
Brendan Burns

 Designing
Distributed
 Systems
PATTERNS AND PARADIGMS FOR SCALABLE, RELIABLE SERVICES

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Brendan Burns

Designing Distributed Systems
Patterns and Paradigms for

Scalable, Reliable Services

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-98364-5

[LSI]

Designing Distributed Systems
by Brendan Burns

Copyright © 2018 Brendan Burns. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Angela Rufino
Production Editor: Colleen Cole
Copyeditor: Gillian McGarvey
Proofreader: Christina Edwards

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

February 2018: First Edition

Revision History for the First Edition
2018-02-20: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491983645 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Distributed Systems, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491983645
http://www.allitebooks.org

Table of Contents

Preface. vii

1. Introduction. 1
A Brief History of Systems Development 1
A Brief History of Patterns in Software Development 2

Formalization of Algorithmic Programming 3
Patterns for Object-Oriented Programming 3
The Rise of Open Source Software 3

The Value of Patterns, Practices, and Components 4
Standing on the Shoulders of Giants 4
A Shared Language for Discussing Our Practice 5
Shared Components for Easy Reuse 5

Summary 6

Part I. Single-Node Patterns
Motivations 7
Summary 8

2. The Sidecar Pattern. 11
An Example Sidecar: Adding HTTPS to a Legacy Service 11
Dynamic Configuration with Sidecars 12
Modular Application Containers 14

Hands On: Deploying the topz Container 14
Building a Simple PaaS with Sidecars 15
Designing Sidecars for Modularity and Reusability 16

Parameterized Containers 17
Define Each Container’s API 17

iii

www.allitebooks.com

http://www.allitebooks.org

Documenting Your Containers 18
Summary 19

3. Ambassadors. 21
Using an Ambassador to Shard a Service 22

Hands On: Implementing a Sharded Redis 23
Using an Ambassador for Service Brokering 25
Using an Ambassador to Do Experimentation or Request Splitting 26

Hands On: Implementing 10% Experiments 27

4. Adapters. 31
Monitoring 32

Hands On: Using Prometheus for Monitoring 33
Logging 34

Hands On: Normalizing Different Logging Formats with Fluentd 35
Adding a Health Monitor 36

Hands On: Adding Rich Health Monitoring for MySQL 37

Part II. Serving Patterns
Introduction to Microservices 41

5. Replicated Load-Balanced Services. 45
Stateless Services 45

Readiness Probes for Load Balancing 46
Hands On: Creating a Replicated Service in Kubernetes 47

Session Tracked Services 48
Application-Layer Replicated Services 49
Introducing a Caching Layer 49

Deploying Your Cache 50
Hands On: Deploying the Caching Layer 51

Expanding the Caching Layer 53
Rate Limiting and Denial-of-Service Defense 54
SSL Termination 54
Hands On: Deploying nginx and SSL Termination 55

Summary 57

6. Sharded Services. 59
Sharded Caching 59

Why You Might Need a Sharded Cache 60
The Role of the Cache in System Performance 61
Replicated, Sharded Caches 62

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Hands On: Deploying an Ambassador and Memcache for a Sharded Cache 63
An Examination of Sharding Functions 66

Selecting a Key 67
Consistent Hashing Functions 68
Hands On: Building a Consistent HTTP Sharding Proxy 69

Sharded, Replicated Serving 70
Hot Sharding Systems 70

7. Scatter/Gather. 73
Scatter/Gather with Root Distribution 74

Hands On: Distributed Document Search 75
Scatter/Gather with Leaf Sharding 76

Hands On: Sharded Document Search 77
Choosing the Right Number of Leaves 78

Scaling Scatter/Gather for Reliability and Scale 79

8. Functions and Event-Driven Processing. 81
Determining When FaaS Makes Sense 82

The Benefits of FaaS 82
The Challenges of FaaS 82
The Need for Background Processing 83
The Need to Hold Data in Memory 83
The Costs of Sustained Request-Based Processing 84

Patterns for FaaS 84
The Decorator Pattern: Request or Response Transformation 85
Hands On: Adding Request Defaulting Prior to Request Processing 86
Handling Events 87
Hands On: Implementing Two-Factor Authentication 87
Event-Based Pipelines 89
Hands On: Implementing a Pipeline for New-User Signup 89

9. Ownership Election. 93
Determining If You Even Need Master Election 94
The Basics of Master Election 95

Hands On: Deploying etcd 97
Implementing Locks 98
Hands On: Implementing Locks in etcd 100
Implementing Ownership 101
Hands On: Implementing Leases in etcd 102

Handling Concurrent Data Manipulation 103

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Part III. Batch Computational Patterns

10. Work Queue Systems. 109
A Generic Work Queue System 109

The Source Container Interface 110
The Worker Container Interface 112
The Shared Work Queue Infrastructure 113

Hands On: Implementing a Video Thumbnailer 115
Dynamic Scaling of the Workers 117
The Multi-Worker Pattern 118

11. Event-Driven Batch Processing. 121
Patterns of Event-Driven Processing 122

Copier 122
Filter 123
Splitter 124
Sharder 125
Merger 127

Hands On: Building an Event-Driven Flow for New User Sign-Up 128
Publisher/Subscriber Infrastructure 129
Hands On: Deploying Kafka 130

12. Coordinated Batch Processing. 133
Join (or Barrier Synchronization) 134
Reduce 135

Hands On: Count 136
Sum 137
Histogram 137

Hands On: An Image Tagging and Processing Pipeline 138

13. Conclusion: A New Beginning?. 143

Index. 145

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Who Should Read This Book
At this point, nearly every developer is a developer or consumer (or both) of dis‐
tributed systems. Even relatively simple mobile applications are backed with cloud
APIs so that their data can be present on whatever device the customer happens to be
using. Whether you are new to developing distributed systems or an expert with scars
on your hands to prove it, the patterns and components described in this book can
transform your development of distributed systems from art to science. Reusable
components and patterns for distributed systems will enable you to focus on the core
details of your application. This book will help any developer become better, faster,
and more efficient at building distributed systems.

Why I Wrote This Book
Throughout my career as a developer of a variety of software systems from web
search to the cloud, I have built a large number of scalable, reliable distributed sys‐
tems. Each of these systems was, by and large, built from scratch. In general, this is
true of all distributed applications. Despite having many of the same concepts and
even at times nearly identical logic, the ability to apply patterns or reuse components
is often very, very challenging. This forced me to waste time reimplementing systems,
and each system ended up less polished than it might have otherwise been.

The recent introduction of containers and container orchestrators fundamentally
changed the landscape of distributed system development. Suddenly we have an
object and interface for expressing core distributed system patterns and building
reusable containerized components. I wrote this book to bring together all of the
practitioners of distributed systems, giving us a shared language and common stan‐
dard library so that we can all build better systems more quickly.

vii

www.allitebooks.com

http://www.allitebooks.org

The World of Distributed Systems Today
Once upon a time, people wrote programs that ran on one machine and were also
accessed from that machine. The world has changed. Now, nearly every application is
a distributed system running on multiple machines and accessed by multiple users
from all over the world. Despite their prevalence, the design and development of
these systems is often a black art practiced by a select group of wizards. But as with
everything in technology, the world of distributed systems is advancing, regularizing,
and abstracting. In this book I capture a collection of repeatable, generic patterns that
can make the development of reliable distributed systems more approachable and
efficient. The adoption of patterns and reusable components frees developers from
reimplementing the same systems over and over again. This time is then freed to
focus on building the core application itself.

Navigating This Book
This book is organized into a 4 parts as follows:

Chapter 1, Introduction
Introduces distributed systems and explains why patterns and reusable compo‐
nents can make such a difference in the rapid development of reliable distributed
systems.

Part I, Single-Node Patterns
Chapters 2 through 4 discuss reusable patterns and components that occur on
individual nodes within a distributed system. It covers the side-car, adapter, and
ambassador single-node patterns.

Part II, Serving Patterns
Chapters 8 and 9 cover multi-node distributed patterns for long-running serving
systems like web applications. Patterns for replicating, scaling, and master elec‐
tion are discussed.

Part III, Batch Computational Patterns
Chapters 10 through 12 cover distributed system patterns for large-scale batch
data processing covering work queues, event-based processing, and coordinated
workflows.

If you are an experienced distributed systems engineer, you can likely skip the first
couple of chapters, though you may want to skim them to understand how we expect
these patterns to be applied and why we think the general notion of distributed sys‐
tem patterns is so important.

Everyone will likely find utility in the single-node patterns as they are the most
generic and most reusable patterns in the book.

viii | Preface

www.allitebooks.com

http://www.allitebooks.org

Depending on your goals and the systems you are interested in developing, you can
choose to focus on either large-scale big data patterns, or patterns for long-running
servers (or both). The two parts are largely independent from each other and can be
read in any order.

Likewise, if you have extensive distributed system experience, you may find that some
of the early patterns chapters (e.g., Part II on naming, discovery, and load balancing)
are redundant with what you already know, so feel free to skim through to gain the
high-level insights—but don’t forget to look at all of the pretty pictures!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Online Resources
Though this book describes generally applicable distributed system patterns, it
expects that readers are familiar with containers and container orchestration systems.

Preface | ix

If you don’t have a lot of pre-existing knowledge about these things, we recommend
the following resources:

• https://docker.io
• https://kubernetes.io
• https://dcos.io

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/brendandburns/designing-distributed-systems.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Designing Distributed Systems by
Brendan Burns (O’Reilly). Copyright 2018 Brendan Burns, 978-1-491-98364-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

x | Preface

https://docker.io
https://kubernetes.io
https://dcos.io
https://github.com/brendandburns/designing-distributed-systems
mailto:permissions@oreilly.com
http://oreilly.com/safari

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/designing-distributed-systems.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’d like to thank my wife Robin and my children for everything they do to keep me
happy and sane. To all of the people along the way who took the time to help me learn
all of these things, many thanks! Also thanks to my parents for that first SE/30.

Preface | xi

http://oreilly.com/safari
http://bit.ly/designing-distributed-systems
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

Today’s world of always-on applications and APIs have availability and reliability
requirements that would have been required of only a handful of mission critical
services around the globe only a few decades ago. Likewise, the potential for rapid,
viral growth of a service means that every application has to be built to scale nearly
instantly in response to user demand. These constraints and requirements mean that
almost every application that is built—whether it is a consumer mobile app or a back‐
end payments application—needs to be a distributed system.

But building distributed systems is challenging. Often, they are one-off bespoke solu‐
tions. In this way, distributed system development bears a striking resemblance to the
world of software development prior to the development of modern object-oriented
programming languages. Fortunately, as with the development of object-oriented lan‐
guages, there have been technological advances that have dramatically reduced the
challenges of building distributed systems. In this case, it is the rising popularity of
containers and container orchestrators. As with the concept of objects within object-
oriented programming, these containerized building blocks are the basis for the
development of reusable components and patterns that dramatically simplify and
make accessible the practices of building reliable distributed systems. In the following
introduction, we give a brief history of the developments that have led to where we
are today.

A Brief History of Systems Development
In the beginning, there were machines built for specific purposes, such as calculating
artillery tables or the tides, breaking codes, or other precise, complicated but rote
mathematical applications. Eventually these purpose-built machines evolved into
general-purpose programmable machines. And eventually they evolved from running

1

one program at a time to running multiple programs on a single machine via time-
sharing operating systems, but these machines were still disjoint from each other.

Gradually, machines came to be networked together, and client-server architectures
were born so that a relatively low-powered machine on someone’s desk could be used
to harness the greater power of a mainframe in another room or building. While this
sort of client-server programming was somewhat more complicated than writing a
program for a single machine, it was still fairly straightforward to understand. The
client(s) made requests; the server(s) serviced those requests.

In the early 2000s, the rise of the internet and large-scale datacenters consisting of
thousands of relatively low-cost commodity computers networked together gave rise
to the widespread development of distributed systems. Unlike client-server architec‐
tures, distributed system applications are made up of multiple different applications
running on different machines, or many replicas running across different machines,
all communicating together to implement a system like web-search or a retail sales
platform.

Because of their distributed nature, when structured properly, distributed systems are
inherently more reliable. And when architected correctly, they can lead to much more
scalable organizational models for the teams of software engineers that built these
systems. Unfortunately, these advantages come at a cost. These distributed systems
can be significantly more complicated to design, build, and debug correctly. The engi‐
neering skills needed to build a reliable distributed system are significantly higher
than those needed to build single-machine applications like mobile or web frontends.
Regardless, the need for reliable distributed systems only continues to grow. Thus
there is a corresponding need for the tools, patterns, and practices for building them.

Fortunately, technology has also increased the ease with which you can build dis‐
tributed systems. Containers, container images, and container orchestrators have all
become popular in recent years because they are the foundation and building blocks
for reliable distributed systems. Using containers and container orchestration as a
foundation, we can establish a collection of patterns and reusable components. These
patterns and components are a toolkit that we can use to build our systems more reli‐
ably and efficiently.

A Brief History of Patterns in Software Development
This is not the first time such a transformation has occurred in the software industry.
For a better context on how patterns, practices, and reusable components have previ‐
ously reshaped systems development, it is helpful to look at past moments when simi‐
lar transformations have taken place.

2 | Chapter 1: Introduction

Formalization of Algorithmic Programming
Though people had been programming for more than a decade before its publication
in 1962, Donald Knuth’s collection, The Art of Computer Programming (Addison-
Wesley Professional), marks an important chapter in the development of computer
science. In particular, the books contain algorithms not designed for any specific
computer, but rather to educate the reader on the algorithms themselves. These algo‐
rithms then could be adapted to the specific architecture of the machine being used
or the specific problem that the reader was solving. This formalization was important
because it provided users with a shared toolkit for building their programs, but also
because it showed that there was a general-purpose concept that programmers should
learn and then subsequently apply in a variety of different contexts. The algorithms
themselves, independent of any specific problem to solve, were worth understanding
for their own sake.

Patterns for Object-Oriented Programming
Knuth’s books represent an important landmark in the thinking about computer pro‐
gramming, and algorithms represent an important component in the development of
computer programming. However, as the complexity of programs grew, and the
number of people writing a single program grew from the single digits to the double
digits and eventually to the thousands, it became clear that procedural programming
languages and algorithms were insufficient for the tasks of modern-day program‐
ming. These changes in computer programming led to the development of object-
oriented programming languages, which elevated data, reusability, and extensibility
to peers of the algorithm in the development of computer programs.

In response to these changes to computer programming, there were changes to the
patterns and practices for programming as well. Throughout the early to mid-1990s,
there was an explosion of books on patterns for object-oriented programming. The
most famous of these is the “gang of four” book, Design Patterns: Elements of Reusable
Object-Oriented Programming by Erich Gamma et al. (Addison-Wesley Professional).
Design Patterns gave a common language and framework to the task of program‐
ming. It described a series of interface-based patterns that could be reused in a variety
of contexts. Because of advances in object-oriented programming and specifically
interfaces, these patterns could also be implemented as generic reusable libraries.
These libraries could be written once by a community of developers and reused
repeatedly, saving time and improving reliability.

The Rise of Open Source Software
Though the concept of developers sharing source code has been around nearly since
the beginning of computing, and formal free software organizations have been in
existence since the mid-1980s, the very late 1990s and the 2000s saw a dramatic

A Brief History of Patterns in Software Development | 3

increase in the development and distribution of open source software. Though open
source is only tangentially related to the development of patterns for distributed sys‐
tems, it is important in the sense that it was through the open source communities
that it became increasingly clear that software development in general and distributed
systems development in particular are community endeavors. It is important to note
that all of the container technology that forms the foundation of the patterns
described in this book has been developed and released as open source software. The
value of patterns for both describing and improving the practice of distributed devel‐
opment is especially clear when you look at it from this community perspective.

What is a pattern for a distributed system? There are plenty of
instructions out there that will tell you how to install specific dis‐
tributed systems (such as a NoSQL database). Likewise, there are
recipes for a specific collection of systems (like a MEAN stack). But
when I speak of patterns, I’m referring to general blueprints for
organizing distributed systems, without mandating any specific
technology or application choices. The purpose of a pattern is to
provide general advice or structure to guide your design. The hope
is that such patterns will guide your thinking and also be generally
applicable to a wide variety of applications and environments.

The Value of Patterns, Practices, and Components
Before spending any of your valuable time reading about a series of patterns that I
claim will improve your development practices, teach you new skills, and—let’s face it
—change your life, it’s reasonable to ask: “Why?” What is it about the design patterns
and practices that can change the way that we design and build software? In this sec‐
tion, I’ll lay out the reasons I think this is an important topic, and hopefully convince
you to stick with me for the rest of the book.

Standing on the Shoulders of Giants
As a starting point, the value that patterns for distributed systems offer is the oppor‐
tunity to figuratively stand on the shoulders of giants. It’s rarely the case that the
problems we solve or the systems we build are truly unique. Ultimately, the combina‐
tion of pieces that we put together and the overall business model that the software
enables may be something that the world has never seen before. But the way the sys‐
tem is built and the problems it encounters as it aspires to be reliable, agile, and scala‐
ble are not new.

This, then, is the first value of patterns: they allow us to learn from the mistakes of
others. Perhaps you have never built a distributed system before, or perhaps you have
never built this type of distributed system. Rather than hoping that a colleague has
some experience in this area or learning by making the same mistakes that others

4 | Chapter 1: Introduction

have already made, you can turn to patterns as your guide. Learning about patterns
for distributed system development is the same as learning about any other best prac‐
tice in computer programming. It accelerates your ability to build software without
requiring that you have direct experience with the systems, mistakes, and firsthand
learning that led to the codification of the pattern in the first place.

A Shared Language for Discussing Our Practice
Learning about and accelerating our understanding of distributed systems is only the
first value of having a shared set of patterns. Patterns have value even for experienced
distributed system developers who already understand them well. Patterns provide a
shared vocabulary that enables us to understand each other quickly. This understand‐
ing forms the basis for knowledge sharing and further learning.

To better understand this, imagine that we both are using the same object to build
our house. I call that object a “Foo” while you call that object a “Bar.” How long will
we spend arguing about the value of a Foo versus that of a Bar, or trying to explain
the differing properties of Foo and Bar until we figure out that we’re speaking about
the same object? Only once we determine that Foo and Bar are the same can we truly
start learning from each other’s experience.

Without a common vocabulary, we waste time in arguments of “violent agreement”
or in explaining concepts that others understand but know by another name. Conse‐
quently, another significant value of patterns is to provide a common set of names
and definitions so that we don’t waste time worrying about naming, and instead get
right down to discussing the details and implementation of the core concepts.

I have seen this happen in my short time working on containers. Along the way, the
notion of a sidecar container (described in Chapter 2 of this book) took hold within
the container community. Because of this, we no longer have to spend time defining
what it means to be a sidecar and can instead jump immediately to how the concept
can be used to solve a particular problem. “If we just use a sidecar” … “Yeah, and I
know just the container we can use for that.” This example leads to the third value of
patterns: the construction of reusable components.

Shared Components for Easy Reuse
Beyond enabling people to learn from others and providing a shared vocabulary for
discussing the art of building systems, patterns provide another important tool for
computer programming: the ability to identify common components that can be
implemented once.

If we had to create all of the code that our programs use ourselves, we would never
get done. Indeed, we would barely get started. Today, every system ever written
stands on the shoulders of thousands if not hundreds of thousands of years of human

The Value of Patterns, Practices, and Components | 5

effort. Code for operating systems, printer drivers, distributed databases, container
runtimes, and container orchestrators—indeed, the entirety of applications that we
build today are built with reusable shared libraries and components.

Patterns are the basis for the definition and development of such reusable compo‐
nents. The formalization of algorithms led to reusable implementations of sorting
and other canonical algorithms. The identification of interface-based patterns gave
rise to a collection of generic, object-oriented libraries implementing those patterns.

Identifying core patterns for distributed systems enables us to to build shared com‐
mon components. Implementing these patterns as container images with HTTP-
based interfaces means they can be reused across many different programming
languages. And, of course, building reusable components improves the quality of
each component because the shared code base gets sufficient usage to identify bugs
and weaknesses, and sufficient attention to ensure that they get fixed.

Summary
Distributed systems are required to implement the level of reliability, agility, and scale
expected of modern computer programs. Distributed system design continues to be
more of a black art practiced by wizards than a science applied by laypeople. The
identification of common patterns and practices has regularized and improved the
practice of algorithmic development and object-oriented programming. It is this
book’s goal to do the same for distributed systems. Enjoy!

6 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

PART I

Single-Node Patterns

This book concerns itself with distributed systems, which are applications made up of
many different components running on many different machines. However, the first
section of this book is devoted to patterns that exist on a single node. The motivation
for this is straightforward. Containers are the foundational building block for the pat‐
terns in this book, but in the end, groups of containers co-located on a single
machine make up the atomic elements of distributed system patterns.

Motivations
Though it is clear as to why you might want to break your distributed application into
a collection of different containers running on different machines, it is perhaps some‐
what less clear as to why you might also want to break up the components running on
a single machine into different containers. To understand the motivation for these
groups of containers, it is worth considering the goals behind containerization. In
general, the goal of a container is to establish boundaries around specific resources
(e.g., this application needs two cores and 8 GB of memory). Likewise, the boundary
delineates team ownership (e.g., this team owns this image). Finally, the boundary is
intended to provide separation of concerns (e.g., this image does this one thing).

All of these reasons provide motivation for splitting up an application on a single
machine into a group of containers. Consider resource isolation first. Your applica‐
tion may be made up of two components: one is a user-facing application server and
the other is a background configuration file loader. Clearly, end-user-facing request
latency is the highest priority, so the user-facing application needs to have sufficient
resources to ensure that it is highly responsive. On the other hand, the background

configuration loader is mostly a best-effort service; if it is delayed slightly during
times of high user-request volume, the system will be okay. Likewise, the background
configuration loader should not impact the quality of service that end users receive.
For all of these reasons, you want to separate the user-facing service and the back‐
ground shard loader into different containers. This allows you to attach different
resource requirements and priorities to the two different containers and, for example,
ensure that the background loader opportunistically steals cycles from the user-facing
service whenever it is lightly loaded and the cycles are free. Likewise, separate
resource requirements for the two containers ensure that the background loader will
be terminated before the user-facing service if there is a resource contention issue
caused by a memory leak or other overcommitment of memory resources.

In addition to this resource isolation, there are other reasons to split your single-node
application into multiple containers. Consider the task of scaling a team. There is
good reason to believe that the ideal team size is six to eight people. In order to struc‐
ture teams in this manner and yet still build significant systems, we need to have
small, focused pieces for each team to own. Additionally, often some of the compo‐
nents, if factored properly, are reusable modules that can be used by many teams.
Consider, for example, the task of keeping a local filesystem synchronized with a git
source code repository. If you build this Git sync tool as a separate container, you can
reuse it with PHP, HTML, JavaScript, Python, and numerous other web-serving envi‐
ronments. If you instead factor each environment as a single container where, for
example, the Python runtime and the Git synchronization are inextricably bound,
then this sort of modular reuse (and the corresponding small team that owns that
reusable module) are impossible.

Finally, even if your application is small and all of your containers are owned by a
single team, the separation of concerns ensures that your application is well under‐
stood and can easily be tested, updated, and deployed. Small, focused applications are
easier to understand and have fewer couplings to other systems. This means, for
example, that you can deploy the Git synchronization container without having to
also redeploy your application server. This leads to rollouts with fewer dependencies
and smaller scope. That, in turn, leads to more reliable rollouts (and rollbacks), which
leads to greater agility and flexibility when deploying your application.

Summary
I hope that all of these examples have motivated you to think about breaking up your
applications, even those on a single node, into multiple containers. The following
chapters describe some patterns that can help guide you as you build modular groups
of containers. In contrast to multi-node, distributed patterns, all of these patterns
assume tight dependencies among all of the containers in the pattern. In particular,
they assume that all of the containers in the pattern can be reliably coscheduled onto

1 Kubernetes is an open source system for automating deployment, scaling, and management of containerized
applications. Check out my book, Kubernetes: Up and Running (O’Reilly).

a single machine. They also assume that all of the containers in the pattern can
optionally share volumes or parts of their filesystems as well as other key container
resources like network namespaces and shared memory. This tight grouping is called
a pod in Kubernetes,1 but the concept is generally applicable to different container
orchestrators, though some support it more natively than others.

https://kubernetes.io/
http://shop.oreilly.com/product/0636920043874.do

CHAPTER 2

The Sidecar Pattern

The first single-node pattern is the sidecar pattern. The sidecar pattern is a single-
node pattern made up of two containers. The first is the application container. It con‐
tains the core logic for the application. Without this container, the application would
not exist. In addition to the application container, there is a sidecar container. The role
of the sidecar is to augment and improve the application container, often without the
application container’s knowledge. In its simplest form, a sidecar container can be
used to add functionality to a container that might otherwise be difficult to improve.
Sidecar containers are coscheduled onto the same machine via an atomic container
group, such as the pod API object in Kubernetes. In addition to being scheduled on
the same machine, the application container and sidecar container share a number of
resources, including parts of the filesystem, hostname and network, and many other
namespaces. A generic image of this sidecar pattern is shown in Figure 2-1.

Figure 2-1. The generic sidecar pattern

An Example Sidecar: Adding HTTPS to a Legacy Service
Consider, for example, a legacy web service. Years ago, when it was built, internal net‐
work security was not as high a priority for the company, and thus, the application
only services requests over unencrypted HTTP, not HTTPS. Due to recent security
incidents, the company has mandated the use of HTTPS for all company websites. To

11

compound the misery of the team sent to update this particular web service, the
source code for this application was built with an old version of the company’s build
system, which no longer functions. Containerizing this HTTP application is simple
enough: the binary can run in a container with a version of an old Linux distribution
on top of a more modern kernel being run by the team’s container orchestrator. How‐
ever, the task of adding HTTPS to this application is significantly more challenging.
The team is trying to decide between resurrecting the old build system versus porting
the application’s source code to the new build system, when one of the team members
suggests that they use the sidecar pattern to resolve the situation more easily.

The application of the sidecar pattern to this situation is straightforward. The legacy
web service is configured to serve exclusively on localhost (127.0.0.1), which means
that only services that share the local network with the server will be able to access
the service. Normally, this wouldn’t be a practical choice because it would mean that
no one could access the web service. However, using the sidecar pattern, in addition
to the legacy container, we will add an nginx sidecar container. This nginx container
lives in the same network namespace as the legacy web application, so it can access
the service that is running on localhost. At the same time, this nginx service can ter‐
minate HTTPS traffic on the external IP address of the pod and proxy that traffic to
the legacy web application (see Figure 2-2). Since this unencrypted traffic is only sent
via the local loopback adapter inside the container group, the network security team
is satisfied that the data is safe. Likewise, by using the sidecar pattern, the team has
modernized a legacy application without having to figure out how to rebuild a new
application to serve HTTPS.

Figure 2-2. The HTTPS sidecar

Dynamic Configuration with Sidecars
Simply proxying traffic into an existing application is not the only use for a sidecar.
Another common example is configuration synchronization. Many applications use a
configuration file for parameterizing the application; this may be a raw text file or
something more structured like XML, JSON, or YAML. Many pre-existing applica‐
tions were written to assume that this file was present on the filesystem and read their
configuration from there. However, in a cloud-native environment it is often quite
useful to use an API for updating configuration. This allows you to do a dynamic
push of configuration information via an API instead of manually logging in to every
server and updating the configuration file using imperative commands. The desire

12 | Chapter 2: The Sidecar Pattern

for such an API is driven both by ease of use as well as the ability to add automation
like rollback, which makes configuring (and reconfiguring) safer and easier.

Similar to the case of HTTPS, new applications can be written with the expectation
that configuration is a dynamic property that should be obtained using a cloud API,
but adapting and updating an existing application can be significantly more challeng‐
ing. Fortunately, the sidecar pattern again can be used to provide new functionality
that augments a legacy application without changing the existing application. For the
sidecar pattern shown in Figure 2-3, there again are two containers: the container that
is the serving application and the container that is the configuration manager. The
two containers are grouped together into a pod where they share a directory between
themselves. This shared directory is where the configuration file is maintained.

When the legacy application starts, it loads its configuration from the filesystem, as
expected. When the configuration manager starts, it examines the configuration API
and looks for differences between the local filesystem and the configuration stored in
the API. If there are differences, the configuration manager downloads the new con‐
figuration to the local filesystem and signals to the legacy application that it should
reconfigure itself with this new configuration. The actual mechanism for this notifi‐
cation varies by application. Some applications actually watch the configuration file
for changes, while others respond to a SIGHUP signal. In extreme cases, the configu‐
ration manager may send a SIGKILL signal to abort the legacy application. Once
aborted, the container orchestration system will restart the legacy application, at
which point it will load its new configuration. As with adding HTTPS to an existing
application, this pattern illustrates how the sidecar pattern can help adapt pre-
existing applications to more cloud-native scenarios.

Figure 2-3. A sidecar example of managing a dynamic configuration

Dynamic Configuration with Sidecars | 13

Modular Application Containers
At this point, you might be forgiven if you thought that the sole reason for the sidecar
pattern to exist was to adapt legacy applications where you no longer wanted to make
modifications to the original source code. While this is a common use case for the
pattern, there are many other motivations for designing things using sidecars. One of
the other main advantages of using the sidecar pattern is modularity and reuse of the
components used as sidecars. In deploying any real-world, reliable application, there
is functionality that you need for debugging or other management of the application,
such as giving a readout of all of the different processes using resources in the con‐
tainer, similar to the top command line tool.

One approach to providing this introspection is to require that each developer imple‐
ment an HTTP /topz interface that provides a readout of resource usage. To make
this easier, you might implement this webhook as a language-specific plugin that the
developer could simply link into their application. But even if done this way, the
developer would be forced to choose to link it in and your organization would be
forced to implement the interface for every language it wants to support. Unless done
with extreme rigor, this approach is bound to lead to variations among languages as
well as a lack of support for the functionality when using new languages. Instead, this
topz functionality can be deployed as a sidecar container that shares the process-id
(PID) namespace with the application container. This topz container can introspect
all running processes and provide a consistent user interface. Moreover, you can use
the orchestration system to automatically add this container to all applications
deployed via the orchestration system to ensure that there is a consistent set of tools
available for all applications running in your infrastructure.

Of course, with any technical choice, there are trade-offs between this modular
container-based pattern and rolling your own code into your application. The
library-based approach is always going to be somewhat less tailored to the specifics of
your application. This means that it may be less efficient in terms of size of perfor‐
mance, or that the API may require some adaptation to fit into your environment. I
would compare these trade-offs to the difference between buying off-the-rack cloth‐
ing versus bespoke fashion. The bespoke fashion will always fit you better, but it will
take longer to arrive and cost more to acquire. As with clothes, for most of us it
makes sense to buy the more general-purpose solution when it comes to coding. Of
course, if your application demands extremes in terms of performance, you can
always choose the handwritten solution.

Hands On: Deploying the topz Container
To see the topz sidecar in action, you first need to deploy some other container to act
as the application container. Choose an existing application that you are running and
deploy it using Docker:

14 | Chapter 2: The Sidecar Pattern

$ docker run -d <my-app-image>
<container-hash-value>

After you run that image, you will receive the identifier for that specific container. It
will look something like: cccf82b85000… If you don’t have it, you can always look it
up using the docker ps command, which will show all currently running containers.
Assuming you have stashed that value in an environment variable named APP_ID, you
can then run the topz container in the same PID namespace using:

$ docker run --pid=container:${APP_ID} \
 -p 8080:8080 \
 brendanburns/topz:db0fa58 \
 /server --address=0.0.0.0:8080

This will launch the topz sidecar in the same PID namespace as the application con‐
tainer. Note that you may need to change the port that the sidecar uses for serving if
your application container is also running on port 8080. Once the sidecar is running,
you can visit http://localhost:8080/topz to get a complete readout of the processes that
are running in the application container and their resource usage.

You can mix this sidecar with any other existing container to easily get a view into
how the container is using its resources via a web interface.

Building a Simple PaaS with Sidecars
The sidecar pattern can be used for more than adaptation and monitoring. It can also
be used as a means to implement the complete logic for your application in a simpli‐
fied, modular manner. As an example, imagine building a simple platform as a service
(PaaS) built around the git workflow. Once you deploy this PaaS, simply pushing
new code up to a Git repository results in that code being deployed to the running
servers. We’ll see how the sidecar pattern makes building this PaaS remarkably
straightforward.

As previously stated, in the sidecar pattern there are two containers: the main appli‐
cation container and the sidecar. In our simple PaaS application, the main container
is a Node.js server that implements a web server. The Node.js server is instrumented
so that it automatically reloads the server when new files are updated. This is accom‐
plished with the nodemon tool.

The sidecar container shares a filesystem with the main application container and
runs a simple loop that synchronizes the filesystem with an existing Git repository:

#!/bin/bash

while true; do
 git pull
 sleep 10
done

Building a Simple PaaS with Sidecars | 15

http://localhost:8080/topz
https://nodemon.io

Obviously this script could be more complex, pulling from a specific branch instead
of simply from HEAD. It is left purposefully simple to improve the readability of this
example.

The Node.js application and Git synchronization sidecar are coscheduled and
deployed together to implement our simple PaaS (Figure 2-4). Once deployed, every
time new code is pushed to a Git repository, the code is automatically updated by the
sidecar and reloaded by the server.

Figure 2-4. A simple sidecar-based PaaS

Designing Sidecars for Modularity and Reusability
In all of the examples of sidecars that we have detailed throughout this chapter, one of
the most important themes is that every one was a modular, reusable artifact. To be
successful, the sidecar should be reusable across a wide variety of applications and
deployments. By achieving modular reuse, sidecars can dramatically speed up the
building of your application.

However, this modularity and reusability, just like achieving modularity in high-
quality software development requires focus and discipline. In particular, you need to
focus on developing three areas:

• Parameterizing your containers
• Creating the API surface of your container
• Documenting the operation of your container

16 | Chapter 2: The Sidecar Pattern

Parameterized Containers
Parameterizing your containers is the most important thing you can do to make your
containers modular and reusable regardless of whether they are sidecars or not,
though sidecars and other add-on containers are especially important to parameter‐
ize.

What do I mean when I say “parameterize”? Consider your container as a function in
your program. How many parameters does it have? Each parameter represents an
input that can customize a generic container to a specific situation. Consider, for
example, the SSL add-on sidecar deployed previously. To be generally useful, it likely
needs at least two parameters: the first is the name of the certificate being used to
provide SSL, and the other is the port of the “legacy” application server running on
localhost. Without these parameters, it is hard to imagine this sidecar container being
usable for a broad array of applications. Similar parameters exist for all of the other
sidecars described in this chapter.

Now that we know the parameters we want to expose, how do we actually expose
them to users, and how do we consume them inside the container. There are two
ways in which such parameters can be passed to your container: through environ‐
ment variables or the command line. Though either is feasible, I have a general pref‐
erence for passing parameters via environment variables. An example of passing such
parameters to a sidecar container is:

docker run -e=PORT=<port> -d <image>

Of course, delivering values into the container is only part of the battle. The other
part is actually using these variables inside the container. Typically, to do that, a sim‐
ple shell script is used that loads the environment variables supplied with the sidecar
container and either adjusts the configuration files or parameterizes the underlying
application.

For example, you might pass in the certificate path and port as environment variables:

docker run -e=PROXY_PORT=8080 -e=CERTIFICATE_PATH=/path/to/cert.crt ...

In your container, you would use those variables to configure an nginx.conf file that
points the web server to the correct file and proxy location.

Define Each Container’s API
Given that you are parameterizing your containers, it is obvious that your containers
are defining a “function” that is called whenever the container is executed. This func‐
tion is clearly a part of the API that is defined by your container, but there are other
parts to this API as well, including calls that the container will make to other services
as well as traditional HTTP or other APIs that the container provides.

Designing Sidecars for Modularity and Reusability | 17

As you think about defining modular, reusable containers, it is important to realize
that all aspects of how your container interacts with its world are part of the API
defined by that reusable container. As in the world of microservices, these micro-
containers rely on APIs to ensure that there is a clean separation between the main
application container and the sidecar. Additionally the API exists to ensure that all
consumers of the sidecar will continue to work correctly as subsequent versions are
released. Likewise, having a clean API for a sidecar enables the sidecar developer to
move more quickly since they have a clear definition (and hopefully unit tests) for the
services they provide as a part of the sidecar.

To see a concrete example of why this API surface area is important, consider the
configuration management sidecar we discussed earlier. A useful configuration for
this sidecar might be UPDATE_FREQUENCY, which indicates how often the configuration
should be synchronized with the filesystem. It is clear that if, at some later time, the
name of the parameter is changed to UPDATE_PERIOD, this change would be a viola‐
tion of the sidecar’s API and clearly would break it for some users.

While that example is obvious, even more subtle changes can break the sidecar API.
Imagine, for example, that UPDATE_FREQUENCY originally took a number in seconds.
Over time and with feedback from users, the sidecar developer determined that speci‐
fying seconds for large time values (e.g., minutes) was annoying users and changed
the parameter to accept strings (10 m, 5 s, etc.). Because old parameter values (e.g.,
10, for 10 seconds) won’t parse in this new scheme, this is a breaking API change.
Suppose still that the developer anticipated this but made values without units parse
to milliseconds where they had previously parsed to seconds. Even this change,
despite not leading to an error, is a breaking API change for the sidecar since it will
lead to significantly more frequent configuration checks and correspondingly more
load on the cloud configuration server.

I hope this discussion has shown you that for true modularity, you need to be very
conscious of the API that your sidecar provides, and that “breaking” changes to that
API may not always be as obvious as changing the name of a parameter.

Documenting Your Containers
By now, you’ve seen how you can parameterize your sidecar containers to make them
modular and reuseable. You’ve learned about the importance of maintaining a stable
API to ensure that you don’t break sidecars for your users. But there’s one final step to
building modular, reusable containers: ensuring that people can use them in the first
place.

As with software libraries, the key to building something truly useful is explaining
how to use it. There is little good in building a flexible, reliable modular container if
no one can figure out how to use it. Sadly, there are few formal tools available for doc‐

18 | Chapter 2: The Sidecar Pattern

umenting container images, but there are some best practices you can use to accom‐
plish this.

For every container image, the most obvious place to look for documentation is the
Dockerfile from which the container was built. There are some parts of the Docker
file that already document how the container works. One example of this is the
EXPOSE directive, which indicates the ports that the image listens on. Even though
EXPOSE is not necessary, it is a good practice to include it in your Dockerfile and also
to add a comment that explains what exactly is listening on that port. For example:

...

Main web server runs on port 8080
EXPOSE 8080
...

Additionally, if you use environment variables to parameterize your container, you
can use the ENV directive to set default values for those parameters as well as docu‐
ment their usage:

...

The PROXY_PORT parameter indicates the port on localhost to redirect
traffic to.
ENV PROXY_PORT 8000
...

Finally, you should always use the LABEL directive to add metadata for your image; for
example, the maintainer’s email address, web page, and version of the image:

...

LABEL "org.label-schema.vendor"="name@company.com"
LABEL "org.label.url"="http://images.company.com/my-cool-image"
LABEL "org.label-schema.version"="1.0.3"
...

The names for these labels are drawn from the schema established by the Label
Schema project. The project is working to establish a shared set of well-known labels.
By using a common taxonomy of image labels, multiple different tools can rely on the
same meta information in order to visualize, monitor, and correctly use an applica‐
tion. By adopting shared terms, you can use the set of tools developed in the commu‐
nity without modifying your image. Of course, you can also add whatever additional
labels make sense in the context of your image.

Summary
Over the course of this chapter, we’ve introduced the sidecar pattern for combining
containers on a single machine. In the sidecar pattern, a sidecar container augments

Summary | 19

http://label-schema.org/rc1
http://label-schema.org/rc1

and extends an application container to add functionality. Sidecars can be used to
update existing legacy applications when changing the application is too costly. Like‐
wise, they can be used to create modular utility containers that standardize imple‐
mentations of common functionality. These utility containers can be reused in a large
number of applications, increasing consistency and reducing the cost of developing
each application. Subsequent chapters introduce other single-node patterns that
demonstrate other uses for modular, reusable containers.

20 | Chapter 2: The Sidecar Pattern

CHAPTER 3

Ambassadors

The previous chapter introduced the sidecar pattern, where one container augments a
pre-existing container to add functionality. This chapter introduces the ambassador
pattern, where an ambassador container brokers interactions between the application
container and the rest of the world. As with other single-node patterns, the two con‐
tainers are tightly linked in a symbiotic pairing that is scheduled to a single machine.
A canonical diagram of this pattern is shown in Figure 3-1.

Figure 3-1. Generic ambassador pattern

The value of the ambassador pattern is twofold. First, as with the other single-node
patterns, there is inherent value in building modular, reusable containers. The separa‐
tion of concerns makes the containers easier to build and maintain. Likewise, the
ambassador container can be reused with a number of different application contain‐
ers. This reuse speeds up application development because the container’s code can be
reused in a number of places. Additionally the implementation is both more consis‐
tent and of a higher quality because it is built once and used in many different con‐
texts.

The rest of this chapter provides a number of examples of using the ambassador pat‐
tern to implement a series of real-world applications.

21

Using an Ambassador to Shard a Service
Sometimes the data that you want to store in a storage layer becomes too big for a
single machine to handle. In such situations, you need to shard your storage layer.
Sharding splits up the layer into multiple disjoint pieces, each hosted by a separate
machine. This chapter focuses on a single-node pattern for adapting an existing ser‐
vice to talk to a sharded service that exists somewhere in the world. It does not dis‐
cuss how the sharded service came to exist. Sharding and a multi-node sharded
service design pattern are discussed in great detail in Chapter 6. A diagram of a shar‐
ded service is shown in Figure 3-2.

Figure 3-2. A generic sharded service

When deploying a sharded service, one question that arises is how to integrate it with
the frontend or middleware code that stores data. Clearly there needs to be logic that
routes a particular request to a particular shard, but often it is difficult to retrofit such
a sharded client into existing source code that expects to connect to a single storage
backend. Additionally, sharded services make it difficult to share configuration
between development environments (where there is often only a single storage shard)
and production environments (where there are often many storage shards).

Once approach is to build all of the sharding logic into the sharded service itself. In
this approach, the sharded service also has a stateless load balancer that directs traffic
to the appropriate shard. Effectively, this load balancer is a distributed ambassador as
a service. This makes a client-side ambassador unnecessary at the expense of a more
complicated deployment for the sharded service. The alternative is to integrate a
single-node ambassador on the client side to route traffic to the appropriate shard.
This makes deploying the client somewhat more complicated but simplifies the
deployment of the sharded service. As is always the case with trade-offs, it is up to the
particulars of your specific application to determine which approach makes the most
sense. Some factors to consider include where team lines fall in your architecture, as
well as where you are writing code versus simply deploying off-the-shelf software.
Ultimately, either choice is valid. The following section describes how to use the
single-node ambassador pattern for client-side sharding.

22 | Chapter 3: Ambassadors

When adapting an existing application to a sharded backend, you can introduce an
ambassador container that contains all of the logic needed to route requests to the
appropriate storage shard. Thus, your frontend or middleware application only con‐
nects to what appears to be a single storage backend running on localhost. However,
this server is in fact actually a sharding ambassador proxy, which receives all of the
requests from your application code, sends a request to the appropriate storage shard,
and then returns the result to your application. This use of an ambassador is dia‐
grammed in Figure 3-3.

The net result of applying the ambassador pattern to sharded services is a separation
of concerns between the application container, which simply knows it needs to talk to
a storage service and discovers that service on localhost, and the sharding ambassa‐
dor proxy, which only contains the code necessary to perform appropriate sharding.
As with all good single-node patterns, this ambassador can be reused between many
different applications. Or, as we’ll see in the following hands-on example, an off-the
shelf open source implementation can be used for the ambassador, speeding up the
development of the overall distributed system.

Hands On: Implementing a Sharded Redis
Redis is a fast key-value store that can be used as a cache or for more persistent stor‐
age. In this example, we’ll be using it as a cache. We’ll begin by deploying a sharded
Redis service to a Kubernetes cluster. We’ll use the StatefulSet API object to deploy
it, since it will give us unique DNS names for each shard that we can use when con‐
figuring the proxy.

The StatefulSet for Redis looks like this:

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: sharded-redis
spec:
 serviceName: "redis"
 replicas: 3
 template:
 metadata:
 labels:
 app: redis
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: redis
 image: redis
 ports:
 - containerPort: 6379
 name: redis

Using an Ambassador to Shard a Service | 23

Save this to a file named redis-shards.yaml and you can deploy this with kubectl
create -f redis-shards.yaml. This will create three containers running redis. You
can see these by running kubectl get pods; you should see sharded-redis-
[0,1,2].

Of course, just running the replicas isn’t sufficient; we also need names by which we
can refer to the replicas. In this case, we’ll use a Kubernetes Service, which will create
DNS names for the replicas we have created. The Service looks like this:

apiVersion: v1
kind: Service
metadata:
 name: redis
 labels:
 app: redis
spec:
 ports:
 - port: 6379
 name: redis
 clusterIP: None
 selector:
 app: redis

Save this to a file named redis-service.yaml and deploy with kubectl create -f
redis-service.yaml. You should now have DNS entries for sharded-

redis-0.redis, sharded-redis-1.redis, etc. We can use these names to configure
twemproxy. twemproxy is a lightweight, highly performant proxy for memcached and
Redis, which was originally developed by Twitter and is open source and available on
GitHub. We can configure twemproxy to point to the replicas we created by using the
following configuration:

redis:
 listen: 127.0.0.1:6379
 hash: fnv1a_64
 distribution: ketama
 auto_eject_hosts: true
 redis: true
 timeout: 400
 server_retry_timeout: 2000
 server_failure_limit: 1
 servers:
 - sharded-redis-0.redis:6379:1
 - sharded-redis-1.redis:6379:1
 - sharded-redis-2.redis:6379:1

In this config, you can see that we are serving the Redis protocol on localhost:6379
so that the application container can access the ambassador. We will deploy this into
our ambassador pod using a Kubernetes ConfigMap object that we can create with:

kubectl create configmap --from-file=nutcracker.yaml

24 | Chapter 3: Ambassadors

https://github.com/twitter/twemproxy

Finally, all of the preparations are done and we can deploy our ambasssador example.
We define a pod that looks like:

apiVersion: v1
kind: Pod
metadata:
 name: ambassador-example
spec:
 containers:
 # This is where the application container would go, for example
 # - name: nginx
 # image: nginx
 # This is the ambassador container
 - name: twemproxy
 image: ganomede/twemproxy
 command:
 - nutcracker
 - -c
 - /etc/config/nutcracker.yaml
 - -v
 - 7
 - -s
 - 6222
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: twem-config

This pod defines the ambassador; then the specific user’s application container can be
injected to complete the pod.

Using an Ambassador for Service Brokering
When trying to render an application portable across multiple environments (e.g.,
public cloud, physical datacenter, or private cloud), one of the primary challenges is
service discovery and configuration. To understand what this means, imagine a front‐
end that relies on a MySQL database to store its data. In the public cloud, this MySQL
service might be provided as software-as-a-service (SaaS), whereas in a private cloud
it might be necessary to dynamically spin up a new virtual machine or container run‐
ning MySQL.

Consequently, building a portable application requires that the application know how
to introspect its environment and find the appropriate MySQL service to connect to.
This process is called service discovery, and the system that performs this discovery
and linking is commonly called a service broker. As with previous examples, the
ambassador pattern enables a system to separate the logic of the application container

Using an Ambassador for Service Brokering | 25

from the logic of the service broker ambassador. The application simply always con‐
nects to an instance of the service (e.g., MySQL) running on localhost. It is the
responsibility of the service broker ambassador to introspect its environment and
broker the appropriate connection. This process is shown in Figure 3-3.

Figure 3-3. A service broker ambassador creating a MySQL service

Using an Ambassador to Do Experimentation or Request
Splitting
A final example application of the ambassador pattern is to perform experimentation
or other forms of request splitting. In many production systems, it is advantageous to
be able to perform request splitting, where some fraction of all requests are not serv‐
iced by the main production service but rather are redirected to a different imple‐
mentation of the service. Most often, this is used to perform experiments with new,
beta versions of the service to determine if the new version of the software is reliable
or comparable in performance to the currently deployed version.

Additionally, request splitting is sometimes used to tee or split traffic such that all
traffic goes to both the production system as well as a newer, undeployed version.
The responses from the production system are returned to the user, while the respon‐
ses from the tee-d service are ignored. Most often, this form of request splitting is
used to simulate production load on the new version of the service without risking
impact to existing production users.

Given the previous examples, it is straightforward to see how a request-splitting
ambassador can interact with an application container to implement request splitting.
As before, the application container simply connects to the service on localhost, while
the ambassador container receives the requests, proxies responses to both the pro‐

26 | Chapter 3: Ambassadors

duction and experimental systems, and then returns the production responses back
as if it had performed the work itself.

This separation of concerns keeps the code in each container slim and focused, and
the modular factoring of the application ensures that the request-splitting ambassa‐
dor can be reused for a variety of different applications and settings.

Hands On: Implementing 10% Experiments
To implement our request-splitting experiment, we’re going to use the nginx web
server. Nginx is a powerful, richly featured open source server. To configure nginx as
the ambassador, we’ll use the following configuration (note that this is for HTTP but
it could easily be adapted for HTTPS as well).

worker_processes 5;
error_log error.log;
pid nginx.pid;
worker_rlimit_nofile 8192;

events {
 worker_connections 1024;
}

http {
 upstream backend {
 ip_hash;
 server web weight=9;
 server experiment;
 }

 server {
 listen localhost:80;
 location / {
 proxy_pass http://backend;
 }
 }
}

As with the previous discussion of sharded services, it’s also possi‐
ble to deploy the experiment framework as a separate microservice
in front of your application instead of integrating it as a part of
your client pods. Of course, by doing this you are introducing
another service that needs to be maintained, scaled, monitored, etc.
If experimentation is likely to be a longstanding component in your
architecture, this might be worthwhile. If it is used more occasion‐
ally, then a client-side ambassador might make more sense.

Using an Ambassador to Do Experimentation or Request Splitting | 27

You’ll note that I’m using IP hashing in this configuration. This is important because
it ensures that the user doesn’t flip-flop back and forth between the experiment and
the main site. This assures that every user has a consistent experience with the appli‐
cation.

The weight parameter is used to send 90% of the traffic to the main existing applica‐
tion, while 10% of the traffic is redirected to the experiment.

As with other examples, we’ll deploy this configuration as a ConfigMap object in
Kubernetes:

kubectl create configmaps --from-file=nginx.conf

Of course, this assumes that you have both a web and experiment service defined. If
you don’t, you need to create them now before you try to create the ambassador con‐
tainer, since nginx doesn’t like to start if it can’t find the services it is proxying to.
Here are some example service configs:

This is the 'experiment' service
apiVersion: v1
kind: Service
metadata:
 name: experiment
 labels:
 app: experiment
spec:
 ports:
 - port: 80
 name: web
 selector:
 # Change this selector to match your application's labels
 app: experiment

This is the 'prod' service
apiVersion: v1
kind: Service
metadata:
 name: web
 labels:
 app: web
spec:
 ports:
 - port: 80
 name: web
 selector:
 # Change this selector to match your application's labels
 app: web

And then we will deploy nginx itself as the ambassador container within a pod:

apiVersion: v1
kind: Pod

28 | Chapter 3: Ambassadors

metadata:
 name: experiment-example
spec:
 containers:
 # This is where the application container would go, for example
 # - name: some-name
 # image: some-image
 # This is the ambassador container
 - name: nginx
 image: nginx
 volumeMounts:
 - name: config-volume
 mountPath: /etc/nginx
 volumes:
 - name: config-volume
 configMap:
 name: experiment-config

You can add a second (or third, or fourth) container to the pod to take advantage of
the ambassador.

Using an Ambassador to Do Experimentation or Request Splitting | 29

CHAPTER 4

Adapters

In the preceding chapters, we saw how the sidecar pattern can extend and augment
existing application containers. We also saw how ambassadors can alter and broker
how an application container communicates with the external world. This chapter
describes the final single-node pattern: the adapter pattern. In the adapter pattern, the
adapter container is used to modify the interface of the application container so that it
conforms to some predefined interface that is expected of all applications. For exam‐
ple, an adapter might ensure that an application implements a consistent monitoring
interface. Or it might ensure that log files are always written to stdout or any number
of other conventions.

Real-world application development is a heterogeneous, hybrid exercise. Some parts
of your application might be written from scratch by your team, some supplied by
vendors, and some might consist entirely of off-the-shelf open source or proprietary
software that you consume as precompiled binary. The net effect of this heterogeneity
is that any real-world application you deploy will have been written in a variety of
languages, with a variety of conventions for logging, monitoring, and other common
services.

Yet, to effectively monitor and operate your application, you need common inter‐
faces. When each application provides metrics using a different format and interface,
it is very difficult to collect all of those metrics in a single place for visualization and
alerting. This is where the adapter pattern is relevant. Like other single-node patterns,
the adapter pattern is made up of modular containers. Different application contain‐
ers can present many different monitoring interfaces while the adapter container
adapts this heterogeneity to present a consistent interface. This enables you to deploy
a single tool that expects this single interface. Figure 4-1 illustrates this general pat‐
tern.

31

Figure 4-1. The generic adapter pattern

The remainder of this chapter gives several different applications of the adapter pat‐
tern.

Monitoring
When monitoring your software, you want a single solution that can automatically
discover and monitor any application that is deployed into your environment. To
make this feasible, every application has to implement the same monitoring interface.
There are numerous examples of standardized monitoring interfaces, such as syslog,
event tracing on Windows (etw), JMX for Java applications, and many, many other
protocols and interfaces. However, each of these is unique in both protocol for com‐
munication as well as the style of communication (push versus pull).

Sadly, applications in your distributed system are likely to span the gamut from code
that you have written yourself to off-the-shelf open source components. As a result,
you will find yourself with a wide range of different monitoring interfaces that you
need to integrate into a single well-understood system.

Fortunately, most monitoring solutions understand that they need to be widely appli‐
cable, and thus they have implemented a variety of plugins that can adapt one moni‐
toring format to a common interface. Given this set of tools, how can we deploy and
manage our applications in an agile and stable manner? Fortunately, the adapter pat‐
tern can provide us with the answers. Applying the adapter pattern to monitoring, we
see that the application container is simply the application that we want to monitor.
The adapter container contains the tools for transforming the monitoring interface
exposed by the application container into the interface expected by the general-
purpose monitoring system.

Decoupling the system in this fashion makes for a more comprehensible, maintaina‐
ble system. Rolling out new versions of the application doesn’t require a rollout of the
monitoring adapter. Additionally, the monitoring container can be reused with multi‐
ple different application containers. The monitoring container may even have been
supplied by the monitoring system maintainers independent of the application devel‐
opers. Finally, deploying the monitoring adapter as a separate container ensures that
each container gets its own dedicated resources in terms of both CPU and memory.

32 | Chapter 4: Adapters

This ensures that a misbehaving monitoring adapter cannot cause problems with a
user-facing service.

Hands On: Using Prometheus for Monitoring
As an example, consider monitoring your containers via the Prometheus open source
project. Prometheus is a monitoring aggregator, which collects metrics and aggre‐
gates them into a single time-series database. On top of this database, Prometheus
provides visualization and query language for introspecting the collected metrics. To
collect metrics from a variety of different systems, Prometheus expects every con‐
tainer to expose a specific metrics API. This enables Prometheus to monitor a wide
variety of different programs through a single interface.

However, many popular programs, such as the Redis key-value store, do not export
metrics in a format that is compatible with Prometheus. Consequently, the adapter
pattern is quite useful for taking an existing service like Redis and adapting it to the
Prometheus metrics-collection interface.

Consider a simple Kubernetes pod definition for a Redis server:

apiVersion: v1
kind: Pod
metadata:
 name: adapter-example
 namespace: default
spec:
 containers:
 - image: redis
 name: redis

At this point, this container is not capable of being monitored by Prometheus because
it does not export the right interface. However, if we simply add an adapter container
(in this case, an open source Prometheus exporter), we can modify this pod to export
the correct interface and thus adapt it to fit Prometheus’s expectations:

apiVersion: v1
kind: Pod
metadata:
 name: adapter-example
 namespace: default
spec:
 containers:
 - image: redis
 name: redis
 # Provide an adapter that implements the Prometheus interface
 - image: oliver006/redis_exporter
 name: adapter

This example illustrates not only the value of the adapter pattern for ensuring a con‐
sistent interface, but also the value of container patterns in general for modular con‐

Monitoring | 33

https://prometheus.io
https://prometheus.io

tainer reuse. In this case, the example shown combines an existing Redis container
with an existing Prometheus adapter. The net effect is a monitorable Redis server,
with little work on our part to deploy it. In the absence of the adapter pattern, the
same deployment would have required significantly more custom work and would
have resulted in a much less operable solution, since any updates to either Redis or
the adapter would have required work to apply the update.

Logging
Much like monitoring, there is a wide variety of heterogeneity in how systems log
data to an output stream. Systems might divide their logs into different levels (such as
debug, info, warning, and error) with each level going into a different file. Some
might simply log to stdout and stderr. This is especially problematic in the world of
containerized applications where there is a general expectation that your containers
will log to stdout, because that is what is available via commands like docker logs or
kubectl logs.

Adding further complexity, the information logged generally has structured informa‐
tion (e.g., the date/time of the log), but this information varies widely between differ‐
ent logging libraries (e.g., Java’s built-in logging versus the glog package for Go).

Of course, when you are storing and querying the logs for your distributed system,
you don’t really care about these differences in logging format. You want to ensure
that despite different structures for the data, every log ends up with the appropriate
timestamp.

Fortunately, as with monitoring, the adapter pattern can help provide a modular, re-
usable design for both of these situations. While the application container may log to
a file, the adapter container can redirect that file to stdout. Different application con‐
tainers can log information in different formats, but the adapter container can trans‐
form that data into a single structured representation that can be consumed by your
log aggregator. Again, the adapter is taking a heterogeneous world of applications and
creating a homogenous world of common interfaces.

34 | Chapter 4: Adapters

One question that often comes up when considering adapter pat‐
terns is: Why not simply modify the application container itself? If
you are the developer responsible for the application container,
then this might actually be a good solution. Adapting your code or
your container to implement a consistent interface can work well.
However, in many cases we are reusing a container produced by
another party. In such cases, deriving a slightly modified image that
we have to maintain (patch, rebase, etc.) is significantly more
expensive than developing an adapter container that can run
alongside the other party’s image. Additionally, decoupling the
adapter into its own container allows for the possibility of sharing
and reuse, which isn’t possible when you modify the application
container.

Hands On: Normalizing Different Logging Formats with Fluentd
One common task for an adapter is to normalize log metrics into a standard set of
events. Many different applications have different output formats, but you can use a
standard logging tool deployed as an adapter to normalize them all to a consistent
format. In this example, we will use the fluentd monitoring agent as well as some
community-supported plugins to obtain logs from a variety of different sources.

fluentd is one of the more popular open source logging agents available. One of its
major features is a rich set of community-supported plugins that enable a great deal
of flexibility in monitoring a variety of applications.

The first application that we will monitor is Redis. Redis is a popular key-value store;
one of the commands it offers is the SLOWLOG command. This command lists recent
queries that exceeded a particular time interval. Such information is quite useful in
debugging your application’s performance. Unfortunately, SLOWLOG is only available as
a command on the Redis server, which means that it is difficult to use retrospectively
if a problem happens when someone isn’t available to debug the server. To fix this
limitation, we can use fluentd and the adapter pattern to add slow-query logging to
Redis.

To do this, we use the adapter pattern with a redis container as the main application
container, and the fluentd container as our adapter container. In this case, we will
also use the fluent-plugin-redis-slowlog fluentd plugin to listen to the slow
queries. We can configure this plugin using the following snippet:

<source>
 type redis_slowlog
 host localhost
 port 6379
 tag redis.slowlog
</source>

Logging | 35

https://fluentd.org
https://github.com/mominosin/fluent-plugin-redis-slowlog

Because we are using an adapter and the containers both share a network namespace,
configuring the logging simply uses localhost and the default Redis port (6379).
Given this application of the adapter pattern, logging will always be available when‐
ever we want to debug slow Redis queries.

A similar exercise can be done to monitor logs from the Apache Storm system. Again,
Storm provides data via a RESTful API, which is useful but has limitations if we are
not currently monitoring the system when a problem occurs. Like Redis, we can use a
fluentd adapter to transfor the Storm process into a time series of queryable logs. To
do this, we deploy a fluentd adapter with the fluent-plugin-storm plugin enabled.
We can configure this plugin with a fluentd config pointed at localhost (because
again, we are running as a container group with a shared localhost); the config for the
plugin looks like:

<source>
 type storm
 tag storm
 url http://localhost:8080
 window 600
 sys 0
</source>

Adding a Health Monitor
One last example of applying the adapter pattern is derived from monitoring the
health of an application container. Consider the task of monitoring the health of an
off-the-shelf database container. In this case, the container for the database is sup‐
plied by the database project, and we would rather not modify that container simply
to add health checks. Of course, a container orchestrator will allow us to add simple
health checks to ensure that the process is running and that it is listening on a partic‐
ular port, but what if we want to add richer health checks that actually run queries
against the database?

Container orchestration systems like Kubernetes enable us to use shell scripts as
health checks as well. Given this capability, we can write a rich shell script that runs a
number of different diagnostic queries against the database to determine its health.
But where can we store such a script and how can we version it?

The answer to these problems should be easy to guess by now: we can use an adapter
container. The database runs in the application container and shares a network inter‐
face with the adapter container. The adapter container is a simple container that only
contains the shell script for determining the health of the database. This script can
then be set up as the health check for the database container and can perform what‐
ever rich health checks our application requires. If these checks ever fail, the database
will be automatically restarted.

36 | Chapter 4: Adapters

www.allitebooks.com

https://storm.apache.org
http://www.allitebooks.org

Hands On: Adding Rich Health Monitoring for MySQL
Suppose then that you want to add deep monitoring on a MySQL database where you
actually run a query that was representative of your workload. In this case, one option
would be to update the MySQL container to contain a health check that is specific to
your application. However, this is generally an unattractive idea because it requires
that you both modify some existing MySQL base image as well as update that image
as new MySQL images are released.

Using the adapter pattern is a much more attractive approach to adding health checks
to your database container. Instead of modifying the existing MySQL container, you
can add an additional adapter container to the pre-existing MySQL container, which
runs the appropriate query to test the database health. Given that this adapter con‐
tainer implements the expected HTTP health check, it is simply a case of defining the
MySQL database process’s health check in terms of the interface exposed by this data‐
base adapter.

The source code for this adapter is relatively straightforward and looks like this in Go
(though clearly other language implementations are possible as well):

package main

import (
 "database/sql"
 "flag"
 "fmt"
 "net/http"

 _ "github.com/go-sql-driver/mysql"
)

var (
 user = flag.String("user", "", "The database user name")
 passwd = flag.String("password", "", "The database password")
 db = flag.String("database", "", "The database to connect to")
 query = flag.String("query", "", "The test query")
 addr = flag.String("address", "localhost:8080",
 "The address to listen on")
)

// Basic usage:
// db-check --query="SELECT * from my-cool-table" \
// --user=bdburns \
// --passwd="you wish"
//
func main() {
 flag.Parse()
 db, err := sql.Open("localhost",
 fmt.Sprintf("%s:%s@/%s", *user, *passwd, *db))
 if err != nil {

Adding a Health Monitor | 37

 fmt.Printf("Error opening database: %v", err)
 }

 // Simple web handler that runs the query
 http.HandleFunc("", func(res http.ResponseWriter, req *http.Request) {
 _, err := db.Exec(*query)
 if err != nil {
 res.WriteHeader(http.StatusInternalServerError)
 res.Write([]byte(err.Error()))
 return
 }
 res.WriteHeader(http.StatusOK)
 res.Write([]byte("OK"))
 return
 })
 // Startup the server
 http.ListenAndServe(*addr, nil)
}

We can then build this into a container image and pull it into a pod that looks like:

apiVersion: v1
kind: Pod
metadata:
 name: adapter-example-health
 namespace: default
spec:
 containers:
 - image: mysql
 name: mysql
 - image: brendanburns/mysql-adapter
 name: adapter

That way, the mysql container is unchanged, but the desired feedback about the
health of the mysql server can still be obtained from the adapter container.

When looking at this application of the adapter pattern, it may seem like applying the
pattern is superfluous. Clearly we could have built our own custom image that knew
how to health check the mysql instance itself.

While this is true, this method ignores the strong benefits that derive from modular‐
ity. If every developer implements their own specific container with health checking
built in, there are no opportunities for reuse or sharing.

In contrast, if we use patterns like the adapter to develop modular solutions com‐
prised of multiple containers, the work is inherently decoupled and more easily
shared. An adapter that is developed to health check mysql is a module that can be
shared and reused by a variety of people. Further, people can apply the adapter pat‐
tern using this shared health-checking container, without having deep knowledge of
how to health check a mysql database. Thus the modularity and adapter pattern serve

38 | Chapter 4: Adapters

not to just facilitate sharing, but also to empower people to take advantage of the
knowledge of others.

Sometimes design patterns aren’t just for the developers who apply them, but lead to
the development of communities that can collaborate and share solutions between
members of the community as well as the broader developer ecosystem.

Adding a Health Monitor | 39

PART II

Serving Patterns

The previous chapter described patterns for grouping collections of containers that
are scheduled on the same machine. These groups are tightly coupled, symbiotic sys‐
tems. They depend on local, shared resources like disk, network interface, or inter-
process communications. Such collections of containers are important patterns, but
they are also building blocks for larger systems. Reliability, scalability, and separation
of concerns dictate that real-world systems are built out of many different compo‐
nents, spread across multiple machines. In contrast to single-node patterns, the
multi-node distributed patterns are more loosely coupled. While the patterns dictate
patterns of communication between the components, this communication is based on
network calls. Furthermore, many calls are issued in parallel, and systems coordinate
via loose synchronization rather than tight constraints.

Introduction to Microservices
Recently, the term microservices has become a buzzword for describing multi-node
distributed software architectures. Microservices describe a system built out of many
different components running in different processes and communicating over
defined APIs. Microservices stand in contrast to monolithic systems, which tend to
place all of the functionality for a service within a single, tightly coordinated applica‐
tion. These two different architectural approaches are shown in Figures II-1 and II-2.

Figure II-1. A monolithic service with all functions in a single container

Figure II-2. A microservice architecture with each function broken out as a separate
microservice

There are numerous benefits to the microservices approach, most of them are cen‐
tered around reliability and agility. Microservices break down an application into
small pieces, each focused on providing a single service. This reduced scope enables
each service to be built and maintained by a single “two pizza” team. Reduced team
size also reduces the overhead associated with keeping a team focused and moving in
one direction.

Additionally, the introduction of formal APIs in between different microservices
decouples the teams from one another and provides a reliable contract between the
different services. This formal contract reduces the need for tight synchronization
among the teams because the team providing the API understands the surface area
that it needs to keep stable, and the team consuming the API can rely on a stable ser‐
vice without worrying about its details. This decoupling enables teams to independ‐
ently manage their code and release schedules, which in turn improves each team’s
ability to iterate and improve their code.

Finally, the decoupling of microservices enables better scaling. Because each compo‐
nent has been broken out into its own service, it can be scaled independently. It is
rare for each service within a larger application to grow at the same rate, or have the

same way of scaling. Some systems are stateless and can simply scale horizontally,
whereas other systems maintain state and require sharding or other approaches to
scale. By separating each service out, each service can use the approach to scaling that
suits it best. This is not possible when all services are part of a single monolith.

But of course there are downsides to the microservices approach to system design as
well. The two foremost disadvantages are that because the system has become more
loosely coupled, debugging the system when failures occur is significantly more diffi‐
cult. You can no longer simply load a single application into a debugger and deter‐
mine what went wrong. Any errors are the byproducts of a large number of systems
often running on different machines. This environment is quite challenging to repro‐
duce in a debugger. As a corollary, microservices-based systems are also difficult to
design and architect. A microservices-based system uses multiple methods of com‐
municating between services; different patterns (e.g., synchronous, asynchronous,
message-passing, etc.); and multiple different patterns of coordination and control
among the services.

These challenges are the motivation for distributed patterns. If a microservices archi‐
tecture is made up of well-known patterns, then it is easier to design because many of
the design practices are specified by the patterns. Additionally, patterns make the sys‐
tems easier to debug because they enable developers to apply lessons learned across a
number of different systems that use the same patterns.

With that in mind, this section introduces a number of multi-node patterns for build‐
ing distributed systems. These patterns are not mutually exclusive. Any real-world
system will be built from a collection of these patterns working together to produce a
single higher-level application.

CHAPTER 5

Replicated Load-Balanced Services

The simplest distributed pattern, and one that most are familiar with, is a replicated
load-balanced service. In such a service, every server is identical to every other server
and all are capable of supporting traffic. The pattern consists of a scalable number of
servers with a load balancer in front of them. The load balancer is typically either
completely round-robin or uses some form of session stickiness. The chapter will give
a concrete example of how to deploy such a service in Kubernetes.

Stateless Services
Stateless services are ones that don’t require saved state to operate correctly. In the
simplest stateless applications, even individual requests may be routed to separate
instances of the service (see Figure 5-1). Examples of stateless services include things
like static content servers and complex middleware systems that receive and aggre‐
gate responses from numerous different backend systems.

Figure 5-1. Basic replicated stateless service

45

Stateless systems are replicated to provide redundancy and scale. No matter how
small your service is, you need at least two replicas to provide a service with a “highly
available” service level agreement (SLA). To understand why this is true, consider try‐
ing to deliver a three-nines (99.9% availability). In a three-nines service, you get 1.4
minutes of downtime per day (24 × 60 × 0.001). Assuming that you have a service
that never crashes, that still means you need to be able to do a software upgrade in
less than 1.4 minutes in order to hit your SLA with a single instance. And that’s
assuming that you do daily software rollouts. If your team is really embracing contin‐
uous delivery and you’re pushing a new version of software every hour, you need to
be able to do a software rollout in 3.6 seconds to achieve your 99.9% uptime SLA with
a single instance. Any longer than that and you will have more than 0.01% downtime
from those 3.6 seconds.

Of course, instead of all of that work, you could just have two replicas of your service
with a load balancer in front of them. That way, while you are doing a rollout, or in
the—unlikely, I’m sure—event that your software crashes, your users will be served by
the other replica of the service and never know anything was going on.

As services grow larger, they are also replicated to support additional users. Horizon‐
tally scalable systems handle more and more users by adding more replicas; see
Figure 5-2. They achieve this with the load-balanced replicated serving pattern.

Figure 5-2. Horizontal scaling of a replicated stateless application

Readiness Probes for Load Balancing
Of course, simply replicating your service and adding a load balancer is only part of a
complete pattern for stateless replicated serving. When designing a replicated service,
it is equally important to build and deploy a readiness probe to inform the load bal‐
ancer. We have discussed how health probes can be used by a container orchestration
system to determine when an application needs to be restarted. In contrast, a readi‐
ness probe determines when an application is ready to serve user requests. The reason
for the differentiation is that many applications require some time to become initial‐
ized before they are ready to serve. They may need to connect to databases, load plu‐
gins, or download serving files from the network. In all of these cases, the containers
are alive, but they are not ready. When building an application for a replicated service
pattern, be sure to include a special URL that implements this readiness check.

46 | Chapter 5: Replicated Load-Balanced Services

Hands On: Creating a Replicated Service in Kubernetes
The instructions below give a concrete example of how to deploy a stateless, replica‐
ted service behind a load balancer. These directions use the Kubernetes container
orchestrator, but the pattern can be implemented on top of a number of different
container orchestrators.

To begin with, we will create a small NodeJS application that serves definitions of
words from the dictionary.

To try this service out, you can run it using a container image:

docker run -p 8080:8080 brendanburns/dictionary-server

This runs a simple dictionary server on your local machine. For example, you can
visit http://localhost:8080/dog to see the definition for dog.

If you look at the logs for the container, you’ll see that it starts serving immediately
but only reports readiness after the dictionary (which is approximately 8 MB) has
been downloaded over the network.

To deploy this in Kubernetes, you create a Deployment:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: dictionary-server
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: dictionary-server
 spec:
 containers:
 - name: server
 image: brendanburns/dictionary-server
 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 path: /ready
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 5

You can create this replicated, stateless service with:

kubectl create -f dictionary-deploy.yaml

Now that you have a number of replicas, you need a load balancer to bring requests to
your replicas. The load balancer serves to distribute the load as well as to provide an

Stateless Services | 47

abstraction to separate the replicated service from the consumers of the service. The
load balancer also provides a resolvable name that is independent of any of the spe‐
cific replicas.

With Kubernetes, you can create this load balancer with a Service object:

kind: Service
apiVersion: v1
metadata:
 name: dictionary-server-service
spec:
 selector:
 app: dictionary-server
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 8080

Once you have the configuration file, you can create the dictionary service with:

kubectl create -f dictionary-service.yaml

Session Tracked Services
The previous examples of the stateless replicated pattern routed requests from all
users to all replicas of a service. While this ensures an even distribution of load and
fault tolerance, it is not always the preferred solution. Often there are reasons for
wanting to ensure that a particular user’s requests always end up on the same
machine. Sometimes this is because you are caching that user’s data in memory, so
landing on the same machine ensures a higher cache hit rate. Sometimes it is because
the interaction is long-running in nature, so some amount of state is maintained
between requests. Regardless of the reason, an adaption of the stateless replicated ser‐
vice pattern is to use session tracked services, which ensure that all requests for a sin‐
gle user map to the same replica, as illustrated in Figure 5-3.

Figure 5-3. A session tracked service where all requests for a specific user are routed to a
single instance

48 | Chapter 5: Replicated Load-Balanced Services

Generally speaking, this session tracking is performed by hashing the source and des‐
tination IP addresses and using that key to identify the server that should service the
requests. So long as the source and destination IP addresses remain constant, all
requests are sent to the same replica.

IP-based session tracking works within a cluster (internal IPs) but
generally doesn’t work well with external IP addresses because of
network address translation (NAT). For external session tracking,
application-level tracking (e.g., via cookies) is preferred.

Often, session tracking is accomplished via a consistent hashing function. The benefit
of a consistent hashing function becomes evident when the service is scaled up or
down. Obviously, when the number of replicas changes, the mapping of a particular
user to a replica may change. Consistent hashing functions minimize the number of
users that actually change which replica they are mapped to, reducing the impact of
scaling on your application.

Application-Layer Replicated Services
In all of the preceding examples, the replication and load balancing takes place in the
network layer of the service. The load balancing is independent of the actual protocol
that is being spoken over the network, beyond TCP/IP. However, many applications
use HTTP as the protocol for speaking with each other, and knowledge of the appli‐
cation protocol that is being spoken enables further refinements to the replicated
stateless serving pattern for additional functionality.

Introducing a Caching Layer
Sometimes the code in your stateless service is still expensive despite being stateless.
It might make queries to a database to service requests or do a significant amount of
rendering or data mixing to service the request. In such a world, a caching layer can
make a great deal of sense. A cache exists between your stateless application and the
end-user request. The simplest form of caching for web applications is a caching web
proxy. The caching proxy is simply an HTTP server that maintains user requests in
memory state. If two users request the same web page, only one request will go to
your backend; the other will be serviced out of memory in the cache. This is illustra‐
ted in Figure 5-4.

Application-Layer Replicated Services | 49

Figure 5-4. The operation of a cache server

For our purposes, we will use Varnish, an open source web cache.

Deploying Your Cache
The simplest way to deploy the web cache is alongside each instance of your web
server using the sidecar pattern (see Figure 5-5).

Figure 5-5. Adding the web cache server as a sidecar

Though this approach is simple, it has some disadvantages, namely that you will have
to scale your cache at the same scale as your web servers. This is often not the
approach you want. For your cache, you want as few replicas as possible with lots of
resources for each replica (e.g., rather than 10 replicas with 1 GB of RAM each, you’d
want two replicas with 5 GB of RAM each). To understand why this is preferable,
consider that every page will be stored in every replica. With 10 replicas, you will
store every page 10 times, reducing the overall set of pages that you can keep in mem‐
ory in the cache. This causes a reduction in the hit rate, the fraction of the time that a
request can be served out of cache, which in turn decreases the utility of the cache.
Though you do want a few large caches, you might also want lots of small replicas of
your web servers. Many languages (e.g., NodeJS) can really only utilize a single core,
and thus you want many replicas to be able to take advantages of multiple cores, even
on the same machine. Therefore, it makes the most sense to configure your caching
layer as a second stateless replicated serving tier above your web-serving tier, as illus‐
trated in Figure 5-6.

50 | Chapter 5: Replicated Load-Balanced Services

https://varnish-cache.org/

Figure 5-6. Adding the caching layer to our replicated service

Unless you are careful, caching can break session tracking. The rea‐
son for this is that if you use default IP address affinity and load
balancing, all requests will be sent from the IP addresses of the
cache, not the end user of your service. If you’ve followed the
advice previously given and deployed a few large caches, your IP-
address-based affinity may in fact mean that some replicas of your
web layer see no traffic. Instead, you need to use something like a
cookie or HTTP header for session tracking.

Hands On: Deploying the Caching Layer
The dictionary-server service we built earlier distributes traffic to the dictionary
server and is discoverable as the DNS name dictionary-server-service. This pat‐
tern is illustrated in Figure 5-7.

Introducing a Caching Layer | 51

Figure 5-7. Adding a caching layer to the dictionary server

We can begin building this with the following Varnish cache configuration:

vcl 4.0;
backend default {
 .host = "dictionary-server-service";
 .port = "8080";
}

Create a ConfigMap object to hold this configuration:

kubectl create configmap varnish-config --from-file=default.vcl

Now we can deploy the replicated Varnish cache, which will load this configuration:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: varnish-cache
spec:
 replicas: 2
 template:
 metadata:
 labels:
 app: varnish-cache
 spec:
 containers:
 - name: cache
 resources:
 requests:
 # We'll use two gigabytes for each varnish cache
 memory: 2Gi

52 | Chapter 5: Replicated Load-Balanced Services

 image: brendanburns/varnish
 command:
 - varnishd
 - -F
 - -f
 - /etc/varnish-config/default.vcl
 - -a
 - 0.0.0.0:8080
 - -s
 # This memory allocation should match the memory request above
 - malloc,2G
 ports:
 - containerPort: 8080
 volumeMounts:
 - name: varnish
 mountPath: /etc/varnish-config
 volumes:
 - name: varnish
 configMap:
 name: varnish-config

You can deploy the replicated Varnish servers with:

kubectl create -f varnish-deploy.yaml

And then finally deploy a load balancer for this Varnish cache:

kind: Service
apiVersion: v1
metadata:
 name: varnish-service
spec:
 selector:
 app: varnish-cache
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

which you can create with:

kubectl create -f varnish-service.yaml

Expanding the Caching Layer
Now that we have inserted a caching layer into our stateless, replicated service, let’s
look at what this layer can provide beyond standard caching. HTTP reverse proxies
like Varnish are generally pluggable and can provide a number of advanced features
that are useful beyond caching.

Expanding the Caching Layer | 53

Rate Limiting and Denial-of-Service Defense
Few of us build sites with the expectation that we will encounter a denial-of-service
attack. But as more and more of us build APIs, a denial of service can come simply
from a developer misconfiguring a client or a site-reliability engineer accidentally
running a load test against a production installation. Thus, it makes sense to add gen‐
eral denial-of-service defense via rate limiting to the caching layer. Most HTTP
reverse proxies like Varnish have capabilities along this line. In particular, Varnish has
a throttle module that can be configured to provide throttling based on IP address
and request path, as well as whether or not a user is logged in.

If you are deploying an API, it is generally a best practice to have a relatively small
rate limit for anonymous access and then force users to log in to obtain a higher rate
limit. Requiring a login provides auditing to determine who is responsible for the
unexpected load, and also offers a barrier to would-be attackers who need to obtain
multiple identities to launch a successful attack.

When a user hits the rate limit, the server will return the 429 error code indicating
that too many requests have been issued. However, many users want to understand
how many requests they have left before hitting that limit. To that end, you will likely
also want to populate an HTTP header with the remaining-calls information. Though
there isn’t a standard header for returning this data, many APIs return some variation
of X-RateLimit-Remaining.

SSL Termination
In addition to performing caching for performance, one of the other common tasks
performed by the edge layer is SSL termination. Even if you plan on using SSL for
communication between layers in your cluster, you should still use different certifi‐
cates for the edge and your internal services. Indeed, each individual internal service
should use its own certificate to ensure that each layer can be rolled out independ‐
ently. Unfortunately, the Varnish web cache can’t be used for SSL termination, but
fortunately, the nginx application can. Thus we want to add a third layer to our state‐
less application pattern, which will be a replicated layer of nginx servers that will han‐
dle SSL termination for HTTPS traffic and forward traffic on to our Varnish cache.
HTTP traffic continues to travel to the Varnish web cache, and Varnish forwards traf‐
fic on to our web application, as shown in Figure 5-8.

54 | Chapter 5: Replicated Load-Balanced Services

Figure 5-8. Complete replicated stateless serving example

Hands On: Deploying nginx and SSL Termination
The following instructions describe how to add a replicated SSL terminating nginx to
the replicated service and cache that we previously deployed.

These instructions assume that you have a certificate. If you need
to obtain a certificate, the easiest way to do that is via the tools at
Let’s Encrypt. Alternately, you can use the openssl tool to create
them. The following instructions assume that you’ve named them
server.crt (public certificate) and server.key (private key on the
server). Such self-signed certificates will cause security alerts in
modern web browsers and should never be used for production.

The first step is to upload your certificate as a secret to Kubernetes:

kubectl create secret tls ssl --cert=server.crt --key=server.key

Once you have uploaded your certificate as a secret you need to create an nginx con‐
figuration to serve SSL:

events {
 worker_connections 1024;
}

http {
 server {
 listen 443 ssl;
 server_name my-domain.com www.my-domain.com;

Expanding the Caching Layer | 55

https://letsencrypt.org

 ssl on;
 ssl_certificate /etc/certs/tls.crt;
 ssl_certificate_key /etc/certs/tls.key;
 location / {
 proxy_pass http://varnish-service:80;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_set_header X-Real-IP $remote_addr;
 }
 }
}

As with Varnish, you need to transform this into a ConfigMap object:

kubectl create configmap nginx-conf --from-file=nginx.conf

Now that you have a secret and an nginx configuration, it is time to create the replica‐
ted, stateless nginx layer:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: nginx-ssl
spec:
 replicas: 4
 template:
 metadata:
 labels:
 app: nginx-ssl
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 443
 volumeMounts:
 - name: conf
 mountPath: /etc/nginx
 - name: certs
 mountPath: /etc/certs
 volumes:
 - name: conf
 configMap:
 # This is the ConfigMap for nginx we created previously
 name: nginx-conf
 - name: certs
 secret:
 # This is the secret we created above
 secretName: ssl

56 | Chapter 5: Replicated Load-Balanced Services

To create the replicated nginx servers, you use:

kubectl create -f nginx-deploy.yaml

Finally, you can expose this nginx SSL server with a service:

kind: Service
apiVersion: v1
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx-ssl
 type: LoadBalancer
 ports:
 - protocol: TCP
 port: 443
 targetPort: 443

To create this load-balancing service run:

kubectl create -f nginx-service.yaml

If you create this service on a Kubernetes cluster that supports external load balanc‐
ers, this will create an externalized, public service that services traffic on a public IP
address.

To get this IP address, you can run:

kubectl get services

You should then be able to access the service with your web browser.

Summary
This chapter began with a simple pattern for replicated stateless services. Then we
saw how this pattern grows with two additional replicated load-balanced layers to
provide caching for performance, and SSL termination for secure web serving. This
complete pattern for stateless replicated serving is shown in Figure 5-8.

This complete pattern can be deployed into Kubernetes using three Deployments and
Service load balancers to connect the layers shown in Figure 5-8. The complete
source for these examples can be found at https://github.com/brendandburns/
designing-distributed-systems.

Summary | 57

https://github.com/brendandburns/designing-distributed-systems
https://github.com/brendandburns/designing-distributed-systems

CHAPTER 6

Sharded Services

In the previous chapter, we saw the value of replicating stateless services for reliabil‐
ity, redundancy, and scaling. This chapter considers sharded services. With the repli‐
cated services that we introduced in the preceding chapter, each replica was entirely
homogeneous and capable of serving every request. In contrast to replicated services,
with sharded services, each replica, or shard, is only capable of serving a subset of all
requests. A load-balancing node, or root, is responsible for examining each request
and distributing each request to the appropriate shard or shards for processing. The
contrast between replicated and sharded services is represented in Figure 6-1.

Figure 6-1. Replicated service versus sharded service

Replicated services are generally used for building stateless services, whereas sharded
services are generally used for building stateful services. The primary reason for
sharding the data is because the size of the state is too large to be served by a single
machine. Sharding enables you to scale a service in response to the size of the state
that needs to be served.

Sharded Caching
To completely illustrate the design of a sharded system, this section provides a deep
dive into the design of a sharded caching system. A sharded cache is a cache that sits

59

between the user requests and the actually frontend implementation. A high-level
diagram of the system is shown in Figure 6-2.

Figure 6-2. A sharded cache

In Chapter 3, we discussed how an ambassador could be used to distribute data to a
sharded service. This section discusses how to build that service. When designing a
sharded cache, there are a number of design aspects to consider:

• Why you might need a sharded cache
• The role of the cache in your architecture
• Replicated, sharded caches
• The sharding function

Why You Might Need a Sharded Cache
As was mentioned in the introduction, the primary reason for sharding any service is
to increase the size of the data being stored in the service. To understand how this
helps a caching system, imagine the following system: Each cache has 10 GB of RAM
available to store results, and can serve 100 requests per second (RPS). Suppose then
that our service has a total of 200 GB possible results that could be returned, and an
expected 1,000 RPS. Clearly, we need 10 replicas of the cache in order to satisfy 1,000
RPS (10 replicas × 100 requests per second per replica). The simplest way to deploy
this service would be as a replicated service, as described in the previous chapter. But
deployed this way, the distributed cache can only hold a maximum of 5% (10 GB/200
GB) of the total data set that we are serving. This is because each cache replica is
independent, and thus each cache replica stores roughly the exact same data in the
cache. This is great for redundancy, but pretty terrible for maximizing memory uti‐
lization. If instead, we deploy a 10-way sharded cache, we can still serve the appropri‐

60 | Chapter 6: Sharded Services

ate number of RPS (10 × 100 is still 1,000), but because each cache serves a
completely unique set of data, we are able to store 50% (10 × 10 GB/200 GB) of the
total data set. This tenfold increase in cache storage means that the memory for the
cache is much better utilized, since each key exists only in a single cache.

The Role of the Cache in System Performance
In Chapter 5 we discussed how caches can be used to optimize end-user performance
and latency, but one thing that wasn’t covered was the criticality of the cache to your
application’s performance, reliability, and stability.

Put simply, the important question for you to consider is: If the cache were to fail,
what would the impact be for your users and your service?

When we discussed the replicated cache, this question was less relevant because the
cache itself was horizontally scalable, and failures of specific replicas would only lead
to transient failures. Likewise, the cache could be horizontally scaled in response to
increased load without impacting the end user.

This changes when you consider sharded caches. Because a specific user or request is
always mapped to the same shard, if that shard fails, that user or request will always
miss the cache until the shard is restored. Given the nature of a cache as transient
data, this miss is not inherently a problem, and your system must know how to recal‐
culate the data. However, this recalculation is inherently slower than using the cache
directly, and thus it has performance implications for your end users.

The performance of your cache is defined in terms of its hit rate. The hit rate is the
percentage of the time that your cache contains the data for a user request. Ulti‐
mately, the hit rate determines the overall capacity of your distributed system and
affects the overall capacity and performance of your system.

Imagine, if you will, that you have a request-serving layer that can handle 1,000 RPS.
After 1,000 RPS, the system starts to return HTTP 500 errors to users. If you place a
cache with a 50% hit rate in front of this request-serving layer, adding this cache
increases your maximum RPS from 1,000 RPS to 2,000 RPS. To understand why this
is true, you can see that of the 2,000 inbound requests, 1,000 (50%) can be serviced by
the cache, leaving 1,000 requests to be serviced by your serving layer. In this instance,
the cache is fairly critical to your service, because if the cache fails, then the serving
layer will be overloaded and half of all your user requests will fail. Given this, it likely
makes sense to rate your service at a maximum of 1,500 RPS rather than the full 2,000
RPS. If you do this, then you can sustain a failure of half of your cache replicas and
still keep your service stable.

But the performance of your system isn’t just defined in terms of the number of
requests that it can process. Your system’s end-user performance is defined in terms
of the latency of requests as well. A result from a cache is generally significantly faster

Sharded Caching | 61

than calculating that result from scratch. Consequently, a cache can improve the
speed of requests as well as the total number of requests processed. To see why this is
true, imagine that your system can serve a request from a user in 100 milliseconds.
You add a cache with a 25% hit rate that can return a result in 10 milliseconds. Thus,
the average latency for a request in your system is now 77.5 milliseconds. Unlike
maximum requests per second, the cache simply makes your requests faster, so there
is somewhat less need to worry about the fact that requests will slow down if the
cache fails or is being upgraded. However, in some cases, the performance impact can
cause too many user requests to pile up in request queues and ultimately time out. It’s
always recommended that you load test your system both with and without caches to
understand the impact of the cache on the overall performance of your system.

Finally, it isn’t just failures that you need to think about. If you need to upgrade or
redeploy a sharded cache, you can not just deploy a new replica and assume it will
take the load. Deploying a new version of a sharded cache will generally result in tem‐
porarily losing some capacity. Another, more advanced option is to replicate your
shards.

Replicated, Sharded Caches
Sometimes your system is so dependent on a cache for latency or load that it is not
acceptable to lose an entire cache shard if there is a failure or you are doing a rollout.
Alternatively, you may have so much load on a particular cache shard that you need
to scale it to handle the load. For these reasons, you may choose to deploy a sharded,
replicated service. A sharded, replicated service combines the replicated service pat‐
tern described in the previous chapter with the sharded pattern described in previous
sections. In a nutshell, rather than having a single server implement each shard in the
cache, a replicated service is used to implement each cache shard.

This design is obviously more complicated to implement and deploy, but it has sev‐
eral advantages over a simple sharded service. Most importantly, by replacing a single
server with a replicated service, each cache shard is resilient to failures and is always
present during failures. Rather than designing your system to be tolerant to perfor‐
mance degradation resulting from cache shard failures, you can rely on the perfor‐
mance improvements that the cache provides. Assuming that you are willing to over-
provision shard capacity, this means that it is safe for you to do a cache rollout during
peak traffic, rather than waiting for a quiet period for your service.

Additionally, because each replicated cache shard is an independent replicated ser‐
vice, you can scale each cache shard in response to its load; this sort of “hot sharding”
is discussed at the end of this chapter.

62 | Chapter 6: Sharded Services

Hands On: Deploying an Ambassador and Memcache for a Sharded
Cache
In Chapter 3 we saw how to deploy a sharded Redis service. Deploying a sharded
memcache is similar.

First, we will deploy memcache as a Kubernetes StatefulSet:

apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
 name: sharded-memcache
spec:
 serviceName: "memcache"
 replicas: 3
 template:
 metadata:
 labels:
 app: memcache
 spec:
 terminationGracePeriodSeconds: 10
 containers:
 - name: memcache
 image: memcached
 ports:
 - containerPort: 11211
 name: memcache

Save this to a file named memcached-shards.yaml and you can deploy this with
kubectl create -f memecached-shards.yaml. This will create three containers run‐
ning memcached.

As with the sharded Redis example, we also need to create a Kubernetes Service that
will create DNS names for the replicas we have created. The service looks like this:

apiVersion: v1
kind: Service
metadata:
 name: memcache
 labels:
 app: memcache
spec:
 ports:
 - port: 11211
 name: memcache
 clusterIP: None
 selector:
 app: memecache

Save this to a file named memcached-service.yaml and deploy it with kubectl create
-f memcached-service.yaml. You should now have DNS entries for

Sharded Caching | 63

memecache-0.memecache, memecache-1.memcache, etc. As with Redis, we can use
these names to configure twemproxy.

memcache:
 listen: 127.0.0.1:11211
 hash: fnv1a_64
 distribution: ketama
 auto_eject_hosts: true
 timeout: 400
 server_retry_timeout: 2000
 server_failure_limit: 1
 servers:
 - memcache-0.memcache:11211:1
 - memcache-1.memcache:11211:1
 - memcache-2.memcache:11211:1

In this config, you can see that we are serving the memcache protocol on localhost:
11211 so that the application container can access the ambassador. We will deploy
this into our ambassador pod using a Kubernetes ConfigMap object that we can create
with: kubectl create configmap --from-file=nutcracker.yaml twem-config.

Finally, all of the preparations are done, and we can deploy our ambassador example.
We define a pod that looks like this:

apiVersion: v1
kind: Pod
metadata:
 name: sharded-memcache-ambassador
spec:
 containers:
 # This is where the application container would go, for example
 # - name: nginx
 # image: nginx
 # This is the ambassador container
 - name: twemproxy
 image: ganomede/twemproxy
 command:
 - nutcracker
 - -c
 - /etc/config/nutcracker.yaml
 - -v
 - 7
 - -s
 - 6222
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: twem-config

64 | Chapter 6: Sharded Services

https://github.com/twitter/twemproxy

You can save this to a file named memcached-ambassador-pod.yaml, and then deploy
it with:

kubectl create -f memcached-ambassador-pod.yaml

Of course, we don’t have to use the ambassador pattern if we don’t want to. An alter‐
native is to deploy a replicated shard router service. There are trade-offs between
using an ambassador versus using a shard routing service. The value of the service is
a reduction of complexity. You don’t have to deploy the ambassador with every pod
that wants to access the sharded memcache service, it can be accessed via a named
and load-balanced service. The downside of a shared service is twofold. First, because
it is a shared service, you will have to scale it larger as demand load increases. Second,
using the shared service introduces an extra network hop that will add some latency
to requests and contribute network bandwith to the overall distributed system.

To deploy a shared routing service, you need to change the twemproxy configuration
slightly so that it listens on all interfaces, not just localhost:

memcache:
 listen: 0.0.0.0:11211
 hash: fnv1a_64
 distribution: ketama
 auto_eject_hosts: true
 timeout: 400
 server_retry_timeout: 2000
 server_failure_limit: 1
 servers:
 - memcache-0.memcache:11211:1
 - memcache-1.memcache:11211:1
 - memcache-2.memcache:11211:1

You can save this to a file named shared-nutcracker.yaml, and then create a corre‐
sponding ConfigMap using kubectl:

kubectl create configmap --from-file=shared-nutcracker.yaml shared-twem-config

Then you can turn up the replicated shard routing service as a Deployment:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: shared-twemproxy
spec:
 replicas: 3
 template:
 metadata:
 labels:
 app: shared-twemproxy
 spec:
 containers:
 - name: twemproxy
 image: ganomede/twemproxy

Sharded Caching | 65

 command:
 - nutcracker
 - -c
 - /etc/config/shared-nutcracker.yaml
 - -v
 - 7
 - -s
 - 6222
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: shared-twem-config

If you save this to shared-twemproxy-deploy.yaml, you can create the replicated shard
router using kubectl:

kubectl create -f shared-twemproxy-deploy.yaml

To complete the shard router, we have to declare a load balancer to process requests:

kind: Service
apiVersion: v1
metadata:
 name: shard-router-service
spec:
 selector:
 app: shared-twemproxy
 ports:
 - protocol: TCP
 port: 11211
 targetPort: 11211

This load balancer can be created using kubectl create -f shard-router-

service.yaml.

An Examination of Sharding Functions
So far we’ve discussed the design and deployment of both simple sharded and replica‐
ted sharded caches, but we haven’t spent very much time considering how traffic is
routed to different shards. Consider a sharded service where you have 10 independ‐
ent shards. Given some specific user request Req, how do you determine which shard
S in the range from zero to nine should be used for the request? This mapping is the
responsibility of the sharding function. A sharding function is very similar to a hash‐
ing function, which you may have encountered when learning about hashtable data
structures. Indeed, a bucket-based hashtable could be considered an example of a
sharded service. Given both Req and Shard, then the role of the sharding function is
to relate them together, specifically:

66 | Chapter 6: Sharded Services

www.allitebooks.com

http://www.allitebooks.org

Shard = ShardingFunction(Req)

Commonly, the sharding function is defined using a hashing function and the modulo
(%) operator. Hashing functions are functions that transform an arbitrary object into
an integer hash. The hash function has two important characteristics for our shard‐
ing:

Determinism
The output should always be the same for a unique input.

Uniformity
The distribution of outputs across the output space should be equal.

For our sharded service, determinism and uniformity are the most important charac‐
teristics. Determinism is important because it ensures that a particular request R
always goes to the same shard in the service. Uniformity is important because it
ensures that load is evenly spread between the different shards.

Fortunately for us, modern programming languages include a wide variety of high-
quality hash functions. However, the outputs of these hash functions are often signifi‐
cantly larger than the number of shards in a sharded service. Consequently, we use
the modulo operator (%) to reduce a hash function to the appropriate range. Return‐
ing to our sharded service with 10 shards, we can see that we can define our sharding
function as:

Shard = hash(Req) % 10

If the output of the hash function has the appropriate properties in terms of deter‐
minism and uniformity, those properties will be preserved by the modulo operator.

Selecting a Key
Given this sharding function, it might be tempting to simply use the hashing function
that is built into the programming language, hash the entire object, and call it a day.
The result of this, however, will not be a very good sharding function.

To understand this, consider a simple HTTP request that contains three things:

• The time of the request
• The source IP address from the client
• The HTTP request path (e.g., /some/page.html)

If we use a simple object-based hashing function, shard(request), then it is clear that
{12:00, 1.2.3.4, /some/file.html} has a different shard value than {12:01,

An Examination of Sharding Functions | 67

5.6.7.8, /some/file.html}. The output of the sharding function is different
because the client’s IP address and the time of the request are different between the
two requests. But of course, in most cases, the IP address of the client and the time of
the request don’t impact the response to the HTTP request. Consequently, instead of
hashing the entire request object, a much better sharding function would be
shard(request.path). When we use request.path as the shard key, then we map
both requests to the same shard, and thus the response to one request can be served
out of the cache to service the other.

Of course, sometimes client IP is important to the response that is returned from the
frontend. For example, client IP may be used to look up the geographic region that
the user is located in, and different content (e.g., different languages) may be returned
to different IP addresses. In such cases, the previous sharding function
shard(request.path) will actually result in errors, since a cache request from a
French IP address may be served a result page from the cache in English. In such
cases, the cache function is too general, as it groups together requests that do not have
identical responses.

Given this problem, it would be tempting then to define our sharding function as
shard(request.ip, request.path), but this sharding function has problems as well.
It will cause two different French IP addresses to map to different shards, thus result‐
ing in inefficient sharding. This shard function is too specific, as it fails to group
together requests that are identical. A better sharding function for this situation
would be:

shard(country(request.ip), request.path)

This first determines the country from the IP address, and then uses that country as
part of the key for the sharding function. Thus multiple requests from France will be
routed to one shard, while requests from the United States will be routed to a differ‐
ent shard.

Determining the appropriate key for your sharding function is vital to designing your
sharded system well. Determining the correct shard key requires an understanding of
the requests that you expect to see.

Consistent Hashing Functions
Setting up the initial shards for a new service is relatively straightforward: you set up
the appropriate shards and the roots to perform the sharding, and you are off to the
races. However, what happens when you need to change the number of shards in
your sharded service? Such “re-sharding” is often a complicated process.

To understand why this is true, consider the sharded cache previously examined. Cer‐
tainly, scaling the cache from 10 to 11 replicas is straightforward to do with a con‐

68 | Chapter 6: Sharded Services

tainer orchestrator, but consider the effect of changing the scaling function from
hash(Req) % 10 to hash(Req) % 11. When you deploy this new scaling function, a
large number of requests are going to be mapped to a different shard than the one
they were previously mapped to. In a sharded cache, this is going to dramatically
increase your miss rate until the cache is repopulated with responses for the new
requests that have been mapped to that cache shard by the new sharding function. In
the worst case, rolling out a new sharding function for your sharded cache will be
equivalent to a complete cache failure.

To resolve these kinds of problems, many sharding functions use consistent hashing
functions. Consistent hashing functions are special hash functions that are guaranteed
to only remap # keys / # shards, when being resized to # shards. For example, if we use
a consistent hashing function for our sharded cache, moving from 10 to 11 shards
will only result in remapping < 10% (K / 11) keys. This is dramatically better than
losing the entire sharded service.

Hands On: Building a Consistent HTTP Sharding Proxy
To shard HTTP requests, the first question to answer is what to use as the key for the
sharding function. Though there are several options, a good general-purpose key is
the request path as well as the fragment and query parameters (i.e., everything that
makes the request unique). Note that this does not include cookies from the user or
the language/location (e.g., EN_US). If your service provides extensive customization
to users or their location, you will need to include them in the hash key as well.

We can use the versatile nginx HTTP server for our sharding proxy.

worker_processes 5;
error_log error.log;
pid nginx.pid;
worker_rlimit_nofile 8192;

events {
 worker_connections 1024;
}

http {
 # define a named 'backend' that we can use in the proxy directive
 # below.
 upstream backend {
 # Has the full URI of the request and use a consistent hash
 hash $request_uri consistent
 server web-shard-1.web;
 server web-shard-2.web;
 server web-shard-3.web;
 }

 server {

An Examination of Sharding Functions | 69

 listen localhost:80;
 location / {
 proxy_pass http://backend;
 }
 }
}

Note that we chose to use the full request URI as the key for the hash and use the key
word consistent to indicate that we want to use a consistent hashing function.

Sharded, Replicated Serving
Most of the examples in this chapter so far have described sharding in terms of cache
serving. But, of course, caches are not the only kinds of services that can benefit from
sharding. Sharding is useful when considering any sort of service where there is more
data than can fit on a single machine. In contrast to previous examples, the key and
sharding function are not a part of the HTTP request, but rather some context for the
user.

For example, consider implementing a large-scale multi-player game. Such a game
world is likely to be far too large to fit on a single machine. However, players who are
distant from each other in this virtual world are unlikely to interact. Consequently,
the world of the game can be sharded across many different machines. The sharding
function is keyed off of the player’s location so that all players in a particular location
land on the same set of servers.

Hot Sharding Systems
Ideally the load on a sharded cache will be perfectly even, but in many cases this isn’t
true and “hot shards” appear because organic load patterns drive more traffic to one
particular shard.

As an example of this, consider a sharded cache for a user’s photos; when a particular
photo goes viral and suddenly receives a disproportionate amount of traffic, the cache
shard containing that photo will become “hot.” When this happens, with a replicated,
sharded cache, you can scale the cache shard to respond to the increased load.
Indeed, if you set up autoscaling for each cache shard, you can dynamically grow and
shrink each replicated shard as the organic traffic to your service shifts around. An
illustration of this process is shown in Figure 6-3. Initially the sharded service
receives equal traffic to all three shards. Then the traffic shifts so that Shard A is
receiving four times as much traffic as Shard B and Shard C. The hot sharding system
moves Shard B to the same machine as Shard C, and replicates Shard A to a second
machine. Traffic is now, once again, equally shared between replicas.

70 | Chapter 6: Sharded Services

Figure 6-3. An example of a hot sharded system: initially the shards are evenly dis‐
tributed, but when extra traffic comes to shard A, it is replicated to two machines, and
shards B and C are combined on a single machine

Hot Sharding Systems | 71

CHAPTER 7

Scatter/Gather

So far we’ve examined systems that replicate for scalability in terms of the number of
requests processed per second (the stateless replicated pattern), as well as scalability
for the size of the data (the sharded data pattern). In this chapter we introduce the
scatter/gather pattern, which uses replication for scalability in terms of time. Specifi‐
cally, the scatter/gather pattern allows you to achieve parallelism in servicing
requests, enabling you to service them significantly faster than you could if you had
to service them sequentially.

Like replicated and sharded systems, the scatter/gather pattern is a tree pattern with a
root that distributes requests and leaves that process those requests. However, in con‐
trast to replicated and sharded systems, with scatter/gather requests are simultane‐
ously farmed out to all of the replicas in the system. Each replica does a small amount
of processing and then returns a fraction of the result to the root. The root server
then combines the various partial results together to form a single complete response
to the request and then sends this request back out to the client. The scatter/gather
pattern is illustrated in Figure 7-1.

Scatter/gather is quite useful when you have a large amount of mostly independent
processing that is needed to handle a particular request. Scatter/gather can be seen as
sharding the computation necessary to service the request, rather than sharding the
data (although data sharding may be part of it as well).

73

Figure 7-1. A scatter/gather pattern

Scatter/Gather with Root Distribution
The simplest form of scatter/gather is one in which each leaf is entirely homogenous
but the work is distributed to a number of different leaves in order to improve the
performance of the request. This pattern is equivalent to solving an “embarassingly
parallel” problem. The problem can be broken up into many different pieces and each
piece can be put back together with all of the other pieces to form a complete answer.

To understand this in more concrete terms, imagine that you need to service a user
request R and it takes one minute for a single core to produce the answer A to this
request. If we program a multi-threaded application, we can parallelize this request
on a single machine by using multiple cores. Given this approach and a 30 core pro‐
cessor (yes, typically it would be a 32 core processor, but 30 makes the math cleaner),
we can reduce the time that it takes to process a single request down to 2 seconds (60
seconds of computation split across 30 threads for computation is equal to 2 sec‐
onds). But even two seconds is pretty slow to service a user’s web request. Addition‐
ally, truly achieving a completely parallel speed up on a single process is going to be
tricky as things like memory, network, or disk bandwidth start to become the bottle‐
neck. Instead of parallelizing an application across cores on a single machine, we can
use the scatter/gather pattern to parallelize requests across multiple processes on
many different machines. In this way, we can improve our overall latency requests,
since we are no longer bound by the number of cores we can get on a single machine,
as well as ensure that the bottleneck in our process continues to be CPU, since the
memory, network, and disk bandwidth are all spread across a number of different
machines. Additionally, because every machine in the scatter/gather tree is capable of
handling every request, the root of the tree can dynamically dispatch load to different
nodes at different times depending on their responsiveness. If, for some reason, a par‐
ticular leaf node is responding more slowly than other machines (e.g., it has a noisy

74 | Chapter 7: Scatter/Gather

neighbor process that is interfering with resources), then the root can dynamically
redistribute load to assure a fast response.

Hands On: Distributed Document Search
To see an example of scatter/gather in action, consider the task of searching across a
large database of documents for all documents that contain the words “cat” and “dog.”
One way to perform this search would be to open up all of the documents, read
through the entire set, searching for the words in each document, and then return to
the user the set of documents that contain both words.

As you might imagine, this is quite a slow process because it requires opening and
reading through a large number of files for each request. To make request processing
faster, you can build an index. The index is effectively a hashtable, where the keys are
individual words (e.g., “cat”) and the values are a list of documents containing that
word.

Now, instead of searching through every document, finding the documents that
match any one word is as easy as doing a lookup in this hashtable. However, we have
lost one important ability. Remember that we were looking for all documents that
contained “cat” and “dog.” Since the index only has single words, not conjunctions of
words, we still need to find the documents that contain both words. Luckily, this is
just an intersection of the sets of documents returned for each word.

Given this approach, we can implement this document search as an example of the
scatter/gather pattern. When a request comes in to the document search root, it
parses the request and farms out two leaf machines (one for the word “cat” and one
for the word “dog”). Each of these machines returns a list of documents that match
one of the words, and the root node returns the list of documents containing both
“cat” and “dog.”

A diagram of this process is shown in Figure 7-2: the leaf returns {doc1, doc2,
doc4} for “cat” and {doc1, doc3, doc4} for “dog,” so the root finds the intersection
and returns {doc1, doc4}.

Scatter/Gather with Root Distribution | 75

Figure 7-2. Example of a term-sharded scatter/gather system

Scatter/Gather with Leaf Sharding
While applying the replicated data scatter/gather pattern allows you to reduce the
processing time required for handling user requests, it doesn’t allow you to scale
beyond an amount of data that can be held in the memory or disk of a single
machine. Much like the replicated serving pattern that was previously described, it is
simple to build a replicated scatter/gather system. But at a certain data size, it is neces‐
sary to introduce sharding in order to build a system that can hold more data than
can be stored on a single machine.

Previously, when sharding was introduced to scale replicated systems, the sharding
was done at a per-request level. Some part of the request was used to determine
where the request was sent. That replica then handled all of the processing for the
request and the response was handed back to the user. Instead, with scatter/gather
sharding, the request is sent to all of the leaf nodes (or shards) in the system. Each
leaf node processes the request using the data that it has loaded in its shard. This par‐
tial response is then returned to the root node that requested data, and that root node
merges all of the responses together to form a comprehensive response for the user.

As a concrete example of this sort of architecture, consider implementing search
across a very large document set (all patents in the world, for example); in such a
case, the data is too large to fit in the memory of a single machine, so instead the data
is sharded across multiple replicas. For example, patents 0-100,000 might be on the
first machine, 100,001-200,000 on the next machine, and so forth. (Note that this is
not actually a good sharding scheme since it will continually force us to add new
shards as new patents are registered. In practice, we’d likely use the patent number
modulo the total number of shards.) When a user submits a request to find a particu‐
lar word (e.g., “rockets”) in all of the patents in the index, that request is sent to each

76 | Chapter 7: Scatter/Gather

shard, which searches through it’s patent shard for patents which match the word in
the query. Any matches that are found are returned to the root node in response to
the shard request. The root node then collates all of these responses together into a
single response that contains all the patents that match the particular word. The oper‐
ation of this search index is illustrated in Figure 7-3.

Hands On: Sharded Document Search
The previous example scattered the different term requests across the cluster, but this
only works if all of the documents are present on all of the machines in the scatter/
gather tree. If there is not enough room for all of the documents in all of the leaves in
the tree, then sharding must be used to put different sets of documents onto different
leaves.

This means that when a user makes a request for all documents that match the words
“cat” and “dog,” the request is actually sent out to every leaf in the scatter/gather sys‐
tem. Each leaf node returns the set of documents that it knows about that matches
“cat” and “dog.” Previously, the root node was responsible for performing the inter‐
section of the two sets of documents returned for two different words. In the sharded
case, the root node is responsible for generating the union of all of the documents
returned by all of the different shards and returning this complete set of documents
back up to the user.

In Figure 7-3, the first leaf serves documents 1 through 10 and returns {doc1, doc5}.
The second leaf serves documents 11 through 20 and returns {doc15}. The third leaf
serves documents 21 through 30 and returns {doc22, doc28}. The root combines all
of these responses together into a single response and returns {doc1, doc5, doc15,
doc22, doc28}.

Figure 7-3. Conjunctive query executing in a scatter/gather search system

Scatter/Gather with Leaf Sharding | 77

Choosing the Right Number of Leaves
It might seem that in the scatter/gather pattern, replicating out to a very large number
of leaves would always be a good idea. You parallelize your computation and conse‐
quently reduce the clock time required to process any particular request. However,
increased parallelization comes at a cost, and thus choosing the right number of leaf
nodes in the scatter/gather pattern is critical to designing a performant distributed
system.

To understand how this can happen, it’s worth considering two things. The first is
that processing any particular request has a certain amount of overhead. This is the
time spent parsing a request, sending HTTP across the wire, and so forth. In general,
the overhead due to system request handling is constant and significantly less than
the time spent in user code processing the request. Consequently, this overhead can
generally be ignored when assessing the performance of the scatter/gather pattern.
However, it is important to understand that the cost of this overhead scales with the
number of leaf nodes in the scatter/gather pattern. Thus, even though it is low cost, as
parallelization continues, this overhead eventually dominates the compute cost of
your business logic. This means that the gains of parallelization are asymptotic.

In addition to the fact that adding more leaf nodes may not actually speed up pro‐
cessing, scatter/gather systems also suffer from the “straggler” problem. To under‐
stand how this works, it is important to remember that in a scatter/gather system, the
root node waits for requests from all of the leaf nodes to return before sending a
response back to the end user. Since data from every leaf node is required, the overall
time it takes to process a user request is defined by the slowest leaf node that sends a
response. To understand the impact of this, imagine that we have a service that has a
99th percentile latency of 2 seconds. This means that on average one request out of
every 100 has a latency of 2 seconds, or put another way, there is a 1% chance that a
request will take 2 seconds. This may be totally acceptable at first glance: a single user
out of 100 has a slow request. However, consider how this actually works in a scatter/
gather system. Since the time of the user request is defined by the slowest response,
we need to consider not a single request but all requests scattered out to the various
leaf nodes.

Let’s see what happens when we scatter out to five leaf nodes. In this situation, there is
a 5% chance that one of these five scatter requests has a latency of 2 seconds (0.99 ×
0.99 × 0.99 × 0.99 × 0.99 == 0.95). This means that our 99th percentile latency for
individual requests becomes a 95th percentile latency for our complete scatter/gather
system. And it only gets worse from there: if we scatter out to 100 leaves, then we are
more or less guaranteeing that our overall latency for all requests will be 2 seconds.

78 | Chapter 7: Scatter/Gather

Together, these complications of scatter/gather systems lead us to some conclusions:

• Increased parallelism doesn’t always speed things up because of overhead on each
node.

• Increased parallelism doesn’t always speed things up because of the straggler
problem.

• The performance of the 99th percentile is more important than in other systems
because each user request actually becomes numerous requests to the service.

The same straggler problem applies to availability. If you issue a request to 100 leaf
nodes, and the probability that any leaf node failing is 1 in 100, you are again practi‐
cally guaranteed to fail every single user request.

Scaling Scatter/Gather for Reliability and Scale
Of course, just as with a sharded system, having a single replica of a sharded scatter/
gather system is likely not the desirable design choice. A single replica means that if it
fails, all scatter/gather requests will fail for the duration that the shard is unavailable
because all requests are required to be processed by all leaf nodes in the scatter/gather
pattern. Likewise, upgrades will take out a percentage of your shards, so an upgrade
while under user-facing load is no longer possible. Finally, the computational scale of
your system will be limited by the load that any single node is capable of achieving.
Ultimately, this limits your scale, and as we have seen in previous sections, you can‐
not simply increase the number of shards in order to improve the computational
power of a scatter/gather pattern.

Given these challenges of reliability and scale, the correct approach is to replicate
each of the individual shards so that instead of a single instance at each leaf node,
there is a replicated service that implements each leaf shard. This replicated, sharded
scatter/gather pattern is shown in Figure 7-4.

Scaling Scatter/Gather for Reliability and Scale | 79

Figure 7-4. A sharded, replicated scatter/gatther system

Built this way, each leaf request from the root is actually load balanced across all
healthy replicas of the shard. This means that if there are any failures, they won’t
result in a user-visible outage for your system. Likewise, you can safely perform an
upgrade under load, since each replicated shard can be upgraded one replica at a
time. Indeed, you can perform the upgrade across multiple shards simultaneously,
depending on how quickly you want to perform the upgrade.

80 | Chapter 7: Scatter/Gather

CHAPTER 8

Functions and Event-Driven Processing

So far, we have examined design for systems with long-running computation. The
servers that handle user requests are always up and running. This pattern is the right
one for many applications that are under heavy load, keep a large amount of data in
memory, or require some sort of background processing. However, there is a class of
applications that might only need to temporarily come into existence to handle a sin‐
gle request, or simply need to respond to a specific event. This style of request or
event-driven application design has flourished recently as large-scale public cloud
providers have developed function-as-a-service (FaaS) products. More recently, FaaS
implementations have also emerged running on top of cluster orchestrators in private
cloud or physical environments. This chapter describes emerging architectures for
this new style of computing. In many cases, FaaS is a component in a broader archi‐
tecture rather than a complete solution.

Oftentimes, FaaS is referred to as serverless computing. And while
this is true (you don’t see the servers in FaaS) it’s worth differentiat‐
ing between event-driven FaaS and the broader notion of serverless
computing. Indeed, serverless computing can apply to a wide vari‐
ety of computing services; for example, a multi-tenant container
orchestrator (container-as-a-service) is serverless but not event-
driven. Conversely, an open source FaaS running on a cluster of
physical machines that you own and administer is event-driven but
not serverless. Understanding this distinction enables you to deter‐
mine when event-driven, serverless, or both is the right choice for
your application.

81

Determining When FaaS Makes Sense
As with many tools for developing a distributed system, it can be tempting to see a
particular solution like event-driven processing as a universal hammer. However, the
truth is that it is best suited to a particular set of problems. Within a particular con‐
text it is a powerful tool, but stretching it to fit all applications or systems will lead to
overly complicated, brittle designs. Especially since FaaS is such a new computing
tool, before discussing specific design patterns, it is worth discussing the benefits,
limitations, and optimal situations for employing event-driven computing.

The Benefits of FaaS
The benefits of FaaS are primarily for the developer. It dramatically simplifies the dis‐
tance from code to running service. Because there is no artifact to create or push
beyond the source code itself, FaaS makes it simple to go from code on a laptop or
web browser to running code in the cloud.

Likewise, the code that is deployed is managed and scaled automatically. As more
traffic is loaded onto the service, more instances of the function are created to handle
that increase in traffic. If a function fails due to application or machine failures, it is
automatically restarted on some other machine.

Finally, much like containers, functions are an even more granular building block for
designing distributed systems. Functions are stateless and thus any system you build
on top of functions is inherently more modular and decoupled than a similar system
built into a single binary. But, of course, this is also the challenge of developing sys‐
tems in FaaS. The decoupling is both a strength and a weakness. The following sec‐
tion describes some of the challenges that come from developing systems using FaaS.

The Challenges of FaaS
As described in the previous section, developing systems using FaaS forces you to
strongly decouple each piece of your service. Each function is entirely independent.
The only communication is across the network, and each function instance cannot
have local memory, requiring all states to be stored in a storage service. This forced
decoupling can improve the agility and speed with which you can develop services,
but it can also significantly complicate the operations of the same service.

In particular, it is often quite difficult to obtain a comprehensive view of your service,
determine how the various functions integrate with one another, and understand
when things go wrong, and why they go wrong. Additionally, the request-based and
serverless nature of functions means that certain problems are quite difficult to
detect. As an example, consider the following functions:

82 | Chapter 8: Functions and Event-Driven Processing

• functionA() which calls functionB()
• functionB() which calls functionC()
• functionC() which calls back to functionA()

Now consider what happens when a request comes into any of these functions: it
kicks off an infinite loop that only terminates when the original request times out
(and possibly not even then) or when you run out of money to pay for requests in the
system. Obviously, the above example is quite contrived, but it is actually quite diffi‐
cult to detect in your code. Since each function is radically decoupled from the other
functions, there is no real representation of the dependencies or interactions between
different functions. These problems are not unsolvable, and I expect that as FaaSs
mature, more analysis and debugging tools will provide a richer experience to under‐
stand how and why an application comprised of FaaS is performing the way that it
does.

For now, when adopting FaaS, you must be vigilant to adopt rigorous monitoring and
alerting for how your system is behaving so that you can detect situations and correct
them before they become significant problems. Of course, the complexity introduced
by monitoring flies somewhat in the face of the simplicity of deploying to FaaS, which
is friction that your developers must overcome.

The Need for Background Processing
FaaS is inherently an event-based application model. Functions are executed in
response to discrete events that occur and trigger the execution of the functions.
Additionally, because of the serverless nature of the implementation of theses serv‐
ices, the runtime of any particular function instance is generally time bounded. This
means that FaaS is usually a poor fit for situations that require processing. Examples
of such background processing might be transcoding a video, compressing log files,
or other sorts of low-priority, long-running computations. In many cases, it is possi‐
ble to set up a scheduled trigger that synthetically generates events in your functions
on a particular schedule. Though this is a good fit for responding to temporal events
(e.g., firing a text-message alarm to wake someone up), it is still not sufficient infra‐
structure for generic background processing. To achieve that, you need to launch
your code in an environment that supports long-running processes. And this gener‐
ally means switching to a pay-per-consumption rather than pay-per-request model
for the parts of your application that do background processing.

The Need to Hold Data in Memory
In addition to the operational challenges, there are some architectural limitations that
make FaaS ill-suited for some types of applications. The first of these limitations is
the need to have a significant amount of data loaded into memory in order to process

Determining When FaaS Makes Sense | 83

user requests. There are a variety of services (e.g., serving a search index of docu‐
ments) that require a great deal of data to be loaded in memory in order to service
user requests. Even with a relatively fast storage layer, loading such data can take sig‐
nificantly longer than the desired time to service a user request. Because with FaaS,
the function itself may be dynamically spun up in response to a user request while the
user is waiting, the need to load a lot of detail may significantly impact the latency
that the user perceives while interacting with your service. Of course, once your FaaS
has been created, it may handle a large number of requests, so this loading cost can be
amortized across a large number of requests. But if you have a sufficient number of
requests to keep a function active, then it’s likely you are overpaying for the requests
you are processing.

The Costs of Sustained Request-Based Processing
The cost model of public cloud FaaS is based on per-request pricing. This approach is
great if you only have a few requests per minute or hour. In such a situation, you are
idle most of the time, and given a pay-per-request model, you are only paying for the
time when your service is actively serving requests. In contrast, if you service requests
via a long-running service either in a container or a virtual machine, then you are
always paying for processor cycles that is largely sitting around waiting for a user
request.

However, as a service grows, the number of requests that you are servicing grows to
the point where you can keep a processor continuously active servicing user requests.
At this point, the economics of a pay-per-request model start to become bad, and
only get worse because the cost of cloud virtual machines generally decreases as you
add more cores (and also via committed resources like reservations or sustained use
discounts), whereas the cost per-request largely grows linearly with the number of
requests.

Consequently, as your service grows and evolves, it’s highly likely that your use of
FaaS will evolve as well. One ideal way to scale FaaS is to run an open source FaaS
that runs on a container orchestrator like Kubernetes. That way, you can still take
advantage of the developer benefits of FaaS, while taking advantage of the pricing
models of virtual machines.

Patterns for FaaS
In addition to understanding the trade-offs in deploying event-driven or FaaS archi‐
tectures as part of your distributed system, understanding the best ways to deploy
FaaS is critical to the design of a successful system. This section describes some can‐
onical patterns for incorporating FaaS.

84 | Chapter 8: Functions and Event-Driven Processing

The Decorator Pattern: Request or Response Transformation
FaaS is ideal for deploying simple functions that can take an input, transform it into
an output, and then pass it on to a different service. This general pattern can be used
to augment or decorate HTTP requests to or from a different service. A basic illustra‐
tion of this pattern is shown in Figure 8-1.

Figure 8-1. The decorator pattern applied to HTTP APIs

Interestingly, there are several analogies to this pattern in programming languages. In
particular, the decorator pattern from Python is a close analogue for the services that a
request or response decorator can perform. Because decoration transformations are
generally stateless, and also because they are often added after the fact to existing
code as the service evolves, they are ideal services to implement via FaaS. Addition‐
ally, the lightness of FaaS means that you can experiment with a variety of different
decorators before finally adopting one and pulling it more completely into the imple‐
mentation of the service.

A great example of the value of the decorator pattern is adding defaults to the input to
an HTTP RESTFul API. In many cases in the API, there are fields whose values
should have sane defaults if they are left empty. For example, you may want a field to
default to true, but it’s difficult to accomplish this in classical JSON, because the
default value for a field is null, which is generally understood to be false. To resolve
this, we can add defaulting logic either in the front of the API server or within the
application code itself (e.g., if (field == null) field = true). However, both of
these solutions are somewhat unappealing since the defaulting mechanism is fairly
conceptually independent from the handling of the request. Instead, we can use the
FaaS decorator pattern to transform the request in between the user and the service
implementation.

Given the previous discussion of the adapter pattern in the single-node section, you
may be wondering why we don’t simply package this defaulting as an adapter con‐

Patterns for FaaS | 85

tainer. And this is a totally reasonable approach, but it does mean that we are going to
couple the scale of the defaulting service with the API service itself. The defaulting is
actually a lightweight operation, and we are likely to need far fewer instances of it
than the service itself to handle the load.

For the examples in this chapter, we are going to use the kubeless
FaaS framework. Kubeless is deployed on top of the Kubernetes
container orchestration service. Assuming that you have provi‐
sioned a Kubernetes cluster, you can install Kubeless from its relea‐
ses page. Once you have the kubeless binary installed, you can
install it into your cluster with the following commands: kubeless
install.
Kubeless installs itself as a native Kubernetes third-party API. This
means that once it is installed, you can use the native kubectl
command-line tool. For example, you can see deployed functions
using kubectl get functions. Currently, you should have no
functions deployed.

Hands On: Adding Request Defaulting Prior to Request Processing
To demonstrate the utility of the decorator pattern for FaaS, consider the task of
adding default values to a RESTful function call if the values are missing. This is quite
straightforward to do using FaaS. We’ll write the defaulting function using the Python
programming language:

Simple handler function for adding default values
def handler(context):
 # Get the input value
 obj = context.json
 # If the 'name' field is not present, set it randomly
 if obj.get("name", None) is None:
 obj["name"] = random_name()
 # If the 'color' field is not present, set it to 'blue'
 if obj.get("color", None) is None:
 obj["color"] = "blue"
 # Call the actual API, potentially with the new default
 # values, and return the result
 return call_my_api(obj)

Save this function in a file named defaults.py. You obviously will want to update the
call_my_api code so that it points to the actual API you want to call. Once you have
finished writing the code, this defaulting function can be installed as a kubeless
function using:

kubeless function deploy add-defaults \
 --runtime python27 \
 --handler defaults.handler \

86 | Chapter 8: Functions and Event-Driven Processing

https://github.com/kubeless/kubeless
https://github.com/kubeless/kubeless/releases
https://github.com/kubeless/kubeless/releases

 --from-file defaults.py \
 --trigger-http

If you want to test the handling of this function, you can also use the kubeless tool:

kubeless function call add-defaults --data '{"name": "foo"}'

The decorator pattern shows just how easy it is to adapt and extend existing APIs
with additional features like validation or defaulting.

Handling Events
While most systems are request driven, handling a steady stream of user and API
requests, many other systems are more event-driven in nature. The differentiation, in
my mind at least, between a request and an event have to do with the notion of ses‐
sion. Requests are part of a larger series of interactions or sessions; generally each user
request is part of a larger interaction with a complete web application or API. Events,
as I see them, instead tend to be single-instance and asynchronous in nature. Events
are important and need to be properly handled, but they are fired off from a main
interaction and responded to some time later. Examples of events include a user sign‐
ing up for a new service (which might trigger a welcome email, someone uploading a
file to a shared folder (which might send notifications to everyone who has access to
the folder), or even a machine being about to reboot (which might notify an operator
or automated system to take appropriate action).

Because these events tend to be largely independent and stateless in nature, and
because the rate of events can be highly variable, they are ideal candidates for event-
driven and FaaS architectures. In this role, they are often deployed alongside a pro‐
duction application server as augmentation to the main user experience, or to handle
some sort of reactive, background processing. Additionally, because new events are
often dynamically added to the service, the lightweight nature of deploying functions
is a good match for defining new event handlers. Likewise, because each event is con‐
ceptually independent, the forced decoupling of a functions-based system actually
helps reduce the conceptual complexity by enabling a developer to focus on the steps
required to handle just a single type of event.

A concrete example of integrating an event-based component to an existing service is
implementing two-factor authentication. In this case, the event is the user logging
into a service. The service can generate an event for this action, fire it into a function-
based handler that takes the code and the user’s contact information, and sends the
two-factor code via text message.

Hands On: Implementing Two-Factor Authentication
Two-factor authentication requires that the user both have something that they know
(e.g., a password) as well as something that they possess (e.g., a phone) to be able to

Patterns for FaaS | 87

log in to the system. Two-factor authentication is significantly more secure than pass‐
words alone since it requires two different security compromises (a thief learning
your password and a thief stealing your phone) to enable a true security problem.

When considering how to implement two-factor authentication, one of the challenges
is how to handle the request to generate a random code and register it with the login
service as well as send the text message. It is possible to add this code to the main
login web server. But it is complicated and monolithic, and forces the act of sending a
text message, which can have some latency, to be inline with the code that renders the
login web page. This latency produces a substandard user experience.

A better option is to register a FaaS to asynchronously generate the random number,
register it with the login service, and send the number to the user’s phone. In this way,
the login server can simply fire an asynchronous web-hook request to a FaaS, and
that FaaS can handle the somewhat slow and asynchronous task of registering the
two-factor code and sending the text message.

To see how this works in practice, consider the following code:

def two_factor(context):
 # Generate a random six digit code
 code = random.randint(100000, 999999)

 # Register the code with the login service
 user = context.json["user"]
 register_code_with_login_service(user, code)

 # Use the twillio library to send texts
 account = "my-account-sid"
 token = "my-token"
 client = twilio.rest.Client(account, token)

 user_number = context.json["phoneNumber"]
 msg = "Hello {} your authentication code is: {}.".format(user, code)
 message = client.api.account.messages.create(to=user_number,
 from_="+12065251212",
 body=msg)
 return {"status": "ok"}

We can then register this FaaS with kubeless:

kubeless function deploy add-two-factor \
 --runtime python27 \
 --handler two_factor.two_factor \
 --from-file two_factor.py \
 --trigger-http

This function can then be made asynchronously from client-side JavaScript whenever
the user successfully provides their password. The web UX can then immediately dis‐
play a page to enter the code, and the user (once they receive the code as a text mes‐

88 | Chapter 8: Functions and Event-Driven Processing

sage) can supply it to the service, where the code has already been registered via our
FaaS.

Again, developing a simple, asynchronous, event-based service that is triggered
whenever a user logs in is made dramatically simpler using FaaS.

Event-Based Pipelines
There are some applications that are inherently easier to think about in terms of a
pipeline of decoupled events. These event pipelines often resemble the flowcharts of
old. They can be represented as a directed graph of connected event syncs. In the
event pipeline pattern, each node is a different function or webhook, and the edges
linking the graph together are HTTP or other network calls to the function/webhook.
In general, there is no shared state between the different pieces of the pipeline, but
there may be a context or other reference point that can be used to look up informa‐
tion in shared storage.

So what is the difference between this type of pipeline and a “microservices” architec‐
ture? There are two central differences. The first is the main difference between func‐
tions in general and long-running services, which is that an event-based pipeline is by
its very nature event-driven. Conversely, a microservices architecture features a col‐
lection of long-running services. Additionally, event-driven pipelines may be highly
asynchronous and diverse in the things that they connect together. For example,
while it is difficult to see how a human approving a ticket in a ticketing system like
Jira could be integrated into a microservices application, it’s quite easy to see how that
event could be incorporated into a event-driven pipeline.

As an example of this, imagine a pipeline in which the original event is code being
submitted into a source control system. This event then triggers a build. The build
may take multiple minutes to complete, and when it does, it fires an event to a build
analysis function. This function takes different actions if the build is successful or
fails. If the build succeeded, a ticket is created for a human to approve it to be pushed
to production. Once the ticket is closed, the act of closing is an event that triggers the
actual push to production. If the build failed, a bug is filed on the failure, and the
event pipeline terminates.

Hands On: Implementing a Pipeline for New-User Signup
Consider the task of implementing a new-user signup flow. When a new user account
is created, there are certain things that are always done, such as sending a welcome
email. And there are some things that are optionally done, such as registering a user
to receive product updates (sometimes known as “spam”) via their email.

One approach to implementing this logic would be to place everything into a single
monolithic user-creation server. However, this factoring means that a single team

Patterns for FaaS | 89

owns the entirety of the user-creation service, and that the entire experience is
deployed as a single service. Both of these mean that it is more difficult to perform
experiments or make changes to the user experience.

Consider, instead, implementing the user login experience as an event pipeline with a
series of FaaS. In this factoring, the user-creation function is actually unaware of the
details of what happens on user login. Instead, the main user-creation service simply
has two lists:

• A list of required actions (e.g., sending a welcome mail)
• A list of optional actions (e.g., subscribing the user to a mailing list)

Each of these actions is also implemented as a FaaS, and the list of actions is actually
just a list of webhooks. Consequently, the main user creation function looks like this:

def create_user(context):
 # For required event handlers, call them universally
 for key, value in required.items():
 call_function(value.webhook, context.json)

 # For optional event handlers, check and call them
 # conditionally
 for key, value in optional.items():
 if context.json.get(key, None) is not None:
 call_function(value.webhook, context.json)

Now we can also use FaaS to implement each of these handlers:

def email_user(context):
 # Get the user name
 user = context.json['username']

 msg = 'Hello {} thanks for joining my awesome service!".format(user)

 send_email(msg, contex.json['email])

def subscribe_user(context):
 # Get the user name
 email = context.json['email']
 subscribe_user(email)

Factored in this way, each FaaS is simple, containing only a few lines of code and
focused on implementing one specific piece of functionality. This microservices-
based approach is simple to write but might lead to complexity if we actually had to
deploy and manage three different microservices. This is where FaaS can shine, since
it makes it trivially easy to host these small code snippets. Additionally, by visualizing
our user-creation flow as an event-driven pipeline, it is also straightforward to have a

90 | Chapter 8: Functions and Event-Driven Processing

high-level understanding of what exactly happens on user login, simply by following
the flow of the context through the various functions in the pipeline.

Patterns for FaaS | 91

CHAPTER 9

Ownership Election

The previous patterns that we have seen have been about distributing requests in
order to scale requests per second, the state being served, or the time to process a
request. This final chapter on multi-node serving patterns is about how you scale
assignment. In many different systems, there is a notion of ownership where a specific
process owns a specific task. We have previously seen this in the context of sharded
and hot-sharded systems where specific instances owned specific sections of the shar‐
ded key space.

In the context of a single server, ownership is generally straightforward to achieve
because there is only a single application that is establishing ownership, and it can use
well-established in-process locks to ensure that only a single actor owns a particular
shard or context. However, restricting ownership to a single application limits scala‐
bility, since the task can’t be replicated, and reliability, since if the task fails, it is
unavailable for a period of time. Consequently, when ownership is required in your
system, you need to develop a distributed system for establishing ownership.

A general diagram of distributed ownership is shown in Figure 9-1. In the diagram,
there are three replicas that could be the owner or master. Initially, the first replica is
the master. Then that replica fails, and replica number three then becomes the master.
Finally, replica number one recovers and returns to the group, but replica three
remains as the master/owner.

93

Figure 9-1. A master election protocol in operation: initially the first master is selected,
but when it fails, the third master takes over

Often, establishing distributed ownership is both the most complicated and most
important part of designing a reliable distributed system.

Determining If You Even Need Master Election
The simplest form of ownership is to just have a single replica of the service. Since
there is only one instance running at a time, that instance implicitly owns everything
without any need for election. This has advantages of simplifying your application
and deployment, but it has disadvantages in terms of downtime and reliability. How‐
ever, for many applications, the simplicity of this singleton pattern may be worth the
reliability trade-off. Let’s look at this further.

Assuming that you run your singleton in a container orchestration system like Kuber‐
netes, you have the following guarantees:

• If the container crashes, it will automatically be restarted

94 | Chapter 9: Ownership Election

• If the container hangs, and you implement a health check, it will automatically be
restarted

• If the machine fails, the container will be moved to a different machine

Because of these guarantees, a singleton of a service running in a container orchestra‐
tor has pretty good uptime. To take the definition of “pretty good” a little further, let’s
examine what happens in each of these failure modes. If the container process fails or
the container hangs, your application will be restarted in a few seconds. Assuming
your container crashes once a day, this is roughly three to four nines of uptime (2 sec‐
onds of downtime / day ~= 99.99% uptime). If your container crashes less often, it’s
even better than that. If your machine fails, it takes a while for Kubernetes to decide
that the machine has failed and move it over to a different machine; let’s assume that
takes around 5 minutes. Given that, if every machine in your cluster fails every day,
then your service will have two nines of uptime. And honestly, if every machine in
your cluster fails every day, then you have way worse problems than the uptime of
your master-elected service.

It’s worth considering, of course, that there are more reasons for downtime than just
failures. When you are rolling out new software, it takes time to download and start
the new version. With a singleton, you cannot have both old and new versions run‐
ning at the same time, so you will need to take down the old version for the duration
of the upgrade, which may be several minutes if your image is large. Consequently, if
you deploy daily and it takes 2 minutes to upgrade your software, you will only be
able to run a two nines service, and if you deploy hourly, it won’t even be a single nine
service. Of course, there are ways that you can speed up your deployment by pre-
pulling the new image onto the machine before you run the update. This can reduce
the time it takes to deploy a new version to a few seconds, but the trade-off is added
complexity, which was what we were trying to avoid in the first place.

Regardless, there are many applications (e.g., background asynchronous processing)
where such an SLA is an acceptable trade-off for application simplicity. One of the
key components of designing a distributed system is deciding when the “distributed”
part is actually unnecessarily complex. But there are certainly situations where high
availability (four+ nines) is a critical component of the application, and in such sys‐
tems you need to run multiple replicas of the service, where only one replica is the
designated owner. The design of these types of systems is described in the sections
that follow.

The Basics of Master Election
Imagine that there is a service Foo with three replicas: Foo-1, Foo-2, and Foo-3. There
is also some object Bar that must only be “owned” by one of the replicas (e.g., Foo-1)
at a time. Often this replica is called the master, hence the term master election used to

The Basics of Master Election | 95

describe the process of how this master is selected as well as how a new master is
selected if that master fails.

There are two ways to implement this master election. This first is to implement a
distributed consensus algorithm like Paxos or RAFT, but the complexity of these
algorithms make them beyond the scope of this book and not worthwhile to imple‐
ment. Implementing one of these algorithms is akin to implementing locks on top of
assembly code compare-and-swap instructions. It’s an interesting exercise for an
undergraduate computer science course, but it is not something that is generally
worth doing in practice.

Fortunately, there are a large number of distributed key-value stores that have imple‐
mented such consensus algorithms for you. At a general level, these systems provide a
replicated, reliable data store and the primitives necessary to build more complicated
locking and election abstractions on top. Examples of these distributed stores include
etcd, ZooKeeper, and consul. The basic primitives that these systems provide is the
ability to perform a compare-and-swap operation for a particular key. If you haven’t
seen compare-and-swap before, it is basically an atomic operation that looks like this:

var lock = sync.Mutex{}
var store = map[string]string{}

func compareAndSwap(key, nextValue, currentValue string) (bool, error) {
 lock.Lock()
 defer lock.Unlock()
 if _, found := store[key]; found {
 if len(currentValue) == 0 {
 store[key] = nextValue
 return true, nil
 }
 return false, fmt.Errorf("Expected value %s for key %s, but
 found empty", currentValue, key)
 }
 if store[key] == currentValue {
 store[key] = nextValue
 return true, nil
 }
 return false, nil
}

Compare-and-swap atomically writes a new value if the existing value matches the
expected value. If the value doesn’t match, it returns false. If the value doesn’t exist
and currentValue is not null, it returns an error.

In addition to compare-and-swap, the key-value stores allow you to set a time-to-live
(TTL) for a key. Once the TTL expires, the key is set back to empty.

Put together, these functions are sufficient to implement a variety of distributed syn‐
chronization primitives.

96 | Chapter 9: Ownership Election

Hands On: Deploying etcd
etcd is a distributed lock server developed by CoreOS. It is robust and proven in pro‐
duction at high scale, and is used by a variety of projects including Kubernetes.

Deploying etcd has fortunately become quite easy due to the development of two dif‐
ferent open source projects:

• Helm: a Kubernetes package manager supported by Microsoft Azure
• The etcd operator developed by CoreOS

Operators are an interesting topic being explored by CoreOS. An
operator is an online program that runs inside your container
orchestrator with the express purpose of running one or more
applications. The operator is responsible for creating, scaling, and
maintaining the successful operation of the program. Users config‐
ure the application through a desired state API. For example, the
etcd operator is in charge of monitoring etcd itself. Operators are
still a new idea but represent an important new direction in build‐
ing reliable distributed systems.

To deploy the etcd operator for CoreOS, we’re going to use the helm package manage‐
ment tool. Helm is an open source package manager that is part of the Kubernetes
project, and was developed by Deis. Deis was acquired by Microsoft Azure in 2017
and Microsoft continues to support the further open source development of Helm.

If this is your first time using helm, you need to install the helm tool, following the
instructions here: https://github.com/kubernetes/helm/releases.

Once you have the helm tool installed in your environment, you can install the etcd
operator using helm, as follows:

Initialize helm
helm init

Install the etcd operator
helm install stable/etcd-operator

Once the operator is installed, it creates a custom Kubernetes resource to represent
the etcd cluster. The operator is running, but there are no etcd clusters yet. To create
an etcd cluster, you need to create a declarative configuration:

apiVersion: "etcd.coreos.com/v1beta1"
kind: "Cluster"
metadata:
 # Whatever name you want here
 name: "my-etcd-cluster"

The Basics of Master Election | 97

https://coreos.com/etcd/docs/latest/
https://helm.sh
https://coreos.com/blog/introducing-the-etcd-operator.html
https://github.com/kubernetes/helm/releases

spec:
 # 1, 3, 5 are the options for size
 size: 3
 # The version of etcd to install
 version: "3.1.0"

Save this configuration to etcd-cluster.yaml and then create the cluster using kubectl
create -f etcd-cluster.yaml.

Creating this cluster will cause the the operator to create pods for the replicas of the
etcd cluster. You can see the running replicas using:

kubectl get pods

Once all three replicas are running, you can get their endpoints using:

export ETCD_ENDPOINTS=kubectl get endpoints example-etcd-cluster
"-o=jsonpath={.subsets[*].addresses[*].ip}:2379,"

You can then store something into etcd using:

kubectl exec my-etcd-cluster-0000 -- sh -c "ETCD_API=3 etcdctl
--endpoints=${ETCD_ENDPOINTS} set foo bar"

Implementing Locks
The simplest form of synchronization is the mutual exclusion lock (aka Mutex). Any‐
one who has done concurrent programming on a single machine is familiar with
locks, and the same concept can be applied to distributed replicas. Instead of local
memory and assembly instructions, these distributed locks can be implemented in
terms of the distributed key-value stores described previously.

As with locks in memory, the first step is to acquire the lock:

func (Lock l) simpleLock() boolean {
 // compare and swap "1" for "0"
 locked, _ = compareAndSwap(l.lockName, "1", "0")
 return locked
}

But of course, it’s possible that the lock doesn’t already exist, because we are the first
to claim it, so we need to handle that case, too:

func (Lock l) simpleLock() boolean {
 // compare and swap "1" for "0"
 locked, error = compareAndSwap(l.lockName, "1", "0")
 // lock doesn't exist, try to write "1" with a previous value of
 // non-existent
 if error != nil {
 locked, _ = compareAndSwap(l.lockName, "1", nil)
 }
 return locked
}

98 | Chapter 9: Ownership Election

Traditional lock implementations block until the lock is acquired, so we actually want
something like this:

func (Lock l) lock() {
 while (!l.simpleLock()) {
 sleep(2)
 }
}

This implementation, though simple, has the problem that you will always wait at
least a second after the lock is released before you acquire the lock. Fortunately, many
key-value stores let you watch for changes instead of polling, so you can implement:

func (Lock l) lock() {
 while (!l.simpleLock()) {
 waitForChanges(l.lockName)
 }
}

Given this locking function, we can also implement unlock:

func (Lock l) unlock() {
 compareAndSwap(l.lockName, "0", "1")
}

You might now think that we are done, but remember that we are building this for a
distributed system. A process could fail in the middle of holding the lock, and at that
point there is no one left to release it. In such a situation, our system will become
stuck. To resolve this, we take advantage of the TTL functionality of the key-value
store. We change our simpleLock function so that it always writes with a TTL, so if
we don’t unlock within a given time, the lock will automatically unlock.

func (Lock l) simpleLock() boolean {
 // compare and swap "1" for "0"
 locked, error = compareAndSwap(l.lockName, "1", "0", l.ttl)
 // lock doesn't exist, try to write "1" with a previous value of
 // non-existent
 if error != nil {
 locked, _ = compareAndSwap(l.lockName, "1", nil, l.ttl)
 }
 return locked
}

When using distributed locks, it is critical to ensure that any pro‐
cessing you do doesn’t last longer than the TTL of the lock. One
good practice is to set a watchdog timer when you acquire the lock.
The watchdog contains an assertion that will crash your program if
the TTL of the lock expires before you have called unlock.

The Basics of Master Election | 99

By adding TTL to our locks, we have actually introduced a bug into our unlock func‐
tion. Consider the following scenario:

1. Process-1 obtains the lock with TTL t.
2. Process-1 runs really slowly for some reason, for longer than t.
3. The lock expires.
4. Process-2 acquires the lock, since Process-1 has lost it due to TTL.
5. Process-1 finishes and calls unlock.
6. Process-3 acquires the lock.

At this point, Process-1 believes that it has unlocked the lock that it held at the begin‐
ning; it doesn’t understand that it has actually lost the lock due to TTL, and in fact
unlocked the lock held by Process-2. Then Process-3 comes along and also grabs the
lock. Now both Process-2 and Process-3 both believe they own the lock, and hilarity
ensues.

Fortunately, the key-value store provides a resource version for every write that is per‐
formed. Our lock function can store this resource version and augment compareAnd
Swap to ensure that not only is the value as expected, but the resource version is the
same as when the lock operation occurred. This changes our simple Lock function to
look like this:

func (Lock l) simpleLock() boolean {
 // compare and swap "1" for "0"
 locked, l.version, error = compareAndSwap(l.lockName, "1", "0", l.ttl)
 // lock doesn't exist, try to write "1" with a previous value of
 // non-existent
 if error != null {
 locked, l.version, _ = compareAndSwap(l.lockName, "1", null, l.ttl)
 }
 return locked
}

And the unlock function then looks like this:

func (Lock l) unlock() {
 compareAndSwap(l.lockName, "0", "1", l.version)
}

This ensures that the lock is only unlocked if the TTL has not expired.

Hands On: Implementing Locks in etcd
To implement locks in etcd, you can use a key as the name of the lock and pre-
condition writes to ensure that only one lock holder is allowed at a time. For simplic‐
ity, we’ll use the etcdctl command line to lock and unlock the lock. In reality, of

100 | Chapter 9: Ownership Election

course, you would want to use a programming language; there are etcd clients for
most popular programming languages.

Let’s start by creating a lock named my-lock:

kubectl exec my-etcd-cluster-0000 -- sh -c \
 "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} set my-lock unlocked"

This creates a key in etcd named my-lock and sets the initial value to unlocked.

Now let’s suppose that Alice and Bob both want to take ownership of my-lock. Alice
and Bob both try to write their name to the lock, using a precondition that the value
of the lock is unlocked.

Alice first runs:

kubectl exec my-etcd-cluster-0000 -- sh -c \
 "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} \
 set --swap-with-value unlocked my-lock alice"

And obtains the lock. Now Bob attempts to obtain the lock:

kubectl exec my-etcd-cluster-0000 -- sh -c \
 "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} \
 set --swap-with-value unlocked my-lock bob"
Error: 101: Compare failed ([unlocked != alice]) [6]

You can see that Bob’s attempt to claim the lock has failed, since Alice currently owns
the lock.

To unlock the lock, Alice writes unlocked with a precondition value of alice:

kubectl exec my-etcd-cluster-0000 -- sh -c \
 "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} \
 set --swap-with-value alice my-lock unlocked"

Implementing Ownership
While locks are great for establishing temporary ownership of some critical compo‐
nent, sometimes you want to take ownership for the duration of the time that the
component is running. For example, in a highly available deployment of Kubernetes,
there are multiple replicas of the scheduler but only one replica is actively making
scheduling decisions. Further, once it becomes the active scheduler, it remains the
active scheduler until that process fails for some reason.

Obviously, one way to do this would be to extend the TTL for the lock to a very long
period (say a week or longer), but this has the significant downside that if the current
lock owner fails, a new lock owner wouldn’t be chosen until the TTL expired a week
later.

Instead, we need to create a renewable lock, which can be periodically renewed by the
owner so that the lock can be retained for an arbitrary period of time.

The Basics of Master Election | 101

We can extend the existing Lock that we defined previously to create a renewable lock,
which enables the lock holder to renew the lock:

func (Lock l) renew() boolean {
 locked, _ = compareAndSwap(l.lockName, "1", "1", l.version, ttl)
 return locked
}

Of course, you probably want to do this repeatedly in a separate thread so that you
hold onto the lock indefinitely. Notice that the lock is renewed every ttl/2 seconds;
that way there is significantly less risk that the lock will accidentally expire due to tim‐
ing subtleties:

for {
 if !l.renew() {
 handleLockLost()
 }
 sleep(ttl/2)
}

Of course, you need to implement the handleLockLost() function so that it termi‐
nates all activity that required the lock in the first place. In a container orchestration
system, the easiest way to do this may simply be to terminate the application and let
the orchestrator restart it. This is safe, because some other replica has grabbed the
lock in the interim, and when the restarted application comes back online it will
become a secondary listener waiting for the lock to become free.

Hands On: Implementing Leases in etcd
To see how we implement leases using etcd, we will return to our earlier locking
example and add the --ttl=<seconds> flag to our lock create and update calls. The
ttl flag defines a time after which the lock that we create is deleted. Because the lock
disappears after the ttl expires, instead of creating with the value of unlocked, we will
assume that the absence of the lock means that it is unlocked. To do this, we use the
mk command instead of the set command. etcdctl mk only succeeds if the key does
not currently exist.

Thus, to lock a leased lock, Alice executes:

kubectl exec my-etcd-cluster-0000 -- \
 sh -c "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} \
 --ttl=10 mk my-lock alice"

This creates a leased lock with a duration of 10 seconds.

For Alice to continue to hold the lock, she needs to execute:

kubectl exec my-etcd-cluster-0000 -- \
 sh -c "ETCD_API=3 etcdctl --endpoints=${ETCD_ENDPOINTS} \
 set --ttl=10 --swap-with-value alice my-lock alice"

102 | Chapter 9: Ownership Election

It may seem odd that Alice is continually rewriting her own name into the lock, but
this is the way the lock lease is extended beyond the 10-second TTL.

If, for some reason, the TTL expires, then the lock update will fail, and Alice will go
back to creating the lock using the etcd mk command, or Bob may also use the mk
command to obtain the lock for himself. Bob will likewise need to set and update the
lock every 10 seconds to maintain ownership.

Handling Concurrent Data Manipulation
Even with all of the locking mechanisms we have described, it is still possible for two
replicas to simultaneously believe they hold the lock for a very brief period of time.
To understand how this can happen, imagine that the original lock holder becomes so
overwhelmed that its processor stops running for minutes at a time. This can happen
on extremely overscheduled machines. In such a case, the lock will time out and
some other replica will own the lock. Now the processor frees up the replica that was
the original lock holder. Obviously, the handleLockLost() function will quickly be
called, but there will be a brief period where the replica still believes it holds the lock.
Although such an event is fairly unlikely, systems need to be built to be robust to such
occurrences. The first step to take is to double-check that the lock is still held, using a
function like this:

func (Lock l) isLocked() boolean {
 return l.locked && l.lockTime + 0.75 * l.ttl > now()
}

If this function executes prior to any code that needs to be protected by a lock, then
the probability of two masters being active is significantly reduced, but—it is impor‐
tant to note—it is not completely eliminated. The lock timeout could always occur
between the time that the lock was checked and the guarded code was executed. To
protect against these scenarios, the system that is being called from the replica needs
to validate that the replica sending a request is actually still the master. To do this, the
hostname of the replica holding the lock is stored in the key-value store in addition to
the state of the lock. That way, others can double-check that a replica asserting that it
is the master is in fact the master.

This system diagram is shown in Figure 9-2. In the first image, shard2 is the owner of
the lock, and when a request is sent to the worker, the worker double-checks with the
lock server and validates that shard2 is actually the current owner.

Handling Concurrent Data Manipulation | 103

Figure 9-2. A worker double-checking to validate that the requester who sent a message
is actually the current owner of the shard

In the second case, shard2 has lost ownership of the lock, but it has not yet realized
this so it continues to send requests to the worker node. This time, when the worker
node receives a request from shard2, it double-checks with the lock service and real‐
izes that shard2 is no longer the lock owner, and thus the requests are rejected.

To add one final further complicating wrinkle, it’s always possible that ownership
could be obtained, lost, and then re-obtained by the system, which could actually
cause a request to succeed when it should actually be rejected. To understand how
this is possible, consider the following sequence of events:

1. Shard-1 obtains ownership to become master.
2. Shard-1 sends a request R1 as master at time T1.
3. The network hiccups and delivery of R1 is delayed.
4. Shard-1 fails TTL because of the network and loses lock to Shard-2.
5. Shard-2 becomes master and sends a request R2 at time T2.
6. Request R2 is received and processed.
7. Shard-2 crashes and loses ownership back to Shard-1.
8. Request R1 finally arrives, and Shard-1 is the current master, so it is accepted, but

this is bad because R2 has already been processed.

Such sequences of events seem byzantine, but in reality, in any large system they
occur with disturbing frequency. Fortunately, this is similar to the case described pre‐
viously, which we resolved with the resource version in etcd. We can do the same
thing here. In addition to storing the name of the current owner in etcd, we also send
the resource version along with each request. So in the previous example, R1 becomes
(R1, Version1). Now when the request is received, the double-check validates both

104 | Chapter 9: Ownership Election

the current owner and the resource version of the request. If either match fails, the
request is rejected. This patches up this example.

Handling Concurrent Data Manipulation | 105

PART III

Batch Computational Patterns

The preceding chapter described patterns for reliable, long-running server applica‐
tions. This section describes patterns for batch processing. In contrast to long-
running applications, batch processes are expected to only run for a short period of
time. Examples of a batch process include generating aggregation of user telemetry
data, analyzing sales data for daily or weekly reporting, or transcoding video files.
Batch processes are generally characterized by the need to process large amounts of
data quickly using parallelism to speed up the processing. The most famous pattern
for distributed batch processing is the MapReduce pattern, which has become an
entire industry in itself. However, there are several other patterns that are useful for
batch processing, which are described in the following chapters.

CHAPTER 10

Work Queue Systems

The simplest form of batch processing is a work queue. In a work queue system, there
is a batch of work to be performed. Each piece of work is wholly independent of the
other and can be processed without any interactions. Generally, the goals of the work
queue system are to ensure that each piece of work is processed within a certain
amount of time. Workers are scaled up or scaled down to ensure that the work can be
handled. An illustration of a generic work queue is shown in Figure 10-1.

Figure 10-1. A generic work queue

A Generic Work Queue System
The work queue is an ideal way to demonstrate the power of distributed system pat‐
terns. Most of the logic in the work queue is wholly independent of the actual work
being done, and in many cases the delivery of the work can be performed in an inde‐
pendent manner as well. To illustrate this point, consider the work queue illustrated
in Figure 10-1. If we take a look at it again and identify functionality that can be pro‐
vided by a shared set of library containers, it becomes apparent that most of the
implementation of a containerized work queue can be shared across a wide variety of
users, as shown in Figure 10-2.

109

Figure 10-2. The same work queue as shown in Figure 10-1, but this time using reusable
containers. The reusable system containers are shown in white while the user-supplied
container is shown is grey/blue.

Building a reusable container-based work queue requires the definition of interfaces
between the generic library containers and the user-defined application logic. In the
containerized work queue, there are two interfaces: the source container interface,
which provides a stream of work items that need processing, and the worker con‐
tainer interface, which knows how to actually process a work item.

The Source Container Interface
To operate, every work queue needs a collection of work items that need processing.
There are many different sources of work items the work queue, depending on the
specific application of the work queue. However, once the set of items has been
obtained, the actual operation of the work queue is quite generic. Consequently, we
can separate the application-specific queue source logic from the generic queue pro‐
cessing logic. Given the previously defined patterns of container groups, this can be
seen as an example of the ambassador pattern defined previously. The generic work
queue container is the primary application container, and the application-specific
source container is the ambassador that proxies the generic work queue’s requests out
to the concrete definition of the work queue out in the real world. This container
group is illustrated in Figure 10-3.

Figure 10-3. The work queue container group

110 | Chapter 10: Work Queue Systems

Interestingly, while the ambassador container is clearly application-specific, there is
also a variety of generic implementations of the work queue source API. For example,
a source might be a list of pictures stored in a cloud storage API, a collection of files
stored on network storage, or a queue in an pub/sub system like Kafka or Redis. In
these cases, though the user chooses the particular work queue ambassador that fits
their scenario, they should be reusing a single generic “library” implementation of the
container itself. This minimizes work and maximizes code reuse.

Work queue API
Given this coordination between the generic work-queue manager and the
application-specific ambassador, we need a formal definition of the interface between
the two containers. Though there are a variety of different protocols, an HTTP REST‐
ful API is both the easiest to implement as well as the de facto standard for such an
interface. The master work queue expects the ambassador to implement the following
URLs:

• GET http://localhost/api/v1/items
• GET http://localhost/api/v1/items/<item-name>

You might wonder why we include a v1 in the API definition. Will
there ever be a v2 of this interface? It may not seem logical, but it
costs very little to version your API when you initially define it.
Refactoring versioning onto an API without it, on the other hand,
is very expensive. Consequently, it is a best practice to always add
versions to your APIs even if you’re not sure they will ever change.
Better safe than sorry.

The /items/ URL returns a complete list of all items:

{
 kind: ItemList,
 apiVersion: v1,
 items: [
 “item-1”,
 “item-2”,
 ….
]
}

The /items/<item-name> URL provides the details for a specific item:

{
 kind: Item,
 apiVersion: v1,
 data: {

A Generic Work Queue System | 111

 “some”: “json”,
 “object”: “here”,
 }
}

Importantly, you will notice that this API doesn’t have any affordances for recording
that a work item has been processed. We could have designed a more complicated
API and then pushed more implementation into the ambassador container, but
remember, the goal of this effort is to place as much of the generic implementation
inside of the generic work queue manager as possible. To that end, the work queue
manager itself is responsible for tracking which items have been processed and which
items remain to be processed.

The item details are obtained from this API and the item.data field is passed along
to the worker interface for processing.

The Worker Container Interface
Once a particular work item has been obtained by the work queue manager, it needs
to be processed by a worker. This is the second container interface in our generic
work queue. This container and interface are slightly different than the previous work
queue source interface for a few reasons. The first is that it is a one-off API: a single
call is made to begin the work, and no other API calls are made throughout the life of
the worker container. Secondly, the worker container is not inside a container group
with the work queue manager. Instead, it is launched via a container orchestration
API and scheduled to its own container group. This means that the work queue man‐
ager has to make a remote call to the worker container in order to start work. It also
means that we may need to be more careful about security to prevent a malicious user
in our cluster from injecting extra work into the system.

With the work queue source API, we used a simple HTTP-based API for sending
items back to the work queue manager. This was because we needed to make repeated
calls to the API, and security wasn’t a concern since everything was running on local‐
host. With the worker container, we only need to make a single call, and we want to
ensure that other users in the system can’t accidentally or maliciously add work to our
workers. Consequently, for the worker container, we will use a file-based API.
Namely, when the worker container is created, it will receive an environment variable
named WORK_ITEM_FILE; this will point to a file in the container’s local filesystem,
where the data field from a work item has been written to a file. Concretely, as you
will see below, this API can be implemented via a Kubernetes ConfigMap object that
can be mounted into a container group as a file, as illustrated in Figure 10-4.

112 | Chapter 10: Work Queue Systems

Figure 10-4. The work queue worker API

This file-based API pattern is also easier for the container to implement. Often a
work queue worker is simply a shell script across a few command line tools. In that
context, spinning up a web server to manage the work to perform is an unnecessary
complexity. As was true with the work queue source implementation, most of the
worker containers will be special-purpose container images built for specific work
queue applications, but there are also generic workers that can be applied to multiple
different work queue applications.

Consider the example of a work queue worker that downloads a file from cloud stor‐
age and runs a shell script with that file as input, and then copies its output back up
to cloud storage. Such a container can be mostly generic but then have the specific
script to execute supplied to it as a runtime parameter. In this way, most of the work
of file handling can be shared by multiple users/work queues and only the specifics of
file processing need to be supplied by the end user.

The Shared Work Queue Infrastructure
Given implementations of the two container interfaces described previously, what is
left to implement our reusable work queue implementation? The basic algorithm for
the work queue is fairly straightforward:

1. Load the available work by calling into source container interface.
2. Consult with work queue state to determine which work items have been pro‐

cessed or are being processed currently.
3. For these items, spawn jobs that use the worker container interface to process the

work item.
4. When one of these worker containers finishes successfully, record that the work

item has been completed.

While this algorithm is simple to express in words, it is somewhat more complicated
to implement in reality. Fortunately for us, the Kubernetes container orchestrator
contains a number of features that make it significantly easier to implement. Namely,

A Generic Work Queue System | 113

Kubernetes contains a Job object that allows for the reliable execution of the work
queue. The Job can be configured to either run the worker container once or to run it
until it completes successfully. If the worker container is set to run to completion,
then even if a machine in the cluster fails, the job will eventually be run to success.
This dramatically simplifies the task of building a work queue because the orchestra‐
tor takes on responsibility for the reliable operation of each work item.

Additionally, Kubernetes has annotations for each Job object that enable us to mark
each job with the work item it is processing. This enables us to understand which
items are being processed as well as those that have completed in either failure or suc‐
cess.

Put together, this means that we can implement a work queue on top of the Kuber‐
netes orchestration layer without using any storage of our own. This dramatically
simplifies the task of building the work queue infrastructure.

Thus, the expanded operation of our work queue container looks like this:

Repeat forever

Get the list of work items from the work source container interface.
Get the list of all jobs that have been created to service this work queue.
Difference these lists to find the set of work items that haven’t been processed.
For these unprocessed items, create new Job objects that spawn the appropriate
worker container.

Here is a simple Python script that implements this work queue:

import requests
import json
from kubernetes import client, config
import time

namespace = "default"

def make_container(item, obj):
 container = client.V1Container()
 container.image = "my/worker-image"
 container.name = "worker"
 return container

def make_job(item):
 response = requests.get("http://localhost:8000/items/{}".format(item))
 obj = json.loads(response.text)
 job = client.V1Job()
 job.metadata = client.V1ObjectMeta()
 job.metadata.name = item

114 | Chapter 10: Work Queue Systems

 job.spec = client.V1JobSpec()
 job.spec.template = client.V1PodTemplate()
 job.spec.template.spec = client.V1PodTemplateSpec()
 job.spec.template.spec.restart_policy = "Never"
 job.spec.template.spec.containers = [
 make_container(item, obj)
]
 return job

def update_queue(batch):
 response = requests.get("http://localhost:8000/items")

 obj = json.loads(response.text)
 items = obj['items']

 ret = batch.list_namespaced_job(namespace, watch=False)

 for item in items:
 found = False
 for i in ret.items:
 if i.metadata.name == item:
 found = True
 if not found:
 # This function creates the job object, omitted for
 # brevity
 job = make_job(item)
 batch.create_namespaced_job(namespace, job)

config.load_kube_config()
batch = client.BatchV1Api()

while True:
 update_queue(batch)
 time.sleep(10)

Hands On: Implementing a Video Thumbnailer
To provide a concrete example of how we might use a work queue, consider the task
of generating thumbnails for videos. These thumbnails help users determine which
videos they want to watch.

To implement this video thumbnailer, we need two different user containers. The first
is the work item source container. The simplest way for this to work is for the work
items to appear on a shared disk, such as a Network File System (NFS) share. The
work item source simply lists the files in this directory and returns them to the caller.
Here’s a simple node program that does this:

const http = require('http');
const fs = require('fs');

const port = 8080;

Hands On: Implementing a Video Thumbnailer | 115

const path = process.env.MEDIA_PATH;

const requestHandler = (request, response) => {
 console.log(request.url);
 fs.readdir(path + '/*.mp4', (err, items) => {
 var msg = {
 'kind': 'ItemList',
 'apiVersion': 'v1',
 'items': []
 };
 if (!items) {
 return msg;
 }
 for (var i = 0; i < items.length; i++) {
 msg.items.push(items[i]);
 }
 response.end(JSON.stringify(msg));
 });
}

const server = http.createServer(requestHandler);

server.listen(port, (err) => {
 if (err) {
 return console.log('Error starting server', err);
 }

 console.log(`server is active on ${port}`)
});

This source of defines the queue of movies to thumbnail. We use the ffmpeg utility to
actually perform the thumbnailing work.

You can create a container that uses the following as its command line:

ffmpeg -i ${INPUT_FILE} -frames:v 100 thumb.png

This command will take one frame every 100 frames (that’s the -frames:v 100 flag)
and output it as a PNG file (e.g., thumb1.png, thumb2.png, etc.).

You can implement this image processing using an existing ffmpeg Docker image.
The jrottenberg/ffmpeg Docker image is a popular choice.

By defining a simple source container as well as an even simpler worker container, we
can clearly see the power and utility of a generic, container-based queuing system. It
dramatically reduces the time/distance between an idea for implementing a work
queue and the corresponding concrete implementation.

116 | Chapter 10: Work Queue Systems

https://hub.docker.com/r/jrottenberg/ffmpeg/

Dynamic Scaling of the Workers
The previously described work queue is great for processing work items as quickly as
they arrive in the work queue, but this can lead to bursty resource loads being placed
onto a container orchestrator cluster. This is good if you have a lot of different work‐
loads that will burst at different times and thus keep your infrastructure evenly uti‐
lized. But if you don’t have a sufficient number of different workloads, this feast or
famine approach to scaling your work queue might require that you over-provision
resources to support the bursts that will lay idle (and cost too much money) while
you don’t have work to perform.

To address this problem, you can limit the overall number of Job objects that your
work queue is willing to create. This will naturally serve to limit the number of work
items you process in parallel and consequentially limit the maximum amount of
resources that you use at a particular time. However, doing this will increase the time
to completion (latency) for each work item being completed when under heavy load.
If the load is bursty, then this is probably okay because you can use the slack times to
catch up with the backlog that developed during a burst of usage. However, if your
steady-state usage is too high, your work queue may never be able to catch up and the
time to completion will simply get longer and longer.

When your work queue is faced with this situation, you need to have it dynamically
adjust itself to increase the parallelism that it is willing to create (and correspondingly
the resources it is willing to use) so that it can keep up with the incoming work. For‐
tunately, there are mathematical formulas that we can use to determine when we need
to dynamically scale up our work queue.

Consider a work queue where a new work item arrives an average of once every
minute, and each work item takes an average of 30 seconds to complete. Such a sys‐
tem is capable of keeping up with all of the work it receives. Even if a large batch of
work arrives all at once and creates a backlog, on average the work queue processes
two work items for every one work item that arrives, and thus it will be able to gradu‐
ally work through its backlog.

If, instead, a new work item arrives on average once every minute and it takes an
average of one minute to process each work item, then the system is perfectly bal‐
anced, but it does not handle variance well. It can catch up with bursts—but it will
take a while, and it has no slack or capacity to absorb a sustained increase in the rate
at which new work items arrive. This is probably not an ideal way to run, as some
safety margin for growth and other sustained increases in work (or unexpected slow‐
downs in processing) is needed to preserve a stable system.

Finally, consider a system in which a work item arrives every minute and each item
takes 2 minutes to process. In such a system, we are always losing ground. The queue

Dynamic Scaling of the Workers | 117

of work will grow without bound and the latency of any one item in the queue will
grow toward infinity (and our users will become very frustrated).

Thus, we can keep track of both of these metrics for our work queue, and the average
time between work items over an extended period of time (# work items / 24 hours)
will give us the interarrival time for new work. We can also keep track of the average
time to process any one item once we start working on it (not counting any time in
the queue). To have a stable work queue, we need to adjust the number of resources
so that the time to process any item is less than the interarrival time of new items. If
we are processing work items in parallel, we also divide the processing time for a
work item by the parallelism. For example, if each item takes one minute to process
but we process four items in parallel, the effective time to process one item is 15 sec‐
onds, and thus we can sustain an interarrival period of 16 or more seconds.

This approach makes it fairly straightforward to build an autoscaler to dynamically
size up our work queue. Sizing down the work queue is somewhat trickier, but you
can use the same math as well as a heuristic for the amount of spare capacity for the
safety margin you want to maintain. For example, you can reduce the parallelism
until the processing time for an item is 90% of the interarrival time for new items.

The Multi-Worker Pattern
One of the themes of this book has been the use of containers for encapsulation and
reuse of code. The same holds true for the work queue patterns described in this
chapter. In addition to the patterns for reusing containers for driving the work queue
itself, you can also reuse multiple different containers to compose a worker imple‐
mentation. Suppose, for example, that you have three different types of work that you
want to perform on a particular work queue item. For example, you might want to
detect faces in an image, tag those faces with identities, and then blur the faces in the
image. You could write a single worker to perform this complete set of tasks, but this
would be a bespoke solution that would not be reusable the next time you want to
identify something else, such as cars, yet still provide the same blurring.

To achieve this kind of code reuse, the multi-worker pattern is something of a speciali‐
zation of the adapter pattern described in previous chapters. In this case, the multi-
worker pattern transforms a collection of different worker containers into a single
unified container that implements the worker interface, yet delegates the actual work
to a collection of different, reusable containers. This process is illustrated in
Figure 10-5.

118 | Chapter 10: Work Queue Systems

Figure 10-5. The multi-worker aggregator pattern as a group of containers

Because of this code reuse, the composition of multiple different worker containers
means an increase in the reuse of code and a reduction in effort for people designing
batch-oriented distributed systems.

The Multi-Worker Pattern | 119

CHAPTER 11

Event-Driven Batch Processing

In the previous chapter, we saw a generic framework for work queue processing, as
well as a number of example applications of simple work queue processing. Work
queues are great for enabling individual transformations of one input to one output.
However, there are a number of batch applications where you want to perform more
than a single action, or you may need to generate multiple different outputs from a
single data input. In these cases, you start to link work queues together so that the
output of one work queue becomes the input to one or more other work queues, and
so on. This forms a series of processing steps that respond to events, with the events
being the completion of the preceding step in the work queue that came before it.

These sort of event-driven processing systems are often called workflow systems,
since there is a flow of work through a directed, acyclic graph that describes the vari‐
ous stages and their coordination. A basic illustration of such a system is shown in
Figure 11-1.

The most straightforward application of this type of system simply chains the output
of one queue to the input of the next queue. But as systems become more complicated
there are a series of different patterns that emerge for linking a series of work queues
together. Understanding and designing in terms of these patterns is important for
comprehending how the system is working. The operation of an event-driven batch
processor is similar to event-driven FaaS. Consequently, without an overall blueprint
for how the different event queues relate to each other, it can be hard to fully under‐
stand how the system is operating.

121

Figure 11-1. This workflow combines copying work into multiple queues (Stage 2a, 2b)
parallel processing of those queues, and combining the result back into a single queue
(Stage 3)

Patterns of Event-Driven Processing
Beyond the simple work queue described in the previous chapter, there are a number
of patterns for linking work queues together. The simplest pattern—one where the
output of a single queue becomes the input to a second queue—is straightforward
enough that we won’t cover it here. We will describe patterns that involve the coordi‐
nation of multiple different queues or the modification of the output of one or more
work queues.

Copier
The first pattern for coordinating work queues is a copier. The job of a copier is to
take a single stream of work items and duplicate it out into two or more identical
streams. This pattern is useful when there are multiple different pieces of work to be
done on the same work item. An example of this might be rendering a video. When
rendering a video, there are a variety of different formats that are useful depending on

122 | Chapter 11: Event-Driven Batch Processing

where the video is intended to be shown. There might be a 4-KB high-resolution for‐
mat for playing off of a hard drive, a 1080-pixel rendering for digital streaming, a
low-resolution format for streaming to mobile users on slow networks, and an ani‐
mated GIF thumbnail for displaying in a movie-picking user interface. All of these
work items can be modeled as separate work queues for each render, but the input to
each work item is identical. An illustration of the copier pattern applied to transcod‐
ing is shown in Figure 11-2.

Figure 11-2. The copier batch pattern for transcoding

Filter
The second pattern for event-driven batch processing is a filter. The role of a filter is
to reduce a stream of work items to a smaller stream of work items by filtering out
work items that don’t meet particular criteria. As an example of this, consider setting
up a batch workflow that handles new users signing up for a service. Some set of
those users will have ticked the checkbox that indicates that they wish to be contacted
via email for promotions and other information. In such a workflow, you can filter
the set of newly signed-up users to only be those who have explicitly opted into being
contacted.

Ideally you would compose a filter work queue source as an ambassador that wraps
up an existing work queue source. The original source container provides the com‐
plete list of items to be worked on, and the filter container then adjusts that list based
on the filter criteria and only returns those filtered results to the work queue infra‐
structure. An illustration of this use of the adapter pattern is shown in Figure 11-3.

Patterns of Event-Driven Processing | 123

Figure 11-3. An example of a filter pattern that removes all odd-numbered work items

Splitter
Sometimes you don’t want to just filter things out by dropping them on the floor, but
rather you have two different kinds of input present in your set of work items and
you want to divide them into two separate work queues without dropping any of
them. For this task, you want to use a splitter. The role of a splitter is to evaluate some
criteria—just like a filter—but instead of eliminating input, the splitter sends different
inputs to different queues based on that criteria.

An example of an application of the splitter pattern is processing online orders where
people can receive shipping notifications either by email or text message. Given a
work queue of items that have been shipped, the splitter divides it into two different
queues: one that is responsible for sending emails and another devoted to sending
text messages. A splitter can also be a copier if it sends the same output to multiple
queues, such as when a user selects both text messages and email notifications in the
previous example. It is interesting to note that a splitter can actually also be imple‐
mented by a copier and two different filters. But the splitter pattern is a more com‐
pact representation that captures the job of the splitter more succinctly. An example
of using the splitter pattern to send shipping notifications to users is shown in
Figure 11-4.

124 | Chapter 11: Event-Driven Batch Processing

Figure 11-4. An example of the batch splitter pattern splitting shipping notifications into
two different queues

Sharder
A slightly more generic form of splitter is a sharder. Much like the sharded server that
we saw in earlier chapters, the role of a sharder in a workflow is to divide up a single
queue into an evenly divided collection of work items based upon some sort of shard‐
ing function. There are several different reasons why you might consider sharding
your workflow. One of the first is for reliability. If you shard your work queue, then
the failure of a single workflow due to a bad update, infrastructure failure, or other
problem only affects a fraction of your service.

For example, imagine that you push a bad update to your worker container, which
causes your workers to crash and your queue to stop processing work items. If you
only have a single work queue that is processing items, then you will have a complete
outage for your service with all users affected. If, instead, you have sharded your work
queue into four different shards, you have the opportunity to do a staged rollout of
your new worker container. Assuming you catch the failure in the first phase of the
staged rollout, sharding your queue into four different shards means that only one
quarter of your users would be affected.

An additional reason to shard your work queue is to more evenly distribute work
across different resources. If you don’t really care which region or datacenter is used
to process a particular set of work items, you can use a sharder to evenly spread work
across multiple datacenters to even out utilization of all datacenters/regions. As with
updates, spreading your work queue across multiple failure regions also has the bene‐

Patterns of Event-Driven Processing | 125

fit of providing reliability against datacenter or region failures. An illustration of a
sharded queue when everything is working correctly is shown in Figure 11-5.

Figure 11-5. An example of the sharding pattern in a healthy operation

When the number of healthy shards is reduced due to failures, the sharding algo‐
rithm dynamically adjusts to send work to the remaining healthy work queues, even
if only a single queue remains. This is illustrated in Figure 11-6.

Figure 11-6. When one work queue is unhealthy the remaining work spills over to a dif‐
ferent queue

126 | Chapter 11: Event-Driven Batch Processing

Merger
The last pattern for event-driven or workflow batch systems is a merger. A merger is
the opposite of a copier; the job of a merger is to take two different work queues and
turn them into a single work queue. Suppose, for example, that you have a large num‐
ber of different source repositories all adding new commits at the same time. You
want to take each of these commits and perform a build-and-test for it. It is not scala‐
ble to create a separate build infrastructure for each source repository. We can model
each of the different source repositories as a separate work queue source that provides
a set of commits. We can transform all of these different work queue inputs into a
single merged set of inputs using a merger adapter. This merged stream of commits is
then the single source to the build system that performs the actual build. The merger
is another great example of the adapter pattern, though in this case, the adapter is
actually adapting multiple running source containers into a single merged source.
This multi-adapter pattern is shown in Figure 11-7.

Figure 11-7. Using multiple levels of containers to adapt multiple independent work
queues into a single shared queue

Patterns of Event-Driven Processing | 127

Hands On: Building an Event-Driven Flow for New User
Sign-Up
A concrete example of a workflow helps show how these patterns can be put together
to form a complete operating system. The problem this example will consider is a
new-user signup flow.

Imagine that our user acquisition funnel has two stages. The first is user verification.
After a new user signs up, the user then has to receive an email notification to validate
their email. Once the user validates their email, they are sent a confirmation email.
Then they are optionally registered for email, text message, both, or neither for notifi‐
cations.

The first step in the event-driven workflow is the generation of the verification email.
To achieve this reliably, we will use the shard pattern to shard users across multiple
different geographic failure zones. This ensures that we will continue to process new
user signups, even in the presence of partial failures. Each work queue shard sends a
verification email to the end user. At this point, this substage of the workflow is com‐
plete. This first stage of the flow is illustrated in Figure 11-8.

Figure 11-8. The first stage of the workflow for user sign-up

The workflow begins again when we receive a verification email from the end user.
These emails become new events in a separate (but clearly related) workflow that
sends welcome emails and sets up notifications. The first stage of this workflow is an
example of the copier pattern, where the user is copied into two work queues. The
first work queue is responsible for sending the welcome email, and the second work
queue is responsible for setting up user notifications.

Once the work items have been duplicated between the queues, the email-sending
queue simply takes care of sending an email message, and the workflow exits. But
remember that because of the use of the copier pattern, there is still an additional

128 | Chapter 11: Event-Driven Batch Processing

copy of the event active in our workflow. This copier triggers an additional work
queue to handle notification settings. This work queue feeds into an example of the
filter pattern, which splits the work queue into separate email and text message notifi‐
cation queues. These specific queues register the user for email, text, or both notifica‐
tions.

The remainder of this workflow is shown in Figure 11-9.

Figure 11-9. The user notification and welcome email work queue

Publisher/Subscriber Infrastructure
We have seen a variety of abstract patterns for linking together different event-driven
batch processing patterns. But when it comes time to actually build such a system, we
need to figure out how to manage the stream of data that passes through the event-
driven workflow. The simplest thing to do would be to simply write each element in
the work queue to a particular directory on a local filesystem, and then have each
stage monitor that directory for input. But of course doing this with a local filesystem
limits our workflow to operating on a single node. We can introduce a network file‐
system to distribute files to multiple nodes, but this introduces increasing complexity
both in our code and in the deployment of the batch workflow.

Instead, a popular approach to building a workflow like this is to use a publisher/
subscriber (pub/sub) API or service. A pub/sub API allows a user to define a collec‐

Publisher/Subscriber Infrastructure | 129

tion of queues (sometimes called topics). One or more publishers publishes messages
to these queues. Likewise, one or more subscribers is listening to these queues for new
messages. When a message is published, it is reliably stored by the queue and subse‐
quently delivered to subscribers in a reliable manner.

At this point, most public clouds feature a pub/sub API such as Azure’s EventGrid or
Amazon’s Simple Queue Service. Additionally, the open source Kafka project pro‐
vides a very popular pub/sub implementation that you can run on your own hard‐
ware as well as on cloud virtual machines. For the remainder of this overview of
pub/sub APIs we’ll use Kafka for our examples, but they are relatively simple to port
to alternate pub/sub APIs.

Hands On: Deploying Kafka
There are obviously many ways to deploy Kafka, and one of the easiest ways is to run
it as a container using a Kubernetes cluster and the Helm package manager.

Helm is a package manager for Kubernetes that makes it easy to deploy and manage
prepackaged, off-the-shelf applications like Kafka. If you don’t already have the helm
command line tool installed, you can install it from https://helm.sh.

Once the helm tool is on your machine, you need to initialize it. Initializing Helm
deploys a cluster-side component named tiller to your cluster and installs some
templates to your local filesystem:

helm init

Now that helm is initialized, you can install Kafka using this command:

helm repo add incubator http://storage.googleapis.com/kubernetes-charts-incubator
helm install --name kafka-service incubator/kafka

Helm templates have different levels of production hardening and
support. stable templates are the most strictly vetted and sup‐
ported, whereas incubator templates like Kafka are more experi‐
mental and have less production mileage. Regardless, incubator
templates are useful for quick proof of concepts as well as a place to
start from when implementing a production deployment of a
Kubernetes-based service.

Once you have Kafka up and running, you can create a topic to publish to. Generally
in batch processing, you’re going to use a topic to represent the output of one module
in your workflow. This output is likely to be the input for another module in the
workflow.

130 | Chapter 11: Event-Driven Batch Processing

https://kafka.apache.org
https://helm.sh

For example, if you are using the Sharder pattern described previously, you would
have a topic for each of the output shards. If you called your output Photos and you
chose to have three shards, then you would have three topics: Photos-1, Photos-2,
and Photos-3. Your sharder module would output messages to the appropriate topic,
after applying the sharding function.

Here’s how you create a topic. First, create a container in the cluster so that we can
access Kafka:

for x in 0 1 2; do
 kubectl run kafka --image=solsson/kafka:0.11.0.0 --rm --attach --command -- \
 ./bin/kafka-topics.sh --create --zookeeper kafka-service-zookeeper:2181 \
 --replication-factor 3 --partitions 10 --topic photos-$x
done

Note that there are two interesting parameters in addition to the topic name and the
zookeeper service. They are --replication-factor and --partitions. The replica‐
tion factor is how many different machines messages in the topic will be replicated to.
This is the redundancy that is available in case things crash. A value of 3 or 5 is rec‐
ommended. The second parameter is the number of partitions for the topic. The
number of partitions represents the maximum distribution of the topic onto multiple
machines for purposes of load balancing. In this case, since there are 10 partitions,
there can be at most 10 different replicas of the topic for load balancing.

Now that we have created a topic, we can send messages to that topic:

kubectl run kafka-producer --image=solsson/kafka:0.11.0.0 --rm -it --command -- \
 ./bin/kafka-console-producer.sh --broker-list kafka-service-kafka:9092 \
 --topic photos-1

Once that command is up and connected, you should see the Kafka prompt and you
can then send messages to the topic(s). To receive messages, you can run:

kubectl run kafka-consumer --image=solsson/kafka:0.11.0.0 --rm -it --command -- \
 ./bin/kafka-console-consumer.sh --bootstrap-server kafka-service-kafka:9092\
 --topic photos-1 \
 --from-beginning

Of course, running these command lines only gives you a taste of how to communi‐
cate via Kafka messages. To build a real-world event-driven batch processing system,
you would likely use a proper programming language and Kafka SDK to access the
service. But on the other hand, never underestimate the power of a good Bash script!

This section has shown how installing Kafka into your Kubernetes cluster can dra‐
matically simplify the task of building a work queue based system.

Hands On: Deploying Kafka | 131

CHAPTER 12

Coordinated Batch Processing

The previous chapter described a number of patterns for splitting and chaining
queues together to achieve more complex batch processing. Duplicating and produc‐
ing multiple different outputs is often an important part of batch processing, but
sometimes it is equally important to pull multiple outputs back together in order to
generate some sort of aggregate output. A generic illustration of such a pattern is
shown in Figure 12-1.

Figure 12-1. A generic parallel work distribution and result aggregation batch system

133

Probably the most canonical example of this aggregation is the reduce part of the
MapReduce pattern. It’s easy to see that the map step is an example of sharding a
work queue, and the reduce step is an example of coordinated processing that eventu‐
ally reduces a large number of outputs down to a single aggregate response. However,
there are a number of different aggregate patterns for batch processing, and this chap‐
ter discusses a number of them in addition to real-world applications.

Join (or Barrier Synchronization)
In previous chapters, we saw patterns for breaking up work and distributing it in par‐
allel on multiple nodes. In particular, we saw how a sharded work queue could dis‐
tribute work in parallel to a number of different work queue shards. However,
sometimes when processing a workflow, it is necessary to have the complete set of
work available to you before you move on to the next stage of the workflow.

One option for doing this was shown in the previous chapter, which was to merge
multiple queues together. However, merge simply blends the output of two work
queues into a single work queue for additional processing. While the merge pattern is
sufficient in some cases, it does not ensure that a complete dataset is present prior to
the beginning of processing. This means that there can be no guarantees about the
completeness of the processing being performed, as well as no opportunity to com‐
pute aggregate statistics for all of the elements that have been processed.

Instead, we need a stronger, coordinated primitive for batch data processing, and that
primitive is the join pattern. Join is similar to joining a thread. The basic idea is that
all of the work is happening in parallel, but work items aren’t released out of the join
until all of the work items that are processed in parallel are completed. This is also
generally known as barrier synchronization in concurrent programming. An illustra‐
tion of the join pattern for a coordinated batch is shown in Figure 12-2.

Coordination through join ensures that no data is missing before some sort of aggre‐
gation phase is performed (e.g., finding the sum of some value in a set). The value of
the join is that it ensures that all of the data in the set is present. The downside of the
join pattern is that it requires that all data be processed by a previous stage before
subsequent computation can begin. This reduces the parallelism that is possible in the
batch workflow, and thus increases the overall latency of running the workflow.

134 | Chapter 12: Coordinated Batch Processing

Figure 12-2. The join pattern for batch processing

Reduce
If sharding a work queue is an example of the map phase of the canonical map/reduce
algorithm, then what remains is the reduce phase. Reduce is an example of a coordi‐
nated batch processing pattern because it can happen regardless of how the input is
split up, and it is used similar to join; that is, to group together the parallel output of a
number of different batch operations on different pieces of data.

However, in contrast to the join pattern described previously, the goal of reduce is not
to wait until all data has been processed, but rather to optimistically merge together
all of the parallel data items into a single comprehensive representation of the full set.

With the reduce pattern, each step in the reduce merges several different outputs into
a single output. This stage is called “reduce” because it reduces the total number of
outputs. Additionally, it reduces the data from a complete data item to simply the
representative data necessary for producing the answer to a specific batch computa‐
tion. Because the reduce phase operates on a range of input, and produces a similar
output, the reduce phase can be repeated as many or as few times as necessary in
order to successfully reduce the output down to a single output for the entire data set.

Reduce | 135

This is a fortunate contrast to the join pattern, because unlike join, it means that
reduce can be started in parallel while there is still processing going on as part of the
map/shard phase. Of course, in order to produce a complete output, all of the data
must be processed eventually, but the ability to begin early means that the batch com‐
putation executes more quickly overall.

Hands On: Count
To understand how the reduce pattern works, consider the task of counting the num‐
ber of instances of a particular word in a book. We can first use sharding to divide up
the work of counting words into a number of different work queues. As an example,
we could create 10 different sharded work queues with 10 different people responsi‐
ble for counting words in each queue. We can shard the book among these 10 work
queues by looking at the page number. All pages that end in the number 1 will go to
the first queue, all pages that end in the number 2 will go to the second, and so forth.

Once all of the people have finished processing their pages, they write down their
results on a piece of paper. For example, they might write:

a: 50
the: 17
cat: 2
airplane: 1
...

This can be output to the reduce phase. Remember that the reduce pattern reduces by
combining two or more outputs into a single output.

Given a second output:

a: 30
the: 25
dog: 4
airplane: 2
...

The reduction proceeds by summing up all of the counts for the various words, in
this example producing:

a: 80
the 42
dog: 4
cat: 2
airplane: 3
...

It’s clear to see that this reduction phase can be repeated on the output of previous
reduce phases until there is only a single reduced output left. This is valuable since
this means that reductions can be performed in parallel.

136 | Chapter 12: Coordinated Batch Processing

Ultimately, in this example you can see that the output of the reduction will be a sin‐
gle output with the count of all of the various words that are present in the book.

Sum
A similar but slightly different form of reduction is the summation of a collection of
different values. This is like counting, but rather than simply counting one for every
value, you actually add together a value that is present in the original output data.

Suppose, for example, you want to sum the total population of the United States.
Assume that you will do this by measuring the population in every town and then
summing them all together.

A first step might be to shard the work into work queues of towns, sharded by state.
This is a great first sharding, but it’s clear that even when distributed in parallel, it
would take a single person a long time to count the number of people in every town.
Consequently, we perform a second sharding to another set of work queues, this time
by county.

At this point, we have parallelized first to the level of states, then to the level of coun‐
ties, and then each work queue in each county produces a stream of outputs of (town,
population) tuples.

Now that we are producing output, the reduce pattern can kick in.

In this case, the reduce doesn’t even really need to be aware of the two-level sharding
that we performed. It is sufficient for the reduce to simply grab two or more output
items, such as (Seattle, 4,000,000) and (Northampton, 25,000), and sum them
together to produce a new output (Seattle-Northampton, 4,025,000). It’s clear to
see that, like counting, this reduction can be performed an arbitrary number of times
with the same code running at each interval, and at the end, there will only be a single
output containing the complete population of the United States. Importantly, again,
nearly all of the computation required is happening in parallel.

Histogram
As a final example of the reduce pattern, consider that while we are counting the pop‐
ulation of the United States via parallel sharding/mapping and reducing, we also want
to build a model of the average American family. To do this, we want to develop a
histogram of family size; that is, a model that estimates the total number of families
with zero to 10 children. We will perform our multi-level sharding exactly as before
(indeed, we can likely use the same workers).

Reduce | 137

However, this time, the output of the data collection phase is a histogram per town.

0: 15%
1: 25%
2: 50%
3: 10%
4: 5%

From the previous examples, we can see that if we apply the reduce pattern, we
should be able to combine all of these histograms to develop a comprehensive picture
of the United States. At first blush, it may seem quite difficult to understand how to
merge these histograms, but when combined with the population data from the sum‐
mation example, we can see that if we multiply each histogram by its relative popula‐
tion, then we can obtain the total population for each item being merged. If we then
divide this new total by the sum of the merged populations, it is clear that we can
merge and update multiple different histograms into a single output. Given this, we
can apply the reduce pattern as many times as necessary until a single output is pro‐
duced.

Hands On: An Image Tagging and Processing Pipeline
To see how coordinated batch processing can be used to accomplish a larger batch
task, consider the job of tagging and processing a set of images. Let us assume that we
have a large collection of images of highways at rush hour, and we want to count both
the numbers of cars, trucks, and motorcycles, as well as distribution of the colors of
each of the cars. Let us also suppose that there is a preliminary step to blur the license
plates of all of the cars to preserve anonymity.

The images are delivered to us as a series of HTTPS URLs where each URL points to
a raw image. The first stage in the pipeline is to find and blur the license plates. To
simplify each task in the work queue, we will have one worker that detects a license
plate, and a second worker that blurs that location in the image. We will combine
these two different worker containers into a single container group using the multi-
worker pattern described in the previous chapter. This separation of concerns may
seem unnecessary, but it is useful given that the workers for blurring images can be
reused to blur other outputs (e.g., people’s faces).

Additionally, to ensure reliability and to maximize parallel processing, we will shard
the images across multiple worker queues. This complete workflow for sharded
image blurring is shown in Figure 12-3.

138 | Chapter 12: Coordinated Batch Processing

Figure 12-3. The sharded work queue and the multiple blurring shards

Once each image has been successfully blurred, we will upload it to a different loca‐
tion, and we will then delete the originals. However, we don’t want to delete the origi‐
nal until all of the images have been successfully blurred in case there is some sort of
catastrophic failure and we need to rerun this entire pipeline. Thus, to wait for all of
the blurring to complete, we use the join pattern to merge the output of all of the
sharded blurring work queues into a single queue that will only release its items after
all of the shards have completed the work.

Now we are ready to delete the original images as well as begin work on car model
and color detection. Again, we want to maximize the throughput of this pipeline, so
we will use the copier pattern from the previous chapter to duplicate the work queue
items to two different queues:

• A work queue that deletes the original images
• A work queue that identifies the type of vehicle (car, truck, motorcycle) and the

color of the vehicle

Figure 12-4 shows these stages of the processing pipeline.

Hands On: An Image Tagging and Processing Pipeline | 139

Figure 12-4. The output join, copier, deletion, and image recognition parts of the pipeline

Finally we need to design the queue that identifies vehicles and colors and aggregates
these statistics into a final count. To do this, we first again apply the shard pattern to
distribute the work out to a number of queues. Each of these queues has two different
workers: one that identifies the location and type of each vehicle and one that identi‐
fies the color of a region. We will again join these together using the multi-worker
pattern described in the previous chapter. As before, the separation of code into dif‐
ferent containers enables us to reuse the color detection container for multiple tasks
beyond identifying the color of the cars.

The output of this work queue is a JSON tuple that looks like this:

{
 "vehicles": {
 "car": 12,
 "truck": 7,
 "motorcycle": 4
 },
 "colors": {
 "white": 8,
 "black": 3,
 "blue": 6,
 "red": 6

140 | Chapter 12: Coordinated Batch Processing

 }
 }

This data represents the information found in a single image. To aggregate all of this
data together, we will use the reduce pattern described previously and made famous
by MapReduce to sum everything together just as we did in the count example above.
At the end, this reduce pipeline stage produces the final count of images and colors
found in the complete set of images.

Hands On: An Image Tagging and Processing Pipeline | 141

CHAPTER 13

Conclusion: A New Beginning?

Every company, regardless of its origins, is becoming a digital company. This trans‐
formation requires the delivery of APIs and services to be consumed by mobile appli‐
cations, devices in the internet of things (IoT), or even autonomous vehicles and
systems. The increasing criticality of these systems means that it is necessary for these
online systems to be built for redundancy, fault tolerance, and high availability. At the
same time, the requirements of business necessitate rapid agility to develop and roll
out new software, iterate on existing applications, or experiment with new user inter‐
faces and APIs. The confluence of these requirements has led to an order of magni‐
tude increase in the number of distributed systems that need to be built.

The task of building these systems is still far too difficult. The overall cost of develop‐
ing, updating, and maintaining such a system is far too high. Likewise, the set of peo‐
ple with the capabilities and skills to build such applications is far too small to address
the growing need.

Historically, when these situations presented themselves in software development and
technology, new abstraction layers and patterns of software development emerged to
make building software faster, easier, and more reliable. This first occurred with the
development of the first compilers and programming languages. Later, the develop‐
ment of object-oriented programming languages and managed code occurred. Like‐
wise, at each of these moments, these technical developments crystallized the
distillation of the knowledge and practices of experts into a series of algorithms and
patterns that could be applied by a much wider group of practitioners. Technological
advancement combined with the establishment of patterns democratized the process
of developing software and expanded the set of developers who could build applica‐
tions on the new platform. This in turn led to the development of more applications
and application diversity, which in turn expanded the market for these developer’s
skills.

143

Again, we find ourselves at a moment of technological transformation. The need for
distributed systems far exceeds our ability to deliver them. Fortunately, the develop‐
ment of technology has produced another set of tools to further expand the pool of
developers capable of building these distributed systems. The recent development of
containers and container orchestration has brought tools that enable rapid, easier
development of distributed systems. With luck, these tools, when combined with the
patterns and practices described in this book, can enhance and improve the dis‐
tributed systems built by current developers, and more importantly develop a whole
new expanded group of developers capable of building these systems.

Patterns like sidecars, ambassadors, sharded services, FaaS, work queues, and more
can form the foundation on which modern distributed systems are built. Distributed
system developers should no longer be building their systems from scratch as indi‐
viduals but rather collaborating together on reusable, shared implementations of can‐
onical patterns that form the basis of all of the systems we collectively deploy. This
will enable us to meet the demands of today’s reliable, scalable APIs and services and
empower a new set of applications and services for the future.

144 | Chapter 13: Conclusion: A New Beginning?

Index

A
adapter containers, 31, 36
adapter patterns, 31-39

about, 31
for health monitoring of application con‐

tainer, 36-39
for logging, 34-36
for monitoring, 32-34
rich health monitoring for MySQL, 36-39

algorithmic programming, 3
ambassador patterns, 21-29

basics, 21
for experimentation, 26-29
for request splitting, 26-29
for service brokering, 25
for sharded cache, 63-66
implementing 10% experiments, 27-29
implementing sharded Redis, 23-25
sharding a service with, 22-25
value of, 21

Apache Storm, 36
APIs

for microservices, 42
for sidecar containers, 17
pub/sub, 129

application containers
adapter container and, 31
adapters for health monitoring, 36-39
sidecar pattern, 11
with sidecar, 14

application-layer replicated services, 49
authentication, FaaS for, 87-89

B
background processing, FaaS and, 82
barrier synchronization, 134

(see also join pattern)
batch computational patterns

coordinated batch processing, 133-141
event-driven batch processing systems,

121-131
multi-node batch patterns, 107

best practices, patterns as collection of, 4
boundaries, 7

C
caching layer

deploying, 50-53
deploying nginx and SSL termination, 55-57
expanding, 53-57
for stateless service, 49-53
introducing, 49-57
rate limiting as denial-of-service defense, 54
SSL termination, 54-57

caching, sharded (see sharded caching)
compare-and-swap operation, 96
concurrent data manipulation, 103-105
configuration synchronization, 12
consensus algorithm, 96
consistent hashing function, 49
container group, 11
container images, 6
container patterns, single-node, 7-9
containerization, goals of, 7
containers

documentation, 18
modular, with sidecars, 14

145

parameterized, 17
coordinated batch processing, 133-141

counting example, 136
histograms with, 137
image tagging/processing pipeline, 138-141
join pattern, 134
reduce pattern, 135
summing with, 137

copier pattern, 122
CoreOS, 97

(see also etcd)
counting, coordinated batch processing for, 136

D
data manipulation, concurrent, 103-105
debugging, microservices-based systems and,

43
decorator pattern, 85
decoupling of microservices, 42
deep monitoring, 36-39
denial-of-service attacks, 54
dictionary-server service

caching layer deployment, 51-53
replicated service for, 47

distributed consensus algorithm, 96
distributed ownership, 93
distributed systems (generally)

current state of, viii
defined, 7
future of, 143
history of patterns in software development,

2-4
systems development history, 1
value of patterns, practices, and compo‐

nents, 4-6
Dockerfile, 19
document search

scatter/gather pattern for, 75
with leaf sharding, 77

documentation, sidecar container, 18
dynamic configuration, 12

E
etcd (distributed lock server), 97

implementing leases in, 102
implementing locks in, 100

event handling, FaaS and, 87-89
event-based pipelines

FaaS and, 89-91

for new-user signup, 89-91
event-driven batch processing systems, 121-131

copier pattern, 122
filter pattern, 123
for new-user signup, 128
Kafka deployment, 130
merger pattern, 127
patterns of, 122-127
publisher/subscriber infrastructure, 129
sharder, 125
splitter pattern, 124

event-driven FaaS, 81
event-driven processing, functions and, 81-91

(see also function-as-a-service)
events, requests vs., 87
experimentation

ambassador patterns for, 26-29
implementing 10% experiments, 27-29

F
filter pattern, 123
fluentd, 35
function-as-a-service (FaaS), 81-91

adding request defaulting prior to request
processing, 86

and need to hold data in memory, 83
and situations that require background pro‐

cessing, 82
benefits of, 82
challenges of, 82
costs of sustained request-based processing,

84
decorator pattern, 85
event-based pipelines, 89-91
handling events, 87-89
implementing two-factor authentication,

87-89
patterns for, 84-91
serverless computing and, 81
when to use, 82-84

G
Gamma, Erich, 3

H
hashing function

consistent, 49
sharding function and, 67

146 | Index

health monitoring
for MySQL, 37-39
of application containers, 36-39

Helm, 97, 130
histograms, 137
hit rate, 50, 61
horizontally scalable systems, 46
hot sharding systems, 70
HTTP requests, 69
HTTPS, adding to a legacy web service with

sidecar patterns, 11

I
image tagging/processing pipeline, 138-141
index, with scatter/gather pattern, 75

J
join pattern

coordinated batch processing, 134
reduce pattern vs., 136

K
Kafka, deployment with event-driven batch

processing system, 130
key, sharding function, 67
key-value stores, 96, 99
Knuth, Donald, 3
Kubeless, 86
Kubernetes

creating a replicated service in, 47
etcd and, 97
Kafka deployment as container, 130
Kubeless and, 86
pod definition for Redis server, 33
sharded memcache deployment, 63
sharded Redis service deployment, 23-25

L
Label Schema project, 19
latency

caching, 61
containerization, 7

leaf sharding
choosing the right number of leaves, 78
document search with, 77
scatter/gather with, 76-79

leases, 102

load-balanced services (see replicated load-
balanced services)

lock (see mutual exclusion lock)
logging

adapter patterns for, 34-36
normalizing different formats with fluentd,

35

M
MapReduce pattern, 134-135, 137, 141
master election

basics, 95-103
determining need for master election, 94
etcd deployment, 97
implementing leases in etcd, 102
implementing locks, 98-101
implementing ownership, 101

memcache, sharded, 63-66
merger pattern, 127
micro-containers, 18
microservices

advantages of, 42
basics, 41-43
deploying experiment framework as, 27
disadvantages of, 43
event-based pipelines vs., 89

modular application containers, 14
modularity, designing sidecars for, 16-19
modulo (%) operator, 67
monitoring

adapter patterns for, 32-34
of application containers, 36-39
rich health monitoring for MySQL, 36-39
with Prometheus, 33

monolithic systems, microservices vs., 41
multi-node batch patterns, 107
multi-node patterns, 41-43
mutual exclusion lock (Mutex)

implementing, 98-101
in etcd, 100

MySQL database
ambassador patterns for service brokering

with, 25
rich health monitoring for, 37-39

N
new-user signup

event-driven flow for, 128
implementing a pipeline for, 89-91

Index | 147

nginx server
as ambassador, 27-29
SSL-terminating, 55-56

O
object-oriented programming, patterns for, 3
open source software, 3
ownership election, 93-105

(see also master election)
determining need for master election, 94
handling concurrent data manipulation,

103-105
master election basics, 95-103

P
PaaS (see platform as a service)
parameterized sidecar containers, 17
patterns, 2-4

(see also specific types, e.g.: container pat‐
terns)

as collection of best practices, 4
as shared language, 5
defined, 4
event-driven batch processing systems,

122-127
for FaaS, 84-91
formalization of algorithmic programming,

3
identifying shared components with, 5
object-oriented programming and, 3
open source software and, 3
value of, 4-6

pipelines (see event-based pipelines)
platform as a service (PaaS), 15
pod, 9
pricing, FaaS and, 84
Prometheus, 33
publisher/subscriber API, 129
Python

decorator pattern, 85

R
rate limiting, 54
readiness probes, 46
Redis

and adapter pattern, 33, 35
sharded, 23-25

reduce pattern, 135

(see also MapReduce pattern)
renewable lock, 101
replicated load-balanced services, 45-57

application-layer services, 49
creating a service in Kubernetes, 47
expanding the caching layer, 53-57
introducing a caching layer, 49-53
readiness probes for load balancing, 46
session tracked services, 48
stateless services, 45-48

request decorator, 85
request splitting

ambassador patterns for, 26-29
implementing 10% experiments, 27-29

request-based processing, FaaS and, 84
requests, events vs., 87
resource isolation, 7
resource version, 100
response decorator, 85
root (load-balancing node), 59

S
scaling

assignment (see ownership election)
cache, 50
consistent hashing function and, 49
FaaS, 84
horizontal, 46
hot sharding systems and, 70
microservice decoupling and, 42
scatter/gather pattern (see scatter/gather

pattern)
sharding (see sharded services)
straggler problem, 78
teams, 8

scatter/gather pattern, 73-80
distributed document search, 75
leaf sharding, 76-79
root distribution, 74
scaling for reliability and scale, 79

separation of concerns
ambassador pattern, 23
containerization, 8

serverless computing, FaaS vs., 81
service broker, defined, 25
service brokering, ambassador for, 25
service discovery, 25
serving patterns

148 | Index

functions and event-driven processing,
81-91

multi-node patterns, 41-43
replicated load-balanced services, 45-57
scatter/gather, 73-80
sharded services, 59-70
stateless services, 45-48

session tracked services, 48
sessions, requests and, 87
shard router service, 65
shard, defined, 59
sharded caching, 59-66

defined, 59
deploying ambassador and memcache for,

63-66
reasons to use, 60
replicated, sharded caches, 62
role in system performance, 61

sharded services, 59-70
hot sharding systems, 70
sharded caching, 59-66
sharding functions, 66-70
shared replicated serving, 70

sharding, 66-70
building a consistent HTTP sharding proxy,

69
consistent hashing functions, 68
event-driven batch processing systems, 125
leaf (see leaf sharding)
Redis, 23-25
selecting a key, 67
with ambassador patterns, 22-25

sharding ambassador proxy, 23
sidecar container, 5, 11
sidecar patterns, 11-20

adding HTTPS to a legacy service, 11
container documentation, 18
defining container APIs, 17
designing for modularity and reusability,

16-19
dynamic configuration with, 12
elements of, 11
modular application containers, 14
parameterized containers for, 17
simple PaaS with, 15

web cache deployment, 50
single-node container patterns, 7-9

ambassadors, 21-29
reasons for using, 7-9
sidecar patterns, 11-20

single-node patterns
adapters, 31-39
container patterns, 7-9

splitter pattern, 124
SSL termination, caching layer for, 54-57
stateless services, 45-48

caching layer, 49-53
creating a replicated service in Kubernetes,

47
defined, 45
readiness probes for load balancing, 46

storage layer sharding, 22-25
straggler problem, 78
sums, coordinated batch processing for, 137
systems development, history of, 1

T
team scaling, 8
teeing, 26
three-nines service, 46
time-to-live (TTL), 96, 99
topz sidecar, 14
twemproxy, 24
two-factor authentication, FaaS for, 87-89

U
user signup

event-driven flow for, 128
implementing a pipeline for, 89-91

V
Varnish, 50, 52-53

W
workflow systems, 121

(see also event-driven batch processing sys‐
tems)

Index | 149

About the Author
Brendan Burns is a distinguished engineer at Microsoft and a cofounder of the
Kubernetes open source project. At Microsoft he works on Azure, focusing on Con‐
tainers and DevOps. Prior to Microsoft, he worked at Google in the Google Cloud
Platform, where he helped build APIs like Deployment Manager and Cloud DNS.
Before working on cloud computing, he worked on Google’s web-search infrastruc‐
ture, with a focus on low-latency indexing. He has a PhD in computer science from
the University of Massachusetts Amherst with a specialty in robotics. He lives in Seat‐
tle with his wife, Robin Sanders, their two children, and a cat, Mrs. Paws, who rules
over their household with an iron paw.

Colophon
The animal on the cover of Designing Distributed Systems is a Java sparrow. This bird
is loathed in the wild but loved in captivity. The Java’s scientific name is Padda oryzi‐
vora. Padda stands for paddy, the method of cultivating rice, and Oryza is the genus
for domestic rice. Therefore, Padda oryzivora means “rice paddy eater.” Farmers
destroy thousands of wild Javas each year to prevent the flocks from devouring their
crops. They also trap the birds for food or sell them in the international bird trade.
Despite this battle, the species continues to thrive in Java and Bali in Indonesia, as
well as Australia, Mexico, and North America.

Its plumage is pearly-grey, turning pinkish on the front and white towards the tail. It
has a black head with white cheeks. Its large bill, legs, and eye circles are bright pink.
The song of the Java sparrow begins with single notes, like a bell, before developing
into a continuous trilling and clucking, mixed with high-pitched and deeper notes.

The main part of their diet is rice, but they also eat small seeds, grasses, insects, and
flowering plants. In the wild, these birds will build a nest out of dried grass normally
under the roofs of buildings or in bushes or treetops. The Java will lay a clutch of
three or four eggs between February to August, with most eggs laid in April or May.

Its striking plumage, enchanting sounds, and ease of care create a demand for these
birds in the cage-bird trade. Conservation efforts are underway to ensure that the
market demand is met by captive-bred birds rather than wild caught.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	The World of Distributed Systems Today
	Navigating This Book
	Conventions Used in This Book
	Online Resources
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	A Brief History of Systems Development
	A Brief History of Patterns in Software Development
	Formalization of Algorithmic Programming
	Patterns for Object-Oriented Programming
	The Rise of Open Source Software

	The Value of Patterns, Practices, and Components
	Standing on the Shoulders of Giants
	A Shared Language for Discussing Our Practice
	Shared Components for Easy Reuse

	Summary

	Part I. Single-Node Patterns
	Motivations
	Summary
	Chapter 2. The Sidecar Pattern
	An Example Sidecar: Adding HTTPS to a Legacy Service
	Dynamic Configuration with Sidecars
	Modular Application Containers
	Hands On: Deploying the topz Container

	Building a Simple PaaS with Sidecars
	Designing Sidecars for Modularity and Reusability
	Parameterized Containers
	Define Each Container’s API
	Documenting Your Containers

	Summary

	Chapter 3. Ambassadors
	Using an Ambassador to Shard a Service
	Hands On: Implementing a Sharded Redis

	Using an Ambassador for Service Brokering
	Using an Ambassador to Do Experimentation or Request Splitting
	Hands On: Implementing 10% Experiments

	Chapter 4. Adapters
	Monitoring
	Hands On: Using Prometheus for Monitoring

	Logging
	Hands On: Normalizing Different Logging Formats with Fluentd

	Adding a Health Monitor
	Hands On: Adding Rich Health Monitoring for MySQL

	Part II. Serving Patterns
	Introduction to Microservices
	Chapter 5. Replicated Load-Balanced Services
	Stateless Services
	Readiness Probes for Load Balancing
	Hands On: Creating a Replicated Service in Kubernetes

	Session Tracked Services
	Application-Layer Replicated Services
	Introducing a Caching Layer
	Deploying Your Cache
	Hands On: Deploying the Caching Layer

	Expanding the Caching Layer
	Rate Limiting and Denial-of-Service Defense
	SSL Termination
	Hands On: Deploying nginx and SSL Termination

	Summary

	Chapter 6. Sharded Services
	Sharded Caching
	Why You Might Need a Sharded Cache
	The Role of the Cache in System Performance
	Replicated, Sharded Caches
	Hands On: Deploying an Ambassador and Memcache for a Sharded Cache

	An Examination of Sharding Functions
	Selecting a Key
	Consistent Hashing Functions
	Hands On: Building a Consistent HTTP Sharding Proxy

	Sharded, Replicated Serving
	Hot Sharding Systems

	Chapter 7. Scatter/Gather
	Scatter/Gather with Root Distribution
	Hands On: Distributed Document Search

	Scatter/Gather with Leaf Sharding
	Hands On: Sharded Document Search
	Choosing the Right Number of Leaves

	Scaling Scatter/Gather for Reliability and Scale

	Chapter 8. Functions and Event-Driven Processing
	Determining When FaaS Makes Sense
	The Benefits of FaaS
	The Challenges of FaaS
	The Need for Background Processing
	The Need to Hold Data in Memory
	The Costs of Sustained Request-Based Processing

	Patterns for FaaS
	The Decorator Pattern: Request or Response Transformation
	Hands On: Adding Request Defaulting Prior to Request Processing
	Handling Events
	Hands On: Implementing Two-Factor Authentication
	Event-Based Pipelines
	Hands On: Implementing a Pipeline for New-User Signup

	Chapter 9. Ownership Election
	Determining If You Even Need Master Election
	The Basics of Master Election
	Hands On: Deploying etcd
	Implementing Locks
	Hands On: Implementing Locks in etcd
	Implementing Ownership
	Hands On: Implementing Leases in etcd

	Handling Concurrent Data Manipulation

	Part III. Batch Computational Patterns
	Chapter 10. Work Queue Systems
	A Generic Work Queue System
	The Source Container Interface
	The Worker Container Interface
	The Shared Work Queue Infrastructure

	Hands On: Implementing a Video Thumbnailer
	Dynamic Scaling of the Workers
	The Multi-Worker Pattern

	Chapter 11. Event-Driven Batch Processing
	Patterns of Event-Driven Processing
	Copier
	Filter
	Splitter
	Sharder
	Merger

	Hands On: Building an Event-Driven Flow for New User Sign-Up
	Publisher/Subscriber Infrastructure
	Hands On: Deploying Kafka

	Chapter 12. Coordinated Batch Processing
	Join (or Barrier Synchronization)
	Reduce
	Hands On: Count
	Sum
	Histogram

	Hands On: An Image Tagging and Processing Pipeline

	Chapter 13. Conclusion: A New Beginning?

	Index
	About the Author
	Colophon

