
I

I

s
V

V

\

Developing
Conversational
Interfaces for iOS

\
0*

Add Responsive Voice Control
to Your Apps

Mdrtin Mitrevski

Apress
www.allitebooks.com

http://www.allitebooks.org

Developing
Conversational

Interfaces for iOS
Add Responsive Voice Control

to Your Apps

Martin Mitrevski

Developing Conversational Interfaces for iOS: Add Responsive
Voice Control to Your Apps

ISBN-13 (pbk): 978-1-4842-3395-5		 ISBN-13 (electronic): 978-1-4842-3396-2
https://doi.org/10.1007/978-1-4842-3396-2

Library of Congress Control Number: 2017964661

Copyright © 2018 by Martin Mitrevski

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Felipe Laso-Marsetti
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3395-5.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Martin Mitrevski
Ohrid, Macedonia

www.allitebooks.com

http://www.allitebooks.org

To my family: my parents, Lidija and Dimche;
my brother, Viktor, and his wife, Emma;

and my beautiful girlfriend, Natasha.

Thanks for all the support and patience!

v

Table of Contents

About the Author��ix

About the Technical Reviewer��xi

Introduction��xiii

Chapter 1: �Conversational Interfaces��1

GUI Beginnings���1

Graphical User Interfaces Challenges��3

Voice as a User Interface���4

Understanding Language���5

Products on the Market��6

Overview of the Process���7

What the Products Do���9

Conversational Interfaces Flow��11

Natural Language–Understanding Concepts��12

Summary���16

Chapter 2: �Booking a Ride with SiriKit��17

Booking a Ride���18

Creating a Siri Extension��25

Implementing the Principal Class��26

Checking the Status of a Ride��41

www.allitebooks.com

http://www.allitebooks.org

vi

Building a Custom App Vocabulary��46

Creating a Global App Vocabulary���47

Providing App Name Synonyms��51

Allowing a User-Specific Vocabulary��52

Summary���54

Chapter 3: �Creating Lists with SiriKit��57

Overview of the App���57

App Groups���59

INCreateTaskListIntent��72

INAddTasksIntent��76

INSetTaskAttributeIntent���78

UI Testing with Siri���80

Summary���89

Chapter 4: �Speech, Synthesizers, and Dialogflow�������������������������������91

Creating a Simple Grocery List��92

Implementing Speech Recognition���100

Implementing Text to Speech���110

Using AVSpeechSynthesizer���111

Using Dialogflow (api.ai)��124

Training a Dialogflow Agent��126

Integrating Dialogflow into the App��132

Summary���141

Chapter 5: �Getting Started with Wit.ai���143

Creating a Grocery List App���144

Performing the iOS Implementation���148

Using Wit.ai and Modern Objective-C Syntax���160

Table of ContentsTable of Contents

vii

Wit.ai vs. Dialogflow vs. Others���161

Using a Language-Understanding Intelligent Service����������������������������������162

Using Amazon Lex��163

Using Watson IBM���164

Summary���164

Chapter 6: �Natural Language Processing on iOS�������������������������������165

Keyword Extraction��166

TF-IDF Algorithm���175

Showing Orthography��183

Summary���185

Chapter 7: �Sentiment Analysis with Core ML������������������������������������187

Classifying Movie Reviews���188

Creating a Core ML Model��189

Doing the iOS App Implementation���196

Understanding Core ML Limitations���213

Summary���214

Chapter 8: �Conversational Interface Challenges�������������������������������217

Security��217

Quality��222

Project Common Voice��223

Is It Dangerous?���224

Will People Use It?���225

Summary���228

�Index��229

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Martin Mitrevski is currently a senior software engineer and tech lead

at Netcetera. He’s developed mobile apps in the areas of virtual reality,

transport, indoor navigation, publishing, insurance, weather, innovation

tools, and live event apps.

Martin is enthusiastic about technology, well-crafted code, books,

innovation, and everything that leads us to new and better directions.

He likes to follow the latest mobile trends and software development

principles in general.

Lately, he’s been fascinated by the possibilities that conversational

interfaces bring in simplifying the user experience and how they might

change the way we think about apps. Martin is always happy to exchange

knowledge with others on his blog at https://martinmitrevski.com and

as a conference speaker. You can follow him on Twitter via the handle

@mitrevski.

xi

About the Technical Reviewer

Felipe Laso-Marsetti is a senior systems engineer working at Lextech

Global Services. He’s also an aspiring game designer/programmer. You can

follow him on Twitter via @iFeliLM or on his blog at http://ifeli.me/.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

User interfaces in mobile apps are continuing to evolve by recognizing the

most natural way for users to express their wishes: their voice.

Conversational interfaces are starting to get a lot of attention, mostly

because of the latest advancements in natural language understanding

and machine learning.

All the big players provide tools and voice assistants in this area. Apple

has Siri and the Speech framework, Google has Google Assistant and

Dialogflow, Amazon has Alexa and Lex, and Microsoft has Cortana and

LUIS. This topic is exciting and will be even more so in the future.

Currently, there’s no book on the market that incorporates all aspects

of conversational interfaces on iOS, starting from voice transcription,

natural language processing, intent detection, and entities extraction and

going all the way to text-to-speech commands.

The book will help you build conversationally aware and smarter iOS

applications. With the introduction of the new platforms and exciting

technologies, iOS developers now have huge opportunities to take their apps

to the next level. In this book, you will be familiarized with the following topics:

•	 Apple’s SiriKit framework

•	 Apple’s Speech framework

•	 Google’s Dialogflow language-understanding platform

•	 Facebook’s Wit.ai language-understanding platform

•	 The basics of natural language processing on iOS

•	 Sentiment analysis with Apple’s new Core ML framework

•	 The challenges of conversational interfaces and what the

future brings

xiv

Who This Book is For
The primary audience for the book includes iOS developers, product and

innovation managers, and potentially UX experts. It will be helpful to all

engineers and managers who want to provide conversational interfaces in

their apps.

This book does not cover the basics of iOS development. Specifically,

it will not show the steps to create a new Xcode project or introduce you to

basic iOS development concepts. Having that knowledge is a prerequisite

for getting the most from the book.

What You’ll Need
To follow along and run the code examples in this book, you will need a Mac

with macOS Sierra, 10.12.6 or higher. You will also need to have Xcode 9 or

higher, with Swift 4.

IntroductionIntroduction

www.allitebooks.com

http://www.allitebooks.org

1© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_1

CHAPTER 1

Conversational
Interfaces
People and computers speak different languages—people use words and

sentences, while computers are more into ones and zeros. This gap in

communication is filled with a mediator that knows how to translate all

the information flowing between the two parts. These mediators are called

graphical user interfaces (GUIs).

�GUI Beginnings
Historically, there have been three major breakthroughs in the quest

to create the most suitable user interfaces. The first one was in Xerox’s

research lab, where Steve Jobs recognized the huge potential of the mouse

cursor clicking around a desktop, opening folders, copying and pasting

files, and much more (Figure 1-1). It was a revolutionary approach that

made computers accessible to a much broader audience, and it’s still

used today.

2

The second revolution was also something Steve Jobs managed to

introduce on a massive scale.

“We’re gonna use the best pointing device in the world. We’re
gonna use a pointing device that we’re all born with—we’re
born with ten of them. We’re gonna use our fingers.”

These Steve Jobs words about the iPhone’s unveiling introduced the

multitouch concept, which is now widely used on all mobile devices. It

was another natural but revolutionary step in providing the most intuitive

experience for users (Figure 1-2).

Figure 1-1.  The first graphical user interface

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

3

These two approaches made interaction with machines (whether that

be computers or mobile devices) much easier and accessible.

The third major breakthrough is what this book is all about:

conversational interfaces. Before I get to that, let’s take a moment to talk

about GUI challenges.

�Graphical User Interfaces Challenges
One commonality between these GUIs is that people need to learn how to

interact with them. For example, they need to know that a single click on a

folder will select that folder and that a double-click will open it. They need

to know there’s a “back” hardware button on Android phones but a similar

software button (styled differently) in every iOS application. Having many

Figure 1-2.  The iPhone’s multitouch user interface

Chapter 1 Conversational Interfaces

4

different options and different implementations of the two concepts can be

confusing for the users. Everyone who has switched from a Windows to a

Mac (or vice versa) knows that you need few days (or even weeks) to learn

how to efficiently use the different operating system. The same applies to

phones—although they all follow the multitouch concept, the transition

from one OS to another can take some time.

Another challenge that current GUIs face is the new set of devices

recently introduced to the market—wearables. When you have a screen as

small as a watch, clicking it to perform some task can be quite a tedious

experience. And these devices are targeted mostly to modern, on-the-go

users who need some information fast with minimal fuss.

This brings the need for a completely different user interface—one

that will unify all the different platforms and will perform tasks for users

with little interaction. And what’s the most natural way of expressing your

needs? Of course, it’s by using your voice to create words and sentences.

�Voice as a User Interface
So, the third major breakthrough in user interfaces is a nongraphical one:

conversational interfaces. The idea is not new. We’ve seen it in a lot of

movies, usually in the form of some virtual assistant that informs the main

character of some new danger ahead. Or the character falls in love with his

assistant (like in the 2013 movie Her). Generally speaking, movies can be

an interesting source of inspiration for the next innovations in technology.

Hollywood is a place where technology meets the liberal arts, and it can

have a big impact on consumer technology. Did you know the interactive

newspapers in Harry Potter inspired Facebook to introduce self-starting

videos in its news feeds? Or that the gesture-driven UI in Minority Report

is what now you basically do in interacting with your mobile device? Keep

that in mind: inspiration can come from unexpected places.

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

5

�Understanding Language
Since the idea for conversational interfaces is not that new, why did it

take so long for the big tech companies to start making products with

them? The main reason is that speech recognition and natural language

understanding are two of the most challenging problems in computer

science. Sometimes even one small word (such as not, for example) can

completely change the meaning of a sentence. Also, punctuation can

introduce different meanings to words. Computers are not like humans;

they don’t talk with each other in a free-form manner all the time, learning

new phrases and meanings along the way. They are pretty exact entities,

and they do what they are told to do.

Language is the primary form of communication between humans.

It is used to express everything from our feelings to explanations of how

we have solved complex programming tasks. This wide range of phrases,

expressions, and wishes is dependent on many other circumstances,

such as the context in which the phrase is spoken, the beliefs of the

people involved in the conversation, and suggestions that are not directly

implied by the phrase (called implicatures). For example, say you ask a

person who lives with you “Where is my football T-shirt?” and they reply

“Can’t you hear the washing machine working?” You can infer that the

T-shirt is currently being laundered in the washing machine. Adding to

the complexity of the language are presuppositions, which are implicit

assumptions about something related to a phrase that’s taken for granted

as being true. For example, if you say “I haven’t coded for two years,” the

presupposition is that you once coded. The same presupposition holds,

even if you say “I have coded for two years.”

There are cases where understanding language can be difficult for

humans as well. Sometimes you might run into words that are unknown

to you and you must guess what they mean. Or even when you understand

the words, the meaning can be ambiguous; in other words, you are not

sure what the speaker intended to say. If someone says “Did you see her

Chapter 1 Conversational Interfaces

6

dress?” that might mean many different things. It can mean that a girl

can’t find her dress and someone is asking around for help. It can also be

interpreted as someone checking on whether she has started dressing. Or

it can be a gossip between people about the way the girl is dressed.

Figurative speech is another challenge. Using metaphors, similes, and

allusions that go beyond the literal meaning of words gives a sentence a

whole new meaning. Extracting the correct meaning is a demanding task

for humans, so you can imagine how difficult it would be for a computer.

However, artificial intelligence, machine learning, and natural

language processing have been making some impressive improvements in

the past few years. Engineers are developing sophisticated deep learning

algorithms and feeding them with massive amounts of data. Providing as

many examples and training sets as possible makes it easier for computers

to figure out what users are saying.

�Products on the Market
These technological advancements have triggered the creation of new

products from every major tech company in this area. Apple has Siri,

which is now open for iOS developers through the SiriKit framework.

Developers can handle voice commands in their apps that users give

to Siri. For example, imagine a user rushing to find a ride to the airport.

They will say something like, “Hey, Siri, book me a ride to the airport

using YourCoolApp.” Siri will ask your app whether it can handle the

request, and the app might ask for some additional information, such

as where you want to be picked up (or maybe it would just use the user’s

current location) or what type of ride you want (car, taxi, train, etc.). Then

Siri presents the information from your app inside Siri (your app is not

opened; everything happens in Siri’s context), and if the user agrees to the

provided ride offer, your app then reserves the ride, and Siri notifies the

user about the status.

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

7

Google has OK Google and Google Assistant, which support similar

functionalities and extension points for developers. One interesting

product from Google is Dialogflow (formerly api.ai), which is a web

application through which developers can train the platform to learn how

to recognize and extract parts of the sentences and return them in JSON

format. This gives developers more flexibility and releases the burden from

them in terms of developing complex natural language processing (NLP)

solutions by themselves. NLP is a field in artificial intelligence that tries to

analyze and understand the meaning of human language.

Facebook’s Wit.ai is another platform that provides excellent tools for

developers to add conversational interfaces to their apps. Microsoft has

LUIS, a web application through which you can train how the platform

recognizes entities in a sentence. In addition, Microsoft has Cortana, its

virtual assistant named after a character in the video game Halo. Amazon

provides Alexa Skill Set and Amazon Lex. With Amazon Lex, the same

natural-understanding platform that is used by Amazon Alexa is available

to developers. If you need a reliable enterprise solution, IBM has Watson,

with several products that support easier creation of virtual agents and

chatbots with a specific domain business knowledge.

�Overview of the Process
Let’s look at the products and technologies from the viewpoint of a

developer. Integrating a technology that provides a conversational interface

to your application requires several steps. These steps might be already

integrated in the product. They can also be partially integrated, providing

you with customization points that you can use to provide domain-specific

knowledge, use a different technology for that customization point, or even

provide your own implementation. Figure 1-3 shows an outline of how to

add a conversational interface to your iOS application.

Chapter 1 Conversational Interfaces

8

Figure 1-3.  Steps for integrating a conversational interface product

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

9

The first step is to build an agent with the domain-specific knowledge.

Building the agent requires infrastructure (data storage, servers), natural

language–understanding algorithms, and the actual training with the

business domain knowledge. The provider of the agent has to make the

service available to the mobile devices in some way—either as a REST

service or as a native framework.

Next, the mobile device has to convert the user’s spoken phrase to a

machine-readable string. This is usually done on the device, although an

external REST service might also be used. After the string is detected, it is sent

to the trained agent, which tries to extract the user’s intent and the parameters

of that intent (entities) based on the training that was provided in the first step.

If the intent and the entities are extracted successfully, the app has enough

information to execute the user’s request and provide results of the action.

�What the Products Do
Based on the previous overview, let’s see what the current products on

the market provide in terms of integrating conversational interfaces in a

mobile application. Table 1-1 illustrates the differences between them.

Table 1-1.  Conversational Interface Products That Can Be Integrated

into iOS Apps

Product Infrastructure Speech
Recognition

Training Natural language
understanding

SiriKit Provided Provided Provided Provided

Dialogflow Provided Not provided Both options Provided

Wit.ai Provided Provided Both options Provided

Amazon LEX Provided Provided Both options Provided

LUIS Provided Not provided Both options Provided

Core ML Not provided Not provided Not provided Not provided

Chapter 1 Conversational Interfaces

10

First I’ll define what the values in this table mean. The “Provided”

value indicates that the service is already enabled (implemented) in

the product and you don’t need to do anything by yourself. The “Not

provided” value means the service is not available in the product and you

need to use other products to fill this gap or implement it by yourself. The

“Both options” value indicates that the product provides both a predefined

solution for the particular service and a customization point if the

developers want to provide app-specific functionality.

SiriKit does all the heavy lifting for you when integrating

conversational interfaces to your app. The testing data and the algorithms

are stored and running on Apple’s infrastructure. The speech recognition is

done by the framework itself, which also does the training and the natural

language understanding. You, as a developer, just receive callbacks with

values for predefined intents and entities. That doesn’t leave much room

for customization. If the currently supported domains are not fitting your

application’s goal, then you can’t make much use of the framework. You

will get to know SiriKit in more detail in Chapters 2 and 3.

Dialogflow, Wit.ai, Amazon LEX, and LUIS are similar services that

provide you with infrastructure and the possibility to train your own

agents. Those agents are available to mobile apps as a REST service. In

addition to the ability to train your own models, they provide already

trained agents, which can be directly used for common things such as

checking the weather, setting an alarm, booking a ride or flight, and more.

Some of the products, such as Wit.ai and Amazon LEX, provide iOS

SDKs that do the speech recognition part on the mobile device. Others,

such as Dialogflow and LUIS, still don’t have such support, which means

you have to use other frameworks, such as Apple’s Speech, that convert the

user’s spoken input to text. You can find more details on Dialogflow and

Wit.ai in Chapters 4 and 5.

You can take a different approach as well, with Apple’s Core ML

framework for machine learning. With this approach, you are in charge

of finding or creating the dataset, implementing the machine learning

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

11

algorithm, and training and testing the agent. Apple just provides the glue

that enables easier integration of the model in an iOS application. You will

explore Core ML in Chapter 7.

�Conversational Interfaces Flow
You have probably seen the YouTube video where a kid asks Alexa to play

him something like “tickle, tickle” and Alexa responds with some adult

movie suggestions.

These comical situations are not rare since there’s still a lot of room

for improvement in this area. Users have to be as concise as possible

and have to find the right structure of sentences that virtual assistants

will understand. To address this broad range of different sentences, the

frameworks are offering a bit restrictive flow—they have a few predefined

domains (use cases), which are triggered by already defined sentences.

They encourage you to avoid open questions and to provide users with

different options. For example, if a user wants a train ride from London

to Paris, Siri can ask the user “What type of ride do you want?” and your

app can provide a few options that Siri will relay to the user, such as first-

class or second-class ticket. Also, the SDKs are designed in a way that you

need to find the user’s preferences by asking one question at a time and

then proceed with the next question only after you have the answer of the

current one. For example, after you know the type of the ride, Siri might

next ask the user “Where do you want to go?” if they didn’t specify that in

the voice command. Notice also that the questions are pretty simple and

clear and they ask for only one piece of information.

This new way of interacting with users is a challenge for developers

and user experience experts. There are still no common best practices;

you need to experiment and figure out what works and what doesn’t. In

any case, the future is exciting, and you will see a lot more innovation in

this area.

Chapter 1 Conversational Interfaces

12

�Natural Language–Understanding Concepts
So that you can understand the examples in the next few chapters, in this

section I will cover the concepts that are important for natural language–

processing engineering.

The most important concept in conversational interfaces is an intent.

This is basically what the user wants the system (application or chatbot)

to do. The system might provide several intents. For example, a grocery

list application might provide intents for adding, removing, and marking

products as bought. It might also provide the ability to directly pay for the

products in a list or send the bill to someone else to pay. The first step in

natural language processing is to figure out which of the intents you have

provided matches the spoken phrase of the user.

There might be cases where there is no mapping of the user input to

a specific action. This can happen if the user asks for something you can’t

provide. For example, they might ask “Deliver the products of the grocery list

to my address,” but your system doesn’t provide such an intent. No matching

can also happen if the model you train with sentences is not complete. For

example, the user might say “Get rid of milk from my list,” which clearly

means the user wants to remove milk from their list. But if you haven’t

provided sentences similar to this one, your model might not recognize the

user’s intent. Training the model with the domain knowledge specific to the

functionality the system provides and with as many sentences as possible is

one of the most challenging tasks in natural language processing. That is what

gives the system the ability to react to lots of different natural spoken phrases.

After the intent is recognized, you need to figure out what are the

parameters of that action. These are also called entities. In the grocery list

example, if you have figured out that the user’s intent is to add products

to the list, the next step is to determine what those products are. In this

case, the entities belong to the defined type of products. There are some

common entities to most intents, such as location, date, time, temperature,

and many more.

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

13

What’s interesting is that entities can appear multiple times in intents

but with different meanings. For example, a location entity appears twice

in a “booking a ride” intent. If the user says “I want a ride from Paris to

London,” the first location entity represents the pickup location of the user,

and the second one represents the user’s destination. In the process of

training the model, this can be accomplished by defining two (or more)

different roles of the same entity and marking the entity and its role in the

sentence in as many examples as possible.

Another challenge here is that even if you need two entities from one

intent to execute the user’s request, the user might provide only one. They

might have forgotten that you need the other value, or they might expect

this to be inferred. In the “booking a ride” example, they might expect that

you take their pickup location from the location services on the device.

However, if for various reasons you are not able to get the needed values

from the first input, you should ask the user for the specific value you are

missing. Asking the user to say the full sentence again with the missing

information is not a good user experience.

Usually in conversational interface systems, the user will ask several

things during the conversation. It is expected that the system stores

the information about the previous data the user has provided. Storing

the parameters from previous expressions is usually called context. For

example, you are ordering a sandwich from a chatbot and give information

about whether the sandwich should contain ham, cheese, ketchup,

olives, and so on. Then, if you want to order another one just like the

previous one but without olives, you should be able to say this in a natural

manner: “Same as previous one but without olives.” Using context, you can

accomplish this. During one conversation, there might be several contexts.

The whole conversation, from start to end, is usually called a session.

Chapter 1 Conversational Interfaces

14

Figure 1-4 shows the process of food ordering with a chatbot. The

user provides a sentence in a plain-text or spoken phrase. The text

is processed, and an intent is detected, along with the entities of the

intent. After that, the user specifies another request connected with

the previous state (sandwich ordering), and the chatbot detects from

the context which previous information is required to complete this

request. Then, the chatbot asks the user about a drink, thus triggering

a different context. The user might later say, for example, “without ice”

or “another one to go.” These multiple contexts represent one session,

which is the whole interaction between the user and the chatbot during

the ordering experience.

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

15

Figure 1-4.  Food ordering interaction with a chatbot

Chapter 1 Conversational Interfaces

16

�Summary
As you’ve seen, finding an appropriate GUI can be quite a challenge—and

it’s basically the key factor in determining whether your software will be

used. If users don’t understand the interactions they need to do to get the

most out of it, they will not use it. That’s why the GUIs must be intuitive

and easy to learn.

In the following chapters, you will see practical applications of these

natural language–understanding concepts in iOS projects. You will start

with Apple’s SiriKit framework in the next two chapters by building two

apps, one for booking a ride and the other one for adding and removing

items in a grocery list.

Chapter 1 Conversational Interfaces

www.allitebooks.com

http://www.allitebooks.org

17© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_2

CHAPTER 2

Booking a Ride
with SiriKit
At the WWDC conference in 2016, Apple announced SiriKit, which enables

developers to provide functionality that can be executed directly from Siri,

without opening the main application. This is another step to the idea

of using new, innovative ways to interact with users via conversational

interfaces, simplifying the whole user experience. Your app can now

provide functionality to Siri directly from the lock screen and when the app

is not even started. However, as is usually the case with Apple, there are

some limitations. You can use SiriKit only for certain predefined domains.

•	 VoIP calling

•	 Messaging

•	 Payments

•	 Lists and Notes

•	 Visual Codes

•	 Photos

•	 Workouts

•	 Ride booking

18

•	 Car Commands/CarPlay

•	 Restaurant reservations

What do these domains mean, and what can they do for you as a user?

You can, for example, send messages and make calls directly from Siri.

You can send money to someone or check your account’s status. You can

create to-do lists and notes and add items to them. You can ask Siri to

show you your football game ticket when you get near the stadium with

the new Visual Codes extension. Siri can also show you photos or book

you a ride. With the Car Commands extension, you can manage vehicle

door locks and get a vehicle’s status (handy for the people who are unsure

whether they have locked their car’s doors). And with SiriKit, you can make

restaurant reservations with the help of the Maps application. Although it’s

a limited set of domains, SiriKit provides lots of possibilities for innovation

and improving the user experience. Also, probably in the future more

domains will be added, like when the Lists and Notes and Visual Codes

extensions were added in iOS 11. If your app is not solving problems in one

of those domains, you will need to wait for (or even suggest to Apple) an

extension in the domain that your app needs.

�Booking a Ride
In this chapter, you will look at the ride-booking domain. You will build a

simple app that will reserve a (fake) ride between two locations provided

by the user. Let’s get started!

Before you develop a Siri extension, you need to build the mobile app,

which will provide the base “booking a ride” functionality. The UI will be

pretty simple; as shown in Figure 2-1, it contains just two text fields for the

“from” and “to” locations, as well as a button that will start the booking.

When the button is tapped, the found rides are displayed in a list below

it. The user interface is already set up for you in the starter project for this

chapter.

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

19

The scope of this chapter will be exploring the SiriKit functionalities,

so you will not be connecting to a real ride-booking service. If you want to

connect to such an API, depending on the country you want to support,

there are few options, such as the Uber and Ola APIs. Instead, you will just

create a list of dummy rides that you will offer to users. You will follow a

protocol-oriented approach to replace the dummy service without many

code changes. Let’s start by creating a single-view application called

BookMeARide (or open the starter project). Create a new Swift file called

RideService.swift and define a protocol for finding rides (Listing 2-1).

Listing 2-1.  RideService Protocol

protocol RideService {

 �func findRide(from: String, to: String, completion:

@escaping ([Ride]) -> Void)

}

Figure 2-1.  Simple ride-booking app

Chapter 2 Booking a Ride with SiriKit

20

Tip I n general, protocols in Swift, combined with structs and other
value types, are really powerful and have more benefits than using
classes and inheritance, which is what you are used to in traditional
object-oriented programming. Protocols provide flexibility, whereas
class inheritance is too intrusive.

This method defines what you should expect from a ride-booking

service—finding list of possible rides, depending on the starting and

ending locations. The ride type will be a simple struct (Listing 2-2), which

will contain basic ride information, such as the company, the car number,

the expected time in minutes when the car can pick you up, the type of the

ride (whether it’s a limo or taxi), and, of course, how much it would cost

the user. Here you use a struct over a class, because structs are lightweight,

are cheap to create, and don’t have the implicit sharing burden that comes

with classes. Enter this code in a new file called Ride.swift.

Listing 2-2.  RideType and Ride Types

enum RideType {

 case taxi

 case limo

}

struct Ride {

 var company: String

 var carNumber: String

 var timeInMinutes: Double

 var rideType: RideType

 var price: Float

 var currency: String

}

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

21

Next, create a dummy implementation of the RideService protocol in

a file called DummyRideService.swift, which will return a few hard-coded

rides (Listing 2-3).

Listing 2-3.  Service Returning Hard-Coded Rides

class DummyRideService: NSObject, RideService {

 �func findRide(from: String, to: String, completion:

@escaping ([Ride]) -> Void) {

 completion(self.dummyRides())

 }

 private func dummyRides() -> [Ride] {

 let ride1 = Ride(company: "MM",

 carNumber: "123",

 timeInMinutes: 3,

 rideType: .taxi,

 price: 30,

 currency: "EUR")

 let ride2 = Ride(company: "Luxury Limo",

 carNumber: "11",

 timeInMinutes: 5,

 rideType: .limo,

 price: 60,

 currency: "EUR")

 let ride3 = Ride(company: "Cool Taxi",

 carNumber: "80",

 timeInMinutes: 7,

 rideType: .taxi,

 price: 25,

 currency: "EUR")

 return [ride1, ride2, ride3]

 }}

Chapter 2 Booking a Ride with SiriKit

22

In the main ViewController.swift, you need to implement the

@IBAction of the button for finding a route, which will ask the dummy

service for the rides. You need a table view as well, which will present

the rides, so you will implement the table view data source methods

(Listings 2-4 and 2-5). The table view will be fed by the rides array of

the Ride elements.

Listing 2-4.  Method called when findRouteButton is tapped

// Define at the beginning of the ViewController.

private let rideService = DummyRideService()

private var rides = [Ride]()

@IBAction func findRouteButtonClicked() {

 let fromText = self.checkNil(from?.text as AnyObject?)

 let toText = self.checkNil(to?.text as AnyObject?)

 �rideService.findRide(from: fromText, to: toText,

completion: {

 [unowned self] foundRides in

 self.rides = foundRides

 self.ridesTableView?.reloadData()

 })

 }

func checkNil(_ string: AnyObject?) -> String {

 return string == nil ? "" : string as! String

}

Listing 2-5.  UITableView’s DataSource and Delegate Methods

func tableView(_ tableView: UITableView,

 �numberOfRowsInSection section: Int) ->

Int {

 return rides.count

}

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

23

func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

 var cell = tableView.dequeueReusableCell(

 withIdentifier: "RouteCell")

 if cell == nil {

 cell = UITableViewCell(style: .default,

 reuseIdentifier: "RouteCell")

 }

 let ride = rides[indexPath.row]

 let displayText =

 �"Ride with \(ride.company), car number \(ride.

carNumber) in \(ride.timeInMinutes) min."

 cell?.textLabel?.text = displayText

 cell?.textLabel?.minimumScaleFactor = 0.3

 cell?.textLabel?.adjustsFontSizeToFitWidth = true

 return cell!

}

That’s it for the main app. As you can see, it’s nothing special. It just

presents the found rides. You can run it and test whether it displays the

mock rides when the route button is tapped. Now let’s start with the

interesting part, adding a Siri extension. First, you need to add the Siri

capability in the Capabilities section of Xcode for the main app target. This

will automatically create an entitlements file with the Siri key set to YES.

To run it on a device, you will need to create an app ID that supports Siri

and a provisioning profile for that app ID. If everything is set up correctly,

you should have all the boxes selected (Figure 2-2).

Chapter 2 Booking a Ride with SiriKit

24

The usage of Siri in the app should be transparent to the user—that’s

why you need to provide a usage description in the Info.plist file. The

key is Privacy – Siri Usage Description, and for the value, you will use

something like Siri needed for booking a ride. Next, when the screen is

shown, you need to check whether the user has authorized Siri (Listing 2-6).

This can be done using the INPreferences class, from the Intents framework,

which you will explore later in greater detail. Add the method for requesting

permission in the viewDidLoad method of the ViewController.

Listing 2-6.  Requesting Permission to Use Siri

private func requestSiriAuthorization() {

 �INPreferences.requestSiriAuthorization {

authorizationStatus in

 switch authorizationStatus {

 case .authorized:

 print("User authorized Siri")

 default:

 print("User didn't authorize Siri")

 }

 }

}

Figure 2-2.  Capabilities section in Xcode with Siri enabled

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

25

�Creating a Siri Extension
The Siri extension is created by adding a new target called the Intents

extension (Figure 2-3). The process is similar to adding other types of

extensions, such as Apple Watch apps, widgets, and keyboard extensions.

In the process of creating the extension, you are asked whether you want

to have the Intent UI extension, which is used if you want to modify the

default UI displayed in Siri when your app is called. Select that option

as well, since you will modify the default user interface. Call the created

extension Siri.

Figure 2-3.  Creating the Intents extension

Chapter 2 Booking a Ride with SiriKit

26

After the targets are created, you need to provide in their

corresponding Info.plist files which extension points you want to

support in your app. INRequestRideIntent is used to request a ride, and

INGetRideStatusIntent is used to check the status of a ride; these are

what you need in your app. You would use INListRideOptionsIntent if

you want to provide a ride-booking extension from the Maps app, not Siri.

Figure 2-4 shows the Info.plist file for your newly created Siri extension.

�Implementing the Principal Class
The extension has its principal class, which basically implements

the required protocol methods, depending on which intents are

supported in your app. For example, for the ride-booking feature,

you need to conform to the INRequestRideIntentHandling and

INGetRideStatusIntentHandling protocol methods. Figure 2-5 shows the

process of implementing the principal class.

Figure 2-4.  Info.plist file for the Siri extension

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

27

The first step is resolve—where you have to determine whether you

can handle the parameters provided by the intent (Siri). The second

step is confirm, where you are confirming to Siri that you can handle the

intent, by providing a response, which contains the details displayed

in the Siri pop-up. The responses can be different, depending on what

kind of intent you are handling, but they all inherit from the base

INIntentResponse. For the ride-booking use case, you need to return

INRequestRideIntentResponse, which contains a response code and the

Figure 2-5.  Steps for implementing the principal class

Chapter 2 Booking a Ride with SiriKit

28

ride status. The last step, handle, is where you actually perform the action

you’ve confirmed in the previous step. This is the basic overview of the

process, although there are additional optional methods you can implement

if you want to improve the user experience in the ride-booking process.

The principal class is the IntentHandler class, which will conform to

the INRequestRideIntentHandling and INGetRideStatusIntentHandling

protocols that need to be implemented for the intents you’ve registered.

When the user says something like “Hey, Siri, book me a ride,” your

app will be listed as an option. If the user says “Book me a ride using

BookMeARide,” then your app will be directly asked to perform this

intent. Good practice with conversational user interfaces is to request

one piece of information at a time and not proceed to the next step

until you get that information. SiriKit follows a similar approach with

the resolvePickupLocation and resolveDropOffLocation actions

for the ride intent. If the user, for example, says “Get me a ride to

Paris,” you should handle the missing pickup location and provide

INPlacemarkResolutionResult with the needsValue() option. This will

tell Siri to ask the user for the pickup location. The same applies for the

drop-off location (“Get me a ride from London”). If the user provided

both values, you are good to go to the next step, and you can resolve both

resolution results with success (Listings 2-7 and 2-8). Implement these

delegate methods in the IntentHandler.swift file.

Listing 2-7.  Resolving the Pickup Location in the IntentHandler Class

func resolvePickupLocation(

 for intent: INRequestRideIntent,

 with completion:

 �@escaping (INPlacemarkResolutionResult) ->

Void) {

 if (intent.pickupLocation == nil) {

 �let result = INPlacemarkResolutionResult.

needsValue()

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

29

 completion(result)

 } else {

 �let result = INPlacemarkResolutionResult.

success(with: intent.pickupLocation!)

 completion(result)

 }

}

Listing 2-8.  Resolving the Drop-Off Location

func resolveDropOffLocation(

 for intent: INRequestRideIntent,

 with completion:

 �@escaping (INPlacemarkResolutionResult) ->

Void) {

 if (intent.dropOffLocation == nil) {

 �let result = INPlacemarkResolutionResult.

needsValue()

 completion(result)

 } else {

 �let result = INPlacemarkResolutionResult.

success(with: intent.dropOffLocation!)

 completion(result)

 }

}

Next, when you have the starting and ending locations, you need

to ask for the type of ride the user wants—taxi or limo. For this, you will

implement the resolveRideOptionName method (Listing 2-9), also in the

IntentHandler class. If the user hasn’t specified the type of ride wanted,

you will resolve the result with a disambiguation, and Siri will present the

user with the two options you support. If the user was precise enough,

saying something like “Get me a taxi from Cambridge to London,” you can

resolve the intent with success and proceed to confirming the ride.

Chapter 2 Booking a Ride with SiriKit

30

Listing 2-9.  Resolving the Ride Option

func resolveRideOptionName(

 for intent: INRequestRideIntent,

 with completion:

 �@escaping (INSpeakableStringResolutionResult) ->

Void) {

 if let rideOption = intent.rideOptionName {

 �let result = INSpeakableStringResolutionResult.

success(with: rideOption)

 completion(result)

 } else {

 let first = INSpeakableString(

 �identifier: IntentHandler.

taxiIdentifier,

 spokenPhrase: "Taxi",

 �pronunciationHint: nil)

 let second = INSpeakableString(

 �identifier: IntentHandler.

limoIdentifier,

 spokenPhrase: "Limo",

 �pronunciationHint: nil)

 �let result = INSpeakableStringResolutionResult.

disambiguation(with: [first, second])

 completion(result)

 }

}

Figure 2-6 shows the user interface that Siri presents when asking the

user to provide the ride option.

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

31

After you have gathered all the information you need to reserve a ride

for your user, you need to implement the confirmation of the ride. This is

to check whether you can execute the user’s intent (Listing 2-10).

Listing 2-10.  Confirming Whether You Can Handle the Intent

func confirm(intent: INRequestRideIntent,

 completion:

 �@escaping (INRequestRideIntentResponse) ->

Void) {

 �self.handleIntent(requestRide: intent, completion:

completion)

}

If the extension confirms that it can handle the intent, Siri will show

a confirmation screen, where the user has the chance to book the ride

(Figure 2-7).

Figure 2-6.  Selecting the type of ride

Chapter 2 Booking a Ride with SiriKit

32

Before you proceed with the handleIntent implementation, let’s

first define some variables and constants that you will use in the method

(Listing 2-11).

Listing 2-11.  Defining Variables and Constants in the IntentHandler

Class

let rideService = DummyRideService()

static let taxiIdentifier = "Taxi"

static let limoIdentifier = "Limo"

static let rideOptionKey = "rideOption"

Figure 2-7.  Siri providing a ride option to the user

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

33

static let pickupDateKey = "pickupDate"

static let statusKey = "status"

You are now ready to explore the handleIntent method, where the

logic for the confirmation of the ride is implemented (Listing 2-12).

Listing 2-12.  Handling the Ride Booking Intent

private func handleIntent(requestRide intent:

INRequestRideIntent,

completion:

 �@escaping (INRequestRideIntentResponse) -> Void) {

 let userActivity =

 �NSUserActivity(activityType: NSStringFromClass(INRe

questRideIntentResponse.self))

 var response = �INRequestRideIntentResponse(code:

.success,

 userActivity: userActivity)

 let from = intent.pickupLocation?.name

 let to = intent.dropOffLocation?.name

 var rideType: RideType = .taxi

 if let phrase = intent.rideOptionName?.spokenPhrase {

 if phrase == IntentHandler.limoIdentifier {

 rideType = .limo

 }

 }

 if let from = from, let to = to {

 rideService.findRide(from: from, to: to, completion: {

 [unowned self] rides in

 if rides.count > 0 {

 �let rideStatus = self.

convertRidesToRideStatus(rides: rides,

 from: from,

Chapter 2 Booking a Ride with SiriKit

34

 to: to,

 rideType: rideType)

 let rideInfo: [String : Any] =

 �[IntentHandler.rideOptionKey :

rideStatus.rideOption!.name,

 �IntentHandler.pickupDateKey

: rideStatus.rideOption!.

estimatedPickupDate]

 RideStorage.removeRide()

 RideStorage.save(rideInfo: rideInfo)

 response.rideStatus = rideStatus

 completion(response)

 } else {

 response = �INRequestRideIntentResponse(code:

.failure,

 userActivity: userActivity)

 RideStorage.removeRide()

 completion(response)

 }

 })

 } else {

 response = �INRequestRideIntentResponse(code:

.failure,

 userActivity: userActivity)

 RideStorage.removeRide()

 completion(response)

 }

}

There is a lot going on in the handleIntent method, so let’s

analyze it step-by-step. First, you are creating the response object

(INRequestRideIntentResponse) with a user activity and status code.

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

35

The user activity is needed in cases when the user opens the app from Siri

(this usually happens when an error occurs). In the user activity, you can

pass some context and prepare your app to proceed at the place where

the error with Siri happened. You can access the user activity from the

didFinishLaunchingWithOptions method with Listing 2-13.

Listing 2-13.  Handling the User Activity Passed from Siri

if let activityDic =

 �launchOptions?[UIApplicationLaunchOptionsUserActivity

DictionaryKey]

 as? [NSObject : AnyObject],

 activity = �activityDic["UIApplicationLaunchOptionsUser

ActivityKey"]

 as? NSUserActivity {

 handleActivity(activity)

}

The status code supports many options, such as success, ready, in

progress, and a few failure codes (Listing 2-14).

Listing 2-14.  Supported status codes for the ride intent response

public enum INRequestRideIntentResponseCode : Int {

 case unspecified

 case ready

 �@available(iOS, introduced: 10.0, deprecated: 11.0,

message: "INRequestRideIntentResponseCodeInProgress is

deprecated.")

 case inProgress

 case success

 case failure

 case failureRequiringAppLaunch

 case failureRequiringAppLaunchMustVerifyCredentials

Chapter 2 Booking a Ride with SiriKit

36

 case failureRequiringAppLaunchNoServiceInArea

 case failureRequiringAppLaunchServiceTemporarilyUnavailable

 case failureRequiringAppLaunchPreviousRideNeedsCompletion

}

You assume that it is successful at the beginning, and if there’s an

error, you will update it accordingly. Next, you read the pickup and

dropOff locations for the ride and the ride option name and based on

that decide on the ride type. Then, you ask your ride service (in this case,

DummyRideService) to give you a list of possible rides for this route. If

there are rides available, you create a ride status based on the provided

information (I will get back to this method shortly). Next, you save the ride

to RideStorage (defined later in the chapter in Listing 2-17). You need

this for getting the status of the ride. At the end, you return the completion

handler with a successful response. In any other case, you complete the

handler with a failure code.

Now, let’s see how you can create the ride status. The

convertRidesToRideStatus method does that (Listing 2-15).

Listing 2-15.  Converting Rides to Ride Statuses

private func convertRidesToRideStatus(rides: [Ride],

 from: String,

 to: String,

 �rideType: RideType)

-> INRideStatus {

 var text = "ride "

 var selectedRide = rides.first!

 for ride in rides {

 if ride.rideType == rideType {

 selectedRide = ride

 break

 }

 }

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

37

 �let price = "\(selectedRide.price) \(selectedRide.

currency)"

 let minutes = Int(selectedRide.timeInMinutes)

 �text += "from \(from) to \(to) with \(selectedRide.

company), " +

 "departing in \(minutes) minutes for \(price)"

 let rideStatus = INRideStatus()

 �let pickupDate = Date().addingTimeInterval(selectedRide.

timeInMinutes * 60)

 �rideStatus.rideOption = INRideOption(name: text,

estimatedPickupDate: pickupDate)

 return rideStatus

}

You first check whether there’s a ride with the provided ride type. If

there’s no such ride, you provide the first option to the user (which is a

different ride type, but the user might still be interested). Then, you read

the price, the currency, and the estimated time. This information is needed

for the text of the ride option that will be read to the user by Siri. This is

represented by the INRideOption object, which is part of the ride status.

If the user wants to book the ride that Siri provided via your app, the

handle(intent:,completion) method is called, which actually performs

the ride reservation (Listing 2-16). This is the place where you will call a

REST service with a request to reserve the ride, but since you are working

with dummy rides here, you will just save to the RideStorage class that the

ride is confirmed. You will also create a ride status with the confirmed ride

phase. This will tell Siri to present a confirmation screen.

Listing 2-16.  Handling the Request Ride Intent

func handle(intent: INRequestRideIntent,

 completion:

 @escaping (INRequestRideIntentResponse) -> Void) {

Chapter 2 Booking a Ride with SiriKit

38

 �let userActivity = NSUserActivity(activityType: NSStrin

gFromClass(INRequestRideIntentResponse.self))

 �let response = INRequestRideIntentResponse(code:

.success,

 userActivity: userActivity)

 let rideStatus = INRideStatus()

 rideStatus.phase = INRidePhase.confirmed

 �RideStorage.save(rideInfo: [IntentHandler.statusKey :

true])

 rideStatus.pickupLocation = intent.pickupLocation

 rideStatus.dropOffLocation = intent.dropOffLocation

 �let pickupDate = RideStorage.latestRide()?[IntentHandler.

pickupDateKey] as! Date

 rideStatus.rideOption =

 �INRideOption(name: (intent.rideOptionName?.

spokenPhrase)!,

 estimatedPickupDate: pickupDate)

 response.rideStatus = rideStatus

 completion(response)

}

I have mentioned the RideStorage class. This is just a wrapper around

UserDefaults; it has methods to save and remove a ride (you are supporting

only one ride at a time) and also returns the latest ride (Listing 2-17).

Listing 2-17.  RideStorage Class

class RideStorage {

 static let savedRideId = "savedRide"

 class func save(rideInfo: [String : Any]) {

 var newRideInfo = rideInfo

 if let saved = latestRide() {

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

39

 newRideInfo.merge(with: saved)

 }

 UserDefaults.standard.set(newRideInfo,

 forKey:

RideStorage.savedRideId)

 UserDefaults.standard.synchronize()

 }

 class func removeRide() {

 �UserDefaults.standard.set(nil, forKey: RideStorage.

savedRideId)

 UserDefaults.standard.synchronize()

 }

 class func latestRide() -> [String : Any]? {

 �return UserDefaults.standard.value(forKey: RideStorage.

savedRideId) as? [String : Any]

 }

}

In the save method, if there is already a ride, you merge its contents

with the new one. For this, you need to define additional methods in

Apple’s Dictionary class (Listing 2-18).

Listing 2-18.  Providing Merge Methods to the Dictionary Class

extension Dictionary {

 mutating func merge(with dictionary: Dictionary) {

 dictionary.forEach { updateValue($1, forKey: $0) }

 }

 func merged(with dictionary: Dictionary) -> Dictionary {

 var dict = self

 dict.merge(with: dictionary)

Chapter 2 Booking a Ride with SiriKit

40

 return dict

 }

}

If you run the Siri extension now (by selecting the appropriate Siri

target from Xcode’s run menu), provide a sample phrase, and confirm the

ride, you should get a confirmation screen like the one in Figure 2-8.

Figure 2-8.  Confirmed ride

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

41

�Checking the Status of a Ride
After the user has confirmed the ride, they might be interested in checking

the status of the ride (Figure 2-9). One phrase that supports this is “How far

is my ride using BookMeARide?”

Let’s see how you can implement this. When the user provides a

voice command that is recognized as part of the INGetRideStatusIntent

domain, the method in Listing 2-19 is called.

Figure 2-9.  Checking the status of a ride

Chapter 2 Booking a Ride with SiriKit

42

Listing 2-19.  Handling the Status of a Ride

public func handle(intent: INGetRideStatusIntent,

 completion:

 �@escaping (INGetRideStatusIntentResponse) -> Void) {

 guard let latest = RideStorage.latestRide() else {

 failureResponse(completion: completion)

 return

 }

 �guard let status = latest[IntentHandler.statusKey] as?

Bool else {

 failureResponse(completion: completion)

 return

 }

 guard status == true else {

 failureResponse(completion: completion)

 return

 }

 �let response = INGetRideStatusIntentResponse(code: .success,

 userActivity: nil)

 let rideStatus = INRideStatus()

 �let pickupDate = latest[IntentHandler.pickupDateKey]

as! Date

 rideStatus.rideOption =

 INRideOption(

 �name: latest[IntentHandler.rideOptionKey] as!

String,

 estimatedPickupDate: pickupDate)

 rideStatus.phase = ridePhase(forPickupDate: pickupDate)

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

43

 response.rideStatus = rideStatus

 completion(response)

 }

 private func failureResponse(completion:

 @escaping (INGetRideStatusIntentResponse) -> Void) {

 �let response = INGetRideStatusIntentResponse(code:

.failure, userActivity: nil)

 completion(response)

 }

What happens here? You check whether there’s a ride available in your

RideStorage class and whether there’s a positive status code for that ride. If

there’s not, you will provide a response to the user that you currently don’t

have any rides available. Otherwise, you will take the estimated pickup date

and compare it with the current date. Based on the difference, the status of the

ride will have different value. The ridePhaseMethod does that (Listing 2-20).

Listing 2-20.  Determining the Phase of the Ride

private func ridePhase(forPickupDate date: Date) -> INRidePhase

{

 let dateDiff = self.dateDiff(forPickupDate: date)

 if dateDiff < 0 {

 return .ongoing

 } else {

 if dateDiff > 60 {

 return .approachingPickup

 } else {

 return .pickup

 }

 }

}

Chapter 2 Booking a Ride with SiriKit

44

private func dateDiff(forPickupDate date: Date) -> Int {

 let dateDiff = Calendar.current.dateComponents([.second],

 from: Date(),

 to: date).second ?? 0

 return dateDiff

}

If the date difference is less than zero, then the car should’ve already

arrived, which is why you return the ongoing ride phase. If the car is 60 or

more seconds away, you return the approachingPickup phase, and if it’s

less than that, you return the pickup phase, which means the car is close

and ready.

You can also send updates to Siri about the status of the ride. For this,

you will need to have a real-time ride service, which will provide you with

information, in certain periods of time, about how far the ride is from the

user. Listing 2-21 lists the methods that allow you to notify Siri about the

status of the ride.

Listing 2-21.  Start and Stop Sending Updates to Siri About the

Status of the Ride

public func startSendingUpdates(

 for intent: INGetRideStatusIntent,

 to observer:

INGetRideStatusIntentResponseObserver) {

 print("Siri started asking for updates for the ride")

}

public func stopSendingUpdates(for intent:

INGetRideStatusIntent) {

 print("Siri stopped asking for updates for the ride")

}

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

45

That’s all you need to do to check the status of the ride. Run the

extension and provide a sample phrase to check the status of the ride.

If you’ve noticed in the screenshots, there’s also a little branding part in

the Siri screens of the BookMeARide app—a logo and a catchy slogan

promising the fastest way to get a ride (Figure 2-10).

This is done by creating the SiriUI target. In this target, you have

an IntentViewController, which provides a way to configure the size

of the views that will be presented in the space reserved for a custom

UI in the Siri pop-up. There’s also a storyboard file, where you can put

images and text, just like in iOS apps. I’ve put a logo and a tagline for this

awesome app. One restriction here is that you cannot pass the data from

the IntentHandler class to this view, so the data presented here is mostly

static. You cannot, for example, create a list of all available rides and put

them in a table view in the supplementary section of the pop-up.

Figure 2-10.  Customizing the Siri extension

Chapter 2 Booking a Ride with SiriKit

46

In the IntentViewController in the UI extension, you need to override

the desiredSize variable for Siri to know how much space you need for

the custom part (Listing 2-22). For the custom UI, you will need a height

of 100 points and the maximum width that Siri allows, depending on the

screen’s width.

Listing 2-22.  Overriding the desiredSize Variable in

IntentViewController.swift

var desiredSize: CGSize {

 return CGSize(

 �width: self.extensionContext!.

hostedViewMaximumAllowedSize.width,

 height: 100)

}

That’s everything you need to do to book a ride using Siri. Now,

let’s see how you can teach Siri to learn customized phrases for your

application.

�Building a Custom App Vocabulary
Sometimes you will want to provide custom words or phrases that are

specific to your application or let the user define their own phrases to

perform some actions or identify contacts. For example, users might

want to call someone referencing them by their nickname. Parents can

say “Send money to my son or daughter.” Also, there are cases where your

app has fancy name that might not even be a proper English word. These

custom words can be provided with the INVocabulary API to Siri, which

will learn those words and associate them with your app. The words or

intents that are valid for all users of your app can be declared in the global

vocabulary of the application. The ones that are user specific must be

provided from the main application (not from the Siri extension) using

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

47

methods from the INVocabulary API. If you support multiple languages,

you can include localized versions of your vocabulary property list file in

the language-specific project (.lproj) directories of your app.

Note T he user-specific custom words that Siri needs to learn are
provided from the main application through the INVocabulary API.

�Creating a Global App Vocabulary
To have a global vocabulary file, you should create a new property list

file and call it AppIntentVocabulary.plist. Add the file to the main iOS

application. The created property list file has two keys at the root level.

•	 IntentPhrases, which contains an array of example

intent phrases for invoking features of the application

•	 ParameterVocabularies, which has an array of phrases

common to all users of the application

The IntentPhrases array consists of dictionaries, which contain the

following keys:

•	 IntentName: This is the name of the intent for which

this example phrase applies. The value here has to

match the exact name of an intent. You should take

this value from the IntentsSupported array defined in

the Info.plist file of your Siri extension. For example,

if you want to define a different phrase for requesting

a ride from the BookMeARide app, you should add

INRequestRideIntent as a value here.

Chapter 2 Booking a Ride with SiriKit

48

•	 IntentExamples: This is an array of sample phrases that

will complement the default ones. Here is the place

where you define the custom phrases. As example

phrases, you can add sentences like “Can you find

me a ride,” “Reserve me a ride,” “I want a ride,” and

similar. The next time the user says such a phrase, the

BookMeARide app will be invoked. If your app is the

only one that supports that phrase, the user doesn’t

even have to specify the name of the app; they can just

say the phrase (Figure 2-11).

Figure 2-12 shows the AppIntentVocabulary property list file.

Figure 2-12.  Defining custom phrases for booking a ride

Figure 2-11.  Reserving a ride with a custom phrase

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

49

Now, let’s look at the ParameterVocabularies array. As mentioned,

with this array you can specify some terms that are valid for all users of the

application. This array also contains dictionaries, with the following keys:

•	 ParameterNames: This is an array of key paths for

property names from an intent class. This might sound

abstract; I’ll explain it with an example. Let’s say that

instead of New York, you want to say “Book me a ride

to the Big Apple.” You want to provide another phrase

(synonym) for the city of New York for the location

property. There are two types of location in the ride-

booking intent (pickup location and drop-off location),

so you provide these two values as parameter names.

Since they are CLPlacemark objects, you should add

their name property in the parameter name.

•	 ParameterVocabulary: This is an array of dictionaries

that contain the mapping between the original word

and the synonym. VocabularyItemIdentifier

contains information about the original word

or phrase recognized by Siri. In this case, that

would be New York. Next, you need to provide the

synonyms, using the VocabularyItemSynonyms array

of dictionaries. In these dictionaries, it is required

that you provide VocabularyItemPhrase, which

is the custom phrase that the app will use. In the

New York example, that would be the Big Apple. You

can also define pronunciation hints for the phrase,

using the VocabularyItemPronunciation key. The

hints should sound like the string, not be how it is

written. For example, if you are developing a music

app and you want to define a custom phrase for the

band U2, the pronunciation hint would be “you too.”

Chapter 2 Booking a Ride with SiriKit

50

There is also the ability to provide an array of strings

that contain examples of how to use the phrase

(VocabularyItemExamples).

With these changes, you can say something like “Can you find me a

ride from Paris to the Big Apple?” and Siri would be able to determine that

you need a ride from Paris to New York (Figure 2-13).

Figure 2-14 shows an excerpt of the AppIntentVocabulary.plist file

with the synonym entries.

Figure 2-13.  Booking a ride with a custom phrase

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

51

�Providing App Name Synonyms
You can also provide other names for your app. This might simplify users’

interaction with your app. These alternative names should not include

names of other apps installed on the phone to prevent taking over requests

for those apps. To define synonyms for your app name, you should include

the INAlternativeAppNames key in the Info.plist file of the main iOS

application. This key has an array of dictionaries with these two keys:

•	 INAlternativeAppName: This is the synonym name that

the users can use to invoke your app.

•	 INAlternativeAppNamePronunciationHint: This is an

optional hint on how to pronounce the app name.

For example, if you want users to access your app with the “using

CoolRide” phrase, your Info.plist file should look like Figure 2-15.

Figure 2-14.  Parameter vocabularies

Figure 2-15.  Alternative app names

Chapter 2 Booking a Ride with SiriKit

52

�Allowing a User-Specific Vocabulary
In addition to the globally defined words and phrases, you can also

let users define phrases that are relevant only to them. You can do this

by using the INVocabulary API, which should be called from the main

application. The INVocabulary API is pretty simple and contains three

methods. The first two are available from iOS 10, while the third one can be

used only on iOS 11.

The setVocabularyString:ofType method accepts an ordered set of

Strings for a given INVocabularyStringType. The vocabulary string types

are restricted to certain categories, such as contact names, photo albums,

workout names, payment organization names, and so on. For example,

you can’t provide a user-specific name for the pickup or drop-off location

in the ride-booking domain like you did with the global app vocabulary.

The vocabulary strings are an ordered set, which means the ones at the

beginning of the set have a higher priority. How does this work? Let’s say

you have an app that sends messages. If you have one of your parents saved

as a contact with their first and last names but you want to send messages

by saying “mom” or “dad,” these values should be provided in the ordered

set, and Siri would be able to provide them in INSendMessageIntent.

You can remove all the vocabulary strings by calling the method

removeAllVocabularyStrings.

The problem with these iOS 10 methods is that you have only strings

in the set, without additional context to them. For example, you have to

do some custom mapping to find out that the phrase “mom” or “dad”

corresponds to a certain contact in the list.

For this reason, starting from iOS 11, there is a new method, called

setVocabulary:ofType:, where you provide objects that implement

the INSpeakeable protocol, instead of plain strings. The INSpeakable

protocol provides more details about the entries that Siri tries to learn.

Objects that implement the protocol should provide the spoken phrase,

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

53

a pronunciation hint, and a vocabulary identifier (which can be a unique

identifier for the object). You can also provide alternative INSpeakeable

vocabulary items using the alternativeSpeakeableMatches array.

With this approach, the matching of the detected alternative words is

much simpler on the app side. Let’s see an example. You will create a new

class, VocabularyItem, that implements the INSpeakable protocol

(Listing 2-23).

Listing 2-23.  Implementing INSpeakable Protocol

class VocabularyItem: NSObject, INSpeakable {

 var spokenPhrase: String

 var pronunciationHint: String?

 var vocabularyIdentifier: String?

 var alternativeSpeakableMatches: [INSpeakable]?

 init(spokenPhrase: String,

 vocabularyIdentifier: String?,

 pronunciationHint: String?) {

 self.spokenPhrase = spokenPhrase

 self.vocabularyIdentifier = vocabularyIdentifier

 self.pronunciationHint = pronunciationHint

 }

}

Then, when the user selects (through an appropriate user interface)

which words should also have alternative phrases, you can call a method

like the one in Listing 2-24.

Chapter 2 Booking a Ride with SiriKit

54

Listing 2-24.  Saving a Vocabulary Item

func saveVocabularyItem(spokenPhrase: String, originalWord:

String) {

 let vocabularyItem = VocabularyItem(spokenPhrase: spokenPhrase,

 �vocabularyIdentifier:

originalWord,

 �pronunciationHint:

spokenPhrase)

 var savedVocabularyItems = self.loadVocabularyItems()

 savedVocabularyItems.insert(vocabularyItem, at: 0)

 INVocabulary.shared().setVocabulary(savedVocabularyItems,

 of: .contactName)

}

func loadVocabularyItems() -> NSOrderedSet {

 // load items, perhaps from UserDefaults

 return []

}

As you can see, the INVocabulary API is pretty straightforward and

gives you quick wins for designing a better user experience.

�Summary
SiriKit enables third-party apps to provide functionality that can be

executed in Siri, without starting the app. The speech-recognizing part

and the natural language understanding is already done by SiriKit,

which means you can take the already recognized values and focus on

implementing the business rules of your application. However, SiriKit also

comes with limitations; you can use it only in predefined domains. If your

app doesn’t provide functionality related to those domains, then you can’t

use SiriKit.

Chapter 2 Booking a Ride with SiriKit

www.allitebooks.com

http://www.allitebooks.org

55

In the chapter, you created a simple iOS app that returns predefined

rides. Then you created the Siri extension, which supports the ride-

booking domain. By implementing the provided delegate methods of

the ride-booking intent handling, you were able to extract everything

you needed to know about the user’s request for a ride—pickup location,

drop-off location, and ride option.

You also implemented the delegate methods for checking the status

of the ride, giving the user the ability to check on the ride. By using the

SiriUI extension, you were also able to customize the user interface

presented in Siri. Then, you saw how you can teach Siri to learn new

words and phrases that are specific to your app or to certain users of the

app. In the next chapter, you will develop another SiriKit project from a

different domain.

Chapter 2 Booking a Ride with SiriKit

57© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_3

CHAPTER 3

Creating Lists
with SiriKit
Another interesting domain is lists and notes, which encompasses adding

and removing items to and from a to-do list as well as adding notes. It’s a

really handy domain, which you will explore in detail in this chapter. You

will create an app that can add and remove items to and from a grocery

list. Later in the chapter, you will see how you can write UI tests to verify

whether your Siri implementation is correct.

�Overview of the App
Let’s create a new single-view application in Xcode and call it ListsSiriKit.

The user interface of the main iOS application is really simple, with two

screens (Figure 3-1). The first screen shows the lists that the user has

created in a table view. When a list is selected, it opens a new screen with

the tasks that it contains. Both screens contain a button for adding items to

the table view (lists in the first screen or tasks in the second screen). There

is a starter project for this chapter, where the user interface and the initial

setup are already prepared for you, so you can easily get started developing

the cool features of your application.

www.allitebooks.com

http://www.allitebooks.org

58

The data in the main app will be synchronized with the Siri

extension—whenever the user does an update (adds or removes a list or

task) from Siri, the change should be reflected in the main app. Let’s first

create the Intents extension (you already know how to do this from the

previous chapter).

Next, update the Info.plist file of the Siri extension so it knows which

intents you are going to support in your app. Your app will support creating

lists, adding tasks to a list, and marking tasks as completed. To have

these functionalities, you will need to add the INCreateTaskListIntent,

INAddTasksIntent, and INSetTaskAttributeIntent intents to your Info.

plist file (Figure 3-2).

Figure 3-1.  User interface for the to-do list app

Chapter 3 Creating Lists with SiriKit

59

Caution A lthough an app extension bundle is nested in the
containing app’s bundle, the app extension and the main app have no
direct access to each other’s containers.

�App Groups
The next challenge to tackle is where to store the data the user creates so

it’s accessible from both the main app and the Siri extension. Since you

are storing the data only locally (you don’t have a back end), shared user

defaults are a good option. To support this, you need to create an app

group, which then needs to be added to both targets. But to configure an

app group, you will first need to create an app ID from Apple’s developer

portal (Figure 3-3).

Figure 3-2.  Supported intents for the lists domain

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

60

Why do you need this app group? The main app and its extension

don’t have access to the corresponding app containers, so there has to be

a mechanism to share or pass data between them. The solution is a shared

container, which can be accessed by both apps using app groups.

Now that you know the importance of app groups, let’s enable them for

the created app ID (Figure 3-4).

Figure 3-3.  Creating an app ID

Chapter 3 Creating Lists with SiriKit

61

Then, under Identifiers, go to App Groups and create a new group ID

with a unique identifier and add this new group ID to the app ID you just

created (Figure 3-5).

Figure 3-4.  Enabling app groups for an application ID

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

62

If everything is set up correctly, you should see all check marks under

Capabilities ➤ App Groups, for both targets (Figure 3-6).

Figure 3-5.  Registering an app group

Figure 3-6.  App groups in the Capabilities section

Chapter 3 Creating Lists with SiriKit

63

Now, you can load the user defaults with the group ID as a suite name,

and all the data between the app and the extension will be synced. You will

create a new class, called ListsManager, which will handle all the changes

in the user’s data—the creation and modification of the lists and tasks

(Listing 3-1).

Listing 3-1.  ListsManager Implementation

class ListsManager {

 �private var savedLists: [String : [String]] = [String :

[String]]()

 static let ListsKey = "lists"

 static let GroupId = "group.com.mitrevski.ListsSiriKit"

 static let sharedInstance = ListsManager()

 �let sharedDefaults = UserDefaults(suiteName: ListsManager.

GroupId)

 init() {

 if let saved =

 �sharedDefaults?.value(forKey: ListsManager.

ListsKey) {

 savedLists = saved as! [String : [String]]

 }

 }

 func lists() -> [String : [String]] {

 return savedLists

 }

 func tasksForList(withName name: String) -> [String] {

 if let tasks = savedLists[name] {

 return tasks

 }

 return []

 }

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

64

 func createList(name: String) {

 let list = [String]()

 updateSavedLists(changedList: list, listName: name)

 }

 func deleteList(name: String) {

 updateSavedLists(changedList: nil, listName: name)

 }

 func add(tasks: [String], toList listName: String) {

 �var list = savedLists[listName] == nil ? [] :

savedLists[listName]!

 list.append(contentsOf: tasks)

 updateSavedLists(changedList: list, listName: listName)

 }

 func finish(task: String) {

 if let listName = self.findTaskInList(withName: task) {

 var list = savedLists[listName]!

 if let index = list.index(of: task) {

 list.remove(at: index)

 �updateSavedLists(changedList: list, listName:

listName)

 }

 }

 }

 �private func updateSavedLists(changedList: [String]?,

listName: String) {

 savedLists[listName] = changedList

 �sharedDefaults?.set(savedLists, forKey: ListsManager.

ListsKey)

 sharedDefaults?.synchronize()

 }

Chapter 3 Creating Lists with SiriKit

65

 �private func findTaskInList(withName taskName: String) ->

String? {

 for (listName, list) in savedLists {

 if list.contains(taskName) {

 return listName

 }

 }

 return nil

 }

}

In the ViewController, you need to implement the table view data

source and delegate methods by using the methods defined in the

ListsManager (Listing 3-2). You enable the ability to delete a list by

swiping from right to left, by implementing the tableView(_,commit

editingStyle, forRowAt:) method. When a list is selected, you show the

tasks associated with that list, by performing the showTasks segue.

Listing 3-2.  Table View Data Source and Delegate Methods in

ViewController.swift

func tableView(_ tableView: UITableView,

 canEditRowAt indexPath: IndexPath)

-> Bool {

 return true

}

func tableView(_ tableView: UITableView,

 �commit editingStyle:

UITableViewCellEditingStyle,

 forRowAt indexPath: IndexPath) {

 if editingStyle == .delete {

 �let listName = Array(ListsManager.sharedInstance.

lists().keys)[indexPath.row]

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

66

 �ListsManager.sharedInstance.deleteList(name:

listName)

 self.tableView.reloadData()

 }

}

func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 tableView.deselectRow(at: indexPath, animated: true)

 selectedRow = indexPath

 self.performSegue(withIdentifier: "showTasks", sender: self)

}

You also have to provide the implementation when the button for

adding lists is tapped, which will display a pop-up where the user can

enter the name of the list and save it. When the next screen appears,

which is represented by the TasksViewController, you need to pass the

information about which list is selected from the ViewController. To

accomplish this, you implement the prepare(for segue:, sender:)

method (Listing 3-3).

Listing 3-3.  Implementing the Action When the addButton Is

Tapped and Passing List Name Data to the Next Screen

@IBAction func addButtonClicked(sender: UIBarButtonItem) {

 let alertController = self.alertForAddingItems()

 �self.present(alertController, animated: true,

completion: nil)

}

private func alertForAddingItems() -> UIAlertController {

 let alertController = ListsSiriKit.alertForAddingItems(

 �title: "Please provide list name",

Chapter 3 Creating Lists with SiriKit

67

 �placeholder:

"List name")

 return addActions(toAlertController: alertController,

 �saveActionHandler: { [unowned self]

action in

 �let textField = alertController.

textFields![0]

 if let text = textField.text {

 if text != "" {

 �ListsManager.

sharedInstance.createList(

 name: text)

 self.tableView.reloadData()

 }

 }

 �alertController.dismiss(animated:

true, completion: nil)

 })

}

override func prepare(for segue: UIStoryboardSegue, sender:

Any?) {

 if segue.identifier == "showTasks" {

 �let next = segue.destination as!

TasksViewController

 �let listName = Array(ListsManager.sharedInstance.

lists().keys)[selectedRow!.row]

 next.listName = listName

 selectedRow = nil

 }

 }

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

68

The alertForAddingItems method retrieves the text from the

textField in the alertController and creates a list, using the

ListManager. Since similar functionality with a pop-up and a text field

will be needed in the other screen as well, you are using the utility

method alertForAddingItems(title:, placeholder:), which creates

the alertController with a title and placeholder (for the text field).

Since the two pop-ups will have similar Save and Cancel actions, you are

abstracting that logic as well. In the addActions(toAlertController:,

saveActionHandler:), the save action is passed as a parameter because

that would be the only difference between the two pop-ups. Add these two

methods in a new file, called Utils.swift (Listing 3-4).

Listing 3-4.  Utility Methods for the Pop-up for Adding Items

func alertForAddingItems(title: String,

 placeholder: String)

 -> UIAlertController {

 let alertController = UIAlertController(title: title,

 message: nil,

 �preferredStyle:

.alert)

 alertController.addTextField { textField in

 textField.placeholder = placeholder

 }

 return alertController

}

func addActions(toAlertController alertController:

UIAlertController,

 �saveActionHandler: @escaping ((UIAlertAction)

-> Void))

 -> UIAlertController {

Chapter 3 Creating Lists with SiriKit

69

 �let saveAction = UIAlertAction(title: "Save", style:

.default, handler: saveActionHandler)

 let cancelAction = UIAlertAction(title: "Cancel",

 style: .cancel,

 handler: { action in

 �alertController.

dismiss(animated: true,

 completion: nil)

 })

 alertController.addAction(saveAction)

 alertController.addAction(cancelAction)

 return alertController

}

That’s everything you need in the ViewController. Now let’s see the

TasksViewController, which, as mentioned, will present the tasks for the

list that was selected in the ViewController. In the viewDidLoad method,

you need to load the tasks for the listName that was passed from the

ViewController (Listing 3-5).

Listing 3-5.  Loading Tasks for a List Name

override func viewDidLoad() {

 super.viewDidLoad()

 self.title = listName

 tasks =

 �ListsManager.sharedInstance.tasksForList(withName:

listName!)

}

The tasks array will provide the data to the table view. The table

view data source and delegate methods are similar to the ones in the

ViewController, so I will not explain them in greater detail (Listing 3-6).

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

70

The table view will support removing tasks by swiping from right to left.

Tasks can be added with the add button in the navigation bar.

Listing 3-6.  TasksViewController Implementation

func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return tasks.count

}

func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath)

-> UITableViewCell {

 �var cell = tableView.dequeueReusableCell(withIdentifi

er: cellIdentifier)

 if cell == nil {

 �cell = UITableViewCell(style: .default,

reuseIdentifier: cellIdentifier)

 }

 let taskName = tasks[indexPath.row]

 cell?.textLabel?.text = taskName

 return cell!

}

func tableView(_ tableView: UITableView,

 canEditRowAt indexPath: IndexPath) -> Bool {

 return true

}

func tableView(_ tableView: UITableView,

 �commit editingStyle:

UITableViewCellEditingStyle,

 forRowAt indexPath: IndexPath) {

Chapter 3 Creating Lists with SiriKit

71

 if editingStyle == .delete {

 let name = tasks[indexPath.row]

 ListsManager.sharedInstance.finish(task: name)

 self.reloadTasks()

 }

}

@IBAction func addButtonClicked(sender: UIBarButtonItem) {

 let alertController = self.alertForAddingItems()

 �self.present(alertController, animated: true,

completion: nil)

}

private func alertForAddingItems() -> UIAlertController {

 let alertController = ListsSiriKit.alertForAddingItems(

 title: "Please provide task name",

 placeholder: "Task name")

 return addActions(toAlertController: alertController,

 �saveActionHandler: { [unowned self]

action in

 �let textField = alertController.

textFields![0]

 if let text = textField.text {

 if text != "" {

 �ListsManager.

sharedInstance.add(tasks:

[text],

 toList: self.listName!)

 self.reloadTasks()

 }

 }

 �alertController.dismiss(animated:

true, completion: nil)

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

72

 })

 }

private func reloadTasks() {

 tasks =

 �ListsManager.sharedInstance.tasksForList(withName:

listName!)

 self.tableView.reloadData()

}

That’s everything you need to do in the main iOS app. You can run it

and add a few lists and tasks to it. Let’s now start with the interesting part:

implementing the Siri extension. As mentioned, you will need to implement

protocols from three intents: INCreateTaskListIntent, INAddTasksIntent,

and INSetTaskAttributeIntent. These intents are added in the Info.

plist file of the Siri extension in the starter project. If you start from scratch,

make sure you add them manually to the property list file.

�INCreateTaskListIntent
The first protocol you need to implement is for handling the creation of

lists. As you know already, the steps required to implement the SiriKit

intent are confirm, resolve, and handle (the first two being optional). For

this use case, you don’t need the optional ones, so you will implement only

the handle method. The handle method provides the intent, represented

by the INCreateTaskListIntent object. This intent contains information

about the title of the list that needs to be created, as well as any tasks that

the user may have also provided in the request.

You should handle this request by providing an object of type

INCreateTaskListIntentResponse in the completion handler of the

method. INCreateTaskListIntentResponse also contains information

about the title and the tasks, as well some additional things such as

groupName, identifier, and created/modifiedDateComponents, which

Chapter 3 Creating Lists with SiriKit

73

are not needed in this case. In the implementation provided in Listing 3-7,

you first take the title of the intent and create the list using your

ListsManager. Next, you check whether there are any tasks that need to

be added to the list. If there are, you convert the strings provided by the

intent to INTask objects, and you save the strings to your ListsManager.

If everything goes OK, you send a successful response to the completion

handler (Listing 3-7). The code in Listing 3-7 should be added as an

extension to the IntentHandler. Put the code in the same file but not

between the curly braces of the class definition of the IntentHandler.

Instead, put it after it.

Listing 3-7.  Implementing the INCreateTaskListIntent Object

extension IntentHandler : INCreateTaskListIntentHandling {

 public func handle(intent: INCreateTaskListIntent,

 completion: @escaping

(INCreateTaskListIntentResponse) -> Void) {

 guard let title = intent.title else {

 �completion(INCreateTaskListIntentResponse(code:

.failure, userActivity: nil))

 return

 }

 �ListsManager.sharedInstance.createList(name: title.

spokenPhrase)

 var tasks: [INTask] = []

 if let taskTitles = intent.taskTitles {

 let taskTitlesStrings = taskTitles.map {

 taskTitle -> String in

 return taskTitle.spokenPhrase

 }

 tasks = createTasks(fromTitles: taskTitlesStrings)

 �ListsManager.sharedInstance.add(tasks:

taskTitlesStrings, toList: title.spokenPhrase)

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

74

 }

 �let response = INCreateTaskListIntentResponse(code:

.success, userActivity: nil)

 response.createdTaskList = INTaskList(title: title,

 tasks: tasks,

 groupName: nil,

 createdDateComponents: nil,

 modifiedDateComponents: nil,

 identifier: nil)

 completion(response)

 }

}

The method in Listing 3-7 uses a helper method called

createTasks(fromTitles:), which converts the task titles (which are

Strings) to the INTask objects that are needed for the response to Siri

(Listing 3-8). Add this method in the IntentHandler class (not in the

extension) since other extensions will also need it. The tasks have a status of

not completed since you are just creating them in a list. Updating the status

to completed will be done with the INSetTaskAttributeIntent object.

Listing 3-8.  Converting Strings to INTask Objects

func createTasks(fromTitles taskTitles: [String]) -> [INTask] {

 var tasks: [INTask] = []

 tasks = taskTitles.map { taskTitle -> INTask in

 let task = INTask(title:

INSpeakableString(spokenPhrase: taskTitle),

 status: .notCompleted,

 taskType: .completable,

 spatialEventTrigger: nil,

 temporalEventTrigger: nil,

 createdDateComponents: nil,

Chapter 3 Creating Lists with SiriKit

75

 modifiedDateComponents: nil,

 identifier: nil)

 return task

 }

 return tasks

}

Let’s test this. One cool addition to Xcode 9 is that you can test Siri with

the simulator (no more voice straining and disturbing everyone around

you!). You can provide some sample text in the Siri scheme, and that

command will be executed when you run the extension. Click the schemes

button to the right of the Stop icon and then select “Manage schemes”

and edit the Siri extension scheme. You will notice that in the Run action,

there’s a new input field called Siri Intent Query; that’s the place where you

should provide the text (Figure 3-7).

After you run the Siri extension, you should see a confirmation from

Siri that the list has been created (Figure 3-8).

Figure 3-7.  Testing Siri on an iOS simulator

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

76

Open the main app and verify that it also created the grocery list there.

If it’s not there, make sure your app groups are correctly configured, and go

through the steps in the “App Groups” section again. That’s all there is to

creating lists with SiriKit!

�INAddTasksIntent
Let’s add some tasks to the list. To accomplish this, you need to

implement the handle method of the INAddTasksIntentHandling

protocol. You receive an INAddTasksIntent object, which similarly to

INCreateTaskListIntent contains information about the task titles

that need to be added, as well as the target list that will be modified. You

can also provide spatial, which will display a reminder when the user

approaches or leaves a specific location (or time, with a temporal event

trigger). Just like you did with the creation of the list, you first extract

the title of the list, and then you convert the task titles to INTask objects.

You are adding the tasks to the ListsManager and provide a successful

response if everything went fine during the process. Add the code in

Listing 3-9 as a new extension to the IntentHandler class.

Figure 3-8.  Creating list in Siri

Chapter 3 Creating Lists with SiriKit

77

Listing 3-9.  Adding Tasks to a List

extension IntentHandler : INAddTasksIntentHandling {

 public func handle(intent: INAddTasksIntent,

 �completion: @escaping

(INAddTasksIntentResponse)

-> Void) {

 let taskList = intent.targetTaskList

 guard let title = taskList?.title else {

 �completion(INAddTasksIntentResponse(code: .failure,

userActivity: nil))

 return

 }

 var tasks: [INTask] = []

 if let taskTitles = intent.taskTitles {

 let taskTitlesStrings = taskTitles.map {

 taskTitle -> String in

 return taskTitle.spokenPhrase

 }

 tasks = createTasks(fromTitles: taskTitlesStrings)

 �ListsManager.sharedInstance.add(tasks:

taskTitlesStrings, toList: title.spokenPhrase)

 }

 �let response = INAddTasksIntentResponse(code: .success,

userActivity: nil)

 response.modifiedTaskList = intent.targetTaskList

 response.addedTasks = tasks

 completion(response)

}

If you run the extension with text like “Add milk, sugar, and tomato in

my grocery list in ListsSiriKit,” you will get the Siri reply shown in Figure 3-9.

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

78

�INSetTaskAttributeIntent
The last protocol you need to implement is

INSetTaskAttributeIntentHandling from INSetTaskAttributeIntent.

This protocol is used when you want to update the state of a task. A task in

SiriKit can be in three states: unknown, notCompleted, and completed. You

want to show the task in the list when it’s in one of the first two states, but

when the task is completed, you want to remove it from the list. To do this,

you are extracting the title and status from the INSetTaskAttributeIntent

object. If the status is completed, you are just using the finish(task: title)

method from your ListsManager, which goes through the saved tasks and

deletes the completed task (Listing 3-10). Add the code in Listing 3-10 as

another extension to the IntentHandler class.

Figure 3-9.  Adding items to a list in Siri

Chapter 3 Creating Lists with SiriKit

79

Listing 3-10.  Setting Task Attributes Through Siri

extension IntentHandler : INSetTaskAttributeIntentHandling {

 public func handle(intent: INSetTaskAttributeIntent,

 �completion: @escaping

(INSetTaskAttributeIntentResponse) ->

Void) {

 guard let title = intent.targetTask?.title else {

 �completion(INSetTaskAttributeIntentResponse(code:

.failure, userActivity: nil))

 return

 }

 let status = intent.status

 if status == .completed {

 �ListsManager.sharedInstance.finish(task: title.

spokenPhrase)

 }

 �let response = INSetTaskAttributeIntentResponse(code:

.success, userActivity: nil)

 response.modifiedTask = intent.targetTask

 completion(response)

 }

}

If you tell Siri “Mark Sugar as completed in my grocery list in

ListsSiriKit,” it will give you something similar to Figure 3-10.

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

80

If you open the main app, you will notice that the Sugar task is deleted

from the grocery list, which is what you expected to happen. Now, let’s see

how you can verify this implementation with UI tests.

�UI Testing with Siri
Testing is an essential step in verifying the quality of the software. It

protects you from breaking functionalities while you are refactoring the

code or adding new features. Smartly written tests can catch some edge-

case bugs in the code. Although there are many benefits if you test your

code, a lot of developers are still reluctant to write tests, mostly because of

time constraints.

Here, you will concentrate on testing the Siri functionalities you have

implemented in the lists app. While you were building the Siri integration

for this app, you had to always give the phrase to Siri and then manually

open the app and check whether the correct items were added. With UI

Figure 3-10.  Marking an item as completed

Chapter 3 Creating Lists with SiriKit

81

testing, you will automate this step. There are other benefits too. Let’s say

your app supports many languages. To verify the integration in all the

languages, you would need to perform several steps for every language.

	 1.	 Change the language on the device in Settings.

	 2.	 Check what the appropriate translation for the

testing phrase is.

	 3.	 Learn how to pronounce this phrase.

	 4.	 Run Siri and provide the phrase.

	 5.	 Open the app to check whether the correct items

were added.

	 6.	 Repeat these steps for every change that might have

impact the Siri integration.

That is a lot of manual work, which can be simplified with UI testing.

XCUISiriService provides the ability to activate expressions with voice

recognition text, which can be taken from your Strings file for every

language (or any other translation mechanism or format). The process

can be fully automated and even connected with a continuous integration

system, which can trigger the UI tests’ execution on every commit.

Here you will test the creation of a list, as well as add items to the list.

To get started, first you need to create a UI testing bundle, which you will

call UITests (Figure 3-11).

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

82

Next, create a subclass of XCTestCase and call it SiriUITests. Various

tests tend to share a lot of common setup steps, tempting you to duplicate

a lot of code. However, you will create a few helper methods, which will be

used by all tests.

Start with the creation of a list with Siri. What should the test contain?

First, you want to provide a test phrase for adding a list. Then, you want to

automatically start the application (from the test) and check whether the

table view that presents the created lists contains the list with the name

you have provided in the test phrase. When you translate this into code,

you get the test in Listing 3-11.

Figure 3-11.  Creating a UI testing bundle

Chapter 3 Creating Lists with SiriKit

83

Listing 3-11.  Testing the Creation of a List with Siri

func testCreatingList() {

 // Given

 let listName = "grocery"

 // Activate Siri

 let siri =

 �self.siri(withExpression: "Create \(listName) list in

ListsSiriKit")

 // Wait for Siri response

 waitForResponse(fromSiri: siri)

 // Launch the app

 let app = launchApp()

 // Check if grocery list exists

 testIfExists(item: listName, inApp: app)

}

In the method, you first define the list name that you are going to

create and then test whether it’s present in the table view. Next, you

activate Siri with a standard expression for creating a list. Let’s take a look

at this method (Listing 3-12).

Listing 3-12.  Activating Siri

private func siri(withExpression expression: String)

-> XCUISiriService {

 let siri = XCUIDevice.shared.siriService

 siri.activate(voiceRecognitionText: expression)

 return siri

}

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

84

The method uses XCUISiriService, a new class introduced in iOS 11,

which is used for activating Siri from UI tests. You return the created Siri

service from this method since you will need it later in the test.

The test speaks the Siri expression, just like it would when you run it

on a real device or when you set it from the scheme in the iOS simulator.

This is why you have to wait until Siri responds to your expression. This is

implemented in the method shown in Listing 3-13.

Listing 3-13.  Waiting for the Siri Response

private func waitForResponse(

 fromSiri siri: XCUISiriService) {

 let predicate = NSPredicate { (_, _) -> Bool in

 sleep(5)

 return true

 }

 let siriResponseExpectation =

 expectation(for: predicate,

 evaluatedWith: siri,

 handler: nil)

 self.wait(for: [siriResponseExpectation], timeout: 10)

}

You first define a predicate, which just sleeps for five seconds. Then,

you create an expectation with that predicate, which will be evaluated with

the Siri service you created in the previous method. Then you call the wait

method, with the created expectation and a timeout of ten seconds. This

means that after a delay of five seconds, you will be waiting for the Siri

response for ten seconds.

Next, after Siri has (ideally) responded, you launch the application and

check whether the new list has been created. The method in Listing 3-14

launches the app.

Chapter 3 Creating Lists with SiriKit

85

Listing 3-14.  Launching the Test App

private func launchApp() -> XCUIApplication {

 let app = XCUIApplication()

 app.launch()

 return app

}

At this point while running the test, you will see the simulator starting

your application. Now, let’s check whether a new grocery list has been

added to the table view. The next method takes a string as a parameter and

checks whether that string is present in one of the cells of the table view

that’s currently displayed on the screen (Listing 3-15).

Listing 3-15.  Testing Whether an Item Is Contained in the List

private func testIfExists(item: String, inApp app:

XCUIApplication) {

 let query = self.queryForItem(withName: item, inApp: app)

 XCTAssertTrue(query.count >= 1, "\(item) should exist")

}

To accomplish this, you use a helper method, which returns an object

of type XCUIElementQuery. This object is used in UI tests for locating

elements on the screen, which is what you need to verify the presence of

the new element in the table view. These types of elements can be also

chained with other queries. Let’s see this helper method now (Listing 3-16).

Listing 3-16.  Returning a Query for a Given Item Name

private func queryForItem(withName name: String,

 inApp app: XCUIApplication)

-> XCUIElementQuery {

 let lists = app.tables.cells.staticTexts

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

86

 let query = lists.containing(.staticText, identifier: name)

 return query

}

Using the app object (which represents the started main iOS

application), you take the tables that are currently present on the screen

and afterward take all the cells in there with static text. This returns

XCUIElementQuery, which you can then query to check whether it contains

an item of type staticText (in the table view the grocery text will be

presented in a static text label of a table view cell). You then return the

query, and in an assert, you check whether it contains at least one element.

That’s your first UI test for Siri. If you run it, you will see that it executes

for about five to ten seconds. It starts the app, invokes Siri with the provided

phrase, and then opens the app and checks whether the new item is there.

Next, you want to test whether the addition of items to the newly

created list works properly. The test will be similar to what you have done

so far, with some small changes and additions. First, in addition to the list

name, you need to add a list of products to your Siri expression. Then, you

invoke Siri as before and wait for the response. After that, you want to click

the grocery list item and open the next screen, which presents a list of all

the products added to the list. After you are on that screen, using the same

approach for detecting whether an entry with the provided text exists, you

will check whether “Milk” and “Sugar” are present in the list. At the end,

you need to delete the newly added items to the list; otherwise, the list will

grow with every new UI test (Listing 3-17).

Listing 3-17.  Testing the Addition of Items to the List

func testAddingItems() {

 // Given

 let listName = "grocery"

 let products = ["Milk", "Sugar"]

 let productsPhrase = products.joined(separator: " and ")

Chapter 3 Creating Lists with SiriKit

87

 let expression =

 �"Add \(productsPhrase) in my \(listName) list in

ListsSiriKit"

 // Activate Siri

 let siri = self.siri(withExpression: expression)

 // Wait for Siri response

 waitForResponse(fromSiri: siri)

 // Launch the app

 let app = launchApp()

 // Select the grocery list

 �let query = self.queryForItem(withName: listName, inApp:

app)

 query.element.tap()

 // Check if milk exists

 testIfExists(item: products[0], inApp: app)

 // Check if sugar exists

 testIfExists(item: products[1], inApp: app)

 // Clear added items with the test

 self.clear(items: products, listName: listName)

}

The method for clearing items takes a list of products and the list name

as parameters and then goes through those items and calls a mark Siri

command for all of them. If you remember, you have implemented the

Mark intent (which is of type INSetTaskAttributeIntentHandling) by

removing the item from the list. You have finished the task, and it doesn’t

need to be displayed in the list anymore (people who want to see visually

how many tasks they have finished might disagree).

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

88

 In the method (Listing 3-18), for every item you are doing part of the

things you have already done in the tests, so you will reuse those methods.

First, you create a marking expression for every item; then you create a new

Siri service with that expression; finally, you wait for the Siri response. You

can also reuse this same logic if you want to write tests for marking items.

Listing 3-18.  Clearing the Added Items

private func clear(items: [String], listName: String) {

 for item in items {

 // Mark expression (will remove item from list)

 let expression =

 �"Mark \(item) as completed in \(listName) list in

ListsSiriKit"

 // Activate Siri for marking

 let markSiri = self.siri(withExpression: expression)

 // Wait for Siri response

 waitForResponse(fromSiri: markSiri)

 }

}

Now you have UI tests that can be automated to regularly check

whether your integration with Siri works properly. This is a great feature of

iOS 11, which ideally will be used by a lot of developers. With these example

tests, you have the basis to start adding tests for your Siri-based apps.

Chapter 3 Creating Lists with SiriKit

89

�Summary
That wraps up this chapter. The new Lists and Notes API opens up a

lot of possibilities with different kinds of lists and notes, so you can get

pretty creative here. To summarize, you implemented the three required

protocols for creating lists, adding items to a list, and marking items as

completed. Also, you enabled app groups to share the data between the

main app and the Siri extension. At the end, you wrote UI tests to make

sure your Siri integration works as expected.

Chapter 3 Creating Lists with SiriKit

www.allitebooks.com

http://www.allitebooks.org

91© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_4

CHAPTER 4

Speech, Synthesizers,
and Dialogflow
At the same time SiriKit was announced, Apple also unveiled the Speech

framework, the underlying voice recognition system that Siri uses. What

does the Speech framework offer? It recognizes both live and prerecorded

speech, creates transcriptions and alternative interpretations of the

recognized text, and produces confidence levels of how accurate the

transcription is. That sounds similar to what Siri does, so what’s the

difference between SiriKit and the Speech framework?

The Speech framework does only the speech-recognizing and the

transcription parts. It’s meant to be used inside your apps to get a user’s

input in a more efficient way than the standard method, which is typing on

a keyboard. Users need to have the app launched in the foreground to start

the recording and recognition of the speech, and you have to do this in a

way that is transparent for the user. You will need to ask for permissions to

access the speech recognition and the microphone but also make it clear

to the user when you are recording. When your phone is locked or the app

is in background, you can’t start the recording by giving a voice command.

With SiriKit, on the other hand, the extensions that your app provides

are available even from a locked phone. When the user says “Hey, Siri,

book me a ride using YourCoolApp,” Siri will recognize that your app needs

to be asked to execute the request. Your app will get called (but not shown

in the foreground) to handle the request, and Siri will provide the results to

92

the user. This comes with some limitations, though. First, your app is never

started; it just serves as a helper to Siri. Second, you can only help Siri in

certain predefined domains, which I covered in the previous chapters. If

the business case of your app doesn’t fit in any of those domains, you can’t

use SiriKit.

�Creating a Simple Grocery List
As discussed in Chapter 1, you can simplify the user experience by

providing voice input to your apps. For example, let’s say you have a to-do

list or grocery list, similar to what you developed in Chapter 3. You want

to be able to say something like “Add milk,” which will add the product to

your grocery list. After you buy the milk and therefore don’t need it on the

list anymore, you can say “Remove milk,” which will remove it from the list.

Let’s see how you can implement this using the Speech framework.

The first part of this chapter will show how to add and remove

predefined items to and from a grocery list. There won’t be any fancy entity

extraction with machine learning. You will do this in the final part of the

chapter, when you will use a REST service (Dialogflow from Google) to

add intelligence in your app. For now, you will just have a list of products

that you expect to be added to the list. You will also define some removing

words, such as delete and remove. When those words appear before a

product, the product will be deleted from the list. In any other case, you

will just add items to the list.

As mentioned, you can’t start recording in a nontransparent way to the

user. For this, you will have a button so the user can start the recording.

The Speech framework might also access a web service to perform the

speech recognition. This means that to remain free for every app, some

limits are imposed by Apple for the service. Apple doesn’t disclose how

many requests you can do per day, but it warns you to be prepared to

handle failures when this limit is hit. If you hit the limit too often, you

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

93

should contact Apple to discuss this. The limit restriction is also enforced

on the duration of the recording; Apple recommends no more than a

minute. This means you can’t just record all the time and wait for the

user to start using it at some point; the service has to be turned on (on

demand). Even though it’s not explicitly stated, the Speech framework also

works offline. You can test this by turning off the Internet on your device

and saying something; you will see that it recognizes phrases locally.

In addition to the ability to click the button to stop the recording,

you will allow the user to say something like “I’m done,” which will stop

the recording. This is pretty straightforward for implementation since

the recording is already in progress, but you will need to see whether the

transcribed text contains your defined stopping word or phrase.

Let’s create a new single-view application and call it

SpeechPlayground. There is a starter project that you can use to follow

along. You will first add the needed permissions for accessing the feature

in the Info.plist file. The permissions you need are “Privacy – Speech

Recognition Usage Description” and “Privacy – Microphone Usage

Description” (Figure 4-1).

Next, let’s define a few products that you will support in the grocery list.

Create a new products.json file and put some products in it (Listing 4-1).

Listing 4-1.  Supported Products in the Grocery List

{

 �"products": ["milk", "vegetables", "tomato", "fruit",

"cucumber", "potato", "cheese", "orange"]

}

Figure 4-1.  Adding permissions in the property list

Chapter 4 Speech, Synthesizers, and Dialogflow

94

These will be the products that you will look for when you get a

transcription from the Speech framework. Now let’s dive into some coding.

The first thing you need to do is check whether the user has granted you

the permissions you need to access the speech-recognizing feature. If

that’s not the case, you will show an alert dialog (Listing 4-2). Call this

method in the viewDidLoad method of the ViewController (the controller

that will show the list of products and the recording functionality).

Listing 4-2.  Checking Permissions for the Speech Framework in

ViewController.swift

func checkPermissions() {

 var message: String? = nil

 SFSpeechRecognizer.requestAuthorization { (authStatus) in

 switch authStatus {

 case .denied:

 message = "Please enable access to speech recognition."

 case .restricted:

 �message = "Speech recognition not available on this

device."

 case .notDetermined:

 message = "Speech recognition is still not authorized."

 default: break

 }

 OperationQueue.main.addOperation() {

 �self.recordingButton.isEnabled = authStatus ==

.authorized

 if message != nil {

 �self.showAlert(title: "Permissions error",

message: message!)

 }

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

95

 }

 }

}

Next, you will add helper methods in the ViewController for the

error messages that might appear because of permission errors or device

limitations (Listing 4-3).

Listing 4-3.  Helper Methods for Displaying Alerts

func showAlert(title: String, message: String) {

 let alert = UIAlertController(title: "Permissions error",

 message: message,

 preferredStyle: .alert)

 �let action = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alert.addAction(action)

 self.present(alert, animated: true, completion: nil)

}

func showAudioError() {

 let errorTitle = "Audio Error"

 let errorMessage = "Recording is not possible at the moment."

 self.showAlert(title: errorTitle, message: errorMessage)

}

This is standard code for showing an alert on iOS, using the

UIAlertController. You just define an OK action and add it to the alert

controller. This action will be presented to the user, reminding them that

they haven’t provided the required permissions to perform the recording.

Chapter 4 Speech, Synthesizers, and Dialogflow

96

Tip F or real production apps, it’s always a good idea to extract your
words in a separate strings file and access them in the code by their
keys. It will make your life a lot easier, especially when you have a lot
of words that are repeating throughout the app and also when you
need to support different languages.

You will need a class called SpeechHelper, which will return the

keywords that you need to recognize—the products, the stopping words,

and the removal words. I’ve extracted this in a separate class to isolate the

loading of the words. Currently they are hard-coded words, but they can

easily be retrieved from a web service, without changing the main code

(Listing 4-4).

Listing 4-4.  SpeechHelper Class Implementation

class SpeechHelper: NSObject {

 class func loadProducts() -> Set<String> {

 var products = Set<String>()

 let fileUrl = Bundle.main.url(forResource: "products",

 withExtension: "json")

 do {

 let jsonData = try Data(contentsOf: fileUrl!)

 �let json = try JSONSerialization.jsonObject(with:

jsonData, options: .allowFragments)

 as! [String: Array<String>]

 if let loadedProducts = json["products"] {

 for product in loadedProducts {

 products.insert(product)

 }

 }

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

97

 } catch {

 print("error loading products")

 }

 return products

 }

 class func removalWords() -> Set<String> {

 return ["delete", "erase", "remove"]

 }

 class func stoppingWords() -> Set<String> {

 return ["stop", "done"]

 }

}

There’s nothing special in the previous chunk of code; you just load

the products from the products.json file you created earlier and define

words for removing products and stopping the recording. Let’s see how

you will use these methods in the ViewController. You will define three

arrays of Strings (removalWords, stoppingWords, and products), which

will be populated with the data from the SpeechHelper in the viewDidLoad

method (Listing 4-5).

Listing 4-5.  Loading Words from the SpeechHelper in the

ViewController

func setupRemovalWords() {

 removalWords = SpeechHelper.removalWords()

}

func setupStoppingWords() {

 stoppingWords = SpeechHelper.stoppingWords()

}

Chapter 4 Speech, Synthesizers, and Dialogflow

98

func loadProducts() {

 products = SpeechHelper.loadProducts()

}

override func viewDidLoad() {

 super.viewDidLoad()

 loadProducts()

 setupRemovalWords()

 setupStoppingWords()

 checkPermissions()

 speechRecognizer.delegate = self

}

Now, let’s start with the interesting part. The user interface (already

provided in the sample project) will be pretty simple—there will be a

button through which you will trigger the start/stop of the recording, a text

view that will show what the Speech framework transcribed for you, and a

table view that will list the products you need to buy (Figure 4-2).

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

99

You need to add an IBAction to the recording button in the

ViewController, which will call the handleRecordingStateChange

method. This method will check the state of the audio session, and based

on that, it will either start or stop the recording session (Listing 4-6).

Figure 4-2.  User interface for the GroceryList app

Chapter 4 Speech, Synthesizers, and Dialogflow

100

Listing 4-6.  Handling the State Change of a Recording in the

ViewController

@IBAction func startRecording(sender: UIButton) {

 handleRecordingStateChange()

}

func handleRecordingStateChange() {

 if audioEngine.isRunning {

 self.recognizedText.text = ""

 updateProducts()

 audioEngine.stop()

 recognitionRequest?.endAudio()

 recordingButton.isEnabled = false

 recordingButton.setTitle("Start Recording", for: .normal)

 } else {

 cancelCalled = false

 checkExistingRecognitionTask()

 startAudioSession()

 createRecognitionRequest()

 startRecording()

 recordingButton.setTitle("Stop Recording", for: .normal)

 }

}

�Implementing Speech Recognition
So you understand this method and its two states, I will introduce a few

new types of objects (variables in the ViewController are provided in

the starter project). I will start with the audioEngine variable. It’s an

object from the class AVAudioEngine, which contains a group of nodes

(AVAudioNodes). These nodes perform the job of audio signal creation,

processing, and I/O tasks. Without these nodes, the engine wouldn’t

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

101

be able to do its job, but also AVAudioNodes does not currently provide

useful functionality until attached to an engine. You can create your own

AVAudioNodes object and attach it to the engine, using the attach(_ node:

AVAudioNode) method.

Let’s introduce another new object, recognitionRequest, of the class

SFSpeechAudioBufferRecognitionRequest. This class is used for requests

that recognize live audio or in-memory content, which is what you need in

this case. You want to show and update the transcribed text when the user

says something.

The third object I will introduce is recognitionTask

(SFSpeechRecognitionTask). With this task, you can monitor the

recognition process. The task can be either starting, running, finishing,

canceling, or completed. This kind of object is what you get when you

ask the speech recognizer to start listening to the user input and return

what it heard to you. The speech recognizer is represented by the

SFSpeechRecognizer class, which is the class that does the actual speech

recognizing. You may have noticed that you have set the ViewController

to be the delegate of the speech recognizer in the viewDidLoad method.

It supports only one language and using the default initializer returns

a speech recognizer for the device’s current locale (if a recognizer is

supported for that locale). If you want to be sure that English transcription

will be used, you can create the speech recognizer by explicitly stating its

locale (Listing 4-7).

Listing 4-7.  Creating the Speech Recognizer with an English Locale

private let speechRecognizer: SFSpeechRecognizer! =

 �SFSpeechRecognizer(locale: Locale.init(identifier:

"en-US"))

You just learned about a lot of new classes; let’s see how you can

put them all together. With the isRunning method of the audioEngine,

you are checking whether there’s an audio session in progress at the

moment. If there’s no such session, you do several things (you can ignore

Chapter 4 Speech, Synthesizers, and Dialogflow

102

the cancelCalled flag for now; I will get back to it later). First, you check

whether you already have a recognition task that is in progress. If there is,

you will just cancel it and nil it out (Listing 4-8).

Listing 4-8.  Checking for Existing Recognition Tasks

func checkExistingRecognitionTask() {

 if recognitionTask != nil {

 recognitionTask?.cancel()

 recognitionTask = nil

 }

}

Next, you start the audio session (Listing 4-9). You set the category

of the session to be AVAudioSessionCategoryRecord, which only

records the session. If you want to also play it later, you should use

AVAudioSessionCategoryPlayAndRecord. Next, you set the mode of the

session to AVAudioSessionModeMeasurement. Apple recommends you use

this mode if your app is handling audio input or output because it does

minimal signal processing on the audio.

Listing 4-9.  Starting the Audio Session

func startAudioSession() {

 let audioSession = AVAudioSession.sharedInstance()

 do {

 try audioSession.setCategory(AVAudioSessionCategoryRecord)

 try audioSession.setMode(AVAudioSessionModeMeasurement)

 try audioSession.setActive(true, with:

.notifyOthersOnDeactivation)

 } catch {

 showAudioError()

 }

}

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

103

After starting the session, you create the recognition request (Listing 4-10).

Note that you set shouldReportPartialResults to true, which means that the

task will report the progress all the time, not only when the recording finishes.

This enables you to show (and update) the text view, which will hold the text

on each new spoken word.

Listing 4-10.  Creating the Recognition Request

func createRecognitionRequest() {

 recognitionRequest = SFSpeechAudioBufferRecognitionRequest()

 recognitionRequest?.shouldReportPartialResults = true

}

Finally, you can start recording. The method shown in Listing 4-11

does that.

Listing 4-11.  Starting the Recording

func startRecording() {

 guard let inputNode = audioEngine.inputNode else {

 showAudioError()

 return

 }

 recognitionTask = speechRecognizer.recognitionTask(

 �with:

recognitionRequest!,

 resultHandler:{

 [unowned self] (result, error) in

 var recognized: String?

 self.createProductsArraysForSession()

 if result != nil {

 var shouldDelete = false

Chapter 4 Speech, Synthesizers, and Dialogflow

104

 �recognized = result?.bestTranscription.

formattedString

 �for segment in (result?.bestTranscription.

segments)! {

 let text = segment.substring.lowercased()

 if self.removalWords.contains(text) {

 shouldDelete = true

 }

 if self.checkStoppingWords(text: text) == true {

 return

 }

 if self.products.contains(text) {

 if (shouldDelete == false) {

 self.sessionProducts.append(text)

 } else {

 self.deletedProducts.append(text)

 }

 shouldDelete = false

 }

 }

 self.recognizedText.text = recognized

 }

 var finishedRecording = false

 if result != nil {

 finishedRecording = result!.isFinal

 }

 if error != nil || finishedRecording {

 inputNode.removeTap(onBus: 0)

 self.handleFinishedRecording()

 }

 })

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

105

 let recordingFormat = inputNode.outputFormat(forBus: 0)

 �inputNode.installTap(onBus: 0, bufferSize: 1024, format:

recordingFormat) {

 [unowned self] (buffer, when) in

 self.recognitionRequest?.append(buffer)

 }

 startAudioEngine()

}

Several things are going on here, but as you will see, this method

is not that complicated. First, you check whether there’s an inputNode

available for the engine and show an error if there isn’t. Then, you start the

recognition task for the speech recognizer, with the recognition request

you created. I will get back to the resultHandler later; here, you will see

how to start the audio engine. You do this by first installing an audio tap

on the bus of the input node, with a buffer size of 1,024 bytes. Then you try

to start the audio engine, by first pre-allocating many of the resources the

engine requires with the prepare method and by then starting the engine

with the start method (Listing 4-12).

Listing 4-12.  Starting the Audio Engine

func startAudioEngine() {

 audioEngine.prepare()

 do {

 try audioEngine.start()

 } catch {

 showAudioError()

 }

}

Chapter 4 Speech, Synthesizers, and Dialogflow

106

Now let’s examine the result handler. You are initializing two arrays

(the createProductsArraysForSession method in Listing 4-13) that you

need for keeping track of which products you want to add and remove

from the grocery list.

Listing 4-13.  Creating Session Arrays

func createProductsArraysForSession() {

 self.sessionProducts = [String]()

 self.deletedProducts = [String]()

}

When there’s a result in the resultHandler of the speech

recognition task, you get the best transcription by calling result?.

bestTranscription.formattedString. If you want to show a pop-up with

other transcriptions and let the user choose the one that fits best, you can

call result?.transcriptions, which will give you an array of the possible

transcriptions.

Every SFTranscription object contains two properties:

formattedString and segments (SFTranscriptionSegment). Segments

contain other information that you might find helpful, such as confidence

(on a scale of 0 to 1), which indicates how sure the Speech framework is

that this string is the one the user has spoken. This property is used when

figuring out which transcription is bestTranscription.

You use the segments array of the best transcription (result?.

bestTranscription.segments) to iterate through all the spoken words.

First, you check whether there’s a removal word (remove or delete)

before a given word (self.removalWords.contains(text)). You track

this with the shouldDelete flag. If the flag is set, you add the word to the

deletedProducts array. Otherwise, it goes to the sessionProducts array

(it’s a new product that the user has spoken). You also check whether the

word is a stopping one (self.checkStoppingWords(text: text)). If it is,

you just return from the method.

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

107

As mentioned previously, you want to write and update the

transcription as the user gives voice commands. That’s why you are

setting the recognized text to your text view (self.recognizedText.

text = recognized). Then you check whether the recording finished

(finishedRecording = result!.isFinal). If it is, you remove the audio

tap from the input node’s bus, which you added at the beginning; then you

nil out the request and the task and stop the audio engine.

Now let’s go back to the cancelCalled flag. It is used to stop subsequent

calls to the method that updates everything when the recording state

changes (handleRecordingStateChange). The subsequent calls can happen

because the result handler is called on every sound that’s recognized, which

means it can be called even after the triggering stop word is found. The flag

is used in the method that checks for stopping words (Listing 4-14).

Listing 4-14.  Checking for Words That Stop the Recording

func checkStoppingWords(text: String) -> Bool {

 if self.stoppingWords.contains(text) {

 if self.cancelCalled == false {

 self.handleRecordingStateChange()

 self.cancelCalled = true

 return true

 }

 }

 return false

}

I’ve covered everything you need to do when the session is not

currently running and you have to start it. Now, let’s see the other state—

when you have a recording that you need to stop and update the list based

on the transcription. As a quick refresher, please check Listing 4-6 again,

before proceeding with the explanation of the methods in the running

state of the audio engine.

Chapter 4 Speech, Synthesizers, and Dialogflow

108

The first method you call in the running state of the

handleRecordingStateChange method is updateProducts (Listing 4-15),

which first stores the currently displayed products in a temporary variable.

Then it adds the ones that should be added in the current session. After

that, it goes through all the products and checks whether they are in the

deleted products list. This means that your current logic will delete all

occurrences of an item of the list if the remove word is found before it.

Listing 4-15.  Updating Products After the Recording Is Finished

func updateProducts() {

 var tmp = addedProducts

 tmp.append(contentsOf: sessionProducts)

 addedProducts = [String]()

 for product in tmp {

 if !deletedProducts.contains(product) {

 addedProducts.append(product)

 }

 }

 self.productsTableView.reloadData()

}

Apart from updating the products, you also need to stop the

audio engine, end the recognition request, and update the state of the

recording button.

There is a possibility that while the app is running, the speech

recognizer becomes unavailable for some reason. That’s why you set

the delegate of the speech recognizer to be the ViewController. In the

implementation, you are setting the availability of the recording button

based on this state change (Listing 4-16).

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

109

Listing 4-16.  Handling Availability Change of the Recongizer

func speechRecognizer(_ speechRecognizer: SFSpeechRecognizer,

 availabilityDidChange available: Bool)

{

 if available {

 recordingButton.isEnabled = true

 } else {

 recordingButton.isEnabled = false

 }

}

The last pieces of code not covered yet are the UITableViewDataSource

methods (Listing 4-17). They contain a standard implementation for

displaying contents of a data source (in your case the addedProducts array).

Listing 4-17.  Table View Data Source Implementation

func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 var cell: UITableViewCell? =

 �tableView.dequeueReusableCell(withIdentifier:

"ProductCell")

 if cell == nil {

 cell = UITableViewCell(style: .default,

 �reuseIdentifier:

"ProductCell")

 }

 cell?.textLabel?.text = addedProducts[indexPath.row]

 return cell!

}

Chapter 4 Speech, Synthesizers, and Dialogflow

110

func tableView(_ tableView: UITableView,

 �numberOfRowsInSection section: Int) ->

Int {

 return addedProducts.count

}

You can test this by providing sample phrases. The end result should

look like Figure 4-3.

�Implementing Text to Speech
You saw in the previous section how an iOS device can understand and

transcribe the voice commands you give to it (speech to text). Now, you

will see the opposite—how the device can communicate information you

have as a string in your app, with speech. You will extend the GroceryList

app by adding functionality that tells the user what remaining products

they need to buy from the list. You will also provide a way to customize the

voice that will do the speaking, through a Settings page. Users will be able

to change the language of the speaker, the voice pitch, the speaking rate,

the volume, and the delay.

Figure 4-3.  Adding items to the grocery list

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

111

�Using AVSpeechSynthesizer
To get started with this part, make sure you have completed the previous

part. If you had trouble doing that, continue with the already completed

sample project from the previous section. To add text to speech to your

GroceryList app, you will need a different class (AVSpeechSynthesizer)

from a different framework (AVFoundation). This class produces

synthesized speech from text on an iOS device and provides methods for

controlling or monitoring the progress of ongoing speech, which is exactly

what you need.

Let’s first create an object from this class. There’s also a new variable

for the audioSession since you will use it in more methods and you don’t

want to always call the sharedInstance class method (Listing 4-18).

Listing 4-18.  Adding Variables for Speech Synthesizing and Audio

Sessions

private var speechSynthesizer = AVSpeechSynthesizer()

private var audioSession = AVAudioSession.sharedInstance()

For the class to be able to speak your text, you need to provide it with

an object of type AVSpeechUtterance. An AVSpeechUtterance object is

the basic part of speech synthesis. It keeps information about the text that

will be spoken and parameters that can customize the voice, pitch, rate,

and delay. The speech synthesizer keeps a queue (FIFO data structure)

of utterances to be spoken. There’s a method that checks whether the

synthesizer is currently speaking, and if it does, it just adds the next

utterances to the queue. It also provides methods to pause, play, and stop

the speech, which might be useful if you want to develop an audio book app.

You will persist the user preferences about the speech parameters

between app launches, and for this you will create a new class—

SettingsManager. The class provides methods for saving and getting the

values for the speech parameters (Listing 4-19).

Chapter 4 Speech, Synthesizers, and Dialogflow

112

Listing 4-19.  The SettingsManager Class

class SettingsManager: NSObject {

 static let volumeKey = "volume"

 static let pitchKey = "pitch"

 static let delayKey = "delay"

 static let rateKey = "rate"

 static let languageKey = "language"

 class func currentVolume() -> Float {

 �return self.valueFor(key: volumeKey, defaultValue:

Float(0.9)) as! Float

 }

 class func setVolume(value: Float) {

 self.set(value: value, key: volumeKey)

 }

 class func currentPitch() -> Float {

 �return self.valueFor(key: pitchKey, defaultValue:

Float(1)) as! Float

 }

 class func setPitch(value: Float) {

 self.set(value: value, key: pitchKey)

 }

 class func currentDelay() -> Double {

 �return self.valueFor(key: delayKey, defaultValue: 0.0)

as! Double

 }

 class func setDelay(value: Double) {

 self.set(value: value, key: delayKey)

 }

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

113

 class func currentRate() -> Float {

 �return self.valueFor(key: rateKey, defaultValue:

Float(0.5)) as! Float

 }

 class func setRate(value: Float) {

 self.set(value: value, key: rateKey)

 }

 class func languageCode() -> String {

 �return self.valueFor(key: languageKey, defaultValue:

"en-US") as! String

 }

 class func setLanguageCode(value: String) {

 self.set(value: value, key: languageKey)

 }

 �class private func valueFor(key: String, defaultValue: Any)

-> Any {

 if let value = UserDefaults.standard.value(forKey: key) {

 return value

 }

 return defaultValue

 }

 class private func set(value: Any, key: String) {

 UserDefaults.standard.set(value, forKey: key)

 UserDefaults.standard.synchronize()

 }

}

Chapter 4 Speech, Synthesizers, and Dialogflow

114

Now, let’s extend your storyboard with new screens and design

updates (Figures 4-4 and 4-5).

Figure 4-4.  Extending the grocery list storyboard with a navigation
controller

You changed the root view controller to be

UINavigationViewController to be able to push view controllers from

the initial grocery list screen. On the grocery list screen, there are two

new buttons: Settings (which will open the Settings screen and the

ShowSettings segue) and “Tell me the remaining products,” which will

invoke the text-to-speech feature. There’s another screen that is opened

from the Settings screen, LanguageViewController. It will show a list of the

available languages that can be used in the speech utterance.

The SettingsViewController is pretty simple; it has four sliders for

the parameters needed to customize the voice and a button that will show

the language selection (Figure 4-5). The sliders’ maximum and minimum

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

115

values are set in Interface Builder, based on Apple’s documentation

for the possible values. The volume and rate sliders have possible float

values from 0 to 1, the pitching has values from 0.5 to 2, and for the delay

I’ve set a limit of 5 seconds. The values in the sliders are read from the

SettingsManager you saw earlier (Listing 4-20).

Listing 4-20.  Setting the Values in the Sliders in

SettingsViewController

@IBOutlet weak var volumeSlider: UISlider!

@IBOutlet weak var pitchSlider: UISlider!

@IBOutlet weak var delaySlider: UISlider!

@IBOutlet weak var rateSlider: UISlider!

Figure 4-5.  SettingsViewController and LanguageViewController

Chapter 4 Speech, Synthesizers, and Dialogflow

116

func setupSlidersValues() {

 volumeSlider.value = SettingsManager.currentVolume()

 pitchSlider.value = SettingsManager.currentPitch()

 delaySlider.value = Float(SettingsManager.currentDelay())

 rateSlider.value = SettingsManager.currentRate()

}

Call this method in the viewDidLoad method of the

SettingsViewController. Also, add the Save button in the navigation

bar with the setupSettingsButton. When the Save button is clicked, you

will just store the changed values of the sliders in the SettingsManager

class and close the Settings screen (Listing 4-21).

Listing 4-21.  Saving the Sliders’ Values

override func viewDidLoad() {

 super.viewDidLoad()

 setupSettingsButton()

 setupSlidersValues()

}

func setupSettingsButton() {

 let settingsButton = UIBarButtonItem(title: "Save",

 style: .plain,

 target: self,

 action:

#selector(saveButtonClicked))

 self.navigationItem.rightBarButtonItem = settingsButton

}

func saveButtonClicked() {

 SettingsManager.setVolume(value: volumeSlider.value)

 SettingsManager.setPitch(value: pitchSlider.value)

 SettingsManager.setDelay(value: Double(delaySlider.value))

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

117

 SettingsManager.setRate(value: rateSlider.value)

 �_ = self.navigationController?.popViewController(animated:

true)

}

When the Change button is tapped, the LanguageViewController is

shown, by performing the ShowLanguage segue (Listing 4-22).

Listing 4-22.  Showing the LanguageViewController

@IBAction func changeLanguageClicked(sender: UIButton) {

 �self.performSegue(withIdentifier: "ShowLanguages",

sender: self)

 }

The LanguageViewController gets the available voice languages from

the AVSpeechSynthesisVoice class and displays them in a table view.

When a row is selected, the check mark is set to the selected row, and the

table view is reloaded (Listing 4-23).

Listing 4-23.  LanguageViewController Implementation

class LanguageViewController: UIViewController,

UITableViewDataSource, UITableViewDelegate {

 var languages: [String] = [String]()

 var selectedLanguage: String!

 override func viewDidLoad() {

 super.viewDidLoad()

 selectedLanguage = SettingsManager.languageCode()

 �languages = Array(Set(AVSpeechSynthesisVoice.

speechVoices().map {

 return $0.language }))

 }

Chapter 4 Speech, Synthesizers, and Dialogflow

118

 func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 var cell: UITableViewCell? =

 �tableView.dequeueReusableCell(withIdentifier:

"ProductCell")

 if cell == nil {

 cell = UITableViewCell(style: .default,

 �reuseIdentifier:

"ProductCell")

 }

 let current = languages[indexPath.row]

 cell?.textLabel?.text = current

 cell?.accessoryType =

 current == selectedLanguage ? .checkmark : .none

 return cell!

 }

 func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return languages.count

 }

 func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 tableView.deselectRow(at: indexPath, animated: true)

 selectedLanguage = languages[indexPath.row]

 �SettingsManager.setLanguageCode(value:

selectedLanguage)

 tableView.reloadData()

 }

}

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

119

Let’s go back to the grocery list screen, the ViewController. You

need to provide an implementation for the method that is called when

the “Tell me the remaining products” button is tapped (Listing 4-24). In

this method, you first check whether the speech synthesizer is currently

speaking. If it is, you will just let it continue doing that. Otherwise, you call

the speak method, with a newly created utterance.

Listing 4-24.  Playing the Remaining Text

@IBAction func remainingProducts(sender: UIButton) {

 playRemainingText()

}

func playRemainingText() {

 if speechSynthesizer.isSpeaking {

 speechSynthesizer.continueSpeaking()

 } else {

 speechSynthesizer.speak(self.createUtterance())

 }

}

The createUtterance method creates the utterance by reading the

parameters the user has set on the Settings screen for rate, pitch multiplier,

volume, delay, and voice (Listing 4-25).

Listing 4-25.  Creating Utterance from the SettingsManager Values

func createUtterance() -> AVSpeechUtterance {

 let text = createRemainingText()

 let speechUtterance = AVSpeechUtterance(string: text)

 speechUtterance.rate = SettingsManager.currentRate()

 �speechUtterance.pitchMultiplier = SettingsManager.

currentPitch()

 speechUtterance.volume = SettingsManager.currentVolume()

Chapter 4 Speech, Synthesizers, and Dialogflow

120

 �speechUtterance.preUtteranceDelay = SettingsManager.

currentDelay()

 speechUtterance.voice =

 �AVSpeechSynthesisVoice(language: SettingsManager.

languageCode())

 return speechUtterance

}

The text that will be spoken is created in the createRemainingText,

which goes through the addedProducts list and adds the items to the text

(Listing 4-26). You use commas to separate the words since the synthesizer

takes this into consideration and pronounces them in a more natural way.

Without a comma, it will just rush through the items. If the user has an

empty grocery list, you will change the text to a message that informs them

that there are no remaining products in the list.

Listing 4-26.  Creating the Text That Will Be Read to the User

func createRemainingText() -> String {

 var text = "You need to buy the following products: "

 if addedProducts.count > 0 {

 for product in addedProducts {

 text += product

 text += ","

 }

 text += "."

 } else {

 �text = "You don't have remaining products on your

grocery list."

 }

 return text

}

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

121

Before running the app, make sure to add the Settings button

in the navigation bar. When this button is tapped, it will show the

Settings screen you created earlier (Listing 4-27). You need to call the

setupSettingsButton in the viewDidLoad method of the ViewController.

Listing 4-27.  Setting Up the Settings Button

func setupSettingsButton() {

 let settingsButton = UIBarButtonItem(title: "Settings",

 style: .plain,

 target: self,

 action: #selector

(settingsButtonClicked))

 self.navigationItem.rightBarButtonItem = settingsButton

}

func settingsButtonClicked() {

 �self.performSegue(withIdentifier: "ShowSettings",

sender: self)

}

If you run the app and tap the remaining button first, you will hear a

voice saying “You don’t have any remaining products on your grocery list.”

That’s great; it’s what you expect. Now let’s add some products with the

recording and speech recognizing you’ve implemented in the previous

project. When you tap the remaining button again, nothing happens. What

seems to be the problem, and why did it stop working? Somehow after the

recording, the device doesn’t have the ability to play a sound.

That’s exactly what happens. When I was discussing the

startAudioSession method in the previous section, I said that the

category of the audio session is AVAudioSessionCategoryRecord. That

was good enough for you then, but now you have a new feature, which

requires playing sound. That’s why you will change the category to be

AVAudioSessionCategoryPlayAndRecord (Listing 4-28).

Chapter 4 Speech, Synthesizers, and Dialogflow

122

Listing 4-28.  Changing the Category of the AVAudioSession

func startAudioSession() {

 do {

 �try audioSession.setCategory(AVAudioSessionCategoryPlay

AndRecord)

 try audioSession.setMode(AVAudioSessionModeMeasurement)

 try audioSession.setActive(true,

 �with:

.notifyOthersOnDeactivation)

 } catch {

 showAudioError()

 }

}

Another improvement you can make to your grocery list is to get

rid of the stopping words. You don’t want to always say “I’m done.” The

recorder should be smart enough to stop the recording when there’s

no action for some time. Since the Speech framework currently doesn’t

provide this functionality, you can implement this by yourself. You can use

a timer, which will be re-created on every call to the result handler of the

speech recognition task. If a timer manages to live for two seconds (long

enough for the method that’s scheduled to be invoked), the recording

will be stopped. Replace the creation of the recognition task in the

startRecording method with the code in Listing 4-29.

Listing 4-29.  Updating the Recognition Task with a Timer That

Stops the Recording

recognitionTask = speechRecognizer.recognitionTask(

 with: recognitionRequest!,

 resultHandler: { [unowned self] (result, error) in

 var recognized: String?

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

123

 self.createProductsArraysForSession()

 if result != nil {

 var shouldDelete = false

 �recognized = result?.bestTranscription.

formattedString

 �for segment in (result?.bestTranscription.

segments)! {

 let text = segment.substring.lowercased()

 if self.removalWords.contains(text) {

 shouldDelete = true

 }

 if self.products.contains(text) {

 if (!shouldDelete) {

 self.sessionProducts.append(text)

 } else {

 self.deletedProducts.append(text)

 }

 shouldDelete = false

 }

 self.timer?.invalidate()

 self.timer = nil

 if !self.cancelCalled {

 �self.timer = Timer.scheduledTimer(withT

imeInterval: 2,

 repeats: false,

 block: { _ in

 _ = self.handleStop()

 })

 }

 }

 self.recognizedText.text = recognized

 }

Chapter 4 Speech, Synthesizers, and Dialogflow

124

 var finishedRecording = false

 if result != nil {

 finishedRecording = result!.isFinal

 }

 if error != nil || finishedRecording {

 inputNode.removeTap(onBus: 0)

 self.handleFinishedRecording()

 }

 })

That’s the last detail you needed to do. You can now add products and

play with the voice parameters (hint: the pitch parameter might be fun).

You now have two directional speech communications, from speech to text

and vice versa.

�Using Dialogflow (api.ai)
Dialogflow (formerly known as api.ai) is a conversational user experience

platform, recently acquired by Google. It uses natural language processing

and machine learning algorithms to extract entities and actions from

text. The best thing about it is that it has a web application through which

you can train your intents with custom sentences. Based on that, you get

a JSON response with the recognized data. This brings a whole new set

of opportunities for developers since natural language processing and

machine learning are not trivial tasks—a lot of expertise and research in

this area are required to get it right. On top of that, the service is currently

free for developers. As you will see, Dialogflow offers a lot of powerful

features, and it’s definitely worth a look.

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

125

You will extend the grocery list app you were developing in the

previous two sections. Make sure you have the previous two projects

completed before moving on. If you struggled with those, please start with

the completed project from the previous section. One thing you did very

naively in those two apps was to extract the words in a sentence—this was

done by plain string matching with hard-coded predefined words in your

app. It didn’t take into consideration the context in which the keywords

were spoken. For example, if you said something like “I don’t need chicken

anymore,” it will still add chicken to the list, although it’s clear that you

have to remove it. Let’s solve these issues and put some intelligence in your

app by using Dialogflow.

To get started with Dialogflow, you need to sign up with a Google

account and then create an agent. You will create one called GroceryList

(Figure 4-6).

Figure 4-6.  Creating an agent in Dialogflow

Chapter 4 Speech, Synthesizers, and Dialogflow

126

�Training a Dialogflow Agent
An agent is a container for a group of actions that you build with intents.

You can define multiple intents for an action. An intent is, simply put,

what the user says. It can contain entities, which are the objects you want

to be recognized in the sentence. You can define your own entities or

use the ones provided by the system. Chicken is an entity of your type

Product in the earlier sentence. It might look a bit abstract at the moment,

but it will all make sense when you look at the examples. The developer

documentation can also be helpful to better understand these concepts.

Now let’s create the product entity and add some values there.

One cool thing is that you can also define synonyms of the words

you’ve provided. After you create the entity, you can always update the

list with new values, and that’s already a lot better than your current

implementation (Figure 4-7).

Figure 4-7.  Adding values to the Product entity

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

127

Now let’s add intents. In this use case, the user can have two intents—

either add something to the list or remove it. You will create two separate

intents for these, but you will also have in mind cases where the user had

two intents in one sentence—to both add and remove something.

First, you create the AddProduct intent. You add the product.add

action there and create two parameters for it. As I mentioned, you want

to handle two possible intents in a sentence, and that’s why you need the

two parameters. The first one is called AddProduct; it’s an entity of the

type Product you just created. It’s mandatory (there has to be a product

in an AddProduct intent), and it can be also a list (the users can provide

as many values as they want in a sentence). You can also define a prompt.

This is like an additional question that the platform will return in case a

mandatory value is missing (Figure 4-8).

Figure 4-8.  Creating an AddProduct intent and defining mandatory
and optional entities for it

Chapter 4 Speech, Synthesizers, and Dialogflow

128

The second parameter that you have defined is RemoveProduct, which

is also an entity of type Product, and it can be a list. This one is optional for

the Add action; the users don’t have to remove something if they want to

add products to the list. However, this parameter will be mandatory for the

product.remove action.

You can also define a text response for your action. This is useful for

testing, as you will see, and it’s also included in the JSON response if you

want to show it in your apps.

Now let’s add some sentences to the intent. These are samples of what

the user might say, and with every new entry, the model is re-trained and

becomes more precise when it encounters a new sentence. When you add

sentences, you train the model by specifying which part of the sentence is

which parameter. Over time, the model will find those parameters by itself,

which is pretty cool and gives a glimpse of the huge power of machine

learning. The AddProduct parameters are labeled in orange, and the

RemoveProduct parameters are yellow (Figure 4-9).

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

129

Note the types of sentences I’ve added. They are all different and look

like real sentences that the user might say. The idea with these platforms

is to enable free-flowing conversation with the users, not just a set of

commands that the user must say, and the machine will try to match that

with some strictly defined format. Users are not machines, and they can

easily forget to say part of some command or maybe modify words and the

order of the sentence. An intelligent system should be able to handle that,

which is exactly what Dialogflow offers. The more examples you add, the

more precise the response you will get.

Figure 4-9.  Annotating entities in test sentences

Chapter 4 Speech, Synthesizers, and Dialogflow

130

Let’s test this with a new sentence and see what response you get. There

is a testing area in the Dialogflow dashboard on the right. The example is

“Hmm…I think I want something to eat, maybe some meat.” There’s nothing

similar in the provided samples. Figure 4-10 shows the response.

It correctly put “meat” in the group of added products, which is pretty

awesome. You can try this with a few more new examples. If some of them

are wrong, you can manually label the parameters in the sentence, retrain

the model (that’s a fancy way of saying click Save), and try again. Then you

Figure 4-10.  Testing the Dialogflow agent

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

131

will see that the text is correctly handled. You need to follow the same steps

for setting up the RemoveProduct intent, just with different examples and

annotations.

You can also define context, which, as its name implies, can be used to

get an idea of the previous state of the conversation with the user, before

doing the request. This can be useful if you handle several requests in a row

and you need to keep track of what was spoken before. For example, if the

user says “Play me a U2 song” and after that “Play another one,” then using

contexts, Dialogflow can infer that the next song should also be from U2.

Another cool feature of api.ai is webhooks (in the “Fulfillment” section

in Dialogflow). Webhook integration allows you to pass the extracted

information from a phrase into a web service and get a result from it.

For example, if your agent provides transport information with train

departures, you can attach a webhook to a service that finds routes based

on the location extracted from the Dialogflow service. You can solve the

whole flow with only one request to the service. Otherwise, you would

have to handle the response from Dialogflow and then send it to a routing

service. If you have a web, iOS, and Android app, that’s another additional

implementation per platform. With webhooks, you don’t need that.

If your app supports multiple languages, with the newer versions of

the platform, this is now supported in the same agent. Previously, you

had to create a separate new agent with a different access token. Based on

the current language on the device, you would set the appropriate access

token. But now, the platform enables you to add other languages, which

means you need only one token. The platform does not support automatic

translation. This means the agent with different language support has to be

trained separately, with training sentences, intents, and entities specific for

that language.

Chapter 4 Speech, Synthesizers, and Dialogflow

132

�Integrating Dialogflow into the App
Now let’s go back to your GroceryList app. How can you integrate

everything discussed so far in your app? Api.ai provides native integrations

for iOS and Android. You can, of course, directly connect to the REST API,

but using the SDKs is the faster approach.

You can find the iOS SDK on GitHub. You will integrate it as a

CocoaPod. Go ahead and create new Podfile with the contents shown in

Listing 4-30. Note that the CocoaPod still has the old name, ApiAI.

Listing 4-30.  Contents of the Podfile

use_frameworks!

target :SpeechPlayground do

 pod 'ApiAI'

end

Note  CocoaPods is probably the most popular dependency
management tool for iOS, along with Carthage. You can install it by
typing the following command in your terminal: sudo gem install
cocoapods. CocoaPods automatically creates and updates the
Xcode workspace for your application and all its dependencies.

To install the dependencies, run pod install from the terminal,

at the root of your project (where the Podfile is created). Open the

generated .xcworkspace file, and the SDK should be there. All of the

downloaded CocoaPods are located in the Pods folder, relative to the

location of the Podfile.

You will create a wrapper of the ApiAI SDK in a new class called

ApiAIService. This class will do the communication with the ApiAI SDK

and return an ApiAIResponse struct (Listing 4-31), which will contain two

arrays representing the added and removed products.

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

133

Listing 4-31.  Struct Representing the api.ai Response

public struct ApiAIResponse {

 let addedProducts: [String]

 let removedProducts: [String]

}

In the ApiAIService, you are creating an instance of the ApiAI class,

which will do the communication with the REST service of the platform.

You need to provide clientAccessToken to the SDK, so please replace the

placeholder value in that constant with your access token. You can get the

client access token on the Settings screen for your agent in the Dialogflow

dashboard (Figure 4-11).

You are also defining two closures (SuccesfullApiAIResponseBlock

and FailureApiAIResponseBlock), which will be used as callbacks in the

extractProducts(fromText:success:failure) method, which is the

Figure 4-11.  Getting the client access token

Chapter 4 Speech, Synthesizers, and Dialogflow

134

most important method in this class. This method takes the text you’ve

already recognized using the Speech framework from the previous section

and sends it to Dialogflow for analysis (Listing 4-32).

Listing 4-32.  ApiAIService Implementation

public typealias SuccesfullApiAIResponseBlock =

(ApiAIResponse?) -> Swift.Void

public typealias FailureApiAIResponseBlock = (Error?) ->

Swift.Void

class ApiAIService: NSObject {

 static let resultKey = "result"

 static let parametersKey = "parameters"

 static let addProductKey = "AddProduct"

 static let removeProductKey = "RemoveProduct"

 static let errorCode = 777

 static let errorDomain = "com.mitrevski.invalidjson"

 static let clientAccessToken = "YOUR_CLIENT_TOKEN"

 private var apiAI = ApiAI()

 static let sharedInstance = ApiAIService()

 override init() {

 super.init()

 setupApiAI()

 }

 func extractProducts(fromText text: String,

 success: SuccesfullApiAIResponseBlock!,

 failure: FailureApiAIResponseBlock!) {

 let request = self.apiAI.textRequest()

 request?.query = text

 request?.setCompletionBlockSuccess({ [unowned self]

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

135

 (request, response) in

 �if let response = response as? Dictionary<String,

Any> {

 �success(self.extractProducts(fromResponse:

response))

 } else {

 �let error = NSError(domain:ApiAIService.

errorDomain,

 �code:ApiAIService.

errorCode,

 userInfo:nil)

 failure(error)

 }

 }, failure: { (request, error) in

 failure(error)

 })

 self.apiAI.enqueue(request)

 }

 private func setupApiAI() {

 let configuration = AIDefaultConfiguration()

 �configuration.clientAccessToken = ApiAIService.

clientAccessToken

 self.apiAI.configuration = configuration

 }

}

If the request is successful, you take the needed values from the JSON

response and create an ApiAIResponse, which you are sending back in the

success handler. In any other case, you are just returning an error.

Now let’s see part of the JSON response you get from Dialogflow

(Listing 4-33) when you say something like “I want to buy cheese, but I

already have potato.”

Chapter 4 Speech, Synthesizers, and Dialogflow

136

Listing 4-33.  JSON Response from Dialogflow

{

 "lang": "en",

 "result": {

 �"resolvedQuery": "I want to buy cheese, but I already have

potato",

 "action": "product.add",

 "parameters": {

 "AddProduct": ["cheese"],

 "RemoveProduct": ["potato"]

 },

 "contexts": [],

 "score": 1

 },

 "sessionId": "6f56c3be-6f86-460e-815d-cc4de8f82a72"

 �// other parts from the JSON which are not relevant for your

app are excluded

}

There is a lot of interesting information here. For example, you can

see how accurate the resolution of the query with the score property is.

You can see information about contexts, whether webhooks are used, and

everything else discussed earlier. What you are really interested in is the

parameters section; you want to know what’s inside the AddProduct and

RemoveProduct lists so you can put them in the ApiAIResponse struct.

To do this, you will add a new method for extracting the products from

the response (Listing 4-34). In this method, you are going through the

response dictionary until you get to the parameters section.

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

137

Listing 4-34.  Extracting the Products from the Response in

ApiAIService

private func extractProducts(

 �fromResponse response: Dictionary<String, Any>) ->

ApiAIResponse? {

 var toBeAdded = [String]()

 var toBeRemoved = [String]()

 guard let result = response[ApiAIService.resultKey]

 as? Dictionary<String, Any>

 else {

 return nil

 }

 guard let parameters = result[ApiAIService.parametersKey]

 as? Dictionary<String, Any>

 else {

 return nil

 }

 if let addProducts = parameters[ApiAIService.addProductKey]

 as? Array<String> {

 toBeAdded = addProducts

 }

 �if let removeProducts = �parameters[ApiAIService.remove

ProductKey]

 as? Array<String> {

 toBeRemoved = removeProducts

 }

 return ApiAIResponse(addedProducts: toBeAdded,

 removedProducts: toBeRemoved)

}

Chapter 4 Speech, Synthesizers, and Dialogflow

138

Now that you are done with the service, let’s go back to the grocery

list’s ViewController. Since you will now properly handle the transcribed

text, it’s time to get rid of some improvisations you did. Delete the

SpeechHelper class and all its related arrays, such as removalWords,

sessionProducts, and deletedProducts. The code will now be cleaner

and more robust, with only one array that keeps the products displayed

in the list (addedProducts). This will also simplify your startRecording

method; you just need to restart the timer there (Listing 4-35).

Listing 4-35.  Updated Implementation of startRecording in the

ViewController

func startRecording() {

 guard let inputNode = audioEngine.inputNode else {

 showAudioError()

 return

 }

 recognitionTask = speechRecognizer.recognitionTask(

 with: recognitionRequest!,

 resultHandler:{ [unowned self] (result, error) in

 var recognized: String?

 if result != nil {

 �recognized = result?.bestTranscription.

formattedString

 self.timer?.invalidate()

 self.timer = nil

 if !self.cancelCalled {

 �self.timer = Timer.scheduledTimer(withTime

Interval: 2,

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

139

 �repeats:

false,

 �block: { _ in

 _ = self.handleStop()

 })

 }

 self.recognizedText.text = recognized

 }

 var finishedRecording = false

 if result != nil {

 finishedRecording = result!.isFinal

 }

 if error != nil || finishedRecording {

 inputNode.removeTap(onBus: 0)

 self.handleFinishedRecording()

 }

 })

 let recordingFormat = inputNode.outputFormat(forBus: 0)

 inputNode.installTap(onBus: 0,

 bufferSize: 1024,

 format: recordingFormat) {

 [unowned self] (buffer, when) in

 self.recognitionRequest?.append(buffer)

 }

 startAudioEngine()

}

With your new implementation, you are extracting the products

whenever you are finished with the recording. Apart from being

cleaner, this is also faster than always iterating through the

segments of the recognized text on the go. Let’s take a look at the

extractProducts(fromText:) method (Listing 4-36).

Chapter 4 Speech, Synthesizers, and Dialogflow

140

Listing 4-36.  Extracting Products from Text in the ViewController

func extractProducts(fromText text: String) {

 ApiAIService.sharedInstance.extractProducts(fromText: text,

 success: {

 [unowned self] response in

 if let response = response {

 let toBeAdded = response.addedProducts

 let toBeRemoved = response.removedProducts

 var tmp = self.addedProducts

 tmp.append(contentsOf: toBeAdded)

 self.addedProducts = [String]()

 for product in tmp {

 if !toBeRemoved.contains(product) {

 self.addedProducts.append(product)

 }

 }

 OperationQueue.main.addOperation() {

 self.productsTableView.reloadData()

 }

 }

 }) { error in

 print(error ?? "An error occured")

 }

}

The method calls the ApiAIService to get the products that need to

be added and removed. The merging logic is similar to what you’ve seen

before.

That completes your GroceryList app. You can test it with more

complex queries (Figure 4-12). Your voice commands can be more

natural, just like you would have said them to a person. If the agent

doesn’t recognize an intent or properly extract its entities, you can go to

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

141

the training section in the Dialogflow dashboard and find the unresolved

queries. If they make sense, then you can mark them and retrain the

model, improving the quality of the agent. This good thing is that the

training can continue after you ship the application to the App Store,

without requiring an app update. That will also provide you with more data

and example phrases.

�Summary
Let’s sum up what you did in this chapter. First, you started with the most

basic approach of extracting the products from a spoken phrase—by

matching hard-coded products. The goal of this project was to get to know

the Speech framework, learn how to do recordings, and perform speech-

to-text conversion. You familiarized yourself with audio engines, speech

recognizers, recognition tasks, and more.

Next, you did the opposite—text-to-speech conversion, where the

iPhone tells the user which products need to be purchased. Here, you used

the AVSpeechSynthesizer class from AVFoundation.

Figure 4-12.  Adding and removing items with more complex
sentences

Chapter 4 Speech, Synthesizers, and Dialogflow

142

Finally, in the third part of this chapter, you explored Dialogflow, a

conversational interface platform. You replaced your simple matching

words implementation with a trained agent from Dialogflow, and as a

result, you were able to do much more complex queries for adding items or

removing items to the list.

Figure 4-13 summarizes the complete implementation.

After the spoken phrase is provided by the user, it is translated to plain

text using the Speech framework. Then, the text is sent to Dialogflow,

which processes the text and extracts the intent and the entities associated

with it, returning a JSON response. You save this information and present it

to the user in your table view.

Figure 4-13.  Overview of the grocery list implementation

Chapter 4 Speech, Synthesizers, and Dialogflow

www.allitebooks.com

http://www.allitebooks.org

143© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_5

CHAPTER 5

Getting Started with
Wit.ai
As mentioned at the beginning of the book, all the big players are entering

the exciting field of conversational interfaces. This means that Google’s

Dialogflow is not the only option for analyzing and understanding the

user’s spoken (or written) input. Facebook has its own product, called

Wit.ai. In this chapter, you will explore Wit.ai and compare it to Dialogflow.

Wit.ai’s vision is to offer developers an open and extensible natural

language platform that learns human language from every interaction.

What’s interesting is that everything that’s learned is shared with all

developers, which is quite useful because the platform is used by more

than 120,000 developers.

The platform supports creating bots that can chat with humans on

any messaging platform (for example, Facebook’s Messenger). It provides

integration with mobile apps, enabling voice interface to the apps,

which is the most interesting feature for this book. It also supports home

automation, meaning that you can, for example, set the temperature of the

thermostat in your home using the platform. Interacting with wearable

devices such as watches and with robots is another interesting feature of

the platform.

144

�Creating a Grocery List App
To compare the platform with Dialogflow, you will build the same grocery

list app that you developed in Chapter 4. To get started, you need to create

an account on Wit.ai. You can do this by logging in with either Facebook or

GitHub. After you do this, a default first app is created for you. Let’s create a

new app by clicking the plus icon in the toolbar at the top-right corner and

call it GroceryList (Figure 5-1).

Just like Dialogflow, you first need to train the Wit.ai engine to start

understanding the inputs. Here you don’t need to define an intent. If

you don’t define it, a default one is used, as you will see later in the JSON

response. When you create the application, a default entity called an intent

is created. Click it and enter product as its name. You can assign roles to

the entity. You need the service to be able to detect which products should

be added to the grocery list and which ones should be removed. That’s why

you will define two roles: add and remove.

Creating roles on the Wit web site is not the most user-friendly

experience. First, you need to type a sentence in the training dashboard

on the home page of your application. Let’s type I want to buy milk. Select

the word milk since that will be your entity and click the plus icon to add a

Figure 5-1.  Creating an app on the Wit.ai dashboard

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

145

new entity. This will list the entities you support in the application, which

in your case is the product entity. Select the product entity, which in turn

will display a radio button with the ability to set a role (Figure 5-2). Set the

role name to add. The next time you want to set a role to be product:add,

you can just select it from the list of available entities. Click Validate to train

the model with this new input.

Follow the same process to create a product:remove entity; in other

words, type a sentence, mark the entity, and create a new role (Figure 5-3).

As you type sentences in the text field for training, you select the

entities and define their roles (add or remove). You can also connect the

entity to an existing value or create new one. For example, if you select

potatoes and you already have potato, you should connect it to that value.

Wit.ai will create a synonym for potato (Figure 5-4).

Figure 5-2.  Setting an add role for the entity

Figure 5-3.  Setting a remove role for the entity

Chapter 5 Getting Started with Wit.ai

146

This enables users to say different forms of a word. In the end, the

value will be resolved to the same entity. Adding new entity values and test

sentences improves the intent detection and entities extraction in your

app, without requiring an application update. To add more entity values

(products), click the product entity on the home page. This will open the

entity page, where you can see information about the roles it supports,

as well as the keywords and expressions that are used in the training of

the agent. In the Keywords section, type more products and define a few

synonyms to improve the natural language understanding (Figure 5-5). The

more sentences you add, the better Wit.ai understands the entered input.

Figure 5-4.  Defining a synonym for an entity value

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

147

Below the keywords, you can see the sentences you have used to

train the model. If you select a sentence, you can see what you have

marked as an entity and the role assigned to it. This is handy if you have

unpredictable results and you are not sure where are they coming from

(Figure 5-6).

Figure 5-5.  Synonyms for entities

Chapter 5 Getting Started with Wit.ai

148

Another thing worth mentioning about Wit.ai is the Stories UI. This

endpoint will be shut down soon, so I will not spend much time on it. I will

just mention that developers were able to create replies that the bot would

give for certain inputs, by creating stories. For example, for your case, after

you say something like “I need milk,” the bot might reply with “Milk added

to your grocery list.” It’s being shut down mostly because the top apps that

use Stories are using only one-turn replies (just like in your case). That’s

why Wit.ai is focusing on the Message endpoint since one-turn replies can

be achieved with that endpoint as well.

�Performing the iOS Implementation
Now, let’s see how you can integrate Wit.ai in your iOS application. Create

a new single-view application called WitAi or open the starter project

provided with this chapter. Currently, Wit.ai has an iOS SDK, which is only

Figure 5-6.  Training sentences

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

149

community supported. The preferred way for nonexperimental apps is to

use the HTTP API. However, the easiest way to integrate Wit.ai into your

iOS application is with the iOS SDK. The SDK is available as a pod, so let’s

create a new Podfile with the contents from Listing 5-1. You can find more

details about CocoaPods in Chapter 4. Make sure to review it if you are not

sure how it works.

Listing 5-1.  Podfile for Wit.ai

platform :ios, '10.0'

use_frameworks!

target :WitAi do

 pod 'Wit', '~> 4.2.1'

end

After running pod install from your terminal, which will install

the dependency, open the generated workspace. To identify your

application to Wit.ai, you need to provide the client access token

to the SDK. The best place to set the token is on app start, in the

applicationDidFinishLaunchingWithOptions method (Listing 5-2). You

can find the token in the Settings section in the top-right corner of your

Wit dashboard (Figure 5-7). Be careful with this section; the refresh icon

on the right of the token regenerates it. If you have an app that is currently

live, you will need to submit an update because with the previous token,

the app would not be able to access the Wit.ai services. You can also

implement a solution where the token is loaded from your server on app

start. This will give you an option to update the token, without requiring an

App Store update.

Chapter 5 Getting Started with Wit.ai

150

Listing 5-2.  Setting the Client Access Token

func application(_ application: UIApplication,

 �didFinishLaunchingWithOptions

launchOptions:

 �[UIApplicationLaunchOptionsKey:

Any]?)

-> Bool {

 Wit.sharedInstance().accessToken = "YOUR_CLIENT_ACCESS_TOKEN"

 return true

}

The user interface for this app will be the same as in the previous app.

You will have one button for starting and stopping the recording, a text

view to show the transcribed text, and a table view that will present the

products in the grocery list. The UI is already set up in the starter project.

Figure 5-7.  Getting the Wit client access token

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

151

If you are building the project from scratch, make sure you have set up the

required permissions about speech recognition and the microphone in

your app’s property list file (Figure 5-8).

On iOS 10 and newer, the Wit SDK uses Apple’s Speech framework.

This means that a lot of the tasks you performed in the Dialogflow version

of this app, by creating speech recognition request, speech recognition

task, audio engine, and speech recognizer, are not needed here anymore

since they are already implemented in the SDK. As you will see, there will

be less code here.

Next, you need to set up Wit. The Wit SDK is accessible via a singleton

shared instance.

Note  Singleton is a software design pattern that restricts the
instantiation of a class to one object.

The ViewController that shows the list of items will implement the

WitDelegate methods. You will see later which methods those are and

how to implement them. You need to set the voice activity detection

algorithm. There are three options here: disabled (which means no voice

detection; you are in charge of everything), detecting speech stop (as

the name implies, it detects only when the user stops talking), and full

(which detects both the start and the stop of the user’s speech). You will set

the full speech stop detection. Next, you have voice activity detection

timeout, which is the maximum length of time without speaking until the

framework detects the stop of the speech. If you set it to -1, it will not have

a timeout. The default value is 7,000 milliseconds (7 seconds). You will set

this to 3,000 milliseconds.

Figure 5-8.  Permissions for speech recognition

Chapter 5 Getting Started with Wit.ai

152

After the timeout, you set the sensitivity setting of the voice

detection algorithm. These values range from 0 to 100. The lower values

are for strong voice signals, such as a cell phone or personal microphone.

The higher values are for fixed-position microphones or any application

with voice buried in ambient noise. The higher end looks more suitable to

your use case, so you are going to set it to a max value of 100. Apart from

these properties, you can set the speechRecognitionLocale setting, which

is the locale used for speech recognition. The default is en_US, so you will

not set anything there. Listing 5-3 shows the setup of these values. Call the

method setupWit in the viewDidLoad method of the ViewController.

Listing 5-3.  Setting Up the Wit Parameters

private func setupWit() {

 Wit.sharedInstance().delegate = self

 Wit.sharedInstance().detectSpeechStop = .full

 Wit.sharedInstance().vadTimeout = 3000

 Wit.sharedInstance().vadSensitivity = 100

}

You can provide a WitSession to the SDK, which will use the

Converse endpoint (Stories UI), but since that API will be deprecated

soon, you will stick to the Message endpoint, which is the default one.

Also, if you open WitDelegate’s methods, most of the methods such as

didReceiveMergeEntities, didReceiveAction, and didReceiveMessage

are from the Converse endpoint and will be removed soon. What you

need is a method that will recognize every word as the user speaks and

then detects whether the word is final. The witDidRecognizePreviewText

delegate method provides that. The SDK passes the previewText flag

(which is what is recognized until that point) and the isFinal flag (which

indicates whether that is the final text the user has spoken).

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

153

In practice, the isFinal flag doesn’t work that good. There are

situations where the witDidRecognizePreviewText is not called for more

than a minute and the isFinal flag is false, although there is no speech

input for that period. This also prevents the recording from being stopped.

Probably this is a bug in the SDK since the voice detection timeout is not

taken into consideration. To solve this, you will create a timer, which will

be stopped on every call of the witDidRecognizePreviewText callback and

started again. If the method is not called for three seconds, you will stop

the recording explicitly (Listing 5-4).

Listing 5-4.  Implementing the Method Called When Text Is

Recognized by Wit in the ViewController

private var timer: Timer? // defined at the beginning of the

ViewController.

@IBOutlet weak var transcriptedText: UITextView! // same as

timer.

func witDidRecognizePreviewText(_ previewText: String!,

 final isFinal: Bool) {

 self.transcriptedText.text = previewText

 stopTimer()

 self.timer = Timer.scheduledTimer(withTimeInterval: 3,

 repeats: false,

 �block: { [unowned self]

_ in

 self.handleStop()

 })

}

Chapter 5 Getting Started with Wit.ai

154

private func handleStop() {

 Wit.sharedInstance().stop()

 recordingButton.setTitle("Start recording", for: .normal)

 stopTimer()

}

private func stopTimer() {

 self.timer?.invalidate()

 self.timer = nil

}

After you call the stop method of the Wit SDK, the witDidGraspIntent

method is called. The parameters of this method are an array of possible

outcomes, the ID of the message, customData (which is optional and can

be passed in the start(customData) method in the SDK), and the error

object (if an error occurred). In the array of outcomes, you need the first

outcome: the one with the highest confidence factor. The outcome object

is a dictionary, whose contents are shown in Listing 5-5.

Listing 5-5.  The Outcome Object

{

 "_text" = "I want to buy milk";

 confidence = "<null>";

 entities = {

 add = (

 {

 "_body" = milk;

 "_end" = 18;

 "_entity" = product;

 "_role" = add;

 "_start" = 14;

 confidence = "0.94597507156525";

 type = value;

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

155

 value = milk;

 }

);

 };

 intent = "default_intent";

}

At the root of the dictionary, you have information about the

recognized text, the confidence of the text (which might be null), the

extracted entities, and the intent. Note that you haven’t defined an

intent, so a default one is used. The most interesting part is the entities

dictionary. It contains several keys for the entities defined in the Wit.ai web

application. As you may recall, you defined two roles, add and remove,

for the product entity. If one of them or both are recognized in a sentence,

they will appear as keys in the entities dictionary. In your example, “I want

to buy milk,” only the add role is detected, which is correct, based on your

training sentences.

The values of the keys in the entities dictionary are arrays; they contain

all the detected entities for a given role. The values in those arrays are

dictionaries themselves. There you can find information about each kind

of entity, its role, the confidence factor, the type, and the value. The value

is what you are interested in since that’s what you will present to the user.

Let’s see how you can implement the witDidGraspIntent method, shown

in Listing 5-6.

Listing 5-6.  Implementing the witDidGraspIntent Delegate Method

func witDidGraspIntent(_ outcomes: [Any]!,

 messageId: String!,

 customData: Any!,

 error: Error!) {

 if outcomes != nil && outcomes.count > 0 {

 let outcome = outcomes[0] as! [String : Any]

Chapter 5 Getting Started with Wit.ai

156

 �guard let entities = outcome["entities"] as? [String :

Any] else {

 return

 }

 updateProducts(fromEntities: entities)

 OperationQueue.main.addOperation {

 self.tableView.reloadData()

 }

 }

}

After checking whether you have at least one outcome, you check

whether there is an entities entry in that outcome. If there is, you are

extracting the add and remove entities of it, using the updateProducts

method, and then you are updating the table view. Note that the

delegate method might not be called from the main thread, so you need

to make sure you take the main queue before doing any user interface

action (in your case, reloading the table view data). Let’s examine the

extractProducts (Listing 5-7) and updateProducts (Listing 5-8) methods.

Listing 5-7.  Extracting the Products

private func extractProducts(fromEntities entities: [String :

Any],

 key: String) -> [String] {

 �guard let toBeAdded = entities[key] as? Array<[String :

Any]> else {

 return []

 }

 var products = [String]()

 for product in toBeAdded {

 if let value = product["value"] as? String {

 products.append(value)

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

157

 }

 }

 return products

}

Listing 5-8.  Updating the Products

private var addedProducts: [String] = [String]() // defined at

the beginning

private func updateProducts(fromEntities entities: [String :

Any]) {

 �let newProducts = self.extractProducts(fromEntities:

entities,

 key: "add")

 �let toBeRemovedProducts = self.extractProducts

(fromEntities: entities,

 key: "remove")

 var tmp = addedProducts

 tmp.append(contentsOf: newProducts)

 addedProducts = []

 for product in tmp {

 if !toBeRemovedProducts.contains(product) {

 addedProducts.append(product)

 }

 }

}

The extractProducts method takes a list of entities (dictionaries)

and a key (add or remove) and returns an array of values of the given role

entities (for example, milk). Then in the updateProducts method, those

two arrays are merged with the already entered products (in previous

Chapter 5 Getting Started with Wit.ai

158

speech inputs). You create a new array, where you add all the newly

and previously added products. You then iterate over that array and

copy to the addedProducts array only those products that are not in the

toBeRemovedProducts array. The table view is populated with the data

from the addedProducts array (Listing 5-9).

Listing 5-9.  Implementing the Table View Data Source Methods

func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return addedProducts.count

}

func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 var cell: UITableViewCell? =

 �tableView.dequeueReusableCell(withIdentifier:

"ProductCell")

 if cell == nil {

 cell = UITableViewCell(style: .default,

 reuseIdentifier: "ProductCell")

 }

 cell?.textLabel?.text = addedProducts[indexPath.row]

 return cell!

}

The last thing you need to do is to define what happens when the

recording button is tapped. Here you have two possible states; either

the recorder is running or it is not. When it’s recording and the button is

tapped, you stop the recording. If it’s not recording, then you start it using

Wit’s start method (Listing 5-10).

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

159

Listing 5-10.  Implementing the @IBAction of the Recording Button

@IBAction func recordingButtonClicked(sender: UIButton) {

 if Wit.sharedInstance().isRecording() {

 handleStop()

 } else {

 handleStart()

 }

}

private func handleStart() {

 Wit.sharedInstance().start()

 transcriptedText.text = ""

 �recordingButton.setTitle("Stop recording", for:

.normal)

}

If you run the app, start the recording, and give a voice command, you

should get something similar to what you did in Chapter 3, with Dialogflow

(Figure 5-9). With the example, you can see that the plural form of potatoes

is resolved in potato, just like you defined it in the creation of the entities.

Figure 5-9.  Testing the Wit.ai implementation

Chapter 5 Getting Started with Wit.ai

160

�Using Wit.ai and Modern Objective-C Syntax
If you analyze the signature of witDidGraspIntent and the

witDidRecognizePreviewText methods, you will see that the SDK is not

optimized for Swift. The Wit iOS SDK is an Objective-C framework, but it

doesn’t have the modern Objective-C syntax.

�Implementing Nullability Specifiers

First, it misses nullability specifiers (nullable, nonnull), and as a

consequence, the parameters in the Wit functions are implicitly unwrapped.

If the value in one of those functions is nil, the app will crash since you as

a user of the Wit function expect the value to be non-nil (otherwise the

type would be an optional type). To solve this, the SDK should specify the

nullability specifiers in the Objective-C code. Those are annotations in the

Objective-C code, which don’t have any impact in an Objective-C project.

When the framework is integrated in a Swift project, Swift will check the

annotations and mark them as optional values if needed.

�Implementing Lightweight Generics

Second, it doesn’t use lightweight generics. In collections (arrays, sets,

dictionaries) in Objective-C, you don’t specify the type of the object.

It can be anything. On the other hand, in Swift, when you declare an

array, you have to specify the type of the elements. When collections in

Objective-C don’t have lightweight generic parameterization, they are

translated in Swift as Any. You can see that in the outcomes array in the

witDidGraspIntent method. This implies that the elements in the array

can have any type, when in fact the array contains only dictionaries. The

lightweight generics, like the nullability annotations, don’t have any impact

in the Objective-C code; you just declare what elements the array contains.

You can still put different types in those arrays in Objective-C (although

you shouldn’t). You will just get a warning for this.

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

161

Besides these issues, the Wit.ai platform is pretty good. It’s easy to set

up and easy to train the models, and the results are pretty accurate.

�Wit.ai vs. Dialogflow vs. Others
Comparing Wit.ai to Dialogflow, you have probably noticed that they have

a few things in common. They were both acquired by big tech companies

(Google and Facebook, respectively), and they are completely free. They

use pretty good machine learning algorithms to provide accurate natural

language understanding, even on new phrases. They have graphical

user interfaces that let developers train the models with new sentences.

However, Wit.ai’s user interface is not that user friendly and intuitive. Both

of them are based on the concept of intents and entities. There is support

for predefined entities for date, color, temperature, and similar. You can

attach webhooks on the services.

One thing that is better with Dialogflow is the integration with other

APIs. At the moment, Wit.ai doesn’t have quick and easy integration with

Facebook Messenger or other messaging platforms. On the other hand,

Dialogflow has one-click integrations, which let you connect the service

to Google Assistant, Facebook Messenger, Slack, Viber, Twitter, Skype, and

many other popular services.

Dialogflow has support for prebuilt agents that specialize in different

areas of knowledge. You can use them directly, without additional training

for the given domain. You can also customize the agents if needed.

The Small Talk module from Dialogflow is also a really cool feature that

is currently not available on Wit.ai. This module allows you to easily import

a lot of predefined answers to some common phrases and questions, in

different contexts, such as courtesy, emotions, about the agent, hellos or

goodbyes, and many others. What is great about the feature is that you

can create your own Small Talk agent by providing different answers to

the questions provided in those contexts. For example, you can create a

Chapter 5 Getting Started with Wit.ai

162

nice chatbot, an arrogant one, or something else based on the answers

provided. It’s a really powerful feature that offers a lot of new possibilities

for developers.

�Using a Language-Understanding Intelligent
Service
In addition to these two, there are also some other solutions on the market.

For example, Microsoft has Language Understanding Intelligent Service

(LUIS). You can make up to 10,000 requests to the service per month for

free; after that, there are pricing models available. The service is available

through REST endpoints, similarly to Dialogflow and Wit.ai. It is based

on utterances, which are the textual input from the user that needs to be

interpreted from the application. That input is then broken into tokens, and

using machine learning algorithms, the intents and entities are extracted.

Let’s see an example of how LUIS works. If the user says something like

“Remind me to call my dad tomorrow,” the JSON response from LUIS will

have the contents displayed in Listing 5-11.

Listing 5-11.  LUIS JSON Response

{

 "query": "remind me to call my dad tomorrow",

 "topScoringIntent": {

 "intent": "Reminder",

 "score": 0.9337804

 },

 "intents": [

 {

 "intent": "Reminder",

 "score": 0.9337804

 },

 {

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

163

 "intent": "None",

 "score": 0.0900467858

 }

],

 "entities": [

 {

 "entity": "tomorrow",

 "type": "builtin.datetime.date",

 "startIndex": 25,

 "endIndex": 32,

 "resolution": {

 "date": "2017-10-15"

 }

 }

]

}

From the JSON file, you can see that LUIS performs intent detection,

returning the most likely intent in the topScoringIntent object, based on

the score value. In addition, you can see the other intents that have lower

scores, as well as a list of extracted entities. In the example, you can see that

LUIS has prebuilt system entities, in this case for date. The entity tomorrow

has a resolution entry, which is resolved based on the current date.

�Using Amazon Lex
Amazon provides Alexa Skill Set and Amazon Lex. With Amazon Lex, the

same natural understanding platform that is used by Amazon Alexa is

available to developers. It can be integrated into mobile applications using

the AWS Mobile SDK, as well as in Facebook Messenger, Slack, and Twilio.

Amazon Lex has built-in integration with other Amazon services, such

as AWS Lambda. The iOS SDK supports both voice and text as input and

output. It can also detect when the user finishes speaking.

Chapter 5 Getting Started with Wit.ai

164

�Using Watson IBM
IBM has Watson, which is more expensive and targeted to enterprises.

It allows quick development and deployment of chatbots and virtual

agents across a variety of channels, including mobile devices, messaging

platforms, and robots. Virtual agents can be trained with domain

knowledge specific to your business needs to provide automated services

to the customers. It also has deep analytics, which provide insights on

the customer’s engagement with the agent. From the other services that

IBM provides, there are speech-to-text and text-to-speech conversions,

language translations, interpretations, and classifications, as well as

predicting personality characteristics, needs, emotions, and social

tendencies through written text.

There are many natural language–understanding platforms on the

market. Things are changing pretty fast in this area, so you might expect a

lot of improvements in this area in the future.

�Summary
That wraps up the chapter. To sum up, you developed the same

GroceryList application as in the previous chapter but using Facebook’s

Wit.ai. You saw how you can train the Wit.ai intents with test sentences

and how to mark the found entities. Afterward, you integrated the Wit.ai

iOS SDK into your GroceryList application. Since the speech detection part

is already implemented in the SDK, you did not have to use the Speech

framework directly. That reduced the code you had to write, compared to

the Dialogflow implementation. You compared the two platforms, and you

also saw other possibilities on the market.

Chapter 5 Getting Started with Wit.ai

www.allitebooks.com

http://www.allitebooks.org

165© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_6

CHAPTER 6

Natural Language
Processing on iOS
Natural language processing (NLP) is a field in computer science that tries

to analyze and understand the meaning of human language. It’s quite

a challenging topic, since computers find it pretty hard to understand

what humans are trying to say (although they are perfect for executing

commands well known to them). By utilizing established techniques,

NLP analyzes the text, enabling applicability in the real world, such as

automatic text summarization, sentiment analysis, topic extraction,

named entity recognition, parts-of-speech tagging, relationship extraction,

stemming, and more. NLP is commonly used for text mining, machine

translation, and automated question answering.

NLP is also starting to get important in the mobile world. With the rise

of conversational interfaces, extracting the correct meaning of the user’s

spoken input is crucial. For this reason, there are many NLP solutions on

the two most popular platforms, iOS and Android. Since iOS 5, Apple has

the NSLinguisticTagger class, which provides a lot of natural language

processing functionalities in different languages. NSLinguisticTagger

can be used to segment natural language text into paragraphs, sentences,

or words, and tag information about those tokens, such as part of speech,

lexical class, lemma, script, and language.

166

�Keyword Extraction
In this chapter, you will create a simple app that lists all the posts from my

blog. When a post is selected, the app will open it in a web view, along with

displaying details at the bottom of the screen about the detected language

of the post and the most important words. You will accomplish this using

the NSLinguisticTagger class and a simple implementation of the TF-IDF

algorithm. There is a starter project accompanying this chapter, where the

user interface and initial setup have already been prepared for you.

You will keep the posts in a local file called posts.json. Each entry

stores information about the title and the URL of the post (Listing 6-1). The

listing shows only part of the posts; you can find the full list in the starter

project. Also, feel free to add your own posts, while keeping the same JSON

structure.

Listing 6-1.  JSON File with Post Information

{ "posts" : [

 {

 "title" : "Exploring Conversational Interfaces",

 �"url" : "https://martinmitrevski.com/2017/02/25/

exploring-conversational-interfaces/"

 },

 {

 "title" : "Algorithms in Swift",

 �"url" : "https://martinmitrevski.com/2016/10/20/

algorithms-in-swift/"

 },

 {

 "title" : "Swift Class Diagrams and more",

 �"url" : "https://martinmitrevski.com/2016/10/12/

swift-class-diagrams-and-more/"

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

167

 },

 {

 �"title" : "Injecting code in iOS framework

startup",

 �"url" : "https://martinmitrevski.com/2016/08/27/

injecting-code-in-ios-framework-startup/"

 }

]

}

The user interface of the app is pretty simple, consisting of a table view

displaying the list of posts (Figure 6-1).

First, you need to load the posts from the local JSON file into memory

(Listing 6-2). Call the loadPosts method in the viewDidLoad method of the

ViewController.

Figure 6-1.  User interface of the app

Chapter 6 Natural Language Processing on iOS

168

Listing 6-2.  Loading the Posts from the Local JSON File

private var posts: [[String : String]]! // defined as var in

ViewController.

private func loadPosts() {

 �let fileUrl = Bundle.main.url(forResource: "posts",

withExtension: "json")

 do {

 let data = try Data(contentsOf: fileUrl!)

 �let json = try JSONSerialization.jsonObject(with:

data, options: .allowFragments)

 as! [String: Array<[String : String]>]

 posts = json["posts"]

 preloadSearchData()

 } catch {

 print("error loading posts")

 }

 }

After the posts are loaded, you preload the search data. This

precomputation is done only once, at the start of the app. You save those

results and reuse them whenever you need to compute the keywords for a

given post (Listing 6-3).

Listing 6-3.  Preloading the Search Data in ViewController.swift

private func preloadSearchData() {

 for post in posts {

 let url = post["url"]!

 load(url: url)

 }

}

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

169

You will get the contents of each URL, strip the HTML tags (since you

don’t want them to be included in the importance of the words), and count

occurrences of a given word in each of the documents. You will use this

information later with the TF-IDF algorithm for extracting the keywords.

Don’t worry—I will explain the TF-IDF algorithm later in the chapter.

In the load(url:) method, shown in Listing 6-4, you first create a

request with the URL of the post (Listing 6-5) and then use an object of

the NSURLSession that is executing the request. The word processing

is done in the callback of the data task. You first remove the HTML

tags (Listing 6-6). This is accomplished using the String class method

for replacing occurrences of a string with a regular expression. Since

removeTags is a utility method, create a new Swift file called Utils.swift

and add the function there. Afterward, you extract the words with the

words(inText:url:action) method, which you will examine in Listing 6-8.

Now, let’s see which action you should provide to the

words(inText:url:action) method. As mentioned, you need to count

how many times each word appears in any of the documents. For this, you

will use a variable called wordCountings. This will be a dictionary, where

the key is the word, and the value is another dictionary, whose keys are the

URL of the blog post, and the value is the count (how many times the word

appears in that URL). Listing 6-7 shows this structure.

For the TF-IDF algorithm, you also need to know how many words

every post has. You don’t want to over-complicate wordCountings, so you

will define another dictionary, documentSizes, which will have the URL of

the post as a key and the total number of words in the document as a value.

Listing 6-4.  Filling with Data the wordCountings and

documentSizes Dictionaries in ViewController.swift

private var wordCountings = Dictionary<String,

Dictionary<String, Int>>()

Chapter 6 Natural Language Processing on iOS

170

private func load(url urlString: String){

 �let task = session.dataTask(with:self.request(fromUrlString:

urlString))

 { [unowned self] (data, response, error) in

 �let html = String(data: data!, encoding: String.

Encoding.utf8)

 var docSize = 0

 self.words(inText: removeTags(fromHtml: html!),

 url: urlString,

 action: {

 [unowned self] tag, tokenRange, stop, url in

 if let lemma = tag?.rawValue {

 docSize += 1

 if self.wordCountings[lemma] == nil {

 �self.wordCountings[lemma] =

Dictionary<String, Int>()

 }

 if self.wordCountings[lemma]![url] == nil {

 self.wordCountings[lemma]![url] = 0

 }

 self.wordCountings[lemma]![url] =

 self.wordCountings[lemma]![url]! + 1

 }

 })

 self.documentSizes[urlString] = docSize

 }

 task.resume()

}

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

171

Listing 6-5.  Creating the Request for the Data Task in

ViewController.swift

private func request(fromUrlString urlString: String) ->

URLRequest {

 let url = URL(string: urlString)

 let request = URLRequest(url: url!)

 return request

}

Listing 6-6.  Removing the HTML Tags from a String in Utils.swift

func removeTags(fromHtml html: String) -> String {

 return html.replacingOccurrences(of: "<[^>]+>",

 with: "",

 �options: String.Compare

Options.regularExpression,

 range: nil)

}

Listing 6-7.  Word Counting Structure

{

 "ios" : {

 "url1" : 1,

 "url2" : 5

 },

 "siri" : {

 "url1" : 2,

 "url2" : 0

 }

}

Chapter 6 Natural Language Processing on iOS

172

The method words(inText:url:action) receives some text and the

corresponding URL as input; it finds the words using the linguistic tagger,

and it invokes a completion handler (action) provided by the caller

(Listing 6-8). You use this helper method both for counting the words and

for computing the importance of the words.

Listing 6-8.  Extracting the Words from Text in ViewController.swift

private func words(inText text: String,

 url: String,

 action: @escaping (NSLinguisticTag?,

 NSRange,

 �UnsafeMutablePointer

<ObjCBool>,

 String)

-> Void) {

 �let tagger = NSLinguisticTagger(tagSchemes:[.lemma],

options: 0)

 tagger.string = text

 let range = NSRange(location:0, length: text.utf16.count)

 let options: NSLinguisticTagger.Options =

 [.omitWhitespace, .omitPunctuation, .joinNames]

 tagger.enumerateTags(in: range,

 unit: .word,

 scheme: .lemma,

 �options: options) { tag, tokenRange,

stop in

 �action(tag, tokenRange, stop,

url)

 }

}

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

173

Let’s see what’s happening here. You create an instance of the

NSLinguisticTagger class, with lemma provided as a tag scheme.

Note  Lemmatization is the process of handling different forms of a
word as a single item. For example, you want to treat the verb do in
all its different forms (doing, does) as a one word since you are more
interested in the importance of the word’s semantics, not its syntax.

In addition to the lemma, there are lots of other tag schemes that the

linguistic tagger supports. For example, you can use nameType, which

classifies tokens that are part of named entities. There’s also lexicalClass,

which classifies tokens according to their class—part of speech for words,

type of punctuation or whitespace, and so on. You can also tag tokens

based on their most likely language. Check the NSLinguisticTagScheme

struct for more details.

After the tagger is created, you set the provided text (which in this

case is the stripped HTML text), and you define the range of the string.

Then, you need to provide the options of the tagger. Here you set the

omitWhitespace, omitPunctuation, and joinNames options. The first two

are for ignoring the whitespace and the punctuation, as their names imply.

The joinNames option is to handle people’s names and surnames as one

entry. For example, Tim Cook would be handled as one token.

When everything is set up, you call the enumerateTags(in:, unit:,

scheme:, options:) method. This is a new method, starting with iOS 11,

which will segment the string into tokens for the given unit and return

those ranges along with a tag for any scheme in its array of tag schemes.

The new thing here is the unit parameter (word in this case, but you

can also provide sentence, paragraph, or document). If you have to target

an iOS version older than 11, there are enumerateTags methods that do not

specify a unit act at the word level, starting with iOS 5.

Chapter 6 Natural Language Processing on iOS

174

Filling the data about the document sizes and word counts enables

faster computation of the keywords for a given article. The computation

will happen on a tap of a selected post. You will not store any computation

or already loaded HTML (implementing a caching mechanism). That’s

why with a tap on a post, you will load the selected URL again, split the

HTML into words, and then provide a different action (this time the TF-

IDF algorithm) to the words method. The task called extractKeywordsTask

does this (Listing 6-9).

Listing 6-9.  The Extract Keywords Task

private func extractKeywordsTask(fromUrlString urlString:

String)

-> URLSessionDataTask {

 var result = [String : Double]()

 let task =

 �session.dataTask(with: self.request(fromUrlString:

urlString))

 { [unowned self] (data, response, error) in

 self.selectedHtml = String(data: data!,

 �encoding: String.

Encoding.utf8)

 �self.words(inText: removeTags(fromHtml: self.

selectedHtml!),

 url: urlString,

 action: {

 �[unowned self] tag, tokenRange, stop,

url in

 if let lemma = tag?.rawValue {

 �result[lemma] = tfIdf(urlString:

urlString,

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

175

 word: lemma,

 wordCountings:

 �self.word

Countings,

 totalWordCount:

 �self.document

Sizes[url]!,

 totalDocs:

 �self.posts.

count)

 }

 })

 DispatchQueue.main.sync {

 �self.keywords = Array(self.sort(result: result)

[0..<10])

 self.loadingView.hide()

 �self.performSegue(withIdentifier:

"showWebView",

 sender: self)

 }

 }

 return task

}

Here you create the request and start a session task. When the request

finishes, you perform similar steps to the previous method for filling in the

document sizes and word counts. The difference is that now, in the action

block, you fill the result dictionary, which contains the TF-IDF value for

each word.

�TF-IDF Algorithm
I’ve mentioned this algorithm few times now, but I haven’t explained it.

Chapter 6 Natural Language Processing on iOS

176

Note  Term frequency–inverse document frequency (TF-IDF) is a
numerical statistics method that is intended to reflect how important
a word is to a document in a collection of documents.

The first part, term frequency (TF), is about how many times a term occurs

in a document. You’ve already computed the occurrences of a word in a

document in your wordCountings dictionary. You just need to retrieve it

from there and divide it with the total word count in all documents. However,

if the word for some reason does not exist in the dictionary, the method will

return the Integer minimum value since you don’t want that word to have

an impact in the computation of the TF-IDF value (Listing 6-10). Add this

function in the Utils.swift file created earlier.

Listing 6-10.  Computing the Term Frequency in Utils.swift

func tf(urlString: String,

 word: String,

 �wordCountings: Dictionary<String, Dictionary<String, Int>>,

 totalWordCount: Int)

 -> Double {

 guard let wordCounting = wordCountings[word] else {

 return Double(Int.min)

 }

 guard let occurrences = wordCounting[urlString] else {

 return Double(Int.min)

 }

 return Double(occurrences) / Double(totalWordCount)

}

Since there are words like the, which appear often but are not

important for the meaning of the text, the inverse document frequency

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

177

is introduced. With inverse document frequency (IDF), you count how

many times a word appears in other documents. If it appears a lot (like the

will), the weight of a word is diminished. You already have the countings

value for a word in all documents in wordCountings, so you only need to

ignore the number of occurrences of the current document and sum the

other ones. The IDF factor will then be computed using a logarithm of the

division of the total number of posts with the sum (Listing 6-11). Put this

function in the Utils.swift file.

Listing 6-11.  Inverse Document Frequency Computation

func idf(urlString: String,

 word: String,

 �wordCountings: Dictionary<String, Dictionary<String,

Int>>,

 totalDocs: Int)

 -> Double {

 guard let wordCounting = wordCountings[word] else {

 return 1

 }

 var sum = 0

 for (url, count) in wordCounting {

 if url != urlString {

 sum += count

 }

 }

 if sum == 0 {

 return 1

 }

 let factor = Double(totalDocs) / Double(sum)

 return log(factor)

}

Chapter 6 Natural Language Processing on iOS

178

After the TF and IDF are computed, they are multiplied to get the total

TF-IDF weight (Listing 6-12). This is the reason you return 1 for the IDF

factor when a word doesn’t exist in the wordCountings dictionary.

Listing 6-12.  Computing the TF-IDF Weight in Utils.swift

func tfIdf(urlString: String,

 word: String,

 �wordCountings: Dictionary<String, Dictionary<String,

Int>>,

 totalWordCount: Int,

 totalDocs: Int)

 -> Double {

 return tf(urlString: urlString,

 word: word,

 wordCountings: wordCountings,

 totalWordCount: totalWordCount)

 * idf(urlString: urlString,

 word: word, wordCountings: wordCountings,

 totalDocs: totalDocs)

}

After the word weights are computed, you sort them by those weights

to get the top ten most important keywords for a post (Listing 6-13).

Add this function in the ViewController.swift file.

Listing 6-13.  Sorting the Results

private func sort(result: [String : Double]) -> [String] {

 let sorted = result.sorted(by: { (arg0, arg1) -> Bool in

 let (_, value1) = arg0

 let (_, value2) = arg1

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

179

 return value1 > value2

 }).map({ (arg) -> String in

 let (title, _) = arg

 return title

 })

 return sorted

}

Next, let’s see the UITableView data source and delegate methods in

ViewController. The data source is the posts array, which contains the

data from the local JSON file posts.json (Listing 6-14).

Listing 6-14.  UITableViewDataSource Methods

func tableView(_ tableView: UITableView,

 �numberOfRowsInSection section: Int)

-> Int {

 return posts.count

}

func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 �var cell = tableView.dequeueReusableCell(withIdentifi

er: cellIdentifier)

 if cell == nil {

 �cell = UITableViewCell(style: .default,

reuseIdentifier: cellIdentifier)

 }

 let post = posts[indexPath.row]

 let title = post["title"]!

 cell?.textLabel?.text = title

 return cell!

}

Chapter 6 Natural Language Processing on iOS

180

When the user clicks a post, the tableView(_,

didSelectRowAtIndexPath) is called, where you start the task for

extracting the keywords (Listing 6-15) .

Listing 6-15.  Table View Delegate Method Implementation

func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 tableView.deselectRow(at: indexPath, animated: true)

 selectedRow = indexPath

 let post = posts[indexPath.row]

 let urlString = post["url"]!

 loadingView.show()

 extractKeywordsTask(fromUrlString: urlString).resume()

}

The loadingView is already set up in the starter project in the

ViewController. It is a user interface (.xib file), which is loaded in the

viewDidLoad method by calling setupLoadingView (Listing 6-16). Make

sure you use the LoadingView class provided in the starter project.

Listing 6-16.  Setting Up the loadingView

private var loadingView: LoadingView! // defined as var in

ViewController

private func setupLoadingView() {

 loadingView = Bundle.main

 �.loadNibNamed("LoadingView", owner: self, options:

nil)?[0] as! LoadingView

 loadingView.frame = self.view.frame

 loadingView.isHidden = true

 self.view.addSubview(loadingView)

}

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

181

When the task finishes, the segue showWebView is performed, where

you pass all the data (post title, keywords, HTML) that is needed by the

WebViewController. The prepare(forSegue:sender) method is your

chance to pass that data to the next controller (Listing 6-17).

Listing 6-17.  Passing Data to the WebViewController

override func prepare(for segue: UIStoryboardSegue, sender:

Any?) {

 if segue.identifier == "showWebView" {

 let next = segue.destination as! WebViewController

 next.postTitle = posts[selectedRow!.row]["title"]

 next.html = selectedHtml

 next.keywords = keywords

 selectedRow = nil

 selectedHtml = nil

 keywords = nil

 }

}

Now, let’s switch to the WebViewController, which will display the

loaded HTML and the extracted keywords (see Listing 6-18). The HTML is

loaded in a web view.

Listing 6-18.  WebViewController Implementation

let languageTagger = NSLinguisticTagger(tagSchemes:

[.language], options: 0)

override func viewDidLoad() {

 super.viewDidLoad()

 self.title = postTitle

 tags.text = keywords.joined(separator: " ")

 webView.loadHTMLString(html, baseURL: nil)

Chapter 6 Natural Language Processing on iOS

182

 detectLanguage()

}

private func detectLanguage() {

 languageTagger.string = postTitle

 let language = languageTagger.dominantLanguage!

 �detectedLanguage.text = "Detected language: \

(language)"

}

If you run the app and select one post, you should have the keywords

listed at the bottom of the screen (Figure 6-2). You can see that although

the algorithm is pretty simple, the results are good. Of course, they are not

perfect, but for that you would need more advanced algorithms.

You may have noticed one more detail above the keywords on the

screenshot—the detected language. The detectLanguage method enables

this information. It uses a new property introduced in iOS 11, called

dominantLanguage of the linguistic tagger. By providing the language as a

tagScheme when initializing the NSLinguisticTagger, you can provide a

string, and the tagger tries to retrieve the language of that string. If it can’t

determine the language, the tagger returns the und value.

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

183

�Showing Orthography
You can also check the orthography for a given string. Orthography is a

description of the linguistic content of a text, usually used for spelling and

grammar checking. Apple’s NSOrthography class has methods to get the

scripts that the text contains, the dominant language, the language map,

and all the languages and scripts. Scripts are defined by four-letter tags

and can have values such as Latn, Grek, Cyrl, and so on. Languages are

described by BCP-47 tags, which is a standard for identifying languages.

For example, for English, the tag would be en.

Figure 6-2.  Extracted keywords for a blog post

Chapter 6 Natural Language Processing on iOS

184

The NSLinguisticTagger class has methods for getting and setting

the orthography at a given place of the string. Let’s see how you can do

this for the post title (Listing 6-19). Call the checkOrthography method

in the viewDidLoad of the WebViewController, after the detectLanguage

method.

Listing 6-19.  Reading the Orthography of a String

private func checkOrthography() {

 languageTagger.string = postTitle

 var range = NSRange(location: 0, length: postTitle.count)

 �if let ortoghraphy = languageTagger.orthography(at: 0,

effectiveRange: &range) {

 print(ortoghraphy.dominantScript)

 print(ortoghraphy.dominantLanguage)

 print(ortoghraphy.languageMap)

 print(ortoghraphy.allLanguages)

 }

 }

As you can see in the method, you first create a range of the string,

which in this case is the range of the post title. Then, you try to get the

orthography of the string using the orthography(at:, effectiveRange:)

method. If the orthography is not nil, you print the values of

dominantScript, dominantLanguage, languageMap, and allLanguages.

If you check the Xcode debug area, you will see the Latn value for the

dominant script, the en dominant language, a dictionary with the script as

the key and the language as the value, and an array of languages (only en in

this case) for the allLanguages array.

Chapter 6 Natural Language Processing on iOS

www.allitebooks.com

http://www.allitebooks.org

185

�Summary
With NLP methods, computers and mobile devices try to understand

human language. NSLinguisticTagger from Apple’s AVFoundation

framework is a powerful class, with lots of possibilities for developers

to make their apps smarter and more aware through NLP methods.

In the chapter, you used it to extract keywords from blog posts. You

first loaded the posts’ HTML files and stripped any unnecessary

data. Then you extracted the lemmatized words, using methods from

NSLinguisticTagger. Afterward, you precomputed the occurrences

of the words in every document. You used these calculations to

compute the TF-IDF weight of those words. By doing that, you were

able to get the keywords of every blog post. Also, you saw how to use

NSLinguisticTagger to detect what the language is and the orthography of

a given text.

Chapter 6 Natural Language Processing on iOS

187© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_7

CHAPTER 7

Sentiment Analysis
with Core ML
What exactly is machine learning, a term that’s pretty popular at the

moment? Machine learning allows computers to learn and make decisions

without being explicitly programmed on how to do something. This is

accomplished by algorithms that iteratively learn from the data provided.

It’s a complex topic and an exciting field for researchers, data scientists,

and academia. However, lately, it’s starting to be a must-know skill for

good tech people in general. Regular users expect apps to be smarter, to

learn from their previous decisions, and to give recommendations for their

future actions. For example, when you are listening to songs in YouTube-

generated playlists, you expect the next song to be tailored to your musical

taste. You expect Gmail to filter out and not bother you with all the spam

e-mails. You expect Siri to know exactly what you mean with your spoken

phrases. Machine learning is all the magic behind the scenes that makes

all this work. Since conversational interfaces would not work without this

magic, you will explore it on iOS in this chapter.

As a software engineer, you must be aware of the capabilities of

machine learning and how it might improve your applications. Apple is

also expecting you to catch up with these technologies by announcing

Core ML, which enables the integration of already trained learning

models into iOS apps. Developers can use trained models from popular

deep learning frameworks, such as Caffe, Keras, scikit-learn, LIBSVM,

www.allitebooks.com

http://www.allitebooks.org

188

and XGBoost. Using coremltools and Python scripts provided by Apple,

you can convert trained models from the frameworks mentioned to the

iOS Core ML model. This model can easily be integrated into an iOS

application. The predictions happen on the device, using both the GPU

and the CPU (depending on what’s more appropriate at the moment). This

means you don’t need an Internet connection or to use an external web

service (such as Dialogflow, for example) to provide intelligence to your

apps. Also, the predictions are pretty fast. It’s a powerful framework but

with lots of restrictions, as you will see later.

�Classifying Movie Reviews
In this chapter, you will build an app that will do text analysis in a different

way than you have so far. It will classify movie reviews as positive and

negative. Users will be able to add movies and provide reviews for them.

The app will automatically group the reviews based on an already trained

dataset (Figure 7-1). The subfield of artificial intelligence that does this is

called sentiment analysis.

Note  Sentiment analysis is the process of computationally
identifying and categorizing opinions expressed in a piece of text,
especially to determine whether the writer’s attitude toward a
particular topic is positive, negative, or neutral.

In conversational interfaces, sentiment analysis is perfect for

developing chatbots, which based on a user’s sentiment can do different

actions. In this case, if you have to respond to every movie review, you

can predict the sentiment and return a random, predefined response

(depending on whether the feedback is positive or negative).

Chapter 7 Sentiment Analysis with Core ML

189

�Creating a Core ML Model
Finding an appropriate trained model to convert to the Core ML format

can be tricky. Apple’s coremltools is still in its early stages, which means it

is still incomplete and can’t support a lot of trained models. You will use

a model trained with TF-IDF weighted word count extraction, described

in the previous chapter. The training and testing are done with the scikit-

learn framework. The resulting model is Linear Support Vector Machine

(LinearSVM), which is trained with a TF-IDF vectorized dataset. Support

vector machines are supervised learning models used for classification

and regression analysis.

Note I f you are not comfortable with Python scripting, you can
skip this part and go directly to the iOS app implementation. The
Core ML model, which is the result of the following Python code,
is already included in the starter project for this chapter; it’s called
MovieReviews.mlmodel. However, the following code might be
useful if you decide to create your own models.

Figure 7-1.  Using Core ML to determine whether a review is positive
or negative

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

190

After you have created a model in the scikit-learn framework, you have

to convert it to Core ML using coremltools. The resulting script, called

convertToCoreML.py, loads the dataset, trains and tests the model in the

scikit-learn framework, and converts it to a Core ML model, as shown

in Listing 7-1. To run the scripts in this section, you will need Python

version 2.7, coremltools (which can be installed with pip install –U

coremltools), NumPy (which can be installed via brew install numpy),

scikit-learn (which can be installed with pip install -U scikit-learn),

and Tensorflow (the installation for Mac is available at https://www.

tensorflow.org/install/install_mac/).

Listing 7-1.  Creating a Core ML Model

import os

import numpy as np

from sklearn.metrics import confusion_matrix

from sklearn.svm import LinearSVC

from sklearn.feature_extraction.text import TfidfVectorizer

from coremltools.converters import sklearn

from sklearn.feature_extraction import DictVectorizer

from sklearn.model_selection import train_test_split

def make_Corpus(root_dir):

 �polarity_dirs = [os.path.join(root_dir,f) for f in

os.listdir(root_dir)]

 corpus = []

 for polarity_dir in polarity_dirs:

 �sentiment = 'bad' if polarity_dir == 'txt_sentoken/neg'

else 'good'

 �reviews = [os.path.join(polarity_dir,f) for f in

os.listdir(polarity_dir)]

 for review in reviews:

 reviewInfo = [sentiment]

Chapter 7 Sentiment Analysis with Core ML

191

 doc_string = "";

 with open(review) as rev:

 for line in rev:

 doc_string = doc_string + line

 reviewInfo.append(doc_string)

 if not corpus:

 corpus = [reviewInfo]

 else:

 corpus.append(reviewInfo)

 return corpus

root_dir = 'txt_sentoken'

corpus = make_Corpus(root_dir)

corpus = np.array(corpus)

X = corpus[:, 1]

y = corpus[:, 0]

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.15, random_state=22)

vectorizer = TfidfVectorizer()

vectorized = vectorizer.fit_transform(X)

words = open('words_ordered.txt', 'w')

for feature in vectorizer.get_feature_names():

 words.write(feature.encode('utf-8') + '\n')

words.close()

model = LinearSVC()

model.fit(vectorized, y)

coreml_model = sklearn.convert(model)

coreml_model.save('MovieReviews.mlmodel')

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

192

Before you run the script, you need the movie reviews polarity dataset

(available at https://www.cs.cornell.edu/people/pabo/movie-review-

data/). After you have downloaded the dataset, you need to put it in the

same directory where the script is located (the root of the project in this

case), in a subdirectory called txt_sentoken. The txt_sentoken directory

should contain two subdirectories, called neg and pos. In these directories,

the positive and negative movie reviews are classified. To run the script,

type python convertToCoreML.py in the terminal at the root of the project.

In the script, you go through both the positive and negative review

directories, and you append the sentiment (which can be either bad or

good) as the first element in an array and the actual review as a second. After

you have collected the data in an array, you convert it to a multidimensional

array using the popular Python extension package NumPy.

Note Y ou are using a multidimensional array since it’s memory
efficient and provides fast numerical operations.

You create a training and testing set with the function train_test_

split, which splits arrays or matrices into random train and test subsets.

Afterward, you create TfidfVectorizer, which converts a collection of

raw documents to a matrix of TF-IDF features. You also create a new text

file called words_ordered.txt with all the words of the vectorizer (you

will need this later). This vectorized data is used to create the LinearSVC

model, which is then converted to the Core ML format, using the

scikit-learn converter from coremltools.

If you open this model in Xcode, you will see some basic information

about it, the Swift-generated code that you can use in your app, and the

input and output parameters (Figure 7-2).

Chapter 7 Sentiment Analysis with Core ML

193

The input format defines what the model expects to receive to provide

prediction based on the training set. You might have expected a string

(movie review) as an input to the model, which returns whether the

sentiment is good or bad. However, here you have MLMultiArray, which is

a multidimensional array used as input to most Core ML models (you can

also send images to the models, but that’s not applicable to this app). This

array has a dimension of 39659. How do you create such input?

Figure 7-2.  Generated Core ML model for movie reviews

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

194

If you examine the movie review dataset and the words_ordered.txt

file, you will see that it actually has 39,659 words. It is trained and tested

with the TF-IDF vectorizer, so what you need here is to compute the TF-

IDF weight factor for every word of the review the user has entered and put

it at the exact place in MLMultiArray as it is ordered in the words_ordered.

txt file. All the other entries in the multidimensional array (words that

don’t appear in the review) will be zeros, so they don’t influence the result.

But now you have another big problem. You need to compute the

TF-IDF weight, which requires word counts of all the occurrences of the

words in the other 1,000 positive and 1,000 negative training reviews. If you

do this every time the user types a review, you will put your users to sleep

with your slowness and inefficiency. What you need is to precompute the

word occurrences and the index in the word ordering for every word and

put them in a dictionary so they can be accessed in real time, whenever

they are needed. Precomputing will speed up the process a lot, and the

resulting output is the words.json file (Listing 7-2). The JSON file has

dictionary entries, where the key is the word from the review (movie in the

sample). The value is the dictionary containing the values for the index of

the word in the multidimensional array, as well as the count of the word in

the training set.

Listing 7-2.  JSON File with Precomputed Word Counts

{

 "movie" : { "index" : 123, "count" : 50 },

 ...

}

To do this, you will have to do more Python scripting. You go through

all the text files in the positive and negative datasets and count each

word in every file. You iterate through the ordered words array in words_

ordered.txt to get the index of every word in the multidimensional array

(Listing 7-3).

Chapter 7 Sentiment Analysis with Core ML

195

Listing 7-3.  Precomputing Word Counts

import os

import re

import json

import sys

sys.stdout=open('words.json','w')

from collections import Counter

from glob import iglob

wordsRaw = open('words_ordered.txt', 'r')

words_array = []

for line in wordsRaw:

 words_array.append(line.rstrip())

frequency = {}

def removegarbage(text):

 text=re.sub(r'\W+',' ',text)

 text=text.lower()

 return text

folderpaths=['txt_sentoken/pos/', 'txt_sentoken/neg/']

counter=Counter()

for folderpath in folderpaths:

 for filepath in iglob(os.path.join(folderpath,'*.txt')):

 with open(filepath,'r') as filehandle:

 �counter.update(removegarbage

(filehandle.read()).split())

for word,count in counter.most_common():

 frequency[word] = count

result = {}

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

196

index = 0

for word in words_array:

 info = {}

 info["count"] = frequency[word]

 info["index"] = index

 result[word] = info

 index += 1

print(json.dumps(result))

�Doing the iOS App Implementation
That’s everything you need to get started with coding the iOS app, which

is the simpler part in this case. Open the starter project for this chapter

(with the Core ML model included), or create your own single-view

application with the user interface provided in Figure 7-3 and call it

SentimentAnalysis.

You will store the movies locally, in UserDefaults. For this app, you

only need the title of the movie, as well as the positive and negative reviews

for the movie. The MovieManager class takes care of this; it provides

Figure 7-3.  User interface of the movie reviews app

Chapter 7 Sentiment Analysis with Core ML

197

methods for adding and listing movies, as well as adding and retrieving

reviews for a particular movie (Listing 7-4).

Listing 7-4.  Movie Manager Implementation

class MovieManager {

 private let moviesKey = "moviesKey"

 private let positivesKey = "positivesKey"

 private let negativesKey = "negativesKey"

 �private var savedMovies = Dictionary<String,

Dictionary<String, Array<String>>>()

 static let sharedInstance = MovieManager()

 init() {

 �if let saved = UserDefaults.standard.value(forKey:

moviesKey) {

 �savedMovies = saved as! Dictionary<String,

Dictionary<String, Array<String>>>

 }

 }

 �func movies() -> Dictionary<String, Dictionary<String,

Array<String>>> {

 return savedMovies

 }

 func addMovie(withTitle title:String) {

 �let moviesInfo: Dictionary<String, Array<String>> =

[positivesKey : [], negativesKey : []]

 savedMovies[title] = moviesInfo

 saveChanges()

 }

 �func addReview(toMovieTitle movieTitle: String, review:

String, sentiment: ReviewSentiment) {

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

198

 var key = positivesKey

 if sentiment == .Bad {

 key = negativesKey

 }

 if var movieInfo = savedMovies[movieTitle] {

 var reviews = [String]()

 reviews = movieInfo[key]!

 reviews.append(review)

 movieInfo[key] = reviews

 savedMovies[movieTitle] = movieInfo

 } else {

 �var movieInfo: Dictionary<String, Array<String>> =

[positivesKey : [], negativesKey : []]

 let reviews = [review]

 movieInfo[key] = reviews

 savedMovies[movieTitle] = movieInfo

 }

 saveChanges()

 }

 �func positiveReviews(forMovieTitle movieTitle: String) ->

[String] {

 �return reviews(forMovieTitle: movieTitle, key:

positivesKey)

 }

 �func negativeReviews(forMovieTitle movieTitle: String) ->

[String] {

 �return reviews(forMovieTitle: movieTitle, key:

negativesKey)

 }

 �private func reviews(forMovieTitle movieTitle: String, key:

String)

Chapter 7 Sentiment Analysis with Core ML

199

 -> [String] {

 if let movieInfo = savedMovies[movieTitle] {

 return movieInfo[key]!

 } else {

 return []

 }

 }

 private func saveChanges() {

 �UserDefaults.standard.set(savedMovies, forKey:

moviesKey)

 UserDefaults.standard.synchronize()

 }

}

The most interesting part here is the addReview(toMovieTitle,

review,sentiment:) method. The method takes a movie title, a review,

and a sentiment and saves them to your internal storage. For the

sentiment, you define an enumeration since you don’t want to work with

plain strings (Listing 7-5).

Listing 7-5.  Sentiment Enumeration in the MovieManager

enum ReviewSentiment {

 case Good

 case Bad

}

The movies stored in MovieManager are used as data sources in the

initial ViewController that is shown on application start (Listing 7-6).

The movies are presented in a table view. Whenever the user selects one

of the listed movies, a new screen is shown that displays the positive and

negative movie reviews.

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

200

Listing 7-6.  Displaying Movies in a Table View in ViewController.

swift

func tableView(_ tableView: UITableView,

 �numberOfRowsInSection section: Int) ->

Int {

 return MovieManager.sharedInstance.movies().count

}

func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 �var cell = tableView.dequeueReusableCell(withIdentifi

er: cellIdentifier)

 if cell == nil {

 �cell = UITableViewCell(style: .default,

reuseIdentifier: cellIdentifier)

 }

 let movieTitle =

 �Array(MovieManager.sharedInstance.movies().keys)

[indexPath.row]

 cell?.textLabel?.text = movieTitle

 return cell!

}

As mentioned at the beginning of the chapter, the app will allow users

to add movies they want to review. Both adding and reviewing of the

movies will require a similar alert controller, with small modifications. To

reuse the common functionality between these two features of the app,

you define two helper methods in a new Swift file called Util.swift. The

first one creates an alert controller with a title and an input field with a

placeholder (Listing 7-7).

Chapter 7 Sentiment Analysis with Core ML

201

Listing 7-7.  Creating an Alert for Adding Items in Util.swift

func alertForAddingItems(title: String,

 placeholder: String)

-> UIAlertController {

 let alertController = UIAlertController(title: title,

 message: nil,

 �preferredStyle:

.alert)

 alertController.addTextField { textField in

 textField.placeholder = placeholder

 }

 return alertController

}

The second helper method adds to the created alert controller Save

and Cancel buttons and an action that needs to be performed when the

Save button is tapped (Listing 7-8).

Listing 7-8.  Helper Method for Adding Save and Cancel Buttons to

an Alert Controller, Defined in Util.swift

func addActions(toAlertController alertController:

UIAlertController,

 �saveActionHandler: @escaping ((UIAlertAction)

-> Swift.Void))

 -> UIAlertController {

 let saveAction = UIAlertAction(title: "Save",

 style: .default,

 handler: saveActionHandler)

 let cancelAction = UIAlertAction(title: "Cancel",

 style: .cancel,

 handler: { action in

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

202

 �alertController.

dismiss(animated:

true,

 completion: nil)

 })

 alertController.addAction(saveAction)

 alertController.addAction(cancelAction)

 return alertController

}

When the user taps the navigation bar button for adding movies in

the ViewController, you use these two methods to display the pop-up for

adding the movie. In the saveActionHandler, you call the MovieManager’s

addMovie(withTitle:) method to persist the movie locally on the user’s

device (Listing 7-9).

Listing 7-9.  Alert for Adding Movies in ViewController.swift

private func alertForAddingItems() -> UIAlertController {

 �let alertController = SentimentAnalysis.

alertForAddingItems(

 �title: "Please provide movie

title",

 �placeholder: "Movie

title")

 return addActions(toAlertController: alertController,

 �saveActionHandler: { [unowned self]

action in

 �let textField = alertController.

textFields![0]

 if let text = textField.text {

 if text != "" {

 �MovieManager.

sharedInstance.addMovie(

Chapter 7 Sentiment Analysis with Core ML

203

 withTitle: text)

 self.tableView.reloadData()

 }

 }

 �alertController.dismiss(animated:

true, completion: nil)

 })

}

Then, you need to call this method when the user taps the add button,

by implementing its @IBAction method in the ViewController (Listing

7-10). This presents the pop-up with a text field to the user.

Listing 7-10.  Implementing the Click Handler of the Add Button

@IBAction func addButtonClicked(button: UIButton) {

 let alertController = self.alertForAddingItems()

 �self.present(alertController, animated: true,

completion: nil)

}

The last thing you need to do in the ViewController is to implement

the selection of a movie from the table view, as well as pass the selected

data to the next view controller, which is the MovieViewController

(Listing 7-11). In the didSelectRow method of the table view, you

just save the selection and perform the showMovieReviews segue.

In the prepare method for the segue, you pass the movie title to the

MovieViewController.

Listing 7-11.  Selecting a Movie from the List

private var selectedIndex: IndexPath? // defined as var in the

ViewController

func tableView(_ tableView: UITableView,

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

204

 didSelectRowAt indexPath: IndexPath) {

 tableView.deselectRow(at: indexPath, animated: true)

 selectedIndex = indexPath

 �performSegue(withIdentifier: "showMovieReviews",

sender: self)

}

override func prepare(for segue: UIStoryboardSegue, sender:

Any?) {

 if segue.identifier == "showMovieReviews" {

 �let movieTitle = Array(MovieManager.sharedInstance.

movies().keys)[selectedIndex!.row]

 �let next = segue.destination as!

MovieViewController

 next.movieTitle = movieTitle

 }

}

Next, let’s switch to the MovieViewController, which contains the

most interesting parts. In Listing 7-12, you define a few variables that are

needed in the implementation of this view controller.

Listing 7-12.  MovieViewController Variables

private var currentSentiment: ReviewSentiment = .Good

private var wordCountings = Dictionary<String,

Dictionary<String, Int>>()

let movieReviews = MovieReviews()

var movieTitle: String!

The MovieViewController will display either the positive or negative

reviews based on the selection of a segmented control at the top of the

screen. The currentSentiment variable will keep track of the current state

of the segmented control. The variable wordCountings is used to store

Chapter 7 Sentiment Analysis with Core ML

205

the contents of the words.json file, which you generated in the previous

section. This variable will help you in computing the TF-IDF value of

the words in the movie review. The movieReviews constant holds the

generated Core ML class, used for interacting with the model you have

integrated into your project.

First, let’s populate the wordCountings dictionary by calling

the loadWordCountings method in the viewDidLoad method of the

MovieViewController (Listing 7-13).

Listing 7-13.  Loading the Counts of the Words

private func loadWordCountings() {

 �let wordsUrl = Bundle.main.url(forResource: "words",

withExtension: "json")!

 do {

 let wordsData = try Data.init(contentsOf: wordsUrl)

 �wordCountings = try JSONSerialization.

jsonObject(with: wordsData,

 options: .allowFragments)

 as! Dictionary<String, Dictionary<String, Int>>

 } catch {

 print("error loading words")

 }

}

Next, you need to display the reviews that are already saved in the

MovieManager. Based on the currentSentiment state, you load either

the positive or the negative movie reviews in the table view of the

MovieViewController (Listing 7-14).

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

206

Listing 7-14.  Presenting the Movie Reviews in a Table View in the

MovieViewController

func tableView(_ tableView: UITableView, numberOfRowsInSection

section: Int) -> Int {

 if currentSentiment == .Good {

 return MovieManager.sharedInstance.positiveReviews(

 forMovieTitle: movieTitle).count

 } else {

 return MovieManager.sharedInstance.negativeReviews(

 forMovieTitle: movieTitle).count

 }

 }

func tableView(_ tableView: UITableView,

 �cellForRowAt indexPath: IndexPath) ->

UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: cellIdentifier) as! ReviewCell

 var review = ""

 if currentSentiment == .Good {

 review = MovieManager

 .sharedInstance

 �.positiveReviews(forMovieTitle: movieTitle)

[indexPath.row]

 } else {

 review = MovieManager

 .sharedInstance

 �.negativeReviews(forMovieTitle: movieTitle)

[indexPath.row]

 }

 cell.reviewLabel.text = review

 return cell

}

Chapter 7 Sentiment Analysis with Core ML

207

What follows is the implementation of adding the movie reviews.

For this, you will reuse your two helper methods to create an alert

controller with save functionality. In the saveActionHandler of

addActions(toAlertController:, saveActionHandler:), you read the

entered value from the text field and then determine the sentiment of

that value using the MovieReviews model. Afterward, you save the review,

along with the sentiment, using the MovieManager’s addReview(toMovieT

itle:review:sentiment) method (Listing 7-15). Add this method in the

MovieViewController.

Listing 7-15.  Alert for Adding Movie Reviews

private func alertForAddingItems() -> UIAlertController {

 �let alertController = SentimentAnalysis.

alertForAddingItems(

 �title: "Please give movie review",

 �placeholder: "Movie

review")

 return addActions(toAlertController: alertController,

 �saveActionHandler: { [unowned self]

action in

 �let textField = alertController.

textFields![0]

 if let text = textField.text {

 if text != "" {

 �MovieManager.

sharedInstance.addReview(

 �toMovieTitle: self.

movieTitle,

 review: text,

 �sentiment: self.

sentiment

(forReview: text))

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

208

 self.tableView.reloadData()

 }

 }

 �alertController.dismiss(animated:

true, completion: nil)

 })

}

How do you determine the sentiment here? The

sentiment(forReview:) method does that. It receives string input

entered by the user, calls the convert(string:wordCountings) method

(which you will see in Listing 7-17), and then sends the newly created

multidimensional array to the MovieReviews Core ML model. The model

tries to make a prediction, and if it fails, you will be nice and assume it’s a

positive review. If the prediction is successful, you check which polarity

has bigger class probability and use that as a sentiment (Listing 7-16).

Listing 7-16.  Determining the Sentiment of a Movie Review

private func sentiment(forReview review: String) ->

ReviewSentiment {

 let mlMultiArray = SentimentAnalysis.convert(

 string: review,

 �wordCountings:

wordCountings)

 �guard let predictionOutput = try? movieReviews.

prediction(

 input: mlMultiArray)

else {

 �print("Error producing sentiment, setting good

sentiment as default")

 return .Good

 }

Chapter 7 Sentiment Analysis with Core ML

209

 return sentiment(forPrediction: predictionOutput)

 }

private func sentiment(forPrediction prediction:

MovieReviewsOutput)

-> ReviewSentiment {

 �let goodSentiment = prediction.classProbability["good"]!

 let badSentiment = prediction.classProbability["bad"]!

 if goodSentiment > badSentiment {

 return .Good

 } else {

 return .Bad

 }

}

The convert(string:wordCountings) method takes the user review

and the wordCountings value that you loaded from the words.json file as

input and returns MLMultiArray with TF-IDF weight factors. You do this by

creating MLMultiArray and filling everything with zeros. Then, you get the

words from the sentence by removing the punctuation and whitespaces.

You can also do this with NSLinguisticTagger (see the previous chapter

for more details). Then you go through the separated words and try

to get the word count and index from the precomputed dictionary

wordCountings. You use this information to compute the TF-IDF factor

and update the multidimensional array index with the new value

(Listing 7-17). Add this method in the Util.swift file you created earlier.

Listing 7-17.  Converting a String to Multidimensional Input for

Core ML

func convert(string: String,

 �wordCountings: Dictionary<String,

Dictionary<String, Int>>)

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

210

-> MLMultiArray {

guard let mlMultiArray = try?

 �MLMultiArray(shape:[NSNumber(integerLiteral:

ArraySize)],

 dataType:MLMultiArrayDataType.double)

 else {

 fatalError("Unexpected runtime error. MLMultiArray")

 }

 for i in 0..<ArraySize {

 mlMultiArray[i] = 0

 }

 let separatedWords: [String] = string

 .components(separatedBy: .punctuationCharacters)

 .joined()

 .components(separatedBy: .whitespaces)

 .filter{!$0.isEmpty}

 for word in separatedWords {

 if let wordInfo = wordCountings[word] {

 let index = wordInfo["index"]!

 let countInDoc = wordInfo["count"]!

 let wordOccurencies = occurencies(ofWord: word,

 inList: separatedWords)

 let tf =

 �Double(wordOccurencies) / Double(separatedWords.

count)

 let idf =

 �log(Double(wordCountings.count) /

Double(countInDoc))

 mlMultiArray[index] = NSNumber(value: tf * idf)

 }

 }

Chapter 7 Sentiment Analysis with Core ML

211

 return mlMultiArray

}

private func occurencies(ofWord word: String, inList list:

[String])

-> Int {

 var count = 0

 for entry in list {

 if entry == word {

 count += 1

 }

 }

 return count

}

Before you test the app, you need to add methods that handle a

selection change of the segmented control, as well as the tap of the button

for adding movie reviews (Listing 7-18).

Listing 7-18.  Handling Segmented Control Selection Change and

Add Button Tap

@IBAction func segmentedValueChanged(control:

UISegmentedControl) {

 if control.selectedSegmentIndex == 0 {

 currentSentiment = .Good

 } else {

 currentSentiment = .Bad

 }

 updateState()

}

private func updateState() {

 tableView.reloadData()

}

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

212

@IBAction func addButtonClicked(button: UIButton) {

 let alertController = self.alertForAddingItems()

 �self.present(alertController, animated: true,

completion: nil)

}

If you now try the app, add any movie (let’s say Harry Potter), and

open the movie details, you can start adding reviews. Let’s first try with few

positive ones, such as “Unique and amazing, one of the best movies ever.”

You will see that your model will classify this review in the positive section,

along with other similar reviews such as “Excellent movie, I really enjoyed

watching it.” This is what you were expecting (Figure 7-4).

Figure 7-4.  Adding a positive movie review

Chapter 7 Sentiment Analysis with Core ML

213

Let’s now add some negative reviews, such as “This movie sucks, it’s

weird and boring.” The model will correctly classify this as a negative

review (Figure 7-5).

Of course, sentiment analysis doesn’t always work perfectly.

Implementing machine learning and training a model are really hard

to get right, and a margin of error is always present. If you try several

different examples, you will see that it might produce a wrong sentiment

sometimes.

�Understanding Core ML Limitations
This leads us to the biggest problem of Core ML: the models can’t be trained

additionally after the user starts using the app. For example, if a review is

classified in the wrong polarity, the user cannot provide input that this is

the wrong answer. Therefore, the Core ML model won’t be able to learn

and improve for future similar requests. Core ML only makes predictions

on previously trained models; it’s not a machine learning framework itself.

Let’s hope that this will be enabled in future versions. One workaround

would be to ask the user whether a prediction was correct and send that

answer to your back end. When you have enough such corrections, you

could retrain your model and submit an app update. It’s not that elegant,

but it can be used as a workaround until there is better way.

Figure 7-5.  Negative reviews

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

214

That also prevents you from providing a customized user experience.

If you want to learn the preferences of users and based on that give

recommendations (like, for example, in a music app), that’s currently not

possible with Core ML.

Another issue with Core ML is the size. The more test data you add,

the bigger the model. This is not a huge issue in this example since you are

dealing with text, but it might be when dealing with images or larger text

datasets. No one would install an app bigger than 100 MB to 200 MB.

In any case, Core ML provides iOS software engineers with a great tool

to get started with machine learning. The main role of Core ML currently

is to bridge the gap between academics (who do the work of researching,

designing algorithms, and training datasets) and developers (who don’t

have much machine learning expertise but know how to bring production-

ready apps to the real world). The framework is still in its early phases, so

it will improve a lot, as will your know-how of it and machine learning in

general.

�Summary
To sum up, you used the Core ML framework for sentiment analysis of

movie reviews. You trained a model using the scikit-learn framework with

an already available large dataset of movie reviews. You then used Apple’s

coremltools to convert the model to its proprietary Core ML model.

After this model was integrated in Xcode, you generated an interface for

accessing the model. You then computed the TF-IDF value for every new

sentence and sent a multidimensional array with the inputs to the model.

Core ML returned a prediction of whether a movie review was positive or

negative. Based on this information, you saved the movie reviews locally

and displayed them separately in a filtered list. The process is illustrated in

Figure 7-6. The machine learning step is more suitable for a data scientist.

Choosing the right dataset, implementing the right machine learning

Chapter 7 Sentiment Analysis with Core ML

215

algorithm, and fine-tuning and changing the parameters requires a lot

of expertise in this area. The second step, the iOS integration, is where

developers step in. They can easily integrate the Core ML model and focus

on what they do best, which is creating apps and utilizing the established

mobile technologies and concepts.

Figure 7-6.  Overview of the process of doing sentiment analysis with
Core ML

Chapter 7 Sentiment Analysis with Core ML

www.allitebooks.com

http://www.allitebooks.org

217© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2_8

CHAPTER 8

Conversational
Interface Challenges
In the previous chapters, you learned about the current state of

conversational interfaces on a technical level. In this chapter, you’ll see

what challenges developers might face in this area and what you can

expect in the future.

�Security
Probably the biggest challenge is security. I mentioned in Chapter 1 how

easy it is to give voice commands to mobile devices; it feels natural and in

line with our interactions with people. However, someone else can come

near your phone and say “Hey, Siri, send a million dollars to my account

with number 123.” If you were lucky enough to have that kind of money in

your account, you would not have it anymore. The same applies to other

domains that Siri supports. For example, there is the Car Commands

domain. Someone else could say “Hey, Siri, unlock my car.” If you are

in a crowded place, you might not even hear this happen. Even worse,

Siri can send messages on your behalf. Imagine someone else sending

vicious messages to your loved ones from your phone just by giving a voice

command or instructing the phone to call your boss at 4 a.m. Siri can also

218

give access to your photo album, which contains private photos. As you

can see, there are countless examples where security and privacy are big

issues for Siri and other voice assistants.

How do you address this? The first and most obvious protection that

comes to mind is to restrict the phone to accept commands only from

your own voice. With Siri, you can already do that. If you go to

Settings ➤ Siri, you will see a switch that says Allow “Hey Siri” that will

guide you to a five-step training, after which Siri will respond only to your

commands (Figure 8-1).

Figure 8-1.  Making Siri respond only to your voice

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

219

However, a lot of users probably don’t know about this feature and

expose Siri to everyone. We, as developers, don’t have information about

whether a user has activated this protection, so you have to be careful

about providing options via a voice interface. Another problem here might

be if the user is recorded while speaking, someone could create a voice

command by combining parts of the recording.

For the Speech framework, currently there is no such protection. It’s

probably not needed that much because the only way to use it is while the

application is running in the foreground. If the unlocked phone is in bad

hands, then both the touch interface and the voice commands are exposed

at the same level, so the standard security issues for regular apps are

applicable here as well.

The next level of protection is to provide authentication when sensitive

data is requested. With Siri, in the Info.plist file of the extension, where

you define extension attributes and which intents are supported, there

is an additional key called IntentsRestrictedWhileLocked. Here, you

can define the intents that require the user to unlock the phone before

proceeding with the execution of the Siri request (Figure 8-2).

Figure 8-2.  Setting restricted intents for Siri

Chapter 8 Conversational Interface Challenges

220

Additional protection can be added just before performing a sensitive

action, such as sending money or unlocking a car. You can accomplish this

both in Siri and in the Speech framework using the LocalAuthentication

framework. This framework supports two forms of authentication: by

entering a user’s passcode and by using Touch ID (or Face ID if you

have an iPhone X). Only after the users authenticate themselves can you

proceed with the execution of the sensitive task. Listing 8-1 shows how you

can ask for Touch ID or Face ID. Note that you don’t have to specify which

form of identification you need. The framework itself will determine, based

on the device, which authentication will be presented. However, you as a

developer should not use text (for localizedReason) that contains either

the Touch ID or Face ID string since that might confuse users if they don’t

have that form of authentication.

Listing 8-1.  Asking for Touch ID or Face ID

let context = LAContext()

var authError: NSError?

If context.canEvaluatePolicy(

 �LAPolicy.deviceOwnerAuthentication

WithBiometrics,

 error: &authError) {

 context.evaluatePolicy(

 �LAPolicy.deviceOwnerAuthentication

WithBiometrics,

 �localizedReason: "Allow Siri to unlock

your car")

 { (success, evaluateError) in

 if (success) {

 �// User authenticated successfully, perform

action

 } else {

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

221

 // User did not authenticate, show an error

 }

 }

} else {

 �// Could not evaluate policy; present a message to

user

}

The user will be presented with the standard Touch ID pop-up

(Figure 8-3). If your app executes payments, you can also use Apple Pay

directly; you will get the authentication part for free.

This works nicely, but it requires interaction with the phone, either by

typing a four- or six-digit passcode or by providing your fingerprint. So, it’s

not conversational anymore. There are already biometric companies that

try to tackle this, especially in the intersection of conversational interfaces

and the Internet of Things. There probably isn’t a perfect single solution;

Figure 8-3.  Siri Touch ID pop-up

Chapter 8 Conversational Interface Challenges

222

it will be a combination of biometrics, such as voice, face, touch, eye, and

palm. One cool approach is to analyze your movement and gestures over

time by using the iPhone sensors to detect whether it is really you holding

the phone. This, combined with additional voice confirmation like “My

voice is my password,” might be secure enough. It’s a really interesting

topic, and it will be exciting to see innovations in this area.

�Quality
Although there are significant improvements in machine learning and

natural language processing, there is still a lot of room for improvement.

For example, in the speech detection part, words with similar

pronunciation are often mixed up. If you want to say “eye,” the speech

recognition system might detect that as “I,” or vice versa. There are a lot

of examples like this, and the more you use conversational interfaces, the

more you will see them. Such issues can’t be solved completely, but getting

an idea of the broader context of the conversation, or about the type of

application that is using them, might improve the results.

Noise is also a problem. When you think of the typical user of voice

assistants, you usually think about someone who’s always in a rush, in

crowded places, or driving while music is playing. All those sounds in the

background can affect the quality of the recognized text and, in the end,

can affect the ability to understand what the user is trying to say. In any

case, addressing this issue would be one of the most critical success factors

of conversational interfaces.

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

223

�Project Common Voice
Another challenge in the quality of natural language understanding is

the lack of voice data. No matter how sophisticated and advanced the

algorithms are for intent detection and entities extraction, a key ingredient

is the need for a large amount of testing data. However, most of the data

collected by large companies is not available for everyone to use.

Mozilla has tried to address this issue by launching the project

Common Voice. The project’s goal is to open voice recognition to

everyone. Through the web site (https://voice.mozilla.org), users can

donate their voice by reading sample sentences (Figure 8-4). Also, users

can validate whether other users have correctly read the sample sentences.

This helps a lot in the voice recognition process.

Figure 8-4.  Reading sentences for Mozilla’s Common Voice
project

Chapter 8 Conversational Interface Challenges

224

The project is open source, with a Creative Commons License.

Mozilla encourages developers to launch the same web site in multiple

languages. With the project, Mozilla also tries to solve the problem with

multilanguage support. Currently, only the most popular languages

(particularly English) have good voice recognition and natural language

understanding support. However, for conversational interfaces to obtain

massive market adoption, there has to be good support in as many

languages as possible. People will rarely use, for example, an English

voice assistant when shopping in a country where English is not the native

language. The community has the potential to provide enough data, and

the Common Voice project is a step toward that goal.

Note T he Creative Commons License enables free distribution of a
copyrighted work.

�Is It Dangerous?
I mentioned the movie Her in Chapter 1. For those of you who haven’t

watched it, it’s about a lonely writer who develops an unlikely relationship

with an operating system. The operating system learns over time what the

main character needs and adjusts itself based on that input. The writer

becomes more and more dependent on the OS, losing touch with reality.

This movie gives a glimpse of how dangerous artificial intelligence can be.

Such advancements in AI are not that far off. Dialogflow, which you

explored in Chapter 4, has a Small Talk agent that offers lots of questions

and phrases for you to answer. Based on that, it customizes its responses.

In other words, it learns what you want to read or hear (Figure 8-5).

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

225

�Will People Use It?
That’s the biggest question. Most people feel strange walking around the

streets and talking with their voice assistants. A recent survey has shown

that 98 percent have at least tried Siri, but only 3 percent of them have

used it in public. The reason why they haven’t used it in public is that they

felt uncomfortable talking to their device in public. But when they are not

surrounded by other people, such as when they are in a car or at home,

people use voice assistants. Sixty-two percent of iPhone owners use Siri

in the car, probably because they are less distracted by the phone and

because of the hands-free driving laws.

Figure 8-5.  Dialogflow’s Small Talk agent

Chapter 8 Conversational Interface Challenges

226

Usage at home also makes sense since we are usually more

comfortable at home (and lazier). With the rise of the smart home and the

Internet of Things, conversational interfaces are needed more than ever.

For example, if the light switch is far away from the bed, who wouldn’t just

say “Turn off the light” instead of getting up and doing this by themselves?

Another place where conversational interfaces could be used more in

the future is a technical support business. People tend to ask the same set

of questions when calling support people, which makes the introduction

of a chatbot a good solution, at least as a filter for the standard questions.

If the chatbots can’t resolve the issue by themselves, the support people

can take over. But then only a few support people would be needed, which

brings us to the problem of artificial intelligence killing jobs—a topic worth

an entire book.

These technologies can also be used in the service industries. Imagine

people inspecting machines or trains or anything else that could be

damaged and just saying “Oh, the window is broken here.” Their assistant

writes everything down and uploads it (along with the location) to the

cloud. The repair person could see where the damage is and solve the

problem with less communication and paperwork.

You have probably seen in a lot of movies the protocol that police

officers following while investigating crimes. Detectives inspect the crime

scene and look for details that will give indications about what happened.

Everything they find is written in a report. Instead of typing everything,

imagine the usage of voice assistants and natural language understanding.

The detectives would just talk to their apps, which if trained with specific

domain knowledge, would be able to categorize all the data into sections of

a report, such as the location of the crime, clues, fingerprints found, and so

on. It would help detectives save time by filling in the paperwork for them.

Training chatbots with domain knowledge and then using them as

help in daily work is applicable to many other areas. For example, doctors

could use such voice assistants while doing visits. They could ask the

patients how are they feeling, and this information could be used to fill in

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

227

a report generated by the voice assistant. Any other doctor notes, such as

patient symptoms, condition updates, or questions, could also be directly

included in the report.

Food businesses such as Subway use chatbots via Facebook Messenger

already; the chatbots allow customers to order and pay for food without

waiting in the line (Figure 8-6). Any service that has long queues of

impatient people could use such technology.

Figure 8-6.  Subway Messenger chatbot for food ordering

Chapter 8 Conversational Interface Challenges

228

If you still have doubts about conversational interfaces, maybe this last

example of the book will change your mind. Recently, a four-year-old child

found his mom lying motionless in their home. With no one else around

to help, the boy’s last resort was the mom’s phone nearby. He activated

Siri, asked for help, and within 13 minutes the emergency service arrived,

saving the mother’s life. If there was no Siri, he probably wouldn’t have

been able to make the call. The phone was probably locked, and even if it

was not, a four-year-old child probably wouldn’t have known how to dial

the emergency service number.

This highlights two great benefits of conversational interfaces: ease of

use and accessibility. Even someone with modest technological knowledge

is able to give commands that a machine will understand. This has the

potential to make tech devices more accessible to everyone.

�Summary
These are only few examples where conversational interfaces will be used

in the future. As you can see, there are lots of opportunities and plenty of

room for innovation. People might not use conversational interfaces in

public yet, but for sure they will use them in contexts where they can get

their jobs done more efficiently. The future of conversational interfaces

is exciting. You can expect a lot of cool ideas, which will ideally make our

lives easier and better.

Chapter 8 Conversational Interface Challenges

www.allitebooks.com

http://www.allitebooks.org

229© Martin Mitrevski 2018
M. Mitrevski, Developing Conversational Interfaces for iOS,
https://doi.org/10.1007/978-1-4842-3396-2

Index

A, B
AVSpeechSynthesizer

audioSession, 111, 121
AVAudioSession, 122
AVSpeechSynthesisVoice, 117
AVSpeechUtterance, 111
createRemainingText, 120
createUtterance, 119–120
LanguageViewController,

114–115, 117–118
navigation controller, grocery

list storyboard, 114
playRemainingText, 119
saving, sliders’ values, 116–117
SettingsManager, 111–112, 116
SettingsViewController,

114–115
setupSettingsButton, 121
updating, recognition task,

122, 124

C
Conversational interfaces

benefits, 228
Common Voice project,

223–224
crimes, movies, 226

Dialogflow’s Small Talk agent,
224–225

food businesses, 227
home usage, 226
quality, 222
security

authentication, 219
passcode/fingerprint, 221
setting restricted intents for

Siri, 219
Speech framework, 219
Touch ID or Face ID,

220–221
voice commands, 217–218

survey, 225
technical support business, 226
technologies, 226
training chatbots, 226

D, E, F
Dialogflow

agent
adding values, product

entity, 126
AddProduct intent, 127
annotating entities, test

sentences, 129

230

creating, 125
intent, 126
languages, 131
mandatory value, 127
RemoveProduct, 128, 131
testing, 130
webhooks, 131

ApiAIResponse struct, 132–133
ApiAIService, 133, 134
client access token, 133
CocoaPods, 132
complex queries, 140–141
extracting products, 136–137
FailureApiAIResponseBlock, 133
JSON response, 124, 135–136
keywords, 125
Podfile, 132
sign up with Google account, 125
SpeechHelper, 138
SuccesfullApiAIResponse

Block, 133
ViewController

extractProducts(fromText:),
139–140

startRecording, 138

G, H, I, J, K
GroceryList app

add and remove predefined
items, 92

adding permissions, property
list, 93

checking permissions, speech
framework, 94–95

Dialogflow (api.ai) (see
Dialogflow)

handleRecordingStateChange
method, 99–100

helper methods, displaying
alerts, 95

implementation, overview, 142
products, 93–94
SpeechHelper class, 96–97
SpeechPlayground, 93
speech recognition (see Speech

recognition)
start recording, 92
Strings (removalWords,

stoppingWords, and
products), 97

text to speech implementation
(see AVSpeechSynthesizer)

to-do list, 92
UIAlertController, 95
user interface, 98–99
web service, 92

L
Language Understanding

Intelligent Service (LUIS),
162–163

Dialogflow (cont.)

Index

www.allitebooks.com

http://www.allitebooks.org

231

M
Movie reviews

Core ML model
convertToCoreML.py, 190
JSON file, precomputed

word counts, 194
MLMultiArray, 193–194
positive and negative,

188–189
precomputing word counts,

195–196
Python extension package

NumPy, 192
scikit-learn framework,

189–190
Swift-generated code,

192–193
training and testing set, 192
txt_sentoken, 192

iOS app implementation
adding movies,

ViewController, 202–203
alert controller, 200–201
alertForAddingItems, 201,

207–208
convert(string:word

Countings), 209
displaying movies in table

view, 199–200
Harry Potter, 212–213
helper methods, 207
@IBAction method, 203

loadWordCountings, 205
MovieManager class,

196–197
movie reviews in table view,

205–206
movie selection, 203
MovieViewController

variables, 204
Save and Cancel buttons,

helper method, 201–202
segmented control selection

change and add button,
211–212

sentiment enumeration, 199
sentiment(forReview:),

208–209
user interface, 196

N
Natural language processing (NLP)

description, 165
keywords extraction

enumerateTags(in:, unit:,
scheme:, options:), 173

extractKeywordsTask, 174
HTML tags, 169, 171
joinNames option, 173
JSON file, posts information,

166–167
lexicalClass, 173
loadPosts method, local

JSON file, 167–168

Index

232

NSLinguisticTagger class,
166, 173

NSLinguisticTagScheme, 173
request for data task, 171
search data, 168
String class, 169
TF-IDF algorithm (see Term

frequency–inverse
document frequency
(TF-IDF) algorithm)

unit parameter, 173
user interface, 167
wordCountings and

documentSizes, 169
wordCounting structure, 171
words(inText:url:action), 172

NSLinguisticTagger class, 165
orthography, 183–184

NLP, see Natural language
processing (NLP)

O, P, Q, R
Orthography, 183–184

S
Sentiment analysis with Core ML

deep learning frameworks, 187
iOS application, 188
limitations, 213–214
machine learning, 187

movie reviews (see Movie
reviews)

process of, 214–215
Speech framework

grocery list (see GroceryList app)
live and prerecorded speech, 91
SiriKit, 91
user’s input, 91

Speech recognition
adding items, grocery list, 110
audioEngine, 100
audio session, 102
availability of recording button,

108–109
AVAudioNodes, 101
checkExistingRecognitionTask,

102
createProductsArraysFor

Session, 106
handleRecordingState

Change, 108
recognition request, 103
recognized text, 107
resultHandler, 106
segments array, best

transcription, 106
SFSpeechAudioBuffer

RecognitionRequest, 101
SFSpeechRecognitionTask, 101
SFSpeechRecognizer, 101
SFTranscription object, 106
start recording, 103, 105
start the audio engine, 105
stopping words, 107

Natural language processing
(NLP) (cont.)

Index

www.allitebooks.com

http://www.allitebooks.org

233

UITableViewDataSource, 109
updateProducts, 108

T, U, V
Term frequency–inverse document

frequency (TF-IDF)
algorithm

computation, Utils.swift file,
176–177

detectLanguage, 182
dominantLanguage, 182
extracted keywords, blog post,

182–183
prepare(forSegue:sender)

method, 181
setupLoadingView, 180
UITableView data source and

delegate methods, 179–180
ViewController.swift file, 178
WebViewController, 181
weight, 178
wordCountings and

documentSizes, 169

W, X, Y, Z
Wit.ai

vs. Dialogflow
Amazon Lex, 163
Facebook Messenger, 161
graphical user interfaces, 161
LUIS, 162–163
Small Talk, 161

Watson IBM, 164
GroceryList app

creating, 144
GitHub, 144
intent, 144
product, 144
roles, add and remove,

144–145
Stories UI (Bot Engine), 148
synonyms for entities,

145–147
training sentences, 147–148

iOS implementation
applicationDidFinish

Launching
WithOptions, 149

client access token, 149–150
CocoaPods, 149
entities, 155
extractProducts, 156–157
@IBAction of recording

button, 158–159
outcome object, 154
permissions, speech

recognition, 151
Podfile, 149
sensitivity setting, 152
setupWit, 152
speechRecognitionLocale

setting, 152
table view data source

methods, 158
testing, 159
updateProducts, 156–157

Index

234

voice activity detection
timeout, 151

WitDelegate methods, 151
witDidGraspIntent, 154–155
witDidRecognizePreview

Text, 152–153

Wit SDK, 151
WitSession, 152

messaging platform, 143
natural language platform, 143
Objective-C syntax

lightweight generics, 160
nullability specifiers, 160

Wit.ai (cont.)

Index

www.allitebooks.com

http://www.allitebooks.org

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	1
	Chapter 1: Conversational Interfaces
	GUI Beginnings
	Graphical User Interfaces Challenges
	Voice as a User Interface
	Understanding Language
	Products on the Market
	Overview of the Process
	What the Products Do
	Conversational Interfaces Flow
	Natural Language–Understanding Concepts

	Summary

	2
	Chapter 2: Booking a Ride with SiriKit
	Booking a Ride
	Creating a Siri Extension

	Implementing the Principal Class
	Checking the Status of a Ride

	Building a Custom App Vocabulary
	Creating a Global App Vocabulary
	Providing App Name Synonyms
	Allowing a User-Specific Vocabulary

	Summary

	3
	Chapter 3: Creating Lists with SiriKit
	Overview of the App
	App Groups
	INCreateTaskListIntent
	INAddTasksIntent
	INSetTaskAttributeIntent

	UI Testing with Siri
	Summary

	4
	Chapter 4: Speech, Synthesizers, and Dialogflow
	Creating a Simple Grocery List
	Implementing Speech Recognition

	Implementing Text to Speech
	Using AVSpeechSynthesizer

	Using Dialogflow (api.ai)
	Training a Dialogflow Agent
	Integrating Dialogflow into the App

	Summary

	5
	Chapter 5: Getting Started with Wit.ai
	Creating a Grocery List App
	Performing the iOS Implementation
	Using Wit.ai and Modern Objective-C Syntax
	Implementing Nullability Specifiers
	Implementing Lightweight Generics

	Wit.ai vs. Dialogflow vs. Others
	Using a Language-Understanding Intelligent Service
	Using Amazon Lex
	Using Watson IBM

	Summary

	6
	Chapter 6: Natural Language Processing on iOS
	Keyword Extraction
	TF-IDF Algorithm

	Showing Orthography
	Summary

	7
	Chapter 7: Sentiment Analysis with Core ML
	Classifying Movie Reviews
	Creating a Core ML Model
	Doing the iOS App Implementation

	Understanding Core ML Limitations
	Summary

	8
	Chapter 8: Conversational Interface Challenges
	Security
	Quality
	Project Common Voice

	Is It Dangerous?
	Will People Use It?
	Summary

	Index
	Index

