
Docker
Management
Design Patterns

Swarm Mode on Amazon Web Services
—
Deepak Vohra

www.allitebooks.com

http://www.allitebooks.org

Docker Management
Design Patterns

Swarm Mode on Amazon Web Services

Deepak Vohra

www.allitebooks.com

http://www.allitebooks.org

Docker Management Design Patterns: Swarm Mode on Amazon Web Services

Deepak Vohra
White Rock, British Columbia, Canada

ISBN-13 (pbk): 978-1-4842-2972-9 ISBN-13 (electronic): 978-1-4842-2973-6
https://doi.org/10.1007/978-1-4842-2973-6

Library of Congress Control Number: 2017955383

Copyright © 2017 by Deepak Vohra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewers: Michael Irwin and Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229729. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2973-6
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484229729
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewers ���xv

Introduction ���xvii

 ■Chapter 1: Getting Started with Docker ��� 1

 ■Chapter 2: Using Docker in Swarm Mode �� 9

 ■Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm ����������������������� 31

 ■Chapter 4: Docker Services ��� 55

 ■Chapter 5: Scaling Services �� 85

 ■Chapter 6: Using Mounts ��� 97

 ■Chapter 7: Configuring Resources ��� 115

 ■Chapter 8: Scheduling ��� 131

 ■Chapter 9: Rolling Updates �� 155

 ■Chapter 10: Networking �� 179

 ■Chapter 11: Logging and Monitoring ��� 201

 ■Chapter 12: Load Balancing �� 219

 ■Chapter 13: Developing a Highly Available Website �� 241

 ■Chapter 14: Using Swarm Mode in Docker Cloud ��� 271

 ■Chapter 15: Using Service Stacks ��� 297

Index ��� 317

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� xiii

About the Technical Reviewers ���xv

Introduction ���xvii

 ■Chapter 1: Getting Started with Docker ��� 1

Setting the Environment ��� 1

Running a Docker Application �� 3

Summary �� 7

 ■Chapter 2: Using Docker in Swarm Mode �� 9

The Problem ��� 9

The Solution ��� 10

Docker Swarm Mode �� 10

Nodes�� 10

Service �� 11

Desired State of a Service �� 11

Manager Node and Raft Consensus ��� 11

Worker Nodes ��� 12

Quorum ��� 12

Setting the Environment ��� 14

Initializing the Docker Swarm Mode �� 14

Joining Nodes to the Swarm �� 18

Testing the Swarm ��� 20

Promoting a Worker Node to Manager ��� 24

Demoting a Manager Node to Worker �� 25

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Making a Worker Node Leave the Swarm �� 25

Making a Manager Node Leave the Swarm ��� 26

Reinitializing a Cluster�� 28

Modifying Node Availability �� 28

Removing a Node ��� 30

Summary �� 30

 ■Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm ����������������������� 31

The Problem ��� 31

The Solution ��� 32

Setting the Environment ��� 33

Creating a AWS CloudFormation Stack for Docker Swarm ��� 34

Connecting with the Swarm Manager �� 49

Using the Swarm �� 49

Deleting a Swarm ��� 51

Summary �� 53

 ■Chapter 4: Docker Services ��� 55

The Problem ��� 55

The Solution ��� 55

Setting the Environment ��� 57

The docker service Commands �� 59

Types of Services ��� 60

Creating a Service �� 60

Listing the Tasks of a Service ��� 61

Invoking a Hello World Service Task on the Command Line ��� 62

Getting Detailed Information About a Service �� 63

Invoking the Hello World Service in a Browser �� 65

Creating a Service for a MySQL Database�� 67

Scaling a Service �� 68

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Listing Service Tasks �� 68

Accessing a MySQL Database in a Docker Container��� 70

Updating a Service ��� 73

Updating the Replicas ��� 74

Updating the Docker Image Tag �� 75

Updating the Placement Constraints �� 79

Updating Environment Variables ��� 80

Updating the Docker Image �� 81

Updating the Container Labels ��� 82

Updating Resources Settings ��� 82

Removing a Service ��� 83

Creating a Global Service ��� 83

Summary �� 84

 ■Chapter 5: Scaling Services �� 85

The Problem ��� 85

The Solution ��� 86

Setting the Environment ��� 87

Creating a Replicated Service �� 87

Scaling Up a Service �� 88

Scaling Down a Service ��� 91

Removing a Service ��� 92

Global Services Cannot Be Scaled ��� 92

Scaling Multiple Services Using the Same Command ��� 93

Service Tasks Replacement on a Node Leaving the Swarm �� 95

Summary �� 96

 ■Chapter 6: Using Mounts ��� 97

The Problem ��� 97

The Solution ��� 97

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Volume Mounts ��� 97

Bind Mounts ��� 98

Setting the Environment ��� 99

Creating a Named Volume �� 100

Using a Volume Mount �� 102

Removing a Volume �� 112

Creating and Using a Bind Mount ��� 112

Summary �� 114

 ■Chapter 7: Configuring Resources ��� 115

The Problem ��� 115

The Solution ��� 116

Setting the Environment ��� 118

Creating a Service Without Resource Specification ��� 119

Reserving Resources �� 120

Setting Resource Limits ��� 120

Creating a Service with Resource Specification �� 121

Scaling and Resources ��� 121

Reserved Resources Must Not Be More Than Resource Limits ����������������������������������� 122

Rolling Update to Modify Resource Limits and Reserves ��� 124

Resource Usage and Node Capacity �� 125

Scaling Up the Stack �� 127

Summary �� 130

 ■Chapter 8: Scheduling ��� 131

The Problem ��� 131

The Solution ��� 132

Setting the Environment ��� 135

Creating and Scheduling a Service: The Spread Scheduling �� 136

Desired State Reconciliation �� 138

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Scheduling Tasks Limited by Node Resource Capacity �� 141

Adding Service Scheduling Constraints ��� 145

Scheduling on a Specific Node ��� 146

Adding Multiple Scheduling Constraints ��� 148

Adding Node Labels for Scheduling �� 150

Adding, Updating, and Removing Service Scheduling Constraints ��� 151

Spread Scheduling and Global Services��� 153

Summary �� 154

 ■Chapter 9: Rolling Updates �� 155

The Problem ��� 155

The Solution ��� 155

Setting the Environment ��� 157

Creating a Service with a Rolling Update Policy �� 157

Rolling Update to Increase the Number of Replicas ��� 158

Rolling Update to a Different Image Tag ��� 161

Rolling Update to Add and Remove Environment Variables ��� 162

Rolling Update to Set CPU and Memory Limits and Reserve�� 164

Rolling Update to a Different Image ��� 167

Rolling Restart �� 171

Rolling Update to Add and Remove Mounts ��� 172

Rolling Update Failure Action ��� 173

Roll Back to Previous Specification �� 175

Rolling Update on a Global Service �� 176

Summary �� 178

 ■Chapter 10: Networking �� 179

The Problem ��� 179

The Solution ��� 180

The Ingress Network �� 180

Custom Overlay Networks �� 181

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

The docker_gwbridge Network �� 181

The Bridge Network �� 181

Setting the Environment ��� 182

Networking in Swarm Mode ��� 183

Using the Default Bridge Network to Create a Service��� 186

Creating a Service in the Ingress Network ��� 187

Creating a Custom Overlay Network �� 191

Using a Custom Overlay Network to Create a Service ��� 194

Creating an Internal Overlay Network �� 195

Deleting a Network ��� 198

Summary �� 199

 ■Chapter 11: Logging and Monitoring ��� 201

The Problem ��� 201

The Solution ��� 201

Setting the Environment ��� 202

Creating a SPM Application �� 203

Creating a Logsene Application �� 205

Connecting the SPM and Logsene Apps ��� 208

Deploying the Sematext Docker Agent as a Service �� 209

Creating a MySQL Database Service on a Docker Swarm ��� 212

Monitoring the Docker Swarm Metrics �� 213

Getting Docker Swarm Logs in Logsene �� 214

Summary �� 217

 ■Chapter 12: Load Balancing �� 219

Service Discovery ��� 219

Custom Scheduling �� 219

Ingress Load Balancing �� 219

The Problem ��� 219

The Solution ��� 220

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Setting the Environment ��� 221

Creating a Hello World Service ��� 222

Invoking the Hello World Service �� 224

Creating an External Elastic Load Balancer ��� 227

Load Balancing in Docker for AWS ��� 234

Summary �� 239

 ■Chapter 13: Developing a Highly Available Website �� 241

The Problem ��� 241

The Solution ��� 242

Setting the Environment ��� 243

Creating Multiple Docker Swarms �� 243

Deploying a Docker Swarm Service ��� 246

Creating an Amazon Route 53 �� 251

Creating a Hosted Zone �� 252

Configuring Name Servers�� 254

Creating Resource Record Sets �� 256

Testing High Availability ��� 263

Deleting a Hosted Zone �� 266

Summary �� 269

 ■Chapter 14: Using Swarm Mode in Docker Cloud ��� 271

The Problem ��� 271

The Solution ��� 271

Setting the Environment ��� 272

Creating an IAM Role �� 272

Creating a Docker Swarm in Docker Cloud �� 280

Connecting to the Docker Swarm from a Docker Host ��� 289

Connecting to the Docker Swarm from a Swarm Manager �� 292

Bringing a Swarm into Docker Cloud ��� 294

Summary �� 296

■ Contents

xii

 ■Chapter 15: Using Service Stacks ��� 297

The Problem ��� 297

The Solution ��� 297

Setting the Environment ��� 299

Configuring a Service Stack ��� 303

Creating a Stack ��� 304

Listing Stacks ��� 305

Listing Services �� 306

Listing Docker Containers �� 307

Using the Service Stack ��� 308

Removing a Stack �� 314

Summary �� 315

Index ��� 317

xiii

About the Author

Deepak Vohra is an Oracle certified Java programmer and web
component developer. Deepak has published in several journals,
including Oracle Magazine, OTN, IBM developerWorks, ONJava,
DevSource, WebLogic Developer’s Journal, XML Journal, Java Developer’s
Journal, FTPOnline, and devx. Deepak has published three other books on
Docker, and a dozen other books on other topics. Deepak is also a Docker
Mentor.

xv

About the Technical Reviewers

Michael Irwin is an Application Architect at Virginia Tech (Go Hokies!) where he’s both a developer and
evangelist for cutting-edge technologies. He is helping Virginia Tech adopt Docker, cloud services, single-page
applications, CI/CD pipelines, and other current development practices. As a Docker Captain and a local
meetup organizer, he is very active in the Docker community giving presentations and trainings to help others
learn how to best utilize Docker in their organizations. Find him on Twitter at @mikesir87.

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, and cloud and IT architecture. His true IT
passions are security and Android systems.

He has been programming and teaching people how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more
than 20 years.

He holds a Master’s of Science degree in Computing Science from the
University of Salerno, Italy.

He worked as a project manager, software engineer, research
engineer, chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect
for many years.

His technical skills include security, Android, cloud, Java, MySQL,
Drupal, Cobol, Perl, web and mobile development, MongoDB, D3, Joomla,

Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch, and more.
He worked as a visiting lecturer and supervisor for exercises at the Networking Laboratory of the

Helsinki University of Technology (Aalto University). He holds four international patents (in the PKI, SIP,
SAML, and Proxy areas).

He currently works as the Chief Information Security Office (CISO) for Cargotec Oyj and is a member of
ISACA, Finland Chapter Board.

Massimo has reviewed more than 40 IT books for different publishers and he is the coauthor of
Pro Android Games (Apress, 2015).

xvii

Introduction

Docker, made available as open source in March 2013, has become the de facto containerization platform.
The Docker Engine by itself does not provide functionality to create a distributed Docker container cluster
or the ability to scale a cluster of containers, schedule containers on specific nodes, or mount a volume. The
book is about orchestrating Docker containers with the Docker-native Swarm mode, which was introduced
July 2016 with Docker 1.12. Docker Swarm mode should not be confused with the legacy standalone Docker
Swarm, which is not discussed in the book. The book discusses all aspects of orchestrating/managing Docker,
including creating a Swarm, using mounts, scheduling, scaling, resource management, rolling updates, load
balancing, high availability, logging and monitoring, using multiple zones, and networking. The book also
discusses the managed services for Docker Swarm: Docker for AWS and Docker Cloud Swarm mode.

Docker Swarm Design Patterns
“A software design pattern is a general reusable solution to a commonly occurring problem within a given
context in software design.” (Wikipedia)

Docker Swarm mode provides several features that are general-purpose solutions to issues inherent in
a single Docker Engine. Each chapter starting with Chapter 2 introduces a problem and discusses a design
pattern as a solution to the problem.

Why Docker Swarm Mode?
Why use the Docker Swarm mode when several container cluster managers are available? Docker Swarm
mode is Docker-native and does not require the complex installation that some of the other orchestration
frameworks do. A managed service Docker for AWS is available for Docker Swarm to provision a Swarm
on production-ready AWS EC2 nodes. Docker Cloud may be linked to Docker for AWS to provision a
new Swarm or connect to an existing Swarm. Docker 1.13 includes support for deploying a Docker Stack
(collection of services) on Docker Swarm with Docker Compose.

What the Book Covers
Chapter 1 introduces running a Docker standalone container on CoreOS Linux. The chapter establishes the
basis of the book and subsequent chapters discuss how the management design patterns provided by the
Swarm mode solve problems inherent in a standalone Docker Engine.

Chapter 2 introduces the Swarm mode, including initializing a Swarm and joining worker nodes to
the Swarm. Chapter 2 includes promoting/demoting a node, making a node (manager or worker) leave a
Swarm, reinitializing a Swarm, and modifying node availability.

http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_1
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

■ IntroduCtIon

xviii

Chapter 3 discusses the managed service Docker for AWS, which provisions a Docker Swarm by
supplying the Swarm parameters, including the number of managers and workers and the type of EC2
instances to use. AWS uses an AWS CloudFormation to create the resources for a Swarm. Docker for AWS
makes it feasible to create a Swarm across multiple AWS zones.

Chapter 4 is about Docker services. Two types of services are defined—replicated and global. Chapter 4
discusses creating a service (replicated and global), scaling a replicated service, listing service tasks, and
updating a service.

Chapter 5 discusses scaling replicated services in more detail, including scaling multiple services
simultaneously. Global services are not scalable.

In Chapter 6, two types of mounts are defined: a bind mount and volume mount. This chapter discusses
creating and using each type of mount.

Chapter 7 is about configuring and using resources in a Swarm. Two types of resources are supported
for configuration: memory and CPU. Two types of resource configurations are defined: reserves and limits.
It discusses creating a service with and without resources specification.

Chapter 8 discusses scheduling service tasks with the default and custom scheduling. Scheduling
constraints are also discussed.

Chapter 9 discusses rolling updates, including setting a rolling update policy. Different types of rolling
updates are provisioned, including updating to a different Docker image tag, adding/removing environment
variables, updating resource limits/reserves, and updating to a different Docker image.

Chapter 10 is about networking in Swarm mode, including the built-in overlay networking called ingress
and support for creating a custom overlay network.

Chapter 11 is about logging and monitoring in a Swarm, which does not provide a built-in support for
logging and monitoring. Logging and monitoring is provided in a Swarm with a Sematext Docker agent,
which sends metrics to a SPM dashboard and logs to a Logsene user interface and Kibana.

Chapter 12 discusses load balancing across service tasks with ingress load balancing. An external AWS
elastic load balancer may also be added for distributing client requests across the EC2 instances on which a
Swarm is based.

Chapter 13 discusses developing a highly available website that uses an Amazon Route 53 to create a
hosted zone with resource record sets configured in a Primary/Secondary failover mode.

Chapter 14 discusses another managed service, Docker Cloud, which may be used to provision a
Docker Swarm or connect to an existing Swarm.

Chapter 15 discusses Docker service stacks. A stack is a collection of services that have dependencies
among them and are defined in a single configuration file for deployment.

Who this Book Is For
The primary audience of this book includes Docker admins, Docker application developers, and Container
as a Service (CaaS) admins and developers. Some knowledge of Linux and introductory knowledge of
Docker—such as using a Docker image to run a Docker container, connecting to a container using a bash
shell, and stopping and removing a Docker container—is required.

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_4
http://dx.doi.org/10.1007/978-1-4842-2973-6_5
http://dx.doi.org/10.1007/978-1-4842-2973-6_6
http://dx.doi.org/10.1007/978-1-4842-2973-6_7
http://dx.doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_10
http://dx.doi.org/10.1007/978-1-4842-2973-6_11
http://dx.doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_13
http://dx.doi.org/10.1007/978-1-4842-2973-6_14
http://dx.doi.org/10.1007/978-1-4842-2973-6_15

1© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_1

CHAPTER 1

Getting Started with Docker

Docker has become the de facto containerization platform. The main appeal of Docker over virtual
machines is that it is lightweight. Whereas a virtual machine packages a complete OS in addition to the
application binaries, a Docker container is a lightweight abstraction at the application layer, packaging
only the code and dependencies required to run an application. Multiple Docker containers run as isolated
processes on the same underlying OS kernel. Docker is supported on most commonly used OSes, including
several Linux distributions, Windows, and MacOS. Installing Docker on any of these platforms involves
running several commands and also setting a few parameters. CoreOS Linux has Docker installed out-
of-the-box. We will get started with using Docker Engine on CoreOS in this chapter. This chapter sets the
context of the subsequent chapters, which discuss design patterns for managing Docker Engine using the
Swarm mode. This chapter does not use Swarm mode and provides a contrast to using the Swarm mode.
This chapter includes the following sections:

•	 Setting the environment

•	 Running a Docker application

Setting the Environment
We will be using CoreOS on Amazon Web Services (AWS) EC2, which you can access at https://console.
aws.amazon.com/ec2/v2/home?region=us-east-1#. Click on Launch Instance to lauch an EC2 instance.
Next, choose an Amazon Machine Image (AMI) for CoreOS. Click on AWS Marketplace to find a CoreOS
AMI. Type CoreOS in the search field to find a CoreOS AMI. Select the Container Linux by CoreOS (Stable),
as shown in the EC2 wizard in Figure 1-1, to launch an instance.

Figure 1-1. Selecting an AMI for CoreOS Linux

https://doi.org/10.1007/978-1-4842-2973-6_1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1
https://console.aws.amazon.com/ec2/v2/home?region=us-east-1

Chapter 1 ■ GettinG Started with doCker

2

From Choose an Instance Type, choose the t2.micro Type and click on Next. In Configure Instance
Details, specify the number of instances as 1. Select a network or click on Create New VPC to create a new
VPC. Select a subnet or click on Create New Subnet to create a new subnet. Select Enable for Auto-Assign
Public IP. Click on Next.

From Add Storage, select the default settings and click on Next. In Add Tags, no tags need to be added.
Click on Next. From Configure Security Group, add a security group to allow all traffic of any protocol in all
port ranges from any source (0.0.0.0/0). Click on Review and Launch and subsequently click on Launch.

Select a key pair and click on Launch Instances in the Select an Existing Key Pair or Create a New Key
Pair dialog, as shown in Figure 1-2.

Figure 1-2. Launch instances

Chapter 1 ■ GettinG Started with doCker

3

An EC2 instance with CoreOS is launched. Obtain the public DNS or IPv4 public IP address of the EC2
instance from the EC2 Console, as shown in Figure 1-3, to SSH login into the instance.

SSH login into the EC2 instance as user “core”.

ssh -i "coreos.pem" core@<public ip>

Running a Docker Application
As mentioned earlier, Docker is pre-installed on CoreOS. Run the docker command to list its usage, as
shown in the following bash shell:

core@ip-172-30-4-75 ~ $ docker
Usage: docker [OPTIONS] COMMAND [arg...]
 docker [--help | -v | --version]
A self-sufficient runtime for containers.
Options:
 --config=~/.docker Location of client config files
 -D, --debug Enable debug mode
 -H, --host=[] Daemon socket(s) to connect to
 -h, --help Print usage
 -l, --log-level=info Set the logging level
 --tls Use TLS; implied by --tlsverify
 --tlscacert=~/.docker/ca.pem Trust certs signed only by this CA
 --tlscert=~/.docker/cert.pem Path to TLS certificate file
 --tlskey=~/.docker/key.pem Path to TLS key file
 --tlsverify Use TLS and verify the remote
 -v, --version Print version information and quit

Commands:
 attach Attach to a running container
 build Build an image from a Dockerfile
 commit Create a new image from a container's changes

Figure 1-3. Public DNS and public IPv4

Chapter 1 ■ GettinG Started with doCker

4

 cp Copy files/folders between a container and the local filesystem
 create Create a new container
 diff Inspect changes on a container's filesystem

Output the Docker version using the docker version command. For native Docker Swarm support, the
Docker version must be 1.12 or later as listed in the bash shell output.

core@ip-172-30-4-75 ~ $ docker version
Client:
 Version: 1.12.6
 API version: 1.24
 Go version: go1.7.5
 Git commit: a82d35e
 Built: Mon Jun 19 23:04:34 2017
 OS/Arch: linux/amd64

Server:
 Version: 1.12.6
 API version: 1.24
 Go version: go1.7.5
 Git commit: a82d35e
 Built: Mon Jun 19 23:04:34 2017
 OS/Arch: linux/amd64

Run a Hello World app with the tutum/hello-world Docker image.

docker run -d -p 8080:80 --name helloapp tutum/hello-world

The Docker image is pulled and a Docker container is created, as shown in the following listing.

core@ip-172-30-4-75 ~ $ docker run -d -p 8080:80 --name helloapp tutum/hello-world
Unable to find image 'tutum/hello-world:latest' locally
latest: Pulling from tutum/hello-world
658bc4dc7069: Pull complete
a3ed95caeb02: Pull complete
af3cc4b92fa1: Pull complete
d0034177ece9: Pull complete
983d35417974: Pull complete
Digest: sha256:0d57def8055178aafb4c7669cbc25ec17f0acdab97cc587f30150802da8f8d85
Status: Downloaded newer image for tutum/hello-world:latest
1b7a85df6006b41ea1260b5ab957113c9505521cc8732010d663a5e236097502

List the Docker container using the docker ps command.

core@ip-172-30-4-75 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
1b7a85df6006 tutum/hello-world "/bin/sh -c 'php-fpm " 19 minutes ago Up 19 minutes
0.0.0.0:8080->80/tcp helloapp

Chapter 1 ■ GettinG Started with doCker

5

The port mapping for the Docker container is also listed using the docker ps command, but it may also
be obtained using the docker port <container> command.

core@ip-172-30-4-75 ~ $ docker port helloapp
80/tcp -> 0.0.0.0:8080

Using the 8080 port and localhost, invoke the Hello World application with curl.

curl localhost:8080

The HTML markup for the Hello World application is output, as listed shown here.

core@ip-172-30-4-75 ~ $ curl localhost:8080
<html>
<head>
 <title>Hello world!</title>
 < link href='http://fonts.googleapis.com/css?family=Open+Sans:400,700'

rel='stylesheet' type='text/css'>
 <style>
 body {
 background-color: white;
 text-align: center;
 padding: 50px;
 font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;
 }
 #logo {
 margin-bottom: 40px;
 }
 </style>
</head>
<body>

 <h1>Hello world!</h1>
 <h3>My hostname is 1b7a85df6006</h3>
</body>
</html>

Using the public DNS for the EC2 instance, the Hello World application may also be invoked in a
browser. This is shown in the web browser in Figure 1-4.

Chapter 1 ■ GettinG Started with doCker

6

Figure 1-4. Invoking the Hello World application in a web browser

The docker stop <container> command stops a Docker container. The docker rm <container>
command removes a Docker container. You can list Docker images using the docker images command.
A Docker image may be removed using the docker rmi <image> command.

core@ip-172-30-4-75 ~ $ docker stop helloapp
helloapp
core@ip-172-30-4-75 ~ $ docker rm helloapp
helloapp
core@ip-172-30-4-75 ~ $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
tutum/hello-world latest 31e17b0746e4 19 months ago 17.79 MB
core@ip-172-30-4-75 ~ $ docker rmi tutum/hello-world
Untagged: tutum/hello-world:latest
Untagged: tutum/hello-world@sha256:0d57def8055178aafb4c7669cbc25ec17f0acdab97cc587f30150802da8f8d85
Deleted: sha256:31e17b0746e48958b27f1d3dd4fe179fbba7e8efe14ad7a51e964181a92847a6
Deleted: sha256:e1bc9d364d30cd2530cb673004dbcdf1eae0286e41a0fb217dd14397bf9debc8
Deleted: sha256:a1f3077d3071bd3eed5bbe5c9c036f15ce3f6b4b36bdd77601f8b8f03c6f874f
Deleted: sha256:ff7802c271f507dd79ad5661ef0e8c7321947c145f1e3cd434621fa869fa648d
Deleted: sha256:e38b71a2478cad712590a0eace1e08f100a293ee19a181d5f5d5a3cdb0663646
Deleted: sha256:5f27c27ccc6daedbc6ee05562f96f719d7f0bb38d8e95b1c1f23bb9696d39916
Deleted: sha256:fab20b60d8503ff0bc94ac3d25910d4a10f366d6da1f69ea53a05bdef469426b
Deleted: sha256:a58990fe25749e088fd9a9d2999c9a17b51921eb3f7df925a00205207a172b08
core@ip-172-30-4-75 ~ $

Chapter 1 ■ GettinG Started with doCker

7

Summary
This chapter sets the basis for subsequent chapters by using a single Docker Engine on CoreOS. Subsequent
chapters explore the different design patterns for managing distributed Docker applications in a cluster. The
next chapter introduces the Docker Swarm mode.

9© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_2

CHAPTER 2

Using Docker in Swarm Mode

The Docker Engine is a containerization platform for running Docker containers. Multiple Docker
containers run in isolation on the same underlying operating system kernel, with each container having its
own network and filesystem. Each Docker container is an encapsulation of the software and dependencies
required for an application and does not incur the overhead of packaging a complete OS, which could
be several GB. Docker applications are run from Docker images in Docker containers, with each Docker
image being specific to a particular application or software. A Docker image is built from a Dockerfile, with
a Dockerfile defining the instruction set to be used to download and install software, set environment
variables, and run commands.

The Problem
While the Docker Engine pre-1.12 (without native Swarm mode) is well designed for running applications in
lightweight containers, it lacks some features, the following being the main ones.

•	 No distributed computing—No distributed computing is provided, as a Docker
Engine is installed and runs on a single node or OS instance.

•	 No fault tolerance—As shown in the diagram in Figure 2-1, if the single node on
which a Docker Engine is running fails, the Docker applications running on the
Docker Engine fail as well.

Docker Engine

Node

Figure 2-1. Single node Docker cluster

https://doi.org/10.1007/978-1-4842-2973-6_2

Chapter 2 ■ Using DoCker in swarm moDe

10

The Solution
With Docker Engine version 1.12 onward, Docker container orchestration is built into the Docker Engine
in Swarm mode and is native to the Docker Engine. Using the Swarm mode, a swarm (or cluster) of nodes
distributed across multiple machines (OS instances) may be run in a master/worker/ pattern. Docker Swarm
mode is not enabled in the Docker Engine by default and has to be initialized using a docker command.
Next, as an introduction to the Docker Swarm mode, we introduce some terminology.

Docker Swarm Mode
Docker Swarm is a cluster of Docker hosts connected by an overlay networking for service discovery.
A Docker Swarm includes one or more manager nodes and one or more worker nodes, as shown in
Figure 2-2. In the Swarm mode, a Docker service is the unit of Docker containerization. Docker containers
for a service created from a Manager node are deployed or scheduled across the cluster and the Swarm
includes a built-in load balancing for scaling the services. The expected state for a service is declared on
the manager, which then schedules the task to be run on a node. However, the worker node itself still pulls
the image and starts the container.

Nodes
An instance of a Docker host (a Docker Engine) is called a node. Two types of node roles are provided:
manager nodes and worker nodes.

Docker
Swarm
Mode

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Worker
Node

Worker
Node

Worker
Node

Docker
Engine

Docker
Engine

Figure 2-2. Docker Swarm mode cluster

Chapter 2 ■ Using DoCker in swarm moDe

11

Service
A service is an abstraction for a collection of tasks (also called replicas or replica tasks) distributed across
a Swarm. As an example, a service could be running three replicas of an Nginx server. Default scheduling,
which is discussed in Chapter 7, uses the “spread” scheduling strategy, which spreads the tasks across
the nodes of the cluster based on a computed node rank. A service consists of one or more tasks that run
independent of each other, implying that stopping a task or starting a new task does not affect running other
tasks. The Nginx service running on three nodes could consist of three replica tasks. Each task runs a Docker
container for the service. One node could be running multiple tasks for a service. A task is an abstraction for
the atomic unit of scheduling, a “slot” for the scheduler to run a Docker container.

Desired State of a Service
The “desired state” of a service refers to the service state as defined in the service definition when creating
the service. As an example, a service definition could define a service as consisting of three replicas of an
Nginx server.

Manager Node and Raft Consensus
When the Swarm is first created, the current node becomes the first manager node. By default, all manager
nodes are also workers. The manager node performs the cluster orchestration and manages the Swarm,
including the initial scheduling of service tasks and subsequent reconciliation, if any, between the desired
state and the actual state of services. As an example, for a service definition consisting of three replicas of an
Nginx server, the manager node would create three tasks and schedule the tasks on Swarm worker nodes in the
Swarm. Subsequently, if a node running a task were to fail, the Swarm manager would start a new replacement
task on the worker nodes still in the Swarm. The Swarm manager accepts the service definition when a service
is created and schedules the service on one or more worker nodes as service tasks. The Swarm manager node
also manages the scaling of service by adding/removing service tasks. The Swarm manager assigns each service
a unique DNS name and starts Docker containers via service replica tasks. The manager node monitors the
cluster state. The Swarm manager is also a worker node by default, which is discussed in the next section.

To refer to “the manager node” is actually a simplification of the Swarm Manager, as a Swarm may
consist of one or more manager nodes. Each manager node keeps the complete cluster state data, including
which service replica tasks are running on which node and the node roles, and participates in Swarm
management for the Raft consensus. The Raft consensus is merely an algorithm to create decisions/
agreements (consensus) within a group in a distributed fashion. Swarm uses it to make decisions such
as leader elections, cluster membership, service changes, etc. In the Swarm mode, Raft consensus is
an agreement among the manager nodes for a global cluster state parameter such as about the state
of data value stored in a database. Swarm managers share data using Raft. Raft consensus is a protocol
for implementing distributed consensus among all the reachable manager nodes in a Swarm. The Raft
Consensus Algorithm has several implementations and its implementation in the Swarm mode has the
properties typically found in distributed systems, such as the following:

•	 Agreement of values for fault tolerance

•	 Cluster membership management

•	 Leader election using mutual exclusion

Only one manager node, called the leader, performs all the cluster orchestration and management. Only
the leader node performs the service scheduling, scaling, and restarting of service tasks. The other manager
nodes are for the fault tolerance of Swarm manager, which implies that if the leader node were to fail, one of
the other manager nodes would be elected as the new leader and take over the cluster management. Leader
election is performed by a consensus from the majority of the manager nodes.

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

Chapter 2 ■ Using DoCker in swarm moDe

12

Worker Nodes
A worker node actually runs the service replica tasks and the associated Docker containers. The
differentiation between node roles as manager nodes and worker nodes is not handled at service
deployment time but is handled at runtime, as node roles may be promoted/demoted. Promoting/demoting
a node is discussed in a later section. Worker nodes do not affect the manager Raft consensus. Worker
nodes only increase the capacity of the Swarm to run service replica tasks. The worker nodes themselves do
not contribute to the voting and state held in the raft, but the fact that they are worker nodes is held within
the raft. As running a service task requires resources (CPU and memory) and a node has a certain fixed
allocatable resources, the capacity of a Swarm is limited by the number of worker nodes in the Swarm.

Quorum
A quorum refers to agreement among the majority of Swarm manager nodes or managers. If a Swarm loses
quorum it cannot perform any management or orchestration functions. The service tasks already scheduled
are not affected and continue to run. The new service tasks are not scheduled and other management
decisions requiring a consensus, such as adding or removing a node, are not performed. All Swarm
managers are counted toward determining majority consensus for fault tolerance. For leader election only
the reachable manager nodes are included for Raft consensus. Any Swarm update, such as the addition or
removal of a node or the election of a new leader, requires a quorum. Raft consensus and quorum are the
same. For high availability, three to five Swarm managers are recommended in production. An odd number
of Swarm managers is recommended in general. Fault tolerance refers to the tolerance for failure of Swarm
manager nodes or the number of Swarm managers that may fail without making a Swarm unavailable.
Mathematically, “majority” refers to more than half, but for the Swarm mode Raft consensus algorithm, Raft
tolerates (N-1)/2 failures and a majority for Raft consensus is determined by (N/2)+1. N refers to the Swarm
size or the number of manager nodes in the Swarm.

Swarm Size = Majority + Fault Tolerance

As an example, Swarm sizes of 1 and 2 each have a fault tolerance of 0, as Raft consensus cannot be
reached for the Swarm size if any of the Swarm managers were to fail. More manager nodes increase fault
tolerance. For an odd number N, the fault tolerance is the same for a Swarm size N and N+1.

As an example, a Swarm with three managers has a fault tolerance of 1, as shown in Figure 2-3. Fault
tolerance and Raft consensus do not apply to worker nodes, as Swarm capacity is based only on the worker
nodes. Even if two of the three worker nodes were to fail, one Worker node, even if the manager nodes are
manager-only nodes, would keep the Swarm available though a reduction in Swarm capacity and could
transition some of the running tasks to non-running state.

Chapter 2 ■ Using DoCker in swarm moDe

13

This section covers the following topics:

•	 Setting the environment

•	 Initializing the Docker Swarm mode

•	 Joining nodes to the Swarm cluster

•	 Testing the Swarm cluster

•	 Promoting a worker node to manager

•	 Demoting a manager node to worker

•	 Making a worker node leave the Swarm cluster

•	 Making A worker node rejoin the Swarm cluster

•	 Making a manager node leave the Swarm cluster

•	 Reinitializing a Swarm

•	 Modifying node availability

•	 Removing a node

Docker
Swarm
Mode

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Manager
Node

Docker
Engine

Worker
Node

Worker
Node

Docker
Engine

Docker
Engine

Worker
Node

Figure 2-3. Fault tolerance for a Swarm

Chapter 2 ■ Using DoCker in swarm moDe

14

Setting the Environment
This chapter shows you how to create a three-node Swarm consisting of one manager node and two worker
nodes. Create three Amazon EC2 instances using CoreOS Stable AMI, as shown in the EC2 console in
Figure 2-4. Enable all traffic between the EC2 instances when configuring the security group for the EC2
instances. Obtain the IP address of the EC2 instance started for the Swarm manager.

Initializing the Docker Swarm Mode
Docker Swarm mode is not enabled by default and needs to be enabled. SSH login to the EC2 instance
started for the Swarm manager using the public IP address.

ssh -i "coreos.pem" core@34.204.168.217

Docker Swarm mode is available starting with Docker version 1.12. Verify that the Docker version is at
least 1.12 using the docker --version command.

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.168.217
Container Linux by CoreOS stable (1409.7.0)
core@ip-172-30-5-70 ~ $ docker --version
Docker version 1.12.6, build a82d35e

To initialize the Swarm, use the docker swarm init options command. Some of the options the
command supports are listed in Table 2-1.

Figure 2-4. EC2 instances

Chapter 2 ■ Using DoCker in swarm moDe

15

Use the default values for all options except the --advertise-addr for which a default value is not
provided. Use the private address for the advertised address, which may be obtained from the EC2 console,
as shown in Figure 2-5. If the EC2 instances on AWS were in different regions, the external public IP address
should be used to access the manager node, which may also be obtained from the EC2 console.

Run the following command to initialize Docker Swarm mode.

docker swarm init --advertise-addr 172.30.5.70

Table 2-1. Command Swarm init Options

Option Description Default Value

--advertise-addr Advertised address in the format <ip|interface>[:port].
The advertised address is the IP address at which other nodes
may access the Swarm. If an IP address is not specified, the
Docker ascertains if the system has a single IP address and,
if it does, the IP address and port 2337 is used. If the system
has multiple IP addresses, the --advertise-addr must be
specified for inter-manager communication and overlay
networking.

--availability Availability of the node. Should be one of
active/pause/drain.

active

--force-new-cluster Whether to force create a new cluster from the current state.
We discuss why it may be required to force create and use the
option in this chapter.

false

--listen-addr Listen address in the format <ip|interface>[:port]. 0.0.0.0:2377

Figure 2-5. Private IP

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Using DoCker in swarm moDe

16

As the output in the following listing indicates, Swarm is initialized and the current node is a manager
node. The command to add a worker node is also included in the output. The command to obtain the
command to add a manager node is also output. Copy the docker swarm join command to add a worker
node to the Swarm.

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Swarm initialized: current node (bgzqx2cfsf05qdradxytmdcp3) is now a manager.

To add a worker to this swarm, run the following command:
 docker swarm join \
 --token SWMTKN-1-3o3zi1rxgkzy5gq5itr580yp9pbagxnkelinzh42ovrb7znt6f-

dmgeg3veppor942vsavma3s47 \
 172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

Run the docker info command to get system-wide information about the Docker Engine. The
command outputs the total number of Docker containers that are running, paused, or stopped; partial
output is listed.

core@ip-172-30-5-70 ~ $ docker info
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
Images: 0
Server Version: 1.12.6
Storage Driver: overlay
 Backing Filesystem: extfs
Logging Driver: json-file
Cgroup Driver: cgroupfs
Plugins:
 Volume: local
 Network: null host bridge overlay
Swarm: active
 NodeID: bgzqx2cfsf05qdradxytmdcp3
 Is Manager: true
 ClusterID: 056zm05kk6em6u7vlki8pbhc9
 Managers: 1
 Nodes: 1
CPUs: 1
Total Memory: 994.6 MiB
Name: ip-172-30-5-70.ec2.internal
Docker Root Dir: /var/lib/docker

The Storage Driver is overlay and the backing filesystem is extfs. The logging driver is json-file,
which is covered in Chapter 11 on logging. The Swarm is shown to be active. Information about the node
such as NodeID, whether the node is a manager, the number of managers in the Swarm, and the number of
nodes in the Swarm, is also listed.

http://dx.doi.org/10.1007/978-1-4842-2973-6_11

Chapter 2 ■ Using DoCker in swarm moDe

17

The resource capacity (CPU and memory) of the node is also listed. Chapter 7 discusses more about
resource usage. The node name is the private DNS of the EC2 instance on which the Swarm is initialized.

List the nodes in the Swarm with the following command:

docker node ls

A single node gets listed including the node ID, which is the only unique parameter for a node.
The hostname is also unique if a node has not been made to leave the Swarm and rejoined.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bgzqx2cfsf05qdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader

The * after the node ID indicates that this is the current node. The nodes in the Swarm also have a
STATUS, AVAILABILITY, and MANAGER STATUS columns. STATUS can be one of the values listed in Table 2-2.

AVAILABILITY can be one of the values listed in Table 2-3.

MANAGER STATUS can be one of the values listed in Table 2-4. If the MANAGER STATUS column has no
value, it indicates a worker node.

Table 2-2. Node Status

Status Description

Ready Ready for use

Down Not ready for use

Unknown Not known

Table 2-3. AVAILABILITY Column

Availability Description

Active Scheduler may assign tasks to the node.

Pause Scheduler does not assign new tasks to the node but existing tasks keep running.

Drain Scheduler does not assign new tasks to the node and existing tasks are shut down.
Replacement tasks are started on other nodes.

http://dx.doi.org/10.1007/978-1-4842-2973-6_7

Chapter 2 ■ Using DoCker in swarm moDe

18

Joining Nodes to the Swarm
Additional nodes, manager or worker, may be added or joined to the Swarm as required. By default, manager
nodes are also worker nodes but not vice versa. The manager nodes are added for a different reason than
the worker nodes. The manager nodes are added to make the Swarm more fault tolerant and the worker
nodes are added to add capacity to the Swarm. The commands to add manager and worker nodes are also
different. The command to add a worker node is output when the Swarm is initialized. The command to add
a worker node may also be found using the following command.

docker swarm join-token worker

The command to add a manager node may be found using the following command.

docker swarm join-token manager

A reason for adding a worker node is that the service tasks scheduled on some of the nodes are not
running and are in Allocated state. A reason for adding a manager node is that another manager node has
become unreachable.

The node to join, manager or worker, must have Docker Engine version at least 1.12 installed. Next, you
add two worker nodes. Obtain the public IP address of an EC2 instance started for a worker node. SSH login
to the worker instance.

ssh -i "coreos.pem" core@34.204.199.

Table 2-4. Manager Status

Manager Status Description

Reachable The node participates in the Raft consensus quorum and, if the leader becomes
unavailable, the node is eligible to be made the leader node.

Unreachable The node was a manager node that was reachable but has become unreachable
and is not able to communicate with the other manager nodes in the Swarm. An
unreachable manager node could be made reachable though not guaranteed to be
restored by doing one of the following:

-Restart the machine

-Restart the daemon

If neither of the preceding restores a unreachable manager node, the following should
be implemented.
Demote and remove the failed node.

docker node demote <NODE> and docker node rm <id-node>

Add another manager node with docker swarm join.
Or
Promote a worker node to manager node with docker node promote

Leader Primary manager node that performs all the Swarm management and orchestration.

Chapter 2 ■ Using DoCker in swarm moDe

19

Run the docker swarm join command, which has the following syntax, to join the node to the Swarm
as a worker node.

docker swarm join [OPTIONS] HOST:PORT

The options supported by the docker swarm join command are listed in Table 2-5.

Run the docker swarm join command output during the initialization of the Swarm mode to join the
worker instance with the Swarm. As the output message indicates, “The node joined the Swarm as a worker.”

[root@localhost ~]# ssh -i "coreos.pem" core@34.204.199.45
Container Linux by CoreOS stable (1409.7.0)
core@ip-172-30-5-31 ~ $ docker swarm join \
> --token SWMTKN-1-3o3zi1rxgkzy5gq5itr580yp9pbagxnkelinzh42ovrb7znt6f-

dmgeg3veppor942vsavma3s47 \
> 172.30.5.70:2377
This node joined a swarm as a worker.

Similarly, SSH login to the other worker instance.

ssh -i "coreos.pem" core@34.231.70.10

Run the same docker swarm join command and the second nodes joins the Swarm as a worker node.

[root@localhost ~]# ssh -i "coreos.pem" core@34.231.70.10
Container Linux by CoreOS stable (1409.7.0)
core@ip-172-30-5-108 ~ $ docker swarm join \
> --token SWMTKN-1-3o3zi1rxgkzy5gq5itr580yp9pbagxnkelinzh42ovrb7znt6f-

dmgeg3veppor942vsavma3s47 \
> 172.30.5.70:2377
This node joined a swarm as a worker.

The following sequence of events takes place when the docker swarm join command runs to join a
worker node to the Swarm.

 1. The Swarm mode for the Docker Engine on the node is enabled.

 2. A request for a TLS certificate is sent to the manager.

 3. The node is named with the machine hostname.

 4. The current node joins the Swarm at the manager listen address. Based on the
token, the node is joined as a worker node or a manager node.

Table 2-5. Options for docker swarm join Command

Option Description Default Value

--advertise-addr Advertised address in format <ip|interface>[:port].

--availability Availability of the node. One of active/pause/drain. active

--listen-addr Listen address in format <ip|interface>[:port]. 0.0.0.0:2377

--token Token for entry into the Swarm.

Chapter 2 ■ Using DoCker in swarm moDe

20

 5. Sets the current node to Active availability.

 6. The ingress overlay network is extended to the current node.

When a node is joined to the Swarm using the manager token, the node joins as a manager node.
The new manager nodes should be Reachable and only the first manager node is the leader. Leader election
to a different manager node occurs only if the initial leader node were to fail or be demoted.

The worker nodes differ from the manager nodes in another regard. A worker node cannot be used to
view or modify the cluster state. Only the manager node can be used to view the cluster state such as the
nodes in the Swarm. Only the manager node can be used to modify a cluster state such as remove a node.
If the docker node ls command is run on a worker node, the following error message is generated.

core@ip-172-30-5-31 ~ $ docker node ls
Error response from daemon: This node is not a swarm manager. Worker nodes can't be used
to view or modify cluster state. Please run this command on a manager node or promote the
current node to a manager.

Testing the Swarm
Next, you deploy a simple Hello World service to the Swarm to test the cluster. List the nodes in the Swarm
from the manager node with the following command.

docker node ls

The three nodes should be listed.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91f0n3s0n2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active
bgzqx2cfsf05qdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader
bqq4bryuobylu0glm4p19tko4 ip-172-30-5-31.ec2.internal Ready Active

How do you tell if a node is a manager node or a worker node? From the Manager Status column. If the
Manager Status is empty, the node is a worker node and if the Manager Status has a value, which would be
one of the values discussed in Table 2-4, the node is a manager node. Two worker nodes and one manager
node are listed.

We already discussed that worker nodes can’t be used to view or modify cluster state. Next, create a
Docker service using the docker service create command, which becomes available only if the Swarm
mode is enabled. Using Docker image alpine, which is a Linux distribution, create two replicas and ping the
docker.com domain from the service containers.

docker service create --replicas 2 --name helloworld alpine ping docker.com

If the preceding command runs without an error, the Docker Swarm installed fine. The command
returns the service ID.

core@ip-172-30-5-70 ~ $ docker service create --replicas 2 --name helloworld alpine ping
docker.com
bkwskfzqa173dp55j54erg5cg

Chapter 2 ■ Using DoCker in swarm moDe

21

Services may be listed with the following command.

docker service ls

The service helloworld is listed and the number of replicas is listed as 2/2, which implies that two
replicas exist and meet the desired state of two replicas. The REPLICAS column output is ordered “actual/
desired”. The Docker image is alpine and the command to run the service is ping docker.com.

core@ip-172-30-5-70 ~ $ docker service ls
ID NAME REPLICAS IMAGE COMMAND
bkwskfzqa173 helloworld 2/2 alpine ping docker.com

The docker service inspect command is used to find more information about the service.

docker service inspect helloworld

The detailed information about the helloworld service—including the container spec, resources,
restart policy, placement, mode, update config, and update status—is listed.

core@ip-172-30-5-70 ~ $ docker service inspect helloworld
[
 {
 "ID": "bkwskfzqa173dp55j54erg5cg",
 "Version": {
 "Index": 22
 },
 "CreatedAt": "2017-07-22T19:11:50.345823466Z",
 "UpdatedAt": "2017-07-22T19:11:50.345823466Z",
 "Spec": {
 "Name": "helloworld",
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "alpine",
 "Args": [
 "ping",
 "docker.com"
]
 },
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
 "RestartPolicy": {
 "Condition": "any",
 "MaxAttempts": 0
 },
 "Placement": {}
 },
 "Mode": {
 "Replicated": {
 "Replicas": 2
 }
 },

Chapter 2 ■ Using DoCker in swarm moDe

22

 "UpdateConfig": {
 "Parallelism": 1,
 "FailureAction": "pause"
 },
 "EndpointSpec": {
 "Mode": "vip"
 }
 },
 "Endpoint": {
 "Spec": {}
 },
 "UpdateStatus": {
 "StartedAt": "0001-01-01T00:00:00Z",
 "CompletedAt": "0001-01-01T00:00:00Z"
 }
 }
]

The replicas and the nodes on which the replicas are placed may be listed with the following command
syntax.

docker service ps <SERVICE

The <SERVICE> placeholder is either a service name (like helloworld) or the actual service ID
(like bkwskfzqa173 for this example). For the helloworld service, the command becomes:

docker service ps helloworld

The preceding command also lists the node on which a replica is running. The Docker containers
started for a service are listed with same command as before, the docker ps command.

core@ip-172-30-5-70 ~ $ docker service ps helloworld
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR
2x8gqd2qbylpkug1kg0pxi1c2 helloworld.1 alpine ip-172-30-5-70.ec2.internal Running
Running 34 seconds ago
6twq1v0lr2gflnb6ae19hrpx9 helloworld.2 alpine ip-172-30-5-108.ec2.internal Running
Running 34 seconds ago
core@ip-172-30-5-70 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
acbdaccad6ea alpine:latest "ping docker.com" 47 seconds ago Up 46 seconds
helloworld.1.2x8gqd2qbylpkug1kg0pxi1c2

The docker ps command is not a Swarm mode command, but may be run on the worker nodes to find
the service containers running on a worker node. The docker ps command gives you all containers running
on a node, even if they are not service containers.

Chapter 2 ■ Using DoCker in swarm moDe

23

core@ip-172-30-5-108 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
74ea31054fb4 alpine:latest "ping docker.com" About a minute ago Up About a minute
helloworld.2.6twq1v0lr2gflnb6ae19hrpx9

Only two nodes are listed by the docker service ps helloworld command on which replicas are
scheduled, the manager node and one of the worker nodes. The docker ps command on the other worker
node does not list any Docker containers.

core@ip-172-30-5-31 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

The docker node inspect <node> command is used to get detailed information about a node, such as
the node role, availability, hostname, resources capacity, plugins, and status.

core@ip-172-30-5-70 ~ $ docker node inspect ip-172-30-5-70.ec2.internal
[
 {
 "ID": "bgzqx2cfsf05qdradxytmdcp3",
 "Version": {
 "Index": 10
 },
 "CreatedAt": "2017-07-22T19:09:45.647701768Z",
 "UpdatedAt": "2017-07-22T19:09:45.68030039Z",
 "Spec": {
 "Role": "manager",
 "Availability": "active"
 },
 "Description": {
 "Hostname": "ip-172-30-5-70.ec2.internal",
 "Platform": {
 "Architecture": "x86_64",
 "OS": "linux"
 },
 "Resources": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 1042935808
 },
 "Engine": {
 "EngineVersion": "1.12.6",
 "Plugins": [
 {
 "Type": "Network",
 "Name": "bridge"
 },
 {
 "Type": "Network",
 "Name": "host"
 },

Chapter 2 ■ Using DoCker in swarm moDe

24

 {
 "Type": "Network",
 "Name": "null"
 },
 {
 "Type": "Network",
 "Name": "overlay"
 },
 {
 "Type": "Volume",
 "Name": "local"
 }
]
 }
 },
 "Status": {
 "State": "ready"
 },
 "ManagerStatus": {
 "Leader": true,
 "Reachability": "reachable",
 "Addr": "172.30.5.70:2377"
 }
 }
]

A service may be removed with the docker service rm <service> command. Subsequently, the
docker service inspect <service> command should not list any replicas and running docker ps will
show no more running Docker containers.

core@ip-172-30-5-70 ~ $ docker service rm helloworld
helloworld
core@ip-172-30-5-70 ~ $ docker service inspect helloworld
[]
Error: no such service: helloworld

Chapter 4 discusses more about services.

Promoting a Worker Node to Manager
As mentioned before, a manager node is also a worker node by default, but a worker node is only a worker
node. But a worker node may be promoted to a manager node. The Docker command to promote one or
more worker nodes to a manager node has the following syntax.

docker node promote NODE [NODE...]

The command must be run from the leader node. As an example, promote the node ip-172-30-5-108.
ec2.internal. As the output indicates, the node gets promoted to a manager node. Subsequently list the
nodes in the Swarm and the node promoted should have manager status as Reachable.

http://dx.doi.org/10.1007/978-1-4842-2973-6_4

Chapter 2 ■ Using DoCker in swarm moDe

25

A worker node should preferably be promoted using the node ID; the reason for which is discussed
subsequently. Promote another worker node using the node ID. Subsequently, both the worker nodes are
listed as Reachable in the Manager Status column.

core@ip-172-30-5-70 ~ $ docker node promote ip-172-30-5-108.ec2.internal
Node ip-172-30-5-108.ec2.internal promoted to a manager in the swarm.
core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91f0n3s0n2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active Reachable
bgzqx2cfsf05qdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader
bqq4bryuobylu0glm4p19tko4 ip-172-30-5-31.ec2.internal Ready Active

Demoting a Manager Node to Worker
A manager node may be demoted to a worker node with the following Docker command.

docker node demote NODE [NODE...]

Any manager node, including the leader node, may be demoted. As an example, demote the manager
node ip-172-30-5-108.ec2.internal.

core@ip-172-30-5-70 ~ $ docker node demote ip-172-30-5-108.ec2.internal
Manager ip-172-30-5-108.ec2.internal demoted in the swarm.

Once demoted, the commands such as docker node ls that can be run only from a manager node
cannot be run any more on the node. The docker node ls command lists the demoted node as a worker
node; no MANAGER STATUS is listed for a worker node.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91f0n3s0n2jwjdv8 ip-172-30-5-108.ec2.internal Ready Active
bgzqx2cfsf05qdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader
bqq4bryuobylu0glm4p19tko4 ip-172-30-5-31.ec2.internal Ready Active

A node should be preferably promoted/demoted and otherwise referred to in any command that is
directed at the node using the node ID, which is unique to a node. The reason being that a demoted node, if
promoted back, could be added with a different node ID and the docker node ls command could list two
node IDs for the same hostname. If the hostname is used to refer to a node, it could result in the node is
ambiguous error message.

Making a Worker Node Leave the Swarm
Earlier you joined a node to the Swarm as a worker node. A worker node may also be made to leave the
Swarm. As an example, make one of the worker nodes leave with the following command, which must be
run from the node you want to remove from the Swarm.

docker swarm leave

Chapter 2 ■ Using DoCker in swarm moDe

26

As the message output indicates, the node has left the Swarm.

core@ip-172-30-5-31 ~ $ docker swarm leave
Node left the swarm.

Similarly, make the other worker node leave the Swarm.

core@ip-172-30-5-108 ~ $ docker swarm leave
Node left the swarm.

After a worker node has left the Swarm, the node itself is not removed and continues to be listed with
the docker node ls command with a Down status.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9n5qmj4pp91f0n3s0n2jwjdv8 ip-172-30-5-108.ec2.internal Down Active
bgzqx2cfsf05qdradxytmdcp3 * ip-172-30-5-70.ec2.internal Ready Active Leader
bqq4bryuobylu0glm4p19tko4 ip-172-30-5-31.ec2.internal Down Active

Making a Manager Node Leave the Swarm
While it is easier to make a worker node leave the Swarm, it is different when a manager node must leave the
Swarm. Making a worker node leave the Swarm only lowers the Swarm capacity in terms of the service tasks
that may be scheduled in the Swarm. But making a manager node leave the Swarm makes the Swarm less
available. If the fault tolerance does not allow for a manager node to fail or be removed from the Swarm, the
same docker swarm leave command that made a worker node leave the Swarm cannot be used to make a
manager node leave the Swarm. If a Swarm has only one manager node, the docker swarm leave command
generates the following error message.

core@ip-172-30-5-70 ~ $ docker swarm leave
Error response from daemon: You are attempting to leave the swarm on a node that is
participating as a manager. Removing the last manager erases all current state of the
swarm. Use `--force` to ignore this message.

Add the --force option to the docker swarm leave command on the manager node to cause the
manager node to leave the Swarm.

core@ip-172-30-5-70 ~ $ docker swarm leave --force
Node left the swarm.

If the only manager node is removed, the Swarm no longer exists. The Swarm must be initialized again
if the Swarm mode is to be used.

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Swarm initialized: current node (cnyc2w3n8q8zuxjujcd2s729k) is now a manager.
To add a worker to this swarm, run the following command:
 docker swarm join \
 --token SWMTKN-1-4lxmisvlszjgck4ly0swsxubejfx0phlne1xegho2fiq99amqf-

11mpscd8gs6bsayzren8fa2ki \
 172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

Chapter 2 ■ Using DoCker in swarm moDe

27

A new Swarm is created with only the manager node and the Swarm has only one node initially.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader

If a Swarm has two manager nodes, making one of the manager nodes leave the Swarm has a different
effect. With two managers, the fault tolerance is 0, as discussed earlier. To create a Swarm with two manager
nodes, start with a Swarm that has one manager node and two worker nodes.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
4z03hudbo3fz17q94leo24pvh ip-172-30-5-108.ec2.internal Ready Active
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader
efsxwt43iskasa6poh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

Promote one of the worker nodes to a manager node.

core@ip-172-30-5-70 ~ $ docker node promote ip-172-30-5-108.ec2.internal
Node ip-172-30-5-108.ec2.internal promoted to a manager in the swarm.

The Swarm will then have two manager nodes.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
4z03hudbo3fz17q94leo24pvh ip-172-30-5-108.ec2.internal Ready Active Reachable
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader
efsxwt43iskasa6poh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

Run the docker swarm leave command from a manager node that’s not the leader node. The following
message is generated.

core@ip-172-30-5-108 ~ $ docker swarm leave

The error response from the daemon is as follows:

You are attempting to leave the swarm on a node that is participating as a manager.

Removing this node leaves one manager out of two. Without a Raft quorum, your Swarm will be
inaccessible. The only way to restore a Swarm that has lost consensus is to reinitialize it with --force-new-
cluster. Use --force to suppress this message.

To make the manager node leave, you must add the --force option to the command.

core@ip-172-30-5-108 ~ $ docker swarm leave --force
Node left the swarm.

Chapter 2 ■ Using DoCker in swarm moDe

28

When one of the two managers has left the Swarm, the Raft quorum is lost and the Swarm becomes
inaccessible. As indicated, the Swarm must be reinitialized using the --force-new-cluster option.

Reinitializing a Cluster
A Swarm that has lost quorum cannot be reinitialized using the command used to initialize a Swarm. If the
same command runs on a Swarm that has lost quorum, a message indicates that the node is already in the
Swarm and first must be made to leave the Swarm:

core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
Error response from daemon: This node is already part of a swarm. Use "docker swarm leave"
to leave this swarm and join another one.

To reinitialize the Swarm the --force-new-cluster option must be added to the docker swarm
init command. core@ip-172-30-5-70 ~ $ docker swarm init --advertise-addr 172.30.5.70
--force-new-cluster
Swarm initialized: current node (cnyc2w3n8q8zuxjujcd2s729k) is now a manager.
To add a worker to this swarm, run the following command:
 docker swarm join \
 --token SWMTKN-1-4lxmisvlszjgck4ly0swsxubejfx0phlne1xegho2fiq99amqf-

11mpscd8gs6bsayzren8fa2ki \
 172.30.5.70:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

The Swarm is reinitialized and the docker swarm join command to add a worker node is output.

Modifying Node Availability
The availability of a node may be modified with the D command with the --availability option. One of
the --availability options shown in Table 2-6 may be set.

Table 2-6. Availability Options

Availability Option Description

active Restores a paused or drained node to active.

pause Pauses a node so that it is not available to receive new tasks.

drain With a worker node, the node becomes down and unavailable for scheduling new
tasks. A manager node also becomes unavailable for scheduling new tasks but
continues to perform Swarm management.

As an example, you can drain a worker node as follows.

core@ip-172-30-5-70 ~ $ docker node update --availability drain ip-172-30-5-108.ec2.internal
ip-172-30-5-108.ec2.internal

Chapter 2 ■ Using DoCker in swarm moDe

29

The worker node is drained. All service tasks on the drained node are shut down and started on other
nodes that are available. The output from the docker node ls command lists the node with the status set to
Drain.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bhuzgyqvb83dx0zvms54o0a58 ip-172-30-5-108.ec2.internal Ready Drain
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader
efsxwt43iskasa6poh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

The node detail (partial output is listed) for the drained worker node lists the node
availability as "drain".core@ip-172-30-5-70 ~ $ docker node inspect ip-172-30-5-108.ec2.
internal
[
 {
 "ID": "bhuzgyqvb83dx0zvms54o0a58",
 "Version": {
 "Index": 49
 },
 "CreatedAt": "2017-07-22T19:30:31.544403951Z",
 "UpdatedAt": "2017-07-22T19:33:37.45659544Z",
 "Spec": {
 "Role": "worker",
 "Availability": "drain"
 },
 "Description": {
 "Hostname": "ip-172-30-5-108.ec2.internal",

All service tasks on the drained node are shut down and started on other nodes that are available.
The node availability with the docker node ls is listed as Drain.

A drained node can be made active again using the docker node update command with
--availability set to Active.

core@ip-172-30-5-70 ~ $ docker node update --availability active ip-172-30-5-108.ec2.internal
ip-172-30-5-108.ec2.internal

The drained node becomes active and is listed with the status set to Active.

core@ip-172-30-5-70 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
bhuzgyqvb83dx0zvms54o0a58 ip-172-30-5-108.ec2.internal Ready Active
cnyc2w3n8q8zuxjujcd2s729k * ip-172-30-5-70.ec2.internal Ready Active Leader
efsxwt43iskasa6poh2stkjeb ip-172-30-5-31.ec2.internal Ready Active

Chapter 2 ■ Using DoCker in swarm moDe

30

Removing a Node
One or more nodes may be removed from the Swarm using the docker node rm command, which is run
from any manager node.

docker node rm [OPTIONS] NODE [NODE...]

The difference between docker swarm leave and docker node rm is that the docker node rm may be run
only from a manager node. A demoted node can only be removed from the Swarm with the docker node rm
command. The sequence to remove a manager node without using the --force option is the following.

 1. Demote the manager node, which makes it a worker node.

 2. Drain the worker node.

 3. Make the worker node leave the Swarm.

 4. Remove the node.

Summary
This chapter discussed using Docker in Swarm mode. First, you initialized the Swarm mode with the docker
swarm init command to make the current node the manager node in the Swarm. Subsequently, you joined
worker nodes to the Swarm with the docker swarm join command. The chapter also discussed promoting
a worker node to a manager node/demoting a manager node to a worker node, making a worker node leave
a Swarm and then rejoin the Swarm, making a manager node leave a Swarm, reinitializing a Swarm, and
modifying node availability and removing a node. The next chapter introduces Docker for AWS, which is a
managed service for Docker Swarm mode.

31© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_3

CHAPTER 3

Using Docker for AWS to Create a
Multi-Zone Swarm

Docker Swarm is provisioned by first initiating a Swarm to create a manager node and subsequently joining
worker nodes to that manager node. Docker Swarm provides distributed service deployment for Docker
applications.

The Problem
By default, a Docker Swarm is provisioned on a single zone on AWS, as illustrated in Figure 3-1. With the
manager nodes and all the worker nodes in the same AWS zone, failure of the zone would make the zone
unavailable. A single-zone Swarm is not a highly available Swarm and has no fault tolerance.

Swarm Manager
Node

Docker
Swarm
(Single
Zone)

Swarm Worker Node Swarm Worker Node Swarm Worker Node

Figure 3-1. A single-zone Swarm

https://doi.org/10.1007/978-1-4842-2973-6_3

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

32

The Solution
Docker and AWS have partnered to create a Docker for AWS deployment platform that provisions a Docker
Swarm across multiple zones on AWS. Docker for AWS does not require users to run any commands on a
command line and is graphical user interface (GUI) based. With manager and worker nodes in multiple
zones, failure of a single AWS zone does not make the Swarm unavailable, as illustrated in Figure 3-2. Docker
for AWS provides fault tolerance to a Swarm.

Docker for AWS is a managed service for Docker Swarm on the AWS cloud platform. In addition to
multiple zones, Docker for AWS has several other benefits:

•	 All the required infrastructure is provisioned automatically.

•	 Automatic upgrade to new software versions without service interruption.

•	 A custom Linux distribution optimized for Docker. The custom Linux distribution is
not available separately on AWS and uses the overlay2 storage driver.

•	 Unused Docker resources are pruned automatically.

•	 Auto-scaling groups for managing nodes.

Swarm
Manager

Zone 1

Swarm
Worker

Zone 1

Swarm
Worker

Zone 2

Swarm
Worker

Zone 3

Swarm
Manager

Zone 2

Swarm
Manager

Zone 3

x

x

x

x

x

x

x

x

x

x

x

x

Docker
Swarm

Figure 3-2. A Multi-zone Swarm

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

33

•	 Log rotation native to the host to avoid chatty logs consuming all the disk space.

•	 Centralized logging with AWS CloudWatch.

•	 A bug-reporting tool based on a docker-diagnose script.

Two editions of Docker for Swarm are available:

•	 Docker Enterprise Edition (EE) for AWS

•	 Docker Community Edition (CE) for AWS

We use the Docker Community Edition (CE) for AWS in this chapter to create a multi-zone Swarm.
This chapter includes the following topics:

•	 Setting the environment

•	 Creating a AWS CloudFormation stack for the Docker Swarm

•	 Connecting with the Swarm manager

•	 Using the Swarm

•	 Deleting the Swarm

Setting the Environment
Two deployment options are available with Docker for AWS.

•	 Use a pre-existing VPC

•	 Use a new VPC created by Docker

Letting Docker create the VPC, subnets, and gateways is the easier option and the one used in this
chapter.

Create an AWS account if you don’t already have one at https://aws.amazon.com/resources/create-
account/. The AWS account must support EC2-VPC. Even though AWS services such as VPC are created
automatically, the account must have permissions to create EC2 instances, including auto-scaling groups,
IAM profiles, DynamoDB tables, SQS Queue, VPC (including subnets, gateways, and security groups), Elastic
Load Balancer, and CloudWatch Log Group. The only user input other than creating an account with the
required permissions is to create a SSH key pair in the AWS region in the Docker Swarm.

Select the EC2 AWS service and click on the Key Pairs link in the EC2 dashboard. Click on Create Key Pair
to create and download a key pair. Specify a key pair name (docker for example) in the Create Key Pair dialog
and click on Create. A key pair gets created, as shown in Figure 3-3. Copy the key pair file (docker.pem) to a
local Linux machine.

Figure 3-3. A key pair

https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

34

Set the permissions on the docker.pem to 400, which gives only read permissions and removes all other
permissions.

chmod 400 docker.pem

Creating a AWS CloudFormation Stack for Docker Swarm
Navigate to https://docs.docker.com/docker-for-aws/ in a web browser and click on the Deploy Docker
for AWS option, as as shown in Figure 3-4. The label could be different, such as Deploy Docker Community
Edition [CE] for AWS [stable].

The Create Stack wizard is started with the provision to either design a new template or choose the
default CloudFormation template for Docker on AWS. Select the Specify an Amazon S3 Template URL option
for which a URL is pre-specified, as shown in Figure 3-5. Click on Next.

Deploy Docker
Community Edition

[CE] for AWS
[stable]

Deploy Docker
Community Edition
[CE] for AWS [edge]

Deploy Docker
Community Edition
[CE] for AWS [test]

Deploy Docker
Community Edition
[CE] for AWS [test]

Deploy Docker
Community Edition
[CE] for AWS [edge]

Deploy Docker
Community Edition

[CE] for AWS
[stable]

uses your existing VPC

uses your existing VPC uses your existing VPC

Figure 3-4. Deploy Docker for AWS

https://docs.docker.com/docker-for-aws/

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

35

In Specify Details, specify a stack name (DockerSwarm). The Swarm Parameters section has the fields
listed in Table 3-1.

Keep the default settings of 3 for Number of Swarm Managers and 5 for Number of Swarm Worker
nodes, as shown in Figure 3-6.

Figure 3-5. Selecting a template

Table 3-1. Swarm Parameters

Parameter Description

Number of Swarm managers? Number of Swarm manager nodes. Valid values are 1, 3, and 5.

Number of Swarm worker nodes? Number of worker nodes in the Swarm (0-1000).

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

36

Next, specify the Swarm properties, as discussed in Table 3-2.

In the Which SSH key to use? property, select the docker SSH key. The Swarm properties are shown in
Figure 3-7.

Figure 3-6. Specifying a stack name

Table 3-2. Swarm Properties

Swarm Property Description Value Set

Which SSH key to use? Name of an existing EC2 key pair to enable
SSH access to the instances.

docker

Enable daily resource cleanup? Cleans up unused images, containers,
networks, and volumes.

no

Use CloudWatch for container logging? Send all container logs to CloudWatch. yes

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

37

Specify the Swarm Manager properties, as discussed in Table 3-3.

Figure 3-7. Swarm properties

Table 3-3. Swarm Manager Properties

Swarm Property Description Value Set

Swarm manager instance type? EC2 HVM instance type (t2.micro, m3.medium, etc.) t2.micro

Manager ephemeral storage
volume size?

Size of manager’s ephemeral storage volume in GB 20

Manager ephemeral storage
volume type?

Manager volume type standard

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

38

Figure 3-8. Swarm worker properties

Table 3-4. Swarm Worker Properties

Swarm Worker Property Description Value Set

Agent worker instance type? EC2 HVM instance
type (t2.micro,
m3.medium, etc.)

t2.micro

Worker ephemeral storage volume size? Size of worker’s
ephemeral storage
volume in GB

20

Worker ephemeral storage volume type? Worker volume type standard

The Swarm Manager properties are as shown in Figure 3-8. Specify the Swarm Worker properties, as
discussed in Table 3-4.

The Swarm Worker properties are shown in Figure 3-8. Click on Next.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

39

For Advanced options, the Notification options are set to No Notification. Set Rollback on Failure to
Yes, as shown in Figure 3-10. Click on Next.

Next, specify the options for the stack. Tags (key-value pairs) may be specified for resources in a stack.
For permissions, an IAM role for CloudFormation may be chosen. None of these options is required to be
set, as shown in Figure 3-9.

Figure 3-9. Optional settings

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

40

Figure 3-10. Setting rollback on failure

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

41

Review the stack settings, as shown in Figure 3-11.

Figure 3-11. Reviewing the stack settings

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

42

A new stack begins to be created. Click on the Refresh button to refresh the stacks listed, as shown in
Figure 3-13.

Figure 3-12. Creating the stack

Figure 3-13. Refresh

Select the acknowledgement checkbox and then click on Create, as shown in Figure 3-12.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

43

A new stack based on a CloudFormation template for Docker Swarm starts to be created, as indicated
by the status CREATE_IN_PROGRESS shown in Figure 3-14.

The different tabs are provided for the different stack details. The Resources tab shows the AWS
resources created by the CloudFormation template, as shown in Figure 3-15.

Figure 3-14. CloudFormation stack status

Figure 3-15. CloudFormation stack resources

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

44

Figure 3-17. Stack status is CREATE_COMPLETE

The Events tab shows the events that occur in creating a CloudFormation stack, as shown in Figure 3-16.

Figure 3-16. CloudFormation stack events

When the stack creation completes, the status says CREATE_COMPLETE, as shown in Figure 3-17.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

45

All the required resources—including auto-scaling groups, EC2 Internet Gateway, EC2 security groups,
Elastic Load Balancer, IAM policy, Log Group, and VPC Gateway—are created, as shown in Figure 3-18.

The Outputs tab lists the Default DNS target, the zone availability comment about the number of
availability zones, and the manager nodes, as shown in Figure 3-19.

Figure 3-18. Resources are created

Figure 3-19. Outputs

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

46

The three manager instances are all in different availability zones. The public/private IP addresses and
the public DNS name for each EC2 instance may be obtained from the EC2 console, as shown in Figure 3-21.

Figure 3-20. The Managers link

Figure 3-21. Manager instances on EC2

To list the EC2 instances for the Swarm managers, click on the link in Managers, as shown in Figure 3-20.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

47

The AMI used for the EC2 instances may be found using the AMI ID, as shown in Figure 3-22. A Moby
Linux AMI is used for this Swarm, but the AMI could be different for different users and in different AWS
regions.

Figure 3-22. Moby Linux AMI

You can list all the EC2 instances by setting Instance State to Running. The Docker Swarm manager
nodes (three) and worker nodes (five) are listed, as shown in Figure 3-23. The manager and worker nodes
are in three different availability zones.

Figure 3-23. Swarm managers and workers in three different availability zones

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

48

Select Load Balancers in the EC2 dashboard and the provisioned Elastic Load Balancer is listed, as
shown in Figure 3-24. Click on the Instances tab to list the instances. All instances should have a status set to
InService, as shown in Figure 3-24.

Figure 3-24. Elastic Load Balancer

Figure 3-25. Launch configurations

Figure 3-26. Auto-scaling groups

Select Launch Configurations from the EC2 dashboard. The two launch configurations—one for the
managers and one for the worker nodes—will be listed, as shown in Figure 3-25.

Select Auto Scaling Groups in the EC2 dashboard. The two auto-scaling groups—one for the managers
and one for the worker nodes—will be listed, as shown in Figure 3-26.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

49

Connecting with the Swarm Manager
Next, connect to a Swarm manager node from the local machine on which the key pair docker.pem is copied.
Using the public IP address of a manager EC2 instance, SSH login into the instance with user as “docker”.

ssh -i "docker.pem" docker@54.89.68.201

The command prompt for the manager node is displayed.

[root@localhost ~]# ssh -i "docker.pem" docker@54.89.68.201

Welcome to Docker!

The Docker version of the Swarm node may be listed using docker --version. The version will be 17.06
or greater. Swarm mode is supported on Docker 1.12 or greater.

~ $ docker --version
Docker version 17.06.0-ce, build 02c1d87

Using the Swarm
List the Swarm nodes with docker node ls and the three manager nodes and five worker nodes will be
listed.

~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

255llm8729rns82bmloaxs6usl ip-172-31-8-37.ec2.internal Ready Active

ikyskl4ysocymoe4pbrj3qnh3 ip-172-31-4-154.ec2.înternal Ready Active Reachable

p2ky6meej8tnph5wyuw59xtmr ip-172-31-21-30.ec2.internal Ready Active Leader

r56kkltfgc4zzzfbslinrun2d1 ip-172-31-24-185.ec2.internal Ready Active

soggz5qplcihk8y2y58uj9md4 ip-172-31-1-33.ec2.internal Ready Active

xbdeo8qp9jhi398h478wl2zrv * ip-172-31-33-35.ec2.internal Ready Active Reachable

ykk4odpjps6t6eqc9mriqvo4a ip-172-31-47-162.ec2.internal Ready Active

zrlrmijyj5vklxl3ag7gayb3w ip-172-31-39-210.ec2.internal Ready Active

The leader node and two other manager nodes indicated by Manager Status of Leader and Reachable
are listed. The worker nodes are all available, as indicated by Active in the Availability column.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

50

Docker services are introduced in the next chapter, but you can run the following docker service
create command to create an example Docker service for a MySQL database.

docker service create \
 --env MYSQL_ROOT_PASSWORD='mysql'\
 --replicas 1 \
 --name mysql \
 --update-delay 10s \
 --update-parallelism 1 \
 mysql

A service gets created:

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --update-delay 10s \
> --update-parallelism 1 \
> mysql
12hg71a3vy793quv14uems5gk

List the service with the docker service ls command, which is also discussed in the next chapter, and
the service ID, mode, replicas, and image are listed.

~S docker service ls

ID NAME MODE REPLICAS IMAGE

n2tomumtl9sbniysql replicated 1/1 mysql:latest

Scale the service to three replicas with the docker service scale command. The three replicas
are scheduled—one on the leader manager node and two on the worker nodes. The docker service ps
command to list service replicas is also discussed in more detail in the next chapter.

~ S docker service scale mysql=3

mysql scaled to 3

~ S docker service ps mysql

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

slqtuf9l4hxo mysq1.1 mysql:latest ip-172-31-35-3.us-east-2.compute.internal

Running Running about a minute ago

exqsthrgszzc mysql.2 mysql:latest ip-172-31-27-83.us-east-2.compute.internal

Running Preparing 8 seconds ago

vtuhsl6mya85 mysql.3 mysql:1atest ip-172-31-29-199.us-east-2.compute.internal Running
Preparing 8 seconds ago

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

51

Deleting a Swarm
To delete a Swarm, choose Actions ➤ Delete Stack from the CloudFormation console, as shown in Figure 3-27.

Figure 3-27. Choosing Actions ➤ Delete Stack

In the Delete Stack confirmation dialog, click on Yes, Delete, as shown in Figure 3-28.

Figure 3-28. Delete stack confirmation dialog

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

52

Figure 3-29. Delete in progress

Figure 3-30. Events list some of the resources with a status of DELETE_COMPLETE

The stack’s status becomes DELETE_IN_PROGRESS, as shown in Figure 3-29.

As each of the stack’s resources is deleted, its status becomes DELETE_COMPLETE, as shown for some of
the resources on the Events tab in Figure 3-30.

Chapter 3 ■ Using DoCker for aWs to Create a MUlti-Zone sWarM

53

When the EC2 instances have been deleted, the EC2 console lists their status as terminated, as shown
in Figure 3-31.

Summary
This chapter discussed creating a multi-zone Docker Swarm provisioned by a CloudFormation template
using the Docker for AWS service. You learned how to connect to the Swarm manager to run docker
service commands. The next chapter introduces Docker services.

Figure 3-31. EC2 instances with status set to terminated

55© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_4

CHAPTER 4

Docker Services

A Docker container contains all the binaries and dependencies required to run an application. A user only
needs to run a Docker container to start and access an application. The CoreOS Linux operating system has
Docker installed and the Docker commands may be run without even installing Docker.

The Problem
A Docker container, by default, is started only on a single node. However, for production environments,
where uptime and redundancy matters, you need to run your applications on multiple hosts.

When a Docker container is started using the docker run command, the container starts only on
a single host, as illustrated in Figure 4-1. Software is usually not designed to run on a single host only. A
MySQL database in a production environment, for example, may need to run across a cluster of hosts for
redundancy and high availability. Applications that are designed for a single host should be able to scale up
to multiple hosts as needed. But distributed Docker applications cannot run on a single Docker Engine.

docker run -d -p
8080 tututm/
hello-world

Docker
Conainer

Docker
Engine

Figure 4-1. Docker container on a single host

The Solution
Docker Swarm mode enables a Docker application to run across a distributed cluster of Docker Engines
connected by an overlay network, as illustrated in Figure 4-2. A Docker service may be created with a specific
number of replicas, with each replica potentially running on a different host in a cluster. A Swarm consists of
one or more manager nodes with a single leader for Swarm management and orchestration. Worker nodes
run the actual service tasks with the manager nodes being worker nodes by default. A Docker service may
be started only from the leader node. Service replicas scheduled on the worker nodes, as a result, run a
distributed application. Distributed applications provide several benefits, such as fault tolerance, failover,
increased capacity, and load balancing, to list a few.

https://doi.org/10.1007/978-1-4842-2973-6_4

Chapter 4 ■ DoCker ServiCeS

56

This chapter covers the following topics:

•	 Setting the environment

•	 The Docker service commands

•	 Types of services

•	 Creating a service

•	 Listing the tasks of a service

•	 Invoking a Hello World service task on the command line

•	 Getting detailed information about a service

•	 Invoking the Hello World service in a browser

•	 Creating a service for a MySQL database

•	 Scaling a service

•	 Listing service tasks

•	 Accessing a MySQL database in a Docker container

•	 Updating a service

•	 Updating the replicas

•	 Updating the Docker image tag

•	 Updating the placement constraints

x

x

x

x

x

x
x

x

x

x Swarm

Swarm
Worker

Swarm
Manager

3 tutum/hello-world
service replicas

Task
helloworld.1

Task
helloworld.2

Task
helloworld.3

Docker
Container

Docker
Container

Docker
Container

x

x

Swarm
Worker

Swarm
Worker

Figure 4-2. Docker service tasks and containers spread across the nodes

Chapter 4 ■ DoCker ServiCeS

57

•	 Updating environment variables

•	 Updating the Docker image

•	 Updating the container labels

•	 Updating resources settings

•	 Removing a service

Setting the Environment
Create a Docker Swarm consisting of one manager and two worker nodes using the procedure discussed in
Chapter 3. First, start three CoreOS instances—one for a Swarm manager and two for the Swarm workers.
Obtain the public IP address of the Swarm manager, as shown in the EC2 console in Figure 4-3.

Figure 4-3. EC2 instances for Swarm

SSH login to the Swarm manager instance with user as “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@34.200.225.39
Welcome to Docker!

Three nodes should get listed in the Swarm with the docker node ls command—one manager node
and two worker nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilru4f0i280w2tlsrg9hglwsj ip-172-31-10-132.ec2.internal Ready Active
w5to186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwcmt1sd93kh5cy5e * ip-172-31-13-155.ec2.internal Ready Active Leader

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 4 ■ DoCker ServiCeS

58

A worker node may be promoted to a manager node using the docker node promote <node ip>
command.

~ $ docker node promote ilru4f0i280w2tlsrg9hglwsj
Node ilru4f0i280w2tlsrg9hglwsj promoted to a manager in the swarm.

If you list the nodes again, two manager nodes should be listed. A manager node is identified by a value
in the Manager Status column. One node has a Manager Status of Reachable and the other says Leader.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilru4f0i280w2tlsrg9hglwsj ip-172-31-10-132.ec2.internal Ready Active Reachable
w5to186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwcmt1sd93kh5cy5e * ip-172-31-13-155.ec2.internal Ready Active Leader

 The manager node that is the Leader performs all the swarm management and orchestration. The
manager node that is Reachable participates in the raft consensus quorum and is eligible for election as the
new leader if the current leader node becomes unavailable.

Having multiple manager nodes adds fault tolerance to the Swarm, but one or two Swarm managers
provide the same fault tolerance. If required, one or more of the worker nodes could also be promoted to a
manager node to increase fault tolerance.

For connectivity to the Swarm instances, modify the inbound rules of the security groups associated
with the Swarm manager and worker instances to allow all traffic. The inbound rules for the security group
associated with a Swarm node are shown in Figure 4-4.

Figure 4-4. Setting inbound rules on a security group to allow all traffic

Chapter 4 ■ DoCker ServiCeS

59

The outbound rules for the security group associated with the Swarm manager are shown in Figure 4-5.

The docker service Commands
The docker service commands are used to manage Docker services. The docker service command
provides the sub-commands listed in Table 4-1.

To run docker service commands, the following requirements must be met.

•	 The Docker Swarm mode must be enabled

•	 The docker service commands must be run from the Swarm manager node that is
the Leader

The docker service commands are available only in Swarm mode and cannot be run outside the
Swarm mode.

The docker service commands cannot be run from a worker node. Worker nodes cannot be used to
view or modify Swarm cluster state.

Figure 4-5. Setting outbound rules on a security group to allow all traffic

Table 4-1. The docker service Sub-Commands

Command Description

docker service create Creates a new service.

docker service inspect Displays detailed information on one or more services.

docker service logs Fetches the logs of a service. The command was added in Docker 17.0.6.

docker service ls Lists services.

docker service ps Lists the tasks of one or more services.

docker service rm Removes one or more services.

docker service scale Scales one or multiple replicated services.

docker service update Updates a service.

Chapter 4 ■ DoCker ServiCeS

60

Types of Services
Docker Swarm mode supports two types of services, also called service modes—replicated services and
global services. Global services run one task only on every node in a Docker Swarm. Replicated services run
as a configured number of tasks, which are also referred to as replicas, the default being one. The number of
replicas may be specified when a new service is created and may be updated later. The default service type is
a replicated service. A global service requires the --mode option to be set to global. Only replicated services
may be scaled; global services cannot be scaled.

We start off by creating a replicated service. Later in the chapter, we also discuss creating a global
service.

Creating a Service
The command syntax to create a Docker service is as follows.

docker service create [OPTIONS] IMAGE [COMMAND] [ARG...]

Some of the supported options are listed in Table 4-2.

Table 4-2. Supported Options for Creating a Service

Option Description

--constraint Placement constraints.

--container-label Container labels.

--env, -e Sets environment variables.

--env-file Reads in a file of environment variables. Option not added until Docker
1.13.

--host Sets one or more custom host-to-IP mappings. Option not added until
Docker 1.13. Format is host:ip.

--hostname Container hostname. Option not added until Docker 1.13.

--label, -l Service labels.

--limit-cpu Limits CPUs. Default value is 0.000.

--limit-memory Limits memory. Default value is 0.

--log-driver Logging driver for service.

--log-opt Logging driver options.

--mode Service mode. Value may be replicated or global. Default is replicated.

--mount Attaches a filesystem mount to the service.

--name Service name.

--network Network attachments. By default, the “ingress” overlay network is used.

--publish, -p Publishes a port as a node port.

--read-only Mounts the container’s root filesystem as read only. Option not added
until Docker 17.03.
Default is false.

(continued)

Chapter 4 ■ DoCker ServiCeS

61

As an example, create a service called hello-world with Docker image tutum/hello-world consisting
of two replicas. Expose the service on port 8080 on the host. The docker service create command outputs
a service ID if successful.

~ $ docker service create \
> --name hello-world \
> --publish 8080:80 \
> --replicas 2 \
> tutum/hello-world
vyxnpstt351124h12niqm7s64

A service gets created.

Listing the Tasks of a Service
You can list the service tasks, also called replicas in the context of a replicated service, with the following
command.

docker service ps hello-world

Table 4-2. (continued)

Option Description

--replicas Number of tasks.

--reserve-cpu Reserves CPUs. Default is 0.000.

--reserve-memory Reserves memory. Default is 0.

--restart-condition Restarts when condition is met. Value may be none, on-failure, or any.

--restart-delay Delays between restart attempts (ns|us|ms|s|m|h).

--restart-max-attempts Maximum number of restarts before giving up.

--tty, -t Whether to allocate a pseudo-TTY. Option not added until Docker 1.13.
Default is false.

--update-delay Delays between updates (ns|us|ms|s|m|h). Default is 0s.

--update-failure-action Action on update failure. Value may be pause or continue. Default value is
pause.

--update-monitor Duration after each task update to monitor for failure (ns|us|ms|s|m|h).
Default is 0s.

--update-parallelism Maximum number of tasks updated simultaneously. A value of 0 to
updates all at once. Default value is 1.

--user, -u Username or UID in format: <name|uid>[:<group|gid>].

--workdir, -w Working directory inside the container.

Chapter 4 ■ DoCker ServiCeS

62

The two service tasks are listed.

~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
zjm03bjsqyhp hello-world.1 tutum/hello-world:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago
kezidi82ol5c hello-world.2 tutum/hello-world:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago

The ID column lists the task ID. The task name is in the format servicename.n; hello-world.1 and
hello-world.2 for the two replicas. The Docker image is also listed. The NODE column lists the private DNS
of the node on which the task is scheduled. The DESIRED STATE is the state that is desired as defined in the
service definition. The CURRENT STATE is the actual state of the task. At times, a task could be in a pending
state because of lack of resource capacity in terms of CPU and memory.

A service task is a slot for running a Docker container. On each node on which a task is running, a
Docker container should also be running. Docker containers may be listed with the docker ps command.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
0ccdcde64e7d tutum/hello-world:latest "/bin/sh -c 'php-f..." 2 minutes ago
Up 2 minutes 80/tcp hello-world.2.kezidi82ol5ct81u59jpgfhs1

Invoking a Hello World Service Task on the Command Line
Invoke the hello-world service using curl at <hostname>:8080. The curl command output is the HTML
markup for the service.

~ $ curl ec2-34-200-225-39.compute-1.amazonaws.com:8080
<html>
<head>
 <title>Hello world!</title>
 <link href='http://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet'

type='text/css'>
 <style>
 body {
 background-color: white;
 text-align: center;
 padding: 50px;
 font-family: "Open Sans","Helvetica Neue",Helvetica,Arial,sans-serif;
 }

 #logo {
 margin-bottom: 40px;
 }
 </style>
</head>
<body>

Chapter 4 ■ DoCker ServiCeS

63

 <h1>Hello world!</h1>
 <h3>My hostname is 20b121986df6</h3>
</body>
</html>

Getting Detailed Information About a Service
To get detailed information about the hello-world service, run the docker service inspect command.

docker service inspect hello-world

The detailed information includes the container specification, resources, restart policy, placement,
mode, update config, ports (target port and published port), virtual IPs, and update status.

~ $ docker service inspect hello-world
[
 {
 "ID": "vyxnpstt351124h12niqm7s64",
 "Version": {
 "Index": 30
 },
 "CreatedAt": "2017-07-23T19:00:09.98992017Z",
 "UpdatedAt": "2017-07-23T19:00:09.993001487Z",
 "Spec": {
 "Name": "hello-world",
 "Labels": {},
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "tutum/hello-world:latest@sha256:0d57def8055178aafb4c7669cbc25e

c17f0acdab97cc587f30150802da8f8d85",
 "StopGracePeriod": 10000000000,
 "DNSConfig": {}
 },
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
 "RestartPolicy": {
 "Condition": "any",
 "Delay": 5000000000,
 "MaxAttempts": 0
 },
 "Placement": {
 "Platforms": [
 {
 "Architecture": "amd64",
 "OS": "linux"
 }
]
 },

Chapter 4 ■ DoCker ServiCeS

64

 "ForceUpdate": 0,
 "Runtime": "container"
 },
 "Mode": {
 "Replicated": {
 "Replicas": 2
 }
 },
 "UpdateConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "RollbackConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "EndpointSpec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 8080,
 "PublishMode": "ingress"
 }
]
 }
 },
 "Endpoint": {
 "Spec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 8080,
 "PublishMode": "ingress"
 }
]
 },
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,

Chapter 4 ■ DoCker ServiCeS

65

 "PublishedPort": 8080,
 "PublishMode": "ingress"
 }
],
 "VirtualIPs": [
 {
 "NetworkID": "y3k655bdlp3x102a2bslh4swh",
 "Addr": "10.255.0.5/16"
 }
]
 }
 }
]

Invoking the Hello World Service in a Browser
The Hello World service may be invoked in a browser using the public DNS of a EC2 instance on which a
Swarm node is hosted. A service replica does not have to be running on a node to invoke the service from the
node. You obtain the public DNS of a manager node from the EC2 console, as shown in Figure 4-3. Invoke
the Hello World service with <Public DNS>:<Published Port> URL. As the Hello World service is exposed
or published on port 8080, the URL to invoke in a browser becomes <Public DNS>:8080. The service is
invoked and the service output is displayed in the browser, as shown in Figure 4-6.

Figure 4-6. Invoking a service in a browser

Chapter 4 ■ DoCker ServiCeS

66

Similarly, you can obtain the public DNS of a EC2 instance on which a Swarm worker node is hosted, as
shown in Figure 4-7.

Invoke the service using the PublicDNS:8080 URL in a browser, as shown in Figure 4-8.

A manager node is also a worker node by default and service tasks also run on the manager node.

Figure 4-7. Obtaining the public DNS for a EC2 instance on which a Swarm worker node is hosted

Figure 4-8. Invoking a service in a browser using public DNS for a EC2 instance on which a Swarm worker
node is hosted

Chapter 4 ■ DoCker ServiCeS

67

Creating a Service for a MySQL Database
Next, we create a service for a MySQL database. Using the mysql Docker image is different than using the
tutum/hello-world Docker image in two respects.

•	 The mysql Docker image has a mandatory environment variable called MYSQL_ROOT_
PASSWORD.

•	 The mysql Docker image is based on a Debian Linux and starts the MySQL database
server in Docker container, while the tutum/hello-world image is based on Alpine
Linux and starts Apache Server to run PHP applications.

Run the following docker service create command to create one replica of the MySQL database
service. Supply a root password with the MYSQL_ROOT_PASSWORD environment variable. Include some other
options for the restart condition, the restart max attempts, the update delay, and the update failure action.
Remove any previously running Docker service called mysql with the docker service rm mysql command.

~ $ docker service create \
 --env MYSQL_ROOT_PASSWORD='mysql'\
 --replicas 1 \
 --restart-condition none \
 --restart-max-attempts 5 \
 --update-failure-action continue \
 --name mysql \
 --update-delay 10s \
 mysql

A service gets created for MySQL database and the service ID gets output.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --restart-condition none \
> --restart-max-attempts 5 \
> --update-failure-action continue \
> --name mysql \
> --update-delay 10s \
> mysql
gzl8k1wy8kf3ms1nu5zwlfxm6

List the services with the docker service ls command; the mysql service should be listed.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
gzl8k1wy8kf3 mysql replicated 1/1 mysql:latest
vyxnpstt3511 hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp

List the service tasks/replicas with the docker service ps mysql command. One task is running on
the manager worker node.

Chapter 4 ■ DoCker ServiCeS

68

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mfw76m4rxbhp mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 16 seconds ago

How service tasks are scheduled, including node selection based on node ranking, is discussed in
Chapter 8, which covers scheduling.

Scaling a Service
Next, we scale the mysql service. Only replicated services can be scaled and the command syntax to scale
one or more services is as follows.

docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]

To scale the mysql service to three tasks, run the following command.

docker service scale mysql=3

The mysql service gets scaled to three, as indicated by the command output.

~ $ docker service scale mysql=3
mysql scaled to 3

Listing Service Tasks
The docker service ps command syntax to list service tasks is as follows.

docker service ps [OPTIONS] SERVICE [SERVICE...]

The command supports the options listed in Table 4-3.

Table 4-3. Options for the docker service ps Command

Option Description

--filter, -f Filters output based on conditions provided. The following filters are supported:

id=<task id>
name=<task name>
node=<node id or name>

desired-state=(running | shutdown | accepted)

--no-resolve Whether to map IDs to names. Default value is false.

--no-trunc Whether to truncate output. Option not added until Docker 1.13. Default value is
false.

--quiet, -q Whether to only display task IDs. Option not added until Docker 1.13. Default value is
false.

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

Chapter 4 ■ DoCker ServiCeS

69

As an example, you can list only the service tasks that are running.

docker service ps –f desired-state=running mysql

Only the running tasks are listed.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mfw76m4rxbhp mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 46 seconds ago
s4flvtode8od mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 8 seconds ago
j0jd92p5dmd8 mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 9 seconds ago

All tasks are running; therefore, the effect of using the filter is not very apparent. But, in a subsequent
example, you’ll list running service tasks when some tasks are not running.

Not all worker nodes are utilized for running service tasks if the number of nodes is more than the
number of tasks, as when the hello-world and mysql services had fewer than three tasks running. A node
could have more than one service task running if the number of replicas is more than the number of nodes
in a Swarm. Scaling up to five replicas starts more than one replica on two of the nodes.

~ $ docker service scale mysql=5
mysql scaled to 5
~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mfw76m4rxbhp mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running about a minute ago
s4flvtode8od mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 44 seconds ago
j0jd92p5dmd8 mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 45 seconds ago
vh9qxhm452pt mysql.4 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 26 seconds ago
6jtkvstssnkf mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 26 seconds ago

Only one mysql service replica is running on the manager node; therefore, only one Docker container
for the mysql service is running on the manager node.

~ $ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
6bbe40000874 mysql:latest "docker-entrypoint..."
About a minute ago Up About a minute 3306/tcp mysql.2.s4flvtode8odjjere2z

si9gdx

Chapter 4 ■ DoCker ServiCeS

70

Scaling to 10 tasks starts multiple tasks on each of the Swarm nodes.

~ $ docker service scale mysql=10
mysql scaled to 10
~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
s4flvtode8od mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running about a minute ago
j0jd92p5dmd8 mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 2 minutes ago
6jtkvstssnkf mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago
jxunbdec3fnj mysql.6 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago
t1nz59dyoi2s mysql.7 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 14 seconds ago
lousvchdirn9 mysql.8 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago
94ml0f52344d mysql.9 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago
pd40sd7qlk3j mysql.10 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago

The number of Docker containers for the mysql service on the manager node increases to three for the
three tasks running on the manager node.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
15e3253f69f1 mysql:latest "docker-entrypoint..." 50 seconds ago
Up 49 seconds 3306/tcp mysql.8.lousvchdirn9fv8wot5vivk6d
cca7ab20c914 mysql:latest "docker-entrypoint..." 50 seconds ago
Up 49 seconds 3306/tcp mysql.10.pd40sd7qlk3jc0i73huop8e4r
6bbe40000874 mysql:latest "docker-entrypoint..." 2 minutes ago
Up 2 minutes 3306/tcp mysql.2.s4flvtode8odjjere2zsi9gdx

Because you’ll learn more about Docker services with the MySQL database service example in later
sections, and also for completeness, next we discuss using a Docker container for MySQL database to create
a database table.

Accessing a MySQL Database in a Docker Container
Next, we access MySQL database in a Docker container. The docker ps command, when run on each
instance, lists Docker containers for the mysql service on the instance. Start a bash shell for a Docker
container with the docker exec –it <containerid> bash command. The root prompt gets displayed for
the Docker container.

~ $ docker exec -it 15e3253f69f1 bash
root@15e3253f69f1:/#

Chapter 4 ■ DoCker ServiCeS

71

Start the MySQL CLI with the mysql command as user root. Specify the password when prompted;
the password used to create the service was specified in the --env option to the docker service create
command using environment variable MYSQL_ROOT_PASSWORD. The mysql> CLI command prompt is
displayed.

root@15e3253f69f1:/# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 4
Server version: 5.7.19 MySQL Community Server (GPL)
Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

Set the database to use as mysql with the use mysql command.

mysql> use mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

Create a database table with the following SQL script.

CREATE TABLE wlslog(time_stamp VARCHAR(45) PRIMARY KEY,category VARCHAR(25),type
VARCHAR(25),servername VARCHAR(25),code VARCHAR(25),msg VARCHAR(45));

The wlslog table is created.

mysql> CREATE TABLE wlslog(time_stamp VARCHAR(45) PRIMARY KEY,category VARCHAR(25),type
VARCHAR(25),servername VARCHAR(25),code VARCHAR(25),msg VARCHAR(45));
Query OK, 0 rows affected (0.06 sec)

Add some data to the wlslog table with the following SQL commands run from the MySQL CLI.

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:16-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to STANDBY');
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:17-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to STARTING');
Query OK, 1 row affected (0.01 sec)

Chapter 4 ■ DoCker ServiCeS

72

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:18-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to ADMIN');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:19-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to RESUMING');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:20-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000331','Started WebLogic AdminServer');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:21-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000365','Server state changed to RUNNING');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO wlslog VALUES('Apr-8-2014-7:06:22-PM-PDT','Notice','WebLogicServer',
'AdminServer','BEA-000360','Server started in RUNNING mode');
Query OK, 1 row affected (0.00 sec)

Run a SQL query to list the database table data.

mysql> SELECT * FROM wlslog;
+---------------------------+----------+----------------+-------------+------------+---------------------------------+
| time_stamp | category | type | servername | code | msg |
+---------------------------+----------+----------------+-------------+------------+---------------------------------+
Apr-8-2014-7:06:16-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to STANDBY
Apr-8-2014-7:06:17-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to STARTING
Apr-8-2014-7:06:18-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to ADMIN
Apr-8-2014-7:06:19-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to RESUMING
Apr-8-2014-7:06:20-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000331	Started WebLogic AdminServer
Apr-8-2014-7:06:21-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000365	Server state changed to RUNNING
Apr-8-2014-7:06:22-PM-PDT	Notice	WebLogicServer	AdminServer	BEA-000360	Server started in RUNNING mode
+---------------------------+----------+----------------+-------------+------------+---------------------------------+
7 rows in set (0.00 sec)

Exit the MySQL CLI and the bash shell using the exit command.

mysql> exit
Bye
root@15e3253f69f1:/# exit
exit

Chapter 4 ■ DoCker ServiCeS

73

Updating a Service
A service may be updated subsequent to being created with the docker service update command, which
has the following syntax:

docker service update [OPTIONS] SERVICE

Some of the supported options are listed in Table 4-4.

Table 4-4. Options for the docker service update Command

Option Description

--args Args for the command.

--constraint-add Adds or updates a placement constraint.

--constraint-rm Removes a placement constraint.

--container-label-add Adds or updates a Docker container label.

--container-label-rm Removes a container label by its key.

--env-add Adds or updates an environment variable.

--env-rm Removes an environment variable.

--force Whether to force an update even if no changes require it. Option added in
Docker 1.13. Default is false.

--group-add Adds an additional supplementary user group to the container. Option
added in Docker 1.13.

--group-rm Removes a previously added supplementary user group from the
container. Option added in Docker 1.13.

--host-add Adds or updates a custom host-to-IP mapping (host:ip). Option added in
Docker 1.13.

--host-rm Removes a custom host-to-IP mapping (host:ip). Option added in
Docker 1.13.

--hostname Updates the container hostname. Option added in Docker 1.13.

--image Updates the service image tag.

--label-add Adds or updates a service label.

--label-rm Removes a label by its key.

--limit-cpu Updates the limit CPUs. Default value is 0.000.

--limit-memory Updates the limit memory. Default value is 0.

--log-driver Updates logging driver for service.

--log-opt Updates logging driver options.

--mount-add Adds or updates a mount on a service.

--mount-rm Removes a mount by its target path.

--publish-add Adds or updates a published port.

--publish-rm Removes a published port by its target port.

(continued)

Chapter 4 ■ DoCker ServiCeS

74

Next, we update some of the parameters of a deployed service.

Updating the Replicas
First, create a mysql service to update.

docker service create \
 --env MYSQL_ROOT_PASSWORD='mysql'\
 --replicas 1 \
 --restart-condition on-failure \
 --restart-max-attempts 5 \
 --update-failure-action continue \
 --name mysql \
 --update-delay 10s \
 mysql:5.6

Table 4-4. (continued)

Option Description

--read-only Mounts the container’s root filesystem as read only. Option added in
Docker 17.06. Default is false.

--replicas Updates the number of tasks.

--reserve-cpu Updates the reserve CPUs. Default is 0.000.

--reserve-memory Updates the reserve memory. Default is 0.

--restart-condition Updates the restart when condition is met (none, on-failure, or any).

--restart-delay Updates the delay between restart attempts (ns|us|ms|s|m|h).

--restart-max-attempts Updates the maximum number of restarts before giving up.

--rollback Whether to roll back to a previous specification. Option added in Docker
1.13. Default is false.

--tty, -t Whether to allocate a pseudo-TTY. Option added in Docker 1.13.
Default is false.

--update-delay Updates delay between updates (ns|us|ms|s|m|h). Default is 0s.

--update-failure-action Updates action on update failure (pause|continue). Default is pause.

--update-monitor Duration after each task update to monitor for failure (ns|us|ms|s|m|h).
Option added in Docker 1.13. Default 0s.

--update-parallelism Updates the maximum number of tasks updated simultaneously
(0 to update all at once). Default is 1.

--user, -u Adds the username or UID (format: <name|uid>[:<group|gid>]).

--workdir, -w Updates the working directory inside the container.

Chapter 4 ■ DoCker ServiCeS

75

A service from Docker image mysql:5.6 is created and the service ID is output.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --restart-condition on-failure \
> --restart-max-attempts 5 \
> --update-failure-action continue \
> --name mysql \
> --update-delay 10s \
> mysql:5.6
mecdt3zluvlvxqc3hdpw8edg1

Update the number of replicas to five using the docker service update command. If the command is
successful, the service name is output from the command.

~ $ docker service update --replicas 5 mysql
mysql

Setting replicas to five does not just start four new tasks to make a total of five tasks. When a service
is updated to change the number of replicas, all the service tasks are shut down and new tasks are started.
Subsequently listing the service tasks lists the first task as being shut down and five new tasks as being
started.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
jen0fmkjj13k mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Starting less than a second ago
r616gx588opd _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 5 seconds ago "task: non-zero exit (137)"
y350n4e8furo mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Running Running 7 seconds ago
ktrwxnn13fug mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Running 14 seconds ago
2t8j1zd8uts1 mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Running Running 10 seconds ago
8tf0uuwb8i31 mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Running Running 10 seconds ago

Updating the Docker Image Tag
Starting with a MySQL database service called mysql for Docker image mysql:5.6, next we update the
service to a different Docker image tag—the mysql:latest Docker image. Run the following command to
update the Docker image; the service name is output to indicate that the update is successful.

~ $ docker service update --image mysql:latest mysql
mysql

Chapter 4 ■ DoCker ServiCeS

76

You can list detailed information about the service with the docker service inspect command. The
image listed in the ContainerSpec is mysql:latest. The PreviousSpec is also listed.

~ $ docker service inspect mysql
[
 {
 "Spec": {
 "Name": "mysql",
 "Labels": {},
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133

b22b07ee32789b626f8de3",
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
],
 "PreviousSpec": {
 "Name": "mysql",
 "Labels": {},
 "TaskTemplate": {
 "ContainerSpec": {
 "Image": "mysql:5.6@sha256:6ad5bd392c9190fa92e65fd21f6debc8b2a76fc54f139

49f9b5bc6a0096a5285",
]

The update does not get completed immediately even though the docker service update command
does. While the service is being updated, the UpdateStatus for the service is listed with State set to
"updating" and the Message of "update in progress".

"UpdateStatus": {
 "State": "updating",
 "StartedAt": "2017-07-23T19:24:15.539042747Z",
 "Message": "update in progress"
 }

When the update completes, the UpdateStatus State becomes "completed" and the Message becomes
"update completed".

 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-23T19:24:15.539042747Z",
 "CompletedAt": "2017-07-23T19:25:25.660907984Z",
 "Message": "update completed"
 }

Chapter 4 ■ DoCker ServiCeS

77

While the service is updating, the service tasks are shutting down and the new service tasks are starting.
When the update is starting, some of the running tasks might be based on the previous image mysql:5.6
whereas others could be based on the new image mysql:latest.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
jen0fmkjj13k mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Running 38 seconds ago
r616gx588opd _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 43 seconds ago "task: non-zero exit (137)"
y350n4e8furo mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
bswz4sm8e3vj mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Running Running 6 seconds ago
ktrwxnn13fug _ mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 12 seconds ago "task: non-zero exit (1)"
wj1x26wvp0pt mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 7 seconds ago
2t8j1zd8uts1 _ mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Shutdown 7 seconds ago
hppq840ekrh7 mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 2 seconds ago
8tf0uuwb8i31 _ mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Failed 8 seconds ago "task: non-zero exit (1)"

The desired state of the tasks with image mysql:5.6 is set to Shutdown. Gradually, all the new service
tasks based on the new image mysql:latest are started.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
2uafxtcbj9qj mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 30 seconds ago
jen0fmkjj13k _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 36 seconds ago "task: non-zero exit (137)"
r616gx588opd _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (137)"
mkv95bvx3sl1 mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Ready Ready 3 seconds ago
y350n4e8furo _ mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Shutdown Failed 4 seconds ago "task: non-zero exit (137)"
yevunzer12vm mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 12 seconds ago
bswz4sm8e3vj _ mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Shutdown 12 seconds ago
ktrwxnn13fug _ mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 48 seconds ago "task: non-zero exit (1)"
wj1x26wvp0pt mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 44 seconds ago

Chapter 4 ■ DoCker ServiCeS

78

2t8j1zd8uts1 _ mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Shutdown 44 seconds ago
hppq840ekrh7 mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 39 seconds ago
8tf0uuwb8i31 _ mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Failed 44 seconds ago "task: non-zero exit (1)"

Filtering the service tasks with the –f option was introduced earlier. To find which, if any, tasks are
scheduled on a particular node, you run the docker service ps command with the filter set to the node.
Filtered tasks, both Running and Shutdown, are then listed.

~ $ docker service ps -f node=ip-172-31-13-155.ec2.internal mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mkv95bvx3sl1 mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running about a minute ago
y350n4e8furo _ mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (137)"
oksssg7gsh79 mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 50 seconds ago
wj1x26wvp0pt _ mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Shutdown Failed 55 seconds ago "task: non-zero exit (1)"

Service tasks may also be filtered by desired state. To list only running tasks, set the desired-state filter
to running.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
2uafxtcbj9qj mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 3 minutes ago
mkv95bvx3sl1 mysql.2 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 2 minutes ago
yevunzer12vm mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 2 minutes ago
oksssg7gsh79 mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 2 minutes ago
hppq840ekrh7 mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 3 minutes ago

Likewise, only the shutdown tasks are listed by setting the desired-state filter to shutdown.

~ $ docker service ps -f desired-state=shutdown mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
jen0fmkjj13k mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (137)"
r616gx588opd _ mysql.1 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (137)"
y350n4e8furo mysql.2 mysql:5.6 ip-172-31-13-155.ec2.internal
Shutdown Failed 2 minutes ago "task: non-zero exit (137)"

Chapter 4 ■ DoCker ServiCeS

79

bswz4sm8e3vj mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Shutdown 2 minutes ago
ktrwxnn13fug _ mysql.3 mysql:5.6 ip-172-31-37-135.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (1)"
wj1x26wvp0pt mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Shutdown Failed 2 minutes ago "task: non-zero exit (1)"
2t8j1zd8uts1 _ mysql.4 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Shutdown 3 minutes ago
8tf0uuwb8i31 mysql.5 mysql:5.6 ip-172-31-10-132.ec2.internal
Shutdown Failed 3 minutes ago "task: non-zero exit (1)"

Updating the Placement Constraints
The placement constraints may be added/removed with the --constraint-add and --constraint-rm
options. We started with a Swarm consisting of three nodes—one manager and two worker nodes. We then
promoted a worker node to a manager, resulting in a Swarm with two manager nodes and one worker node. .

Starting with service replicas running across the Swarm nodes, the replicas may be constrained to run
on only worker nodes with the following command. The docker service update command outputs the
service name if successful.

~ $ docker service update --constraint-add "node.role==worker" mysql
mysql

It may take a while (a few seconds or minutes) for the desired state of a service to be reconciled, during
which time tasks could be running on manager nodes even though the node.role is set to worker or less
than the required number of tasks could be running. When the update has completed (the update status
may be found from the docker service inspect command), listing the running tasks for the mysql service
indicates that the tasks are running only on the worker nodes.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
smk5q4nhu1rw mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running about a minute ago
wzmou8f6r2tg mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 23 seconds ago
byavev89hukv mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 23 seconds ago
erx409p0sgcc mysql.4 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 53 seconds ago
q7eqw8jlqig8 mysql.5 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 46 seconds ago

As another example, service tasks for the mysql service may be constrained to run on only manager
nodes. Starting with service tasks running on both manager and worker nodes and with no other constraints
added, run the following command to place all tasks on the manager nodes.

~ $ docker service update --constraint-add 'node.role==manager' mysql
mysql

Chapter 4 ■ DoCker ServiCeS

80

The tasks are not shut down on worker nodes and started on manager nodes immediately and initially
may continue to be running on worker nodes.

List the service replicas again after a while. You’ll see that all the tasks are listed as running on the
manager nodes.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
7tj8bck4jr5n mysql.1 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 14 seconds ago
uyeu3y67v2rt mysql.2 mysql:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago
lt9p7479lkta mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 1 second ago
t7d9c4viuo5y mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago
8xufz871yx1x mysql.5 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 27 seconds ago

Updating Environment Variables
The --env-add and --env-rm options are used to add/remove environment variables to/from a service. The
mysql service we created includes only one environment variable—the mandatory MYSQL_ROOT_PASSWORD
variable. You can use the docker service update command to add the environment variables MYSQL_
DATABASE, MYSQL_PASSWORD, and MYSQL_ALLOW_EMPTY_PASSWORD and to update MYSQL_ROOT_PASSWORD in the
same command to an empty password. The command outputs the service name if successful.

~ $ docker service update --env-add 'MYSQL _DATABASE=mysql' --env-add 'MYSQL_
PASSWORD=mysql' --env-add 'MYSQL_ALLOW_EMPTY_PASSWORD=yes' --env-add 'MYSQL_ROOT_
PASSWORD=yes' mysql
mysql

When the update has completed, the docker service inspect command lists the environment
variables added.

~ $ docker service inspect mysql
[...
 "Spec": {
 "Name": "mysql",
...
 "Env": [
 "MYSQL_ROOT_PASSWORD=yes",
 "MYSQL _DATABASE=mysql",
 "MYSQL_PASSWORD=mysql",
 "MYSQL_ALLOW_EMPTY_PASSWORD=yes"
],
...
]

Updating the environment variables causes the containers to restart. So, simply adding environment
variables doesn’t cause the new database to be created in the same container. A new container is started
with the updated environment variables.

Chapter 4 ■ DoCker ServiCeS

81

Updating the Docker Image
The Docker image may also be updated, not just the image tag. As an example, update the Docker image
for a MySQL database service to use the postgres Docker image, which is for the PostgreSQL database.
The command outputs the service name if the update is successful.

~ $ docker service update --image postgres mysql
mysql

After the update has completed, showing the running service tasks lists new tasks for the postgres
image. The service name stays the same and the Docker image is updated to postgres.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
hmk7128ls19a mysql.1 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 18 seconds ago
5ofbkc82gp0i mysql.2 postgres:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago
v0gfc65lhw62 mysql.3 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 31 seconds ago
miscjf9n66qq mysql.4 postgres:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
g5viy8jyzpi1 mysql.5 postgres:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago

Updating the Docker image does not remove the environment variables associated with the mysql
Docker image, which are still listed in the service detail.

~ $ docker service inspect mysql
[
 ...
 "Spec": {
 "Name": "mysql",
...
 "ContainerSpec": {
 "Env": [
 "MYSQL_ROOT_PASSWORD=yes",
 "MYSQL _DATABASE=mysql",
 "MYSQL_PASSWORD=mysql",
 "MYSQL_ALLOW_EMPTY_PASSWORD=yes"
],
...
]

The added environment variables for the MySQL database need to be removed, as the PostgreSQL
database Docker image postgres does not use the same environment variables. Remove all the environment
variables from the mysql service with the --env-rm option to the docker service update command.
To remove only the env variable, the name needs to be specified, not the env value.

docker service update --env-rm 'MYSQL_DATABASE' --env-rm 'MYSQL_PASSWORD' --env-rm
'MYSQL_ALLOW_EMPTY_PASSWORD' --env-rm 'MYSQL_ROOT_PASSWORD' mysql

Chapter 4 ■ DoCker ServiCeS

82

Updating the Container Labels
The --container-label-add and --container-label-rm options are used to update the Docker container
labels for a service. To add a container label to the mysql service, run a docker service update command,
which outputs the service name if successful.

~ $ docker service update --container-label-add 'com.docker.swarm.service.version=latest'
mysql
mysql

On listing detailed information about the service, the added label is listed in the ContainerSpec labels.

~ $ docker service inspect mysql
[
...
 "ContainerSpec": {
 "Labels": {
 "com.docker.swarm.service.version": "latest"
 },
...
]

The label added may be removed with the --container-label-rm option. To remove only the label, the
key needs to be specified, not the label value.

~ $ docker service update --container-label-rm 'com.docker.swarm.service.version' mysql
mysql

Updating Resources Settings
The --limit-cpu, --limit-memory, --reserve-cpu, and --reserve-memory options of the docker service
update command are used to update the resource settings for a service. As an example, update the resource
limits and reserves. The command outputs the service name if successful.

~ $ docker service update --limit-cpu 0.5 --limit-memory 1GB --reserve-cpu
"0.5" --reserve-memory "1GB" mysql
mysql

The resources settings are updated. Service detail lists the updated resource settings in the Resources
JSON object.

~ $ docker service inspect mysql
[
 ...
 "ContainerSpec": {
 "Resources": {
 "Limits": {
 "NanoCPUs": 500000000,
 "MemoryBytes": 1073741824
 },
 "Reservations": {

Chapter 4 ■ DoCker ServiCeS

83

 "NanoCPUs": 500000000,
 "MemoryBytes": 1073741824
 }
 },
...
]

Removing a Service
The docker service rm command removes a service. If the output of the command is the service name, the
service has been removed. All the associated service tasks and Docker containers also are removed.

~ $ docker service rm mysql
mysql

Creating a Global Service
As discussed earlier, a service has two modes—replicated or global. The default mode is replicated.
The mode may also be explicitly set to replicated with the --mode option of the docker service create
command. The service mode cannot be updated after a service has been created, with the docker service
update command for example. Create a replicated service for nginx using the --mode option.

~ $ docker service create --mode replicated --name nginx nginx
no177eh3gxsyemb1gfzc99mmd

A replicated mode service is created with the default number of replicas, which is 1. List the services
with the docker service ls command. The nginx service is listed with one replica.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
no177eh3gxsy nginx replicated 1/1 nginx:latest

A global service runs one task on each node in a Swarm by default. A global service may be required
at times such as for an agent (logging/monitoring) that needs to run on each node. A global service is used
for logging in Chapter 11. Next, we create a nginx Docker image-based service that’s global. Remove the
replicated service nginx with the docker service rm nginx command. A service name must be unique
even if different services are of different modes. Next, create a global mode nginx service with the same
command as for the replicated service, except that the --mode option is set to global instead of replicated.

~ $ docker service create --mode global --name nginx nginx
5prj6c4v4be6ga0odnb22qa4n

A global mode service is created. The docker service ls command lists the service. The REPLICAS
column for a global service does not list the number of replicas, as no replicas are created. Instead global is
listed in the REPLICAS column.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
5prj6c4v4be6 nginx global 3/3 nginx:latest

http://dx.doi.org/10.1007/978-1-4842-2973-6_11

Chapter 4 ■ DoCker ServiCeS

84

A service task is created for a global service on each node in the Swarm on which a task can run.
Scheduling constraints may be used with a global service to prevent running a task on each node.
Scheduling is discussed in Chapter 8. Global services cannot be scaled.

Summary
This chapter introduced Docker services running on a Docker Swarm. A service consists of service tasks or
replicas. A Docker Swarm supports two types of services—replicated services and global services. A replicated
service has the assigned number of replicas and is scalable. A global service has a task on each node in a
Swarm. The term “replica” is used in the context of a replicated service to refer to the service tasks that are
run across the nodes in a Swarm. A replicated service could run a specified number of tasks for a service,
which could imply running no tasks or running multiple tasks on a particular node. The term “replica” is
generally not used in the context of a global service, which runs only one task on each node in the Swarm.
Each task (replica) is associated with a Docker container. We started with a Hello World service and invoked
the service with curl on the command line and in a browser. Subsequently, we discussed a service for
a MySQL database. We started a bash shell for a MySQL service container and created a database table.
Scaling, updating, and removing a service are some of the other service features this chapter covered.
The chapter concluded by creating a global service. The next chapter covers the Docker Swarm scaling
service in more detail.

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

85© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_5

CHAPTER 5

Scaling Services

Docker Engine is suitable for developing lightweight applications that run in Docker containers that are
isolated from each other. Docker containers are able to provide their own networking and filesystem.

The Problem
Docker Engine (prior to native Swarm mode) was designed to run Docker containers that must be started
separately. Consider the use case that multiple replicas or instances of a service need to be created.
As client load on an application running in a Docker container increases, the application may need to be
run on multiple nodes. A limitation of Docker Engine is that the docker run command must be run each
time a Docker container is to be started for a Docker image. If a Docker application must run on three nodes,
the docker run command must run on each of the nodes as well, as illustrated in Figure 5-1.
No provision to scale an application or run multiple replicas is provided in the Docker Engine
(prior to Docker 1.12 native Swarm mode support).

docker
run

docker
run

docker
run

Node
1

Node
2

Node
3

Figure 5-1. Docker engine without provision for scaling

https://doi.org/10.1007/978-1-4842-2973-6_5

Chapter 5 ■ SCaling ServiCeS

86

The Solution
The Docker Swarm mode has the provision to scale a Docker service. A service abstraction is associated
with zero or more replicas (tasks) and each task starts a Docker container for the service. The service
may be scaled up or down to run more/fewer replicas, as required. With a single docker service
scale <svc>=<replicas> command, a service can run the required number of replicas, as illustrated in
Figure 5-2. If 10 service replicas are to be started across a distributed cluster, a single command is able to
provision scaling.

docker service scale
<svc>=<number of

tasks>

Node
1

Node
2

Node
3

Docker
containers

Figure 5-2. Docker Swarm mode with provision for scaling

Scaling is supported only for replicated services. A global service runs one service task on each node
in a Swarm. Scaling services was introduced in Chapter 3 and, in this chapter, we discuss some of the other
aspects of scaling services not discussed in Chapter 3. This chapter covers the following topics:

•	 Setting the environment

•	 Creating a replicated service

•	 Scaling up a service

•	 Scaling down a service

•	 Removing a service

•	 Global services cannot be scaled

•	 Scaling multiple services in the same command

•	 Service replicas replacement on a node leaving the Swarm

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://www.allitebooks.org

Chapter 5 ■ SCaling ServiCeS

87

Setting the Environment
Create a three-node Swarm on Docker for Swarm, which is discussed in Chapter 3. A Docker for AWS Swarm
you created in another chapter may be used in this chapter. Obtain the public IP address of the EC2 instance
for the Swarm manager.

SSH login to the Swarm manager EC2 instance with user “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@34.200.225.39
Welcome to Docker!

The docker node ls command lists the nodes in the Swarm.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
ilru4f0i280w2tlsrg9hglwsj ip-172-31-10-132.ec2.internal Ready Active
w5to186ipblpcq390625wyq2e ip-172-31-37-135.ec2.internal Ready Active
zkxle7kafwcmt1sd93kh5cy5e * ip-172-31-13-155.ec2.internal Ready Active Leader

Creating a Replicated Service
As discussed in Chapter 4, Docker Swarm mode supports two types of services—global and replicated. The
default is the replicated mode. Only the replicated service can be scaled. Next, create a replicated service for
MySQL database using the docker service create command, initially consisting of one replica, as specified
in the --replicas option. The default number of replicas if the --replicas option is not specified is also one.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> mysql
ndu4kwqk9ol7e7wxvv5bremr4

List the services using docker service ls.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ndu4kwqk9ol7 mysql replicated 1/1 mysql:latest

As service replicas take a while (albeit a few seconds) to start, initially 0/1 replicas could be listed in the
REPLICAS column, which implies that the desired state of running one service replica has not been achieved
yet. Run the same command after a few seconds and 1/1 REPLICAS should be listed as running.

Optionally, the docker service create command may also be run by setting the --mode option.
Remove the mysql service if it was created previously and use the --mode option as follows.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --mode replicated \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> mysql
rl2s2ptgbs9z2t7fy5e63wf2j

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

Chapter 5 ■ SCaling ServiCeS

88

The mysql service is created as without the --mode replicated option. List the service replicas or tasks
with docker service ps mysql. A single replica is listed.

~ $ docker service ps mysql
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
yrikmh7mciv7 mysql.1 mysql: ip-172-31-13- Running Running 21
 latest 155.ec2.internal seconds ago

One service replica is created by default if the --replicas option is omitted. It should be mentioned
that running multiple replicas of the MySQL database does not automatically imply that they are sharing
data, so accessing one replica will not give you the same data as another replica. Sharing data using mounts
is discussed in Chapter 6.

Scaling Up a Service
The docker service scale command, which has the following syntax, may be used to scale up/down a
service, which changes the desired state of the service.

docker service scale SERVICE=REPLICAS [SERVICE=REPLICAS...]

First, scale up the service to three replicas.

~ $ docker service scale mysql=3
mysql scaled to 3

Subsequently, three tasks are listed as scheduled on the three nodes in the Swarm.

~ $ docker service ps mysql
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
yrikmh7mciv7 mysql.1 mysql: ip-172-31-13- Running Running 37
 latest 155.ec2.internal seconds ago
3zxmotmy6n2t mysql.2 mysql: ip-172-31-37- Running Running 7
 latest 135.ec2.internal seconds ago
rdfsowttd3b9 mysql.3 mysql: ip-172-31-10- Running Running 7
 latest 132.ec2.internal seconds ago

In addition to one replica on the manager node, one replica each is started on each of the two worker
nodes. If the docker ps command is run on the manager node, only one Docker container for the mysql
Docker image is listed.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6d2161a3b282 mysql: "docker- 50 seconds ago Up 49 3306/tcp mysql.1.yrikmh7mci
 latest entrypoint..." seconds v7dsmql1nhdi62l

http://dx.doi.org/10.1007/978-1-4842-2973-6_6

Chapter 5 ■ SCaling ServiCeS

89

A service may also be scaled using the docker service update command with the --replicas option.
As an example, scale it to 50 replicas.

~ $ docker service update --replicas=50 mysql
mysql

The service is scaled to 50 replicas and, subsequently, 50 service tasks are listed.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
t026kjbsgzmq mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 11 seconds ago
f3tx2kbe55dh mysql.2 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 20 seconds ago
5mzej75us115 mysql.3 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 13 seconds ago
wluix1b3z863 mysql.4 mysql:latest ip-172-31-13-155.ec2.internal
Running Preparing 13 seconds ago
9ld8smvahk9g mysql.5 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 47 seconds ago
3tgw8ni5mfi1 mysql.6 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
1gm8e7pxkg0o mysql.7 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 46 seconds ago
iq5p2g48oagq mysql.8 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
i4yh072h1gs6 mysql.9 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 46 seconds ago
r1z5tgu0dg13 mysql.10 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
mekfjvxi9pds mysql.11 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
nd8f2pr4oivc mysql.12 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
xou9hztlj637 mysql.13 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
t95flokvca2y mysql.14 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
rda5shwwfmsc mysql.15 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
ibb2fk2llm3w mysql.16 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 47 seconds ago
st4ofpvrfaip mysql.17 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
iw4daunt6s63 mysql.18 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 47 seconds ago
vk4nzq7utyl2 mysql.19 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
oj59qjcy51qw mysql.20 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago

Chapter 5 ■ SCaling ServiCeS

90

wiou769z8xeh mysql.21 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 47 seconds ago
5exwimn64w94 mysql.22 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 48 seconds ago
agqongnh9uu3 mysql.23 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
ynkvjwgqqqlx mysql.24 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 47 seconds ago
yf87kbsn1cga mysql.25 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 10 seconds ago
xxqj62007cxd mysql.26 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
50ym9i8tjwd5 mysql.27 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
7btl2pga1l5o mysql.28 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
62dqj60q1ol8 mysql.29 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
psn7zl4th2zb mysql.30 mysql:latest ip-172-31-37-135.ec2.internal
Running Preparing 16 seconds ago
khsj2an2f5gk mysql.31 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
rzpndzjpmuj7 mysql.32 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
9zrcga93u5fi mysql.33 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
x565ry5ugj8m mysql.34 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 48 seconds ago
o1os5dievj37 mysql.35 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
dritgxq0zrua mysql.36 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
n8hs01m8picr mysql.37 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 47 seconds ago
dk5w0qnkfb63 mysql.38 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
joii103na4ao mysql.39 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
db5hz7m2vac1 mysql.40 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 46 seconds ago
ghk6s12eeo48 mysql.41 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 45 seconds ago
jbi8aksksozs mysql.42 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 47 seconds ago
rx3rded30oa4 mysql.43 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 47 seconds ago
c3zaacke440s mysql.44 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 45 seconds ago
l6ppiurx4306 mysql.46 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago

Chapter 5 ■ SCaling ServiCeS

91

of06zibtlsum mysql.47 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
kgjjwlc9zmp8 mysql.48 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
rw1icgkyw61u mysql.49 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 46 seconds ago
j5jpl9a5jgbj mysql.50 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 47 seconds ago

A small-scale MySQL database service probably wouldn’t benefit from scaling to 50 replicas, but an
enterprise-scale application could use 50 or even more replicas.

Scaling Down a Service
A service may be scaled down just as it is scaled up. A service may even be scaled down to no replicas. The
mysql service may be scaled down to no replicas by setting the number of replicas to 0 using the docker
service update or docker service scale command.

~ $ docker service scale mysql=0
mysql scaled to 0

The service gets scaled down to no replicas. No service replicas that are running are listed.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS

The actual service tasks could take a while to shut down, but the desired state of all tasks is set to
Shutdown.

Scaling a service to no tasks does not run any tasks, but the service is not removed. The mysql service
may be scaled back up again from none to three tasks as an example.

~ $ docker service scale mysql=3
mysql scaled to 3

Three service tasks start running.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
py7aqwy2reku mysql.1 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago
re1l3q3iwmvo mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago
h7my2ucpfz3u mysql.3 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 9 seconds ago

Chapter 5 ■ SCaling ServiCeS

92

Removing a Service
A service may be removed using the docker service rm command.

~ $ docker service rm mysql
mysql

The mysql service is not listed after having been removed.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS

Multiple services may be removed using the docker service rm command. To demonstrate, you can
create two services, hello-world and nginx.

~ $ docker service create \
> --name hello-world \
> --publish 8080:80 \
> --replicas 2 \
> tutum/hello-world
t3msb25rc8b6xcm30k0zoh4ws
~ $ docker service create --name nginx nginx
ncn4aqkgzrcjc8w1uorjo5jrd
~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ncn4aqkgzrcj nginx replicated 1/1 nginx:latest
t3msb25rc8b6 hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp

Subsequently, remove both the services with one docker service rm command. The services removed
are output if the command is successful.

~ $ docker service rm nginx hello-world
nginx
hello-world

Global Services Cannot Be Scaled
A global service creates a service task on each node in the Swarm and cannot be scaled. Create a global
service for a MySQL database using the docker service create command. Notable differences in the
command are that the --mode is set to global and the --replicas option is not included.

~ $ docker service create \
> --mode global \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --name mysql-global \
> mysql
nxhnrsiulymd9n4171cie9a8j

Chapter 5 ■ SCaling ServiCeS

93

The global service is created and listing the service should indicate a Mode set to global.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
nxhnrsiulymd mysql-global global 3/3 mysql:latest

One service task is created on each node in the Swarm.

~ $ docker service ps mysql-global
ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE ERROR PORTS
nfbmkqdh46k0 mysql-global.zkxle7kafwcmt1sd93kh5cy5e mysql:latest
ip-172-31-13-155.ec2.internal Running Running 22 seconds ago
t55ba3bobwzf mysql-global.w5to186ipblpcq390625wyq2e mysql:latest
ip-172-31-37-135.ec2.internal Running Running 22 seconds ago
kqg656m30lj3 mysql-global.ilru4f0i280w2tlsrg9hglwsj mysql:latest
ip-172-31-10-132.ec2.internal Running Running 22 seconds ago

If another node is added to the Swarm, a service task automatically starts on the new node.
If the docker service scale command is run for the global service, the service does not get scaled.

Instead, the following message is output.

~ $ docker service scale mysql-global=5
mysql-global: scale can only be used with replicated mode

A global service may be removed just as a replicated service, using the docker service rm command.

~ $ docker service rm mysql-global
mysql-global

Scaling Multiple Services Using the Same Command
Multiple services may be scaled using a single docker service scale command. To demonstrate, create
two services: nginx and mysql.

~ $ docker service create \
> --replicas 1 \
> --name nginx \
> nginx
u6i4e8eg720dwzz425inhxqrp

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --name mysql \
> mysql
1umb7e2gr68s54utujr6khjgd

List the two services. One replica for each service should be running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
1umb7e2gr68s mysql replicated 1/1 mysql:latest
u6i4e8eg720d nginx replicated 1/1 nginx:latest

Chapter 5 ■ SCaling ServiCeS

94

Scale the nginx service and the mysql service with a single command. Different services may be scaled
to a different number of replicas.

~ $ docker service scale mysql=5 nginx=10
mysql scaled to 5
nginx scaled to 10

The mysql service gets scaled to five tasks and the nginx service gets scaled to 10 replicas. Initially, some
of the new tasks for a service may not have started, as for the nginx service, which lists only 8 of the 10 tasks
as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
1umb7e2gr68s mysql replicated 5/5 mysql:latest
u6i4e8eg720d nginx replicated 8/10 nginx:latest

After a while, all service tasks should be listed as running, as indicated by 10/10 for the nginx service.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
1umb7e2gr68s mysql replicated 5/5 mysql:latest
u6i4e8eg720d nginx replicated 10/10 nginx:latest

The service tasks for the two services may be listed using a single docker service ps command.

~ $ docker service ps nginx mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
f9g1tw88nppk mysql.1 mysql:latest ip-172-31-26-234.ec2.internal
Running Running about a minute ago
zcl1qfdiqrvu nginx.1 nginx:latest ip-172-31-10-132.ec2.internal
Running Running about a minute ago
vu4xo99xr0y4 nginx.2 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago
xvxgfoacxjos mysql.2 mysql:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago
yw0opq5y0x20 nginx.3 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago
vb92hkua6eyo mysql.3 mysql:latest ip-172-31-13-155.ec2.internal
Running Running 40 seconds ago
1cnqwtb24zvy nginx.4 nginx:latest ip-172-31-13-155.ec2.internal
Running Running 41 seconds ago
hclu53xkosva mysql.4 mysql:latest ip-172-31-26-234.ec2.internal
Running Running 40 seconds ago
2xjcw4i9xw89 nginx.5 nginx:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago
ocvb2qctuids mysql.5 mysql:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago
l8mlu3jpp9cx nginx.6 nginx:latest ip-172-31-10-132.ec2.internal
Running Running 41 seconds ago

Chapter 5 ■ SCaling ServiCeS

95

p84m8yh5if5t nginx.7 nginx:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago
7yp8m7ytt7z4 nginx.8 nginx:latest ip-172-31-26-234.ec2.internal
Running Running 24 seconds ago
zegs90r015nn nginx.9 nginx:latest ip-172-31-37-135.ec2.internal
Running Running 41 seconds ago
qfkpvy28g1g6 nginx.10 nginx:latest ip-172-31-26-234.ec2.internal
Running Running 24 seconds ago

Service Tasks Replacement on a Node Leaving the Swarm
The desired state reconciliation in Docker Swarm mode ensures that the desired number of replicas are
running if resources are available. If a node is made to leave a Swarm, the replicas running on the node are
scheduled on another node. Starting with a mysql service replica running on each node in a three-node
Swarm, you can make one worker node leave the Swarm.

~ docker swarm 1eave
Node left the swarm.

A replacement service task for the service task running on the shutdown node gets scheduled on
another node.

~ s docker service ps mysql

NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeu548hv5 mysql.l mysql ip-10-0-0-46.ec2.internal Running Running 3 minutes ago
441cuufa7sa9möeatqbiq7vi3 mysql.2 mysql ip-10-0-0-28.ec2.internal Running Running about a minute ago
blcdm8Bh6v86gl..pwp6zx3janv mysql.3 mysql ip-10-0-0-28.ec2.internal Running Running 4 seconds ago
Or3oki4acf3d6ils5iazmg425 _ mysql.3 mysql ip-10-0-0-106.ec2.internal Shutdown Running about a minute ago

Make the other worker node also leave the Swarm. The service replicas on the other worker node also
get shut down and scheduled on the only remaining node in the Swarm.

~ s docker service ps mysql

NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeu548hv5 mysql.1 mysql ip-10-0-0-46.ec2. internal Running Running 5 minutes ago

dbdaxvl6lohlxrsxh5aobjxi8 mysq.2 mysql ip-10-0-0-46.ec2.internal Running Running 7 seconds ago

44tcuufa7sa9m6eatqbiq7vi3 _ mysql.2 mysql ip-10-0-0-28.ec2.internal Shutdown Running 2 minutes ago

216iu28xh5hztm3bgtvy7ttk8 mysql.3 mysql ip-10-0-0-46.ec2.internal Running Running 7 seconds ago

blcdm88h6v86gLpwp6zx3janv _ mysql.3 mysql ip-10-0-0-28.ec2.internal Shutdown Running about a minute ago

Or3oki4acf3d6ils5iazmg425 _ mysql.3 mysql ip-10-0-0-106.ec2.internal Shutdown Running 2 minutes ago

Chapter 5 ■ SCaling ServiCeS

96

If only the replicas with desired state as running are listed, all replicas are listed as running on the
manager node.

~s docker service ps -f desired-state=running mysql

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR

6zu7a59ejdxip3y9oeu548hv5 mysql.1 mysql ip-10-0-0-46.ec2.internal Running Running 7 minutes ago

dbdaxvl6lohlxrsxh5aobjxi8 mysql.2 mysql ip-10-0-0-46.ec2.internal Running Running 2 minutes ago

216iu28xh5hztm3bgtvy7ttk8 mysql.3 mysql ip-10-0-0-46.ec2.internal Running Running 2 minutes ago

Summary
This chapter discussed service scaling in Swarm mode. Only a replicated service can be scaled and not a
global service. A service may be scaled up to as many replicas as resources can support and can be scaled
down to no replicas. Multiple services may be scaled using the same command. Desire state reconciliation
ensures that the desired number of service replicas are running. The next chapter covers Docker service
mounts.

97© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_6

CHAPTER 6

Using Mounts

A service task container in a Swarm has access to the filesystem inherited from its Docker image. The data is
made integral to a Docker container via its Docker image. At times, a Docker container may need to store or
access data on a persistent filesystem. While a container has a filesystem, it is removed once the container
exits. In order to store data across container restarts, that data must be persisted somewhere outside the
container.

The Problem
Data stored only within a container could result in the following issues:

•	 The data is not persistent. The data is removed when a Docker container is stopped.

•	 The data cannot be shared with other Docker containers or with the host filesystem.

The Solution
Modular design based on the Single Responsibility Principle (SRP) recommends that data be decoupled
from the Docker container. Docker Swarm mode provides mounts for sharing data and making data
persistent across a container startup and shutdown. Docker Swarm mode provides two types of mounts for
services:

•	 Volume mounts

•	 Bind mounts

The default is the volume mount. A mount for a service is created using the --mount option of the
docker service create command.

Volume Mounts
Volume mounts are named volumes on the host mounted into a service task’s container. The named
volumes on the host persist even after a container has been stopped and removed. The named volume may
be created before creating the service in which the volume is to be used or the volume may be created at
service deployment time. Named volumes created at deployment time are created just prior to starting a
service task’s container. If created at service deployment time, the named volume is given an auto-generated
name if a volume name is not specified. An example of a volume mount is shown in Figure 6-1, in which
a named volume mysql-scripts, which exists prior to creating a service, is mounted into service task
containers at the directory path /etc/mysql/scripts.

https://doi.org/10.1007/978-1-4842-2973-6_6

Chapter 6 ■ Using MoUnts

98

Each container in the service has access to the same named volume on the host on which the container
is running, but the host named volume could store the same or different data.

When using volume mounts, contents are not replicated across the cluster. For example, if you put
something into the mysql-scripts directory you’re using, those new files will only be accessible to other
tasks running on that same node. Replicas running on other nodes will not have access to those files.

Bind Mounts
Bind mounts are filesystem paths on the host on which the service task is to be scheduled. The host
filesystem path is mounted into a service task’s container at the specified directory path. The host filesystem
path must exist on each host in the Swarm on which a task may be scheduled prior to a service being
created. If certain nodes are to be excluded for service deployment, using node constraints, the bind mount
host filesystem does not have to exist on those nodes. When using bind mounts, keep in mind that the
service using a bind mount is not portable as such. If the service is to be deployed in production, the host
directory path must exist on each host in the Swarm in the production cluster.

The host filesystem path does not have to be the same as the destination directory path in a task
container. As an example, the host path /db/mysql/data is mounted as a bind mount into a service’s
containers at directory path /etc/mysql/data in Figure 6-2. A bind mount is read-write by default, but
could be made read-only at service deployment time. Each container in the service has access to the
same directory path on the host on which the container is running, but the host directory path could store
different or the same data.

Mount
Of Type

“volume”

Service
Replica

/etc/mysql/scripts /etc/mysql/scripts /etc/mysql/scripts

Named Volume:
mysql-scripts

Named Volume:
mysql-scripts

Named Volume:
mysql-scripts

Node Node Node

Figure 6-1. Volume mount

Chapter 6 ■ Using MoUnts

99

Swarm mode mounts provide shareable named volumes and filesystem paths on the host that persist
across a service task startup and shutdown. A Docker image’s filesystem is still at the root of the filesystem
hierarchy and a mount can only be mounted on a directory path within the root filesystem.

This chapter covers the following topics:

•	 Setting the environment

•	 Types of mounts

•	 Creating a named volume

•	 Using a volume mount to get detailed info about a volume

•	 Removing a volume

•	 Creating and using a bind mount

Setting the Environment
Create a Docker for AWS-based Swarm consisting of one manager node and two worker nodes, as discussed
in Chapter 3. The Docker for AWS Swarm will be used for one type of mount, the volume mount. For the bind
mount, create a three-node Swarm consisting of one manager and two worker nodes on CoreOS instances.
Creating a Swarm on CoreOS instances is discussed in Chapter 2. A CoreOS-based Swarm is used because
Docker for AWS Swarm does not support bind mounts out-of-the-box. Obtain the public IP address of the
manager instance for the Docker for AWS Swarm from the EC2 console, as shown in Figure 6-3.

Mount
Of
Type
“bind”

Service
Replica

/etc/mysql/data /etc/mysql/data /etc/mysql/data

Node Node Node

/db/mysql/data /db/mysql/data /db/mysql/data

Figure 6-2. Bind mount

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_2

Chapter 6 ■ Using MoUnts

100

SSH login into the manager instance.

[root@localhost ~]# ssh -i "docker.pem" docker@52.91.115.180
Welcome to Docker!

List the nodes in the Swarm. A manager node and two worker nodes are listed.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8ynq7exfo5v74ymoe7hrsghxh ip-172-31-33-230.ec2.internal Ready Active
o0h7o09a61ico7n1t8ooe281g * ip-172-31-16-11.ec2.internal Ready Active Leader
yzlv7c3qwcwozhxz439dbknj4 ip-172-31-25-163.ec2.internal Ready Active

Creating a Named Volume
A named volume to be used in a service as a mount of type volume may either be created prior to creating
the service or at deployment time. A new named volume is created with the following command syntax.

docker volume create [OPTIONS] [VOLUME]

Figure 6-3. EC2 instances for Docker for AWS Swarm nodes

Chapter 6 ■ Using MoUnts

101

Create a named volume called hello using the docker volume create command.

~ $ docker volume create --name hello
hello

Subsequently, list the volumes with the docker volume ls command. The hello volume is listed in
addition to other named volumes that may exist.

~ $ docker volume ls
DRIVER VOLUME NAME
local hello

You can find detailed info about the volume using the following command.

docker volume inspect hello

In addition to the volume name and driver, the mountpoint of the volume also is listed.

~ $ docker volume inspect hello
[
 {
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/hello/_data",
 "Name": "hello",
 "Options": {},
 "Scope": "local"
 }
]

The scope of a local driver volume is local. The other supported scope is global. A local volume is
created on a single Docker host and a global volume is created on each Docker host in the cluster.

Table 6-1. Options for the docker volume create Command for a Named Volume

Option Description Type Default Value

--driver, -d Specifies volume driver name string local

--label Sets metadata for a volume value []

--name Specifies volume name string

--opt, -o Sets driver specific options value map[]

The options discussed in Table 6-1 are supported.

Chapter 6 ■ Using MoUnts

102

Using a Volume Mount
Use the hello volume in the docker service create command with the --mount option. The options
discussed in Table 6-2 may be used both with bind mounts and volume mounts.

Table 6-2. Options for Volume and Bind Mounts

Option Required Description Default

type No Specifies the type of mount. One of three values
may be specified:

volume-Mounts is a named volume in a container.
bind-Bind-mounts is a directory or file from the
host into a container.
tmpfs-Mounts is a tmpfs into a container.

volume

src or
source

Yes for type=bind only.
No for type=volume

The source directory or volume. The option has
different meanings for different types of mounts.

type=volume: src specifies the name of the volume.
If the named volume does not exist, it is created.
If src is omitted, the named volume is created
with an auto-generated name, which is unique on
the host but may not be unique cluster-wide. An
auto-generated named volume is removed when
the container using the volume is removed. The
docker service update command shuts down task
containers and starts new task containers and so
does scaling a service. volume source must not be
an absolute path.

type=bind: src specifies the absolute path to the
directory or file to bind-mount. The directory path
must be an absolute and not a relative path. The src
option is required for a mount of type bind and an
error is generated if it’s not specified.
type=tmpfs: is not supported.

dst or
destination
or target

Yes Specifies the mount path inside a container. If
the path does not exist in a container’s filesystem,
the Docker engine creates the mount path before
mounting the bind or volume mount. The volume
target must be a relative path.

readonly
or ro

No A boolean (true/false) or (1/0) to indicate whether
the Docker Engine should mount volumes and bind
read-write or read-only. If the option is not specified,
the engine mounts the bind or volume read-write.
If the option is specified with a value of true or 1
or no value, the engine mounts the volume or bind
read-only. If the option is specified with a value of
false or 0, the engine mounts the volume or bind
read-write.

Chapter 6 ■ Using MoUnts

103

Some of the mount options are only supported for volume mounts and are discussed in Table 6-3.

Table 6-3. Options for Volume Mounts

Option Required Description Default Value

volume-driver No Specifies the name of the volume-driver plugin to use
for the volume. If a named volume is not specified
in src, the volume-driver is used to create a named
volume.

local

volume-label No Specifies one or more comma-separated metadata
labels to apply to the volume. Example: volume-
label=label-1=hello-world,label-2=hello.

volume-nocopy No Applies to an empty volume that is mounted in a
container at a mount path at which files and directories
already existed. Specifies whether a container’s
filesystem files and directories at the mount path (dst)
are to be copied to the volume. A host is able to access
the files and directories copied from the container to
the named volume. A value of true or 1 disables
copying of files from the container’s filesystem to the
host volume. A value of false or 0 enables copying.

true or 1

volume-opt No Specifies the options to be supplied to the volume-
driver in creating a named volume if one does not
exist. The volume-opt options are specified as a
comma-separated list of key/value pairs. Example:
volume-opt-1=option-1=value1,option-2=value2.

A named volume has to exist on each host on which
a mount of type volume is to be mounted. Creating a
named volume on the Swarm manager does not also
create the named volume on the worker nodes. The
volume-driver and volume-opt options are used to
create the named volume on the worker nodes.

The options discussed in Table 6-4 are supported only with a mount of type tmpfs.

Table 6-4. Options for the tmpfs Mount

Option Required Description Default Value

tmpfs-size No Size of the tmpfs mount in bytes Unlimited value on Linux

tmpfs-mode No Specifies the file mode of the tmpfs in octal 1777 in Linux

Next, we will use the named volume hello in a service created with Docker image tutum/hello-world.
In the following docker service create command, the --mount option specifies the src as hello and
includes some volume-label labels for the volume.

Chapter 6 ■ Using MoUnts

104

~ $ docker service create \
 --name hello-world \
 --mount src=hello,dst=/hello,volume-label="msg=hello",volume-label="msg2=world" \
 --publish 8080:80 \
 --replicas 2 \
 tutum/hello-world

The service is created and the service ID is output.

~ $ docker service create \
> --name hello-world \
> --mount src=hello,dst=/hello,volume-label="msg=hello",volume-label="msg2=world" \
> --publish 8080:80 \
> --replicas 2 \
> tutum/hello-world
8ily37o72wyxkyw2jt60kdqoz

Two service replicas are created.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
8ily37o72wyx hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp
~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
uw6coztxwqhf hello-world.1 tutum/hello-world:latest ip-172-31-25-163.ec2.internal
Running Running 20 seconds ago
cfkwefwadkki hello-world.2 tutum/hello-world:latest ip-172-31-16-11.ec2.internal
Running Running 21 seconds ago

The named volume is mounted in each task container in the service.
The service definition lists the mounts, including the mount labels.

~ $ docker service inspect hello-world
[
 ...
 "Spec": {
 "ContainerSpec": {
 "Image": "tutum/hello-world:latest@sha256:0d57def8055178aafb4c7669cbc25e

c17f0acdab97cc587f30150802da8f8d85",
 "Mounts": [
 {
 "Type": "volume",
 "Source": "hello",
 "Target": "/hello",
 "VolumeOptions": {
 "Labels": {
 "msg": "hello",
 "msg2": "world"
 },
...
]

Chapter 6 ■ Using MoUnts

105

In the preceding example, a named volume is created before using the volume in a volume mount. As
another example, create a named volume at deployment time. In the following docker service create
command, the --mount option is set to type=volume with the source set to nginx-root. The named volume
nginx-root does not exist prior to creating the service.

~ $ docker service create \
> --name nginx-service \
> --replicas 3 \
> --mount type=volume,source="nginx-root",destination="/var/lib/nginx",volume-
label="type=nginx root dir" \
> nginx:alpine
rtz1ldok405mr03uhdk1htlnk

When the command is run, a service is created. Service description includes the volume mount in
mounts.

~ $ docker service inspect nginx-service
[
...
 "Spec": {
 "Name": "nginx-service",
...
 "Mounts": [
 {
 "Type": "volume",
 "Source": "nginx-root",
 "Target": "/var/lib/nginx",
 "VolumeOptions": {
 "Labels": {
 "type": "nginx root dir"
 },
...
]

The named volume nginx-root was not created prior to creating the service and is therefore created
before starting containers for service tasks. The named volume nginx-root is created only on nodes on
which a task is scheduled. One service task is scheduled on each of the three nodes.

~ $ docker service ps nginx-service
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
pfqinizqmgur nginx-service.1 nginx:alpine ip-172-31-33-230.ec2.internal
Running Running 19 seconds ago
mn8h3p40chgs nginx-service.2 nginx:alpine ip-172-31-25-163.ec2.internal
Running Running 19 seconds ago
k8n5zzlnn46s nginx-service.3 nginx:alpine ip-172-31-16-11.ec2.internal
Running Running 18 seconds ago

Chapter 6 ■ Using MoUnts

106

As a task is scheduled on the manager node, a named volume called nginx-root is created on the
manager node, as listed in the output of the docker volume ls command.

~ $ docker volume ls
DRIVER VOLUME NAME
local hello
local nginx-root

Service tasks and task containers are started on each of the two worker nodes. A nginx-root named
volume is created on each of the worker nodes. Listing the volumes on the worker nodes lists the nginx-root
volume.

[root@localhost ~]# ssh -i "docker.pem" docker@34.229.86.64
Welcome to Docker!
~ $ docker volume ls
DRIVER VOLUME NAME
local hello
local nginx-root

[root@localhost ~]# ssh -i "docker.pem" docker@52.91.200.241
Welcome to Docker!
~ $ docker volume ls
DRIVER VOLUME NAME
local hello
local nginx-root

A named volume was specified in src in the preceding example. The named volume may be omitted as
in the following service definition.

~ $ docker service create \
> --name nginx-service-2 \
> --replicas 3 \
> --mount type=volume,destination=/var/lib/nginx \
> nginx:alpine
q8ordkmkwqrwiwhmaemvcypc3

The service is created with a replica and is scheduled on each of the Swarm nodes.

~ $ docker service ps nginx-service-2
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
kz8d8k6bxp7u nginx-service-2.1 nginx:alpine ip-172-31-25-163.ec2.internal
Running Running 27 seconds ago
wd65qsmqixpg nginx-service-2.2 nginx:alpine ip-172-31-16-11.ec2.internal
Running Running 27 seconds ago
mbnmzldtaaed nginx-service-2.3 nginx:alpine ip-172-31-33-230.ec2.internal
Running Running 26 seconds ago

Chapter 6 ■ Using MoUnts

107

The service definition does not list a named volume.

~ $ docker service inspect nginx-service-2
[
 "Spec": {
 "Name": "nginx-service-2",
 "ContainerSpec": {
 "Mounts": [
 {
 "Type": "volume",
 "Target": "/var/lib/nginx"
 }
],
...
]

Named volumes with auto-generated names are created when a volume name is not specified explicitly.
One auto-generated named volume with an auto-generated name is created on each node on which a
service task is run. One of the named volumes listed on the manager node is an auto-generated named
volume with an auto-generated name.

~ $ docker volume ls
DRIVER VOLUME NAME
local 305f1fa3673e811b3b320fad0e2dd5786567bcec49b3e66480eab2309101e233
local hello
local nginx-root

As another example of using named volumes as mounts in a service, create a named volume called
mysql-scripts for a MySQL database service.

~ $ docker volume create --name mysql-scripts
mysql-scripts

The named volume is created and listed.

~ $ docker volume ls
DRIVER VOLUME NAME
local 305f1fa3673e811b3b320fad0e2dd5786567bcec49b3e66480eab2309101e233
local hello
local mysql-scripts
local nginx-root

Chapter 6 ■ Using MoUnts

108

The volume description lists the scope as local and lists the mountpoint.

~ $ docker volume inspect mysql-scripts
[
 {
 "Driver": "local",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/volumes/mysql-scripts/_data",
 "Name": "mysql-scripts",
 "Options": {},
 "Scope": "local"
 }
]

Next, create a service that uses the named volume in a volume mount.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --mount type=volume,src="mysql-scripts",dst="/etc/mysql/scripts",
 el="msg=mysql",volume-label="msg2=scripts" \
> --publish 3306:3306\
> --replicas 2 \
> --name mysql \
> mysql
cghaz4zoxurpyqil5iknqf4c1

The service is created and listed.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
8ily37o72wyx hello-world replicated 2/2 tutum/hello-world:latest *:8080->80/tcp
cghaz4zoxurp ysql replicated 1/2 mysql:latest *:3306->3306/tcp

Listing the service tasks indicates that the tasks are scheduled on the manager node and one of the
worker nodes.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
y59yhzwch2fj mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Preparing 12 seconds ago
zg7wrludkr84 mysql.2 mysql:latest ip-172-31-16-11.ec2.internal
Running Running less than a second ago

The destination directory for the named volume is created in the Docker container. The Docker
container on the manager node may be listed with docker ps and a bash shell on the container may be
started with the docker exec -it <containerid> bash command.

Chapter 6 ■ Using MoUnts

109

~ $ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
a855826cdc75 mysql:latest "docker-entrypoint..."
22 seconds ago Up 21 seconds 3306/tcp mysql.2.zg7wrludkr84zf

8vhdkf8wnlh
~ $ docker exec -it a855826cdc75 bash
root@a855826cd75:/#

Change the directory to /etc/mysql/scripts in the container. Initially, the directory is empty.

root@a855826cdc75:/# cd /etc/mysql/scripts
root@a855826cdc75:/etc/mysql/scripts# ls -l
total 0
root@a855826cdc75:/etc/mysql/scripts# exit
exit

A task container for the service is created on one of the worker nodes and may be listed on the worker
node.

~ $ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
eb8d59cc2dff mysql:latest "docker-entrypoint..."
8 minutes ago Up 8 minutes 3306/tcp mysql.1.xjmx7qviihyq2so7n0oxi1muq

Start a bash shell for the Docker container on the worker node. The /etc/mysql/scripts directory on
which the named volume is mounted is created in the Docker container.

~ $ docker exec -it eb8d59cc2dff bash
root@eb8d59cc2dff:/# cd /etc/mysql/scripts
root@eb8d59cc2dff:/etc/mysql/scripts# exit
exit

If a service using an auto-generated named volume is scaled to run a task on nodes on which a task was
not running previously, named volumes are auto-generated on those nodes also. As an example of finding
the effect of scaling a service when using an auto-generated named volume as a mount in the service, create
a MySQL database service with a volume mount. The volume mysql-scripts does not exist prior to creating
the service; remove the mysql-scripts volume if it exists.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --mount type=volume,src="mysql-scripts",dst="/etc/mysql/scripts"\
> --name mysql \
> mysql
088ddf5pt4yb3yvr5s7elyhpn

Chapter 6 ■ Using MoUnts

110

The service task is scheduled on a node.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
xlix91njbaq0 mysql.1 mysql:latest ip-172-31-13-122.ec2.internal
Running Preparing 12 seconds ago

List the nodes; the node on which the service task is scheduled is the manager node.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
o5hyue3hzuds8vtyughswbosl ip-172-31-11-41.ec2.internal Ready Active
p6uuzp8pmoahlcwexr3wdulxv ip-172-31-23-247.ec2.internal Ready Active
qnk35m0141lx8jljp87ggnsnq * ip-172-31-13-122.ec2.internal Ready Active Leader

A named volume mysql-scripts and an ancillary named volume with an auto-generated name are
created on the manager node on which a task is scheduled.

~ $ docker volume ls
DRIVER VOLUME NAME
local a2bc631f1b1da354d30aaea37935c65f9d99c5f084d92341c6506f1e2aab1d55
local mysql-scripts

The worker nodes do not list the mysql-scripts named volume, as a task is not scheduled on the
worker nodes.

~ $ docker volume ls
DRIVER VOLUME NAME

Scale the service to three replicas. A replica is scheduled on each of the three nodes.

~ $ docker service scale mysql=3
mysql scaled to 3

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
xlix91njbaq0 mysql.1 mysql:latest ip-172-31-13-122.ec2.internal
Running Running about a minute ago
ifk7xuvfp9p2 mysql.2 mysql:latest ip-172-31-23-247.ec2.internal
Running Running less than a second ago
3c53fxgcjqyt mysql.3 mysql:latest ip-172-31-11-41.ec2.internal
Running Running less than a second ago

Chapter 6 ■ Using MoUnts

111

A named volume mysql-scripts and an ancillary named volume with an auto-generated name are
created on the worker nodes because a replica is scheduled.

[root@localhost ~]# ssh -i "docker.pem" docker@54.165.69.9
Welcome to Docker!

~ $ docker volume ls
DRIVER VOLUME NAME
local 431a792646d0b04b5ace49a32e6c0631ec5e92f3dda57008b1987e4fe2a1b561
local mysql-scripts
[root@localhost ~]# ssh -i "docker.pem" docker@34.232.95.243
Welcome to Docker!

~ $ docker volume ls
DRIVER VOLUME NAME
local afb2401a9a916a365304b8aa0cc96b1be0c161462d375745c9829f2b6f180873
local mysql-scripts

The auto-generated named volumes are persistent and do not get removed when a service replica is
shut down. The named volumes with auto-generated names are not persistent volumes. As an example,
scale the service back to one replica. Two of the replicas shut down, including the replica on the manager
node.

~ $ docker service scale mysql=1
mysql scaled to 1
~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
3c53fxgcjqyt mysql.3 mysql:latest ip-172-31-11-41.ec2.internal
Running Running 2 minutes ago

But the named volume mysql-scripts on the manager node is not removed even though no Docker
container using the volume is running.

~ $ docker volume ls
DRIVER VOLUME NAME
local mysql-scripts

Similarly, the named volume on a worker node on which a service replica is shut down also does not get
removed even though no Docker container using the named volume is running. The named volume with the
auto-generated name is removed when no container is using it, but the mysql-scripts named volume does not.

Chapter 6 ■ Using MoUnts

112

Remove the volume mysql-scripts still does not get removed.

~ $ docker service rm mysql
mysql
~ $ docker volume ls
DRIVER VOLUME NAME
local mysql-scripts

Removing a Volume
A named volume may be removed using the following command.

docker volume rm <VOL>

As an example, remove the named volume mysql-scripts.

~ $ docker volume rm mysql-scripts
mysql-scripts

If the volume you try to delete is used in a Docker container, an error is generated instead and the
volume will not be removed. Even a named volume with an auto-generated name cannot be removed if it’s
being used in a container.

Creating and Using a Bind Mount
In this section, we create a mount of type bind. Bind mounts are suitable if data in directories that already
exist on the host needs to be accessed from within Docker containers. type=bind must be specified with the
--mount option when creating a service with mount of type bind. The host source directory and the volume
target must both be absolute paths. The host source directory must exist prior to creating a service. The
target directory within each Docker container of the service is created automatically. Create a directory on
the manager node and then add a file called createtable.sql to the directory.

core@ip-10-0-0-143 ~ $ sudo mkdir -p /etc/mysql/scripts
core@ip-10-0-0-143 ~ $ cd /etc/mysql/scripts
core@ip-10-0-0-143 /etc/mysql/scripts $ sudo vi createtable.sql

Chapter 6 ■ Using MoUnts

113

Save a SQL script in the sample SQL file, as shown in Figure 6-4.

Similarly, create a directory and add a SQL script to the worker nodes.
Create a service with a bind mount that’s using the host directory. The destination directory is specified

as /scripts.

core@ip-10-0-0-143 ~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql' \
> --replicas 3 \
> --mount type=bind,src="/etc/mysql/scripts",dst="/scripts" \
> --name mysql \
> mysql
0kvk2hk2qigqyeem8x1r8qkvk

Start a bash shell for the service container from the node on which a task is scheduled. The destination
directory /scripts is listed.

core@ip-10-0-0-143 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
e71275e6c65c mysql:latest "docker-entrypoint.sh" 5 seconds ago
Up 4 seconds 3306/tcp mysql.1.btqfrx7uffym2xvc441pubaza

core@ip-10-0-0-143 ~ $ docker exec -it e71275e6c65c bash
root@e71275e6c65c:/# ls -l
drwxr-xr-x. 2 root root 4096 Jul 24 20:44 scripts

Change the directory (cd) to the destination mount path /scripts. The createtable.sql script is listed
in the destination mount path of the bind mount.

root@e71275e6c65c:/# cd /scripts
root@e71275e6c65c:/scripts# ls -l
-rw-r--r--. 1 root root 1478 Jul 24 20:44 createtable.sql

Figure 6-4. Adding a SQL script to the host directory

Chapter 6 ■ Using MoUnts

114

Each service task Docker container has its own copy of the file on the host. Because, by default, the
mount is read-write, the files in the mount path may be modified or removed. As an example, remove the
createtable.sql script from a container.

core@ip-10-0-0-137 ~ $ docker exec -it 995b9455aff2 bash
root@995b9455aff2:/# cd /scripts
root@995b9455aff2:/scripts# ls -l
total 8
-rw-r--r--. 1 root root 1478 Jul 24 20:45 createtable.sql
root@995b9455aff2:/scripts# rm createtable.sql
root@995b9455aff2:/scripts# ls -l
total 0
root@995b9455aff2:/scripts#

A mount may be made read-only by including an additional option in the --mount arg, as discussed
earlier. To demonstrate a readonly mount, first remove the mysql service that’s already running. Create
a service and mount a readonly bind with the same command as before, except include an additional
readonly option.

core@ip-10-0-0-143 ~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql' \
> --replicas 3 \
> --mount type=bind,src="/etc/mysql/scripts",dst="/scripts",readonly \
> --name mysql \
> mysql
c27se8vfygk2z57rtswentrix

A bind of type mount which is readonly is mounted.
Access the container on a node on which a task is scheduled and list the sample script from the host

directory.

core@ip-10-0-0-143 ~ $ docker exec -it 3bf9cf777d25 bash
root@3bf9cf777d25:/# cd /scripts
root@3bf9cf777d25:/scripts# ls -l
-rw-r--r--. 1 root root 1478 Jul 24 20:44 createtable.sql

Remove, or try to remove, the sample script. An error is generated.

root@3bf9cf777d25:/scripts# rm createtable.sql
rm: cannot remove 'createtable.sql': Read-only file system

Summary
This chapter introduced mounts in Swarm mode. Two types of mounts are supported—bind mount and
volume mount. A bind mount mounts a pre-existing directory or file from the host into each container of a
service. A volume mount mounts a named volume, which may or may not exist prior to creating a service,
into each container in a service. The next chapter discusses configuring resources.

115© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_7

CHAPTER 7

Configuring Resources

Docker containers run in isolation on the underlying OS kernel and require resources to run. Docker Swarm
mode supports two types of resources—CPU and memory—as illustrated in Figure 7-1.

Docker Swarm Mode

CPU RAM

Figure 7-1. Types of resources supported by Docker Swarm mode

The Problem
By default, Docker Swarm mode does not impose any limit on how many resources (CPU cycles or memory)
a service task may consume. Nor does Swarm mode guarantee minimum resources. Two issues can result if
no resource configuration is specified in Docker Swarm mode.

Some of the service tasks could consume a disproportionate amount of resources, while the other
service tasks are not able to get scheduled due to lack of resources. As an example, consider a node
with resource capacity of 3GB and 3 CPUs. Without any resource guarantees and limits, one service
task container could consume most of the resources (2.8GB and 2.8 CPUs), while two other service task
containers each have only 0.1GB and 0.1 CPU of resources remaining to be used and do not get scheduled,
as illustrated in Figure 7-2. A Docker service task that does not have enough resources to get scheduled is
put in Pending state.

https://doi.org/10.1007/978-1-4842-2973-6_7

Chapter 7 ■ Configuring resourCes

116

The second issue that can result is that the resource capacity of a node can get fully used up without any
provision to schedule any more service tasks. As an example, a node with a resource capacity of 9GB and 9
CPUs has three service task containers running, with each using 3GB and 3 CPUs, as illustrated in Figure 7-3.
If a new service task is created for the same or another service, it does not have any available resources on
the node.

Node
Capacity:

3 GB,
3 CPUs

Docker
Containers

2.8 GB
2.8 CPUs

0.1 GB
0.1 CPUs

0.1 GB
0.1 CPUs

Figure 7-2. Unequal allocation of resources

Node
Capacity:

9 GB,
9 CPUs

Docker
Containers

3 GB
3 CPUs

3 GB
3 CPUs

3 GB
3 CPUs

Figure 7-3. Fully resource-utilized node

The Solution
Docker Swarm mode has a provision to set resource guarantees (or reserves) and resource limits, as
illustrated in Figure 7-4. A resource reserve is the minimum amount of a resource that is guaranteed or
reserved for a service task. A resource limit is the maximum amount of a resource that a service task can use
regardless of how much of a resource is available.

Chapter 7 ■ Configuring resourCes

117

With resource reserves, each service task container can be guaranteed 1 CPU and 1GB in the issue
discussed previously, as illustrated in Figure 7-5.

CPU & Memory
Resources

Resource Reserves Resource Limits

Figure 7-4. Managing Swarm resources with resource reserves and limits

Node
Capacity:

3 GB,
3 CPUs

Docker
Containers

1 GB
1 CPUs

1 GB
1 CPUs

1 GB
1 CPUs

Figure 7-5. Resource allocation with resource reserves set

And, if resource limits are implemented for service task containers, excess resources would be available
to start new service task containers. In the example discussed previously, a limit of 2GB and 2 CPUs per
service task would keep the excess resources of 3GB and 3 CPUs available for new service task containers, as
illustrated in Figure 7-6.

Chapter 7 ■ Configuring resourCes

118

This chapter covers the following topics:

•	 Setting the environment

•	 Creating a service without resource specification

•	 Reserving resources

•	 Setting resource limits

•	 Creating a service with resource specification

•	 Scaling and resources

•	 Reserved resources must be less than resource limits

•	 Rolling update to set resource limits and reserves

•	 Resource usage and node capacity

Setting the Environment
Create a three-node Swarm on Docker for AWS with one manager node and two worker nodes. Creating a
Swarm on Docker for AWS is discussed in Chapter 3. We use the three-node Swarm created in Chapter 6 for
this chapter also. Obtain the public IP address of the Swarm manager instance, as shown in Figure 7-7.

Node
Capacity:

9 GB,
9 CPUs

Docker
Containers

2 GB
2 CPUs

2 GB
2 CPUs

2 GB
2 CPUs

Figure 7-6. Resource allocation with resource limits set

http://dx.doi.org/10.1007/978-1-4842-2973-6_3
http://dx.doi.org/10.1007/978-1-4842-2973-6_6

Chapter 7 ■ Configuring resourCes

119

SSH login into the manager instance with user as “docker”.

[root@localhost ~]# ssh -i "docker.pem" docker@52.91.115.180
Welcome to Docker!

List the Swarm nodes; a manager node and two worker nodes are listed.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8ynq7exfo5v74ymoe7hrsghxh ip-172-31-33-230.ec2.internal Ready Active
o0h7o09a61ico7n1t8ooe281g * ip-172-31-16-11.ec2.internal Ready Active Leader
yzlv7c3qwcwozhxz439dbknj4 ip-172-31-25-163.ec2.internal Ready Active

Creating a Service Without Resource Specification
We start by creating a service without any resource specification. Create a MySQL database service without
setting any resource reserves or limits.

docker service create \
 --env MYSQL_ROOT_PASSWORD='mysql'\
 --replicas 1 \
 --name mysql \
 mysql

A single service replica is created. The output of the command is the service ID (shown in italics).

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> mysql
2kcq6cf72t4wu94o00k3sax41

Figure 7-7. EC2 instances for Swarm nodes

Chapter 7 ■ Configuring resourCes

120

List the services; the mysql service is listed.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
2kcq6cf72t4w mysql replicated 1/1 mysql:latest

List the service tasks. The only service task is running on a worker node.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
sccqv4k9r22h mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 10 seconds ago

On inspecting the service, the container spec does not include any resources, limits, or reserves. The
single service task may use all of the available resources on the node on which it’s scheduled.

~ $ docker service inspect mysql
[
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
]

Reserving Resources
Swarm mode provides two options for resource reserves in the docker service create and docker
service update commands, as listed in Table 7-1.

Setting Resource Limits
Swarm mode provides two options for resource limits in the docker service create and docker service
update commands, as discussed in Table 7-2.

Table 7-1. Options for Resource Reserves

Option Description Default Value

--reserve-cpu Reserve CPUs. A value of 0.000 implies no reserves are set. 0.000

--reserve-memory Reserve memory. A value of 0 implies no reserves are set. 0

Table 7-2. Options for Resource Limits

Option Description Default Value

--limit-cpu Limit CPUs 0.000

--limit-memory Limit Memory 0

Chapter 7 ■ Configuring resourCes

121

Creating a Service with Resource Specification
Next, create a service using resource specification. Set resource reserves of 0.25 CPUs and 128MB and
resource limits of 1 CPU and 256MB. Remove the mysql service previously created before creating a new
service with resources defined. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --reserve-cpu .25 --limit-cpu 1 --reserve-memory 128mb --limit-memory 256mb \
> mysql
abwq9budo7joyd00u32z2b047

On inspecting the service, the resources limits and reserves are listed, which contrasts with the empty
settings for resources when a service is created without the resources definition.

~ $ docker service inspect mysql
[
 "Resources": {
 "Limits": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 268435456
 },
 "Reservations": {
 "NanoCPUs": 250000000,
 "MemoryBytes": 134217728
 }
 },
]

Scaling and Resources
Before scaling up a service, it may be suitable to determine the node capacity in terms of CPU and memory
resources. As all three nodes in the Swarm are identical, the node capacity on one node is the same as on
the other nodes. The node capacity is 1 CPU and 1GB, as listed in the output of the docker node inspect
command.

~ $ docker node inspect ip-172-31-16-11.ec2.internal
[
 "Resources": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 1039040512
 },
]

Chapter 7 ■ Configuring resourCes

122

The CPU limit on each service task created in the preceding section is also 1 CPU. When scaling, the
total of the resource limits for all service tasks on a node may exceed the node's capacity. However, the total
of resource reserves must not exceed node capacity.

As an example, scale to five replicas.

~ $ docker service scale mysql=5
mysql scaled to 5

Scaling to five schedules two replicas on the manager node, two replicas on one of the worker nodes,
and one replica on the other worker node. The aggregate of the resource limits on the worker nodes is
exceeded but the aggregate of resource reserves are within the node’s capacity.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
npc5r7xf98fg mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 2 minutes ago
xokdhowntp0w mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 13 seconds ago
b6h4bsf7xzdc mysql.3 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 12 seconds ago
j1d7ti7nb80u mysql.4 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 13 seconds ago
w6to9pxcdbm5 mysql.5 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 13 seconds ago

Reserved Resources Must Not Be More Than Resource Limits
The resource limits are not taken into consideration when scheduling a service task, only the resource
reserves are. Not setting the reserves (whether limits are set or not and whether limits exceed node capacity)
schedules the service task if the resources required to run a task are within the node capacity. Resource
reserves must not exceed resource limits or a service task may not get scheduled or might fail after a while.
As an example, delete the mysql service and create a new service where the resource reserves exceed
resource limits. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --reserve-cpu .75 --limit-cpu .5 --reserve-memory 256mb --limit-memory 128mb \
> mysql
srot5vr8x7v7iml2awc3fxb1u

The service is created and even scheduled.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
pmcjrj6p3wfp mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 20 seconds ago

Chapter 7 ■ Configuring resourCes

123

The service configuration has the resource reserves exceeding the resource limits.

~ $ docker service inspect mysql
[
 },
 "Resources": {
 "Limits": {
 "NanoCPUs": 500000000,
 "MemoryBytes": 134217728
 },
 "Reservations": {
 "NanoCPUs": 750000000,
 "MemoryBytes": 268435456
 }
 },
]

The resource reserves are within the node capacity, but because the resource limits are less than the
resource reserves, the newly started service task fails and is shut down. The service task keeps getting
restarted and shut down.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vjcnjkwfdfkb mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 16 seconds ago
pxdku8pxviyn _ mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Failed 21 seconds ago "task: non-zero exit (1)"
pmcjrj6p3wfp _ mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (1)"

The service task resource limits can be the same as the resource reserves. Remove the mysql service and
create it again with the resource limits the same as the resource reserves. The output of the command is the
service ID (shown in italics).

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --reserve-cpu .5 --limit-cpu .5 --reserve-memory 256mb --limit-memory 256mb \
> mysql
81bu63v97p9rm81xfyxv9k11e

The service is created and the single task is scheduled. The service task does not fail as when the
resource reserves exceeded the resource limit.

Chapter 7 ■ Configuring resourCes

124

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
4i1fpha53abs mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 33 seconds ago

And a Docker container is started.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
14d5553f0393 mysql:latest "docker-entrypoint..." 34 seconds ago Up 33 seconds
3306/tcp mysql.1.4i1fpha53absl4qky9dgafo8t

Rolling Update to Modify Resource Limits and Reserves
This section demonstrates a rolling update to set new CPU and memory limits and reserves. The service
created in the previous section is used for updating in this section. Using the docker service update
command, update the CPU and memory reserves and limits. The output of the command is the service
name mysql (shown in italics).

~ $ docker service update --reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb
--limit-memory 512mb mysql
mysql

The resources are updated. Updating the resource specification for a service shuts down the service
replica and starts a new replica with the new resource specification.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
81bu63v97p9r mysql replicated 1/1 mysql:latest
~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
xkis4mirgbtv mysql.1 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 14 seconds ago
4i1fpha53abs _ mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Shutdown Shutdown 15 seconds ago

The service resources configuration is updated.

~ $ docker service inspect mysql
[
 },
 "Resources": {
 "Limits": {
 "NanoCPUs": 2000000000,
 "MemoryBytes": 536870912
 },

Chapter 7 ■ Configuring resourCes

125

 "Reservations": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 268435456
 }
 },
]

Resource Usage and Node Capacity
Resource usage cannot exceed node capacity. On the three-node Swarm (one manager and two worker
nodes), recall that the node capacity is 1GB and 1 CPU.

Remove the mysql service that’s already running and create a mysql service with three replicas that requests
4GB of memory. The service is created. The output of the command is the service ID (shown in italics).

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --name mysql \
> --reserve-memory=4GB\
> mysql
cgrihwij2znn4jkfe6hswxgr7

None of the service replicas is scheduled, as indicated by the Replicas column value of 0/3, because
the requested capacity is more than the node capacity of a single node.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
cgrihwij2znn mysql replicated 0/3 mysql:latest

The Current State of the replicas is listed as Pending.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vm7z20krx3j6 mysql.1 mysql:latest
Running Pending 19 seconds ago
exmsheo144ef mysql.2 mysql:latest
Running Pending 19 seconds ago
kiset9poqz2s mysql.3 mysql:latest
Running Pending 19 seconds ago

If a service that was previously running with all replicas is scaled up, some or all of the replicas could
get de-scheduled. This happens if the resources required to run the new replicas exceed the available node
capacity. As an example, remove the mysql service and create a new mysql service with resource settings
within the provision of a node. The output of the command is the service ID (shown in italics).

Chapter 7 ■ Configuring resourCes

126

~ $ docker service rm mysql
mysql
~ $
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --reserve-cpu .5 --reserve-memory 512mb \
> mysql
ysef8n02mhuwa7sxerc9jwjqx

The service is created and the single replica is running as indicated by the Replicas column value of 1/1.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 1/1 mysql:latest

Incrementally scale up the service to determine if all of the service replicas are scheduled. First, scale up
to three replicas.

~ $ docker service scale mysql=3
mysql scaled to 3

The service description lists 3/3 Replicas as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 3/3 mysql:latest

The service replicas are scheduled, one replica on each node in the Swarm, using the spread scheduling
strategy, which is discussed in more detail in Chapter 8.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
8kkkdns0l690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 51 seconds ago
k209uge36bih mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 16 seconds ago
oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 16 seconds ago

Scale the mysql service further up to replicas.

~ $ docker service scale mysql=10
mysql scaled to 10

Only 3/10 of the replicas are listed as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 3/10 mysql:latest

http://dx.doi.org/10.1007/978-1-4842-2973-6_8

Chapter 7 ■ Configuring resourCes

127

Some of the replicas are Allocated but not scheduled for running on any node due to insufficient
resources. The service replicas not running are listed with Current State set to Pending.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
8kkkdns0l690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running about a minute ago
k209uge36bih mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 35 seconds ago
oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 35 seconds ago
u807b7h0qvqc mysql.4 mysql:latest
Running Pending 7 seconds ago
jh2ep10sonxy mysql.5 mysql:latest
Running Pending 7 seconds ago
8d19osxa4fwf mysql.6 mysql:latest
Running Pending 7 seconds ago
k8hba8j5o9vi mysql.7 mysql:latest
Running Pending 7 seconds ago
ettk65bpin3b mysql.8 mysql:latest
Running Pending 7 seconds ago
i3otbqfsfvr7 mysql.9 mysql:latest
Running Pending 7 seconds ago
sxdi970o6d3b mysql.10 mysql:latest
Running Pending 7 seconds ago

Adding one or more new worker nodes could make the service reconcile its desired state and cause all
the replicas to run. To demonstrate next, we scale up the CloudFormation stack to increase the number of
worker nodes.

Scaling Up the Stack
To scale up the CloudFormation stack, select the Docker stack in the CloudFormation ➤ Stacks table and
choose Actions ➤ Update Stack, as shown in Figure 7-8.

The Update Docker Stack wizard starts. It’s similar to the Create Stack wizard. In the Select Template,
click on Next without modifying any settings. In Specify Details, increase Number of Swarm Worker Nodes?
to 10, as shown in Figure 7-9. Click on Next.

Figure 7-8. Choosing Actions ➤ Update Stack

Chapter 7 ■ Configuring resourCes

128

In Preview Your Changes, click on Update, as shown in Figure 7-10.

Figure 7-11. Stack update is complete

Figure 7-10. Click Update to preview your changes

Figure 7-9. Increasing the number of worker nodes to 10

When the update completes, the stack’s status becomes UPDATE_COMPLETE, as shown in Figure 7-11.

Chapter 7 ■ Configuring resourCes

129

The Swarm gets eight new worker nodes, for a total of 10 worker nodes. List the service description
periodically (after an interval of few seconds) and, as new worker nodes are created, new replicas start to
reconcile the current state with the desired state. The number of replicas in the Replicas column increases
gradually within a few seconds. All the replicas for the mysql service start running, as indicated by 10/10 in
the service listing.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 3/10 mysql:latest
~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 6/10 mysql:latest
~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 9/10 mysql:latest
~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 10/10 mysql:latest

Listing the service replicas lists all replicas as Running. The previously Pending replicas are scheduled
on the new nodes.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
8kkkdns0l690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 7 minutes ago
k209uge36bih mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Running Running 6 minutes ago
oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 6 minutes ago
u807b7h0qvqc mysql.4 mysql:latest ip-172-31-11-105.ec2.internal
Running Running 45 seconds ago
jh2ep10sonxy mysql.5 mysql:latest ip-172-31-13-141.ec2.internal
Running Running about a minute ago
8d19osxa4fwf mysql.6 mysql:latest ip-172-31-24-10.ec2.internal
Running Running about a minute ago
k8hba8j5o9vi mysql.7 mysql:latest ip-172-31-0-114.ec2.internal
Running Running 55 seconds ago
ettk65bpin3b mysql.8 mysql:latest ip-172-31-5-127.ec2.internal
Running Running about a minute ago
i3otbqfsfvr7 mysql.9 mysql:latest ip-172-31-35-209.ec2.internal
Running Running 24 seconds ago
sxdi970o6d3b mysql.10 mysql:latest ip-172-31-21-57.ec2.internal
Running Running 49 seconds ago

If the stack is updated again to decrease the number of worker nodes, some of the replicas shut down
and are de-scheduled. After decreasing the number of worker nodes, the Replicas column lists only 5/10
replicas as running.

Chapter 7 ■ Configuring resourCes

130

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
ysef8n02mhuw mysql replicated 5/10 mysql:latest

Some of the service tasks are listed as Shutdown because some of the worker nodes have been removed
from the Swarm.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
8kkkdns0l690 mysql.1 mysql:latest ip-172-31-16-11.ec2.internal
Running Running 10 minutes ago
ulknt3e5zxy1 mysql.2 mysql:latest
Ready Pending 3 seconds ago
k209uge36bih _ mysql.2 mysql:latest ip-172-31-25-163.ec2.internal
Shutdown Running 14 seconds ago
oiublpclz9eu mysql.3 mysql:latest ip-172-31-33-230.ec2.internal
Running Running 9 minutes ago
mh2fpioi441k mysql.4 mysql:latest
Running Pending 3 seconds ago
u807b7h0qvqc _ mysql.4 mysql:latest v53huw84hskqsb3e8o0a2pmun
Shutdown Running about a minute ago
jzghd72nk0zc mysql.5 mysql:latest
Ready Pending 3 seconds ago
jh2ep10sonxy _ mysql.5 mysql:latest ip-172-31-13-141.ec2.internal
Shutdown Running 14 seconds ago
8d19osxa4fwf mysql.6 mysql:latest ip-172-31-24-10.ec2.internal
Running Running 4 minutes ago
dlcgstxxkd9t mysql.7 mysql:latest
Running Pending 3 seconds ago
ziqslz7u9d9l _ mysql.7 mysql:latest ip-172-31-43-179.ec2.internal
Shutdown Assigned 57 seconds ago
k8hba8j5o9vi _ mysql.7 mysql:latest op1dzvmt5eyc74l6pcl5ut64p
Shutdown Running about a minute ago
ettk65bpin3b mysql.8 mysql:latest ip-172-31-5-127.ec2.internal
Running Running 4 minutes ago
i3otbqfsfvr7 mysql.9 mysql:latest ip-172-31-35-209.ec2.internal
Running Running 3 minutes ago
sxdi970o6d3b mysql.10 mysql:latest ip-172-31-21-57.ec2.internal
Running Running 12 seconds ago

Summary
This chapter discussed the resources model of Docker Swarm mode, which is based on resource reserves
and resource limits. Reserved resources cannot be more than resource limits and resource allocation to
service tasks is limited by the node capacity. The next chapter discusses scheduling in Docker Swarm mode.

131© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_8

CHAPTER 8

Scheduling

In Chapter 2, the Docker Swarm was introduced. In Chapter 4, Docker Swarm services were introduced.
A service consists of zero or more service tasks (replicas), which it schedules on the nodes in a Swarm.
The desired state of a service includes the number of tasks that must be run. Scheduling is defined as the
process of placing a service task that is required to be run on a node in the Swarm to keep the desired state
of a service, as illustrated in Figure 8-1. A service task may only be scheduled on a worker node. A manager
node is also a worker node by default.

The Problem
Without a scheduling policy, the service tasks could get scheduled on a subset of nodes in a Swarm. As
an example, all three tasks in a service could get scheduled on the same node in a Swarm, as illustrated in
Figure 8-2.

Task

Scheduling

Node

Figure 8-1. Scheduling

https://doi.org/10.1007/978-1-4842-2973-6_8
http://dx.doi.org/10.1007/978-1-4842-2973-6_2
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

Chapter 8 ■ SCheduling

132

Not using a scheduling policy could lead to the following problems:

•	 Underutilization of resources in a Swarm—If all the tasks are scheduled on a single
node or a subset of nodes, the resource capacity of the other nodes is not utilized.

•	 Unbalanced utilization of resources—If all the tasks are scheduled on a single node or
a subset of nodes, the resources on the nodes on which the tasks are scheduled are
over-utilized and the tasks could even use up all the resource capacity without any
scope for scaling the replicas.

•	 Lack of locality—Clients access a service’s tasks based on node location. If all the
service tasks are scheduled on a single node, the external clients that are accessing
the service on other nodes cannot access the service locally, thereby incurring a
network overhead in accessing a relatively remote task.

•	 Single point of failure—If all services are running on one node and that node has a
problem, it results in downtime. Increasing redundancy across nodes obviates that
problem.

The Solution
To overcome the issues discussed in the preceding section, service task scheduling in a Docker Swarm is
based on a built-in scheduling policy. Docker Swarm mode uses the spread scheduling strategy to rank nodes
for placement of a service task (replica). Node ranking is computed for scheduling of each task and a task is

Docker Swarm
Service

Node

Task

Task

Task

Node

Node

Figure 8-2. Avoid scheduling all tasks on one node

Chapter 8 ■ SCheduling

133

scheduled on the node with the highest computed ranking. The spread scheduling strategy computes node
rank based on the node's available CPU, RAM, and the number of containers already running on the node. The
spread strategy optimizes for the node with the least number of containers. Load sharing is the objective of the
spread strategy and results in tasks (containers) spread thinly and evenly over several machines in the Swarm.
The expected outcome of the spread strategy is that if a single node or a small subset of nodes go down or
become available, only a few tasks are lost and a majority of tasks in the Swarm continue to be available.

 ■ Note Because a container consumes resources during all states, including when it is exited, the spread
strategy does not take into consideration the state of a container. it is recommended that a user remove
stopped containers, because a node that would otherwise be eligible and suitable for scheduling a new task
becomes unsuitable if it has several stopped containers.

The spread scheduling strategy does not take into consideration for which service a task is scheduled.
Only the available and requested resources are used to schedule a new task. Scheduling using the spread
scheduling policy is illustrated in Figure 8-3.

As a hypothetical example:

 1. Start with three nodes, each with a capacity of 3GB and 3 CPUs and no containers
running.

Docker Swarm
Service

Node

Task

Task

Task

Node

Node

Figure 8-3. Using the spread scheduling policy

Chapter 8 ■ SCheduling

134

 2. Create a mysql service with one replica, which requests resources of 1GB and
1 CPU. The first replica gets scheduled randomly on one of the three nodes in
the Swarm as all nodes have the same ranking. If all the nodes have the same
ranking, a new task gets scheduled randomly on one of the nodes.

 3. Scale the mysql service to three tasks. As one of the nodes is already loaded,
the two new tasks are scheduled on the other two nodes, spreading one task to
each node.

 4. Scale the mysql service to five tasks. Two new tasks must be started and all the
nodes have the same ranking because they have the same available resource
capacity and the same number of containers running. The two new tasks are
scheduled randomly on two of the nodes. As a result, two nodes have two tasks
each and one node has one task.

 5. Create another service for the nginx server with a desired state of two tasks,
with each task requesting 0.5GB and 0.5 CPU. Both the tasks are scheduled on
the node that has only the task of the mysql service, as it is the least loaded. As
a result, two nodes have two tasks of mysql service and an available capacity of
1GB and 1 CPU, and one node has two tasks of nginx service and one task of
mysql service and also an available resource capacity of 1GB and 1 CPU.

 6. Scale the nginx service to three. Even though all nodes have the same available
CPU and RAM, the new task is not scheduled randomly on one of the three
nodes, but is scheduled on the node with the least number of containers. As a
result, the new nginx task gets scheduled randomly on one of the nodes, with
two tasks of mysql each. If the nodes have the same available CPU and RAM, the
node with fewer containers (running or stopped) is selected for scheduling the
new task.

This chapter covers the following topics:

•	 Setting the environment

•	 Creating and scheduling a service—the spread scheduling

•	 Desired state reconciliation

•	 Scheduling tasks limited by node resource capacity

•	 Adding service scheduling constraints

•	 Scheduling on a specific node

•	 Adding multiple scheduling constraints

•	 Adding node labels for scheduling

•	 Adding, updating, and removing service scheduling constraints

•	 Spread scheduling and global services

Chapter 8 ■ SCheduling

135

Setting the Environment
Create a CloudFormation stack using Docker for AWS consisting of one manager node and two worker
nodes. Docker for AWS was introduced in Chapter 3. The stack is shown in Figure 8-4.

The three EC2 instances in the stack are shown in Figure 8-5.

SSH Login to the Swarm manager using the public IP address, which may be obtained from the EC2
console, as shown in Figure 8-5.

[root@localhost ~]# ssh -i "docker.pem" docker@54.84.133.157
Welcome to Docker!

Figure 8-4. CloudFormation stack

Figure 8-5. EC2 instances for the Docker swarm

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 8 ■ SCheduling

136

List the nodes in the Swarm; three nodes should be listed.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER

STATUS
0waa5g3b6j641xtwsygvjvwc1 ip-172-31-0-147.ec2.internal Ready Active
e7vigin0luuo1kynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

Creating and Scheduling a Service: The Spread Scheduling
First, we discuss the default spread scheduling using a MySQL database service as an example. From the
Swarm manager node, run the following command to create a five-replica service for MySQL. The output is
the service ID (shown in italics).

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 5 \
> --name mysql \
> mysql
1onpemnoz4x1lh3sv5umab8uo

Subsequently, list the services using docker service ls. Initially, the REPLICAS column could be 0/5,
indicating that none of the replicas are scheduled and running yet.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
1onpemnoz4x1 mysql replicated 0/5 mysql:latest

Run the command again after a while; all the replicas should be running as indicated by a 5/5 in the
REPLICAS column. List the service replicas using the docker service ps mysql command. The tasks should
be running or preparing to run.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
fwjbu3gt2zn0 mysql.1 mysql:latest ip-172-31-0-147.ec2.internal
Running Preparing 8 seconds ago
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Preparing 8 seconds ago
z9wn2nrzfzt8 mysql.3 mysql:latest ip-172-31-0-147.ec2.internal
Running Preparing 8 seconds ago
tm8jbque3xbb mysql.4 mysql:latest ip-172-31-25-121.ec2.internal
Running Preparing 8 seconds ago
7drxfy3vbmp5 mysql.5 mysql:latest ip-172-31-29-67.ec2.internal
Running Preparing 8 seconds ago

Following the spread scheduling strategy, two of the replicas are listed as scheduled on one of the
worker nodes, two on the other worker node, and one on the manager node. Because of the odd number of
replicas, the placement cannot be completely evenly distributed, but a single node does not have more than
two replicas.

Chapter 8 ■ SCheduling

137

To see how the spread scheduling strategy distributes the replicas evenly across a Swarm, scale the
service to six replicas. The output of the docker service scale command is in italics.

~ $ docker service scale mysql=6
mysql scaled to 6

Subsequently, list the replicas. Each node has two replicas scheduled on it, as the spread scheduling
policy is designed to schedule.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
fwjbu3gt2zn0 mysql.1 mysql:latest ip-172-31-0-147.ec2.internal
Running Running 13 seconds ago
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 12 seconds ago
z9wn2nrzfzt8 mysql.3 mysql:latest ip-172-31-0-147.ec2.internal
Running Running 13 seconds ago
tm8jbque3xbb mysql.4 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 8 seconds ago
7drxfy3vbmp5 mysql.5 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 12 seconds ago
utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 5 seconds ago

As a service replica or task is nothing but a slot to run a container, each node runs two containers for the
mysql service.

To further demonstrate spread scheduling, scale down the service to three tasks. The command output
is in italics.

~ $ docker service scale mysql=3
mysql scaled to 3

List the service tasks. Each node has one task running on it, which again is an evenly spread scheduling
of tasks.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 40 seconds ago
z9wn2nrzfzt8 mysql.3 mysql:latest ip-172-31-0-147.ec2.internal
Running Running 41 seconds ago
utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 33 seconds ago

Chapter 8 ■ SCheduling

138

Desired State Reconciliation
When a service is created or is scaled up or down, the service initially has a discrepancy between the
current state and the desired state. The different values for the desired state are ready, running, shutdown,
and accepted. Docker services are designed for desired state reconciliation, which implies that the Swarm
manager continuously monitors the cluster state to reconcile any differences between the desired state
of a service and the current state. The current state of a task can be assigned, preparing, ready, running,
shutdown, or pending. A task that has been assigned to a node but is not currently running is in the assigned
state. A task that has desired state as running and is preparing to run is in the preparing current state. A task
is in the pending state if no node in the Swarm can run the task.

In the following task listing, some tasks have a desired state and current state of running. These tasks
have reconciled their desired state. One task has a desired state set to running, but the current state is
pending. Another task has a desired state set to shutdown and a current state set to assigned.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 minutes ago
x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago
w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 minutes ago
j9lp08ojofj7 mysql.4 mysql:latest
Running Pending 28 seconds ago
ph1zpsjsvp69 _ mysql.4 mysql:latest ip-172-31-7-137.ec2.internal
Shutdown Assigned 33 seconds ago
d3oxy6hxfjh3 _ mysql.4 mysql:latest ip-172-31-40-70.ec2.internal
Shutdown Running 43 seconds ago
ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 8 minutes ago

In an earlier task listing, all tasks were in the current state preparing and the desired state running.
Swarm mode is designed to reconcile the desired state as much as feasible, implying that if node

resources are available, the desired number of replicas runs. To demonstrate, update the Docker for AWS
CloudFormation stack by choosing Actions ➤ Update Stack, as shown in Figure 8-6.

Figure 8-6. Updating a stack

Chapter 8 ■ SCheduling

139

Decrease the number of worker nodes from two to one, as shown in Figure 8-7.

Subsequently, list the service replicas from the Swarm manager node.

docker service ps mysql

The service replicas running on the Swarm worker node that was made to leave the Swarm are listed as
shutdown. New replicas are started on the remaining two nodes in the Swarm to reconcile the desired state.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
p14bbk7ij1mt mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 5 minutes ago
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 7 minutes ago
uatsaay7axlc mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago
z9wn2nrzfzt8 _ mysql.3 mysql:latest 0waa5g3b6j641xtwsygvjvwc1
Shutdown Running 2 minutes ago
w1tlw0fom42q mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about a minute ago
qc75buhzzct3 _ mysql.4 mysql:latest 0waa5g3b6j641xtwsygvjvwc1
Shutdown Running 2 minutes ago
s09ts9s8np3d mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 5 minutes ago
utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 7 minutes ago

Figure 8-7. Decreasing the number of worker nodes to one

Chapter 8 ■ SCheduling

140

Listing only the replicas with a desired state of running, the six replicas are listed as scheduled evenly
between the two nodes—three replicas on the manager node and three replicas on the worker node.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
p14bbk7ij1mt mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 6 minutes ago
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago
uatsaay7axlc mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 2 minutes ago
w1tlw0fom42q mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago
s09ts9s8np3d mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 6 minutes ago
utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 8 minutes ago

The spread scheduling strategy does not reschedule already running replicas to achieve even spread
across a Swarm if new nodes are added to the Swarm. To demonstrate this, we increase the number of
worker nodes back to two, as shown in Figure 8-8.

Adding a node to a swarm does not shut down replicas on other nodes and start replicas on the new
node. Listing the running replicas does not indicate a replacement of the service replicas. Service replicas
continue to run on the nodes they were running on before the new node was added—three on the manager
node and three on the worker node.

Figure 8-8. Re-adding a worker node to Swarm

Chapter 8 ■ SCheduling

141

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
p14bbk7ij1mt mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 15 minutes ago
w0521ik1awjf mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 17 minutes ago
uatsaay7axlc mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 12 minutes ago
z9wn2nrzfzt8 _ mysql.3 mysql:latest 0waa5g3b6j641xtwsygvjvwc1
Shutdown Running 13 minutes ago
w1tlw0fom42q mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 12 minutes ago
qc75buhzzct3 _ mysql.4 mysql:latest 0waa5g3b6j641xtwsygvjvwc1
Shutdown Running 13 minutes ago
s09ts9s8np3d mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 15 minutes ago
utjo8lwbtzf7 mysql.6 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 17 minutes ago

Scheduling Tasks Limited by Node Resource Capacity
The scheduling policy is limited by the available node resources, implying that service replicas cannot
be made to run if not enough node resources in terms of CPU and memory are available. Resource usage
cannot exceed node capacity. The replicas are still allocated to the service to define the desired state but may
not be running due to insufficient resources. To demonstrate this, we remove the service mysql and create
the service again with the specified resource requests and limits. Command outputs are shown in italics.

~ $ docker service rm mysql
mysql

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb --limit-memory 512mb mysql
0qe2thy0dlviroli6k8thist1

Listing the services indicates that one replica of the service is created.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
0qe2thy0dlvi mysql replicated 1/1 mysql:latest

The single replica is scheduled on the manager node, which is chosen randomly if all nodes in a Swarm
have the same node ranking.

Chapter 8 ■ SCheduling

142

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 8 seconds ago

Next, to potentially make the service replicas consume more resources than available, scale the service
to five replicas.

~ $ docker service scale mysql=5
mysql scaled to 5

Listing the services indicates that 3/5 Replicas are running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
0qe2thy0dlvi mysql replicated 3/5 mysql:latest

Listing the service replicas indicates that some of the replicas are pending instead of running.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 4 minutes ago
x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 3 minutes ago
w4ivsbvwqqzq mysql.3 mysql:latest
Running Pending 3 minutes ago
d3oxy6hxfjh3 mysql.4 mysql:latest
Running Pending 3 minutes ago
ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 3 minutes ago

The pending state implies that the replicas are allocated to the service but not scheduled on any node
yet. Only three replicas could run based on the requested resources and available node resources, one on
each node.

Because the replicas are not scheduled due to lack of resources, we add one or more new worker nodes
to potentially schedule the replicas to reconcile the desired state. Increase the number of worker nodes to
five, as shown in Figure 8-9.

Chapter 8 ■ SCheduling

143

Figure 8-9. Increasing the number of worker nodes to five

The Swarm should list six nodes after a new node is added. As resources became available for the
pending tasks, the tasks get scheduled and start running.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 5 minutes ago
x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 4 minutes ago
w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 21 seconds ago
d3oxy6hxfjh3 mysql.4 mysql:latest ip-172-31-40-70.ec2.internal
Running Preparing 30 seconds ago
ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 4 minutes ago

If the number of worker nodes is decreased, some of the tasks are descheduled, as indicated by the
shutdown desired state.

Chapter 8 ■ SCheduling

144

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 minutes ago
x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 8 minutes ago
w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 minutes ago
j9lp08ojofj7 mysql.4 mysql:latest
Running Pending 28 seconds ago
ph1zpsjsvp69 _ mysql.4 mysql:latest ip-172-31-7-137.ec2.internal
Shutdown Assigned 33 seconds ago
d3oxy6hxfjh3 _ mysql.4 mysql:latest ip-172-31-40-70.ec2.internal
Shutdown Running 43 seconds ago
ic331aasjpdm mysql.5 mysql:latest ip-172-31-44-104.ec2.internal
Running Running 8 minutes ago

Updating the service to lower CPU and memory resource usage reserved only updates the
UpdateConfig for the service. This does not lower the resource usage of the already running tasks or
make pending or shutdown tasks run. As an example, lower the resource reserves and limits for the mysql
service when some of the tasks are pending or shutdown due to lack of resources.

~ $ docker service update --reserve-cpu .1 --limit-cpu .5 --reserve-memory 64mb
 --limit-memory 128mb mysql
mysql

The UpdateConfig gets modified, but only applies to new replicas created after that point.

~ $ docker service inspect mysql
[
 },
 "Resources": {
 "Limits": {
 "NanoCPUs": 500000000,
 "MemoryBytes": 134217728
 },
 "Reservations": {
 "NanoCPUs": 100000000,
 "MemoryBytes": 67108864
 }
 },
]

Only three of the replicas in the mysql service are actually running.

Chapter 8 ■ SCheduling

145

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
opxf4ne7iyy6 mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 minutes ago
x30y3jlea047 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 10 minutes ago
w4ivsbvwqqzq mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 5 minutes ago
rm9uj4qevt5b mysql.5 mysql:latest
Running Pending 33 seconds ago

To force the service tasks to use the new resource settings, scale down the service to one task and then
scale back up to five tasks.

~ $ docker service scale mysql=1
mysql scaled to 1
~ $ docker service scale mysql=5
mysql scaled to 5

All five tasks are now running.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
anai3mptbnkp mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 17 seconds ago
opxf4ne7iyy6 _ mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Shutdown Shutdown 18 seconds ago
lmkn8l50t334 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 seconds ago
7uz7q86wnzn4 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 11 seconds ago
ubh4m39aw8m9 mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 11 seconds ago
56pnrzajogvs mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 10 seconds ago

Adding Service Scheduling Constraints
Docker Swarm supports placement or scheduling constraints for scheduling new tasks. Service placement
constraints are additional criteria for placement of service tasks and could be based on node attributes,
metadata, and engine metadata. The Swarm scheduler uses the following sequence to schedule a service task.

 1. Does the node satisfy all the placement constraints?

 2. Does a node meet the scheduling policy requirements of an even spread?

 3. Does the node have sufficient resources to schedule a task?

Chapter 8 ■ SCheduling

146

A placement constraint may be added using the --constraint option with the docker service create
command. For an already running service, constraints may be added and removed with the --constraint-add
and --constraint-rm options, respectively, with the docker service update command. The node
attributes discussed in Table 8-1 may be used to specify constraints.

Next, we discuss some examples of using scheduling constraints.

Scheduling on a Specific Node
In this section we schedule service replicas on specific nodes in a Swarm. List the node IDs with the docker
node ls command. The Swarm has the following three nodes available for scheduling.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER

STATUS
81h6uvu8uq0emnovzkg6v7mzg ip-172-31-2-177.ec2.internal Ready Active
e7vigin0luuo1kynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

We can schedule a service by node role. Create a mysql service with the placement constraint that the
service tasks be scheduled on worker nodes only. First, remove the mysql service if it’s already running

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --constraint node.role==worker \
> --name mysql \
> mysql
nzgte4zac1x8itx6t98y5gi42

Table 8-1. Node Attributes for Constraints

Node Attribute Description Example

node.id Specifies the node ID. Node IDs are listed using the
docker node ls command.

node.id==a3r56hj7y

node.hostname Specifies the node’s hostname. The node’s hostname
is listed with the docker node ls command.

node.hostname!=ip-10-0-0-
ec2.internal

node.role Specifies the node role, which is one of worker or
manager.

node.role==manager

node.labels Specifies the node labels added by a user. A label
is a key-value pair. When adding a node label, the
node.labels. prefix is to be omitted and gets added
automatically. Adding and using node labels is
discussed in a subsequent section.

node.labels.db==mysql

engine.labels Docker Engine labels such as drivers, operating
system, version.

engine.labels.os==coreos

Chapter 8 ■ SCheduling

147

The service is created and three tasks are scheduled only on the two worker nodes, as listed in the
running service tasks.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
f5t15mnrft0h mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 19 seconds ago
oxvq4ljuq6yz mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago
k5jo862lvsxf mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago

Next, we use the node ID to schedule a service’s tasks. Copy the node ID for the manager node, which
is also the leader in the Swarm being the only manager node. Substitute the node ID in the following
command to create a service for the MySQL database and schedule replicas only on the manager node.

docker service create \
 --env MYSQL_ROOT_PASSWORD='mysql'\
 --replicas 3 \
 --constraint node.id ==<nodeid>
 --name mysql \
 mysql

A service is created with three tasks. Command output is shown in italics.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --constraint node.id==ptm7e0p346zwypos7wnpcm72d\
> --name mysql \
> mysql
u1qi6zqnch9hn7x6k516axg7h

All the three replicas of the service are scheduled on the manager node only.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
lbttu95qdjvy mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 21 seconds ago
89x0z94on0fb mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 21 seconds ago
3s6508aimdaj mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 22 seconds ago

Chapter 8 ■ SCheduling

148

Adding Multiple Scheduling Constraints
Multiple node constraints may also be specified and every constraint expression must be met using AND
for the scheduler to schedule a replica on a node. As an example, we create a service with two roles, one
that constrains the node role to worker and the other constrains the node hostname not to be a specific
hostname ip-172-31-2-177.ec2.internal.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --constraint node.role==worker \
> --constraint node.hostname!=ip-172-31-2-177.ec2.internal\
> --name mysql \
> mysql
87g0c8kauhz8yb4wv2ryc2vqr

A service gets created. Listing the services lists 3/3 replicas as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
87g0c8kauhz8 mysql replicated 3/3 mysql:latest

Listing the service tasks indicates that all tasks are scheduled on a single worker node. The two
constraints are met: the node is a worker node and not the worker node with hostname ip-172-31-2-177.ec2.
internal.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
jlfk79mb6m6a mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago
if5y39ky884q mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago
zctm6mzbl4du mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago

If the mysql service is updated to remove the constraints, the spread scheduling strategy reschedules the
tasks based on node ranking. As an example, update the service to remove the two placement constraints
added. A constraint is removed with the –constraint-rm option of the docker service update command.

~ $ docker service update \
> --constraint-rm node.role==worker \
> --constraint-rm node.hostname!=ip-172-31-2-177.ec2.internal\
> mysql
mysql

When a service is updated to remove constraints, all the service tasks are shut down and new service
tasks are started. The new service tasks are started, one each on the three nodes in the Swarm.

Chapter 8 ■ SCheduling

149

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
d22bkgteivot mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Ready Ready less than a second ago
jlfk79mb6m6a _ mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Running 1 second ago
mp757499j3io mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 1 second ago
if5y39ky884q _ mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 2 seconds ago
jtdxucteb0fl mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 4 seconds ago
zctm6mzbl4du _ mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 5 seconds ago

List only the running tasks. One task is listed running on each node.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
d22bkgteivot mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 46 seconds ago
mp757499j3io mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 49 seconds ago
jtdxucteb0fl mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 53 seconds ago

Similarly, multiple node constraints could be used to run replicas only on a manager node. Next, we
update the mysql service to run on a specific manager node. First, promote one of the worker nodes to
manager.

~ $ docker node promote ip-172-31-2-177.ec2.internal
Node ip-172-31-2-177.ec2.internal promoted to a manager in the swarm.

Subsequently, two manager nodes are listed as indicated by the Manager Status for two of the nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER

STATUS
81h6uvu8uq0emnovzkg6v7mzg ip-172-31-2-177.ec2.internal Ready Active Reachable
e7vigin0luuo1kynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

Update the mysql service to add multiple node constraints to run replicas only on a specific manager
node. Constraints are added using the --constraint-add option of the docker service update command.

~ $ docker service update \
> --constraint-add node.role==manager \
> --constraint-add node.hostname==ip-172-31-2-177.ec2.internal\
> mysql
mysql

Chapter 8 ■ SCheduling

150

Again, all service tasks are shut down and new tasks are started, all on the specified manager node that
was promoted from the worker node.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
eghm1or6yg5g mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 28 seconds ago
bhfngac5ssm7 mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 22 seconds ago
ts3fgvq900os mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 25 seconds ago

Adding Node Labels for Scheduling
Next, we discuss how node labels can be used to specify service placement constraints. Labels may be
added to a node with the following command syntax, in which variables are <LABELKEY>, <LABELVALUE>, and
<NODE>. The <NODE> is the node ID or hostname.

docker node update --label-add <LABELKEY>=<LABELVALUE> <NODE>

As an example, add the label db=mysql to the node with a hostname set to ip-172-31-25-121.ec2.
internal, which is the leader node.

~ $ docker node update --label-add db=mysql ip-172-31-25-121.ec2.internal
ip-172-31-25-121.ec2.internal

A node label is added. On inspecting the node, the label is listed in the Labels field.

~ $ docker node inspect ip-172-31-25-121.ec2.internal
[
 "Spec": {
 "Labels": {
 "db": "mysql"
 },
 "Role": "manager",
 "Availability": "active"
 },
]

Next, create a service that uses the node label to add a placement constraint. The --constraint option
for the label must include the prefix node.labels.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --constraint node.labels.db==mysql \
> --name mysql \
> mysql
2hhccmj9senseazbet11dekoa

Chapter 8 ■ SCheduling

151

The service is created. Listing the tasks lists all the tasks on the Leader manager node, which is what the
node label constraint specified.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
g5jz9im3fufv mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago
bupr27bs57h1 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago
5bb2yf8aehqn mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 18 seconds ago

The label added may be removed with the --label-rm option of the docker node update command in
which the only the label key is specified.

docker node update --label-rm db ip-172-31-25-121.ec2.internal

Adding, Updating, and Removing Service Scheduling Constraints
In an earlier section, we discussed adding placement constraints when creating a service with docker
service create. Placement constraints may be added/removed with the docker service update
command using the --constraint-add and --constraint-rm options. To discuss an example of updating
placement constraints, we create a mysql service with three replicas and no placement constraints to
start with.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 3 \
> --name mysql \
> mysql
az3cq6sxwrrk4mxkksdu21i25

A mysql service gets created with three replicas scheduled on the three nodes in the Swarm, using the
spread policy.

Next, update the service with the docker service update command to add a constraint for the service
replicas to run only on the manager nodes.

~ $ docker service update \
> --constraint-add node.role==manager \
> mysql
mysql

In a Swarm with two manager nodes, all the service tasks are shut down and new tasks are started only
on the manager nodes.

Chapter 8 ■ SCheduling

152

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
pjwseruvy4rj mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 seconds ago
s66g9stz9af5 _ mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Shutdown Shutdown 4 seconds ago
yqco9zd0vq79 mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 9 seconds ago
8muu6gbghhnd _ mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Shutdown Shutdown 10 seconds ago
8x7xlavcxdau mysql.3 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 7 seconds ago
qx95vwi2h547 _ mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 7 seconds ago

Scheduling constraints may be added and removed in the same docker service update command.
As an example, remove the constraint for the node to be a manager and add a constraint for the node to be a
worker.

~ $ docker service update \
> --constraint-rm node.role==manager \
> --constraint-add node.role==worker \
> mysql
mysql

Again. all the service tasks are shut down and new tasks are started only on the worker nodes.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
6ppgmvw9lv75 mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 9 seconds ago
qm0loki65v9s mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 17 seconds ago
ypl0tc1ft92o mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running

If the only scheduling constraint that specifies the node role as worker is removed, the spread
scheduling strategy starts new tasks spread evenly across the Swarm. To demonstrate, remove the constraint
for the node role to be a worker.

~ $ docker service update --constraint-rm node.role==worker mysql
mysql

Subsequently, new tasks are spread across the nodes in the Swarm.

Chapter 8 ■ SCheduling

153

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
jpx4jjw6l9d5 mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 5 seconds ago
ngajiik1hugb mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 12 seconds ago
40eaujzlux88 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 8 seconds ago

Spread Scheduling and Global Services
A global service runs one task on every node in a Swarm. A global service cannot be scaled to create more/
fewer tasks. As a result, the spread scheduling policy concept does not apply to global services. However,
node constraints may be applied to global services. As an example, we create a global service for the mysql
database. Apply a placement constraint that the service should be available only on worker nodes.

~ $ docker service create \
> --mode global \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --constraint node.role==worker \
> --name mysql \
> mysql
jtzcwatp001q9r26n1uubd8me

The global service is created. Listing the service tasks for the tasks with desired state as running lists
only the tasks on the worker nodes.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
o5nskzpv27j9 mysql.e7vigin0luuo1kynjnl33v9pa mysql:latest ip-172-31-29-67.ec2.internal
Running Running 17 seconds ago

If created without the constraint to schedule on worker nodes only, a global service schedules one task
on each node, as demonstrated by the following example.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --mode global \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --name mysql \
> mysql
mv9yzyyntdhzz41zssbutcsvw

Chapter 8 ■ SCheduling

154

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mc87btddhmpl mysql.e7vigin0luuo1kynjnl33v9pa mysql:latest ip-172-31-29-67.ec2.internal
Running Running 19 seconds ago
o0wfdq9sd8yt mysql.ptm7e0p346zwypos7wnpcm72d mysql:latest ip-172-31-25-121.ec2.internal
Running Running 19 seconds ago
wt2q5k2dhqjt mysql.81h6uvu8uq0emnovzkg6v7mzg mysql:latest ip-172-31-2-177.ec2.internal
Running Running 19 seconds ago

Summary
This chapter discussed the scheduling policy of spread used in the Docker Swarm mode, whereby service
replicas are spread evenly across nodes in a Swarm based on node ranking; a higher node ranking gets a
service replica placement priority. We also discussed the effect of limited node resource capacity and how
to alleviate it by adding new nodes to the Swarm. We discussed placement constraints for scheduling new
replicas. The spread scheduling policy is not relevant for global services as they create one service task on
each node by default. However, scheduling constraints may be used with global services. In the next chapter
we discuss rolling updates to Docker services.

155© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_9

CHAPTER 9

Rolling Updates

The Docker Swarm mode provisions services consisting of replicas that run across the nodes in the Swarm.
A service definition is created when a service is first created/defined. A service definition is created with the
docker service create command. That command provides several options, including those for adding
placement constraints, container labels, service labels, DNS options, environment variables, resource
reserves and limits, logging driver, mounts, number of replicas, restart condition and delay, update delay,
failure action, max failure ratio, and parallelism, most of which were discussed in Chapter 4.

The Problem
Once a service definition has been created, it may be required to update some of the service options such as
increase/decrease the number of replicas, add/remove placement constraints, update resource reserves and
limits, add/remove mounts, add/remove environment variables, add/remove container and service labels,
add/remove DNS options, and modify restart and update parameters. If a service is required to be shut down
as a whole to update service definition options, an interruption of service is the result.

The Solution
Docker Swarm mode includes the provision for rolling updates. In a rolling update, the service is not shut
down, but individual replicas/tasks in the service are shut down one at a time and new service replicas/
tasks based on the new service definition are started one at a time, as illustrated in Figure 9-1. As a result the
service continues to be available during the rolling update. The service tasks that are served to a client could
be from both old and new service definitions during a rolling update. As an example, if the rolling update
performs an update to a more recent image tag, some of the tasks served to external clients during the rolling
update could be from a mix of old image tag and new image tag.

https://doi.org/10.1007/978-1-4842-2973-6_9
http://dx.doi.org/10.1007/978-1-4842-2973-6_4

Chapter 9 ■ rolling Updates

156

Rolling update creates a new service definition and a new desired state for a service. Rolling update
involves shutting down all service replicas and starting all new service replicas and does not apply to service
replicas that have not yet been scheduled, due to lack of resources for example. Even updating just the
number of replicas in a rolling update shuts down or fails all the old replicas and starts all new replicas.

The following sequence is used by the scheduler during a rolling update.

 1. The first task is stopped.

 2. An update for the stopped task is scheduled.

 3. A Docker container for the updated task is started.

 4. If the update to a task returns RUNNING, wait for the duration specified in
--update-delay and start the update to the next task.

Service
mysql

Service
Replicas

Service
mysql

Rolling Update

Figure 9-1. Rolling update

Chapter 9 ■ rolling Updates

157

 5. If during the update, a task returns FAILED, perform the --update-failure-
action, which is to pause the update by default.

 6. Restart a paused update with docker service update <SERVICE-ID>.

 7. If an update failure is repeated, find the cause of the failure and reconfigure the
service by supplying other options to the docker service update.

Setting the Environment
Create a Docker Swarm consisting of a manager node and two worker nodes using Docker for AWS, as
discussed in Chapter 3. Obtain the public IP address of the manager instance from the EC2 console and then
SSH login to the instance.

[root@localhost ~]# ssh -i "docker.pem" docker@54.84.133.157
Welcome to Docker!

List the Swarm nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
81h6uvu8uq0emnovzkg6v7mzg ip-172-31-2-177.ec2.internal Ready Active
e7vigin0luuo1kynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader

Creating a Service with a Rolling Update Policy
A rolling update policy or update config consists of the service definition options discussed in Table 9-1.

Table 9-1. Rolling Update Options

Option Description Default Value

--update-delay Delay between updates (ns|us|ms|s|m|h). 0 seconds

--update-failure-action Action on update failure. Value may be pause
or continue.

pause

--update-max-failure-ratio

--update-monitor Duration after each task update to monitor for
failure (ns|us|ms|s|m|h).

0 seconds

--update-parallelism Maximum number of tasks updated
simultaneously. A value of 0 updates all at once.

1

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 9 ■ rolling Updates

158

To configure the rolling update policy at service deployment time, the options to be configured must
be supplied when the service is created. As an example, create a service for MySQL database and specify the
update policy options --update-delay and --update-parallelism.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> --update-delay 10s \
> --update-parallelism 1 \
> mysql:5.6
wr0z48v1uguk1c40pa42ywrpn

The service is created. Listing the services may not list all replicas as running initially, as indicated by
0/1 in the REPLICAS column.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
wr0z48v1uguk mysql replicated 0/1 mysql:5.6

Running the same command after a while should list all replicas as running, as indicated by 1/1 in
REPLICAS column.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
wr0z48v1uguk mysql replicated 1/1 mysql:5.6

The single service replica is scheduled on the manager node itself and the Docker container for the
replica is started.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
38dm9gm6cmvk mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 13 seconds ago

Creating a service using rolling update options does not by itself demonstrate a rolling update. It only
defines the UpdateConfig settings of the service. In the next section we perform a rolling update.

Rolling Update to Increase the Number of Replicas
A rolling update could be used to update the number of replicas with the --replicas option to the docker
service update command. A rolling update updates the UpdateConfig policy applied when the service
is first deployed. Next, we update the number of replicas for the mysql:5.6 image based service from the
one replica created in the preceding section. Run the following command to update the service definition
to five replicas from one replica. The --update-delay and --update-parallelism options modify the
UpdateConfig of the service definition. The docker service update command outputs the service name if
the update is successful.

Chapter 9 ■ rolling Updates

159

~ $ docker service update \
> --replicas 5 \
> --update-delay 20s \
> --update-parallelism 1 \
> mysql
mysql

Subsequently, the services listing may list some of the replicas as not started yet in the output to the
docker service ls command. But, running the command again after a while should list all replicas as running.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
wr0z48v1uguk mysql replicated 5/5 mysql:5.6

During the rolling update, all the running tasks are shut down and new tasks are started. The desired
state of the mysql.1 task gets updated to shutdown and the current state is set to failed. A new task mysql.1
is started.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
ydqj6vf9rsgw mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 26 seconds ago
38dm9gm6cmvk _ mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 31 seconds ago "task: non-zero exit (137)"
7bns96iu8ygz mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 32 seconds ago
62wfdbcv3cr4 mysql.3 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 33 seconds ago
ql66z5x0a2lf mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 14 seconds ago
3n3b1j7ey732 _ mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 19 seconds ago "task: non-zero exit (137)"
bl1365y60vuu mysql.5 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 33 seconds ago

When scaling from one to five replicas, first a few new tasks are started and then the task running
initially is shut down so that the service continues to be available during the rolling update. If the only task in
the service were to be shut down first before starting any new tasks, the service wouldn’t have any running
tasks for a short while.

The desired state of running five replicas is not immediately reconciled during a rolling update. Fewer
than five tasks could be running while the rolling update is in progress. Listing the running service tasks lists
only three tasks as running.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
ydqj6vf9rsgw mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 35 seconds ago
7bns96iu8ygz mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 40 seconds ago
ql66z5x0a2lf mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 22 seconds ago

Chapter 9 ■ rolling Updates

160

When the rolling update has completed, five tasks are running.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
u8falo7q95cq mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 20 seconds ago
luabknwzwqoj mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 13 seconds ago
ce4l2qvtcanv mysql.3 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 25 seconds ago
iw8vwsxq3tjz mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 6 seconds ago
qfi5fionjt2v mysql.5 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 25 seconds ago

Inspecting the service should list the updated number of replicas. The UpdateConfig is also listed with
the docker service inspect command.

~ $ docker service inspect mysql
[
 ...
 "Spec": {
 "Name": "mysql",
...
 },
 "Mode": {
 "Replicated": {
 "Replicas": 5
 }
 },
 "UpdateConfig": {
 "Parallelism": 1,
 "Delay": 20000000000,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "RollbackConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
...
]

Chapter 9 ■ rolling Updates

161

Rolling Update to a Different Image Tag
A use case for a rolling update is to update to a newer image tag. As an example, perform a rolling update to
update to Docker image mysql:latest from mysql:5.6 for the mysql service. Update parallelism is set to 2
to update two replicas at a time.

~ $ docker service update --image mysql:latest --update-parallelism 2 mysql
mysql

The service rolling update gets started. Listing the service replicas lists mysql:5.6 image-based replicas
as shutting down, as indicated by the shutdown desired state and mysql:latest image-based replicas as
starting, as indicated by the running desired state.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vqc6rhzw5uxz mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Ready Ready 7 seconds ago
80kswuu4d5gc _ mysql.1 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Running 7 seconds ago
u8falo7q95cq _ mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 12 seconds ago "task: non-zero exit (1)"
ydqj6vf9rsgw _ mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 56 seconds ago "task: non-zero exit (1)"
38dm9gm6cmvk _ mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (137)"
tvxjmahy08uh mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 2 seconds ago
luabknwzwqoj _ mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Shutdown Failed 8 seconds ago "task: non-zero exit (137)"
7bns96iu8ygz _ mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Shutdown Failed 50 seconds ago "task: non-zero exit (137)"
u2ea4xq4yx6t mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 seconds ago
ce4l2qvtcanv _ mysql.3 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Shutdown 4 seconds ago
62wfdbcv3cr4 _ mysql.3 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (1)"
iw8vwsxq3tjz mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 37 seconds ago
ql66z5x0a2lf _ mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed 43 seconds ago "task: non-zero exit (137)"
3n3b1j7ey732 _ mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (137)"
f5vcf9mgluqe mysql.5 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 14 seconds ago
qfi5fionjt2v _ mysql.5 mysql:5.6 ip-172-31-29-67.ec2.internal
Shutdown Failed 19 seconds ago "task: non-zero exit (1)"
bl1365y60vuu _ mysql.5 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Failed about a minute ago "task: non-zero exit (1)"

Chapter 9 ■ rolling Updates

162

While the rolling update is in progress, some of the running tasks could be based on the previous
service specification (mysql:5.6), while others are based on the new service specification (mysql:latest).

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vqc6rhzw5uxz mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 4 seconds ago
tvxjmahy08uh mysql.2 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 11 seconds ago
u2ea4xq4yx6t mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 13 seconds ago
iw8vwsxq3tjz mysql.4 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 46 seconds ago
f5vcf9mgluqe mysql.5 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 23 seconds ago

When the rolling update has completed, all running tasks are based on the new service specification.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
vqc6rhzw5uxz mysql.1 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 45 seconds ago
53choz0dd967 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running less than a second ago
u2ea4xq4yx6t mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 53 seconds ago
tyo6v0yen7ev mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 21 seconds ago
upt212osx7au mysql.5 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 25 seconds ago

Rolling Update to Add and Remove Environment Variables
The Docker image mysql requires one mandatory environment variable MYSQL_ROOT_PASSWORD for the root
password and supports some other environment variables that may also be specified. The other environment
variables are MYSQL_DATABASE for the MySQL database, MYSQL_USER for the MYSQL user, MYSQL_PASSWORD for the
MySQL password, and MYSQL_ALLOW_EMPTY_PASSWORD for whether to allow the root password to be empty. The
MYSQL_ROOT_PASSWORD was already set when the mysql service was created. Using the --env-add option to the
docker service update command, we can add the other environment variables.

~ $ docker service update --env-add MYSQL_DATABASE='mysqldb' --env-add MYSQL_USER='mysql'
--env-add MYSQL_PASSWORD='mysql' --env-add MYSQL_ALLOW_EMPTY_PASSWORD='no' --update-
parallelism 1 mysql
mysql

An output of mysql implies the command ran successfully.
The rolling update status is found with the docker service inspect command, which in addition to

listing the env variables added in the Env JSON object, lists the UpdateStatus. The State of the update status
is updating and the message is “update in progress”.

Chapter 9 ■ rolling Updates

163

~ $ docker service inspect mysql
[
 {...
 "Spec": {
 "Name": "mysql",
 "ContainerSpec": {
...
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql",
 "MYSQL_DATABASE=mysqldb",
 "MYSQL_USER=mysql",
 "MYSQL_PASSWORD=mysql",
 "MYSQL_ALLOW_EMPTY_PASSWORD=no"
],
... },
 "UpdateStatus": {
 "State": "updating",
 "StartedAt": "2017-07-25T19:18:11.44139778Z",
 "Message": "update in progress"
 }
 }
]

When the update has completed, the UpdateStatus state becomes "completed" and the Message
becomes "update completed".

~ $ docker service inspect mysql
[
... },
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T19:18:11.44139778Z",
 "CompletedAt": "2017-07-25T19:20:37.912993431Z",
 "Message": "update completed"
 }
 }
]

As indicated by the StartedAt and CompletedAt timestamp, the rolling update takes about two minutes.
Listing only tasks with desired state of running indicates that one task has been running for 21 seconds and
another task has been running for two minutes.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
3zhf94kklu6r mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 21 seconds ago
ta16ch5kjlr9 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago
fc7uxvwvcmk3 mysql.3 mysql:latest ip-172-31-2-177.ec2.internal
Running Running about a minute ago

Chapter 9 ■ rolling Updates

164

jir97p344kol mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about a minute ago
5rly53mcc8yq mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 45 seconds ago

The environment variables added may be removed with another docker service update command
and the --env-rm options for each environment variable to remove. Only the env variable name is to be
specified in --env-rm, not the env value.

~ $ docker service update --env-rm MYSQL_DATABASE --env-rm MYSQL_USER --env-rm
MYSQL_PASSWORD --env-rm MYSQL_ALLOW_EMPTY_PASSWORD mysql
mysql

Another rolling update gets performed. All service tasks get shut down and new service tasks based
on the new service specification are started. The service definition lists only the mandatory environment
variable MYSQL_ROOT_PASSWORD.

~ $ docker service inspect mysql
[...
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
],
 },
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T19:20:57.968668604Z",
 "CompletedAt": "2017-07-25T19:22:59.18517919Z",
 "Message": "update completed"
 }
 }
]

Rolling Update to Set CPU and Memory Limits and Reserve
A rolling update may be used to set new resource limits and reserves.

~ $ docker service update --reserve-cpu 1 --limit-cpu 2 --reserve-memory 256mb -
-limit-memory 512mb mysql
mysql

New resource limits and reserves are configured, as listed in the service specification. The
PreviousSpec indicates that no Resources Limits and Reservations are configured to start with.

~ $ docker service inspect mysql
[
 ...
 "Spec": {
 "Name": "mysql",
...
 "ContainerSpec": {
... },

Chapter 9 ■ rolling Updates

165

 "Resources": {
 "Limits": {
 "NanoCPUs": 2000000000,
 "MemoryBytes": 536870912
 },
 "Reservations": {
 "NanoCPUs": 1000000000,
 "MemoryBytes": 268435456
 }
 },
... },
 "PreviousSpec": {
...
 "Name": "mysql",
 "Resources": {
 "Limits": {},
 "Reservations": {}
 },
 "UpdateStatus": {
 "State": "updating",
 "StartedAt": "2017-07-25T19:23:44.004458295Z",
 "Message": "update in progress"
 }
 }
]

Setting new resource limits and reserves are subject to node capacity limits. If requested resources
exceed the node capacity the rolling update may continue to run and not get completed, with some tasks in
the pending current state.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
5u7zifw15n7t mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago
2kgsb16c8m8u mysql.2 mysql:latest
Running Pending about an hour ago
mu08iu9qzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about an hour ago
aakxr8dw5s15 mysql.4 mysql:latest ip-172-31-2-177.ec2.internal
Running Running about an hour ago
z6045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

If some tasks are pending, adding resources to the Swarm could make the pending tasks run. We
can update the CloudFormation stack to increase the number of worker nodes from 2 to 3, as shown in
Figure 9-2.

Chapter 9 ■ rolling Updates

166

Subsequently, the Swarm should list four nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
81h6uvu8uq0emnovzkg6v7mzg ip-172-31-2-177.ec2.internal Ready Active
e7vigin0luuo1kynjnl33v9pa ip-172-31-29-67.ec2.internal Ready Active
ptm7e0p346zwypos7wnpcm72d * ip-172-31-25-121.ec2.internal Ready Active Leader
t4d0aq9w2a6avjx94zgkwc557 ip-172-31-42-198.ec2.internal Ready Active

With increased resources in the Swarm, the pending tasks also start to run.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
5u7zifw15n7t mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago
2kgsb16c8m8u mysql.2 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 7 minutes ago
mu08iu9qzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about an hour ago
i5j2drlcm75f mysql.4 mysql:latest ip-172-31-42-198.ec2.internal
Running Running 4 seconds ago
z6045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

Figure 9-2. Increasing the number of worker nodes in the Swarm

Chapter 9 ■ rolling Updates

167

Rolling Update to a Different Image
Rolling update may also be used to update to a completely different Docker image. As an example, perform
a rolling update to the mysql service to use Docker image postgres instead of the mysql image it is using.
Other options such as --update-parallelism may also be set.

~ $ docker service update --image postgres --update-parallelism 1 mysql
mysql

The mysql:latest image-based tasks start to get shut down and postgres image-based replacement
tasks begin to get started one task at a time. The rolling update does not get completed immediately and
listing the service tasks with the desired state as running lists some tasks based on the postgres:latest
image, while other tasks are still using the mysql:latest image.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
9tzm5pa6pcyx mysql.1 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 39 seconds ago
xj23fu5svv9d mysql.2 postgres:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago
mu08iu9qzqlh mysql.3 mysql:latest ip-172-31-29-67.ec2.internal
Running Running about an hour ago
skzxi33c606o mysql.4 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 13 seconds ago
z6045639f20p mysql.5 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about an hour ago

One replica at a time, the mysql image-based replicas are shut down and postgres image-based
replicas are started. After about two minutes, all tasks have updated to the postgres:latest image.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
9tzm5pa6pcyx mysql.1 postgres:latest ip-172-31-2-177.ec2.internal
Running Running about a minute ago
xj23fu5svv9d mysql.2 postgres:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago
kd9pk31vpof2 mysql.3 postgres:latest ip-172-31-42-198.ec2.internal
Running Running 35 seconds ago
skzxi33c606o mysql.4 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 59 seconds ago
umtitiuvt5gg mysql.5 postgres:latest ip-172-31-25-121.ec2.internal
Running Running 8 seconds ago

The service name continues to be the same and the replica names also include the mysql prefix. The
mysql service definition ContainerSpec lists the image as postgres. Updating the image to postgres does
not imply that all other service definition settings are updated for the new image. The postgres image
does not use the MYSQL_ROOT_PASSWORD, but the environment variable continues to be in the service
specification.

Chapter 9 ■ rolling Updates

168

~ $ docker service inspect mysql
[
 "Spec": {
 "Name": "mysql",
 "ContainerSpec": {
 "Image": "postgres:latest@sha256:e92fe21f695d27be7050284229a1c8c63ac10d8

8cba58d779c243566e125aa34",
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
],
 "PreviousSpec": {
 "Name": "mysql",
 "ContainerSpec": {
 "Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133

b22b07ee32789b626f8de3",
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
... },
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:39:45.230997671Z",
 "CompletedAt": "2017-07-25T20:42:04.186537673Z",
 "Message": "update completed"
 }
 }
]

The MYSQL_ROOT_PASSWORD environment variable may be removed with another update command.

~ $ docker service update --env-rm MYSQL_ROOT_PASSWORD mysql
mysql

Subsequently, the ContainerSpec does not include the MYSQL_ROOT_PASSWORD environment variable.

~ $ docker service inspect mysql
[
...
 "Spec": {
 "Name": "mysql",
 ...
 "ContainerSpec": {
 "Image": "postgres:latest@sha256:e92fe21f695d27be7050284229a1c8c63ac10d8

8cba58d779c243566e125aa34",
 "StopGracePeriod": 10000000000,
 "DNSConfig": {}
 },
... },
 "PreviousSpec": {
 "ContainerSpec": {
 "Image": "postgres:latest@sha256:e92fe21f695d27be7050284229a1c8c63ac10d8

8cba58d779c243566e125aa34",

Chapter 9 ■ rolling Updates

169

 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
],
... },
 "UpdateStatus": {
 "State": "updating",
 "StartedAt": "2017-07-25T20:42:56.651025816Z",
 "Message": "update in progress"
 }
 }
]

A rolling update to remove an environment variable involves shutting down all service tasks and
starting all new tasks. The update takes about two minutes to complete.

~ $ docker service inspect mysql
[
 },
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:42:56.651025816Z",
 "CompletedAt": "2017-07-25T20:44:55.078906359Z",
 "Message": "update completed"
 }
 }
]

Listing the running tasks indicates that tasks have only been running two minutes at the maximum.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
menpo2zgit5u mysql.1 postgres:latest ip-172-31-2-177.ec2.internal
Running Running about a minute ago
adnid3t69sue mysql.2 postgres:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago
we92apfuivil mysql.3 postgres:latest ip-172-31-42-198.ec2.internal
Running Running 46 seconds ago
ed7vh4ozefm5 mysql.4 postgres:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago
i2x2377ad7u0 mysql.5 postgres:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago

By removing the env variable MYSQL_ROOT_PASSWORD the mysql service gets updated to use Docker image
postgres. The service name itself cannot be updated. The service may be updated back to the mysql image
and the mandatory environment variable MYSQL_ROOT_PASSWORD added with another rolling update.

~ $ docker service update --image mysql --env-add MYSQL_ROOT_PASSWORD='mysql' mysql
mysql

Chapter 9 ■ rolling Updates

170

Again, listing the replicas with a desired state as running lists the postgres image-based replicas being
replaced by mysql image-based replicas. One replica at a time, the postgres image-based replicas are
replaced by mysql image-based replicas.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
menpo2zgit5u mysql.1 postgres:latest ip-172-31-2-177.ec2.internal
Running Running 2 minutes ago
adnid3t69sue mysql.2 postgres:latest ip-172-31-25-121.ec2.internal
Running Running 2 minutes ago
we92apfuivil mysql.3 postgres:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago
pjvj50j822xr mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 12 seconds ago
i2x2377ad7u0 mysql.5 postgres:latest ip-172-31-25-121.ec2.internal
Running Running 2 minutes ago

Within a minute or two, all the postgres image replicas are replaced by mysql image-based replicas.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
sobd90v7gbmz mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago
st5t7y8rdgg1 mysql.2 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 57 seconds ago
upekevrlbmgo mysql.3 mysql:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago
pjvj50j822xr mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 2 minutes ago
nmrmdug87cy0 mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 2 minutes ago

The service specification is updated to the mysql image and the mandatory environment variable
MYSQL_ROOT_PASSWORD is added. When the update has completed, the UpdateStatus State becomes completed.

~ $ docker service inspect mysql
[
 "Spec": {
 "Name": "mysql",
 ...
 "Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133

b22b07ee32789b626f8de3",
 "Env": [
 "MYSQL_ROOT_PASSWORD=mysql"
],

... },
 "PreviousSpec": {
 "Name": "mysql",
 "ContainerSpec": {

Chapter 9 ■ rolling Updates

171

 "Image": "postgres:latest@sha256:e92fe21f695d27be7050284229a1c8c63ac10d8
8cba58d779c243566e125aa34",

... },
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:45:54.104241339Z",
 "CompletedAt": "2017-07-25T20:47:47.996420791Z",
 "Message": "update completed"
 }
 }
]

Rolling Restart
Docker 1.13 added a new option to perform a rolling restart even when no update is required based on the
update options. As an example starting with the mysql service with update config as --update-parallelism
1 and --update-delay 20s, the following update command won’t perform any rolling update, as no changes
are being made to the service.

~ $ docker service update --update-parallelism 1 --update-delay 20s mysql
mysql

To force a rolling restart, include the --force option.

~ $ docker service update --force --update-parallelism 1 --update-delay 20s mysql
mysql

Service tasks begin to get shut down and new service tasks are started even though no update is made
to the service specification. Some tasks are listed as having started a few seconds ago.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
sobd90v7gbmz mysql.1 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 3 minutes ago
trye9chir91l mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running 23 seconds ago
uu7sfp147xnu mysql.3 mysql:latest ip-172-31-42-198.ec2.internal
Running Running less than a second ago
pjvj50j822xr mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 4 minutes ago
nmrmdug87cy0 mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 3 minutes ago

A rolling restart could take 1-2 minutes to complete.

~ $ docker service inspect mysql
[
 ...
 },

Chapter 9 ■ rolling Updates

172

 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:49:34.716535081Z",
 "CompletedAt": "2017-07-25T20:51:36.880045931Z",
 "Message": "update completed"
 }
 }
]

After the rolling restart has completed, the service has all new service tasks as shown.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
z2n2qcgfsbke mysql.1 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 6 seconds ago
trye9chir91l mysql.2 mysql:latest ip-172-31-25-121.ec2.internal
Running Running about a minute ago
uu7sfp147xnu mysql.3 mysql:latest ip-172-31-42-198.ec2.internal
Running Running about a minute ago
1aovurxkteq1 mysql.4 mysql:latest ip-172-31-29-67.ec2.internal
Running Running 29 seconds ago
r0lslq6jibvp mysql.5 mysql:latest ip-172-31-2-177.ec2.internal
Running Running 52 seconds ago

Rolling Update to Add and Remove Mounts
Rolling update can also be used to add and remove mounts. As an example, we add a mount of type volume
with the source volume specified with src and the destination directory specified with dst.

~ $ docker service update \
> --mount-add type=volume,src=mysql-scripts,dst=/etc/mysql/scripts \
> mysql
mysql

A mount is added to the service and is listed in the service definition. Adding a mount involves shutting
down all service tasks and starting new tasks. The rolling update could take 1-2 minutes.

~ $ docker service inspect mysql
[
 "Spec": {
 "ContainerSpec": {
...
 "Mounts": [
 {
 "Type": "volume",
 "Source": "mysql-scripts",
 "Target": "/etc/mysql/scripts"
 }
],
...

Chapter 9 ■ rolling Updates

173

 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:51:55.205456644Z",
 "CompletedAt": "2017-07-25T20:53:56.451313826Z",
 "Message": "update completed"
 }
 }
]

The mount added may be removed with the --mount-rm option of the docker service update
command and by supplying only the mount destination directory as an argument.

~ $ docker service update \
> --mount-rm /etc/mysql/scripts \
> mysql
mysql

Another rolling update is performed and the mount is removed. It does not get listed in the service
definition. The PreviousSpec lists the mount. The UpdateStatus indicates the status of the rolling update.

~ $ docker service inspect mysql
[
 "Spec": {
 "Name": "mysql",
 "ContainerSpec": {
...
 "PreviousSpec": {
 "Name": "mysql",
...
 "Mounts": [
 {
 "Type": "volume",
 "Source": "mysql-scripts",
 "Target": "/etc/mysql/scripts"
 }
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T20:55:56.30844324Z",
 "CompletedAt": "2017-07-25T20:57:58.489349432Z",
 "Message": "update completed"
 }
 }
]

Rolling Update Failure Action
The --update-failure-action option of the docker service create and docker service update
commands specifies the follow-up action to take if the update to a task fails and returns FAILED. We set the
UpdateConfig for the mysql service to include a --update-failure-action of pause (the default). The other
option setting is continue, which does not pause a rolling update but continues with the update of the next
task. To demonstrate a update failure action, specify a Docker image that does not exist, such as mysql:5.9.

Chapter 9 ■ rolling Updates

174

~ $ docker service update \
> --replicas 10 \
> --image mysql:5.9 \
> --update-delay 10s \
> --update-failure-action pause \
> mysql
image mysql:5.9 could not be accessed on a registry to record
its digest. Each node will access mysql:5.9 independently,
possibly leading to different nodes running different
versions of the image.
mysql

The rolling update is still started and the update status indicates that the update is paused. The update
status message indicates “update paused due to failure or early termination of task”.

~ $ docker service inspect mysql
[
 "Spec": {
 "Name": "mysql",
 },
 "UpdateConfig": {
 "Parallelism": 1,
 "Delay": 10000000000,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
 "RollbackConfig": {
 "Parallelism": 1,
 "FailureAction": "pause",
 "Monitor": 5000000000,
 "MaxFailureRatio": 0,
 "Order": "stop-first"
 },
... },
 "UpdateStatus": {
 "State": "paused",
 "StartedAt": "2017-07-25T20:58:51.695333064Z",
 "Message": "update paused due to failure or early termination of task

s1p1n0x3k67uwpoj7qxg13747"
 }
 }
]

Two options are available if a rolling update is paused due to update to a task having failed.

•	 Restart a paused update using docker service update <SERVICE-ID>.

•	 If an update failure is repeated, find the cause of the failure and reconfigure the
service by supplying other options to the docker service update <SERVICE-ID>
command.

Chapter 9 ■ rolling Updates

175

Roll Back to Previous Specification
Docker 1.13 Swarm mode added the feature to roll back to the previous service definition. As an example,
perform a rolling update to update the image of the mysql service to postgres. The mysql-based replicas
begin to be shut down and postgres-based replicas are started. At any time during the rolling update from
the mysql image to the postgres image or after the update to the postgres image has completed, if it is
ascertained that the rolling update should not have been started or performed, the rolling update may be
rolled back with the following command. To demonstrate a rollback, we first start a mysql service.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 5 \
> --name mysql \
> --update-delay 10s \
> --update-parallelism 1 \
> mysql:5.6
xkmrhnk0a444zambp9yh1mk9h

We start a rolling update to the postgres image from the mysql image.

~ $ docker service update --image postgres mysql
mysql

Subsequently, some of the tasks are based on the postgres image and some on the mysql image.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mnm5pg9ha61u mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 58 seconds ago
9y0fzn4sgiv0 mysql.2 postgres:latest ip-172-31-2-177.ec2.internal
Ready Ready 2 seconds ago
ewl7zxwi07gc _ mysql.2 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Running 2 seconds ago
l3ock28cmtzx mysql.3 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running 22 seconds ago
1vqs3lcqvbt5 mysql.4 postgres:latest ip-172-31-29-67.ec2.internal
Running Running 12 seconds ago
wu11jjbszesy _ mysql.4 mysql:5.6 ip-172-31-29-67.ec2.internal
Shutdown Shutdown 13 seconds ago
g3tr6z9l5vzx mysql.5 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running 22 seconds ago

Start a rollback to revert to the mysql image.

~ $ docker service update --rollback mysql
mysql

Chapter 9 ■ rolling Updates

176

The postgres image-based tasks start to get shut down and the mysql image-based tasks are started.

~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
mnm5pg9ha61u mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running about a minute ago
gyqgtoc4ix3y mysql.2 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 14 seconds ago
9y0fzn4sgiv0 _ mysql.2 postgres:latest ip-172-31-2-177.ec2.internal
Shutdown Shutdown 15 seconds ago
ewl7zxwi07gc _ mysql.2 mysql:5.6 ip-172-31-2-177.ec2.internal
Shutdown Shutdown 23 seconds ago
l3ock28cmtzx mysql.3 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running 46 seconds ago
ecvh8fd5308k mysql.4 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 16 seconds ago
1vqs3lcqvbt5 _ mysql.4 postgres:latest ip-172-31-29-67.ec2.internal
Shutdown Shutdown 16 seconds ago
wu11jjbszesy _ mysql.4 mysql:5.6 ip-172-31-29-67.ec2.internal
Shutdown Shutdown 37 seconds ago
m27d3gz4g6dy mysql.5 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 1 second ago
g3tr6z9l5vzx _ mysql.5 mysql:5.6 ip-172-31-42-198.ec2.internal
Shutdown Failed 6 seconds ago "task: non-zero exit (1)"

The rolling update from mysql to postgres is rolled back. When the rollback has completed, all replicas
are mysql image-based, which is the desired state of the service to start with.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
xamxi29okj74 mysql.1 mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running 30 seconds ago
gyqgtoc4ix3y mysql.2 mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 56 seconds ago
l3ock28cmtzx mysql.3 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running about a minute ago
ecvh8fd5308k mysql.4 mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running 58 seconds ago

Rolling Update on a Global Service
A rolling update may also be performed on a global service. To demonstrate, we create a global service for
the mysql:latest image.

~ $ docker service rm mysql
mysql
~ $ docker service create \
> --mode global \
> --env MYSQL_ROOT_PASSWORD='mysql'\

Chapter 9 ■ rolling Updates

177

> --name mysql \
> mysql
7nokncnti3izud08gfdovwxwa

Start a rolling update to Docker image mysql:5.6. ~ $ docker service update \
> --image mysql:5.6 \
> --update-delay 10s \
> mysql
mysql

The service is updated. The Spec>ContainerSpec>Image is updated to mysql:5.6 from the PreviousSpec>
ContainerSpec>Image of mysql:latest.

~ $ docker service inspect mysql
[
 "Spec": {
 "Name": "mysql",
 "ContainerSpec": {
 "Image": "mysql:5.6@sha256:6ad5bd392c9190fa92e65fd21f6debc8b2a76fc54f139

49f9b5bc6a0096a5285",
 },
 "PreviousSpec": {
 "Name": "mysql",
 "ContainerSpec": {
 "Image": "mysql:latest@sha256:75c563c474f1adc149978011fedfe2e6670483d133

b22b07ee32789b626f8de3",
 "UpdateStatus": {
 "State": "completed",
 "StartedAt": "2017-07-25T21:06:46.973666693Z",
 "CompletedAt": "2017-07-25T21:07:46.656023733Z",
 "Message": "update completed"
 }
 }
]

Within a minute, all the new service tasks based on mysql:5.6 are started.

~ $ docker service ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
ybf4xpofte8l mysql.81h6uvu8uq0emnovzkg6v7mzg mysql:5.6 ip-172-31-2-177.ec2.internal
Running Running 46 seconds ago
7nq99jeil9n0 mysql.t4d0aq9w2a6avjx94zgkwc557 mysql:5.6 ip-172-31-42-198.ec2.internal
Running Running about a minute ago
wcng24mq7e8m mysql.e7vigin0luuo1kynjnl33v9pa mysql:5.6 ip-172-31-29-67.ec2.internal
Running Running about a minute ago
q14t2pyhra3w mysql.ptm7e0p346zwypos7wnpcm72d mysql:5.6 ip-172-31-25-121.ec2.internal
Running Running about a minute ago

Chapter 9 ■ rolling Updates

178

A rolling update cannot be performed on a global service to set replicas with the --replicas option, as
indicated by the message in the following docker service update command.

~ $ docker service update \
> --image mysql \
> --replicas 1 \
> mysql
replicas can only be used with replicated mode

As the output indicates, while replicas are set on a replicated service mysql, replicas are not set on the
global service.

Summary
This chapter discussed rolling updates on a service. A rolling update on a service involves shutting down
previous service tasks and updating the service definition to start new tasks. In the next chapter, we discuss
configuring networking in Swarm mode.

179© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_10

CHAPTER 10

Networking

Networking on a Docker Engine is provided by a bridge network, the docker0 bridge. The docker0 bridge is local in
scope to a Docker host and is installed by default when Docker is installed. All Docker containers run on a Docker
host and are connected to the docker0 bridge network. They communicate with each other over the network.

The Problem
The default docker0 bridge network has the following limitations:

•	 The bridge network is limited in scope to the local Docker host to provide container-
to-container networking and not for multi-host networking.

•	 The bridge network isolates the Docker containers on the host from external access.
A Docker container may expose a port or multiple ports and the ports may be published
on the host for an external client host access, as illustrated in Figure 10-1, but by default
the docker0 bridge does not provide any external client access outside the network.

Exposed
port

published
on the
host

interface

External Host

Exposed
port

Docker
Host

Docker
Containers

Docker
Container

docker0
bridge

Figure 10-1. The default docker0 bridge network

https://doi.org/10.1007/978-1-4842-2973-6_10

Chapter 10 ■ NetworkiNg

180

The Solution
The Swarm mode (Docker Engine >=1.12) creates an overlay network called ingress for the nodes in the
Swarm. The ingress overlay network is a multi-host network to route ingress traffic to the Swarm; external
clients use it to access Swarm services. Services are added to the ingress network if they publish a port.
The ingress overlay network has a default gateway and a subnet and all services in the ingress network
are exposed on all nodes in the Swarm, whether a service has a task scheduled on each node or not. In
addition to the ingress network, custom overlay networks may be created using the overlay driver. Custom
overlay networks provide network connectivity between the Docker daemons in the Swarm and are used for
service-to-service communication. Ingress is a special type of overlay network and is not for network traffic
between services or tasks. Swarm mode networking is illustrated in Figure 10-2.

The following Docker networks are used or could be used in Swarm mode.

The Ingress Network
The ingress network is created automatically when Swarm mode is initialized. On Docker for AWS, the
ingress network is available out-of-the-box because the managed service has the Swarm mode enabled by
default. The default overlay network called ingress extends to all nodes in the Swarm, whether the node has
a service task scheduled or not. The ingress provides load balancing among a service’s tasks. All services
that publish a port are added to the ingress network. Even a service created in an internal network is added
to ingress if the service publishes a port. If a service does not publish a port, it is not added to the ingress
network. A service publishes a port with the --publish or –p option using the following docker service
create command syntax.

Swarm
Node

Docker
Host

IP: 10.0.0.2
IP: 10.0.0.3

IP: 10.0.0.4

Docker
Container

started
with

docker
run

Docker
Container

for a
Service

task

Docker
Containers
for Service

Tasks

Swarm Node Docker
Host (no service task)

Docker Host (not in any
Swarm)

Docker Host (in
another Swarm)

Custom Swarm Overlay
NetworkService

container

Docker
Container

Swarm Overlay Network
“ingress”

Subnet: 10.0.0.0/24
Gateway: 10.0.0.1

Swarm Overlay Network
“ingress”

Swarm
Node

Docker
Host

Swarm
Node

Docker
Host

Figure 10-2. The Swarm overlay networks

Chapter 10 ■ NetworkiNg

181

docker service create \
 --name <SERVICE-NAME> \
 --publish <PUBLISHED-PORT>:<TARGET-PORT> \
 <IMAGE>

If the <PUBLISHED-PORT> is omitted, the Swarm manager selects a port in the range 30000-32767 to
publish the service.

The following ports must be open between the Swarm nodes to use the ingress network.

•	 Port 7946 TCP/UDP is used for the container network discovery

•	 Port 4789 UDP is used for the container ingress network

Custom Overlay Networks
Custom overlay networks are created using the overlay driver and services may be created in the overlay
networks. A service is created in an overlay network using the --network option of the docker service
create command. Overlay networks provide service-to-service communication. One Docker container
in the overlay network can communicate directly with another Docker container in the network, whether
the container is on the same node or a different node. Only Docker containers for Swarm service tasks can
connect with each using the overlay network and not just any Docker containers running on the hosts in a
Swarm. Docker containers started with the docker run command, for instance, cannot connect to
a Swarm overlay network, using docker network connect <overlay network> <container> for instance.
Nor are Docker containers on Docker hosts that are not in a Swarm able to connect and communicate with
Docker containers in the Swarm directly. Docker containers in different Swarm overlay networks cannot
communicate with each other directly, as each Swarm overlay network is isolated from other networks.

While the default overlay network in a Swarm, ingress, extends to all nodes in the Swarm whether a
service task is running on it or not, a custom overlay network whose scope is also the Swarm does not extend
to all nodes in the Swarm by default. A custom Swarm overlay network extends to only those nodes in the
Swarm on which a service task created with the custom Swarm overlay network is running.

An “overlay” network overlays the underlay network of the hosts and the scope of the overlay network is
the Swarm. Service containers in an overlay network have different IP addresses and each overlay network
has a different range of IP addresses assigned. On modern kernels, the overlay networks are allowed to
overlap with the underlay network, and as a result, multiple networks can have the same IP addresses.

The docker_gwbridge Network
Another network that is created automatically (in addition to the ingress network) when the Swarm mode is
initialized is the docker_gwbridge network. The docker_gwbridge network is a bridge network that connects
all the overlay networks, including the ingress network, to a Docker daemon’s host network. Each service
container is connected to the local Docker daemon host’s docker_gwbridge network.

The Bridge Network
A bridge network is a network on a host that is managed by Docker. Docker containers on the host
communicate with each other over the bridge network. A Swarm mode service that does not publish a port
is also created in the bridge network. So are the Docker containers started with the docker run command.
This implies that a Swarm mode Docker service that does not publish a port is in the same network as
Docker containers started with the docker run command.

Chapter 10 ■ NetworkiNg

182

This chapter covers the following topics:

•	 Setting the environment

•	 Networking in Swarm mode

•	 Using the default overlay network ingress to create a service

•	 Creating a custom overlay network

•	 Using a custom overlay network to create a service

•	 Connecting to another Docker container in the same overlay network

•	 Creating an internal network

•	 Deleting a network

Setting the Environment
Create a three-node Docker Swarm on Docker for AWS, as discussed in Chapter 3. An AWS CloudFormation
stack, shown in Figure 10-3, is used to create a Swarm.

Figure 10-3. AWS CloudFormation stack

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 10 ■ NetworkiNg

183

Obtain the public IP address of the Swarm manager node, as shown in Figure 10-4.

SSH login into the Swarm manager instance.

[root@localhost ~]# ssh -i "docker.pem" docker@174.129.48.148
Welcome to Docker!

List the Swarm nodes—one manager and two worker nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
npz2akark8etv4ib9biob5yyk ip-172-31-47-123.ec2.internal Ready Active
p6wat4lxq6a1o3h4fp2ikgw6r ip-172-31-3-168.ec2.internal Ready Active
tb5agvzbi0rupq7b83tk00cx3 * ip-172-31-47-15.ec2.internal Ready Active Leader

Networking in Swarm Mode
The Swarm mode provides some default networks, which may be listed with the docker network ls
command. These networks are available not just on Docker for AWS but on any platform (such as CoreOS)
in Swarm mode.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e41an60iwval ingress overlay swarm
eb7399d3ffdd none null local

Figure 10-4. Obtaining the public IP address of a Swarm manager node instance

Chapter 10 ■ NetworkiNg

184

We discussed most of these networks in a preceding section. The "host" network is the networking
stack of the host. The "none" network provides no networking between a Docker container and the host
networking stack and creates a container without network access.

The default networks are available on a Swarm manager node and Swarm worker nodes even before
any service task is scheduled.

The listed networks may be filtered using the driver filter set to overlay.

docker network ls --filter driver=overlay

Only the ingress network is listed. No other overlay network is provisioned by default.

~ $ docker network ls --filter driver=overlay
NETWORK ID NAME DRIVER SCOPE
e41an60iwval ingress overlay swarm

The network of interest is the overlay network called ingress, but all the default networks are discussed
in Table 10-1 in addition to being discussed in the chapter introduction.

Table 10-1. Docker Networks

Network Description

bridge The bridge network is the docker0 network created on all Docker hosts. The
Docker daemon connects containers to the docker0 network by default. Any Docker
container started with the docker run command, even on a Swarm node, connects to
the docker0 bridge network.

docker_gwbridge Used for communication among Swarm nodes on different hosts. The network is
used to provide external connectivity to a container that lacks an alternative network
for connectivity to external networks and other Swarm nodes. When a container is
connected to multiple networks, its external connectivity is provided via the first non-
internal network, in lexical order.

host Adds a container to the host’s network stack. The network configuration inside the
container is the same as the host’s.

ingress The overlay network used by the Swarm for ingress, which is external access. The
ingress network is only for the routing mesh/ingress traffic.

none Adds a container to a container specific network stack and the container lacks a
network interface.

The default networks cannot be removed and, other than the ingress network, a user does not need to
connect directly or use the other networks. To find detailed information about the ingress network, run the
following command.

docker network inspect ingress

Chapter 10 ■ NetworkiNg

185

The ingress network's scope is the Swarm and the driver used is overlay. The subnet and gateway are
10.255.0.0/16 and 10.255.0.1, respectively. The ingress network is not an internal network as indicated
by the internal setting of false, which implies that the network is connected to external networks. The
ingress network has an IPv4 address and the network is not IPv6 enabled.

~ $ docker network inspect ingress
[
 {
 "Name": "ingress",
 "Id": "e41an60iwvalbeq5y3stdfem9",
 "Created": "2017-07-26T18:38:29.753424199Z",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.255.0.0/16",
 "Gateway": "10.255.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": true,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {
 "ingress-sbox": {
 "Name": "ingress-endpoint",
 "EndpointID": "f646b5cc4316994b8f9e5041ae7c82550bc7ce733db70df3f

66b8d771d0f53c4",
 "MacAddress": "02:42:0a:ff:00:02",
 "IPv4Address": "10.255.0.2/16",
 "IPv6Address": ""
 }
 },
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4096"
 },
 "Labels": {},
 "Peers": [
 {
 "Name": "ip-172-31-47-15.ec2.internal-17c7f752fb1a",
 "IP": "172.31.47.15"
 },
 {

Chapter 10 ■ NetworkiNg

186

 "Name": "ip-172-31-47-123.ec2.internal-d6ebe8111adf",
 "IP": "172.31.47.123"
 },
 {
 "Name": "ip-172-31-3-168.ec2.internal-99510f4855ce",
 "IP": "172.31.3.168"
 }
]
 }
]

Using the Default Bridge Network to Create a Service
To create a service in Swarm mode using the default bridge network, no special option needs to be specified.
The --publish or –p option must not be specified. Create a service for the mysql database.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --name mysql \
> mysql
likujs72e46ti5go1xjtksnky

The service is created and the service task is scheduled on one of the nodes.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
likujs72e46t mysql replicated 1/1 mysql:latest

The service may be scaled to run tasks across the Swarm.

~ $ docker service scale mysql=3
mysql scaled to 3
~ $ docker service ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
v4bn24seygc6 mysql.1 mysql:latest ip-172-31-47-15.ec2.internal
Running Running 2 minutes ago
29702ebj52gs mysql.2 mysql:latest ip-172-31-47-123.ec2.internal
Running Running 3 seconds ago
c7b8v16msudl mysql.3 mysql:latest ip-172-31-3-168.ec2.internal
Running Running 3 seconds ago

The mysql service created is not added to the ingress network, as it does not publish a port.

Chapter 10 ■ NetworkiNg

187

Creating a Service in the Ingress Network
In this section, we create a Docker service in the ingress network. The ingress network is not to be
specified using the --network option of docker service create. A service must publish a port to be created
in the ingress network. Create a Hello World service published (exposed) on port 8080.

~ $ docker service rm hello-world
hello-world
~ $ docker service create \
> --name hello-world \
> -p 8080:80\
> --replicas 3 \
> tutum/hello-world
l76ukzrctq22mn97dmg0oatup

The service creates three tasks, one on each node in the Swarm.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
l76ukzrctq22 hello-world replicated 3/3 tutum/hello-world:latest *:8080->80/tcp
~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
5ownzdjdt1yu hello-world.1 tutum/hello-world: latest ip-172-31-14-234.ec2.internal
Running Running 33 seconds ago
csgofrbrznhq hello-world.2 tutum/hello-world:latest ip-172-31-47-203.ec2.internal
Running Running 33 seconds ago
sctlt9rvn571 hello-world.3 tutum/hello-world:latest ip-172-31-35-44.ec2.internal
Running Running 32 seconds ago

Chapter 10 ■ NetworkiNg

188

Figure 10-5. Invoking a Docker service in the ingress network using EC2 elastic load balancer public DNS

The service may be accessed on any node instance in the Swarm on port 8080 using the <Public DNS>:
<8080> URL. If an elastic load balancer is created, as for Docker for AWS, the service may be accessed at
<LoadBalancer DNS>:<8080>, as shown in Figure 10-5.

The <PublishedPort> 8080 may be omitted in the docker service create command.

~ $ docker service create \
> --name hello-world \
> -p 80\
> --replicas 3 \
> tutum/hello-world
pbjcjhx163wm37d5cc5au2fog

Three service tasks are started across the Swarm.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
pbjcjhx163wm hello-world replicated 3/3 tutum/hello-world:latest *:0->80/tcp

Chapter 10 ■ NetworkiNg

189

~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
xotbpvl0508n hello-world.1 tutum/hello-world:latest ip-172-31-37-130.ec2.internal
Running Running 13 seconds ago
nvdn3j5pzuqi hello-world.2 tutum/hello-world:latest ip-172-31-44-205.ec2.internal
Running Running 13 seconds ago
uuveltc5izpl hello-world.3 tutum/hello-world:latest ip-172-31-15-233.ec2.internal
Running Running 14 seconds ago

The Swarm manager automatically assigns a published port (30000), as listed in the docker service
inspect command.

~ $ docker service inspect hello-world
[
 "Spec": {
 "Name": "hello-world",
...
 "EndpointSpec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishMode": "ingress"
 }
]
 }
 },
 "Endpoint": {
 "Spec": {
 "Mode": "vip",
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishMode": "ingress"
 }
]
 },
 "Ports": [
 {
 "Protocol": "tcp",
 "TargetPort": 80,
 "PublishedPort": 30000,
 "PublishMode": "ingress"
 }
],

Chapter 10 ■ NetworkiNg

190

 "VirtualIPs": [
 {
 "NetworkID": "bllwwocjw5xejffmy6n8nhgm8",
 "Addr": "10.255.0.5/16"
 }
]
 }
 }
]

Even though the service publishes a port (30000 or other available port in the range 30000-32767),
the AWS elastic load balancer for the Docker for AWS Swarm does not add a listener for the published
port (30000 or other available port in the range 30000-32767). We add a listener with <Load Balancer
Port:Instance Port> mapping of 30000:30000, as shown in Figure 10-6.

Figure 10-6. Adding a load balancer listener

Chapter 10 ■ NetworkiNg

191

Invoke the service at the <Load Balancer DNS>:<30000> URL, as shown in Figure 10-7.

Creating a Custom Overlay Network
We used the default overlay network ingress provisioned in Swarm mode. The ingress network is only for
the Swarm mode routing mesh in which all nodes are included. The Swarm routing mesh is provided so
that each node in the Swarm may accept connections on published ports for services in the Swarm even if a
service does not run a task on a node. The ingress network is not for service-to-service communication.

A custom overlay network may be used in Swarm mode for service-to-service communication. Next,
create an overlay network using some advanced options, including setting subnets with the --subnet option
and the default gateway with the --gateway option, as well as the IP range with the --ip-range option.
The --driver option must be set to overlay and the network must be created in Swarm mode. A matching
subnet for the specified IP range must be available. A subnet is a logical subdivision of an IP network. The
gateway is a router that links a host’s subnet to other networks. The following command must be run from a
manager node.

~ $ docker network create \
> --subnet=192.168.0.0/16 \
> --subnet=192.170.0.0/16 \
> --gateway=192.168.0.100 \
> --gateway=192.170.0.100 \
> --ip-range=192.168.1.0/24 \

Figure 10-7. Invoking a Hello World service on port 30000

Chapter 10 ■ NetworkiNg

192

> --driver overlay \
> mysql-network
mkileuo6ve329jx5xbd1m6r1o

The custom overlay network is created and listed in networks as an overlay network with Swarm scope.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e41an60iwval ingress overlay swarm
mkileuo6ve32 mysql-network overlay swarm
eb7399d3ffdd none null local

Listing only the overlay networks should list the ingress network and the custom mysql-network.

~ $ docker network ls --filter driver=overlay
NETWORK ID NAME DRIVER SCOPE
e41an60iwval ingress overlay swarm
mkileuo6ve32 mysql-network overlay swarm

The detailed information about the custom overlay network mysql-network lists the subnets and
gateways.

~ $ docker network inspect mysql-network
[
 {
 "Name": "mysql-network",
 "Id": "mkileuo6ve329jx5xbd1m6r1o",
 "Created": "0001-01-01T00:00:00Z",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "192.168.0.0/16",
 "IPRange": "192.168.1.0/24",
 "Gateway": "192.168.0.100"
 },
 {
 "Subnet": "192.170.0.0/16",
 "Gateway": "192.170.0.100"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,

Chapter 10 ■ NetworkiNg

193

 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": null,
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "4097,4098"
 },
 "Labels": null
 }
]

Only a single overlay network can be created for specific subnets, gateways, and IP ranges. Using a
different subnet, gateway, or IP range, a different overlay network may be created.

~ $ docker network create \
> --subnet=10.0.0.0/16 \
> --gateway=10.0.0.100 \
> --ip-range=10.0.1.0/24 \
> --driver overlay \
> mysql-network-2
qwgb1lwycgvogoq9t62ea4ny1

The mysql-network-2 is created and added to the list of networks.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e41an60iwval ingress overlay swarm
mkileuo6ve32 mysql-network overlay swarm
qwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local

New overlay networks are only made available to worker nodes that have containers using the overlay.
While the new overlay networks mysql-network and mysql-network-2 are available on the manager node,
the network is not extended to the two worker nodes. SSH login to a worker node.

[root@localhost ~]# ssh -i "docker.pem" docker@54.209.159.170
Welcome to Docker!

The mysql-network and mysql-network-2 networks are not listed on the worker node.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
255542d86c1b bridge bridge local
3a4436c0fb00 docker_gwbridge bridge local
bdd0be4885e9 host host local
e41an60iwval ingress overlay swarm
5c5f44ec3933 none null local

Chapter 10 ■ NetworkiNg

194

To extend the custom overlay network to worker nodes, create a service in the network that runs a task
on the worker nodes, as we discuss in the next section.

The Swarm mode overlay networking is secure by default. The gossip protocol is used to exchange
overlay network information between Swarm nodes. The nodes encrypt and authenticate the information
exchanged using the AES algorithm in GCM mode. Manager nodes rotate the encryption key for gossip data
every 12 hours by default. Data exchanged between containers on different nodes on the overlay network
may also be encrypted using the --opt encrypted option, which creates IPSEC tunnels between all the
nodes on which tasks are scheduled. The IPSEC tunnels also use the AES algorithm in GCM mode and rotate
the encryption key for gossip data every 12 hours. The following command creates an encrypted network.

~ $ docker network create \
> --driver overlay \
> --opt encrypted \
> overlay-network-2
aqppoe3qpy6mzln46g5tunecr

A Swarm scoped network that is encrypted is created.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
6763ebad69cf host host local
e41an60iwval ingress overlay swarm
mkileuo6ve32 mysql-network overlay swarm
qwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local
aqppoe3qpy6m overlay-network-2 overlay swarm

Using a Custom Overlay Network to Create a Service
If a custom overlay network is used to create a service, the --network must be specified. The following
command creates a MySQL database service in Swarm mode using the custom Swarm scoped overlay
network mysql-network.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 1 \
> --network mysql-network \
> --name mysql-2\
> mysql
ocd9sz8qqp2becf0ww2rj5p5n

The mysql-2 service is created. Scale the mysql-2 service to three replicas and lists the service tasks for
the service.

~ $ docker service scale mysql-2=3
mysql-2 scaled to 3

Chapter 10 ■ NetworkiNg

195

Docker containers in two different networks for the two services—mysql (bridge network) and mysql-2
(mysql-network overlay network)—are running simultaneously on the same node.

A custom overlay network is not extended to all nodes in the Swarm until the nodes have service tasks
that use the custom network. The mysql-network does not get extended to and get listed on a worker node
until after a service task for mysql-2 has been scheduled on the node.

A Docker container managed by the default Docker Engine bridge network docker0 cannot connect
with a Docker container in a Swarm scoped overlay network. Using a Swarm overlay network in a docker
run command, connecting with a Swarm overlay network with a docker network connect command, or
linking a Docker container with a Swarm overlay network using the --link option of the docker network
connect command is not supported. The overlay networks in Swarm scope can only be used by a Docker
service in the Swarm.

For connecting between service containers:

•	 Docker containers for the same or different services in the same Swarm scoped
overlay network are able to connect with each other.

•	 Docker containers for the same or different services in different Swarm scoped
overlay networks are not able to connect with each other.

In the next section, we discuss an internal network, but before we do so, the external network should be
introduced. The Docker containers we have created as of yet are external network containers. The ingress
network and the custom overlay network mysql-network are external networks. External networks provide
a default route to the gateway. The host and the wider Internet network may connect to a Docker container
in the ingress or custom overlay networks. As an example, run the following command to ping google.com
from a Docker container’s bash shell; the Docker container should be in the ingress overlay network or a
custom Swarm overlay network.

docker exec –it <containerid> ping –c 1 google.com

A connection is established and data is exchanged. The command output is shown in italics.

~ $ docker exec -it 3762d7c4ea68 ping -c 1 google.com
PING google.com (172.217.7.142): 56 data bytes
64 bytes from 172.217.7.142: icmp_seq=0 ttl=47 time=0.703 ms
--- google.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.703/0.703/0.703/0.000 ms

Creating an Internal Overlay Network
In this section, we discuss creating and using an internal overlay network. An internal network does not
provide external connectivity. What makes a network internal is that a default route to a gateway is not
provided for external connectivity from the host or the wider Internet.

First, create an internal overlay network using the --internal option of the docker network create
command. Add some other options, such as --label, which have no bearing on the internal network. It’s
configured with the --internal option of the docker network create command.

~ $ docker network create \
> --subnet=10.0.0.0/16 \
> --gateway=10.0.0.100 \
> --internal \
> --label HelloWorldService \
> --ip-range=10.0.1.0/24 \

Chapter 10 ■ NetworkiNg

196

> --driver overlay \
> hello-world-network
pfwsrjeakomplo5zm6t4p19a9

The internal network is created and listed just the same as an external network would be.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
194d51d460e6 bridge bridge local
a0674c5f1a4d docker_gwbridge bridge local
pfwsrjeakomp hello-world-network overlay swarm
03a68475552f host host local
tozyadp06rxr ingress overlay swarm
3dbd3c3ef439 none null local

In the network description, the internal is set to true.

core@ip-172-30-2-7 ~ $ docker network inspect hello-world-network
[
 {
 "Name": "hello-world-network",
 "Id": "58fzvj4arudk2053q6k2t8rrk",
 "Scope": "swarm",
 "Driver": "overlay",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "10.0.0.0/16",
 "IPRange": "10.0.1.0/24",
 "Gateway": "10.0.0.100"
 }
]
 },
 "Internal": true,
 "Containers": null,
 "Options": {
 "com.docker.network.driver.overlay.vxlanid_list": "257"
 },
 "Labels": {
 "HelloWorldService": ""
 }
 }
]

Create a service that uses the internal network with the --network option.

Chapter 10 ■ NetworkiNg

197

~ $ docker service create \
> --name hello-world \
> --network hello-world-network \
> --replicas 3 \
> tutum/hello-world
hm5pf6ftcvphdrd2zm3pp4lpj

The service is created and the replicas are scheduled.
Obtain the container ID for one of the service tasks, d365d4a5ff4c.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
d365d4a5ff4c tutum/hello-world:latest "/bin/sh -c 'php-f..." About a minute ago
Up About a minute hello-world.3.r759ddnl1de11spo0zdi7xj4z

As before, ping google.com from the Docker container.

docker exec –it <containerid> ping –c 1 google.com

A connection is not established, which is because the container is in an internal overlay network.

~ $ docker exec -it d365d4a5ff4c ping -c 1 google.com
ping: bad address 'google.com'

Connection is established between containers in the same internal network, as the limitation is only on
external connectivity. To demonstrate, obtain the container ID for another container in the same internal
network.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b7b505f5eb8d tutum/hello-world:latest "/bin/sh -c 'php-f..." 3 seconds ago
Up 2 seconds hello-world.6.i60ezt6da2t1odwdjvecb75fx
57e612f35a38 tutum/hello-world:latest "/bin/sh -c 'php-f..." 3 seconds ago
Up 2 seconds hello-world.7.6ltqnybn8twhtblpqjtvulkup
d365d4a5ff4c tutum/hello-world:latest "/bin/sh -c 'php-f..." 7 minutes ago
Up 7 minutes hello-world.3.r759ddnl1de11spo0zdi7xj4z

Connect between two containers in the same internal network. A connection is established.

~ $ docker exec -it d365d4a5ff4c ping -c 1 57e612f35a38
PING 57e612f35a38 (10.0.1.7): 56 data bytes
64 bytes from 10.0.1.7: seq=0 ttl=64 time=0.288 ms

--- 57e612f35a38 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.288/0.288/0.288 ms

Chapter 10 ■ NetworkiNg

198

If a service created in an internal network publishes (exposes) a port, the service gets added to the
ingress network and, even though the service is in an internal network, external connectivity is provisioned.
As an example, we add the --publish option of the docker service create command to publish the
service on port 8080.

~ $ docker service create \
> --name hello-world \
> --network hello-world-network \
> --publish 8080:80 \
> --replicas 3 \
> tutum/hello-world
mqgek4umisgycagy4qa206f9c

Find a Docker container ID for a service task.

~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
1c52804dc256 tutum/hello-world:latest "/bin/sh -c 'php-f..." 28 seconds ago
Up 27 seconds 80/tcp hello-world.1.20152n01ng3t6uaiahpex9n4f

Connect from the container in the internal network to the wider external network at google.com, as an
example. A connection is established. Command output is shown in italics.

~ $ docker exec -it 1c52804dc256 ping -c 1 google.com
PING google.com (172.217.7.238): 56 data bytes
64 bytes from 172.217.7.238: seq=0 ttl=47 time=1.076 ms

--- google.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1.076/1.076/1.076 ms

Deleting a Network
A network that is not in use may be removed with the docker network rm <networkid> command. Multiple
networks may be removed in the same command. As an example, we can list and remove multiple networks.

~ $ docker network ls
NETWORK ID NAME DRIVER SCOPE
34a5f77de8cf bridge bridge local
0e06b811a613 docker_gwbridge bridge local
wozpfgo8vbmh hello-world-network swarm
6763ebad69cf host host local
e41an60iwval ingress overlay swarm
mkileuo6ve32 mysql-network overlay swarm
qwgb1lwycgvo mysql-network-2 overlay swarm
eb7399d3ffdd none null local
aqppoe3qpy6m overlay-network-2 overlay swarm

Chapter 10 ■ NetworkiNg

199

Networks that are being used by a service are not removed. The command output is shown in italics.

~ $ docker network rm hello-world-network mkileuo6ve32 qwgb1lwycgvo overlay-network-2
hello-world-network
Error response from daemon: rpc error: code = 9 desc = network mkileuo6ve329jx5xbd1m6r1o is
in use by service ocd9sz8qqp2becf0ww2rj5p5nqwgb1lwycgvo
overlay-network-2

Summary
This chapter discussed the networking used by the Docker Swarm mode. The default networking used in
Swarm mode is the overlay network ingress, which is a multi-host network spanning all Docker nodes
in the same Swarm to provide a routing mesh for each node to be able to accept ingress connections
for services on published ports. Custom overlay network may be used to create a Docker service with the
difference that a custom overlay network provides service-to-service communication instead of ingress
communication and extends to a Swarm worker node only if a service task using the network is scheduled
on the node. The chapter also discussed the difference between an internal and an external network. In the
next chapter, we discuss logging and monitoring in Docker Swarm mode.

201© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_11

CHAPTER 11

Logging and Monitoring

Docker includes several built-in logging drivers for containers, such as json-file, syslog, journald, gelf,
fluentd, and awslogs. Docker also provides the docker logs command to get the logs for a container. Docker
1.13 includes an experimental feature for getting a Docker service log using the docker service logs
command.

The Problem
Docker Swarm mode does not include a native monitoring service for Docker services and containers.
Also the experimental feature to get service logs is a command-line feature and required to be run per service.
A logging service with which all the services’ logs and metrics could be collected and viewed in a dashboard
is lacking.

The Solution
Sematext is an integrated data analytics platform that provides SPM performance monitoring for metrics
and events collection, and Logsene for log collection, including correlation between performance metrics,
logs, and events. Logsene is a hosted ELK (Elasticsearch, Logtash, Kibana) stack. Sematext Docker Agent
is required to be installed on each Swarm node in the Swarm for continuously collecting logs, metrics, and
events, as illustrated in Figure 11-1.

https://doi.org/10.1007/978-1-4842-2973-6_11

Chapter 11 ■ Logging and Monitoring

202

This chapter covers the following topics:

•	 Setting the environment

•	 Creating a SPM application

•	 Creating a Logsene application

•	 Deploying the Sematext Docker agent as a service

•	 Creating a MySQL database deployment on Docker Swarm

•	 Monitoring the Docker Swarm metrics

•	 Getting Docker Swarm logs in Logsene

Setting the Environment
Start a three-node Swarm consisting of one manager and two worker nodes using Docker for AWS. (This is
discussed in Chapter 3.) Obtain the public IP address of the manager node instance from the EC2 console
and SSH login into the instance.

[root@localhost ~]# ssh -i "docker.pem" docker@54.227.123.67
Welcome to Docker!

Swarm
Node

SematextAgent

Swarm
Node

SematextAgent

Swarm
Node

SPM
(Metrics & Events)

Logsene
(Logs)

Docker
Containers

SematextAgent

Figure 11-1. Sematext Docker agent on each Swarm node

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 11 ■ Logging and Monitoring

203

The procedure to use Sematext SPM and Logsene for logging and monitoring with a Docker Swarm is as
follows.

 1. Create an account at https://apps.sematext.com/ui/registration.

 2. Log in to the user account at https://apps.sematext.com/ui/login.

 3. Select the integrations (Logsene app and SPM Docker app) from https://apps.
sematext.com/ui/integrations?newUser, as listed in Steps 4 and 5.

 4. Create a SPM (a performance monitoring app). An app is like a namespace for
data. A SPM token is generated that is to be used to install a Sematext agent on
each Swarm node.

 5. Create a Logsene app. A Logsene token is generated that is also used to install a
Sematext agent on each Swarm node.

 6. Install a Sematext agent on each Swarm node. Docker Swarm metrics, logs, and
events start getting collected in the SPM dashboard and the Logsene dashboard.

Creating a SPM Application
Log in to a Sematext account at https://apps.sematext.com/ui/integrations?newUser to display the
Integrations page. For a SPM Docker app, select Docker from Infrastructure and Application Performance
Monitoring. In the Add SPM Docker App dialog, specify an application name (DockerSwarmSPM), as shown in
Figure 11-2. Click on Create App.

Figure 11-2. Adding a SPM Docker app

https://apps.sematext.com/ui/registration
https://apps.sematext.com/ui/login
https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser

Chapter 11 ■ Logging and Monitoring

204

An SPM App is created, as shown in Figure 11-3. Several client configurations are listed.

Click on the Client Configuration tab for Docker Swarm, as shown in Figure 11-4. The Docker Swarm
tab displays the docker service create command to create a service for a Sematext Docker agent; copy the
command. The command includes a SPM_TOKEN, which is unique for each SPM app.

Figure 11-3. SPM app is created

Figure 11-4. Docker Swarm configuration

Chapter 11 ■ Logging and Monitoring

205

The SPM app is added to the dashboard, as shown in Figure 11-5. Click on the App link to navigate to
App Reports, which shows the monitoring data, metrics, and events collected by the SPM app and the charts
generated from the data.

As the message in Figure 11-6 indicates, the app has not received any data yet. All the metrics graphs are
empty initially, but they will display the graphs when data starts getting received.

Creating a Logsene Application
To create a Logsene app, select Logs App from the integrations page at https://apps.sematext.com/ui/
integrations?newUser, as shown in Figure 11-7.

Figure 11-5. DockerSwarmSPM app on the dashboard

Figure 11-6. The DockerSwarmSPM app has not received any data

https://apps.sematext.com/ui/integrations?newUser
https://apps.sematext.com/ui/integrations?newUser

Chapter 11 ■ Logging and Monitoring

206

Figure 11-7. Selecting the Logs app

In the Add Logsene App dialog, specify an application name (DockerSwarmLogsene) and click on Create
App, as shown in Figure 11-8.

Figure 11-8. Adding the Logsene app

Chapter 11 ■ Logging and Monitoring

207

A new Logsene application called DockerSwarmLogsene is created, as shown in Figure 11-9. Copy the
LOGSENE_TOKEN that’s generated, which we will use to create a Sematext Docker agent service in a Docker
Swarm.

Figure 11-9. The Logsene app is added and LOGSENE_TOKEN is generated

A new Logsene application called DockerSwarmLogsene is added to the dashboard, as shown in
Figure 11-10.

Figure 11-10. The DockerSwarmLogsene app

Chapter 11 ■ Logging and Monitoring

208

Figure 11-11. The app does not receive any data at first

Click on the DockerSwarmLogsene app link to display the log data collected by the app. Initially, the app
does not receive any data, as indicated by a message in Figure 11-11, because we have not yet configured
a Sematext Docker agent service on the Docker Swarm. The Logsene UI is integrated with the Kibana
dashboard.

Connecting the SPM and Logsene Apps
Next, connect the SPM and Logsene apps so that the metrics and events collected by the SPM are integrated
with the Logsene app. Choose Integrations ➤ Connected Apps, as shown in Figure 11-12.

Figure 11-12. Choosing Integrations ➤ Connected Apps

Chapter 11 ■ Logging and Monitoring

209

Select DockerSwarmSPM as the first app and DockerSwarmLogsene as the second app, as shown in
Figure 11-13. Then click on Connect Apps.

The connected apps are listed, as shown in Figure 11-14.

Figure 11-13. DockerSwarmLogsene

Figure 11-14. The connected apps

Deploying the Sematext Docker Agent as a Service
The docker service create command copied earlier includes just the SPM_TOKEN token. Add –e LOGSENE_TOKEN
obtained from the Logsene app. Run the docker service create command on the Swarm manager node.

~ $ docker service create --mode global \
> --restart-condition any \
> --name sematext-agent-docker \
> --mount type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
> --mount type=bind,src=/,dst=/rootfs,readonly=true \
> -e SPM_TOKEN=9b5552fd-001d-44f0-9452-76046d4a3413 \
> -e LOGSENE_TOKEN=81ac5395-fe8f-47d9-93b2-dc00c649116a \
> sematext/sematext-agent-docker
oubjk53mpdnjgak5dgfdxs4ft

Chapter 11 ■ Logging and Monitoring

210

A service for the Sematext Docker agent is created; it’s listed using docker service ls.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
oubjk53mpdnj sematext-agent-docker global 3/3 sematext/sematext-agent-docker:latest

List the service tasks. As this is a global service, one task gets started on each node.

~ $ docker service ps sematext-agent-docker
ID NAME IMAGE
NODE DESIRED STATE CURRENT STATE ERROR PORTS
5jvl7gnvl0te sematext-agent-docker.8d0qv1epqu8xop4o2f94i8j40 sematext/sematext-agent-

docker:latest
ip-172-31-8-4.ec2.internal Running Running 2 minutes ago
y53f20d3kknh sematext-agent-docker.xks3sw6qgwbcuacyypemfbxyj sematext/sematext-agent-

docker:latest
ip-172-31-31-117.ec2.internal Running Running 2 minutes ago
t5w2pxy4fc9l sematext-agent-docker.r02ftwtp3n4m0cl7v2llw4gi8 sematext/sematext-agent-

docker:latest
ip-172-31-44-8.ec2.internal Running Running 2 minutes ago

If additional nodes are added to the Swarm, the Sematext Docker agent starts a service task on the new
nodes. As an example, update the CloudFormation stack to increase the number of manager nodes to three
and worker nodes to five, as shown in Figure 11-15.

Figure 11-15. Increasing the number of worker nodes

Chapter 11 ■ Logging and Monitoring

211

The Swarm nodes are increased to three manager nodes and five worker nodes when the Stack update
is complete.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8d0qv1epqu8xop4o2f94i8j40 ip-172-31-8-4.ec2.internal Ready Active
9rvieyqnndgecagbuf73r9gs5 ip-172-31-35-125.ec2.internal Ready Active Reachable
j4mg3fyzjtsdcnmr7rkiytltj ip-172-31-18-156.ec2.internal Ready Active
mhbbunhl358chah1dmr0y6i71 ip-172-31-7-78.ec2.internal Ready Active Reachable
r02ftwtp3n4m0cl7v2llw4gi8 ip-172-31-44-8.ec2.internal Ready Active
vdamjjjrz7a3ri3prv9fjngvy ip-172-31-6-92.ec2.internal Ready Active
xks3sw6qgwbcuacyypemfbxyj * ip-172-31-31-117.ec2.internal Ready Active Leader
xxyy4ys4oo30bb4l5daoicsr2 ip-172-31-21-138.ec2.internal Ready Active

Adding nodes to the Swarm starts a Sematext agent on the nodes that were added.

~ $ docker service ps sematext-agent-docker
ID NAME
IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS
cgaturw05p59 sematext-agent-docker.xxyy4ys4oo30bb4l5daoicsr2
sematext/sematext-agent-docker:latest ip-172-31-21-138.ec2.internal Running
Running 2 minutes ago
lj4f46q3ydv1 sematext-agent-docker.j4mg3fyzjtsdcnmr7rkiytltj
sematext/sematext-agent-docker:latest ip-172-31-18-156.ec2.internal Running
Running 2 minutes ago
v54bjs3c8u5r sematext-agent-docker.vdamjjjrz7a3ri3prv9fjngvy
sematext/sematext-agent-docker:latest ip-172-31-6-92.ec2.internal Running
Running 2 minutes ago
s7arohbeoake sematext-agent-docker.9rvieyqnndgecagbuf73r9gs5
sematext/sematext-agent-docker:latest ip-172-31-35-125.ec2.internal Running
Running 3 minutes ago
ixpri65xwpds sematext-agent-docker.mhbbunhl358chah1dmr0y6i71
sematext/sematext-agent-docker:latest ip-172-31-7-78.ec2.internal Running
Running 4 minutes ago
5jvl7gnvl0te sematext-agent-docker.8d0qv1epqu8xop4o2f94i8j40
sematext/sematext-agent-docker:latest ip-172-31-8-4.ec2.internal Running
Running 15 minutes ago
y53f20d3kknh sematext-agent-docker.xks3sw6qgwbcuacyypemfbxyj
sematext/sematext-agent-docker:latest ip-172-31-31-117.ec2.internal Running
Running 15 minutes ago
t5w2pxy4fc9l sematext-agent-docker.r02ftwtp3n4m0cl7v2llw4gi8
sematext/sematext-agent-docker:latest ip-172-31-44-8.ec2.internal Running
Running 15 minutes ago

Chapter 11 ■ Logging and Monitoring

212

Creating a MySQL Database Service on a Docker Swarm
In this section, we create a MySQL database service from which metrics, logs, and events can be collected
with Sematext SCM and Logsene using the Sematext Docker Agent, which we installed. To start, run the
following command to create a mysql service with 10 replicas.

~ $ docker service create \
> --env MYSQL_ROOT_PASSWORD='mysql'\
> --replicas 10 \
> --name mysql \
> mysql
rmy45fpa31twkyb3dowzpc74a

The service is created and listed in addition to the Sematext Docker agent service.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
oubjk53mpdnj sematext-agent-docker global 8/8 sematext/sematext-agent-

docker:latest
rmy45fpa31tw mysql replicated 10/10 mysql:latest

The service tasks for the mysql service are also listed.

~ $ docker service ps mysql
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR PORTS
x8j221ws4kx2 mysql.1 mysql:latest ip-172-31-21-138.ec2.internal Running
Running 13 seconds ago
98rbd6nwspqz mysql.2 mysql:latest ip-172-31-44-8.ec2.internal Running
Running 11 seconds ago
vmq0lylni8or mysql.3 mysql:latest ip-172-31-8-4.ec2.internal Running
Running 24 seconds ago
0vb6oda3yh3d mysql.4 mysql:latest ip-172-31-7-78.ec2.internal Running
Running 23 seconds ago
vdpplkyxy1uy mysql.5 mysql:latest ip-172-31-6-92.ec2.internal Running
Running 23 seconds ago
9ser7fwz6998 mysql.6 mysql:latest ip-172-31-18-156.ec2.internal Running
Running 17 seconds ago
vfsfvanghns0 mysql.7 mysql:latest ip-172-31-18-156.ec2.internal Running
Running 17 seconds ago
v71qwpvjhhzn mysql.8 mysql:latest ip-172-31-6-92.ec2.internal Running
Running 23 seconds ago
j7172i5ml43d mysql.9 mysql:latest ip-172-31-31-117.ec2.internal Running
Running 24 seconds ago
5p5mg2wnbb0o mysql.10 mysql:latest ip-172-31-35-125.ec2.internal Running
Running 20 seconds ago

Chapter 11 ■ Logging and Monitoring

213

After the Sematext Docker agent service has been started on the Swarm and a MySQL database service
has been started, both the SPM and Logsene apps start receiving data, as indicated by the Data Received
column in the dashboard. See Figure 11-16.

Monitoring the Docker Swarm Metrics
After the mysql service is started on the Swarm, the metrics for the service start getting loaded into the SPM –
Performance Monitoring dashboard. This happens as soon as the Sematext Docker agent is installed and new
metrics from a deployment become available. Graphs for different metrics—including Host CPU, Container
CPU, Container Memory, Container Count, Container Memory Failed Counter, Container Swap, Container I/O
Throughput, Container Network Traffic, and Container Network Errors—are displayed, as shown in Figure 11-17.

Figure 11-16. DockerSwarmSPM overview

Figure 11-17. Docker Swarm SPM overview

Chapter 11 ■ Logging and Monitoring

214

The Docker container metrics—including Container Count, Container CPU, Container Disk, Container
Memory, and Container Network—may be displayed by selecting Docker in the navigation. The Docker
Container Count metrics are shown in Figure 11-18.

The Docker ➤ Container Network selection displays the network traffic received and transmitted, the
receive rate, and the transmit rate. The OS Disk Space Used may be displayed by choosing OS ➤ Disk. The
metrics collection granularity may be set to auto granularity (default), by month, by week, by day, by hour, by
5 minutes, or by 1 minute. The Logs Overview may be displayed using the Logs button.

Click the Refresh Charts button to refresh the charts if they are not set to auto-refresh, which is the
default.

Detailed logs are displayed using Logsene UI or Kibana 4, which we discuss in the next section.

Getting Docker Swarm Logs in Logsene
Select Logs ➤ DockerSwarmLogsene in the margin navigation to display the logs collected by Logsene.
The Log Counts, Log Events, and Filter fields are displayed, as shown in Figure 11-19. To search for logs
generated by the mysql service, add “mysql” to the search field and click on the Search button. The logs
generated by the mysql Docker service are displayed, including status messages such as "mysqld ready
for connections". Click on the Refresh button to refresh the logs.

Figure 11-18. Docker metrics

Chapter 11 ■ Logging and Monitoring

215

The Logsene collects all the Docker events, such as the Docker pull event for the mysql:latest image,
as shown in Figure 11-20.

Figure 11-19. Logs generated by the mysql Docker Service

Figure 11-20. Logs for Docker event for mysql image pull

Chapter 11 ■ Logging and Monitoring

216

Logs for another Docker event, a volume mount, are shown in Figure 11-21.

Figure 11-21. Logs for Docker event volume mount

Chapter 11 ■ Logging and Monitoring

217

Summary
This chapter discussed continuous logging and monitoring of a Docker Swarm with Sematext SPM
performance monitoring and Logsene log management. First, you learned how to create a SPM app and a
Logsene app. Then you installed a Sematext agent service on each of the Swarm nodes and monitored the
metrics and events in a SPM dashboard. You also learned how to monitor the logs in the Logsene UI or a
Kibana 4 dashboard. The next chapter discusses load balancing in a Docker Swarm.

219© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_12

CHAPTER 12

Load Balancing

A Docker Swarm mode service provides a distributed application that may be scaled across a cluster of
nodes. Swarm mode provides internal load balancing among the different services in the Swarm based on
the DNS name of a service. Swarm mode also provides ingress load balancing among a service’s different
tasks if the service is published on a host port. Additionally, service tasks may be scheduled on specific
nodes using placement constraints.

Service Discovery
A Swarm has a DNS server embedded in it. Service discovery is based on the DNS name. Swarm manager
assigns each service in the Swarm a unique DNS name entry. Swarm manager uses internal load balancing
to distribute requests for the different services in the Swarm based on the DNS name for a service.

Custom Scheduling
Service replicas are scheduled on the nodes in a Swarm using the spread scheduling strategy by default.
A user may configure placement constraints for a service so that replicas are scheduled on specific nodes.
Scheduling using constraints is discussed in Chapter 6.

Ingress Load Balancing
By default, each service that’s exposed on a published port for external access is added to the ingress
overlay network. A user may specify any available port to expose a service by using the --publish, or -p,
option. The syntax for the --publish (-p) option is --publish <PublishedPort>:<TargetPort> in which
the <PublishedPort> variable is for the published port on the host and the <TargetPort> variable is for the
container port. If the --publish, -p option does not specify a <PublishedPort> port to publish the service
on the Swarm, the manager automatically exposes the service on a published port chosen from the range
30000-32767.

The Problem
Ingress load balancing is for distributing the load among the service tasks and is used even if a Swarm
consists of a single node. Ingress load balancing for a multi-node Swarm is illustrated in Figure 12-1. A client
may access any node in the Swarm, whether the node has a service task scheduled or not, and the client
request is forwarded to one of the service tasks using ingress load balancing.

https://doi.org/10.1007/978-1-4842-2973-6_12
http://dx.doi.org/10.1007/978-1-4842-2973-6_6

Chapter 12 ■ Load BaLanCing

220

A single client accesses a single node and, as a result, the Swarm is under-utilized in terms of
distributing external client load across the Swarm nodes. The client load is not balanced across the Swarm
nodes. A single node does not provide any fault tolerance. If the node fails, the service becomes unavailable
to an external client accessing the service at the node.

The Solution
An AWS Elastic Load Balancer (ELB) is used to distribute client load across multiple EC2 instances. When
used for Docker Swarm mode an AWS Elastic Load Balancer distributes client load across the different EC2
instances, which are hosting the Swarm nodes. The external load balancer accesses (listens to) the Swarm on
each EC2 instance at the published ports for the services running in the Swarm using LB listeners. Each LB
listener has an LB port mapped to an instance port (a published port for a service) on each EC2 instance. An
ELB on a Swarm is illustrated in Figure 12-2.

Node

Node

Service
Replicas

Node

Published
Port

Published
Port

Client
Host

Ingress
Load

Balancer

Figure 12-1. Ingress load balancing

Chapter 12 ■ Load BaLanCing

221

As a client is not accessing the service at a single host even if a single node goes down or becomes
unavailable, the Swarm does not become unavailable as the external load balancer directs the client request
to a different node in the Swarm. Even when all the nodes are available, the client traffic is distributed among
the different nodes. As an example, a client could be being served from one node at a particular time and
from a different node shortly thereafter. Thus, an external load balancer serves two functions: load balancing
and fault tolerance. Additionally the cloud provider on which a Swarm is hosted may provide additional
features such as a secure and elastic external load balancing. Elastic load balancing, as provided by AWS
Elastic Load Balancer, scales the request handling capacity based on the client traffic.

This chapter discusses load balancing with a user-created Swarm on CoreOS. It also discusses the
automatically provisioned elastic load balancer on Docker for AWS managed services.

Setting the Environment
Start three CoreOS instances—one for the manager node and two for the worker nodes—as shown in
Figure 12-3. Obtain the public IP address of the manager instance from the EC2 dashboard, as shown in
Figure 12-3.

Node

Node

Service
Replicas

Node

Published
Port

Published
Port

Published
Port

Client
Host

Ingress
Load

Balancer

External
Load

Balancer

Figure 12-2. External load balancer

Chapter 12 ■ Load BaLanCing

222

SSH login into the manager node to initiate the Swarm mode. Initializing a Swarm mode on CoreOS
and joining worker nodes to the Swarm is discussed in Chapter 2. Copy the docker swarm join command
output to join the worker nodes to the Swarm. List the Swarm nodes with the docker node ls command.

core@ip-10-0-0-226 ~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
9iqh5tg7hxy8u43tlifd1ri0q ip-10-0-0-203.ec2.internal Ready Active
aoe1b2623qj03852mrc5cax97 ip-10-0-0-198.ec2.internal Ready Active
dsyo3b6553ueishozhfb1apad * ip-10-0-0-226.ec2.internal Ready Active Leader

Creating a Hello World Service
Next, create a hello world service with the docker service create command. Expose the service at port
8080 using the --publish option. The syntax to publish a service using --publish or -p is as follows.

docker service create \
 --name <SERVICE-NAME> \
 --publish <PUBLISHED-PORT>:<TARGET-PORT> \
 <IMAGE>

The <PUBLISHED-PORT> is the port exposed on the hosts and the <TARGET-PORT> is the port on which the
Docker container exposes the service. Using the tutum/hello-world Docker image, <PUBLISHED-PORT> as 8080,
<TARGET-PORT> as 80, and <SERVICE-NAME> as hello-world, run the following command to create the service.

core@ip-10-0-0-226 ~ $ docker service create \
> --name hello-world \
> --publish 8080:80 \
> --replicas 3 \
> tutum/hello-world
0gk3wom7z91fpm5o9e6optmb5

Figure 12-3. CoreOS instances on EC2 for a manager and two worker nodes

http://dx.doi.org/10.1007/978-1-4842-2973-6_2

Chapter 12 ■ Load BaLanCing

223

The service is added to the ingress overlay network and the service is exposed at each node on the
Swarm, whether a service task is running on the node or not. The hello-world service lists 3/3 replicas.

core@ip-10-0-0-226 ~ $ docker service ls
ID NAME REPLICAS IMAGE COMMAND
0gk3wom7z91f hello-world 3/3 tutum/hello-world

List the service tasks using the docker service ps hello-world command and the three tasks are
listed as scheduled, one on each node.

core@ip-10-0-0-226 ~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR
di5oilh96jmr6fd5haevkkkt2 hello-world.1 tutum/hello-world ip-10-0-0-198.ec2.internal
Running Running 24 seconds ago
5g5d075yib2td8466mh7c01cz hello-world.2 tutum/hello-world ip-10-0-0-226.ec2.internal
Running Running 24 seconds ago
5saarf4ngju3xr7uh7ninho0o hello-world.3 tutum/hello-world ip-10-0-0-203.ec2.internal
Running Running 23 seconds ago

One Docker container is running on the manager node.

core@ip-10-0-0-226 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b73cbcd0c37e tutum/hello-world:latest "/bin/sh -c 'php-fpm " 34 seconds ago
Up 32 seconds 80/tcp hello-world.2.5g5d075yib2td8466mh7c01cz

One Docker container is running on one of the worker nodes.

core@ip-10-0-0-198 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
8bf11f2df213 tutum/hello-world:latest "/bin/sh -c 'php-fpm " 38 seconds ago
Up 36 seconds 80/tcp hello-world.1.di5oilh96jmr6fd5haevkkkt2

And the third Docker container is running on the other worker node.

core@ip-10-0-0-203 ~ $ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
a461bfc8d4f9 tutum/hello-world:latest "/bin/sh -c 'php-fpm " 40 seconds ago
Up 38 seconds 80/tcp hello-world.3.5saarf4ngju3xr7uh7ninho0o

Chapter 12 ■ Load BaLanCing

224

Invoking the Hello World Service
Without an external load balancer, an ingress connection may be made at each of the nodes at the published
port. To invoke the service at the manager node, obtain the public DNS of the Swarm manager instance from
the EC2 console, as shown in Figure 12-3.

Invoke the service in a web browser at the <PublicDNS>:<PublishedPort> URL, as shown in Figure 12-4.

Figure 12-4. Invoking the service in a browser

Chapter 12 ■ Load BaLanCing

225

Similarly, to invoke the service at a worker node, obtain the public DNS of the worker instance from the
EC2 console and invoke the service in a web browser at the <PublicDNS>:<PublishedPort> URL, as shown
in Figure 12-5.

Figure 12-5. Invoking the service at a worker node

Chapter 12 ■ Load BaLanCing

226

Similarly, to invoke the service at the other worker node, obtain the public DNS of the worker instance
from the EC2 console and invoke the service in a web browser at the <PublicDNS>:<PublishedPort> URL, as
shown in Figure 12-6.

While the external AWS Elastic Load Balancer distributes the load among the EC2 instances, the ingress
load balancer distributes the load among the service tasks. In the preceding example, the same service task
is invoked when the service is invoked at the Swarm manager instance and at a Swarm worker instance, as
indicated by the same hostname (Figures 12-4 and 12-6). This demonstrates the ingress load balancing.

A different service task could get invoked if the service is invoked at the same host. As an example,
invoke the service at the Swarm manager instance again. A different service task is served, as indicated by a
different hostname in Figure 12-7. This is in comparison to the hostname served earlier in Figure 12-4, again
demonstrating the ingress load balancing.

Figure 12-6. Invoking the service at the other worker node

Chapter 12 ■ Load BaLanCing

227

Figure 12-7. Different hostname served when invoking the service at the manager node again

Creating an External Elastic Load Balancer
In this section, we create an external elastic load balancer on the AWS cloud. Click on Load Balancers in the
EC2 dashboard. Then click on Create Load Balancer to create a new load balancer, as shown in Figure 12-8.

Figure 12-8. Creating a new load balancer

Chapter 12 ■ Load BaLanCing

228

AWS Elastic Load Balancing offers two types of load balancers—classic load balancers and application
load balancers. The classic load balancer routes traffic based on either application or network level
information whereas the application load balancer routes traffic based on advanced application-level
information. The classic load balancer should suffice for most simple load balancing of traffic to multiple
EC2 instances and is the one we use for Docker Swarm instances. Select the Classic Load Balancer and then
click on Continue, as shown in Figure 12-9.

In the Define Load Balancer dialog, specify a load balancer name (HelloWorldLoadBalancer) and select
a VPC to create the load balancer in, as shown in Figure 12-10. The VPC must exist prior to creating the load
balancer and must be where the EC2 instances to be load balanced are created. The load balancer protocol
is HTTP and so is the instance protocol, by default. Keeping the default setting of HTTP protocol, specify the
load balancer port and the instance port as 8080, because the Hello World service is exposed at port 8080.

Figure 12-9. Selecting the classic load balancer option

Figure 12-10. Selecting the load balancer protocol

Chapter 12 ■ Load BaLanCing

229

In the Select Subnets tab, click on one or more subnets listed in the Available Subnets table. The subnets
are added to the selected subnets, as shown in Figure 12-11. Click on Next. To provide high availability,
select at least two subnets in different availability zones.

In the Assign Security Groups tab, select Create a New Security Group, as shown in Figure 12-12. In
Type, select Custom TCP Rule. Choose the TCP protocol and the port range as 8080. Select Anywhere for the
source and its value as 0.0.0.0/0. Click on Next.

Click on Next in Configure Security Settings, as we have not used the HTTPS or the SSL protocol. In the
Configure Health Check tab, select HTTP for the ping protocol and 8080 for the ping port. Specify the ping path
as /, as shown in Figure 12-13. Keep the defaults as is in the Advanced Details area and then click on Next.

Figure 12-11. Selecting subnets

Figure 12-12. Assigning security groups

Chapter 12 ■ Load BaLanCing

230

Select the three Swarm instances listed, as shown in Figure 12-14. Also select Enable Cross-Zone Load
Balancing, which distributes traffic evenly across all backend instances in all availability zones. Click on Next.

Figure 12-13. Configuring a health check

Figure 12-14. Adding EC2 instances

Chapter 12 ■ Load BaLanCing

231

In the Add Tags tab, no tags need to be added. In the Review tab, click on Create, as shown in Figure 12-15.
As indicated, the load balancer is an Internet-facing type.

A load balancer is created, as shown in Figure 12-16.

Figure 12-15. Review your settings then create the load balancer

Figure 12-16. The load balancer has been created

Chapter 12 ■ Load BaLanCing

232

Obtain the DNS name of the load balancer from the EC2 console, as shown in Figure 12-17. Initially, the
status will be “0 of 3 instances in service” because the registration is still in progress.

After a while, the status should become “3 of 3 instances in service” and all the instance should be
InService, as shown in Figure 12-18.

Figure 12-18. Status indicates three of three instances InService

Figure 12-17. Obtaining the DNS name of the load balancer

Chapter 12 ■ Load BaLanCing

233

Figure 12-19. Invoking the Hello World service

The Hello World service may be invoked from the <DNSname>:<LoadBalancerPort> URL in a web
browser, as shown in Figure 12-19.

The external elastic load balancer balances the load among the EC2 instances in the Swarm. Because
the ingress load balancer balances the load among the different service tasks, a different service task could
get invoked if the service is invoked at the ELB DNS name again, as shown in Figure 12-20.

Chapter 12 ■ Load BaLanCing

234

Load Balancing in Docker for AWS
While an external elastic load balancer had to be created when creating a Docker Swarm using the
command line (by first initiating the Swarm mode and subsequently joining the worker nodes to the
Swarm), the Docker for AWS managed service, which was introduced in Chapter 3, automatically
creates an elastic load balancer.

Create a Swarm (a Swarm created earlier may be updated) with three manager nodes and five worker
nodes using Docker for AWS, as shown in Figure 12-21. An external elastic load balancer is created as one of
the Swarm resources, as listed in the Resources tab in Figure 12-21.

Figure 12-20. Different service task served

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 12 ■ Load BaLanCing

235

Figure 12-22. Load balancer for the Swarm created with Docker for AWS

An Internet-facing Elastic Load Balancer is created, as shown in Figure 12-22. The public DNS for the
load balancer may be used to access the Swarm, as discussed later.

Select the Instances tab. All the instances in the Swarm, manager or worker, are listed. All the instances
should be InService, as shown in Figure 12-23.

Figure 12-21. CloudFormation stack for a Docker Swarm

Chapter 12 ■ Load BaLanCing

236

Update the load balancer listeners in the Listeners tab to add/modify a listener with a load balancer
port set to 8080 and an instance port set to 8080, which is the published port for the Hello World service we
create, as shown in Figure 12-24.

Obtain the public IP address of one of the manager nodes from the EC2 console.
SSH login to the manager node.

[root@localhost ~]# ssh -i "docker.pem" docker@34.205.43.53
Welcome to Docker!

Figure 12-23. Instances status is InService

Figure 12-24. The Listeners tab

Chapter 12 ■ Load BaLanCing

237

List the Swarm nodes.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
8d0qv1epqu8xop4o2f94i8j40 ip-172-31-8-4.ec2.internal Ready Active
8eckb0twpbuoslfr58lbibplh ip-172-31-32-133.ec2.internal Ready Active
b6f18h4f3o44gkf5dhkzavoy3 ip-172-31-2-148.ec2.internal Ready Active
k9nl2zcmjzobbqu5c5bkd829g ip-172-31-21-41.ec2.internal Ready Active
p0d70jwh5vpjwximc1cpjfjkp * ip-172-31-1-130.ec2.internal Ready Active Leader
r02ftwtp3n4m0cl7v2llw4gi8 ip-172-31-44-8.ec2.internal Ready Active
rd8d0kksuts3aa07orhgkri3i ip-172-31-41-86.ec2.internal Ready Active Reachable
xks3sw6qgwbcuacyypemfbxyj ip-172-31-31-117.ec2.internal Ready Active Reachable

Create a Hello World service and expose the service at port 8080 (published port).

~ $ docker service create \
> --name hello-world \
> --publish 8080:80 \
> --replicas 10 \
> tutum/hello-world
n4hmfognhjrasf5nhukr55krb

Service tasks are scheduled across the Swarm.

~ $ docker service ps hello-world
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
y1fetn3kpwwn hello-world.1 tutum/hello-world:latest ip-172-31-2-148.ec2.internal
Running Running 15 seconds ago
5i15zl9dickd hello-world.2 tutum/hello-world:latest ip-172-31-44-8.ec2.internal
Running Running 17 seconds ago
k9glaavn0gzg hello-world.3 tutum/hello-world:latest ip-172-31-8-4.ec2.internal
Running Running 17 seconds ago
n83f89ijlokn hello-world.4 tutum/hello-world:latest ip-172-31-41-86.ec2.internal
Running Running 17 seconds ago
nelf275h9tp1 hello-world.5 tutum/hello-world:latest ip-172-31-8-4.ec2.internal
Running Running 16 seconds ago
w4c8zcvlq5v7 hello-world.6 tutum/hello-world:latest ip-172-31-32-133.ec2.internal
Running Running 17 seconds ago
b5qvbbgkrpd5 hello-world.7 tutum/hello-world:latest ip-172-31-21-41.ec2.internal
Running Running 16 seconds ago
qlm8dt9fuv92 hello-world.8 tutum/hello-world:latest ip-172-31-31-117.ec2.internal
Running Running 17 seconds ago
t3tenhpahh7g hello-world.9 tutum/hello-world:latest ip-172-31-44-8.ec2.internal
Running Running 17 seconds ago
up64ekxqeftk hello-world.10 tutum/hello-world:latest ip-172-31-1-130.ec2.internal
Running Running 17 seconds ago

Chapter 12 ■ Load BaLanCing

238

The hello-world service may be created without explicitly specifying a published port.

~ $ docker service create \
> --name hello-world \
> --publish 80 \
> --replicas 3 \
> tutum/hello-world

The Swarm manager automatically assigns a published port in the range 30000-32767; the default being
port 30000 if it’s available. The listener in the load balancer for the Docker for AWS Swarm may need to be
modified to add a mapping for the LoadBalancerPort:ServiceInstancePort, such as 30000:30000.

Obtain the public DNS for the elastic load balancer, which gets created automatically, as shown in
Figure 12-25.

Access the service at <PublicDNS>:<PublishedPort> in a web browser, as shown in Figure 12-26. The
request is forwarded to the ingress load balancer on one of the instances in the Swarm. The instance that the
external request is forwarded to does not have to be hosting a service task. Finding a service task is what the
ingress load balancer does.

Figure 12-25. Obtaining the public DNS of the ELB

Chapter 12 ■ Load BaLanCing

239

Summary
This chapter discussed load balancing in Swarm mode. An ingress load balancer is used to distribute
the load among a service’s tasks. Each service in a Swarm is assigned a DNS name and an internal load
balancer balances service requests among the services based on DNS name. We also created an external
load balancer for AWS EC2 instances to distribute load among the EC2 instances. Docker for AWS creates
an external load balancer automatically on AWS. In the next chapter we discuss developing a Docker Swarm
based highly available website.

Figure 12-26. Accessing a Docker service at the elastic load balancer DNS

241© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_13

CHAPTER 13

Developing a Highly Available
Website

High availability of a website refers to a website being available continuously without service interruption.
A website is made highly available by provisioning fault tolerance into the Docker Swarm application. High
availability is provided at various levels. The ingress load balancer balances incoming client requests across
the multiple service tasks and provides fault tolerance at the tasks level. If one service task fails, client traffic
is routed to another service task. Using an external load balancer for a Docker Swarm hosted across multiple
availability zones is another method for providing high availability. An external load balancer provides fault
tolerance at the node level. If one node fails, client traffic is routed to Swarm nodes on another node.

The Problem
Using an external load balancer such as an AWS Elastic Load Balancer provides fault tolerance across
multiple availability zones in an AWS region. The elastic load balancer may be accessed at its DNS name by
a client host, as illustrated in Figure 13-1. The Swarm is not highly available, as failure of a single AWS region
would cause a website to become unavailable.

Client
Host

Load
Balancer

Availability Zone 1

Availability Zone 2

Availability Zone 3

Figure 13-1. The elastic load balancer may be accessed at its DNS name by a client host

https://doi.org/10.1007/978-1-4842-2973-6_13

Chapter 13 ■ Developing a highly available Website

242

The Solution
Amazon Route 53 provides high availability with various DNS failover options, including active-active and
active-passive failover using alias resource record sets. Amazon Route 53 provides DNS failover across AWS
regions that are geographically spread, as illustrated in Figure 13-2. We use the Amazon Route 53 active-
passive failover configuration based on the primary-secondary architectural patter for load balancer DNSes.

This chapter covers the following topics:

•	 Setting the environment

•	 Creating multiple Docker swarms

•	 Deploying a Docker Swarm service

•	 Creating a AWS Route 53

•	 Creating a hosted zone

•	 Configuring name servers

•	 Creating record sets

•	 Testing high availability

•	 Deleting a hosted zone

Region
1

Load
Balancer

Primary
DNS

Secondary
DNS

AWS Route 53
Hosted Zone

Load
BalancerRegion

2

Availability Zone 1

Availability Zone 2

Availability Zone 3

Availability Zone 2

Figure 13-2. Amazon Route 53 provides DNS failover across AWS regions

Chapter 13 ■ Developing a highly available Website

243

Setting the Environment
We use two Docker for AWS managed Swarms for providing two DNS for active-passive DNS failover
configuration. A Route 53 provides the primary-secondary architectural pattern for the two DNSes. The only
prerequisite is an AWS account, which may be created at https://aws.amazon.com/resources/create-
account/. Create a key pair (Swarm) that is to be used for SSH login to Swarm manager nodes, as shown in
Figure 13-3. Set the permissions on the key pair to read-only by the owner only with the chmod 400 swarm.
pem command.

A domain name must be registered to be used for creating an Amazon Route 53 hosted zone.

Creating Multiple Docker Swarms
Create two Docker Swarms using the Docker for AWS managed service at https://docs.docker.com/
docker-for-aws/. The two Docker Swarms must be in two different AWS regions to use the high availability
provided by geographically distributed AWS regions. Create one Docker Swarm Oregon region as an
example, as shown in Figure 13-4.

Each Docker Swarm has manager and worker nodes spread across the AWS availability zones in an AWS
region. The public IP of a manager node may be obtained from the EC2 console, as shown in Figure 13-5.

Figure 13-3. Key pair

Figure 13-4. CloudFormation stack for Docker Swarm

https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/
https://docs.docker.com/docker-for-aws/
https://docs.docker.com/docker-for-aws/

Chapter 13 ■ Developing a highly available Website

244

Using the public IP address for a manager node in the first Docker Swarm, SSH login to the manager
node EC2 instance.

[root@localhost ~]# ssh -i "swarm.pem" docker@54. 149.86.148

Welcome to Docker!

~$

Create the other Docker Swarm in the Ohio AWS region as an example, as shown in Figure 13-6.
The regions may be different for different users.

Figure 13-5. Obtaining the public IP of the Swarm manager node

Figure 13-6. CloudFormation stack for the Docker Swarm in one region

Chapter 13 ■ Developing a highly available Website

245

The Swarm node EC2 instances for the second Docker Swarm are also spread across the AWS availability
zones in the second AWS region, as shown in Figure 13-7. Obtain the public IP for a manager node.

SSH login to the instance.

[root@1oca1.host —]# ssh -i “docker.pem” docker@52.14.23.163
Welcome to Docker!
~$

List the Swarm nodes in a Docker Swarm with the Docker node.

~ $ docker node ls

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

fncv7ducej3ind4u2sy9xtwi7 ip-172-31-34-223.us-east-2.compute.internal. Ready Active
Reachable
grdeu2x49yi2fmvuy9lmoogqg ip-172-31-43-174.us-east-2.compute.internal Ready Active
keOd75qef9bg8t22eqv9spdpm ip-172-31-30-180.us-east-2.compute.internal. Ready Active
Reachable
m2mmifbrnjbdriub5r36zxyjc * ip-172-31-8-11.us-east-2.compute.internal Ready Active Leader
qenbfrmsOxv7wom6wpw9yspw4 ip-172-31-27-178.us-east-2.compute.ìnternal Ready Active
tipzy29hgh3m6og5bzkgsego8 ip-172-31-12-37.us-east-2.compute.internal Ready Active
v4xdl4jvthovrzsamujoxy3ju ip-172-31-7-219.us-east-2.compute.internal Ready Active
vuq68yex58vzgx3audj3sm23a ip-172-31-28-182.us-east-2.compute.internal Ready Active

Figure 13-7. The Availability Zone column lists multiple zones

Chapter 13 ■ Developing a highly available Website

246

Deploying a Docker Swarm Service
Next, we deploy a Hello World service that will be hosted on a website. Run the following command on a
manager instance for the DockerSwarm-1 Swarm to create a tutum/hello-world service with two replicas
exposed at port 8080 on the host nodes.

docker service create \
 --name hello-world \
 --publish 8080:80 \
 --replicas 2 \
 tutum/hello-world

A Docker service with two service tasks is created.

~ $ docker service create \

> --name hello-world \
> --publish 8080:80 \
> -- replicas 2 \
> tutum/hello-world
vn5fl8h7t65sjwk54dwcoklhu

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE

vn5tl8h7t65s hello-world replicated 2/2 tutum/hello-world:latest

~ $ docker service ps hello-world

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

ac9ks5y9duni2 hello-world.l tutum/hello-wor1d:latest ip-172-31-19-220.us-west-2.compute.
internal Running Running 13 seconds ago
8s6r48wUui9 hello-world.2 tutum/hello-world:latest ip-172-31-24-250.us-west-2.compute.
internal Running Running 13 seconds ago

Scale the service to 10 replicas to provide load distribution. Subsequently, list the
services to list 10/10 replicas as running.~ $ docker service scale hello-world=10

hello-world scaled to 10
~ $ docker service ls

ID NAME MODE REPLICAS IMAGE

vn5U8h7t65s hello-world replicated 10/10 tutum/hello-world:latest
~ $

The 10 service task replicas are scheduled across the Swarm nodes, as shown in Figure 13-8.

Chapter 13 ■ Developing a highly available Website

247

Obtain the load balancer DNS for the first Docker Swarm from the EC2 dashboard, as shown in Figure 13-9.

Figure 13-8. Service tasks scheduled across the Swarm nodes

Figure 13-9. Docker Swarm load balancer

Chapter 13 ■ Developing a highly available Website

248

Access the service at <DNS>:<LoadBalancerPort> in a web browser, as shown in Figure 13-10; the load
balancer port is set to 8080, the port at which the service is exposed.

Similarly for the second Docker Swarm, create a tutum/hello-world service with a published port set to
8080. Scale the service to 10 replicas for load distribution across the Swarm.

S docker service create \

> --name hello-world \
> --publish 8080:80 \
,> --replicas 2 \
> tutum/hello-world

woqx2ltuibv53ctmuvssrsq8j

~ $ docker service ls

ID NAME MODE REPLICAS IMAGE

woqx2ltuibv5 hello-world replicated 2/2 tutum/hello-world:latest

~ $ docker service ps hello-world
NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS

Figure 13-10. Accessing the service in a browser

Chapter 13 ■ Developing a highly available Website

249

ny9ermdgb7a4 hello-world.1 tutum/hello-world:latest ip-172-31-34-223.us-east-2.compute.
internal Running Running 15 seconds ago

5w3thlgleinme hello-world.2 tutum/hello-world:latest ip-172-31-30-180.us-east-2.compute.
internal Running Running 15 seconds ago

~ $ docker service scale hello-world=10

hello-world scaled to 10

The service replicas are distributed across the Swarm nodes, as shown in Figure 13-11.

Figure 13-11. Service replicas distributed across the Swarm

Chapter 13 ■ Developing a highly available Website

250

Access the service at <DNS>:<LoadBalancerPort> in a web browser, as shown in Figure 13-13.

Figure 13-12. Obtaining the DNS name for the Swarm ELB

Figure 13-13. Accessing the service in a browser

Obtain the DNS of the elastic load balancer for the second Swarm, as shown in Figure 13-12.

Chapter 13 ■ Developing a highly available Website

251

Creating an Amazon Route 53
Amazon Route 53 is a highly available and scalable cloud Domain Name Service (DNS) web service that
connects user requests to infrastructure running on the AWS, including Amazon EC2 instances, load
balancers, and Amazon S3 buckets. We already created two Docker Swarms hosting the same Docker service
using the Docker AWS managed service, which automatically creates an AWS ELB for each Docker Swarm.

In this section, we create an Amazon Route 53 to route user requests to the nosqlsearch.com domain
to the elastic load balancers for the two Docker Swarms. In Amazon Route 53, we create two resource
record sets pointing to the two different ELBs configured for failover, with one of the ELBs being the primary
resource record set and the other being the secondary resource record set.

When the nosqlsearch.com domain is opened in a web browser, the Route 53 routes the request to the
primary resource record set. If the primary record set fails, Route 53 routes the user request to the secondary
record set, in effect providing high availability of the Hello World Docker service hosted on the nosqlsearch.com
domain. To create an AWS Route 53, select Route 53 from the AWS services, as shown in Figure 13-14.

Figure 13-14. Selecting the Amazon Route 53 service

Chapter 13 ■ Developing a highly available Website

252

Creating a Hosted Zone
A hosted zone is a configuration that determines how traffic to a domain on the Internet will be routed. To
create a hosted zone, open https://console.aws.amazon.com/route53/ in a web browser and click on
Create Hosted Zone in the DNS management, as shown in Figure 13-15.

Alternatively, select Hosted Zones or open https://console.aws.amazon.com/route53/home#hosted-
zones in a browser and click on Create Hosted Zone, as shown in Figure 13-16.

Figure 13-15. Creating the hosted zone

Figure 13-16. Creating a hosted zone

https://console.aws.amazon.com/route53/
https://console.aws.amazon.com/route53/home#hosted-zones
https://console.aws.amazon.com/route53/home#hosted-zones

Chapter 13 ■ Developing a highly available Website

253

Click on Create Hosted Zone again, as shown in Figure 13-17.

In the Create Hosted Zone dialog, specify a domain name (nosqlsearch.com). The domain name must
be registered with the user. Select Public Hosted Zone for the type, as shown in Figure 13-18.

Figure 13-17. Creating a hosted zone

Figure 13-18. Configuring the hosted zone

Chapter 13 ■ Developing a highly available Website

254

A new public hosted zone is created, as shown in Figure 13-19. The name servers for the hosted zone
(by default, there are four) are assigned.

Configuring Name Servers
Next, we need to configure the name servers for the domain with the domain registrar. The procedure to
configure name servers is different for different domain registrars, but an option to add a zone record for a
domain should be provided.

Specify the record type as Nameserver, as shown in Figure 13-20. Specify the host as @. Each zone record
should point to a single name server, which may be obtained from the public hosted zone we created earlier.

Figure 13-19. The new public hosted zone

Chapter 13 ■ Developing a highly available Website

255

Add four name servers (collectively called a delegation set), as shown in Figure 13-21, for the domain for
which a hosted zone is to be created.

Figure 13-20. Adding a name server record

Chapter 13 ■ Developing a highly available Website

256

Creating Resource Record Sets
After creating and configuring a hosted zone, create one or more resource record sets. A resource record set
is a Domain Name System (DNS) configuration for routing traffic to a domain. Click on Create Record Set to
create a resource record set, as shown in Figure 13-22.

Figure 13-21. Name servers configured on a domain

Chapter 13 ■ Developing a highly available Website

257

In the Create Record Set tab, the type should be set to A –IPv4 address, as shown in Figure 13-23. The
name of each record set ends with the domain name. Select Yes for Alias.

Figure 13-22. Creating a record set

Figure 13-23. Configuring a record set

Chapter 13 ■ Developing a highly available Website

258

Next, select the alias target as the AWS Elastic Load Balancer DNS for one of the Docker Swarms, as
shown in Figure 13-24.

Next, select the routing policy, as shown in Figure 13-25.

Figure 13-25. Selecting a routing policy

Figure 13-24. Selecting an alias target

Chapter 13 ■ Developing a highly available Website

259

Select Failover for the routing policy. This configures DNS failover, as shown in Figure 13-26. Select
Failover Record Type as Primary.

For Evaluate Target Health, select Yes, as shown in Figure 13-27.

Figure 13-26. Selecting failover record type

Figure 13-27. Selecting the Evaluate Target Health option

Chapter 13 ■ Developing a highly available Website

260

For Associate with Health Check, select No. Click on Create, as shown in Figure 13-28.

A primary record set is created, as shown in Figure 13-29; “primary” implies that website traffic will be
first routed to the record set.

Figure 13-29. Primary record set

Figure 13-28. Creating a record set

Chapter 13 ■ Developing a highly available Website

261

To create a secondary record set, click on Create Record Set again, as shown in Figure 13-30.

Select the type as A –IPv4 address and choose Yes for Alias. Select Alias Target as the second ELB DNS,
as shown in Figure 13-31.

Figure 13-30. Creating another record set

Figure 13-31. Selecting an alias target

Chapter 13 ■ Developing a highly available Website

262

Select the Failover routing policy and the secondary Failover Record Type, as shown in Figure 13-32.

Choose Yes for the Evaluate Target Health and No for the Associate with Health Check. Click on Create,
as shown in Figure 13-33.

Figure 13-33. Creating a secondary record set

Figure 13-32. Selecting failover record type as secondary

Chapter 13 ■ Developing a highly available Website

263

The secondary record set is created; “secondary” implies that traffic is routed to the record set if the
primary record set fails, as shown in Figure 13-34. Click on Back to Hosted Zones.

The domain (nosqlsearch.com) is configured with four record sets, as shown in Figure 13-35.

Testing High Availability
Next, we test the high availability we configured. Open the domain, including the service published port
(nosqlsearch.com:8080), in a web browser, as shown in Figure 13-36. The Docker service output should be
displayed.

Figure 13-35. Hosted zone created

Figure 13-34. Secondary record set is created

Chapter 13 ■ Developing a highly available Website

264

To test high availability, delete the CloudFormation stack for the Docker Swarm associated with the
primary record set, as shown in Figure 13-37.

Click on Yes, Delete in the Delete Stack dialog. The stack should start to be deleted, as indicated by the
DELETE_IN_PROGRESS status shown in Figure 13-38.

Figure 13-38. The delete is in progress

Figure 13-36. Invoking a service in a browser

Figure 13-37. Deleting a stack

Chapter 13 ■ Developing a highly available Website

265

The DNS fails over to the secondary resource record set and the domain continues to serve the Docker
service, as shown in Figure 13-39.

The hostname in the browser could become different if the request is forwarded to a different service
task replica, as shown in Figure 13-40. But the hostname could also become different regardless of whether
failover has been initiated, because the ingress load balancer distributes traffic among the different service
replicas.

Figure 13-39. Domain continues to serve

Chapter 13 ■ Developing a highly available Website

266

Deleting a Hosted Zone
Before a hosted zone can be deleted, all the resource record sets associated with the hosted zone must be
deleted. Select the resource record sets to delete and click on Delete Record Set, as shown in Figure 13-41.

Figure 13-40. Different hostname

Figure 13-41. Deleting the record sets

Chapter 13 ■ Developing a highly available Website

267

Click on Confirm in the Confirm dialog, as shown in Figure 13-42.

Click on Back to Hosted Zones, as shown in Figure 13-43.

Select the hosted zone to delete and click on Delete Hosted Zone, as shown in Figure 13-44.

Figure 13-42. Confirmation dialog

Figure 13-43. Going back to the hosted zones

Chapter 13 ■ Developing a highly available Website

268

Click on Confirm in the Confirm dialog, as shown in Figure 13-45.

The hosted zone is deleted.

Figure 13-44. Deleting a hosted zone

Figure 13-45. Confirmation dialog for deleting a hosted zone

Chapter 13 ■ Developing a highly available Website

269

Summary
This chapter developed a highly available website using an Amazon Route 53 hosted zone. First, we created
two Docker Swarms using the Docker for AWS managed service and deployed the same Docker service on
each. Each Docker Swarm service may be accessed using the AWS Elastic Load Balancer for the Docker
Swarm created automatically by the Docker for AWS. The Route 53 hosted zone is to create a hosted zone for
a domain to route traffic to DNSes configured in the primary/secondary failover pattern. Subsequently, we
tested that if the Docker Swarm for the primary record set is shut down, the website is still available, as the
hosted zone routes the traffic to the secondary ELB DNS. In the next chapter we discuss using the Docker
Swarm mode in Docker Cloud.

271© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_14

CHAPTER 14

Using Swarm Mode in Docker Cloud

Docker for AWS is a managed service for Docker Swarm based on a custom Linux distribution, and
hosted on AWS with all the benefits inherent with being integrated with the AWS Cloud platform, such as
centralized logging with CloudWatch, custom debugging, auto-scaling groups, elastic load balancing, and a
DynamoDB database.

The Problem
While AWS is a managed cloud platform, it is not a managed service for Docker containers, images, and
services per se. Docker’s builds and tests still need to be integrated.

The Solution
Docker Cloud is a managed service to test code and build Docker images and to create and manage
Docker image repositories in the Docker Cloud registry. Docker Cloud also manages Docker containers,
services, stacks, nodes, and node clusters. A stack is a collection of services and a service is a collection of
containers. Docker Cloud is an integrated cloud service that manages builds and images, infrastructure,
and nodes and apps.

Docker Cloud also introduced a Swarm mode to manage Docker Swarms. In Swarm mode, Docker
Cloud is integrated with Docker for AWS. As a result, Docker Cloud Swarm mode is an integration of two
managed services—Docker for AWS and Docker Cloud.

Docker Cloud provides some Docker images to interact between a Docker Swarm and a Docker host
client, as discussed in Table 14-1.

Table 14-1. Docker Images for Docker Swarm

Docker Image Description

dockercloud/client Used on the client side to start an interactive shell to connect to a remote
docker Swarm cluster using Docker ID credentials.

dockercloud/client-proxy Used on the client side to forward local docker API calls to a remote
swarm cluster by injecting Docker ID authorization information on
each request.

dockercloud/server-proxy Authenticates and authorizes incoming Docker API calls and forwards
them to the local Docker engine.

dockercloud/registration Registers a Swarm cluster to Docker Cloud and launches a server proxy.

https://doi.org/10.1007/978-1-4842-2973-6_14

Chapter 14 ■ Using swarm mode in doCker CloUd

272

In this chapter, we discuss the Docker Cloud Swarm mode to provision a Docker Swarm with
infrastructure hosted on AWS. This chapter covers the following topics:

•	 Setting the environment

•	 Creating an IAM role

•	 Creating a Docker Swarm in Docker Cloud

•	 Connecting to the Docker Swarm from a Docker host

•	 Connecting to the Docker Swarm from a Swarm manager

•	 Bringing a Swarm into Docker Cloud

Setting the Environment
As Docker Cloud is a managed service, all that is required is an account, which may be created at
https://cloud.docker.com/. An AWS account is also required and may be created at https://aws.amazon.
com/resources/create-account/. Also create a key pair in the region in which the EC2 instances for the
Docker Swarm will run, as shown in Figure 14-1.

Figure 14-1. Creating a key pair on AWS EC2

Figure 14-2. Creating a new role

Creating an IAM Role
The Docker Cloud Swarm mode requires an AWS role with a new policy, an embedded policy for Docker
for AWS. To create the IAM role, navigate to https://console.aws.amazon.com/iam/home?#roles in a web
browser. Click on Create New Role, as shown in Figure 14-2.

https://cloud.docker.com/
https://aws.amazon.com/resources/create-account/
https://aws.amazon.com/resources/create-account/
https://console.aws.amazon.com/iam/home?#roles

Chapter 14 ■ Using swarm mode in doCker CloUd

273

Specify a role name (dockercloud-swarm-role), as shown in Figure 14-3, and click on Next Step.

Figure 14-3. Specifying a role name

The Select Role Type page is displayed, as shown in Figure 14-4. As we are linking two services—Docker
Cloud and Docker for AWS—we do not need to select an AWS service role.

Figure 14-4. Select the role type

Select Role for Cross-Account Access, as shown in Figure 14-5, and select the sub-choice called Provide
Access Between Your AWS Account and a 3rd Party AWS Account using the Select button.

Chapter 14 ■ Using swarm mode in doCker CloUd

274

Next, specify the account ID of the third party AWS account whose IAM users will access the AWS
account. A third-party AWS account has been set up for the Docker Cloud service and has an account ID of
689684103426, which may be used by anyone (AWS user) linking Docker Cloud service to their AWS account.
Specify the account ID as 689684103426, as shown in Figure 14-6. The external ID is a user’s Docker ID for
the Docker Cloud service account created at https://cloud.docker.com/. While the account ID will be the
same (689684103426) for everyone, the external ID will be different for different users. Keep the Require MFA
checkbox unchecked. Click on Next Step.

Figure 14-5. Role for cross-account access

Figure 14-6. Specifying account and external IDs

https://cloud.docker.com/

Chapter 14 ■ Using swarm mode in doCker CloUd

275

As we are embedding a custom policy, do not select from any of the listed policies in Attach Policy. Click
on Next Step, as shown in Figure 14-7.

Figure 14-7. Do not select a policy

On the Review page, click on Create Role, as shown in Figure 14-8.

Figure 14-8. Creating a role

Chapter 14 ■ Using swarm mode in doCker CloUd

276

A new AWS IAM role called dockercloud-swarm-role is created, as shown in Figure 14-9. Click on the
dockercloud-swarm-role role name.

Figure 14-9. New role

Figure 14-10. Expanding the inline policies

Next, we will add an embedded (also called an inline) policy. The Permissions tab should be selected by
default. Click on the v icon to expand the Inline Policies section, as shown in Figure 14-10.

Chapter 14 ■ Using swarm mode in doCker CloUd

277

In Set Permissions, select Custom Policy using the Select button, as shown in Figure 14-12.

Figure 14-11. Click on the Click Here link to add an inline policy

To start, no inline policies are listed. Click on the Click Here link to add an inline policy, as shown in
Figure 14-11.

Figure 14-12. Selecting a custom policy

A policy document lists some permissions and the policy document for an IAM role to use Docker
for AWS may be obtained from https://docs.docker.com/docker-for-aws/iam-permissions/. Click on
Validate Policy to validate the policy, as shown in Figure 14-13.

https://docs.docker.com/docker-for-aws/iam-permissions/

Chapter 14 ■ Using swarm mode in doCker CloUd

278

Click on Apply Policy, as shown in Figure 14-14.

Figure 14-13. Validating the policy

Figure 14-14. Applying the policy

Chapter 14 ■ Using swarm mode in doCker CloUd

279

A new inline policy is added for the dockercloud-swarm-role role, as shown in Figure 14-15.

Figure 14-15. The new inline policy is added

Copy the Role ARN String listed in Figure 14-16, as we need the ARN string to connect to the AWS Cloud
provider from Docker Cloud.

Figure 14-16. Role ARN

Chapter 14 ■ Using swarm mode in doCker CloUd

280

Creating a Docker Swarm in Docker Cloud
In this section, we create a Docker Swarm from the Docker Cloud service. Log in to the Docker Cloud service
at https://cloud.docker.com/. The Cloud registry page should be displayed at https://cloud.docker.com/
app/dvohra/dashboard/onboarding/cloud-registry. A Swarm Mode option is available in the margin and
it’s off by default, as shown in Figure 14-17.

Figure 14-17. The Swarm Mode slider

Figure 14-18. Switching to Swarm mode

Figure 14-19. Swarms toolbar option

Click on the Swarm Mode slider; the Swarm mode should be enabled, as shown in Figure 14-18.

A Swarms toolbar option is added, as shown in Figure 14-19.

https://cloud.docker.com/
https://cloud.docker.com/app/dvohra/dashboard/onboarding/cloud-registry
https://cloud.docker.com/app/dvohra/dashboard/onboarding/cloud-registry

Chapter 14 ■ Using swarm mode in doCker CloUd

281

Two options are available—Bring Your Own Swarm or Create a New Swarm. Click on Create to create a
new Swarm, as shown in Figure 14-20.

Figure 14-20. Creating a new Swarm

Next, we will configure the Swarm, including specifying a Swarm name, selecting a cloud provider, and
selecting cloud provider options. Two Cloud service providers are supported: Amazon Web Services (AWS)
and Microsoft Azure (not yet available). We use AWS in this chapter. We need to configure the cloud settings
for AWS with the ARN string we copied earlier. Cloud settings may be configured with one of the two options.
One option is to select Cloud Settings from the account, as shown in Figure 14-21.

Figure 14-21. Cloud settings

Chapter 14 ■ Using swarm mode in doCker CloUd

282

The Add AWS Credentials dialog is displayed, as shown in Figure 14-23.

Figure 14-22. Connecting the provider

Figure 14-23. Adding AWS credentials

In the Cloud Settings page, click on the plug icon that says Connect Provider for the Amazon Web
Services provider, as shown in Figure 14-22.

Chapter 14 ■ Using swarm mode in doCker CloUd

283

Specify the ARN string copied earlier from the Add AWS Credentials dialog and click on Save, as shown
in Figure 14-25.

The other option to configure the Cloud settings is to click on the Amazon Web Service Service Provider
icon, as shown in Figure 14-24, which also displays the Add AWS Credentials dialog.

Figure 14-24. Connecting to an Amazon web services provider

Figure 14-25. Saving the AWS credentials

Chapter 14 ■ Using swarm mode in doCker CloUd

284

With either option, the service provider Amazon Web Services should be connected, as indicated by the
Connect Provider icon turning to Connected, as shown in Figure 14-26.

Figure 14-26. Amazon Web Services provider in connected mode

Figure 14-27. Amazon Web Services provider connected

The Amazon Web Services option should indicate connected, as shown in Figure 14-27.

Chapter 14 ■ Using swarm mode in doCker CloUd

285

Specify a Swarm name. That name should not include any spaces, capitalized letters, or special
characters other than “,”, “-“ and “_”, as shown in Figure 14-28.

Figure 14-28. Specifying a Swarm name

Specify a valid Swarm name (docker-cloud-swarm), select the Amazon Web Services Service provider,
which is already connected, and click on Create, as shown in Figure 14-29.

Figure 14-29. Creating a Docker Swarm using the AWS service provider

Chapter 14 ■ Using swarm mode in doCker CloUd

286

In the region, select a region (us-east-2), the number of Swarm managers (3), the number of Swarm
workers (5), the Swarm manager instance type (t2.micro), the agent worker instance type (t2.micro), and
the SSH key. Click on Create, as shown in Figure 14-30.

Figure 14-30. Configuring and creating a Swarm

Figure 14-31. Deploying a Swarm

The Swarm should start to get deployed, as indicated by the DEPLOYING message shown in Figure 14-31.

Chapter 14 ■ Using swarm mode in doCker CloUd

287

When the Swarm has been deployed, the message becomes Deployed, as shown in Figure 14-32.

Figure 14-32. The Swarm is now deployed

The AWS infrastructure for the Swarm is created and configured. A CloudFormation stack is created, as
shown in Figure 14-33.

Figure 14-33. CloudFormation stack for the created Swarm

A new proxy AWS IAM role for the Swarm is added, as shown in Figure 14-34.

Figure 14-34. Proxy role and Docker Cloud Swarm AWS role

Chapter 14 ■ Using swarm mode in doCker CloUd

288

EC2 instances for the Swarm manager and worker nodes are started. Each EC2 instance is started with
the proxy IAM role created automatically, as shown for a manager node in Figure 14-35.

Figure 14-35. IAM role for EC2 instances

Each Docker Cloud account namespace must be associated with only one AWS IAM role. If multiple
Docker Cloud accounts are to access the same AWS account, multiple roles must be created for each Docker
Cloud account or Docker Cloud account namespace. Each AWS IAM role for Docker Cloud to access AWS is
associated with an ARN string. The ARN string for a deployed Swarm may be edited with the Edit Endpoint
link, as shown in Figure 14-36.

Figure 14-36. Edit Endpoint link

Chapter 14 ■ Using swarm mode in doCker CloUd

289

If the Swarm endpoint is to be modified, specify a new ARN string (for a different IAM role associated with
a different Docker Cloud namespace) in the Edit Endpoint dialog. Click on Save, as shown in Figure 14-37.

Figure 14-37. Editing the endpoint

Next, we connect to the Docker Swarm. There are two ways to do so:

•	 Connect directly from any Docker host

•	 Obtain the public IP address of a Swarm manager from the EC2 dashboard and SSH
login to the Swarm manager

We discuss each of these options.

Connecting to the Docker Swarm from a Docker Host
Click on the Docker Swarm in the Docker Cloud dashboard. The Connect To dialog should be displayed with
a docker run command, as shown in Figure 14-38. Copy the docker run command.

Figure 14-38. Listing and copying the docker run command to connect to the Swarm

Chapter 14 ■ Using swarm mode in doCker CloUd

290

Start an EC2 instance with CoreOS AMI, which has Docker pre-installed, as shown in Figure 14-39.

Figure 14-39. Creating an EC2 instance with CoreOS AMI

Obtain the public IP address of the CoreOS instance from the EC2 console, as shown in Figure 14-40.

Figure 14-40. Displaying EC2 instance detail

SSH login to the CoreOS instance.

ssh -i "coreos.pem" core@34.207.220.127

Run the command copied earlier to connect to the Docker Swarm.

docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER_HOST dockercloud/
client dvohra/docker-cloud-swarm

Chapter 14 ■ Using swarm mode in doCker CloUd

291

The dockercloud/client Docker image that’s used to connect to Docker Cloud is downloaded.
A username and password prompt should be displayed. Specify the username and password for the Docker
Cloud account in which the Swarm was created.

Container Linux by CoreOS stable (1298.5.0)

$ docker run --rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER_HOST
dockercloud/client dvohra/docker-cloud-swarm
Unable to find image 'dockercloud/client:latest' locally
latest: Pulling from dockercloud/client
b7f33ccOb4Be: Pull complete
91b7430c5c68: Pull complete
b686674c0e39: Pull complete
l9aaa3õbba7a: Pull complete
Digest: sha2S6: 11d3cc5e1a62c7324]2a6e038]ccffi9]53tc91d0b1c69c8D1d3b68629337558a6
Status: Downloaded newer image for dockercloud/client:latest
Use your Docker ID credentials to authenticate:
Username: dvohra
Password:

A export command is output to connect to the Swarm. Copy the command.

Use your Docker ID credentials to authenticate:
Username: dvohra
Password:
=> You can now start using the swarm dvohra/docker-cloud-swarm by executing:
export DOCKER_HOST=tcp://127.0.0.1:32768

Run the command. The Swarm is connected to the CoreOS Docker host. List the Swarm nodes using the
docker node ls command.

>export DOCKER_HOST=tcp://127.0.0.1:32768

>docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS

liuomlmb6n6xtq4apxayumsx3 ip-172-31-0-251.us-east-2.cornpute.internal. Ready Active
bchea5x85m82jtzoq336trn8y ip-172-31-47-61.us-east-2.compute.internat. Ready Active
e2bl785z5pqouakdceomdpsbi ip-172-31-42-130.us-east-2.compute.internal. Ready Active
hzxb8choml.7gylaqtrjrh6phx ip-172-31-26-90.us-east-2.compute.internal. Ready Active
pcnple9l29w88ueonhdwUcoc ip-172-31-27-18.us-east-2.compute.internal. Ready Active
rupjaojommfchjgcshffdobhf * ip-172-31-10-153.us-east-2.compute.internal Ready Active Leader
uyl5xv7mhb6c8jam5ofncplyh ip-172-31-25-137.us-east-2.compute.internal. Ready Active Reachable
wi6zurda4nawf9mgku3enf6io ip-172-31-34-33.us-east-2.cornpute.ìnternal Ready Active Reachable

Chapter 14 ■ Using swarm mode in doCker CloUd

292

Connecting to the Docker Swarm from a Swarm Manager
The other option is to connect to a Swarm manager using its public IP address. First, we obtain the public IP
address of a Swarm manager from the EC2 console, as shown in Figure 14-41.

Figure 14-41. Obtaining the public IP of a Swarm manager

SSH login into the Swarm manager.

ssh -i "docker.pem" docker@52.14.146.223

The Swarm manager is logged in and the Swarm command prompt is displayed.

[root@1ocathost —]# ssh -i "docker.pem" docker@52.14.146.223
The authenticity of host 52.14.146.223 (52.14.146.223)1 cant be established.
RSA key fingerprint is e9:7f:d2:3c:de:6d:5d:94:06:e2:09:56:b7:2a:c6:9a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '52.14.146.223 (RSA) to the list of known hosts.
Welcome to Docker!

Chapter 14 ■ Using swarm mode in doCker CloUd

293

List the Swarm nodes using the docker node ls command.

Welcome to Docker!

~ $ docker node l.s

ID HOSTNAME STATUS

AVAILABILITY MANAGER STATUS

liuomlmb6n6xtq4apxayumsx3 ip-172-31-O-251.us-east-2.compute.internal Ready Active

bchea5x85m82jtzoq336trn8y ip-172-31-47-61.us-east-2.cornpute.internal Ready Active

e2bl785z5pqouakdceonìdpsbi ip-172-31-42-130.us-east-2.compute.internal Ready Active

hzxb8chomt7gyl.aqtrj rh6phx ip-172-31-26-90.us-east-2.compute.interna1 Ready Active

pcnple9l29w88ueenhdwflcoc ip-172-31-27-18.us-east-2.compute.internal Ready Active

rupjaejommfchjgcshffdobhf * ip-172-31-1O-153.us-east-2.compute.internal. Ready Active Leader

uyl5xv7mhb6c8jain5ofncplyh ip-172-31-25-137.us-east-2.compute.internal. Ready Active Reachable

wi6zurda4nawf9mgku3enf6ie ip-172-31-34-33.us-east-2.compute.internal Ready Active Reachab1e

Create a service using the docker service create command and list the service with docker service ls.

docker service create \
 --name hello-world \
 --publish 8080:80 \
 --replicas 1 \
 tutum/hello-world

The hello-world service is created. A Docker Cloud server proxy service is also listed.

~ $ docker service create \

> --name hello-world \

> --publish 8080:80 \

> - - replicas 1 \

> tutum/hello-world

hbiejbua8u5øskabun3dzkxk4

~ $ docker service 1s

ID NAME MODE REPLICAS IMAGE

0gzua3p56myx dockerdoud-server-proxy global 3/3 dockercioud/server-proxy:latest

hbiejbua8u50 hello-world replicated 1/1 tutum/hello-world:latest

Chapter 14 ■ Using swarm mode in doCker CloUd

294

Bringing a Swarm into Docker Cloud
Docker Cloud Swarm mode also has the provision to import an existing Swarm into Docker Cloud. The
Swarm to be imported must have the following prerequisites:

•	 Based on Docker Engine 1.13 or later nodes

•	 Swarm manager incoming port 2376 unblocked

In this section, we create a Swarm and import the Swarm into Docker Cloud. First, run the docker
--version command to determine if the Docker host version is 1.13 or later. One of the EC2 instances
provisioned by Docker for AWS may be used to create and import a Swarm, as the Docker version on the
custom Linux distribution is > Docker 1.13; the node must be made to leave the Swarm before creating a new
Swarm. Using the private IP address of the EC2 instance, initiate a new Swarm.

docker swarm init --advertise-addr 172.31.23.196

Copy the docker swarm join command output to join the worker nodes.

~ $ docker --version

Docker version 17.03.0-ce, build 60ccb22

~ $ docker swarm init --advertise-addr 172.31.23.196

Swarm initialized: current node (ylzc3h3slxO5ztbujtl3yf86p) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join \

--token SWMTKN-1-23snf1iuieafnyd1zzgf37ucwuz1.khg9atqsmysmvv6iw1.arw0-do29n83jptkkdwss5fjsd3rt \

172.31.23.196:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and follow the
instructions.

Join a worker node on another EC2 instance with Docker 1.13 or later.

docker swarm join \
 --token SWMTKN-1-61gcsgkr1ildxz580ftdl3rq0s9p7h30n12byktgvbd6y3dk7r-cpes7ofdsq8abhxtznh92tjrz \
 10.0.0.176:2377

The worker node joins the Swarm.

Chapter 14 ■ Using swarm mode in doCker CloUd

295

A Swarm with two nodes is created, as listed in the output to the docker node ls command, which
runs on the Swarm manager node.

~$ docker node 1s

HOSTNAME STATUS

AVAILABILITY MANAGER STATUS

trgb2t4ehs2gp3cjbrnqhs7a5 ip-172-31-6-64.us-east-2.compute.internal. Ready Active

yl.ic3h3stxo5ztbujtl3yf86p ip-172-31-23-196.us-east-2.compute.internal Ready Active Leader

~$

Next, import the Swarm into Docker Cloud. From the Swarm manager node, run the following
command.

docker run -ti --rm -v /var/run/docker.sock:/var/run/docker.sock dockercloud/registration

Specify the Docker ID at the username prompt and the password at the password prompt.

~ S docker run -ti --rm -v /var/run/docker.sock:/var/run/docker.sock dockercloud/
registration
Unable to find image dockercloud/registration:latest’ locally
latest: Pulling from dockercloud/registration
b7f33ccOb48e: Pull complete
b52875cf8fd4: Pull complete
23f82c866468: Pull complete
Digest: sha256: a3f39de96d2763b957e7bel22ce99b8lfbbaO3fbd6b2e54bd6O7lcafbelcabcl
Status: Downloaded newer image for dockercloud/registratìon:latest
Use your Docker ID credentials to authenticate:
Username: dvohra
Password:

Specify a cluster name for the Swarm imported into Docker Cloud, or use the default. Specify cluster
as dvohra/dockercloudswarm. The Swarm is registered with Docker Cloud. As for a Swarm created in the
Docker Cloud Swarm mode, the Swarm may be accessed from any Docker host for which a command is
output.

Enter name for the new cluster [dvohra/wkhøtlq8cw5u44x22qp6r4eau]: dvohra/dockercloudswarm

You can now access this cluster using the following command in any Docker Engine

docker run -rm -ti -v /var/run/docker.sock:/var/run/docker.sock -e DOCKER HOST dockerctoud/
client dvohra/dockerctoudswarm

To bring the Swarm into Docker Cloud, click on the Bring Your Own Swarm button in Swarm mode, as
shown in Figure 14-42.

Chapter 14 ■ Using swarm mode in doCker CloUd

296

The Swarm registered with Docker Cloud is added to the Docker Cloud Swarms, as shown in Figure 14-43.

Figure 14-42. Bring your own Swarm

Figure 14-43. Docker Cloud Swarms, including the imported Swarm

Summary
This chapter introduced the Docker Cloud Swarm mode, which is a managed service for linking the Docker
Cloud managed service to a AWS service provider account and provisioning a Swarm from Docker Cloud.
A Swarm created on the command line can be imported into Docker Cloud. In the next chapter we discuss
Docker service stacks.

297© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6_15

CHAPTER 15

Using Service Stacks

The Docker Swarm mode is Docker-native as of Docker 1.12 and is used to create distributed and scalable
services for developing Docker applications.

The Problem
While single Docker image applications are also commonly used, a vast majority of Docker enterprise
applications are comprised of multiple images that have dependencies between them. Docker Compose
(standalone in v1 and v2) could be used to declare dependencies between microservices using the links
and depends_on options, but Compose (standalone) is archaic, other than the format for defining services, in
the context of Swarm mode services.

The Solution
Docker Swarm mode has introduced service stacks to define a collection of services (Swarm mode services) that
are automatically linked with each other to provide a logical grouping of services with dependencies between
them. Stacks use stack files that are YAML files in a format very much like the docker-compose.yml format.
There are a few differences such as the absence of links and depends_on options that were used to define
dependencies between microservices in Docker Compose (standalone). YAML (http://www.yaml.org/) is a
data serialization format commonly used for configuration files.

As of Docker v1.13, the docker stack subset of commands has been introduced to create a Docker
stack. Using a stack file that defines multiple services, including services’ configuration such as environment
variables, labels, number of containers, and volumes, a single docker stack deploy command creates a
service stack, as illustrated in Figure 15-1. The services are automatically linked to each other.

https://doi.org/10.1007/978-1-4842-2973-6_15
http://www.yaml.org/

Chapter 15 ■ Using serviCe staCks

298

Docker Compose versions 3.x and later are fully Docker Swarm mode compatible, which implies
that a Docker Compose v3.x docker-compose.yml file could be used as a Stack file except for a few sub-
options (including build, container_name, external_links, and links) that are not supported in a stack
file. Docker Compose 3.x could still be used standalone to develop non-Swarm mode services, but those
microservices are not usable or scalable with the Docker Swarm mode docker service group of commands.

To use stacks to manage Swarm mode services, the following requirements must be applied.

•	 Docker version must be 1.13 or later

•	 Swarm mode must be enabled

•	 Stack file YAML format must be based on Docker Compose v3.x file format

To use service stacks, the Docker Compose version 3 YAML file format is used, but Docker Compose is
not required to be installed.

When using Docker Swarm mode, the Docker version requirement for Swarm mode is 1.12 or later.
Before developing stacks to manage Swarm mode services, verify that the Docker version is at least 1.13.
The Docker version used in this chapter is 17.0x. The docker stack group of commands listed in Table 15-1
becomes available in Docker v1.13 and later.

Stack

service1

service2

service3

docker stack deploy

Figure 15-1. Service stack created with the docker stack deploy command

Table 15-1. The docker stack Commands

Command Description

deploy Deploys a service stack or updates an existing stack

ls Lists the stacks

ps Lists the Swarm mode tasks in a stack

rm Removes a stack

services Lists the Swarm mode services in a stack

Chapter 15 ■ Using serviCe staCks

299

Run the docker --version command to list the Docker version. To list the commands for stack usage,
run the docker stack command.

[root@localhost ~]# ssh -i "docker.pem" docker@34.205.43.53
Welcome to Docker!
~ $ docker --version
Docker version 17.06.0-ce, build 02c1d87
~ $ docker stack

Usage: docker stack COMMAND

Manage Docker stacks

Options:
 --help Print usage

Commands:
 deploy Deploy a new stack or update an existing stack
 ls List stacks
 ps List the tasks in the stack
 rm Remove one or more stacks
 services List the services in the stack

To use stacks, the following procedure is used.

 1. Install Docker version 1.13 or later (not Docker version 1.12, which is used in
several of the earlier chapters).

 2. Enable Swarm mode.

 3. Create a Stack file using Docker Compose (version 3.x) YAML format.

 4. Use the docker stack group of commands to create and manage the stack.

The chapter creates a service stack consisting of two services, one for a WordPress blog and another for
a MySQL database to store the data in the WordPress blog.

Setting the Environment
We use Docker for AWS available at https://docs.docker.com/docker-for-aws/ to launch a Docker
Swarm mode cluster of nodes. Docker for AWS uses the AWS CloudFormation template to create a Docker
Swarm mode cluster. Click on the Deploy Docker Community Edition (stable), shown in Figure 15-2, to
launch a Create CloudFormation Stack wizard to create a Docker Swarm mode cluster.

Deploy Docker
Community Edition

[CE] for AWS
[stable]

Deploy Docker
Community Edition
[CE] for AWS [edge]

Deploy Docker
Community Edition
[CE] for AWS [test]

Figure 15-2. Deploying the Docker Community Edition for AWS (stable)

https://docs.docker.com/docker-for-aws/

Chapter 15 ■ Using serviCe staCks

300

Configure a Swarm using the Create Stack wizard as discussed in Chapter 3. You can specify the number
of swarm managers to be 1, 3, or 5 and the number of Swarm worker nodes to be 1-1000. We used one
Swarm manager node and two Swarm worker nodes, as shown in Figure 15-3.

The CloudFormation stack is created, as shown in Figure 15-4.

Figure 15-3. Configuring a CloudFormation stack

Figure 15-4. CloudFormation Stack for Docker on AWS

http://dx.doi.org/10.1007/978-1-4842-2973-6_3

Chapter 15 ■ Using serviCe staCks

301

Three EC2 instances—one for Docker Swarm manager node and two for the Swarm worker nodes—are
launched, as shown in Figure 15-5. The Linux distribution used by the CloudFormation stack is Moby Linux,
as shown in Figure 15-5.

Before being able to use Docker on AWS, enable all inbound/outbound traffic between the EC2
instances in the security groups used by the EC2 instances. This is shown for the security group for Swarm
manager node instance inbound rules in Figure 15-6.

Figure 15-5. The Moby Linux AMI used for Docker on AWS

Figure 15-6. The security group inbound rules are enabled for all traffic

Chapter 15 ■ Using serviCe staCks

302

SSH login into the Swarm manager EC2 instance and obtain the public IP address from the AWS
management console, as shown in Figure 15-7.

Using the key pair used to create the CloudFormation stack SSH login into the Swarm manager
instance.

ssh -i "docker.pem" docker@54.205.48.154

The command prompt for the Swarm manager node is displayed.

[root@localhost ~]# ssh -i "docker.pem" docker@54.205.48.154
Welcome to Docker!

List the nodes in the Swarm mode.

docker node ls

Three nodes, one manager and two workers, are listed.

~ $ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER

STATUS
bf4ifhh86sivqp03ofzhk6c46 ip-172-31-21-175.ec2.internal Ready Active
ozdhl0jtnricny1y95xbnhwtq ip-172-31-37-108.ec2.internal Ready Active
ud2js50r4livrqf3f4l30fv9r * ip-172-31-19-138.ec2.internal Ready Active Leader

Figure 15-7. Public IP address

Chapter 15 ■ Using serviCe staCks

303

Test the Swarm mode by creating and listing a Hello World service.

docker service create --replicas 2 --name helloworld alpine ping docker.com

docker service ls

The docker service commands output indicates a Docker Swarm service, so it’s created and listed.

~ $ docker service create --replicas 2 --name helloworld alpine ping docker.com
q05fef2a7cf98cv4r2ziyccnv

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
q05fef2a7cf9 helloworld replicated 2/2 alpine:latest
~ $

Configuring a Service Stack
To create a service stack consisting of two services, one for a WordPress blog and another for MySQL database,
create a stack file using the Docker Compose version 3 YAML format (https://docs.docker.com/compose/
compose-file/). Create a docker-cloud.yml stack file (the filename is arbitrary) to specify two services
(web and mysql) using Docker images wordpress and mysql respectively. Set the environment variables for
the Docker images. The only environment variable required to be set is MYSQL_ROOT_PASSWORD for the mysql
Docker image. The WORDPRESS_DB_PASSWORD environment variable for the wordpress Docker image defaults
to the MYSQL_ROOT_PASSWORD, but may also be set explicitly to the same value as the MYSQL_ROOT_PASSWORD.
Some of the other environment variables used by the wordpress Docker image are listed in Table 15-2.

If we were to create a WordPress blog using the wordpress and mysql images with the docker run
command, we would create Docker containers for each of the Docker images separately and link the
containers using the –link option. If we were to use Docker Compose (standalone), we would need to add a
links or depends_on sub-option in the Docker Compose file.

Table 15-2. Environment Variables for the Docker Image WordPress

Environment Variable Description Default Value

WORDPRESS_DB_HOST The linked database host, which is
assumed to be MySQL database by
default.

The IP and port of the linked mysql
Docker container

WORDPRESS_DB_USER The database user. root

WORDPRESS_DB_PASSWORD The database password. MYSQL_ROOT_PASSWORD

WORDPRESS_DB_NAME The database name. The database is
created if it does not already exist.

wordpress

WORDPRESS_TABLE_PREFIX Table prefix. “”

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Chapter 15 ■ Using serviCe staCks

304

Next, specify the Docker images and environment variables to the stack file for creating a service stack.
To use the Docker Compose YAML file format for Swarm mode stacks, specify the version in the stack file as
3 or a later version such as 3.1. The docker-cloud.yml file is listed:

version: '3'
services:
 web:
 image: wordpress
 links:
 - mysql
 environment:
 - WORDPRESS_DB_PASSWORD="mysql"
 ports:
 - "8080:80"
 mysql:
 image: mysql:latest
 environment:
 - MYSQL_ROOT_PASSWORD="mysql"
 - MYSQL_DATABASE="mysqldb"

The ports mapping of 8080:80 maps the WordPress Docker container port 80 to the host port 8080. Any
stack file options, such as links that are included in the preceding listing that are not supported by docker
stack deploy, are ignored when creating a stack. Store the preceding listing as docker-cloud.yml in the
Swarm manager EC2 instance. Listing the files in Swarm manager should list the docker-cloud.yml file.

~ $ ls -l
total 4
-rwxr-x--- 1 docker docker 265 Jun 17 00:07 docker-cloud.yml

Having configured a stack file with two services, next we will create a service stack.

Creating a Stack
The docker stack deploy command is used to create and deploy a stack. It has the following syntax.

docker stack deploy [OPTIONS] STACK

Chapter 15 ■ Using serviCe staCks

305

Table 15-3. Options for the docker stack deploy Command

Option Description Default Value

--bundle-file Path to a Distributed Application
Bundle file. An application bundle
is created from a Docker Compose
file just as a Docker image is created
from a Dockerfile. An application
bundle may be used to create
stacks. Application bundles are an
experimental feature at the time the
chapter was developed and are not
discussed in this chapter.

--compose-file, -c Path to stack file.

--with-registry-auth Whether to send registry
authentication information to Swarm
agents.

False

The supported options are discussed in Table 15-3.

Using the stack file docker-cloud.yml, create a Docker stack called mysql with the docker stack
deploy command.

docker stack deploy --compose-file docker-cloud.yml mysql

A Docker stack is created and the links option, which is not supported in Swarm mode, is ignored. Two
Swarm services—mysql_mysql and mysql_web—are created in addition to a network mysql_default.

~ $ docker stack deploy --compose-file docker-cloud.yml mysql
Ignoring unsupported options: links

Creating network mysql_default
Creating service mysql_mysql
Creating service mysql_web

Listing Stacks
List the stacks with the following command.

docker stack ls

The mysql stack is listed. The number of services in the stack also are listed.

~ $ docker stack ls
NAME SERVICES
mysql 2

Chapter 15 ■ Using serviCe staCks

306

Listing Services
List the services in the mysql stack using the docker stack services command, which has the following
syntax.

docker stack services [OPTIONS] STACK

The supported options are listed in Table 15-4.

To list all services, run the following command.

docker stack services mysql

The two services—mysql_mysql and mysql_web—are listed.

~ $ docker stack services mysql
ID NAME MODE REPLICAS IMAGE
ixv0ykhuo14c mysql_mysql replicated 1/1 mysql:latest
vl7ph81hfxan mysql_web replicated 1/1 wordpress:latest

To filter the services, add the --filter option. To filter multiple services, add multiple --filter
options, as shown in the following command.

docker stack services --filter name=mysql_web --filter name=mysql_mysql mysql

The filtered stack services are listed. As both services are specified using –filter, both services are
listed.

~ $ docker stack services --filter name=mysql_web --filter name=mysql_mysql mysql
l
ID NAME MODE REPLICAS IMAGE
ixv0ykhuo14c mysql_mysql replicated 1/1 mysql:latest
vl7ph81hfxan mysql_web replicated 1/1 wordpress:latest

The services created by a stack are Swarm services and may also be listed using the following command.

docker service ls

Table 15-4. Options for the docker stack services Command

Option Description Default Value

--filter, -f Filters output based on filters (or
conditions) provided

--quiet, -q Whether to display only the IDs of the
services

false

Chapter 15 ■ Using serviCe staCks

307

The same two services are listed.

~ $ docker service ls
ID NAME MODE REPLICAS IMAGE
ixv0ykhuo14c mysql_mysql replicated 1/1 mysql:latest
sl2jmsat30ex helloworld replicated 2/2 alpine:latest
vl7ph81hfxan mysql_web replicated 1/1 wordpress:latest

Listing Docker Containers
The docker stack ps command is used to list the Docker containers in a stack and has the following syntax;
output the command usage with the --help option.

~ $ docker stack ps --help
Usage: docker stack ps [OPTIONS] STACK
List the tasks in the stack
Options:
 -f, --filter filter Filter output based on conditions provided
 --help Print usage
 --no-resolve Do not map IDs to Names
 --no-trunc Do not truncate output

To list all Docker containers in the mysql stack, run the following command.

docker stack ps mysql

By default, one replica is created for each service, so one Docker container for each service in the stack
is listed. Both Docker containers are running on a Swarm worker node.

~ $ docker stack ps mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
n9oqwaikd61g mysql_web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 3 minutes ago
infzi7kxg9g9 mysql_mysql.1 mysql:latest ip-172-31-37-108.ec2.internal
Running Running 3 minutes ago

Using the –f option to filter the Docker containers to list only the mysql_web.1 container.

~ $ docker stack ps -f name=mysql_web.1 mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
n9oqwaikd61g mysql_web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 9 minutes ago

Chapter 15 ■ Using serviCe staCks

308

List all the running containers by setting the desired-state filter to running.

~ $ docker stack ps -f desired-state=running mysql
ID NAME IMAGE NODE
DESIRED STATE CURRENT STATE ERROR PORTS
n9oqwaikd61g mysql_web.1 wordpress:latest ip-172-31-37-108.ec2.internal
Running Running 10 minutes ago
infzi7kxg9g9 mysql_mysql.1 mysql:latest ip-172-31-37-108.ec2.internal
Running Running 10 minutes ago

Using the Service Stack
Next, we use the stack to create a WordPress blog. The stack service called web may be accessed on port 8080
on the Swarm manager host. Obtain the public DNS of the Swarm manager node EC2 instance, as shown in
Figure 15-8.

Figure 15-8. Public DNS of Swarm manager

Chapter 15 ■ Using serviCe staCks

309

Open the <public dns>:8080 URL in a browser. The <public dns>:8080/wp-admin/install.php URL is
displayed to start the WordPress installation. Select Continue. Specify a subtitle, username, password, e-mail,
and whether to discourage search engines from indexing the website. Then click on Install WordPress, as
shown in Figure 15-9.

Figure 15-9. Installing WordPress

Chapter 15 ■ Using serviCe staCks

310

WordPress is installed, as shown in Figure 15-10. Click on Log In.

Specify a username and password and click on Log In, as shown in Figure 15-11.

Figure 15-11. Logging in

Figure 15-10. WordPress is installed

Chapter 15 ■ Using serviCe staCks

311

The WordPress blog dashboard is displayed, as shown in Figure 15-12.

To add a new post, select Posts and click on Add New, as shown in Figure 15-13.

Figure 15-12. The WordPress dashboard

Figure 15-13. Adding a new post

Chapter 15 ■ Using serviCe staCks

312

In the Add New Post dialog, specify a title and add a blog entry. Click on Publish, as shown in Figure 15-14.

The new post is added. Click on View Post, as shown in Figure 15-15, to display the post.

Figure 15-14. Publishing a new post

Figure 15-15. Viewing the new post

Chapter 15 ■ Using serviCe staCks

313

The blog post is displayed, as shown in Figure 15-16.

Scroll down and add a comment, as shown in Figure 15-17.

Figure 15-16. Displaying a blog post

Figure 15-17. Adding a comment

Chapter 15 ■ Using serviCe staCks

314

The comment is added, as shown in Figure 15-18.

Removing a Stack
The docker stack rm STACK command is used to remove a stack. Remove the mysql stack using the
following command.

docker stack rm mysql

The mysql stack is removed and the docker stack service mysql command does not list the stack, as
shown in the output from the command.

~$ docker stack rm mysql

Removing service mysql_mysql

Removing service mysql_web

Removing network mysql_default

~$ docker stack services mysql

Nothing found in stack: mysql

Figure 15-18. The comment has been added

Chapter 15 ■ Using serviCe staCks

315

Summary
This chapter introduced stacks, a Docker-native feature added in Docker 1.13. A stack is a collection of
related services and is created using a stack file, which is defined in YAML format similar to the Docker
Compose v3.x YAML syntax. This chapter concludes this book about Docker management design patterns.
As new features are added to Docker, other design patterns may be used for developing Docker-native
applications.

317© Deepak Vohra 2017
D. Vohra, Docker Management Design Patterns, https://doi.org/10.1007/978-1-4842-2973-6

��������� A
Amazon Route 53 service, 242, 251
Amazon Web Services (AWS), 281–284

CloudFormation
Deploy Docker, 34
EC2, 46
Elastic Load Balancer, 48
launch configurations, 48
Moby Linux AMI, 47
stacks, 41–46
Swarm parameters, 35
Swarm properties, 36–38

delete stack, 51–53
editions, 33
key pair, 33
manager and worker nodes, 49–50
option, 284
single/multi zone Swarm, 31–33

Application load balancers, 228
Availability zone column, 245
AWS credentials dialog, 282
AWS elastic load balancer, 241
AWS service provider, 285

��������� B
Bind mounts, 98–99, 112–114
Bridge network

AWS CloudFormation stack, 182
create service, 186
description, 184
docker0 limitations, 179
Swarm manager instance, 183

��������� C
Classic load balancers, 228
CloudFormation stack, 235, 244, 287
Cloud settings page, 282

Cross-account access, 273
Current state reconciliation, 138
Custom overlay network

gossip protocol, 194
IP range, 191
IPSEC tunnels, 194
mysql-network, 192–193
MySQL database service, creation, 194–195
service containers, 181

��������� D
Desired state reconciliation, 138–139
Docker

Cloud, 271–272
CoreOS, 1
DNS/IPv4, 3
execution, 3–6
launch instances, 2
service, 239, 246

Docker Cloud dashboard, 289
Docker Cloud Swarm AWS role, 287
Docker Cloud Swarm mode, 285, 294, 296
docker_gwbridge network, 181, 184
Docker docker stack deploy command, 297
Docker Swarm load balancer, 247
Docker Swarm mode service, 219
Domain Name Service (DNS), 251, 256
DynamoDB database, 271

��������� E
Edit Endpoint link, 288
Elastic load balancer (ELB), 220, 238, 250
External load balancer, 221

��������� F
Failover record type, 259
Failover routing policy, 262

Index

■ INDEX

318

��������� G
Global service, 83

rolling update, 176, 178
spread scheduling policy, 153

Gossip protocol, 194

��������� H
Hello World service, 222, 233, 237, 246, 293
Highly available website

alias target, 258, 261
Amazon Route 53, 242
AWS elastic load balancer, 258
AWS region, 241
confirmation dialog, 267
DNSes, 243
Docker Swarm, 243
domain name, 243
failover record type, 259
hosted zone, 252, 266–268
hostname, 266
name servers, 254–255

Host network, 184

��������� I, J, K
IAM role, 288
Ingress network, 180, 185

add load balancer listener, 190–191
create service, 189
description, 184
docker service

create command, 188
inspect command, 189, 191

ports, 181
Ingress load balancing, 219
Internal overlay network, 195–198

��������� L
Listeners tab, 236
Load balancer listeners, 236
Load balancing

CoreOS, 221
custom scheduling, 219
dialog, 228
DNS name, 232
Docker container, 223
EC2 instances, 230
ELB, 220
external elastic load balancer, 227
HTTP, 228
invoke, service at worker node, 226
new security group, 229

protocol, 228
security settings, 229
service discovery, 219
service task, 226, 234
SSH login, 222
types, 228

Logging and monitoring
connecting, SPM and Logsene apps, 208–209
Docker Swarm logs, Logsene, 214–216
Docker Swarm metrics, 213
Logsene application, 205–206, 208
MySQL database service, 212
Sematext Docker agent, 209, 211
Sematext SPM and Logsene, 203
SPM application creation, 203–205

��������� M
Mounts

bind, 98–99, 112–114
data stored, 97
EC2 instances, AWS Swarm nodes, 100
named volume, 100–101
options, 102–103
tmpfs mount options, 103
volume (see Volume mount)

Multiple Docker Swarms, 243
MySQL database

Docker container, 70–72
service, creation, 67

��������� N, O
Network

custom overlay, 181
delete, 198–199
docker0 bridge limitations, 179
docker_gwbridge, 181
ingress, 180
internal overlay, 195–198
Swarm mode, 183–184

��������� P, Q
Postgres image, 167, 170
Primary record set, 260
Public hosted zone, 254

��������� R
Replicated services, 60
Resources configuration

allocation, resource reserves set, 117–118
CPU and memory limits, 124
EC2 instances, Swarm nodes, 119

■ INDEX

319

options, resource reserves, 120
reserved resources, 117, 122–123
resource-utilized node, 116
scale up, CloudFormation stack, 127–128, 130
scaling, 121
service creation, 119–121
service resources configuration, 124
setting resource limits, 120
types, 115
unequal allocation, 116
usage and node capacity, 125–126

Rolling update
configuration, 158
ContainerSpec, 168–169
desired state, 159
environment variables, 162
failure action, 173–174
global service, 176, 178
image tag, 161–162
mounts, 172–173
mysql service to Postgres, 175
nodes, 157
options, 157
Postgres image, 167, 170
resource limits and reserves, 164–165, 167
restart, 171
running, 163
sequences, 156–157
shutting down, 155–156
status, 162
updates, 158, 160–161

��������� S, T, U
Scaling services

docker node ls command, 87
Docker Swarm mode, 86
global service, 92
multiple services, 93–95
removing service, 92
replacement service task, 95–96
replicated service, creation, 87
scaling down, 91
scaling up, 88–91

Scheduling
add multiple constraints, 148, 150
add node labels, 150
definition, 131
lack of locality, 132
limited, node resource capacity, 141–143, 145
node attributes, constraints, 146
pending state, 142–143
remove constraints, 152
shutdown desired state, 143
single point of failure, 132

specific nodes, 146–147
unbalanced utilization of resource, 132
underutilization of resources, 132
updating placement constraints, 151

Secondary record set, 261–263
Sematext Docker agent, 201, 202
Services

command line, 62–63
creation, 60–61
docker service inspect, 63–65
docker service ps, 68–70
EC2 instances, 57–59, 66
global, 60
MySQL database, 67
removing, 83
replicated, 60
scaling, 68
sub-commands, 59
tasks and containers, 55–57, 61
updation

container labels, 82
environment variable, 80
image, 75–78, 81
mysql, 74–75
options, 73–74
placement constraints, 79–80
resources settings, 82

Service stacks
CloudFormation stack, 300
configuration, 303–304
creation, 304–305
docker stack commands, 298–299
docker stack ps command, 307
listing stacks, 305
Moby Linux AMI, 301
options, docker stack services command, 306
public IP address, 302
removing, 314
security group inbound rules, 301
Swarm mode services, 298
WordPress

add new post, 311
comment adding, 313
dashboard, 311
displaying blog post, 313
installation, 309
logging in, 310
public DNS, Swarm manager, 308
publishing post, 312
viewing post, 312

Single responsibility principle (SRP), 97
Spread scheduling policy, global service, 153
Spread scheduling strategy

CloudFormation stack, 135
current state reconciliation, 138

■ INDEX

320

desired state reconciliation, 138–141
docker service scale command, 137
EC2 instances, 135
mysql service, 134
nginx server, 134
node ranking, 133
re-adding worker node, 140–141
using MySQL database, 136–137

Swarm manager node, 295
Swarm mode, 183–184

account and external IDs, 274
apply policy, 278
AWS infrastructure, 287
Cloud service, 281
CoreOS instance, 290
cross-account access, 274
deploying, 286
desired state, 11
Docker Cloud service, 280
dockercloud-swarm-role, 276
Docker images, 271
EC2 console, 292
EC2 instances, 14, 290
endpoint, 289
features, 9
IAM role, 272
initializing, 14–15, 17–18
inline policy, 276, 277, 279
joining nodes, 18–19
manager nodes, 10, 11, 24–27

node availability, 28–29
quorum, 12–13
Raft consensus, 11
reinitializing, 28
removing, 30
role name, 273
service, 11
testing, 20–24
worker nodes, 10, 12, 25

Swarm nodes, 220, 249
Swarms toolbar option, 280

��������� V, W, X, Y, Z
Volume mount

auto-generated named volumes, 107, 109, 111
container, 98
destination directory, 108
docker service create command, 102
mysql-scripts, 107, 110–111
named volume, 97, 103–105, 107, 111
nginx-root, 105
options, 102–103
removing, 112
service creation, 105, 108
service definition, 104, 107
service replicas, 104
service task, 110
task container, service, 109
tmpfs mount, 103
volume-label, 103

Spread scheduling strategy (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Getting Started with Docker
	Setting the Environment
	Running a Docker Application
	Summary

	Chapter 2: Using Docker in Swarm Mode
	The Problem
	The Solution
	Docker Swarm Mode
	Nodes
	Service
	Desired State of a Service
	Manager Node and Raft Consensus
	Worker Nodes
	Quorum

	Setting the Environment
	Initializing the Docker Swarm Mode
	Joining Nodes to the Swarm
	Testing the Swarm
	Promoting a Worker Node to Manager
	Demoting a Manager Node to Worker
	Making a Worker Node Leave the Swarm
	Making a Manager Node Leave the Swarm
	Reinitializing a Cluster
	Modifying Node Availability
	Removing a Node
	Summary

	Chapter 3: Using Docker for AWS to Create a Multi-Zone Swarm
	The Problem
	The Solution
	Setting the Environment
	Creating a AWS CloudFormation Stack for Docker Swarm
	Connecting with the Swarm Manager
	Using the Swarm
	Deleting a Swarm
	Summary

	Chapter 4: Docker Services
	The Problem
	The Solution
	Setting the Environment
	The docker service Commands
	Types of Services
	Creating a Service
	Listing the Tasks of a Service
	Invoking a Hello World Service Task on the Command Line
	Getting Detailed Information About a Service
	Invoking the Hello World Service in a Browser
	Creating a Service for a MySQL Database
	Scaling a Service
	Listing Service Tasks
	Accessing a MySQL Database in a Docker Container
	Updating a Service
	Updating the Replicas
	Updating the Docker Image Tag
	Updating the Placement Constraints
	Updating Environment Variables
	Updating the Docker Image
	Updating the Container Labels
	Updating Resources Settings

	Removing a Service
	Creating a Global Service
	Summary

	Chapter 5: Scaling Services
	The Problem
	The Solution
	Setting the Environment
	Creating a Replicated Service
	Scaling Up a Service
	Scaling Down a Service
	Removing a Service
	Global Services Cannot Be Scaled
	Scaling Multiple Services Using the Same Command
	Service Tasks Replacement on a Node Leaving the Swarm
	Summary

	Chapter 6: Using Mounts
	The Problem
	The Solution
	Volume Mounts
	Bind Mounts
	Setting the Environment
	Creating a Named Volume
	Using a Volume Mount
	Removing a Volume
	Creating and Using a Bind Mount
	Summary

	Chapter 7: Configuring Resources
	The Problem
	The Solution
	Setting the Environment
	Creating a Service Without Resource Specification
	Reserving Resources
	Setting Resource Limits
	Creating a Service with Resource Specification
	Scaling and Resources
	Reserved Resources Must Not Be More Than Resource Limits
	Rolling Update to Modify Resource Limits and Reserves
	Resource Usage and Node Capacity
	Scaling Up the Stack

	Summary

	Chapter 8: Scheduling
	The Problem
	The Solution
	Setting the Environment
	Creating and Scheduling a Service: The Spread Scheduling
	Desired State Reconciliation
	Scheduling Tasks Limited by Node Resource Capacity
	Adding Service Scheduling Constraints
	Scheduling on a Specific Node
	Adding Multiple Scheduling Constraints
	Adding Node Labels for Scheduling
	Adding, Updating, and Removing Service Scheduling Constraints

	Spread Scheduling and Global Services
	Summary

	Chapter 9: Rolling Updates
	The Problem
	The Solution
	Setting the Environment
	Creating a Service with a Rolling Update Policy
	Rolling Update to Increase the Number of Replicas
	Rolling Update to a Different Image Tag
	Rolling Update to Add and Remove Environment Variables
	Rolling Update to Set CPU and Memory Limits and Reserve
	Rolling Update to a Different Image
	Rolling Restart
	Rolling Update to Add and Remove Mounts
	Rolling Update Failure Action
	Roll Back to Previous Specification
	Rolling Update on a Global Service
	Summary

	Chapter 10: Networking
	The Problem
	The Solution
	The Ingress Network
	Custom Overlay Networks
	The docker_gwbridge Network
	The Bridge Network

	Setting the Environment
	Networking in Swarm Mode
	Using the Default Bridge Network to Create a Service
	Creating a Service in the Ingress Network
	Creating a Custom Overlay Network
	Using a Custom Overlay Network to Create a Service
	Creating an Internal Overlay Network
	Deleting a Network
	Summary

	Chapter 11: Logging and Monitoring
	The Problem
	The Solution
	Setting the Environment
	Creating a SPM Application
	Creating a Logsene Application
	Connecting the SPM and Logsene Apps
	Deploying the Sematext Docker Agent as a Service
	Creating a MySQL Database Service on a Docker Swarm
	Monitoring the Docker Swarm Metrics
	Getting Docker Swarm Logs in Logsene
	Summary

	Chapter 12: Load Balancing
	Service Discovery
	Custom Scheduling
	Ingress Load Balancing
	The Problem
	The Solution
	Setting the Environment
	Creating a Hello World Service
	Invoking the Hello World Service
	Creating an External Elastic Load Balancer
	Load Balancing in Docker for AWS
	Summary

	Chapter 13: Developing a Highly Available Website
	The Problem
	The Solution
	Setting the Environment
	Creating Multiple Docker Swarms
	Deploying a Docker Swarm Service
	Creating an Amazon Route 53
	Creating a Hosted Zone
	Configuring Name Servers
	Creating Resource Record Sets

	Testing High Availability
	Deleting a Hosted Zone
	Summary

	Chapter 14: Using Swarm Mode in Docker Cloud
	The Problem
	The Solution
	Setting the Environment
	Creating an IAM Role
	Creating a Docker Swarm in Docker Cloud
	Connecting to the Docker Swarm from a Docker Host
	Connecting to the Docker Swarm from a Swarm Manager
	Bringing a Swarm into Docker Cloud
	Summary

	Chapter 15: Using Service Stacks
	The Problem
	The Solution
	Setting the Environment
	Configuring a Service Stack
	Creating a Stack
	Listing Stacks
	Listing Services
	Listing Docker Containers
	Using the Service Stack
	Removing a Stack
	Summary

	Index

