
Allen Firstenberg & Jason Salas

Designing &
Developing for
 Google Glass
THINKING DIFFERENTLY FOR A NEW PLATFORM

PROGR AMMING/MOBILE/ WE AR ABLES

Designing & Developing for Google Glass

ISBN: 978-1-491-94645-9

US $49.99 CAN $52.99

“ Few in this developing
field can be called
masters, but Allen and
Jason are worthy of
the label. Going far
beyond Google Glass
as a specific product,
this book captures the
essence of designing
for smart glasses of all
varieties.”

—Eric Redmond
Author of Programming Google Glass

(Pragmatic Bookshelf)

Twitter: @oreillymedia
facebook.com/oreilly

Creating apps for Google Glass is more involved than simply learning how
to navigate its hardware, APIs, and SDK. You also need the right mindset.
While this practical book delivers the information and techniques you need
to build and deploy Glass applications, it also helps you to think for Glass
by showing you how the platform works in, and affects, its environment.

In three parts—Discover, Design, and Develop—Glass pioneers guide
you through the Glass ecosystem and demonstrate what this wearable
computer means for users, developers, and society as a whole. You’ll learn
how to create rich functionality for a consumer technology that’s radically
different than anything currently available.

 ■ Learn the Five Noble Truths of great Glassware design

 ■ Understand the Glass ecosystem and learn why it’s different

 ■ Sidestep Glass’s societal concerns in your projects

 ■ Learn how Glass adapts to the user’s world, rather than the
other way around

 ■ Avoid poor design by identifying Glassware antipatterns

 ■ Build cloud services with the Google Mirror API

 ■ Use the Glass Development Kit to develop client applications

 ■ Submit your project for review in the MyGlass directory

Allen Firstenberg, Senior Project Engineer at Objective Consulting, Inc., has been
instrumental in creating websites and mobile apps for several companies and orga-
nizations, including the National Science Foundation. Allen is a Google Developer
Expert for Wearables.

Jason Salas is a software developer, marketer, broadcaster, sportswriter, and
filmmaker. In the past few years, he’s been concentrating on Google Glass,
Hangout extensions, HTML5 games, and Chromecast apps.

D
esigning &

 D
eveloping

for G
oogle G

lass
Firstenberg &

 Salas

www.allitebooks.com

http://www.allitebooks.org

Allen Firstenberg & Jason Salas

Designing &
Developing for
 Google Glass
THINKING DIFFERENTLY FOR A NEW PLATFORM

PROGR AMMING/MOBILE/ WE AR ABLES

Designing & Developing for Google Glass

ISBN: 978-1-491-94645-9

US $49.99 CAN $52.99

“ Few in this developing
field can be called
masters, but Allen and
Jason are worthy of
the label. Going far
beyond Google Glass
as a specific product,
this book captures the
essence of designing
for smart glasses of all
varieties.”

—Eric Redmond
Author of Programming Google Glass

(Pragmatic Bookshelf)

Twitter: @oreillymedia
facebook.com/oreilly

Creating apps for Google Glass is more involved than simply learning how
to navigate its hardware, APIs, and SDK. You also need the right mindset.
While this practical book delivers the information and techniques you need
to build and deploy Glass applications, it also helps you to think for Glass
by showing you how the platform works in, and affects, its environment.

In three parts—Discover, Design, and Develop—Glass pioneers guide
you through the Glass ecosystem and demonstrate what this wearable
computer means for users, developers, and society as a whole. You’ll learn
how to create rich functionality for a consumer technology that’s radically
different than anything currently available.

 ■ Learn the Five Noble Truths of great Glassware design

 ■ Understand the Glass ecosystem and learn why it’s different

 ■ Sidestep Glass’s societal concerns in your projects

 ■ Learn how Glass adapts to the user’s world, rather than the
other way around

 ■ Avoid poor design by identifying Glassware antipatterns

 ■ Build cloud services with the Google Mirror API

 ■ Use the Glass Development Kit to develop client applications

 ■ Submit your project for review in the MyGlass directory

Allen Firstenberg, Senior Project Engineer at Objective Consulting, Inc., has been
instrumental in creating websites and mobile apps for several companies and orga-
nizations, including the National Science Foundation. Allen is a Google Developer
Expert for Wearables.

Jason Salas is a software developer, marketer, broadcaster, sportswriter, and
filmmaker. In the past few years, he’s been concentrating on Google Glass,
Hangout extensions, HTML5 games, and Chromecast apps.

D
esigning &

 D
eveloping

for G
oogle G

lass
Firstenberg &

 Salas

www.allitebooks.com

http://www.allitebooks.org

Praise for Designing and Developing for Google Glass

“For the first time ever we have a piece of technology that is designed for the user instead
of a screen. Google Glass has changed the landscape of technology and is forcing us to rethink

not only the way we develop, but just as importantly the way we design apps. Allen and
Jason have captured both design and development of Glass in their book expertly. Equal
emphasis has been placed on both important aspects of Glass and has made this book an

asset to the tech community.
Upon completion of the book the reader will be fully engaged in how to think for Glass, the

new way to compute.”
— Katy Kasmai

 founder of UbiTech.co

“Jason and Allen are trailblazers when it comes to development and design for Google Glass.
There aren’t many authors with the level of experience as Jason and Allen. The unique

approach to designing for wearable electronics makes this book required reading for any
aspiring and proficient developer looking to take the plunge in designing and developing

for Glass.
I am honored to call them mentors and friends.”

— Noble Ackerson
 Cofounder/CEO of LynxFit

“Allen and Jason are both talented developers as well as experts on Google Glass. This is a
must-read for anyone interested in working on a Glass app.”

— Libby Chang
 Society of Glass Enthusiasts San Francisco / Cohost of

Wearables Weekly

“Few in this developing field can be called masters, but Allen and Jason are worthy of the
label. Going far beyond Google Glass as a specific product, this book captures the essence

of designing for smart glasses of all varieties.”
— Eric Redmond

 Author of Programming Google Glass

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Allen Firstenberg and Jason Salas

Designing and Developing for
Google Glass

www.allitebooks.com

http://www.allitebooks.org

Designing and Developing for Google Glass
by Allen Firstenberg and Jason Salas

Copyright © 2015 Allen Firstenbeg and Jason Salas. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Nicole Shelby
Copyeditor: Charles Roumeliotis
Proofreader: Kim Cofer

Indexer: Ellen Troutman
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition:

2014-12-08: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491946459 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing and Developing for Google
Glass, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-491-94645-9

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491946459
http://www.allitebooks.org

This book is dedicated to every Glass Explorer who dared to take the plunge.

Allen Firstenberg

Thirty years ago, my parents gambled on getting me a computer, thinking it might play
a part in my future. Little did they know where it would lead, and I would like to thank
them for the opportunities they set in motion all those years ago. For my closest friends

and colleagues, who always reminded me that I can do it, even when I doubted myself the
most, I am thankful for the support you’ve given me over the years. Finally, I’d like to

dedicate this book to my son—as I watch you explore the world, I’m thankful I can share
those moments with you through Glass, and I hope you never lose that sense of discovery.

My special thanks to Jason, my coauthor, collaborator, benevolent taskmaster, and friend,
for his work in getting the book off the ground and for serving as the sounding board for
all of my design ideas. It has been my honor to work with you, and I look forward to the

day when we can meet in the same time zone.

Jason Salas

For Sharon Strandskov, whose strength and spirit have inspired me in more ways than
anyone else ever could; for Will Ymesei, who’s endured more of my spur-of-the-moment,
rapid fire “I have an idea!” conversations than anyone ever should; for Mom and Dad,
who’ve shown me more support than anyone ever would; and for Ali Bales, whose en‐

couragement, patience, friendship, and love couldn’t be more constant or genuine—and
provided all the tools I ever needed to get this project done.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Prologue. xiii
Preface. xv

Part I. Discover

1. The Revolution Will Be Wearable. 3
Forging Glass 3
Wearable Computing 4
What Does It Mean to Think for Glass? 5

2. The Glass Ecosystem: What It Is and How It Is Different. 9
What You See and What You Get 9
Glass Is a Platform, Not a Product 10
The Glass Application Model 12

Mirror API 12
Glass Development Kit (GDK) 13

Actions, Not Apps 14
Reinventing Human–Computer Interaction 16
The Science Behind the Projection 18
How Glass Gets Audio into Your Ear 20
Using the System 20
The Camera: Photos, Videos, and More! 22
Glass Is a Great Listener 23
Content Creation in a POV World 28
Which Hue Is for You? 29
Welcome to Wearable Computing! 29

3. Societal Issues with Glass and How to Avoid Them in Your Projects. 31
Issue #1: Privacy 32

v

www.allitebooks.com

http://www.allitebooks.org

Where Are We Now? 33
Think for Glass 34

Issue #2: Facial Recognition 34
Where Are We Now? 35
Think for Glass 36

Issue #3: Using Glass While Driving 37
Where Are We Now? 37
Think for Glass 38

Issue #4: Aesthetic Appeal—Is Glass Fashionable? 38
Where Are We Now? 39
Think for Glass 40

Issue #5: Augmented Reality 40
Where Are We Now? 40
Think for Glass 41

Issue #6: Glass Analytics 42
Where Are We Now? 42
Think for Glass 43

Issue #7: Regulatory Environment—Glass and Public Policy 43
Where Are We Now? 44
Think for Glass 45

The Business of Producing Glassware 45
What Glass Isn’t 46

Part II. Design

4. Thinking for Glass: How Glass Is, and Should Be, Personal. 51
Glass as Personal Technology 51
Best in Show 52

Twitter 53
Gmail 56
Google+ 58

Winning Glassware Design Takeaways 61
Designing with the Think for Glass Mindset 63

Vignettes 64
Google Now 65
Google Search 68

Glass for Gaming 71
Design for the Cloud 74
Are You Starting to Think for Glass? 74

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

5. The Five Noble Truths of Great Glassware Design. 77
Noble Truth 1: Design for Glass 78

Targeting Microinteractions 78
Tactical Wearable Design 80
Don’t Neglect Audio 81
Delete Versus Dismiss 82
Provide Web-Based Configuration 83

Noble Truth 2: Don’t Get in the Way 84
Notify Responsibly 84
Less Is More 86
The Exceptions Make the Rule 87

Noble Truth 3: Keep It Relevant 87
Context FTW 88
How Soon Is Now? 89

Noble Truth 4: Avoid the Unexpected 90
Content 90
Performance 91
Don’t Be a Bandwidth Hog 91
Permissions 93
Error Handling 94
Synchronization Across Platforms 96
Surprises Should Be Pleasant Surprises 97

Noble Truth 5: Build for People 98
Advocate Multitasking 99
Glass Is Naturally Social 99
So…That’s It? Really? 101

6. Glassware Antipatterns: Avoiding Poor Design. 103
Improperly Implementing Ideas for the Glass Experience 104
Treating Glass Like Any Other Mobile Device 105
Overloading the System AND the Wearer 106
Think in Actions, Not in Apps 107
Stick to the Prefab Templates and Styles 109
Don’t Use the Prism Display as a Stage for Complicated Reports 110
Glass Isn’t Necessarily Bound to Your Phone 110
Unrealistic Expectations for Augmented Reality and Gaming 111
Don’t Deviate from Default: Using Categorial Voice Commands 112
Not Fully Utilizing Cloud Computing 113
Choosing the Wrong Development Framework for Your Glassware Project 114

Table of Contents | vii

Part III. Develop

7. Overview of the Mirror API. 121
Life on the Server Side 122
Events: The Building Blocks of the Glass Timeline 125
The High-Level View 125
How Your Server Talks with Google 128
Components of the Mirror API 130
Preparing Your Project 131
The Glass Ceiling—Your Project’s Quota 134
The Even Bigger Picture 136

8. Security and OAuth. 137
Event Security: Google the Bouncer 137
OAuth: IDs and Secrets 138
Will You Come and Join the Dance? 139
Who Are You? I Am the New Number Two 145
What Do You Want? Information 146
Disabling (and Reacquiring) Permissions 149
Who Is Number One? You Are Number Six 149
WAKE UP!!! 151

9. Working with Timeline Cards. 153
“Hello, World!”, Glass-Style 153
HTML: Even More Style 158
What About Images? 170
Working with Mosaics 174
Rendering an In-Card Map 178
Simple Audio 181
Bundles of Fun 183
Going Beyond the Playground 193
Media Matters 196
Oh, CRUD… 197

10. Card Actions and Subscriptions. 199
Simple Event Actions 199
Listen Up! 202

collection 204
userToken 204
verifyToken 204
callbackUrl 205

Responding to Subscription Pings 205

viii | Table of Contents

Simple Callbacks and How to Handle Them 206
Custom Menu Items 209
Keeping in Contact 216

11. Sharing Resources with Glassware. 221
The Share Menu Item 221
Share Contacts 222
Voice Commands 230

12. Context Is King: Using Location and Other Signals. 233
Enabling Location 234
Where Do You Think I Am? 234
Location as Part of Timeline Events 236

Setting Things Straight 237
Location Becomes Localization 238

Subscribing to Locale Changes Saves API Calls 239
Other Contextual Signals 240
Context and the Future 241

13. The GDK. 243
Installed Apps Running on Glass 243
What Is the GDK? 245
How the GDK Differs from the Mirror API 247
User Interface Elements of GDK Apps 249

Live Cards 249
Two Flavors of Live Cards 250
Immersions 253

More Tools for Rapid Design 255
It Was Native All Along! 257
The GDK Object Model 259

Packages 259
System Intents 259

On-Head Detection Halts Running Apps, Too 260
Hybrids: The Ultimate Glassware Challenge (and Experience!) 261
Authentication 263
Writing Native Code for Glass 265
Testing Native Glass Applications 267
A View to a Card 268

Basic Text Formatting 269
Creating Rich Text 272
Ellipses and Excess Content 274
Columnar Layouts and Mosaics 275

Table of Contents | ix

Using Icons 276
Other Neat Templates 279
When You Have No Choice—Doing It Yourself 283

Configuring Voice Commands 284
With Voice Commands, Google Has the Final Word 287
Updating Releases, Versioning, and Crash Reports 287
Porting Existing Apps to Glass: DON’T 288
So Which Framework Is for Me? 289

14. Getting on MyGlass: Glassware Submission, Review, and Distribution. 291
Making Your Awesome Glassware Even More Awesome 291
The Objective of Glassware Review 292

What MyGlass Gets You 292
Prereview Activities 293
Things to Think About Before You Submit 294
Submitting Your Glassware 296

Gotchas 298
Submit! 299

The Review Process 301
Timing Your Release 303
Categorical Listings 303
App Analytics 303
Marketing Channels 304
Monetization 304

15. Reflections on the Future. 307
Corporate Glass 307
Streamlining Operations 308
Glass in Medicine and Education 309
Accessibility 311
Home Integration 311
Chromecast and Home Entertainment 312
Android Wear 313
Hardware Hacking and the Internet of Things 313
Peripherals/Accessories 314
In Closing 315

Part IV. Appendices

A. Glassware Done Right: Case Studies from the Field. 319

x | Table of Contents

B. Hacking Glass. 349

Index. 357

Table of Contents | xi

Prologue

Most logical people would probably come to the conclusion that attempting to write a
book for a product not yet released to market and with next to no public information
available about it is, well, how can we best say this…stupid. But that’s precisely the
challenge we took on when proposing this book to O’Reilly, as an extension of our faith
and optimism about the exciting new realm of wearable computing and the implemen‐
tation of it within Google Glass.

Writing this material was a particularly challenging project, to say the least. We were
tasked with not only authoring a book within an incredibly compressed timeframe, but
with extremely little information about the new platform with which to work. Google’s
steadfast commitment to not letting details about the product leak out made getting
details about timelines, specifications, and API capabilities quite tough. But our sym‐
biotic optimism about Glass and our unique dichotomy—Allen being a coder who can
write, Jason a writer who can code—carried us through this labor of love.

By the same token, the staggered way that information was disseminated as the product
neared its glorious launch made writing this book a constant torrent of rewrites, tweaks,
updates, and deletions. Written over a period of nearly two full years, the book has been
expanded from its original 12 chapters to as many as 19, then pared back down to 15.

Due to numerous evolutions, several of the chapters have effectively been completely
rewritten numerous times. And with information made public teetering back and forth
between topics governing marketing, engineering, technical specs, and product phi‐
losophy, it made for a wildly anachronistic writing process.

But that, as they say, was half the fun.

At the end of the day, we wrote this book as much for our own edification as we did for
the Glass community, in its current membership and with scores more to come.

xiii

For just as Googlers (in)famously have their “dogfooding” practice of internally testing
new technologies, we wanted to ensure we knew exactly what Glass was all about and
what it can do for us as well as for society and bring that to the people.

We hope you thoroughly enjoy this book as much as we did putting it together!

Allen and Jason

xiv | Prologue

Preface

A New (R)evolution in Computing
Google Glass has taken the popular imagination by storm like few other technologies
have, potentially being the most transformative consumer device since the iPad…and
it did so long before its commercial release. Scores of people have shown ardent interest
in learning as much as they could about the mysterious machine and the ecosystem that
encapsulates it, and many flocked to develop software for it in order to capitalize on its
next-gen model of information delivery. Many producers of mobile services beat down
the door to learn how to repurpose their existing data and codebases to establish pres‐
ence for their applications in this new space.

And a significant number of people were hesitant to embrace Glass due to concerns
with privacy, legality, health issues, and the personal image using it conveys.

This book effectively addresses all these issues by presenting a simple philosophy we’ve
been heavily promoting to Glass enthusiasts: Think for Glass. While many forthcoming
books will discuss coding conventions, design patterns, and development idioms, and
will do so very well, our work presents a holistic view of Glass not only as hardware, but
as a proper computing platform requiring the adoption of a new mindset for users to
truly appreciate the product and with which architects can build maximum value.

Like many of you, we were captivated by our first glimpses of Google Glass in 2012. We
immediately knew that Glass was going to be different, more than just a cell phone on
our faces, and we wanted to help others understand how it would change our lives. In
a series of Hangouts, at first, and later through presentations and helping in the various
communities, we shaped our core philosophies of Glass. In this book, we hope to share
those philosophies with you.

As two passionate members of the Google development community, each of us an ex‐
perienced programmer, writer, and Glass enthusiast, we hope this book will serve as a
primer to the device, an overview of the platform’s guiding principles, and a broad
introduction to writing Glassware.

xv

What We’re Bringing to the Table
What we need to state up front is that this isn’t just a “How to code for Google Glass”
book—we wholeheartedly believe it’s much much more than that. Rather than merely
copy and paste Google’s API documentation and run through the general environment
for programming, testing, and distributing Glass applications, we seek to educate you
with a philosophy centered on awareness of the Google Glass ecosystem—getting you
to Think for Glass. By this merit, you’ll have a better understanding about the approach
necessary to get the most out of this revolutionary new computing platform.

We’ll be looking at what Glass means for users, developers, and society as a whole.

This book is organized to be flexible to your interests while still presenting the material
in a logical fashion to teach you all about Glass. We’ve essentially organized the material
as a three-act play. While some of the more technical sections build upon concepts that
preceded them in earlier chapters, the topics are largely arranged in such a way that they
can be consumed completely out of order without losing focus, giving you the freedom
to jump to the discussion that intrigues you most, or skip over stuff that doesn’t pique
your interest. New Glass owners (or those of you contemplating taking the leap) will
particularly enjoy the first few chapters, which deal with how to properly Discover the
platform.

Maybe you just want to be one of the cool kids and talk to your peers with deep expertise
about what Glass is and how they can use it. Living on the bleeding edge is totally
awesome, and we’ve written Chapter 2 just for that reason.

If you’re a designer who wants to create for the hottest UI to hit the consumer tech
industry in years, you’ll want to make sure you read the Design section. We’ll be talking
about the Glass aesthetic and how to compose effective designs that maximize data in
a minimal display, how the experience is fundamentally different than designing for
other platforms, and what we mean when we say you should “Think for Glass.” Before
you dive into code, you’ll want to consider Chapters 4 through 6 to make sure that what
you want to do works well with the people who use Glass.

If you’re a programmer who’s heard the buzz about wearable computing, you’ll then
want to continue to the third part of the book, Develop. In this section, it may behoove
you to read Chapters 7 through 15 in order, as several of the concepts we’re presenting
have a certain sequence. We begin that ambitious quest in Chapter 7, where we drill
down into program structure, syntax, and the architecture that governs how RESTful
Glassware works with the Google Mirror API. We also help those of you maintaining
existing software platforms if you’re keen on integrating with Glass to get a leg up on
the other guys. If you’re an Android developer, and you’re interested in exploring the
similarities and differences when programming for Glass with Android framework
code, head on over to Chapter 13 where we talk about the Glass Development Kit.

xvi | Preface

Or if you’ve been itching to create a slick mashup with some third-party web APIs and
want to corner a very emerging space, we’ve got you covered, too—check out the latter
chapters for insight.

And simply starting from page 1 and running through the entire book will give you a
well-rounded Glass education in order to understand the Glass ecosystem and build
effective Glassware. Being able to Think for Glass means that you have to understand
the system in total. You’ll truly grasp what the system is all about and how to best make
it work for you once you’re done reading.

And at the end of the book, we’ve included a helpful appendix that focuses on hacking
Glass. We also feature “Glassware Done Right,” a series of case studies that highlight
noteworthy third-party services and applications that are top-shelf examples of pro‐
grams written specifically for the Glass experience that really get the job done. Some
are simple, some are complex, but they’re all outstanding and all really fun to use, with
each illustrating a positive lesson to follow about how to implement a specific software
idea or challenge with this new model.

What we want to avoid at all costs is presenting you with content that just lets you rip
code and not really comprehend what the Glass experience truly is. We don’t want to
give rise to a generation of sloppily crafted apps that wind up being force-fit versions
of existing services that don’t fully utilize the best aspects of the platform the way they
were intended. Glass succeeds beautifully on both sides of the product development
coin—form and function—so having mastery of this new toolset is critical.

As you’ll see, Glass isn’t purely another client-server web system or just the latest fork
of Android. The input system, UI/UX, networking capabilities, and application frame‐
work—it’s an entirely different animal than what you’ve been used to. Everything about
the ecosystem is a radical departure from traditional methods of distributed computing.
A new paradigm requires a new mindset—and that’s precisely what we’re giving you.
Even experienced developers should appreciate the effective simplicity of Glass’s me‐
chanics for data delivery. This personal area network of sensors and displays provide
the wearer with the information they want in exactly a form that’s extremely convenient,
contextually relevant, and highly effective for them as they go about their day with their
digital lifestyle, as well as doing things in the real world.

We feel that empowering you with the ability to explain, explore, and exploit Glass,
confidently and competently, is invaluable because then you can teach others, too! Pay
it forward, baby. Spread the gospel. Share the love.

Maybe you can charge people for your expertise as a Glass consultant and recoup your
investment for buying this book. Viva capitalism!

Preface | xvii

How This Book is Organized
Discover
Chapter 1, The Revolution Will Be Wearable

We explore the fundamental question, “Why Glass?” What is Google trying to solve by
creating the product, and why do they think people will want to buy it? What underlying
technologies are going into it? What is new or different about Glass, and what is the
same as what we have seen before? Why is this book a good way to learn all these things?
Most importantly, we set the groundwork for the three major sections of the book that
follow and start to guide the different types of readers into which parts might be most
interesting.

Chapter 2, The Glass Ecosystem: What It Is and How It Is Different

This chapter is the core of educating people to what Glass currently is and the foundation
for exploring how Glass apps should be designed. We go over the specifications of Glass.
We highlight why the hardware represents a balance between user needs, aesthetics, and
design constraints. In particular, we will focus on how this is a product unto itself—not
a peripheral or accessory to something else. In conjunction with the hardware, we start
to delve into how people use Glass, the timeline, and the software driving it.

Chapter 3, Societal Issues with Glass and How to Avoid Them in Your Projects

It is important, in both educating people about how to use Glass and what to expect
from Glass applications, to make sure we are clear about what Glass isn’t and what it
can’t do…yet. Although we will go into detail about this as part of designing and de‐
veloping apps, it is important to take some time out and discuss false impressions that
have already built up. In particular, we will discuss some of the controversial issues
surrounding Glass—privacy, control, intrusiveness, aesthetics, and whether this is true
augmented reality.

Design
Chapter 4, Thinking for Glass: How Glass Is, and Should Be, Personal

We dive into the meat of the aesthetic philosophy for Glass. Much like the change in
thinking that took place when people moved from text to graphic programs, then later
to web design, and still later when moving from web to mobile apps, writing for Glass
requires a totally new way of thinking. Glass is, in some ways, more personal and inti‐
mate than a smartphone, and people will be interacting with Glass very differently.
Where existing examples do not exist, we will hypothesize other illustrative apps, show‐
ing how they can (or in some cases can’t) have counterparts in Glass and how they
needed to be rethought.

xviii | Preface

Chapter 5, The Five Noble Truths of Great Glassware Design

We solidify the design for Glass with The Five Noble Truths, based on the initial guide‐
lines presented by Google, and how they were ultimately expanded. Each of these
guidelines will be complete with good and bad design examples that follow the guide‐
lines.

Chapter 6, Glassware Antipatterns: Avoiding Poor Design

The natural inclination of people will be to think about developing for Glass as either
being “just like” developing for other mobile platforms, or expect it to be tied to a mobile
device. We’ll discuss why these perceptions may cause problems. We’ll also reiterate
some of the design constraints in the system and how it constrains some of the appli‐
cations that are available.

Develop
Chapter 7, Overview of the Mirror API

We present the prerequisites for developing for Glass using the RESTful Google Mirror
API. We will also discuss how the Mirror API is language-agnostic but requires an
understanding of how to build and host web apps. We’ll touch on Google App Engine
as a container while emphasizing other available options. Finally, we’ll discuss the in‐
frastructure for how Glass will communicate with your app and how we will present
each of the concepts.

We talk about concepts, with a couple of language-specific code examples in some cases,
and make sure people understand how those concepts will map to the Google-provided
documentation and the language-specific APIs. Think of this entire section as providing
a way to help you translate between Google’s documentation and your language expe‐
rience.

Chapter 8, Security and OAuth

We talk about how to authenticate users with OAuth 2.0 and authorize services to com‐
municate with Glass on their behalf.

Chapter 9, Working with Timeline Cards

The fundamental UI aspect of Glass is the timeline card, which we’ll have seen illustrated
in earlier chapters. We’ll now learn more details about these cards, how they are bundled
together, how Google helps you manage them, and how you can format them. Some of
the tools that Google provides to help design them will also be reviewed, along with the
various parameters and procedures involved in creating, editing, and deleting them.

Preface | xix

Chapter 10, Card Actions and Subscriptions

It wouldn’t be a very interesting program if it couldn’t handle input from users. We’ll
discuss how cards can have actions attached to them and how your program needs to
define what actions are available, accept these actions, and verify that they are authentic
responses to your cards.

Chapter 11, Sharing Resources with Glassware

Beyond attaching actions to your own cards, you can also allow photos, videos, and
other resources captured through Glass to be shared with your application. We’ll discuss
how you need to handle this data and what Google does to help you with it.

Chapter 12, Context Is King: Using Location and Other Signals

The curious topic of the use of geodata within the Glass ecosystem will be detailed here,
alongside other forms of input for contextual computing, like identity, time, and activ‐
ities. Particular attention will be given to the way Glass handles location data updates
via the Mirror API.

Chapter 13, The GDK

We provide an overview of the SDK libraries that constitute the Glass Development Kit
that makes writing Android framework code possible, giving Android programmers
the ability to create installed applications for Glass.

Chapter 14, Getting on MyGlass: Glassware Submission, Review, and Distribution

Getting seen on MyGlass should be the destination you aim for after building an amaz‐
ing product, as it yields the greatest rewards. You’ll learn how to prepare for Google’s
review of your projects, how to be approved quickly, and then how to distribute and
promote your Glassware to the masses.

Chapter 15, Reflections on the Future

This discussion addresses some more advanced topics and issues relative to the pro‐
gression of the platform, how Glass might be used from an organizational standpoint,
and how the Glass ecosystem can be extended.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

xx | Preface

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit

Preface | xxi

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/design_develop_glass.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’d like to thank O’Reilly Media for picking up the project and believing in us and our
concept for a book to help educate, inspire, and motivate people to get involved with
this exciting new movement. Mike Hendricksen and Rachel Roumeliotis have been
incredibly gracious, informative, patient, and available throughout. The Glass team at
Google[x] and several Googler friends of ours have also gone above and beyond with
guidance and motivation, so a tip of the cap to Jonathan Beri, Angela Chien, Timothy
Jordan, Jenny Tong, Sarah Price, Dori Storbeck, Alain Vongsouvanh, Natalie Villalobos,
and Teresa Zazenski for their input and constant nudging-on to make this community
contribution a reality.

And even though we mention them and their work more than a few times, we’d like to
especially recognize our friends and fellow Glass early adopters—those endlessly tal‐
ented people that have been part of this unforgettable experience with us from Day 1,

xxii | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/design_develop_glass
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

producing Hangout shows and media appearances, coding Glassware, leading discus‐
sions in community groups, organizing meetups, writing about Glass, being critical of
the platform, and sharing our interest in making it a success. Thanks to Cecilia Abadie,
Keith Achorn, Noble Ackerson, Libby Chang, Ethan Bresnick, Mike DiGiovanni, Katy
Kasmai, Israel Knight, Dan McLaughlin, Gerwin Sturm, Daniel Ward, Andrew Pritykin,
Abraham Williams, the members of UbiTech NYC, and all the Glass Explorers from all
over whose diverse contributions to our community are outweighed only by their
boundless passion for Glass.

They continually lent their vast knowledge and experiences to this book’s production,
so we’re eternally grateful for having kindred spirits whose insight and enthusiasm
matched our own, and who so readily shared it with us.

— Allen and Jason

My special thanks to Jason, my coauthor, collaborator, benevolent taskmaster, and
friend, for his work in getting the book off the ground and for serving as the sounding
board for all of my design ideas. It has been my honor to work with you, and I look
forward to the day when we can meet in the same time zone.

— Allen Firstenberg

I also thank my coauthor and friend for collaborating with me on this book from half
a world away and for providing the vision throughout its production. While I came up
with the idea on a whim during a Hangout that we write a book about Google Glass,
Allen supplied the creative direction. I may have raised the sail, but he steered the ship.
It’s been an absolute blast working with you, partner!

— Jason Salas

About the Authors

By day, Allen Firstenberg is a Senior Project Engineer at Objective Consulting where he
has been instrumental in creating websites and mobile apps for companies and organ‐

Preface | xxiii

http://spiders.com/

izations from the American Booksellers Association to the National Science Founda‐
tion. By night he dons his super-coder cloak and creates tools, software, and tutorials
to help people share their stories and improve their digital lives.

Allen is a Google Developer Expert, recognized by Google as one of the leaders in the
developer community for Google+ and Google Glass, and is a Glass Explorer and Pio‐
neer, having attended the New York Glass Foundry event run by Google in early 2013.
Appearing on the YouTube shows Our Android Week and Google Plus Week (which he
cohosts), he is one of the first to heap praise on good ideas, one of the most brutal in
criticizing problems, and is relentlessly focused on helping people understand the grand
vision. In the early days of the World Wide Web, he created one of the first collaborative
websites, Addventure, in an effort to push the boundaries and explore what could be
done with the new media that was beginning to evolve.

Allen holds a BS in Computer Science from Rensselaer Polytechnic Institute.

He was inspired to join the Glass Explorers program when he realized how intimate
and personal Glass would be, yet at the same time be inherently social. His goal is to
help people find the experiences with Glass that can be done by nothing else on the
market today, to watch people look at each other as they discover new ways to play games
together with Glass, and to watch (and record) his son’s face as the two of them roll in
laughter during a tickle fight.

Allen is on Google+ and LinkedIn. He blogs about life and other four-letter words at
iaflw.com.

A software developer, marketer, broadcaster, sportswriter, and filmmaker, Jason Salas
enjoys perpetual summer living on the island of Guam. He fell in love with the Web the
moment he first got online in 1994, seeing it as the world’s biggest toy, and began helping
people embrace the Internet before shifting his focus to content development and ul‐
timately to designing data-driven systems. In the last few years he’s been concentrating

xxiv | Preface

https://developers.google.com/experts/members/
http://bit.ly/droid-week
http://bit.ly/g-plus-week
http://bit.ly/plus-firstenberg
http://bit.ly/linkedin-af
http://iaflw.com/

on Google Glass, Android Wear, Hangout extensions, HTML5 games, and Chromecast
apps. Since 1999 he’s worked at KUAM News, where he runs the company’s R&D group
and also co-anchors the nightly news (no, really).

Jason was twice named a Microsoft MVP for his involvement with the ASP.NET com‐
munity, is a four-time winner of the Edward R. Murrow Award for cutting-edge web
development in the news industry, and is constantly interacting in Google+ Commun‐
ities for Glass users and developers. He’s served as technical editor for a book on Mi‐
crosoft Hailstorm, has written for .NET Magazine, MSDN, and Wrox, and authored an
ebook about the trials and tribulations of a semipro football league. He holds a bachelor’s
degree in marketing from the University of Guam and an MBA with emphasis in tech‐
nology management from the University of Phoenix. He’s also an adjunct professor of
MIS and business at the University of Guam and a member of the Football Writers
Association of America.

He wants to make good on his public promise to be the first man on the planet to do
three distinct things with Glass: host a Hangout On Air from Epcot Center, call play-
by-play for a game while broadcasting his POV video to give viewers a behind-the-
scenes look at a live sports production, and direct a stage version of Hamlet with all
actors performing the tragedy of the troubled Prince of Denmark through their own
first-person perspectives.

Jason is online at jasonsalas.com.

Preface | xxv

http://kuam.com
http://bit.ly/jsalas-resume
http://jasonsalas.com/

www.allitebooks.com

http://www.allitebooks.org

PART I

Discover

In this introductory part we give you a primer on the Google Glass ecosystem and all
it entails as a wearable computing platform. We also introduce the Think for Glass
philosophy, and begin to touch on how you should apply it to how you approach Glass
as a user and an architect of Glassware.

• Chapter 1, The Revolution Will Be Wearable
• Chapter 2, The Glass Ecosystem: What It Is and How It Is Different
• Chapter 3, Societal Issues with Glass and How to Avoid Them in Your Projects

CHAPTER 1

The Revolution Will Be Wearable

Forging Glass
Even in a world when smartphones, tablets, and laptops are becoming faster each month
and shipping with tons of memory and eye-popping HD displays, the hardware that
runs in Glass is impressive, putting the capabilities of Glass on par with that of a Galaxy
Nexus. As you’ll find, the lightweight model of the ecosystem ensures that the infra‐
structural demands for Glassware, the applications that run on Glass, don’t generally
require a supercomputer or eye-popping specs.

First, let’s consider the Glass form factor. Gadgetry driving processing capability, hard
disk storage, and network connectivity that used to take up entire server rooms is now
condensed within the arm of a headset frame less than a half-inch thick and not even
weighing a full pound. Put into perspective, this is more raw computing power than
was on the first space shuttle and which initially ran the New York Stock Exchange.
(OK, we’re totally making this part up…but it’s probably true. Someone look it up and
get back to us.) At the same time, it is important to understand how the final physical
design reflects a set of compromises between what is possible, what is visually appealing,
and a wide range of other diverse requirements.

From the software side of things, Google engineered the Glass sync component of the
application framework that manages cloud-based services to do all the heavy lifting—
calculations, string manipulation, data transformation—in the cloud, not on the device
itself, reducing the need for expensive on board components to handle such processing
locally, meaning all that’s transferred over the wire is extremely small payloads of HTML
markup. Glass sync manages the complex messaging aspect for you—delivery, queue‐
ing, retries for users whose batteries might be dead or without Internet access, etc.
Timeline cards, which are the atomic units that encapsulate data on Glass, akin to web
pages within a web browser or screens in a mobile app, arrive to the wearer in near real

3

time with information that’s geographically aware, contextually accurate, and user
specific.

When you do need to run apps locally, Glass is still capable of executing Android ap‐
plications written specifically for its user experience. Processing, memory, and graphics
cater to microinteractions—a streamlined, perfectly suited form of application interac‐
tivity that doesn’t require lengthy usage sessions or attention. Aggressive competition
by hardware manufacturers has driven the price for consumer technology down con‐
siderably, and innovations in materials engineering have allowed the physical properties
of the Glass head-mounted display (HMD) to be light and flexible, yet durable and
sturdy. The display prism reflects bright colors and rich video. The embedded camera
captures remarkably clear images and video.

It’s truly an elegant system.

The one thing to keep in mind as you approach your own adventure with Glass as an
application architect is that at its core, this technology isn’t a new idea. Glass is the result
of a concept that’s been floating around advanced computer science circles and egghead
thinktanks for the past two decades: wearable computing. This is some pretty hardcore
stuff, so buckle up.

Wearable Computing
Straight from the pages of science fiction and echoing episodes of The Jetsons, wearable
computing has been envisioned for years—a utopian era when devices would be small
and lightweight enough to literally be part of your person and actually mesh with your
outfits (there’s a reason Glass ships in five distinctly attractive colors—Charcoal, Cotton,
Shale, Sky, and Tangerine). This is the next progression in how we use computers, going
from desktop towers tethering us to fixed locations, to portability with laptops and
netbooks with wireless connectivity, and then the mobility advantage smaller devices
like smartphones and tablets achieved, to finally wearables with intelligent software.

Relatives of Glass in this emerging space are products from Telepathy One, Microsoft,
Recon Jet, the IndieGogo-backed GlassUp, Chinese search provider Baidu, and even
automaker Nissan; Vuzix’s M100 Smart Glasses; smartwatches like the Samsung Galaxy
Gear, Sony SmartWatch, Qualcomm Toq, and the Kickstarter-born Pebble, along with
offerings from Apple, LG, and Google; and even do-it-yourself electronic components
like sensors that you can sew into your clothing with special conductive thread and
program to do all sorts of neat things.

Being designed from the ground up as a platform that frees you from having to con‐
stantly fuss with controls or type input or force refreshes, keeping content and the de‐
livery of it out of your way, Glass exists to sit on your head in order to put your life back
in your hands. Don’t you just love the irony?

4 | Chapter 1: The Revolution Will Be Wearable

What Does It Mean to Think for Glass?
When you begin to Think for Glass, you begin to think in this new way that Google is
beginning to forge. It means thinking about social interactions, personalized delivery,
and streamlining interactions—all at the same time. It means thinking about more than
just one application, it means thinking about how everything works together to create
something greater than the sum of their parts. It means thinking about new ways for
how your program should behave, how information flows between services and devices,
and how the interaction experience is optimized.

Being able to Think for Glass keeps technology omnipresent yet nonintrusive—a lofty
goal achieved only by delivering high-impact usability with minimal cruft. This is a
dramatic reinvention of how we’ve come to perceive mobile communications.

Here’s the basic idea: Glass is designed to live in your world, not for you to live in the Glass
world. It is meant to adapt to your life, not for you to adapt to how it does things. Your
apps are expected to behave the same way. Everything else stems from this basic idea.
To be sure, it is an ideal—but that doesn’t mean it isn’t the ideal to strive for. It also
suggests that just because something can be done with Glass doesn’t mean that it is a
good idea to do so.

It means that anything that works through Glass should be secondary to the world
around the person wearing Glass, and that an app should never expect otherwise. With
few exceptions, this is what the user expects, and violating those expectations will only
cause problems and a poor user experience.

Software that works best with Glass are those programs that require no more than about
five seconds at a time. This is the essence of microinteractions. If users are taking more
than that time, they will be making a conscious decision to break out of the world they’re
in and enter the Glass universe. Sometimes users will choose to do this—to review
photos and share them, for example. But even these tasks are oriented toward what users
want to do (find a picture and share it) rather than how an app wants them to do it
(open their app and process a photo). Apps should accept a wearer’s commands—not
narrow a person’s choice into what the app wants you to do.

Of course there are menus and voice commands that limit what a person can do, but
app developers should be as aware and open as possible to the full set of commands that
are available by default and how people may wish to use the data they provide. It takes
a lot of extra thinking, and we’ll be discussing the designs required to do this successfully.

Consider, for example, the desire that everyone has to get on the Glass home screen, or
to give their cards persistent presence on a user’s timeline. This is an app-centric focus
—we want our applications prominent for the user. But it forces users into our world
instead of trying to understand the world that they want to be in. They don’t want to
sort through dozens of “pinned cards,” as the Glass terminology refers to it, to find the

What Does It Mean to Think for Glass? | 5

one they want. They want us to deliver information to them when, and only when, they
want it. They want to be able to easily ask for new information. They want to quickly
find the data they know is there…somewhere. They don’t want clutter. (And if you’re
confused about what this all means, you’ll understand by the end of Chapter 5.)

Sometimes, the boundary between “the Glass world” and “the human world” isn’t clear.
Consider an app for running enthusiasts, for example. The runner wants to be able to
quickly, easily, and probably frequently see his progress, heart rate, course, and other
important information. But, all too easily, this information can become distracting if
constantly presented…and the runner could stop paying attention to the physical world
he is are trying to traverse, risking physical injury. Perhaps this is a case where a runner
can set predetermined alarms (heart rate too high, another mile traversed in the course,
etc.) to notify him for important events, but also allow for an on-demand summary if
the runner wishes.

This event-driven angle is at the heart of Glass. Glass needs to be a mind reader—
delivering the information about events exactly when you want, before you ask for it. It
needs to respond, immediately, to the events you wish to capture in the world around
you and turn them into online representations of those events.

We have to remember, also, that the world around us isn’t the same as that of Glass, or
even the wearer’s world, and Glass tries to address that. As we write Glassware, we need
to remember that the public perception of our world isn’t going to adapt to Glass just
because we may want it to. This is why Glass requires specific actions to take a picture
and why it lights up when recording video—the world around us has certain expecta‐
tions that Glass tries to meet. Our software needs to respect the social norms, while at
the same time nudging it forward. Software that violates these norms (for example,
software that does facial recognition or that uses material Google deems objectionable)
is discouraged, even if the features it provides could be tremendously beneficial.

Glass is different. Glass is more personal than any computer we’ve had before. Glass is
technology that tries to get us away from technology and into our world. Our applica‐
tions can’t try to drag a user away from that.

By the end of this book, we’ll empower you with the knowledge to Think for Glass so
that you respect the following virtues about optimal Glassware construction from three
perspectives:

1. Usage

• Understand personal technology
• Appreciate the value of personal area networks
• Know the ecosystem

— Hardware, firmware, cloud infrastructure, Glassware, administrative tools

6 | Chapter 1: The Revolution Will Be Wearable

• Realize Glass doesn’t replace, but complements, your other gear
— Smart devices and mobile platforms still have their place alongside wearables

• Get involved
— Ask questions, share knowledge, submit feedback, participate in the commu‐

nity
— Demand Glassware from your favorite services

• Live in the physical world
— Respect the privacy of those around us
— Use Glass to be part of the moment, not divorced from the moment

2. Design

• Aim for simplicity and brevity
— Target supporting microinteractions

• Respect the Five Noble Truths
— Design for Glass
— Don’t get in the way
— Keep it relevant
— Avoid the unexpected
— Build for people

3. Development

• Leverage the software-as-contact model
— The evolution of sharing

• Work judiciously with frameworks
— Mirror API versus GDK

• Build distinctly for Glass
— Don’t “lazy port” existing Android or web apps
— Leverage the Glass UI and control system
— Exploit event-driven existences
— Context powers content
— Let users live in the moment

What Does It Mean to Think for Glass? | 7

CHAPTER 2

The Glass Ecosystem: What It Is and
How It Is Different

When Glass was first unveiled in 2012, the developer community was both put on notice
and challenged, with Google producing a new application client that’s radically differ‐
ent. But Glass is more than just a set of hardware specifications or the apps that are
available by default, it is a new way of interacting with your computer and with the real
world.

Our main goal isn’t to give you the information just to produce Glassware—we want
you to produce GREAT Glassware. Your success is our success. So let’s hit the ground
running and set you off on your journey to thoroughly understanding the Glass eco‐
system and becoming a Glassware-producing superstar.

What You See and What You Get
As you can tell from Figure 2-1, the maturity of the Glass design scheme has come a
long way in about two years. The headset appears as a minimalist pair of glasses that
have been bulked out with some additional hardware. On the one hand, the additions
are sleek and almost futuristically styled. On the other hand, they are clearly noticeable
and perhaps a bit bulky. Some are made even more visible because of the color choice.

9

Figure 2-1. The evolution of Google Glass (image courtesy of Google)

But contained in this device is a small modular bundle of technology:

• A battery module
• A micro-USB port that serves as power source, headphone jack, and data port
• A bone conduction transducer speaker
• A trackpad that detects forward, backward, and downward swipes, as well as one-,

two-, and three-finger taps and long presses
• Assorted sensors that can detect head tilts, head turns, and eyelid movement
• WiFi radio and Bluetooth module to communicate with either a phone or directly

to the Internet
• A fixed-focus camera that has roughly the same field of vision as your eyes
• A microphone tuned to pick up the wearer’s voice
• And, of course, the characteristic display that gives Glass its name

We fully detail the full technical specs for Glass later in this chapter.

Glass Is a Platform, Not a Product
It’s important in learning how to Think for Glass to realize that the product known to
the world as “Google Glass” isn’t just a device you wear on your head. It’s a full ecosystem
—a synergy of hardware, software, applications, APIs, and a backend environment. It’s

10 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

also an opportunity to create new peripherals and accessories for things like custom
frames, sticker designs, display sleeves and covers, and other modular add-ons.

Like most of Google’s product line, Glass is a platform, not a product (Figure 2-2). The
hardware that makes up Google Glass itself is an achievement of industrial design. The
product has conquered environmental challenges of size, weight, and sturdiness, im‐
pressively addressing obstacles like power consumption, networking requirements, and
heat dissipation. On a functional level, it seeks to accomplish a single type of experience
—to cater to microinteractions, allowing the wearer to utilize technology while not being
taken out of the moment.

Figure 2-2. The Google Glass logo (image courtesy of Google)

The hardware, the system software, and the application environments represent a bal‐
ance between user needs, aesthetics, and design constraints and are extremely elegant
in their approach. Glass embodies a huge shift for Google from a design standpoint.
The company that gained global notoriety for its intentionally sparse and minimal user
interface elements with its web systems to capitalize on speed has invested heavily into
assembling a team of designers, materials experts, human–computer interaction sav‐
ants, and scholars of personal computing to come up with a design concept that’s pleas‐
ing to look at, comfortable to wear, inherently self-promotional (“Hey, check it out! That

Glass Is a Platform, Not a Product | 11

guy’s got Google Glass!”), and functional. The slender shape of Glass, functionally wrap‐
ped around your head, is sleek and modern, not clunky and cliche.

That’s a fairly tall order for any device, much less one that’s worn on your face, and
weighing less than a pound.

The components are packaged into a thin form factor that sports cosmetic appeal and
handles the connectivity for Glass and communications demands of an Internet-aware
device. Glass was built with modularity in mind, and the arm containing the electrical
components can be removed from the frame for aftermarket modifications like fitting
them to custom frames.

The Glass team was beyond obsessed with getting the form factor right. Isabelle Olsson,
lead industrial designer for Google Glass said at Google I/O 2013, “If it is not light, you’re
not going to want to wear it for more than ten minutes,” adding, “We care about every
gram.”

The space-aged aesthetics of the headset with its extremely pliable titanium-trimmed
frame, matte finish, and prism display make Glass comfortably symmetric on either axis
—the headset doesn’t slide too far forward on your face, being counterbalanced by the
rear-seated battery sitting behind your ear; and it won’t awkwardly sag sideways, despite
the impression that all the gadgetry is lopsided to one of the arms.

On the software side of things, the Android-based firmware that runs Glass features an
extremely responsive UI sitting on top of the timeline concept that’s easy to master with
a slick multi-input control system, is highly performant, and properly handles multi‐
media like other mobile platforms. The UI uses a simple card-based metaphor (in‐
creasingly used across many of Google’s products, and one that we’ll go into great detail
about later) with simple head gestures like nods and voice commands to control it. This
lets most of the common tasks be run with minimal CPU usage, and thus minimal drain
on the battery.

The Glass Application Model
Glassware, those programs running on Glass, is available in two distinct flavors: those
built using the Google Mirror API and those written with the Glass Development Kit.
Each has its own approach to deliver a consistent experience. Both of these frameworks
are thoroughly examined in third part of the book, Develop, but let’s take a look at them
briefly here.

Mirror API
The Mirror API is a RESTful interface, handling server-side programs with all compu‐
tation done in the cloud before they get sent to your device, inserted into your timeline,

12 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

and rendered as cards. All you get is the finished product, thoroughly cooked and ready
to eat. These types of services resemble traditional client/server web apps.

Because Mirror API programs run purely in the cloud, the processor on Glass is left
free to work on other things and not worry about calculations, string manipulation, on-
the-fly interpolation, working with binary data locally, or client-side presentation me‐
chanics. The payload is pure HTML and CSS style rules (but no JavaScript, at least not
at the moment), both lightweight and simple to handle. Multimedia can also be included
with minimal additional overhead, and video is streamed on-demand, not downloaded.

The Mirror API framework is based on the publish/subscribe model that enables push
notifications, and avoids repetitive operations between clients and servers. As opposed
to the traditional method of installed programs, this keeps downstream payloads to a
minimum. To receive updates and interact with the Glassware, users authorize their
Google accounts to register with the Glassware without needing to install executables
on the device. This eliminates a lot of unnecessary network roundtrips, which again,
reduces radio activity (via WiFi or Bluetooth tethering to a mobile device), bandwidth,
and battery use.

This is significant to the optimal performance of the system. There’s no requirement for
managing a massive internal storage hard disk to store application components like
embedded databases, configuration settings, and data caches. This also results in the
development time for Mirror API projects being incredibly rapid—you can get a com‐
plex project up and running in a couple of hours. This speaks directly to the flexibility
of the Glass ecosystem.

Mirror services do have two big requirements: being cloud-aware, they obviously need
connectivity. Also, services need to be registered by using an OAuth provider, which
typically means having to do so in a browser. There’s no executable file you can just send
to someone.

For services where network access is optional, you need access to the Glass sensors, the
default UI of Glass needs to be extended, or you’d like a more flexible means of distrib‐
uting your programs, Glassware can be written using the GDK.

Glass Development Kit (GDK)
For those who want more granular control of their application and the environment in
which it runs, Glassware built using the Glass Development Kit, an extension to the
Android SDK for Glass, are programs that are written in Java and installed on your
device. The GDK extends the standard libraries used for Android programming with
Glass-specific features, resulting in an app that can be distributed easily and installed
directly on the device.

GDK Glassware goes functionally further than the Mirror API, in directly accessing the
hardware and being able to run offline. In applications programmed with the GDK, the

The Glass Application Model | 13

same lightweight, microinteraction model is enforced via the timeline and cards UX,
but this can be expanded upon, or even diverted from completely. It’s possible to pro‐
gram immersive native experiences on Glass, letting you create UIs that stay resident
in the prism and are meant to be used over longer sessions.

Examples of immersions are games and applications using the camera.

Actions, Not Apps
This approach to the application model leads to a different way of thinking about how
to treat apps with Glass. As we will see, the most natural way to use Glass is to think
about what you want to do, not what app you want to run to do it. In fact, we would be
so bold to say that if your mindset is about apps and not what you want to do with Glass,
YOU’RE THINKING ABOUT IT WRONG. Glass doesn’t have a launcher in the same
way a phone or tablet does, and the home screen invites you to issue instructions to it.
The results from Glass commands are displayed as part of the timeline, mixed together
with the results of other notifications, updates, and commands. Although each of these
cards is generated by a program, we don’t normally need to think about which program
generated them.

Similarly, Glass changes the way that we as users interact with wearable computing
devices through the various input mechanisms it supports—swiping/tapping on the
trackpad, using voice commands, using head movement gestures, and even winking to
instruct Glass to take a picture. All of these manipulate what is shown to us, but none
of them appear to “launch” an application directly. Instead, Glass represents them as
verbs—actions that are doing something, rather than objects that do it.

In the future, it may even be possible to see other physical actions associated with ac‐
tivities on Glass. There has been a lot of work in extending the ways to trigger actions
on the system—Google was granted patents to allow a user to make hand motions out
in space, which the company hinted might ultimately be used to endorse a post on social
networks (like, +1, heart, star, thumbs-up, mood, etc.), by making the popular heart
hand gesture. And the company Remotte aimed to further make interacting with Glass
seamless, launching a Kickstarter campaign to sell its remote control that communicates
with Glass over Bluetooth. Users can keep their hands in your pockets and just control
the HMD with simple button clicks while out for a walk, never needing to reach up and
fiddle with the trackpad.

A point of reference about the “actions, not apps” idea is the voice commands available
to launch Glassware. These aren’t just arbitrary trigger phrases picked because they
sound neat or roll off the tongue nicely or are terse enough to work in a crowded room
—they use active voicing with strong verbs and truly capture the essence of interacting
with the wearable software. They lay out very simply and without ambiguity what single

14 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

http://remotte.com/

action you need to take to get an app to conduct its main purpose. And that’s what you
need to target.

The projection unit actually shares space with other key hardware in the area of the
device officially known as the optics pod, the module that houses three very powerful
sensors on Glass—the accelerometer, the gyroscope, and the magnetometer.

The outside of the brick (the side perpendicular to your face) is covered with two-way
reflective material so as not to let ambient light in or out. Projected content bounces off
the angled piece, refracting the light down through the flat side of the prism facing the
user’s eye, and projecting it onto the wearer’s retina, but giving the impression of in‐
formation being projected out in space in front of them. The end result isn’t unlike most
commercial HUDs commonly used in some automobiles.

Because the HMD is strapped to your head, the display perfectly follows whatever di‐
rection you’re facing, consistently and without lag. It’s always there.

The timeline UI and the cards within it appear as semitransparent images, allowing the
user to look through the content set against the real world as a background stage. The
projector can also be adjusted manually, as the section containing the unit is on a hinge,
and can be manipulated for better visibility. Glass sends the content directly at you at a
perceived scale that’s neither too big nor too small. To achieve a natural and comfortable
depth perspective, Glass tweaks the appearance of projected material out in space by
way of a clever optical illusion (see the sidebar “Calling upon an Old Hollywood
Trick” on page 19), all while being mere centimeters from your periphery. Many first-
generation Glass users have said looking at content in Glass is akin to holding your
smartphone screen at arm’s length.

As a pro tip to see the actual difference between the projected display to really appreciate
the display while wearing Glass, try this: wake up Glass so that some sort of content is
showing, and then look at yourself in a mirror. While the display as it appears to you is
relatively large and legible, the actual dimensions of the display are actually miniscule.

That’s the effect it achieves and the magic behind how it gets it done.

A couple more helpful things that the prism does for its wearer automatically are in
terms of the amount of available rays. The prism is made of a photochromatic lens that
reacts to an increase in ultraviolet light, applying tinting so that direct sunlight doesn’t
blur information or become magnified and blind you while you wear it. On the opposite
end of the spectrum (pun certainly intended), if you have trouble reading the content
being projected indoors in artificially lit rooms, try pointing Glass for a moment toward
a lamp, a TV, or some other highly illuminated object. One of the sensors that the device
has on board (which we cover in Chapter 13) measures light and self-brightens the
display if the environment is too dim.

Actions, Not Apps | 15

This Feels Vaguely Familiar
One of Allen’s most poignant observations about the product’s design is something he’s
told many people since using Glass, saying, “If I didn’t tell you it was made by Google,
you’d swear it was an Apple product.”

And he’s not alone.

Scores of people have given the design of Glass high praise by saying its feel rivals the
legendary product designs a certain tech company in Cupertino, California is known
for. Cecilia Abadie, a Southern California developer who created Genie (“The Swiss
Army Knife of Glassware”) and one of the original Explorers, says Glass “is one of the
most carefully designed environments we’ve seen in a long time.” We won’t challenge
that conclusion.

When both of us first got Glass, we agreed we haven’t been this excited to build cool
things for a platform in quite some time.

Reinventing Human–Computer Interaction
Another subject that got a lot of attention before Glass rolled out was exactly how much
independence it would have as a communications device. People constantly debated the
autonomy of the wearable computing apparatus—one camp assumed that it would
merely exist as a peripheral or accessory, linked to a phone in order to communicate,
and ostensibly dead in the water without it; others surmised it would be a first-class
computer, complete with its own cellular data connection.

Glass thankfully is a hybrid of sorts, a self-contained device with its own WiFi radio and
not explicitly requiring an accompanying smartphone, but enhanced by tethering to
another smart device for network connectivity and for telecommunications services like
text messaging and voice calls. This mercifully relieves you as a user of the need to have
multiple data plans with a carrier, reducing your total cost of ownership. Administering
your Glass profile requires only the occasional peek at the helpful MyGlass mobile/web
app to manage Glassware subscriptions and manage contacts.

The main theme, and a prime objective of how the system was designed, is to require
as little user input as possible to negotiate the system. It’s a hands-free, ears-free, and
wires-free means of staying connected and interacting with others online.

Glass is also able to audibly recite text content to you. Glass additionally becomes a
telephony device when tethered to a smartphone, facilitating text messaging and voice
calls, and chat sessions and multiuser calls through Hangouts.

As long as Glass has a network connection, you’re plugged in (metaphorically) and ready
to run with core services like search, participating in Hangouts, obtaining directions,

16 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

http://genietakeanote.com/

and getting real-time directions, as well as using the growing number of third-party
Glassware applications the community is building. You could get by with just WiFi and
the occasional visit to a desktop web browser to manage your profile.

And even if you go offline because you’re out of cellular range, your phone’s battery dies,
your WiFi time at the library expires, whatever the reason—Glass is still perfectly capable
of taking pictures and shooting video and storing files locally, which can be synced to
the cloud when you regain connectivity.

And in case you were wondering about any dangers about waves being emitted from a
computer that sits resident right next to your brain for potential extended periods of
time, because the radio communication is short range, being Bluetooth tethering or
WiFi, the radiation that Glass gives off, according to Google, is “significantly less than
a cell phone.” Additionally, Glass is designed to force heat generated by the processor
to flow away from the user, so even in times when Glass may be heating up due to
extended use or with applications that require a significant amount of processing, the
heat can be felt on the outside of the touchpad opposite your head, but you won’t feel
it against your skull.

What Glass brings to the table is a rapid-response mechanism for you to stay in the
moment. And this means not requiring you to look down, negotiate input controls, type
frantically, and navigate through menus and complex user interfaces to do what you
want. Its hands-free, ears-free, wires-free design liberates you in being able to interact
with objects, places, and people as you normally would without fidgeting with a device
and manipulating a screen to perform operations like editing photos, seeing where
people are in relation to you, joining a Hangout, or sending a message.

Glass doesn’t accomplish anything you can’t already do with existing technology, it just
does it without so much effort. What’s critically important to realize is that Glass was
designed so people would interact with it very differently than other types of computing
devices. “But,” you’re probably saying, “isn’t this what I’m already doing with my smart‐
phone?” Absolutely. The product doesn’t intend to take any of the shine away from its
more tenured cousins—the smartphones, laptops, and tablets you’ve been using for
years. Rather, it wants to be a valuable, contributing member of the family and take that
interaction to the next level.

This isn’t just wearable technology, this is personal technology. Really let that statement
sink in for a few seconds, because it’s key. Understand that this isn’t personal like “per‐
sonal computer”—in some ways, it is, but it’s also so much more. This is a new dimension
of connectedness with data, and a new form of intimacy—both for you with your social
connections, and for you with your device.

Reinventing Human–Computer Interaction | 17

http://bit.ly/glass-norm

Technical Specifications (as of the Explorer Edition)

• Weight: 1.5 ounces (.9 lbs)
• Operating system: Android 4.4 (KitKat)
• Memory: 682 MB of free memory, possibly 2 GB total, on Elpida mobile DRAM
• Chipset: Texas Instruments OMAP 4430 SoC 1.2Ghz dual-core (ARMv7) CPU
• Display resolution: 640 x 360

— Slightly less than VGA
— HTML-based timeline cards have a recommended CSS gutter to limit text from

bleeding off the visible area, but images and video are displayed at full resolution
• Display focal depth: similar to viewing a 25-inch high-definition display from 8 feet

away
• Embedded digital camera: 5 MP images, 720p video
• Audio: Bone conduction transducer
• WiFi: 802.11b/g
• Bluetooth: Bluetooth Low-Energy 4.0 (BLE) module
• Touchpad: Synaptics touch module driven by T1320A touchpad controller
• Disk space: 16 GB flash memory via Sandisk

— 4 GB for system software and drivers, 12 GB usable via cloud-synced storage
• Battery: Nonremovable 570mAh cell providing several hours’ charge with normal

use

The Science Behind the Projection
One of the biggest curiosities pundits sought resolution on as the initial Project Glass:
One day…. concept video and the follow-up video, How it Feels (through Google
Glass) made their way around the Internet and into societal consciousness was the
device’s display. This fervor ramped up in intensity as shots from various angles of the
early prototypes immediately went viral. Great interest ensued for insight about the little
sliver of clear glass’s resolution, focal length, clarity, HD capacity, and ability to share
what the wearer was seeing on other displays via mirroring. It wasn’t too long until the
projection system was detailed, revealing some very impressive engineering that delivers
remarkable quality in an incredibly small space.

People pondered the possibilities of the system and what radical new technology might
be at play, and whether text, images, graphics, and video in Glass would be floating as
an overlay in some sort of flat monitor with content sitting out in space for a user to

18 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

http://bit.ly/project-glass-1day
http://bit.ly/project-glass-1day
http://bit.ly/through-gg
http://bit.ly/through-gg

gaze at, or whether data would be projected directly onto an owner’s eyeball. A technical
teardown of the hardware by Catwig.com published in June 2013 notes the “the pixels
are one-eighth the physical width of those on the iPhone 5’s retinal display.” This for a
while was one of the most hotly contested topics in Glass forums, in media reports, in
social posts, and around water coolers.

The answer is—it’s both!

Glass displays information by using its signature prism display in concert with a so‐
phisticated projector system. The projection unit is mounted at the front of the arm just
behind the embedded camera, casting its image within the display brick, which houses
a second piece of glass at a 45-degree angle, creating a prism. What you may not have
immediately noticed is that the Glass logo, which is also its social avatar, features a
slanted “A” in the product name, which is a clever mnemonic device reminding the
wearer about how Glass achieves its overall experience (it admittedly took the both of
us months to realize this). Pretty sneaky, huh?

Calling upon an Old Hollywood Trick
The impression that the content you’re seeing is further away than its actual distance is
managed by a variation of an optical illusion technique used in movie making for dec‐
ades. To achieve a spatial feel much larger than the actual dimensions, set builders in
the film and theatre industries often employ forced perspective, which tricks observers
into thinking an object is of much different proportions than it really is by scaling or
skewing it in various ways.

This technique is used extensively at Disneyland. For instance, Sleeping Beauty Castle,
the centerpiece of the theme park, was constructed so that its unmistakable tower gets
narrower as it gets taller. Observed from ground level, this creates the effect that the
building appears to be a skyscraper, when in reality it’s just 77-feet tall. A similar tech‐
nique is applied by optometry equipment for eye tests.

The Glass team employed this same principle in creating depth of field for tweaking the
prism’s focal length in relation to your eye and your perspective, so that images projected
to you would seem to be a comfortable distance away in the prism, sitting out in space
rather than slammed up against your face. The projected image also appears much larger
than its actual dimensions—the effect of viewing a 25-inch high-definition display from
8 feet away. In reality, the images are being projected onto your eyeball. This preserves
clarity, makes graphics stand out, and ensures text is legible.

Show business, baby!

The Science Behind the Projection | 19

http://www.catwig.com/google-glass-teardown/
http://www.catwig.com/google-glass-teardown/

How Glass Gets Audio into Your Ear
Bone conduction transducers aren’t exactly a new concept, but their use in Glass is going
to be most people’s maiden voyage with the technology at the consumer level. Devices
built on the technology have been available as hearing aids for the hearing impaired or
the elderly.

Ears-free audio in Glass is achieved by converting audio signals to vibrations, which are
then sent through the speaker inside the arm of the frame on Glass and vibrate against
the user’s skull behind the earlobe and into the inner ear, rather than by broadcasting
soundwaves directly into the user’s eardrum. The audio quality and clarity is remarkably
good, comparable to a good pair of headphones.

But for the more traditional user, Google makes a set of micro-USB earbuds designed
specially for Glass. You get the best of both worlds!

Battery Life
Glass isn’t meant to be used as a perpetually-on device. The use of
camera-centric services such as recording video for long periods of
time, in addition to applications that cause the Glass projector to stay
on and tax the processor, like games and turn-by-turn navigation, will
more dramatically drain a battery’s charge than allowing the device
to go to sleep after a few seconds of nonuse. This shouldn’t come as
a surprise—most mobile devices that excessively use a camera, dis‐
play, or data communication won’t have tremendous usage time. (The
Amazon Kindle is one of the few exceptions.) Glass isn’t any differ‐
ent in that regard.
Building apps in such a way as to not kill the user’s battery is a ma‐
jor principle of program design for any mobile developer, but it’s
especially true for Glass when considering the low-intrusion goal that
we’ll cover thoroughly in Chapter 13 when we talk about the GDK.
But just know that it is possible—and highly encouraged—to design
your native apps in such a way to leverage Glass gracefully going to
sleep on its own while having your program continue to run in the
background.

Using the System
Information in Glass is presented through a simple concept but controlled in a variety
of ways. Everything in Glass exists around the timeline. Your home screen—the simple
UI element with the current time and “OK Glass” underneath it—serves as your time‐
line’s anchor as its center point, as indicated in Figure 2-3. Much like windows are the
main visual elements that let you control a graphical operating system, a user’s timeline
is the interface through which she receives information, gets notified of new content,

20 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

www.allitebooks.com

http://www.allitebooks.org

interacts with subscribed services, sends the system user input, and makes changes to
her customization settings. It’s a snapshot of your activity and notifications.

Figure 2-3. The Glass home screen

A timeline consists of cards—units of information that support text and multimedia,
spanning everything from system settings and status messages, to games, tweets, chat
messages, and email messages, optionally organized into groups known as bundles.
Additionally, cards may be pinned so that they sit close to the home screen and are
available for quick reference, like bookmarking.

Difference Between Glass and Android Wear
While Glass and its cousin within the scope of wearable computing, Android Wear,
share the timeline card as their UI container, the element that contains cards is slightly
different. On Glass we’ve got the timeline that presents information chunks about those
events that will happen in the future or are happening now, and those that have already
taken place—separated by the home screen. Android Wear–driven applications are or‐
ganized within the context stream, a similar chronology but all within one continuous
feed based more on each item’s relevance to the user at that moment, not merely on
when it was posted.

It’s all about the details.

Each user’s timeline has two parts, each consisting of information and events—what’s
coming up and what’s already happened, navigable by single-finger swiping back or
forward on the touchpad. System settings, pinned cards, and Google Now cards for
upcoming events like calendar entries, to-do items, sports scores, weather forecasts, and
stock prices are accessible by swiping back on the touchpad toward your ear (to the left

Using the System | 21

of the home screen). Also found left of the home screen are any pinned cards, as well
as running programs for native apps—both types of cards give the feeling of more dy‐
namic content, and play into the idea of things that are happening at the current mo‐
ment.

Swiping forward toward your eye (to the right of the home screen) moves over the
collection of older items for a running log of your activities. If cards have additional
functionality like a series of menu items for a picture, tapping the trackpad to iterate
through the available commands for selection is analogous to a mouse click on a desktop
computer. Swiping downward goes up a level, so that if you’re in a menu item, it goes
back to the card with that menu, for example. If you’re at the top level, it turns the display
off.

Glass turns itself off after a few seconds of inactivity. To turn it back on, you can either
tap the trackpad to wake it up, or enable a setting that lets you tilt your head upward
and wake Glass up. Glass additionally supports optional features, such as automatically
waking from sleep when it’s being worn, or enforcing a screen lock consisting of user-
defined gestures. Powerful voice controls as we’re accustomed to in recent versions of
Android are available, both in interpreting specific commands from the main screen
for things like messaging—the canonical “OK Glass” menu—as well as for spoken input
when replying to a message.

The Camera: Photos, Videos, and More!
Glass is pretty much a point-and-shoot device. A shutter button on top of the camera
manually initiates photo taking or video recording. Framing can be a bit awkward be‐
cause the lens is shifted to the right, but the widescreen nature of the pictures generally
captures everything that is in your field of vision. The Viewfinder application acts as a
preview monitor, and some Glassware projects are looking to expand the camera’s ca‐
pabilities to be on par with many commercial DSLRs so you can have a better handle
on getting the shot you want.

If you’ve enabled Google+, media files are uploaded to a private album via Auto Back‐
up. This also means that pictures shot in rapid succession along with videos can be
assembled by Google+ as Auto Awesome movies. (The ability for an app to compile and
edit video footage into a prepared presentation is a concept that Glassware like Per‐
fect provide, taking your raw footage and assembling time-lapsed mini-movies.)

Once you’ve taken a picture, you can immediately share it by saying, “OK Glass, share
with…” to share the image with a contact or a piece of Glassware (this concept is big
and we’ll get to in Chapter 11). You can also choose the Send menu item to upload the
image to a contact to start a Hangout chat, or to an ongoing conversation with a group.

Video recording by default is for 10 seconds. To record longer clips, tap the trackpad
and choose Extend video or just press the top button again. To stop, tap and select Stop

22 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

https://www.perfectglassapp.com
https://www.perfectglassapp.com

recording or press the top button once more. You can also upload recorded video to the
YouTube channel associated with your Google account. Just enable the YouTube Glass‐
ware and you’ll see the options to share the video as Public, Private, or Unlisted.

However, while Glass can take impressive five-megapixel pictures that look especially
good in natural light, don’t expect to throw out your existing gear or anticipate never
buying another camera again. Because of the intent for the embedded camera to work
quickly and capture things in the moment, it doesn’t have auto-focus or zoom. It also
lacks the types of controls that cameras on other Android devices have, with the focal
perspective being fixed. In this regard, the camera is a compromise between several
different needs in order to handle the types of situations in which you’ll want to quickly
capture life happening, at the expense of having a full-feature photography rig.

This shouldn’t be seen as a handicap of the system, but the key driver of it. This is what
it means to Think for Glass.

Some of the initial natural limitations with the device are evident in the framing of a
shot (with the lens right-of-center on your head), having to holding the camera still
(meaning not moving your head), and shooting subjects from an appropriate distance
to capture them legibly (which varies depending on the situation). So, some early criti‐
cism was that the Glass camera generally isn’t suitable for doing QR code processing,
but some app developers have found clever ways around this.

Limitations Lead to Opportunity
Glass in a few instances may be limited, but it’s also extensible. While reading the pre‐
vious section you might have been inspired to improve upon the camera’s capabilities
—specifically the lack of controls the camera has out of the box.

You might be able to use the GDK to write native Glassware that takes control of the
camera feed and hooks into trackpad gestures to feign features that don’t ship with the
system. An example of this could be applying Instagram-like filters to photos.

Just some food for thought to get you started. Refuse to accept the status quo! Get
creative!

Glass Is a Great Listener
You’ll probably be using voice actions a ton to interact with the system. Glass wakes up
either through you tapping the touchpad or using a head gesture (if enabled in the
Settings bundle). Once active, announcing the hotwords “OK Glass…” triggers the full
list of voice actions available to you to be displayed, which is made up of the default
system commands for Glass plus any trigger phrases for any apps you may have installed
or services to which you’ve subscribed. This is essentially the same voice-driven tech‐

Glass Is a Great Listener | 23

nology used in Android search and in Microsoft’s Xbox One. You can speak the com‐
mand or tilt your head vertically to scroll through the choices and say the command to
select.

Voice actions (as of the Explorer Edition):

• “OK Glass, Google + <QUERY>”
— Open-ended searches return a list of cards as results, which may be matching

images and/or web pages. You can also force a filtered search of Google’s index
for images by saying “images of…” and for video clips by saying “videos of…”.

— As far as browsing the sources for search results, Glass provides you with an
embedded instance of a browser so you can view pages on the Web. A set of slick
tools are available to let you navigate pages.

— Search on Glass taps Google’s Knowledge Graph and uses the same natural lan‐
guage syntax as Google Now, and works best with simple informational queries
based on factual information like the following:
— “Who wrote The Canterbury Tales?”
— “How tall was Wilt Chamberlain?”
— “Who were Mel Brooks’ wives?”
— “Stock price of General Electric”
— “When was Bon Jovi’s Slippery When Wet released?”
— “Convert 3 US Dollars to Yen”
— “What will the weather be like in Columbus, Ohio on Thursday?”
— “How old was Bruce Lee when he died?”
— “What states make up The Four Corners?”
— “What’s the population of Winter Garden, Florida?”
— “How long does it take to get a PhD?”
— “How far to Hershey, Pennsylvania?”
— “How many homeruns did Roger Maris hit in 1961?”
— “What is breaking the fourth wall?”
— “Cast of Dude, Where’s My Car”
— “What is the seating capacity of Michigan Stadium?”
— “Definition of subcutaneous”
— “What is Gene Simmons’ real name?”

24 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

http://bit.ly/voice-actions
http://bit.ly/ok-voice-search
http://bit.ly/ok-voice-search

— Asking something more vague like searching for something abstract such as
“Why did Francis Ford Coppola feel the need to make The Godfather: Part III?”
or “Will I ever find love?” won’t be as accurate. Glass isn’t that smart…yet.

• “OK Glass, take a picture" / “OK Glass, record a video”
— You can also press and release the shutter button to take a picture, or hold the

shutter button down to initiate recording.
— If you’ve optionally enabled and set up the Wink feature in the Settings bundle,

you can take pictures with Glass by winking, even if the device is idle and the
screen is locked.

• “OK Glass, get directions to + <LOCATION or ADDRESS or GENERIC PLACE>”
— Returns a list of known places. Selecting a place launches turn-by-turn-

navigation.
— Tapping on a directions card also lets you swipe through a series of travel choices,

giving you directions for driving, walking, biking, and transit.
— Location searches are best when using a formal name of a place like “McDo‐

nald’s” or a generic type of location like “gas stations” (which give you a list of
matches), the full address of a location such as “1600 Pennsylvania Avenue,” or
user-defined names like “School,” “Work,” and “Party Spot.”

• “OK Glass, send a message to + <CONTACT’S NAME or CIRCLE or HANGOUT
GROUP>”
— Create a message for the specified recipient via voice dictation. Once you stop

speaking, Glass waits for one second before delivering the message and during
that time gives you the option to swipe down to erase it and start again.

— Glass uses a specific hierarchy of services for Messaging, with Hangouts sitting
atop the food chain. If you have the Hangouts Glassware enabled, that service
will be the default delivery mechanism for all contacts. If you’ve set up Google
Voice on your phone and are tethered via Bluetooth and have paired Glass with
the MyGlass mobile app, the message will arrive from your Google Voice num‐
ber. Otherwise, Glass defaults to using your phone’s SMS number with your
carrier. If your recipient only has an email address listed in his or her contact
information or you’re not running MyGlass, voice action messages use email
delivery.

— Glass also sets a phone number associated with your contacts as their Calling
information, which is what’s dialed when selecting them for a voice call.

— You can still configure default messaging services on a per-user basis—just click/
tap on their card in MyGlass and you’ll be able to assign a service to them as
their preferred delivery method—email, SMS, or Hangouts. Thus, when you use
“Send a message to…”, the selected service is used.

Glass Is a Great Listener | 25

http://bit.ly/g-message

— Group conversations are also supported through Hangouts. If you’re part of a
group chat, that conversation will be available for you to send messages and
photos to. The structure of group messaging on Glass typically requires you to
add multiple users via the desktop, browser, or mobile versions of Hangouts,
which are then available on Glass. This makes the process more akin to email—
not everyone in the group will have Glass or may be designated as a sharing
contact, so you will need to add them to the chat manually on another device
(just like addressing an email message). It’s an extra step, but it really does pay
off in the final wash.

— MyGlass also manages SMS threads intuitively, forwarding outgoing text mes‐
sages from a connected smartphone to Glass and displaying full threaded con‐
versations as card bundles.

• “OK Glass, make a call to + <CONTACT’S NAME or CHOOSE FROM LIST>”
— If you’ve paired Glass to a Bluetooth-enabled phone, you can initiate a voice call

and receive incoming calls. All hands-free, or with tappable menus.
• “OK Glass, post an update to,” “OK Glass, take a note with,” “OK Glass…<invoke

native Glass app>”
— While the GDK gives you a little more leeway into what voice prompts are ac‐

cepted to launch an installed application, the Mirror API allows you to use two
custom voice commands to invoke your service. “Post an update to” and “Take
a note with” can be used a gateways into your Glassware for sharing images,
videos, or voice data transcribed to text with your contacts. The other wildcard
that the voice commands menu provides is as a gallery of your installed appli‐
cations, written with the GDK. Native programs that you’ve enabled through
MyGlass or sideloaded can be launched hands-free—each has a key hotword
phrase, such as “Play a game” or “Translate this” or “Start a timer,” appearing
in order of their most-recent use among other trigger phrases and the system
commands mentioned previously.

— The chance that two or more applications will want to use the same trigger phrase
is inevitable. To resolve these naming conflicts when someone utters a shared
command, Glass displays a secondary menu to disambiguate the command be‐
tween apps. For example, the Mini Games Glassware is actually a collection of
five titles, which all share the same “Play a game” hotword phrase, but so does
the social spelling game Spellista, in a completely different Glassware package.
Saying the phrase displays a second-level menu that lets you choose between the
games, as Figures 2-4 and 2-5 demonstrate. So Glass handles what could be
potentially confusing same-name issues for you right out of the box.

— In case you’re wondering how the trigger phrases get chosen, here’s the lowdown:
all voice commands that stem off “OK Glass” are subject to approval by Google.
While Glassware developers working with the GDK may be able to add their

26 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

own spoken text to launch their apps during testing, programmers have to
choose from a finite set of approved voice commands, as is the case with Mirror
API Glassware, as mentioned earlier. This helps cut down on abuse and provides
categorization.

Figure 2-4. Launching Glassware via voice commands

What Didn’t Make the Cut
“OK Glass” has become a pop culture phenomenon. It’s achieved that notorious goal of
not only being functional within the scope of the product itself, but also gaining top-
of-mind awareness to a broader audience, including those who may not own or have
never used the device. When you become the subject of countless memes, you’re doing
something right.

Google has confirmed that the list of candidate hotwords included “Listen up Glass,”
“Hear me now,” “Let me use Glass to,” “Clap on,” “Device, please,” “3, 2, 1…,” “Glass
alive,” “Pew pew pew,” and “Go Go Glass.”

What would you have preferred?

Glass Is a Great Listener | 27

Figure 2-5. Voice commands should be categorical, not Glassware-specific

It’s fully expected that future system updates will include more voice actions.

Content Creation in a POV World
The future of content generation is going to take some very interesting turns with Glass
and other platforms like GoPro and Action Cam rigs that emphasize the first-person
perspective. Whether in telling a story, documenting history, or accidentally stumbling
across a significant moment in time, first-person video will invariably change the pre‐
mium that we as content creators put on the use of body language and gesticulation to
create effective media when standing in front of the camera—the emphasis is now
shifting to POV cinematography and ad-lib narration.

Even the most seasoned media-savvy presenters may find this transition a little odd,
being devoid of the physical traits of stressing points mid-dialogue and relying on shot
selection. Jason, who’s got a ton of experience as a TV presenter under his belt spanning
everything from anchoring newscasts to calling live sports to doing storm coverage to
moderating political debates to hosting beauty pageants, is really excited about some of
the new opportunities this creates. In this light, we’re becoming one-man bands—wholly
independent camera crews. And the prospect of someday being able to broadcast video
via Hangouts On Air live from Glass from the field means no satellite trucks and other
cost-prohibitive infrastructure. Some very interesting and creative opportunities will
come from this very quickly.

And the implications for video from the perspective of the user aren’t a new thing. The
passionate uptake in first-person view videography by the remote control and unman‐

28 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

ned aerial vehicle communities will simply leave you speechless. Using off-the-shelf and
hobby shop components, with cameras that feature amazing stabilization control mid-
flight, it’s possible to remotely control quadcopter drones and capture and monitor high-
definition video that’s of uncanny quality. In years past, this required the type of gear
and expertise that made it available to largely only professional film crews commis‐
sioned for special projects. Now, practically anyone can get involved.

If you’d like to learn more about this exploding space, check out former Wired editor-
in-chief Chris Anderson’s company, 3D Robotics.

User-driven media is already changing in neat and very creative ways, so have fun being
part of the new generation of filmmakers!

Which Hue Is for You?
How many points has your blood pressure increased when trying to pick out that perfect
paint job when buying a car? It expresses your personality and makes a statement about
your style. Glass is available in five colors—white (Cotton), powder blue (Sky), primered
black (Charcoal), beige (Shale), and orange (Tangerine). Don’t sell color selection short
—consumer electronics like the iMac, iPod Mini, Toyota Prius, and Nintendo 3DS have
made billions of dollars using a varied palette of pastels, endearing themselves to their
owners’ personalities based solely on aesthetics. We don’t dare attempt to quantify the
volume of posts throughout social networks crying over why someone’s favorite shade
of green or purple or red or yellow or pink or the millions of other RGB combinations
got no love.

As proof of the level of devotion people have about their selected shade of frame, if you
peruse Google+ Communities groups focused on Glass, you’ll notice the friendly rivalry
between the ardent supporters of each color—Team Sky, Team Tangerine, etc. People
really get passionate and align themselves with this stuff.

We’ll discuss some of the fashion concerns about Glass in Chapter 3, and opportunities
for expansion kits, accessories, and even alternate frame designs in Chapter 15.

Welcome to Wearable Computing!
As a new Glassware developer you join a select community—you’re one of the first wave
of people adopting (and we hope passionately embracing) wearable computing in your
digital lifestyle. Most testimonials that recount their first time using Glass admit it feels
awkward, but then is really cool. It really changes how you multitask. Mastering the
control system isn’t difficult, and adjusting system settings to make Glass your own gives
you a true sense of ownership. The overall feeling is one of liberation, putting you in
charge of your digital existence.

Which Hue Is for You? | 29

http://3drobotics.com

Some people say they feel right at home using Glass, others feel pressured to prove to
themselves they can make it work. The best way to use Glass in your daily life is just
that—take it around and give it a spin in your normal routine. Put it on, go run some
errands, hang out at the mall, take it into the office, fill out a report, take it to the
basketball court for a shootaround, or go get your taxes and/or hair and/or nails done.
It’s always there when you need it. Do what you’d normally do as a connected individual,
but use Glass instead of the tools you’ve always used. Enjoy the freedom of not having
to constantly consult your smartphone for news updates, location-specific check-ins,
and social posts in all forms. And watch data literally appear as it happens. Take some
pictures, shoot some video, share some neat stuff.

So…off you go. Tell Glass what you need while you take a walk and notice how you can
be more of an active part of the world around you, no longer looking down at a screen.
And then take note of how Glass quietly slips out of the way, not bothering you until you
need it the next time. That’s the essence of the Google Glass experience and your first
step toward being able to Think for Glass. Chapter 5 gives developers a proper outline
of how to design services to best fit this method of delivery.

Welcome to the revolution!

30 | Chapter 2: The Glass Ecosystem: What It Is and How It Is Different

CHAPTER 3

Societal Issues with Glass and How to Avoid
Them in Your Projects

Glass makes for a fascinating case study in consumer psychology. In the spring of 2013,
it seemed like everyone at some point had an opinion on the then-unreleased and uber-
mysterious Google Glass—most loving it, many diametrically opposing it, others death‐
ly afraid of it. One of the biggest challenges Glass faced was that everyone tried to figure
it out, pigeonhole it, and create perceived stigmas around it—again, even before it came
out. Even after the Explorer Edition was released, many people who hadn’t even tried
it attempted to pass final judgment on what was essentially still a closed beta.

When word of the release of Google Glass starting getting more of a buzz with the
mainstream press, several distinct issues surfaced and rapidly created mammoth global
speculation and what renowned tech sector pundit and journalist Jeff Jarvis deemed
unnecessary “technopanic” about health concerns, safety, privacy, and wearers’ appear‐
ance to others. Throughout its history, albeit brief, the window to innovate introduced
by Glass is constantly being juxtaposed against the supposition of nefarious actions by
some entity.

Because of the intent for Glass to be used by practically anyone, anywhere, and at any
time, it’s been not only the talk of the programming community, but also a lightning
rod for controversy based on assumed impacts and ill-informed perceptions dealing
with everything from personal safety of the wearer and those around them to concerns
about limitations on personal freedom; debates that have escalated from occasional
online musings to arguments being brought to the highest levels of government. And
whether as architects or as entrepreneurs looking to cash in on the growing intensity of
the global craze for wearable electronics, a litany of issues await you that will have an
impact on your Glassware, requiring that you shape its design in ways that avoid these
pitfalls to ensure its success. While you’re completely able to go the indie route to build,
distribute, and support your Glassware all on your own, most projects will want to be

31

approved by Google and listed as official Glassware in the MyGlass directory. Our goal,
again, is to help you craft great Glassware, and this means being listed in the official
distribution channel and getting maximum exposure—so in this chapter we’re helping
you get past the velvet rope and in the club.

Let’s run through some of the more prevalent and lingering societal concerns, their
current state, and then present techniques for how to apply the Think for Glass philos‐
ophy so you can build services and applications that avoid falling into what could be a
very uncomfortable trap. Tell a friend.

(In short, don’t build things that add fuel to the fire.)

Issue #1: Privacy
Early adopters, whether they like it or not, bear the initial burden of being asked prob‐
ably several times a day, “Hey, is that Google Glass you’re wearing? Cool! I’ve heard a
lot about it! That looks awesome! Waitaminnit…ARE YOU RECORDING ME?!? IS
THIS GOING ONLINE?!?” Rooted in a natural paranoia about privacy, the first major
wave of criticism about Glass dealt with the assumed capability of Glass to take pictures,
and record and/or broadcast live video of people to a watching Internet without their
knowing and against their will.

The question of whether Glass would include a tally light—an embedded LED that
would sit next to the front-facing camera and illuminate to indicate that the user is
actively recording/broadcasting—was brought up, which also led to discussion of the
fact that the video image being captured is shown in the prism during recording, clearly
visible to onlookers, acting as a de facto playback monitor for the user, hopefully a visual
key for those within range. But for people concerned that they were being surveilled,
even this wasn’t enough.

The concerns about the impacts of Glass on privacy went all the way to Congress, as
representatives inquired about the potential for the platform to infringe on a user’s
existence and possibly involuntarily reveal personal data about them. It was later specu‐
lated based on the vagueness of the privacy issues and with the limited official infor‐
mation about Glass that several places would be naturally hesitant (or it would be mo‐
rally questionable) to let people use the potential recording device in their establish‐
ments. These include:

• Banks and ATMs
• Government buildings
• Military installations
• Going through customs at the airport
• Casinos

32 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

https://glass.google.com/u/0/glassware

• Courts of law
• Movie theaters, playhouses, and concert halls
• Places with children or the elderly present
• Public restrooms
• Financial exchanges
• Shareholder meetings
• Clinics, hospitals, triage units, and other medical facilities
• Confessional booths, temples, synagogues, or other places of worship
• Certain types of retail establishments
• Strip clubs
• During job interviews
• On first dates

Where Are We Now?
Overall, worries about privacy continue to be the most-discussed topic surrounding
Glass. But this isn’t a new argument. This is the latest iteration of the longstanding
“nothing is sacred” conspiracy theory that predates Glass by several decades. What’s
important to understand is that Glass isn’t spyware. It is not a perpetual surveillance
apparatus. Properly designed Glassware informs those nearby when it’s working. Nev‐
ertheless, its use—especially out in the open—calls for tact and courtesy.

While Glass does enable everyone using it to be an active documentarian of human
experience, as did smartphones and tablets before it, there’s still some distrust over the
fact that everyone is being watched. Just now, the implication isn’t that we’re all being
watched by Big Brother—it’s that we’re all watching each other.

The concerns are valid in varying degrees and worth noting, but also keep in mind the
history behind the general argument. The very same fear was vocalized when handheld
camcorders were first showing up in the market and then again when cellular phones
with embedded cameras and Internet access were widely available.

Those same people who fear how they’ll look with Glass in public are probably the same
that pooh-poohed the notion of the idea of a device made specifically for electronic
reading of publications, and the very same crowd that knocked the idea that people
could interact with video games with body gestures. And the Kindle, Xbox, and Nin‐
tendo Wii have done just fine. And those people more than likely came around, too,
once they saw how amazing they were.

Issue #1: Privacy | 33

And by extension, the onus of responsibility is on you as a Glassware developer to
encourage people to use the platform the right way.

Think for Glass
It’s critical to adopt design and development patterns that don’t add to the paranoia.
Chief among these for privacy concerns is to always use the Glass prism display as a
preview monitor when the camera is in use by using a SurfaceView in a GDK app. This
activates the projector unit and at least gives those around the wearer some basic indi‐
cation that the device is in use and doing something. The Glass Platform Developer
Policies specifically state that Glassware to be approved for official listing in MyGlass
must meet the following guideline: “Don’t disable or turn off the display when using the
camera. The display must become active when taking a picture and stay active during
a video recording as part of your application.”

Several unapproved projects in order to save battery life over extended use like in time‐
lapse photography applications allow Glass to capture images without the display being
illuminated. In most cases you’ll want to avoid doing this, lest someone take legal action
against you for allowing your users to record them against their knowledge—whether
the wearer intended to, or not. Let your Glassware clearly indicate that it may be cap‐
turing the moment.

In terms of the societal impact of Glass, there will invariably be pushback based on naive
distrust from nonusers that we’ll have to endure, but with enough work that will subside
if we demonstrate proper and courteous use of the product in public, specifically with
capturing photos and recording video.

Issue #2: Facial Recognition
Dovetailing off the previous concern, biometric systems that use facial recognition to
identify a person on-the-fly and relay fragments of information about them have long
been a dream for advanced computing applications, way before people flocked to the‐
aters to ooh-and-ahh at the futurist predictions laid out in Minority Report or see the
Terminator acquire a target. So as Glass caught on, more and more people and devel‐
opers began thinking creatively about instances where being able to implement the
technology to recognize someone in real time based on images captured of them could
be applied.

Within Google’s own product line, facial recognition has been in use with great success.
Using powerful machine learning algorithms, Google+ asserts tagging of images of users
and other members in their circles with fairly consistent accuracy (with the occasional
hilarious misclassification), and it also achieves impressive accuracy with Google Image
search. Google Goggles has additionally achieved a strong reputation for strikingly ac‐
curate results for general object detection…but not for people. Still, the practice remains

34 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

http://bit.ly/andev-camera
http://bit.ly/glass-dont
http://bit.ly/glass-dont

a touchy subject because of security and liability implications. This is the kind of thing
politicians just love to legislate into oblivion before it ever sees the light of day, and it’s
the kind of headline that can cause a stock price to nosedive.

As such, Google put an abrupt end to any speculation about it possibly supporting facial
recognition on Glass at Google I/O 2013, when Google Glass project director Steve Lee
stated that the company would not be implementing such features in its own Glassware
or those programs developed by third parties until privacy concerns were effectively
addressed. Nevertheless, outside of Google interest never waned. Two companies in
particular, FacialRecognition.com with its NameTag native Glassware app, and Lambda
Labs with its Face API, came up with compelling propositions. NameTag maintains its
own index of data curated from public web APIs and municipal resources to cross-
reference scans of faces. Lambda Labs has been supporting its platform for some time,
performing both facial and object recognition.

And in academic halls, researchers at Duke University announced their work on de‐
veloping a system that sought to identify people in a crowd known by a user by analyzing
submitted samples of what those friends usually wear and then using a spatiogram to
classify patterns and textures of their outfits.

Where Are We Now?
At the federal level, no statutes are in place to regulate the electronic identification of
people. And while not officially sanctioned by Google with its own firmware on Glass,
there is a market for facial recognition. Those objecting to the concept of electronic
identification have strongly voiced a two-pronged concern: that they’ll be scanned
against their will, and that information they’d rather not have revealed would be put out
there. Advocates of facial recognition technology see it as a means of streamlining ac‐
tivities like electronically exchanging business cards, or a utility for finding out about
people they just met or providing advanced customer service or human resources ac‐
tions through the personalization that ascertaining someone’s identity delivers.

NameTag indexes known systems like municipal criminal databases and the National
Sex Offender Registry, along with data from public profiles on Twitter, LinkedIn, and
Facebook. Profiles that aren’t public aren’t indexed—because they can’t be. The only
exceptions are public figures like celebrities and government officials, along with crim‐
inals who by their actions have lost their rights to privacy.

The demand for facial recognition apps and interest in innovating within this space are
clearly there, but the pushback is likewise substantial. Expect this to be an interesting
venue for Glass with many use cases to be introduced—and challenged—every step of
the way. Short of Google outright blocking apps from Glass or such applications being
found to be illegal and those producing them prosecuted, the interest in creating services
that solve complex problems, despite their controversy, will continue to flourish.

Issue #2: Facial Recognition | 35

Think for Glass
Our friends in Mountain View aren’t blurring the lines at all on how they treat Glassware
that employs facial recognition or voice print analysis: Google won’t approve such pro‐
grams for official listing. The Developer Policies state, in part, “Don’t use the camera or
microphone to cross-reference and immediately present personal information identi‐
fying anyone other than the user.”

But you don’t have to scan and identify humans to provide a valuable Glassware service
that uses object recognition—there are Glassware projects that use object recognition
in different ways, like Preview, which scans movie posters, identifies them, and launches
the Glass media player to stream their trailers. Imagine further how helpful a system
that identified breeds of dog, species of bird, or types of flower might be.

Elsewhere, offshoots of the idea of facial recognition are gaining momentum for Glass.
Emotient, which bills itself as “facial expression,” seeks to let Glassware determine what
a person is feeling when a Glass wearer is looking at them, introducing sentiment anal‐
ysis to wearables. This could have huge implications for advertising, marketing focus
groups, public speaking, and medical fields, among scores of other applications.

The worry against the technology is certainly justified, but Glass indirectly handles the
problem of someone being scanned and identified involuntarily—the form factor could
be seen as quality control. The camera requires a subject to be at near point-blank range
and standing still for at least a few seconds to get a decent scan, so in nearly all cases to
get the system to work the subject will probably be aware of and will have consented to
the process. You won’t be able to identify someone standing in a crowd from 50 feet
away and determine if their relationship status is “single and ready to mingle.”

To the concern about what becomes known about people who are scanned, Glassware
tapping social data means systems are based on data where members explicitly published
content available to the world and already being indexed by search engines and har‐
vested by other APIs. This isn’t anything you can’t find out already. There isn’t the ability
to scan someone and access their grades from school, Social Security numbers, or bank
accounts—the entire experience of being online is essentially opt-in, based on a user’s
membership to a social platform. It’s unlikely you’ll be able to find someone’s home
address, their shopping history, and blood type. Users are in control of what’s available
about them.

See the case studies in Appendix A for the technical details if you’re interested in this
space.

Being identified by strangers electronically tends to creep some folks out…but there are
clever variations on the theme that you can investigate and safely implement.

36 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

http://bit.ly/glass-dont
http://glass-preview.com
http://www.emotient.com/

Issue #3: Using Glass While Driving
As awareness of Glass spread, musings about safety at the public policy level bubbled
up, with West Virginia legislator Gary G. Howell proposing a bill that would outlaw the
use of Glass while driving due to concerns about distractions, in line with the Mountain
State’s statute prohibiting drivers from texting while operating motor vehicles or driving
without a hands-free device. (To his credit, Rep. Howell praised Glass overall, but was
concerned about it taking away from a driver’s ability to concentrate on the road.) Sim‐
ilar legislation was also later proposed in Delaware, Illinois, Missouri, Wyoming, New
Jersey, and New York.

Months later, the Glass community’s jaw collectively dropped after Explorer Cecilia
Abadie was pulled over and ticketed for speeding by a California Highway Patrol trooper
in San Diego, who gave her an additional citation for using Glass in a moving vehicle.
(A section in the California Vehicle Code states that “a television or video screen” cannot
be actively displaying material—with the exception of vehicle information content,
reverse-gear cameras for backing up, navigation devices, and GPS-powered mapping
tools.) A court commissioner ultimately dismissed the charges due to a lack of evidence
indicating that Glass was ever in use at the time Abadie was driving.

This doesn’t necessarily mean Glass users are 100% in the clear for using the device
while using a motor vehicle, in California or anywhere else, or that Glass would be
applicable as a display device under the statute.

Where Are We Now?
While most people don’t critically need stock price updates, shipping confirmations for
Amazon orders, and birthday reminders for those in their Google+ circles while they
do 65 MPH down the interstate, there are still some very valid use cases where live data
being pushed to a driver would be advantageous, like construction alerts, road closures,
gas prices, and messages from fellow motorists about route conditions.

There’s certainly merit in encouraging the safe use of Glass and any other product, but
calling for an all-inclusive prohibition on Glass in moving vehicles may be a bit extreme.
Having helpful and relevant timeline cards appear in a driver’s periphery while users
keep their eyes on the road is arguably less intrusive than, say, constantly glancing down
at a speedometer, engine light, or car audio controls.

Government is also warming up to the concept of vehicle-to-vehicle communication in
order to prevent accidents by rapidly transmitting data between each other. Might Glass
become a node in this network?

Issue #3: Using Glass While Driving | 37

http://bit.ly/ca-car-code

Think for Glass
Clearly, you don’t want to endanger the lives of your users or those around them.
Google’s FAQs for Glass stress the need to follow the law and pay attention to the road.
As a matter of fact, Glassware projects have been launched based on the concept of
actively incorporating Glass in the driving process to help people drive better and be
more defensive out on the roads. DriveSafe helps keep driver attention sharp by using
sensor data to get a feel if a vehicle operator might be falling asleep at the wheel. If so,
turn-by-turn navigation kicks in and directs the wearer to the nearest rest stop.

There are many use cases where Glass in vehicles would be helpful, but you should
always adopt patterns that keep drivers as focused on the road as they can be, and that
means providing a hands-free experience. The default navigation does an effective job
of staying out of the wearer’s way, even while providing them with turn-by-turn direc‐
tions in real time.

But with the issue being distracted driving, eliminating it should be your objective. Use
voice commands to launch Glassware with microinteractions all the way, using other
custom vocal triggers to invoke actions (even if just detecting the presence of a certain
sound to perform a certain action, as some Glass games do), keeping interaction and
notifications to a minimum, and providing spoken text as output. Don’t require a driver
to look at the display.

You also don’t want to create an app that’s either too noisy or too persistent. You might
consider reading the accelerometer and only deliver cards to the user when the vehicle
is at a complete stop, or provide an application setting that allows the wearer to mute
notifications while in transit and turn them back on once they’ve arrived.

Again, there’s a lot of room for development here, but safety first.

Issue #4: Aesthetic Appeal—Is Glass Fashionable?
While more of a personal insecurity about being typecast in the face of one’s peers as a
cyborg, dork, dweeb, nimrod, spazz, etc., there has been more than just a bit of pushback
by the mainstream against the implied aesthetics of wearing Glass. Connectedness and
having the ability to conveniently access real-time data and interact notwithstanding,
people want to avoid looking awkward when out in public and when dealing with the
unwashed masses. (Interestingly enough, the GoPro camera rigs that are so popular for
shooting sports video in first-person view tend to be a lot more “camera crew-ish” when
worn, but don’t face the same scathing criticism.)

Anticipating this hesitation, a deliberate design decision was made by Google to make
Glass as visually appealing as possible and position the product as a fashion statement.
To drive home this point, Glass has been worn at events by notable names in the fashion
community, including designer Diane von Fürstenberg at New York Fashion Week, and

38 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

http://bit.ly/glass-faq
http://drivesafeforglass.com

modeled by attractive people in promotional photos that made their way around the
Web. When Google unveiled the Titanium Collection of custom-built frames for people
who wear prescription glasses, this gave Google a direct inroad for the device to be used
by the rather large segment of the fashion-forward population who wear faux frames
merely because they look good doing so.

The way Glass has also been marketed across different channels is likewise interesting.
Whereas posts from the Glass team on Facebook and Google+ emphasized the device’s
technical capabilities and applicability in a wide range of use cases, on Instagram Glass
was almost exclusively exhibited and positioned largely as a tasteful, artsy fashion state‐
ment and content creation tool.

Whereas naysayers lashed out against Glass as dorkwear, Google played up its role as a
must-have item of accoutrement for geek chic.

Oh, Peanut Gallery…
One of our favorite observations-qua-snipes about the design of Glass
is from Fast Company’s Anne Cassidy, who suggested that Glass might
have “All the sex appeal of orthodontic headgear.”
That’s funny. And we know funny.

Where Are We Now?
Fortunately, if you’re into Glass (and judging by the fact that you’re reading this book,
you probably are), this isn’t a concern for you. You’ve likely already taken several shots
of yourself and your friends wearing the HMD and set those as your avatars on social
systems. Poring over which color your Glass frame would be was likely not an easy
decision, picking between Shale, Cotton, Charcoal or Sky—because who in their right
mind would be caught dead with that garish Tangerine on their noggin…right?

(RELAX, we’re kidding.)

At the end of the day, the dork factor implication is purely in the eye of the beholder.
You love the platform, and that’s what counts most. Wear Glass with pride; heck, you
paid for it. Rock your gear in public and show others what it can do for them, too. This
is our way of life, and we stand together as a community, unashamed of who we are and
what we enjoy. We wear our computers as badges of honor, and we’re better off because
of it. It makes using applications more sticky.

When it comes down to it, can you think of anything cooler than being able to have the
entire Internet on your face? We can’t.

Issue #4: Aesthetic Appeal—Is Glass Fashionable? | 39

http://bit.ly/glass-branding

Think for Glass
Art is subjective and fashion is ambiguous. People are going to have polarizing opinions
on the visual appeal of Glass whether you like it or not, and you likely won’t be able to
change their minds anyway. All you can do is be friendly, honest, and positive. It’s the
usage of it that’ll likely be a make-or-break situation and determine how classy or trashy
the product appears. As a superstar Glassware creator, don’t force a wearer to bark out
awkward voice commands that might make them or people around them uncomfort‐
able. “OK Glass…make my alimony payment,” or “OK Glass, order hemorrhoid oint‐
ment,” or “OK Glass, Yankees suck!” aren’t the best thing to say at full volume when at
the bank, at school, in a religious ceremony, or standing out in the street in the Bronx.
Excessively extreme head gestures for program control, being fixated on the display,
fiddling with interactivity, or being forced to squeal like a stuck pig won’t lend well to
someone using the Glassware in public.

This is proper usability planning that we fully detail in the Design section.

Issue #5: Augmented Reality
Is Glass true AR? This is actually a pretty easy one to answer: No. Yes, there are a lot of
things that Glass borrows from augmented reality. And yes, in 2 or 5 or 10 years, the
Glass that is available then may have more features that are based on AR. And sure,
there are people who are working on applications for Glassware who are doing some
nifty things with Glass that certainly augment the world around us. But is Glass itself
AR? It seems pretty clear it isn’t.

Augmented reality seeks to add layers of information (or remove layers of obfuscation)
about the world around us, in real time, in a way that keeps us engaged with that world.

In a way, this sounds a lot like what Glass is trying to do, doesn’t it?

Where Are We Now?
Underneath this issue, however, are two much better questions: why isn’t it, and what
is it?

We can only speculate on why Google didn’t try to create an immersive augmented
reality system that occupies your full vision. After all, many other companies are de‐
veloping systems that do exactly this. One likely reason, however, is that the technology
just isn’t there to do this sort of thing comfortably. Even with decades of work and
research in this field, the human eye is still very sensitive to the environment—most
schemes cause a great deal of eye strain and potential motion sickness when used for
too long. Glass is intended to be something that is always with us, and it wouldn’t work
too well if we could only stand to wear it for an hour at a time.

40 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

And that leads to what Glass actually is. It keeps the wearability and personal nature
that AR systems are intended to bring, and it shares the desire to provide information
when you want it, but it goes one step further by saying that it stays out of your way
when you don’t. Using Glass is always done on your terms—you’re in the driver’s seat.

The design of Glass then takes these two aspects one step further—the design seeks a
way to make it comfortable and mostly out of the way by not giving you a choice in the
matter. Glass ends up being comfortable to use for just a few seconds at a time: micro‐
interactions instead of deep immersions. This not only makes it easier on your eyes, but
also encourages you to get back to the world around you.

But it does no more than encourage you. Already, we’re seeing people using Glass as a
platform to experiment with AR systems. More power to these Explorers!

Think for Glass
AR is one of the most active topics of discussions in mobile development circles right
now, so it was inevitable that Glass would somehow adopt it. It’s expected that Glass will
be a leading contender as an AR client once the platform is in its commercial release.
Google’s Field Trip Glassware is a fine example of how to use AR while still being a
microinteraction medium—notable places of interest only appear in users’ displays as
static cards when they’re nearby, not as a constant video stream they have to pay attention
to. And that’s the sort of experience you need to emulate, not something that requires
constant attention and interaction.

The fundamental elements of most AR applications are the user’s location (where they
are on Earth), bearing (the direction they’re facing), and a image surface (typically ev‐
erything seen through the camera, upon which to display pertinent information). Field
Trip works for Glass, although it might be considered a “diet” version of pure augmented
reality as it produces static cards instead of graphics or text overlaid on whatever back‐
drop the wearer is looking at. It works for the paradigm.

While supporters and rejectors of augmented reality continue to squabble about how
well suited a stage Glass is for AR long term, it undoubtedly will see a lot of traction in
terms of Glassware efforts built for it—some bad, some good. If you’re interested, check
out some of the samples by Layar, Blippar, or other frameworks for inspiration. Down‐
load their SDKs and see how you might blend their functionality with the mindset we’re
giving you.

The commercial implications for targeted advertising and helpful contextual informa‐
tion are expected to see some interesting concepts, so you’ll want to get in early, take
notes, tinker a bit, and stake your claim.

Issue #5: Augmented Reality | 41

http://www.fieldtripper.com/glass/
https://www.layar.com/glass/
https://blippar.com/en/

Issue #6: Glass Analytics
Developers naturally hope Glass will emerge as a profit center, which means extracting
knowledge about how their applications are being used, and which areas are hit the
most. There are a few pressing quantitative areas we anticipate architects and marketers
asking for with measuring Glassware:

• How many times Glassware-generated screens have been viewed
• Number of users having installed and/or subscribed to Glassware
• Crash reports and logs
• The percentage of video clips that are streamed before the wearer dismisses them
• Ability to see various forms of Glassware interaction (taps, swipes, choices selected)

for specific screens and menus
• Most applicable traditional mobile metrics, and any new ones relevant to track,

given the uniqueness of the Glass UX

Where Are We Now?
Glass has the potential to redefine traditional metrics and perhaps introduce some ex‐
citing new ones. These may be slightly different than the analytics you’re used to seeing
with tools like Google Analytics and comScore, but we should be able to gain insight
into how wearers are making use of our services. One example of this kind of variation
on a theme could be the bounce rate for Glass content—if you send bundles of cards to
wearers or have long content paginated over several cards, how many of them do users
swipe and/or tap through before exiting and moving on to something else? Could re‐
ferrer logs indicate if Glass cards were generated from an associated web application
(like Evernote), a Chrome extension, another Glassware, a separate device, or some
other source? We also hope to see tools to assess campaign effectiveness based on in‐
formation delivered via Glass.

But with the Mirror API being a server-side technology, all of the metrics we derive will
stem from that side of the equation. Glass doesn’t let you inject JavaScript into cards (at
least not for the moment), which means we can’t tap the rich well of client-side data
that’s possible with Google Analytics like tracking exactly where the user tapped the
trackpad and how fast they scroll. Third-party tools for analytics and crash reporting
are allowed…and encouraged!

Still, we also fully expect to see some new and interesting things about measuring sub‐
scription pings. And we should still be able to get basic geographic/demographic reach
data and peak-time usage reports like we always have for web apps.

42 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

Think for Glass
While at the time of this writing Google hasn’t announced a roadmap for how devel‐
opment teams will be able to monetize their Glassware and the displaying of any ad‐
vertising is prohibited, the implication is that the Glass ecosystem will include a struc‐
ture to have it be a viable mobile revenue stream for those who produce services and
apps for it.

This ostensibly will involve heavy integration for Google Play Services for GDK installed
apps and Google Analytics for cloud-based services written with the Mirror API, which
means tying in usage data for measuring the aggregate activity your work gets and the
size of your userbase. Read up on these systems, send Google your feedback, and keep
an eye on the Glass developer docs as more is released.

Issue #7: Regulatory Environment—Glass and Public
Policy
One of the things that stood out from Google I/O 2012 was how Sergey Brin, upon
announcing the Glass Explorer program, said that the effort initially would be available
only to software developers, more particularly those in the United States (Figure 3-1).
“We’ve still got a lot of regulatory issues to iron out,” Google’s cofounder stated at the
time. The company’s since applied for a number of patents for various technologies
relative to wearable computing, and to the Google Glass initiative specifically.

As is the case with many of Google’s products on an international scale, clearly much
work remains for the Glass team for getting the product ready for a global audience,
specifically with getting it up to standard to work in many countries for wattage and
wireless communication standards (in Europe the standard for the amount of radiation
a communications device can emit is slightly higher than the standard allowed in the
US). Getting consumer electronics and digital goods globally available is hard work.
Google Voice isn’t available everywhere at the moment, and fluctuations in copyright
law and licensing in addition to payment processing and shipping issues have long
prevented music, videos, and the Nexus line of smart devices in Google Play from being
completely available for purchase in all countries.

Issue #7: Regulatory Environment—Glass and Public Policy | 43

http://developer.android.com/google/play-services/
http://www.google.com/analytics/
http://bit.ly/glass-rad

Figure 3-1. Glass was initially only available in the United States

External to Google, politicians in several states as well as across the pond in Britain
proposed legislation banning the use of Glass while operating a moving vehicle, as noted
earlier. At least five states determined that, in line with current policy, banning com‐
puters and recording devices within casinos and shows for fear of cheating at gambling
or unauthorized recording, wearing Glass would be prohibited in such establishments.

Google itself has had to react to and modify its own policies—sometimes swiftly, some‐
times clumsily—on what Glassware it will allow. The aforementioned decision to not
ship Glass with facial recognition technology in lieu of appropriate privacy controls was
a major step toward international compliance, arguably at the expense of the feature
set. Google also announced a sweeping change to its stance on acceptable Glassware
content following MiKandi’s launch of its Tits & Glass service that let users vote up/
down and comment on adult images; Google modified its policies to ban any content
having to do with pornographic content—being defined as “nudity, graphic sex acts, or
sexually explicit material.”

Google executive chairman Eric Schmidt has maintained that preemptive legislation is
dangerous and that society will naturally adapt and embrace this and new technological
concepts. But this remains to be seen.

Where Are We Now?
If politics and legal matters aren’t your thing and you just want to enjoy Glass, that’s
totally understandable. Most geeks put a premium on innovation over legislation any‐
how. Google’s been no stranger to fighting the battle of innovation-over-legislation, and

44 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

as efforts by state regulators mounted, Google began lobbying officials to cease their
work in proposing policies that would ban using Glass when operating a motor vehicle.

If it’s not ready for your region just yet, rest assured work is being done to get it to you
and ensure you’ll be able to use it safely and legally. Glass perfectly demonstrates the
value of network effects. It is imperative that to maximize the usefulness of the device
that it be available to as many users as possible.

Making Glass available worldwide remains the ultimate goal, and that means working
diligently to have it be a safe, compliant, and well-understood platform.

Think for Glass
Needless to say, you’re going to want to make sure that the Glassware you write is within
the scope of the rules and regulations where you live and where people will use it, and
as laid out by Google itself in the Glass Platform Developer Policies, which apply to both
the Mirror API and the GDK. Make sure to thoroughly review the guidelines to ensure
your Glassware is compliant. If you’re so inclined, you can take the reins get involved
and educate your policymakers locally about what Glass really is and is not capable of,
so they don’t craft ill-advised legislation that might hamper it…or outlaw its use, even
partially.

You can also reach out to a Glass user group nearby to work together on the issue and
communicate your feelings to public sector leaders with a unified voice. The last thing
our community needs when addressing perceptions is a voice that’s not unified.

The Business of Producing Glassware
We’ve got little doubt that your developer mind is already thinking several steps ahead
and wondering about three fundamental components of software distribution: what the
strategy is for archival storage of your Glassware in a public centralized repository;
discovery, so that all of the available Glassware can be categorized, indexed, searched,
and perused like Google Play, Apple’s App Store, or the Amazon Appstore; and mone‐
tization—what methods you can employ to profit from the value you create.

Not everyone is going to want to make their services and apps available as freeware, and
the more complex the Glassware, the deeper the integration with other platforms, the
longer it takes to churn out, and the more effort it requires to support it, which means
money. And those costs, which can be formidable for things like games and telephony
apps, are going to have to be recouped somehow.

Some architects may be considering applying value propositions such as the freemium
model, opting to meter usage of their services on users’ data transfer (like Evernote or
Pandora) or the amount of data stored (like Dropbox). They might also be thinking
about leveraging in-app advertising or in-app purchases, or use rate-limiting or metered

The Business of Producing Glassware | 45

https://developers.google.com/glass/policies

API calls. Others will surely be looking to extend paywalls for existing platforms for
membership access, or even possibly the a la carte method for pay-as-you-go use. These
are big marketing decisions that can dramatically impact the success of your Glassware,
and could determine if your work winds up being a cash cow or a money pit. They may
also prove to be the difference between them possibly being yet another obscure needle
in the mobile program haystack or attaining the rarified air of being the next Fart Sound
Generator or Angry Birds franchise.

But rest assured that a very sound strategy for finding, accessing, sharing, and capital‐
izing on Glass development will be available to bring it all together and create not only
great wearable software, but good business models.

What Glass Isn’t
One more thing we need to cover is that Thinking for Glass doesn’t mean swimming
only in the optimistic end of the pool all the time. Sure, we wrote this book to help you
keep a positive mental attitude about your investment in wearable technology and get
maximum value out of it, but we’re also offering you an honest view of what Glass is—
and that means recognizing the brutal truth of what the Glass ecosystem simply was not
meant to do (at least, not yet). To try to force it to accomplish tasks for which it’s not
intended is missing the point of why it was invented.

So to give you a proper well-rounded perspective, let’s consider the “glass is half-empty”
approach. See what we did there? That isn’t to say that people aren’t pushing the bound‐
aries of what is possible, but there needs to be a basis in reality. Pragmatism is a good
thing. Still, it’s the nature of innovation to test limits—and forward-thinking program‐
mers are doing so everyday. At the same time, you obviously don’t want to endanger
your users, either directly or indirectly.

It’s important to realize that Glass isn’t meant to be a replacement for your other tech‐
nology tools—desktop PC, laptop, smartphone, tablet, television, or gaming console. It
works wonderfully on its own as a content creation utility and communications plat‐
form, and is able to function perfectly alongside your current crop of consumer tech‐
nology gadgets, tightly integrating so that you stay an active part of the connected com‐
munity. If you want an analogy, you can compare Glass and your other computing
devices the same way you’d compare a motorcycle and an automobile—there are some
similarities between the two devices, but sometimes one is better suited than the other.
(For the record, we think Glass is the motorcycle in that contrived example.)

The truth of the matter remains that while there are lots of things the Google Glass
ecosystem—the hardware, the software, the application model, the administrative con‐
trols, the peripheral development potential—does very well, greater still is the volume
of things it can’t pull off at the moment. But so as not to get your users, and by association
yourself, into hot water, it’s best to implement best practices and patterns that sidestep

46 | Chapter 3: Societal Issues with Glass and How to Avoid Them in Your Projects

the issues altogether. As you’ll see in this book, knowing what works and what’s still a
touchy subject is a major part of designing great Glassware.

And the other big thing we’d like you to remind yourself of, the most significant “isn’t”
of them all: Glass isn’t finished. Far from it. Not by a long shot. Remember, this is Google
—the company that proudly touts its innovations being in perpetual beta. The possi‐
bilities for how the system can improve, expand, and extend are huge.

We’ve cited the Glass Platform Developer Policies on more than one occasion in this
chapter, and it’s crucial that you review these terms thoroughly at the onset of your work.
As someone coming up with ideas for Glassware, it’s critical that you have a solid un‐
derstanding of what Google won’t approve. You could still distribute your service on
your own as an unofficial service or app, but you won’t benefit from the support and
marketing benefits that Glassware listed in MyGlass enjoy. You’ll also be operating out‐
side of the communications pipeline for new additions and features, so you’ll be on your
own to come current when things change and this might break compatability between
your Glassware and the Glass firmware.

As early adopters and developers, it’s up to us—all of us together—to make sure the
technology isn’t ill-fitted into situations it wasn’t intended for, and isn’t subjected to
unfair comparisons. We want the technology to live up to its potential. Hopefully we’ve
given you a mental springboard you can use to avoid getting into trouble and find help.

What Glass Isn’t | 47

https://developers.google.com/glass/policies

PART II

Design

This second part of the book deals with assembling layouts for both timeline cards and
applications themselves. Numerous examples are cited, highlighting winning examples
of wearable programs that are cosmetically pleasing, consistent with that of other Glass‐
ware vendors, and logical in conveying their data in methods that achieve the Glass goal
of being quick, convenient, and nonintrusive. We also detail the core design guidelines
for building great Glassware and differentiate how designing wearable software isn’t just
like designing for another mobile platform.

• Chapter 4, Thinking for Glass: How Glass Is, and Should Be, Personal
• Chapter 5, The Five Noble Truths of Great Glassware Design
• Chapter 6, Glassware Antipatterns: Avoiding Poor Design

CHAPTER 4

Thinking for Glass: How Glass Is, and
Should Be, Personal

Glass as Personal Technology
By bringing technology closer, Google Glass keeps technology out of the way. There. That’s
Chapter 4…all of it. Hope you enjoyed it. Go back and read it aloud. And don’t blink,
because you’ll probably miss it. Good thing we’re not getting paid by the word.

Oh…still here? Good, because the devil is really in the details. Read on.

Cheap laughs and literary parlor tricks aside, that simple statement stands as the core
underlying theme for Glass. And we’re using this to kick off the Design section of the
book. And nonintimidating as it may be, it’s often the hardest thing for people to grasp
when thinking about the platform. Isn’t Glass supposed to be an always-on device that’s
built for microinteractions, sending us stuff as it happens and letting us capture events
around us? And by that merit, coupled with the fact that it’s sitting on our heads, doesn’t
that make it omnipresent? Yes, absolutely. But there’s so much more than that.

And, appropriately, so much less.

As we’ve seen, Glass is a platform that makes for an extremely lightweight solution—
figuratively and literally—for staying connected and interactive while experiencing the
world around you. The goal of Glass is to put you in control of your life by not taking
you away from living in the moment. Glass isn’t just another mobile device, and getting
the most out of it means thinking about technology in a completely new and different
way—probably more than you ever have before.

And when it comes to building Glassware, this means thinking about structuring in‐
formation and experiences in new ways, being more terse than you’re probably accus‐
tomed to, and really using the timeline and cards to your advantage. The secret is making
the user’s atomic world part of the digital UI, not just basing their interaction with the

51

system on controls, input, data, and bandwidth. This means designing software that
plays up the benefits of the technology being personal.

In this chapter, we’re going to cite several examples from Glassware vendors that do it
right. We’ll highlight what we feel are the best of the best, and show what you can learn
from them in putting together your own UIs and features.

Best in Show
Let’s examine some amazing services that in our opinion really separate themselves from
the pack in terms of their winning design and the experience they deliver. As developers,
we appreciate beautiful engineering and design approaches that are logical and creative,
and there’s always something you can learn in positive ways with any project. But it’s no
surprise that those that get the nonexistent Think for Glass Blue Ribbon for Awesome
Glassware Design are household names, known for their form-and-function excellence
across all platforms. On Glass, they enforce proper branding so you know who sent
which cards, and have really put thought into making their presence on wearables the
best it can be.

These top-shelf productions are services that provide perpetual communication ability,
but on Glass do so in a way that’s not bludgeoning the wearer with nonstop alerts about
incoming information, each figuring out a creative way to deal with what can be huge
inbound conversation streams. And they also get the nod for fulfilling the promise to
make content creation easy—users are able to initiate new posts and interact with their
social connections in mere seconds, not making the act of staying connected a laborious
chore.

By the same token, nobody’s perfect and even the creme of the crop has the occasional
area where it might need revision. This, too, is a learning experience.

So let’s take a look at three examples of truly outstanding Glassware: Twitter, Gmail,
and Google+, discovering what design decisions make their brands stand out. What’s
important to keep in mind as you read these is that like Glass, these aren’t just software
products, they’re entire platforms with ecosystems of their own. They each feature mas‐
sive streams of inbound data, very complex UIs, and memberships in the hundreds of
millions. But by using the Glass paradigm the right way, and not trying to force older
models, they’ve managed to create really usable services and create powerful Glassware.

52 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

Twitter

As we went to press, Twitter removed its Glassware for new users
(but you can still get notifications and interact with others through
their mobile app connected to Android Wear). We’re including this
discussion about the now-defunct Mirror API-based service in this
section, however, because we continue to think it is a good exam‐
ple of Glassware design.

Twitter’s Glassware supports full read/write capabilities for a user’s timeline using a
creative solution (Figure 4-1). The Glassware empowers users to share images they’ve
taken with Glass, as well as receive mentions and direct messages and retweets for their
own account. For getting updates, Glass users can enable mobile notifications on Twit‐
ter.com for select profiles they follow, which are pushed to Glass as their authors update
their feeds. Tweets can be replied to via voice, retweeted, and favorited. It’s a proper
translation of its core service that curates a member’s broader timeline, without inun‐
dating the Glass wearer with a constant barrage of notifications that would kill the
battery. As Figure 4-2 shows, you can also enable mobile notifications from Twitter’s
web client that get pushed to Glass.

Figure 4-1. Twitter’s Glassware

Best in Show | 53

Figure 4-2. Get your followed tweets on Glass

Twitter also happily puts into practice a design pattern that many people don’t realize
at first—your Glassware can have as many custom menu items as you wish, not just one,
and it does this to translate its own commands to Glass, providing Reply, Retweet, and
Favorite right alongside a custom Delete command, all wired up to its own API so the
experience is what you’d expect and what you would want from a head-mounted Twitter
client. The tweet body itself is front and center, while still giving space to see the user’s
real name and handle. Direct messages are clearly marked with a “DM” in the left side
of the footer in cards so you know when something isn’t public, along with the timestamp
in the right corner of the footer. Since it seamlessly implements its own functions on
Glass, Twitter doesn’t use any of the stock Glass actions, so it’s its own self-contained
platform. Path is a great example of using multiple custom menu items, too, letting
members assign an emotion to a friend’s post.

In contrast, Evernote deviates from this route, opting rather to implement the Mirror
API’s stock SHARE built-in menu item, which uploads a resource to its system and
stores it in the generic All Notes notebook with the default title “Note from Glass.” The
hierarchy it uses for organizing its notebooks would be complex if replicated on Glass
and likely require multiple nested menus, so they went with a simple solution that really
works for them.

Twitter also demonstrates a clever usability technique—keeping track of state for menu
items. If you’ve previously retweeted or favorited a juicy tidbit or hilarious zinger, the
menu items from that point on use a different icon to appear colored (instead of their
default white) and read “Retweeted” or “Favorited” as noted in Figures 4-3 and 4-4, just
like they do across Twitter. This is not only good UX practice, but it deters users from
taking the same actions repeatedly because they have no idea if their action went through
the first time—which could potentially devour the number of calls against the Mirror
API your project is allotted from Google daily. We’ll be discussing this quota and how
to manage it in Chapter 7. (Oddly though, Twitter’s menu items can be tapped even after

54 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

they’ve already been selected. They don’t do anything because their state has already
been changed, which is more a gotcha of the Mirror API since all menu items are tap‐
pable and you’re unable to nullify that behavior. We’d like to see this changed in the
future release.)

Figure 4-3. Twitter’s Favorite menu item

Figure 4-4. Menu items change based on their state

Best in Show | 55

As far as letting members compose and publish tweets, Twitter’s Glassware handles
images shot on Glass by letting you share to Twitter, as well as handling text input from
the “Post an update” voice command. However, as of the time of this writing you can’t
share video from Glass with it, so don’t expect to have a clip appear with a shortened
URL and get tweeted out as a Vine post. We hope this will soon be resolved somehow
by Twitter or a third-party tool.

You also can’t see the total social engagement statistics for a tweet, like other mentions
in a threaded conversation or who else has retweeted it. This is deliberate—some things
are more appropriate on other more powerful platforms. It’s intelligently not a crude
port of the more complex web and mobile layouts, but an effective redesign of the data
to properly fit the parameters of Glass—it retains all of the properties of a tweet with
interactivity features while keeping things very lean and light.

Design takeaways:

• Multiple custom menu items
• Tracking state changes in menu items
• Web-controlled curation of user’s social stream
• Not a straight port of the more complex web UI, but an effective redesign

Gmail
The Gmail Glassware delivers your electronic mail to you just as it would on a mobile
app or desktop web client, with the twist that you can reply to messages via voice dic‐
tation, freeing your hands and eyes to work on other things (Figure 4-5). To keep the
load light and your notifications at a manageable level, your subscription delivers mes‐
sages only from your Important folder, which Gmail algorithmically calculates based
on recipient frequency, and which can always be tuned by the user by moving messages
around to other folders—it learns about you as you use it.

This is really helpful and is an object lesson for applying a custom filter for data so that
the entire stream isn’t imposed on a Glass user. And since items in Important are the
result of machine learning algorithms listing only those people you correspond with
the most, you won’t have to worry about spam on Glass. (Now would be the appropriate
time for you to jump for joy.)

Gmail also uses a message structure we’ll see in many other scenarios—a mosaic of
avatars on the left of the card lets you quickly assess who a message is from, so you can
determine if you want to take further time to read the message, have it read to you, reply
to it, or if this is important enough that you should pull out your phone. Like Twitter,
Gmail also applies several of its own custom actions as menu items for Archive and

56 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

Star, along with the Glass stock versions of Read more and Read aloud, and custom
versions of Reply, Reply all, and Delete (Figure 4-6).

Figure 4-5. An inbound Gmail message

Figure 4-6. Gmail’s Archive menu item

Best in Show | 57

It makes use of the ability for longform text to be automatically paginated over several
cards, as an entire message can be displayed in addition to organizing conversation
threads into their own distinct bundles. The cover card is also different from other cards
within its bundle, noted by the subject header being on the cover card and the use of an
ellipsis to indicate more text. Gmail doesn’t insert new cards any time there’s a reply to
an ongoing conversation, but more intelligently updates existing ones in place and as
such reseats a bundle to the front of the timeline with the new message as its cover card.
This is a critical best practice for Mirror API programming you always need to keep in
mind, and one we’ll be talking about in Chapters 9 and 11 when we get into the me‐
chanics of the timeline and sharing.

Additionally, Gmail demonstrates a key part of Glassware design: adding value by omis‐
sion. The service doesn’t include a menu item that allows you to forward a message to
someone else on the Internet, which makes sense because with the current composition
of your contacts, you’d only be able to do so with 10 people, and even mighty Google’s
voice transcription powers can’t dictate even a simple email address. Really consider
this as a lesson in how you apply your logic to Glass, realizing that some things just can’t
be done.

One area where Gmail on Glass could do a better job is in attachments. Currently there’s
no visual indication within a Gmail card that it includes a file at all—which would, of
course, prompt users to use another device or a laptop to review what’s been sent. We
can’t load PDFs in Glass or Excel spreadsheets on Glass, but maybe being able to view
an image would be a nice touch to an already amazing application.

Design takeaways:

• Updating bundles, using pagination over multiple cards to reflect conversation
threads

• Effective layout of headers and message body
• Custom menu items
• Filtered data streams

Google+
Google’s social layer pushes cards to Glass only for posts that the wearer is directly sent
or mentioned in or for conversations that were posted with Glass, which like Twitter
uses a subset of the user’s normal data stream, not the entire shebang. It’s a really neat
way to use Google+ across devices to share content and communicate with people. The
simple card UI shows how a system with lots of moving parts can be adopted within
the static prism display—Google+ on Glass doesn’t look anything like Google+ does on
the desktop web, in mobile web browsers, or on tablets. And it shouldn’t.

58 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

The Glassware also gives users the ability to engage in posts—reading and adding com‐
ments to conversations, as well as +1’ing them. Google+ on Glass accepts text, photo,
and video posts as well as link shares, and was the first Glassware service that really let
you involve your social graph and keep you in touch with your connections. Google+
achieves this by registering itself as a recipient for most types of multimedia formats as
well as links to places on the Web. It opens up its full range of engagement as a sharing
contact—it lets you share content with the people you’ve added in MyGlass, entire circles
of people, and Communities groups you belong to. This is a new way of thinking about
how data exists, as data isn’t just shared to an app like on other mobile platforms, but
to people and services alike.

The Glassware also does a masterful job with funneling notifications. There are a ton
of interactions that Google+ could alert you to, but only the most appropriate make it
to Glass. If your profile is tagged by someone, you get notified once on Glass with the
card shared with you, but then not again unless you jump in the conversation, just as
Google+ behaves on other clients. If you share a photo or link with a Google+ connection
of yours from Glass, your posts will append the hashtag #throughglass—which is a great
design tactic to consider for self-promotion for your platform—and then also register you
to receive notifications on Glass, in an intuitive way. Your headset will only sound the
Glass alert tone when a new comment has been added to the post, not when someone
has +1’ed it or shared it. But whenever anyone on Google+ engages with you, the original
card for that post gets updated with the current +1 count and number of comments,
represented visually in the footer (Figure 4-7).

It’s very well done and makes good use of the cardspace without feeling forced or
cramped.

Don’t Sleep on Using the Footer
The footer area in cards is a great place to put tiny fragments of
information. By convention, the right side of the footer is reserved for
an icon identifying your service and for timestamp data. But on the
left side, you’ve got carte blanche. As we’ve seen with Twitter and
Google+, helpful information like direct message indicators and so‐
cial metrics, respectively, can be included with only a few of charac‐
ters or an icon and can make a huge difference in describing content.
You can also get creative by using the footer in cover cards for bun‐
dles, as the Hangouts Glassware does by including the name of the
user chatting with you.
Be wise though—don’t just slap something in there just because the
space is available. Supplementary information that helps describe the
main body content is always best.

Best in Show | 59

Figure 4-7. A Glass video shared with Google+’s Glassware

However, the biggest room in the world is the room for improvement, and Google+ isn’t
without its minor oopsies. It’s an elaborate application that has different view conditions
that aren’t always displayed as you might anticipate. For example, if you’re mentioned
or tagged in a post with a video, you see a card with the clip attached to it, with the
PLAY_VIDEO menu item available to trigger playback. But this also means you’re un‐
able to tap and swipe through the comments that are available for that thread, because
whereas you’d normally tap on what would be a card bundle and iterate through com‐
ments, tapping with an attachment brings up the menu items for that card. In that case,
comments are unavailable.

Additionally, early builds of the Glassware had an issue when encountering interna‐
tionalization within posts, converting UTF-8 characters to ASCII, due to the way that
Google+ supports foreign character sets on its web and mobile clients to allow com‐
ments by people typing in non-Roman alphabets like Cyrillic, Farsi, Hiragana, or Greek,
which drives the helpful Translate feature. For example, if a post including the line I’m
going to say “I’m finished with dinner & I’m ready for dessert!” would appear in cards
with URL-encoded text, it would be I'm going to say "I'm finished
with dinner and I'm ready for dessert!", which would not only be a night‐
mare to read visually, but also would come out horribly when the Read aloud action
was selected, annunciating every escaped character verbatim. Make sure that if your
Glassware incorporates multiple languages, you test and retest and properly use your
web development framework’s internationalization features to avoid this.

These are minor gotchas, but we have full confidence the Google+ team will continue
to work on it and find a creative way to incorporate much of the feature set.

60 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

Design takeaways:

• Reporting engagement metrics
• Social notifications
• Support for text, photos, videos, and link shares
• Platform promotion
• Internationalization
• Use of the footer
• Custom layout that fits the form factor

We Literally Have Google+ to Thank for This Book
A funny anecdote we share is that Google+ was, in no stretch of hyperbole, the driving
force behind this book. It allowed us to meet and become friends, it’s how we collaborated
on writing it and endlessly debated what approaches we would take, and it provided the
infrastructure that galvanized the entire effort. After we outlined the chapters and start‐
ed laying out the initial material, we still needed a hook—that one thing that readers
could glom onto to really get what it means to Think for Glass.

So while driving home late one Saturday night from giving a talk about Glass, Allen had
an epiphany. He suddenly was hit with the creative vision about what our philosophy
meant, and hurriedly recorded a video of himself dictating our concept that “Glass is
designed to live in your world, not for you to live in Glass’ world. It is meant to adapt
to your life, not for you to adapt to how it does things. Your apps are expected to behave
the same way.”

Still on the road, he thanked his muse and shared this gem of a revelation using the
Google+ Glassware with Jason, who was writing a chapter on the other side of the world
on Guam and began responding on Google+ on his tablet. We had a series of exchanges
that solidified the concept we’ve been presenting to you—cross-platform, collabora‐
tively.

Pretty cool, huh?

Winning Glassware Design Takeaways
Now let’s look at some other notable design instances from the initial salvo of Glassware
vendors that leverage the Glass experience (Tables 4-1 and 4-2). Many are existing web
brands and were challenged with transposing their in-place ideas to the Glass UX. Check
them out on Glass yourself and pay attention to both what they do and how they do it.

Winning Glassware Design Takeaways | 61

Table 4-1. Winning Mirror API Glassware takeaways
Glassware Genre Design takeaways

Evernote Productivity Integration with existing APIs, send-to-Glass from web

Path Social Rapid development (a full-stack port to Glass took a few weeks), multimedia resource sharing

The New York Times News User configuration, delivery batching, photo captioning

Elle News User configuration outside of Glass, web-based reading queue

CNN News Web administration, user-defined content selection, time-based delivery

Facebook Social Sharing with varying social scope, integration with APIs

Tumblr Social Read/write access, integration with API

Ice Breaker Game Using Glass as a casual gaming client

Table 4-2. Winning GDK Glassware takeaways
Glassware Genre Design takeaways

Spellista Game UI outside of the timeline, game controller driven by accelerometer data

Compass, Stopwatch,
Timer

Utility Long-lived live cards updating content constantly, in the same way that Google
Now cards work; real-time sensor data

Strava Run, Strava
Cycling

Fitness Capturing motion information, real-time visualizations, social integration; provides
sporadic feedback only at the most important times

Word Lens Communications Real-time processing of video data

The main thing to remember about these examples is that they exemplify one of the key
aspects of how to Think for Glass—each is a well-designed service specifically written
for the idiosyncrasies of the platform, not just force-fitting an existing mobile website
or a clumsily ported native app or ramming an RSS feed at the user. They conform to
the Glass UI restrictions, emphasize minimal user interaction, leverage the system’s low-
bandwidth ideals, exploit the platform’s numerous hardware capabilities, and take into
consideration the wearer’s behavior during use.

How Are Pinned Items Ordered?
Since live cards in GDK apps will appear when Glass wakes up in‐
stead of the home screen, how will you know which pinned item a
user sees if they’ve got more than one live card running? Just like the
timeline items that sit to the right of the home screen, the ordering
of pinned items uses LIFO (last in, first out), with a twist: live cards
always take precedence over any static cards, regardless of when
they’re pinned.

And the most impressive thing about these services is that they’re not all carbon copies
of each other laid out across different industries. Each demonstrates something distinct
about the Glass ecosystem. They’re built for maximum effectiveness by emphasizing

62 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

some of the best aspects of the platform through playing up the features of the Google
Mirror API and emphasizing positive minimalism, or leveraging the low-level control
and system capabilities with native code via the GDK. Despite the first-glance restric‐
tions of its display, Glass is extremely flexible as a stage for third parties to build upon.

And that’s the point: understanding what Glass is and is not and what it can and cannot
do, and repurposing platforms for that model. These examples prove that if done right,
a service can be extremely useful—but more than that, they demonstrate that Glassware
can achieve something in interesting, helpful, convenient, and fun ways!

Designing with the Think for Glass Mindset
Let’s revisit the rather heavy concept we floated in Chapter 1, in which we laid out what
it means to Think for Glass. Quoting ourselves:

Glass is designed to live in your world, not for you to live in Glass’ world. It is meant to
adapt to your life, not for you to adapt to how it does things. Your apps are expected to
behave the same way. Everything else stems from this basic idea. It means that anything
that works through Glass should be secondary to the world around the person wearing
Glass, and that an app should never expect otherwise.

This philosophy means approaching program design in a way that not only remains
cognizant of the user’s surroundings—it actively incorporates them. Central to this is
keeping the experience personal to the wearer. You need to be able to read your user’s
mind—which is no small task. The Glass experience was meant to tightly involve con‐
textual signals, so involving sensors, location, real-time data delivery, and one’s social
graph is part of what constitutes the user interface. Most important is tailoring your
design around users’ environments (the people, places, and things surrounding them)
at the moment that they use the application. Modern mobile applications took design
into a new stratosphere by getting architects to base their UIs around accelerometers,
gyroscopes, and GPS data—Glass now flies even higher, bringing the full range of con‐
text into the picture.

Glass progresses human–computer interaction in that the environment of the user is a
top priority for the design decisions you’ll make when creating Glassware. Situations
that the person wearing Glass encounters may be ripe scenarios in which to use your
program. Or, they may be absolutely inappropriate. This is the delicate balance you’ll
need to keep in mind when using control mechanisms like voice commands. Imagine
the trouble you’d get some poor unsuspecting user into if they had to yell out “Fire!” to
play a game while in a movie theater in which you shoot rockets at aliens…if they
happened to be near federal agents. Not good.

If this need for clairvoyance is intimidating or at the very least confusing, don’t worry.
Let’s consider a couple of illustrations from the Glass system software that reinforce this
idea.

Designing with the Think for Glass Mindset | 63

Vignettes
Glass includes the incredibly popular ability to create vignettes. This simple idea lets a
user take a screengrab of whatever timeline element or application screen is currently
being displayed in the prism, and then sets that image against whatever backdrop the
user is looking at in real life (Figure 4-8). The overlay is composited with the background
image and saved on the timeline, which can then be shared with contacts or Glassware
like any other applicable resource. With only two input actions (holding the shutter
button down to take the screengrab, then selecting the Make vignette menu item), the
user has captured the moment from his unique perspective of the world, and maybe
added a funny remark about the environment around him, or created something neat
without escaping the moment.

The wearer is using his own interpretation of the world as the backstage for the appli‐
cation. It’s the key element in how the feature is used. He could snap a photo and include
that picture within a picture, or take a screengrab of any item on his timeline and include
it on top of a scenic shot of wherever he happens to be. And whatever the situation, it
didn’t require the user to meticulously manage a complex application menu or look
down and meticulously negotiate controls. With vignettes, you literally never look away
from what you’re doing.

Figure 4-8. Vignettes on Glass

Vignettes are system software, available by default to nearly any piece of Glassware, even
those from third parties, and even in native apps. A third-party service for Glass, Vi‐
gnette Postcards, even jumped on this idea and allows wearers to apply seasonal greeting

64 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

http://glassvignettes.azurewebsites.net/
http://glassvignettes.azurewebsites.net/

card designs to their images. People have gotten extremely creative in combining their
Glass content with real-life views using vignettes. This is a stellar example of how both
worlds merge for a seamless experience with a personal touch. And it only took a couple
of seconds to snap-and-tap to capture.

Google Now
We’ll be riffing on contextual information a lot throughout this book, so strap in. Using
a number of signals relative to the user is a major aspect in making Glass content distinct,
relevant, and valuable. And nowhere is this more evident than in the platform’s inte‐
gration with Google Now as noted in Figures 4-9 through 4-13. The feature is touted as
“the right information at the right time,” based on your physical location, the time of
day, what you’ve searched for in you web history, appointments you’ve made in Google
Calendar, messages you’ve received in Gmail, and various other preferences about the
world around you.

Figure 4-9. Google Now’s weather card

Google Now keeps track of your activity and learns about your behavior, generating
cards based on patterns. Its Glassware uses a variety of templates to format the various
types of data it displays, not sticking to a single one for all types. The stock price card
isn’t laid out the same as the sports scores card, which doesn’t have the exact same
formatting as a card with a map, or one with an upcoming appointment. This demon‐
strates flexibility within a single application.

Designing with the Think for Glass Mindset | 65

Figure 4-10. Appointment reminders from Google Now

The cards that Google Now generates are also tied into the larger scope of Google Now
on mobile devices and the desktop via Chrome notifications, which illustrates another
example of great design: the ability to dismiss items on one platform and have them
cascade across other clients. When you dismiss a card about a flight delay on Glass or
on your phone, it syncs with other platforms to not appear there. This is a best practice
you should emulate in your own projects, too.

Figure 4-12 is a great illustration of how Glass can pull in data from different sources
you’ve expressed interest in and present them in a useful way. The most recent stock
prices you searched on Google Search are listed as cards within a bundle you can drill
down into. This is, perhaps, one of the best examples of contextual computing.

And, most importantly, the cards are created and delivered when in the appropriate
context—again, with sensitivity to the user’s time, location, and things happening
around her, and in terms of events she is participating in, people with whom she’s con‐
nected, or occasions she’s keeping tabs on. This is another example of making the user’s
real-life activities a core part of the application experience.

66 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

Figure 4-11. Upcoming events

Figure 4-12. Tracking stock prices

Designing with the Think for Glass Mindset | 67

Figure 4-13. Individual securities

Google Search
The canonical way to use Google also has a strong presence on Glass, and serves as a
great lesson on how to handle the very complicated task of fetching and showing re‐
sults from web-wide queries, which is intensive from processing and interface stand‐
points. Conducting voice-driven searches requires connectivity and is comprised of two
steps: preparing the query and displaying search results.

Try doing a search on Glass yourself, and take note that the “working” status bar at the
bottom of the card by the Google Search app then returns a result set back to Glass. The
use of iconography and visual cues about what steps to take are well laid out, using the
familiar animated microphone when input (or background noise) is detected.

As good defensive programming, Glass enforces a timeout if no vocal input is detected
within a few seconds and terminates the job; and if the connectivity isn’t good enough,
it times out and shows a card asking the users if they want to check on their connection
settings. Both are good visual cues about the work being done behind the scenes and
provide the application with some time to do the heavy lifting, which in this case is
talking over the Internet. And this all happens in mere moments.

Most information retrieval services won’t be anywhere near this fast, so check out
Appendix A for a couple of ideas you could play around with while the results are being
compiled if you need search features for your project.

For this example in Figures 4-14 through 4-16, we’ll perform a search on Glass for
“sleestaks.”

68 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

Figure 4-14. Voice searches

So Figure 4-14 is the querying-and-assembly phase. What about displaying the results
back on Glass? By default Google Search lists a small collection of matches, and in cases
where the topic has a match in Wikipedia or Google’s Knowledge Graph, reads the first
item back to you automatically.

Figure 4-15. Matches to the sleestaks search

Designing with the Think for Glass Mindset | 69

For archival purposes, the search results persist on your timeline as a bundle of cards
so you can refer to them later, not unlike Figure 4-16. This is a big win in terms of
usability and system optimization, saving the user from having to go across the network
to review past searches. At scale, this adds up.

Figure 4-16. Your searches are preserved

But a possible UI challenge remains in how to dig into more search results than just
those provided. Even the most obscure search won’t have just a handful of matching
URLs, and many people like getting into the weeds. There’s currently no ability to see
more results beyond those provided to you. Play with this idea and see what you could
come up with in your own projects.

But before you set off on this little thought experiment, keep in mind that the number
of results that are returned is capped for a reason. Can you guess when it is? It’s our
favorite word beginning with an “m”—microinteractions! Other mobile platforms still
handle the job of showing tens of pages of search results just fine, so there’s no shame
in deferring more work to a device that was meant to do it. It’s a well-executed and
deliberate UX trade-off between letting users access information quickly, while not
spending excessive time on Glass searching and thus taking them away from what they’re
doing in the real world. Use your best judgment and see what tests best with your users.

We’re coming back to this again—the integral part of the Glass experience is getting
technology to be high-impact and low-intrusion. Let the users quickly search, find re‐
sults, review them, then continue to do what they were doing without ever taking them

70 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

www.allitebooks.com

http://www.allitebooks.org

out of the moment. Google Search on Glass is a very lean frontend, which highly en‐
courages multitasking.

These types of features typify the program design ethos we’re bringing to light by not
preventing the users from taking part in their world, and always letting them return to
it at a moment’s notice. This is active engagement.

Whereas critics of Glass have said its input mechanics are limited, being only virtual
menu items, voice commands, and gestures, we prefer to see this as a great opportunity
with tremendous flexibility. And you should, too. We’re far beyond just having a d-pad,
a keyboard, and a couple of buttons at our disposal for cutting-edge program control.
Again, having clairvoyance about the user’s activities in the real world is a big advantage
to coming up with great wearable usability. It’s not easy, and not the way we’re used to
planning software projects—but it will pay off.

The Greater Goal of Wearable Design
Let’s detour for a moment and talk about wearable design not just for Glass, but for all
wearable devices. One app we have great respect for due to its design approach is Tinder,
the social dating app. It was one of the first applications to create an extension for An‐
droid Wear, bucking the convention of many other related services that tend to use a
complex heuristic based on wonky math to determine compatability between two peo‐
ple. That type of functionlity often leads to complicated UIs.

Tinder is much more (and admittedly) superficial—letting the user subjectively deter‐
mine if another person is attractive. That’s basically emulating real life. This drives Tin‐
der’s fluidly simplistic design for its mobile app, and lends to its streamlined user ex‐
perience on wearable computing devices. Its mechanic of swiping left on an image of a
potential match to ignore them or swiping right to connect with them is becoming the
idiomatic standard for many other apps throughout industry. On Wear devices, this
swiping action is captured perfectly by the smartwatch app, and makes for a perfect
lesson in what a microinteraction should be.

It’s so stupidly simple, based on a users-can’t-get-it-wrong UI that relies on contextual
computing (other users within a certain proximity), and social endorsement. We hope
to eventually see this on Glass, too.

It’s crude and crass, but it really works.

Glass for Gaming
One topic that’s gaining a lot of momentum is how Glass will be used for gaming.
Gaming has always been an application of technology that drives many other uses of
software and hardware, and this isn’t a lesson that’s lost on the Glass ecosystem. While

Glass for Gaming | 71

the very respected craft of good video game design tends to lean toward high-end pro‐
prietary systems to accommodate the rich UIs for graphics and sound and create ad‐
dictive gameplay, there’s a lot we can learn and implement within the wearable space.
The gaming market is expected to be enormous with Glass, both for playing directly on
the HMD and in using it to display auxiliary information while a user is playing a game
on a completely separate platform, ostensibly all connected through a common socket.

The Mini Games Glassware package developed by Google proves that casual gaming
has a place on Glass; it is a series of titles that only take less than a minute to play each,
yet can still be challenging, captive, and won’t dramatically drain the battery. They all
use user movement, sound, and tapping as controls. And each is complete with tutorials
for beginners, scoreboards, and varying levels of difficulty. They’re complete ideas—
proper video games, not disappointing diluted afterthoughts or incomplete translations.

Several other early adopters put together some very interesting game concepts, con‐
centrating on using the gesture capabilities of Glass as controller mechanisms to play
sidescrollers like GlassCopter, or the parallax clay pigeon shooting fun of Glass Hunt—
both of which are GDK apps. GlassFrogger, which won first place at the Breaking Glass
hackathon in San Francisco in 2013, is a Mirror API Glassware service that was built in
Dart in just two days and uses players’ motion for program control—having players
literally jump in place to move the little frog across the busy highway in a throwback to
the classic 8-bit title.

(We’ve yet to see anyone apply the old Up-Up-Down-Down-Left-Right-Left-Right-B-A-
Start Konami code trick yet. Hopefully by the time this book goes to print, that’ll be a
thing without putting Glass users in traction from whipping their heads in all direc‐
tions.)

Speaking of reinventing the classics, imagine applying Think for Glass design to timeless
titles. Think for example of a version of the classic game Battleship (which was, coin‐
cidentally, an idea BrickSimple implemented with its GlassBattle concept), using the
turn-based model for wearable gameplay. This might be a little easier to pull off across
platforms like Glass, PCs, portable gaming devices, console, the Web, and even other
wearables, as opposed to something like a clone of Breakout or an MMORPG or real-
time strategy title whose gameplay requires input from all involved without latency of
any sort (though those other genres still may be possible).

Or consider a low attention span version of Monopoly using your actual neighborhood
as the gameboard, with houses you define in geofences as properties. Players nearby
could “land on” various locations in your real-life neighborhood and “rent” space. Or,
how about the timeless Operation where you perform virtual medical procedures on a
friend also wearing Glass? What Ice Breaker proved, which led to it winning Google’s
first Glass hackathon in San Francisco in 2012, is that the fun factor is achieved by
blending data with real-world interactions, so keep that in mind.

72 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

http://bit.ly/glass-minigame
http://www.glasscopter.com/
http://getglasshunt.com/
http://www.glassfrogger.com/
http://bit.ly/glassbattle

Further, how might the popular augmented reality game Ingress be enhanced? Imagine
the interesting applications that may arise by playing a real-world version of hide-and-
seek, with players subscribed to the same game instance moving around in space, with
Glass letting them track each other, while still not demanding long sessions, typically a
minute or two.

Someone Create a Virtual Pet for Glass…Please???
Here’s an idea to mentally chew on about using Glass for a great gaming client: a Tam‐
agotchi clone. You know, a virtual pet that would remind the user to engage in a series
of recurring routines to keep your digital companion from going hungry, being bored,
staying awake past its bedtime, getting enough exercise, and so on. The design consid‐
erations and gameplay are fairly simple—recurring time-sensitive user interaction with
sparse user input handling and only doing so within a certain daily timeframe (sounds
an awful lot like microinteractions, doesn’t it?), all for the reward of earning the love
and loyalty of a happy pet.

A player would only need to interact with the program for a few seconds each time, a
few times per day, to stay in the game. The challenge of building the backend to maintain
update alerts for potentially tens of thousands of players caring for pets on staggered
schedules makes this something worth thinking about for both front- and backend
architectures.

So we’re invoking executive authority as your authors to see if someone out there can
build this. It’d be SWEET.

Glassware and apps driven by Android Wear may breathe new life into legacy social
games, too, by giving them an added dimension as another outlet to receive and respond
to in-game notifications—an extended interactive stage. Imagine applying this to a title
like Happy Aquarium by Crowdstar, a Flash title that incorporates a player’s Facebook
friends. It routinely generates bonus gifts, such as the elusive and valuable baby turtle,
which a beneficiary must accept on their Facebook wall within a few minutes, or the
chance to add it to their fish tank expires. Facebook notifications fire to inform users
about such gifts.

Happy Aquarium could push a card to Glass and/or a smartwatch, which would have
only required a simple interaction to confirm the action—tap, gesture, or voice com‐
mand—and accept the gift. The player wouldn’t necessarily have to be at their desktop
browser and in the game environment to stay an active part of it.

By introducing microinteractions, a social game’s overall play can be enhanced by keep‐
ing users engaged with an ongoing game, even if they’re not actively engaged with it at
the moment. Simple and effective!

Glass for Gaming | 73

https://www.facebook.com/happyaquariumgame

Games existing solely on and for Glass have already demonstrated their worth, con‐
centrating on being the best they can be within the scope of the platform. On the opposite
end of the spectrum, our community’s history has also witnessed several examples of
designs that don’t work—both in terms of the visual appeal they project and the way
they apply gameplay. Glassware that forces the user to pay attention for extended periods
of time (typically more than 60 seconds), keeping the display active, and being exces‐
sively noisy with notifications are largely examples of what you don’t want to do.

Design for the Cloud
Another high-level mindset you need to have when thinking of the architecture for your
application is: design for the cloud, not a particular platform. You should adopt a practice
of creating your own ecosystem around your idea and not be limited to a single client.
Right from the start, you’re building a distributed multitier application. This approach
may have some familiarity to it, as many of the web services you might use are probably
based on this structure. And from a customer’s perspective, your users might expect to
be able to access your slick Glassware on a browser and on their phone, too, and not
just to customize settings.

We’ve now got a touch-aware computing solution in Android, Chrome for the Web,
and Android Wear and Google Glass for wearables. To support those tiers and integrate
across them you need to craft RESTful services with decoupled components, such as
with Google Cloud Endpoints. You can then add frontends to your logic, each with their
own idiosyncratic UIs and capabilities.

Check out the Google Cloud Platform to see what scalable infrastructure and resources
you can use to build, host, and run your application. Again, the Mirror API supports
any cloud infrastructure, including existing ones.

Are You Starting to Think for Glass?
Let’s conclude this chapter by coming full circle, back where we started with the simple
concept of why Glass exists. And it bears repeating to emphasize the advantage to
knowing how to Think for Glass, now that you’ve been enlightened with the knowledge
of exactly what that entails.

The key is implementing these ideas within the constraints of the form factor using the
principles we detailed at the onset of this chapter. Prioritize what the wearers are doing
at the time they use the Glassware. Design not with system capabilities or the physical
layout and arrangement of controls, but the user’s behavior in the real world and how
the software fits into that event. It’s not simply porting existing frontend code to a new
client—it’s retrofitting entire ideas and applying new design approaches, while maxi‐
mizing the experience.

74 | Chapter 4: Thinking for Glass: How Glass Is, and Should Be, Personal

https://cloud.google.com/products/cloud-endpoints/
https://cloud.google.com/

So again, here’s the concept about what not just Glass, but its ecosystem, truly is: by
bringing technology closer, Google Glass keeps technology out of the way.

Makes a little more sense now, doesn’t it?

Are You Starting to Think for Glass? | 75

CHAPTER 5

The Five Noble Truths of Great
Glassware Design

What does it take to build effective Glassware that users will thoroughly enjoy and use
often? Great frameworks. Google started out by providing developers with the cloud-
based Mirror API and an accompanying set of core design principles, initially with four
guidelines and then later expanded to add a fifth member that came with the rollout of
the Glass Development Kit (GDK). Imagine the Beatles or Metallica adding a key‐
boardist.

(OK…that’s a terrible analogy, but still.)

By understanding exactly what Glass is as a revolutionary technology and what it brings
to the table, these concepts dictate the pace for assembling services that are in line with
the overall theme for Glass: keep technology out of the way when it’s not needed. The
guidelines, as described on the Google Developers site, introduce a dramatic shift in the
types of experiences software creators have been accustomed to building. The upside is
that each rule is interwoven with the others, so there’s perfect synergy. Once you con‐
form to building your service according to one, the others naturally fall in line. That’s
not to say that applying one relieves you from needing to use the others, but their
interdependence makes going from one to the next much easier.

We present them here as the Five Noble Truths, your means to understanding program
design in the Glass world. They are collectively and individually essential in order to
achieve the ultimate experience—a nirvana, if you will—for usability, convenience, aes‐
thetics, flow, efficiency, and timeliness: the Glass UX. The Think for Glass philosophy
is an extension of and complement to these guidelines. And as an abstract framework
to guide you in building great Glassware, the lead that can’t afford to be buried is that
the Five Noble Truths aren’t bound to any particular programming language, software
engineering methodology, or coding idiom. You’re free to use the tools and techniques

77

https://developers.google.com/glass/design/principles
http://bit.ly/mirror-api-guide

you’re most comfortable with on top of the ideals of great design for wearable computing
applications.

As a Glassware architect you’re dealing with a new dimension of human–computer
interaction, designing your application primarily around the user’s active participation
in the real world. This has a direct impact on usability. We’ve not been challenged with
this concern before, historically needing only to worry about aesthetics, the arrange‐
ment of user interface components, networking, and performance impacts. And you
want to do this because this in turn will create designs that encourage more use out of
the convenience and fun factor they provide. Stay true to the Glass UX; this involves
using larger fonts, understanding constraints within the display, and encouraging mi‐
crointeractions—smaller, lightweight activities requiring bursty attention spans and
minimal user input.

Just like the experience of using Glass itself the Five Noble Truths are short, simple, and
to the point. And knowing them and how to apply them in your design of Glassware is
essential in being a successful Glass developer.

Noble Truth 1: Design for Glass
Keeping in mind that Glass is an entirely new computing experience is critical to how
you design Glassware. You can’t just port old code or massage legacy libraries, or point
resources to some server and simply hope they work. Likewise, you can’t merely force-
feed existing fragments of raw text and HTML or RSS feeds at a subscriber, or just spend
time jamming on CSS. You need to apply all of these techniques to some degree, but
you need to do them a little differently than you’re probably used to.

The output may be pure hypertext (in the case of Glassware written with the Mirror
API), but this isn’t the mobile web, and it’s certainly not WAP. And it’s not merely re‐
scaling an iOS app that works on iPod Touches and iPhones up to dimensions so it looks
good on an iPad. Perhaps the most poignant insight on this theory was made from Gene
Reddick, who founded KitchMe.com, which has Glassware offering recipe searches and
a catalog of meal preparation lessons. He said, “Simplicity isn’t easy to get right.”

You need to approach this as a completely new way of working with information, because
that’s precisely what it is.

Targeting Microinteractions
So far we have, and will continue to, emphasize the importance of microinteractions as
the core unit of usability for the Glass experience. Cards on the timeline are an expres‐
sion of this, but it goes much deeper. The thing to remember is that well-designed Glass‐
ware doesn’t apply only to situations where low intrusion is the norm. Apps and services
that are effective with wearable users actually shift their use cases toward microinter‐
actions.

78 | Chapter 5: The Five Noble Truths of Great Glassware Design

You can see this with the layout of the cards available from most Glassware—graphics
on the left let you identify who or what the message is about or with, bolder headers
provide a subject summary, and footer captions can quickly identify a full-bleed back‐
ground image; all of these help users quickly determine if they wish to have the full text
of the event read aloud to them, or if this is an item that should be dealt with later or
via another device.

The Android Wear design principles, which aren’t too different from the Noble Truths
for Glass, refer to this phenomenon as “the Glanceable UI,” noting how the metaphor
of cards on a timeline is meant to be quick. The message is short and sweet: get in, get
out, and get on with your life. We sometimes like to point out that Glass is uncomfortable
to look at for more than a couple of seconds, so if the user is going to, it had better be
for a good reason.

Remember, if you manage an existing application don’t try to do a seamless feature-by-
feature translation of it, simply because it’s probably not going to work. Glass is admittedly
feature-reduced—and that’s actually a good thing! In giving your platform a new home
on the wearable computing landscape, keep commands simple. More menus mean more
timeline cards to page through, which means more swipes for the wearer, which means
less time spent in the real world, which means a violation of the Five Noble Truths,
which means a lousy user experience, which means unsubscribers. Try to prioritize only
the most pertinent functionality and build interactivity around that.

You wouldn’t want to watch entire newscasts, but streaming just the highlights would
be nice. OVGuide Videos for Google Glass does this and does it very well for enter‐
tainment news. Conferences, speeches, and debates can often be long (and boring)
events, so how about getting a snapshot of just the most meaningful soundbytes? Hulu
already features a massive library of shortform videos like trailers and clips, so this might
be a possibility—another way a service can creatively adjust its core competency to
embrace the platform and drive activity toward its own much broader ecosystem.

A major part of this Noble Truth for Mirror API Glassware is structuring your cards
intelligently—their data, the menu items they use (and the careful ordering of them to
make sure the most useful or most frequently used menu items are listed first to ensure
single-swipe access), and any sharing capability they might contain. Some don’t even
use a UI at all. YouTube’s Glassware is a one-way write-only uploader utility, and as such
has no visual presence whatsoever—it’s just a sharing service.

But it does what it does very well, because it works within the UI/UX parameters of the
platform, and achieves minimal user input in a short amount of time (a
microinteraction).

Noble Truth 1: Design for Glass | 79

http://developer.android.com/wear/design/
http://ovg-glass.appspot.com/

Tactical Wearable Design
As far as the cosmetic appeal of your services is concerned, most UIs will be a candidate
for an “addition by subtraction” overhaul. Thinking for Glass emphasizes minimalism
in design and data brevity, but overall high impact. Depending on the goal you’re trying
to achieve, you may find this a refreshing and fun change…or a daunting challenge. As
we touched upon earlier, working to achieve a simple result is often a huge amount of
work.

Because of spacing gutters and the box model, plan on having a 427 x 240 viewport
available as usable space for content—about 67% of the prism display. Google strongly
encourages as a best practice using its official templates to design your timeline cards.
They rely on the Roboto typeface, bright text on a dark background, and use spacing to
give content some breathing room within the prism display.

There are also several free tools you can use to rapidly design specifically for the Glass
experience, including the Mirror API Playground and the Glassware Flow Designer.
Additionally, integrated development environments (IDEs) like Eclipse and Android
Studio include pre-fab projects you can learn from and modify to build effective appli‐
cations.

You’ll also need to drop the tendency to think of application design in terms of controls
—no form elements, spinners, calendars or date/time pickers, menus, context menus,
etc. Glass shouldn’t be viewed as a data entry medium. Information can be submitted
by sharing resources like images, photos, and videos and other posts, but text input is
extracted from text-to-speech, which means it isn’t going to be very much. Your UI
design should emphasize sensory controls—sight, sound, and touch—with low-friction
usability.

You want a wearer to have a minimum number of input steps to interact with your
service. Work within the scope of timeline cards. Try to keep everything one level deep
—that means at most one trackpad tap or one swipe, with only a few menu options.
This isn’t the Web with infinite link depth or a mobile app that can have menus within
menus within menus, and options upon options within those. Glass doesn’t use any
modal dialogs. If you already have a complex UI on other platforms, you may need to
rework it or leave some control mechanisms out. Prioritize the core of your platform.
Having reduced features doesn’t mean a bad experience, because the overall result is still
a nonintrusive way to use your product.

Just like the Noble Truths, the patterns on which to base your UX have solid foundations
and are always expanding as the APIs mature. Check out the official documentation for
design patterns to see the latest best practices for creating effective interfaces that are
consistent with the rest of the community.

80 | Chapter 5: The Five Noble Truths of Great Glassware Design

https://developers.google.com/glass/design/style
https://developers.google.com/glass/design/style
https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/glass/tools-downloads/glassware-flow-designer
https://developers.google.com/glass/design/patterns
https://developers.google.com/glass/design/patterns

Don’t Neglect Audio
One of the most popular features of Glass, and one that you get for free right out of the
box, is the ability to have the text content of timeline cards read aloud to a wearer. It’s a
simple menu item that requires only a couple of lines of code—just hook it up to a
property one time and you’ve got a great feedback medium that gives your Glassware
rich usability. Audio on Glass is a valid, powerful, and flexible user interface, and is an
important format for output. It greatly enhances immersive experiences like games,
multiplies the usability of static items so the user can do other things, and is a standalone
medium when reading content to the user without any accompanying visual elements.

Keep in mind that microinteractions are measured in terms of the required attentiveness
of the wearer, not just how long the wearer engaged with the system. And with audio
you’ve got a bit more leeway than with visual media, since microinteractions naturally
don’t mandate staring at them and since Glass will gracefully go to sleep if there’s no
interaction with the device even while the wearer is actively reading an item. The Glass‐
ware for Google Play Music streams songs and talkshow content without constant ocular
interaction. Native cards can sound-off in the middle of other running operations, like
when getting directions during turn-by-turn navigation. This enables users to have the
freedom to multitask in the real world—they can walk, drive, shop, fold clothes, exercise,
pay bills, or any number of other IRL activities.

However, there are some requirements when designing how to use audio. With the
Mirror API, you can’t set automatic reading of content with the built-in Read aloud
functionality, so this is 100% an on-demand feature, like any other static menu item.
Also, while Glass will continue to annunciate card content even after it’s returned to an
idle state, the user has to stay put on the card that contains it. If Glass wakes up mid-
reading, the timeline’s position will still be on that card, but swiping away from this card
in either a horizontal direction or downward cancels the operation. There’s also no
concept of a playhead like there is with the Glass video player, so any interrupted reading
will need to be restarted from the beginning. Upon completion, the timeline returns to
the home screen.

You also want to be careful not to neglect poor uses of audio. The Mirror API by default
audibly recites whatever value has been set in the Timeline.speakableText property
(we get into the Timeline object model in Chapter 9). If that property isn’t set, the API
reads the value of the Timeline.text property, which is the visual content populating
a card, never null, and normally short bits of content like a headline. So don’t get lazy
and fail to set some speakable text, because that’s bad design. With a wearer having to
glance at card before selecting the Read aloud menu item, Glass would read a user the
blurb he literally just looked at. And that’s, well, stupid.

These factors should provide an idea of how you should design audible output into your
Glassware. Like everything else involved in Thinking for Glass, you want to implement
it sparingly and tastefully. And that means anticipating the user’s situation first and

Noble Truth 1: Design for Glass | 81

foremost and catering to that, within the scope of a microinteraction. Figure out the
comfortable range of how much audible content is acceptable, and how often it should
be read back.

Your Content Out Loud—Shakespeare It’s Not
The text dictation service in Glass is strikingly accurate and fast…
but don’t expect James Earl Jones–caliber enunciation, inflection, and
emphasis for your content when it’s read back to a user. Punctua‐
tion for dramatic effect like commas, semicolons, and hyphens are
largely ignored, so a pause won’t be translated very well.
That said, there is opportunity to improve upon this! Umano built
Glassware featuring professional voice actors who narrate news items
with a little more pizzazz than the staccato female tone Glass uses by
default.
(But if you happen to get Morgan Freeman to do voicework for your
Glassware, do let us know.)

Delete Versus Dismiss
One other thing that Glass users tend to be especially fidgety about is keeping vtheir
timelines clean. Users often want a way to remove items to preserve disk space, and this
is possible for many (but not all) items on your timeline with the Delete menu item.
Traditional timelines and streams like those seen on social systems theoretically never
end—but with the Glass timeline, you should almost never need to do anything to it
administratively. Glass manages it for you, deleting older items routinely and automat‐
ically. Google’s server manages the timeline by keeping only the last 7 days worth of cards
resident, or the most recent 200 cards, and also purges any items older than 30 days.
People can almost always safely ignore older posts.

Lastly, understand the difference between deleting and dismissing within your Glass‐
ware. The purpose of each is very clearly defined by Google, and your Glassware and
the naming of your menu items and voice commands need to explicitly reflect how
actions will affect their data or use of the program. Delete deletes the card and you should
delete any related item on your end. Dismiss should just remove the card (and it isn’t
really necessary since the timeline will automatically purge items, as noted). See
Figure 5-1.

Google also has rules pertaining to deletion of data on its Developer Policies page, so
review those.

Will choosing a certain command cancel an action or eliminate a resource completely?
Are there recovery methods? While Glass does provide the ability to let a user swipe
downward to cancel an in-process action like saving or sending, which is analogous to
pressing the “back” button on an Android handheld device, the system doesn’t enforce

82 | Chapter 5: The Five Noble Truths of Great Glassware Design

http://bit.ly/gg-umano
http://bit.ly/gg-umano
http://bit.ly/delete-data-rules

modal dialogs. Good Glassware design strongly discourages using modal dialogs, as
doing so is very un-Glass-like.

Figure 5-1. Cancelling actions in cards

We’re all just one tap or swipe away from losing what could be a valuable piece of data,
so be up front and clear about what impacts the choices and input controls your Glass‐
ware makes available will have.

Provide Web-Based Configuration
You would also be wise to keep configuration tasks like choosing certain categories of
content or picking what time to not receive notifications from a service away from Glass.
Sending users to more capable web UIs in a browser interface allows form elements to
be used to their fullest, including some of the newer HTML5 controls like datepickers,
without trying to implement workarounds that would be tedious to use on Glass.

Persistent values that span multiple sessions such as user configuration settings, and
application preferences should be stored on the server in a database, not directly within
timeline cards, even for native apps built with the GDK, which we detail in the Devel‐
op section of this book. The Glassware developed by CNN, Elle, and LynxFit each feature
browser-based configuration so that complex forms, web menus, and categorical
choices aren’t forced into the prism. And administration of your service should be rele‐
gated to a web-based interface and accessible via desktop or mobile browsers, and/or
an accompanying mobile app.

Noble Truth 1: Design for Glass | 83

Herein lies one of the main advantages of Glassware—Mirror API services run on HTTP
servers, so they talk to other HTTP services easily. Just write a web form to configure
user settings for your Glassware and wire it up to your Glassware backend to associate
it with your user database. This makes using your stuff inherently multiplatform, which
is a major victory for building your brand.

Noble Truth 2: Don’t Get in the Way
The second Noble Truth of Glass service creation is essentially a “No Loitering!” policy
for third-party programs, upholding the nonintrusive nature of how Glass was built
from the ground up. Put it this way: the system software doesn’t barge in on its wearer,
so neither should your Glassware. This isn’t to say that you shouldn’t make your presence
known; just don’t linger around when the user’s done using your stuff, and don’t make
the act of using it time-consuming. In wearable computing the top priority is the wearer,
so the objective is to let her get on with her life.

Notify Responsibly
Another big area of designing your service is respecting the product’s ambition to stay
the heck out of the user’s way. You may have a really popular social application across
multiple platforms, or while reading this book you may have been dropkicked by your
muse or guardian angel and came up with an amazing idea—but recognize the fact that
even though you may have a ton of data the user may want, Glass is still meant to be a
low-intrusion medium.

Despite having one of most voluminous archives of content in the world, the New York
Times Glassware only generates headlines once per hour, and deviates from this work‐
flow only when pushing breaking news items when they occur. The Times sticks to its
intelligent distribution schedule for the day’s major events through batch processing,
which is predictable and expected and thus does not interfere with the users’ daily ac‐
tivities as they go about their day. This is also efficient in terms of the backend; the
timeline card bundles that the Times delivers contain one or more stories, but generating
them involves just a single sync operation for Glass, and one notification.

A wise design decision is to avoid bombarding your subscribers with constant notifi‐
cations, and knowing how to reshape your data into a manageable load that respects the
ongoing activity of the Glass user is a powerful skill to hone. A big culprit for this will
be social software applications, which are challenged to find a way to condense their
users’ data, consisting of their graphs and accompanying messages, into a concise for‐
mat. Twitter has done great work to this end with its Glassware, not forcing people to
ingest the entirety of their timeline, as we detailed in Chapter 4.

You may very well have a veritable firehose of updates to offer to an audience, but
knowing what pulses are acceptable across desktop, web, mobile, and Glass applications,

84 | Chapter 5: The Five Noble Truths of Great Glassware Design

and knowing how to properly spread them around with each of those platforms, is the
sign of a champ.

Even in cases where batch processing might mean receiving a whole slew of updates at
once, it’s probably not necessary to send a notification for each one. Winkfeed, a Mirror
API–built service that lets users subscribe to multiple information channels, gets around
this problem by issuing bundles of cards during times when two or more sources are
pushing alerts at a user, rather than pushing multiple timeline cards independently
(Figure 5-2). It even goes a step further by laying out a helpful summary of the bundle’s
sources within the cover card. What could be a very noisy problem at scale is handled
beautifully, respecting the user’s bandwidth…and sanity. Your customers will appreciate
it.

Bundle or Die
One of the most consistent patterns in use by the best Glassware is
that services publishing multiple timeline cards do so by organizing
them into bundles, where appropriate. So keep this in mind if you
want your stuff to make it into the official channel and get top
exposure.

We all share the same space, so let’s not drown the user with new timeline cards every
eight seconds.

Remember that while other developers may in practice be your competitors, as part of
this community they’re designing for Glass, too. Your goods actually become more
useful when not in the user’s face all the time. People will appreciate the breathing room.

Noble Truth 2: Don’t Get in the Way | 85

https://www.winkfeed.com/

Figure 5-2. Winkfeed uses bundles

Less Is More
An example of not getting in the wearer’s way while still providing great usability is
Strava’s fitness apps—Strava Run and Strava Cycling. They deliver great usability by
giving measurements during your workout, comfortably placed in a card that pins itself
to the left of the home screen that shows running stats while you work out, and slips
quietly into the background when Glass goes to sleep rather than stay present in your
periphery with the display on, possibly distracting you and draining the battery. The
apps are always accessible at the moment’s notice, completely hands-free, by waking up
Glass with a head nod. There you’ll get real-time measurements and progress reports
read to you audibly every half-mile about your pace and progress, even if the device’s
display isn’t awake—the audio is delivered as you hit your milestones. The same feature
is available with turn-by-turn navigation when getting directions to a destination.

This is a technique that’s easy to do regardless of whether you’re working with the Mirror
API or the GDK, and proves how a major part of a high-impact user Glass interface
sometimes means having no visual element at all. The user’s interaction in the real world
takes precedence over the user’s interaction with the system. This could even include in
some cases that your target viewer may not get your notification, may never see your
item on the timeline, or may just ignore you completely—and you have to deal with
that. Good Glassware design means having some contingency.

Strava’s Glassware also uploads your progress to your profile as you’re working out, so
your friends can see and compete against you. But you also get the ability to control

86 | Chapter 5: The Five Noble Truths of Great Glassware Design

certain aspects, such as marking splits with menu items. It’s an effective mix of auto‐
mated and manual input that doesn’t take you out of the moment.

The Exceptions Make the Rule
The sole exceptions are immersions for GDK apps, which completely take over the Glass
UI and keep the user constantly captive and engaged. While we’ve stated the overall goal
to facilitate microinteractions, Glass is capable of handling larger, more demanding UIs,
too, where appropriate—and what’s more, it isn’t appropriate for most things. Some
situations in life are more critical than others and might require constant attention for
longer periods of time, like surgeries, air traffic control towers, baby monitoring, or
safety inspections.

Turn-by-turn navigation scenarios are an example of an immersive application—having
a map dynamically display and update your position in relation to a destination, and
making this resource available as a live card is significantly better usability than having
to swipe to a specific point in the timeline to find a static map with location data updated
only every few minutes.

Glass is designed to let people interact better with those things surrounding them, and
Glassware needs to make sure it honors that. With regards to your service, this means
getting rid of UI elements quickly and hiding long-running operations, so as not to
unnecessarily draw the user’s attention. The Timer Glassware proceeds with user-
defined countdowns quietly and in the background, but a live card app is pinned to the
left of the home screen for the duration of its use and becomes immediately available
and the first thing the user sees when Glass is woken up. The app is still a
microinteraction-friendly conduit, not taking significant attention away from the user.

There are facilities to allow processes like backups and silent updates to run in the
background, so leverage those if you need them.

Exhibiting altruism toward your fellow developers is also important, as well. Yours more
than likely isn’t the only Glassware users are running on their headset, so keep notifi‐
cations light and grouped logically. Rather than seeing this in terms of modern mobile
applications where installed applications wage a perpetual battle for their owner’s eye‐
balls and time, Glass promotes respectful coexistence.

Noble Truth 3: Keep It Relevant
Interacting with Glass is very much helping you stay in the now. Doing things that don’t
contribute to that will lead to negative experiences with your service. Again, you’re not
trying to take the users away from the real world, you’re keeping them in it by having
technology be a transient presence. And with Glass being a contextual platform, pro‐
viding information and interactivity capabilities in real time for variables like location,
time, and any associated events from other applications is a big opportunity.

Noble Truth 3: Keep It Relevant | 87

To illustrate the point, say you maintain Glassware that tracks the variance of stock
prices throughout a day’s trading. Rather than provide a constant stream of new timeline
cards each time a security’s price changed, you would want to initiate a fresh pinned
card to start off, and then update that same card when certain criteria are matched (e.g.,
percentage or price fluctuations above/below a set threshold), as opposed to generating
a series of new cards each and every time an event occurs and flooding the user’s timeline.

It’s worth noting that this Noble Truth was modified from its origi‐
nal dictum of “Keep it timely.” Emphasizing relevance, of which time
is inclusive, speaks more to making information truly contextual
based on multiple signals, as well as both time-sensitive and location-
aware, which dramatically increases its value. This is the greater good
and gives a better sense of what the user is doing at that precise
moment.

Consider, for example, the desire that everyone has to get on the “OK Glass” voice
command main menu, or to have their Glassware’s cards pinned. This is an app-centric
focus—we want our applications prominent for the user. But it forces the users into our
world instead of trying to understand the world that they want to be in. They don’t want
to sort through dozens of pinned cards to find the one they want. They want us to deliver
information to them when, and only when, they want it. They want to take action, not
start an app. They want to be able to easily ask for new information. They want to quickly
find the data they know is there…somewhere. They don’t want clutter.

Context FTW
It’s also vitally important to note that when Thinking for Glass, relevance applies not
only to time, but also to space. This goes back to the point we can’t stress enough that
Glass is a conduit for contextual data, which these days is multidimensional. Where the
user is, what those conditions are (i.e., weather and traffic), and who is in his or her
proximity are among the additional signals you can use to add richness to your Glass‐
ware and make it more meaningful. Take for instance Field Trip—after the Glassware
has been enabled, helpful information pops up wherever you are right at the moment
when it makes the most sense, without being invoked by you.

Additionally, weather monitoring applications are always going to be big, and eyeFlame
built Glassware that tracks tropical storms. It has a neat twist: it lets you customize the
geographic zones you wish to keep tabs on (including your own) to receive timely storm
data.

We can also predict seeing a similar service that might push card bundles containing
the local time, currency exchange rate, news headlines, and common phrases to ask
when a wearer gets off the plane in a new country. It could even hail taxicab owners for
the area. Or, how about a more complex app that would illuminate your prism display

88 | Chapter 5: The Five Noble Truths of Great Glassware Design

https://www.fieldtripper.com/glass/
http://eyeflame.net
http://eyeflame.net

with factoids about the movie or TV show you’re currently watching? Further, let Glass
talk to your DVR and send you recommendations based on who’s starring in a particular
show. Or, consider a home automation application that uses the Glass sensors to display
suggested cards that would let you wirelessly adjust thermostat, air conditioning, and
lamp settings based on the surrounding temperature and available sunlight. Or maybe
Glassware suitable for a hotel would save road-weary guests from the arduous task of
standing in line to check in, getting their room key, seeing about any messages, ordering
a pay-per-view movie and room service, booking a seat for the dinner show later that
night, and then queueing up the next morning’s wakeup call.

Or you could even build an app having nothing to do with Glass but geared toward its
users—a bar or club owner could define a geofence at their establishment that would
alert friends within the same Google+ circle or Path clique of each other’s presence there
on their devices when each arrived, and when 10 or more of them arrived, they all got
a free round on the house.

See what we mean? Context rules!

How Soon Is Now?
So the stage is set for Glass to relay the freshest content, the most relevant information,
and the most up-to-the-second data available. Impressed with the responsiveness that
Glass offers, noted tech critic Steve Gillmor said of the Glass experience, “The whole
world is not only watching but feeding the real time stream. Social meets main‐
stream.” Nowadays people online expect their applications to reflect the latest informa‐
tion. And they will with Glass. Any message a user gets she’ll expect to have just hap‐
pened.

But again, with respect to the first Noble Truth, this doesn’t mean blasting inbound
notifications at subscribers nonstop. A bit of restraint needs to be applied in shaping
the contextual value of your message and exactly how quickly you need it to be delivered.

Don’t rush into this, really give it some thought. How critical is your information? Is it
time-sensitive? How in sync is it from the source in relation to the person using Glass?
For example, Glassware from a government utility agency informing 90,000 subscribers
that they’ve got a power outage to look forward to nine hours from now is a lot different
than an early-warning weather system informing 90,000 subscribers that a tsunami alert
was declared three minutes ago and to seek high ground immediately, which is a lot
different than an auto dealer informing 90,000 subscribers that a brand-new Lambor‐
ghini Murciélago is on sale for only $100 and ends in nine minutes. Get it? It’s all about
context.

Timeline cards generated with the Mirror API are not real-time entities—even though
data on an existing card can be modified on-the-fly and will change as a user is looking
at it. Just update a card that’s already been inserted and if Glass is awake and that card

Noble Truth 3: Keep It Relevant | 89

http://bit.ly/gillmor-rev
http://bit.ly/gillmor-rev
http://bit.ly/gillmor-rev

has focus, the user will see the new data without having to refresh. Only the GDK is
capable of producing items for the timeline that are truly zero latency, based on sensor
readings and programmatically using live cards as a frontend.

The Glass sync operation for Mirror services is driven by a special build of Google Cloud
Messaging, and while the system does deliver messages incredibly quickly, message
delivery isn’t guaranteed as soon as an event fires (it may attempt a series of retries or
queue the message temporarily). Also, Glassware using the Mirror API that uses search
tends to take longer than Google’s search feature on Glass (which is a native app). Search
features in Glassware from KitchMe and Fancy are known to take as long as a minute
before returning matching listings when queried for recipes and shopping, respectively.

So with information being delivered online as it happens—more or less—these are very
exciting times, and this is a big part of the thrill of writing Glassware.

(Even if the numbers are fudged just a little for dramatic effect.)

Noble Truth 4: Avoid the Unexpected
Any respectable book on software development will stress the importance of defensive
programming. And that’s certainly true as you begin and progress through your ad‐
venture in Glass development…with a twist. Because of the intimacy Glass creates be‐
tween itself and its owner, unexpected or out-of-context behavior with any aspect of the
system disrupts this bond. As such, bothersome actions feel significantly more disturb‐
ing than with other distributed platforms. So maintaining this relationship should be
of utmost concern to you.

Content
If you’re writing a Glass service that’s content-centric, there are a few gotchas to be on
the lookout for. If your service spits out preformatted hypertext, like that generated by
a content management system, you may need to scrub your HTML through a regular
expression to filter out unsupported tags and attributes.

The complexity and length of your content is also a biggie. You might want to extend a
multiplatform CRM app you manage, which is great, but keep the complicated stack
charts out of Glass. If you’re building something with social integration, temper how
your user input and interface elements are applied within timeline cards to fit the mi‐
crointeraction motif. Emoticons? Absolutely. Presence indicators? Sweet! Geolocation
and check-ins? Knock yourself out. Image tagging? Maybe. Long status updates? Per‐
haps. Feature-length articles? Not so much. We stress again the need for terseness.

Even with features that let cards handle longer chunks of text like bundles and automatic
pagination, your optimal goal should still be to shoot for a single screen. People antic‐
ipate the body of an electronic post to be the main course, and especially for a new

90 | Chapter 5: The Five Noble Truths of Great Glassware Design

medium like Glass, probably won’t assume multiple pages. The best microinteraction
is the one that requires as little input as possible. If a user gets an alert from you and
with a simple head nod is able to get all the content on a single screen, that’s a perfect
situation. Even with hands-free, aim to be completely hands-off.

Even if you’ve got nothing but text in a timeline card and use the full space available to
you, there’s not a whole lot of room to work with. Keep an eye on excessive information
within them and spread extended messages out over multiple cards, or utilize ellipsizing
or truncating material or having it bleed out of the display. This highlights the need to
manage expectations—using the various visual cues that are available to indicate there
is more text that isn’t visible. Less is more, once again.

Performance
There are a number of things that programmers can do to cause Glass to quickly heat
up. These mostly apply to those using the GDK, as direct programmatic access to the
hardware, running long loops, or running computationally expensive background serv‐
ices tax the processor, which results in it generating excessive heat, which also quickly
drains the battery. A failsafe feature in the Glass OS blocks any Glassware from running
in cases where the device is overheating, letting the system naturally cool down for a
couple of minutes and giving the system a much-needed break. We’re still aiming at
small usage, so even custom-built applications shouldn’t be used for more than a few
minutes to ensure the reliability of the system.

Generating cards in obnoxiously large loops can be dangerous overall and you don’t
want to tax the system. Even if you send cards in bundles, try not to do too many.
Instagram could easily generate hundreds of cards with images for its high-end users
that follow 10,000 profiles; and while that works for a smartphone or tablet, it’s not a
positive Glass experience. It requires lots of user attention, and lots of interaction to
page through them, which forces the display to stay on, causes alerts to constantly go
off, and drains the battery.

Judicious management of the camera and processor and not keeping the projector unit
active for long periods of time is therefore a must, because you don’t want the system
overriding what your service and the user are trying to do, stalling what should be
productive time with defensive procedures in what is essentially the Glass version of a
fire drill. Simply stated: when you’re good to the system, the system’s good to you.

Don’t Be a Bandwidth Hog
And also, dear reader, while animated GIFs are supported within timeline cards by
specifying their URL in the “src” attribute in elements, you’ll want to steer clear
from using those haphazardly assembled files that take movie scenes and turn them into

Noble Truth 4: Avoid the Unexpected | 91

45-second miniclips based on rasterized JPGs. The end result is file sizes that are insanely
hard to work with, take longer to download, and make the system crawl.

(Mercifully, the Mirror API caps media uploads at 10MB.)

Further, this is bad content design and a card that appears like in Figure 5-3 would
certainly be considered unexpected behavior, due to the fact that a user isn’t able to
visually discern between a broken image and one that’s loading in the background. The
timeline doesn’t use any sort of “loading” icon or status bar for large images like Google
+ has for animated GIFs within streams, or Vine or Instagram use for embedded videos
—so a Glass user won’t know if an image placeholder icon in a card is simply a mis-
referenced image, one that’s loading, or severed connectivity, as Figure 5-3 demon‐
strates. If a file is tremendously large, nothing may load as the card’s background anyway,
and they’d not see anything, except for perhaps a confusing caption with no context.

Figure 5-3. A nonloaded image

A broken image icon within a card when connectivity is spotty…the users can’t tell
what’s going on with the image, just that it’s not loading. We’d bet that most of the time
they’d just swipe on through—they’ve got better things to do than wait for images to
load. Avoid these situations at all costs.

The best practice in our community is to defer to the native Glass media player, which
streams video playback from the source. If you really want to have moving pictures with
your card, include a snapshot and link to a movie file, or reference a clip and let Glass
handle it gracefully with its own dedicated player. Don’t try to be sneaky and force an

92 | Chapter 5: The Five Noble Truths of Great Glassware Design

animation to loop within a card. Thinking for Glass means being responsible, and a
good neighbor.

And if you see someone using them, make a Netizen’s arrest under the charges of Not
Cool Design.

Permissions
Another area where not forcing unanticipated behavior upon the user is crucial is in
service-level permissions. If you’ve developed some neat functionality you’ve put in a
custom action, make sure the user knows about it. Mirror API services follow the same
sandboxing model that Chrome extensions and server-side applications do in that they
can’t access and/or manipulate each other’s data, but this doesn’t mean you should just
go merrily along without thoroughly informing the user about what your stuff ’s capable
of. Don’t be cheap and fly under the OAuth 2.0 radar and assume that it’ll provide blanket
coverage for you working with the user’s data.

Fear not, we’ll fully get into permissions and authorization in Chapter 8, so you’ve got
that to look forward to.

In Glass development, the operations that should be declared up front are working with
a user’s location, writing data to a cloud storage service like Google Drive or Dropbox,
doing work when the user isn’t using the system, incorporating her contact entities, or
using her credentials for another system like a social network such as Google+. To do
otherwise might seem nefarious to the end user, and there’s no better way to earn un‐
savory ratings and reviews for your products than being shady.

This speaks to a big part of development on any platform, but it’s something that has
particular relevance to Glass, since context is the order of the day: user expectations.
We mentioned wisely futureproofing earlier, but this doesn’t mean including permis‐
sions and OAuth scopes you’re not currently using. All Mirror API Glassware will need
read/write access to the user’s timeline; optionally, the Glassware may need to ascertain
location data, and possibly even profile information about the wearer. Figure 5-4 high‐
lights Ice Breaker, which requires the user to confirm granting several such permissions.
Be up front and state in simple terms what your Glassware does and what data it requires.
Some people get skittish about nonmap apps using location data (recall the conspiracy
theories from Chapter 3).

Honesty truly is the best policy here, so make sure to do the right thing.

Noble Truth 4: Avoid the Unexpected | 93

Figure 5-4. Permissions for Glassware

Error Handling
Simply stated, error handling is different when you Think for Glass. Robust an operating
system as Android is, things will go wrong. As opposed to web programming where
astute practices normally involve recording an error, handling it in a graceful manner,
and displaying some sort of friendly message within the client app (or as friendly as it
can be to say, “Oops, we messed up”), in the Glass world just sidestep anything visual
altogether. You’ll want to avoid sending wonky error codes to the user and waste a sync
cycle and do not want to uselessly generate or update a timeline card. Have some facility
that logs an error code and informs you as the developer that something went awry
(SMTP, SMS, IM, etc.) so that you can quickly take action to remedy the situation.
Including timestamps on your timeline cards is helpful in this regard, as a sly reference
to let the user (and you) know when the last successful sync occurred.

94 | Chapter 5: The Five Noble Truths of Great Glassware Design

For native Glassware, you might consider implementing a messaging feature where
crash reports could be logged and sent back to you, complete with stack trace
information.

Figure 5-5 shows how Fancy’s Glassware handles issues with searches against its
database, and Figure 5-6 is a default error card inserted into the timeline when GDK
Glassware experiences problems installing on the device.

Figure 5-5. Error reporting

Because the service you’re writing is in the cloud, there’s no need to inform the user that
there’s some new feature or the all-encompassing “various bug fixes” and then push an
update. Assuming you don’t apply a change to your application code that requires one
or more new permissions, you just update your service and let the changes silently roll
out to subscribers naturally the next time they sync with the cloud or run the app. This
again borrows from one of the prime advantages of web development and having your
codebase sit on and be served from an HTTP server: you just hit “save” and deployment
happens. You also don’t have to worry about client compatibility and fragmentation
issues or whether your Glassware will work—it will.

Noble Truth 4: Avoid the Unexpected | 95

https://www.fancy.com/about#google_glass

Figure 5-6. Installation glitches

But for those unfortunate occasions when you have to suffer through periods of system
maintenance, unforeseen downtime, getting hacked, a younger sibling downloading
malware that locks up your server, or your dog chewing on your CAT 5 cable (all of
which we sincerely hope never happen to any of you), just don’t send anything. Make
system uptime status reports accessible on the Web and in a mobile app and tweet out
updates, and make sure to note this in your Glass service documentation. A good ap‐
plication these days is multiplatform, so utilize the ecosystem you’ve built.

For a straight-from-the-horse’s mouth approach to error handling, consider Google’s
best practices documentation about how to handle glitches when using the Google
Mirror API to upload media.

Synchronization Across Platforms
A final tip for strategic design relative to keeping things clean is that you take care to
follow a pattern of replicating notifications across as many devices as the user is signed
into with his Google account as they occur. But this is only half the battle. The bigger
concern at your application’s backend is that you should take care, especially when
dealing with GDK Glassware that’s able to tap into cron-like alarms, to not let notifi‐
cations linger across other devices after they’ve been dismissed elsewhere. As we em‐
brace more screens in our daily lives, it gets more tedious to have to chase notifications
around those screens, or swipe off a notification on your tablet or Glass that you dis‐
missed on your smartphone three hours earlier.

96 | Chapter 5: The Five Noble Truths of Great Glassware Design

http://bit.ly/ul-best
http://bit.ly/ul-best

Android has done this incredibly well since its Jelly Bean version (v4.3), and you
shouldn’t neglect using the various synchronization tools that the Android SDK pro‐
vides. Even for systems that rely on RESTful APIs, good multiplatform design dictates
that notifications read on one device or OS shouldn’t hang around on another as if
they’ve never been viewed. It’s causing more repetitive work for the user and goes against
the microinteraction model.

An example of Glassware that does this really well is Hangouts. Imagine that you’re
sitting at your desk and chatting with friends on your laptop using the desktop Hangouts
widget in Chrome, while your phone and tablet sit idle on your coffee table, and Glass
sits asleep on your head. As you post instant messages to your recipient(s), the other
devices tend not to go off with the “new chat message arrived” tone whenever a partic‐
ipant responds as long as the group chat widget has focus in the current browser tab.
Should you switch to another tab or minimize Chrome completely and someone sends
you a message, one of the other devices in some indeterminate order will sound its alert.

The Hangouts Glassware does a really good job of not buzzing the bone conduction
transducer each and every time during a lengthy chat session if another connected
device has the focus. It’s very helpful and aids the overall experience by not inundating
you with notifications across every single device and platform you are signed in to.
While you should notify users about activity and cleanup alerts that the user has dis‐
missed, Hangouts goes a step further to achieve this objective by suppressing excess
noise.

In a similar fashion, Gmail’s Glassware lets you mark messages as archived or starred,
which sync online to mobile and desktop clients within seconds. If you build a system
where users are able to set their mood in text or graphically, make sure to apply updates
across any listening channels, whether Glass was the client that applied the change or
just is a connected destination that pulls down the new data.

This type of feature is common to popular web APIs, and pulling it off isn’t the same
for everyone. It may be as simple as setting flags in your system as to the state of certain
messages or as complex as concurrency and managing race conditions, so get creative
here. The point is that you’d be wise to keep things tight if you exist on two or more
platforms.

Work to bridge the digital divide!

Surprises Should Be Pleasant Surprises
Before moving on to the final Noble Truth, keep in mind that sometimes a little surprise
can be a good thing. Not all unexpected behaviors result in negative experiences, and
you should balance the amount of usability and functionality that your customers an‐
ticipate with innovation that they’d probably never ask for based on your domain ex‐
pertise and creativity. Maybe gift them with a coupon from a partner based on how

Noble Truth 4: Avoid the Unexpected | 97

many times they’ve interacted with your app, or apply some gamification and set up a
leaderboard based on the number of times people share your stuff. Perhaps a card-based
tooltip for power users might be just the thing they need. Or plant the occasional funny
easter egg just to show them you’ve got a sense of humor.

But this, of course, should complement, not supplant, rock-solid engineering and in‐
telligent design—and basic common sense. You don’t need to have a master’s degree in
marketing to know that sending people time-sensitive discount vouchers for a big sale
at the department store isn’t practical during times when they’re asleep or if they arrive
during periods when they can’t make use of them. Several Glassware programs let the
users define their time zone for things like notifications. A time-sensitive buffer to
ensure the wearer will actually see an alert for things like incentives is a great idea for
campaigns like this.

Maybe you could even structure your Glassware so that over time it learns how each
user interacts with it and adjusts the ordering of its menu items to be those that the
wearer uses most frequently. This wouldn’t hurt your image and would plant the seed
in the user’s mind that you’re looking out for his best interests, that your development
team is really good.

They certainly won’t object to that.

Noble Truth 5: Build for People
The newest member of the bunch, the fifth principle reinforces the need to maintain
the experience that Glass is a personal technology, by designing your Glassware in a way
that adjusts to a user’s life and lifestyle. And let’s face it—the average human being is
busy, scatterbrained, and lazy. So base the blueprint of your Glassware in a way that
takes this into account. Exploit mobility, incorporate contextual input signals, leverage
external configuration, emphasize gestures and voice as primary program control
mechanisms, use lightweight data payloads, and lean toward limited attention demands.

As Glass gains in popularity and market share and the ecosystem expands, people are
going to see the true benefits of integrating the device into their daily lives, so don’t
outline a service that demands their full attention for long periods of time and requires
constant manipulation.

Voice is a powerful component both as a user control and also as output. Because Glass
is fully intended to be used in all sorts of situations and scenarios, inside and outside,
supplement text in cards with the Read more built-in menu item action. Transcribe
content and let people enjoy it at their leisure. In this sense, you’re offloading any need
for a UI whatsoever!

This is a new way of presenting data and organizing an application’s user interface that
you’re likely not used to, so don’t save this one for last or do it on the cheap. Really take

98 | Chapter 5: The Five Noble Truths of Great Glassware Design

some time to consider how your data will be delivered, how your application will be
interacted with, how someone can easily share and receive resources while they’re on
the go, and how someone would want to use your Glassware all the time. The blissful
simplicity of Glass makes for an interesting design challenge.

As mentioned in Chapter 4, this involves predicting what specific activities the wearer
will be doing when using your Glassware, and using that as the base for proper design.
It’s the mother of all ambiguous statements, but in Glass the wearer’s environment is an
active part of the UI.

Zynga’s achievements with its line of video games brought to light the fact that gaming
didn’t have to be an all-encompassing experience; players could interact with them while
in line at the supermarket. Its titles not only leaned heavily on being social, but also on
existing as casual activities. This is a great lesson that speaks to the heart of the Glass
experience, not just within the gaming space but also with much broader implications.
To flip the script, you might design produce-shopping Glassware you could comfortably
use while waiting at the video game store.

Advocate Multitasking
You also want to put a premium on supporting multitasking as a core part of your
Glassware’s usability. This can involve three key areas, depending on your implemen‐
tation and which development framework you’re using:
Managing micronteractions

You do not want to impose too much effort in either interacting with the system or
consuming content.

Integrate the real world with Glassware
You want to make the users’ actual experiences part of the Glassware for things like
photo taking, time-sensitive news updates, and geo-accurate coupons and offers.

Using the timeline while your Glassware is running
This is a feature that’s promoted for designing great live cards with the GDK, as it
allows the user to have a running service while browsing other content that’s arrived.

Glass Is Naturally Social
One other thing to mention is that the development model for Glassware is very con‐
ducive to writing social software. The mechanism for sharing a resource practically begs
you to do it. Libby Chang, a Silicon Valley–based environmental engineer and a leader
in both the Society of Glass Enthusiasts chapters for San Francisco and Asia, says a key
factor in the Glassware design phase is “designing for community”, noting the ease with
which resources can be Liked, retweeted, +1’ed, approved, and exchanged on social
graphs and platforms, and ultimately distributed between them.

Noble Truth 5: Build for People | 99

http://bit.ly/lchang-design

In designing great Glassware, it’s important to provide a solid feedback loop so Glass
users know the actions they took on their device actually happened on your system.
Two great examples that epitomize this effect for the social crowd are, again, Google+
and Twitter. When users want to endorse a post shared to their timeline, Google+ fea‐
tures a dedicated +1 menu item, and Twitter has its familiar Favorite and Retweet menu
items. When a user taps “+1,” an animated status bar fills from left to right and sounds
an alert, confirming the response. Twitter’s goes about this somewhat differently.

Choosing its Retweet or Favorite selections in a card immediately shows the “working”
icon in the footer of the tweet, which then disappears after a few seconds. The card the
user is endorsing is then copied and placed at the front of the user’s timeline to the right
of the home screen, and an alert tone is sounded. Both services use the Mirror API’s
provided tools with different implementations to achieve the same effect. The user
knows her actions were posted, visually and audibly, and that her choices are now re‐
flected on any other online platform. Their design tactics took different routes but de‐
livered the same end result.

Evernote is also among several services with a neat feedback mechanism, allowing items
to be shared from its web UI to Glass. Then when wearers use the Read aloud built-in
action in their timeline items, the Glassware prefaces the content with “Evernote…” just
to remind the user what service the item came from. It’s very simple and extremely
helpful. This is a pattern encouraged for items to identify their source.

These examples are use-case specific, but demonstrate the flexibility of the platform
while providing a new way to confirm actions. These same ideas can and should be
applied for any type of Glassware.

The Power of Community
An important part of the Glass ecosystem is also the communities it’s spawned, like the
Society of Glass Enthusiasts (SoGE), user groups that are completely independent and
community-run. There are more than 25 chapters, spanning five continents throughout
the United States, Canada, South America, Europe, Asia, and Australia. Some are re‐
gional, some are statewide, some are within a city. There’s even a SoGE chapter dedicated
to Glass filmmakers! And UbiTech NYC is a thriving and eclectic group of wearable
computing designers, engineers, and entrepreneurs in the northeast US.

Most user groups have frequent meetups, hackathons, and photowalks, and all focus on
networking, listing events for the Glass community, exchanging ideas, sharing tips, and
experiencing their surroundings through Glass.

If you can’t find a chapter near you, start your own! The SoGE logo templates are open
source and freely available from Noble Ackerson’s GitHub repository so you can come
up with your own design and charter your own local membership.

100 | Chapter 5: The Five Noble Truths of Great Glassware Design

http://bit.ly/glass-enthusiasts
http://ubitech.co/
https://github.com/stigsfoot/sogep-stuff

You can also get in touch with the numerous Google Developer Groups (Google the
topic to find the closest one to you), or communities like UbiTech NYC, run by Katy
Kasmai.

So…That’s It? Really?
From soup to nuts, Glass is a totally new way of working with data, users, and their
environments. And as far as designing effective software solutions, that’s what you need
to concentrate on. The Noble Truths ring true regardless of which developmental frame‐
work for Glass you’re using—but depending on whether you’re using the Google Mirror
API or the Glass Development Kit, you do have some challenges and opportunities.

Because of the general streamlined model that follows from everything we’ve talked
about in this chapter, keeping all five of the Noble Truths always in mind as you create
the next great Glassware will make sure it honors the Glass experience and makes your
users happy. Keeping these truths in mind is important, but not always so simple. Glass
is so new that it is easy to fall into old habits that don’t work so well in our new world.

We’ll be looking at those traps next.

Noble Truth 5: Build for People | 101

http://ubitech.co/

CHAPTER 6

Glassware Antipatterns: Avoiding
Poor Design

As we discovered in Chapter 4, an unbiased overview of Glass reveals that while it’s a
wonderful and powerful communications platform that’s rapidly expanding with Goo‐
gle and the developer community creating a ton of real-world uses, it quite frankly isn’t
the solution to many existing problems—and wasn’t intended to be. A further issue is
the ways that Glass can create new problems and be devalued by misapplying it in
different scenarios.

As a Glassware architect (either on the design or development side) and even as an end
user, you need to know what Glass was meant to do and do well, and not try to cram
the Think for Glass philosophy into every situation under the sun. And programmers
and designers that spend their days and nights crafting innovative Glassware need to
be aware of and respect the implied boundaries and design recommendations, allowing
users to get the most use out of the platform in terms of maximizing battery life, min‐
imizing notification frenzies, and keeping the input required from hitting excessive
levels. It’s a virtuous cycle: responsible program design emphasizes ease of use and ef‐
ficient use of system resources, which breeds proper use, resulting in happy users, lead‐
ing to a huge userbase, meaning favorable reviews, a positive reputation, and a profitable
project.

The brutal truth is that at least for its initial incarnation, Glass isn’t very accommodating
to purposes for which it was not intended. In that regard, it’s quite inelastic. Smartphones
still have the edge here. Some of the design constraints in the system limit some of the
applications that are available. Therefore, a simple rule to adopt whenever you find
yourself struggling is always return to the Five Noble Truths, as presented in the previous
chapter. Let the simplicity of the guiding principles show the way and get you back on
track.

103

We’re going to look into some of the more prevalent potholes that you might run into
when beginning to Think for Glass, and how to make sure you understand the ecosystem
and can work your way around them. We want to help get Glass all over the world and
give rise to a community that’s equally passionate and competent, so this chapter’s focus
is on some final design considerations to keep in mind to get that done as we begin to
transition into the Development section of the book. And as you’ll see, wise integration
trumps sheer force. The really meaty chapters on Glassware coding are right around the
corner, so let’s run through some of the major snafus that people tend to make when
beginning their journey with Glass, so we can get to the good stuff.

See how many you’re guilty of, and how many you were able to figure out on your own.

Improperly Implementing Ideas for the Glass Experience
Not every idea is naturally a perfect fit for the Glass application model. As a Glassware
developer, you’re going to have to get really creative and think hard to figure out how
to carve out its place within the ecosystem. Media, particularly video, is an area that’s a
big part of Glassware, but the dimension limitations of the prism display are the primary
challenge. Netflix and Hulu for streaming video and Zynga for web games are organi‐
zations whose products don’t exactly translate well within the confines of the prism as
they exist on larger displays, but there should certainly be clever workarounds or helpful
integrations that still let members use Glass to interact with their systems, even if not
with full-stack functionality.

We fully expect to see managerial access to instant queues and remote control features
for separate monitors like Google TV, or rich second-screen data from IMDb that pops
up in the user’s HMD while streaming programming on a separate monitor, triggered
by timing hints synced with the programming—which several cable networks do cur‐
rently with tablet apps, notably AMC for The Walking Dead and TBS for Conan O’Brien’s
show. We’re already seeing see a scenario where Glass can be integrated with Chromecast
via the Google Cast API by the fitness Glassware LynxFit and its LynxCast feature. Could
this possibly mean Glass would be aware of a video that the Chromecast is streaming
and display supplementary information cards, personalized to the wearer and contex‐
tually sensitive to the content? The sky’s the limit!

And relative to the financial services industry, a utility to manage one’s investments is
an obvious candidate for Glassware, along with a service for banking/lending compa‐
nies. While a bank’s mobile app and web presence let customers do the normal range
of transactions, it’s largely still a cumbersome process spanning numerous screens and
clicks. We’re curious to see how personal banking institutions could streamline actions
like funds transfers, deposits, and balance queries using the Glass control set of trackpad
swipes, voice commands, and gestures, or using the camera as input. Imagine being able
to capture a picture of a check and share it to your bank’s Glassware, which could then
apply OCR software to identify various aspects of the check for denomination and

104 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

https://developers.google.com/cast/
http://bit.ly/lynxcast

account, similar to the feature Concur’s Glassware provides for scanning receipts, and
automatically credit it to your balance. Such applications exist today for mobile plat‐
forms, so we’re excited to see how they might embrace the Glass experience, and how
they will start to Think for Glass.

Turkey’s Garanti Bank has Glassware approved and listed in the official directory, de‐
livering convenient ways members can see their account balances, credit card limits,
and much more. Additionally, PayPal developed an app for Android Wear that facilitates
payments and bridges notifications about completed transactions.

But obviously paramount to this type of application is member safety. You wouldn’t
want a program that determined amounts to be transferred between accounts based on
voice input to misinterpret the audio because of background noise and accidentally
overdraw from a member’s balance.

The important thing to recall, especially for those of you working with existing brands
and looking to expand your reach to another device, is that Glass is different. You need
to apply your idea as Glassware in a way that respects the user’s real-world activities and
the Glass experience.

The only thing worse than not having Glassware for a particular product is having bad
Glassware.

Treating Glass Like Any Other Mobile Device
Some people are of the mind that since the firmware that Glass is running is based on
Android, everything Glass is and everything Glass does should copy the phones and
tablets that Google and its licensed partners produce. All aspects of the ecosystem, they
purport, needn’t deviate from the current mobility model. All Glassware should be listed
in the Google Play Store alongside Android apps and Glass should be thought of as just
another Android device.

Google’s had an interesting history with forking its mobile OS—Google TV and the
Nexus Q may share the same source code as devices running on Android proper, but
they weren’t necessarily lumped in with other existing devices. Forking a platform
maintains its roots while also introducing new personality. By this merit, Glass is its
own entity and needs to be viewed as such.

It’s part of what makes this new realm so interesting…and a bit of a challenge to break
new ground in. As we’ve seen, proper Glassware design means thinking about what
situations the users could be in when using your Glassware, beyond just whether they
have decent bandwidth. Are they walking or jogging? Are they outside in an open en‐
vironment where GPS is optimal or within a building? How is the ambient noise level
surrounding the wearer? And how about their lighting? Does the environment in which
the user would likely invoke your Glassware permit the use of voice commands? Most

Treating Glass Like Any Other Mobile Device | 105

https://concurglass.appspot.com/support/
http://bit.ly/garanti-glass

of the great Glassware that sprung up as first-generation examples assume some range
of activities by the user, and this directly affects the available input controls and how
content is laid out (individual cards or bundles as opposed to custom UIs).

One thing that drives this new paradigm is obviously the form factor—there are tons
of digital devices around the world running the Android OS in various ways, but nothing
like Glass. The headset’s physical design and supported hardware components occupy‐
ing such a tiny space with enhanced portability make for some very compelling concepts
to try as applications. But challenging this is the amount of raw computing power Glass
has…which is admittedly less than its Android contemporaries. The battery and pro‐
cessor don’t stack up to other forms like tablets and set-top boxes, as they are the equiv‐
alent of a mid-range smartphone.

How Does Glass Fit into Android Wear…or Does It?
The role that Android plays in supported computing platforms continues to broaden,
and Glass isn’t just another frontend running on top of Google’s mobile operating sys‐
tem. The rollout of Android Wear and Google’s partnerships with smartwatch manu‐
facturers in early 2014 demonstrated the depth of the company’s commitment to sup‐
porting wearables.

Riding the momentum (and controversy) of Glass, an entirely new era of mobile com‐
puting and multiscreen experiences that bring with it wildly creative new applications,
new UIs, and contextual data opportunities for all sorts of situations and environments
is upon us, subsequently demanding a new set of tools. Google has carved out its own
niche for Glass within the Android umbrella brand—it’s based on a unique user expe‐
rience that stands apart from anything else the company produces, and writing smart
software for Glass demands specific skills.

Sure, if you’re a native programmer there’s going to be crossover and integration, and
the design pages of the two systems are strikingly similar. But Android is not Android
is not Android anymore. Even within the wearable space, Glass stands alone.

Overloading the System AND the Wearer
Jason works in the broadcasting industry, and like many of his contemporaries he’s
considered using Glass as a teleprompter for his live on-air duties. While this would be
a really obvious and cool application, it’s highly impractical to the Glass experience
because it forces the user’s attention on Glass over an extended period of time, and by
the nature of the app Glass would need to stay on and illuminated, which causes the
battery to rapidly discharge. It’s still a doable idea, but the core concept needs to be
massaged a bit to work with the system constraints of Glass, while still delivering the
intended experience. Services like Glassentation have proposed neat workarounds to

106 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

http://www.android.com/wear/
http://glassentation.azurewebsites.net/

this idea, so keep an eye on where these go. This very clever Glassware lets users send
content from Microsoft PowerPoint slide decks to Glass, to use as a visual cheat sheet
when giving a speech—not reading material verbatim, but getting just quick notes to
elaborate on.

Glass renders material for the timeline and handles its own version of small-chunk data
communications payloads extremely well, but it isn’t meant to load apps even written
for other Android builds. The Glass version of Android is very adept, but also very
specialized. The fact that Glass overheats when running certain native apps is a well-
documented concern. The battery life also isn’t what you might consider to be top of
the line, and will drain quickly under certain usage conditions like prolonged use of the
projector or the camera, and processing-intense operations.

This is another reason the focus should be on terse usage patterns with reduced infor‐
mation, smaller amounts of data sent across the wire, and minimal user input…or user
input that actively uses the wearer’s surrounding or actions as a staging environment.
A canvas, if you will. Where they are, who is around them, and what they’re doing
become a key part of the application’s user interface. Glass goes beyond the computing
platforms you’ve been used to. It’s not stationary like desktop PCs, set-top boxes, and
gaming consoles; it’s portable like smartphones and tablets, but without demanding so
much attention from the operator as handhelds do, as to remove them from living in
the moment.

Remember, we’re always aiming for microinteractions. All of us.

We Messed Up, Too
When Glass was but a blip on the radar of the mainstream media and prior to the Glass
Foundries, both of us had spent months thinking about how Glass might shape up,
leading us to co-organize a Hangout On Air with several members of the community,
attempting to prognosticate how the Glass ecosystem would all play out. A few friends
from the Glass team were watching in the background, giving us the supportive nod
and saying, “You guys really nailed a couple of points…and we think you’ll be pleasantly
surprised at how off you were on some others.”

It’s the most fun we’ve had being absolutely wrong.

Think in Actions, Not in Apps
We introduced this concept earlier: a major way to design your Glassware, as we’ve
stressed, is thinking in terms of what the users will be doing when invoking a certain
action, not what screen they may be looking or the arrangement of submenus. This is
a shift in computing UIs because it puts the emphasis on the user actively doing some‐

Think in Actions, Not in Apps | 107

thing in addition to starting an app or making a selection. These design decisions are
important, but have largely been decommissioned with the simplicity of the timeline
model. Usability in the Glass world is equal parts input controls and the activities they’re
engaged in, such as swiping while strolling down the sidewalk, or barking out “Take a
picture!” while taking on a sharp curve at full speed while on a go-kart. Or, what Allth‐
ecooks Recipes does—allowing users to tilt their head up to quickly glance at a secondary
set of instructions that list the ingredients for a dish while they’re cooking!

Another example of this mindset is the native Timer application. Because it exhibits the
capabilities of live cards, it’s bound to the parameters of the timeline such as the menu
systems and gestures, so it uses a series of custom actions and swipes to invoke its
functions. But while it’s a good demonstration of what’s possible with native coding, we
also feel it serves to show what can happen when you put too much into a control system.
It takes at least seven swipes and taps to create and start a countdown, which is excessive.
Clearly, this is an application whose primary choices need to be driven by vocal input,
but that’s missing entirely. In contrast, the Stopwatch app is incredibly intuitive, as you’d
expect. Once launched, it starts a three-second countdown then begins tracking the
time, and can be stopped by bringing up the Stop menu item. Just two taps.

Play with these and other apps to see what we’re saying. And as part of your routine
design planning, chart out the number of input steps it takes you to perform each func‐
tion your Glassware offers, and see if they can be streamlined or optimized in any way
in terms of eliminating unnecessary steps or replacing any actions with other types of
input.

You’ll also see a tip in Google’s developer docs about not using pinned cards as appli‐
cation launchers (regardless of which Glass framework you used to build your Glass‐
ware), but many people don’t really grasp what it really means until they experience why
it’s important—and it’s too late. Pinning can be a helpful and strategic way of keeping
your Glassware present within the mind of the user, like an application shortcut. For
this reason, you may be tempted to pin a card to help your users find your program and
to get a leg up on the competition, but this will come back to haunt you, trust us.

The purpose of pinned cards, just like all the other items to the left of the home screen,
is to display items that are upcoming, or happening now (items on the right are events
that have already taken place). Thus, you should use this space for data, not apps. Items
that are perfect for pinning are static cards about an appointment reminder or a “Don’t
forget!” occasion; or live cards that update every few minutes (in-game sports scores),
every few seconds (store inventory), or even multiple times per second in real time
(some sort of animation, like the Compass Glassware).

As part of its maintenance, Glass ensures the timeline doesn’t contain stale items and
purges any cards older than a week, which includes pinned items. If you pin a card, it
will disappear eventually. Pinning can be a helpful tool for the user as a digital sticky

108 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

http://www.allthecooks.com/
http://www.allthecooks.com/
http://bit.ly/pin-launcher

note or bookmark, but as a developer it’s not something you want to use as a normal
part of your feature set. Allow it as a menu item, but don’t bet the farm on it.

The primary entry points for your Glassware should be voice actions and menu items,
both of which are accessible with just a single tap of the home screen or in contextual
menus within cards. Either developmental framework lets you set a voice trigger and
icon to launch Glassware; Mirror API Glassware can use the preset voice commands
“Post an update” and “Send a note.” And more are coming!

Stick to the Prefab Templates and Styles
You needn’t reinvent the wheel when we’ve got two fantastic resources at our disposal
for coming up with great UIs for Mirror API Glassware. The Google Mirror API Play‐
ground, which we fully examine in Chapter 9, is replete with a gallery of flexible tem‐
plates for all sorts of uses, not only provide a guideline for how to structure content
within cards, but also get you in the habit of capping the amount of data per card, which
makes for better readability. And the base style rules provide a consistent look and feel
to your cards through Cascading Style Sheets (CSS), freeing you up to concentrate on
manipulating data and not formatting or positioning HTML elements.

This inherits from the themes used in native toolkits like those available for iOS and
Android. It’s best to use the same typefaces and sizes for text that everyone else is using
so as not to confuse the users or make them weary with radically different designs as
they fly through their timeline. Consistency is critical here. When users aren’t shifting
their focus based on different color schemes and fonts and readjusting for layouts that
vary from card to card, they can concentrate more on the information they contain.

The pitfall here would be applying a custom design and/or layout that’s too far outside
the scope of the recommended style. This might be a tough pill to swallow for established
brands with signature colors and fonts, but you can find a happy midrange. LynxFit is
a great example of an app that applies the general patterns while still tailoring its feel to
give it a unique appeal. The software has its own personality while working within the
parameters of known templates.

But if you ever do need to apply a UI that’s dissimilar to the timeline motif, like when
creating a custom game experience, you use GDK immersions, which take users outside
the timeline, and thus put them in the frame of mind that they’re in a different envi‐
ronment completely. We’ll cover immersions and the other types of native interface
elements in the GDK chapter in the Develop section.

We’ve mentioned before the importance of being a responsible Glassware designer—
adopting a look and feel that’s consistent with what other developers are using. This
flow makes the overall experience less intimidating for users. See if the groundwork
that’s already been laid for you does the trick.

Stick to the Prefab Templates and Styles | 109

https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/glass/tools-downloads/playground
http://bit.ly/css-base

Don’t Use the Prism Display as a Stage for Complicated
Reports
While we’re considering the topic of consistent UIs, it’s also important to note that Glass
generally shouldn’t be used for complex graphical data. Enterprise uses are clearly a
market that will thrive for wearables in general, but several early adopters have attemp‐
ted to using timeline cards to hold entire business reports or statistical data. This isn’t
anathema, but should be implemented very carefully. Tabular data has a place on Glass,
but spreadsheets don’t translate well. Simple graphs can be effective even in a small
display, but not complicated stack charts.

The Glass templates mentioned previously provide a tabular layout structure that works
well, and excessive data should be paginated over multiple cards or in bundles. Doing
sight analysis on business intelligence data is tough enough…don’t impose the addi‐
tional eye strain of having to check out regression trends in a complicated chart. Maybe
use generalized text with color to imply variance, like the stock price template does.

Some companies are already creating Glassware around data analysis, and have man‐
aged to find a happy and effective balance—Dawn Data is a Mirror API service that
assembles next-day traffic reports for Google Analytics profiles already attached to your
account that are sent to your headset. And Australian data science company Loves Data
has done some impressive work in merging Google Analytics with the Mirror API’s
voice commands to measure Glass usage. They’re both very creative implementations
that are worth checking out for inspiration.

Glass Isn’t Necessarily Bound to Your Phone
There may be third-party services that require you to have a paired device, such as using
Glass as a viewfinder or controller, but as long as you have a network connection Glass
is a standalone smart device, and becomes even more valuable by enabling telephony
services when you pair it with your phone. Any network-centric activities that Glass does
pass through its associated phone or WiFi hotspot. And even without a network con‐
nection, Glass still makes a very capable camera with a ton of onboard drive space. It’s
likewise a great client for running apps using sensor data like Compass and Stopwatch,
and for playing casual games.

You can’t transfer files or stream videos and music from your smartphone to Glass, or
vice versa. GDK apps, running locally, can exist autonomously without needing any
outside help. And there’s a lot of room for growth here as far as what we might see with
the creative use of offline access. And once you do hook up to a network, Glass sync
will download any Mirror API content automatically.

As public WiFi continues to become more widely available and secure, as portable con‐
nectivity solutions like MiFi cards become more affordable, and as the software written

110 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

https://www.dawndata.com/
http://bit.ly/ua-loves-data

for Glass by Google and by outside developers evolves in terms of being feature-rich
and utilitarian, Glass may begin to evolve as a standalone computing unit.

As we led off with in Chapter 4, Glass is just getting started.

Unrealistic Expectations for Augmented Reality
and Gaming
While a major ad hoc selling point was Glass being the first big commercial product to
make augmented reality available to a wide consumer audience and easy to work with
for developers (many AR frameworks are based on complicated C++ libraries and cus‐
tom systems), AR isn’t making a huge dent in Glass just yet. The GDK does make these
opportunities available to the many programmers interested in creating such experi‐
ences natively.

Nonetheless, AR vendors are taking a long look at Glass to determine its viability for
their platforms. Opportunities are clearly there to use perspective, geofencing (physi‐
cally entering a predefined location space like a park or a library, triggering some sort
of action within an app), and surroundings as the stage for applications—factoring the
user’s world as the base of your app is the design mindset we’ve been discussing in the
last three chapters. Wikitude, an Austrian company, has extended its developer SDK,
which includes image recognition and location-based features, to support Glass.

The video game Glassware packages Spellista and the Mini Games collection show how
GDK immersions can be used as gaming stages for the platform. As each uses various
components like the various motion sensors, they tend to cause Glass to heat up, but
still provide clever examples of casual, sub-45-second gaming, and animated content
running in immersions. It’ll be interesting to see if these one-player titles, where the
user competes against a computerized opponent, are ultimately expanded upon to allow
multiplayer and have Glass users from across the globe battle each other.

Also keep in mind the turnaround time for a game project. At the San Francisco hack‐
athon that unveiled the GDK, attendees asked about timelines for getting a gaming title
from conceptual idea to in-market product. While months earlier it took three devel‐
opers working as a project group a few hours to come up with Ice Breaker by using the
Mirror API, Glu Mobile reportedly spent around four months building Spellista by
working with the GDK—but capitalizing on its much more robust toolset for sensor
access, OpenGL graphics, and rich audio.

Early hackers proved they could install Ingress and get it to load in Glass and got it on
record, but also managed to shine light on the fact that the game couldn’t adapt to the
slightly slower chip and reduced memory of Glass (although it is still a very capable
computer), as opposed to running the same app on a media device built from the ground
up with a quad-core processor and 12-core GPU to handle graphically intense gaming

Unrealistic Expectations for Augmented Reality and Gaming | 111

experiences like a Nexus 7 or Samsung Galaxy S4. Just because you can doesn’t mean
you should.

Still, Ingress is a perfect example—one of many existing titles—of a game that needs a
conceptual rework for Glass to fit the microinteraction model.

Don’t Deviate from Default: Using Categorial Voice
Commands
Almost immediately after the Glass docs were posted, the community, programmers,
users, and the media began speaking out that the stock voice actions weren’t enough.
The media said more choices were needed, users wanted the ability to define their own
custom actions, and developers wanted to expand the set to include audibly driven
commands for their Glassware. This resulted in sometimes heated back-and-forth on
“Issue 6” on the Mirror API Issue Tracker, with developers passionately advocating for
and against giving third parties the ability to add their own custom voice triggers to
launch Glassware.

Keeping the number of voice actions to a small level was an intentional design decision
by Google, to maintain the platform’s light-yet-capable feel—admittedly smaller than
the number of voice commands used for Google Now (although that continues to rapidly
narrow as more and more cards are added to Glass with each firmware update). The
list may slowly expand to accomodate more Glassware ideas, so check back with the list
of supported voice triggers, and make sure to review Google’s voice command check‐
list if you submit a custom trigger phrase. But before you start brainstorming about a
cool catch phrase and go off the deep end, let’s keep things simple. And to do this, we
all need to think at a higher level.

Think categorically, not in terms of plugging a product name. A rule of thumb here is a
repeat from our introduction of the Noble Truths: issue commands, don’t start apps.

Still, a case can certainly be made for why the list needs to be extended. It will invariably
hit the wall at some point, and as people get more creative and complex, Glass will need
to accommodate that ingenuity, with “Post an update to…” and “Take a note with…”
unable to fit the bill. Fortunately, Google is listening and willing to entertain trigger
phrases. GDK Glassware is able to submit a dedicated custom voice command for Goo‐
gle’s consideration to use as a trigger phrase to launch the app. You could request a
command of your own, or piggyback off of an existing phrase available to you and others
in your genre.

The key is to try to select a phrase that clearly conveys the functionality your Glassware
delivers, but at the same time is generic enough so that the phrase could be used down
the road as a higher-level category to accommodate other products similar to yours.

112 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

http://bit.ly/issue6-api
http://bit.ly/voice-triggers
http://bit.ly/voice-triggers
http://bit.ly/voice-check
http://bit.ly/voice-check

Again, one of the major aspects of Thinking for Glass is being altruistic. The developer
documentation for Glass features some great tips on selecting a trigger phrase that fits
with the convention of others being used, so check it out.

Not Fully Utilizing Cloud Computing
One type of misclassification we’re seeing in these early days is developers not properly
using the Internet as a computing engine for their data on Glass. It’s very important to
understand exactly how cloud computing is implemented on the platform, with data
being accessed, stored, and shared from remote servers instead of solely on the device
itself. This is a powerful means of enabling multiplatform access, which extends the
platform and greatly increases the value of your Glassware, and it’s worth looking into,
as long as you understand the requirements.

Essentially, you don’t need to use the cloud in your Glassware, but you can get some
advantages if you do—and use Mirror if you do. This itself should lead you to down the
right path when deciding whether to build a server-based solution or a native app.

Incorporating online communications into an application is a powerful thing, but what
you need to remember as a Glassware designer is how this affects the system in terms
of the immediacy of the UI informing the user something is happening, and the impacts
it may have on the hardware. The Mirror API’s architecture is such that simple messages
and commands are fired off to much more robust backend infrastructures, which do
all of the heavy lifting and then at some point are able to return simple data fragments
to the client. However, you lose a little in terms of the ability to facilitate true real-time
communication due to data roundtrips. In contrast, the GDK can wholly utilize re‐
sources on the device for storage and processing if the response loop needs to be more
immediate, and also call remote APIs. And in both cases, the obvious requirement is
for your Glassware to have connectivity.

Fancy and Sherwin Williams’ ColorSnap Glass, two Mirror services, both use the clever
tactic of color-as-query when letting wearers do searches, as opposed to open-ended
text. They analyze the hues of colors from photos the user captures and shares with their
respective Glassware services, then return items from their databases matching those
shades. Both take considerable processing and offload them to more dedicated resources
remotely, with Fancy even displaying a “Searching” card to let the user know the oper‐
ation is working and matches are on the way soon. The end result is a simple HTML
payload that gets returned a few moments later. Glass here is a frontend client to their
off-site database. And similarly, Preview, which recognizes movie posters and plays back
their trailers, lets Glass wearers scan images of those posters, which it sends to its servers;
it then returns a YouTube clip.

And Allen’s Glassware, Vodo, which he built with the Mirror API, facilitates real-time
collaboration for users working in Google Drive on documents, whether they have Glass

Not Fully Utilizing Cloud Computing | 113

http://bit.ly/voice-check
http://vodo-list.com

or not. Any changes made to the information to the affected files is pushed up to the
cloud and reflected in Drive, which others (including Glass users) can see nearly in‐
stantly.

Other cloud-centric applications might be image processing, updating databases, com‐
municating with other peers on a system, most multiplatform social systems, or storing
progress data for a game.

Knowing when and how to use the cloud capabilities of Glass is a very valuable skill to
have, so really think about what your project would be best served by as far as applying
the right combination of web API calls alongside local computations and storage. Don’t
just architect cloud computing because seemingly everyone else is doing it. If it’s the
right fit for your concept and the experience you’re trying to create, make it work.

Choosing the Wrong Development Framework for Your
Glassware Project
We’re going to segue more into technical development now and cover some fallacies
having to do with coding architecture. One of the big headaches that we saw was people
demanding additional functionality, hardware, software services, and backend archi‐
tecture without really taking the time to try to understand the system as designed out-
of-box, or giving it a shot—especially developers. The Glass cloud application archi‐
tecture (see Chapter 9) is quite comprehensive and handles a lot of issues and challenges
that people bring up already.

Perhaps not surprisingly, there were lots of Glassware projects launched that took a
design and developmental slant that was ill-fated. We saw many efforts haphazardly
implement their ideas as native apps because of the perception that the Mirror API,
being RESTful, was too limited. But for many ideas, this does just fine. The result was
projects that reeked of overkill—not performant, not fully secure, and not delivering
what should have been a true Glass experience—because they thought the Mirror API
to be too inferior in terms of capability. They generally looked to the wrong framework
on principle to get their things done and it hurt them.

One of the most frustrating things we’ve seen is when developers naively default to using
the GDK to write apps that could have very well existed as Mirror API services, or vice
versa. Each has its own capabilities and roles, and it’s important to know how to best
leverage them to the success of your projects. The deciding factor on the development
framework upon which to design your Glassware for many people will come down to
skill set—whether they’re comfortable working with the Mirror API, which gives you
the pick of the litter as far as using a programming language and server-side environ‐
ment, or the Java-centric demands of the native GDK.

114 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

In deciding which framework to base your Glassware project on, the checklist of ques‐
tions you should be examining should include these:

• What specific type of user experience is the Glassware trying to create?
• Under what real-world situations will someone use this Glassware?
• Is sensor data a crucial part of the feature set?
• Is the Glassware dependent on data/notifications in real time?
• Is it a service whose goal is for publishing, notifications, and sharing?
• Does the Glassware need total control of the camera, or just photos and videos

captured by it?
• If location is a feature, how often should the user’s geoposition be updated?
• Does network connectivity play a role or can it exist offline?
• Can the Glassware be expressed on the timeline through cards or does it require a

custom UI?
• Can the expected experience exist as static timeline cards or does it rely on rapid,

frequent updates over an extended period of time, meaning it should be a live card?

As a Glassware developer, you need to know that just because it’s a webby framework,
the Mirror API isn’t a junior varsity–level platform. It’s a powerful messaging system
that’s very capable and can be coupled with other types of platforms to do amazing
things. A great example of using the Mirror API where some people might think it’s a
native app is OKDoor, Glassware from Brivo Labs that demonstrates “social authenti‐
cation” by sending images of people trying to get into a building to a Glass user in a
card, who is then able to tap a menu item to unlock the door and let them in. It uses
Brivo’s SAM API to control other devices and machines.

And for some truly cool implementations of contextual machine-to-machine hardware
hacking, check out the tinkering of Justin Ribeiro from Stickman Ventures, who’s done
tremendous work using Glass as a frontend for devices like ‘net cams, Arduino boards,
uninterruptible power supplies, 3D printers, and platforms like Google Drive. He’s done
some pioneering work for the community based primarily on Message Queue Telemetry
Transport (MQTT), a publish/subscribe vehicle for Internet of Things systems. And
what’s most impressive is that Justin’s project uses the Mirror API, and doesn’t require
native code.

The bottom line is that both the Mirror API and GDK have well-defined purposes, and
you should always choose the right tool to do the right job in the right way, in concert
with your skill set. And a major part of this is understanding the full range of capabilities
that each provides.

Choosing the Wrong Development Framework for Your Glassware Project | 115

http://www.brivolabs.com/open-sesame-with-okdoor/
http://mqtt.org/
http://mqtt.org/

Unifying the Camps
Given that web developers and native developers have long “enjoyed” a natural friendly
rivalry, an angle that wasn’t properly appreciated with the “RESTful API versus native
SDK” debate for Glass was that at least catering to both camps lets either side finally
code for the same platform. Traditionally web programmers stuck to the browser while
native coders worked with devices. It was always a house divided—Chrome or Android
(which, ironically, is literally Google’s organizational division).

So while still not functionally the same, the availability of the Mirror API and the GDK
might be the first time both groups wrote for the same system. And that’s significant,
and we’re excited to see some crossover or merging between them, and possibly some
new bridging solution by Google to facilitate communication between the two plat‐
forms.

So while it may look like forcing the Hatfields and the McCoys to sit down at the dinner
table together, some good could come out of this by having web and native programmers
work alongside each other. And that’s to be commended.

Developers will need to choose a path, given the needs and requirements of their Glass‐
ware. The Mirror API certainly isn’t without its constraints, as coders who have used
the web stack for years may feel a bit jaded with the lack of JavaScript support in timeline
cards.

The GDK route isn’t perfect either. Many mobile developers will wish for the total con‐
trol native coding provides and will want their code to communicate directly with Glass,
cutting out the intermediary that is Google’s cloud-backed system. Direct access to the
hardware is good, but could lead to a negative user experience—particularly if the bat‐
tery heats up too much or drains too quickly. Google has optimized its software to work
efficiently on Glass, and you’re going to need to do the same. You may not want to go
this route if you don’t need it. It’s more work in exchange for greater command.

Once you’ve spent a sufficient amount of time making these critical decisions, your
choice of framework and which path you’ll take should be clear—cloud or native…or
possibly both. Programs can easily exist as hybrid Glassware, leveraging the best of both
frameworks. This lets you use the Mirror API to generate static cards as a frontend that
launch an Android app built using the GDK for more detailed processing. Think about
a turn-based game like tic-tac-toe. When a friend makes a move, you’d be pushed a
static card informing you that he did so, which would include a link that would launch
a dedicated activity that contained the game environment. Swiping down would exit
the game and return the user to the timeline. This wouldn’t require the game to be
running perpetually in memory, but would still let either player know quickly when the
other had taken their turn to avoid long waits. Additionally, you could extend the game

116 | Chapter 6: Glassware Antipatterns: Avoiding Poor Design

to be accessible via the Web, too, giving people more surfaces to play on, with the use
of the game being only a few seconds. This is a microinteraction at its finest!

Don’t think of it as which horse you should you bet on long term; think about it more
generically as a well-rounded Glassware developer.

Done deal.

OK, let’s get coding! The most sound advice we can give for properly adopting and
adapting the Think for Glass mindset is to thoroughly learn the system and its capa‐
bilities first. Whether as an end user, a Glassware designer, or a system architect, getting
up to speed with what Glass can do should be your main goal.

If you’ve read the chapters in order up to this point, we’ve gone through what Glass is/
is not and how to design Glassware in ways that keep with the key themes of the mission
of Glass to make technology available the moment when you need it and then keep it
out of your way when you don’t. You’re now aware of what the aptitudes and limitations
are of both the Mirror API and the GDK so you don’t have to unnecessarily reinvent
the wheel and can choose the most appropriate tool for your work.

In a tech world where few things are certain, keeping an open mind and attitude about
Glass while staying pragmatic will let you get the most out of it. That we can guarantee.

Choosing the Wrong Development Framework for Your Glassware Project | 117

PART III

Develop

In this final part, we examine the steps necessary to put working Glassware together,
both as a cloud-based service with the Mirror API and as an installed application with
the Glass Development Kit. For Mirror Glassware, the chapters walk you through the
sequence of decisions to be made for setting up a new project, obtaining authorization
credentials, establishing communications with Google, working with menus, managing
subscriptions, and sharing resources with entities. We conclude with some thoughts on
how the Glass community and industry at large is already applying Glass technology in
real-world scenarios.

• Chapter 7, Overview of the Mirror API
• Chapter 8, Security and OAuth
• Chapter 9, Working with Timeline Cards
• Chapter 10, Card Actions and Subscriptions
• Chapter 11, Sharing Resources with Glassware
• Chapter 12, Context Is King: Using Location and Other Signals
• Chapter 13, The GDK
• Chapter 14, Getting on MyGlass: Glassware Submission, Review, and Distribution
• Chapter 15, Reflections on the Future

CHAPTER 7

Overview of the Mirror API

This is the chapter in which we start to detail how Glassware works with the Mirror API
and how to build it. This is an process that has several moving parts and a few different
technologies, and requires several decisions to be made in a particular sequence, so we
use this discussion to introduce the mechanics of the Mirror API framework and how
you make it work for you to architect cloud-based services for Glass. So welcome!

Again, we emphasize that we’re taking things a step further as part of our dedication to
teaching you how to Think for Glass: we don’t merely want to show you how to write
Glassware, we want to show you how to write great Glassware. And as we’ve demon‐
strated thus far, such a talent for maximizing the platform involves amassing deep
knowledge and embracing pragmatism.

So, as this is the first scene in the third act of our three-act play on Thinking for Glass,
let’s wax pessimistic for a moment and get some housecleaning duties out of the way
first.

This isn’t going to be an exhaustive dissection of the Mirror API’s various method sig‐
natures and expected parameters. The online documentation does a fantastic job of that
already, and like Glass, is changing all the time. Our goal is to arm you with a weapon
that has far more shelf life and help you understand the documentation and the Glass
environment. And appropriately, this is the level of abstraction that the Mirror API
provides you with that you’re going to need to embrace.

Let’s say that again because it bears repeating (and we’ll repeat it again): we want you to
understand what the Mirror API and Google’s documentation is talking about, not just
provide you some cookie-cutter code fragments. This isn’t a read-and-rip section—it’s a
lot more.

121

Life on the Server Side
With its development model based on client-server web programing, the Mirror API
lets us use tried-and-true coding techniques that provide several advantages over native
development:
Incredibly flexible and very easy to get started with

You can use practically any programming language, developmental framework, and
hosting environment you wish. The usual suspects pop into mind, so you can use
the Java, PHP, Python, Ruby, Perl, Go, Dart, C#, VB.NET, Node.js, or even Cold
Fusion know-how that you’ve accrued over the years, along with their respective
frameworks for desktop, console, web, and mobile platforms—anything that speaks
HTTP. You can even change them later as your Glassware evolves! If it can run on
a web server and if it can issue web requests, you can use it for your Glassware.
That’s just about every programming language these days. There are some require‐
ments you’ll need to follow (such as having a public HTTPS URL), but they’re not
onerous requirements. Although we’ll be talking about Google App Engine later,
this isn’t required, and if you’re familiar with Tomcat or IIS with .NET (or any other
web application environment), you should be able to use them with ease. Play to
your strengths and use what you know!

Rapid application development
The compile-debug cycle is shortened because you don’t need to load the app onto
an emulator or device.

Rapid application deployment
Unlike native apps, you won’t need to push an entirely new version of your Mirror
API Glassware and have users download/install it. Being web server–based, you
need only save the changes, which then become effective the very next time the
system automatically syncs. It is highly test-friendly—Glassware is heavily event-
based (which we’ll discuss shortly), and each event naturally translates into unit
and regression tests.

Easy debugging
Tests are a good start, but sometimes you need to debug what is going on. The
Mirror API provides ways to query for the state of every event your application has
access to. We can do at least some design, testing, and debugging using our own
HTTPS commands with our own JSON and HTML content. We can either send
test events to Google’s servers, to see what it may look like on Glass, or we can mock
up events to send to our own web hooks.

Measurement
Web analytics have become highly evolved over the years. We can leverage these
tools for our Glassware.

122 | Chapter 7: Overview of the Mirror API

Battery-safe/processor-friendly programming
Because information is delivered in quick cards, there’s very little, if anything, you
can do with the Mirror API that will cause the device’s battery to rapidly discharge
or the processor to work so excessively the headset heats up.

While the Mirror API will handle a tremendous number of use cases, it can’t do every‐
thing. So keep in mind some of the following pitfalls about the Mirror API:
Real-time data delivery

The whole concept of “real time” can be a misnomer these days. Glassware that uses
the Mirror API operates as a low-latency vehicle, which is to say it distributes its
payload to its intended target on the order of a few seconds, but there is going to
be some network lag. If your project mandates immediate notification, you’ll need
the GDK.

Connectivity is required
One of the big selling points for native Glass development is the ability to handle
offline situations. Glass will queue sync operations for when the network returns
and you don’t have to worry about it, but the Mirror API expects most of the heavy
lifting to be handled off-device.

No sensor or hardware access
The full range of sensor APIs are programmatically available only through the GDK
for things like light detection, motion, and velocity. Access to the camera, micro‐
phone, and GPS are more passive with the Mirror API and usually rely on the user
taking an explicit action.

Purely event-response driven
There are just some things you can’t do when you’re talking about discrete events.
Streaming video (either sending it from Glass or watching it on Glass) just can’t be
done frame by frame, for example.

But fear not. Most of these issues are addressed with native development and the GDK,
although we’ll see it has its own set of pitfalls. And don’t dismiss developing with Mirror
out of hand—there is still lots you can do with it that is far easier than with the GDK.

Mirror API development, as we noted, is incredibly liberating in the sense that any
server-side language can be used to write a Glass service and tap the RESTful endpoints
that the Google Mirror API provides. This means you can easily build a server in a web
document, a desktop application, for a mobile OS, or even one that runs at the command
line or via SMS. You can do whatever is most comfortable to you to build, most conve‐
nient to use, and most appropriate to satisfy the use case. Client libraries in a rapidly
expanding array of languages are available for download at the Google Developers Glass
site.

Life on the Server Side | 123

https://developers.google.com/glass/downloads/
https://developers.google.com/glass/downloads/

Servers Versus Apps
We’re starting our look at developing for Glass with a thorough look
at the Mirror API, which provides a network-service perspective to‐
ward writing Glassware. Those of you already familiar with An‐
droid may feel left out or want to skip ahead. Native development with
the GDK will be covered in a few chapters. GDK programs are more
like traditional apps—running on Glass itself instead of sending all
the events to a remote service.
We strongly suggest, however, that you read through and become
familiar with the Mirror API as well. Many tasks, particularly those
that will send things over the network, are particularly well suited for
the Mirror API, and understanding how it works will help you write
better GDK apps.
And here’s a little tip—the Mirror API and GDK can even work to‐
gether. (We’ll look at how later.) This makes a case where the result is
truly greater than the sum of its parts.

But what may not be so evident is that this also means you’re free to use other frameworks
like Google Apps Script and integrate with the Glass backend to communicate across
platforms for things like writing to and reading from files in Google Drive.

A Funny Thing Happened on the Way to the Hackathon…
Allen based his hackathon project built at the New York City Glass Foundry on the
concept of building Glassware with two technologies that at the time didn’t have much
documentation or examples relative to Glassware programming (and largely still don’t)
—coding up a to-do service using Google Apps Script (GAS) that would interface with
Google Drive, an early version of what would ultimately become Vodo. This allowed
items to viewed and marked as completed, and be stored in a spreadsheet, or would
track changes to word processing documents. Worksheets represent individual lists,
which could be shared with others. To facilitate communication between GAS and the
Google Mirror API, Allen wrote a simple proxy handler in Java. He says, “The key thing
to understand is that each interface was designed for the environment. I didn’t try to
duplicate a spreadsheet on Glass—but I was able to get Glass to show a good represen‐
tation of a list.”

He explains his idea in full detail in a YouTube video.

If you choose to develop with the Mirror API, you also have your choice of IDEs to work
with—whether you enjoy the rapid coding atmosphere of the Google Developers Con‐
sole (formerly the API Console) with Chrome’s Developer Tools or the visualization for
timeline cards in the Mirror API Playground; or if you favor a full-blown editing and

124 | Chapter 7: Overview of the Mirror API

http://vodo-list.com
http://bit.ly/allen-exp
https://developers.google.com/glass/playground

debugging environment of something along the lines of Eclipse or Visual Studio; or if
you’re a vi, Emacs, Notepad++, TextMate user or have Sublime Text savvy; or if you
prefer web-based coding with something like Cloud9 or ShiftEdit, or like to go old school
and just use good old Notepad. It’s completely up to you.

You’re also free to move around with hosting, with the cloud model being completely
platform-agnostic. You can use affordable commercial web hosts, or enterprise-level
scalable providers like Google App Engine, Amazon Web Services, and Windows Azure,
or even host services yourself out of your room on a commodity machine. (We don’t
recommend the latter, however, and we’ll explain why shortly.)

Events: The Building Blocks of the Glass Timeline
We have mentioned and will continue to mention events throughout this book, espe‐
cially in the Development section. If you’re a seasoned programmer, you might have
figured out what we’re talking about, but you might be a bit surprised. One of the things
we realized as we began working with Glass is that it shows us things that have happened,
will happen, or are happening. Similarly, most Glassware either notifies the wearer of
things that are occurring, or receives messages from Glass about things that are taking
place.

In this chapter, we’ll explore a little bit more about what we mean by an event and how
these events get between your Glassware and Glass (and vice versa). Since privacy and
security of events are important, we’ll look into this a bit in Chapter 8 and discuss what
role OAuth plays. We go into (a lot!) more details about sending events to the wearer
in Chapter 9, as we discuss the timeline and the timeline cards that represent our events.
The tables are turned in Chapter 11 and Chapter 12 as we hear how our users can
generate events of their own by replying to cards or generating their own cards with
powerful built-in tools the Mirror API provides like subscriptions and sharing. We
round out the Mirror API in Chapter 12 as we discuss a special type of event, the Location
event, and how it ties into other events as well.

We feel using events is a great way to think about what goes on with Glass, but the notion
is a little different from what you might be used to. Don’t worry—it may take some time
for the concept to sink in, but once you have that “A-ha!” moment, you’ll see how ev‐
erything works based on this simple premise.

So let’s dive in and take a look at how Google handles these events, where your Glassware
will fit into the picture, and why you should care in the first place.

The High-Level View
We’ve talked about Glassware, and we’ve talked about Glass itself, but how do the two
actually talk to each other? If you’ve done any web development at some point in the

Events: The Building Blocks of the Glass Timeline | 125

past 15 years (and probably if you’ve done any other Internet-based programming in
about that time), you’ll find Figure 7-1 somewhat familiar. It represents a device, work‐
ing through a proxy, communicating with a server. In this case, Glass is the device,
Google acts as a proxy for Glass, and the proxy is communicating with your server that
runs Glassware.

The Mirror API builds on this legacy in many ways. The communication channel be‐
tween Google’s server and you is HTTP (actually HTTPS, but we’ll discuss that more
in a bit). You will use standard REST HTTP commands such as GET and POST to update
the events sent to Glass. The contents of the HTTP payload are JSON objects. Unlike
normal HTTP, however, the communication is bidirectional—your Glassware will reg‐
ister a web hook with the proxy, and Google will use HTTP to send events to you via
these interfaces. We’ll look at what these messages look like in just a moment.

Figure 7-1. The Mirror API architecture (image courtesy of Google)

What about that part on the right of the diagram labeled “Glass sync”? How does Glass
communicate with the mothership? Magic. Well, no, not really…you can see the up‐
coming sidebar for more about how the synchronization component of the ecosystem
works, but this is an aspect that we generally don’t need to concern ourselves with when
we’re working with the Mirror API, and this is a good thing. Technically speaking, as
far as how information flows between users, your Glassware, and Google, wearers never
talk directly to your server.

When users invoke commands through voice, gestures, and menu items, when they
share a resource with your Glassware, send data to it, or when they subscribe to receive
notifications from your program, they send these requests to Google, which then sends
the messages in expected data structures in JSON to your server for processing. Any
confirmation messages flow back in reverse from your server to Google, and then to
Glass clients. The converse applies, too, for situations where your Glassware has new
data to push. Any subscription information is sent to Google, which then delivers the
messages to clients efficiently. Your Mirror API–driven Glassware never talks directly to
any Glass headset, no matter the scale.

As Figure 7-2 shows, Google is the ultimate middleman, a friendly intermediary that
keeps everything having to do with messaging in line. Google handles all the complex
situations of batching multiple events into a single job and queueing them up to make

126 | Chapter 7: Overview of the Mirror API

sure they are delivered over a network that cannot always be relied upon. Glass sync
ensures that once we hand an event off to Google for delivery, it will eventually be
delivered to the correct Glass device; once an event takes place on Glass, it will eventually
be delivered to us as well.

Figure 7-2. Data flow in the Mirror API

Under the Hood of Glass Sync
The Glass sync component is the phase in which Google manages all of the messaging
operations for delivering the messages and synchronizing them with their intended
headsets, such as queueing, batching, and optimization, as well as handling situations
where the user’s headset may be out of range of connectivity or isn’t powered up at all.
At the time of this writing, this part of the system runs on a modified build of Google
Cloud Messaging for Android (formerly known as Android Cloud to Device Messag‐
ing), which is the same system that runs Google Play’s over-the-air install feature for
mobile apps. This infrastructure is subject to change at any point, and access to it is
prohibited to external developers anyway.

While we as third-party software developers don’t have to worry about the intricacies
of this side of the Mirror API framework, it means we also don’t have the ability to
configure several cool aspects of GCM. We hope that someday we’ll be able to tweak
some settings in that regard for more direct control of messaging because there are some
neato flags we’d like to enable.

The High-Level View | 127

http://developer.android.com/google/gcm/
http://developer.android.com/google/gcm/

How Your Server Talks with Google
Returning our focus to the lefthand side of Figure 7-1, what does the Mirror API look
like? As noted, our Glassware will be making HTTPS calls to Google’s API server. Each
request will contain an authentication header that has resulted from a user authenti‐
cating themselves using OAuth2. As with all HTTP-based requests, we will be issuing
REST-like commands against a URL that represents the object we will be working with
(usually an event). If we need to specify values (and what is the point if we’re not spec‐
ifying values at some point?) we’ll use either values in the URL, URL parameters, or
JSON objects in the HTTP body. If we are sending media, such as a picture or video, we
will send them using a multipart body, part of the HTTP standard. The text displayed
on our user’s screen on Glass can be formatted using a simplified HTML markup, with
some predefined CSS classes and other CSS styles we can define.

Data comes back to us in one of two forms. If we are issuing a query to Google, for
events that meet a particular criteria for example, then the HTTP connection will con‐
tain the response, usually in the form of a JSON object. But for events that take place
on Glass, we shouldn’t need to open up a connection to Google just to see if there is
anything new. Instead, we will register a callback as our aforementioned web hook,
which is a URL on our server that Google can contact when there is something to tell
us. We’ll get an HTTPS connection to our server from Google, delivering a JSON object
containing the event information. In either case, media is delivered to us in the form of
a URL to fetch, instead of the full chunk of data.

If you’re not familiar with REST, you can generally think of it as a way to reference
certain atomic database operations on objects. So if we are talking about events, we
would be interested in doing tasks such as adding a new event to Glass, searching for
events that meet specific criteria, fetching an event by a unique identifier, deleting an
event, sending all new data about an event, or updating just some fields in an event. (But
this is a spoiler…for Chapter 9.)

If you’ve used JavaScript, you’re probably at least vaguely familiar with JavaScript Object
Notation. (JSON, get it? Totally unrelated to one of this book’s authors.) This is a sim‐
plified, yet easy-to-read, way of distributing a data object, composed of attributes and
values, where the values may be numbers, strings, Booleans, other objects, or an array
of any of these. If you’re new to JSON or have only worked with formatting content in
HTML, an extremely helpful post is available on O’Reilly Answers giving details, but
here is a quick taste so you get the idea:

{
 “question”: “string value”,
 “numeric_example”: 42,
 “is_this_the_answer”: true,
 “nested_object”: {
 “nested_attribute”: “totally exciting”,
 “nested_boolean”: false

128 | Chapter 7: Overview of the Mirror API

http://bit.ly/orm-json

 },
 “possible_questions”: [
 “How many roads must a man walk down?”,
 “What does our amp go to?”,
 40
]
}

In the preceding code example, we see a very basic, yet illustrative, object represented
in JSON. The whole thing is surrounded in curly braces, indicating it is an object, and
the nested object attribute uses this brace notation as well. Arrays of values are similarly
marked by square brackets, and can contain mixes of types. Attributes of the object are
surrounded by double quotes, to the left of a colon. Values are to the right of the colon.
Attribute/value pairs are separated from each other by a comma. All values are constants
—you can’t call functions or do math formulas to compute a value.

If we were documenting this (and this is how Google documents it), we might describe
the resource something like so:

{
 “sample_string”: {string},
 “numeric_example”: {integer},
 “is_this_the_answer”: {boolean},
 “nested_object”: {
 “nested_attribute”: {string},
 “nested_boolean”: {boolean}
 },
 “possible_questions”: [
 {string or integer}
]
}

And then document it in table form as in Table 7-1.

Table 7-1. Object model for a JSON resource
Property name Value Description

sample_string string A sample string, representing the ultimate answer.

numeric_example integer A possible numeric answer to the question.

is_this_the_answer boolean Is this the answer or not?

nested_object nested object An object representing a nested resource.

nested_object.nested_attribute string The attribute for this nested resource.

nested_object.nested_boolean boolean Random Boolean for the nested resource that was included.

possible_questions list A list of possible questions for this answer. May be string or numeric.

We’ve stressed one of the advantages of the Mirror API being your ability to program
Glassware in whatever language you choose, so why are we going into so much detail
about HTTPS, REST, and JSON? Because we need a lingua franca that everyone can

How Your Server Talks with Google | 129

understand to illustrate the concepts behind how the Mirror API works and this is in
line with how Google’s documentation reads as well. Whether you’re just starting out
with Glassware development or are new to programming entirely, it’s helpful to have a
consistent lexicon. The fact that the technologies are also open standards means that
everyone else using them will refer to them consistently.

Don’t fret, however—Google’s documentation also talks about many common languag‐
es, and the wrappers they use to translate these concepts into ones you are probably
more familiar with in your specific language. We’ll be pointing you at those language-
specific references when the time comes, but we will be talking about the concepts more
than the syntax.

Components of the Mirror API
Speaking of concepts, this seems like a good time to introduce you to the components
of the Mirror API itself. We’ll be going into details over the next few chapters, but you’ve
been such great readers so far that you deserve a little bit of a preview. In a nutshell,
whenever your Glassware communicates with the Mirror API, it does so in terms of the
collections that the API supports. This is the common grammar used by the JSON
messages you’ll send to and receive from Google, essentially Mirror’s object model.

There are five collections you’ll be using, with each having its own distinct set of prop‐
erties and expected values:

• Timeline
• Timeline.attachments
• Subscriptions
• Contacts
• Locations

The easiest and most basic thing you’ll be working with are events related to the time‐
line. You’ll be inserting, deleting, and updating cards there by sending these commands
to Google’s servers. There are a lot of properties to set on a timeline item—ranging from
the text to display on a card to menu items attached to each one. And speaking of
attachments, you can also attach images or video to be shown along with each card.
We’ll go into all of the options (and there are a lot of them), how to use them, and what
commands you’ll be sending to the server in Chapter 9.

As we can see from Figure 7-1, however, our communication with Google is a two-way
street. So in Chapter 10 we’ll learn a bit about the menu items that we can attach to a
timeline item and how we get notified when someone selects one. To do this, we’re going
to have to provide a callback URL to a subscription that we send to Google, and we’ll
learn about how to manage our Subscriptions and what it looks like when we get the

130 | Chapter 7: Overview of the Mirror API

callback event. We’ll also learn about what we might do with our timeline item once a
menu on it has been called.

A special type of event occurs when someone shares a timeline item with us. We will
need to create one or more contacts, register them with Google, and these may show
up in the list of people or things that people can share a card to. We’ll get the callback
via the same Subscription method, but Chapter 10 will go into details about what ad‐
ditional information we can provide with a contact, what it looks like when something
gets sent to one of our contacts, how to get the timeline item that was created just for
us, and what we should do with it.

Finally, Google will send us a specific event notification if we subscribe to location
changes. Chapter 12 will show us a bit about location information that may be attached
to Timeline events, how to create maps for our cards, and how we can get user location
to help keep our events timely. (You remember that was a Noble Truth, don’t you? If
not, reread Chapter 5.)

Preparing Your Project
With this high-level view of what happens on the left side of the diagram, and a quick
overview of what messages are exchanged between our Glassware and Google, it is time
to start zooming in on what you actually need to do to use the Mirror API. You probably
have an idea for a project. Maybe even more than one. We’re not quite at the point of
building it, but we’re getting ready to set it up. To do so, you’re going to need to have a
few things ready.

First, you’re going to need a server. Easy, no? Well, there’s more to it. Don’t forget you’ll
need a web server on it, and you’ll probably want a data store of some sort, as well (i.e.,
a database, XML file, spreadsheet, flat file, etc.). Google will need to contact your server,
so it has to have a public IP address—the machine in your house probably isn’t enough.
Since Google will be contacting your server via HTTPS, you’re going to need an SSL
certificate. And, with all your hard work, your Glassware is going to be a big success so
you’ll have to be prepared to scale this up. Is this sounding like a lot of work yet?

Would you like somebody to do all of that work for you? Fortunately for you, somebody
is. If you’ll be developing in Python, Java Platform Enterprise Edition, Go, or PHP,
you can use Google App Engine (GAE) to host your project. GAE takes care of providing
the hardware, a working web server that supports HTTPS, the necessary SSL certificate,
and even a hostname that you can use for your Glassware. It is free to set up a basic GAE
instance, so you can get familiar with it and begin developing your idea, and you can
transparently add more instances as your needs increase. You can find out more about
GAE and the rest of Google’s Cloud Platform at http://cloud.google.com.

Once you have a server set up, it’s time to set up a project with Google. If you’re using
GAE, or any of the other Google Cloud Servers that we just covered, you’ll already be

Preparing Your Project | 131

http://http://cloud.google.com

familiar with the Google Developers Console. If you’re not, we’ll be using the Developers
Console to set up access to the Mirror API. The console allows us to do several things:
create a project, indicate that it will be using the Mirror API (and any other APIs we
may need), and get a Client Key and Client Secret that we will use as part of the au‐
thentication and authorization process. You’ll also use it to find out helpful trends about
your quota usage, such as what time(s) of day your API calls are being made most. (We’ll
talk about the quota in a moment.)

API Console Versus Developers Console
If you’ve used Google’s API Console in the past, you may be wondering what this De‐
velopers Console thing is, and why we’re pointing you at it instead of the tried-and-true
API Console. Google appears to be shifting all its future efforts to the Developers Con‐
sole, and although it isn’t fully functional yet, it seems destined to replace the API Con‐
sole in the (relatively near) future. Now’s the time to start getting used to it and sending
in feedback about the up-and-coming hotness.

Oh, and why call it “Developers Console” if it does more than control access to Google’s
Cloud Services? Your guess is as good as ours.

We’re going to create a new project that we’ll use for the next couple of chapters to get
us started with the Mirror API. Our journey begins at http://cloud.google.com/console
where we will either log in to our Google account or create a new one if we’ve somehow
managed to avoid this before. If we’ve never set up a project, we’re greeted with a wel‐
come message, as shown in Figure 7-3.

If you have created a project in the past, you’ll be greeted with the list of your projects
and the same red Create Project button.

As you might have guessed, we’ll be clicking that button to create a new project. A
window will pop up prompting us to enter some basic information. The Project name
should be set to Glass Playground for reasons that will someday become clear. You can
keep the Project ID to one that they suggest, or come up with something clever on your
own—but it has to be unique across everyone’s projects, so you might want to just accept
what they suggest or incorporate something with your name (Figure 7-4). Finally, you’ll
check the box saying you’ve read and accepted the Terms of Service (you have, haven’t
you?) and click the Create button.

132 | Chapter 7: Overview of the Mirror API

http://http://cloud.google.com/console

Figure 7-3. A new Developers Console project

It may take a few moments, but once the system has created the project for you, it will
place you on the overview screen for your Glass Playground project. You can explore
some of this, if you wish, but we’ll be going straight for setting it up so we can use the
Mirror API. If you select the APIs & auth menu item on the left, it will open up the API
submenu and show you a (long) list of Google APIs that you can enable. Some of them
may already be turned on—you can safely turn them off since we’re not interested in
any of the cloud APIs right now. Turn them off by clicking the green ON button, then
scroll down until you see the entry for Google Mirror API (they’re arranged alphabet‐
ically) and click the OFF button to turn it on, as shown in Figure 7-5. Intuitive, right?
You’ll be prompted to acknowledge the terms of service. Once you have, the API will
be turned on and moved to the top of the list.

Preparing Your Project | 133

Figure 7-4. Name your project

Figure 7-5. Flip the switch on the Mirror API

We’re all set! Well, not quite.

The Glass Ceiling—Your Project’s Quota
The console also gives you access to some basic analytic information. We can see how
many calls we’ve made to each API we’ve authorized, as well as how many calls per day
we’re permitted to make. Waitaminnit…we’re limited in how many calls we can make?

134 | Chapter 7: Overview of the Mirror API

Yup—Google limits how much we can use each API to prevent abuse, particularly while
developing new applications with it.

Initially, you’re allowed 1,000 calls for your project each day. This resets at midnight
Pacific Time (and sorry—no rollover minutes). You can see your quota, current, and
historic usage for your use of the Mirror API by clicking from the APIs & auth menu
page and then clicking the Google Mirror API link. Links for quota and reports are
available at the top.

A thousand calls per day is a pretty good level for initial development—it lets you get
your feet wet while you learn, and it prompts you to think a little bit about making sure
you’re making the most efficient use of the Mirror API. (We’ll share some efficiency tips
as we go along, but don’t stress too much about it.) It should even be enough for a few
test users to help you get going before you’re public. As you widen the program, you
can request more quota from Google, as long as you justify the increased usage. Once
you go live, of course, you can ask for an even bigger quota—but we’ll be covering that
later.

We’re getting ahead of ourselves a little bit, but what counts against your quota? Every
action that you take for each user by calling the API counts as one call. Batching calls
won’t help—a batch of 10 API calls, all sent at one time, still counts as 10 calls. If we look
at Figure 7-1, the arrow from your Glassware to the Google Cloud indicates what counts
against the quota. The arrow from the Google Cloud to your Glassware, however,
doesn’t. Similarly, actions taken with just the GDK don’t count against the quota.

Metrics on Wearables
It is important to make sure we know how our users are actually using our apps, and
modern toolkits like Google Analytics, comScore, and WebTrends generate powerful
reports about users browsing your website in real time. They can also be applied to
native application tracking (like with the Google Analytics SDK for Android) to gauge
which screens users are viewing, the length of their sessions, the effectiveness of inte‐
grated marketing campaigns, response to tweets with embedded links, devices and user
agents, error logs, crash reports, and API calls. It makes sense to want all of this for our
Glassware too, right?

At the moment, we’ve got solid metrics available in Developers Console that analyze
how many calls we make to Google’s API servers. But since the Mirror API is a server-
side technology, we can’t implement the frontend JavaScript libraries like we can with
Google Analytics. We can, however, track messages being passed to and from the server
in response to the various Glass events like menu item selection and data sent across the
wire. The Google Analytics API lets you define interactions that can be tracked by adding
events when you get a callback or when your Glassware inserts or updates a card on the
timeline.

The Glass Ceiling—Your Project’s Quota | 135

https://developers.google.com/analytics/

Over time, you should keep an eye on the console to make sure you’re not reaching your
quota limit.

The Even Bigger Picture
This is good for starters. But a real project will involve much more. If you’re using Google
App Engine to run your projects, you’ll be using the console to control your instances
and to manage the project and its financing.

Most Mirror API projects will be making use of other Google APIs. At the very least,
you may want the Google+ API so you can get information about the users when they
log in. You may wish to use Drive, Cloud SQL, or Cloud Storage to store configuration
information for your users. If you’ll be using any of Google’s other services, this will be
the place (and time) to enable them. But we won’t need to for the Glass Playground.

What we will need, however, is to set up the security credentials. We’ll also be doing this
using the console—but we’ll explore why and how in the next chapter.

136 | Chapter 7: Overview of the Mirror API

https://developers.google.com/+/api/
https://developers.google.com/cloud-sql/
https://cloud.google.com/products/cloud-storage/

CHAPTER 8

Security and OAuth

Before we get into the details of how we handle events, the moments that are generated
by the Mirror API and expressed as cards, whether on the right of the home screen
(events that have already taken place) or to its left (events that are upcoming), we need
to take a moment to focus on security. Since Glass is such a personal and intimate device,
as we’ve discussed, Google takes the notion of security very seriously. As we’ve seen,
when you set up Glass you tie it to a Google account, and you’re not expected (or al‐
lowed!) to share your Glass with someone else. Google expects you, as a Glassware
developer, to take security at least as seriously.

DON’T PANIC.

The Mirror API has security tightly integrated into it, so you almost can’t avoid doing
the right thing for your users. We’ll start here and see how security is handled within
events. Additionally, it is built on top of OAuth2, and many of the libraries you’ll be
using take care of the OAuth2 details for you.

The major fact you need to know about Glassware and authorization is that any Glass‐
ware built on top of the Mirror API has to authorize the wearer’s Google account for
the Glassware to receive updates or be able to share resources like messages and mul‐
timedia with it. GDK Glassware, on the other hand, being installed applications that
run locally on the device, only need to use authorization if access to certain APIs requires
it.

There are some things you will need to know, but the basics aren’t that difficult, and
we’ll cover all this later in this chapter.

Event Security: Google the Bouncer
The security model for events in Google Glass is pretty simple, straightforward, and
important—every card is permitted to exactly one person and exactly one piece of Glass‐

137

ware that they’ve approved to run on their behalf. So the picture you’ve taken on Glass
is “owned” by the Photos Glassware representing you. The message you’ve received is
owned by the SMS or email Glassware and represents you. Rogue Glassware can’t sud‐
denly tap into this and get access to your messages or pictures. Unless, of course, you
explicitly share it with that Glassware.

But when you share a card, Glass can’t just permit your Glassware to own that card.
Remember the rule—one card, one program (representing one person).

What Glass does, instead, is create a whole new card with a copy of the same thing. If
you’re paying attention to your timeline, you’ll even see the card being duplicated. Once
the new Glassware is told about this card, it can do anything it wants with it. Rewrite
it…delete it…anything at all. But the original card remains untouched.

What about messages that need to be sent to more than one person? Each person needs
to get their own card about it. So if you’re chatting or emailing two other friends, and
you send a message, a total of three cards are generated—one for you and one for each
of your friends. They may all have the same data on them, but they’re different because
each person can treat it differently—we may delete the message, while you keep it (or
share it with someone else, generating a few more events and cards).

This may seem trivial and unimportant, but it will save you a lot of frustration as you’re
trying to write Glassware that deals with events shared with you or that you expect the
user to share with others. So always keep it in mind—if your Glassware didn’t create it,
or the user didn’t explicitly share it with you, it doesn’t exist.

But this raises a very good question. How does Google know that your Glassware is…
well… your Glassware? For that matter, how does it know that one user is a particular
user when your Glassware is acting on their behalf? This is the job of OAuth, application
credentials, and the Google authentication system.

OAuth: IDs and Secrets
Some of this sounds a little theoretical, but understanding it will help when we actually
implement OAuth in our projects. Bear with us a little—we’ll get to details in a little bit,
and understanding some of the basics will pay off when you’re trying to diagnose au‐
thorization problems.

OAuth started as a standard way for network clients to request permission to use a
resource on behalf of a user, and for those resources to indicate the client is authorized
to take the requested actions. It has since grown (some would say overgrown) from
those modest beginnings, but still has authorization at its core. Google uses this later
version, known as OAuth2 (also expressed as “OAuth 2.0”), for most of its web serv‐
ices including the Google Mirror API, and this is what we’ll be talking about when we

138 | Chapter 8: Security and OAuth

use the term OAuth. Other providers use different versions; most notably Twitter uses
OAuth 1.0a, and we won’t be discussing the differences here.

OAuth2 is more a framework than a specific protocol, so you’ll see some variations
between different OAuth providers—we’re going to be focusing on Google’s imple‐
mentation, but the concept should be familiar if you’ve used OAuth from other com‐
panies.

The general idea behind OAuth is that services, such as Google’s Mirror API servers,
can’t fundamentally trust client programs to behave. If left unchecked, an unscrupulous
programmer could create an app that claims to represent a user and then do all sorts of
mischief that the user never expected. OAuth acts as a check on one part of this—
applications must request permission to do certain activities, known as scopes, which
users must explicitly approve.

But how is the user going to give this approval? OAuth can’t tell the application itself
since the server isn’t going to trust the application. Instead, OAuth specifies how the
application sends the user over to a site controlled by the server where the server can
get permission directly from the user. Once the user has granted that permission, OAuth
specifies how that approval has been sent back to the application so it knows it has the
permissions it has asked for.

There are a number of different ways to do this depending on your needs. Apps that
run on a mobile device, for example, have different needs and requirements than those
that are running on a web page where the user stays on the page. And these are different
needs than servers that will have to act on behalf of the user when the user isn’t at the
keyboard. We’ll be focusing on this last one, but you can get full details about all of them
at the OAuth2 documentation.

All of this may seem a little abstract, but with a base understanding of the background,
it is time to start getting into some of the details. The good news is that the details aren’t
that bad. The even better news is that the programming languages that Google supports
all come with OAuth libraries to make some of this more straightforward. So let’s go
through the dance moves OAuth requires.

Will You Come and Join the Dance?
Let’s assume, for the moment, that a user has spotted your Glassware on the MyGlass
website or mobile app. Since we’re talking about Glassware, this is a pretty good place
to start. They’ll turn the switch ON in MyGlass for a service or application by selecting
its card and then clicking the toggle switch…and this opens a new window that starts
an elaborate dance in their web browser between you and Google’s systems.

Will You Come and Join the Dance? | 139

http://bit.ly/oauth2-docs

Step 1: Redirect to Google for authorization

MyGlass opens this window and redirects it to a URL on your website to handle user
authorization. The first thing you’ll do is redirect the user to the OAuth URL, providing
some information as part of the parameters to the URL. The base URL at Google for
this is https://accounts.google.com/o/oauth2/auth and we’ll add the parameters as query
string parameters. Make sure you use HTTPS—regular HTTP connections are rejected.

There are a number of different parameters controlling some specifics, but for your
services, you’ll be focused on just five:
response_type

This needs to be set to the string value code.

access_type

This should be set to the string value offline. This will enable you to get a refresh
token (a what? we’ll explain shortly) so the user doesn’t need to be at the keyboard
and authenticating your Glassware every hour.

scope

These are the permissions you are requesting. You can request more than one, and
they should be separated by a space. For access to most Mirror API services, you’ll
need to request the specific timeline scope: https://www.googleapis.com/auth/
glass.timeline. We’ll talk about scopes a little more in a moment.

client_id

Each application requires its own unique identifier, and the client_id is how we
tell Google what our identifier is. Remember in the last chapter we set up an ap‐
plication using the Developers Console? In a little bit, we’ll be using it again to find
out what our ID is.

redirect_uri

Once the user is done on Google’s site (which we’ll cover in a moment), Google will
redirect back to us. But we need to tell it where to redirect to, and this is how. We
also need to give the Developers Console a list of valid URIs to redirect to, for
security purposes. You guessed it…we’ll talk about this shortly.

So, five parameters. Two of which you don’t need to change, and three we’ll be covering
later. Clear as mud, right? Trust us, it will make sense soon.

So for some hypothetical Glassware that we’ve written, we might redirect our guest to
something like the following. We’ve broken it up into multiple lines to make it easier to
read, but note that it should be all one line and should be URL encoded (which we’ve
also done):

https://accounts.google.com/o/oauth2/auth?
 response_type=code&
 access_type=offline&

140 | Chapter 8: Security and OAuth

 scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fglass.timeline&
 client_id=1234567890&
 redirect_uri=http%3A%2F%2Fexample.com%2Fauthinfo

So, we’ve sent our users back to Google. What happens there?

Step 2: Authorization (and maybe authentication)

In most cases the users will have logged in and authenticated themselves already. After
all, you need to log in to MyGlass in the first place. In a couple of scenarios, users may
be prompted for their login info (or at least account) again. But most of the time they’ll
proceed to the authorization step.

This will be a screen prompting them with information about the various scopes you’ve
requested, but in a format that is a little more straightforward to understand. Figure 8-1
conveys this screen. Figure 8-2 shows you the details about each permission if you click
the information icon (the circle with the “I” in the middle). It will also show them
information about your app so they can try to get a sense if they can trust you.

Figure 8-1. Google’s OAuth provider screen for Glassware

Will You Come and Join the Dance? | 141

Figure 8-2. Permission information

Once they approve the scopes, Google will redirect them back to your website, at the
URI you requested with some additional information. This takes us to:

Step 3: Process authorization code (or error)

Let’s handle the bad news first. If the user doesn’t trust you, or if something else went
wrong, you’ll get an “error” parameter with some (but not much) information about
the rejection. Sorry, maybe it will work out better next time.

In most cases, however, you’ll get back a query parameter with a code, sometimes called
the authorization code. You don’t need to save this code, and it wouldn’t do you much
good if you did—typically it is only good for a few dozen seconds, at the most. Instead,
we’re going to exchange it for a more long-lived access token and an even longer-lived
refresh token.

Why This Middle Step?
It isn’t immediately obvious why OAuth2 goes through this particular dance step. Why
can’t it just return to you the access token and refresh token directly through this redi‐
rect? Why is it giving you this intermediate code instead? The answer lies in who is doing

142 | Chapter 8: Security and OAuth

the work, how much you can trust them now, how much you can trust them in the
future, and how secure your communication channels are.

Up to this point, we’ve been using the user’s browser as a go-between for us to commu‐
nicate with Google’s servers. We need to do this because we need the users to approve
the permissions, and they need to do it directly with Google. The code being sent to us
contains proof that they have, so it is pretty valuable! And yet, the code is being handed
back to the user to hand to us. While the way we’re doing it is pretty secure, it isn’t perfect,
and there is a chance that the browser might store this URL for a long time. So we limit
the window where this code is good. If someone gets it outside of that window, they
can’t do anything with it.

From here out, however, we don’t need to go through the user’s browser anymore. We’re
going to talk to Google’s servers directly ourselves. So we can use a token that will live
for a little bit longer—an hour by default.

We will do this exchange directly, opening an HTTPS connection to a Google URL and
doing a POST operation to the same URL (https://accounts.google.com/o/oauth2/auth)
with the code and some additional parameters to help prove who we are. What param‐
eters this time? Well, most of them will look pretty familiar:
grant_type

The string value authorization_code.

code

The code that was just sent to us.

client_id

The same client ID we specified before. Really, we’ll explain it shortly.

redirect_uri

This is the same redirect URL as before, too. This is just used to help prove that we
know where this code came from—it won’t try to redirect here or anything this
round.

client_secret

This is a secret that we get from the Developers Console when we set things up.
We’ll cover it when we cover the client ID. Any day now.

What we’ll get back in the HTTPS reply is a JSON object with our access token and
some other information. Most of the OAuth libraries treat the object returned as a single
creature—you shouldn’t try to break it up or store different parts of it separately. If you’re
going to store it (and you probably will), we suggest you store it as a single unit, as well.

The object contains several fields:

Will You Come and Join the Dance? | 143

token_type

This should be the string value Bearer.

access_token

This is the important bit. We’ll be providing this token along with all our calls to
Google’s API.

refresh_token

A token that can be used in the future to get new access tokens. This token never
expires (although it may be revoked), so guard it carefully!

expires_in

The number of seconds that access_token is valid for. This is generally about an
hour, but you shouldn’t count on it. The token may actually become invalid before
this time, particularly if it was revoked. We’ll talk about this a bit more… you
guessed it…shortly.

There may be other fields that are returned, so you shouldn’t rely on just these four and
no others.

Step 4: Use (and refresh) the access token

We now have completed the major steps to our dance and we have an access token!
Time to celebrate!

At this point, we can probably start doing things with the user’s Glass—like sending a
welcome message, listening to updates from Glass, registering contacts, and sending
out updates if we want. Users should be able to configure your service, and this would
be the time to do that. When all that is done, you can close the window, thus completing
the initial login phase.

The access token that we have is our key to doing all of this. We need to include it as
part of the HTTPS Authorization header, which might look something like this:

Authorization: Bearer 1234567890

You won’t see us include this in further documentation, however, for two good reasons.
The first is that we’ll assume you actually read and remembered this paragraph. The
second is that you’ll be issuing most commands through a library, and the library will
take care of adding the authorization information for you.

After an hour, our access token won’t be good anymore. Trying to use it will generate
an “Unauthorized” error. In order to get a new access token and keep working, we’ll
need to do another POST to the same URL (https://accounts.google.com/o/oauth2/
auth just so we remember) with slightly different parameters again:
grant_type

The string value refresh_token.

144 | Chapter 8: Security and OAuth

client_id

The same client ID we’ve specified every time so far.

client_secret

The same client secret as before.

refresh_token

The refresh token we saved earlier. Clever, yes?

We’ll get back a JSON object that contains the new access token and most of the same
things as last time. We won’t get a new refresh token, however—the one we just used
will continue to be good.

Rather than trying to time the expiration of the access token exactly, a common scheme
that the libraries tend to use is to execute a call with the access token. If it fails due to
authorization problems, they get a new access token with the refresh token and try again.
If it still fails… well…you’re just out of luck. We suggest you make use of the libraries
when you can, and use this same trick when you can’t.

You may notice that in everything that we’ve sent, and everything we’ve received, there
is one thing that is quite conspicuously missing. We have absolutely no idea who it is
that we’re talking to.

Who Are You? I Am the New Number Two
It may seem strange that OAuth doesn’t provide us with any identifying information
about the user, but this is somewhat deliberate. When it comes to OAuth, we need to
specifically get permission from the user to be able to do anything, and that includes
getting information about who they are.

So how do we get a user’s identity? It depends on what we need, exactly. In many cases,
we just need a unique identifier from them—some way to know what user configuration
we should be using when the user returns to set up or change their settings.

In other cases, however, we may want to personalize the users’ experience on our site a
little more, and be able to send them nice personalized messages on Glass as well. We
may want their name. It may be a good UX to present them with their profile photo to
make sure they are using the right account. You may want to give them the opportunity
to invite friends or share things with them. We may want access to their email addresses
to send them notifications.

As we suggested earlier, and as you might have guessed, each of these options is con‐
trolled by a different scope.

Who Are You? I Am the New Number Two | 145

What Do You Want? Information
You can think of a “scope” as corresponding to a set of permissions. We’re already fa‐
miliar with the glass.timeline scope (which is expressed as a full URI), which we use to
get permission to write to and read from the user’s Glass device. We’ve also gotten hints
that we will need permissions to access some user information. All of Google’s services
are governed by scopes of authority, and we need to consult the API documentation to
find out what authorization scopes will be required for each operation.

Scoping Out the Entire World
You’re also able to bundle multiple scopes into the same project from different author‐
ization servers. We mentioned earlier in Chapter 6 about the expected surge in mashup
Glassware, which will be based on wearable programs existing just to leverage the func‐
tionality of other APIs, using them as the backbone for their features. This is essentially
what made Twitter such a worldwide hit. Winkfeed, for example, does this by authen‐
ticating a Glass user with its own permissions and then also using Pocket as a reading
queue.

This isn’t necessarily as easy as it sounds, however. Often when writing Mirror API
Glassware, you’ll need access to the timeline, location, and profile permissions, meaning
you’ll need multiple scopes. So, Google requires your application to pass a string of three
space-delimited URLs. Not all providers handle scope in exactly the same fashion in
their authorization servers.

While the OAuth spec recommends multiple scopes to be case-sensitive and space-
delimited, Facebook requires that multiple scope URLs be separated by commas. In‐
stagram uses plus signs to delimit two or more scopes passed to its authorization
servers. And LinkedIn’s implementation goes a different route—prefacing scopes with
“r” for read access or “w” for write access, then an underscore, and then the scope URL,
with all scopes separated by a space.

This knowledge may come in handy if your Glassware uses other web APIs, so when
accessing a remote system, don’t assume they all behave the same, and consult their
documentation.

Given this, it sounds awfully tempting to just request permission for everything we
might possibly need. This is a bad idea for two reasons:

1. Users are increasingly aware and savvy of what permissions they’re granting you.
Unless you give them a good reason why you’re asking for some, or so many, rights,
they may just reject your service as being overly intrusive.

146 | Chapter 8: Security and OAuth

2. You can request the bare minimum now and request additional permissions later
as you may need them.

The second point is important—we may start out by requesting just basic permission
to Glass to get user information, and if we later add a feature that lets users send infor‐
mation to Google+, we can prompt them to turn this on in their settings and request
permission at that time. This is known as Incremental Authorization and is a more
advanced feature in Google’s OAuth implementation.

So what, exactly, is the bare minimum right now? We’ve talked about the glass.timeline
scope. There is another Glass scope that we’ll be talking about later that requests location
information, and if you’re going to use it, asking for it up front is best. Finally, as noted
previously, we should probably get some information about the user’s identity. And here
we run into a small pile of options:
profile

This is the most basic identity scope you can request. It gives you access to the
UserID and some other profile information through the Google+ API.

https://www.googleapis.com/auth/plus.me
Similar to the profile scope, the biggest difference is that some profile information
(such as the user’s name) won’t be available if they haven’t upgraded their account
to Google+.

https://www.googleapis.com/auth/plus.login
A much more advanced scope, this gives you the same read access as profile, but
also lets you see some social information (if users have permitted it to you explicitly),
manage app activities through Google+ (an interesting subject, but way out of the
“scope” for this book, so to speak), and shows your Glassware on the Google+ app
list. Unlike the plus.me scope, if your user hasn’t upgraded her account to
Google+, she’ll be unable to continue unless she does so.

email
An additional scope that you’ll likely request along with one of the previous
scopes, this provides you with the email address for this account. Be careful about
requesting or using this scope—not every user will want you to know their email
address, and this is not necessarily a good address to send them email.

https://www.googleapis.com/auth/plus.profile.emails.read
Similar to the email scope, this is one that you will request with another profile
scope. In addition to the email address provided by the email scope, however, it
also lets you access all the other public and verified email addresses attached to this
profile.

What Do You Want? Information | 147

https://www.googleapis.com/auth/plus.me
https://www.googleapis.com/auth/plus.login
https://www.googleapis.com/auth/plus.profile.emails.read

https://www.googleapis.com/auth/userinfo.profile
You may see documentation referencing this scope as a good way to get user in‐
formation, but Google has deprecated this scope and stopped supporting it in Sep‐
tember 2014. This provided access to the same information as profile, but using a
different API (the UserInfo API instead of the Google+ API). Use profile and the
Google+ API instead of this scope.

https://www.googleapis.com/auth/userinfo.email
Similar to userinfo.profile, this is an older scope that provides the same information
as email through a different API. It has also been deprecated and was removed in
September 2014.

So once we request the right scope, we’re just given all this information, right? Well,
no…not exactly. All requesting the scope does is give us permission to get the user’s
info. We still have to actually request that information. For all the recommended scopes,
you should be using the Google+ API to do so. The nitty-gritty of the API is outside of
the scope of this book, but for a primer on how to use it, we suggest our good friend
Jenny Murphy’s excellent work on the subject, Developing with Google+, as well as Goo‐
gle’s full documentation online at https://developers.google.com/+/api/.

Since this really is an important bit to have, however, we’re going to take a quick look
at getting the info by checking out the people.get method. Consider it a warmup for
working with Glass.

The gist of using the plus.people.get API is that we’re going to send a GET request via
HTTPS, and the JSON object that is returned will contain the information we need.
This particular URL is in the form https://www.googleapis.com/plus/v1/people/userid
where userid is the user ID of the person we want to get information about. “But wait!”
we hear you calling, “We don’t know their user ID! That’s the whole problem!” Fear not.
The special user ID of “me” can be used to get the information (including the user ID)
of the person we’re acting on behalf of. And since we have their auth token, that’s exactly
what we’re doing.

So if we have requested the correct scopes and make a call to https://www.googlea‐
pis.com/plus/v1/people/me we’ll get back a JSON object containing a representation of
a person. This includes fields for their user ID, name, possibly a profile photo, and other
information. We need to be careful with this information, however—users may choose
to change or delete it, so we can’t assume it is correct indefinitely.

Google’s Terms of Service control how long we can retain the information, so we might
want to go back and refresh the info periodically. We might be shocked, however, to
discover that we’re no longer permitted access to it. What happened? The user might
have cut us off and revoked our permission.

148 | Chapter 8: Security and OAuth

https://www.googleapis.com/auth/userinfo.profile
https://www.googleapis.com/auth/userinfo.email
http://bit.ly/dev_w_google_plus
https://developers.google.com/+/api/
http://bit.ly/peopleget

Disabling (and Reacquiring) Permissions
How dare they! How can they do that? Removing permissions…don’t they realize we’re
doing this for their own good? They may, but the sad fact is that we have to remember
that not all Glassware works for everyone. That’s OK.

Most users will use the MyGlass app or page to disable our access. The same switch that
was used to turn on our Glassware can be used to turn it off. When this happens, two
major things happen:

1. The access and refresh tokens are revoked. Any attempt to use them will get an
“Unauthorized” error.

2. The subscriptions and contacts that we’ve registered on their Glass (covered in
Chapter 10) will be removed.

One thing that doesn’t happen, however, is any sort of notification to our Glassware. We
have no opportunity to send a final farewell message and clean the place up after they’ve
gone. All we will know is that when we try to do something in the future, it will fail.
We’ll talk about some ways to handle this issue later in Chapter 9.

Never lose hope, however. Just as quickly as they turned off your Glassware, they may
turn it back on!

Who Is Number One? You Are Number Six
Speaking of never losing hope. We bet you forgot all about that client_id and cli
ent_secret, haven’t you? Well, we didn’t! And now is finally the time to discuss it.

OAuth relies on being able to trust every transaction it makes and being able to clearly
associate it to both a user and an application. It tracks that application through the
client_id (you’re a client to the OAuth server) and verifies you’re the client you say
you are through the client_secret (the equivalent of a password). We’ll get those
through the Developers Console, which we first learned about in Chapter 7.

Let’s return to the project we began setting up: Glass Playground. We’ll open up the
Google Developers Console and scroll down the project list until we see it. We’ll then
open up the APIs & auth tab on the left and then the Credentials item underneath it.
We’ll see a section for OAuth credentials, and may already have Compute Engine and
App Engine credentials created for us. We can’t use these, so we’ll create a new one by
clicking the Create New Client ID button.

A dialog box comes up, prompting us for some information. Most of the time, we will
want an Application Type of Web application—users will be accessing us initially
through a web page, even if we’re going to be using offline mode for most of what they

Disabling (and Reacquiring) Permissions | 149

https://cloud.google.com/console
https://cloud.google.com/console

do. The next two sections can be changed later, but we’ll set them to some initial values
for our use now…after we explain them a little bit.

The Authorized JavaScript origins field, as noted in Figure 8-3, contains a list of pro‐
tocols and hostnames where we might be redirecting from. So the hostname that they
land on is back a few pages at Step 1. We need that protocol and hostname here. We can
list more than one, but we have to be careful—the exact protocol (HTTP or HTTPS)
should be listed, and the exact hostname should also be listed. So if people might be
hitting either https://www.example.com and https://example.com, we need to list both
here. We don’t, however, need to list the rest of the URL—no paths are necessary.

Figure 8-3. Assigning JavaScript origins and redirect URIs

For this playground, you should set this to https://mirror-api-playground.appspot.com
(you’ll find out why in the next chapter, we promise!) and delete the example.

Similarly, the Authorized Redirect URI field contains the pages on our site where we
might have Google redirect the user to at the end of Step 2. We need to include one of
these as the redirect_uri parameter in Step 1, and all of them must be valid HTTPS
URLs. By default, it will pick a URL that corresponds to the origins in the previous field,
although we can edit this if our URL paths are different. Go ahead and accept the default
it provides.

150 | Chapter 8: Security and OAuth

Once we have all this set, we can click the Create Client ID button like Figure 8-4
demonstrates. It will spin for a few moments, and you’ll see a new section titled Client
ID for web application. In the future, if you need to edit the Origin or Redirect fields,
you can click the Edit settings button. Most important to us now are the Client ID and
Client Secret fields. Why are they important to us? That would be telling. (We’ll spill all
soon.)

Figure 8-4. Obtaining Client ID information from Developers Console

WAKE UP!!!
We know the previous steps and configuration activities seemed long and boring, but
it really was some essential groundwork before we can begin actually working with
Glass. You need this critical information to allow your Glassware to communicate with
Google, because again, your server will never directly talk to users, and your users will
never talk directly to your server. As Jason likes to say, paraphrasing a fairly popular
bumper sticker: Know OAuth, know Glassware. No OAuth, no Glassware.

But now that we understand card security, we have credentials for our playground, and
we know what happens when we log in…we are (finally!) ready to do just that and start
sending some data to Glass.

WAKE UP!!! | 151

CHAPTER 9

Working with Timeline Cards

The time has finally come. We’ve talked about effective Glassware design that properly
conforms to the Five Noble Truths outlined in Chapter 5, we’ve created a new Glassware
project in Developers Console in Chapter 7, and we’ve obtained the necessary OAuth
credentials in Chapter 8. Now, let’s focus specifically on presentation. We have created
a Glassware project. We have the client ID and secret. There’s only one thing left to do
—actually create a card and send it to Glass. You may be surprised that building a static
card can be as simple as the concept of a card itself, but contained in this incredibly
simple concept are many settings that give you lots of power over what you’re sending
to a user and how it will look.

We’re going to start simple, learning some basic tools for designing the cards and getting
a few onto Glass itself. We’ll then start exploring some of the more advanced formatting
features and options that are available as we generate cards. The next chapter continues
talking about cards as we learn how users can interact with these compact creations of
ours and, almost as importantly, how we find out that they’ve done so.

Just a reminder (we warned you), you’re not going to see a lot of code in here. We’re
going to point you to Google’s documentation for the actual code itself while we help
make sure you understand the concept. We already know you’re an awesome program‐
mer—here’s where you prove it.

“Hello, World!”, Glass-Style
Let’s dive in! We’ll be doing much of our work for this section using a tool from Google,
the Google Mirror API Playground. This lets us create some cards for the timeline and
send them to Glass so we can play with them. We can’t do everything using the Play‐
ground, but this will help you learn the basic components of how to create a card. When
you move to developing your Glassware, you’ll return many times to the Playground to
test out new card layouts, so this is a great place to start.

153

You can get to it from the developer pages by following the Tools section and then the
Playground. (You can also go there directly, but it helps to learn to navigate your way
around the documentation.) The first thing you’re greeted with is a prompt for your
Client ID. Good thing we spent the past two chapters setting up a project and creating
the OAuth Client ID! Go ahead and enter it here and click the Authorize button. You’ll
go through the OAuth flow to approve access to the timeline, and then you should be
all set to use it.

The Playground is separated into several areas. Along the bottom are some sample
templates, which we will be working with and adapting. Another tab gives us access to
cards that we have already added to the timeline, so we can fiddle with them and update
them as appropriate. Above the templates is a larger preview area on the left and the
entry area on the right. We’ll be able to enter data either using text, HTML, or JSON,
and we can switch between the two (which comes in handy). Figure 9-1 shows the main
interface for the Playground.

Figure 9-1. Testing prototypes in the Google Mirror API Playground

Poke around a little if you wish, but when you’re ready, select the Text template, which
is the first one all the way to the left. Then select the Text button beneath the entry area
and replace the text by typing:

Hello Glass

154 | Chapter 9: Working with Timeline Cards

https://developer.google.com/glass/
https://developer.google.com/glass/tools-downloads/playground

As you’re entering the text, you’ll see the preview area in Figure 9-2 change to reflect
what you’ve typed—this holds true for both text and HTML. You can also click the JSON
button to see the representation that will be sent to Google. We’ll get to this in a moment.

Figure 9-2. A basic vanilla card

Once it looks good, give it a try on Glass—click the blue Insert Item button above the
preview area. Several things should happen: you’ll get an audible signal on Glass that
you have a new card, and the Template area switches to Timeline view to show you what
cards this app has in its timeline. If you were looking, you’d even have seen that the
JSON entry area was updated to show you the response from the server with its repre‐
sentation of the item.

You just wrote your first Glassware…really!

You can even update this card. This time, click the JSON button and see what the JSON
representation looks like. In the middle of everything, you will see a line that looks like:

“text”: “Hello Glass”,

Let’s change this so we’re a little more verbose, so it looks like:

“text”: “Hello there, from Glass!”,

…and then click the blue Update Item button, shown in Figure 9-3. You’ll see the Preview
and Text Entry areas update as you go, and once you click the button, you’ll see the
Timeline area at the bottom changes, and your Glass will chirp alerting you that the
previous card has been updated.

“Hello, World!”, Glass-Style | 155

Figure 9-3. Updating existing items

Play with the text a bit. Try hitting Return so you force a new line in the display and see
how it is represented in the JSON data, or try some very long text and watch how the
text resizes itself dynamically. See if you can figure out how many lines it will eventually
condense to. Wonder if you can edit the text on the preview window? (Hint: yes!)

When you’re done playing, let’s take a quick look at the JSON representation and learn
a bit about these fields. To do so, we’re going to consult the documentation for a Timeline
object. Go ahead and bookmark this URL—we’ll be visiting it frequently. We use this
object to send values to Glass, and the object that is returned is a fully populated version
with more information. We’ll cover most of these items through this and subsequent
chapters, but some won’t get much coverage—we’ve found them not so useful. Feel free
to read and experiment with them here.

So we sent an object looking something like so:

{
 “text”: “Hello Glass”,
 "notification": {
 "level": "DEFAULT"
 }
}

and got back a fully populated object something like this:

{
 "kind": "mirror#timelineItem",
 "id": "cec68955-8fde-4e16-9f8f-ed2a53a64470",
 "created": "2014-03-17T23:58:39.198Z",
 "updated": "2014-03-17T23:58:39.198Z",
 "etag": "1395100719198",
 “text”: “Hello there, from Glass!”,

156 | Chapter 9: Working with Timeline Cards

http://bit.ly/timeline-doc
http://bit.ly/timeline-doc

 "notification": {
 "level": "DEFAULT"
 }
}

So what do these fields mean? Let’s consult the table of property names and descriptions,
which are arranged alphabetically. For the values we set when creating the card:

• text—Seems simple enough, this is the text that appears on the card. It is a string
object and the notes indicate that the property is writeable. (Good thing, since we
already wrote to it.)

• notification—This is a nested object that contains other properties, each of which
is described in its own entry in the table. This is what tells Glass that it should chirp
when the card is inserted or updated.

• notification.level—Another writeable property—the documentation as of the time
of this writing says the only valid value right now is the string “DEFAULT.”

Seems straightforward enough. What about the values we get after we do the insert?
kind

This will always be set to the string mirror#timelineItem. We see this sort of
namespacing pattern for all objects that come from a Google REST API—we will
never need to set this value explicitly, but this will always indicate the type of the
object returned to us. Most of the time, our host languages will take care of this for
us, but on occasion it may be useful for debugging.

id

A unique identifier, sometimes called a “UUID.” This card is ours. There may be
others like it, but this is how we know this one is special. We’ll be using this ID later
when we update or modify a card. Glass will always set this value for us—we can’t
set it ourselves.

created and updated
These are datetime objects representing when the card was (you guessed it) created
or last updated. These two times are initially the same, because the card was last
updated when it was created. If you make changes, you’ll see that the updated time
will change, but the created time (as well as the ID) won’t. We can’t set either of
these values, but we’ll see in a moment how we can control the time on the card.
The format of a datetime object is fairly simple. While it is probably easy to figure
out from the example, you’ll see it is always represented with a four-digit year, a
two-digit month, day, hour, minute, and second, followed by three digits containing
the thousandths of a second. Fields are separated by hyphens, with a “T” separating
the date portion and the time portion. It will always represent the UTC time, and
we know this by the “Z” at the end. Your language’s library will probably have

“Hello, World!”, Glass-Style | 157

converted this to whatever format dates and times are handled in your particular
programming language.

etag

The details of what an ETag are can be complex, but you can think of this as a
revision indicator for the ID. So while the ID represents a card, no matter what may
have changed on the card, the ETag will let you know if the information on the card
has changed in some way. It doesn’t tell you what has changed or why—just that
something has changed. This will come in useful later, when we read the timeline
after we’re told about updates, but we’ll ignore it for the moment.

The notes of the documentation indicate which fields are writeable by us. No notation
indicates that Glass will set it for us, and we might not even be able to set these fields
using our language’s library.

A Method to Our Madness
We’ve mentioned concepts of “inserting” or “updating” timeline items without really
explaining how you’ll do this in your own code. We’re going to stick with the Playground
for a while since it makes it easier to understand the concept before you get into syntax,
but this is a good place to point out just what commands are, conceptually, possible.
Under the list of object properties in the documentation you’ll see a list of methods
available with the Timeline object. You can click each if you really want to explore them
now, but we suggest you hold off and focus on designing cards with the Playground first.

So we’ve welcomed ourselves to the wonderful world of Glass development. We’re all
set to code now, right? Well…the text looks OK, and may be useful for some basic things,
but you’ll notice that the good Glassware that we’ve shown you so far isn’t just a wall of
text—there are some clear visual elements that help us quickly grasp what the card is
about. To do this, we’re going to rely on many of the other templates in the Playground,
and these are all based on HTML.

HTML: Even More Style
Let’s take a look at what other templates are available. To our utter shock and amazement
(not), we notice that many of the other examples look similar to much of the Glassware
we’ve seen over the past few chapters. These design patterns come up over and over
because they work. (And because they were in the Playground, and the Glassware de‐
velopers used the Playground to help come up with their own cards.) Even with the
similar design, there is plenty of room for creativity.

All of these layouts use HTML markup to provide structure and semantics for the
cards, and supplement this structure with a little bit of CSS styling rules to provide visual

158 | Chapter 9: Working with Timeline Cards

clues. If you’re familiar with both, you may need to do some unlearning—many tags
don’t work, or don’t work as well as you’d like, others should be avoided because they
don’t work as well on Glass, and other features we normally associate with HTML and
CSS (namely JavaScript and its associated dynamic functions) just don’t exist at all.

Your Own Style
If you’re HTML and CSS savvy already, you may be tempted to skip
this section and read the list of styles available through the “Avail‐
able CSS” link on the Playground. We suggest you go through the
chapter first and then supplement your knowledge with the details
available there. (And beware—some classes aren’t in the CSS rules.)
You can, of course, use CSS to add your own styling where appropri‐
ate (using your own classes or via a “style” attribute), but we strong‐
ly recommend that you don’t go overboard—the style rules in Glass
are there to help create uniform behavior. You can also use other
HTML besides those that we’ll be talking about here, but Glass doesn’t
let you do everything you may expect. Check out the documenta‐
tion of the Timeline object, and the html property specifically, for the
list of what tags are accepted, what tags are removed with contents
preserved, and what blocks are removed completely.

If you’re not familiar with HTML and CSS—don’t worry. We’re not going to teach you
everything, but we’ll cover enough for you to understand what you need to know.

We’ll start by selecting the Auto Resize template and click the HTML button to see what
the settings look like:

<article>
 <section>
 <p class="text-auto-size">
 ...
 </p>
 </section>
</article>

JavaScript’s There…Just Not for Us
The secret about Glass is that while JavaScript code isn’t supported
for developers, it is running under the covers. If you read through
the base styles for CSS on Glass, you might notice in the com‐
ments notes about how the size of some text selectors is automati‐
cally resized by JavaScript. Sneaky, Google!

Just looking at the framework, we see a structure of nested blocks defined by tags. The
outermost <article> tag block, a <section> block inside this, and a <p> block inside

HTML: Even More Style | 159

http://bit.ly/css-base

this. The <p> block (for paragraph) has a class attribute associated with it that provides
additional information about how to handle the contents (we’ll document this as
p.text-auto-size in the HTML code block that precedes Figure 9-4, meaning a para‐
graph block that has text-auto-size set as its “class” attribute). What do these tags and
classes mean?
article

Defines a timeline card visually. There are exceptions (and we’ll cover them in a
bit), but you can consider that everything defined under the article will appear on
a single screen in the timeline. This contains all the other components of the card,
which we’ll be going into.

section

This is the main body of our card. You can think of this as where we’re going to put
the important part of our message.

p.text-auto-size

A single paragraph of our message that will auto-resize based on how much content
it has. We can have multiple paragraphs, and it will make sure each starts on a new
line.

Try this bit of HTML out and you should get a card like Figure 9-4:

<article>
 <section>
 <p class="text-auto-size">
 Hello there
 </p>
 <p class="text-auto-size">
 Explorer
 </p>
 </section>
</article>

160 | Chapter 9: Working with Timeline Cards

Figure 9-4. Working with content in the Mirror API Playground

Then play around a bit. What happens when you put lots more text in just one of the
paragraph blocks? What happens if you put more in both? What happens if you put in
more text than will fit? You should see that each resizes separately from the other, but
you may see some oddities about when it resizes and how it looks when you do. A note
of caution: it may appear differently (and usually better) on Glass itself since the Play‐
ground doesn’t perfectly emulate what Glass does.

Auto-sizing is fine, but we usually want to be a little more in control of our layout by
specifying the size. Change our preceding sample so we’re specifying the size on the first
paragraph and leaving the second paragraph at whatever default size Glass picks for us:

<article>
 <section>
 <p class="text-xx-large">
 Hello there
 </p>
 <p>
 Explorer
 </p>
 </section>
</article>

The text-xx-large class is good for just a couple of words (Figure 9-5). If you play
with it, you’ll see that it really dominates the screen. Glass defines a few sizes for you—
play around with each and see how they work:

• text-xx-large

• text-x-large

HTML: Even More Style | 161

• text-large

• text-normal

• text-small

• text-x-small

Figure 9-5. Applying text-xx-large

You may wonder which is best—using a fixed-size font or auto-sizing. Fixed sizes are
more predictable and present fewer formatting surprises if a user is glancing at the
screen. On the other hand, short text can certainly be read easier in a larger font, so it
may be useful to see a short message quickly, while making it easier to determine you
don’t want to read a longer message. See what is best for your specific application.

Different sized text is great, but what about bold, italics, and colors? You’re covered.
Take this chunk of HTML for a spin, which should produce a card not unlike Figure 9-6:

<article>
 <section>
 <p>
 You can do bold (or strong)
 and <i>italics</i> (or emphasized)
 </p>
 <p>
 You can even do colors like red
 </p>
 </section>
</article>

162 | Chapter 9: Working with Timeline Cards

Figure 9-6. Formatting options

Simple text formatting is pretty straightforward, particularly if you’ve used HTML be‐
fore. HTML folks call them inline blocks, and we have the following ones available:
b or strong

Bold.

i or em
Italics.

span

Inline element without formatting, but can be used to contain the color formatting
classes without creating new block-level content like with the <p> and <div> tags.

You can apply these color classes to any of the inline blocks (see the documentation
about color for the specific hues applied):

• red

• yellow

• green

• blue

• white

• gray

• muted

HTML: Even More Style | 163

Mix Colors Instead of Font Sizes
One of the things that will drive you batty as a designer on any plat‐
form is changing the size of fonts to infer importance, precedence, or
immediacy within your content. On Glass, you’ll inevitably run into
this because of the need to draw attention to text while making sure
it stays visible within the available card space. You may want to high‐
light a headline so that it stands apart from other text, but you want
to make sure it doesn’t push other content away.
A cool trick is to use a set font size for all your textual content, while
changing up your use of color. Make prima donna text stand out with
bright colors like yellows and greens, while demoting other text with
grays and the appropriately named muted class. Since Glass is a
glanceable, short attention span medium, you’ll preserve the screen
real estate while establishing a hierarchy for your stuff.

A lot of the HTML that you’re already familiar with should just work, although some
of the tricks you’re used to won’t. Lists, for example, display fine, but are formatted
differently:

<article>
 <section>
 <ul class="text-x-small">
 Vanilla ice cream with nuts and chocolate syrup
 Chocolate ice cream with peanut butter topping
 Tutti-Frutti on a bed of bananas

 </section>
 <footer>
 <p>Available Sundaes</p>
 </footer>
</article>

The result should appear like Figure 9-7.

You’ll notice that instead of bullets to the left of each item, there are subtle separator
lines in between each list. Each item is confined to a single line by default, and nested
lists are discouraged since font size isn’t enough of a distinguisher. We can get rid of the
separator line by adding the no-border class, but we strongly suggest you don’t use it
—the separator helps break up the items in a subtle way:

<article>
 <section>
 <ul class="text-x-small no-border">
 Vanilla ice cream with nuts and chocolate syrup
 Chocolate ice cream with peanut butter topping
 Tutti-Frutti on a bed of bananas

 </section>

164 | Chapter 9: Working with Timeline Cards

 <footer>
 <p>Available Sundaes</p>
 </footer>
</article>

Figure 9-7. Working with lists

Figure 9-8. Working with tabular data

Tables also work well, and you have access to the no-border class here if you need it
(Figure 9-8). The align-justify class does a little fancy work with tables—leftmost
cells are left-justified, rightmost are right-justified, and all the rest are centered:

HTML: Even More Style | 165

<article>
 <section>
 <table class="align-justify">
 <tbody>
 <tr>
 <td>email</td>
 <td>---</td>
 <td class="red">down</td>
 </tr>
 <tr>
 <td>web</td>
 <td>2ms</td>
 <td class="green">OK</td>
 </tr>
 <tr>
 <td>db</td>
 <td>20ms</td>
 <td class="yellow">slow</td>
 </tr>
 </tbody>
 </table>
 </section>
 <footer>
 Server Status
 </footer>
</article>

Figure 9-9 shows the output.

Figure 9-9. Mixing formatting in a card layout

We should caution you, however: don’t try to use tables to do absolute positioning for
columns. That way lies pain. There are, however, classes that you can apply to a <div>

166 | Chapter 9: Working with Timeline Cards

inside a section, and nested <div> elements will be broken up into columns, as shown
in Figure 9-10:

<article>
 <section>
 <div class="layout-three-column">
 <div class="align-center text-x-small">
 <p>Mama</p>
 <p>too small</p>
 </div>
 <div class="align-center text-large">
 <p>Papa</p>
 <p>too big</p>
 </div>
 <div class="align-center">
 <p>Baby</p>
 <p>just right</p>
 </div>
 </div>
 </section>
 <footer>
 <p>Bears</p>
 </footer>
</article>

Figure 9-10. Applying the built-in CSS classes

In this illustration, we see layout-three-column doing just that. Experiment a little and
see what happens when we use these other layout classes:
div.layout-two-column

Provides two equal columns.

HTML: Even More Style | 167

div.layout-three-column

Provides three equal columns (clever, we know).

div.layout-figure

Provides two columns where the leftmost column is slightly narrower than the
rightmost. This will be the same width as the <figure> block we describe later.

If you play around with HTML a lot, you’ll discover what works and what doesn’t. You’ll
probably be surprised at how much of the basic markup continues to do the right thing.
Even things like horizontal rules, superscript, and subscript work correctly
(Figure 9-11):

<article>
 <section>
 <p>1st</p>
 <p>2nd</p>
 <hr/>
 <p>A_n = B_{n-1} + C_{n-2}</p>
 </section>
</article>

Figure 9-11. Formatting for scientific notation

Glass introduces some convenience classes for text as well. For example, this illustrates
how you can easily align text (Figure 9-12):

<article>
 <section>
 <p class="align-right text-x-small">Right</p>
 <p class="align-left text-x-small">Left</p>
 <p class="align-center text-x-small">Center</p>
 <p class="align-justify text-small">

168 | Chapter 9: Working with Timeline Cards

 Or make it so that both margins line up perfectly.
 But try to justify that action.
 </p>
 </section>
</article>

Figure 9-12. Alignment for text

Up until now, we’ve always had a <section> as the only thing directly inside an <arti
cle> block. You may have been wondering why, if we were always going to have the
main content present, we don’t just include it right under the article. The answer is that
there are other components, besides section, and each gets its own block. One of the
most significant ones is the footer block.

Every card automatically has a footer, and the timestamp is always on the right side of
the card. Glassware that is distributed through MyGlass can also get its icon next to the
timestamp. (And we can simulate this through the Playground by providing a URL for
the Footer Brand Icon.) But we can also specify footer content that will appear on the
left side of the card:

<article>
 <section>
 <p>
 The main text is here.
 </p>
 </section>
 <footer>
 <p>
 The footer is down here
 </p>
 </footer>
</article>

HTML: Even More Style | 169

This renders the card in Figure 9-13.

Figure 9-13. Working with the footer

This kind of footer is useful to provide additional secondary context for the main body
of your text—perhaps to indicate a filename or additional source of the information.
Consider, for example, the Sports template in the Playground, which uses the footer to
give actual context to the timestamp it shares a line with.

If your Glassware is getting the information from another location, it makes perfect
sense to use the footer to indicate that source. For example, we saw how Winkfeed uses
this to indicate which RSS feed a card comes from. We shouldn’t use the footer to simply
specify the name of our Glassware, however, since this is amply provided by the icon
on the right and doesn’t provide additional information. If your footer always contains
the exact same text—it might not be appropriate as a footer.

What About Images?
We have four primary ways we can use imagery in timeline items:

1. As icons accompanying text. We can see examples of these with the Flight and
Transit templates.

2. With some special formatting in a header author block.
3. In a background photo such as demonstrated by the Hybrid template.
4. On the left side of the screen as a figure, illustrated by the Image List template.

170 | Chapter 9: Working with Timeline Cards

We’ll go over each one in some detail, since even the basic images are a little different
than standard HTML.

Regular icons are pretty straightforward and use the tag, just like with standard
HTML. You can even use height and width attributes to force an icon to be resized to
meet your needs. One tool to help with this, however, is the icon-small class, which
defines a 30 x 30 pixel graphic to be used with the text-small or text-x-small classes
on a paragraph element. To illustrate, we can see this with the card in Figure 9-14. See
what happens if you remove the img.icon-small class on the selector or change the
size of the text on the <p> tag:

<article>
 <section>
 <p class="text-small">
 <img src="https://mirror-api-playground.appspot.com/links/
 lincoln-avatar.png" class="icon-small"/>
 Honest Abe
 </p>
 </section>
</article>

Figure 9-14. Working with small images

The header of a card combines a number of interesting formatting tags that are all
enabled if the article has an author class associated with it. In these cases, the <head
er> block reserves space for a 70 x 70 pixel image (and resizes all images into that square)
and two lines of fixed-size text. (There is room for a third line, but it starts crowding
into the text, so we suggest avoiding it.) There is also some formatting applied to the
<h1> and <h2> blocks inside the header block that force each to a single line:

What About Images? | 171

<article class="author">
 <header>

 <h1>President Abe Lincoln</h1>
 <h2>Honest Abe</h2>
 </header>
 <section>
 <p>
 Four Score and Seven Years ago
 </p>
 </section>
 <footer>
 <p>
 Gettysburg Address
 </p>
 </footer>
</article>

Figure 9-15 is the pleasant UI that this HTML produces.

Figure 9-15. Working with medium-sized graphics

The One-Liner
The trick used by the <h1> and <h2> tags to keep everything on one line is a useful one
if we want to make sure formatting doesn’t get out of hand. We’ll be revisiting it later
when we talk about spreading text over multiple cards and bundles.

172 | Chapter 9: Working with Timeline Cards

Background photos are a pretty common way to show a picture if there is very limited
text or none at all. This works particularly well with a footer, although it can be used for
any text, and there are some additional tricks we can use to make our text stand out
even more against the image.

We’re going to start with the Hybrid Mosaic template as our basis, only we’ll start more
basic and build up to it (Figure 9-16):

<article class="photo">
 <ul class="mosaic mosaic1">
 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/lincoln.png)">

 <footer>
 Honest Abe
 </footer>
</article>

Figure 9-16. Playing with mosaics

That doesn’t look too bad, but there are a few things to notice. The first is that we now
have an unordered list directly under the <article> tag. We have several new classes,
and we are specifying more than one class for the tag (classes are separated by
spaces). We’ll summarize these new classes in a bit. More confusingly, however, is that
we’re introducing a new attribute to the tag—the style attribute, and we’re setting
it to a somewhat bizarre value. CSS pros glanced at it and moved on, and we’re going
to suggest the rest of you move on as well. You’ll need to put the URL for the image
inside the url() portion, but make sure you copy the rest verbatim.

Visually, we can see that the image looks cut off at the top and bottom. This is normal
—a full bleed image tends to work best on Glass and is what most people will expect.

What About Images? | 173

Trimming the picture instead of providing black bars or pillars makes everything else
easier to read. Speaking of easier to read, the footer text gets washed out, too. Before we
move on, you may want to experiment with what we get if we change the <footer> to
a <section> and what happens if we remove the article.photo selector class. You
should probably also play with pictures of different sizes and dimensions to see how
they’ll map. (We like http://placekitten.com, but you can pick any image you want to try
out.)

The readability of the text, however, might be a bit of an issue. Fortunately, we have a
few classes at our disposal that will darken the background a bit by adding a gradient
to the footer. Here is our example from earlier with a bit of an overlay on the image:

<article class="photo">
 <ul class="mosaic mosaic1">
 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/lincoln.png)">

 <div class="overlay-gradient-short"/>
 <footer>
 Honest Abe
 </footer>
</article>

This may be enough for the footer, but if we have more text in the body we’ll need more
of the background shaded out. We have several classes available to us, ordered here from
least obstructing to most obstructing. Unlike some of the previous classes we’ve seen,
these classes must be applied to a <div> that is part of the <article> block and has no
other content. Make sure you find the one that suits your needs best:

• overlay-gradient-short

• overlay-gradient-medium

• overlay-gradient-tall

• overlay-gradient-tall-dark

• overlay-full

Working with Mosaics
You’ve probably been wondering about that mosaic1 class and if there are more mosaic
classes and what they do. Very clever of you! There are eight in all, cleverly named
mosaic1 through mosaic8, giving you the ability to include up to eight recipients/
participants/addresses/players/whatever in two rows of four. As Figure 9-17 shows, the
Hangouts Glassware does this to quickly indicate the members of a group chat, with the

174 | Chapter 9: Working with Timeline Cards

http://placekitten.com

last space in the lower right showing the other “rollover” members beyond what can be
shown in the mosaic.

Figure 9-17. Mosaics as applied in Hangouts

They let you add additional images to the background and lay them out in a fairly logical
way. Give this a try, and then see what happens if you replace the mosaic2 with other
values (including mosaic1) and what happens if there isn’t a matching tag with the
background set (Figure 9-18):

<article class="photo">
 <ul class="mosaic mosaic2">
 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/washington.jpg)">

 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/lincoln.png)">

 <div class="overlay-gradient-short"/>
 <footer>
 George and Abe
 </footer>
</article>

Working with Mosaics | 175

Figure 9-18. A more simple mosaic

Images on the left side of the card, done as a figure, are fairly similar. Consider this
minor rework of the last example where we move the mosaic list into a <figure> tag
and change the footer text into a normal section:

<article>
 <figure>
 <ul class="mosaic mosaic2">
 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/washington.jpg)">

 <li style="background-image:
 url(https://mirror-api-playground.appspot.com/links/lincoln.png)">

 </figure>
 <section>
 George and Abe
 </section>
</article>

176 | Chapter 9: Working with Timeline Cards

Glanceable Layouts and the Structure They Imply
A hallmark of good wearable design is giving users instant recogni‐
tion about the composition of the information being presented to
them—and again, in the microinteraction universe this means glan‐
ceability within fractions of a second. The layout, order, and size of
text, icons, and imagery can instantly covey to the users what type of
data they’re dealing with.
In messaging applications like Hangouts and Gmail, a photo of a
message’s sender sits at the top of the mosaic of particpants and is
larger than images of other recipients, taking up half of the region.
This visually relays a sense of structure and hierarchy. This is a good
pattern to emulate with your own designs, and one you get for free in
both the Mirror API (as a list) and the GDK (when repeatedly call‐
ing the CardBuilder.addImage() method).

Figure 9-19 is a UI that stacks images vertically on the left side of the card with room
for text in a <section> element.

Figure 9-19. Stacking images

Who’s on First?
When you’re using either of the list-based image layouts, here’s a good tip to keep in
mind. The person the message is from is always listed first. Others are listed later, usually
in order of participation. You can get the list of people addressed in a message from the
Timeline.recipients property.

Working with Mosaics | 177

For some applications, it may not always be obvious who the “from” may be, but don’t
be arbitrary about this convention. For instance, Gmail’s Glassware uses a generic avatar
to denote contacts whose avatars aren’t set and also a “+15” structure not unlike the
Hangouts example to show how many users in all a message was sent to. It’s great quick
visual reference.

When is it best to use one over the other? As always, it depends on your exact needs,
but a good rule of thumb is to use the figure layout when you’re representing participants
in what is represented on the card, while the background image is best when the text is
about that image itself. As we’ve seen, figures are typically used for things like Gmail
while the background image is used for something like Field Trip.

Rendering an In-Card Map
Glass provides us with a special image URI, glass://map, which renders maps, mark‐
ers, and paths using styles that work best for the heads-up display. You can set various
parameters on the query string for this URI, assigning it as the src attribute for an
tag, which will generate and update maps:
w

The map’s width in pixels (required).

h

The map’s height in pixels (required).

center

The comma-separated latitude/longitude coordinates the map uses as its base.

zoom

The magnification level for the map, between 0 and 21, matching the zoom levels
you’ll find on Google Maps.

marker

The marker type—a “0” indicating a pin or a “1” indicating a start or current po‐
sition—then a semicolon, followed by the comma-separated latitude and longitude.
You can specify multiple marker parameters.

polyline

Parameters used to create a path overlay, consisting of a comma-separated width
in pixels with a color, followed by a semicolon, and then a comma-delimited list of
vertices of the latitude and longitude. You can specify multiple polyline parameters.

If you leave out the width and color details for a polyline, default values will be used.
Also, if the parameters for a polyline are set but the center and zoom parameters are
not, the map will automatically center and zoom itself to accommodate the drawn path.

178 | Chapter 9: Working with Timeline Cards

As of the current release of the Mirror API, maps are rendered in the 2D map view, and
cannot be set to satellite view or Earth view.

It won’t show up correctly in the Google Mirror API Playground, but entering the fol‐
lowing HTML in the Playground’s editor—remember to place the map within <arti
cle> tags—produces some overly simplistic navigation from New York to Mountain
View via Houston:

<article>
 <figure>
 <img src="glass://map?w=240&h=360&marker=1;40.7056308,
 -73.9780035&marker=0;37.422,-122.084058&polyline=;40.7056308,
 -73.9780035,29.8171779,-95.4012915,37.422,-122.084058"
 height="360" width="240">
 </figure>
 <section>
 <p class="text-auto-size">New York to Mountain View</p>
 <p class="text-x-small muted">With a stopover in Houston!</p>
 </section>
</article>

Figures 9-20 through 9-22 show various ways to lay out data while displaying maps.

Figure 9-20. Maps don’t render in the Playground

So let’s see it live. Click the Insert Item button to send the card to Glass and render a
nice cross-country trek.

Rendering an In-Card Map | 179

Figure 9-21. Our example when sent to Glass

We expect that your maps will want to be a bit more local. Possibly to use one as the
background as the visual card when presenting things about tropical island paradises
where one of your authors never has to worry about things like buying antifreeze or
snow treads for his tires:

<article>
 <img src="glass://map?w=640&h=360&zoom=10¢er=13.4502076,144.7874584"
 width="640" height="360">
 <footer>
 Guam
 </footer>
</article>

Either way, you see that maps can be used the same was as in other images, but need to
be used with caution. They still must be glanceable to convey the basic information.
Don’t try to pack too much into an image and expect your user to get a lot out of it.

The map image is a bit tricky to use and get right, especially since you can only see the
finished product live on Glass and not in the Playground, but we think there are some
pretty good applications just crying out to use maps. You’ll find them even more useful
when you learn how to trigger navigation in Chapter 10 and can tap into the user’s
location in Chapter 12.

180 | Chapter 9: Working with Timeline Cards

Figure 9-22. High-level view of a map

Simple Audio
If you’ve examined the JSON for all of the preceding examples, you would have noticed
a common block in all of them:

 "notification": {
 "level": "DEFAULT"
 }

and probably some of you are wondering what this means. Setting the notification level
to DEFAULT means, in short, that Glass should emit a short audible tone to alert the
wearer that a new card, or new data, has arrived. The DEFAULT sound is the only one
currently defined, but what if you don’t want to make any noise at all? You can omit the
notification property completely or set the level to "null". We suggest the latter, since
it works better when doing updates and makes it clearer what you’re trying to do.

A better question is why would you do such a thing? It will be rare to do it for new cards,
but quite common when updating timeline items that are already in the timeline (which
we’ll be covering later in this chapter and in Chapter 11). Certainly for things that update
frequently, you don’t want to annoy users with constant chirping in their skulls. It can
even come in handy in some limited cases even when inserting new items, however.
Consider, for example, news applications that allow their users to set “quiet periods”
(we saw some examples of these in Chapter 4) but still wish to send out very important
updates. They can send out the update without any notification; the card will be inserted

Simple Audio | 181

for the user to discover later if appropriate, but won’t send out an alert that may cause
problems during that period.

The notification sound is a pretty basic use of audio in your Glassware, but what about
having the contents of your cards read aloud? This becomes a little more complex, but
is still fairly straightforward to set up. We’ll be dealing with the JSON representation of
an item, so let’s start with our original text object and expand upon it:

{
 "text": "Hello Glass",
 "notification": {
 "level": "DEFAULT"
 },
 "speakableText": "hello there Glass",
 "menuItems": [
 {"action": "READ_ALOUD"}
]
}

We’ve added two new object properties here. We’re going to be covering menu items
more extensively in the next couple of chapters, so consider this a bit of a tease.

The menuItems property contains an array of, you guessed it, menu items. Each menu
item has an action associated with it, and we’re going to be using one of the predefined
actions to specify the card can be read aloud.

When selected, Glass will do a text-to-speech reading of the contents of the speakable
Text property. If that property isn’t set, Glass will try to do a text-to-speech reading of
the contents of the text property or, if that isn’t available, the html property after strip‐
ping out any markup tags.

In our example, we could have omitted speakableText to demonstrate, but we suggest
that you always include it if you want your user to listen to your card, and we strongly
suggest you always include the option for your users. So why would you have the two
of them different? Consider reading an email out loud. If just the text of the email were
vocalized, you would miss a lot of additional metadata: who the email was from, what
the subject was, and even that this was email you were listening to. All of this can, and
should, be included in the speakable text.

Give it a try—if you don’t specify text and speakableText, the menu item is ignored.
Nevertheless, you should make sure you always set text and speakableText when you
are writing things with HTML. And since the primary method of formatting Glass cards
is HTML, that will pretty much be “always.” We’ll be returning to how these three fields
work together in Chapter 11 when we talk about sharing timeline resources with other
Glassware. Be careful when you’re converting your HTML to text, however—you want
to convert HTML entities to the actual characters they represent and not a jumble of
what the markup contains. Make sure your text actually looks like text!

182 | Chapter 9: Working with Timeline Cards

If you take a look at the timeline item object description (and if you
haven’t—you should), you’ll also notice a field called speakable
Type and wonder what role it plays with the Read aloud menu item.
We’ve seen it used inconsistently, so we generally suggest that you set
this to the name of your Glassware, but otherwise not worry about it.
See “Don’t Neglect Audio” on page 81 for ideas on using audible
feedback.

Bundles of Fun
So far, we have focused on squeezing all our information onto a single card, but this is
pretty unrealistic for many things. Text will sometimes span multiple pages or it may
make sense to show conversation threads or other related items as a single bundle. While
the user may treat them all as “multiple cards,” we have several different tools at our
disposal to implement them, and we should be careful to pick the one that best represents
the data we’ll be using.

In Figure 9-23, a timeline is displayed, which at any given point likely contains several
bundles in addition to singular cards.

Figure 9-23. Bundles let you better organize related content

The easiest way to show multiple cards at once is to create multiple cards at once and
send them at the same time. This requires nothing special on each card—all we need to
do is specify more than one article, and each one has its own contents. Consider the
following, all as one entry in the Playground as in Figure 9-24:

<article>
 <section>
 <p>Page One</p>
 </section>
 <footer>
 Hover/Tap to read more
 </footer>
</article>
<article>
 <section>
 <p>Page Two</p>

Bundles of Fun | 183

 </section>
</article>

Figure 9-24. A sample card for a bundle

If we hover over the preview area, we should see an arrow on the right, indicating that
there are more cards that we can scroll to see. Scrolling to that one, we now find an
arrow on the left. If we add more cards than these two, we can keep scrolling through
them in the order they’re listed. If we send this to Glass and view it there, we can tap on
the first card and the system has automatically created a Read more menu item we can
tap; select it, and we can swipe between the various articles (Figure 9-25).

This works well if we know how we want to break up our contents, or if they logically
divide into components we can compute ahead of time. It doesn’t work as well for long
text that the wearer may want to scroll through. For this, we can take advantage of an
article that the system will automatically split between multiple pages. To do this, we
will assign the auto-paginate class to the article block, and we will remove any section,
figure, header, or footer sections:

<article class="auto-paginate">
<p>
Bacon ipsum dolor sit amet shank kevin pork chop dolore shankle sirloin, boudin
veniam corned beef cillum ball tip. Tri-tip et ball tip occaecat sed veniam
sirloin biltong. Ex biltong pork, sunt occaecat landjaeger excepteur brisket
consectetur sausage pork belly aute leberkas ribeye. Pig beef ribs ground round
nulla, est adipisicing drumstick. Et bacon beef magna pork chop.
</p>
</article>

184 | Chapter 9: Working with Timeline Cards

Figure 9-25. A typical bundle flow

You’ll see the behavior, as laid out in Figure 9-26, is much the same as with the manual
pagination.

Both of these methods, however, have some drawbacks. The biggest is that there is no
indication that there is actually more to read. We’ve hinted at it in the footer of the first
card in the manual pagination, but if you’re using the footer for other things, this may
be impractical. Fortunately, we can combine these two methods, and some additional
formatting classes, to make it more obvious.

Bundles of Fun | 185

Figure 9-26. Applying the auto-paginate class

We’ll create one timeline item with two articles on it. The first one will contain the
content, and we’ll let Glass truncate the contents. For good measure, and for some
reasons you’ll see in a moment, we’ll also include a title here, but you could add a header
or footer if you wished instead. The second article will contain the content again, but
we will let Glass auto-paginate it for us (Figure 9-27).

<article>
<section>
<p>A Treatise on Meat in the Roman Empire</p>
<p>
Bacon ipsum dolor sit amet shank kevin pork chop dolore shankle sirloin, boudin
veniam corned beef cillum ball tip. Tri-tip et ball tip occaecat sed veniam
sirloin biltong. Ex biltong pork, sunt occaecat landjaeger excepteur brisket
consectetur sausage pork belly aute leberkas ribeye. Pig beef ribs ground round
nulla, est adipisicing drumstick. Et bacon beef magna pork chop.
</p>
</section>
</article>
<article class="auto-paginate">
<p>
Bacon ipsum dolor sit amet shank kevin pork chop dolore shankle sirloin, boudin
veniam corned beef cillum ball tip. Tri-tip et ball tip occaecat sed veniam
sirloin biltong. Ex biltong pork, sunt occaecat landjaeger excepteur brisket
consectetur sausage pork belly aute leberkas ribeye. Pig beef ribs ground
round nulla, est adipisicing drumstick. Et bacon beef magna pork chop.
</p>
</article>

186 | Chapter 9: Working with Timeline Cards

Figure 9-27. The Playground lets you preview bundles, too

Figure 9-28 shows how the content appears on Glass laid out in cards on the timeline,
when you click the Update Item button in the Playground.

Figure 9-28. The revised bundle flow

This is an improvement, but it still doesn’t really give us any cue that we need to tap it
to read the rest. We also get to read that cover card a few times, and that is pretty
redundant. We’ll fix all of these with a few additional classes.

Bundles of Fun | 187

For starters, we’ll add the cover-only class to the first article, to indicate that when we
go to read more, it doesn’t need to show it again. We’ll also add the single-line class
to the title to make sure it remains a known size and adds an ellipsis to the end of it. We
want it to remain on one line to make sure we know how many lines the rest of the text
will be, because the auto-overflow class we’ll be adding to it also needs some additional
attributes to indicate how many lines to show before it adds an ellipsis as well. This
ellipsis will be the cue to our users that they can tap on the card to read more.

The other notable change with this HTML block is that the content is now distributed
across three cards, instead of four in the previous example. So this technique may save
a bit of space, giving your users one less item to swipe through. After having dissected
a few examples so far for building, styling, and organizing card content, let’s combine
these ideas with the cover-only class, which is the pattern you should always use. The
rendered output is an appealing layout of cards, and supports Read aloud in an intelli‐
gent way:

<article class="cover-only">
<section>
<p class="single-line">A Treatise on Meat in the Roman Empire</p>
<p class="auto-overflow" style="-webkit-line-clamp: 4">
Bacon ipsum dolor sit amet shank kevin pork chop dolore shankle sirloin, boudin
veniam corned beef cillum ball tip. Tri-tip et ball tip occaecat sed veniam
sirloin biltong. Ex biltong pork, sunt occaecat landjaeger excepteur brisket
consectetur sausage pork belly aute leberkas ribeye. Pig beef ribs ground round
nulla, est adipisicing drumstick. Et bacon beef magna pork chop.
</p>
</section>
</article>
<article class="auto-paginate">
<p>
Bacon ipsum dolor sit amet shank kevin pork chop dolore shankle sirloin, boudin
veniam corned beef cillum ball tip. Tri-tip et ball tip occaecat sed veniam
sirloin biltong. Ex biltong pork, sunt occaecat landjaeger excepteur brisket
consectetur sausage pork belly aute leberkas ribeye. Pig beef ribs ground round
nulla, est adipisicing drumstick. Et bacon beef magna pork chop.
</p>
</article>

…which when updated in the Playground looks like Figure 9-29.

188 | Chapter 9: Working with Timeline Cards

Figure 9-29. Updating the code to use a cover card

…and when inserted into a live timeline on Glass, the final flow of the items, as in
Figure 9-30.

Figure 9-30. Flow with a card designated as the cover

There are some drawbacks to creating a single event that represents multiple cards,
although most of them won’t be obvious to you until Chapter 10 and Chapter 11. If we
examine the JSON that is returned to us for all of the preceding examples, we’ll see that

Bundles of Fun | 189

there is a single ID created for the whole collection of cards. This makes sense, but it
also means that if (and when) we want to make changes to a card, we end up updating
all the cards. It also means that all of the cards have to have the same menu items, even
if it makes sense for each to have some slightly different controls. Finally, we may just
want to keep track of each card individually so it matches our own internal organization
of the data. All of these problems are solved by organizing cards in a bundle.

To bundle cards together, we need to set the bundleId timeline item property on each
to the same value. What value should we pick for each? It doesn’t really matter, as long
as they’re the same. If you’re bundling things together, you probably have some internal
identifier that you’re already using to identify this group, and you should use it here.

Create the first card in a bundle as you’d create any card, but make sure the JSON in the
Playground includes a bundleId. We’re going to use text in our example in Figure 9-31
to make it easier to read, but you can use HTML:

{
 "text": "Joe Montana",
 "bundleId": "mistaken-identity",
 "notification": {
 "level": "DEFAULT"
 }
}

Figure 9-31. Our first “Joe” card

So far so good. There’s nothing new here. Now create another card, like Figure 9-32,
making sure you specify the same bundleId. Make sure you also specify it as a new card
and you’re not updating the previous card:

190 | Chapter 9: Working with Timeline Cards

{
 "text": "Joe Mantegna",
 "bundleId": "mistaken-identity",
 "notification": {
 "level": "DEFAULT"
 }
}

Figure 9-32. Our second “Joe” card

Click the Insert Item button and after receiving the cards on Glass, swipe through them,
noticing how the items created at completely different times are now linked by their
bundleId. And as we’ve mentioned before, Glass arranges the cards with last in, first
out (LIFO) ordering, so Joe Mantegna’s item is the de facto cover card for the bundle
and the first item in it, as displayed in Figure 9-33.

Replicating this example in the Playground and on your own Glass hardware effectively
differentiates between the quarterback Joe Montana and the actor Joe Mantegna, a
common misconception (never let it be said that we didn’t give you a thorough education
in this book). Here we begin to see some of the limits of the Playground. Although it
shows it as two different timeline items, we need to go to Glass to see how they get
bundled together. We’ll see the Page 2 card in our timeline, with the dog-eared corner
indicating there is more in this bundle. Tapping on it, we’re directly taken into a sub-
timeline where we can scroll between the cards. There is no “Read more” prompt—it
isn’t necessary in this case.

Bundles of Fun | 191

Figure 9-33. The default ordering

This subtimeline works exactly the same as the main timeline does. Cards are arranged
in chronological order, and we can see that they will change if we reinsert Joe Montana.
We’ll also see that Joe Montana would become the new cover card. This actually poses
a bit of a problem sometimes, just as it did when we were managing the cards as a single
item earlier. Is there any way to designate one of them as a cover card, or assign a
completely different card as the cover?

It turns out there is. There is the isBundleCover timeline item property, which expects
a Boolean value, which we can set to true. Do this for a new page, keeping the same
bundleId, and you can see what we mean:

{
 "text": "Know your Joes",
 "bundleId": "mistaken-identity",
 "isBundleCover": true,
 "notification": {
 "level": "DEFAULT"
 }
}

This organization in Figure 9-34 we find to be a bit cleaner for this example, not giving
away the interior content on the cover card. Other uses of this pattern would be recipes,
with the name of the dish as the cover card, then subsequent cooking steps as contained
cards within a bundle.

192 | Chapter 9: Working with Timeline Cards

Figure 9-34. Cleaning things up with a dedicated cover card

Things can start to get really hairy when you mix bundles, explicit pagination, and auto-
pagination…but we’ll let you experiment with that on your own. We will also point out
that if it starts looking like a mess to you, your users will think it is even worse. This
may be one of those signs that your design is getting a bit too complicated.

Going Beyond the Playground
We are nearing the limits of what we can do with the Playground, but we have come
pretty far using it! As you develop your Glassware, don’t underestimate the power of
the Playground to let you experiment with formatting your cards.

But now it is time to start working with the Mirror API more directly yourself. Create
a new set of OAuth credentials (you don’t want to use the same credentials that you used
for the Playground) and get ready to dig in.

As we promised we’d remind you—you’re not going to see a lot of code samples in the
language of your choice. Instead, we’re going to make sure we can show you the concept
and leave the syntax to the expert: you. Google provides some code samples along with
the documentation and full API documentation for each library, and those, plus your
knowledge and experience with the language, will guide you on those details.

Going Beyond the Playground | 193

API Explorer
Google does provide some tools to help you experiment with the API without having
to write code yourself. Known as the API Explorer, you can access it through the De‐
velopers Console. Under the “APIs and auth” section, you can click the Mirror API listing
and you’ll see a list of all the API methods that are available. Clicking each one gives
you a list of the mandatory and option parameters for that method and a brief descrip‐
tion of what the parameter means, and lets you authenticate and try out some values to
see what happens.

The API Explorer certainly has its uses, and if you’re going to do a lot of work with
Google APIs, we suggest you learn how to use it. But it still has some limitations for
what we’re going to be working on shortly, so we won’t be…exploring…it in any further
detail.

Figure 9-35 shows you how can examine the methods used by the Mirror API and its
associated collections. Figure 9-36 lets you filter cards on a timeline by setting property
values.

Figure 9-35. Examining methods in the API Explorer

194 | Chapter 9: Working with Timeline Cards

https://console.developers.google.com/project
https://console.developers.google.com/project

Figure 9-36. Create custom timeline views

Where are you going to find all this wonderful documentation from Google that we
keep hinting about? We’ll demonstrate by taking a look at the API method we’ve been
playing with so far without you actually knowing: Timeline.insert.

We’ll find reference documentation for all the API methods at https://develop‐
ers.google.com/glass/v1/reference/. The body of the page contains a brief summary of all
the resource types and methods we have at our disposal (you may notice that they
roughly correspond to the next few chapters of this book) while the left navigation lets
us jump quickly to one of them. Selecting an item on the left navigation takes us to a
more detailed page about the resource, which helps us understand the properties that
resource has. When using your own API, you can be assured that each of these properties
are represented in the language’s native property formats—getters and setters for Java,
property accessors in .NET, and so forth.

If we go to the Timeline resource, for example, we see the JSON representation of a
timeline item, which we’ve begun to get familiar with. Underneath the JSON view and
a list of properties we find a summary of the available methods. We also see these meth‐
ods on the left side navigation.

Let’s visit the insert method. We’ll see some URL information, which we can generally
ignore. We’ll also see the list of parameters that are accepted or required for this method
and the properties that can be part of the body of the request. What is the difference
between a parameter and a body property? For your purposes, not much, although you’ll
need to know which values you’re working with are parameters and which are proper‐
ties. For the Mirror API, the body properties are the object that we’re working with—

Going Beyond the Playground | 195

http://bit.ly/tl-insert

in this case, the timeline item object. Parameters are often used as reference or query
fields—we’ll see examples of these with Timeline.get and Timeline.list although
there are none that we’re interested in for Timeline.insert.

If we continue down the page (or find the link right at the top), we get to the Examples
section. This is your guide to using this method for your own language—select the tab
with your language. Looking at the examples for Timeline.insert, we see that they all
illustrate inserting a timeline item by taking a few parameters, turning them into the
language-specific representation of a timeline resource, setting the text and notification
properties on it, adding an attachment, and sending it off.

Don’t Believe Everything You Read
Don’t just copy and paste the examples into your own code, make sure you understand
them in light of what we’re teaching you in this book. To illustrate—some of the sample
code has (or hopefully had, by the time you read this) documentation saying that the
notification parameter can have the value "AUDIO_ONLY". If you read the resource de‐
scription (not to mention our section earlier), however, you’ll see that this value should
be "DEFAULT". You’ll also notice that all the examples use text as the content of the card
—you should be able to extrapolate and figure out how to send HTML instead. We know
you can do it!

On the other hand, you also need to make sure you keep up with the latest version (and
documentation) for your library. There are occasional changes to the API, and if you
started work with a previous version of the library, you may miss out on the newer
features. A good rule of thumb is that if you’re trying to do something that is shown in
the example documentation, and your system balks, download the latest version of the
library and try again.

Waitaminnit. Adding an attachment? You can do that? You certainly can—we’ll go into
a few details next.

Media Matters
Timeline item attachments are conceptually somewhat simple—just like with our email
messages, we may want to attach some media to a timeline item to display or make
available as part of that time. The implementation, however, gets complicated rather
quickly. All the client libraries support one attachment of either an image or video no
larger than 10MB when the card is created or updated.

The API allows for more than the single attachment—go ahead and look at the docu‐
mentation for the Timeline resource and you’ll see the attachments property, but it isn’t
marked as writeable, so it isn’t obvious how to add them. You’ll need to use the Time

196 | Chapter 9: Working with Timeline Cards

http://bit.ly/tl-get
http://bit.ly/tl-dev-list
http://bit.ly/tl-attach-insert

line.attachments.insert method after a card is created to add additional attach‐
ments, which may create a race condition between when you upload the attachment
and when you reference it as part of the item.

Speaking of which—how do you access the item anyway? Glass provides a special URL
you can use to reference each attachment. The first attachment is referred to as attach
ment:0, with later attachments incrementing the counter. You can also use the URL
cid:attachment-identifier to refer to the attachment by the attachment ID. In gen‐
eral, you’ll probably find the former easier to use—and you’ll typically only be using a
single attachment.

You may be confused by this suggestion to stick to a single attachment. In our earlier
examples, we showed how we might put up to eight profile photos in the background
or figure section. Shouldn’t these be attachments? Not necessarily, and probably not. If
we make each of these profile images an attachment, it means that the image will need
to be sent along with each card. It also means that Glass can’t take advantage of caching
to fetch the profile image once and use it with multiple cards. Where possible, you should
use a public profile image (such as the one provided by Google+) and reference it by
public URL instead of a private image.

Oh, CRUD…
We’ve talked a lot about how we insert items, but very little about anything else we can
do with them. To some extent, that will be the subject of the next three chapters (what,
you thought this was it?), but if you think about what we were doing with the Playground,
you’ll see there are a few more things we can do.

How many of you noticed the trash icon when you were looking at timeline items you
had inserted? A few hands? Good. Unsurprisingly, you’ll learn that this maps to the
Timeline.delete method. Pretty straightforward—you need to know the ID of the
item to delete, but since you inserted it, you should be able to keep track of it.

Similarly, if you edited a card in the Playground and sent it to Glass, you’d have seen
that it replaces the original card with the updated version. There are two methods that
let us do this: Timeline.update and Timeline.patch. The two seem similar, although
the documentation states that Timeline.patch “supports patch semantics.” What does
this mean?

In short, if you want to change the contents of the card, you can either rewrite the entire
card by sending all the properties over again with Timeline.update. Any properties
you omit will be as if you never sent them the first time around. The Timeline.patch
method, however, assumes that if you didn’t send a property, it should have the same
value as it did the last time. If you want to remove an item with Timeline.patch, you

Oh, CRUD… | 197

http://bit.ly/tl-attach-insert
http://bit.ly/tl-delete
http://bit.ly/tl-update
http://bit.ly/tl-patch

need to explicitly send it a “null” or “nil” value. Again, in each case you’ll need to know
the item ID.

If you’ve done any database programming, Timeline.update is akin to executing a SQL
statement where every one of the fields in a row in a table are populated, even ones that
haven’t changed. Timeline.patch is the same as applying new data to an existing row
but only specifying those fields where data has been modified.

Which one is better? It really depends on your needs. Sometimes it is difficult for you
to keep track of what has changed, and it is just easier for you to resend the entire card.
In this case, feel free to use Timeline.update. In other cases, you may have a huge html
property and not want to re-create and resend it because that would be inefficient. This
would be an ideal time to use Timeline.patch. Keep both in mind as we go forward—
we’ll be using these techniques over the next couple of chapters.

For those of you who are used to thinking about things in terms of CRUD operations
(Create, Read, Update, Delete), first of all, our condolences, but more importantly, you
may have realized that we only talked about three of those when it comes to timeline
operations: creating, updating (and patching), and deleting. You’ve seen the documen‐
tation, so you’re probably wondering why we haven’t talked about reading items or
searching for them. There’s no conspiracy theory—but we couldn’t come up with a good
explanation of why you would want to read them until we explained how you’d be
notified about changes to them.

And that doesn’t come until the next chapter.

198 | Chapter 9: Working with Timeline Cards

CHAPTER 10

Card Actions and Subscriptions

A number of people have asked recently what the big deal about wearables is. After all,
they reason, they’re just new notification delivery platforms, right? If that’s all Glass was,
we might agree. Let’s face it—the programs you build admittedly wouldn’t be very in‐
teresting if they couldn’t receive input from users and properly respond to it. Interac‐
tivity is where it’s at, even with wearable computing, check that—_especially_ with
wearable computing—and this isn’t a facet the Glass team neglected to build into the
platform. While some services will be just fine existing as static read-only mediums,
you’ve got the choice of being able to easily integrate a stout feedback loop into your
projects if they demand such functionality.

This chapter primes you on what you’ll need to know about using the default actions
included with cards, how to create your own menu items unique to your Glassware, and
how to programmatically manage subscriptions to tie it all together. We discuss how
your service needs to define what actions are available within cards, how to accept those
actions, and how to verify the authenticity of responses.

Simple Event Actions
We’ve already learned about a couple of menu items, and learned how to add one to an
event. Let’s recap what that looked like:

{
 "text": "Hello Glass",
 "notification": {
 "level": "DEFAULT"
 },
 "speakableText": "hello there Glass",
 "menuItems": [
 { "action": "READ_ALOUD" }
]
}

199

As you may have noticed, menuItems is an array, and you could have more than one
menu item available to your users. The READ_ALOUD menu item is a simple event—Glass
can take care of it completely on its own and your Glassware doesn’t get a notification
when the user triggers it. (Some of the other menu items do let you know what is going
on—we’ll be covering those in a bit.)

Two other menu actions that behave this way are OPEN_URI and PLAY_VIDEO. Each of
these uses an additional payload attribute on the menu item. The payload is a string
indicating what the action applies to—in the case of OPEN_URI, it is a URI that Glass
should load, while PLAY_VIDEO uses the payload as the URL of a video clip to stream.

Here is a (slightly contrived) example of all three built-in menu items on a single card:

{
 "text": "Hello Glass",
 "notification": {
 "level": "DEFAULT"
 },
 "speakableText": "hello there Glass",
 "menuItems": [
 {
 "action": "READ_ALOUD"
 },{
 "action": "PLAY_VIDEO",
 "payload": "https://db.tt/JVepRwr6"
 },{
 "action": "OPEN_URI",
 "payload": "http://thinkforglass.com"
 }

]
}

You’ll see that we left the READ_ALOUD as the first card, since it was the most likely one
that people would want to select. As we go through some of the other menu items, you
should keep in mind which actions will be the most used and prioritize those to be
ordered first, and keep these toward the front, but also note which ones are more dan‐
gerous, such as deleting, and place these later in the menu list. This is a design tactic we
mentioned earlier as a means of reducing the interaction with the system by minimizing
swipes, which promotes microinteractions.

A slightly different menu item is found with the NAVIGATE action. Instead of using the
payload attached to this menu item, this action will start navigating to the value set as
part of the location property of the timeline item and not of the menu item. The location
property is a Location object, and is described in more detail on its own resource
page. At the most basic, however, we need to specify the latitude (positive values indi‐
cating degrees north of the equator, negative indicating south) and longitude (positive

200 | Chapter 10: Card Actions and Subscriptions

https://developers.google.com/glass/v1/reference/locations
https://developers.google.com/glass/v1/reference/locations

values indicating degrees east of the Prime Meridian, negative values indicating degrees
west) of the point we wish to navigate to:

{
 "text": "Hello Glass",
 "notification": {
 "level": "DEFAULT"
 },
 "speakableText": "hello there Glass",
 "menuItems": [
 { "action": "READ_ALOUD" },
 { "action": "NAVIGATE" }
],
 "location": {
 "latitude": 37.422,
 "longitude": -122.084
 }
}

You may have noticed that the menu items are pretty generic. The menu item to launch
video playback just says “Play,” with no indication what video it may be showing. Nav‐
igation doesn’t tell you where you’re going. It makes sense to assume that the card is
providing this information (either in the text or footer or something similar), but this
may not always be practical. And if you include multiple menu items of the same action,
but with different payloads (for example, two possible movies), it may get confusing.

Glass lets us set the values that are shown for each menu item, overriding the default
menu item display. We can update our earlier example to be more specific about what
we’ll be watching or what website we’ll be visiting:

{
 "text": "Hello Glass",
 "notification": {
 "level": "DEFAULT"
 },
 "speakableText": "hello there Glass",
 "menuItems": [
 {
 "action": "READ_ALOUD"
 },{
 "action": "PLAY_VIDEO",
 "values": [
 {
 "displayName": "Jason - on-air blooper"
 }
],
 "payload": "https://db.tt/JVepRwr6"
 },{
 "action": "PLAY_VIDEO",
 "values": [
 {

Simple Event Actions | 201

 "displayName": "Allen - Glasstalk"
 }
],
 "payload": "https://db.tt/VILcUoqU"
 },{
 "action": "OPEN_URI",
 "values": [
 {
 "displayName": "Think for Glass"
 }
],
 "payload": "http://thinkforglass.com"
 }

]
}

The particularly observant of you will have noticed that the values property takes an
array of objects. We’ll go into why it is an array and what other properties can be set on
this object in “Custom Menu Items” on page 209.

Reading More
You may have noticed that we haven’t mentioned the other menu item, Read More,
here. The reason is fairly simple—we don’t control this menu item directly. Glass will
add it itself when it is necessary, and not include it where it isn’t.

You’ll also have noticed that all of these are relatively simple menu items. Glass can
handle them without having to get or provide anything further to your service. We’ll
discuss menu items that generate callbacks in a bit, but first we need to look at how you
register the callback.

Listen Up!
The Mirror API refers to these callbacks as Subscriptions, and they provide information
to Google about how you want to be notified when a user takes menu actions on a card,
issues a voice command, shares a timeline item with a sharing contact, or changes lo‐
cation. We’ll discuss the first one in the next section, and the other three in the next two
chapters.

Subscriptions are managed on a per-user basis—it is normal for you to have at least one
subscription for each user of your service. Best practice dictates that you should insert
an entry into the Subscriptions collection every time a user visits your site. Existing sub‐
scriptions may have been deleted if they disabled your Glassware, but they’ll always be
revisiting your site if they turn you back on.

202 | Chapter 10: Card Actions and Subscriptions

http://bit.ly/subscript-col

Fortunately, adding a subscription is very easy. The Subscriptions.insert method
takes several parameters, and while some of them are listed as optional, we recommend
that you use all of these:
collection

We’re working with the timeline, so this should be the string "timeline".

userToken

A string that Glass will send to you when this user triggers an event to indicate
which user has done so. Glass doesn’t care what this value is—it will just send it
back to you, so you should make it something useful, such as the user ID or some
other key that lets you look the person up in your user database.

verifyToken

Another opaque string that Glass will just send back with the event. Think of this
as a secondary key you can use to verify this call isn’t forged.

callbackUrl

A URL that the web service responds to. It must be an HTTPS URL with a trusted
(aka, not self-signed) certificate that is resolvable and accessible from the public
Internet.

Be Secure
Some people have reported that during testing a self-signed certifi‐
cate may work, despite Google’s recommendations. That might be
true (we’re not brave enough to try), but it makes your subscrip‐
tion susceptible to breaking at any time without warning as the
framework continues to grow. The hard-and-fast rule is to use an
SSL certificate from a certificate authority, or host your Glassware
server on a platform that provides one for you, such as Google App
Engine.
During development of your Glassware you can use the subscrip‐
tion proxy Google provides as a tool. This lets you use an unsecure
URL on your server and routes subscription pings to a dedicated
HTTPS endpoint: https://mirrornotifications.appspot.com/forward?
url=<your_callback_url>. You will still, however, need to use a pub‐
licly accessible machine.

Let’s look at each of these in a little more detail. Some of this may seem like we’re putting
the cart before the horse, since you don’t know what you’re going to be seeing for the
various events, but we have a chicken and egg problem here (to horribly mix both
metaphors and cliches), so we need to explain a bit about how to handle the event before
you even know what an event looks like. All will be made clear in the next section.

Listen Up! | 203

http://bit.ly/subs-insert
http://bit.ly/subs-proxy
http://bit.ly/subs-proxy

collection
We can subscribe to either timeline events or location events. If we wanted to subscribe
to both, we need to set up two callbacks, although both can refer to the same URL.
Location events will be covered in Chapter 12, so don’t worry about them for now; we’re
just going to focus on timeline events.

userToken
The user and verify tokens are for your use only. Glass doesn’t care what you provide
here—it is just going to send them back with each event notification. Remember back
in Chapter 8 as we discussed OAuth we mentioned that although it associates all the
transactions with a user, it doesn’t give you any information about who that user is. That
is the problem that the user token addresses as well—Glass doesn’t know (or care) who
the user is, but you do.

You remember back in Chapter 8 we discussed getting the user’s ID? No? Well, go back
and read all of Chapter 8 then, because it is important and you probably forgot. But to
refresh you memory, we said:

So how do we get a user’s identity? It depends on what we need, exactly. In many cases,
we just need a unique identifier from them—some way to know what user configuration
we should be using when the user returns to set up or change their settings.

This unique identifier also will work well as the user token, so when a callback comes
in for this user, we can pull up their record and know who performed the action. Most
importantly, we’ll need to pull up their access token so we can act on the timeline item
being reported on. If you think in database terms, this user token works well as a unique
key against your user database.

Waitaminute…we’ll get a callback telling us something has happened, but we don’t know
what? We’ll clarify in a minute, but in short, the callback tells us a timeline item that is
being acted on, but we need the user’s permission to get that item. We have that per‐
mission in the form of the access token.

verifyToken
But what then is the purpose of the verify token? The callback URL we’re providing
needs to be available publicly on the Internet. While we’re intending it for Google’s use
only, we have no good way to restrict who might be calling it. So if someone finds out
the URL, they may also be able to guess what you’re using as the primary key, and then
generate false events for you to process. Depending on what these events are, this could
be very bad! The verify token should be a random string you generate for each user,
stored as part of their user records, and provided only to Glass when you create the

204 | Chapter 10: Card Actions and Subscriptions

subscription. When an event comes in, you can confirm the notification comes from
Glass because they’re the only one that can provide a valid verify token.

The Source (Address) of the Problem
You might wonder why you can’t verify that the request is coming from Google by
checking it against a known list of IP addresses and blocking any that come from outside
those addresses. While this works for other Google services (most notably Google’s
spider bot), it is too early to be able to do this for Glass. Glass is still scaling up to be
able to handle a massive number of callbacks, and it isn’t reasonable to know the exact
addresses of all the machines when they are frequently changing.

callbackUrl
The final parameter is probably the one that is most significant to you—the URL end‐
point itself. As we’ve noted, it needs to be publicly available from Google’s servers with
a valid HTTPS certificate. While it may be obvious, it also bears making plain that it
also must be a URL that your app server will reply to! So you will need to write the code
and configure the framework or environment that you have to call your code when this
URL is hit.

Glass will access the URL via a POST operation, and the body of the POST will be a
JSON object. You’ll need to convert this JSON object into something you can work with
natively (see the Mirror API documentation on subscriptions for code samples in a
couple of languages) and then access the parameters to get the timeline item ID, the
user token, validation token, and some other information about what triggered the
event. We’ll start going into details of all these fields in the next section.

Responding to Subscription Pings
As with all calls to your server via HTTPS, you’ll need to return a response code. A
response code of 200 (“OK”) indicates that everything is in working order, while other
error codes would indicate there is a problem processing the data. You have about 10
seconds to return an “OK” response code—if you return an error or take longer, Google
may try to resend the request at a later time. One common problem is getting multiple
callbacks on the same event because you didn’t send the response code back fast enough.

A good solution to this problem is to accept the event notification, add it to a job queue
to handle in another thread or process, and then immediately tell Google that it has
been accepted by returning the 200 status code. You don’t need to do any actual pro‐
cessing on this event immediately, so you’re handling it very quickly. This reduces the
chance of double–notifications, plus it sets you up to handle the load you may get as
your service becomes wildly popular. As the load grows, you can handle responses from

Responding to Subscription Pings | 205

http://bit.ly/mirror-sub

Google with one server or process, and then distribute the task processing on one or
more other machines that do the actual work involved.

And just what needs to be done when the process pulls the task off the job queue? It
depends on exactly what action the user performed, but many things will be similar.
Let’s start taking a look.

Simple Callbacks and How to Handle Them
We’re finally getting to the second half of our chicken-and-egg problem by setting up
some other menu items that we can get responses about. The two simplest that we can
use at this point are "TOGGLE_PINNED" and "DELETE":

{
 "text": "Pin me! Delete me!",
 "notification": {
 "level": "DEFAULT"
 },
 "menuItems": [
 { "action": "TOGGLE_PINNED" },
 { "action": "DELETE" }
]
}

You may want to try these out to just see what they do. After some experiments, you’ll
have discovered that deleting a card does just that—removes it from your timeline.
Pinning and unpinning a card moves it between the “history” timeline to the right of
the home card and the “now” portion of the timeline to the left of the home card.

Pinned cards serve a special purpose with Glass. They are meant to provide quick access
to some information the wearer is interested in either seeing frequently or manually
checking for updates. But remember, the data needs to stay timely—if your Glassware
doesn’t keep it updated, it will vanish in seven days as Glass purges old items. As we’ve
also discussed, pinned cards shouldn’t be used to launch applications, and part of the
way this is discouraged is by preventing you from pinning a card—that must explicitly
be a user action.

Both deleting and pinning, however, do much more than meets the eye.

If you have a subscription registered (and if you were actually following along, we hope
you do), you’ll have gotten a callback on your URL that contains a JSON body something
like:

{
 "collection": "timeline",
 "itemId": "3219c55c-3d26-4c79-a8b5-5ccc0732da88",
 "operation": "UPDATE",
 "userToken": "12345678901234567890",
 "verifyToken": "shibboleet",

206 | Chapter 10: Card Actions and Subscriptions

 "userActions": [
 { "type": "PIN" }
]
}

The properties for the callback body are pretty straightforward:
collection

This matches the collection string we set for the subscription. Again, it will be
“timeline” for now.

userToken and verifyToken
These are also the values we set for the subscription.

itemId

This is the item ID for the card the menu items were attached to. Remember that
Glass assigns this ID—we have no control over it. We know what it is for a card
after we create the card by examining the results, or we can do a query for the card
to refresh our memory. We’ll look at the latter shortly.

operation

This will be either INSERT, UPDATE, or DELETE. As we will see in the next chapter, if
a new card is permitted to us, we’ll get an INSERT operation. UPDATE operations
are sent to us for most menu items except for Delete, which will generate a…anyone?
Anyone? That’s right…a DELETE operation.

userActions.type

Something else for the UPDATE operation, this tells us exactly which menu option
was called. (It also does for INSERT or DELETE, but those are a little more straight‐
forward.) Each menu item generates a different user action—we’ll cover them as
we go. Pinning a card generates the PIN action, while unpinning the card gets us
UNPIN.

Given what we know so far, we might consider the following flow when processing a
job off the callback queue:

1. Get the user record from the database based on the userToken.
2. Compare the verifyToken from the database with the verifyToken sent in the

request.
3. Do something based on the operation and userAction.

That third step is, of course, the kicker. What sorts of things would you do? First, realize
what you don’t need to do—Glass has already taken care of deleting or changing the pin
status of the card, so you don’t need to do it on Glass.

Simple Callbacks and How to Handle Them | 207

You might, however, wish to do it if you have your own copy of the card. Consider, for
example, a simple text chat system that you’re developing a Glass interface for. If a user
pins a message or thread, you might want to mark the message as important in your
master copy of the message so he can see it on the desktop as well. Similarly, if he marks
the message as deleted on Glass, you should also remove it from your own data store.

Having the master copy of a card in our database works really well if we can also store
the ID that Glass uses in our database. This isn’t always feasible, however, and even if it
is, sometimes it might not be a good idea. Fortunately, Glass is willing to be a little flexible
on this point. It still will always maintain its own unique ID for a card, but it also provides
a secondary field it indexes that you can use for your own identifier. This property of a
timeline item is the sourceItemId. Glass will store this value as part of a card, but does
not care what the value itself is.

So we can update our previous example with the following:

{
 "text": "Pin me! Delete me!",
 "sourceItemId": "message-24601",
 "notification": {
 "level": "DEFAULT"
 },
 "menuItems": [
 { "action": "TOGGLE_PINNED" },
 { "action": "DELETE" }
]
}

Now when we process the event notification, we see that the callback body contains,
well, exactly the same thing it contained before. The sourceItemId doesn’t show up in
the callback. So how does this help us again?

We do have the itemId, which we can use to fetch the timeline item using the Time
line.get method. This will give us a complete Timeline item object, including the
sourceItemId. With this sourceItemId value now in hand, we can now fetch the object
from our own database and take whatever action is appropriate.

The timeline item we fetch has some other attributes that may be of use to us if we’re
processing the delete commands or one of the pin actions. In particular, we have Boolean
object attributes such as isPinned and isDeleted which report on, you guessed it, if
the item is pinned or not, or if the item is deleted. If the item is deleted, we may be in
for a bit of a shock—many other attributes will have been removed, including the text
or html attributes. We call these object fragments “tombstone” objects, since all they do
is to mark that there used to be an item here.

Given this, it becomes extremely common for our processing flow with a job in our job
queue to work more like this:

208 | Chapter 10: Card Actions and Subscriptions

https://developers.google.com/glass/v1/reference/timeline/get
https://developers.google.com/glass/v1/reference/timeline/get

1. Get the user record from the database based on the userToken.
2. Compare the verifyToken from the database with the verifyToken sent in the

request: if they do not match, bail out.
3. Fetch the timeline item from Google’s server.
4. Do something based on the operation, userAction, and the current state of the item

itself.

This concept of Glass mirroring what is available on other platforms is a powerful and
important one, and one that we hope you picked up from our earlier chapters as well
(though it bears repeating). But the two options we’ve seen to do that mirroring so far
are somewhat limiting. While deleting is a common operation, many times users may
want to just dismiss a card from Glass without removing it from every platform. Ad‐
ditionally, pinning does not always translate to commands that may exist elsewhere and
has the downside that you can’t control it from outside Glass, which limits its use as a
multiplatform control.

Besides, chances are good that you’ve created your own command terminology, and
you want your Glassware to reflect the same terminology. We need a way to create our
own menu items.

Custom Menu Items
Now that we know how to set up a subscription and respond to pings from Google, let’s
see how to create some more menu items for when users interact with our Glassware,
and how to handle them (remember from Chapter 7 how the architecture of the Mirror
API mandates that your server never communicates directly with the user, or vice versa).
Although Glass provides some common menu items, there is no way it can have all the
possible choices you may want for a card. To accommodate your needs, you can create
custom menu items that contain your choice of text and icon, and will report their
activity to the server. We first need to see how to create the menu items and everything
associated with them, and then what it will look like on the server.

The "CUSTOM" menuItem action indicates that we have a, you guessed it, custom menu
item! Really quite intuitive. What a wearer sees for this menu item is determined by an
array of values, which we touched on earlier to modify how a default menu item was
listed, and which should include a 50 x 50 pixel icon in the PNG format. Glass distin‐
guishes multiple custom items through the menuItem ID, which we designate and which
Glass ignores except to send back to us when the menu is selected. So we might set up
a color changing card with JSON like this:

{
 "html": "<article><section><p class='white'>A cavalcade of color
 </p></section></article>",

Custom Menu Items | 209

 "menuItems": [
 {
 "id": "white",
 "action": "CUSTOM",
 "values": [
 {
 "state": "DEFAULT",
 "displayName": "Watch White",
 "iconUrl": "https://db.tt/0VgPaGii"
 }
]
 },
 {
 "id": "red",
 "action": "CUSTOM",
 "values": [
 {
 "state": "DEFAULT",
 "displayName": "Ahead Red",
 "iconUrl": "https://db.tt/0VgPaGii"
 }
]
 },
 {
 "id": "blue",
 "action": "CUSTOM",
 "values": [
 {
 "state": "DEFAULT",
 "displayName": "Go Blue",
 "iconUrl": "https://db.tt/0VgPaGii"
 }
]
 }
],
 "notification": {
 "level": "DEFAULT"
 }
}

Entering this JSON into the Google Mirror API Playground produces the snapshot of
your card shown in Figure 10-1.

210 | Chapter 10: Card Actions and Subscriptions

Figure 10-1. Previewing prototypes of menu items

Do note that after you’ve clicked Insert Item to send the card to Glass, the Playground
will auto-generate thumbnails of the custom menu items you’ve laid out, as Figure 10-1
indicates. This feature only visualizes custom menu items, not the built-in options.

The JSON may look complicated, but let’s break down the menuItems property into
some detail. We’ve seen that this will be an array of objects before, but the objects contain
a few more details this round.

Each object contains an ID, in this case containing the color we want to switch the text
to, and the CUSTOM action. Each object also contains a values property, which is an array.
Right now, that array contains just one item. That item has the state of DEFAULT, an icon
representing that we’re setting a color, and the text to display—the name of the color to
switch to.

Viewed as live items on a timeline, the cards and their flow render like Figure 10-2.

Free Tools for the Graphically Challenged
If you’re like the both of us, you probably royally suck when it comes
to graphics. Thank goodness for the Glass Asset Studio, an amazing
tool by our friend Justin Ribeiro that creates white icons out of im‐
ages in the dimensions Glass expects. It’s an indispensable utility to
have as you’re putting together your Glassware.
Additionally, the icons we note in this chapter were used freely from
Openclipart.org. Yay, public domain resources!

Custom Menu Items | 211

Figure 10-2. Flow for a card with accompanying menu items

If we take a look at this card, we get the text and the three menu items. If we have a
subscription set up, selecting one of the menu items will send something like this to the
server:

{
 "collection": "timeline",
 "itemId": "7e84302a-1da7-46f2-ac72-2c008fce2b4b",
 "operation": "UPDATE",
 "userToken": "12345678901234567890",
 "verifyToken": "shibboleet",
 "userActions": [
 {
 type: "CUSTOM",
 payload: "blue"
 }
]
}

Most of these should be familiar, but some have new values:
operation

Will be set to UPDATE.

userActions.type

Contains the string "CUSTOM" to indicate this is a custom menu item. Big surprise.

userActions.payload

This is a new field and will correspond to the ID of the menuItem that was selected.

We can use the same process flow we outlined earlier to determine which menu item
was selected, but what should we do for each menu item once we get it to actually change
the color of the card? In this case, we can call Timeline.patch for the itemId mentioned
in the payload and just specify the html parameter with the HTML specifying the new

212 | Chapter 10: Card Actions and Subscriptions

http://bit.ly/tl-patch

color class. What if we wanted to be fancier and use a different icon for the color that
has been selected? We could send Timeline.update with a complete copy of the timeline
item configuration and just the relevant menu item changed (or perhaps not even
present, so they can’t foolishly select the menu item twice). How you alter the card and
menu items is completely up to you.

We have mentioned a few times now that you should be deliberate in how you differ‐
entiate the menu items for "Delete" and "Dismiss". The former (built in, and covered
earlier) will delete the card from Glass and you are expected to delete it from your system
as well. The latter is not built in—you’re expected to implement it if you want your users
to be able to remove cards from the timeline.

We can take care of this easily with a CUSTOM menu item, as illustrated here:

{
 "text": "Dismiss or Delete me",
 "menuItems": [
 {
 "id": "dismiss",
 "action": "CUSTOM",
 "values": [
 {
 "state": "DEFAULT",
 "displayName": "Dismiss",
 "iconUrl": "https://db.tt/dRHLFhxG"
 }
]
 },
 { "action": "DELETE" }
],
 "notification": {
 "level": "DEFAULT"
 }
}

On the server, we will get the CUSTOM action with the "dismiss" payload and call the
Timeline.delete command for the itemId. We need to do this explicitly—Glass won’t
do it for us. At the same time, however, we should not delete our internal copy of the
item.

Dismiss Is DIY
You might have taken note about how seemingly backward the ability to dismiss a time‐
line operation is. Dismiss, you would think, should be a built-in function of the Mirror
API, and delete should be custom. But that’s not the way it currently works out. This
does give you a bit of leeway as to implementation and lets you gather stats about how
often people do each operation.

Custom Menu Items | 213

http://bit.ly/tl-update
http://bit.ly/tl-delete

If you add this card and play with it a little, you’ll realize that there is a difference in how
the "Dismiss" menu item and the "Delete" menu item behave. When we delete, it gives
us a brief period where it says it is "Deleting" and we have a moment to cancel things
before it tells us that it has been "Deleted". We don’t get that at all with "Dismiss".
These two other screens are other value states that we have omitted—the DEFAULT value
state is required for us to show anything, but the PENDING and CONFIRMED states make
for a better experience. We can add these as two additional objects to the "values"
attribute thusly:

{
 "text": "Dismiss or Delete me",
 "menuItems": [
 {
 "id": "dismiss",
 "action": "CUSTOM",
 "values": [
 {
 "state": "DEFAULT",
 "displayName": "Dismiss",
 "iconUrl": "https://db.tt/dRHLFhxG"
 },
 {
 "state": "PENDING",
 "displayName": "Dismissing",
 "iconUrl": "https://db.tt/dRHLFhxG"
 },
 {
 "state": "CONFIRMED",
 "displayName": "Dismissed!",
 "iconUrl": "https://db.tt/dRHLFhxG"
 }
]
 },
 { "action": "DELETE" }
],
 "notification": {
 "level": "DEFAULT"
 }
}

Let’s test this JSON code in the Playground to see the layout of the custom menu item
with our icon in Figure 10-3 (again, only Dismiss will be thumbnailed, but not Delete
since it’s a built-in).

214 | Chapter 10: Card Actions and Subscriptions

Figure 10-3. Testing a Dismiss action

Looking at the cards live on Glass produces Figure 10-4’s expected layout.

Figure 10-4. Flow for the custom Dismiss action with the default Delete menu item

Glass encourages us to add these additional states, and we strongly suggest that you add
them for all your menus. Your users will be expecting them and they are natural parts
of the Glass UX.

Custom Menu Items | 215

Keeping in Contact
Earlier we saw the specialized NAVIGATE menu item that would work with a Location
object that was part of a timeline item. We have another object that also provides some
additional commands when it is part of a card—the Contact object.

The most simple way to use a Contact is as part of the creator attribute on a timeline
item. If we have assigned a telephone number to this creator, we can add a VOICE_CALL
menu item to allow the wearers to directly call a phone number, in much the same way
they could access a URL:

{
 "text": "O'Reilly Media",
 "notification": {
 "level": "DEFAULT"
 },
 "creator":{
 "displayName": "O’Reilly Media, Inc.",
 "phoneNumber": "(707) 827-7019"
 },
 "menuItems":[
 { "action": "VOICE_CALL" }
]
}

This is a pretty simplistic use of the creator attribute, however, and it almost seems
easier to embed the telephone number as part of a URL and use that method instead.
But fear not—there are bigger and better uses for Contact objects.

Returning to our hypothetical example of a simple text messaging application, we can
use the Contacts collection to indicate the participants in a discussion. Glass will even
(sometimes) format the message using information we can provide as part of the crea
tor property as well as a list of recipients specified through the Timeline.recipi
ents property, but we strongly suggest you use HTML to control the exact layout you
want. We’re going to ignore our own suggestion for this example, however:

{
 "creator": {
 "displayName": "George",
 "id": "user-prez1",
 "imageUrls": [
 "https://mirror-api-playground.appspot.com/links/washington.jpg"
]
 },
 "recipients": [
 {
 "displayName": "Abe",
 "id": "user-prez16",
 "imageUrls": [
 "https://mirror-api-playground.appspot.com/links/lincoln.png"

216 | Chapter 10: Card Actions and Subscriptions

https://developers.google.com/glass/v1/reference/contacts

]
 }
],
 "text": "Welcome Abe",
 "bundleId": "thread-cicchat-1812",
 "sourceItemId": "cicchat-1812-1",
 "menuItems": [
 {"action": "REPLY"}
],
 "notification": {
 "level": "DEFAULT"
 }
}

Here we have a creator and a (rather small) list of recipients of this message. When we
view it in the Playground, we see one of the imageUrls belonging to Washington. When
we send it to Glass, however, we see a somewhat different format—Washington is on
top, in the usual position where we expect the sender to be, and Lincoln is shown on
the bottom as (the only) one of the recipients. This serves as a reminder of three things:
the Playground isn’t always perfect, you need to test things with Glass itself, and you
should control the formatting if you want it to look correct.

We’ve also included a bundleId and a sourceItemId here. We’ll explain why we included
them, and why their values are not an arbitrary pick, in a few paragraphs. Let’s look at
this rendered in the Playground in Figure 10-5.

Figure 10-5. Make sure you test your card prototypes on Glass!

And so now for purposes of consistency, let’s look at Figure 10-6, which is produced
after clicking Update Item and sending the item to Glass.

Keeping in Contact | 217

Figure 10-6. Testing image placement

It’s decidedly different, including both presidents!

We also see a new menu item action here, REPLY. Go ahead and try it out—when you
select the REPLY menu item, you’ll be able to dictate text to Glass that is sent back to the
Glassware. This works differently than any other menu item we’ve seen before since it
will generate a response with an INSERT operation. As you may surmise, this suggests
that a whole new card has been created to mark this event and we’re getting alerted that
this new card exists:

{
 "collection": "timeline",
 "itemId": "4bf0669e-bdcc-4641-8da6-5725a84fcffa",
 "operation": "INSERT",
 "userToken": "user-prez16",
 "verifyToken": "fourscore",
 "userActions": [
 {
 "type": "REPLY"
 }
]
}

When we process this callback on our job queue, we’ll go through our usual steps. When
we get a message with the ID 4bf0669e-bdcc-4641-8da6-5725a84fcffa, we might get
something like this:

{
 "kind": "mirror#timelineItem",

218 | Chapter 10: Card Actions and Subscriptions

 "id": "4bf0669e-bdcc-4641-8da6-5725a84fcffa",
 "inReplyTo": "470e1114-e06f-433b-94ff-67830e7d0107",
 "created": "1861-03-04T12:19:36.713Z",
 "updated": "1861-03-04T12:19:36.713Z",
 "etag": "1396181976713",
 "recipients": [
 {
 "kind": "mirror#contact",
 "source": "api:243969892606",
 "displayName": "George",
 "id": "user-prez1",
 "imageUrls": [
 "https://mirror-api-playground.appspot.com/links/washington.jpg"
]
 }
],
 "text": "Glad to be here, George",
 "notification": {
 "level": "DEFAULT"
 }
}

We see that the creator of the message we replied to is now included as the recipient (if
we used the REPLY_ALL menu control, all the previous recipients would also be included
here). There is no creator set—Glass doesn’t know who sent the message (or at least
doesn’t know the contact info for them). It also hasn’t associated it with the bundle or
the original source ID. We do, however, have a new field, inReplyTo, letting us know
the original message that was sent, and we can get both the bundleId and the sourceI
temId by using Timeline.get and getting that message as well.

Why do we care about the bundleId and sourceItemId, however? Well, we want this
to maintain consistency with our own database, so we need to make sure this reply gets
attached to the right message thread and we know which message we’re replying to
(since we do nested messaging when we view it on the Web). The bundleId corresponds
to the thread, and we can now look it up in our database and add it to the thread. It
doesn’t necessarily need to be the exact value of the thread ID—in this case, we have
prefixed it with a string so we know this is a thread on our message board and not a
private message, but however the value gets encoded in the string, we need to know how
to decode it.

After we insert this new message into the thread, we should now have a new message
identifier—what corresponds to the sourceItemId. We might want users to reply to
their own message, too, so we should do a Timeline.update or Timeline.patch to
update the message that was just inserted to give it the new sourceItemId, the bund
leId that corresponds to the thread, and the menu items that all the other posts have.
If we’re formatting the message differently (perhaps to give it a title or to format a long
message as we’ve previously discussed), this would be a good opportunity as well.

Keeping in Contact | 219

This brings up an interesting point, however. What happens if the original message in
our datastore is updated or we need to find out which messages in a thread are still on
the timeline? We know how to get things by the ID that Glass knows them by, but how
do we get them if we only know our ID? We can use the Timeline.list method and
specify either the bundleId parameter or the sourceItemId parameter. This returns a
(possibly large) list of matching results. If the results are particularly large, we may need
to make multiple calls to page through them all. (You don’t need to specify either of
these parameters—if you don’t, you’ll get all the timeline items that your Glassware has
inserted that haven’t yet expired.)

The ability for REPLY and REPLY_ALL to take voice-entered text is a very tempting fea‐
ture. It is easy to think of pinning a card, giving it a REPLY menu item, and using this as
a way to send voice commands to our Glassware. This is a bad idea for three reasons:

1. Pinning is an ineffective tool to set up a launcher, as we have discussed a few times
already.

2. Using the free-form text entry to issue commands can cause all sorts of problems
with trying to parse what the user actually said. It may be good in some rare cases,
but generally is best avoided.

3. We have a better way to set up Contacts as specialized voice commands and sharing
endpoints, which we go into detail about in the next chapter.

220 | Chapter 10: Card Actions and Subscriptions

http://bit.ly/tl-dev-list

CHAPTER 11

Sharing Resources with Glassware

We’ve done some exciting things with timeline items so far by using the Mirror API—
creating them, adding menus to them, deleting and updating them, and replying to
them, but the real power behind the Mirror API ends up being attached to contacts and
being able to share things with them. We’ve mentioned a lot so far in this book about
the ability to share information, and this chapter drills down into what it takes to ma‐
nipulate this powerful feature in your services. The concept of sharing timeline cards
that contain content in a variety of media formats created by the wearer—or even cards
distributed by other Glassware—is as important as subscriptions. In fact, the latter
couldn’t exist without the former!

In this chapter, we’ll take a look at the basics behind sharing, but also learn how Google’s
implementation of sharing takes mobile computing a step further, making for some
really interesting opportunities for your projects and the destinations your data can
have. This includes both the Share menu item, as well as leveraging voice commands
that are present on the main Glass menu.

The Share Menu Item
In our hypothetical chat Glassware from the last chapter, we covered replying to a mes‐
sage. If we think about other operations we tend to do on messages, we can see that
we’re missing a forward-like command. If you looked at the list of available values for
the Timeline.menuItems.action property, you’ll have noticed that SHARE hasn’t been
discussed yet. You put the two together…and there you have it (Figure 11-1)!

This introduces an interesting problem. It suggests that not everything can be shared—
it’s up to the Glassware that creates the card to offer the opportunity to share it. You
may be tempted to hoard your precious card for yourself—but resist the temptation.
Users are going to expect to be able to share cards with other services—this is, after all,

221

one of the core features of Glass. And this is the fourth Noble Truth from Chapter 5—
Avoid the Unexpected.

Figure 11-1. The Share action

We’re not going to show you how to add the Share action item—you should be able to
figure it out from everything you learned in the last chapter and by referencing the
documentation about the Timeline. But you may be wondering how to specify who or
what your users will be able to share their cards with. We’re not going to include a contact
as part of the card—that works for replies, but doesn’t make sense for shares.

Instead, contacts will need to be registered in their own dedicated collection.

Share Contacts
Looking at the Contacts resource representation, you should have a sense of familiari‐
ty. We have the expected operations: inserting new ones, deleting old ones, getting or
listing our contacts, or updating or patching them.

Creating and managing contacts in this way is different than including a contact as part
of a timeline item. Contacts attached to a card are useful for just that card; contacts
added by calling Contacts.insert are available as sharing targets and for voice com‐
mands. We sometimes refer to these contacts as “sharing contacts” to highlight their
role.

222 | Chapter 11: Sharing Resources with Glassware

http://bit.ly/timeline-doc
https://developers.google.com/glass/v1/reference/contacts
http://bit.ly/contacts-insert

Sharing contacts have a number of attributes you need to set. A few of the properties
listed on the resource page aren’t necessary for a sharing contact, but these are the basic
ones:
id

Unlike a timeline ID, you will be setting this value yourself and Glass ignores it
except to echo it back to you when you get an event involving this contact. If you
have multiple contacts, and we’ll explore why you may or may not in a bit, you
should set this to something meaningful to you (for example, the ID in your own
database of the user represented by this contact).

displayName

The name to show for this contact. It should not include the name of your appli‐
cation, since a listing of the contact will show your name before the contact name.
This will be shown in a list when triggered from any “OK Glass” audio prompt or
on a full card (with the imageUrls specified—see next item) when selected from a
tap.

Let’s look at some examples in Figures 11-2, 11-3, and 11-4 of how a resource in Glass
—a photo, a video, even a link—can be shared with an entity in the Glass ecosystem.

Figure 11-2. The Share voice command

Share Contacts | 223

Figure 11-3. Glassware sharing options

Figure 11-4. More sharing options

imageUrls

This will be a list of URLs to show as the background for this contact. Images should
take up the entire 640×360 display and have a nonblack, nontransparent back‐
ground.

224 | Chapter 11: Sharing Resources with Glassware

acceptTypes

You should only have your contact listed for content types that you’re prepared to
handle. It doesn’t make any sense for someone to share a video with you if all you
know how to handle is a picture, so this is where you would list all of the MIME
types that you can handle. By default, if you leave this property blank, Glass assumes
support for all MIME types. Wildcards are supported, letting you specify image/*,
video/*, and audio/*, in addition to individual formats like video/mp4. Glass na‐
tively records video in video/mp4 format and stores images in image/jpeg format,
but remember that other Glassware may have their contents in other formats.

The Kinda-Sorta-Not Quite Relationship Glass Has with Audio Formats
While you can list supported audio formats for the acceptTypes property, Glass at the
moment doesn’t allow you to attach audio-only files to timeline items. For instance, you
can’t put an MP3 on a card and push it to a user. The media player Glass uses assumes
video, so in cases where you absolutely need an audio track to be distributed, create a
video with a static background and then send the URL as a link in a card or upload the
clip to YouTube, and let users stream the file from a server, as we covered in Chapter 10.

If we were creating some Glassware that did photo editing, we might create a contact
with the following attributes:

{
 "id": "invert",
 "displayName": "Invert Colors",
 "imageUrls": [
 "https://dl.dropboxusercontent.com/u/12019700/invertcolors.png",
],
 "acceptTypes": [
 "image/jpeg"
]
}

Most Glassware will want to set up at least one contact when the user first logs in—at
the same time you set up the subscription. This makes a great deal of sense since we’ll
be told about shares through the callback mechanism.

When someone shares an item with the contact for our Glassware, Glass does a few
important things that aren’t always obvious:

1. It creates a copy of the item being shared and inserts it at the front of the user’s
timeline to the right of the home card. If you’re watching Glass, you’ll see this
happen.

Share Contacts | 225

2. It gives ownership of the copied item to our Glassware. Remember back to Chap‐
ter 10—each card is owned by one, and exactly one, Glassware. This is how it makes
it ours to control.

3. It then notifies us about this new card via the subscription we have set up for this
user.

So using a subscription to the Invert Colors contact as we laid out above, we might
get a notification body such as:

{
 "collection": "timeline",
 "itemId": "f733a4bd-7a9a-405f-a820-624ad3fe6db5",
 "operation": "INSERT",
 "userToken": "12345678901234567890",
 "verifyToken": "shibboleet",
 "userActions": [
 {
 "type": "SHARE"
 }
]
}

We’ll follow our usual procedure to get the info about the user, verify the verifyTo
ken, and get a copy of the new timeline item that has been generated on our way to
processing it. The item should look familiar, but with some added touches (we’ve re‐
moved some elements for clarity):

{
 "kind": "mirror#timelineItem",
 "id": "f733a4bd-7a9a-405f-a820-624ad3fe6db5",
 "recipients": [
 {
 "kind": "mirror#contact",
 "source": "api:1029263551083",
 "id": "invert",
 "displayName": "Invert Colors",
 "imageUrls": [
 "https://dl.dropboxusercontent.com/u/12019700/invertcolors.png",
],
 "acceptTypes": [
 "image/jpeg"
]
 }
],
 "attachments": [
 {
 "id": "ps:5997490649262926546",
 "contentType": "image/jpeg",
 "contentUrl": "https://www.googleapis.com/mirror/v1/timeline/f733a4bd-7a
 9a-405f-a820-624ad3fe6db5/attachments/ps:5997490649262926546?alt=media"

226 | Chapter 11: Sharing Resources with Glassware

 }
],
 "menuItems": [
{ action: "DELETE" }
]
}

We have a lot of information we’ll need from these two objects. We know who is doing
this, of course, from the user ID. We know that this is a share from the Timeline.user
Actions.type attribute. We can tell that this is a share that wants to invert the colors
from the value of recipients.id matching that for the invert contact we created. Finally,
we have the Timeline.attachments.contentUrl attribute, which gives us a URL we
can fetch to get the image itself. Notice that there is no HTML or text attribute for this
item.

Before we go and fetch it, however, there are two things we need to pay attention to.

First, if we look at the Timeline.attachments resource, we can see that one of the
possible attributes is isProcessingContent. We don’t have that value set here, so we
can assume it is set to false and the content of the attachment is ready for us to fetch,
but especially when we’re dealing with video, we might find it set to true. So what do we
do? Since we’re handling this as part of a job queue, we might just defer the job for a
few more seconds and run it again later. When that time comes, we can pull the timeline
item again and see if the attachment has been processed yet.

Secondly, when it is time for us to get the content, we still need to authenticate to access
the contentUrl. Fortunately, most of the libraries we’re using provide utility methods
to do an authenticated URL fetch, but keep in mind that you will either need to use them
to get the data, or you will need to include the auth token yourself as part of the HTTP
headers.

Once we have the image, we’ll do our color inversion on it so we have a new image.
What do we do with it now? We have a number of options.

We could update the original item that was shared with us, replacing the existing at‐
tachment with the new image that we just generated. If we do this, we might also want
to update the menu items so the user can reshare this image with some other Glassware
or send it to a friend or something.

We could just create a new timeline item with this image. This preserves the original
image shared with us, but supplements it with the new image. We should probably
provide both the DELETE and SHARE menu items, while we’re at it.

While both of these might be good, depending on your exact situation, one great alter‐
nate solution would be to put both of the images into the same bundle. This would
involve creating a new item, just as we suggested, but also including a bundle ID. We
would also edit the item shared with us to add that bundle ID as well. Depending on

Share Contacts | 227

http://bit.ly/tl-attach

our needs and desires, we may want to add some text to mention which filter was used
or explicitly pick which image is the bundle cover.

This works great if we have just one filter to apply, but what if we have more than one
to offer? We could do both color inverts and image rotation. If we’re rotating the image,
we may need to provide rotation of 90, 180, and 270 degrees, not to mention image flip.
And then we can start getting fancy by providing all sorts of filters. Would we need to
create different Glassware for each one?

Hopefully you’ve realized that we don’t. Each option can be a contact. We can distinguish
which filter is being requested by examining the id on the recipients of the new item
shared with us and then route it to the correct function to do the processing.

One thing we should keep in mind, however, is that wearers won’t want to swipe between
dozens of contacts to determine which filter they want to apply. That would create a
very poor experience. We have a couple of approaches toward resolving this dilemma.

Firstly, when they sign up (and at any point they return), we can let them configure
exactly which filters they want available. Depending on the settings they choose, we can
add and remove contacts representing those filters. Remember that we’re designing for
Glass here—we need to simplify their options on the device as much as possible and
leave the more difficult options to mobile or desktop configuration.

Another option, however, which we might want to use in connection with the first,
might be to let them select which filter(s) they want to apply for most of their shares—
either individually or layered on each other. So they might create a “Frequent filters”
sharing option that takes the picture being shared and creates three new pictures: one
with faux HDR treatment applied, one that is brighter, and one that applies both a darker
filter as well as a desaturation filter. Each of these new pictures would be saved in the
same bundle with the original and labeled with a footer indicating which filter(s) were
applied.

You Can’t Share to Multiple Entities
In case you were curious, you’re not able to share to multiple enti‐
ties at the same time. You’ll need to perform and handle multiple
transactions if you want to share a resource with a Google+ Com‐
munities group, a Google+ circle, and another Glassware service.
This is by design, as not all entities will handle a resource the same
way. It also deters senders from being spammy and prevents Glass‐
ware producers from finding a sneaky way around using their API
quota.

While the footer with filter information might be interesting, it might be even more
interesting to have the wearers annotate the picture with some text describing what the
picture is. We can do this by allowing them to add a caption to the picture through the

228 | Chapter 11: Sharing Resources with Glassware

sharingFeatures property. This would change our contact to something like
Figure 11-5:

{
 "id": "invert",
 "displayName": "Invert Colors",
 "imageUrls": [
 "https://dl.dropboxusercontent.com/u/12019700/invertcolors.png",
],
 "acceptTypes": [
 "image/jpeg"
],
 "sharingFeatures": [
 "ADD_CAPTION"
]
}

Figure 11-5. Adding a caption to a shared resource

Now, after they share the image, they’re prompted to say “OK Glass” and add a caption
if they wish. The callback we get is the same, but the timeline item that was inserted
now also contains a text attribute with the text that was transcribed:

{
 "kind": "mirror#timelineItem",
 "id": "f733a4bd-7a9a-405f-a820-624ad3fe6db5",
 "text": "beach at sunset",
 "recipients": [
 {
 "kind": "mirror#contact",

Share Contacts | 229

 "source": "api:1029263551083",
 "id": "invert",
 "displayName": "Invert Colors",
 "imageUrls": [
 "https://dl.dropboxusercontent.com/u/12019700/invertcolors.png",
],
 "acceptTypes": [
 "image/jpeg"
]
 }
],
 "attachments": [
 {
 "id": "ps:5997490649262926546",
 "contentType": "image/jpeg",
 "contentUrl": "https://www.googleapis.com/mirror/v1/timeline/f733a4bd-7a
 9a-405f-a820-624ad3fe6db5/attachments/ps:5997490649262926546?alt=media"
 }
],
 "menuItems": [
{ action: "DELETE" }
]
}

Captioning adds some powerful new options for what you can do with share contacts,
but there are a couple of things you should be sure not to do. Don’t use this as a way to
issue voice commands and don’t use this as a way to create a text-only document that
is devoid of the media it was shared with. For the former, just create another share
contact—the voice system will handle it much more reliably. For the latter, we have voice
commands.

Voice Commands
We can take pictures or video with Glass and then share it to our apps, but how do we
do the same thing if we want to send a text message? For this, Glass has provided two
voice commands off the main menu, and has indicated that additional voice commands
are forthcoming.

We can set up contacts so that they are valid targets of the “Take a note” command, the
“Post an update” command, or both. If we think back to our simple text message ap‐
plication, we had Reply and Share commands…and now we’re seeing how to create a
new message.

Voice Your Ideas
If you’d like to see other voice commands as part of Glass, Google is taking requests.
Make sure your suggestions fill a generic need, and not just a need that your Glassware

230 | Chapter 11: Sharing Resources with Glassware

alone can fill, and are distinctively pronounced from other commands. Review some
examples at the Google’s Voice Command Checklist page, which also has a link to the
form to submit your request.

Contacts need to be registered with the voice commands they’re willing to accept when
we add them; we do this with the Contacts.acceptCommands attribute. So if we’re setting
up our chat client contacts, we might create one such as:

{
 "displayName": "Abe",
 "id": "user-prez16",
 "imageUrls": [
 "https://mirror-api-playground.appspot.com/links/lincoln.png"
],
 "sharingFeatures": [
 "ADD_CAPTION"
],
 "acceptCommands": [
 "POST_AN_UPDATE",
 "ADD_A_NOTE"
]
}

Did you notice that we didn’t explicitly list an acceptTypes attribute? In this case, we
want any multimedia format to be shared to our pal Abe. A far cry from him sitting at
the telegraph station, huh?

If we send him a message by announcing “OK Glass…Take a note…Abe” our Glassware
will receive a callback with the notification body containing something like:

{
 "collection": "timeline",
 "itemId": "09ac1ca0-2de6-40f9-9c20-c1b36f665970",
 "operation": "INSERT",
 "userToken": "12345678901234567890",
 "verifyToken": "shibboleet",
 "userActions": [
{ type: "LAUNCH" }
]
}

…which is similar to what we’ve seen before, but with the userActions.type of
"LAUNCH" indicating this was launched from the home card menu. After we go through
our usual verification steps and fetch the item, it might look something like:

{
 "kind": "mirror#timelineItem",
 "id": "09ac1ca0-2de6-40f9-9c20-c1b36f665970",
 "text": "got your theater tickets for this evening",
 "created": "1865-04-14T18:06:37.118Z",

Voice Commands | 231

http://bit.ly/voice-check

 "updated": "1865-04-14T18:06:37.118Z",
 "displayTime": "1865-04-14T18:06:37.118Z",
 "recipients": [
 {
 "displayName": "Abe",
 "id": "user-prez16",
 "imageUrls": [
 "https://mirror-api-playground.appspot.com/links/lincoln.png"
],
 "sharingFeatures": [
 "ADD_CAPTION"
],
 "acceptCommands": [
 "POST_AN_UPDATE",
 "ADD_A_NOTE"
]
 }
]
}

This timeline item is pretty basic and pretty much what we’ve seen before—we have
text, but that’s about it. So when we process this message we should add it into our
database, then update the card so it contains our internal identifier as the sourceIte
mId. We also need to add the creator field, so the REPLY menu command will work
correctly…oh, and some menu items such as DELETE while we’re at it, too!

We have two notes of caution here, and both should sound somewhat familiar by now.
You may be clamoring at this point to submit your application name as a voice command
so you can corner the market on its use. Don’t bet on this option. Although you have
control over the name of the contact used by a voice command, the commands them‐
selves will be set by Google, and the company has indicated that it will be focusing on
fairly general trigger phrases using imperative verbs that many apps will be able to use.
Remember—actions, not apps!

Secondly, you’re probably best off treating the text the user has dictated as an opaque
message. Don’t try to parse it, or prepare to suffer the consequences if you do. In par‐
ticular, you may notice that when transcribing the spoken word Glass sometimes choo‐
ses to use the numeric “2” or other times uses “two,” “too,” or “to.” Android’s speech-to-
text engine has powerful contextual features that try to discern what form of a homonym
is implied by the user, but it’s not perfect, so don’t bank on it. Being prepared to handle
these isn’t always fun, and may give you and your user unexpected results, particularly
when you are expecting to use the text in a particular context.

On that note, as we’ve discussed many times—Glass is all about context. We’ll look a bit
further at that context and one spot of context in particular, the user’s location, in our
next chapter.

232 | Chapter 11: Sharing Resources with Glassware

CHAPTER 12

Context Is King: Using Location
and Other Signals

What are the three most important things about buying a house? Location, location,
and location. There may be a lot more relative to building great Glassware, but location
is certainly one of the most important cues that we have about what someone wearing
Glass will want to know about at any given moment. It is a core principle to the third
Noble Truth: Keep it Relevant. And the one unifying force that binds not only location
data, but also signals relative to time, the user’s activity, identity, proximity, scheduled
events, and presence of other devices is context.

Location isn’t the only tool we have at our disposal to help read the mind of someone
using our Glassware, but it does serve as a good foundation upon which to base our
other contextual inputs. We’ll be discussing how Glass directly supports location-aware
services, some unexpected ways we can use this information, and how it serves as a
model for other context-based data that we may wish to incorporate in our Glassware.

We’re going to start with a warning, however, which you’ll see echoed a few more times
in later chapters. Although all of Glass is evolving, location services are still somewhat
immature. You should expect that it will only improve as we move forward, but what
we describe here will serve as a cornerstone for what you can expect in the future.

Why Aren’t We There Yet?
With location being so important and a huge feature on Android, why does it seem to
have so many problems on Glass? We can only speculate, but there are probably a few
reasons why. Checking for GPS signals is extremely resource intensive, especially on the
battery, so Glass is pretty conservative about how frequently it tries to get your where‐
abouts when it isn’t explicitly navigating. Although there have been some improvements
on this front with recent versions of Android, as of the time of this writing Glass was

233

still using an older Android build—expect some improvements when Glass gets an
update.

You might wonder why Glass isn’t just using the location services that have been a part
of Google Maps for a while now. They may have anticipated some of the changes with
Maps that moved location services to Google+ and changed how location tracking was
done for mobile. As mobile location tracking continues to shake out from this change,
we might expect Glass to adapt as well.

Enabling Location
You may be surprised to learn that you actually need to do something to enable location
services with Glass. After all, if our users expect us to read their minds, and where they
are is a big factor to this, wouldn’t it just be assumed that we should know where they
are? Certainly location services on Android tend to work behind the scenes without the
user having to be very involved.

As we explored early on, Glass has had to tread lightly when it comes to things that
could be seen as invading a person’s privacy…and your location is certainly one of the
things that a person may most wish to guard. While it is easy to turn your location on
and off on your phone, you don’t have the same kinds of controls with Glass. So any
application that wishes to know where you are must explicitly ask for permission to find
out.

Can you guess how it asks for the rights to use geodata? The very same way our Mirror
API–based Glassware asks for permission for anything—it has its own OAuth scope
that indicates we want to view a user’s location. If you’ve forgotten what an OAuth scope
is, take a quick look again at Chapter 8. (Don’t worry, we won’t notice.)

You should already be requesting the https://www.googleapis.com/auth/glass.timeline
scope, and probably at least one other scope such as profile so you can get the user’s
information. To these we will need to add the https://www.googleapis.com/auth/
glass.location scope, which will instruct Glass to subscribe to location updates, provide
location information along with timeline events, and give us the ability to make queries
for a user’s location at any specific time.

Where Do You Think I Am?
You might remember from Chapter 10 how when we talked about subscribing to time‐
line events we mentioned that we would talk about subscribing to location events in this
chapter? The time has come! And the subscription itself is amazingly simple. For the
Subscriptions.collection property, we can specify “locations” to get alerted when‐
ever there is new location information for our user.

234 | Chapter 12: Context Is King: Using Location and Other Signals

When the information is available, we’ll get a callback similar to ones we’ve seen for
timeline events:

{
 "collection": "locations",
 "itemId": "latest",
 "operation": "UPDATE",
 "userToken": "12345678901234567890",
 "verifyToken": "shibboleet"
}

We might be tempted to use the same logic to process this callback as we did for timelines,
but there are a few things we need to do differently. Most notably, we’ll need to call a
different method to get the location event than we did to get the timeline item. Instead
of calling Timeline.get with the ID specified by itemId, we’ll be calling Locations.get.

We know…it’s going to be difficult to remember the difference between the two. We
think you’re up to the task, however.

Calling Locations.get returns some JSON not unlike this fragment:

{
 "kind": "mirror#location",
 "timestamp": "2014-02-02T17:57:06.770Z",
 "latitude": 37.4038194,
 "longitude": -122.081267,
 "accuracy": 22
}

Referencing the Locations documentation, we find the fields are pretty straightforward:
timestamp

When the user was recorded at this location. Note that although we’re requesting
the “latest” position, it doesn’t mean it is very recent. We’ll discuss this a bit more
later on.

latitude

A floating-point number indicating degrees north of the equator if the number is
positive or south of the equator if the number is negative.

longitude

Similarly, this is a floating-point value indicating degrees east of the Prime Meridian
(if it is positive) or west of the Prime Meridian (if negative).

accuracy

The best estimate of accuracy, in meters, of this reading at the time it was taken.

Where Do You Think I Am? | 235

http://bit.ly/locations-get
http://bit.ly/locations-docs

You Want It WHEN???
How often will we receive a location change event? Currently, no more frequently than
every 10 minutes. That seems like a lot, but we can’t even assume that we’ll get it that
frequently all the time. For a variety of reasons that may be out of our control, Glass
may not update our location on the schedule we expect.

Fortunately, Google both knows about these issues and understands how important
location is. We can expect improvements in frequency as Glass matures. In the mean‐
time, we can start working with what we have with the knowledge that it will only get
better.

Getting these periodic updates is a great way to judge when and what to deliver to our
users. Are they still at work, are they getting close to quitting time, and does traffic in
their area look bad? Perhaps now might be a good time to warn them. Have they not
moved very far since the last time we got their location? Sounds like they don’t need
new driving reminders about where the next gas station is.

That last suggestion raises a good question. We know where a person is now—can we
find out where they were recently? Well…yes and no. Yes, there is the Timeline.list
method that will let you get the most recent timeline events. Unfortunately, at the mo‐
ment it only ever returns one event—the event with the ID of “latest.” Expect this to
change in the future as well.

Location change events are all well and good, but can we tie them to events we’re already
familiar with—things shared with us or new notes that are taken? This is easier than
you might think.

Location as Part of Timeline Events
It turns out that once you request location information via the glass.location scope, you’ll
get this information attached to every timeline item shared with your Glassware.

You may be encouraged by this—if your user is sharing lots of things with your contacts,
your Glassware will get lots of location updates, and this will get past the problems of
updates only every 10 minutes. Your mind is probably racing with a way to convince
people to check in with you specifically so you can get the most accurate location pos‐
sible.

Sorry to dash your hopes, but location is still only updated every 10 minutes, and this
doesn’t offer you a way around this. The location attached to a timeline item is just the
latest location at the time the item is shared. If your user is sharing an item that was
created significantly earlier, the location won’t match the place where the timeline event
was originally generated.

236 | Chapter 12: Context Is King: Using Location and Other Signals

So why is this included with a timeline item when we could just request it? It saves us a
function call (and thus some of our quota for our daily Mirror API calls), and if we’re
requesting location information at all, it makes sense that we would find it useful when
a user shares something.

What Happened to Geotagging Images?
One of the issues that popped up in the early days of Glass was noting how images
captured with the camera didn’t get EXIF location metadata. Once uploaded to Google+
via Instant Upload the location could be entered, but the manual nature of having to do
so irked Explorers.

Geotagging, now a staple of photography in the Social Era, wasn’t available for Glass
when either tethered to a smartphone via the MyGlass app, or even when on WiFi. This
seems tied to the general location issues we’ve encountered in this chapter. As with
everything else having to do with location, it seems safe to assume that this will eventually
be resolved.

What sort of uses can we put the location to for a timeline event? Attaching the share
to a marker on a map is the most obvious, and there is already some great Glassware
that illustrates some of these concepts, but what else is location and a share good for?

It may seem flippant, but it all depends on what your Glassware needs to do. Keep in
mind that locations can determine many things beyond the obvious point on a map.
Your location may determine what language the local citizens are speaking or what
currency they’re using, and if your Glassware is involved in translation or currency
conversion, you may be able to take advantage of this information. If you know a person’s
location and the current time, you may be able to determine things such as the current
weather, the current tides, the sunset and sunrise times, or how bright it is outside.
Timeline events are all marked in UTC time, but the event location may let you convert
that into the local time because you’ll know the user’s current time zone.

Setting Things Straight
This previous concept of using the user’s location to determine the current time zone
is a good one, but it has a flaw: to get the time zone for a transaction, you’ll take the
location and probably forward it to a time zone service—for every single message that
comes in. That can be a lot of extra server roundtrips and hits against your API quota.
Since Glass already has this information, wouldn’t it be great if it could provide it for
us? It turns out that it can.

The Mirror API provides us with the Settings.get method to retrieve this sort of
information. For certain key values (Google calls them “IDs”), calling this method will

Location as Part of Timeline Events | 237

http://bit.ly/settings-get

return the value the user’s device is set for. The Settings resource accesses data that the
user configures in MyGlass, which lives in the cloud, is accessible through the MyGlass
mobile app and on the Web, and is exposed to both the Mirror API and the GDK.

To get the current time zone, we can request it with the timezone ID using a URL such
as this (and providing the correct auth token):

https://www.googleapis.com/mirror/v1/settings/timezone

…which might return a JSON object looking something like:

{
 "kind": "mirror#setting",
 "value": "America/New_York"
}

(Clearly this is the example from Allen. Jason’s time zone, given that he lives in a place
that’s 17 hours ahead of Eastern Standard Time, is literally more futuristic.)

With this, the time zone database that most languages support can convert the UTC
time Glass provides us into a time format more useful to the user.

Location Becomes Localization
But just knowing the time zone isn’t necessarily enough to format a date and time cor‐
rectly. Different countries and languages have different styles—not to mention different
ways of saying the exact same thing! Localization, which displays content such as text,
images, and videos in a format that’s appropriate for a particular region, and has always
been a big part of Android and web development, is an effective solution for this prob‐
lem. By supporting multiple languages, your Glassware broadens the reach of your
products and adds great value. This can be applied not only to content within timeline
cards, but also to menu items and voice commands.

MyGlass Speaks Your Language
Did you know Glass displays a different voice command prompt for capturing images
depending on what the user has set as her default language in MyGlass? It’s true! For
users having “English (United States)” as their preference, the familiar “Take a pic‐
ture” will appear. But for our friends over in the UK, “Take a photo” will be accepted
when they have “English (United Kingdom)” as their language (Figure 12-1).

Additionally, time formats and spelling also adjust—for example, the UK setting applies
the 24-hour clock to the home card and renders the “Recognize” command as
Recognise.”

238 | Chapter 12: Context Is King: Using Location and Other Signals

Figure 12-1. The Language setting dialog in MyGlass

Fortunately, the Mirror API provides us with a locale setting to get this information. So
we can ask for the following:

https://www.googleapis.com/mirror/v1/settings/timezone

…and get back a standard locale string as part of the response:

{
 "kind": "mirror#setting",
 "value": "en-US"
}

Subscribing to Locale Changes Saves API Calls
These fragments of data are useful to get a user’s current preference when they set up
your Glassware, but they don’t really make things easier in the long run. We still might
need to issue another API call periodically to get the time zone in case the user is trav‐
eling. (It’d be far less likely they’d change their locale, at least.) It won’t change that often,
but it would be helpful to know when it does.

Fortunately, we can leverage the Subscription object that is already part of the Mirror
API to do this. Instead of subscribing to the Timeline collection, we can subscribe to
the Settings collection. This will send us notifications when any of the settings change.
If you need a reminder about how subscriptions and notifications work, check out
Chapter 10 on that topic again. (And you may be wondering if you can do this sort of

Subscribing to Locale Changes Saves API Calls | 239

https://developers.google.com/glass/v1/reference/settings

thing for location—take a look at the documentation about Subscription and you may
find what you’re looking for, but remember some of our caveats earlier.)

Your backend can then use whatever templating framework you want (Rails, Django,
ASP.NET, Node.js, etc.) to serve the appropriate resource string, which is then pushed
to the Mirror API and delivered to your users.

It’s a very good idea to proactively have your Glassware support multiple languages,
even though as we write this the only languages available in MyGlass are the US and
UK flavors of English (or is it flavours?). When you submit your Glassware for review,
you’ll get helpful pointers from Google on how to best implement localization, if you
require it.

You can find more tips from the Glass team on best practices for localizing your Glass‐
ware for both the Mirror API and the GDK.

Other Contextual Signals
In all of these cases, location plays an important contextual role—but it’s not the only
type of signal you can use in your applications. This approach emphasizes the personal
network consisting of the user’s surroundings, the presence of others, what the user is
doing at that moment, times and dates, and what’s happening both in the user’s vicinity
or based on events they may have through other platforms like calendar or to-do ap‐
plications. These signals tap a constant stream of inputs swirling around the user at any
given moment.

A fantastic practical example of a contextual action is what a buddy of ours, E. John
Feig, did with Talkray, a calling and messaging app with Android Wear support. John
and his team at TiKL created an auto-reply feature using activity recognition, based on
the user’s real-life action. If a user receives a message and then chooses the Auto-reply
busy button, the device running Talkray checks to see how fast the user is moving; if it
detects that the user has a certain velocity, it’ll send “I’ll get back to you later, I’m driving”
as a canned response. It’s the perfect contextual microinteraction!

Let this be a springboard for how you might use contextual signals in your own wearable
applications.

240 | Chapter 12: Context Is King: Using Location and Other Signals

http://bit.ly/subscript-col
http://bit.ly/mirror-api-l18n
http://bit.ly/gdk-glassware-l18n
http://talkray.com/

Android Wear and the Personal Network
The Android Wear SDK is built in such a way so it detects all the devices the user is
signed into under the same Google account—including Glass. This means it can read
data from, push notifications to, and sync information between all connected devices
within a user’s network seamlessly.

Context and the Future
You’re probably looking incredulously at this chapter—that’s it? That’s all there is to
using location with Glass? Well, no. But that’s all there is to say about how to use it. The
concepts are very simple and build on the things we already know how to do with Glass.
The power will be in how you use it.

Location provides an example of how we can use other information in context. We will
often need the user’s permission to get access to additional sources of data. Some in‐
formation we will want to act on as it changes and is delivered to us, while other bits of
data are only relevant when the user shares something with us. We need to be prepared
to handle both to make great contextual Glassware. Location is an incredibly valuable
signal that contributes to the overall goal of understanding the users—where they are,
what places and things are around them, and who is nearby—in addition to who they
are, what their interests are, what social connections they have, and what they’re cur‐
rently doing. But, it’s still just one piece of a very large puzzle.

What other sorts of information signals should we be thinking about as Glassware ar‐
chitects? Consider a service delivering information about Major League Baseball—
clearly we’ll want in-game events delivered so we can pass them on to our users, which
is a pretty straightforward scenario, seeing as how America’s pastime is ripe with infinite
data with insatiable demand. What other contextual signals might we need to craft
messages with high utility?

What if we could see that they were having an afternoon meal with a friend, and the
profile information for that companion indicated they were a devout fan of the local
ballclub? We might send schedules, scores, and stats about their team before (or during)
the lunch meeting to provide conversation fodder. Or maybe information from within
the division to which the team belongs, which means including regional teams. Or
perhaps we might respond to a picture of a sports logo by providing some trivia about
that team.

This is Think for Glass in action, as we’re leaning hard on relevance to life experience,
which the user will surely appreciate.

Context and the Future | 241

https://developer.android.com/wear/

Continuing our example, what if we know that our user is planning an airplane flight,
perhaps because we have access to her calendar or because she told us explicitly. Once
we have this information we might use her current location to determine which side of
the flight she is on. If she hasn’t taken off yet, we might give her gate information and
flight status. But if we know she is at the destination airport, we might send her infor‐
mation about where the baggage claim is and let her call her ride to let them know she
is on the ground.

Our application needs to be smart enough to know the difference and to have all the
information the user needs (departure gate, baggage claim, and ride contact phone—
all of which come from different sources) when she needs it. At the same time, if she is
still at the source location when the flight lands, we may need to apply some extra logic
to figure out if she missed her original flight, or if she is just waiting to make sure a
family member has reached their destination safely.

In some ways, this discussion about data sources and context is a fitting conclusion to
our chapter on location and also to our section about working with the Mirror API.
Glass isn’t about what Google gives you—it is about what you do with those tools. You’re
bringing information to the table that your users are interested in. Really think about
how to blend the idea of enriching the user’s experience with location data to the Glass
paradigm. Make the data and the ways it is delivered to the user part of the experience,
not just lumping in a mapping feature.

The Mirror API is all about how you deliver that information to your users and what
you’re giving them to interact with it. What we’ll be talking about going forward are
other places with Glass you may wish to explore.

242 | Chapter 12: Context Is King: Using Location and Other Signals

CHAPTER 13

The GDK

The Google Glass ecosystem includes the ability to build client applications to be in‐
stalled on Glass that interface directly with the system, doing things that largely aren’t
available through services dependent on the cloud-resident Mirror API, including off‐
line capabilities, sensor access, and real-time interactivity. The Glass Development Kit
(GDK) is a library that extends the larger Android SDK by letting developers write full
Android applications in Java and use associated tools for debugging, crash reporting,
and analysis.

This chapter gives you an overview of the GDK, its capabilities, the distinct UI elements
it provides for Glass, and design patterns for working with each type of UI element—
the right way.

Mike DiGiovanni, an insatiably curious coder from New Jersey whose early add-ons for
Glass included Winky, which later became the system wink-to-take-a-picture gesture,
enthusiastically proclaimed about the GDK, “Native Glass development is, by far, the
most exciting development that I’ve done in years.” Many throughout the Glass com‐
munity happily echoed this sentiment.

Installed Apps Running on Glass
It’s important to note here that native development on Glass doesn’t change the core goals
of the product—you’re still catering to microinteractions in a head-mounted display. This
is key to being able to Think for Glass. The fundamentals of the Think for Glass phi‐
losophy don’t change at all; the GDK just provides a new set of tools at your disposal
for building the perfect stage for your idea and enhancing interactivity in your own
custom ways.

Here’s the billion-dollar secret about native Glassware that many in the media (including
many covering the technology beat) got wrong: it didn’t just magically appear when the
GDK was unveiled at Google’s San Francisco office at a hackathon before a group of

243

https://developers.google.com/glass/gdk
http://bit.ly/digiovanni-gdk

anxious coders and reporters. If you use Glass freshly unboxed, without installing any‐
thing additional, you’re still using a lot of native Glassware all the time, presented in a
couple of different ways. Several components of the core Glass firmware are applications
providing an experience that completely honors the timeline model, in addition to living
outside of it. In a twist of irony, GDK apps enhance the default wearable experience—
and at the same time go rogue against it.

Here’s some terminology for those of you who are sticklers to de‐
tail before you go running us out of town on Amazon. Technically
speaking, “native” Android programming refers to the Android Na‐
tive Development Kit, an SDK allowing C/C++ libraries to be used
within Java-based projects. The moniker has become muddied
somewhat in mainstream use in recent years to the point that “na‐
tive” now implies “anything mobile” and “not on the Web.”
We’ll do our best to not let this get out of hand in this chapter. And
since we won’t be covering the NDK, just know that in the context
of our discussion on the GDK we’re using “native” to refer to the
writing of Java code for Glass and apps that run locally on the wear‐
able, not Glassware using the Mirror API.

This type of Glassware doesn’t necessarily force you to mess with OAuth or go to the
cloud to do anything—everything’s running on the device as a compiled program. Let
this inspire you as a developer! There’s lots of room to create here.

Rather than pit the two frameworks against each other in a programmer’s holy war, the
GDK and Mirror API productively share space, with both using the timeline as a staging
environment. They tightly integrate as partners, not rivals, in helping deliver a very
convenient user experience. However, your application code and the timeline run in
completely separate processes.

This is what we fully respect as the sheer brilliance of the Glass ecosystem—there’s great
blurring between what’s running RESTfully and what’s a locally executing process. This
is a good thing! The trained eye (which by this point in the book you certainly have)
can quickly pick out an installed app separate from a cloud-based service, but the time‐
line is what stitches them together into a coherent, unified interface.

This produces great choice and great opportunity for you as a Glassware designer/
developer. You may have an idea germinating in your brain that hinges on being able
to read the user’s rate of acceleration and bearing at any precise moment in time. Or
you might be thinking about presenting data as some cool animation or complex 3D
diagram that adapts to changes in real time. Perhaps you’ve got a can’t-miss concept
involving an innovative use of the Glass camera, or you demand extremely low-latency
communications and system responsiveness. Maybe you just require some custom
functionality that the Mirror API just doesn’t provide. There’s the possibility your de‐

244 | Chapter 13: The GDK

https://developer.android.com/tools/sdk/ndk/
https://developer.android.com/tools/sdk/ndk/

velopment team may have a vast legacy library written for an existing app that does cool
things you’d like to apply over the wearable paradigm. Or, you might want to make an
entire universe unto itself and give people a new way of experiencing the world.

Whereas the Mirror API is an agile platform that abstracts a lot of the gory details of
system programming so that you can rapidly iterate and turn your ideas into usable
products, the GDK gives you much more control over the exact implementation of what
you’re trying to do. The trade-off, of course, is that the craft of building applications
that run on the device isn’t exactly a job most of us mere mortals can do during our
lunch hours. It’s a very complex and involved process requiring unit testing, debugging,
refactoring, and deployment; and having total control means sacrificing speedy devel‐
opment. The benefit to you if you’ve done Android development previously is that you’ll
be using the same skills and APIs to build Glass apps.

What Is the GDK?
The Glass Development Kit is an additional library to the Android SDK that lets you
code up features specific to Glass. It’s an additional Java archive (JAR) you bundle with
your Android projects that gives you access to classes to do Glass programming for
programmatic control of Glass UX elements like voice recognition, gestures, and loca‐
tion data.

The GDK extends the core Android stack, which lets you work with UI widgets and
layouts, along with the core hardware components like sensors and GPS, and managing
activities, services, and broadcast receivers. Native programming gives you more gran‐
ular dominion over user interface elements, as it is immediately responsive to user input.

The basic platform features several components from the Android SDK, which work,
more or less, as they do on stock smartphones and tablets (for more on Android de‐
velopment, check out Learning Android, 2nd Edition, by Marko Gargenta and Masumi
Nakamura:
Location provider

The user’s position on Earth.

Camera intent
Control the camera capturing for photos and video.

Recognizer intent
The system’s speech-to-text feature.

Options menu
Additional system controls.

The GDK add-on includes several components to let you programmatically work with
Glass UI element:

What Is the GDK? | 245

http://bit.ly/learning-android-2e

CardBuilder

Manipulate, arrange, and style atomic representations of data in timeline items.

CardScrollView

Manage navigation over a collection of static timeline items.

Live cards
Render and update content rapidly within cards that sit left of the home screen.

Voice triggers
Insert new voice commands into the “OK Glass…” menu to launch apps.

GestureDetector

Capture user movement and trackpad swipes/taps.

The Android SDK and the GDK make a powerful team for an integrated development
environment (IDE). The add-on has tight integration with Eclipse as well as the newer
Android Studio. Work is also ongoing by the community to turn App Inventor, the
WYSIWYG application creation tool built by Google and now maintained by MIT, into
a utility to build Glassware.

While you’re free to build practically whatever your imagination conjures up with the
GDK, this also means respecting some limitations. Unlike the Mirror API, you won’t
be able to pick any programming language you like—you’re doing Android develop‐
ment, which means you’ll be using Java. (More specifically, you’ll be working with the
subset of Java for the Android SDK.)

For the most current instructions on setting up a development environment to build
Glassware with your preferred development environment, review the GDK Quick
Start section of the Glass Developers documentation.

Drawing and Animation
The drawing interface for the GDK is still OpenGL, meaning you can fully draw 2D and
3D graphics directly onto cards using an instance of the Android canvas as a drawing
surface. The rather antiquated GDI classes are typically only used these days for doing
simple shapes and polygons. RemoteViews can only render layouts, but rendering di‐
rectly gives you the full range of Android’s drawing capabilities.

The Mini Games pack of Glassware uses several physics and graphics libraries to achieve
fluid movement in both 2D and 3D environments.

Because the Mirror API at the time of this writing doesn’t support JavaScript, you’re
unable to do animation loops with that framework. So if you’re looking at doing a high-
impact game (which may still be low-intrusion, depending on your implementation),
you’re going to need to work natively.

246 | Chapter 13: The GDK

http://developer.android.com/sdk/installing/studio.html
http://appinventor.mit.edu/explore/
http://bit.ly/gdk-quickstart
http://bit.ly/gdk-quickstart
http://bit.ly/adk-canvas
http://bit.ly/glass-minigame

The Glass team has a fantastic code repo on GitHub that shows how to work with
OpenGL for things like shaders and textures and other fun topics like that. It’s definitely
worth perusing.

And what’s perhaps most encouraging if you’re coming over to Glassware development
from old-school Android coding—you don’t just have to use the GDK namespaces. The
Glass team shared this gem with the community on Stack Overflow:

The API surface of GDK Glassware is not limited to the classes contained in the GDK
Add-on. The GDK Add-on merely closes the gaps between the Android SDK and features
that are unique to Glass. This means, in general, given a problem that isn’t covered by the
GDK library directly, just attempt the Android solution.

How the GDK Differs from the Mirror API
The GDK empowers you to make distinct functionality part of your mobile applica‐
tions. While it shares the timeline metaphor as a user interface with the Mirror API,
writing native code for Glass gives you the ability to do so at a more granular level. Since
everything happens locally on the device, you won’t necessarily need to ping the cloud
each and every time you need to do something.

You’re able to reuse custom components within your project with the Android NDK,
releasing you of the burden of having to port entire libraries over to Java. This can’t be
easily done with the Mirror API. Additionally, writing locally running programs doesn’t
let you enjoy Glass sync with its intuitive and self-managed push backend, using Google
Cloud Messaging.

The GDK lets you explore three specific areas that aren’t available with the Mirror API:
Offline access

Since native apps don’t have to rely on constant connectivity, you’re fully capable
of doing all processing and data storage locally. Your apps could be exclusively
offline and not talk to the outside world; or they could provide an option to sync
on-demand or periodically (like how Android does for your contacts, calendar,
Chrome, Gmail, and other app data), or apply offline support when losing con‐
nectivity and persist data to a local store or cache and then sync when a network
connection returns (like Google Drive does with its files).

Real-time interactivity
Since a network connection isn’t required, you’ll be able to capture and handle user
events in true real time without latency or the need for server roundtrips. You’ll be
able to respond to changes in microseconds.

How the GDK Differs from the Mirror API | 247

http://bit.ly/gdk-github
http://bit.ly/gdk-question

Sensor access
Directly interacting with hardware is at the heart of native mobile programming.
The GDK lets you process readings as users move or their environment changes.
Google’s documentation cites the following sensors as programmatically available
on Glass:

• Sensor.TYPE_ACCELEROMETER: Rate of movement, including gravity
• Sensor.TYPE_GRAVITY: Influence of gravity on the device
• Sensor.TYPE_GYROSCOPE: Rate of rotation
• Sensor.TYPE_LIGHT: Amount of ambient light around the device
• Sensor.TYPE_LINEAR_ACCELERATION: Three-dimensional vector for accelera‐

tion along each axis, excluding gravity
• Sensor.TYPE_MAGNETIC_FIELD: Proximity of the device in relation to the user
• Sensor.TYPE_ROTATION_VECTOR: Orientation to measure tilt levels

You can find out more about Android sensors and the APIs for interacting with them
in the Android Developers documentation. The Android Open Source Project also
includes several software sensors, so keep current with the latest information in the
docs.

Aside from the exclusive features you can build using the GDK, a few advantages avail‐
able to you include:
Performance of installed apps on Glass hardware

As of the time of this writing, GDK Glassware is built for Android 4.4.2 as the target
version (API Level 19 or higher), so be mindful that while the specs for Glass are
comparable to a mid-range smartphone (see Chapter 3 for details), high-end and
processing-intense operations should be done with care. The Glass firmware man‐
ages multiple operations incredibly efficiently and does a good job of self-healing
from stalls and crashes. Glass is a very capable computer.

Mirroring
Think about how Glassware may leverage modern releases of Android’s support
for Miracast, which is built on top of WiFi Direct and bypasses the need for devices
to share the same router for use in mirroring or second-screen experience apps to
other displays. Glass might be used as a remote control much in the same way that
Android phones and tablets can fling YouTube content to a monitor running An‐
droid TV.

Frontend presentation
In addition to being able to generate cards with text and images and insert them
into the timeline like the Mirror API, the GDK provides you with a range of unique

248 | Chapter 13: The GDK

http://bit.ly/loc-sensor
http://bit.ly/sensor-motion

presentation elements that work with the Glass experience to give data new depth
and create rich UIs using standard Android widgets as well as drawing custom
graphics.

Chromecast, Google’s amazing diminutive streaming dongle, wasn’t
even out for a full day before we—and tons of other people on
Google+—began speculating about and ultimately demanding how
we might be able to use it in combination with Glass as a live screen‐
sharing medium. The screencast feature in the MyGlass mobile app
is fantastic but limited to the device running it, and debugging tools
like Android Screen Monitor connected to Glass via USB to get the
Glass UI on larger displays is a hacky setup. We’d like to see some‐
thing that works out of the box and send our timelines directly to an
HDTV via Chromecast. Or even in huge theater and convention cen‐
ter displays or digital billboards. It’s too obvious not to do.

However, GDK development doesn’t have the full features of the Android application
ecosystem just yet. As we write this, Glass development with the GDK doesn’t include
Google Play Services. If you try to force the issue and bundle it or try to use the various
features it provides, your app will likely break. We hope to see this change soon, but if
you manage an app and are translating it for a wearable audience, it’ll behoove you to
know what components aren’t fully supported.

See “Porting Existing Apps to Glass: DON’T” on page 288 for more on this topic.

User Interface Elements of GDK Apps
When dealing with installed applications on Glass, you’ve got two UI stages on which
your apps can perform: live cards and immersions.

Live Cards
Live cards involve content that’s updated frequently. While static cards from the Mirror
API can be modified if need be, the content in live cards is expected to be altered more
rapidly, even at a rate of several times per second. They live to the left of the home card
(with the clock), and represent those events that are currently happening or will happen
in the future.

This information may be from the Internet, like a ballot tally during an election; or from
your device, like a sensor reading. Because they’re ongoing tasks, they run in a process
separate from other cards, and in that respect are very much like the Android widgets
that run on the home card of tablets and smartphones. The Timer, Stopwatch, and
Compass apps are examples of live cards. So is the Settings card telling you how much
charge your battery has, updating its content in response to events (in this case, the

User Interface Elements of GDK Apps | 249

https://code.google.com/p/android-screen-monitor/

change in how much charge you have left). You can even have more than one live card
running—as exhibited through all of your Google Now cards, all independently updat‐
ing their contained information.

Another way live cards differ from static cards is that live cards are still bound to the
rules of the timeline, but if the user swipes in either horizontal direction and moves
away from a live card it continues to run even if not visible. When the user swipes back
to the left of the home card or Glass wakes from standby mode, the live card is still right
there, doing its thing. It doesn’t have to have focus to continue working. There are lots
of neat ways you can use this type of card, since it doesn’t have to stay resident and
doesn’t need the display to be actively on to work.

Live cards exist as Android services rather than statically generated cards or their own
activities, and generally are used in situations where there’s not much input involved
from the user. Examples like the Timer app allow a user to set a timer and then leave it
alone as it animates a countdown. A major difference between static cards and live cards
is that should Glass reboot, lose power, or run low on resources, live cards will be re‐
moved. The Ongoing Task pattern documentation that Google published shows how
to use Android services running in the background with handlers to update live card
content.

Don’t Skimp on “Stop”
Google’s review process requires that all live cards include a Stop
command to properly dismiss them and kill their underlying ser‐
vice. This isn’t an idiom or pattern the Glass team takes ligtly—if you
submit Glassware for review and it doesn’t include Stop, your Glass‐
ware won’t be approved.

However, do make sure to kill processes if they run long or the wearer forgets about
them. Being “live,” they should optimally have a shelf life and expire at some point.
While modal dialogs and Android toasts don’t fit the Glass UX, informing the user that
a live card has been running for an exceptionally long time and should be dismissed if
it’s not needed (fittingly, with a static card and accompanying Glass alert) might be a
good way to ensure your app doesn’t develop a bad reputation as a battery hog, and
possibly receive negative ratings.

Two Flavors of Live Cards
How fast is fast? As a Glassware developer, you normally make the design decision to
work with live cards over static cards based on the need to update a timeline item’s
content within a few seconds. But it goes deeper than that. You’ve then got to determine
how rapidly you’ll be replacing what the user sees or gets notified about, and the GDK
gives you some options in determining how you control the on-screen content for live

250 | Chapter 13: The GDK

https://developers.google.com/glass/develop/patterns/ongoing-task

cards. Live card content can be generated either with low-frequency rendering or high-
frequency rendering.

Low-frequency rendering uses a RemoteViews object to inflate and set values in View-
inherited UI elements every few seconds or a couple of times an hour like a change in
a sports score, a weather update, or a stock price tracker. This method is much easier to
configure and requires only a few lines of code. In contrast, situations where high-
frequency rendering comes into play involve direct drawing to the surface on the order
of tens if not dozens of times per second, like an animation loop, or displaying real-time
accelerometer readings as the user moves her head. This method requires more setup
work to handle the rendering logic.

Live cards only support the following layouts and views within the Android SDK:

Layouts

• FrameLayout

• LinearLayout

• RelativeLayout

• GridLayout

Views

• AdapterViewFlipper

• AnalogClock

• Button

• Chronometer

• GridView

• ImageButton

• ImageView

• ListView

• ProgressBar

• StackView

• TextView

• ViewFlipper

See Google’s documentation for full examples of each type of rendering, and make sure
you choose that which is most appropriate for the content you’re working with and the
experience you’re aiming to deliver.

User Interface Elements of GDK Apps | 251

http://bit.ly/remoteviews

Android services typically drive the lifecycle of live cards, given that they still need to
run if the user navigates away from them or Glass falls asleep after nonuses. GDK
Glassware can be run as a service that starts when Glass first boots up—if you’re familiar
with Android development already, you’ll enjoy the ability to create background
processes.

Starting Services at Bootup?
Because Android services that run constantly can be battery killers, the practice is dis‐
couraged for third-party Glassware publishers. But developers will no doubt still want
to start a service for a live card when Glass is first turned on and have them run as long
as the device is on. Consider, for example, the system software that controls the various
Google Now cards—each item is a live card and the service driving them spins up when
you first boot Glass, running for the duration of your session, and even while the device
is suspended when Glass is idle or off your head.

Unfortunately, this level of control isn’t available to external developers at the moment,
as the rules for approval of your Glassware for listing in MyGlass require you to have a
Stop command. Still, the best part of Glassware review (which we detail in this book’s
final chapter) is that you get to work with Google directly on implementing your idea
in the best way possible.

If you have a genuine use case that demands such an experience, you’ll get help for the
best architecture to use to make it come to life—even if that isn’t a perpetual background
service.

Good luck!

Two of the most widely used purposes for services are to schedule time-specific or
periodical publishing of timeline cards, or to handle long-running operations asyn‐
chronously in a dedicated thread like broadcasting system-wide alerts under certain
conditions based on sensor input, or downloading assets from the Internet. A funny
example of this based on the user’s context might be generating a warning card when
the user looks straight up during daylight hours, warning him, “Hey, stupid! Don’t look
directly into the sun!” which is the type of contextual computing experience that being
able to Think for Glass is all about.

Lastly, it’s important to note that live cards aren’t just for dynamic content—they also
work fantastic as dynamic containers for data. A perfect example of this is ViewTube
for Glass, which lets you enjoy content from YouTube without having the timeline stay
in a fixed position while the video is in playback. You can search for videos, then stream
the clip and swipe away from the ViewTube card (essentially an embedded media play‐
er), and do other things or let Glass go to sleep while the content continues to play.

252 | Chapter 13: The GDK

http://developer.android.com/guide/components/services.html
http://bit.ly/google-viewtube
http://bit.ly/google-viewtube

It’s a tremendous user experience to not force the user to remain on a certain location
on the timeline or be within the Glass browser. If you wanted to adjust the volume, you
could swipe to the Settings bundle and make your tweaks there. Pandora’s Glassware
achieves the same effect while including a menu item within the live card to control the
volume level.

In both cases, the live card gave the user freedom while still updating the live card’s
content—ViewTube with matching search results, Pandora with the next available track.

The docs on managing ongoing tasks with live cards give you a great springboard for
getting productive quickly, so do read up.

Immersions
This is the type of UX that most people will immediately think of when they first hear
the term “Glass apps.” Immersions are dedicated Android components, and as such are
the most complex type of element for GDK apps because they give you the most au‐
tonomy. You’ve got carte blanche as far as the experience you want to create, which can
be separate from the user’s timeline altogether or directly integrated with it for a seamless
transition. You also have less constraints on the user input controls than you do with
other UI types—if you want to require a Bluetooth keyboard, you can do that, too.

Immersions are also the most challenging type of interface element to build. And true
to their namesake they demand the most prolonged attention from their audience,
which means the display could stay active for the duration of their use—meaning they
can potentially devour CPU cycles and be battery killers if you’re not careful. You don’t
want Glass to run hot. Consider the system application “Show the viewfinder.” It acti‐
vates the camera on a persistent viewable surface with a framing tool…which if left
running for more than 20 seconds starts to notably heat up Glass. It’s a really good utility
but needs to be used responsibly.

Immersions and their role in the Glass ecosystem are also misunderstood. Developers
often think that an immersion has to be stared at for long periods of time, like with
games or apps using the camera, when there are instances where this isn’t the case at
all. The navigation system application displays a map contextually accurate to the user
by using location provider features, animates the position on the map as the user moves
about, and reads turn-by-turn driving directions aloud. But, the app doesn’t force the
user to stare at it—it auto-dims the display if there’s no active use after a few seconds,
like the timeline does.

“Oy, My Aching Battery…”
We’re tragically projecting that the majority of the crop of native apps built for Glass
will unnecessarily be built as immersions, and that this will largely lead to negative

User Interface Elements of GDK Apps | 253

http://bit.ly/ongoing-task

performance based on the processing power, memory, and battery charge they re‐
quire. Remember, having the Glass projection unit active consumes the charge on your
battery more dramatically than static and live cards, so unless you’re developing an app
where the display needs to stay on with information constantly resident, let Glass nat‐
urally go dormant.

An app like GolfSight allows the user to sleep Glass without dismissing the app running
in memory. This is good program design to emulate.

So as far as our projection, we hope we’re wrong. Someone please prove us wrong.

In contrast to live cards, immersions are built to harvest as much input as they can.
You’ll want to use them as the surface for UIs like games where there is a high degree
of interaction with the app. This is the main reason they live separately from the timeline
—when interacting with items on the timeline, input you give Glass typically directs the
navigation, sending you forward or backward through your items, or selecting menu
items or launching new Glassware. Immersions are independent so that they can capture
all of those gestures and use them as input for a completely different interface experience.

An immersive app exists as its own activity, and can capture trackpad and gesture events
completely differently than Glass does for other services. Still, while applications like
games may create custom input control elements, it’s best practice to follow the idiomatic
uses for swipes and taps (i.e., swipe forward to move left, swipe back to move back, tap
to select, etc.) so users don’t get confused with their wider use. Since they exist off the
timeline, immersions also don’t necessarily leave the breadcrumb trail of cards that other
app elements might. This can work for or against you—you may want to create an
archive of a user’s search activity against your recipe database for historical purposes
and quick reference, for example.

However, because they live outside of the friendly confines of the timeline, immersions
also lack some of the conventions that other UI elements have. Namely, immersions
naturally don’t dim the display after a certain period of time. They stay on until dismissed
or their containing application is exited, hence their reputation for draining the amount
of available charge. They also don’t have any concept of bundles, so you’re on your own
when transitioning between screens and launching activities.

And just like live cards have to have a Stop action, Google enforces a design rule for
immersions: they all have to support the familiar downward swipe gesture on the track‐
pad to dismiss the activity, which kills it in memory and exits back to the timeline.

One word of caution: while immersions are very good and very powerful, they don’t
give you license to violate the Noble Truths for Glassware design as described in Chap‐
ter 5. The Glass “Get directions” application is a good example of this: the display pro‐
motes a glanceable, quick reference interface for navigation, but it takes over the system
the same way an immersive screen does.

254 | Chapter 13: The GDK

http://golfsight.skydroid.net/

You can learn more about proper immersion development patterns from Google’s doc‐
umentation. Table 13-1 summarizes the characteristics of each type of native UI element.

Table 13-1. Components of GDK Glassware
Elements Features Example

Live cards Content constantly drawn on cards, low-frequency updates, high-frequency updates Animation, timers, location

Immersions Environments separate from the timeline, exist as their own activities, handle
touchpad taps/swipes and head gesture events

Games, camera invocation

As a final difference between live cards and immersions, neither allows programmatic
control for wake locks in order to control how the device goes to sleep. Live cards are
managed by the Glass system to suspend naturally, and immersions stay on. It’s that
simple.

More Tools for Rapid Design
When designing your GDK Glassware, a free tool you’ll find indispensable is the Glass‐
ware Flow Designer as seen in Figure 13-1, a web-based flowchart creator that Google
built to help you rapidly lay out and visualize how your app will look and behave. Like
the Mirror API Playground, it lets you apply Glass-formatted templates to get a snapshot
of how content will appear in cards, get a bird’s-eye view of how intuitive your usability
process is, and possibly identify areas where things can be streamlined. You’ll be able
to quickly spot redundant menu items or rearrange their order based on which ones
will be used most frequently.

Glassware Flow Designer, shown in Figure 13-1, can be used with any Glassware project,
but we find it works especially well for charting out live card projects. Because it runs
on Google Drive, you can share designs with other people and collaborate on putting
flows together, editing them, and presenting them prior to beginning the fun task of
writing code.

More Tools for Rapid Design | 255

http://bit.ly/immersion-pat
http://bit.ly/g-flow-design
http://bit.ly/g-flow-design

Figure 13-1. Glassware Flow Designer

However, Glassware Flow Designer isn’t intended to be an all-in-one solution. Glassware
Flow Designer is effective for assembling an overall UX flow, not necessarily denoting
things at the component level. It doesn’t currently differentiate between cards and other
Android components like services or broadcast receivers, databases, or Java objects.
Justinmind Prototyper Pro is a fantastic tool that lets you visualize gestures, swipes, and
taps, and even canvas objects. GlassWireframe denotes actions, multimedia, and sensor
use.

So if you prefer more detailed sketching when putting specs together for complex ap‐
plications, these tools are great to have handy.

Whichever you go with, they’ll help speed up your production process. When teaching
Glassware design sprints, Allen has noticed that when using Glassware Flow Designer
teams greatly increase their turnaround time for prototyping and can turn ideas into
working products.

256 | Chapter 13: The GDK

http://bit.ly/justinmind
http://www.glasswireframe.com/details/

What’s the Optimal Image Density?
There’s a valid concern that astute Android developers will have about
the optimal density bucket to use for images in GDK apps. To date,
the Android documentation notes the linear relationship between
screen size and pixel density—the larger the display, the larger the
density. But Glass, once again, proves different—the resolution for
the tiny prism display is 640 x 360, with the effect being viewing a 25-
inch high-definition display from 8 feet away. What density bucket
should we use in our Glassware?
Google recommends that drawable resources for Glass be stored in
at least the /res/drawable-hdpi folder in your IDE. That’s a good base‐
line to follow to ensure clarity and performance.

It Was Native All Along!
As a means of illustrating what native apps can do, Table 13-2 presents some recogniz‐
able examples of the GDK elements at work using the Glassware that Glass ships with.

Table 13-2. Examples of Glass UI elements
UI element Glassware examples

Static cards Nearly everything with the Mirror API, Google Search results

Live cards Voice Call, “Set wake angle” Settings card, Google Now cards

Immersions Hangouts, Record video, web browser, navigation, “Bluetooth” card in Settings, camera

Now ask yourself—how many of these surprised you at being native components and
not generated by the Mirror API? As a bonus, what element do you think the home card
uses? Gold star for you if you guessed live cards! The card updates on its own with the
current time, synced to the network and displayed in your local time zone. It also dy‐
namically displays certain system status messages like “In a phone call” or “Glass must
cool down to run smoothly,” which appear in response to system events. Neat, huh?

Glass Gets a Failsafe Against Overheating
Even though the Glass hardware is designed to direct the heat generated by extended
use of the processor and/or display away from the wearer’s head (the heat can be felt
directly on the touchpad, opposite the user’s skull), a defensive mechanism exists that
prevents apps from running if Glass was already running hot, as shown in Figure 13-2.
While you can (and should) code your app in ways that minimize intense processing or
displays that stay active for long durations, Glass will mercifully override any attempt
to launch your app and block it until it cools down.

It Was Native All Along! | 257

http://bit.ly/screen-sup
http://bit.ly/wray-rec

Installed apps using immersions and the onboard sensors are prime candidates that can
trigger such a condition, as they impose a certain load on the projector and the processor,
respectively. So code smart, but also know that Glass is looking out for you.

Figure 13-2. Glass plays it cool

Also keep in mind that these apps demonstrate an advantage of hybrid Glassware, using
elements of both native components and static Mirror API cards. (We’ll get to this
shortly!) By the same token, when using the “Get directions” voice command every‐
thing is presented in terms of Mirror API elements, but once you tell Glass to give you
turn-by-turn directions, the UI shifts to a live card that updates its visual appearance
AND speaks updates aloud, sitting to the left of the home card. Navigation uses hybrid
elements as a search-results relationship with static cards and immersive environments.
The web browser handles any URLs within static cards. And the “Factory reset” option
in the Settings bundle invokes a low-level program that restores the system to its out-
of-box default state.

When sending or receiving a voice call, the GDK creates a live card with the contact
you’re talking to left of the home card with a call counter to keep the elapsed time. Upon
termination of the call, a static card is inserted as a call log into the right of the home
card with the number you spoke with and the time spent on the call. This is emblematic
of the design strategy we’ve been teaching you that neatly puts what’s happening apart
from what’s already happened. The right tool for the right job.

Some of the native components that control the camera also map their commands not
only by menu items and voice commands, but also by a special hardware control—the
shutter button. Handle the onKeyDown() method in your activity to process shutter
button presses.

258 | Chapter 13: The GDK

The GDK Object Model
The classes you’ll be working with when using the GDK are organized under the
com.google.android.glass namespace. You can review the classes and their supported
methods, properties, and events from your IDE’s autocomplete feature, or by reviewing
the class reference documentation online.

The classes cover operations that let you work with cards (static and live), hardware,
menus, the touchpad and accompanying user gestures, and timeline dynamics. The
touchpad API includes interfaces for you to implement for the various types of tapping
and scrolling you’re able to capture. It also has an enumeration of values to identifying
the type of user input captured, such as directional swiping, two- and three-finger long
pressing, and double-tapping.

Packages
com.google.android.glass.app

Model for structuring cards; voice trigger operations to invoke the app from the
main menu.

com.google.android.glass.content
Defines the explicit intent actions and extras specific to Glass.

com.google.android.glass.media
Extends the Android Camera API for capturing still images and video.

com.google.android.glass.timeline
Model for live cards and to interact with the timeline.

com.google.android.glass.touchpad
Recognize touch gestures.

com.google.android.glass.view
Extensions for Menu and WindowManager classes.

com.google.android.glass.widget
Special views that let you implement horizontal scrolling for navigating through
collections of cards (the Glass version of a ListView).

This list may change with subsequent platform releases, so bookmark the changelog to
see what’s new.

System Intents
The GDK also lets you make use of certain system applications provided by Android
through implicit intents. If you have the need to let the user go out onto the Web, you

The GDK Object Model | 259

https://developers.google.com/glass/release-notes

can launch the Glass web browser. If your application involves geolocation and direc‐
tions, you can call up the Navigation app for Glass and pass it a data URI with a series
of parameters that assemble the turn-by-turn sequence as the users move toward their
destination. You can also detect when a user is wearing Glass or has taken the headset
off, in addition to getting paths for photos and videos the user has captured.

You could combine these ideas for a wearable pizza delivery application—creating a live
card for a delivery driver that contained the customer’s name with a timer counting
down the time taken to fulfill an order. That card might include custom menu items for
providing driving directions to the customer, as well as letting the driver look up specials
and promotions on the Web.

In case you’re pondering using system software in your own interfaces, here’s a rule of
thumb: a live card can launch an immersion, but an immersion as we’ve noted has to
be canceled via downswipe with the user returned to the timeline before other actions
can be taken. So if you’re planning out an app and sending the user to the browser or
navigation is key, use a live card as your launching pad. Your app can even register an
intent that can be launched via a menu item in a static card. So, you’ve got options.

See the documentation on using system intents for implementation details.

The Magic of Bridged Notifications
One of the ways the Glass ecosystem continues to expand outward and integrates with
the larger Android family is how Android Wear uses notifications, and how they’re
synced between handhelds and their connected wearable devices. The magic is bridged
notifications, which takes the default notification APIs for Android handheld program‐
ming and magically makes them work on wearables.

Bridged notifications represent an evolution of Android intents and give you great lev‐
erage as a programmer—messages can now not only be passed explicitly between com‐
ponents within the same application and implicitly between components within differ‐
ent apps resident on the same device, but also between devices connected through the
same Google account, with data synchronization across devices being automatic and
nearly instant. This is incredibly powerful.

Users are constantly connected to their personal network of two or more nodes they’re
signed into through their Google accounts. We’ve got similar notifications on Glass
through Notification Sync, so this is very exciting.

On-Head Detection Halts Running Apps, Too
When enabled, the On-Head Detection feature from the Settings bundle acts as an
automatic traffic cop for running apps. If a user removes Glass while a native app is

260 | Chapter 13: The GDK

https://developers.google.com/glass/develop/gdk/intents
https://developers.google.com/glass/develop/gdk/notification-sync

running, Glass goes to sleep, and certain actions happen depending on the GDK ele‐
ment.

Live cards are paused but continue to run in the background and resume once Glass is
returned to the user’s head, retaining their state. Things are a little more unforgiving
with immersions, though—any executing immersion is killed outright and must be
restarted from scratch when Glass is put back on. This could result in a loss of data, so
if you are planning an immersive app, you may want to add a warning to users to not
remove Glass, or manipulate the Android lifecycle callbacks that are fired when running
activities are halted to save any progress (typically in the onPause() callback). Or better
yet, bake in a periodic autosave feature.

The effects on an application if the user takes Glass off are an oft-overlooked condition
that need to be accounted for as part of proper defensive programming. Don’t let your
users find out the hard way.

Hybrids: The Ultimate Glassware Challenge (and
Experience!)
It’s important to note that the two frameworks for Glass development aren’t mutually
exclusive. While the Mirror API and GDK stand on their own in order to create cloud-
dependent services and installed applications, respectively, you can also combine the
two schools of thought to make a really engaging wearable experience. Hybrid Glass
applications (designated in Table 13-3 as “Mirror API + GDK”) use the best of both
worlds—the quick and lightweight push nature of timeline cards with a full-blown cus‐
tom native UX (Figure 13-3).

Figure 13-3. Flow for hybrid Glassware (image courtesy of Google)

The communications bridge between the two frameworks is a menu item on the timeline
—more specifically, the OPEN_URI built-in menu item value from the Mirror API with
a corresponding URI as a value for the payload property. You’d normally use this for
redirecting the users to a link on the Web after they select the menu item, but it can also

Hybrids: The Ultimate Glassware Challenge (and Experience!) | 261

be used to launch a specific activity within a native app. In addition to the system-level
intents that can be called, specifying a URI within the scope of your own application
like content://com.book.thinkforglass.totallyawesomesocialapp/status/8675309 jumps
right to that screen, which would fire an activity registered to receive that URI type in
your application’s AndroidManifest.xml. But, you could also specify a Java class that
makes use of the camera or sensors.

So you could spend the time and build out a very robust installed application with the
GDK to handle long-running jobs and local storage, but use the Mirror API as a flexible
frontend that doesn’t have to be (re)compiled and (re)distributed whenever you make
changes to it.

Table 13-3. Classification and requirements for GDK apps, Mirror API services, and
hybrid applications

API Category Language/framework Authorization

Mirror API Cloud service Any server-side
framework

OAuth 2.0 (required) Requires connectivity, auto-synced

GDK Installed
application

Java, Android SDK AccountManager Offline, real-time interactivity, sensor
access

Mirror API +
GDK

Hybrid Combination Combination Menu items in static cards launch
native activities

Let’s look at an example…one that you’ve probably been using a lot and may not have
realized uses both frameworks. Hangouts is a shining example of hybrid Glassware,
using Mirror cards and menu items as its UI and a handle that invokes the Call activity
natively. In this case, we have an Android application that doesn’t have a UI of its own
in the traditional sense but exists as a series of components that wait to be launched by
Mirror actions.

The actual chatting feature is also a bonus lesson in Glassware design, showing how
bundles of static cards, the standard menu items, and the Timeline object can be used
for group messaging. Replying is done with the stock Reply menu item, and the mosaic
of conversation participants is populated with the Timeline.recipients property—
which is all Mirror API. What’s interesting to note is that the telephony actions for voice
calling go through the smartphone to which Glass is connected via Bluetooth, but the
chat element runs locally on the device and talks to the cloud directly—so consider how
Android is handling the networking for a multifaceted communications application like
Hangouts.

The way Hangouts is built should give you some good ideas about how to combine the
two frameworks to really do some cool things and not be limited by using just one.

Also, currently if you want to programmatically manipulate static cards you’ll have to
use the Mirror API from a GDK app—but that’s OK! You’ll need to use the network and
authentication techniques, which is a beautiful segue into our next section…

262 | Chapter 13: The GDK

Authentication
GDK apps can run without requiring authentication and can exist just fine without
doing the OAuth dance that Mirror API Glassware needs to when communicating with
a remote resource. However, there will certainly be cases where native Glass apps need
to talk to RESTful APIs, so there is a facility for using standard Android programming
techniques, although it’s probably a different method than you’re accustomed to.

This attacks the single most-frustrating problem of authenticating on Glass versus au‐
thenticating on mobile or desktop: the lack of a keyboard. We mentioned earlier how
entering passwords could be a daunting task, given that most systems these days require
combinations of characters with at least one numeral, possibly one uppercase character,
and likely one special character like an ampersand. As rich as the Glass speech-to-text
engine is, it’d never be able to decipher complex credentials. So instead of forcing users
to authenticate the first time they use an application, they will authenticate when they
install the application. And since that installation is done from a mobile or desktop
device, we can take advantage of the keyboard those devices naturally provide for us.
By this same merit, users are able to review and agree to the permissions an app requires,
which wouldn’t be so easy on a wearable.

The solution highlights that one of the principles behind effective Glass design is—again
—using the right tool for the right job.

In a nutshell, GDK authentication dictates that when a Glass user installs native Glass‐
ware requiring authentication with a third-party service, the user is prompted to sign in,
and upon completion the user’s account is pushed to Glass. From that point on, the
Glassware talks to the API on behalf of the user. And everything happens through My‐
Glass via its mobile application or on the Web. It’s that simple. This is a much more fluid
system than having to build, maintain, and integrate a custom authentication platform
of your own. At a macro level, it also ensures consistency in the process wearable users
experience across their Glassware.

And here’s the trick to how it all works: even though this is a GDK app, it’s the Mirror
API that pushes a user’s account onto his device. Cool, huh?

GDK apps use an Android AccountManager object to handle access to their identity
with the service. The authentication process uses the special Accounts resource to grant
applications access. Unlike the OAuth flow used with the Mirror API Glassware, which
uses a project registered as a web application in the Google Developers Console (as we
detailed in Chapter 8), GDK authentication flows rely on a service account. The funda‐
mental difference between the two is that a service account handles server-to-server
communications by authenticating a service rather than a user. See Google’s documen‐
tation for a step-by-step walkthrough of how to create and configure a Google API
service object.

Authentication | 263

http://bit.ly/acct-mngr
https://developers.google.com/glass/v1/reference/accounts
https://developers.google.com/glass/develop/gdk/authentication
https://developers.google.com/glass/develop/gdk/authentication

Authenticating GDK Glassware works as follows (Figure 13-4):

1. A user enables your GDK application via MyGlass, which redirects the browser to
your login page. This request is made to your server with a userAuth parameter.

2. On your login page, the user submits her credentials. (A special OAuth scope,
https://www.googleapis.com/auth/glass.thirdpartyauth, is required when using this
method.) In this step, any Android permissions your app requires are also declared
to the user.

3. Upon successful validation of the user’s credentials, your backend calls the Mirror
API’s mirror.accounts.insert endpoint with a JSON-formatted request body
describing the account and its capabilities.

4. The Mirror API sends the user’s account to his Glass device, which is then available
via an Android AccountManager object. See Google’s documentation for required
permissions and associated APIs for account retrieval.

Figure 13-4. The GDK authentication flow (image courtesy of Google)

If You Thought OAuth Was Difficult…
Talking to service accounts server to server is a fairly complicated
process, decidedly more than the user-to-server model that OAuth
enforces. So it’s highly recommended in the interest of preserving
your sanity and social life to use the Google API client libraries, which
handle the complex plumbing for you.

264 | Chapter 13: The GDK

At the moment GDK authentication is only available to you after your APK has been
uploaded by Google to MyGlass, so you’re unable to work with the API locally on your
development machine until then. (Just like when authorizing Mirror API Glassware for
testing, you’ll see your app appear in MyGlass when signed in with your account, but it
won’t be available for all Glass users until it’s approved and officially goes live.) Google’s
iterative Glassware review process, which is one of many benefits of having your Glass‐
ware approved and cataloged, doesn’t mandate that your project be a ready-to-go pro‐
duction app—you can submit a rough prototype and indicate where you’ll be imple‐
menting web APIs. You’ll be able to build and test features while your project is under
review.

Authentication continues to evolve, so keep an eye out for new developments in this
space as it reaches maturity.

AccountManager for Other Types of Configuration
One of the neat tricks about the way Glass reads AccountManager data is that you can
use it to set and change other configuration settings. The AccountManager object model
takes a number of key/value pairs for the userData property. Give it a spin.

There’s a good argument to be made about what might happen in terms of workflow
and the installation process if you include signing in to access some sexy new RESTful
API down the road. The good news is that the authentication prompt will kick in au‐
tomatically, forcing the flow.

Just like applying a new permission after-the-fact in a subsequent release of your app,
the new enhancements take effect the next time.

Writing Native Code for Glass
Whether you’re using Eclipse or Android Studio, you’ll need to physically connect Glass
to your development machine via the micro-USB cable and then enable Debug Mode
in the Settings bundle on Glass, which turns on the ADB and registers your headset as
an available device. This lets you run your app live with all of the UX functionality and
controls—sensors, taps, swipes, voice commands, and gestures. You’ll be running and
debugging your code (hopefully more of the former and less of the latter) live on Glass.

When you test builds of your application, your IDE will compile your code into
an .APK file and then install it on Glass, just like running an app with your smartphone
connected. To make sure Glass is being recognized as an AVD, click the Device panel
in Dalvik Debug Monitor Server (DDMS; Figure 13-5). It should be registered and
listening for events, with the output being logged in real time to LogCat.

Writing Native Code for Glass | 265

Both IDEs let you specify that you’ll be compiling with the GDK, which bundles the
necessary JAR library into your project. If you’re using Eclipse, creating a new project
gives you a boilerplate Android application that will render “Hello world!” in a fairly
pedestrian static card that launches immediately when you run the app. You can inves‐
tigate the project’s structure and its code on your own to see how it sets the various
values.

Figure 13-5. Glass recognized in DDMS view in Eclipse

Getting Glass Drivers for Windows
A glitch that many developers using Windows machines noted early
on was incompatible USB drivers for Glass, which blocked the use of
ADB on that platform. Eclipse and Android Studio have both made
the correct driver available through SDK Manager, but if you contin‐
ue to run into problems, our buddy Andrew Pritykin produced a
helpful tutorial video showing how to update and enable the drivers
so that you can install your apps properly and use all the helpful
features of ADB.
Of course, Mac OS and Linux users don’t need to worry about this
minor inconvenience. Carry on.

If you’re using Android Studio, selecting the Glass form factor when creating a project
generates either a live card application, an immersion, or a blank project that you fill in
manually (Figure 13-6). The live card and immersion apps are great learning resources
and easily expandable as you become comfortable with each API. They also demonstrate

266 | Chapter 13: The GDK

http://bit.ly/pritykin
http://bit.ly/pritykin

the recommended coding patterns to optimize performance and usability for both a
live card (by using a service) and an immersion (flow, UI, and program control).

Once you’ve got the hang of setting up simple bare-bones GDK apps, you can tackle
some of the more advanced sample projects Google’s published for complete end-to-
end native apps.

Figure 13-6. Setting up a Glassware project in Android Studio

Producing Native Apps Through Other Frameworks
There’s lots of work being done to produce native apps on Glass by using the less-
complex and more rapid web stack—HTML, CSS, and JavaScript. This architecture is
being used within the Glassware development community by ambitious projects like
WearScript and PhoneGap, which access sensor readings via web interfaces.

Testing Native Glass Applications
We’re not going to outline coding up an entire GDK application, due to the fact that (1)
the GDK is still evolving and methods, properties, and events are subject to be added,
renamed, or outright removed at any time; (2) many of the features are still undocu‐
mented as the GDK is still in the Developer Preview stage; and (3) quite frankly, Android
apps require a lot of files and documenting them takes up a lot of space. If you know

Testing Native Glass Applications | 267

https://developers.google.com/glass/develop/patterns/
http://www.wearscript.com
http://phonegap.com/

how to create Android apps, the sample projects and poking around GitHub for cool
repositories people are working on will get you started. If you’re new to Android pro‐
gramming, check out the GDK documentation, which walks you through a primer on
mobile coding.

Visually, the GDK relies on a Glass theme that sets an application to full-screen without
systems elements like the status bar, action bar, clock, or battery life indicator that you’re
used to seeing in other Android form factors. To achieve the transparent effect of menu
items that float above their associated app like you’re used to on the timeline, it’s helpful
to define a custom style in your app’s /res/values/style.xml resource file and set it as a
theme for activities containing menus. This ensures your layouts, fonts, and UI elements
match the Glass UX:

<resources>
 <style name="MenuTheme" parent="@android:style/Theme.DeviceDefault">
 <item name="android:windowBackground">@android:color/transparent</item>
 <item name="android:colorBackgroundCacheHint">@null</item>
 <item name="android:windowIsTranslucent">true</item>
 <item name="android:windowAnimationStyle">@null</item>
 </style>
</resources>

And as noted earlier, you’re still working exclusively in landscape mode, with the view‐
able surface wider than it is taller at 640 x 360.

There are some notable differences between static cards in the GDK and those created
with the Mirror API in regards to the amount of formatting control you get. The GDK
does include several of the layout templates that the Google Mirror API Playground
provides. You can specify full-bleed backgroud images, icons, footers, and timestamps
and let Glass handle the formatting. Plus, you’ve still got the ability to use Android’s
powerful graphics libraries and drawing classes to create dynamic 2D/3D graphics and
animation, which you can’t do with the Mirror API.

Also, when testing your app, do make use of the helpful Glass developer settings, avail‐
able from the Settings bundle. These utilities are like the developer tools Android pro‐
grammers have relied on for years, letting you preview the layout of elements and vis‐
ualizing their boundaries in relation to each other, allowing you to control the speed of
animation playback, GPU overdraw cycles, and more. Personally, we can’t live without
the “Keep the screen on while charging” option, which prevents you from losing your
back stack state while you test an app.

A View to a Card
For you Android developers who suffered through the Mirror API chapters wondering
when you would find out how to display things with Glass, this might be the moment
you’re waiting for. Hopefully you’ll see that many of the best practices we talked about

268 | Chapter 13: The GDK

https://developers.google.com/glass/develop/gdk/
http://bit.ly/glass-theme
http://bit.ly/dev-setting

have some parallels on the GDK side of the world, but that you also have a lot of power
to go your own way if you really need to.

If you remember the Playground tool we talked about back in our chapter on the Mirror
API, you’ll remember how it offers a number of templates, and lets you style them with
snazzy HTML. Similarly, the Glassware Flow Designer offers templates and specific
fields you can set. Unsurprisingly, Google also offers a Java class to help you build cards
with these styles in your code as well.

The CardBuilder class, under the com.google.android.glass.widget package, lets you
create a static card based on these templates. The general pattern is that in the on
Create() method of an activity you’ll create a CardBuilder object, specifying the tem‐
plate type you’re creating. You’ll then set various properties on this builder, which we’ll
discuss later, and conclude by having the builder create a standard View.

Each method that sets a property returns the builder, so you can chain them together.

Really, a Card with a View
You’ll notice that the CardBuilder’s ultimate job is to return a View object, similar to
every other View object you’ll encounter in Android. What goes into this object? If you
inspect it (and all of its children), you’ll see some classes you should be familiar with
like FrameLayout, as well as some that are clearly made for Glass, such as MosaicView.

Unfortunately these are still opaque to us, but hopefully a future version will make them
more available.

Let’s look at a few simple examples of using CardBuilder. The object’s constructor ex‐
pects two arguments—a context and a CardBuilder.Layout enumeration that specifies
the exact layout being applied.

Basic Text Formatting
For simple cards, similar to the article/section with a text-auto-size class from the
base CSS styles for Glass, we can use the CardBuilder.Layout.TEXT template. This lets
us set text that is auto-sized to fit where possible:

CardBuilder christine = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("I felt as conspicuous as a baby whale in a goldfish pond.");

// display the CardBuilder object in the Activity
setContentView(christine.getView());

Optionally, you can instantiate a CardBuilder object directly as a View:

A View to a Card | 269

http://bit.ly/cardbuilder-class
http://bit.ly/cardbuilderlayout
http://bit.ly/css-base

View christine = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("I felt as conspicuous as a baby whale in a goldfish pond.")
 .getView();
setContentView(christine);

We’ll stick with the former convention for the next few examples. These examples as‐
sume that they are being called inside Activity.onCreate(), so the “this” variable is
the context of the current activity. It also assumes that we’ll do something with the View
that is built, such as display it or add it to a CardScrollView, which we’ll talk about later:

CardBuilder christine = new CardBuilder(this, CardBuilder.Layout.TEXT)
// a resource located in /res/values/strings.xml
 .setText(R.string.stephen_king_quote);

The three previous code blocks produce the static card in Figure 13-7.

Figure 13-7. The TEXT layout

Another template, CardBuilder.Layout.TEXT_FIXED, is similar, except it applies for‐
matting equivalent to the text-small class from the base styles CSS (Figure 13-8):

CardBuilder heartOfDarkness = new CardBuilder(this, CardBuilder.Layout.TEXT_FIXED)
 .setText("I should be loyal to the nightmare of my choice.");

270 | Chapter 13: The GDK

http://bit.ly/cardscrollview

Figure 13-8. The TEXT_FIXED layout

Both of these layouts (as well as most of the layouts we’ll be discussing) also let us set
the card’s footer, just like the HTML we can provide when using the Mirror API. Unlike
the Mirror API, however, we can also set the timestamp field that is on the right of the
card. Android’s DateUtil class provides us with some methods that format the time‐
stamp correctly, or we can still put any CharSequence we want here (Figure 13-9):

long time_then = System.currentTimeMillis()-(24*60*1000); // 24 minutes ago
CardBuilder heartOfDarkness = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText(R.strings.joseph_conrad_quote)
 .setTimestamp(DateUtils.getRelativeTimeSpanString(time_then))
 .setFootnote("Heart of Darkness");

A View to a Card | 271

Figure 13-9. A TEXT card with a timestamp

Creating Rich Text
What other formatting can we do? You’ll note that there’s no setHtml() method to go
with setText(), and we can’t add a View directly as a child. We might be able to meddle
with the View that gets created, but that seems like a bad idea. Fortunately, we do have
a solution.

The setText() method takes a class that inherits from CharSequence. Fortunately, the
android.text.SpannableString class is a CharSequence, and it can contain spans of
additional formatting markup. While there are a few ways we can generate this marked-
up CharSequence, the easiest way is to use the android.text.HTML.fromHTML() method
(Figure 13-10):

String html = "bold
red";
Spanned htmlSpan = Html.fromHtml(html);

CardBuilder htmlCard = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText(htmlSpan)
 .setTimestamp("around 2005");

272 | Chapter 13: The GDK

Figure 13-10. Rich text formatting

But the HTML.fromHTML() method isn’t perfect—most notably, the HTML it uses is
pretty ancient. If you’re used to CSS and HTML class or style attributes, it will feel clunky
having to go back to a tag. If this bothers you enough, feel free to build your
SpannableString another way (Figure 13-11):

SpannableString htmlSpan =
new SpannableString("green\nbold\nrelatively normal");
htmlSpan.setSpan(new
 ForegroundColorSpan(getResources().getColor(R.color.green)),
0, 5, Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
htmlSpan.setSpan(new StyleSpan(Typeface.BOLD), 6, 10,
 Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);

CardBuilder htmlCard = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText(htmlSpan)
 .setTimestamp("sometime this year");

What about other layouts such as tables, left and right justification, and images? Other
HTML-based formatting that the Mirror API provides, such as tables and lists, aren’t
available—at least not yet. Images will be covered in a little bit, as will other template
types, including some that aren’t available through Mirror.

A View to a Card | 273

Figure 13-11. Rich text formatting with a SpannableString

Ellipses and Excess Content
You may remember that we explored a way to make it clear to our users when there is
more information than what we are displaying on the card. Although there is no way
to set the dog-ear icon for the card at this time, it seems reasonable a future CardBuild
er will be able to provide this. Other aspects, such as an ellipsis at the end of the card,
are more feasible.

How do we provide this ellipsis? Fairly easily—we just need to provide more text than
will fit on the card (Figure 13-12):

CardBuilder iOnlySeeSixLines = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("one\n two\n three\n four\n five\n six\n seven\n eight\n");

What about the scenario where we want the header line to show an ellipsis? That is
significantly more complicated. But it probably isn’t necessary using CardBuilder. With
the Mirror API, we needed to restrict the title to a single line to make sure we counted
lines correctly to apply the ellipsis, but that isn’t necessary with the GDK—we can just
let it take care of the ellipsis at the end. If you really want a specific header layout, there
is also the CardBuilder.Layout.AUTHOR template, or you can roll one yourself (see the
next section for more on this).

274 | Chapter 13: The GDK

Figure 13-12. You get an ellipsis for free with excess text

Columnar Layouts and Mosaics
One of the very common layouts we’ve explored is where we’ll have the leftmost-third
of the screen with an icon, a set of images, or other information that is quickly glanceable.
The right two-thirds contain more details, such as a message.

It should come as no surprise that we have two versions of this template for both dy‐
namically sized and for fixed text, CardBuilder.Layout.COLUMNS and CardBuild
er.Layout.COLUMNS_FIXED, respectively. The most common use for these is with a mo‐
saic of images in the left column. We’ll use the addImage() method to add tiled images
—one image for each call, in the order we add them (Figure 13-13):

CardBuilder message = new CardBuilder(this, CardBuilder.Layout.COLUMNS)
 .setText("one\n two\n three\n four\n five\n six\n seven\n eight\n")
 .addImage(R.drawable.messageFrom) // Allen
 .addImage(R.drawable.messageTo1) // Jason
 .addImage(R.drawable.messageTo2); // Pegman

A View to a Card | 275

Figure 13-13. Calling addImage() repeatedly creates automatic mosaics

As we shared in Chapter 7, the mosaic images in column-based layouts aren’t randomly
assembled and display a distinct hierarchy. The first image added is displayed as the
most dominant in terms of it being positioned at the top, and occupying the most screen
real estate. This is often used to denote a sender-recipient(s) relationship in messaging
Glassware, but it can be used for other purposes, too. The user instantly gets the gist of
what the card represents, a chat conversation or an email, as opposed to a news article,
a tweet, a storm alert, or an announcement about a sale for gaudy holiday season sweat‐
ers.

Consider the effect you create when calling addImage() in a certain order, not just doing
so arbitrarily. Conversely, if you haven’t got a need for such structure in your data, also
think about what impact such a mosaic presentation might have on the users viewing
it. They might see importance that isn’t actually there.

Using Icons
Another excellent use of the COLUMNS template is to place a single icon in the center of
the leftmost column. Examples of this include the settings cards that Glass uses for its
configuration. We can only set a single icon, however, so we would use the setIcon()
method (Figure 13-14):

CardBuilder message = new CardBuilder(this, CardBuilder.Layout.COLUMNS)
 .setText("one\n two\n three\n four\n five\n six\n seven\n eight\n")
 .setIcon(R.drawable.wifi);

276 | Chapter 13: The GDK

Figure 13-14. Icons are simpler than imagery

Mixing It Up
Although the documentation for the column-oriented templates say you can use an icon
or the image mosaic, but not both, there doesn’t seem to be anything that enforces this
right now, and the effect can be interesting and useful. Still, we suggest you avoid trying
to combine them in case Google changes something in the future.

Both images and icons can be Drawables, Bitmaps, or resource references. And if you
remember our text-centric layouts from earlier, we’ll let you in on a little secret. They’re
good for more than just the columnar layout—you can use addImage() to add one or
more mosaic images in the background of a text layout, too. This will darken the mosaic
images using something similar to the overlay-full base style class to make the text
more legible (Figure 13-15):

CardBuilder participants = new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("one\n two\n three\n four\n five\n six\n seven\n eight\n")
 .addImage(R.drawable.member1)
 .addImage(R.drawable.member2)
 .addImage(R.drawable.member3);

A View to a Card | 277

Figure 13-15. Applying images to a TEXT layout

We also have a derivative template that places text at the bottom of the page, with the
overlay-gradient-short to make it more legible. The layout is more intended for a
single line, but it will display up to two lines, and can take an optional icon. This is the
CardBuilder.Layout_CAPTION template (Figure 13-16):

CardBuilder members = new CardBuilder(this, CardBuilder.Layout.CAPTION)
 .setText("one\n two\n")
 .addImage(R.drawable.member1)
 .addImage(R.drawable.member2)
 .addImage(R.drawable.member3);

278 | Chapter 13: The GDK

Figure 13-16. Applying images to a CAPTION layout

Other Neat Templates
Although we’ve seen the most basic types and uses, we need to be aware that there are
more templates available. If we are duplicating the contact cards that we get through
the Mirror API, for example, we will want to use the CardBuilder.Layout.TITLE layout,
which takes a background image (or images), a single line of text, and an optional icon
next to the contact text:

CardBuilder members = new CardBuilder(this, CardBuilder.Layout.TITLE)
 .setText("My Clique")
 .addImage(R.drawable.member1)
 .addImage(R.drawable.member2)
 .addImage(R.drawable.member3)
 .setIcon(R.drawable.logo);

A View to a Card | 279

Figure 13-17. Combining an icon, images, and text in a TITLE layout

This kind of card, however, isn’t very useful by itself. Most of the time, we will be com‐
bining it with other contacts as part of a swipeable list that you’ll want to tap on to
select. This can be done by using an instance of a CardScrollAdapter to manage the
list of Views (which you’ve created through CardBuilder or elsehow) and a CardScroll
View to actually control, render, and manage interactions with the cards. To handle the
user selecting the card, you’ll set up a click handler using CardScrollView.setOnItem
ClickListener().

To do this, we might create our CardScrollAdapter to be flexible and take CardBuild
ers, Views, and resources that translate to Views. It might look something like this:

public class MyAdapter extends CardScrollAdapter {

 private Activity activity;
 private List<Object> items;

 public MyAdapter(Activity activity) {
 this.activity = activity;
 this.items = new ArrayList<Object>();
 }

 public MyAdapter(Activity activity, List<Object> items) {
 this.activity = activity;
 this.items = items;
 }

 @Override
 public int getCount() {
 return items.size();
 }

280 | Chapter 13: The GDK

 @Override
 public Object getItem(int i) {
 return items.get(i);
 }

 @Override
 public View getView(int i, View view, ViewGroup viewGroup) {
 Object item = items.get(i);
 if(item instanceof CardBuilder) {
 return ((CardBuilder) item).getView(view, viewGroup);

 } else if(item instanceof View) {
 return (View)item;

 } else if(item instanceof Integer) {
 return activity.getLayoutInflater().inflate((Integer)item, viewGroup);

 } else {
 throw new ClassCastException("Unable to create View from "
 +item.getClass());
 }
 }

 @Override
 public int getPosition(Object o) {
 int index = items.indexOf(o);
 return index < 0 ? AdapterView.INVALID_POSITION : index;
 }

 public MyAdapter add(Object item) {
 if(item == null) {
 throw new NullPointerException("Unable to add null card");

 } else if(item instanceof View || item instanceof CardBuilder
 || item instanceof Integer) {
 items.add(item);

 } else {
 throw new ClassCastException("Unable to add item of type "
 +item.getClass());
 }
 return this;
 }
}

The Activity that creates the CardScrollView might, at a minimum, look something
like this (Figure 13-18):

public class MyActivity extends Activity {

 protected MyAdapter adapter;
 protected CardScrollView scrollView;

A View to a Card | 281

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create an adapter to store the cards and add them
 adapter = new MyAdapter(this);

 // Create some cards we will scroll through
 adapter
 .add(new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("Card 1"))
 .add(new CardBuilder(this, CardBuilder.Layout.TEXT)
 .setText("Card 2").getView())
 .add(R.layout.card_3);

 // Create the view and set which cards it will use
 scrollView = new CardScrollView(this);
 scrollView.setAdapter(adapter);

 // Setup click listeners
 scrollView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, int position,
 long id) {
 // TODO: do something when a card is clicked
 }
 });

 // Show this view
 setContentView(scrollView);
 }

 @Override
 protected void onResume() {
 super.onResume();
 scrollView.activate();
 }

 @Override
 protected void onPause() {
 scrollView.deactivate();
 super.onPause();
 }

}

282 | Chapter 13: The GDK

Figure 13-18. Combining cards with a CardScrollAdapter

As our sample code illustrated, you’re not limited to using a title layout in the Card
ScrollAdapter. You can include any View created by CardBuilder or even a View that
you create yourself. With these tools, you can duplicate most of the features of bundled
cards or multiple contacts, and even go further by providing rich multilevel and dynamic
menus.

We caution you, however, to not get too carried away. Remember that just because you
can do all this doesn’t mean that it creates a great UX on Glass.

Table 13-4 contains the currently defined list of templates that are available through
CardBuilder and the attributes that can be set for each. As Google adds new templates,
they’ll be listed and documented as part of CardBuilder.Layout and on the GDK doc‐
umentation about building cards.

Table 13-4. CardBuilder.Layout templatesa

 setText setFootnote setTimestamp addImage setIcon setHeading setSubheading

TEXT/TEXT_FIXED X X X X - - -

COLUMN/
COLUMN_FIXED

X X X 1 1 - -

CAPTION X X X X X - -

TITLE X X X X X - -

MENU X X - - X - -

AUTHOR X X X - X X X

ALERT X X - - X - -
a x means the attribute is usable for this template, 1 means that only one of these two attributes should be used for this template.

When You Have No Choice—Doing It Yourself
But if none of these templates meet your needs, you always have the ability to create
your own layouts using most of the standard Views that Android offers. Custom layouts
can be created declaratively and then inflated through a RemoteViews object. (This is
essentially the same pattern used for handling live cards with low-frequency rendering.)

The Glass team provides a couple of custom layouts using viewgroups and views in
XML as guides that correspond to the prefab Text and Column templates to help you

A View to a Card | 283

http://bit.ly/card-build
http://bit.ly/remoteviews
http://bit.ly/xml-layouts

match the standard Glass UI. However, while this approach gives you the freedom to
create your own formatting, it also imposes on you the responsibility to manually im‐
plement padding, margins, and various styles that conform to the static card layout. If
you need specialized formatting for content that’s outside the scope of what Google
already provides, that’s fine, but don’t deviate from the core motif.

Configuring Voice Commands
The range of sanctioned voice commands launch their associated apps, right off the "OK
Glass" home screen. These triggers are defined in a special XML file in your project
and registered in your application’s manifest. To set up a voice trigger, you need to do
two things: create an XML file that contains a string value defining your voice command;
and register the command in your project’s manifest. Then in AndroidManifest.xml,
specify an <action> for an intent filter, either on an <activity> element or <ser
vice> element depending on your implementation; and then create a sibling <meta-
data> element, using a similar action value for the android:name attribute; also, map
android:resource to your XML resource file with values for a voice trigger:

<!-- applied as children of an <activity> or <service>
element in AndroidManifest.xml -->
<intent-filter>
 <action android:name="com.google.android.glass.action.VOICE_TRIGGER" />
</intent-filter>
<meta-data
 android:name="com.google.android.glass.VoiceTrigger"
 android:resource="@xml/voice_trigger" />

In this example, the resource value corresponds to /res/xml/voice_trigger.xml.
Create the folder and file in your IDE and then enter the following for the file:

<?xml version="1.0" encoding="utf-8"?>
<trigger command="TUNE_AN_INSTRUMENT" />

This sets your trigger phrase to “tune an instrument” (which is cool to say out loud) as
the launcher from the "OK Glass" menu for your app. The result allows your app to be
launched via voice as seen in Figure 13-19.

284 | Chapter 13: The GDK

Figure 13-19. Launching an app via hotword

If your app requires additional vocal input, like for gathering a search query statement,
a message to be sent, or an address, you can configure that secondary step by adding a
child element to <trigger>, which evokes the voice input prompt:

<?xml version="1.0" encoding="utf-8"?>
<trigger command="TUNE_AN_INSTRUMENT">
 <input prompt="@string/glass_voice_prompt" />
</trigger>

You can define and use your own custom commands during development, provided
you include an Android permission in your manifest. But again, deployed apps need to
use the approved commands:

<uses-permission
android:name="com.google.android.glass.permission.DEVELOPMENT" />

If it’s imperative that you use a voice command not already on the approved list, you
can submit it for review, which may take several weeks (and then new approved voice
commands are only released when Google pushes an update of the Glass OS). The
selection of your trigger phrase is an important step in your design/development. It
should be logical, short, and easy to say, using action verbs with an active voice. The
input is open ended, so don’t use voice input to gather enumerated values like choosing
one of the primary colors. That’s what menus are for.

After you’ve picked a few options, do your homework and see what else is out there and
what other approved applications are using to launch themselves, and how your com‐
mand might fit in when listed beside them.

Configuring Voice Commands | 285

You might be wondering about possible trigger phrase clashes. How does Glass resolve
conflicts when two or more Glassware are based on the same trigger? The system ap‐
pends “with” at the voice prompt in the event more than one Glassware (enabled with
the Mirror API or installed with the GDK) have the same phrase registered. A second-
level menu prompt, shown in Figure 13-20, then gives the user the option of which
Glassware to use.

Figure 13-20. The voice prompt screen to launch Glassware

Make sure to review the VoiceTriggers.Command enumeration for the official list of
approved voice commands. If you absolutely must have your own voice trigger phrase,
review the checklist of actions to take and then submit your own for review.

You can also use contextual commands, which allow users to interact with menus within
your app. The menus, just as with Android programming for handheld devices, are
defined in layouts and inflated into activities, which are attached to their parent window
when selected, and displayed immediately on top of it.

You can find out best practices for using contextual commands and other types of vocal
input on Google’s developer site.

Match Your Voice Commands Across Other Platforms
If the Glassware you’re building is part of a broader application
ecosystem, you probably want to ensure for purposes of consistency
that the voice commands available to users are uniform across other
wearable platforms. Review the list of system-provided voice ac‐
tions for Android Wear, as well as how to include custom voice ac‐
tions for Wear devices so that your spoken commands are the same
for other types of devices, like an Xbox One Kinect.

286 | Chapter 13: The GDK

http://bit.ly/voice-triggers
http://bit.ly/voice-check
https://developers.google.com/glass/distribute/voice-form
https://developers.google.com/glass/develop/gdk/voice
http://bit.ly/system-voice
http://bit.ly/system-voice
http://bit.ly/app-provided
http://bit.ly/app-provided

With Voice Commands, Google Has the Final Word
We can’t underscore enough that the voice commands are ultimately under Google’s
sovereign control. It has final say on what apps are greenlit for placement in MyGlass,
and voice commands are a big part of this approval process—don’t find out the hard
way. We mentioned in the Design section of this book how choosing your voice com‐
mands for Mirror API Glassware shouldn’t ever be treated as an arbitrary exercise,
noting the categorical hierarchy of commands as the library of approved Glassware
continues to grow.

The same applies for the GDK, as trigger phrases like “Tune an instrument,” “Start a
bike ride,” or “Prepare a meal” will be very popular for music, exercise, and cooking
apps, respectively. All Glassware will be available under these high-level categories. Note
that these categories won’t know the difference between Glassware that’s native or ex‐
clusively cloud-based, so you may wind up sharing space next to a major software pub‐
lisher as well as a garage operation looking for a break. Remember—actions not apps
still rule here, even if you’re thinking about how to write an app.

Updating Releases, Versioning, and Crash Reports
A major technical advantage of having your app approved by Google and listed in My‐
Glass is having any updates you push to those who’ve installed it be applied silently, just
like many apps do through Google Play. Users won’t be notified that they have to down‐
load a new version, it just gets pushed to their Glass headset automatically through the
MyGlass mobile app. But it’s kind of a black box at the moment, as we’re currently unable
to review modifications in Glassware between different versions and there aren’t any
changelogs we can consult. New features or bug fixes show up magically, but we’re
unaware of any patches or feature additions until we see/stumble across them.

Some vendors list ad hoc changelogs on their own websites outside MyGlass, but that’s
not universally implemented. As the GDK platform matures, we hope to see a central
facility in MyGlass or Google Play or something else that lets us tracks changes, if for
no other reason than people like us are obsessed with knowing “What’s New.”

Additionally, MyGlass doesn’t provide automatic crash reporting back to Glassware
publishers like Google Play does. However, if Google detects that your app is crashing
with some regularity, it will reach out to you and work with you to resolve any issues
your app might be having. The bright side is that the review process for apps looking to
make it into the MyGlass catalog is very thorough and many crashes should be detected
in that step. You also have the benefit of having to build for essentially only one device,
as opposed to multiple OEM devices.

You’re still able to make use of third-party tool for crash analysis.

With Voice Commands, Google Has the Final Word | 287

Porting Existing Apps to Glass: DON’T
Developers maintaining existing software platforms are foaming at the mouth waiting
to start building for Glass. Undoubtedly a ton of cool ideas are being cobbled together
as you read this from innovative thinkers wanting to fully use Glass as a platform and
notable third-party applications will be rushing to use Glass as a frontend for their
services, in addition to every other conceivable digital platform around. That said, if
you’re just thinking you can do a straight port of your codebase, you’re doing it wrong.

Glass is a unique device that requires a unique experience. To support this notion,
Google’s documentation stresses that when creating immersions, “Design interactions
that make sense on Glass instead of porting over activities from other Android devices.”
That’s pretty much the motivation for Glassware design and the Think for Glass phi‐
losophy in general.

Aside from the partners Google’s worked with already to offer apps at launch, it’s a safe
bet that household brands like Instagram, Flipboard, Mint, Dropbox, and Spotify will
build Glass clients, even if the UX doesn’t exactly equate to a seamless translation for
their stuff. And this is where the big creative opportunity lies. Don’t just port your code
—extend your platform and really explore the interface that Glass provides. Make
something that becomes a part of your experience in a completely unique way. Re‐
member, Glass complements your smartphone, not replaces it, so don’t just build yet
another client—if you support a game, do a hands-free controller or heads-up display.
Make using it cool!

Just like you had to relearn design for mobile apps, porting to Glass doesn’t necessarily
mean a full and seamless translation of every feature. And this pragmatism is key in
learning how to Think for Glass. It makes for a fun challenge.

You might want to take a pause from this chapter for a moment and re-review the
material in our earlier chapter in the Discover section about what Glass isn’t, and see
how all the knowledge you’ve gained and ideas you’ve developed interplay with those
constraints. After you’ve given yourself a refresher, think about how the Glass experience
would handle your current UX. The onus is upon developers to repurpose their ideas
within a new environment—the right way, not crudely forcing a smartphone app onto
a wearable. People by and large still won’t want to stare at Glass for extended periods of
time, so keep things glanceable and continue to think in terms of actions, not apps. Many
of the widgets and UI paradigms just don’t translate to this new venue.

The bottom line is that presence is critical and a proper design plan is the major step in
achieving that, not just retrofitting current services. If your translation and/or extension
of your platform is truly good, you’ll have a real winner on your hands. And happy users.

288 | Chapter 13: The GDK

http://bit.ly/gdk-immersion

So Which Framework Is for Me?
We’ve come at last to the moment of truth. You’re well-read on the Mirror API and how
to build cloud-dependent services against Google’s RESTful backend. And now you
know how things work natively, too. When two paths diverge, how do you know which
is the right one for your project? The simple $0.05 answer is use the right tool for the
right job. Don’t let everything you learned in the Design part of this book go out the
window. It’s actually not that hard to do—just figure out what usability components are
critical to applying your idea (connectivity, sensors, etc.), what interface elements could
best be used to display data and gather input, and how the usability of the application
fits into the model of a microinteraction.

Don’t simply retrofit an idea with the wrong framework, because that flaw will show
and your usability will suffer. Experienced Glass users wise up to what models work best
for the platform, and even newbies will quickly figure out that if they can’t use your
Glassware in their daily lives, they’re drop it like a bad cold. Better yet, figure out how
to make your idea exist on both as a hybrid application.

You could also frame the argument in terms of the impacts on deployment—the tradi‐
tional model of rigorously testing to stamp out as many bugs in native programs still
holds true, but can be time consuming and creates delays between version releases,
which then have to be pushed out through a repository or app store. Traditionally this
has meant alerting the user that there’s a new version of the app available and then having
her download it, or as Chrome has achieved in recent years, applying silent updates.
This, after all, is the idea that makes updates to the Glass OS work so fluidly. We’d
ultimately like to see this be the case for native apps on Glass, which solves a lot of the
disconnect issues between software vendors and users when new versions are ready.

Even within the GDK itself, you might find yourself lost at first in deciding whether to
commit to a live card or an immersion. Generally speaking, live cards tend to have a
longer shelf life than immersions, but immersions require complete user attention while
they’re running, and don’t permit integration with the timeline. In this light, we see
immersions as the exception instead of the rule. Many people defer to using immersions,
but they generally aren’t the way to go.

Real-world examples of apps that fit the live card category are implementations of media
players like Pandora and ViewTube for Glass, time-sensitive actions like AllTheCooks
Recipes, scheduling services like to-do applications, telephony applications, and oth‐
ers. Great examples of immersion-based apps are games, search services, applications
that make various uses of the camera, location-oriented apps like driving utilities, and
video tutorials. There’s room for innovation here though, as we’re seeing some very
clever uses of both UI methods to deliver really effective experiences like Zombies,
Run! (an immersion) and Battery Checker (a live card).

So Which Framework Is for Me? | 289

http://bit.ly/zombies-game
http://bit.ly/zombies-game
http://bit.ly/battery-checker

Learn the best practices and patterns, see what others have done, play with some code
samples, and then let your own creativity drive your app.

So how do you use the Glassware development model to solve problems? Do you start
with the frameworks and then figure out how to use the unique features of each to write
an app…or do you begin with an existing domain space and then pick the most appro‐
priate framework? There really isn’t a cut and dry answer. The best thing to do would
be to write Glassware in the Mirror API and the GDK and get a solid feel for the de‐
velopment process and turnaround cycle.

You may find yourself needing one…or both.

290 | Chapter 13: The GDK

CHAPTER 14

Getting on MyGlass: Glassware Submission,
Review, and Distribution

Welcome to the end of the line! (Well, almost.) Now that you know everything about
the Glass ecosystem and Google’s vision for wearable computing, it’s time to get you
ready to play the main room. You’ve committed to memory the proper steps needed to
design highly effective wearable applications and have thoroughly mastered the tech‐
niques to build rich functionality for the Glass experience, tying it all together with the
Think for Glass philosophy. You’ve reached a critical point following design and devel‐
opment: getting your Glassware submitted for review. This is the all-important final
step so your project can be listed in the MyGlass directory so that users can easily
discover it and start using your Glassware.

And getting on MyGlass should be the destination you aim for after building an amazing
product, as it yields the greatest rewards. So in this chapter we’re going to complete the
cycle and show you how to get there in as little time as possible (as we’ve done with the
rest of this book) by preparing you for the review phase.

Whether you work at a professional software shop using formal lean product manage‐
ment methodologies or you happen to just be a solo hobbyist who hacks and hacks and
hacks until things work right and look good, know this: the more organized you and
your project are, the faster you’ll be approved and listed in MyGlass. It’s that simple.

So let’s get it together, and let’s go. There’s a place waiting in MyGlass with your Glass‐
ware’s name on it!

Making Your Awesome Glassware Even More Awesome
We need to stress right off the bat that Google’s review process isn’t a shakedown, and
the Glass team isn’t a heavy-handed gatekeeper. The goal is to help you create excellent
Glassware and make sure your project follows best practice guidelines. All projects are

291

welcome, providing they demonstrate the form and function of winning Glassware,
abiding by the Glass Platform Developer Policies and delivering a great wearable expe‐
rience. The process lays a solid foundation of amazing programs that set the tone for
legions more to follow, giving developers inspiration and users uniformity, variety, and
choice.

That said, you needn’t lose any sleep over compliance: this isn’t a federal subpoena to
testify in court—more a run-through to make sure that you stuck to the major principles
laid out in Google’s documentation for design and programming patterns. Google
measures various aspects of your Glassware to ensure it performs well, properly con‐
forms with the Glass UX, effectively (but not egregiously) promotes your brand, and
achieves the goal of being microinteraction-focused. And by this point in the book,
you’re well-equipped to pass the test with flying colors.

The Objective of Glassware Review
If you’ve published an Android application to Google Play or other app stores before,
the requirements and process to publish your Glassware should be somewhat familiar.
In truth, the phase of evaluating your Glassware and getting it ready for the masses is
more reminiscent of the early days of Apple’s App Store than the process of submitting
work to Google Play or the Amazon Appstore. However, while the sequence of events
that is involved in testing, assessing, and making recommendations about your Glass‐
ware is more involved and takes longer than an Android app submitted to Google Play,
the Glass team isn’t taking a massive virtual red pen to your work. They want to list you
and help you succeed, and the review is all about making your Glassware the very best
it can be.

That said, this process is still new and continues to evolve, so you may discover com‐
ments or suggested changes that strangely contradict what you’ve been taught to be the
best way to build great wearable applications and services, even teetering on hypocrisy
against Google’s own documentation. This is normal, so don’t freak out. It’s part of the
fun of living on the bleeding edge of technology.

Remember, this is a learning experience for everyone, and your very participation makes
things better.

What MyGlass Gets You
Aside from the obvious prime exposure and promotional plug you’ll have by being in
MyGlass as an officially approved Glassware project, there are several technical advan‐
tages that we’ve touched on in earlier chapters. If you’re looking to build a business and
monetize your wearable projects, integrate with other applications you’ve created, or
incorporate other components within Google’s ecosystem, being on MyGlass is the way
to go:

292 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

https://developers.google.com/glass/policies

Expanded Mirror API quota
Google works with you and helps estimate how many more daily API calls you’ll
need beyond the default 1,000 once you’re let past the velvet rope. This assessment
is typically based on several factors, including how many calls your Glassware cur‐
rently makes and the number of average transactions per user your Glassware con‐
sumes. You’ll also be able to request a specific number of calls per day when you
submit your Glassware for review.

Support for GDK authentication
You’ll be able to allow users to log in to third-party web services and use remote
data in your native app once Google uploads your project’s APK onto MyGlass for
your private testing.

Whitelisting
If your project isn’t meant to be public Glassware, you can request a project to be
granted private access, in which case a privileged Google Groups or a Google Apps
domain you specify will be whitelisted to access it.

Managed installation
Installing native Glassware is handled entirely by MyGlass. Once your project is
listed, users need only enable it from MyGlass and your app will be sent to their
device over the air. Glassware vendors distributing outside of MyGlass have forced
their users to use ADB to sideload APKs onto Glass or have built separate Windows
Installer programs, which is more work and can get messy.

Versioning and distribution
MyGlass also manages pushing any updates you publish to users silently, without
any prompts to redownload or reinstall.

Support from Google
The conversation doesn’t end once you get on MyGlass. You’ll be in the pipeline for
any new announcements and platform enhancements, and the Glass team has been
known to feature projects as case studies to help other aspiring Glassware creators.

Prereview Activities
So you’ve prepared yourself for the slings and arrows of constructive criticism and are
willing to apply the recommended changes. Let’s give you an overview of how you should
get ready before you even start the submission process.

The truth of the matter is that it will require a tad more work to get your creation into
MyGlass post-development, but the upside is that Google’s laid out everything for you.
The Distribution section of the developer documentation maps out all the prep work
you’ll need and the action items you’ll be taking prior to seeing your Glassware’s icon
appear right alongside Facebook, Twitter, Evernote, and others. You’ll be needing several

Prereview Activities | 293

https://developers.google.com/glass/distribute/index

graphics to use for the branding of your project. These include art assets used within
the Glassware itself as well as screenshots and icons to be featured in MyGlass.

As you should have gathered from this book, design is a big part of making sure your
Glassware is a hit. Luke Baran, who built the streaming audio Glassware for Boston
NPR station WBUR, the first Glassware application that delivered live radio content,
wrote that you’d be best suited to submit an app sooner than later, as the review process
doesn’t explicitly mean you have to submit an ironclad finished app. It can be a prototype
that you’re building along the way. Once you’re ready for your handiwork to be beta
tested, you’re ready to submit.

During review, you can continue to submit updated releases of your Glassware—making
changes to your server backend if you’re using the Mirror API or submitting signed
APK versions for GDK-based projects. If you’ve got uber-black ops trade secrets you’d
rather not share, don’t worry. This isn’t a code review, but more of an analysis to see how
your Glassware applies the Glass experience.

Since aesthetics are a—and debatably, the—major component of the review process, you
can help your reviewers along by including wireframe of your project using Glassware
Flow Designer, which we talked about in Chapter 13. Visually laying everything out
helps the team understand what you’re going for and can identify areas of improvement.
They’ll still thoroughly test your stuff—but various developers, including some that
have worked on more than one project, have indicated that including a flowchart of
their Glassware has sped the approval process along considerably.

Things to Think About Before You Submit
There are some additional considerations you’ll need to make depending on the type
of Glassware you’ve built relative to scalability, security, and performance. If you’re
working with Mirror API Glassware, you’ll want to be confident about your infrastruc‐
ture’s ability to handle potentially large request loads, and that your web server doesn’t
collapse during high-volume periods due to a sudden surge. This won’t be an issue if
your server is based on Google App Engine or some other platform-as-a-service pro‐
vider, but it is something to keep in mind with the Glass-owning public constantly
expanding.

If you’re using a web host that charges you for additional resources you consume (leaving
you with a potentially massive invoice for bandwidth) or you’re self-hosting a server,
this may make you reevaluate how your Glassware talks to the cloud and uses the APIs.
Further, it may force you to think about how to handle downtime. This is the type of
advice that you might get from Google once you submit your Glassware and review
starts.

Even though Glass communicates with the cloud over HTTPS, you want to consider
how bulletproof your security is with authorization/authentication and for any data

294 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

http://bit.ly/glass-wbur
http://bit.ly/glass-wbur
http://bit.ly/glass-review
http://bit.ly/g-flow-design
http://bit.ly/g-flow-design

stores and handling items like passwords, tokens, and other types of sensitive informa‐
tion. Do you have a contingency plan in place in the event your security is compromised?
Google’s policies prohibit the collection, storage, or sharing of confidential user data
like Social Security numbers, which the documentation details in full.

In terms of being performant, how might you be able to make your Glassware any more
optimized? If you’re working with GDK Glassware, having a high-performance app is
a must. Tasks that could be GPU-dependent like animation loops or back buffers, in
addition to physics engines, visual transitions between screens, or other jobs with a
substantial effect on the processor and battery, which cause Glass to heat up, should be
examined. Of likewise importance is how you handle various multimedia formats and
processes spawned outside of the main UI thread like networking, downloading large
resources, syncing, or I/O.

And although you can submit Glassware without error handling for every type of nui‐
sance that may occur, you do want to demonstrate that you’ve prepared steps to act
during cases where Mirror API services seem to unresponsively hang to no avail, or
GDK apps outright crash. How do you report these situations to the users, how do you
shut down any running services, and how do you recover so they hopefully won’t happen
again?

Pandora Adjusts Its Strategy for Its Glassware
As a practical example of publishers changing things up to meet
wearable demands, Pandora had to withhold using the auto-inserted
advertising feature that’s normally part of its streaming audio ser‐
vice for its freemium web and mobile clients when implementing its
Glassware. At the time of its release including or serving ads in Glass‐
ware was strictly forbidden by Google, so to be approved, the ad
feature wasn’t implemented.
(Pandora also did this years earlier with its app for the original Goo‐
gle TV platform.)

But again, don’t feel as if you’ve got to spend hundreds of manhours slaving away con‐
figuring caching headers, tweaking CDN configurations, getting that one pesky Java
method to run just a few milliseconds faster, or stamping out bugs prior to submitting
your work. The best part about Glassware review is that Google encourages you to turn
in a project that’s early in the design phase to get the right start. (Remember, this is the
company that lives, breathes, sleeps, and dreams the “release early, release often” man‐
tra.) You do want to continuously improve your software, but having a working proto‐
type that’s generally usable is good enough.

It’s perfectly acceptable to stay in beta.

Things to Think About Before You Submit | 295

How About Localization?
One thing developers have brought up a lot—notably those working with content-
focused Glassware—is how they can make Glassware with international flare; they are
looking to support languages other than English. The Glassware Launch Checklist states,
“Glassware and its related descriptions must be in English by default. Multiple languages
are okay if there is complete feature parity between languages. The review process will
support new languages as they become available on Glass.”

When submitting your Glassware, make sure to indicate all of the languages that your
project intends to support and review the material from Chapter 12 so Google can check
to make sure your resources are serving the appropriate content properly, and get it in
the hands of affected users. In this regard, you’re directly influential in expanding Glass
to more countries! Let Google know what specific people you’re trying to reach, and it
just might open up access there.

Submitting Your Glassware
So now you’re ready to begin the submission process, which has you fill out a web form
that describes your Glassware, its format, and how to control it. This last step is quality
assurance to make sure you play by Google’s rules. The first thing you need to do is
again do a quick once-over of the Glass Platform Developer Policies, just to make sure
you’re not erring in the way you populate, distribute, and promote your new product.

Second, go slowly through the Glassware Launch Checklist item by item. The form is
highlighted in Figure 14-1. This ensures your Glassware has all of its technical require‐
ments in order. This runs the gamut of everything from the naming of your Glassware,
the legal use of Glass art assets and other Google intellectual property, to graphic sizes
and formats. These may seem trivial, but they can trip up groups that are more focused
on engineering and less on marketing and legal matters.

296 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

https://developers.google.com/glass/policies
https://developers.google.com/glass/distribute/checklist

Figure 14-1. The Glassware Launch Checklist

Do I Have to Be Listed Publicly?
You can request to not have your Glassware listed publicly in My‐
Glass in cases when you’re publishing privileged applications or serv‐
ices for organizations like businesses, schools, churches, or families,
and don’t want them available to the entire Internet. If you wish this
to be the case, as Figure 14-2 shows, when submitting you can pro‐
vide a Google Groups mailing list or a Google Apps domain for pri‐
vate access to your Glassware.

Submitting Your Glassware | 297

Figure 14-2. Requesting private Glassware

Gotchas
There are a couple of items that catch even the savviest of developers all the time. The
Developer Policies state that when users delete their account with your Glassware, with
Google, or any links between the two, “You must delete all personal information you
obtained from the Google API relating to them,” so handling such situations is a must.
This also plays into the tips in “Delete Versus Dismiss” on page 82 that dealt with users
deleting data within your Glassware. Also, Google’s grammatical rules for using various
forms of “Glass” in context is something you need to intimately familiarize yourself
with. You may use “…for Glass” in the title of your Glassware, but not “Glass…”

298 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

Submit!
Barring any major issues you have with either the Developer Policies or the Checklist,
head on over to the Glassware Review Request page. You’ll need to provide URLs for
content areas that will populate your MyGlass profile page, including your terms of use
and a privacy policy, contacts, multimedia assets, a support email address, and possibly
other resources. You’ll also need to describe how your Glassware makes use of the GDK
APIs, if applicable (Mirror API Glassware tends to have a bit more public-facing in‐
formation while installed GDK apps require an additional screen to detail some of their
requirements).

Gmail’s MyGlass profile page lists links for contacts, support, and more in the bottom-
right corner (Figure 14-3).

Figure 14-3. A detail page on MyGlass

You can also request a specific volume of Mirror API calls that your Glassware can make
daily and whether your Glassware will be listed publicly or privately (Figure 14-4).

Submitting Your Glassware | 299

https://developers.google.com/glass/distribute/form

Figure 14-4. Display assets

Lastly, you can indicate what type of feedback would be most helpful to you
(Figure 14-5). These include UI, UX, or even writing effective press releases for your
Glassware. Don’t be shy—this is free advice. Think of it as an early present!

300 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

Figure 14-5. Requesting additional feedback from Google

The Review Process
So now, you’re theoretically under review. We know what you’re thinking—HOW
LONG WILL THIS TAKE UNTIL I’M APPROVED??? The definitive answer about
your unique timetable: it depends. Don’t go investing in blood pressure medication just
yet or hair color product to cover all the gray that’s suddenly sprouted up—this isn’t a
stressful period where the seconds feel like days. The process is collaborative, iterative,
and fun! Seriously folks, don’t go issuing press releases or making public statements…
yet. If you need to time it with something else, discuss that with your review team (we’ll
get to this in a moment). But remember that your review will take time.

After sending in your Glassware’s profile, you should get word back from your review
team very quickly as a general introduction. But streamlining this approval rides on:

• How clear your project’s description was in outlining your experience
• The complexity of your Glassware
• How promptly and correctly you apply the suggestions Google sends you

The Review Process | 301

What Google looks for during the review process isn’t a tightly kept secret, and it openly
shares the major criteria against which your Glassware is compared:

• Is your Glassware safe?
• Does your Glassware do what it says it does in your description?
• Is it built for Glass?

The best thing about the review process is that it’s not subject to subjectivity. The entire
Glass team has received the same training, looks for the same areas of concern, and
emphasizes the same winning aspects of wearable applications. The review process is a
team event, so things tend to be done by committee, and the suggestions you get are
consensus from several people. You can rest assured you’re getting the most qualified,
most well-rounded opinions about how to make your Glassware shine. Plus, at the end
of the day the Googlers are just end users like us and you, so they’re working to create
something they’ll, use, too!

Does Mirror Glassware Get Approved Any Faster Than GDK Glassware?
We all know that the big advantage of working with the web stack versus programming
natively is a much faster turnaround time, rapid deployment, and next-refresh updating.
However, this doesn’t mean that native Glassware will take significantly longer to be
reviewed and approved than Glassware that’s strictly cloud-based. The review timetable
is the same no matter which developmental framework you use—Mirror or GDK. If
you’re looking to get something to market quickly, make sure you follow the steps out‐
lined in this chapter and stick to the Glassware Launch Checklist. That’s the key to a
quick turnaround—not the framework you chose.

And in case you’re wondering, you don’t get to cut in line in front of other people whose
Glassware is in review if you’ve already got Glassware listed in MyGlass or Android apps
listed in Google Play. Membership in this case doesn’t have such privileges. But your
prior experience should guide you through review to move quickly to approval.

The feedback you receive is typically a list of items in a spreadsheet that detail out the
changes you might want to make to achieve the best possible Glass experience. Google
won’t dictate what you can and can’t implement technically—your idea, your innovation,
your vision, and your creativity will be preserved. You’ll likely have several items to
consider, largely from design and performance perspectives. These may be general sug‐
gestions about the arrangement of menu items, the use of input controls like gestures
and touch and voice, how the Glassware handles microinteractions, the application of
a particular UI element, branding elements, recommendations for the handling of mul‐
timedia, technical tidbits like ensuring processes are properly killed after live cards are
stopped, or placement of graphics. These tend to be very specific.

302 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

Depending on the difficulty of the changes and how fast you can get them applied, you’ll
receive further feedback as your Glassware moves along the virtual assembly line. This
process may span several rounds as your reviewers use your Glassware more and get a
better understanding of what you’re trying to do. You’re more than free to dispute these
suggestions and defend your decision to design things in a certain way…the comments
you’re sent aren’t based on rules that are set in stone, and if you feel something you did
is right, don’t be afraid to stand your ground.

Timing Your Release
If you’re overseeing the launch of a large application ecosystem that has separate appli‐
cations for Glass, Android Wear, other various flavors of Android (for handhelds/
tablets, vehicles, or TVs), web, Chromecast, Chrome extensions, etc. and you’re shoot‐
ing to roll out all versions of the service at once, it would be wise at this point not to
commit to a certain launch date. Synergizing all platforms for a single launch is very
tough, with Glass being the slowest to be available to market because of the review phase.
Our best advice for trying to pull off a coordinated launch would be to get your Glass‐
ware in first and under review, then ask the team for a projected date once they indicate
you’re nearing approval. You can then submit to Google’s other channels and be ready
within hours.

You can launch and announce everything in a grand-and-glorious blitz once every‐
thing’s available.

Categorical Listings
You don’t need to concern yourself for the moment about how your Glassware will look
once “on the shelf ” in MyGlass. Once the volume of approved Glassware hits the level
when it can be listed categorically, you’ll be able to better directly appeal to your target
audience. For now, expect your placement to be alphabetical—you may have built a
insanely cool game you titled “Snail Trail,” and by virtue of its naming wind up appearing
right next to Sky Map, Star Chart, and Shazam. You’d obviously be better suited next to
Glassware in the wearable gaming genre, but that’s what we have now. It’s not perfect,
but this will undoubtedly improve with scale.

MyGlass also doesn’t have a ratings system yet like other app stores, so your work won’t
be able to generate the grassroots buzz it might have as people endorse your work (on
the flip side of the coin, folks can’t unfairly bash the fruits of your labor and have such
criticism stand out more). Again, we hope to see this improve with time and volume.

App Analytics
One thing that astute developers will pore over tirelessly is traffic statistics and usage
data. We mentioned in Chapter 3 the need for formal, structured insight metrics, so we

The Review Process | 303

hope at some point Google Analytics is available to bundle with Glass products. Google
Play Services also isn’t available as part of the GDK like it is for Android mobile apps,
so that’s also on our wish list. For now though, you’re able to take advantage of a few
tools that gauge how your Glassware is holding up once in the wild.

If your infrastructure runs on Google Cloud Platform, such as relying on Compute
Engine or Google App Engine, you’ll have access to technical breakdowns to measure
responses to requests, to monitor basic usage for things like time-of-day requests, errors,
API calls, load, caching, and other metrics. The App Statistics dashboard for your project
in Google Developers Console has great data you’ll find helpful, in lieu of more general
reports with data you can use for marketing.

Marketing Channels
We highly encourage you to be as shamelessly self-promotional as you can with your
marketing in all forms and to network like crazy. Register your own domain name.
Create a Facebook brand page or even a designated group so people can talk with/about
you. Have a podcast touting your latest features and upcoming developments. Do meet‐
ups with your fans. Let people congregate in praise of your innovation. It’s all good.
Numerous blogs and social outlets cover the Glass space and sniff out any new Glassware
that come on the scene…minutes after they’ve been published. Don’t let the free press
go to waste!

Best of all, the Glassware development community is thriving and passionate and con‐
tinues to grow everyday. Many of us cross over to Android Wear work and we’ve men‐
tioned in this book just some of the many friends we’ve made who are doing amazing
integration with other systems. The hallmark of a great Glass developer and a big part
of Think for Glass is passing on knowledge to newbies just taking up the practice, so
always try to make time to pay it forward and give people who are now your colleagues
some timely pointers.

Monetization
Lastly, let’s talk about the one thing that’s been on your mind probably since the first
page of Chapter 1: How can I make money off my Glassware? You can only build Glass‐
ware for so long before the shine of public adoration without compensation begins to
wear off (trust us, we both know). The Glass Platform Developer Policies don’t allow
for traditional monetization techniques to be applied, and anyone caught trying to do
so in their Glassware won’t be approved and could have their access suspended. We
strongly urge you not to test this.

Serving advertisements is a no-no, and you can’t charge fees for accessing or using your
Glassware. And we’re irreconcilably split on how we see some form of AdWords ulti‐
mately being available within Glass. Jason likes the idea of having contextually accurate
ads and/or commercials appear in a user’s periphery and would like to see the oppor‐

304 | Chapter 14: Getting on MyGlass: Glassware Submission, Review, and Distribution

http://bit.ly/app-stats-dash

tunities it spawns; Allen believes that with Glass being ultra-personal, shoving ads in
your eyeballs is a poor experience and is contrary to the platform’s design goals. “Ev‐
eryone, including Google,” Allen maintains, “is trying to figure out the right way to do
this.”

The ultimate solution to be revealed might be a form of micropayments, perhaps for in-
app purchases, rental charges, or on-demand Glassware. One thing is certain: moneti‐
zation will come in time and in some capacity, and you will be able to profit from your
work. Just be patient and stay ready for it.

The Review Process | 305

CHAPTER 15

Reflections on the Future

The most intriguing thing about Google Glass is that it’s just getting started. The promise
of all the things Google’s flagship wearable computing platform already is and the ex‐
citing prospects of what it can become are nothing short of awe-inspiring. Do a search
for “Google Glass use cases” and it’ll take you an hour just to go through the results.
From general purpose to profession-specific, from the ultra-cool to the downright lu‐
dicrous, the sky’s the limit for how people are going to put Glass to work.

As we’ve discussed, a big portion of society speculated, dreamed about, praised, criti‐
cized, and condemned the product for more than two years before it even came out.
Few products in history have achieved this sustained level of interest that far out from
launch.

Throughout this book we’ve presented concepts, code, design tips, and our philosophy
to help ensure you enjoy a long and healthy life with your technology investment and
give your Glassware a powerful stage on which to succeed. This final chapter discusses
some advanced uses for Glass and what lies ahead for the platform.

Corporate Glass
One of the questions that invariably pops up when considering Glass is how businesses
will deal with their employees using it in the workplace. These days the lines between
high-performance business machines and off-the-shelf consumer tech are completely
blurred, and companies are outfitting their staffers with the very same smartphones,
tablets, and laptops that everyday consumers stand in line for and pick up at popular
retailers. The BYOD (“bring your own device”) concept, thought to be anathema 15
years ago, is gaining popularity these days, and is even encouraged in many other op‐
erations across industry. Staffers are free to source their own gear that gets outfitted
with corporate access controls and internal applications, distributed and running safely
and securely outside of the public Glass ecosystem.

307

Glass can be a boom for productivity since it’s so nonintrusive; or it can serve as the
bane of an IT department’s existence in being yet another node joining a wireless net‐
work, using resources and distracting staffers from actually getting stuff done. It’s a
legitimate quality control concern. Many organizations—notably government agencies
and the military—restrict access to several types of applications they allow on their
networks like videoconferencing, instant messaging, various streaming media formats,
and many other services.

So a big challenge—and opportunity—is clearly on the horizon for integration and
Glassware development. Since all syncing traffic for services based on the Google Mirror
API takes place in quasi-real time (after a request/response roundtrip to the service),
how can this be filtered to allow some Glassware, like news updates, stock prices, and
messaging, to persist throughout the workday, while disallowing notification distrac‐
tions from other Glassware like games, memes, and porn? Large organizations may
prefer the closed model of installed apps written with the GDK so that they control all
aspects of the communications chain and won’t have to rely on Google’s system as mid‐
dleman for things like company-wide messaging. Or, they may prefer the managed,
cloud-oriented environment of the Mirror API with its simple UI, inherent security,
and known procotols, and then outright block native Glass apps.

Google itself even created the Glass at Work initiative to help spread knowledge about
how Glass is being used by workers in different professions, to demonstrate how de‐
velopers are creating custom solutions within industry, and to stimulate businesses in‐
tegrating wearable electronics into their operations.

Will a new generation of wearable computing devices spearheaded by Glass assist work‐
ers and let them complete more tasks more quickly, therefore being a valuable tool, or
will it be yet another time vampire, preventing work from actually getting done? That
part’s up to you. Google’s done all the engineering for the product; the social rules of
how it can be used within offices, schools, churches, buildings, and other places need
to be developed, put into practice, and enforced. Remember, a key element of how to
Think for Glass is getting others to understand what it is, and is not.

Streamlining Operations
Pennsylvania-based Fiberlink extended its MaaS360 mobile monitoring and adminis‐
trative application to support Glass by writing Glassware, empowering IT managers to
control wireless devices on their networks hands-free and at any time by seeing all
connected staffers’ devices across their network in timeline cards. The service includes
a slick feature that uses a wearer’s headset to locate a lost device and display its where‐
abouts on a map, giving an administrator the option to lock it down or wipe the device
completely.

308 | Chapter 15: Reflections on the Future

https://developers.google.com/glass/distribute/glass-at-work
http://bit.ly/fiberlink-maas

Glass also has great potential for the laborer not bound to a desk. Augmate, a develop‐
ment shop in New York City, is using Glass to connect enterprise backends with digital
eyewear to streamline workflows and business processes for field workers, with appli‐
cations developed using the Glass UX for the automotive, manufacturing, construction,
and aviation industries, among others. Imagine your UPS deliveryman scanning your
package as he drops it off with Glass. What could Brown do for you then?

Glass in Medicine and Education
Practically every industry and sector is at least considering how Glass might work for
them. While opportunity abounds for the startup community and existing brands
looking to add another cash cow to their stables by creating can’t-miss Glassware, the
most emerging areas with inarguably the largest implications on society are healthcare
and education. Glass as a communications tool for students and faculty, both for remote
learning and for enhancing in-class instruction, is booming at the elementary, secon‐
dary, and collegiate levels.

Northeastern University in Boston created a college course on Glass as a driver for
healthcare innovation. Similarly, USC has developed coursework in how Glass can
transform journalism, and the Glass Creative Collective is a partnership between Google
and several design and film schools to advance the craft of visual storytelling. Several
daring instructors have used Glass for telepresence and advanced videoconferencing,
such as Michigan physics teacher Andrew Vanden Heuvel, who remotely took his stu‐
dents on a once-in-a-lifetime virtual tour of CERN via the Hangouts Glassware.

Healthcare practitioners are pushing the ecosystem forward by diagnosing illnesses,
treating patients, and collaborating on research, with several surgical procedures now
documented from the Glass first-person POV as a teaching tool to extend the audience
normally restricted to the surgical gallery and demonstrate live cases with colleagues.
Healthcare technologist Dr. Rafael Grossman broke new ground when streaming his
work during the insertion of a feeding tube into a patient of his via Hangouts. The Ohio
State University soon after used Glass for telemedicine when Dr. Christopher Kaeding
performed reconstructive knee surgery, sharing the live video with colleagues via Hang‐
outs and chatting with students and colleagues about the technique in real time, while
not endangering the patient or requiring the doctor to constantly step away from the
operating room. Whereas videoconferencing tools historically involved stationary cam‐
eras and monitors at awkward angles, participants literally saw the procedure through
his eyes. In addition to Hangouts and the ability of Glass to facilitate video calls, surgeons
have been able to review x-rays, radiology reports, and other forms of medical imaging
pushed to their HUDs mid-procedure.

It wasn’t too long before other physicians followed suit and started sharing their knowl‐
edge, too. As of the time of this writing, Glass has been used in a number of anatomical
procedurres and on three continents.

Glass in Medicine and Education | 309

http://augmate.com/
http://bit.ly/heuvel-tour
http://bit.ly/osu-surgery

And in Australia, Glassware is being developed to provide hands-free tutorials for new
mothers for proper breastfeeding.

Other physicians and clinics have been asking for Glass to help eliminate the need for
clipboard-based patient charts by digitizing data and making it contextual as hospital
caregivers make their rounds. Similarly, consultations are easier with video calls. Further
still are the healthcare providers that are working on ideas to use Glass to communicate
with patients, letting people in trouble make video calls, or being able to relay vital signs
to medical responders through timeline cards through sensors. Philips Healthcare is
putting a lot of R&D effort into using Glass for telemetry applications. Pharmacists are
looking to Glass as a way to expedite the filling of prescription orders, which is one of
several concepts that Glass Explorers Chris Vukin and Thomas Schwartz are building
with evermed, a suite of products to assist practitioners and patients alike. A touching
video showed how Children’s Memorial Hermann Hospital used Glass to let patients
take a virtual tour of the Houston Zoo. And we’ve covered the booming space that is
fitness Glassware.

On that note, much work is being done as to using Glass as a part of sports medicine
and for the treatment of athletic injuries, as well as for broader use in trauma and triage
situations for ER professionals, EMTs, and possibly even field combat medics.

Further, how might this also be used for other medical disciplines like chiropractic care,
physical therapy, dentistry, plastic surgery, psychology, or psychiatry? Could a marriage
counselor analyzing clients on the couch possibly use a Glassware-based polygraph,
essentially a wearable lie detector app, to pick up on patterns in the couple’s voices to
assess elevated stress levels, which would aide in their treatment? Could a person re‐
covering from an injury going through exercises have their biolevels sent in real time
to a telemetry center for analysis to track progress? We certainly hope so.

But of course, the implementation of these ideas in industries isn’t trivial. Concerns over
privacy and security, HIPPA stipulations, issues involving interacting with young peo‐
ple, endangerment, and skepticism from the medical and educational communities will
have to be addressed. Many organizations involved in health have taken the Glass hard‐
ware and removed all system software, installing their own proprietary Android forks
based on the source Google released (as detailed in the previous chapter), to comply
with federal regulations about confidentiality of data between provider and patient.

But the general consensus seems to be that the application of these new tools is a positive
step in either line of work. Both the healthcare and education sectors have the resources,
brainpower, and motivation to really push the platform far ahead in very rewarding
ways. Many believe these to be the most noble of all pursuits when applying Glass in
real-world scenarios, with each having ample coverage in the mainstream media and
multiple Communities on Google+ actively discussing the pros and cons of Glass and
wearable electronics overall. The Stanford MedicineX series of Hangouts On Air prom‐

310 | Chapter 15: Reflections on the Future

http://www.healthcare.philips.com/main/about/future-of-healthcare/
http://bit.ly/glass-zoo
http://bit.ly/glass-zoo
http://bit.ly/medx-live

inently featured Glass to critique the platform and its potential as a tool. It’s a stirring,
pragmatic discussion about the future.

If you feel as strongly or just want to discover some of the many ideas being floated, we
encourage you to listen in and speak up.

Accessibility
Another area relative to healthcare where the Glass experience can make great strides
is for people with limited hearing, use of their limbs, motor skill impairments, or other
forms of handicap. Google shared the inspirational story of Alex Blazczuk, a law student
who after a car accident doesn’t have full use use of her hands due to paralysis. She
documented going on a camping trip with her friends, negotiating the system controls
on Glass by voice commands.

Spoken input and audible output are wonderful ways for people living with disabilities
to interact with the system—voice in, voice out. There’s also work ongoing to make
Glass work for people with autism, where the feedback loop in Glass might not be so
natural.

Several companies are also heavily involved working on gesture-based program con‐
trols, including eye-tracking. And our friend Mike DiGiovanni, whose work we’ve
rightfully cited before, is cobbling a GDK app that controls timeline navigation without
voice or touch at all, using only head gestures. It’s very inspiring work—and very worth‐
while.

Home Integration
One of the announcements in 2013 that really shook up Glass devotees was the revelation
that Google had submitted and had been approved for patent applications positioning
Glass as a hub for home integration, to be used as a remote control for things like
controlling settings on your refrigerator and opening your garage door. The patent
described Glass employing several communications methods, including RFID, QR
codes, Bluetooth, infrared, and the curiously generic “visual identification” over which
to wirelessly communicate with connected devices.

This finally gave a viable use case to the promising Android@Home initiative, which
admittedly was a space that, after being announced at the Google I/O 2011 developers
conference, saw next to no public traction exhibited outside of Google’s own Nexus Q
project, which coincidentally was scuttled in 2012 mere months after its announcement.
This bold revelation really got people starting to think about how Glass could interface
and control objects in the real world. If you’re a hardware manufacturer looking to add
a slick new dimension to your products, this is worth having your R&D team investigate
and tinker with.

Accessibility | 311

http://bit.ly/medx-live
http://bit.ly/blaszczuk
http://bit.ly/digiovanni-gdk-app
http://bit.ly/androidathome

Revolv is already doing some impressive work with home automation by extending its
own platform for Glass, using the HUD as a frontend controller for wireless remote
domestic robotics (“domotics”), empowering users with the ability to access their lights,
curtain blinds, garage door openers, and locks. Cutting-edge developers at the Nodebot
conference were able to control a Parrot AR.Drone quadcopter with Glass using Node.js
libraries and Glass gestures—a feat that was repeated by a team led by technologist Dave
Martinez at the Breaking Glass hackathon.

And the Glass community cheered loudly when the news broke in early 2014 as Google
announced its acquisition of Nest, the company that produces Internet-aware thermo‐
stats and smoke detectors. The much-speculated initiative for Google to have relevance
with appliances, controllable by smart frontends including Glass, is incredibly cool.
Commercials for more than two decades have hinted at consumers being able to monitor
and enable/disable security systems and home gadgets with a phone call, touchscreen
tap, or voice command. Imagine doing so on Glass in the middle of a jog or while at the
store or in the middle of a meeting or while in class—you’d get a timeline card relaying
the temperature of the room, and you could speak and/or tap and manipulate the device
back home.

You could even set thresholds that would proactively push card updates to you if your
living room got too cold or too hot, giving you the ability to raise/lower your IP-
controlled device.

Chromecast and Home Entertainment
Not since the inevitable marriage of chocolate and peanut butter have two platforms
been so fated to meet and join in union as Glass and Chromecast. Clearly Glass is a ripe
platform for casting content through the HDMI dongle either as a possible sender and/
or receiver and as a controller or mirroring source. To this end, LynxFit, which we’ve
mentioned a few times before, was the first Glassware to incorporate Chromecast, al‐
lowing the users to fling their workout guide videos through its GDK app onto a large
display. It’s a tremendous cross-platform feature that makes using the app incredibly
sticky.

The Mirror API could also possibly be leveraged to generate timeline cards as a relay
for a second-screen utility, like “now showing” or “coming up next” screens or some‐
thing a little more static. Cable providers could let users manage their TV programming
in their DVRs and library of media in their home entertainment systems. This might
be THE feature that services like Netflix, Hulu, Pandora, and YouTube need to do things
like provide Glass wearers access to their queues-at-a-glance, without actually trying to
use Glass as a viewing/listening station. Glass could certainly be used to add further
value to the leanback experience of enjoying Internet multimedia content on big home
displays.

312 | Chapter 15: Reflections on the Future

http://revolv.com/

Obviously, we’ve framed this just in the context of entertainment media, but there are
a ton more use cases—and issues—to consider. How could you combine the two?

Android Wear
The escalation in activity for development of applications incorporating Android Wear
is also incredible. Glass plays a pivotal role in Google’s place in wearable computing, so
integrating the Mirror API and the GDK with the Android Wear SDK and sharing
notifications across wearable devices is exciting new territory. But just as we laid out in
the chapters concentrating on design for Glassware, the litmus test is going to be having
wearable devices like Glass, smartwatches, fitness trackers, and others not compete for
a user’s attention, bandwidth, and notification attention—but to have all of them peace‐
fully coexist.

These platforms shouldn’t be seen as rivals, but as partners. So the software shops and
developers who master the art of having their applications and services work seamlessly
across desktop, web, mobile, and wearables will quickly separate themselves from the
pack. We hope to see you break new ground and write about your achievements in a
future edition of this book!

Hardware Hacking and the Internet of Things
Just because there’s not the inherent ability to do certain things with Glass out of the
box doesn’t mean someone won’t try. It’s the magic of having the innovative spirit—
you’re bound only by your own imagination. Many first-generation ideas like turning
Glass into a miner’s helmet or a construction worker’s scale sound corny…but so did
turning an iPhone into a flashlight. And some forward-thinking people have made
pretty nice chunks of change from those little endeavors. So because a hacker’s work is
never finished, let’s now shift to moving outside the scope of rooting your device and
get into extending Glass to communicate with other platforms entirely.

The community of hackers, builders, and makers using Arduino and Raspberry Pi
microcontrollers is staggering, and they’re doing some really amazing work for very
little money. With the rise in hardware startups, the Accessory Development Kit is a
great starting point to create new electronics based on Android. The documentation is
worth checking out, as is the Android Open Accessory protocol, on which the ADK is
based.

But what if you’re not a budding electrical engineer with an entire garage full of spare
LEDs, breadboards, soldering irons, and potentiometers? (First, we pity you. You’re
really missing out—because until you’ve wired up a circuit that actuates a servo over
the Internet based on motion detection, you’ve not truly lived.) But fear not, there’s
hope.

Android Wear | 313

http://www.arduino.cc/
http://www.raspberrypi.org/
http://developer.android.com/tools/adk/
http://source.android.com/tech/accessories/

Commercial kits let you take advantage of the Internet of Things, the ambitious concept
that uses the monstrously expanded address range provided by IPv6 in tandem with
smart devices to make them accessible and controllable online. Kits like Ninja Blocks,
WeMo sensors, FitBit, Philips hue lighting rigs, and Lego Mindstorms give builders a
prefab-yet-customizable platform on which to build Internet-aware electronics and see
what data they’re gathering as its gathered. We’re really happy to see one of our favorite
services, IFTTT, trigger actions from APIs from other well-known services in IFTTT’s
ever-expanding stable of channels and connect those events to the Mirror API’s event
framework. The possibilities are nearly limitless. And this requires developers to really
get creative, while sticking to the Think for Glass foundations we’ve laid out.

A shining example of this type of foresight is the work of Sahas Katta, a young software
engineer from California. Over a weekend in June 2013 he essentially rebuilt the An‐
droid native app for his relative’s Tesla Model S electric car using Glass APIs so he could
remotely open/close the sunroof, unlock doors, check the battery’s charge, manage cli‐
mate control settings, and turn on the headlights. He succeeded in making the car
hackable. (Mercedes-Benz and Hyundai have since announced plans to integrate Glass
into their automobiles as well.)

Even Google cofounder Sergey Brin himself has stated that at some point he’d like to
see Glass function as a viewfinder for his DSLR camera, implying really cool cross-device
communication. So the true scope for Glass as an extensible platform reaches far outside
the box…and prism.

Peripherals/Accessories
This last topic is already seeing some great traction, as tricking out your gear has always
been a big thing with techies. With Glass being a modular platform, there’s lots of room
to make new things to work with it, make it even more personalized, or make it look
even more unique. As slick as Glass’s design is, some people will want to customize the
device and wear it out and about with style and personalization.

GPOP, a design company cofounded by San Francisco-based Glass Explorer David Lee
and featuring the designs of artist Virginia Poltrack (creator of the Word of the Day
Glassware), wasted no time in putting together snazzy sticker designs giving you a range
of alternative frame colors for Glass, using cool visuals like snakeskin patterns, cam‐
ouflage, a matte carbon fiber texture, iridescent dots, your favorite sports team’s logo,
crazy stripes, and other ways to make your wearable computing device truly stand out
in a crowd.

Custom themes have been a staple of operating systems since Windows 95, and who
among us hasn’t downloaded a cool skin for our browser or rocked a neat case with our
alma mater’s logo on our tablet, set a neat ringtone on our phone because we were tired

314 | Chapter 15: Reflections on the Future

http://ninjablocks.com
http://belkin.com/us/wemo
http://fitbit.com
https://www.meethue.com/
http://mindstorms.lego.com/
http://ifttt.com
https://ifttt.com/channels
http://gpop.us/

of everyone using the same polyphonic version of Canon in D, or modded the heck out
of our Xbox?

The market for Glass peripherals is expected to be huge, giving you yet another avenue
to look even more distinct as you wear your computer. Charging platforms, docking
stations, holsters, carrying cases, and gear with colors and designs matching your phone
and tablet to your Glass headset are expected. We also fully anticipate visual artists to
create downloadable templates the community can use for timeline cards to expand the
set available in the Google Mirror API Playground.

And of course, there’s the merchandise, both officially from Google and knockoff fan
products—never discount the importance of good swag.

And the space for accessories for Glass is expected to bloom. No, check that—explode.
Alternative frames alone should be a big hit. Neoprene or chain lanyards to hang your
headset from your neck while not actively using it from companies like Croakies would
sell like hotcakes. You can even build upon the ecosystem itself, as the folks over at
Remotte at doing with their handheld remote control device, which uses a variety of
sensors, programmable LEDs, and a tactile keypad to control Glass and other Bluetooth-
connected smart devices. Neat idea!

In Closing
You now have the tools to do great things with Glass and really push the envelope, so if
you’re willing and daring, go for it! We’d love to hear, see, and use what you come up
with, and we’ll be happy to share your ideas in a future edition of this book.

Remember, the first prototype of Google Glass started out as a pair of modified circuit
boards taped to either side of an off-the-shelf pair of sunglass frames for counterbalance,
with ribbon wires all over the place and a small prism. But with a whole lot of work and
thought, the final product didn’t turn out too bad (and two guys from opposite sides of
the planet even wrote a book about it together).

So we encourage you to use the platform to its fullest. Keep tinkering with your own
ideas, keep learning the development frameworks, and commit the design guidelines
to memory. There’s a lot to be done to make the Glass ecosystem grow and prosper. We
can’t wait to see what you do with it, and we’ve both got many more creative ideas that
we want to start using with Glass, too.

It’s been our pleasure to share our philosophy with you to help you get the most out of
the platform. We hope you’ve enjoyed reading our book as much as we have putting it
together. We invite you to interact with us at Glass meetups and events and get in touch
with us on Google+. And remember, always Think for Glass!

In Closing | 315

http://remotte.com/

PART IV

Appendices

A series of helpful appendices with several pro tips are included to give you background
information on how to maximize usage of the system, and how users can configure
networking, system settings, and manage Glassware registration and installation. We
also dive deep into the architecture of several popular Glassware projects and let the
teams that produced them tell you in their own words how they put them together and
what lessons they learned from doing so.

• Appendix A, Glassware Done Right: Case Studies from the Field
• Appendix B, Hacking Glass

APPENDIX A

Glassware Done Right: Case Studies
from the Field

We’re making sure you get the most bang for your buck, since you were so diligent to
read this far. Now that you know how to effectively Think for Glass, it’s helpful to see
some real-life case studies to see how others are applying the mindset to great Glassware
projects, for both the Google Mirror API and the GDK. And to do this, we’ve enlisted
some very reliable friends of ours.

In the short time that Google Glass has been around, we’ve made countless connections
and have logged immeasurable hours in forums, Hangouts, Google+ Communities
groups, chat sessions—and, of course, on Glass—discussing with people their passion,
ideas, tips, and criticism about the Glass ecosystem. But, more importantly, we’ve be‐
come chummy with several cutting-edge developers who have generously and honestly
shared—in their own words—their architecture, triumphs (and horror stories) involved
with building great wearable software.

We’re in awe of their creativity and we’re proud to let them share their insight and
expertise with you here. Let their work inspire you and feel free to reach out to them
and inquire about their projects. These efforts aren’t just great Glassware, they’re backed
by good people who truly care about our community.

• Thuuz Sports: Lets you know what’s hot
• KitchMe: Glassware that’s simply delicious
• Fancy / ColorSnap: Leveraging colorful queries
• LynxFit: A personal trainer strapped to your head
• Genie: The Swiss Army Knife of Glassware
• Tits & Glass: Takes Glassware into the bedroom…then pivots to keep it there
• NameTag: Launching headfirst into facial recognition

319

• CrowdOptic: Crowdsourced broadcasting
• Vodo: Real-time collaboration in Google Drive
• Preview: The latest movie trailers are just a glance away
• GlassFrogger: Hybrid Glassware using the browser

Thuuz Sports Lets You Know What’s Hot
Winning features: second-screen experience, custom push architecture integration

Long before it debuted as featured Glassware in MyGlass, Thuuz Sports, a popular online
platform that tracks the pulse of games for several international leagues, had already
earned a reputation as a vital component for sports fans on iOS, Android, and Google
TV (Figure A-1). Thuuz not only keeps track of scores for games in the NFL, NBA,
MLB, and NHL, as well as English Premiere League, UEFA, tennis, cricket, and rugby,
but the service tracks the velocity of those games by measuring each’s “excitement rating,”
an intensity index dictated by several factors, including how close the score is as the
game nears its end, fan interest, and other situational signals.

Figure A-1. Thuuz’s Glassware makes the perfect second-screen companion

It makes for a perfect companion to stay abreast of how your favorite teams are doing
if you’re unable to watch the game…or if you’re totally hardcore and watching three
games at the same time and need alerts from other events as they develop (which is
awesome). It’s also an indispensable tool for the fantasy sports crowd, alerting team
owners if a player they have is having a monster statistical day. “Thuuz Sports for Glass
allows you to get timely updates by alerting you to exciting events as they happen, as

320 | Appendix A: Glassware Done Right: Case Studies from the Field

http://thuuz.com/glass

well as reminders for upcoming games you might have forgotten about,” said Jordan
Toor, a software engineer on the Thuuz team. “We show you a rating on a scale of 0–
100 of how exciting a game in your favorite league is and a teaser of what’s going on.”

The Glassware is written on top of the Mirror API, generating timeline cards with game
data and leveraging speakable text so as not to distract users from the actual action while
they’re glued to their seats, watching the actual contest (Figure A-2).

Figure A-2. Web-based configuration is helpful for nearly every sports league

You’re in command of what you track—either specific teams, conferences, or entire
leagues via Thuuz’s web-based control panel (Figure A-3).

Thuuz’s Glassware server is written in Python, using Django for database support and
template rendering, and talks to Glass through the Google API’s Client Library for
Python. Toor explained that integrating the Palo Alto company’s in-place cloud infra‐
structure for mobile OSes and connected TVs with Glass sync was a breeze. “It was fairly
easy to integrate into our push delivery system we wrote in-house,” he noted. “We just
added a new device type and then the logic to deliver content via the Mirror API instead
of Google Cloud Messaging or Apple Push Notification Service. This is all powered by
a workflow system that is distributed between our backend servers.”

Thuuz Sports Lets You Know What’s Hot | 321

Figure A-3. In-game score updates keep you on top of the action

What became challenging, Toor said, was seamlessly translating Thuuz’s signature UI
onto the card paradigm. “Adapting our existing Android and iPhone alerts to look great
on Glass, primarily due to differences in formatting,” was a particular hurdle. “And also
making sure the speakable text sounds good, as well.”

322 | Appendix A: Glassware Done Right: Case Studies from the Field

Even for games you may not be watching or teams you may not be following, Thuuz
Sports lets you know if something major is going down. Its Glassware is an extension
of the experience that fans have relied on over several seasons, masterfully handling the
transition from huge monitors and portable displays to Glass prism—without missing
a shot, snap, pitch, or goal.

KitchMe’s Glassware Is Simply Delicious
Winning features: web integration, organized bundles

Foodies, rejoice! Whether you’re a connoisseur of culinary creations or just someone
with the munchies, or if you’re an expert chef or more the type that just enjoys the art
of cooking, KitchMe, by Coupons.com, is Glassware that you can’t live without
(Figure A-4). The Glassware doubles as a search engine for its sizable listing of recipes,
as well as a step-by-step cooking assistant to aide you as you prepare ingredients and
meals (Figure A-5). It’s a multiplatform extension of KitchMe’s browser content with
deep social integration that curates recipe listings from all over the Web and aggregates
them for easy use in personalized collections you create.

You can also filter recipes by type of diet, course, or style of cuisine, and then send listings
to your Glass headset to use while preparing a meal. It’s really tight integration with
clever use across platforms. Chief software architect Gene Reddick says early tests of
voice search capability, which returns bundles of cards for matching recipe results,
which can then be shared and pinned for later reference, have proven to be a huge hit
and will be available publicly with a future native version of the service. The instructions
can then be read to users as they prepare the dishes.

While the service does rely on the trackpad at the moment, as swipes are needed to
advance through a card bundle to move from one step to the next, Reddick is hopeful
for native voice control down the road, creating truly hands-free cooking. “If this is not
provided, we will consider building something ourselves,” he speculated. “Either voice
control or using the camera to recognize gestures or hand motions.”

KitchMe’s Glassware server is an ASP.NET MVC application, written in C# and running
on IIS, developed with the Google Mirror API. “We also looked at a pure JavaScript
solution, but felt that dealing with OAuth was easier handled on the server,” recounted
Reddick. He said migration of the existing app to Glass wasn’t too much of a stretch,
noting, “Because most of the KitchMe services were already built and we had working
APIs for all the requests we needed for Glass, it didn’t require much work to build out
the search and recipe services we required. I cropped and scaled all our images to fit the
Glass screen resolution.”

KitchMe’s Glassware Is Simply Delicious | 323

http://www.kitchme.com/googleglass

Figure A-4. Recipes are shown beautifully as background images

Figure A-5. Recipe steps are represented as bundles

Reddick says the UI was the biggest challenge in bringing KitchMe to life as a wearable
computing service. “In getting the UI right, we initially built quite a few more features
into the product and displayed a lot more data on each card. With each iteration, we
stripped out more information and removed features,” he said.

324 | Appendix A: Glassware Done Right: Case Studies from the Field

“In retrospect this seems obvious, but it really took a while to sink in just how far back
from our starting point we had to go to get to a clean usable design. Partially this results
from the device itself—the screen resolution and the touch-based interface, but more
importantly I think from the unique way Glass is used,” Reddick aded. “Specifically,
interacting with a screen directly in front of your eye feels very different than a screen
on your phone held at a greater distance or a computer screen. It feels to me like you
have less time to dwell on the screen, less time to notice peripheral detail on a screen
that is already at the edge of your peripheral vision.

“Presentation and actions needed to be as simple and clear as we could make them.”

Fancy and ColorSnap Leverage Colorful Queries
Winning features: search-by-color

One of the opportunities that Glass makes possible, like other mobile platforms that
preceded it, is the ability to create new ways of achieving proven ideas. Savvy developers
can execute complex jobs while maintaining the Glass goal of simplicity and user ex‐
periences with minimal use. Two pieces of Glassware that brought to light an emerging
space that we find absolutely amazing are Fancy and ColorSnap by Sherwin-
Williams. Both are extensions for Glass of existing platforms for the social shopping
service and the paint company, respectively, using color recognition technology.

They introduce the innovative approach of “search-by-color,” wherein Glass wearers
can take a picture and share that image with their Glassware. In Fancy’s case, a bundle
of cards representing a result set of items matching the colors within the captured photo
are returned with the option to purchase for people that like a consistent theme to their
clothing, furniture, or household items.

ColorSnap examines the colors of objects within the photo and inserts a single card on
the user’s timeline of the same image with a color swatch overlay for a pallette of similar
shades of paint the company carries (Figure A-6).

Fancy and ColorSnap Leverage Colorful Queries | 325

http://fancy.com/help/glass
http://colorsnapglass.com

Figure A-6. ColorSnap matches images with known shades of paint

Fancy even uses a clever trick to let the user know about long-running operations (which
are usually on the order of 30 seconds or more)—inserting temporary search cards into
a timeline to let the user know the status of things that aren’t immediate like product
searches based on color. This is an interesting visual technique to denote status for
operations that don’t return immediately (Figure A-7).

Figure A-7. Fancy’s “search in progress” card

326 | Appendix A: Glassware Done Right: Case Studies from the Field

Fancy’s Glassware inserts temporary cards onto a user’s timeline to indicate the status
of color searches (Figure A-8).

Figure A-8. Matches from Fancy’s product database

Both examples are absolutely stellar ways to integrate ecommerce and introduce new
ways to think about search. The approach of basing product search on color isn’t a snarky
retort to the fact that facial recognition technology wasn’t allowed early on…it’s just a
really sharp, quick, and convenient way of interacting with a system and getting results.

Both epitomize what it means to Think for Glass and are endlessly fun to play with.

Fancy and ColorSnap Leverage Colorful Queries | 327

LynxFit: A Personal Trainer Strapped to Your Head
Winning features: sensor access, Chromecast integration

Figure A-9. LynxFit is a one-stop wearable workout solution

Your product has gone through several iterations to get where it’s currently at. Share how
the feature set has changed as the Glass ecosystem has expanded with new frameworks,
hardware, gradual rollout to a larger audience, etc.

The Glass SDK and API, combined with the Google Glass cloud platform made ex‐
ploring various features easy to prototype. The ease of development made rolling out
functionality based on feedback very nimble and seamless.

How would you position LynxFit in the grander scope of fitness apps?

LynxFit is a better way to work out, using wearable computing to bring a more fun,
immersive experience that motivates users on their path to health and fitness. Working
out hands-free is a new level of independence for the user, bringing their fitness fix
wherever they are, whenever they need it, without the need of checking a cellphone or
tablet, which completely disrupts the flow.

LynxFit was among the first that called for programmatic access to the Glass sensors.
Describe the genesis of your concept to have workout software for wearables, and how this
matured when you first tried to implement it as Glassware with the Mirror API.

328 | Appendix A: Glassware Done Right: Case Studies from the Field

http://lynxfit.com

The first implementation of what was then GlassFit, was pushing content to Glass, and
even when it had some animated GIFs (in lieu of actually animating graphics in the
display) which were pioneering at the time, it was not as interactive as we’d like it to be.
The natural evolution for GlassFit was LynxFit, an experience that is voice coached and
immersive counting and cheering for the user as they go through their daily fix of fitness,
as we like to call it.

What were some of the challenges you experienced translating your idea from essentially
a RESTful service to one that was a fully native experience (Figure A-10)? Have you in
any way merged the two frameworks for hybrid functionality?

In a way, with LynxFit we found out that we were pushing the limits of Glass and the
GDK as we were stressing the battery and processor through extreme use of video,
sensors, and processing, which lead to overheat among other issues. We had to carefully
craft the app around those limitations playing with the screen wakelife and pulling some
other tricks to make it viable.

We are using a hybrid between GDK and Mirror API as there is a server-side process
that at the scheduled time sends a card to the timeline to remind the user of their workout
time. From these reminder cards the GDK app can be launched. Also, at the end of each
workout we send statistics and PIE (Pace, Intensity, and Endurance indexes) through
Mirror API as well.

The web admin interface is extremely slick, but the app still features lots of input controls.
How might other Glassware developers use this model to provide user administration for
their own projects, rather than directly on the device?

We think of it as driving any complexity into the website (and in the future to the mobile
app) versus Google Glass. Glass is designed for microinteractions and even when parts
of the LynxFit experience are immersive, we try to go with simpler first. The website on
the other hand has all the full-blown possibilities for the user to choose their content
and schedule it to show up on Glass.

LynxFit: A Personal Trainer Strapped to Your Head | 329

Figure A-10. Set your exercise schedule and progress

You also broke new ground for being the first Glassware to integrate with Chromecast.
Talk about the idea behind this and how the architecture and APIs supported it.

The idea is to use any resource available to get the best possible user experience to the
user. On that thought trend, Chromecast became a natural extension of the Glass ex‐
perience when the user has a TV at reach allowing for gamified shared quantified work‐
outs that were before hard to capture. Because we are having requests to implement the
Chromecast experience on its own from mobile devices (with the possibility of adding
external sensors, Plantronics, Jarvis, Glass) we are reviewing the architecture in order
to give mobile a more central role and sharing most of the core code at the same time.

What have some of the challenges been in developing software that’s whose very existence
is contingent on tracking motion?

There’s also a clever gamification angle to the workouts, which makes using the software
fun. You’ve picked up on the hint that this might also have bigger implications for doing
extended workouts.

What’s on the horizon for LynxFit, as far as applying new ideas, adding new features,
maybe premium membership services, integrating other platforms, or even adding new
products to the Byte an Atom line?

The play with Byte an Atom Research is to build innovative software (bytes) and kickass
hardware (atoms). Right now the primary focus is to enable healthy lifestyles through
wearable computers so don’t be surprised to see a Lynx-related hardware device on
Kickstarter to help that dream along someday soon.

330 | Appendix A: Glassware Done Right: Case Studies from the Field

Genie: The Swiss Army Knife of Glassware
Winning features: beautiful UI, multiple uses, location data

Genie is heralded as one of the most well-designed Glassware services available. The UI
is simply beautiful—simple and effective. It really works for the medium. Share your
approach for good design strategies when working with wearables.

We at 33Labs have always had a strong focus on usability and user experience. Mauro
Canzian, our cofounder, has been influenced by his past studies on architecture and has
a special talent to bring together graphic design and UX design to get the best experience
possible for the user. Mauro actually designed for Google Glass from South America,
months before he ever tried it.

On our Google Glass approach the main things we focus on are:

• Following Google’s guidelines and standards.
• Keeping it simple, clean, minimalistic in a way, showing only what the user really

needs to see on each microinteraction.
• Using a visual color-coded reference for icons, bars, etc. to identify each key section.
• UX using as much as we can on each platform to enrich the experience. In the new

GDK development for Genie, we are experimenting with the use of text-to-speech,
speech-to-text, two-finger swipes, two-fingers taps, etc.

Early on, Genie made waves by being THE one-stop shopping Glassware service, essen‐
tially being the first software suite for Glass. What are you most proud of as far as Genie’s
feature set, and what aspect of the initial program was the most challenging to build?

Coming out of the Glass Foundry in February 2013, 33Labs spent numerous brain‐
storming sessions to decide what to build. Such a new platform, so many options. One
of the things that we realized early on is that accessing apps would be complicated on
Glass as the number of apps grew. That thought pointed us in the direction to make one
app that could be highly usable on a daily basis. Together with a longstanding obsession
to have computers, and better yet wearable computers, help us expand and augment
our faulty human memory the project was born.

You use Mirror API location data by querying for the user’s position to mark their parking
spot for later reference. How did you enjoy working with the location scope?

It was early on and we found out that some features were not working as we expected.
Our initial idea was for the user to tap and instantaneously get location information,
but we were not getting the geolocation as a custom menu option was being pressed.
We had to trick the Mirror API by using voice recognition in order to get a location out
of the system. Now, with all the new possibilities brought up with the GDK this is
changing.

Genie: The Swiss Army Knife of Glassware | 331

http://genietakeanote.com/

Figure A-11. Genie has lots of cards for lots of situations

Genie also applies an interesting spin on the traditional concept of identity, using a calling
card metaphor within the service to store public contact information about the user. Talk
about how this plays into its broader applications.

This was an idea from our friend David Lorenzini. Given that facial recognition was out
of the picture early on, why not use simple voice passphrases to identify a user and be
able to exchange their public information, a problem most users want resolved yester‐
day? It was a lot of fun to experiment with this concept. In the end there were not enough
Glass users on the streets for this to work and now it’s a feature we’re walking off from
at this time.

One of the initial challenges was making sure that Glassware had some sort of persistent
presence within the timeline. Without using custom voice commands or menu items,
Genie achieved this by pinning itself. However, Explorers discovered that when Glass
would do housekeeping and purge old cards, it did so for items left of the home screen,
too, which would then force users to have to resubscribe to the Glassware to get it back.
How did you resolve this problem from a UI standpoint?

332 | Appendix A: Glassware Done Right: Case Studies from the Field

That was an interesting surprise to see that the pinned cards were being recycled. At
that point we realized we were pushing the limits and using pinned cards in a way they
weren’t intended (isn’t that what developers and users just do?). As a funny anecdote,
my friend and Explorer Noble Ackerson told me recently that he was intentionally un‐
pinning and pinning the Genie main menu weekly to refresh it and prevent it from
vanishing. In the end the solution came with the “Take a note” voice command addition
to the “OK, Glass” main menu, which we are using now.

Genie was created using the Mirror API—any plans to integrate native functionality,
either as a rewrite or as a hybrid using the GDK with functionality between the two
frameworks?

At this point we’re moving into developing with the GDK as the main platform for Genie
and using Mirror API in a hybrid style to allow navigation and sharing lists from the
timeline.

The main reason we decided to move to the GDK is access to gestures to allow users to
handle lists in an intuitive and faster way. Also, we get better response times when notes
need to be remembered or recalled. We still love Mirror API for broadcasting and other
features, but we feel its just not agile enough for the main purpose of the application.

In the short term we expect to be able to satisfy one of our users’ main requests, which
is to be able to take notes using offline voice recognition. This should be resolved in the
level of Glass Android OS mainly as it upgrades to fresher versions of Android, but also
it involves syncing offline/online data, which will be a bit challenging.

MiKandi Takes Glassware into the Bedroom…Then Pivots
to Keep it There
Winning features: scalability

Jennifer McEwen, cofounder of Seattle-based MiKandi, a leading innovation shop in
the adult industry and producer of the largest third-party adult app market for Android,
bore the burden in June 2013 of having to be the first Glassware publisher to have her
creation banned—mere hours after it went live. Tits & Glass, which lets users browse
and vote up sexy imagery, was deemed inappropriate after Google modified its policy
governing what type of content would be allowed for its still-in-beta developer platform.

Rather than sit and pout—or worse, just give up—McEwen wasted no time in modifying
the service by toning things down considerably and featuring tamer content that didn’t
violate the clause prohibiting sexually explicit material. Similarly, she gave members the
ability to discretely share their own first-person perspective pictures using Glass, which
are then viewed on the Web. And like many of its contemporaries, MiKandi has also
had to deal with the challenge of managing software with overwhelming demand against
a rate-limited API.

MiKandi Takes Glassware into the Bedroom…Then Pivots to Keep it There | 333

http://titsandglass.com

As a result, McEwen and her three-person team have had to be extremely creative and
forward-thinking to ensure MiKandi maintains its presence throughout Google’s eco‐
system (Figure A-12). Here, McEwen recalls her first-hand experience of putting the
system together and keeping it running amid some interesting challenges with user
demand and Google terms.

Figure A-12. MiKandi has handled pretty impressive scalability issues gracefully

The MiKandi Experience
First and foremost, Glass is a communications device, so naturally intimate conversa‐
tions will happen through it. Tits & Glass provides an outlet for adults to share their
intimate POV photos with like-minded individuals in a safe, fun, adults-only environ‐
ment. Originally, the Glassware delivered 18+ content to users but after Google updated
their policies to prohibit adult material, we revised it to deliver only SFW content to the
device. Users can still upload their adult Glass photos, but they’ll only be viewable on
the website for now.

Installation/Configuration
Tits & Glass is very simple to install and use—simply link the app with your Google
account and we start sending updates, including an introductory greeting with several
of our top cards. At the moment, while Mirror API requests are so scarce, we have
considered having a welcome card, which requires confirmation to weed out those users
who are linking their Google account even though they don’t have Glass. We essentially
hit our API limits every morning before the majority of our users can use the app.

334 | Appendix A: Glassware Done Right: Case Studies from the Field

https://mikandi.com/blog/news/google-glass-porn-presentation/
https://mikandi.com/blog/news/google-glass-porn-presentation/

Home-Rolled Development
As very early Mirror API developers, we didn’t have many options available with the
Mirror framework, so we had to roll our own. We used our in-house PHP framework,
Propellant (similar to CodeIgniter, an open source framework), and added Mirror API
modules to our standard library. We backed the Tits & Glass app using Redis. We may
well consider open-sourcing a PSR-0 version of our module.

Facilitating Requests: Challenges in Building
One of the biggest challenges is the fact that sharing notifications and other actions do
not clear the newly created action card from the timeline. This requires additional API
calls to fetch data from the share and clear the extra card.

In addition, the Mirror API effectively requires that developers maintain their own
version of app state (which cards are shown, which are hidden, etc). Our first imple‐
mentation relied on Mirror to keep state, and polled it when updates were required. API
limits and expressed best policies on the Mirror API docs pushed us to keep a complete
local copy of state of each user’s Glass. For the relatively small number of Glass users at
the moment, keeping this extra state is a simple problem (and Redis’ sorted sets worked
really, really well to manage this in a simple and efficient manner). As the number of
Glass users grows, however, this will present a nontrivial database/datastore problem
to Mirror developers.

On another note, the Mirror API Playground as a card previewer is a long way from
being suitable for designers to build and thoroughly test layouts and designs. We ended
up building a small card previewer that our designers could use to preview card designs
using Chrome but pulling from our live database data.

More broadly, we hope a solid toolkit of wrappers and helpers springs up for the Mirror
API. For our experienced devs, working with the API at a wire level was difficult, but
doable. I think that many people who just want to tinker will be put off by the difficulty
of interacting with the service.

Scalability Issues
The limited number of API requests made Tits & Glass hard to develop. On the upside,
it made us build a really frugal app. By keeping local state, we managed to avoid a number
of API calls. Image size is obviously a big issue, which is why we compressed the Glass
version of images using SendFaster’s CRUNCH compression software.

Due to the popularity of Glass, an app can get a huge amount of traffic in a short period
of time—a cheap shared hosting account will almost certainly fall over under the load
that even a modest Glass app will generate with some modest press. We ended up hosting
our Glassware in a load balanced auto-scaling scenario.

MiKandi Takes Glassware into the Bedroom…Then Pivots to Keep it There | 335

Then there’s the issue of Google’s policy changes. When Glass was announced at Google
I/O in 2012, the running joke was that it would be perfect for POV adult content. News
broke that we were developing an adult Glass app two weeks before we publicly released
it. Google quietly updated their terms over the weekend without giving developers no‐
tification, then punished us for violating what they considered “clear” policies. These
kind of quiet, last-minute policy changes cause the same frustration as the arbitrary
policies changes of Apple’s App Store.

Google’s trend toward closing their beta technologies and their recent closed policy
toward the delivery of Chrome Apps has raised some alarms. By all accounts, Chrome
Apps should be more open than Android, but we see the opposite. It’s too early to tell
whether or not these are signs of an overall shift in attitude from Google, but we’re
watching them very closely and will continue to push for openness and innovation.

Platform Expansion: Plans on Having an Installed App?
I hope to see Glassware that can facilitate two-way interaction between adults—couples,
cam models and fans, or total strangers. In regards to our Glassware in particular, our
hands are somewhat tied behind our backs until Google agrees to increase our API calls.

With respect to possibly extending our reach using native code on Glass, we expect that
Google will provide a terms of use in the GDK compiler that disallows compilation
against the codebase without their permission, as they did with the Chromecast SDK.

Going Forward, Pushing the Envelope
Wearable devices are a brave new world. There’s definitely going to be a learning curve
for the community. To compare to literature, in I, Robot Asimov talked about “early days
of robots” where robots were required to have human riders, because people were so
scared of the new technology that they hobbled it to feel safe. In the same way, the
prohibition on apps like Winky and features like facial recognition cannot and will not
stand in the long run.

Such natural and obvious uses of the technology may be delayed for a time, but will not
be denied.

NameTag Launches Headfirst into Facial Recognition
Winning features: real time facial recognition

Six months after Google announced they’d be shipping Glass without any sort of facial
recognition ability, FacialRecognition.com, which promotes itself as having some of the
most accurate facial recognition software in the world, announced a beta of NameTag,
its native Glass application that lets wearers scan and identify people with the Glass
camera by comparing them to known public systems in real time (Figure A-13). It seeks

336 | Appendix A: Glassware Done Right: Case Studies from the Field

http://nametag.ws

to provide a deeper way of connecting people in the real world by liberating social media
from traditional desktop and handheld devices.

Figure A-13. NameTag compares scanned faces to known, public data sources

While not sanctioned by Google, the app does some very remarkable things and hints
at what might be a big market for Glass.

What are the core use cases NameTag was built to address?

Since launching the beta program we have had requests from doctors with lots of pa‐
tients, professors with lots of students, and sufferers of face blindness, to name just a
few. Anywhere it is important to remember a correct name in a timely fashion we can
provide a useful service. There has been particular interest from the dating industry to
provide a safety background check against a database of serious sexual offenders to warn
you of potential dangers. Ultimately we would like to see a situation where you can
safely meet people based on mutual interests, so if I capture your face I will instantly see
things we are both interested in and this enables a much more effortless conversation.

With respect to usability on Google Glass, some of the initial natural limitations with the
device are framing a shot, holding the camera still, and shooting a subject at the right
angle to legibly scan them. How might NameTag improve upon this?

NameTag is built with some advanced capture features to frame and crop a face auto‐
matically when the user positions the viewfinder reticule over someone’s face. The most
important thing is to create an intuitive interface that engages the user. Over time the
hardware and camera devices in smart glasses will improve and this will allow us to do
even more.

What signals does the system look for when not only running tests on 2D digital imagery
or printed photos, but actual people in the real world?

People are often moving, standing in poor light, or wearing something on their face,
which can frustrate the recognition algorithm. The NameTag app has been extremely

NameTag Launches Headfirst into Facial Recognition | 337

successful at overcoming these challenges. We work hard to optimize for both 2D and
3D recognition situations.

NameTag is a fully immersive experience that doesn’t implement the default Glass UX
like the timeline or cards. Describe building it as an Android app with the GDK libraries
and constructing its user interface for Glass.

It does need some forethought to consider the smaller size of a Google Glass screen. We
actually built an initial prototype using a web stack and constrained the proportions to
the Google Glass dimensions so we could see how components in the UI would fit
together.

Detail your approach for the complex task of not only algorithmically recognizing a user’s
face, but performing object detection and being able to discern what a face is from digital
imagery being received by a camera in real time.

The high-level process happens in a specific order: analyze the video stream for face
objects, when a face is detected frame and crop that face, convert the face to biometric
data, run a comparison search for similar faces in our database, and finally return data
for top matches in our database. We continue to optimize our techniques to achieve
better results for the user.

NameTag is a perfect example of network effects—the more systems the app hooks into,
the smarter and more valuable it becomes. In addition to the sources it currently taps,
what other systems do you see as key to making the service applicable to a wider range of
situations, therefore increasing the accuracy of scans?

NameTag operates as a search engine for people. We spider the web accessing publicly
accessible data, then compiling it into useful profiles. Our servers will continue to link
to new public records to create the best possible results for our users.

From a big data standpoint, describe the process of indexing information from all the
disparate systems you use, and keeping such in the cloud.

Future developers need to consider classic spidering and data collection techniques,
partnered with Hadoop-style analysis, and running on one of the major cloud infra‐
structure systems.

What were some of the challenges in building for Glass? Any difficulties working with the
Explorer Edition hardware?

We ran into challenges throughout the development of this app because of the limita‐
tions of the Explorer Edition hardware. We expect that Google Glass will continue to
evolve with better hardware even before being released as a consumer product. This
evolution will allow development teams like ours to continue to push the boundaries
of what is possible. In the meantime we will continue to make our software more efficient
to address issues like overheating.

338 | Appendix A: Glassware Done Right: Case Studies from the Field

It’s important to note that NameTag is just one application of FacialNetwork.com’s in‐
novative approach to working with detection/identification. How might some of your
other ideas establish a presence on Glass?

Smart wearable technology will continue to evolve allowing more efficient use of facial
recognition. Everything from looking up a business contact at a tradeshow, to a doctor
who wants to confirm the identity of the patient they are diagnosing in relation to the
chart, or even a university professor who wants to access reports for the student standing
in front of them. Many of our beta testers are interested in and are even developing
useful applications; we would love to support these apps with the power of our platform
and create the maximum value out of this revolutionary technology.

CrowdOptic: Crowdsourced Broadcasting
Winning features: crowdsourced broadcasting model

One of the best things about Glass development is that in a few amazing cases, it’s not
just an application that arises. Such is the case of CrowdOptic, which is using the wear‐
able computing revolution to transform broadcasting, effectively building its own plat‐
form to do so. Using an innovative approach, the software is able to detect people using
devices like Glass and allow them to share their video feeds with each other, or with
other broadcast equipment for an incredible experience and powerful analytical tool.

CrowdOptic works bidirectionally—giving users the ability to ingest live content from
other wearers, and also for wearers to distribute their video dramatically onto mammoth
digital displays, to television, and to the Web. The merged integrations are controlled
via a browser-based dashboard. It’s an amazing system that perfectly demonstrates how
Glass can be used as a client within other platforms.

Describe your concept of crowdsourcing video content in real time based on proximity
and how other Glass users can partake of each other’s feeds.

CrowdOptic’s patented focal clustering technology (U.S. Patent No. 8,527,340) senses
where multiple computing devices, including Google Glass and smartphones, are aimed
in real time and enables instant, live applications based on where people are looking.
CrowdOptic’s Broadcast-In feature leverages this technology to allow fans in luxury
suites and select seating to aim their Google Glass at any broadcasting device, or in the
same direction as any broadcasting device, including another pair of Google Glass, to
inherit the video feed from that device.

How difficult or liberating was applying the particularities of Google Glass to your existing
software? What aspect of the hardware were you able to exploit to make your platform
shine?

Using Google Glass—a computer that sits in your line of sight—with CrowdOptic’s focal
clustering technology is such a natural combination that developing for the Glass plat‐

CrowdOptic: Crowdsourced Broadcasting | 339

http://crowdoptic.com

form was a no-brainer from our perspective. Initially, there were challenges, partially
due to the challenges Google itself has faced with balancing form factor against things
such as processing power, battery life, heat, etc. These considerations placed limits on
the device’s capabilities from a hardware perspective and made it more challenging for
us initially to do cutting-edge things using Glass. We had to employ various work‐
arounds, including rooting the device, in order to access the sensor data needed to enable
our clustering technology.

Later, updates to the Glass OS allowed for easier access to these sensors.

Detail your backend architecture and how you were able to integrate Glass into it.

The CrowdOptic Glass Broadcast Platform networks multiple Glass units to identify
the best views out of all possible video feeds. Our platform requires a CrowdOptic Video
Proxy Server (VPS), local WiFi network, Internet connectivity to access the CrowdOptic
Cluster Detection Server (CDS), and n units of Google Glass running CrowdOptic
software (Figure A-14).

The Glass units (any smart devices) broadcast video streams to the VPS, which connects
to the CDS to analyze the quality and perspective of each stream. The best video streams
are instantly made available for broadcast-in and broadcast-out integrations that can
be managed through a web-based dashboard.

Figure A-14. You can’t not be impressed by CrowdOptic’s system architecture

You’ve made big waves with athletic communities. What have the major real-world use
cases been so far?

Sports, media, and entertainment are a natural fit for our technology, and adoption of
the CrowdOptic platform has rapidly taken off in this vertical. The first professional
sports deployment was by the Sacramento Kings, who used our platform to obtain live

340 | Appendix A: Glassware Done Right: Case Studies from the Field

crowdsourced video content from Glass units and broadcast the footage in real time to
their Jumbotron. The Kings were able to offer a one-of-a-kind fan experience using
CrowdOptic as a tool to crowdsource live video content directly from Glass, because
our technology allowed them to select which video streams to broadcast in real time
from among multiple Glass units recording simultaneously.

How do you see CrowdOptic also being used throughout other industries?

CrowdOptic shines in any environment where there is desire for spectators to see
something being filmed and broadcast digitally from multiple angles or points of view.
The applications are vast. For example, we have been deployed across industries from
consumer packaged goods (L’Oreal) to security (Metlife Stadium). In that latter example,
the end users were security agents, who were able to instantly view live video footage of
the locations of possible incidents. Importantly, CrowdOptic provided both the location
of the camera/witness and the location of the video subject (incident location).

Your software not only has great impacts on personal content sharing, but for professional
network-level broadcasting. How could your technology be implemented with TV net‐
works?

We are very involved with TV networks and are working with them to enable electronic
news gathering and real-time Glass reporting applications. It is also worth mentioning
that any video content that is generated at a televised event can be broadcast to television
via the CrowdOptic platform dashboard just as easily as it can be sent to a Jumbotron
or other in-stadium digital media or to the Web. This is considered phase two by many
of our customers.

Some major deployments are in the works. Stay tuned for announcements.

You’ve done a lot of custom development to achieve the experience you’re after. What
about the Mirror API and the GDK did you enjoy using, and where did you find them to
come up short?

We have begun using the GDK. The Mirror API isn’t as useful when you’re actively
running an application like ours. It mainly allows applications to interact with the user
when the application isn’t actively running. In the future, I’m sure we’ll use the Mirror
API to alert the user when they’ve wandered into an area where our app could be used.
The full GDK hasn’t been released yet so all that we’ve used the GDK so far for is to add
a voice launcher for our application. That was a big deal because launching the appli‐
cation before that required some third-party stuff to be installed on Glass.

We’re eagerly awaiting the full GDK release to see what functionality it will offer that
we can leverage to enhance the capabilities of our system.

CrowdOptic: Crowdsourced Broadcasting | 341

Vodo: Real-Time Collaboration for the Enterprise
Winning features: Google Drive integration, real time collaboration

One of the main ways that Glass could be used is as a tool to help you work better.
Vodo, which is Allen’s first Glassware service, was created for that very reason. His is
also the first sanctioned Glassware to incorporate features from the Google Drive
API, letting workers collaborate on cloud documents in real time (Figure A-15).

Figure A-15. Vodo ties the collaborative nature of files in Google Drive with the imme‐
diacy of Glass

Describe the application hosting environment on which Vodo was built and its compo‐
nents. How long did it take to code?

The latest version of Vodo runs using Node.js on a Unix platform. We use Google’s
library to communicate with both the Mirror API and the Google Drive API and Mon‐
goose to talk to a Mongo DB data store. The core function for it was written in about
two days, and based on work done at the Glass Foundry hackathon, which gave us about
24 hours to develop.

Why was Node.js chosen as Vodo’s platform? Any advantages to using it over other server-
side frameworks?

Node.js has a reputation of very fast threadless operation, which seemed like it would
scale quite well at high load levels. This seemed like an important requirement for
Glassware as we got started, and has proven to be very useful in the long-term. Some
of the design constraints of Node.js and Mongo DB prompted us to think about good
approaches for general Glassware design in any language.

What were most difficult parts of making Google Apps Script talk to Glass?

When the project started at the hackathon, there was no Glass support for Google Apps
Script and there were some issues with processing HTTP POST bodies. Since then, both
of these issues have been dealt with by the Apps Script team.

The service has always been Mirror API Glassware. At any point did you consider reen‐
gineering it as a GDK app, or are there plans to merge its features as a hybrid service
between the two frameworks?

It was considered a couple of times, but there are no real advantages to doing so right
now. The Mirror API manages all of the network issues that would otherwise occupy
much of the code and probably cause most of the problems a user might experience.

342 | Appendix A: Glassware Done Right: Case Studies from the Field

http://vodo-list.com

Leveraging all the resources that Mirror gives enables us to focus on presenting data in
the form most suited for people to use with Glass and not having to worry about features
that should “just work.”

How important was it to keep all admin features web-based and not within the Glassware
itself?

Using the Web has allowed our team to make the configuration flexible and let users
tailor Vodo to their specific needs. Right now, the configuration is fairly simple, mostly
allowing users to pick what Google Drive folder they want to work with. But even that
would be overwhelming to work with on Glass. It lets us present a very simple Glass
interface that is perfectly suited to the concepts of creating or receiving content, while
leaving the more complex options to be made through the Web.

What have been the use cases that you’ve seen that have impressed you most?

What has been most impressive are how many different ways people use Vodo as part
of their regular workflow. Many people use it to edit task lists on the desktop, where it
is easier to do so, but view the contents from Glass. We have a person who produces
videos use it to get their recordings off Glass and quickly into their production system.

Most exciting, however, is the building inspector who uses Glass with Vodo to capture
pictures and notes about his site surveys; when he returns back to the office, all his field
notes and pictures are saved in one folder and he can quickly cut and paste them into
his formal report using the documents format in Google Drive. Cases like these prove
that Glass is ready for business today, and will only improve as we identify other file
types that people use and the best way to represent them on Glass.

Preview: The Latest Movie Trailers Are Just a Glance Away
Winning features: image recognition, real-time video stream processing

Glass goes Hollywood! One of the major areas that Glass and Glassware are going to
make a major impact is in media/entertainment. Software engineer Takahiro Horikawa
came up with the notion of letting a Glass wearer gaze at a movie poster, recognizing
what film the marquee was promoting, and playing back its trailer video. The result is
Preview, a GDK application that uses real-time processing of the camera’s inbound video
feed and cloud-based image recognition algorithms to trigger playback of the official
promotional clip (Figure A-16). It’s so obvious, logical, and simple, and the implemen‐
tation is brilliant.

And it’s endlessly fun to use when you’re at the moviehouse, at your desktop, or out on
the town and want to see what all the buzz is about.

Preview: The Latest Movie Trailers Are Just a Glance Away | 343

http://www.preview-anything.com

Figure A-16. Intelligent object recognition is at the heart of Preview

Preview’s typical use case is fairly well defined, but talk about the various ways users have
told you they’re putting the app into action in live settings.

The use case that I and most people are thinking is going to the theater and looking at
posters to see the movie trailers to decide which movie to see. While some people have
already used it at the real theater, a lot of users tried the app in front of their PC or mobile
device and just enjoy how our image recognition works so well. I heard some feature
requests: some users said it would be great if Preview notifies them about popular movies
in a nearby theater. It will be possibly supported in the future, but I want to focus on
image recognition and visual input first, which I believe will be very common sometime
soon.

Another interesting feature request is the ability to screencast a trailer or send a link to
it from Glass to a nearby smartphone. That way instead of just one person with Glass
figuring out which movie to watch, a group could do the same. I think this is a good
idea and will consider implementing it…though I still need to figure out the feasibility
of it.

Describe Preview’s data store hierarchy—where’s the content coming from and what’s the
size of the corpus that you’re searching against?

Our backend collects movie data from IMDb, Rotten Tomatoes, and TasteKid using web
APIs and integrates them. Preview is currently focusing on the movies that are playing
in the theater right now, so the number of movies is several hundred. But the database
will grow to accommodate new movies as they come because the database exists on the
server.

How does data flow when a Glass wearer begins looking at a movie poster? What’s the
distribution of cloud versus local computation?

344 | Appendix A: Glassware Done Right: Case Studies from the Field

Preview recognizes the movie poster by comparing it to images in the cloud. Preview
starts the camera, takes a photo, and sends it to our server to recognize it. This process
happens several times until it succeeds. There are some reasons for doing it in the cloud
—first, with cloud recognition, we can save a lot of CPU/memory/disk resources on
Glass. Second, we can accommodate new movies as they come.

For playing a trailer, our system simply returns the YouTube Video ID associated with
the movie’s title. After receiving that ID, Preview streams the clip with the built-in Glass
media player.

The processing model—analyzing the camera’s inbound video stream—pretty much
mandates that it needs to be done as a native application. In the interest of having the
app consume less battery, do you have any desire to try to implement this as a Mirror API
service?

We are just sending a still image for image recognition, so technically it can be replaced
with Mirror API. However I don’t want to implement Preview as a Mirror API service
because of our UX design. Preview is designed for users to access movie trailers easily,
quickly, and completely hands-free. If we employ the Mirror API, it may require some
touch gestures, which we don’t want to do.

Preview also does not consume the battery very much, because Preview is designed for
short lifetime—it exits after playing a trailer, so the lifetime is at most two minutes or
so; and all recognition is running server side, not on Glass. Hence there would be no
strong battery life benefit by using Mirror.

What’s the secret sauce to how Preview actually recognizes an object as a movie poster,
and then compares it against your database?

Our backend preprocesses all movie poster images in advance, stores “features” for every
image, and runs through them against the camera picture at runtime. The feature de‐
scriptor that I am using is robust in terms of allowing slight image rotation, scale
changes, brightness changes, and blurring, which makes it possible to recognize a movie
poster in any situation.

What are some of the challenges of detecting digital images on a computer screen or mobile
device as opposed to a real-life poster in a marquee?

There is not a very big difference between them, but if any, the size of movie poster is
likely to be different—when people are looking at the movie poster digitally, its size is
likely to be small, but in real life, it is probably bigger (and sometimes cropped). Small
images are not good for recognition accuracy, so we still need to come up with a way to
educate users to zoom into a movie poster when they look at it.

In testing Preview, we scanned the movie poster for Need for Speed, but I hilariously got
the trailer for the Need for Speed video game. What other funny outliers have you noted
due to matching ambiguities?

Preview: The Latest Movie Trailers Are Just a Glance Away | 345

Oh, thank you for reporting a bug! :) Yes, this kind of issue could happen. As I said, we
collect data from several web resources, and since the data is somehow generated by
machine, the association between movie title and YouTube Video ID is sometimes
wrong. Another funny case we noticed early after launching was that when a user tried
to recognize the Bollywood film Queen, they would get the a live performance from the
band Queen. We fixed that one!

GlassFrogger: Hybrid Glassware Using the Browser
Winning features: use of remote HTTP server to run a game, sensor access via JavaScript

This notion of web applications working with Glass is powerful. How can your site
integrate with Glass for sensor access or make use of JavaScript? Hybrid Glassware
provides some suggestions at what might be possible.

As a testament to its potential for Glassware development, the team behind GlassFrog‐
ger (Figure A-17), which won 1st prize in the 2013 Breaking Glass hackathon in San
Francisco, used a Dart codebase to create an homage to the classic 8-bit arcade game
where an ambitious amphibian attempts to cross a busy highway to reach the safety of
his beloved lily pad. The app is hybrid Glassware, using the Mirror API to insert a static
card into the user’s timeline as a splash screen, with a web app running in the Glass
browser as the “native” end.

It avoids the need for time-consuming Android development, using the browser as a
stage for a game running on an HTTP server. JavaScript listeners measure the Glass
accelerometer to handle a player’s real-life movement to dictate how the character ad‐
vances on the screen. As a Glass wearer jumps up and down, the frog animates fluidly.
The game’s impressively responsive and really fun to play.

And perhaps most impressively, this app was built in less than 48 hours.

The entire game’s code is open source and available on GitHub so you can study the
implementation for yourself.

346 | Appendix A: Glassware Done Right: Case Studies from the Field

http://glassfrogger.com
http://glassfrogger.com
https://github.com/dartglass

Figure A-17. GlassFrogger’s program flow

This is architecture you may want to consider in your own projects, especially if your
strong suit is in web development and not coding native apps in Java. You can write a
complex web app and run it through the browser—just be mindful of performance issues
due to JavaScript execution and graphics, the battery charge consumed by the projector
being on for extended periods of time, and how the attention demands deviate from the
microinteractions. It’s worth looking into.

GlassFrogger: Hybrid Glassware Using the Browser | 347

APPENDIX B

Hacking Glass

Glass was built with the intention that it would be taken apart and extended. This ap‐
pendix is admittedly (and boastfully) esoteric—delving into what is viewed as a very
much dark but highly respected art. Hackers are commonly misunderstood by the
mainstream as being nefarious types who on principle exist to create chaos and unseat
everything that organized groups have put together. That’s actually a half-true statement.

Hackers are talented technologists who enjoy tinkering endlessly with hardware, com‐
ponents, and software modules to find new and innovative ways to get more utility from
out-of-box products, or by inventing from scratch—but for good. They’re a unique
breed of people whose love of exploration and willingness to take things apart to see
how they work is intensely vigilant. They use their considerable skills to investigate
aspects of platforms that most people don’t care about, and then share information with
others in their community as a coordinated effort to make products better.

Hackers tirelessly make technology more valuable by constantly working to expand its
capabilities and functionality, as well as to uncover shortcomings and oversights to make
a system more stable, more secure, and more performant. They sometimes expose se‐
curity flaws, performance hindrances, and operational inefficiencies in order to improve
the quality of a technology, and typically only ask for acknowledgment for having found
the glitch. It’s a badge of honor.

Consequently, the Android lineage of Glass makes it a ripe environment for the hacker
ethos to thrive.

The ability to hack Glass was made possible by Google fully supporting the curiosity to
rebuild the system and expand upon its shipped capabilities or load a completely dif‐
ferent Linux distribution. This was met with great zest from hackers worldwide, seeing
that Google wasn’t afraid to officially let its product be taken apart. Hacking Glass wasn’t
just possible—it was encouraged.

349

Those who dare to walk on the wild side can further expand the platform, even if doing
so means possibly sacrificing their warranty. For those in whom the passion for hacking
burns bright, it’s a fair trade in exchange for discovery, knowledge, and community.

So if you share this way of life, want to try something interesting, or want to get involved,
this appendix lets you explore the limits of your creativity and have some wacky, hacky
fun.

The DIY Movement: When the Status Quo
Just Isn’t Good Enough
Hacking is fun, challenging, and rewarding. It’s a very nonconformist attitude to uphold,
even as a white hat. So it was no surprise that when the Glass Explorer Edition units
began being distributed, a great many people wanted more out of the platform. Android
savants wanted a way to install a launcher and run applications written for that OS on
Glass, leading to their quick discovery of Debug Mode and the enabling of Android
Debug Bridge (ADB) to sideload apps. In marketing Glass, Google stresses that true to
their own hacker heritage the product was deliberately left unlocked so that it could be
messed with. Glass isn’t just a platform that can be hacked—it’s built to be hacker-
friendly.

What’s more, the enthusiasm from Googlers shone through, as Glass team members
nudged their fellow coders to go forth and challenge the limits of the system and take
it into uncharted territory.

Sideloading Android Apps on Glass
Debug Mode, which you can enable from the Settings bundle under the Device info
card, lets you install apps on your device outside of the normal MyGlass channel by
copying Android Packages (APKs) onto the device. To get Android apps to run outside
of MyGlass, you’ll need to enable Debug Mode and then have ADB running on a desktop
or laptop computer while Glass is connected via its micro-USB cable.

• To install native apps manually on Glass:

adb install -r <PACKAGE_NAME.apk>

• To see what packages are installed on Glass:

adb shell pm list packages

• To uninstall an app from Glass:

adb uninstall <PACKAGE_NAME.apk>

350 | Appendix B: Hacking Glass

Note that installing apps onto Glass this way doesn’t at all give the user a heads-up about
what permissions are required to run them.

Check out the ADB section on the Android Developers support site for a comprehensive
list of commands and switches it can take. Further, you can use the ultra-cool Chro‐
meADB extension, which is probably the easiest way to graphically manage the various
packages installed on your headset.

Sharing Your Screen
Often, you’ll want to share what you see in Glass on other displays, whether for doing
demos, working out UI/UX quirks with a Glassware project you’re building, helping a
friend with tech support, or testing the system itself. In addition to MyGlass’s screencast
feature that mirrors your screen through your phone, you’ve got a couple other options
once you’ve connected Glass to a desktop computer via USB and enabled Debug Mode
from the Settings bundle):
Live sharing

You can show your screen live on your computer by using the free Android Screen
Monitor tool. Once you’ve downloaded it on your machine, enter the following at
a command prompt:

java -jar asm.jar

Lance Nanek has a helpful post about setting up Android Screen Monitor or
Droid@Screen, which is equally great.

Screen recording
You can also use the Android Debug Bridge (ADB) to record video of your screen
usage for playback later, which is fantastic for social post sharing. Once you’ve got
ADB installed on your computer, enter the following at a command prompt:

adb shell screenrecord /sdcard/<FILENAME>.mp4

Then, just start using Glass. Hit Ctrl-C when you’re done and a video file will be
written to Glass in the directory that’s immediately accessible when you open Glass
as a drive on your computer. You can also use ADB to download the captured video
to your desktop by using the following:

adb shell pull /sdcard/<FILENAME>.mp4 downloaded_video.mp4

Sharing Your Screen | 351

http://developer.android.com/tools/help/adb.html
http://bit.ly/chrome-adb
http://bit.ly/chrome-adb
https://code.google.com/p/android-screen-monitor/
https://code.google.com/p/android-screen-monitor/
http://bit.ly/nanek-screen
http://droid-at-screen.ribomation.com/
http://developer.android.com/tools/help/adb.html

Android Studio
If you’re working with the GDK to build your Glassware, Android Studio includes
the ability to capture screenshots or screencasts of your app in action.

For more about recording your screen, check out the ADB documentation.

Give Me JavaScript, or Give Me…
And all is not lost for those of you who just won’t go quietly into the night and accept
the fact that JavaScript isn’t available within cards—there’s lots of interest in using the
language on Glass. University of Maryland PhD candidate Brandyn White said, “To me,
and ideal wearable computer would require almost no user input,” describing his mo‐
tivation for cocreating WearScript, a JavaScript library that lets applications handle na‐
tive operations on Glass through JavaScript. In addition to manipulating the timeline,
WearScript gives you access to the Glass sensors and displays changes to them in real
time. This results in development that’s on par with Android development, without all
the complexities of native programming.

Similarly, developer Brenda Jin highlighted the ability to use PhoneGap to obtain real-
time sensor data on Glass with JavaScript. In both cases, the libraries communicate with
remote servers with impressive responsiveness.

So while we may not be able to do DOM or XMLHttpRequests directly from within
cards or other types of client-side coding, there is work being done in our community
by your fellow enthusiasts to give JavaScript a place. Check out their projects and get
involved!

Officially Unofficial: Rooting Your Headset
This is the ultimate hack for our community. The feeding frenzy momentum of side‐
loading activity from the community led to one of the most anticipated sessions at
Google I/O 2013, “Voiding Your Warranty: Hacking Glass”, which specifically addressed
the hacking of Glass and the caveats that ensue. Not too long after Google publicly
released the source code for the Google Glass kernel, which includes the core device
drivers for the various hardware and system components. The kernel source and build
instructions can be downloaded alongside a prebuilt GCC compiler and a prerooted
bootloader. Google also mercifully provides the latest factory image so that if you brick
your device you can always roll it back to the stock build.

However, Google issues a stern warning about hacking your device: “Rooting, unlocking,
or flashing your Glass voids your warranty and can leave your device in an irrecoverable
state. You will no longer receive OTA updates if you unlock or root your Glass. There is
no guarantee that you will receive OTA updates even after flashing back to factory spec‐
ifications. Proceed at your own risk.”

352 | Appendix B: Hacking Glass

http://developer.android.com/tools/help/adb.html
http://bit.ly/wearscript
http://www.wearscript.comf
http://glass-lessons.divshot.io/#/
http://bit.ly/hack-glass
https://developers.google.com/glass/downloads/system
https://developers.google.com/glass/tools-downloads/system

Rooting Glass is an advanced job that should only be undertaken by people that really
know what they’re doing or whose projects have very specific requirements, so the letter
of the law as defined by our friends in Mountain View is that if you do go this route,
you’re on your own. That said, you can make Glass take on an entirely new personality
by rooting it. Here’s how to do it, if you want to go where eagles dare.

You’ll need the file boot.img to be in the same directory as ADB. Next, perform these
actions in sequence by typing the following commands at a command prompt:

• Access the bootloader
— Ensure your device is recognized:

adb devices

• Reboot the device into bootloader mode:

adb reboot bootloader

• Unlock the device and erase personal data
— Ensure your device is recognized by fastboot:

fastboot devices

• Execute OEM unlock

fastboot oem unlock

• Swap out and override the boot partition
— Flash the boot image:

fastboot flash boot boot.img

• Reboot into normal state
— Reboot the device again:

fastboot reboot

• Access root mode
— Gain root access:

adb root

If you need to restore the system software to its shipped state, make sure you have
boot.img, recovery.img, and system.img in the same directory as ADB and type the fol‐
lowing at the command prompt:

Officially Unofficial: Rooting Your Headset | 353

• Ensure your device is recognized:

adb devices

• Reboot into fastboot mode:

adb reboot-bootloader

• Ensure your device is recognized by fastboot:

fastboot devices

• Flash all of the IMG files:

fastboot flash boot boot.img
fastboot flash recovery recovery.img
fastboot flash system system.img

• Erase user data and cache:

fastboot erase userdata
fastboot erase cache

• Reboot the device:

fastboot oem lock

It’s also worth noting that even though we outline the steps here to root Glass (and
certainly there are other resources in a variety of media formats that detail how to get
it done), it’s still time well spent to take 36 minutes to (re)stream the I/O presentation
and thoroughly consult Google’s documentation to make sure you do it right.

Enjoy, good luck, be careful…and have fun!

Living on the Bleeding Edge
Whew! See, we told you this was a fairly involved appendix with a lot of insider infor‐
mation. This appendix fully embraced that Glass isn’t merely an Android fork, but a
product that stays true to its legacy from that OS, and proudly carries on the tradition
of Android’s openness.

We showed you how to hack Glass, gain root access, and load Android applications on
your headset—and how to revert everything back. We also made you aware of the fact
that hacking your unit carries with it a certain amount of risk, but the payoff if you know
what you’re doing can be really great.

Our parting shot would be that if you’ve got an idea, don’t dwell! Write it up, sketch it
out, put a prototype together, and start talking about it! Hacking isn’t just a thing that

354 | Appendix B: Hacking Glass

http://bit.ly/hack-glass

coders do. There are wonderful resources in the maker community, and Maker Shed is
an excellent resource to share and refine your ideas and see what others are doing.

Living on the Bleeding Edge | 355

http://makershed.com

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
accelerometer, 15
acceptCommands attribute (Contacts), 231
acceptTypesproperty, 225
access tokens, 143, 204

expired, replacing, 144
including as part of HTTPS Authorization

header, 144
accessibility, Glass for, 311
accessories for Glass, 315
Accessory Development Kit (ADK), 313
access_type parameter, 140
AccountManager object, 263

using for other types of configuration, 265
Accounts resource, 263
actions, 199

custom menu items, 209
simple event actions, 199
subscriptions and, 202
thinking in actions, not apps, 14, 107

Activity object, 281
activity recognition, 240
Activity.onCreate method, 270
ADB (Android Debug Bridge), 350
adult content on Glass, 44
aesthetics

issues with Glass, 38
current state of, 39
designing to avoid criticism, 40

of the headset, 12
align-justify class, 165
alignment for text, 168
All Notes notebook, 54
Allthecooks Recipes, 108
analytics

current state of Glass analytics, 42
for your Glassware, 303
implications for Glass development, 43
metrics on wearables, 135
societal issues with Glass analytics, 42

Android applications, 4
sideloading on Glass, 350
writing in Java, 243

Android Debug Bridge (ADB), 350
Android Developers documentation, 248
Android Native Development Kit, 244
Android Open Accessory protocol, 313
Android OS, Glass and, 105
Android Screen Monitor, connected to Glass,

249
Android SDK

Glass Development Kit (GDK) components
from, 245

synchronization tools, 97
Android services, 252
Android Studio, 80, 246

setting up Glassware project on, 266

357

Android Wear
and the personal network, 241
design principles, 79
Glass and, 106, 313
Glass versus, 21
Glassware and apps driven by, 73
PayPal app for, 105
voice actions for, 286

android.text.HTML.fromHTML method, 272
Android@Home initiative, 311
AndroidManifest.xml file, 262, 284
animation, 268
API Console versus Developers Console, 132
API Explorer, 194
.APK files, 265
App Inventor, 246
App Statistics dashboard, 304
application model, 12

programs built using Glass Development Kit
(GDK), 13

programs built using Mirror API, 12
application preferences, 83
appointment reminders from Google Now, 65
apps, servers versus, 124
AR (see augmented reality)
archival storage of Glassware, 45
Arduino, 313
article tags, 159

auto-paginate class, 184
cover-only class, 188
map within, 179
section and footer elements in, 169
separating content into multiple cards, 183

article.photo selector class, 174
attachments

Timeline.attachments collection, 130
to email, need for Glass improvement in, 58
to timeline items, 196

sharing, 227
audio

audio-only files attached to timeline items,
not supported, 225

card contents read aloud, 182
importance in Glass design, 81
notifications, 181

Augmate, 309
augmented reality, 40

current state of, Glass and, 40

Glass becoming leading contender as AR cli‐
ent, 41

unrealistic expectations for Glass, 111
authentication, 141

authenticated URL fetch, 227
GDK apps, 263

authorization, 138, 141
(see also OAuth)
processing authorization code (or error), 142

Authorization header (HTTPS), 144
Authorized JavaScript origins field, 150
Authorized Redirect URI field, 150
auto-overflow class, 188
auto-paginate class, 184

B
background images, 173

mosaics, 175
bandwidth, avoiding excessive use of, 91
banking industry, Glass and, 104
batteries

battery life and Glass usage, 20
battery-safe programming with Mirror API,

123
immersions’ demands on, 253

Blippar framework, 41
bold text on cards, 162
bone conduction transducers, 20
bounce rate for Glass content, 42
bridged notifications, 260
brightness of the display, 15
Brivo Labs, OKDoor Glassware, 115
bundleId property, 190, 219
bundles, 21, 85, 183

applying auto-paginate class, 185
default ordering in Glass, 191
duplicating features of bundled cards in

GDK apps, 283
isBundleCover timeline item property, 192
sample card for, 183
typical flow, 184
using a cover card, 188

business of producing Glassware, 45
businesses, use of Glass in the workplace, 307
BYOD (bring your own device) concept, 307

C
callbackUrl (Subscriptions.insert), 205

358 | Index

camera, 22
indicating in use, 34
limitations of, 23
shutter button control, 258
voice actions with, 25

canceling in-process actions, 82
Canvas, 246
CAPTION layout, applying images to, 278
captions, adding to shared resources, 229
card-based metaphor, Glass UI, 12
CardBuilder class, 269
CardBuilder.addImage method, 177
CardBuilder.Layout enumeration, 269
CardBuilder.Layout templates, 283
CardBuilder.Layout.AUTHOR template, 274
CardBuilder.Layout.COLUMNS, 275

using icons, 276
CardBuilder.Layout.COLUMNS_FIXED, 275
CardBuilder.Layout.TEXT template, 269
CardBuilder.Layout.TEXT_FIXED template,

270
CardBuilder.Layout.TITLE template, 279
CardBuilder.Layout_CAPTION template, 278
cards

actions, 199
and subscriptions, 202
custom menu items, 209
simple event actions, 199

always testing on Glass, 217
automatic deletion of older cards, 82
bundling, 85
Contact object, 216
design, official templates for, 80
footer area in, using, 59
layout, 79
live cards in GDK apps, 249–253
live versus static, ordering of, 62
master copy in your database, 208
pinned, 21
security and, 138
working with, 153–198

audio, 181
bundles, 183
CRUD operations, 197
footer, 169
going beyond Mirror API Playground,

193
Hello, World!, Glass-style, 153–158
HTML, 158–170

images, 170–174
JSON representation, viewing, 156
media attachments to timeline items, 196
rendering an in-card map, 178–180
updating previously-inserted cards, 155
using Playground to prototype and test,

154
CardScrollAdapter object, 280
CardScrollView, 270, 280
CardScrollView.setOnItemClickListener, 280
changelog, 259
CharSequence, 271
Chromecast, 249

Glass and, 312
Glass integration with, 104
LynxFit integration with, 330

Chrome’s Developer Tools, 124
classes (GDK), 259
client_id parameter, 140, 143, 149
client_secret parameter, 143, 149
cloud computing

designing for the cloud, 74
not fully utilizing, 113

cloud-based services, 3
Mirror API programs, 12

code parameter, 143
collaboration Glassware, Vodo, 342
collection parameter (Subscriptions.insert), 204
collection property, 207

locations, for Subscriptions, 234
color options, Glass frame, 39
colors

for text on cards, 162
Glass headset, 29
mixing for text instead of font sizes, 164
searching by, 325

ColorSnap Glassware, 113, 325
columns

absolute positioning, 166
columnar layouts in GDK, 275
layout classes in CSS, 167

com.google.android.glass namespace, 259
communities (Glass), 100
Concur Glassware, 105
configuration, web-based, providing, 83
CONFIRMED state, 214
Contact object, 216

Index | 359

contacts, 131
share, 222–230

voice commands targeting, 230–232
Contacts collection, 216
Contacts.acceptCommands, 231
Contacts.insert method, 222
containers for data, 252
content

avoiding gotchas in, 90
content creation in POV world, 28
Glass as content creation utility, 46

contentUrl, 227
contextual commands, 286
contextual information, 65, 88, 233–242

environments of users, tailoring Glass design
around, 63

future uses of, 241
in vignettes, 64
location and localization, 238
location as part of timeline events, 236
location services, enabling, 234
making user’s real-life activities core part of

application experience, 66
other than location, 240
subscribing to locale changes, 239
time zone for user’s location, 237
tracking with Google Now, 65
wearer’s environment as part of Glass UI, 99

cooking assistant, KitchMe Glassware, 323
core design principles (see design principles,

core)
corporate Glass, 307
cover-only class, 188
crash reports for Glassware, 287
creator attribute, timeline items, 216
credentials (OAuth), 149
CrowdOptic, crowdsourced broadcasting mod‐

el, 339
CSS (Cascading Style Sheets)

base CSS styles for Glass, 159, 269
built-in layout classes, 167
formatting options, CSS classes, CSS selec‐

tors, and inline styles, 163
using with HTML for cards, 158

CUSTOM menuItem action, 209

D
Dalvik Debug Monitor Server (DDMS), 265
data analysis, using Glass for, 110

data stores, 131
for Mirror API projects, 136

DateUtil class, 271
Dawn Data, 110
Debug Mode, 265
DEFAULT state (menu item actions), 214
DELETE menu item, 206, 213

PENDING and CONFIRMED states, 214
deleting versus dismissing items in Glass, 82
design principles, core, 77

advocating multitasking, 99
Avoid the unexpected, 90

error handling, 94
in content, 90
not hogging bandwidth, 91
performance, 91
permissions, 93
surprises, pleasant, 97
synchronization across platforms, 96

Build for people, 98
design for Glass, 78

audio, 81
deleting versus dismissing items, 82
providing web-based configuration, 83
tactical wearable design, 80
targeting microinteractions, 78

Don’t get in the way, 84
exceptions, 87
less is more, 86
notifications, 84

issue commands, don’t start apps, 112
Keep it relevant, 87, 233

contextual information, 88
quickness of delivery, 89

targeting microinteractions, 78
design, Glass design rivaling Apple products, 16
designing for Glass, 78–84

avoiding poor design, 103–117
choosing wrong development framework

for Glassware, 114
Glass not necessarily bound to your

phone, 110
improperly implementing ideas for Glass

experience, 104
not fully utilizing cloud computing, 113
not using prism display for complicated

reports, 110
overloading the system and wearer, 106

360 | Index

sticking to prefab templates and styles,
109

thinking in actions, not apps, 107
treating Glass like any mobile device, 105
unrealistic expections for augmented re‐

ality and gaming, 111
using default voice commands, 112

design patterns, official documentation, 80
designing for the cloud, 74
glanceable layouts and structure they imply,

177
Gmail Glassware, 56

adding value by omission, 58
design takeaways, 58

Google+ Glassware, 58
areas needing improvement, 60
design takeaways, 60

greater goal of wearable design, 71
outstanding examples, 52
outstanding Glassware, design takeaways, 61
Think for Glass mindset, 63
Twitter Glassware, 53

design takeaways, 56
developer groups, 100
Developer Policies, 34

gotchas for developers, 298
developer settings, 268
Developers Console, 132, 194

API Console versus, 132
App Statistics dashboard, 304
metrics on wearables, 135
obtaining Client ID information from, 151

development frameworks, 13
(see also Glass Development Kit; Mirror

API)
choosing wrong framework for Glassware

project, 114
directions

getting with voice actions, 25
turn-by-turn directions, 81

Dismiss menu item, 213
PENDING and CONFIRMED states, 214

dismissing versus deleting in Glass, 82
displayName property (Contacts), 223
div element, using for absolute positioning of

columns, 166
documentation, reference, for Mirror API

methods, 195
DriveSafe app, 38

driving, using Glass and, 37, 44
current state of concerns, 37

E
Eclipse, 80
education, Glass in, 309
ellipses

indicating more content in GDK cards, 274
indicating more text in Gmail Glassware

card, 58
email scope, 147
Emotient, 36
error handling, 94

considerations for Glassware, 295
events, 125

adding menu items to an event, 199
location as part of timeline events, 236
location, suscribing to, 234
related to the timeline, working with, 130
security for, 137

Evernote, Glassware, 54, 100
eyeFlame built Glassware, 88

F
Facebook, multiple scope URLs, 146
facial recognition, 34

current state of, 35
designing to avoid problems with, 36
NameTag app, 336

Factory reset option (Settings), 258
Fancy Glassware, 95, 113, 325
fashion, issues with wearing Glass, 38
Field Trip Glassware, 41, 88
figure tags, mosiac list in, 176
filtered data streams, Gmail Glassware, 56
financial services industry, Glass and, 104
first-person perspective, content creation and,

28
Five Noble Truths (see design principles, core)
footer element, 169
footers (timeline cards), 169

adding a gradient, 174
forced perspective, 19
form factor, 12
frames, custom, for prescription glasses, 39

Index | 361

G
GAE (Google App Engine), 131
gaming

GlassFrogger, 346
unrealistic expectations for Glass, 111
using Glass, 71–74

virtual pet for Glass, 73
GDK (see Glass Development Kit)
Genie Glassware, 331
Get directions (voice command), 25, 258
GitHub

GlassFrogger code on, 346
OpenGL demo, code repo, 247

Glanceable UI, 79
glanceable layouts and structure they imply,

177
Glass

Android Wear versus, 21
for gaming, 71–74
future of, 307–315

accessibility, 311
Android Wear, 313
Chromecast and home entertainment,

312
corporate Glass, 307
hardware hacking and Internet of

Things, 313
home integration, 311
in medicine and education, 309
peripherals/accessories, 314
streamlining operations, 308

hacking, 349–355
mirroring what is available on other plat‐

forms, 209
removing from the head, effects on apps, 260
using the system, 20

Glass Asset Studio, 211
Glass Creative Collective, 309
Glass Development Kit (GDK), 13, 243–290

advantages of using, 248
authentication, 263
choosing between Mirror API and, 289
configuring voice commands, 284
developers mistakenly using instead of Mir‐

ror API, 114
differences from Mirror API, 247
documentation, 268
drawing and animation, 246
Glassware built against, design takeaways, 62

Glassware shipping with Glass, 257
Google approval of Glassware built on, 302
Google’s control over voice commands, 287
hybrid Glassware, 261
installed apps running on Glass, 243
Mirror API and, 244
object model, 259
On-Head Detection feature, halting running

apps, 260
overview of, 245

add-on, components to work with Glass
UI, 245

basic components from Android SDK,
245

porting existing apps to Glass, not recom‐
mended, 288

system intents, 259
testing native Glass apps, 267
tools for rapid design, 255
updating releases, versioning, and crash re‐

ports, 287
user interface elements of apps

immersions, 253
live cards, 249–253

view to a card, 268
basic text formatting, 269
columnar layouts and mosaics, 275
creating rich text, 272
creating your own layouts, 283
ellipses and excess content, 274
other neat templates, 279
using icons, 276

writing native code for Glass, 265
Glass ecosystem

how it is different, 9
platform, not a product, 10
techical specifications (as of Explorer Edi‐

tion), 17
timeline and application code running in

completely separate processes, 244
what it isn’t, 46

Glass Frogger, 72, 346
Glass Hunt, 72
Glass Platform Developer Policies, 34, 296
Glass sync, 3
glass.location scope, 236
GlassCopter, 72
Glassentation, 106

362 | Index

Glassware, 12
authorization, 137
built using Glass Development Kit (GDK),

13
built using Google Mirror API, 12
business of producing, 45
case studies from the field, 319–347

CrowdOptic, 339
Fancy and ColorSnap, colorful queries,

325
Genie, 331
GlassFrogger, 346
KitchMe, 323
LynxFit, 328
MiKandi, 333–336
NameTag and facial recognition, 336
Preview, 343
Thurz Sports, 320
Vodo, 342

choosing wrong development framework for
your project, 114

getting listed on MyGlass, 291–303
launching via voice commands, 26
making money from, 304
native apps shipping with Glass, 257
official listing, 31
outstanding examples of, 52

design takeaways, 61
Evernote, 54
Gmail, 56
Google+, 58
Twitter, 53

primary entry points for, 109
review of, 292
submitting for review by Google, 291
timing your release of, 303

Glassware Flow Designer, 80, 255, 269
Glassware Launch Checklist, 296
Glassware Review Request, 299
GlassWireframe, 256
global distribution of Glass, 43
Gmail Glassware, 56, 97

delivery of messages from Important folder
only, 56

design takeaways, 58
organizing conversation threads into distinct

bundles, 58
GolfSight app, 254

Google
OAuth URL, base, 140
review process for Glassware, 291

Google Analytics
integration with Glass, 110
integration with Glass cloud-based serivces,

43
Google APIs, use by Mirror API projects, 136
Google App Engine (GAE), 131
Google Apps Script (GAS), 124
Google Cast API, 104
Google Cloud Endpoints, 74
Google Cloud Messaging for Android, 127
Google Cloud Platform, 74

information about, 131
Google Developer Groups, 100
Google Developers Console, 124, 132, 194

App Statistics dashboard, 304
Google Developers site, 77
Google Drive, collaboration for users working

in, 113, 342
Google Goggles, 34
Google Mirror API (see Mirror API)
Google Mirror API Playground (see Mirror API

Playground)
Google Now, 65
Google Play Services, GDK apps and, 43, 249
Google Search on Glass, 68–71
Google+, 34

driving force behind this book, 61
enabled on Glass, 22
Glassware, 58
location services moved to, 234

Google+ API, 148
people.get method, 148

Google+ Glassware, 100
design issues, room for improvement, 60

GPOP, 314
GPS, 63, 105

resource-intensity of checking for signals,
233

gradient, adding to a timeline card footer, 174
grant_type, 143
graphical data (complex), not using Glass for,

110
graphics

free tools for, 211
in GDK apps, 268

gyroscope, 15

Index | 363

H
h1 and h2 tags, keeping everything on one line,

172
hacking Glass, 349–355

JavaScript, 352
rooting your headset, 352
sharing your screen, 351
sideloading Android apps on Glass, 350

Hangouts Glassware
example of hybrid Glassware, 262
messaging via, 25
mosaics in, 174
synchronization across platforms, 97
virtual tour of CERN via, 309

Happy Aquarium, 73
hardware hacking, Glass and, 313
head movement gestures, 14, 311
head-mounted display (HMD), 4
headset

evolution of, 9
modular bundle of technology in, 10

healthcare, Glass in, 309
high-frequency rendering, 251
home automation applications, 89
home entertainment, using Glass, 312
home integration, using Glass for, 311
home screen, 20

(see also timeline)
hosting for Mirror API services, 125

Google App Engine (GAE), 131
hostnames, 150
HTML

formatting for scientific notation, 168
Glass convenience classes for text, 168
images, 171
lists, formatting for Glass, 164
tabular data on cards, 165
tags accepted for timeline cards, 159
using with CSS for cards, 158

HTML.fromHTML method, 272
HTTP, 122

for events sent to Glass, 126
HTTP services, Mirror API, 84
HTTPS, 131

Glassware making HTTPS calls to Google
API server, 128

HTTPS Authorization header, 144
human-computer interaction (HCI)

further progress with Glass, 63

reinvention of, 16
hybrid Glassware, 258, 261

GlassFrogger, 346
Hybrid Mosaic template, 173

I
icon-small class, 171
icons, 171

in columnar layouts on GDK cards, 276
in GDK app TITLE layout, 279
in GDK apps, 277

id (sharing contacts), 223
IDEs (integrated development environments),

80, 246
working with Mirror API, 124

images
applying to TEXT layout in GDK app, 278
geotagging of, 237
in GDK apps, 277
in TITLE layout, GDK app, 279
mosaics on GDK app cards, 275
on cards, 170
on timeline cards

background photos, 173
list-based layouts and figure layouts, 177
mosaics, 174
working with medium-sized images, 172
working with small images, 171

optimal density in GDK apps, 257
imageUrls (sharing contacts), 224
img tags, 171

src attribute, 178
immersions, 14, 87, 253

apps based on, examples of, 289
development patterns for, 255
dismissing, 254
GDK immersions used as gaming stages for

Glass, 111
native apps unnecessarily built as, leading to

negative performance, 253
On-Head Detection and, 261
summary of characteristics, 255
UI dissimilar to timeline motif, 109

Incremental Authorization, 147
Ingress, Glass and, 111
input mechanisms, 14

criticism of Glass, 71
designing for fewer steps, 108

inReplyTo, 219

364 | Index

INSERT operation, 218
Instagram, multiple scope URLs, 146
installation, errors encountered during, 95
integrated development environments (see

IDEs)
international distribution of Glass, 43
internationalization, Google+ Glassware issue

with, 60
Internet of Things, 115, 314
IP address

checking against to verify requests, 205
for your server, 131

isBundleCover property, 192
isDeleted, 208
isPinned, 208
isProcessingContent (Timeline.attachments),

227
italic text on cards, 162
itemId property, 207, 208

J
Java

using with Mirror API, 122
writing Android applications in, using GDK,

243
JavaScript, 246

in Glass, 159
using on Glass, 352

JavaScript Object Notation (see JSON)
JavaScript origins, 150
JSON (JavaScript Object Notation), 128

callback body, 206
card representation, viewing, 156
custom menu item action, 209
for bundled cards, 189
object model for JSON resource, 129
response containing OAuth access token,

143
Justinmind Prototyper Pro, 256

K
KitchMe Glassware, 323

L
Lambda Labs, Face API, 35

languages
supporting languages other than English,

296
voice commands adapted for, 238

latitude (Locations object), 235
Layar framework, 41
layout

CardBuilder.Layout enumeration, 269
CardBuilder.Layout templates, list of, 283
custom, creating for GDK apps, 283
layouts supported by live cards, 251
templates for, 268

layout classes in CSS, 167
LinkedIn, multiple scope URLs, 146
live cards, 249–253

apps based on, 289
as dynamic containers for data, 252
layouts and views supported, 251
On-Head Detection and, 261
Stop command, 250
summary of characteristics, 255
two flavors of, 250

localization, 238
considerations for Glassware, 296
locale settings, 239
tips for localizing your Glassware, 240

Location object, 200
locations, 131

enabling location services in Glass, 234
geotagging images, not available in Glass,

237
localization and, 238
location as part of timeline events, 236
location services in Glass, immaturity of, 233
subscribing to locale changes, 239
user location and context, 233
uses of location in Glassware, 237

Locations object, important fields, 235
Locations.get method, 235
longitude (Locations object), 235
Loves Data, 110
low-frequency rendering, 251
LynxCast, 104
LynxFit, 104

case study, 328
using prefab templates and having its own

personality, 109

Index | 365

M
machine-to-machine hardware hacking, 115
magnetometer, 15
Make a call to (voice command), 26
Make Vignette menu item, 64
Maker Shed, 355
maps

in navigation system application, 253
rendering an in-card map, 178–180

marketing channels for Glassware, 304
me (user ID), 148
medicine and education, Glass in, 309
menuItems property, 182, 200, 211
menus

adding to events, 199
custom actions as menu items

Gmail Glassware, 56
Twitter Glassware, 54

custom menu items, 209
keeping track of state of menu items, 54
setting values for menu items, 201
TOGGLE PINNED and DELETE menu

items, 206
using contextual commands for interaction

with, 286
VOICE CALL menu item, 216

Message Queue Telemetry Transport (MQTT),
115

messages
creator and recipients, 217
message threads, replies attached to, 219
pinned by users, 208
sending via voice actions, 25

microinteractions, 5, 11
and required attentiveness of the wearer, 81
augmented reality (AR) and, 41
emphasizing as core unit of usability for

Glass experience, 78
MiKandi Glassware, 333–336
MIME types, 225
Mini Games Glassware package, 72, 111, 246
Mirror API, 12, 121–136, 242

advantages over native development, 122
analytics and, 42
body properties versus parameters, 195
choosing between GDK and, 289
components of, 130
data flow in, 127
differences from GDK, 247

disadvantages of, 123
events, 125
examining methods in API Explorer, 194
flow of information between Glassware,

Google’s cloud, and Glass, 125
GDK and, 244
Glassware built with, design takeaways, 61
Google approval of Glassware built on, 302
how your server talks to Google, 128
hybrid Glassware, 261
maps rendered in 2D map view, 179
perceived as being too limited, 114
preparing your project, 131
project quota, 134
quota for calls against, 54
security, 137
servers versus apps, 124
services running on HTTP servers, 84
subscriptions documentation, 205
using with cloud computing, 113

Mirror API Issue Tracker, 112
Mirror API Playground, 80, 124, 153

going beyond, 193
maps not rendered in, 179
previewing prototypes of menu items, 210
testing prototypes, 154
working with content, 161

mirroring, 248
mobile applications, design landmarks, 63
mobile devices, treating Glass like any other de‐

vice, 105
monetization of Glassware, 45, 304
mosaics, 173

in GDK apps, 275
working with, 174

movies, optical illusion technique in, 19
MQTT (Message Queue Telemetry Transport),

115
multitasking in Glass, 99
MyGlass, 16

getting on, 291–305
advantages of, 292
categorical listings, 303
factors to think about before submission,

294
objective of Glassware review, 292
prereview activities, 293
review process, 301
submitting your Glassware, 296

366 | Index

requesting your Glassware not be listed on,
297

use to disable permissions, 149

N
NameTag app, FacialRecognition.com, 35, 336
native Glass development, 244

(see also Glass Development Kit)
NAVIGATE menu item, 200
navigation system application, 253
The New York Times, Glassware, 84
no-border class, 164
Note from Glass, 54
Notification Sync, 260
notifications

bridged, 260
Google+ Glassware, 59
handling responsibly, 84
synchronization across platforms, 97
Twitter Glassware, 53

O
OAuth, 138–151

credentials, 149
geodata, rights to use, 234
getting user’s identity, 145
Google’s OAuth provider screen for Glass‐

ware, 141
Incremental Authorization, 147
OAuth2, 138
steps in authorization process

authorization (and perhaps authentica‐
tion), 141

processing authorization code or error,
142

redirection to Google for authorization,
140

using (and refreshing) the access token,
144

OAuth providers, 13
object model (GDK), 259

packages, 259
object recognition, 34

Glassware using, 36
offline access, 247
offline, using Glass, 17
OK Glass, 20

activating voice interactions with Glass, 23

alternative hotwords, not chosen, 27
voice commands, how they are chosen, 26

OKDoor Glassware, 115
On-Head Detection feature, 260
onCreate method, 269
Ongoing Task pattern, 250
onKeyDown method, 258
OPEN URI menu item, 200, 261
Openclipart.org, 211
OpenGL, 246
operation property, 207
optics pod, 15
overheating

avoiding in Glass headset, 91
Glass failsafe against, 257

overlay-gradient-short class, 278
overlays, 174

P
p (paragraph) tags, 159

icon-small class and text-small, 171
text-auto-size class attribute, 160

packages (GDK), 259
Pandora Glassware, 253, 295
parameters, method parameters versus body

properties, 195
PENDING state, 214
performance

avoiding overheating of Glass headset, 91
immersions and, 253
of installed apps on Glass hardware, 248
of your Glassware, 295

peripherals/accessories, 314
permissions

Android permission for custom voice com‐
mands, 285

detailed information about, 141
disabling and recquiring, 149
scopes and, 146
service-level, for working with user’s data, 93

personal area networks, xvii
personal networks, 240

Android Wear and, 241
personal technology, Glass as, 51
phone calls, making via voice command, 26
PhoneGap, 267
photo editing Glassware, sharing contacts for,

225

Index | 367

pinned items
not using pinned cards to launch applica‐

tions, 108
ordering of, 62

pinning cards, PIN and UNPIN actions, 207
pixel density and screen size, 257
platform-as-a-service providers, 294
Play a game (voice command), 26
PLAY VIDEO menu item, 200
plus.login scope, 147
plus.me scope, 147
plus.people.get API, 148
plus.profile.emails.read scope, 147
pornographic content, Glass and, 44
porting existing apps to Glass, not recommend‐

ed, 288
Post an update (voice command), 56, 230
Post an update to (voice command), 26
POV cinematography and ad-lib narration, 28
power options, 22
presentation, 153

GDK, unique presentation elements, 248
Preview, 113, 343
prism display, 15

always using as preview monitor when cam‐
era is in use, 34

challenge of small dimensions, 104
not using for complicated reports, 110

privacy issues, 32
current state of, 33
location and, 234
questionable places for use of Glass, 32

profile scope, 147
programming languages

flexiibility with Mirror API, 122
GDK, using Java, 246

Project ID, 132
Project name (for Mirror API), 132
projection unit, 15

great consumer of battery charge, 254
science behind, 18

publish/subscribe model, Mirror API frame‐
work, 13

Q
quota for Mirror API calls, 54, 134

R
radiation, Glass and, 17
rapid design tools, 255
Raspberry Pi, 313
READ ALOUD menu item, 200
READ MORE menu item, 202
real-time interactivity, 247
recipes archive, KitchMe Glassware, 323
recipients

getting from Timeline.recipients property,
177

specified with Timeline.recipients property,
216

Record a video (voice command), 25
redirect URIs, 150
redirect_uri parameter, 140, 143
reference documentation for API methods, 195
referrer logs, 42
regulatory environment, Glass and public poli‐

cy, 43
curent state of, 44
developing within guidelines, 45

release early, release often, 295
relevance, emphasizing, 87

location and contextual information, 233
remote control for Glass, 14, 315
RemoteViews object, 251, 283
REPLY ALL menu item, 219

voice-entered text and, 220
REPLY menu item, 218, 262

voice-entered text and, 220
resources, sharing, 221, 223

(see also sharing)
response_type parameter, 140
REST, 128
RESTful API versus native SDK debate for

Glass, 114
unifying the camps, 116

RESTful services, crafting with decoupled com‐
ponents, 74

Revolv, home automation work, 312
Ribeiro, Justin, 115, 211
rich text, creating in GDK app, 272

S
scalability, 294
scope parameter, 140

368 | Index

scopes, 139, 146
getting the bare minimum, 147
multiple, for Mirror API Glassware, 146
permission to view user’s location, 234
reqesting information from the user, 148

screen size and pixel density, 257
searches, 24

color as query, 113, 325
Google Search on Glass, 68–71

second-screen companion, Thurz Sports, 320
section tags, 159

div elements in, 166
security, 137–151

disabling and reacquiring permissions, 149
for events, 137
OAuth, 138
of your Glassware, 294
subscriptions, 203

Send a message to (voice command), 25
sensors

access to Glass sensors, 13
access to, with GDK, 248
Android sensors and APIs for interacting

with them, 248
LynxFit access to Glass sensors, 328
on Glass, 15

servers
for Mirror API projects, 131
how your server talks to Google, 128
versus apps, 124

service accounts, 263
services

Android services driving lifeycle of live
cards, 252

creating and configuring Google API service
object, 263

starting at bootup for live cards, 252
settings

Debug Mode, 265
Factory reset option, 258
Glass developer settings, 268
subscribing to Settings collection, 239

Settings.get method, 237
SHARE menu item, 54, 221
Share voice command, 223
sharing, 221–232

contacts, 222–230
captioning shared resources, 228

inability to share multiple entities at once,
228

voice commands, 230–232
sharingFeatures property, 229
Sherwin-Williams, Fancy and ColorSnap Glass‐

ware, 113, 325
smartphones, 4

Glass and, 16
Glass pairing with, 110

smartwatches, 106
social norms, software respecting, 6
social, Glass as, 99
societal issues with Glass, 31–47

aesthetics, 38
analytics, 42
augmented reality, 40
business of producing Glassware, 45
facial recognition, 34
privacy, 32
regulatory environment and public policy,

43
using Glass while driving, 37
what Glass isn’t, 46

Society of Glass Enthusiasts (SoGE), 100
sourceItemId, 219
sourceItemId property, 208
SpannableString class, 272
spatial depth for prism display, 19
speakable text, setting, 81
speakableText property, 182
specifications, 17
Spellista, 111
Sports template, 170
SSL certificates, 131

subscriptions and, 203
Stanford MedicineX series of Hangouts On Air,

311
Start a timer (voice command), 26
static cards, 249

in hybrid applications, 261
manipulating programmatically, 262

major difference from live cards, 250
Stickman Ventures, Justin Ribeiro, 115
Stop command, 250
Stopwatch app, 108
Strava’s fitness apps, 86
streamlining workflows and business processes,

308

Index | 369

styles
defining custom style and using as them for

menu activities, 268
using built-in styles, 109

styling
for lists, 164
options for, 163
using style rules in Glass, 159

subscription proxy, 203
subscriptions, 130, 202

adding with Subscriptions.insert method,
203

Mirror API documentation on, 205
responding to subscription pings, 205
security, 203
simple callbacks and how to handle them,

206
subscribing to locale changes, 239
to location events, 234

Subscriptions.collection property, 234
swiping/tapping on the trackpad, 14
synchronization across platforms, 96
system intents, 259

bridged notifications, 260
documentation on, 260

T
tables

HTML tables, data on cards, 165
not using for absolute positioning of col‐

umns in HTML, 166
Take a note (voice command), 230
Take a note with (voice command), 26
taking Glass off, effects on apps, 260
Talkray, 240
technical specifications, 17
telemedicine, use of Glass in, 309
telemetry applications, using Glass, 310
telephony device, Glass as, 16, 110
templates

built-in, using for Glassware, 109
Google Mirror API Playground, 154
images in, 170
layout templates for GDK apps, 268
list of templates available through Card‐

Builder, 283
text

creating rich text in GDK apps, 272
formatting for cards in GDK apps, 269

formatting on cards, 162
Glass convenience classes for, 168
in GDK app TITLE layout, 279
mixing colors instead of font sizes on cards,

164
size in cards

auto-sizing, 160
sizes defined by Glass, 161

TEXT layout in GDK apps, applying images
to, 278

text property, 182
text-small class, 270
TEXT_FIXED layout, 270
themes, 268, 314
Think for Glass, xv, 63

aesthetics, 40
augmented reality, 41
driving while using Glass, 38
facial recognition issues, 36
meaning of, 5
privacy concerns, 34
regulatory environment and public policy,

45
what Glass isn’t, 46

Thurz Sports Glassware, 320
time zone, determining from user’s location, 237
timeline, 20

and application code, running in separate
processes, 244

bundles on, 183
CRUD operations on, 197
events as building blocks of, 125
events related to, working with, 130
immersions and, 254
information and events in, 21
location as part of timeline events, 236
UI and cards in, 15

timeline cards (see cards)
Timeline object

documentation, 156
html property, 159
list of methods, 158
property names and descriptions, 157
reference documentation for, 195

Timeline.attachments, 227
Timeline.attachments.contentUrl, 227
Timeline.attachments.insert method, 197
Timeline.delete method, 213
Timeline.get method, 208

370 | Index

Timeline.insert method, 195
Timeline.list method, 220
Timeline.menuItems.action property, 221
Timeline.patch method, 212, 219
Timeline.recipients property, 177, 216, 262
Timeline.speakableText property, 81
Timeline.text property, 81
Timeline.update method, 213, 219
Timeline.userActions.type, 227
Timer app, 108
Timer Glassware, 87
timestamps

Locations.timestamp, 235
on timeline cards, 169
setting timestamp field on cards in GDK

apps, 271
Tinder app, 71
Titanium Collection of custom-built frames, 39
TITLE layout, combining icon, images, and text

in, 279
Tits & Glass, 333–336
TOGGLE PINNED menu item, 206
tools for Glass design, 80
touchpad

manipulating timeline with, 21
on Glass, 18
touchpad API in GDK, 259

Translate this (voice command), 26
trigger phrases, selecting, 113
turn-by-turn directions, 258
Twitter, 146
Twitter Glassware, 53, 100

adding captions to shared resources, 229
effective redesign of more complex web UI,

56
multiple custom menu items, 54
tracking state changes in menu items, 54
Web-controlled curation of user’s social

stream, 56

U
UbiTech NYC, 100
UI

Glass, 12
minimalism in design and data brevity with

high impact, 80
prefab templates and styles for, 109
wearer’s environment as part of, 99

Umano built Glassware, 82

unexpected, avoiding, 90
UNPIN action, 207
updates for Glassware, 287
user configuration settings, 83
user IDs, 148, 204
userActions.payload, 212
userActions.type, 207, 231
userinfo.email scope, 148
userinfo.profile scope, 148
userToken, 204, 207

V
values property (menu items), 202
verifyToken, 204, 207
videos

challenges for Glass, 104
first-person, 28
inability to share via Twitter Glassware, 56
recording, 22

voice command for, 25
streamed, on-demand, 13

Viewfinder application, 22
views, 268–284

CardBuilder object instantiated directly as,
269

custom layouts, 283
managing with CardScrollAdapter, 280
supported by live cards, 251
View object, 269

ViewTube for Glass, 252
Vignette Postcards, 64
vignettes, 64
virtual pet for Glass, 73
Vodo Glassware, 113

real-time collaboration, 342
VOICE CALL menu item, 216
voice commands, 14, 23

appropriate use in user’s environment, 63
as of Explorer Edition, 24
configuring in GDK, 284
conflicts in, 286
contacts added by calling Contacts.insert,

222
default, deviation from, 112
for share contacts, 230–232
getting directions, 25
Google’s control over, 287
languages and, 238
launching Glassware or services, 26

Index | 371

matching across other platforms, 286
official list of, 286
searches, 68
sending messages, 25
taking pictures or videos, 25

voice controls, 22
voice print analysis, 36
voice triggers, supported, 112
VoiceTriggers.Command enumeration, 286

W
wearable computing, 4

with Glass, 29
wearable computing devices

greater design goal of, 71
interactivity, 199
tactical wearable design, 80

WearScript, 267, 352
weather monitoring applications, 88
web browser (Glass), 260
web services, OAuth2 for authorization, 138
web stack, using to produce native apps on

Glass, 267

web-based configuration, 83
Windows systems, Glass drivers for, 266
Wink feature, using to take pictures, 25
Winkfeed, 85, 146

footer information, 170
winking (input mechanism), 14
Winky, 243
workout software for wearables, LynxFit, 328

X
XML file, voice triggers defined in, 284

Y
YouTube

Glassware, 79
ViewTube for Glass, 252

Z
Zynga video games, 99

372 | Index

Colophon
The animals on the cover of Designing and Developing for Google Glass are red-billed
blue magpies (Urocissa erythrorhyncha). These birds live around the Indian subconti‐
nent and Southeast Asia, including in the lower-altitude western Himalayas. Red-billed
blue magpies can dwell in subtropical, moist, or human-modified environments (such
as farmland), and their range includes forest, scrubland, and hills.

The red-billed blue magpie has the longest tail of any member of the crow family
Corvidae. Its body is a little over two feet long; the tail is over half of the entire length
(it takes up 17 out of 26 inches, on average). Its head, neck, and chest are black with
blue spots, while the lower body is off-white (there are no bonus points for guessing its
beak color). The legs, feet, and a ring around the eye also tend to be a vivid orange-red,
but some birds have yellow feet and legs. The long, bright blue tail has a broad white
tip, and is a striking feature of this bird. The red-billed blue magpie’s diet is made up of
small animals, especially invertebrates, which are then supplemented by fruits, seeds,
and nectar.

This bird’s cries are varied and unique, and they are known to be excellent mimickers
of other species’ calls. Red-billed blue magpies make shallow nests in trees and shrubs
and go out to hunt for food in packs. After reproduction, the female magpie incubates
three to five eggs on her own while the male provides food. In the wild, red-billed blue
magpies have even been observed cleaning the teeth of Malayan tapirs, which provides
the birds with an easy meal of bugs and uneaten vegetation.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Prologue
	Preface
	A New (R)evolution in Computing
	What We’re Bringing to the Table

	How This Book is Organized
	Discover
	Design
	Develop

	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	About the Authors

	Part I. Discover
	Chapter 1. The Revolution Will Be Wearable
	Forging Glass
	Wearable Computing
	What Does It Mean to Think for Glass?

	Chapter 2. The Glass Ecosystem: What It Is and How It Is Different
	What You See and What You Get
	Glass Is a Platform, Not a Product
	The Glass Application Model
	Mirror API
	Glass Development Kit (GDK)

	Actions, Not Apps
	Reinventing Human–Computer Interaction
	The Science Behind the Projection
	How Glass Gets Audio into Your Ear
	Using the System
	The Camera: Photos, Videos, and More!
	Glass Is a Great Listener
	Content Creation in a POV World
	Which Hue Is for You?
	Welcome to Wearable Computing!

	Chapter 3. Societal Issues with Glass and How to Avoid Them in Your Projects
	Issue #1: Privacy
	Where Are We Now?
	Think for Glass

	Issue #2: Facial Recognition
	Where Are We Now?
	Think for Glass

	Issue #3: Using Glass While Driving
	Where Are We Now?
	Think for Glass

	Issue #4: Aesthetic Appeal—Is Glass Fashionable?
	Where Are We Now?
	Think for Glass

	Issue #5: Augmented Reality
	Where Are We Now?
	Think for Glass

	Issue #6: Glass Analytics
	Where Are We Now?
	Think for Glass

	Issue #7: Regulatory Environment—Glass and Public Policy
	Where Are We Now?
	Think for Glass

	The Business of Producing Glassware
	What Glass Isn’t

	Part II. Design
	Chapter 4. Thinking for Glass: How Glass Is, and Should Be, Personal
	Glass as Personal Technology
	Best in Show
	Twitter
	Gmail
	Google+

	Winning Glassware Design Takeaways
	Designing with the Think for Glass Mindset
	Vignettes
	Google Now
	Google Search

	Glass for Gaming
	Design for the Cloud
	Are You Starting to Think for Glass?

	Chapter 5. The Five Noble Truths of Great Glassware Design
	Noble Truth 1: Design for Glass
	Targeting Microinteractions
	Tactical Wearable Design
	Don’t Neglect Audio
	Delete Versus Dismiss
	Provide Web-Based Configuration

	Noble Truth 2: Don’t Get in the Way
	Notify Responsibly
	Less Is More
	The Exceptions Make the Rule

	Noble Truth 3: Keep It Relevant
	Context FTW
	How Soon Is Now?

	Noble Truth 4: Avoid the Unexpected
	Content
	Performance
	Don’t Be a Bandwidth Hog
	Permissions
	Error Handling
	Synchronization Across Platforms
	Surprises Should Be Pleasant Surprises

	Noble Truth 5: Build for People
	Advocate Multitasking
	Glass Is Naturally Social
	So…That’s It? Really?

	Chapter 6. Glassware Antipatterns: Avoiding Poor Design
	Improperly Implementing Ideas for the Glass Experience
	Treating Glass Like Any Other Mobile Device
	Overloading the System AND the Wearer
	Think in Actions, Not in Apps
	Stick to the Prefab Templates and Styles
	Don’t Use the Prism Display as a Stage for Complicated Reports
	Glass Isn’t Necessarily Bound to Your Phone
	Unrealistic Expectations for Augmented Reality and Gaming
	Don’t Deviate from Default: Using Categorial Voice Commands
	Not Fully Utilizing Cloud Computing
	Choosing the Wrong Development Framework for Your Glassware Project

	Part III. Develop
	Chapter 7. Overview of the Mirror API
	Life on the Server Side
	Events: The Building Blocks of the Glass Timeline
	The High-Level View
	How Your Server Talks with Google
	Components of the Mirror API
	Preparing Your Project
	The Glass Ceiling—Your Project’s Quota
	The Even Bigger Picture

	Chapter 8. Security and OAuth
	Event Security: Google the Bouncer
	OAuth: IDs and Secrets
	Will You Come and Join the Dance?
	Who Are You? I Am the New Number Two
	What Do You Want? Information
	Disabling (and Reacquiring) Permissions
	Who Is Number One? You Are Number Six
	WAKE UP!!!

	Chapter 9. Working with Timeline Cards
	“Hello, World!”, Glass-Style
	HTML: Even More Style
	What About Images?
	Working with Mosaics
	Rendering an In-Card Map
	Simple Audio
	Bundles of Fun
	Going Beyond the Playground
	Media Matters
	Oh, CRUD…

	Chapter 10. Card Actions and Subscriptions
	Simple Event Actions
	Listen Up!
	collection
	userToken
	verifyToken
	callbackUrl

	Responding to Subscription Pings
	Simple Callbacks and How to Handle Them
	Custom Menu Items
	Keeping in Contact

	Chapter 11. Sharing Resources with Glassware
	The Share Menu Item
	Share Contacts
	Voice Commands

	Chapter 12. Context Is King: Using Location and Other Signals
	Enabling Location
	Where Do You Think I Am?
	Location as Part of Timeline Events
	Setting Things Straight
	Location Becomes Localization

	Subscribing to Locale Changes Saves API Calls
	Other Contextual Signals
	Context and the Future

	Chapter 13. The GDK
	Installed Apps Running on Glass
	What Is the GDK?
	How the GDK Differs from the Mirror API
	User Interface Elements of GDK Apps
	Live Cards
	Two Flavors of Live Cards
	Immersions

	More Tools for Rapid Design
	It Was Native All Along!
	The GDK Object Model
	Packages

	System Intents
	On-Head Detection Halts Running Apps, Too

	Hybrids: The Ultimate Glassware Challenge (and Experience!)
	Authentication
	Writing Native Code for Glass
	Testing Native Glass Applications
	A View to a Card
	Basic Text Formatting
	Creating Rich Text
	Ellipses and Excess Content
	Columnar Layouts and Mosaics
	Using Icons
	Other Neat Templates
	When You Have No Choice—Doing It Yourself

	Configuring Voice Commands
	With Voice Commands, Google Has the Final Word
	Updating Releases, Versioning, and Crash Reports
	Porting Existing Apps to Glass: DON’T
	So Which Framework Is for Me?

	Chapter 14. Getting on MyGlass: Glassware Submission, Review, and Distribution
	Making Your Awesome Glassware Even More Awesome
	The Objective of Glassware Review
	What MyGlass Gets You

	Prereview Activities
	Things to Think About Before You Submit
	Submitting Your Glassware
	Gotchas
	Submit!

	The Review Process
	Timing Your Release
	Categorical Listings
	App Analytics
	Marketing Channels
	Monetization

	Chapter 15. Reflections on the Future
	Corporate Glass
	Streamlining Operations
	Glass in Medicine and Education
	Accessibility
	Home Integration
	Chromecast and Home Entertainment
	Android Wear
	Hardware Hacking and the Internet of Things
	Peripherals/Accessories
	In Closing

	Part IV. Appendices
	Appendix A. Glassware Done Right: Case Studies from the Field
	Thuuz Sports Lets You Know What’s Hot
	KitchMe’s Glassware Is Simply Delicious
	Fancy and ColorSnap Leverage Colorful Queries
	LynxFit: A Personal Trainer Strapped to Your Head
	Genie: The Swiss Army Knife of Glassware
	MiKandi Takes Glassware into the Bedroom…Then Pivots to Keep it There
	The MiKandi Experience
	Installation/Configuration
	Home-Rolled Development
	Facilitating Requests: Challenges in Building
	Scalability Issues
	Platform Expansion: Plans on Having an Installed App?
	Going Forward, Pushing the Envelope

	NameTag Launches Headfirst into Facial Recognition
	CrowdOptic: Crowdsourced Broadcasting
	Vodo: Real-Time Collaboration for the Enterprise
	Preview: The Latest Movie Trailers Are Just a Glance Away
	GlassFrogger: Hybrid Glassware Using the Browser

	Appendix B. Hacking Glass
	The DIY Movement: When the Status Quo Just Isn’t Good Enough
	Sideloading Android Apps on Glass
	Sharing Your Screen
	Give Me JavaScript, or Give Me…
	Officially Unofficial: Rooting Your Headset
	Living on the Bleeding Edge

	Index

