again,	we
become	tired	of	them.
I	talked	to	Greg	Leuch	—	head	of	product	at	Poncho,	makers	of	one	of	the	earliest	and	most	successful
consumer	bots	in	the	market	—	about	their	ongoing	bot	improvement	cycles.	Here	is	what	he	had	to	say:

Our	own	internal	tools	include	a	bot	conversation	management	system	to	allow	editors	to	make	live	updates	to	Poncho,	a	broadcast	and
follow-on	management	system	that	provides	custom	targeting	to	users	based	on	user	profiles	and	preferences.	We	also	have	a	bot
conversation	analysis	tool	that	looks	at	all	of	our	conversation	histories	within	the	scope	of	a	network	map,	which	will	identify	bounce
rates,	simulate	probable	conversation	changes,	and	allow	us	to	understand	where	we	can	improve	conversation	and	dialogue.
Our	ability	to	retain	users	has	been	tremendously	important.	This	is	attributed	to	our	constant	A/B	testing	and	conversation	evaluation.
Our	bot	analyzer	has	allowed	us	to	identify	and	visually	map	our	main	conversation	triggers.	We	post	all	of	our	unmatched	(wildcard)
responses	into	a	Slack	channel	for	our	editors	to	identify	ways	to	improve	or	extend	conversations.	And	along	with	A/B	testing,	we
challenge	our	teams	to	focus	on	retention,	which	helps	build	experiences	and	conversations	that	stick	more	for	our	users.	We’ve	been
surprised	at	what	some	users	want	to	talk	about,	and	even	more	amazed	when	we	build	conversations	with	those	users.
If	you	are	designing	a	bot	it	is	important	that	you	continue	to	observe	and	experiment.	Always	see	where	you	can	improve	your
conversations,	add	triggers	for	different	phrases	and	misspellings,	and	try	to	lead	the	user	toward	solutions	through	conversation.

There	are	three	recommended	paths	to	improve	your	bot:
1.	 Error	reduction	—	.	Find	all	the	places	the	bot	had	a	conversational	failure	and	fix	these	instances.

You	can	trigger	logging	of	such	errors	every	time	an	error	script	starts.
2.	 Conversation	optimization	—	.	A/B	test	to	reduce	the	steps	in	task-led	conversations.	Try	to

improve	duration	in	topic-led	conversations.	Experiment	with	improving	engagement	and	retention
in	both.

3.	 New	flows	and	flow	refreshes	—	.	Constantly	explore	adding	new	flows	that	add	value	to	the
conversation.	Add	randomization	decorators	to	keep	the	bot	conversations	fresh	and	engaging.

Building	a	bot	is	an	ongoing	process.	In	contrast	to	the	mobile	app	update	process,	in	most	cases,	making
changes	to	your	bot	does	not	require	users	to	reinstall	it.	Unless	you	are	asking	for	new	permissions	(such
as	adding	the	permission	to	create	channels	or	access	additional	users),	you	can	update	your	bot	in	a
transparent	way.	Because	changing	the	conversation	itself	does	not	require	users	to	update	the	bot,	doing
these	improvements	and	tests	on	an	ongoing	basis	is	easy	and	frictionless.

KEY	TAKEAWAY

Building	a	bot	is	an	ongoing	process.	In	contrast	to	the	mobile	app	update	process,	in	most	cases,	making	changes	to	your	bot	does	not
require	users	to	reinstall	it.

For	both	B2C	and	B2B	use	cases,	the	design	of	a	conversation	is	always	evolving.	As	we	come	to
understand	our	users	better,	we	can	evolve	the	design	of	our	bot	to	make	our	users’	lives	more	productive
and	fun.

Chapter	20.	To	Infinity	and	Beyond	—	The
Future	of	Bots

Prediction	is	very	difficult,	especially	about	the	future.
—	NIELS	BOHR

WE	LIVE	IN	A	super-dynamic	software	industry.	Each	technology	revolution	happens	faster	than	the
previous	one,	and	each	one	brings	new	ideas,	experiences,	and	opportunities	to	us	all.	In	this	chapter	we
will	cover	a	few	of	the	likely	future	trends	in	the	bot	industry	and	explore	some	of	the	upcoming
opportunities	and	challenges.

Future	Trends	in	Bot	Platforms
Bot	platforms	such	as	Slack,	Facebook	Messenger,	Kik,	and	others	are	constantly	evolving.	Similar	to
Android	and	iOS,	each	platform	is	taking	a	slightly	different	approach	and	thus	providing	a	different
feature	set.	They	are	all	following	the	same	general	trends,	however,	which	impact	design	in	one	way	or
another.

More	Interactivity
The	chat	platforms	realize	that	plain	text	limits	bots	to	very	specific	use	cases	and	limits	users’	ability	to
enter	information	in	an	easy	and	intuitive	way.	In	a	conversation	I	had	with	a	lead	engineer	at	Facebook,
he	stated	it	this	way:

The	user	can	say	the	color	of	paint	they	would	like	to	buy,	but	picking	it	from	a	color	picker	would	probably	be	much	easier.

There	are	two	approaches	to	interactivity	that	we	are	going	to	see	expanding	in	the	near	future:

Inline	controls
A	growing	set	of	controls,	such	as	drop-downs,	checkboxes,	date	pickers,	and	so	on,	are	going	to	be
presented	inline	in	the	conversation,	just	like	the	buttons,	carousels,	and	Quick	Replies	we	have	seen	in
this	book.

External	pages
Bots	will	be	able	to	surface	and	expose	to	the	users	either	webviews	or	templated	windows	to	get	their
inputs.

Bot	designers	will	be	able,	in	the	upcoming	months	and	years,	to	provide	a	much	richer	experience	and
facilitate	a	lot	more	use	cases	with	these	types	of	rich	inputs.

Better	Ways	to	Present	Information
The	chat	platforms	are	also	aware	of	the	limitations	bots	have	in	presenting	information	to	the	user,
whether	it	is	geolocation	information	or	data	that	can	best	be	displayed	in	a	dynamic	chart.	Here,	we	are
going	to	see	the	same	patterns	of	growing	support	for	inline	presentation	elements	that	can	be	surfaced
within	a	conversation,	and	external	pages	that	can	be	popped	up	by	the	bot.
Here	are	a	few	examples:

Charts,	graphs,	and	tables	—	a	way	to	present	structured	information
Rich	media	—	videos	from	different	sources,	third-party	emulations
Templates	—	tasks,	galleries,	events,	reviews	and	ratings,	dashboards,	and	more
Maps	—	dynamic	and	closeable,	with	an	overlay	of	information

KEY	TAKEAWAY

Platforms	will	soon	be	providing	designers	with	richer,	more	advanced	ways	to	display	and	capture	data.

Discovery
Some	platforms	are	more	advanced	than	others	in	terms	of	providing	users	with	an	easy	way	to	add	a	bot
to	a	conversation,	understanding	how	bots	work,	and	initiating	a	workflow	with	a	bot	on	an	ongoing	basis.
But	to	be	honest,	all	platforms	currently	suck	at	all	of	these	right	now.	In	the	future	we	will	see	platforms
provide	more	and	more	discovery	mechanisms.	For	example:

An	in-chat-client	way	to	search	for	and	add	a	bot	to	a	conversation

The	ability	for	a	bot	to	add	elements	to	the	chat	client’s	main	real	estate	(like	buttons	or	menu	items,	in
the	chat	app’s	main	interface)	that	will	trigger	workflows	in	the	bot
The	ability	to	surface	ratings,	comments,	and	recommendations	from	users	who	have	used	the	bots
The	ability	to	connect	from	the	web	straight	into	a	chat	with	a	bot	(deep	linking	and	referral	support)
In-chat-client	bot	suggestions	—	i.e.,	the	ability	of	the	chat	platform	to	recommend	useful	bots,
possibly	based	on	the	context	of	the	conversation

Monetization
Most	platforms	provide	a	very	limited	way	to	monetize	bots	at	the	moment.	We	are	going	to	see	a	lot	more
ways	to	make	money	as	bot	platforms	evolve,	such	as:

Embedded	billing	support	that	enables	the	ability	to	charge	for	bot	use	on	an	ongoing	basis,	sale	of	in-
bot	virtual	goods,	and	so	forth
Stronger	integrations	with	Stripe,	PayPal,	and	other	payment	providers
The	ability	to	pay	more	for	a	premium	chat	product	that	comes	with	premium	bots	preinstalled

At	a	high	level,	we	are	going	to	see	rapid	changes	in	chat	platforms	over	the	next	few	years,	until	bot
design	and	the	user	paradigm	solidify.	Bot	designers	should	continue	to	look	for	platform	updates	and
trends.	Some	of	the	platforms	have	opened	up	their	roadmaps	to	make	that	process	easier.

Super	Bot	Platforms	Opening	Up
Google	Home,	Amazon	Echo,	Siri,	and	Cortana	will	all	provide	APIs	for	developers	to	plug	in	services,
making	these	bots	more	powerful	and	more	useful	to	the	end	user.	This	is	not	a	bot	feature	per	se,	but
rather	the	ability	to	extend	the	functionality	of	these	“super	bots”	and	to	surface	your	services	or	products
within	these	bot	interfaces.	There	may	be	a	slight	problem	of	control	over	which	service	is	offered	or
promoted	first,	with	this	determined	by	either	the	super	bot	or	the	end	user.
As	super	bots	are	driven	by	big	companies	such	as	Google,	Apple,	and	Amazon,	I	predict	we	will	see	a
big	push	from	these	players	to	place	these	bots	in	strategic	consumer	devices	such	as	phones	and	home
devices	and	a	drive	for	users	to	engage	with	and	consume	third-party	services	through	these	bots.

Future	Trends	in	Bots
Bot	designs	themselves	are	evolving	very	rapidly,	and	we	will	see	changes	and	advancements	in	many
areas.	We	are	in	year	one	of	bots	as	an	industry,	and	we	are	learning	quite	a	bit.

From	Notification	to	Interactivity
Most	bots	that	we’ve	seen	so	far	have	been	notification	bots	—	bots	that	pump	content	into	a	chat
application.	In	consumer	use	cases	these	have	included	things	like	weather	notifications	or	news	and
entertainment	notifications.	In	business	use	cases	we	have	tended	to	see	things	like	reports,	reminders,
and	alert	notifications.
While	some	of	these	notifications	are	useful	use	cases	and	they	are	usually	really	easy	to	implement,	bot
builders	are	realizing	that	users	need	to	be	engaged	with	and	require	interactive	services	that	provide
them	with	a	lot	of	value	in	order	to	perceive	bots	as	useful.	We	are	still	in	the	exploration	stage,	but	we
will	be	seeing	a	lot	more	use	cases	that	implement	real	workflows	and	address	major	user	needs	and
pains.	Interactive	bots,	such	as	Kip,	Statsbot,	Growbot,	Howdy,	and	Swelly,	have	performed	really	well
and	have	even	started	to	make	money.

Multiplatform	Bots
“Write	once,	run	everywhere”	is	one	of	the	biggest	promises	in	the	high-tech	industry,	but	it	is	also	in
many	cases	one	of	the	biggest	lies.	What	designers	and	developers	usually	experience	in	real	life	is
“write	once,	run	everywhere	slowly/uglily/at	low	quality.”	We	have	seen	this	trend	when	trying	to
automatically	port	apps	from	iOS	to	Android	and	from	the	web	to	mobile.	In	addition,	the	use	cases	and
audiences	for	chat	platforms	differ.	Users	on	Kik	are	primarily	teens,	for	example,	while	users	on
Facebook	Messenger	and	Slack	are	adults,	generally	speaking.
There	are	two	different	approaches	to	providing	bots	across	platforms:

Provide	the	same	user	experience	across	all	platforms	by	limiting	the	bot’s	functionality	to	the	lowest
common	denominator.	The	upside	of	this	approach	is	the	ease	of	development	and	faster	time	to
market.
Separate	logic	from	presentation	and	provide	a	different	experience	that	is	fine-tuned	to	suit	the	chat
platform(s)	the	bot	is	on.	The	value	here	is	in	utilization	of	all	of	the	goodness	each	platform	has	to
offer,	and	a	high-quality	experience	for	the	end	user.

There	have	been	some	successful	attempts	at	creating	a	bot	that	is	exposed	in	several	chat	platforms,	but
they	have	all	followed	the	same	important	principle	—	they	took	the	time	to	build	a	state-of-the-art	user
experience	for	their	bot	for	each	platform.	This	has	also	been	true	for	successful	mobile	and	web	app
cross-platform	experiences	in	the	past.	Because	users	are	expecting	the	best-in-class	experience	on	their
particular	platform,	quick	and	easy	is	not	your	friend	when	it	comes	to	cross-platform	support.

KEY	TAKEAWAY

When	building	a	bot	that	will	be	exposed	in	multiple	platforms,	it	is	important	to	build	a	state-of-the-art	implementation	for	each	platform,
rather	than	the	lowest	common	denominator.

Identity	Consolidation
Handling	identity	with	ease	and	grace	is	a	challenge	and	a	pain	point	for	many	designers	and	users.
Having	to	register,	reenter	your	preferences,	and	share	sensitive	information	like	credit	card	details	with
multiple	bots	is	a	big	hurdle	in	user	adoption	and	satisfaction.	Additionally,	bots	expose	services	in

platforms	that	already	have	a	concept	of	user	identity,	requiring	mapping	of	chat	platform	users	to	third-
party	service	users.	There	are	several	approaches	to	solving	these	issues:

Use	the	chat	platform	identity.	Several	platforms	provide	support	for	identity	service	at	some	level	or
another.	Most	are	currently	rather	limited,	but	they	should	improve	as	time	passes.	The	most	advanced
example	of	this	approach	is	the	Asian	platform	WeChat:	it	totally	controls	the	user’s	identity	and
delegates	that	information	to	bots,	and	can	even	bill	on	behalf	of	the	bot	through	an	API.
Use	a	third-party	identity	provider	like	Google,	Facebook,	or	Okta.	These	are	good	solutions	if	you
are	already	working	with	identity	providers	and	delegated	authentication.
Perform	a	process	to	retrieve	and	map	the	chat	platform	users	to	your	own	users.	These	processes
connect	the	platform’s	identity	key	(user	ID)	to	your	identity	key.

This	is	still	a	murky	area,	and	there	is	no	clear	winning	approach	when	it	comes	to	identity	consolidation.
I	think	platform-provided	identity	will	be	the	way	to	go	in	the	future,	when	platforms	provide	bot
developers	with	a	solid	framework	to	manage	user	identities	within	and	across	bots.

Agile	Conversation	Based	on	User	Segmentation	and	Sentiment
Not	all	of	us	are	the	same.	Users	react	differently	to	different	prompts,	different	conversational	styles,	and
different	calls	to	action.	This	is	also	true	of	real-life	conversations	—	young	kids	talk	differently	than
teens,	adults,	and	the	elderly.	Brazilians	have	a	very	different	style	than	people	from	Japan.	You	would
even	have	a	different	type	of	conversation	with	the	same	person	depending	on	whether	they	were	happy,
sad,	or	annoyed.
Tools	like	Chatfuel	have	already	started	to	provide	conversational	agility	based	on	user	segmentation,	and
tools	like	IBM	Watson	have	demonstrated	permutation	in	a	conversation	based	on	user	sentiment	analysis.
We	are	going	to	see	more	and	more	agility	in	conversations	in	the	future,	where	bots	adjust	the	tone,	the
style,	and	even	the	conversational	flow	based	on	the	users	and	information	gathered	about	them.
Responsive	conversation	is	what	all	humans	are	trained	to	do,	and	we	will	see	this	ability	more	and	more
in	advanced	bots.

Domain-Specific	Bots	Versus	Super	Bots
There	are	two	approaches	that	are	emerging	in	the	bot	ecosystem:	super	bots	and	domain-specific	bots.
Super	bots	aim	to	expose	multiple	services	using	the	same	bot	(one	bot	to	rule	them	all),	while	domain-
specific	bots	aim	to	expose	a	single	service	or	product.
But	what	happens	when	there	is	a	complex	use	case	that	involves	multiple	services?	For	example,
planning	a	party,	which	involves	ordering	food,	buying	decorations,	curating	the	music,	inviting	guests,
and	so	forth?	At	the	moment	neither	type	of	bot	is	able	to	deliver	a	good	solution	for	these	complex	tasks,
but	in	the	future	they	will	likely	take	very	different	approaches	to	solving	this	challenge.
Bot	composition	is	a	distributed	approach	to	solving	complex	tasks	—	each	bot	takes	a	sliver	of	the
problem	and	addresses	it.	Here	is	what	the	party-organizing	conversation	would	look	like:

User:	I	want	to	organize	a	party	again	at	my	house	next	week!
Catering-bot:	I	will	take	care	of	the	food	ordering.
Shopping-bot:	Ordering	decorations	:)
Music-bot:	Should	we	use	the	same	playlist	we	used	last	time?
Friends-bot:	I’ll	invite	the	usual	suspects.

The	key	benefit	of	this	approach	is	that	the	user	will	have	control	over	and	a	choice	in	the	composition	of
the	bots.	The	downside	is	a	need	for	interoperability	between	the	bots,	and	the	overhead	of	setting	up	all

these	bots.	If	this	approach	prevails,	we	might	see	services	that	help	the	different	bots	communicate	and
work	together.
Service	orchestration	is	a	centralized	approach	where	a	single	super	bot	will	take	ownership	of
orchestrating	all	these	services	and	provide	a	single	interface	for	the	user.	Here	is	what	this	conversation
might	look	like	with	a	super	bot:

User:	I	want	to	organize	a	party	again	at	my	house	next	week!
Super-bot:	I	will	take	care	of	the	food	ordering.	Also	ordering	decorations	:)
Super-bot:	Should	we	use	the	same	playlist	we	used	last	time?
Super-bot:	I’ll	invite	the	usual	suspects.

The	key	benefit	of	this	approach	is	the	ease	of	use	of	having	a	single	interface	to	work	with.	The
downside	might	be	reduced	control	and	possible	lack	of	transparency	when	it	comes	to	who	is	actually
providing	the	end	services.
Google	and	Amazon	are	leading	the	charge	with	their	super	bots	(Google	Assistant	and	Amazon	Alexa),
while	Slack,	Facebook	Messenger,	Kik,	and	others	are	promoting	the	domain-specific	bot	approach.	Only
time	will	tell	which	will	prove	more	successful	in	the	long	run.

Will	Bots	and	AI	Eat	the	World?
These	are	questions	I	hear	at	many	conferences	and	read	in	many	articles.	Will	bots	replace	apps?	Will
bots	take	people’s	jobs?
The	short	answer	to	these	questions	is,	“Probably	not	in	the	foreseeable	future.”	But	let’s	try	to	answer
each	question	in	a	bit	more	depth.

Will	Bots	Replace	Apps?
Bots	are	a	great	hammer,	but	not	everything’s	a	nail.	Many	apps	provide	a	rich	and	dedicated	experience
for	a	specific	use	case.	I	pity	the	fool	who	tries	to	implement	a	spreadsheet	or	a	photo-editing	tool	or	a
first-person	shooter	game	with	a	conversational	interface.	Bots	are	a	great	user	experience	to	solve	needs
that	can	be	addressed	via	a	conversation.	Bots	are	software	taking	the	form	of	a	personal	assistant	or	a
friend	that	interacts	with	us	through	a	chat	application.	There	are	many	use	cases	that	bots	will	be	better	at
than	apps,	but	the	opposite	is	also	true.
In	the	next	few	years	we	are	going	to	see	a	lot	of	services	augmented	through	bots.	This	means	bots	will
become	yet	another	way	to	consume	a	service,	alongside	web	and	mobile	apps.	In	conjunction,	we	will
slowly	start	to	see	bot-only	businesses	emerge,	as	well	as	traditional	services	doubling	down	on	their	bot
interfaces.

Will	Bots	Take	People’s	Jobs?
Over	the	next	few	years	we	are	also	going	to	see	bots	augmenting	people’s	work	lives	more	and	more,
making	them	more	productive	and	automating	the	boring	parts	of	their	jobs.	An	example	will	be	support
bots	that	can	answer	the	common,	easy,	and	repeatable	questions,	leaving	the	complex	and	high-value
support	tickets	to	human	support	agents.
There	might	be	a	day	where	AI	is	able	to	complete	complex	tasks	like	analyzing	X-ray	images	or	auditing
content	for	legal	use	cases.	But	I	think	we	are	going	to	see	more	jobs	being	created	as	a	result	of	AI	and
bots	than	jobs	taken	away	by	AI	and	bots.

Bots	in	Every	Part	of	Our	Lives
What	we	are	going	to	see	in	the	future	is	a	lot	more	bots	in	our	lives.	At	the	last	CES	technology
conference	in	Las	Vegas,	there	were	at	least	10	home	devices	showcased	that	exposed	conversational
interfaces	in	one	way	or	another.	At	work,	we	are	all	going	to	get	our	own	personal	assistants,	just	like
we’ve	(perhaps)	always	dreamed	of.	We	will	see	many	more	bots	functioning	as	sales	assistants,	HR
assistants,	legal	and	compliance	aids,	and	more,	all	of	them	enabling	people	to	be	more	productive.	In	our
private	lives,	we	will	see	brands	exposing	more	and	more	services	and	products	through	chat;	we	will
interact	with	software	through	voice	in	our	cars	and	homes,	and	more	and	more	commerce	will	be	done
through	conversation	in	our	favorite	platforms.

KEY	TAKEAWAY

We	are	going	to	see	bots	everywhere,	making	our	lives	better	—	conversational	interfaces	are	the	future	of	software.

Appendix	A.	About	the	Author
Amir	Shevat,	head	of	developer	relations	in	Slack,	works	with	bot	developers	and	designers.	Previously,
he	managed	Google’s	Startup	outreach	program,	helping	developers	around	the	world	design	and	build
better	products.	Amir	has	also	created	a	product	design	course	in	Udacity,	teaching	product	managers,
designers,	and	developers	how	to	build	products	users	love.

About	the	Author
Amir	Shevat	is	the	head	of	developer	relations	in	Slack,	working	with	bot	developers	and	designers.
Previously	Amir	managed	Google	Startup	outreach	program,	helping	developers	around	the	world	design
and	build	better	products.	Amir	has	also	created	a	product	design	course	in	Udacity,	teaching	product
managers,	designers	&	developers	how	to	build	products	users	love.	Amir	is	the	co-lead	of	the	botness
community	where	bot	platform	leads	and	bot	developers	share	best	practices.

Colophon
The	animal	on	the	cover	of	Designing	Bots	is	a	Siberian	Husky,	a	medium	size	breed	of	dog	that	was
originally	bred	to	assist	the	native	Chukchi	people	with	hunting	and	transporation.	The	Siberian	Husky
can	be	distinguished	by	its	thick	fur,	large	ears,	and	distinctive	coloring.
The	coat	of	the	Siberian	Husky	consists	of	two	layers:	the	undercoat	and	the	topcoat.	These	two	layers
protect	the	dogs	from	the	extremely	harsh	weather	conditions,	allowing	them	to	withstand	temperatures	as
low	as	–60	°C.	Their	coat	can	also	reflect	sunlight	during	the	long	daylight	hours	of	the	Arctic	summer.
Siberian	Huskies	are	often	used	to	pull	sleds,	one	of	the	only	ways	to	travel	during	winter	in	remote
regions	of	Russia	and	Alaska.	The	breed	became	popular	after	the	story	of	Gunnar	Kaasen	and	his
Siberian	Husky	Balto	delivered	medical	supplies	by	sled	to	the	city	of	Nome,	Alaska	in	1925.
Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the	world.	To	learn
more	about	how	you	can	help,	go	to	animals.oreilly.com.
The	cover	image	is	a	color	illustration	by	Karen	Montgomery.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Scala;	and	the	heading	font	is	Gotham.

http://animals.oreilly.com

Index
A	NOTE	ON	THE	DIGITAL	INDEX

A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.	Because	some	sections	have	multiple	index	markers,	it	is
not	unusual	for	an	entry	to	have	several	links	to	the	same	section.	Clicking	on	any	link	will	take	you	directly	to	the	place	in	the	text	in	which
the	marker	appears.

A

A/B	testing,	Continuous	Improvement

abuse	(error	handling),	Feedback,	Error	Handling

account	binding,	Teaching	the	User	How	to	Use	the	Bot

acknowledgment	in	conversations,	Priming	the	User	to	Give	the	Right	Information,	Proactivity

action	stage	(habit-forming	process),	First	Impression,	First	Impression

Adler,	Mortimer,	Conversation	Scripting

ad	serving,	Subscription

affordance	(design	principle),	Connecting	It	All	Together

Agile	methodology,	Identity	Consolidation

AI	(artificial	intelligence)

about,	Artificial	Intelligence

bot	design	elements,	Breaking	Down	Bots,	Poncho

conversation	management,	Breaking	Down	Bots,	Natural	Language	Understanding

entity	extraction	mechanisms,	Entity	extraction

future	trends	in,	Will	Bots	Replace	Apps?

image	recognition,	Breaking	Down	Bots,	Conversation	Management

learning	from	bot	mistakes,	Keeping	It	Consistent

natural	language	understanding,	Breaking	Down	Bots,	Artificial	Intelligence,	Context

not	using,	Sentiment	Analysis

prediction,	Breaking	Down	Bots,	Image	Recognition/Computer	Vision

sentiment	analysis,	Breaking	Down	Bots,	Prediction

services	supporting,	Artificial	Intelligence	(AI)	Services

training	bots	online	and,	Humans	Enabling	Error/Failure	Escalation

when	to	use,	Sentiment	Analysis

alerts,	Alert/Notification	Bots,	Choosing	the	Right	Interaction	Mode

Alexa	bot

as	music	player,	Files

core	purpose	and	functionality,	What	Are	Bots?,	Personal	Versus	Team	Bots,	Business	Bots	Versus
Consumer	Bots,	The	Voice	Bot	Platform:	Alexa,	Domain-Specific	Bots	Versus	Super	Bots

selling	goods	and	services,	Selling	Goods	and	Services

usefulness	of,	Notifications

Alexa	Skills	API,	The	Voice	Bot	Platform:	Alexa

Allo	messaging	app,	Image	Recognition/Computer	Vision

Amazon	(company)

Amazon	Echo	device,	Voice	Versus	Text	Bots,	Selling	Goods	and	Services,	Super	Bot	Platforms
Opening	Up

authoring	tools,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

bot	types	supported,	What	Are	Bots?,	Stages	of	Bot	Adoption,	Personal	Versus	Team	Bots,	Super	Bots
Versus	Domain-Specific	Bots,	Business	Bots	Versus	Consumer	Bots,	The	Voice	Bot	Platform:	Alexa

future	trends	and,	Super	Bot	Platforms	Opening	Up,	Domain-Specific	Bots	Versus	Super	Bots

selling	goods	and	services,	Selling	Goods	and	Services

shopping	flow	example,	Avoid	repetition

amnesia	(bot),	Context	and	Memory

Amy	bot

context	and	memory,	Context	Errors	and	Ambiguity

core	purpose	and	functionality,	What	Are	Bots?,	So,	What	Are	Bots?,	The	Bot	Revolution	and
Evolution

human	intervention	and,	Humans	Resolving	Ambiguity	and	Providing	Response	Supervision

onboarding	and,	Declaring	the	Purpose

personality	design	and,	Poncho,	Inciting	Users	to	Get	Value	from	the	Bot

usefulness	of,	Notifications

analytics,	data	(see	data	analytics)

animated	GIF	format,	Images,	Putting	It	All	Together

AOL	Instant	Messenger,	Conversation	Management

Appear.in	bot,	Slash	Commands

app	fatigue,	Games	and	Entertainment	Bots

Apple	platform,	The	Bot	Revolution	and	Evolution,	Business	Bots	Versus	Consumer	Bots,	Super	Bot
Platforms	Opening	Up

app	review	process,	Bot	Directories

architecture	(bot),	Bot	Building	Overview

Ariely,	Dan,	Bot	Types

artificial	intelligence	(see	AI	(artificial	intelligence))

association,	memory,	Memory

audience,	personality	design	considerations,	Personality

audio	files,	Breaking	Down	Bots,	Files

authenticated	unfurling,	Links,	Links

authoring	tools,	Bot	Architecture

Automat.ai	platform,	Natural	Language	Understanding,	Feedback,	Visual	Authoring	Tools	and	Integrated
Development	Environments	(IDEs)

B

Baldwin,	Alyx,	Looking	at	Logs

Banfi,	Vittorio,	Priming	the	User	to	Give	the	Right	Information

Barkin,	Josh,	Course	Correction

Beep	Boop	hosting	service,	Buttons	in	Slack,	Templates,	Artificial	Intelligence	(AI)	Services

Bohr,	Niels,	To	Infinity	and	Beyond	—	The	Future	of	Bots

Boorstin,	Daniel,	Bot	Discovery	and	Installation

bot	frameworks,	Artificial	Intelligence	(AI)	Services

Botkit	framework,	Artificial	Intelligence	(AI)	Services,	Picking	the	Right	Tool

Botlist	directory,	Bot	Discovery	and	Installation

Botmetrics	solution,	Third-Party	Hosted	Solutions

bots

building,	Bot	Building	Overview

components	within,	Breaking	Down	Bots

core	purpose	and	functionality,	What	Are	Bots?,	Bot	Anatomy,	Breaking	Down	Bots,	Images

designing	and	testing,	The	Steps,	Designing	and	Testing

future	of,	To	Infinity	and	Beyond	—	The	Future	of	Bots

humans	training	bots	online,	Humans	Enabling	Error/Failure	Escalation

major	platforms,	Major	Platforms

redirecting	conversations	to	other,	Human	Intervention

revolution	and	evolution,	So,	What	Are	Bots?

stages	of	adoption,	The	Bot	Revolution	and	Evolution

types	of,	Bot	Types

user-led	invocation,	Breaking	Down	Bots

Botsociety	tool,	Priming	the	User	to	Give	the	Right	Information,	Designing	and	Testing,	User	Testing

branding	and	brand	management

about,	Breaking	Down	Bots,	Branding,	Personality,	and	Human	Involvement

bot	use	cases,	Games	and	Entertainment	Bots

brand	promotion,	Referral	Fees

consistency	when	routing	to	humans,	Consistency

naming	bots,	Images

personality	design	considerations,	Personality

teens’	box	platform	example,	The	Voice	Bot	Platform:	Alexa

visual	branding,	Visual	Branding,	Personality,	Choosing	a	Logo	and	Visuals

building	bots

about,	Bot	Building	Overview

bot	architecture,	Bot	Building	Overview

picking	tools,	Picking	the	Right	Tool

technologies	for,	Bot	Architecture

business	bots

choosing	platforms,	How	to	Choose	a	Platform

consumer	bots	versus,	Super	Bots	Versus	Domain-Specific	Bots

Slack	example,	Major	Platforms

use	cases,	Conversational	Commerce,	Customer	Service	and	FAQ	Bots

buttons

about,	Breaking	Down	Bots,	When	to	Use	Images	in	a	Conversation

combining	with	other	media,	Canned	Responses	in	Facebook	Messenger	and	Kik

deriving	context	through,	Context

Facebook	Messenger	usage	of,	Buttons	in	Slack

Kik	platform	usage	of,	Buttons	in	Facebook	Messenger

navigation	considerations,	Buttons	in	Slack,	Putting	It	All	Together,	When	to	Use	Buttons	in	a
Conversation,	Webviews

Slack	platform	usage	of,	When	to	Use	Images	in	a	Conversation,	Putting	It	All	Together

templates	and,	Buttons	in	Facebook	Messenger

using	in	conversations,	Putting	It	All	Together

Button	template	(Facebook	Messenger),	Templates

C

Call	of	Duty	game	bot,	Templates

call	to	action

buttons	for,	Templates,	First	Impression

conversation	scripting	and,	VacationBot

onboarding	and,	Onboarding,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

canned	responses,	Buttons	in	Facebook	Messenger,	Putting	It	All	Together,	Putting	It	All	Together

channels

creating,	Using	@Mentions

private	versus	public,	Common	Courtesy

Chatflow	service,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

Chatfuel	tool,	Notifications,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs),
Agile	Conversation	Based	on	User	Segmentation	and	Sentiment

chatOps,	Conversational	Commerce

chitchat,	Responsiveness,	Feedback

CMS	(content	management	system),	Error	Handling

CNN	bot,	Direct	Installation	Links

coaching	use	cases,	Productivity	and	Coaching

Cohen	Baron,	Dana,	Bot	Anatomy

common	courtesy,	Proactivity

computer	vision,	Conversation	Management

Concur	(company),	Brand	Promotion

confirmation	in	conversations

about,	Priming	the	User	to	Give	the	Right	Information

confirmation	window,	Buttons	in	Slack

explicit	versus	implicit,	Explicit	Versus	Implicit	Confirmation

responsiveness	considerations,	Priming	the	User	to	Give	the	Right	Information

consistency	in	conversation	design,	Avoid	repetition,	Keeping	It	Consistent

consumer	bots

business	bots	versus,	Super	Bots	Versus	Domain-Specific	Bots

choosing	platforms,	How	to	Choose	a	Platform

Facebook	Messenger	example,	The	Business	Bot	Platform:	Slack

use	cases,	Productivity	and	Coaching

content	management	system	(CMS),	Error	Handling

context	considerations

bot	amnesia,	Context	and	Memory

context	variables	in	conversations,	Bot	Amnesia

conversation	management,	Natural	Language	Understanding

extending	paid-for	products/services,	Brand	Promotion

handling	context	errors	and	ambiguity,	Deriving	Context	Through	Rich	Controls

inferring	context,	Breaking	Down	Bots,	Context

natural	language	understanding,	Breaking	Down	Bots,	Artificial	Intelligence,	Context

onboarding	and,	The	Conversation

personality	design	and,	Personality

rich	interactions	in	conversations	and,	Videos,	Buttons	in	Slack,	Templates,	Context

stickers	indicating	context,	Stickers

continuous	improvement,	The	Steps,	Be	Careful	Not	to	Worry	About	the	Wrong	Thing

conversational	interface

about,	Bot	Anatomy,	The	Conversation

acknowledgment	and	confirmation,	Priming	the	User	to	Give	the	Right	Information,	Proactivity

aspects	to	consider,	Breaking	Down	Bots

buttons	and,	Putting	It	All	Together

consistency	in,	Avoid	repetition

decoration,	Stories/flows

emojis	and,	Emojis

error	handling,	Breaking	Down	Bots,	Humans	Enabling	Error/Failure	Escalation,	Knowing	When	to
Shut	Up	in	a	Team	Conversation

evolution	of,	So,	What	Are	Bots?

exposing	software	services	through,	What	Are	Bots?,	The	Bot	Revolution	and	Evolution

file	operations	and,	Files

functionality	scripting,	Breaking	Down	Bots,	Functionality	Scripting

help	and	feedback	support,	Help	and	Feedback

humans	improving	bot	conversation,	Humans	Training	Bots	Online

images	and,	When	to	Use	Images	in	a	Conversation

links	and,	Links

onboarding,	Breaking	Down	Bots,	Stickers,	The	Conversation

priming	user	input,	Randomization

reciprocity,	Consistency

team	versus	private	interactions,	Common	Courtesy

templates	and,	Templates

types	of	bots,	Bot	Types

use	cases,	Major	Use	Cases

videos	and,	Videos

conversation	funnel,	Stories/flows

conversation	management	(AI),	Breaking	Down	Bots,	Natural	Language	Understanding

conversation	scripting

about,	Design	Process	Overview

entity	mapping,	Intent	Mapping

intent	mapping,	Error	Handling

outline	of	flows,	Conversation	Scripting

scripting	sample	bot	outputs,	Intent	Mapping

cookies	upsale	story,	Stories/flows

Cortana	bot,	Business	Bots	Versus	Consumer	Bots

course	correction	(see	divergent	flows	and	course	correction)

CoverGirl	bot,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

CRM	(customer	relationship	management)	systems

authenticated	unfurling	and,	Links

business	bots	and,	Conversational	Commerce

integration	bots	and,	Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems,	Customer	Service
and	FAQ	Bots,	Teaching	the	User	How	to	Use	the	Bot,	Promoting	Engagement	by	Just	Being	Useful

Wordhop	toolkit,	Course	Correction

customer	service	bots,	Bots	as	Routers	Between	Humans

D

Dashbot	tool,	Responsiveness,	Connecting	It	All	Together,	Insights	from	Analytics	Solutions

data	analytics

design	process	step,	The	Steps

how	bot	analytics	work,	Analytics	and	Continuous	Improvement

insights	from	solutions,	Looking	at	Logs

looking	at	logs,	How	Do	Bot	Analytics	Work?

monetization	through,	Ad	Serving

decoration	in	conversations,	Stories/flows

Designing	Voice	User	Interfaces	(Pearl),	Voice	Versus	Text	Bots

design	process	(bots)

analytics	and	continuous	improvement,	The	Steps,	Analytics	and	Continuous	Improvement

bot	building	overview,	The	Steps,	Bot	Building	Overview

conversation	scripting,	Design	Process	Overview,	Conversation	Scripting

designing	and	testing,	The	Steps,	Designing	and	Testing

future	of	bots,	To	Infinity	and	Beyond	—	The	Future	of	Bots

use	case	definition	and	exploration,	Design	Process	Overview,	Use	Case	Definition	and	Exploration

direct	installation	links,	Direct	Installation	Links

direct	message	(DM),	Major	Platforms,	Onboarding	in	a	Team	Environment,	Team	Versus	Private
Interactions

directories	(bot),	Bot	Discovery	and	Installation

discovery	and	installation

about,	Breaking	Down	Bots,	Bot	Discovery	and	Installation

app	review	process,	Bot	Directories

bot	directories,	Bot	Discovery	and	Installation

bot	referrals,	Human	Intervention,	Bot	Referrals

direct	installation	links,	Direct	Installation	Links

future	trends	in,	Discovery

@mentions,	@Mentions

QR	codes,	Direct	Installation	Links

divergent	flows	and	course	correction

error	handling,	Knowing	When	to	Shut	Up	in	a	Team	Conversation

in	task-led	conversations,	Task-Led	Conversation

in	topic-led	discussions,	Topic-Led	Discussion

domain-specific	bots,	Personal	Versus	Team	Bots,	Agile	Conversation	Based	on	User	Segmentation	and
Sentiment

DoNotPay	bot,	Stories/flows

Donut	bot,	Putting	It	All	Together

Dumik,	Dmitry,	Notifications

E

Easter	eggs,	Responsiveness

eBay	bot,	Slash	Commands

Einstein,	Albert,	Engagement	Methods

Eliza	bot,	What	Are	Bots?

email	as	bot	platform,	The	Teens’	Bot	Platform:	Kik,	Alert/Notification	Bots

Emoji	News	bot,	Emojis

emojis

about,	Breaking	Down	Bots,	Emojis

buttons	and,	Buttons	in	Slack

decorating	conversations	with,	Decoration

engagement	methods

aspects	to	consider,	Breaking	Down	Bots,	Engagement	Methods

first	impression,	Engagement	Methods

ongoing	engagement	points,	First	Impression

entertainment	and	game	bots,	Third-Party	Integration	Bots,	Templates,	Extending	a	Paid-for	Product

entity	extraction

error	handling	issues,	Feedback

mapping	in	use	cases,	Intent	Mapping

in	task-led	conversations,	Task-Led	Conversation

in	topic-led	discussions,	Divergence	as	a	way	to	course	correct

environment

personality	design	considerations,	Personality

setting	up	for	testing,	Creating	Tasks	and	Discussion	Guides

ephemeral	messages,	Slash	Commands

Epytom	bot,	Divergence	as	a	way	to	course	correct

error	handling

about,	Breaking	Down	Bots,	Knowing	When	to	Shut	Up	in	a	Team	Conversation

consistency	in,	Consistency,	Keeping	It	Consistent

context	errors	and	ambiguity,	Deriving	Context	Through	Rich	Controls

course	correction,	Error	Handling

human	intervention,	Human	Intervention

humans	enabling	escalation,	Humans	Enabling	Error/Failure	Escalation

learning	from	mistakes,	Keeping	It	Consistent

redirecting	to	another	bot,	Human	Intervention

restarting	conversations,	Human	Intervention

workflow	for,	Feedback,	Feedback,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

evaluation	stage	(bot	platforms),	Feature	availability

Events	API	(Slack),	The	Business	Bot	Platform:	Slack

explicit	confirmation,	Explicit	Versus	Implicit	Confirmation

exploration	stage	(bot	platforms),	How	to	Choose	a	Platform

Eyal,	Nir,	First	Impression

F

Facebook	Messenger,	Use	Case	Definition	and	Exploration

(see	also	VacationBot)

about,	The	Business	Bot	Platform:	Slack

ad	serving,	Ad	Serving

authoring	tools,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

bot	directories,	Bot	Directories

bot	use	cases,	Customer	Service	and	FAQ	Bots,	Bots	as	Facilitators	for	Human	Tasks,	Notifications

buttons	in,	Buttons	in	Slack,	Putting	It	All	Together

canned	responses	and,	Buttons	in	Facebook	Messenger,	Putting	It	All	Together

future	trends	in,	To	Infinity	and	Beyond	—	The	Future	of	Bots,	Domain-Specific	Bots	Versus	Super
Bots

Hipmunk	bot	and,	So,	What	Are	Bots?

monetization	and,	Data	—	Analytics	and	Market	Research,	Selling	Goods	and	Services

Persistent	Menu	control,	Emojis,	First	Impression

Poncho	bot	example,	WordsBot

QR	codes,	Direct	Installation	Links

Quick	Reply	feature,	Buttons	in	Facebook	Messenger,	Putting	It	All	Together,	Designing	VacationBot
for	Facebook	Messenger	with	Botsociety

referral	business	model	and,	Selling	Goods	and	Services

rich	interactions	and,	Images

templates	and,	When	NOT	to	Use	Buttons	for	Navigation,	Templates

webviews	and,	Slash	Commands

Facebook	platform

AI	services	supporting,	Artificial	Intelligence,	Artificial	Intelligence	(AI)	Services

bot	types	supported,	Stages	of	Bot	Adoption,	Business	Bots	Versus	Consumer	Bots

buttons	in,	Putting	It	All	Together

direct	installation	links,	Direct	Installation	Links

identity	consolidation	and,	Identity	Consolidation

launching	bots,	The	Bot	Revolution	and	Evolution,	Stages	of	Bot	Adoption

natural	language	understanding,	Artificial	Intelligence

reciprocal	engagements,	Communicate	Value	Before	Asking	for	Input

unfurling	and,	Links

FAQ	bots,	Bots	as	Routers	Between	Humans,	Humans	Enabling	Error/Failure	Escalation

feedback	support

about,	Breaking	Down	Bots

consistency	in,	Consistency

designing,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

providing	help,	Help	and	Feedback

soliciting	feedback,	Providing	Help

workflows	for,	VacationBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with
Botsociety

file	operations,	Breaking	Down	Bots,	Files

filtered	logs,	How	Do	Bot	Analytics	Work?

first	impressions,	Engagement	Methods

Flanders,	Tess,	Rich	Interactions

Flow	XO	tool,	Bot	Architecture,	Picking	the	Right	Tool

formatting	messages,	Breaking	Down	Bots

frameworks,	bot,	Artificial	Intelligence	(AI)	Services

freemium-based	bots,	Subscription,	When	Should	You	Start	Charging	Users?

functionality	scripting

about,	Breaking	Down	Bots,	Functionality	Scripting

task-led	conversations	and,	Functionality	Scripting

topic-led	discussions	and,	The	conversation	funnel

future	of	bots,	To	Infinity	and	Beyond	—	The	Future	of	Bots

G

game	and	entertainment	bots,	Third-Party	Integration	Bots,	Templates,	Extending	a	Paid-for	Product

Generic	template	(Facebook	Messenger),	When	NOT	to	Use	Buttons	for	Navigation,	Templates,
Templates

/giphy	bot,	Decoration

global	context	variables,	Bot	Amnesia

goods	and	services,	selling,	Data	—	Analytics	and	Market	Research,	Brand	Promotion

Google	Analytics,	How	Do	Bot	Analytics	Work?

(see	also	Statsbot	bot)

Google	API.AI,	Artificial	Intelligence	(AI)	Services

Google	Assistant	bot

bot	amnesia	and,	Bot	Amnesia

core	purpose	and	functionality,	Super	Bots	Versus	Domain-Specific	Bots,	Business	Bots	Versus
Consumer	Bots,	Core	Purpose	and	Functionality

deriving	context,	Context

future	trends	and,	Domain-Specific	Bots	Versus	Super	Bots

image	recognition	and,	Image	Recognition/Computer	Vision

ongoing	engagement	points,	First	Impression

providing	help,	Help	and	Feedback

randomization	and,	Randomization

rich	interactions	and,	Images

soliciting	feedback,	Providing	Help

Google	platform

consumer	bots	and,	Stages	of	Bot	Adoption

future	trends	in,	Super	Bot	Platforms	Opening	Up

identity	consolidation	and,	Identity	Consolidation

Vision	API,	Image	Recognition/Computer	Vision

Greenshpan,	Jacob,	Engagement	Methods

Growbot	bot,	Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems,	Core	Purpose	and
Functionality,	Subscription,	Super	Bot	Platforms	Opening	Up

H

habit-forming	process,	First	Impression

Hawking,	Stephen,	Artificial	Intelligence

help	support

about,	Breaking	Down	Bots

consistency	in,	Consistency

ongoing	engagement	points,	First	Impression

providing,	Help	and	Feedback

soliciting	feedback,	Providing	Help

workflows	for,	PTOBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

Hipmunk	bot,	So,	What	Are	Bots?

H&M	bot,	Bot	Types,	Direct	Installation	Links,	Brand	Promotion

Hooked	(Eyal),	First	Impression

Hook	model,	First	Impression

hosting	solutions,	Software	Development	Kits	and	Bot	Frameworks

Howdy	bot,	Business	Bots	Versus	Consumer	Bots,	The	Conversation,	Artificial	Intelligence	(AI)
Services,	Super	Bot	Platforms	Opening	Up

human	intervention	with	bots

about,	Breaking	Down	Bots,	Expressing	Your	Personality

bots	as	facilitators	for	human	tasks,	Humans	Training	Bots	Online

consistency	in,	Consistency

enabling	error/failure	escalation,	Humans	Enabling	Error/Failure	Escalation

error	handling	and,	Human	Intervention

providing	response	supervision,	Humans	Resolving	Ambiguity	and	Providing	Response	Supervision

resolving	ambiguity,	Humans	Resolving	Ambiguity	and	Providing	Response	Supervision

training	bots	online,	Humans	Enabling	Error/Failure	Escalation

I

IBM	Watson,	Prediction,	Artificial	Intelligence	(AI)	Services

Icon8	bot,	Canned	Responses	in	Facebook	Messenger	and	Kik

icons	for	bots,	Breaking	Down	Bots

identity	consolidation,	Identity	Consolidation

IDEs	(integrated	development	environments),	Bot	Architecture

images

bot	recognition	of,	Breaking	Down	Bots,	Conversation	Management

decoration	with,	Decoration

onboarding	with,	Stickers

QR	codes,	Direct	Installation	Links

rich	interactions	with,	Breaking	Down	Bots,	Videos,	Canned	Responses	in	Facebook	Messenger	and
Kik

using	in	conversations,	When	to	Use	Images	in	a	Conversation

IMAP	protocol,	The	Teens’	Bot	Platform:	Kik

Imperson	tool,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

implicit	confirmation,	Explicit	Versus	Implicit	Confirmation

in-bot	virtual	goods,	Extending	a	Paid-for	Product

installation	(see	discovery	and	installation)

Instant	Messenger	(AOL),	Conversation	Management

integrated	development	environments	(IDEs),	Bot	Architecture

integration	bots,	Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems,	Customer	Service	and	FAQ
Bots,	Teaching	the	User	How	to	Use	the	Bot

intent	considerations

ad	serving	and,	Subscription

bot	referrals	and,	Bot	Referrals

capturing	and	extracting,	Bot	Anatomy,	Humans	Training	Bots	Online,	Natural	Language	Understanding,
Not	Using	Artificial	Intelligence,	Bot	Amnesia

conversation	scripting,	Error	Handling

deriving	from	natural	language	understanding,	Artificial	Intelligence

exposing	with	rich	controls,	Context

first	impressions	when	addressing,	Engagement	Methods

mapping	in	task-led	conversations,	Entity	extraction,	The	conversation	funnel,	Stories/flows

mapping	in	topic-led	discussions,	Topic-Led	Discussion,	Intent	mapping	and	conversational	controls

mapping	in	use	cases,	Error	Handling

ongoing	engagement	points	dealing	with,	First	Impression

rectifying	difficulties	capturing,	Keeping	It	Consistent,	Putting	It	All	Together,	Feedback

scoped	context	variables	and,	Bot	Amnesia

selling	goods	and	services,	Selling	Goods	and	Services

stickers	indicating	intent,	Stickers

waiting	story	path,	Solution	Exploration

interaction	modes

about,	Common	Courtesy

choosing,	Team	Versus	Private	Interactions

knowing	when	to	shut	up,	Using	@Mentions

@mentions,	Choosing	the	Right	Interaction	Mode,	@Mentions

training	and	onboarding,	Using	@Mentions

investment	stage	(habit-forming	process),	First	Impression,	First	Impression

IVR	(interactive	voice	response)	systems,	Bots	as	Routers	Between	Humans

J

Jacob,	Oren,	Keeping	It	Consistent

Jobs,	Steve,	Design	Process	Overview

JSON	files,	Before	You	Start	—	Prototyping	a	Mockup	Bot

K

KalaniBot,	Error	Handling

keywords,	capturing,	Soliciting	Feedback

Kik	platform

about,	The	Voice	Bot	Platform:	Alexa

ad	serving,	Subscription

bot	directories,	Bot	Directories

bot	types	supported,	Stages	of	Bot	Adoption,	Business	Bots	Versus	Consumer	Bots

brand	promotion,	Referral	Fees

buttons	in,	Putting	It	All	Together

canned	responses	and,	Buttons	in	Facebook	Messenger

error	handling,	Error	Handling

future	trends	in,	To	Infinity	and	Beyond	—	The	Future	of	Bots,	Domain-Specific	Bots	Versus	Super
Bots

handling	context	errors	and	ambiguity,	Context	Errors	and	Ambiguity

launching	bots,	The	Bot	Revolution	and	Evolution,	Stages	of	Bot	Adoption

@mentions,	Choosing	the	Right	Interaction	Mode,	@Mentions,	First	Impression

QR	codes,	Direct	Installation	Links

referral	business	model	and,	Selling	Goods	and	Services

Suggested	Responses,	Canned	Responses	in	Facebook	Messenger	and	Kik

videos	and,	Videos

webviews	and,	Slash	Commands

Kip	bot

buttons	and,	Buttons	in	Slack

core	purpose	and	functionality,	Major	Use	Cases,	Functionality	Scripting,	Entity	extraction

designing,	Looking	at	Logs

functionality	scripting	and,	Functionality	Scripting,	Entity	extraction

images	and,	Images

monetization	and,	Super	Bot	Platforms	Opening	Up

onboarding	and,	Configuration

personality	design	and,	Visual	Branding

referral	fees	and,	Selling	Goods	and	Services

templates	and,	When	NOT	to	Use	Buttons	for	Navigation

visual	branding,	Visual	Branding

Klein,	Laura,	User	Testing

L

Language	Understanding	Intelligent	Service	(LUIS),	Artificial	Intelligence	(AI)	Services

Lark	bot,	Productivity	and	Coaching

LawGeex	bot,	Bots	for	Business,	Files

Law,	Rachel,	Looking	at	Logs

legacy	bot	platforms,	Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems,	The	Teens’	Bot
Platform:	Kik

legal	bots,	Conversational	Commerce,	Stories/flows,	Files

Leuch,	Greg,	Poncho,	Error	Handling,	Continuous	Improvement

Line	chat	platform,	Decoration

LinkedIn	business	network,	Links

links

about,	Breaking	Down	Bots,	Templates

direct	installation,	Direct	Installation	Links

using	in	conversations,	Videos,	Links

List	template	(Facebook	Messenger),	Templates

Loebner	Prize,	Business	Bots	Versus	Consumer	Bots

log	management,	Analytics	and	Continuous	Improvement

logos	for	bots,	Breaking	Down	Bots,	Visual	Branding,	Choosing	a	Logo	and	Visuals

LunchBot	bot,	Business	Bots	Versus	Consumer	Bots

Lyft	ride	service

account	binding,	Configuration

bot	brand	names,	Images

bot	referrals,	Bot	Referrals

bots	as	routers	between	humans,	Alert/Notification	Bots

ephemeral	messages,	Slash	Commands

selling	goods	and	services,	Data	—	Analytics	and	Market	Research

use	case,	So,	What	Are	Bots?

M

Manian,	Dan,	Putting	It	All	Together

market	research,	monetization	through,	Ad	Serving

Mauro,	Andy,	Natural	Language	Understanding,	Ad	Serving,	Feedback

memory	considerations,	Breaking	Down	Bots,	Context	and	Memory,	Context	Errors	and	Ambiguity

@mentions,	Choosing	the	Right	Interaction	Mode,	@Mentions,	First	Impression

menus,	persistent,	Breaking	Down	Bots,	Emojis,	First	Impression

message	attachments,	When	to	Use	Images	in	a	Conversation,	Templates,	Templates

Messenger	API	(Facebook	Messenger),	The	Business	Bot	Platform:	Slack

Mica	bot,	Human	Intervention

Microsoft	Bot	Framework,	Artificial	Intelligence	(AI)	Services

Microsoft	Cortana	bot,	Business	Bots	Versus	Consumer	Bots

Microsoft	LUIS,	Artificial	Intelligence	(AI)	Services

Microsoft	Tay	chatbot,	Error	Handling

mitigation	flows,	Deriving	Context	Through	Rich	Controls

Mitsuku	bot,	Business	Bots	Versus	Consumer	Bots,	Context	Errors	and	Ambiguity

Mixpanel	service,	Customer	Service	and	FAQ	Bots,	Subscription

MMS	(Multimedia	Messaging	Service),	SMS

mockup	bots,	Designing	PTOBot	for	Slack	with	Walkie

monetization

about,	Breaking	Down	Bots,	Monetization

ad	serving,	Subscription

brand	promotion,	Referral	Fees

data	analytics	and	market	research,	Ad	Serving

future	trends	in,	Discovery

referral	fees,	Selling	Goods	and	Services

selling	goods	and	services,	Data	—	Analytics	and	Market	Research

subscription-based,	Subscription

when	to	charge	users,	When	Should	You	Start	Charging	Users?

Mortensen,	Dennis,	Poncho

msg.ai	solution,	Artificial	Intelligence	(AI)	Services

multi-party	direct	message	(MPDM),	Major	Platforms,	Team	Versus	Private	Interactions

multiplatform	bots,	Multiplatform	Bots

N

naming	bots,	Breaking	Down	Bots,	Images,	Choosing	a	Logo	and	Visuals

natural	language	understanding	(NLU),	Breaking	Down	Bots,	Artificial	Intelligence,	Context

navigation

buttons	in,	Buttons	in	Slack,	Putting	It	All	Together,	When	to	Use	Buttons	in	a	Conversation,	Webviews

persistent	menus	and,	Breaking	Down	Bots,	Emojis

in	task-led	conversations,	Functionality	Scripting

net-new	bots,	Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems

NirAndFar.com,	First	Impression

NLU	(natural	language	understanding),	Breaking	Down	Bots,	Artificial	Intelligence,	Context

notifications

as	engagement	method,	Breaking	Down	Bots,	First	Impression,	First	Impression,	Notifications

future	trends	in,	Super	Bot	Platforms	Opening	Up

@mentions	and,	Choosing	the	Right	Interaction	Mode,	@Mentions

proactivity	in	subscribing	to,	Proactivity

scheduling,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

use	cases,	Alert/Notification	Bots

O

OCR	(optical	character	recognition),	Image	Recognition/Computer	Vision

Okta	identity	provider,	Identity	Consolidation

onboarding

about,	Breaking	Down	Bots

call	to	action	and,	Onboarding,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

configuration	of,	Teaching	the	User	How	to	Use	the	Bot

declaring	the	purpose,	The	Conversation

first	impressions,	Engagement	Methods

inciting	users	to	get	value	from	bots,	Configuration

interaction	modes	and,	Using	@Mentions

ongoing	engagement	points,	First	Impression

rich	interactions	and,	Canned	Responses	in	Facebook	Messenger	and	Kik

setting	tone	and	personality,	Inciting	Users	to	Get	Value	from	the	Bot

teaching	users	how	to	use	bots,	Declaring	the	Purpose

in	team	environment,	Inciting	Users	to	Get	Value	from	the	Bot

use	cases,	Onboarding,	Intent	Mapping,	Designing	VacationBot	for	Facebook	Messenger	with
Botsociety,	Designing	PTOBot	for	Slack	with	Walkie

videos	and,	Videos

visual	branding	and,	Stickers

Ondrisek,	Barbara,	Human	Intervention

operator	bots,	Alert/Notification	Bots

P

paid-for	products/services,	Brand	Promotion

Pandorabots	service,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

pause	command,	Proactivity

Pearl,	Cathy,	Voice	Versus	Text	Bots

persistent	menus,	Breaking	Down	Bots,	Emojis,	First	Impression

personal	bots,	Bot	Types,	Intent	mapping	and	conversational	controls

personality	of	bots

designing,	Breaking	Down	Bots,	Naming,	Defining	a	Persona

expressing,	Poncho

Poncho	bot	example,	WordsBot

setting	during	onboarding,	Inciting	Users	to	Get	Value	from	the	Bot

visual	branding	and,	Visual	Branding,	Personality

WordsBot	example,	Personality

personas

about,	Before	You	Start	—	Prototyping	a	Mockup	Bot

brand	promotion	and,	Brand	Promotion

building,	Expressing	Your	Personality

consistent,	Keeping	It	Consistent

defining,	Defining	a	Persona

Petroski,	Henry,	Use	Case	Definition	and	Exploration

platforms

business	bots,	Major	Platforms

choosing,	SMS

consumer	bots,	The	Business	Bot	Platform:	Slack

legacy	bots,	The	Teens’	Bot	Platform:	Kik

teens’	bots,	The	Voice	Bot	Platform:	Alexa

voice	bots,	The	Voice	Bot	Platform:	Alexa

Poncho	bot

bot	improvement	cycle	and,	Continuous	Improvement

core	purpose	and	functionality,	WordsBot

decoration	example,	Decoration

error	handling,	Error	Handling

irrelevant	conversation,	Knowing	When	to	Shut	Up	in	a	Team	Conversation

onboarding	and,	Declaring	the	Purpose,	Teaching	the	User	How	to	Use	the	Bot,	First	Impression

personality	design	and,	WordsBot,	Inciting	Users	to	Get	Value	from	the	Bot

redirecting	to	other	bots,	Redirecting	to	Another	Bot

rich	interactions	and,	Images

POP3	protocol,	The	Teens’	Bot	Platform:	Kik

prediction	by	bots,	Breaking	Down	Bots,	Image	Recognition/Computer	Vision

priming	user	input,	Randomization

private	channels,	Team	Versus	Private	Interactions

private	interactions,	Common	Courtesy

productivity	use	cases,	Productivity	and	Coaching

pronouns,	inferring	context	from,	Context

ProtoBot,	User	Testing

prototyping

Flow	XO	tool,	Bot	Architecture,	Picking	the	Right	Tool

mockup	bots,	User	Testing

validation	stage	and,	Evaluation	Stage

Wizard	of	Oz	method,	Solution	Exploration

PTOBot

basic	requirements,	Use	Case	Definition	and	Exploration

defining	persona,	Defining	a	Persona

designing	with	Walkie,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

entity	mapping,	Intent	Mapping

error	handling,	Feedback,	Feedback

feedback	flow,	VacationBot,	VacationBot

help	flow,	PTOBot,	VacationBot

intent	mapping,	Error	Handling

main	flow,	VacationBot,	VacationBot,	Designing	PTOBot	for	Slack	with	Walkie

naming	conventions,	Choosing	a	Logo	and	Visuals

onboarding,	Onboarding,	PTOBot,	Designing	PTOBot	for	Slack	with	Walkie

picking	bot	platform,	Setting	a	Purpose

setting	a	purpose,	Setting	a	Purpose

solution	exploration,	Solution	Exploration

use	case	definition,	Use	Case	Definition	and	Exploration

user	testing,	User	Testing

public	channels,	Team	Versus	Private	Interactions

PullString	tool,	Keeping	It	Consistent,	Visual	Authoring	Tools	and	Integrated	Development	Environments
(IDEs)

Q

QR	codes,	Direct	Installation	Links

Quick	Reply	(Facebook	Messenger),	Buttons	in	Facebook	Messenger,	Putting	It	All	Together,	Designing
VacationBot	for	Facebook	Messenger	with	Botsociety

R

randomization	of	outputs,	Decoration,	Avoid	repetition

random	order	workflows,	Task-Led	Conversation

raw	logs,	Analytics	and	Continuous	Improvement

reactions	(emoji)	(see	emojis)

Recast.AI	tool,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

Receipt	template	(Facebook	Messenger),	Templates

reciprocity	in	conversations

about,	Consistency

common	courtesy,	Proactivity

communicating	value	before	input	request,	Consistency

initiating	and	reviving	engagement,	Communicate	Value	Before	Asking	for	Input

proactivity,	Communicate	Value	Before	Asking	for	Input

referrals

bot	referrals,	Human	Intervention,	Bot	Referrals

monetization	through	referral	fees,	Selling	Goods	and	Services

repetition	in	conversations,	Avoid	repetition

responsiveness	(design	principle),	Priming	the	User	to	Give	the	Right	Information

restarting	conversations,	Human	Intervention

Retrieve	and	Rank	API,	Prediction

reward	stage	(habit-forming	process),	First	Impression,	First	Impression

rich	interactions

aspects	to	consider,	Breaking	Down	Bots,	Rich	Interactions

audio	files,	Breaking	Down	Bots,	Files

buttons,	Breaking	Down	Bots,	When	to	Use	Images	in	a	Conversation

connecting	together,	Webviews

deriving	context	through,	Context

emojis,	Breaking	Down	Bots,	Emojis

file	operations,	Breaking	Down	Bots,	Files

formatting	messages,	Breaking	Down	Bots

images,	Breaking	Down	Bots,	Videos

links,	Breaking	Down	Bots,	Templates

persistent	menus,	Breaking	Down	Bots,	Emojis

slash	commands,	Breaking	Down	Bots,	Slash	Commands

templates,	Breaking	Down	Bots,	When	NOT	to	Use	Buttons	for	Navigation

typing	events,	Breaking	Down	Bots,	Emojis

videos,	Breaking	Down	Bots,	Files

webviews,	Breaking	Down	Bots,	Slash	Commands

Rohn,	Jim,	Bot	Building	Overview

S

scoped	context	variables,	Bot	Amnesia

SDKs	(software	development	kits),	Artificial	Intelligence	(AI)	Services,	How	Do	Bot	Analytics	Work?,
Third-Party	Hosted	Solutions

Sensay	bot,	Bots	as	Routers	Between	Humans,	Humans	Training	Bots	Online,	Inciting	Users	to	Get	Value
from	the	Bot

sentiment	analysis,	Breaking	Down	Bots,	Prediction

services	and	goods,	selling,	Data	—	Analytics	and	Market	Research,	Brand	Promotion

share	location	feature,	Canned	Responses	in	Facebook	Messenger	and	Kik

Sharon,	Tomer,	Major	Use	Cases

shopping	bots	(see	specific	bots)

shorthanding,	Intent	mapping	and	conversational	controls

Siri	bot,	Business	Bots	Versus	Consumer	Bots

Skype	platform,	The	Bot	Revolution	and	Evolution

Slackbot	bot,	What	Are	Bots?,	Personal	Versus	Team	Bots

Slack	platform,	Use	Case	Definition	and	Exploration

(see	also	PTOBot)

about,	Direct	Installation	Links,	Artificial	Intelligence	(AI)	Services

ad	serving	and,	Ad	Serving

authoring	tools,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

bot	directories,	Bot	Discovery	and	Installation

bot	types	supported,	What	Are	Bots?,	Personal	Versus	Team	Bots,	Business	Bots	Versus	Consumer
Bots,	Major	Platforms

bot	use	cases,	Customer	Service	and	FAQ	Bots,	Bots	as	Facilitators	for	Human	Tasks

buttons	in,	When	to	Use	Images	in	a	Conversation,	Putting	It	All	Together

decoration	use,	Decoration

designing	and	testing	considerations,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

direct	installation	links,	Direct	Installation	Links

emojis	and,	Emojis

engagement	methods,	First	Impression,	First	Impression

exploring,	Solution	Exploration

future	trends	in,	To	Infinity	and	Beyond	—	The	Future	of	Bots,	Domain-Specific	Bots	Versus	Super
Bots

image	usage	and,	Images

launching	bots,	The	Bot	Revolution	and	Evolution,	Stages	of	Bot	Adoption

@mentions,	Choosing	the	Right	Interaction	Mode,	@Mentions,	First	Impression

message	attachments,	When	to	Use	Images	in	a	Conversation,	Templates,	Templates

monetization	and,	Data	—	Analytics	and	Market	Research,	Selling	Goods	and	Services,	Brand
Promotion

onboarding	and,	Teaching	the	User	How	to	Use	the	Bot,	Onboarding	in	a	Team	Environment

personality	design	and,	WordsBot

referral	business	model	and,	Selling	Goods	and	Services

sentiment	analysis	and,	Prediction

slash	commands	in,	Naming,	Slash	Commands,	First	Impression

team	interactions	and,	Common	Courtesy,	Choosing	the	Right	Interaction	Mode

templates	and,	Templates,	Templates

unfurling	and,	Links

usefulness	of,	Notifications

video	usage	and,	Videos,	When	to	Use	Images	in	a	Conversation

Slapp	SDK,	Artificial	Intelligence	(AI)	Services

slash	commands

about,	The	Business	Bot	Platform:	Slack,	Breaking	Down	Bots,	Naming,	Slash	Commands

as	ongoing	engagement	points,	First	Impression

for	teaching	bots,	Before	You	Start	—	Prototyping	a	Mockup	Bot

SmarterChild	bot,	Humans	Training	Bots	Online,	Conversation	Management,	Memory

SMS	(Short	Message	Service),	The	Teens’	Bot	Platform:	Kik

social	acceptance,	personality	design	considerations,	Personality

software	development	kits	(SDKs),	Artificial	Intelligence	(AI)	Services,	How	Do	Bot	Analytics	Work?,
Third-Party	Hosted	Solutions

Statsbot	bot

core	purpose	and	functionality,	Customer	Service	and	FAQ	Bots,	Core	Purpose	and	Functionality,
Images,	Images

Hook	model	and,	First	Impression

links	and,	Links

message	attachments	and,	Templates

monetization	and,	Super	Bot	Platforms	Opening	Up

proactivity	and,	Proactivity

subscription-based,	Subscription

users	and,	How	Do	Bot	Analytics	Work?

“Step-by-Step	Usability	Testing	Guide”	(Klein),	User	Testing

stickers,	Stickers,	Decoration

stories

in	task-led	conversations,	Stories/flows

in	topic-led	discussions,	Intent	mapping	and	conversational	controls

structured	responses,	When	to	Use	Buttons	in	a	Conversation

subscriptions

as	engagement	method,	Breaking	Down	Bots

monetization	through,	Subscription

Suggested	Responses	(Kik),	Canned	Responses	in	Facebook	Messenger	and	Kik

super	bots,	Personal	Versus	Team	Bots

(see	also	specific	bots)

core	purpose	and	functionality,	The	Voice	Bot	Platform:	Alexa

domain-specific	bots	versus,	Super	Bots	Versus	Domain-Specific	Bots,	Agile	Conversation	Based	on
User	Segmentation	and	Sentiment

future	trends	in	platforms,	Super	Bot	Platforms	Opening	Up

Swelly	bot,	Third-Party	Integration	Bots,	Ad	Serving,	Super	Bot	Platforms	Opening	Up

Swift,	Jonathan,	Monetization

T

task-led	conversations

about,	Functionality	Scripting

contextual	errors	and,	Context	Errors	and	Ambiguity

conversation	funnel,	Stories/flows

divergent	flows	and	course	correction,	Task-Led	Conversation

entity	extraction,	Task-Led	Conversation

intent	mapping	and	conversational	controls,	Entity	extraction

onboarding	and,	Declaring	the	Purpose

personality	design	considerations,	Personality

shorthanding,	Intent	mapping	and	conversational	controls

stories/flows,	Stories/flows

topic-led	discussions	and,	Stories/flows

Tay	chatbot,	Error	Handling

team	bots

interaction	considerations,	Common	Courtesy

onboarding	and,	Inciting	Users	to	Get	Value	from	the	Bot

personal	bots	versus,	Bot	Types

use	cases	for,	Major	Use	Cases

teens’	bot	platform,	The	Voice	Bot	Platform:	Alexa

Telegram	platform,	Business	Bots	Versus	Consumer	Bots,	Selling	Goods	and	Services

templates

about,	Breaking	Down	Bots,	When	NOT	to	Use	Buttons	for	Navigation

buttons	in,	Buttons	in	Facebook	Messenger

use	cases,	When	NOT	to	Use	Buttons	for	Navigation

using	in	conversations,	Templates

testing,	user	(see	user	testing)

text	bots,	Business	Bots	Versus	Consumer	Bots,	Alert/Notification	Bots

theScore	bot,	Buttons	in	Facebook	Messenger,	Templates

topic-led	discussions

about,	The	conversation	funnel

contextual	errors	and,	Context	Errors	and	Ambiguity

divergent	flows	and	course	correction,	Topic-Led	Discussion

entity	extraction,	Divergence	as	a	way	to	course	correct

intent	mapping	and	conversational	controls,	Intent	mapping	and	conversational	controls

stories/flows,	Intent	mapping	and	conversational	controls

task-led	pathways	in,	Stories/flows

trademarks,	Images

training

bots	online,	Humans	Enabling	Error/Failure	Escalation

humans	improving	bot	conversation,	Humans	Training	Bots	Online

interaction	modes	and,	Using	@Mentions

natural	language	understanding,	Artificial	Intelligence

travel	bots,	Major	Use	Cases

Trello	service,	Brand	Promotion

trigger	stage	(habit-forming	process),	First	Impression,	First	Impression

Tullock,	Gordon,	Analytics	and	Continuous	Improvement

Turing,	Alan,	What	Are	Bots?

Turing	Test,	What	Are	Bots?

Twain,	Mark,	Branding,	Personality,	and	Human	Involvement

Twilio	SDK,	Software	Development	Kits	and	Bot	Frameworks

Twitter	social	network,	Links

typing	events,	Breaking	Down	Bots,	Emojis

U

Uber	ride	service,	Alert/Notification	Bots,	Data	—	Analytics	and	Market	Research

unfurling,	Videos,	Templates

unstructured	responses,	Putting	It	All	Together

@urbanbook	bot,	@Mentions

use	cases,	Use	Case	Definition	and	Exploration

(see	also	PTOBot;	VacationBot)

alert/notification,	Alert/Notification	Bots

audio	files	in,	Files

bots	as	routers	between	humans,	Alert/Notification	Bots

bots	for	business,	Conversational	Commerce

brand	bots,	Games	and	Entertainment	Bots

buttons	in	Facebook	Messenger,	Buttons	in	Slack

coffee	shopping	bot,	Functionality	Scripting,	Stories/flows,	Error	Handling,	Providing	Help

conversational	commerce,	Major	Use	Cases

customer	services	and	FAQ	bots,	Bots	as	Routers	Between	Humans

definition	and	exploration,	Design	Process	Overview,	Use	Case	Definition	and	Exploration

designing	and	testing,	The	Steps

games	and	entertainment	bots,	Third-Party	Integration	Bots,	Templates,	Extending	a	Paid-for	Product

mobile	interfaces	and,	The	Bot	Revolution	and	Evolution

productivity	and	coaching,	Productivity	and	Coaching

templates,	When	NOT	to	Use	Buttons	for	Navigation

third-party	integration	bots,	Customer	Service	and	FAQ	Bots

videos	in,	Videos

user-led	bot	invocation,	Breaking	Down	Bots

user	testing

analyzing	testing	data,	Moderating	the	Sessions

continuous	improvement	and,	Continuous	Improvement

creating	discussion	guides,	Before	You	Start	—	Prototyping	a	Mockup	Bot

creating	tasks,	Before	You	Start	—	Prototyping	a	Mockup	Bot

improving	and	iterating,	Moderating	the	Sessions

moderating	sessions,	Creating	Tasks	and	Discussion	Guides

options	for,	Designing	PTOBot	for	Slack	with	Walkie

planning,	Before	You	Start	—	Prototyping	a	Mockup	Bot

prototyping	mockup	bots,	User	Testing

recruiting	participants,	Creating	Tasks	and	Discussion	Guides

setting	up	environment,	Creating	Tasks	and	Discussion	Guides

V

VacationBot

basic	requirements,	Use	Case	Definition	and	Exploration

defining	persona,	Defining	a	Persona

designing	with	Botsociety,	Designing	and	Testing

entity	mapping,	Intent	Mapping

error	handling,	Feedback,	Feedback,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

feedback	flow,	VacationBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with
Botsociety

help	flow,	PTOBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

intent	mapping,	Error	Handling

main	flow,	PTOBot,	PTOBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

naming	conventions,	Choosing	a	Logo	and	Visuals

onboarding,	Onboarding,	PTOBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

picking	bot	platform,	Setting	a	Purpose

setting	a	purpose,	Setting	a	Purpose

solution	exploration,	Solution	Exploration

use	case	definition,	Use	Case	Definition	and	Exploration

validation	stage	(bot	platforms),	Evaluation	Stage

values,	personality	design	considerations,	Personality

variable	reward,	First	Impression

variation

adding	depth	to	conversation,	Stories/flows

personality	design	considerations,	Personality

videos,	Breaking	Down	Bots,	Files

virtual	goods,	in-bot,	Extending	a	Paid-for	Product

Vision	API	(Google),	Image	Recognition/Computer	Vision

visual	authoring	tools,	Bot	Architecture

visual	branding,	Visual	Branding,	Personality,	Choosing	a	Logo	and	Visuals

vocal	user	interface	(VUI),	Files

voice	bots,	Business	Bots	Versus	Consumer	Bots,	The	Voice	Bot	Platform:	Alexa

W

Walkie	tool,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

webviews,	Breaking	Down	Bots,	Slash	Commands

WeChat	platform,	Business	Bots	Versus	Consumer	Bots,	Identity	Consolidation

Weizenbaum,	Joseph,	What	Are	Bots?

Whole	Foods	Market	bot,	Games	and	Entertainment	Bots

Wilde,	Oscar,	Context	and	Memory

Wilson,	Woodrow,	The	Conversation

Wit.ai	(Facebook),	Artificial	Intelligence,	Artificial	Intelligence	(AI)	Services

Wizard	of	Oz	method,	Solution	Exploration,	Designing	and	Testing

Wojcicki,	Susan,	Designing	and	Testing

Wordhop	toolkit,	Course	Correction

WordsBot	bot,	Personality,	Help	and	Feedback,	Deriving	Context	Through	Rich	Controls,	Context	Errors
and	Ambiguity

workflows

buttons	facilitating,	Putting	It	All	Together

divergent	flows	and	course	correction,	Task-Led	Conversation,	Topic-Led	Discussion

error	handling,	Feedback,	Feedback,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

feedback	flow,	VacationBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with
Botsociety

help	flow,	PTOBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety

human	intervention	considerations,	Humans	Training	Bots	Online

main	flow,	VacationBot,	VacationBot,	Designing	VacationBot	for	Facebook	Messenger	with	Botsociety,
Designing	PTOBot	for	Slack	with	Walkie

mitigating	context	errors	and	ambiguity,	Deriving	Context	Through	Rich	Controls

onboarding,	Onboarding,	Intent	Mapping,	Designing	VacationBot	for	Facebook	Messenger	with
Botsociety,	Designing	PTOBot	for	Slack	with	Walkie

random	order,	Task-Led	Conversation

rich	interactions	in,	Putting	It	All	Together

stories	in,	Stories/flows,	Intent	mapping	and	conversational	controls

task-led	conversations	and,	Functionality	Scripting

topic-led	discussions	and,	Intent	mapping	and	conversational	controls

use	cases,	Bots	for	Business,	Conversation	Scripting

X

x.ai	platform

bot	personality	and,	Poncho

bot	types	supported,	What	Are	Bots?

encapsulating	services,	The	Bot	Revolution	and	Evolution

human	intervention	and,	Humans	Resolving	Ambiguity	and	Providing	Response	Supervision

onboarding	and,	Declaring	the	Purpose

priming	user	input,	Randomization

Y

Yang,	Dennis,	Connecting	It	All	Together,	Third-Party	Hosted	Solutions

yes-or-no	questions,	When	to	Use	Buttons	in	a	Conversation

YouTube	videos,	Videos,	Links

Z

Zapier	integration,	Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)

Special	Upgrade	Offer
If	you	purchased	this	ebook	from	a	retailer	other	than	O’Reilly,	you	can	upgrade	it	for	$4.99	at
oreilly.com	by	clicking	here.

http://opds.oreilly.com/buy/9781491974773.EBOOK?source=kindle

Designing	Bots:	Creating	Conversational	Experiences
Amir	Shevat
Editor
Angela	Rufino

Copyright	©	2017	Amir	Shevat
Designing	Bots

by	Amir	Shevat

All	rights	reserved.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are	also	available	for	most	titles
(http://oreilly.com/safari).	For	more	information,	contact	our	corporate/institutional	sales	department:	(800)	998-9938	or
corporate@oreilly.com.

Acquisitions	Editor: Mary	Treseler

Editor: Angela	Rufino

Production	Editor: Nicholas	Adams

Copyeditor: Rachel	Head

Proofreader: Molly	Ives	Brower

Indexer: Lucie	Haskins

Cover	Designer: Randy	Comer

Interior	Designers: Ron	Bilodeau	and	Monica	Kamsvaag

Illustrator: Rebecca	Demarest

Compositor: Nicholas	Adams

May	2017:	First	Edition.

Revision	History	for	the	Second	Edition:

2015-05-05	First	release

See	http://oreilly.com/catalog/errata.csp?isbn=0636920057741	for	release	details.

The	O’Reilly	logo	is	registered	trademarks	of	O’Reilly	Media,	Inc.	Designing	Bots	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,
Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as	trademarks.	Where	those	designations
appear	in	this	book,	and	O’Reilly	Media,	Inc.,	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	in	caps	or	initial	caps.

Although	the	publisher	and	author	have	used	reasonable	care	in	preparing	this	book,	the	information	it	contains	is	distributed	“as	is”	and	without
warranties	of	any	kind.	This	book	is	not	intended	as	legal	or	financial	advice,	and	not	all	of	the	recommendations	may	be	suitable	for	your
situation.	Professional	legal	and	financial	advisors	should	be	consulted,	as	needed.	Neither	the	publisher	nor	the	author	shall	be	liable	for	any
costs,	expenses,	or	damages	resulting	from	use	of	or	reliance	on	the	information	contained	in	this	book.

978-1-491-97482-7

[LSI]

O’Reilly	Media
1005	Gravenstein	Highway	North	Sebastopol,	CA	95472

2017-05-22T13:56:47-07:00

	
This	book	was	posted	by	AlenMiler	on	AvaxHome!
https://avxhm.se/blogs/AlenMiler

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=0636920057741
https://tr.im/avaxhome

Designing	Bots:	Creating	Conversational	Experiences
Table	of	Contents
Special	Upgrade	Offer
Praise	for	Designing	Bots
Preface
Who	Should	Read	This	Book?
Designers
Product	Managers
Entrepreneurs
How	Is	This	Book	Organized?
Overview
Theory
Practical	Design
To	Infinity	and	Beyond
O’Reilly	Safari
Comments	and	Questions
Acknowledgments
1.	What	Are	Bots?
So,	What	Are	Bots?
The	Bot	Revolution	and	Evolution
Stages	of	Bot	Adoption
Not	All	Bots	Are	Born	the	Same
Closing	Thoughts
2.	Bot	Types
Personal	Versus	Team	Bots
Super	Bots	Versus	Domain-Specific	Bots
Business	Bots	Versus	Consumer	Bots
Voice	Versus	Text	Bots
Net	New	Bots	Versus	Integrations	Exposing	Legacy	Systems
Closing	Thoughts

3.	Major	Platforms
The	Business	Bot	Platform:	Slack
The	Consumer	Bot	Platform:	Facebook	Messenger
The	Voice	Bot	Platform:	Alexa
The	Teens’	Bot	Platform:	Kik
The	Legacy	Bot	Platforms
Email
SMS
How	to	Choose	a	Platform
Exploration	Stage
Audience
Consumer	bot	or	business	bot
Feature	availability
Preferred	devices
Evaluation	Stage
Validation	Stage
Closing	Thoughts
4.	Major	Use	Cases
Conversational	Commerce
Bots	for	Business
Productivity	and	Coaching
Alert/Notification	Bots
Bots	as	Routers	Between	Humans
Customer	Service	and	FAQ	Bots
Third-Party	Integration	Bots
Games	and	Entertainment	Bots
Brand	Bots
Closing	Thoughts
5.	Bot	Anatomy
Breaking	Down	Bots
Core	Purpose	and	Functionality
Closing	Thoughts

6.	Branding,	Personality,	and	Human	Involvement
Branding
Visual	Branding
Logo
Stickers
Images
Naming
Personality
WordsBot
Poncho
Expressing	Your	Personality
Human	Intervention
Humans	Resolving	Ambiguity	and	Providing	Response	Supervision
Humans	Enabling	Error/Failure	Escalation
Humans	Training	Bots	Online
Humans	Improving	the	Bot	Conversation
Bots	as	Facilitators	for	Human	Tasks
Closing	Thoughts
7.	Artificial	Intelligence
Natural	Language	Understanding
Conversation	Management
Image	Recognition/Computer	Vision
Prediction
Sentiment	Analysis
When	to	Use	Artificial	Intelligence
Not	Using	Artificial	Intelligence
Closing	Thoughts
8.	The	Conversation
Onboarding
Declaring	the	Purpose
Teaching	the	User	How	to	Use	the	Bot
Configuration
Inciting	Users	to	Get	Value	from	the	Bot
Setting	the	Tone	and	Personality
Onboarding	in	a	Team	Environment

Functionality	Scripting
Task-Led	Conversation
Divergent	flows	and	course	correction
Entity	extraction
Intent	mapping	and	conversational	controls
Shorthanding
Stories/flows
The	conversation	funnel
Topic-Led	Discussion
Divergence	as	a	way	to	course	correct
Entity	extraction
Intent	mapping	and	conversational	controls
Stories/flows
Task-led	pathways	in	topical	conversations
Decoration
Randomization
Priming	the	User	to	Give	the	Right	Information
Acknowledgment	and	Confirmation
Responsiveness
Explicit	Versus	Implicit	Confirmation
Avoid	repetition
Accept	user	confirmation	permutations
Consistency
Reciprocity
Communicate	Value	Before	Asking	for	Input
Initiate	and	Revive	Engagement	with	Questions	and	Offers
Proactivity
Common	Courtesy
Team	Versus	Private	Interactions
Choosing	the	Right	Interaction	Mode
Using	@Mentions
Training	and	Onboarding
Knowing	When	to	Shut	Up	in	a	Team	Conversation

Error	Handling
Course	Correction
Human	Intervention
Restarting	the	Conversation
Redirecting	to	Another	Bot
Keeping	It	Consistent
Learning	from	Your	Bot’s	Mistakes
Help	and	Feedback
Providing	Help
Soliciting	Feedback
Closing	Thoughts
9.	Rich	Interactions
Files
When	to	Use	Files	in	a	Conversation
Audio
Videos
When	to	Use	Videos	in	a	Conversation
Images
When	to	Use	Images	in	a	Conversation
Buttons
Buttons	in	Slack
Buttons	in	Facebook	Messenger
Canned	Responses	in	Facebook	Messenger	and	Kik
Putting	It	All	Together
When	to	Use	Buttons	in	a	Conversation
When	NOT	to	Use	Buttons	for	Navigation
Templates
When	to	Use	Templates	in	a	Conversation
Links
When	to	Use	Links	in	a	Conversation
Emojis
When	to	Use	Emojis	in	a	Conversation
Typing	Events
Persistent	Menus
Slash	Commands
Webviews
Connecting	It	All	Together
Closing	Thoughts

10.	Context	and	Memory
Bot	Amnesia
Context
Inferring	Context	from	Pronouns
Deriving	Context	Through	Rich	Controls
Context	Errors	and	Ambiguity
Memory
Closing	Thoughts
11.	Bot	Discovery	and	Installation
Bot	Directories
App	Review	Process
Direct	Installation	Links
QR	Codes
@Mentions
Bot	Referrals
Closing	Thoughts
12.	Engagement	Methods
First	Impression
Ongoing	Engagement	Points
Notifications
Promoting	Engagement	by	Just	Being	Useful
Closing	Thoughts
13.	Monetization
Subscription
Ad	Serving
Data	—	Analytics	and	Market	Research
Selling	Goods	and	Services
Referral	Fees
Brand	Promotion
Extending	a	Paid-for	Product
In-Bot	Virtual	Goods
When	Should	You	Start	Charging	Users?
Closing	Thoughts
14.	Design	Process	Overview
The	Steps
The	Tools

15.	Use	Case	Definition	and	Exploration
Basic	Analysis
Setting	a	Purpose
Picking	a	Bot	Platform
Defining	a	Persona
Choosing	a	Logo	and	Visuals
Naming	Conventions
Solution	Exploration
16.	Conversation	Scripting
Outline	of	Flows
Onboarding
PTOBot
VacationBot
Main	Flow
PTOBot
VacationBot
Help
PTOBot
VacationBot
Feedback
Error	Handling
Intent	Mapping
Entity	Mapping
Scripting	Sample	Bot	Outputs
Onboarding
PTOBot
VacationBot
Main	Flow
PTOBot
VacationBot
Help
PTOBot
VacationBot
Feedback
Error	Handling

17.	Designing	and	Testing
Designing	VacationBot	for	Facebook	Messenger	with	Botsociety
Designing	PTOBot	for	Slack	with	Walkie
User	Testing
Before	You	Start	—	Prototyping	a	Mockup	Bot
Planning	the	Test
Creating	Tasks	and	Discussion	Guides
Recruiting	Participants
Setting	Up	the	Environment
Moderating	the	Sessions
Analyzing	the	Data
Improving	and	Iterating

18.	Bot	Building	Overview
Bot	Architecture
Bot	Building	Technologies
Visual	Authoring	Tools	and	Integrated	Development	Environments	(IDEs)
Artificial	Intelligence	(AI)	Services
Software	Development	Kits	and	Bot	Frameworks
Roll	Your	Own
Hosting	Solutions
Picking	the	Right	Tool
19.	Analytics	and	Continuous	Improvement
How	Do	Bot	Analytics	Work?
Looking	at	Logs
Insights	from	Analytics	Solutions
Third-Party	Hosted	Solutions
Self-Hosted	Analytics	Solutions/SDKs
Be	Careful	Not	to	Worry	About	the	Wrong	Thing
Continuous	Improvement

20.	To	Infinity	and	Beyond	—	The	Future	of	Bots
Future	Trends	in	Bot	Platforms
More	Interactivity
Better	Ways	to	Present	Information
Discovery
Monetization
Super	Bot	Platforms	Opening	Up
Future	Trends	in	Bots
From	Notification	to	Interactivity
Multiplatform	Bots
Identity	Consolidation
Agile	Conversation	Based	on	User	Segmentation	and	Sentiment
Domain-Specific	Bots	Versus	Super	Bots
Will	Bots	and	AI	Eat	the	World?
Will	Bots	Replace	Apps?
Will	Bots	Take	People’s	Jobs?
Bots	in	Every	Part	of	Our	Lives
A.	About	the	Author
About	the	Author
Colophon
Index
Special	Upgrade	Offer
Copyright
This	book	was	posted	by	AlenMiler	on	AvaxHome!
https://avxhm.se/blogs/AlenMiler

https://tr.im/avaxhome

	Designing Bots: Creating Conversational Experiences
	Praise for Designing Bots
	Preface
	Who Should Read This Book?
	Designers
	Product Managers
	Entrepreneurs

	How Is This Book Organized?
	Overview
	Theory
	Practical Design
	To Infinity and Beyond

	O’Reilly Safari
	Comments and Questions
	Acknowledgments

	1. What Are Bots?
	So, What Are Bots?
	The Bot Revolution and Evolution
	Stages of Bot Adoption
	Not All Bots Are Born the Same
	Closing Thoughts

	2. Bot Types
	Personal Versus Team Bots
	Super Bots Versus Domain-Specific Bots
	Business Bots Versus Consumer Bots
	Voice Versus Text Bots
	Net New Bots Versus Integrations Exposing Legacy Systems
	Closing Thoughts

	3. Major Platforms
	The Business Bot Platform: Slack
	The Consumer Bot Platform: Facebook Messenger
	The Voice Bot Platform: Alexa
	The Teens’ Bot Platform: Kik
	The Legacy Bot Platforms
	Email
	SMS

	How to Choose a Platform
	Exploration Stage
	Audience
	Consumer bot or business bot
	Feature availability
	Preferred devices
	Evaluation Stage
	Validation Stage

	Closing Thoughts

	4. Major Use Cases
	Conversational Commerce
	Bots for Business
	Productivity and Coaching
	Alert/Notification Bots
	Bots as Routers Between Humans
	Customer Service and FAQ Bots
	Third-Party Integration Bots
	Games and Entertainment Bots
	Brand Bots
	Closing Thoughts

	5. Bot Anatomy
	Breaking Down Bots
	Core Purpose and Functionality
	Closing Thoughts

	6. Branding, Personality, and Human Involvement
	Branding
	Visual Branding
	Logo
	Stickers
	Images
	Naming

	Personality
	WordsBot
	Poncho
	Expressing Your Personality

	Human Intervention
	Humans Resolving Ambiguity and Providing Response Supervision
	Humans Enabling Error/Failure Escalation
	Humans Training Bots Online
	Humans Improving the Bot Conversation
	Bots as Facilitators for Human Tasks

	Closing Thoughts

	7. Artificial Intelligence
	Natural Language Understanding
	Conversation Management
	Image Recognition/Computer Vision
	Prediction
	Sentiment Analysis
	When to Use Artificial Intelligence
	Not Using Artificial Intelligence
	Closing Thoughts

	8. The Conversation
	Onboarding
	Declaring the Purpose
	Teaching the User How to Use the Bot
	Configuration
	Inciting Users to Get Value from the Bot
	Setting the Tone and Personality
	Onboarding in a Team Environment

	Functionality Scripting
	Task-Led Conversation
	Divergent flows and course correction
	Entity extraction
	Intent mapping and conversational controls
	Shorthanding
	Stories/flows
	The conversation funnel
	Topic-Led Discussion
	Divergence as a way to course correct
	Entity extraction
	Intent mapping and conversational controls
	Stories/flows
	Task-led pathways in topical conversations

	Decoration
	Randomization

	Priming the User to Give the Right Information
	Acknowledgment and Confirmation
	Responsiveness
	Explicit Versus Implicit Confirmation
	Avoid repetition
	Accept user confirmation permutations

	Consistency
	Reciprocity
	Communicate Value Before Asking for Input
	Initiate and Revive Engagement with Questions and Offers
	Proactivity
	Common Courtesy

	Team Versus Private Interactions
	Choosing the Right Interaction Mode
	Using @Mentions
	Training and Onboarding
	Knowing When to Shut Up in a Team Conversation

	Error Handling
	Course Correction
	Human Intervention
	Restarting the Conversation
	Redirecting to Another Bot
	Keeping It Consistent
	Learning from Your Bot’s Mistakes

	Help and Feedback
	Providing Help
	Soliciting Feedback

	Closing Thoughts

	9. Rich Interactions
	Files
	When to Use Files in a Conversation

	Audio
	Videos
	When to Use Videos in a Conversation

	Images
	When to Use Images in a Conversation

	Buttons
	Buttons in Slack
	Buttons in Facebook Messenger
	Canned Responses in Facebook Messenger and Kik
	Putting It All Together
	When to Use Buttons in a Conversation
	When NOT to Use Buttons for Navigation

	Templates
	When to Use Templates in a Conversation

	Links
	When to Use Links in a Conversation

	Emojis
	When to Use Emojis in a Conversation

	Typing Events
	Persistent Menus
	Slash Commands
	Webviews
	Connecting It All Together
	Closing Thoughts

	10. Context and Memory
	Bot Amnesia
	Context
	Inferring Context from Pronouns
	Deriving Context Through Rich Controls
	Context Errors and Ambiguity

	Memory
	Closing Thoughts

	11. Bot Discovery and Installation
	Bot Directories
	App Review Process
	Direct Installation Links
	QR Codes
	@Mentions
	Bot Referrals
	Closing Thoughts

	12. Engagement Methods
	First Impression
	Ongoing Engagement Points
	Notifications
	Promoting Engagement by Just Being Useful

	Closing Thoughts

	13. Monetization
	Subscription
	Ad Serving
	Data—Analytics and Market Research
	Selling Goods and Services
	Referral Fees
	Brand Promotion
	Extending a Paid-for Product
	In-Bot Virtual Goods

	When Should You Start Charging Users?
	Closing Thoughts

	14. Design Process Overview
	The Steps
	The Tools

	15. Use Case Definition and Exploration
	Basic Analysis
	Setting a Purpose
	Picking a Bot Platform
	Defining a Persona
	Choosing a Logo and Visuals
	Naming Conventions

	Solution Exploration

	16. Conversation Scripting
	Outline of Flows
	Onboarding
	PTOBot
	VacationBot
	Main Flow
	PTOBot
	VacationBot
	Help
	PTOBot
	VacationBot
	Feedback
	Error Handling

	Intent Mapping
	Entity Mapping
	Scripting Sample Bot Outputs
	Onboarding
	PTOBot
	VacationBot
	Main Flow
	PTOBot
	VacationBot
	Help
	PTOBot
	VacationBot
	Feedback
	Error Handling

	17. Designing and Testing
	Designing VacationBot for Facebook Messenger with Botsociety
	Designing PTOBot for Slack with Walkie
	User Testing
	Before You Start—Prototyping a Mockup Bot
	Planning the Test
	Creating Tasks and Discussion Guides
	Recruiting Participants
	Setting Up the Environment
	Moderating the Sessions
	Analyzing the Data
	Improving and Iterating

	18. Bot Building Overview
	Bot Architecture
	Bot Building Technologies
	Visual Authoring Tools and Integrated Development Environments (IDEs)
	Artificial Intelligence (AI) Services
	Software Development Kits and Bot Frameworks
	Roll Your Own
	Hosting Solutions

	Picking the Right Tool

	19. Analytics and Continuous Improvement
	How Do Bot Analytics Work?
	Looking at Logs
	Insights from Analytics Solutions
	Third-Party Hosted Solutions
	Self-Hosted Analytics Solutions/SDKs
	Be Careful Not to Worry About the Wrong Thing

	Continuous Improvement

	20. To Infinity and Beyond—The Future of Bots
	Future Trends in Bot Platforms
	More Interactivity
	Better Ways to Present Information
	Discovery
	Monetization
	Super Bot Platforms Opening Up

	Future Trends in Bots
	From Notification to Interactivity
	Multiplatform Bots
	Identity Consolidation
	Agile Conversation Based on User Segmentation and Sentiment
	Domain-Specific Bots Versus Super Bots

	Will Bots and AI Eat the World?
	Will Bots Replace Apps?
	Will Bots Take People’s Jobs?

	Bots in Every Part of Our Lives

	A. About the Author
	About the Author
	Colophon
	Index
	Copyright

