
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 12/21/2010 10:44:59 AM12/21/2010 10:44:59 AM

www.allitebooks.com

http://www.allitebooks.org

EKTRON DEVELOPER’S GUIDE

INTRODUCTION . xxiii

 � PART I GETTING STARTED

CHAPTER 1 Introducing Ektron . 3

CHAPTER 2 The Ektron Web Project Methodology .17

CHAPTER 3 The Implementation Guide . 29

CHAPTER 4 Confi guring Your Development Environment . 45

 � PART II BUILDING THE TECHPOINT SITE

CHAPTER 5 Understanding Content Management Fundamentals 53

CHAPTER 6 Confi guring Commonly Used Components . 107

CHAPTER 7 The Homepage .147

CHAPTER 8 Reaching Prospects . 225

CHAPTER 9 Generating Leads Through Campaign Optimization 265

CHAPTER 10 Supporting Customers . 333

CHAPTER 11 Implementing the OnTrek Social Network . 389

CHAPTER 12 Creating the Catalog of Products for the eCommerce Storefront . . . 441

CHAPTER 13 Constructing the Online Storefront with eCommerce 491

 � PART III DEPLOYING THE TECHPOINT SITE

CHAPTER 14 Deploying Your Website . 547

CHAPTER 15 Maintaining Your Website . 571

CHAPTER 16 Next Steps . 587

 � PART IV APPENDIXES

APPENDIX A CMS Extensions . 599

APPENDIX B Framework API .605

APPENDIX C Performance Checklist . 611

GLOSSARY .615

INDEX . 625

ffirs.indd iffirs.indd i 12/21/2010 10:44:58 AM12/21/2010 10:44:58 AM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 12/21/2010 10:44:59 AM12/21/2010 10:44:59 AM

www.allitebooks.com

http://www.allitebooks.org

Ektron Developer’s Guide

ffirs.indd iiiffirs.indd iii 12/21/2010 10:44:59 AM12/21/2010 10:44:59 AM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd ivffirs.indd iv 12/21/2010 10:44:59 AM12/21/2010 10:44:59 AM

www.allitebooks.com

http://www.allitebooks.org

Ektron Developer’s Guide

BUILDING AN EKTRON POWERED WEBSITE

Bill Cava

Bill Rogers

Aniel Sud

ffirs.indd vffirs.indd v 12/21/2010 10:44:59 AM12/21/2010 10:44:59 AM

www.allitebooks.com

http://www.allitebooks.org

Ektron Developer’s Guide: Building an Ektron Powered Website

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-88569-7
ISBN: 978-1-118-05800-8 (ebk)
ISBN: 978-1-118-05801-5 (ebk)
ISBN: 978-1-118-05802-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010941222

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Ektron, the Ektron logo and eIntranet, are registered trademarks of
Ektron, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

www.allitebooks.com

www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

Dedicated to the Ektron team, each and every person

makes a signifi cant difference.

ffirs.indd viiffirs.indd vii 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

www.allitebooks.com

http://www.allitebooks.org

CREDITS

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

Maureen Spears

TECHNICAL EDITORS

Jason Arden

Joseph Cicchetto

PRODUCTION EDITOR

Kathleen Wisor

COPY EDITOR

Kezia Endsley

EDITORIAL DIRECTOR

Robyn B. Siesky

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Barry Pruett

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nancy Carrasco

INDEXER

Johnna VanHoose Dinse

COVER DESIGNER

Michael E. Trent

COVER IMAGE

© Petr Novotny/istockphoto.com

ffirs.indd viiiffirs.indd viii 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE AUTHORS

BILL CAVA is a six-year veteran of Ektron. As Chief Evangelist, Bill channels his passion for internet
technology, WCM, and software development into the Ektron Developer Community. Prior to this
role, Bill served as Chief Technologist responsible for guiding the company’s technology direction,
product strategy, new product development and engineering practices. Before joining Ektron, Bill
was a principal engineer at Lycos, one of the Internet’s fi rst search engines. Earlier in his career he
worked at the Center for Intelligent Information Retrieval as a research engineer. He holds pat-
ents on Information Retrieval and is a technology advisor for a number of internet companies. As
an undergraduate at the University of Massachusetts Amherst, Bill studied Italian Literature, Fine
Art and Computer Science, and continued his Computer Science studies as a graduate student at
Worcester Polytechnical Institute (WPI).

BILL ROGERS founded Ektron in 1998 with a simple vision: enable business users to easily author
and publish content on websites. Today, Rogers has sparked a revolution in the way organizations
create and manage interactive Web, intranet and extranet sites. He recognized early on how impor-
tant websites would become to companies’ business models, and guided Ektron in creating a Web
content management software platform that provides all the functionality Webmasters, designers
and developers want in a single application, while still minimizing the complexity to which the
non-technical users are exposed.

In his role as a hands-on chief executive offi cer, Rogers is actively engaged in keeping Ektron a Web
content management market and technology leader. He sets the company’s strategic direction, aligns
product development with his forward-looking vision for website technology and is involved
in all aspects of Ektron’s operations. In addition, he frequently participates in industry events
and solicits feedback from Ektron’s customers and partners to stay on the leading edge of Web
technology development. Rogers received a Bachelor of Science degree in Electrical Engineering
from Boston University.

ANIEL SUD has been in the WCM industry since 2002 and with Ektron for four years. Serving Ektron as
CMS Architect, he envisions new features like Ektron’s PageBuilder and brings them to reality. Before
becoming CMS Architect, Aniel served as Ektron’s Technical Evangelist, a role where he helped
customers, through trade show talks, local user groups, and one-on-one consultation, to understand
methods of enabling Ektron to make their lives easier. Prior to joining Ektron, Aniel co-founded
Firefall Pro, a boutique Web development fi rm, specializing in marketing and content management
systems. He received his Bachelors from Drexel where he studied Computer Engineering.

ffirs.indd ixffirs.indd ix 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

ABOUT THE TECHNICAL EDITORS

JASON ARDEN joined Ektron in 2006, and currently serves as Director of Partner Engineering. The
Partner Engineering Team is a key part of the complete set of services and support options that
allows Ektron to ensure that their Partners succeed in deploying Ektron solutions. Prior to heading
up the Partner Engineering Team, Mr. Arden served as a Lead Consulting Sales Engineer working
with Ektron Partners and prospects during the pre-sales lifecycle. Prior to joining Ektron, Jason was
part of the IT staff at the Radiological Society of North America. He holds a BS in Networking and
Telecommunications Management from DeVry University.

JOSEPH CICCHETTO is a Sr. CMS Architect at Ektron, overseeing the corporate architecture team
for the Professional Services Group. In this role, Joe is responsible for setting architecture standards,
and acting as lead architect on enterprise solutions. Prior to joining Ektron, Joe was Director of
Engineering for Softmedia and has a broad background in software development and project man-
agement. Joe studied Computer Science as an undergraduate student at Boston University.

ffirs.indd xffirs.indd x 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

ACKNOWLEDGMENTS

WE’D LIKE TO THANK the Wrox staff, especially Paul Reese, Maureen Spears, and Kezia Endsley.
Maureen and Kezia were instrumental in their editing efforts, and without them, the process of
writing this book would have been infi nitely more painful. Behind the scenes, Anna Jeon and Fred
Bals worked very hard to help us to maintain standards and made sure to berate Aniel every time he
ended a sentence with a preposition.

Our technical editors — Jason Arden and Joe Cicchetto — were also key to the process of get-
ting the content into a publishable format. Without them, the code samples in this book probably
wouldn’t even compile. Ted Henry and Keith Pepin also played essential roles in working with the
authors to ensure that the content was sound and correct. Brian Fanny also provided substantial
input, giving us technical feedback and general knowledge relating to support issues, including
deployment and maintenance.

Brian Browning went above and beyond, creating large portions of the content for Chapters 2 and 3.
As the Senior Director of Client Services at Ektron, he is uniquely poised to create content outlining
Ektron’s Professional Services process.

Chris Banner, Bob Bolt, Bruce Bourdon, Doug Domeny, Steve Mann, Alpesh Patel and Justin West
all played central roles in helping the authors to understand various technical approaches to indi-
vidual issues, and their input is greatly appreciated. Scott Kearney provided valuable insight into the
eCommerce related content, and Joe Chestnut, Justin Ryan, and Sanela Suljic all assisted by giving
us feedback on Deployment and Maintenance.

ffirs.indd xiffirs.indd xi 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

ffirs.indd xiiffirs.indd xii 12/21/2010 10:45:01 AM12/21/2010 10:45:01 AM

CONTENTS

INTRODUCTION xxiii

PART I: GETTING STARTED

CHAPTER 1: INTRODUCING EKTRON 3

Ektron: The Company 3

Ektron’s Community, Support, and Services 4

Ektron’s Online Community 4

Ektron Technical Support 5

Ektron’s Best Practices and Professional Services 6

Ektron Training 7

Ektron, the Framework 7

All-in-One versus Best-of-Breed 8

Developing with the Ektron Framework 9

System Requirements 13

Who Uses Ektron? 15

Take Home Points 16

CHAPTER 2: THE EKTRON WEB PROJECT METHODOLOGY 17

Iterative/Waterfall versus Agile Approaches 18

The Business Case: Where It All Starts 18

Understanding the Implementation Process 19

The Discovery Phase 19

Kicking Off the Project 20

Developing a Project Plan 20

The Implementation Phase 24

Starting Development 24

Content Migration 25

The Quality Assurance Phase 26

System Testing 26

User Acceptance Testing 27

Take Home Points 28

ftoc.indd xiiiftoc.indd xiii 12/21/2010 10:45:49 AM12/21/2010 10:45:49 AM

xiv

CONTENTS

CHAPTER 3: THE IMPLEMENTATION GUIDE 29

The Ektron Approach 30

Implementation Guide 31

The OnTrek Implementation Guide 32

The Homepage 33

Product Page 35

User Dashboard Page 39

Take Home Points: Best Practices for Creating an
Implementation Guide 42

CHAPTER 4: CONFIGURING YOUR DEVELOPMENT ENVIRONMENT 45

What You Need to Confi gure Your Machine 45

Installing the Framework 46

Development Scenarios 47

Source Control 47

Data Synchronization 47

Further Tips 49

Take Home Points 49

PART II: BUILDING THE TECHPOINT SITE

CHAPTER 5: UNDERSTANDING CONTENT MANAGEMENT
FUNDAMENTALS 53

Login and Workarea 54

Logging In and Creating a User 55

Exploring the Workarea 59

Content Entry and Display 62

Content Storage and Status 62

Adding and Managing Content 64

Using the Content Block Server Control 82

Folders and the Library 85

Implementation: Adding a Folder and Managing Library Items 85

Under the Hood: Folders and Libraries 95

Folders and Library in Brief 95

Permissions, Approvals, and Roles 95

Understanding Permissions 95

Understanding Approval Chain Workfl ows 96

ftoc.indd xivftoc.indd xiv 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xv

CONTENTS

Understanding Roles 96

Managing Permissions and Workfl ow 96

Under the Hood 102

Take Home Points 105

CHAPTER 6: CONFIGURING COMMONLY USED COMPONENTS 107

Understanding the Technology 108

Smart Forms 109

The Diff erence between Smart Forms and HTML Forms 110

Understanding Smart Form Design 110

Creating Smart Form Designs 111

Retrieving, Manipulating, and Rendering Structured Data 113

Implementation 117

Under the Hood 122

Taxonomy 124

Implementation 125

Under the Hood 128

Aliasing 130

Taxonomy Based Aliasing 131

Folder Based Aliasing 131

RegEx Based Aliasing 131

Community Aliasing 131

Manual Aliasing 132

Implementation 132

Under the Hood 135

Multilingual Sites 136

Designing an Ektron Multilingual Website 137

Managing the Displayed Content Language 141

Implementation 142

Under the Hood 144

Take Home Points 145

CHAPTER 7: THE HOMEPAGE 147

Use Case 148

Technology 150

Using Rotating Graphics 150

Adding Navigation 150

Rich Interaction Using jQuery, Smart Forms, and Handlers 151

ftoc.indd xvftoc.indd xv 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xvi

CONTENTS

Types of Interaction 151

Homepage Image Rotator Using Serialization 153

Homepage Image Rotator Using XSLT 162

Web Service Creation and Consumption 169

Using Menus for Navigation 185

Ektron Menu Basics 185

Implementing the Global Navigation Menu 191

Under the Hood 195

Using Search for Navigation 197

Defi ning Your SiteSearch Strategy 198

Adding Search to the Global Navigation 203

Under the Hood 205

Sitemap and Breadcrumbs 209

Creating Breadcrumbs for the Products Folder 210

Implementing the BreadCrumb Server Control 212

Creating a Sitemap Page 213

Registration 215

Allowing a User to Register on the Site 215

Allowing Users to Modify Their Properties 218

Implementing a Password Reset Feature 219

Implementing Facebook Registration 220

Take Home Points 223

CHAPTER 8: REACHING PROSPECTS 225

Use Case 225

Technology 227

ListSummary 228

Implementing a Basic ListSummary 229

Changing the HTML Markup Using XSLT 232

Changing the Markup Using EKML 236

Calendars 239

Creating a System Calendar, User Calendar, and

Group Calendar 240

Displaying Events Using a WebCalendar Server Control 246

Displaying Events Using a ListSummary Server Control 250

Displaying Events Using a Content Block Server Control 250

Display a List of Upcoming Events 253

Outputting iCal Feeds 256

Video/Customer Testimonials 257

ftoc.indd xviftoc.indd xvi 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xvii

CONTENTS

Adding an Object to the DMS 257

Modifying Settings on Managed Objects 259

Displaying the Managed Object 261

Alternatives to Using the Ektron Framework 262

Take Home Points 263

CHAPTER 9: GENERATING LEADS THROUGH CAMPAIGN
OPTIMIZATION 265

Use Case 266

Understanding the Technology 268

Implementation Using Collections 270

Creating a Collection 271

Adding to the Collection 272

Putting the Collection on the Landing Page 273

Customizing the Presentation of the Collection Widget 275

Under the Hood: Collection Data Model 280

PageBuilder 282

Creating the Wireframe 283

Associating the Wireframe to a Folder 286

Creating a Layout Based on the Wireframe 286

Under the Hood 292

Widgets 297

Creating the Widget 299

Under the Hood: Widgets 307

HTML Forms 310

Creating a Form 310

Implementation: The “Request a Demo” Form 311

Under the Hood: HTML Form Data Model 315

Multivariate Testing 317

Under the Hood: Multivariate 323

Multivariate Brief 324

Web Analytics 324

Traffi c Analytics versus Business Analytics 324

Analytics Reports 325

Setting Up Site Wide Traffi c Analytics 326

Measuring Eff ectiveness of the Campaign Using

Traffi c Analytics 328

Under the Hood: Analytics 329

Take Home Points 330

Additional Practice Steps 331

ftoc.indd xviiftoc.indd xvii 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xviii

CONTENTS

CHAPTER 10: SUPPORTING CUSTOMERS 333

Understanding the Technology 334

Forums 334

Blogs 334

Wiki 335

Use Case 336

Building Forums 338

Creating Forums in the Workarea 339

Blogs 353

Create a Blog in the Workarea 354

Create a Template with a Blog Server Control 358

Wikis 363

Creating a Wiki in the Workarea 364

Using the Wiki Feature in the Site 364

Creating a New PageBuilder Page 365

Using the Wiki and Creating Links 367

Editing Existing Content 369

The SocialBar Server Control 369

Implementing the SocialBar Widget 370

Content Flagging and Content Review 378

Setting Up Flagging Defi nitions 378

Implementing the ContentFlagging and

ContentReview Server Controls 379

Running Flagging and Review Reports, and

Moderating Reviews 383

Take Home Points 387

CHAPTER 11: IMPLEMENTING THE ONTREK SOCIAL NETWORK 389

The Importance of Social Networking 390

Technology 391

Users, Friends, and Profi les 392

Understanding the Friending Process 392

Understanding User Profi le Functionality 393

Confi guring Community Member Templates 396

OnTrek’s User Profi le User Control 397

Under the Hood 404

Community Groups 408

How Users Discover Community Groups 409

Creating a Community Group 409

Confi guring Community Group Templates 411

ftoc.indd xviiiftoc.indd xviii 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xix

CONTENTS

OnTrek’s Group Profi le User Control 412

Under the Hood 416

Dashboards 419

What’s on the Dashboard? 419

Using the Dashbard Components and Widget Spaces 420

Activity Streams 422

Using Activity Streams to Your Advantage 422

Under the Hood 428

Micro-Messaging 433

Micro-Messaging Strategies 433

Adding Micro-Messaging to the User Profi le 435

Under the Hood 437

Take Home Points 438

CHAPTER 12: CREATING THE CATALOG OF PRODUCTS FOR THE
ECOMMERCE STOREFRONT 441

Use Case 442

Understanding the Technology 444

Confi guring eCommerce 444

Managing Major Confi guration Options 445

Confi guring the Settings for Shipping and Taxes 461

Creating a Catalog and Product 467

Creating Product Types 468

Creating a Catalog 471

Creating a Product 473

Coupons 481

Product Reports and Order Management 485

Reports 485

Order Management 488

Take Home Points 489

CHAPTER 13: CONSTRUCTING THE ONLINE STOREFRONT
WITH ECOMMERCE 491

Use Case 492

eCommerce Server Controls and Implementation 494

Browsing Experience Controls 495

Purchase and Maintenance Controls 506

OnTrek eCommerce Implementation 516

Custom Order Workfl ow 525

Windows Workfl ow Foundation Basics 526

Creating a Custom Activity 527

ftoc.indd xixftoc.indd xix 12/21/2010 10:45:50 AM12/21/2010 10:45:50 AM

xx

CONTENTS

Building a Workfl ow 531

Using a Custom Workfl ow in an Ektron Site 535

Building a Payment Gateway Provider 536

Brief Overview of Payment Gateways 537

Creating a Gateway Provider 538

Installing the Gateway Provider into the OnTrek Website 543

Take Home Points 544

PART III: DEPLOYING THE TECHPOINT SITE

CHAPTER 14: DEPLOYING YOUR WEBSITE 547

Pre-Conditions for a Successful Deployment 548

Creating the Discovery Collateral 548

Completion of the Development Process 549

Creating the Staging Environment 549

Content Is in a Staged Environment 550

Completion of System Testing 551

Understanding the Diff erent Deployment Scenarios 554

Understanding the Basic Terminology 554

Determining the Content Flow 555

Moving Content with or without eSync 558

Moving Content with eSync 558

Moving Content without eSync 561

The Deployment 563

Installing Your Website on Another Server 563

Securing the Server 567

Take Home Points 568

CHAPTER 15: MAINTAINING YOUR WEBSITE 571

Creating an Eff ective Maintenance Plan 571

Capturing Data 572

Analyzing Data 572

Acting upon Data 573

Maintaining Content Freshness 573

Running Content Reports 574

Performing “Spot Checks” 576

Maintaining Availability 577

Maintaining Performance 579

Maintaining Usability 581

ftoc.indd xxftoc.indd xx 12/21/2010 10:45:51 AM12/21/2010 10:45:51 AM

xxi

CONTENTS

Maintaining (and Building) Reach 582

Maintaining Calm During Disaster Recovery 584

Take Home Points 585

CHAPTER 16: NEXT STEPS 587

Reviewing What You Learned 587

Connecting with Ektron and the
Online Community 588

A Quick Review of Ektron’s Technical Support 589

Don’t Forget Your Account Manager 589

Utilizing Ektron’s Professional Services and
Training Packages 590

Leveraging Online Developer Resources 590

The Framework API 591

CMS Extensions 591

Integrating Ektron with a Content Delivery Network 591

Building Your First Ektron eCommerce Site 592

Utilizing the Ektron eCommerce APIs 592

Introduction to the Ektron eCommerce Workfl ow Engine 592

Creating Your Own eCommerce Payment Gateway Provider 593

Hands On with the Content Targeting Widget 593

Introduction to Ektron eSync 593

Introduction to the Ektron Marketing Optimization Suite 594

Ektron Widgets in Version 8 594

Writing an RIA Application with Ektron 594

Take Home Points 595

PART IV: APPENDIXES

APPENDIX A: CMS EXTENSIONS 599

Benefi ts of Ektron Framework, Version 8 599

Building Your Extension 600

Available Strategies and Overrides 600

The Completed Extension 602

Registering Your Extension 603

APPENDIX B: FRAMEWORK API 605

Working with the Framework API 605

Framework Object Constructors 605

ftoc.indd xxiftoc.indd xxi 12/21/2010 10:45:51 AM12/21/2010 10:45:51 AM

xxii

CONTENTS

Where to Find the Framework API 606

CRUD Operations on Content 607

Create 607

Retrieve 607

Retrieving a List of Data 608

Update 609

Delete 609

Take Home Points 609

APPENDIX C: PERFORMANCE CHECKLIST 611

Hardware Requirements 611

Appropriate SQL Server Deployment 611

Appropriate and Judicious Caching 612

Code Profi ling 613

Compiled Site 613

Event Error Maintenance 613

Gzip Response Compression 613

Externalize Resources and Use CDNs Where Applicable 613

Request Minimization 614

Glossary 615

INDEX 625

ftoc.indd xxiiftoc.indd xxii 12/21/2010 10:45:51 AM12/21/2010 10:45:51 AM

INTRODUCTION

GIVEN THAT YOU’RE READING the introduction to a Wrox book about Ektron, you likely have
(or will soon have) some level of technical responsibility for a website powered by the Ektron
Framework. Maybe you’re tasked with the duty of maintaining an existing site and are looking for
information to help make that process more effi cient; or maybe you’re developing a new site and are
in need of deep technical information, best practices, and step-by-step guidance showing how to
build a website from the ground-up using the Ektron framework. Whichever it is, you are involved
in a Web project of some form, and you’ve most likely picked up this book to gain some level of
technical competency with the Ektron Framework.

This book will cover the Ektron Framework in great technical depth, covering step-by-step instruc-
tions, best practices, and tips and tricks, in a way that is useful for someone needing to build a new
website, maintain an existing one, or something in the middle. The book goes beyond the basics of
technical competency with the Ektron platform, however, and helps you gain a solid understanding
of how to achieve success with your Ektron Web projects. From a developer’s standpoint, becoming
technically profi cient in Ektron is a prerequisite for this success; but when all is said and done, your
project’s success depends on more than just your knowledge of how to get the latest gadget on your
website.

What makes a Web project successful? Far too often, Web projects begin without the proper prepa-
ration work in place to ensure their success. Web projects can fail for a great number of reasons,
but most often, they break down when they fail to follow a standardized and proven methodology.
A methodology is a defi ned set of repeatable steps that can better guarantee a successful outcome.
Following a methodology ensures that the result of your project is aligned to the needs of the busi-
ness, addresses all of the components of the site’s user experience and is a technically solid solution,
able to scale and perform in a way that supports your organization’s objectives. It also helps the
team to understand whether or not success has been achieved because it compares the project’s
progress against the milestones and success metrics established during project planning.

Although this type of planning may sound unimportant to a developer “just” trying to build a website,
it’s important to understand what makes a Web project successful; even if some of the responsibilities
aren’t a part of your day-to-day job description, the ultimate responsibility for a Web project’s suc-
cess typically falls on the laps of those closest to it. This book was written to provide Web developers
and technical project managers with the overarching knowledge needed to achieve success with their
Ektron Web projects — including information on both technology and methodology.

The approach taken in this book is to fi rst cover Ektron’s recommended project discovery process,
discussing the methodology employed by Ektron Professional Services, and learning about the
documentation generated as part of this process, all of which ensures a successful Web project. This
process stems from ten years of experience during which the Ektron professional services team devel-
oped over 1,000 successful websites for its customers. Over this time, the team not only developed a
comprehensive website design methodology, but also enhanced and optimized that methodology to
service the specifi c considerations unique to implementing an Ektron powered website.

flast.indd xxiiiflast.indd xxiii 12/21/2010 10:45:21 AM12/21/2010 10:45:21 AM

xxiv

INTRODUCTION

This book also has documentation in each chapter so you can implement specifi c portions and func-
tionalities of an example site. You can install this site locally and use it to follow as you read the
book. Chapters focus on the technical material you’ll need to master the Ektron Framework. Each
technical chapter follows a similar pattern in that it focuses on the implementation of a subsection
of a website for a fi ctional software company called OnTrek, and then creates a meaningful context
for instruction centered around business-driven use cases.

WHO THIS BOOK IS FOR

The target audience for this book is ASP.NET developers and technical project managers who want
to learn how to achieve success with Ektron Web projects. The value of the methodology chapter
will be apparent to Technical Project Managers, but is written in such a way as to appeal to techni-
cal developers as well. Developers will appreciate the best practices, tips and tricks, step-by-step
instruction, and deep-dive “under the hood” explanations of the Ektron Framework.

Whether you’re just starting out with the Ektron Platform or have used it in the past, this book
covers the latest Ektron technology in a way that will benefi t both audiences. Readers do not need
to have experience with Ektron, but they should have experience with current ASP.NET develop-
ment practices using Visual Studio and C#.

WHAT THIS BOOK COVERS

This book covers the theory and practice for building and managing a successful website with
Ektron CMS400.NET version 8.0.2. The book is divided into three primary parts, with the fi rst
covering the Ektron development methodology, development environment considerations, and other
items of interest in the process leading up to actual development.

The second part discusses the actual buildout of a site on the Ektron Framework. In this part, you
touch on content management principles and concepts as they apply to the Ektron Framework, and
then see each major feature of the framework. These discussions focus on using a combination of
codebehind, server controls, and PageBuilder to achieve various goals. Each chapter discusses a real-
world use case from the OnTrek starter site, and then either implements that functionality within
the OnTrek site or analyzes how it was previously implemented in the site.

The bulk of the discussions in this book pertains specifi cally to version 8.0.2 of the Ektron
Framework, but in most cases will also apply to other recent versions. In some cases, the authors
discuss previous iterations of a given piece of the framework, to help you better understand how the
technology works today. In other cases, they discuss where the technology is heading next.

HOW THIS BOOK IS STRUCTURED

This book will walk you through the process of creating a website using the Ektron CMS
Framework. It is divided into three main sections.

flast.indd xxivflast.indd xxiv 12/21/2010 10:45:22 AM12/21/2010 10:45:22 AM

xxv

INTRODUCTION

Part I: Getting Started

This part covers background material relating to Ektron, the Ektron Framework, and the methodology
employed for Ektron projects. This methodology is then used in Part II.

 ‰ Chapter 1: Introducing Ektron — This chapter provides an introduction to Ektron the com-
pany, and the Ektron Framework. It gives readers an understanding of why the book was
written as well as the target audience. It also covers the general structure of the book, intro-
ducing the OnTrek site, business drivers, and overview of use cases

 ‰ Chapter 2: The Ektron Web Project Methodology — This chapter introduces the method-
ology recommended by Ektron and followed by its own Professional Service teams. It will
discuss the pros and cons of its approach and guide you through the process of adapting this
process to meet the needs of your project.

 ‰ Chapter 3: The Implementation Guide — This chapter introduces the website of a fi ctitious
software company that is used in each of the technical sections throughout the book. It also
presents the implementation guide.

 ‰ Chapter 4: Confi guring Your Development Environment — This chapter introduces the soft-
ware confi guration needed to start developing on the Ektron Framework.

Part II: Building the TechPoint Site

Part II builds on the methodology discussed in Part I (to create an implementation guide), which is
used as a specifi cation guide throughout the implementation process. Each chapter covers a specifi c
area of the site, implementing features against the implementation guide.

The implementation sections of the Part II chapters follow a pattern in that they outline a portion
of the implementation guide, starting with a use case that is the jumping point to the particular
area of the site under development. This is followed by an overview of the features used in the
chapter. Each individual technology is then discussed in depth. The chapters close with a summary
of the lessons learned in the chapter.

 ‰ Chapter 5: Understanding Content Management Fundamentals — This chapter discusses
core Web Content Management concepts within the context of the OnTrek site.

 ‰ Chapter 6: Confi guring Commonly Used Components — This chapter goes a step further in
the core technologies, and helps you to confi gure items like URL aliasing, structured content,
and multilingual content.

 ‰ Chapter 7: The Homepage — This chapter discusses the main elements of the most visited
part of the OnTrek site, the homepage. The technologies here include rich interfaces, user
registrations, and many navigational items.

 ‰ Chapter 8: Reaching Prospects — This discusses the area of the site dedicated to educating
prospects about TechPoint’s products and services. This includes delivering video, implement-
ing calendars, and core technology items like ListSummaries.

flast.indd xxvflast.indd xxv 12/21/2010 10:45:22 AM12/21/2010 10:45:22 AM

xxvi

INTRODUCTION

 ‰ Chapter 9: Generating Leads through Campaign Optimization — This chapter discusses
PageBuilder in depth, and how it can be paired with abilities like multivariate testing and
analytics.

 ‰ Chapter 10: Supporting Customers — This chapter discusses the technology that creates a
successful customer support portal. It focuses on the roll of community generated content as
well as editorial managed information.

 ‰ Chapter 11: Implementing the OnTrek Social Network — Social Software has become an
essential part of modern websites. This chapter introduces the Ektron CMS Framework’s
social software and works through the process of building the Community Network.

 ‰ Chapter 12: Creating the Catalog of Products for the eCommerce Storefront — This chapter
discusses how to create the product catalog for the OnTrek storefront using Ektron’s eCom-
merce. It focuses primarily on confi guring software options rather than development.

 ‰ Chapter 13: Constructing the Online Storefront with eCommerce — This chapter discusses how
to implement OnTrek’s online storefront using Ektron’s eCommerce. It focuses on the available
server controls and how to combine them to create a meaningful shopping experience.

Part 3: Deploying the TechPoint Site

Once implementation has fi nished, the process of bringing the website live begins — along with
maintenance and reporting. These chapters give you hints and tips on how to continue to achieve the
goals that were originally set for your website.

 ‰ Chapter 14: Deploying Your Website — This chapter discusses the process for deploying a
fully developed and tested site.

 ‰ Chapter 15: Maintaining Your Website — A site is dynamic — once it is live, ongoing work
is needed to ensure that the content remains relevant and that it meets and continues to meet
the business objectives.

 ‰ Chapter 16: Next Steps — This chapter provides a review of the information covered and
provides the reader with direction to learn more about Ektron.

WHAT YOU NEED TO USE THIS BOOK

You need to have the following software installed on your computer to run the examples in this book:

 ‰ Ektron Framework 8.0.2: The current version as of this writing is 8.0.2 and all of the code
samples, screenshots, and instructions will be written against it. If you’re using an earlier or
later version, you might have to adjust the information slightly to accommodate modifi ca-
tions provided in newer versions of the software.

 ‰ OnTrek Starter Site: Ektron makes several starter sites available for free to developers using
the Ektron Framework. OnTrek is one of these starter sites, and this book uses it to discuss
the various capabilities made available by the framework. It is recommended that you have
this installed if you want to work through the examples in the book.

flast.indd xxviflast.indd xxvi 12/21/2010 10:45:22 AM12/21/2010 10:45:22 AM

xxvii

INTRODUCTION

 ‰ Microsoft Visual Studio: There are many different fl avors of Microsoft Visual Studio these
days — Visual Studio Web Developer Express Edition, Visual Studio Professional Edition,
and Visual Studio for Architects, to name just a few. You will need at least Microsoft Visual
Studio 2005 or later and it’s recommended that you use the paid Professional Edition, but the
free Web Developer Express Edition will work for most examples as well. Because you’re cre-
ating Web projects, you cannot use Visual Studio Visual C# Express Edition or Visual Studio
Visual Basic because they lack the ability to create Web projects, templates and resources.

 ‰ ASP.NET 3.5 or Later: The Ektron Framework requires at least ASP.NET 3.5 but you can
run it and all the code samples found in this book on the latest .NET 4.0 Runtime.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

USE CASE TITLE

We place Use Case examples in this format. Use Cases present the potential users of
the Ektron site and illustrate how a user may approach and/or interact with the site.

As for styles in the text:

 ‰ We highlight new terms and important words when we introduce them.

 ‰ We show keyboard strokes like this: Ctrl+A.

 ‰ We show fi le names, URLs, and code within the text like so:
persistence.properties.

 ‰ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that’s particularly important in the present context.

flast.indd xxviiflast.indd xxvii 12/21/2010 10:45:22 AM12/21/2010 10:45:22 AM

xxviii

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All of the source code used in
this book is available for download at www.wrox.com. You will fi nd that the code snippets from the
source code are accompanied by a download icon and note indicating the name of the program so
you know it’s available for download and can easily locate it in the download fi le. Once at the site,
simply locate the book’s title (either by using the Search box or by using one of the title lists) and
click the Download Code link on the book’s detail page to obtain all the source code for the book.

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-88569-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors.

A complete book list including links to each book’s errata is also available at
www.wrox.com/misc-pages/booklist.shtml.

flast.indd xxviiiflast.indd xxviii 12/21/2010 10:45:23 AM12/21/2010 10:45:23 AM

www.allitebooks.com

http://www.allitebooks.org

xxix

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At p2p.wrox.com you will fi nd a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxixflast.indd xxix 12/21/2010 10:45:24 AM12/21/2010 10:45:24 AM

flast.indd xxxflast.indd xxx 12/21/2010 10:45:24 AM12/21/2010 10:45:24 AM

PART I

Getting Started

 � CHAPTER 1: Introducing Ektron

 � CHAPTER 2: The Ektron Web Project Methodology

 � CHAPTER 3: The Implementation Guide

 � CHAPTER 4: Confi guring Your Development Environment

c01.indd 1c01.indd 1 12/21/2010 10:33:34 AM12/21/2010 10:33:34 AM

c01.indd 2c01.indd 2 12/21/2010 10:33:37 AM12/21/2010 10:33:37 AM

1
Introducing Ektron

 ‰ What is Ektron?

 ‰ What support and services does Ektron provide?

 ‰ What makes the Ektron Framework unique?

 ‰ Who uses Ektron?

Welcome to the fi rst ever Ektron book. As explained in the Introduction, the ultimate goal
of this book is to give you a solid understanding of how to achieve success with your Ektron
Web projects. As a developer using the Ektron Framework, you not only have access to its
full suite of software components designed to help you build compelling and engaging web-
sites, but you also have an entire array of services and support available at your fi ngertips
from the online developer community, Ektron’s Global Partner Network, Ektron’s own Best
Practices, Professional Services, and Training teams. Understanding that Ektron provides
not just a framework, but also a complete solution, is the fi rst step to achieving success with
Ektron. This chapter offers a high-level introduction to both Ektron as a company (Ektron,
Inc.) and the Ektron Framework to give you an understanding of what that complete solu-
tion looks like.

EKTRON: THE COMPANY

Ektron is a global Web solutions leader, providing a Web content management, marketing
optimization, and social software platform, founded in 1998 and headquartered in Nashua,
New Hampshire.

Ektron’s founders, Bill and Ed Rogers, are the driving force behind the company, setting
strategic direction and aligning product development with their forward-looking vision for
website technology. They founded Ektron ten years ago with a simple and clear vision: enable
non-technical people to author and publish content easily on the Web. As an integrated solu-
tions company, Ektron is dedicated to the success of its customers’ and partners’ Web projects

c01.indd 3c01.indd 3 12/21/2010 10:33:37 AM12/21/2010 10:33:37 AM

4 x CHAPTER 1 INTRODUCING EKTRON

as well as the entire lifecycle of their websites. In addition to software offerings, Ektron has built the
services infrastructure to ensure the success of its clients’ and partners’ Web projects.

From building a software platform capable of supporting the benefi ts of an active virtual commu-
nity to building relationships that benefi t their customers and company alike, Bill and Ed believe in
the power of community. The Ektron community spans the online world and in-person interactive
opportunities such as Ektron’s local user group tour and worldwide user conference. The members
of this community have become trusted resources both inside and outside of Ektron, driving product
innovation and contributing to the success of each other’s projects.

EKTRON’S COMMUNITY, SUPPORT, AND SERVICES

Ektron’s approach to enabling customer success revolves around maintaining an ongoing conversa-
tion through many mediums, ensuring that developers and content managers can reach people in the
know through whatever format is most useful to them. Through the use of online peer-to-peer inter-
action, a multilevel support infrastructure, and the availability of professional services staff, Ektron
has made fi nding help on a given issue quick and easy.

Ektron’s Online Community

Ektron has demonstrated that it understands the importance of engaging social networks such as
Twitter and Facebook in order to connect with its current and potential customers. On Twitter,
Ektron can be seen interacting with customers, partners, and analysts, engaging potential custom-
ers, and sharing information on topics concerning CMS and Web technology. Technical support
plays an important role on Twitter as well, as Ektron engages with customers to promote the Dev
Center, a peer-to-peer support area for clients to assist one another with problems and ask general
questions, with input from Ektron technical support and engineering staff.

On Facebook, Ektron promotes current events and webinars and takes the time to engage with fans.
The company runs promotions and contests as a way to engage with the audience, making it fun and
putting a personality behind the corporate brand.

An extension of the Dev Center is the Ektron Exchange Community. Developers can upload and
showcase their code, add-ons, and widgets with others. The community can download, rate the
code, and follow favorite developers.

The Ektron community is a vibrant and active one whose members are gathered around common
interests. The energy of the community is evidence of the eagerness of its members to participate and
help each other. The commitment Ektron has made to supporting, joining, and taking an active part
in community activities plays an important role as well.

Here’s a quick reference guide to where to fi nd the Ektron Community online:

 ‰ Dev Center: http://dev.ektron.com/

 ‰ Facebook: http://facebook.com/ektron

 ‰ Homepage: http://www.ektron.com/

 ‰ The Exchange: http://dev.ektron.com/exchange/

 ‰ Twitter: http://twitter.com/ektron

c01.indd 4c01.indd 4 12/21/2010 10:33:39 AM12/21/2010 10:33:39 AM

Ektron’s Community, Support, and Services x 5

Ektron Technical Support

When you fi nd yourself in need of more support than what’s available through the online com-
munity, it is good to remember that Ektron offers full technical support to all customers with
an active maintenance agreement. When customers purchase the product, the fi rst year of
maintenance is included in the initial license agreement. To keep the maintenance agreement
active, the maintenance agreement must be renewed annually. Doing so is an extremely smart
idea, as it not only includes access to Ektron Technical Support but gives customers the access
to download all current and future software releases, both minor (Service Packs, maintenance
releases) and major product releases (8.0, 9.0, and so on). Considering that Ektron has a track
record of releasing a new major version of the software at least once a year, keeping the mainte-
nance agreement active is a cost-effective decision as well. Ektron’s Technical Support hours are
Monday through Friday from 8 a.m. EST to 8 p.m. EST. There are a number of ways to access
support services listed here.

Phone Support

Phone calls made to Ektron Technical Support will be answered almost immediately. All calls
are routed to a dispatcher responsible for compiling the case information (version information,
symptoms, logs, and so on), verifying an active maintenance agreement, and providing a case
number. Once this dispatch call is complete, the information is reviewed by the support team
and a Technical Support Engineer is assigned to the case and must return the call within two
hours. In cases where there is a critical issue requiring a quick response time, phone support
should be used. Issues submitted after 7 p.m. EST may not get a response before 8 a.m., but will
be handled fi rst thing the following business day. The telephone numbers to initiate support
cases are:

United States: 1-866-4-EKTRON x7002

United Kingdom: +44 1628 509 040

Australia: +61 2 9248 7222

Check the Ektron website for the latest contact information at http://www.ektron.com/
contact/.

Web Form Support

Technical Support cases may also be initiated using the following Web form: http://dev.ektron
.com/requestsupport.

Ektron’s Support Service Level Agreement (SLA) states that the Technical Support Engineer assigned
to a case initiated through the Support Web Form must respond to the customer within four to six
hours. Once the form is submitted, a case number is assigned and immediately returned.

E-mail Support

Sending an e-mail to support@ektron.com is useful when you have a technical support issue that
requires resolution but lacks the need for a quick response. The Technical Support Engineer assigned
to the case must respond to the customer within 24 hours.

c01.indd 5c01.indd 5 12/21/2010 10:33:39 AM12/21/2010 10:33:39 AM

6 x CHAPTER 1 INTRODUCING EKTRON

Chat Support

Live chat is available through the Ektron website for basic questions from 8:30 a.m. to 5:30 p.m.
EST. In the event that a case cannot be resolved immediately in the chat session, a case will be
created by the Technical Support Engineer, and then follows the same process as if it were submitted
through the Web Form.

Ektron Contact Method Summary

Table 1-1 includes a list of contact methods.

TABLE 1-1: Ektron Contact Methods

CONTACT METHOD RESPON SE TIME CONTACT

Phone Case 1–2 hrs 1-866-4-EKTRON x7002 or 1-603-816-2048

Web Form Half a day http://dev.ektron.com/requestsupport

E-mail Within 24 hrs support@ektron.com

Chat Immediately http://dev.ektron.com/support

Ektron’s Technical Support Department is committed to achieving the highest level of customer
satisfaction and has many quality-focused programs and processes to ensure that the support it
provides exceeds customer expectations. However, there may be cases where your project requires
assistance that falls outside of the level of support provided through the Standard Maintenance
package. In these situations, you should consider Ektron’s Best Practice Services.

Ektron’s Best Practices and Professional Services

There are three main groups of technical services that Ektron provides to customers. Depending on
your in-house skill level, you may be interested in some combination of these services to help ensure
the success of your project. These services can make the difference by bringing Ektron application
engineers in who bring years of experience on the Ektron platform with them and who work closely
with the platform engineering staff at Ektron.

 ‰ Best Practice Services: This service gives you access to a dedicated on-call solution engineer at
low cost. It serves as a king of advanced support system, where you might need faster turn-
around times than normal support can provide, or where you want the assurance of having
someone who knows your project and has been involved with it to be available at any time.
These solution engineers can help you align your functionality with the Ektron Framework
throughout the lifecycle of your project, and can continue to support your needs as your
project moves towards maintenance and support.

 ‰ Application Engineering: This service is designed to fi ll in the blanks on your project, whatever
they may be. The Application Engineering group is set up to handle your project from start to
fi nish, moving from the requirements phase all the way to delivering the completed site. They can
also be contracted to augment your staff on a temporary basis. This option is useful when you
need either a turn-key solution, or when you’ve hit a rough spot and your deadlines are looming.

c01.indd 6c01.indd 6 12/21/2010 10:33:39 AM12/21/2010 10:33:39 AM

Ektron, the Framework x 7

 ‰ Hosting Solutions: This service can range from a shared environment all the way to full
co-located servers.

Ektron Training

Ektron provides several distinct packages to provide the appropriate level of training for the different
stages of your Web project. Given on site at your organization, or at one of Ektron’s Educational
Facilities around the world (Nashua, NH; San Francisco, CA; Toronto, Canada; London, England
and Sydney, Australia), an Ektron trainer works with you on all aspects of a Web project. They can
assist with issues throughout the lifecycle of your implementation, from installing the software to
overseeing your project requirements and matching CMS features and best practices to the project
goals. They also offer in-depth developer training on how to use and implement CMS features, and
cover Ektron’s Web Project Methodology on building successful websites (Ektron’s methodology is
covered in Chapter 2).

The types of training offered by Ektron are as follows:

 ‰ Ektron Quick Start Consulting: A fast-paced training that covers the essentials to get you up
to speed and running with Ektron.

 ‰ Ektron Certifi ed Developer Training: In depth, hands-on, technical training covering best
practices, development, deployment, and methodology.

 ‰ Ektron Certifi ed System Administrator Training: A training that any Webmaster, Web
administrator, or IT staff responsible for the ongoing website management and maintenance
will benefi t from.

 ‰ Ektron End User Training: While the other training types are geared toward people who
administer your site, the end user training is geared to help your users understand the system
and to facilitate end user adoption.

 ‰ Ektron Custom End User or Administrator Training: By opting for a customized training,
Ektron trainers will work to develop a custom curriculum covering any specifi c business
processes related to the administration or content management of your site, in addition to the
core skill set offered through the standard training options.

More information on Ektron’s Training options are available on the Ektron website at http://www
.ektron.com/training.

EKTRON, THE FRAMEWORK

The Ektron Framework, which began as a simple Web content management system (WCMS), has
long since outgrown the limiting WCMS label. The feature cloud shown in Figure 1-1 highlights the
breadth of the version 8.0 platform. With today’s framework you have access to a vast collection of
components that assist you in developing a site complete with the compelling features demanded by
modern site visitors. It is clear the product has come a long way from its original early functionality
of simple WYSIWYG content authoring and publishing.

c01.indd 7c01.indd 7 12/21/2010 10:33:39 AM12/21/2010 10:33:39 AM

8 x CHAPTER 1 INTRODUCING EKTRON

Web 2.0
Core

Content

Management

Social

MediaSocial

Networking

Collaboration

eSync

RIAs

AnalyticsAnalytics

Personalization

Mobile

Apps

Widgets

eCommerce

DMS

Deployment
Forums, Polls and Surveys, Wikis, E-mail Alerts,

5-Star Ratings, Commenting, Media, Blogs,

RSS, GeoMapping, Tagging and Tag Clouds,

Membership SubscriptionLink Checker, XLIFF, SEO and Aliasing,

eSync, Search, History and Audit Trails,

Workflow, Security, Taxonomy,

MetaData, Forms

Shopping Cart

Invite System, Digital Dashboards,

Message Board, People Search, My Documents,

My Favorites, Friends/Colleagues,

Community Groups, Timeline Navigation,

Activity Streams

Mashups and

PageBuilder Framework

iPhone,

Blackberry, etc.

Customizing site

visitor experience

Flickr, Twitter,

YouTube, Facebook

Flex and Silverlight

FIGURE 1-1

All-in-One versus Best-of-Breed

In general, Web CMS platforms adopt one of two product architecture paradigms: All-in-One (also
sometimes called Software Suites) or Best-of-Breed.

The goal of the All-In-One approach is to provide all features and functionality “out-of-the-box”
without requiring integration with other third-party systems. In a general sense, the benefi ts of
the All-In-One architecture stem from the fact that they are single systems requiring few if any
external dependencies to operate. They provide many integrated applications that share a common
database, development framework, and consistent user interface so all components have a coher-
ent user experience. From a WCM standpoint, specifi c benefi ts of this approach are several:

 ‰ Cost: In most cases, All-in-One Software Suites cost less. To achieve a comparable feature
set, Best-of-Breed applications must integrate many specialized and individually licensed
software components and services.

 ‰ IT: Developers need to learn and develop against the single development framework offered
by the All-in-One Software Suite and do not need to spend time integrating various frame-
works or applications. From an operations standpoint, deployment is simplifi ed since there
are fewer disparate systems to manage and confi gure.

 ‰ Training: The interface of an All-in-One system offers a single application for site manage-
ment and presents administration, IT staff, marketers, and content editors with a single user
interface, decreasing the amount of time needed to spend on training to use, manage, and
support the system.

The primary drawback to the All-in-One approach also stems from the fact that it is a single frame-
work — you get what you get — and unless it specifi cally offers external integration points, an
extensibility architecture, and open API, you are strictly limited to using what is there.

c01.indd 8c01.indd 8 12/21/2010 10:33:39 AM12/21/2010 10:33:39 AM

Ektron, the Framework x 9

Standing in contrast to the broad capabilities of All-In-One Software Suites are Best-of-Breed sys-
tems. Best-of-Breed systems are specialized tools useful for a singular purpose. What Best-of-Breed
systems lack in breadth, they make up for in depth. Since Best-of-Breed systems provide narrow
but deep feature sets, many such systems need to be pieced together to offer a comprehensive solu-
tion. The single most compelling benefi t to this type of product is rich functionality. Sometimes a
specialized tool is exactly what you need. You might be able to use a Swiss Army Knife’s scissors to
cut through a piece of thick cardboard, but they certainly won’t perform as well as heavy duty offi ce
scissors nor will they be as comfortable to use.

The drawback of using Best-of-Breed WCM systems is the complexity of system integration.
Consider the various user models and registration systems used by software systems within the enter-
prise. In order to properly integrate third-party applications, data structures and APIs need to be
available. Some notable open source Web CMS platforms follow this approach and therefore require
third-party modules to achieve support for such things as LDAP or Active Directory, for example.

The Ektron Framework is unique in that it provides a hybrid approach, offering the breadth of
functionality afforded by an All-in-One Software Suite but also providing Best-of-Breed integra-
tion judiciously where it makes sense. A perfect example of this type of smart integration is Ektron’s
choice to integrate with the leading Web Analytics providers such as Google, and Omniture in ver-
sion 8.5 of the Ektron Framework (see Web Analytics in Chapter 9). Like WCM, Web Analytics is
an industry that matured signifi cantly over the past decade, and with the advances made by com-
panies such as Google and Omniture, it makes little sense for Ektron to play catch up and re-invent
the wheel at best. Ektron’s choice to provide Best-of-Breed integration with such providers means
you get the power of the Ektron Framework coupled with the strength of offerings of Google and
Omniture, the established leaders in Web Analytics.

Developing with the Ektron Framework

From an ASP.NET developer’s perspective, the Ektron Framework can be considered to be a
toolkit that contains three general types of components: .NET Server Controls, Ektron Widgets
(.NET User Controls), and APIs. With the exception of Ektron Widgets (more on this in Chapter 9),
these components are used to assemble ASPX Templates and Master Pages just as you would any
ASP.NET website. One of the primary design goals of the Ektron Framework is to make work-
ing with it feel very familiar to developers who have experience building ASP.NET websites.
This applies to whichever one of the three general types of components you use to build your
website depends on your skill set, what you’re trying to accomplish, or the level of functional-
ity exposed by it. The following sections contain guidelines that will help you to decide which
component to choose.

Server Controls

The Ektron Framework provides more than 80 server controls out-of-the-box, ranging from simple
controls such as the Poll Server Control to compound controls such as the Blog Server Controls. All
Ektron Server Controls encapsulate complex functionality, making it relatively straightforward for
developers to quickly assemble Web pages by dragging and dropping controls from Visual Studio’s
Toolbox onto your ASPX Template, and then defi ning their behavior by setting properties either in
code or by using Visual Studio’s Property dialog box.

c01.indd 9c01.indd 9 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

10 x CHAPTER 1 INTRODUCING EKTRON

The primary reason you’d want to use the Ektron Server Controls over writing code with the APIs
directly is the functionality it offers. Each control provides rich functionality that has been devel-
oped and tested thoroughly. This means each control has been designed to consider things such as:

 ‰ Permissions: Does the current visitor have the authorization to read or edit?

 ‰ Approval processes: Has the item been approved to display?

 ‰ Performance: Will it handle the heavy demands of a high traffi c site?

 ‰ Authoring: Should content authoring options be displayed for the current user?

While the APIs give you the ability to achieve the same ends, the amount of code required to do
this is not always trivial. Take a good look at the server controls before you decide to pursue other
options.

Once you’ve chosen to use the server controls and have started to develop with them, you will fi nd
that you need to style the presentation to match the user experience of your site and tweak the
markup. These server controls have traditionally offered a few ways to customize the default style
and markup it produces:

 ‰ CSS: The fi rst and most obvious choice for customizing the display is to use Cascading Style
Sheets (CSS). Using Firebug (a Web developer add-on for Mozilla Firefox) or something simi-
lar, you can inspect the HTML and CSS produced by the control and customize them as you
need. Each control typically provides a DisplayCss property that lets you specify the path to
your custom CSS fi le. You override the default presentation once you specify the path to your
custom CSS.

 ‰ XSLT: XML Stylesheet Language for Transformations (XSLT) is an XML grammar for con-
verting an XML document into another format. If it is a language you’re familiar with, you
will be happy to know that most of the Ektron Server Controls expose data as XML, making
the manipulation of the markup straightforward using XSLT. Each control typically provides
a DisplayXslt property that lets you specify the path to an XSLT fi le.

 ‰ EkML: XSLT is a powerful language for controlling the HTML delivered to the browser, but
often times it is overkill when you want to simply tweak an HTML tag or two. EkML was
designed for developers needing this level of control. Its simple templating syntax lets you
manipulate the markup by inserting and positioning special string tokens that are replaced
with data values at runtime. Not all server controls support EkML, so check the documenta-
tion before deciding to use EkML on an individual server control.

 ‰ DataBinding: Many Ektron Server Controls can be used as the data source for data-bindable
controls. Because the Ektron Server Control is not used to display results, its visible property
is set to false, and a data-bindable control like ASP.NET’s ListView or DataGrid control can
be used for displaying and controlling the markup instead.

The server controls are a great fi t when they closely match the requirements of your project. If you
are working under a tight deadline and can trade off any possible feature disparities between your
requirements and what is provided by the server control, using the Ektron Server Controls can ulti-
mately save you time. If you’re building a website of any serious level of complexity, there are going

c01.indd 10c01.indd 10 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

Ektron, the Framework x 11

to be cases where the server controls will not suffi ce. In these situations, you’ll need to peel back a
layer of the framework and use Ektron’s .NET APIs directly.

The Ektron Framework’s .NET APIs, Web Services, and Extensions

The Ektron Framework comes with a full open API, including .NET assemblies, XML Web ser-
vices, and extensibility architecture. The greatest and most obvious benefi t of using the APIs is the
level of fl exibility and control you have in your site implementation. In fact, you’ll later learn how
CMS Extensions allow you to override default behavior of the CMS entirely when needed. CMS
Extensions can allow you, for example, to control how taxes are calculated in an eCommerce
module (Chapter 13), or even to change the very way content is published in the CMS.

Once you’ve decided that the Ektron APIs are the right fi t for your project, you’ll then need to deter-
mine which API to use. There are currently three central namespaces that you can reference in your
Web project: Ektron.CMS.Framework, Ektron.CMS.API, and Ektron.CMS.

 ‰ Ektron.CMS.Framework: The Framework API is the newest member of the Ektron API. It
was designed in response to feedback received from developers that the legacy APIs could
be cumbersome. Ektron’s design goals for the new Framework API focus on discoverabil-
ity, consistency, and simplicity. An API that is discoverable means that you can guess the
namespace, object, and method you need without having to read through a lot of documen-
tation. You can guess your way through a situation using the object names and IntelliSense.
A consistent API is one where similar objects function similarly; working with a particular
object should feel familiar if you’ve worked with something similar before. Simplicity refers
to the principle that simple things should be easy to do and even diffi cult things should be
possible.

Since the Framework API is a new addition to the framework, it doesn’t yet cover all of the
features provided by the CMS. In spite of this disparity, the Framework API has received
very positive feedback from the developer community and it should be the fi rst API you
look at when using the API. Ektron is working on expanding the Framework API with each
release and will continue to do so until it has reached full coverage of the CMS.

 ‰ Ektron.CMS.API: The API Namespace was introduced into the Ektron Framework in
Version 6 and provides a collection of APIs that provides programmatic control over a very
comprehensive set of Ektron features. This API was introduced for two reasons:

 ‰ To provide programmatic access to the CMS without requiring any type of user
authentication information, as customers were looking to perform bulk operations
without having to specify an actual system username and password

 ‰ To provide a more logically organized tool for developers than the CMS Namespace

 ‰ Ektron.CMS: The CMS Namespace is the home for all of Ektron’s APIs, both the internal
ones and the public ones. If you’re looking to programmatically access the CMS and can-
not fi nd an API to use either in the Framework Namespace or the API Namespace, the CMS
Namespace gives you what you need. The benefi t of using this API is that it provides an
extremely comprehensive API for the Ektron Framework. The drawback is that the API has
grown quite large throughout the product’s lifecycle. Figure 1-2 depicts the overall architecture
of the Ektron Framework.

c01.indd 11c01.indd 11 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

12 x CHAPTER 1 INTRODUCING EKTRON

HTML AJAX

API (Ektron.Cms.API, Ektron.Cms.Framework)

D
a

ta
 L

a
y
e

r
D

a
ta

L
a

y
e

r

D
a

ta
 A

c
c
e

s
s

D
a

ta
A

c
c
e

s
s

L
a

y
e

r

B
u

s
in

e
s
s
 L

a
y
e

r
B

u
s
in

e
s
s

L
a

y
e

r

C
o

m
m

u
n

ic
a

tio
n

 (T
a

s
k

s
, S

tre
a

m
s
, M

e
s
s
a

g
in

g
)

C
o

m
m

u
n

ic
a

tio
n

(T
a

s
k

s
,
S

tre
a

m
s
,
M

e
s
s
a

g
in

g
)

S
e

c
u

rity
 (A

D
, L

D
A

P
)

S
e

c
u

rity
(A

D
,
L

D
A

P
)

O
p

e
ra

tio
n

a
l M

a
n

a
g

e
m

e
n

t (W
o

rk
a

re
a

)
O

p
e

ra
tio

n
a

l
M

a
n

a
g

e
m

e
n

t
(W

o
rk

a
re

a
)

D
a

ta
 L

a
y
e

r

D
a

ta
 A

c
c
e

s
s

L
a

y
e

r

B
u

s
in

e
s
s
 L

a
y
e

r
A

p
p

lic
a

tio
n

 L
a

y
e

r
A

p
p

lic
a

tio
n

L
a

y
e

r
A

p
p

lic
a

tio
n

 L
a

y
e

r

P
re

s
e

n
ta

tio
n

L
a

y
e

r

P
re

s
e

n
ta

tio
n

L
a

y
e

r
C

o
m

m
u

n
ic

a
tio

n
 (T

a
s
k

s
, S

tre
a

m
s
, M

e
s
s
a

g
in

g
)

S
e

c
u

rity
 (A

D
, L

D
A

P
)

O
p

e
ra

tio
n

a
l M

a
n

a
g

e
m

e
n

t (W
o

rk
a

re
a

)

Data ServicesSQL Server

RIA

Silverlight

Flash

Java

Mobile Devices

Windows Mobile

iPhone

Palm

Balckberry

Android

Server

Controls

ListSummary

Content Block

ProductList

UserProfile

Service Gateways

Shipping Provider Services

Warehouse Provider Service

Inventory Provider Service

Data Access Components

Ektron.Cms.DataRW

Ektron.Cms.DataAccess

Ektron.Cms.DataIO

Business Entities

Content

Products

Users

Groups

Business Components

Catalogs

Product Types

Smart Forms

Taxonomy

Business Workflows

Content Approvals

Commerce Fulfillment WF

Workarea

Plug-ins

Google

 GeoCoder

LatestChanges

CMS

Extensibility

ContentStrategy

UserStrategy

TagStrategy

FolderStrategy

WebServices

ContentWS

FolderWS

UserWS

MetadataWS

User Controls

PageHost

DropZone

PageBuilder

 Widgets

SEO Checker

UI Process Components (XSLT)

FIGURE 1-2

Ektron PageBuilder and Widgets

User controls are standard ASP.NET components that encapsulate logic, functionality, and user
interface, and play a critical role in Ektron’s PageBuilder technology (PageBuilder is described in
detail in Chapter 9). PageBuilder allows Web developers to focus on building repositories of reusable
components that non-technical people like marketers use to assemble new Web pages and update
existing ones right in the Web browser.

User controls that are designed to work with Ektron’s PageBuilder are called widgets, and from a
developer’s perspective, they are simply specialized .NET User Controls. Opening a widget in Visual
Studio reveals this clearly — you can see they have an .ASCX extension and extend System.Web
.UI.UserControl. So any properties, behaviors, or capabilities of a user control are inherited by a widget.

c01.indd 12c01.indd 12 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

Ektron, the Framework x 13

The Ektron Framework provides over 30 widgets out-of-the-box and even more through the Ektron
Exchange (http://dev.ektron.com/exchange), a community-based website that lets developers
upload and share code with the Ektron developer community. You’re free to use the ones provided
by Ektron, the developer community, or build your own Ektron widgets using standard .NET
technology, Ektron User Controls, and the Ektron APIs.

Data Storage, SQL, and Stored Procedures

Ektron-driven websites store data in relational SQL Server databases, just as any traditional data driven
ASP.NET application would. Its database schema is available to developers for debugging purposes.
However, Ektron strongly discourages developers from writing SQL statements or stored procedures
to directly access the data for any purpose other than debugging in a development environment.

There might be times when you’re tempted to write a query to gain quick access to a particular data
set, but keep in mind that Ektron has valid reasons for not wanting you to do this. Consider cases
where the content you need access to has certain permissions applied to it that prevents it from being
displayed, or a workfl ow process applied. The content must be approved before being displayed, or
a “go live” date that is some time in the future. There are so many things to consider in your SQL
statement that the statement would be, in most cases, either error-prone or involve too much time to
develop. If you need programmatic access to data, stick with the Ektron’s APIs.

Framework Summary

Whether you choose to use the .NET APIs, server controls, or widgets depends on the requirements
and complexity of your project, your comfort level working with APIs, and your personal preference
as a developer. In general, there are few sites that use server controls exclusively. On average, the web-
sites created by Ektron’s Professional Services team use the API as much as they use server controls,
and choose to use the API in place of server controls when customers have specialized requirements for
behavior and layout. The introduction of PageBuilder has not changed this balance. Widgets typically
encapsulate the business logic and user interface for what would have been otherwise done in a user
control or the page template.

System Requirements

Table 1-2 describes the server, client, and optional requirements for the respective systems.

TABLE 1-2: System Requirements for Servers and Clients

REQUIREMENT GROUP REQUIREMENT TYPE REQUIREMENT

Server Requirements Recommended Minimum

Hardware Confi guration

Intel Core 2 or greater

4GB RAM or higher

RAID Array for hard drives

Operating System Microsoft Windows Server 2008 32-bit

Microsoft Windows Server 2008 64-bit

Microsoft Windows Server 2003 32-bit

Microsoft Windows Server 2003 64-bit

XP Professional1

Microsoft Windows Vista Business/Ultimate

Microsoft Windows 7

continues

c01.indd 13c01.indd 13 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

14 x CHAPTER 1 INTRODUCING EKTRON

REQUIREMENT GROUP REQUIREMENT TYPE REQUIREMENT

Web Application Server Microsoft ASP.NET Framework 3.5 SP1

Web Server Microsoft IIS 6.0 or higher

File System NTFS (FAT 32 is not supported)

Database Microsoft SQL Server 2005 SP2 and higher

(including Express version)

Microsoft SQL Server 20082

Client Requirements Operating System Any IBM-PC compatible system with a

Windows OS, including Vista Ultimate or

Vista Business.

Minimum: 166MHz or faster with at least

64MB RAM

Windows 7

MAC OS X

Browser for Editing Mozilla Firefox (see Firefox Support

Summary)3

Microsoft Internet Explorer 7.0 or higher

Released versions only4

Browser for Viewing All major browsers including:

Microsoft Internet Explorer 6.0 and higher,

Mozilla Firefox, Apple Safari, and Google

Chrome.

Optional Requirements Web Development Tools Visual Studio 2005/2008

For website development:
Visual Web Developer 2005/2008 Express

For plug-in extensions creation:
Visual C# 2005/2008 Express and Visual

VB 2005 Express

1 XP Professional should not be used in production environments, only for testing and development.
2 Ektron CMS400.Net does not support case-sensitive databases. Virtual Servers are not recommended for
database server environments.
3 http://dev.ektron.com/kb_article.aspx?id=7076.
4 If a client computer is 64-bit, you cannot use eWebEditPro to create Smart Forms. To create Smart Forms
on a 64-bit machine, you must use Release 8.0 or higher and the eWebedit400 editor.

TABLE 1-2 (continued)

c01.indd 14c01.indd 14 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

Who Uses Ektron? x 15

WHO USES EKTRON?

Here is a small sample of some of the award-winning sites that have been deployed using the
Ektron Framework, spanning such diverse industries as education, healthcare, and govern-
ment. The Ektron website lists more sites in additional industries at http://www.ektron.com/
solutions/industry/.

Associations:

 ‰ American Heart Association

 ‰ American Speech, Language & Hearing Assoc.

 ‰ Association of American Universities

 ‰ U.S. Golf Association (USGA)

 ‰ USA Hockey Association

Automotive:

 ‰ BMW

 ‰ Chrysler

 ‰ FIAT

 ‰ Goodyear

 ‰ Mitsubishi

Education: Colleges and Universities:

 ‰ Johnson and Wales University

 ‰ Rice University

 ‰ Seattle University

 ‰ University of Notre Dame

 ‰ University of Virginia

Education: K–12:

 ‰ The Bishop’s School

 ‰ Jefferson Parish Public Schools

 ‰ Learn360

 ‰ New Trier High School

 ‰ Richland School District Two

c01.indd 15c01.indd 15 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

16 x CHAPTER 1 INTRODUCING EKTRON

Non-Profi t Groups:

 ‰ The California Endowment

 ‰ Juvenile Diabetes Research Foundation

 ‰ Special Olympics

 ‰ Susan G. Komen for the Cure

TAKE HOME POINTS

This chapter shows how Ektron is more than a technology framework. Rather, it is a complete
solution designed to support the success of its customers’ Web projects. Some things to remember:

 ‰ About Ektron: Since Ektron was founded in 1998, their product base has been focused on
allowing non-technical users to actively manage content on websites, and on allowing devel-
opers to build out complex functionality including online community support.

 ‰ Ektron’s Technical Support: To support Ektron’s active and sizable user community, and to
support their efforts in developing increasingly sophisticated websites, Ektron has expanded
the services offered by its technical support. Ektron has created a professional services
department with wide-ranging services including Best Practice Guidance and application
development.

 ‰ Ektron Training: Ektron offers a series of training programs, and participates heavily in the
online community on its website and on popular sites such as Facebook and Twitter.

 ‰ The Ektron Framework: The Ektron Framework comes with fully documented and open
.NET architecture, which includes server controls, user controls, .NET assemblies, and
XML Web services. These all provide a Web development experience familiar to ASP.NET
developers, accustomed to using tools like Visual Studio and programming in languages
such as C# and VB.NET for building websites.

c01.indd 16c01.indd 16 12/21/2010 10:33:40 AM12/21/2010 10:33:40 AM

2
The Ektron Web Project
Methodology

 ‰ What is the diff erence between Interative/Waterfall and Agile

Approaches?

 ‰ What are the phases of the Implementation Process?

 ‰ What are the steps of the Discovery Phase and how are they

important to your project’s success?

 ‰ How do you successfully implement against your specifi cations and

migrate content?

 ‰ How do you eff ectively test the deliverables?

This chapter begins by asking a fundamental question: Why do so many website projects fail?
Projects fail for any number of reasons, but most commonly, they fail because they didn’t
follow a standardized methodology. A Web development methodology is the system used to
control the process of developing a website. Following a process ensures that the result of your
project aligns to the needs of the business, that it addresses all of the components of the site’s
user experience and that it is a technically solid solution, able to scale and perform in a way
that supports your organization’s objectives.

This chapter is intended for use by project managers and technical developers who are charged
with the responsibility of ensuring that their website development project is a success. It is
not intended to be a comprehensive guide to project management. It introduces the Ektron
methodology and provides advice and recommendations that help ensure you involve the right
people in your website-development project, that they have an understanding of what exactly
has to be built, and that you have a solid plan for attaining your goals.

c02.indd 17c02.indd 17 12/21/2010 10:33:58 AM12/21/2010 10:33:58 AM

18 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

ITERATIVE/WATERFALL VERSUS AGILE APPROACHES

Over the years, a number of development methodologies have been created, including waterfall, iter-
ative, and agile. Waterfall-based methodologies start with the assumption that requirements must
be well defi ned and documented before proceeding into the actual development effort. With a water-
fall approach, the project begins with a comprehensive discovery effort, consisting of stakeholder
interviews, functional requirements gathering, technical solution development, and the creation of
user experience components. In some cases, deliverables may go through a series of iterations before
being considered complete. At the end of the discovery process, the business, technical, and creative
components of the project are documented, agreed-upon by the appropriate stakeholders, and used
as a baseline to measure the progress of the project.

Agile methodologies typically approach the project from the perspective of defi ning requirements while
the development effort is ongoing. Instead of defi ning all aspects of the project requirements up front,
agile approaches prefer to divide the project into a series of segments or sprints. As each sprint is com-
pleted, the development effort is presented to the customer and requirements are refi ned based on direct
feedback from the appropriate stakeholders. Clearly, the fi rst several sprints are intended to focus on
the core functionality of the website. As feedback is incorporated into subsequent sprints, the website
increasingly nears a fi nal format until all sprints are completed and the project is ready to be deployed
to the public at large.

There are pros and cons of both approaches. This chapter focuses exclusively on the waterfall
approach to website development, as it refl ects Ektron’s direct experience.

THE BUSINESS CASE: WHERE IT ALL STARTS

Many people think that website projects begin at the kickoff meeting. However, the truth is
that most website projects start well before the actual kickoff. As an example, a business owner
makes the decision about starting a new website design project. Depending on the size of the
organization, the business owner may be in charge of a line of business or of the entire enter-
prise. Once the need has been identifi ed, the business owner builds a business case that justifi es
and articulates the business value of the website property. Typically, this business case is then
presented to other members of the management team who can provide funding and approval to
move forward with the project.

So, what does a business case consist of? Most business cases document the problems to be solved by
a website property. For example, it may be to sell more widgets online. Others may fi nd value in devel-
oping a community that can be marketed to. Still other businesses can drive results by reducing service
calls to their call centers and moving service questions and issues online. Defi ning the business side of
the website property is at the heart of the business case. Just as no two companies are alike, business
cases are extremely personalized to the unique circumstances of the particular business or market.

It can’t be stressed enough how important it is for the business case to align to the larger enterprise
strategy that drives the overall business. This enterprise strategy may be as generic as “being
perceived as the industry expert” or “improving our customer service” or even “leading our market-
place.” In these examples, developing a website that allows members of an industry to interact in an
industry-specifi c community or offering customers a personalized customer service experience can
be drawn directly back to the larger enterprise strategy. Even generic statements such as “leading

c02.indd 18c02.indd 18 12/21/2010 10:34:02 AM12/21/2010 10:34:02 AM

www.allitebooks.com

http://www.allitebooks.org

The Discovery Phase x 19

our marketplace” can translate into website properties that sell products while measuring commerce
transactions through the use of Web analytics.

Once the business case is aligned to the enterprise strategy, it should document the specifi c function-
ality that is expected to be part of the fi nal product. The business case should express and articu-
late the positive business effects of the website property with specifi city. The business case should
articulate the key performance indicators, or KPIs, that will be measured to document the business
success of the investment in the website. Examples of KPIs may include but are not limited to the
number of orders, number of unique visitors, session length, up-sell or cross-sell completion metrics,
revenue generated, and effectiveness of pay-per-click campaigns. The business’s needs and expecta-
tions are clearly defi ned and shared with all members of the team before initiating the project by
defi ning these KPIs upfront as part of the business case.

The business case should also describe the kind of resources required to implement the project, the
technical and security performance metrics to be tracked, the implementation timelines, dependen-
cies, business process impact analysis, and the fi nancial investment required to support the new
website property. Once well defi ned, the business case is presented for approval within the organi-
zation. With approval, the business case becomes an input to the discovery process and provides
valuable defi nition as to the governing characteristics of both the site as well as the implementation
project itself.

UNDERSTANDING THE IMPLEMENTATION PROCESS

As mentioned, the Ektron Professional Services website development methodology follows a process
in which each phase of the project methodology builds upon the previous phase. For example, the
discovery phase provides the functional requirements that serve as input to the implementation phase.
When completed, the implementation phase leads to the system acceptance testing phase, which in
turn, leads to the user acceptance testing phase. Each phase serves as input to the following set of
activities. Omitting individual phases or not addressing all aspects of an individual phase can seri-
ously put the project’s success at risk. The phases are listed below.

 ‰ Discovery Phase

 ‰ Implementation Phase

 ‰ Quality Assurance Phase

If you were to compare the building of the website to the building of a house — say a cliff-top
mansion — the discovery phase is the series of activities that involve you meeting with an architect,
interior designer, and landscape planner to prototype your ultimate dream home. The implementa-
tion phase, by contrast, is where you clear the land, lay the foundation, and actually build the home.
The quality assurance phase then, would be getting the home inspected.

THE DISCOVERY PHASE

The discovery phase of the website development methodology is designed to capture the detail
level view of requirements from the perspective of business, creative, and technical stakeholders.
Fundamentally, the discovery phase is focused on answering the question: “What do you want your

c02.indd 19c02.indd 19 12/21/2010 10:34:02 AM12/21/2010 10:34:02 AM

20 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

website to do?” In an ideal situation, a business case has been developed and approved that can provide
a guide to the entire discovery phase. Of course, we know we don’t always live in an ideal world. To
that end, the discovery process is fl exible enough to help defi ne business requirements, if necessary.
Recall, this phase would be like drawing up all your blueprints if you were building a dream house.

Kicking Off the Project

To begin the actual project, Ektron recommends conducting a formal kickoff meeting. Prior to the kickoff
meeting, you should develop an agenda that describes who should be involved in the meeting, what topics
will be discussed, and what anticipated next steps look like. Traditionally speaking, the kickoff meeting
is focused on introducing team members to one another from across the business, defi ning specifi c roles
and responsibilities for the team, and reviewing the formal scope of work that covers the entire project. In
most project kickoff meetings, one single point of contact — a project manager — is appointed. The role
of the project manager is to ensure the scope of work is managed, budget and timeline requirements are
met, and risk items are identifi ed and mitigated throughout the implementation process.

In addition to the project manager, many organizations designate a business stakeholder who can
speak to the concerns of the business, a marketing or creative stakeholder who can speak to the user
experience components of the project, and a technical stakeholder who can speak to the perfor-
mance and security components of the new website. In many cases, these stakeholders may represent
larger teams of subject matter experts who exist throughout the business itself. These key stakehold-
ers will bring other subject matter experts from the business into the project at appropriate times to
provide feedback, insight, and other value.

Developing a Project Plan

Once individual responsibilities for the team are well defi ned, the project manager should develop
a fi nal, baseline project plan that illustrates and documents the work activity tasks, dependencies,
resources, and timelines for the individual project elements. The project plan should take into con-
sideration the time required for signoff and approval of project deliverables, as well as the schedules
of people who must provide input throughout the project.

Gathering Business Requirements through Stakeholder Interviews

For most projects, detailed business, user experience and technical requirements are not well defi ned
at this stage of the project. To ensure that you have a comprehensive view of the requirements at
the outset of the project, each component of the website should be further defi ned through a series
of requirement gathering activities. To address the needs of the business and functional require-
ments of the website, you should conduct a series of business stakeholder interviews with a variety
of stakeholders across the organization. It is especially important to interview all stakeholders who
represent the various functions or departments within the organization that the website will affect.
Leaving out an important business segment can lead to real problems, so be expansive in your tar-
geting of stakeholders to participate in the sessions.

To make sure the stakeholders are well prepared in advance of the interviews, Ektron recom-
mends that you develop the interview questions and share these questions with the interviewees
before actually conducting the interview. Using this method, business stakeholders have the
opportunity to research and discuss the questions with other colleagues before answering your

c02.indd 20c02.indd 20 12/21/2010 10:34:02 AM12/21/2010 10:34:02 AM

The Discovery Phase x 21

questions. The interview format typically lasts between one and two hours and should be con-
ducted in an informal setting.

The interview questions should be focused purely around the business aspects of the website prop-
erty. You may want to ask about KPI tracking, business goals for the website, and business processes
the website will be expected to interact with. Make sure to ask questions that help to defi ne metrics.
These metrics can be tracked and measured at the completion of the project to demonstrate the
success of the investment. Also be sure to use plain language and avoid any technical jargon or other
confusing terms. As you ask the interview questions, make sure you write the answers exactly as
the interviewee provides them. It may also be necessary to educate participants about the questions
you’re asking so they better understand how to respond. These interview questions and responses
will be used later to develop a functional requirements document.

Ektron recommends the interview questions be conducted initially in a one-on-one format.
Participants are typically more candid and direct in one-on-one scenarios. As you conduct a series of
interviews, you will sometimes hear confl icting responses from various participants. In these cases,
identify responses that are common across the interviews and use those as the basis for the core
functional requirements. You may also hear great ideas or requirements that are outside the scope of
the current website project. Make sure to capture these ideas, because they often serve as the basis
for future project activities. In this way, you can make sure that each stakeholder feels as though he
or she were heard while also maintaining the scope of the project.

In some cases, confl icting requirements can’t easily be resolved in a one-on-one format. To address
these kinds of situations, it is best to conduct a follow-up consensus-building session. In this sce-
nario, bring together the stakeholders who participated in the interview sessions into a larger meet-
ing. Share with them the elements of the interview responses that were common across stakeholders
and diplomatically bring up areas where requirements confl icted. Stakeholders will often work
together to resolve confl icting requirements in a group setting.

Gathering Technical Requirements

With the core business requirements having been defi ned, the next area of focus is the technical
aspect of the website. Leveraging the input from the business, identify third-party tools, systems,
and applications that might be affected by the new website project.

Next, focus on performance and security standards requirements related to the website. Conduct
research and analysis of the current hosting infrastructure to determine whether new hardware is
appropriate or if existing IT infrastructure can be leveraged.

Security is another important component of any technical implementation. With respect to user
authentication, identify appropriate active directory or LDAP-based authentication repositories.
Leveraging the previously captured input from the business, develop fl ow maps that explain how
users can log in, be assigned permission levels, and manage changing contact information. It may be
necessary to review any internal IT policies that have been documented relating to security standards.

Finally, consider the implications of your technical infrastructure with respect to Ektron’s licensing
policies. For example, Ektron offers special pricing designed for implementation into disaster recov-
ery environments. Ektron also offers a wide variety of licensing options that enable multiple data
centers, load balanced server farms, and provide other approaches to the hosting infrastructure that

c02.indd 21c02.indd 21 12/21/2010 10:34:02 AM12/21/2010 10:34:02 AM

22 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

powers your website. Remember to consider the development, staging, and production environments
as they relate to licensing and hardware-procurement needs.

Gathering User Experience Requirements

The next area to focus on during the discovery process is to defi ne the user experience. Typically,
this is accomplished in a series of creative deliverables, which includes site maps, Wireframes, and
user interface prototypes. To begin, check with your marketing department to determine whether
your organization has documented Web or style standards. In the event that the standards exist,
it is important to align creative deliverables within these requirements. Determine whether any
Web-specifi c standards exist. For example, your marketing or design team may have specifi c
browsers that they want to support, a preference for fi xed width versus fl uid design approaches, a
list of specifi c plug-ins that are approved or guidelines for color palette, appropriate imagery, and
the use of company logos. It’s best to understand these guidelines upfront.

Although many people think the user experience consists of purely graphic design, the truth is that
the fi eld of information architecture (IA) is equally important. Information architecture refers to the
logical grouping of information in a way that serves specifi c audiences by being uniquely relevant
to those audiences. IA affects the overall hierarchy and organization of information on the website,
drives the navigational model for the site, and provides a consistent labeling scheme that aids in clar-
ity for the users. The steps are as follows:

1. To leverage the input previously provided by the business stakeholder interviews, you develop
a site map that graphically illustrates how information is fundamentally structured on the
website. The site map should focus on the top three layers of information on your website. It
should provide fi nal naming conventions for each major section of navigation found on the
site and should guide the development of the folder structure within Ektron’s Workarea.

2. Create a series of Wireframes. Wireframes are intended to serve two purposes.

 ‰ Organize and defi ne the priorities of the key elements of each page. For example, how
wide should the body area be? What kind of navigation scheme should be employed?

 ‰ Defi ne interaction design. For process-based web pages, it is important to document
where information is captured and how to walk the users through Web-based tasks.
Wireframes can be used to prototype these interactions. For example, users must
register for membership on your website.

3. Consider graphic design. Develop and design a series of user interface prototypes that repre-
sent the major components of your website. Examples include home page, interior sectional
page, search page, and any other major sections of the site considered important to the over-
all user experience.

Ektron recommends that multiple sets of user interface prototypes be developed
at this stage of the project. Each user interface prototype should include the
exact same sample pages, but have entirely different design treatments applied
to them. In this way, user interface prototypes can be presented to business and
marketing stakeholders and their feedback can be focused exclusively on the
aesthetic treatment of each design set.

c02.indd 22c02.indd 22 12/21/2010 10:34:02 AM12/21/2010 10:34:02 AM

The Discovery Phase x 23

Typically, in a website redesign project, at least three sets of user interface prototypes are presented
in the initial round of design comps. When presenting the three designs, make sure to educate the
stakeholders that they are not to evaluate the actual content of any of the user interface prototypes.
Instead these should focus on the color scheme, use of typography, and general layout. Ask the
stakeholders to select one of the three design prototype sets and provide feedback for further evolu-
tion of the selected design set.

Creating the Discovery Phase Deliverables

Now that you’ve completed the requirements-gathering activities related to the business and evalu-
ated the technical and user experience components of the project, you are ready to produce the fi nal
deliverables associated with the discovery phase. The Ektron website development methodology
calls for the creation of the following:

 ‰ The functional requirements document: Using the feedback captured during the business
stakeholder interviews and any subsequent prioritization sessions, document the
specifi c functional and business requirements of the website. Be as specifi c as possible
when developing these requirements and avoid the natural tendency to try to architect a
specifi c solution.

 ‰ The information architecture document: Leveraging the site map, develop an information
architecture document that captures and documents the higher structure of information on
the site. This document defi nes the types of information you’ll fi nd on the site, as well as
the structure of the information and how the content items relate to one another through
metadata and taxonomy. Comparing it to non-platform projects, this would be similar to an
object-relationship map. The combination of these materials should be documented in the
information architecture document and will inform the confi guration of the Ektron CMS as
you enter the implementation phase.

 ‰ The CMS implementation guide: Leverage the Wireframes and user interface prototypes to
create a CMS implementation guide. For each component defi ned in the Wireframes and or
user interface prototypes, defi ne which Ektron Server Controls should be used to address
each component of functionality. The CMS implementation guide is Ektron-specifi c, in that
it defi nes which server controls, which API calls, and which elements of customization are
required to meet the business, user experience, and technical requirements for the project.
Typically, a technical developer who is already familiar with the Ektron Server Controls and
APIs develops the CMS implementation guide.

Please note that it may be necessary, based on the feedback and input captured throughout the
discovery process, to revise the project plan that governs the overall implementation effort. When
website requirements are poorly understood, projects are structured so that the discovery phase is
addressed as a separate project before the implementation phase. In these cases, it is important to
develop a comprehensive project plan that governs the remainder of the implementation and testing.

One fi nal note about the discovery process: remember it is intended as a guide. Feel free to scale the
discovery methodology up or down to meet your individual needs. For example, some customers
may want to include processes such as usability testing as part of the discovery process. Other
customers may not be redesigning a website and should bypass the user interface prototyping phase
of the discovery process. What’s important to remember is that the methodology is as fl exible as
your unique environment.

c02.indd 23c02.indd 23 12/21/2010 10:34:03 AM12/21/2010 10:34:03 AM

24 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

THE IMPLEMENTATION PHASE

The implementation phase is where you start building to the specifi cations you have been develop-
ing. If you follow the project development methodology accurately, the implementation phase should
be as straightforward as possible. Returning to the dream house analogy mentioned earlier, the
blueprints for the cliff-top mansion would be fi nished and you would be ready to clear the ground
and start construction.

Starting Development

To begin the implementation phase, focus fi rst on the initial setup and confi guration of the three
environments: development, staging, and production hosting environments, following these steps:

1. Beginning with the development environment set up and install the hardware.

2. Install and confi gure the operating system and IIS Web server.

3. In a separate environment, and depending on your unique hosting confi guration, install,
confi gure, and set up the SQL Server database. Connect the SQL Server and IIS Web servers
so that they can communicate.

4. Download and install the latest version of the Ektron CMS400.NET software. Following
the instructions provided with the Ektron software, install a CMS Min environment. This
ensures that you are prepared to begin the development effort.

5. With the steps being completed, repeat them in the staging and production environments as well.

6. With the three environments now set up and confi gured, install the Ektron eSync software
and confi gure it to move fi le system assets and databases from development to staging and
fi nally, to the production hosting environment.

There are a number of ways in which Ektron can be confi gured. Although this
chapter describes a traditional three-tier hosting environment, each hosting
topology is different and unique to each customer’s specifi c environment. Even
though Ektron provides extensive documentation as to the different confi gura-
tion choices available, you may benefi t from a brief consultation with an Ektron
Best Practices Engineer, who can advise you on the optimal way in which your
hosting environment can be confi gured. Also remember to use the Ektron Dev
Center website (http://dev.ektron.com) to run ideas by other community
members who have Ektron experience.

7. You now want to develop actual .ASPX templates. Begin this activity by converting the fi nal
user interface prototype designs into a series of XHTML and CSS pages.

8. Before continuing, make sure to conduct browser compliance testing and ensure that the
XHTML templates and the user interface will display and function as intended. Making
changes to the design and layout of these templates after they have been converted into

c02.indd 24c02.indd 24 12/21/2010 10:34:03 AM12/21/2010 10:34:03 AM

The Implementation Phase x 25

.ASPX templates is more involved than making the changes earlier in the process. For the
presentation layer, using a CSS-driven design and layout will provide you with greater fl ex-
ibility while also aligning to industry best practice standards.

9. With the XHTML templates completed, convert the bare XHTML into .NET master pages.
Master pages should contain elements of the design that are shared throughout the website.
For example, it is often a best practice to have the Search fi eld presented in the upper-right
corner of the design. Accordingly, the master page should contain the Search fi eld so it is
consistently displayed to the users throughout the website.

10. Next, leverage the master pages to develop specifi c .ASPX templates that contain the indi-
vidual functionality that is not common to many pages. These pages were documented and
defi ned in your CMS implementation guide. If you develop these templates, remember to
develop the corresponding folder structure and content within the Ektron Workarea. As you
add server controls to the .ASPX pages, remember you must also style the output of these
controls to match the user interface prototypes. This is when the CSS you developed to sup-
port the templates comes in handy. Sometimes it is important to transform the output of the
server control as well as style it. In these cases, leverage XSLT to transform server control
output and CSS to defi ne the presentation elements of that output. Wherever possible, stan-
dardize and leverage common approaches to both XSLT and CSS standards.

Content Migration

When you are done with these steps, you essentially have a skeleton, or framework, of the website.
The next step is to begin loading content into the CMS. Depending on whether the project relates to
a new website property or a redesign of an existing website, your approach to content migration and
loading may differ.

 ‰ New website properties: Content is typically developed in the form of Microsoft Word docu-
ments. Taking the content from these documents and loading it into the CMS is a process
that entails copying and pasting content into individual content blocks.

 ‰ Redesign projects: If the site being redesigned is already on Ektron, the migration process
is very straightforward. Using direct APIs, you can migrate content blocks directly from the
previous installation into your new development environment. A similar approach may work
if you are migrating content from a site that uses a structured database. However, in these
cases, it may be necessary to transform the data structures to align with the Ektron objects.
If you are migrating from a site that doesn’t have a backend database, you may have to con-
sider a manual approach to content migration. One often overlooked aspect of any content
loading or migration process is the need to transform the content to align with the style stan-
dards of the new site.

 ‰ Large-scale content migration projects: It may be necessary to use an automated tool to assist
in the extraction, transformation, and loading of migrating content. This is another area
where Ektron Professional Services may be of some assistance to you.

Regardless of the method you employed to load the content, make sure to plan for the need to revisit
the content to freshen its relevance, update CSS style standards, and fi x broken links.

c02.indd 25c02.indd 25 12/21/2010 10:34:03 AM12/21/2010 10:34:03 AM

26 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

Also when considering content loading or migration efforts, remember you might want to use the
following tools to build content for structured versus non-structured data:

 ‰ Ektron Smart Form: Press releases often follow a very structured format. They consist of a
headline, summary, contact information for the PR representative, and the body of the press
release. Using an Ektron Smart Form is an ideal way to handle such content.

 ‰ Traditional Ektron content block: Other aspects of the website may require a more free-form
approach to content. For example, the About Us section of the website typically provides
basic information about the company, its employees, and its mission. This is an opportunity
to use traditional Ektron content blocks to provide freedom and fl exibility for the design and
layout of the content. These considerations should have been initially addressed during the
discovery phase and those deliverables should be used to guide this effort.

 ‰ PageBuilder Wireframes: These are different from traditional CMS templates in that they defi ne
specifi c zones where content and widgets are placed. With this basic framework in place, content
authors can drag and drop pre-built pieces of functionality or content into the zones defi ned by
the PageBuilder Wireframe. PageBuilder Wireframes are typically built using a column-based
metaphor. For example, you may have two-, three-, and four-column PageBuilder Wireframes
available to your users. With PageBuilder Wireframes in place, your content authors will create
the content as well as defi ne the individual layout of PageBuilder pages.

Now that the implementation phase is coming to a close, the next areas you’ll explore are the testing
and deployment steps.

THE QUALITY ASSURANCE PHASE

The testing phase of the project methodology is intended to capture and resolve any issues, bugs, or
problems with the website. Revisiting the analogy about the construction of your dream house, the
cliff-top mansion, this phase is where you bring in an inspector to ensure the building is up to code,
and that the attic light doesn’t turn on when you fl ip the garbage disposal switch.

System Testing

Using your own internal resources, you begin the system testing phase by documenting specifi c test
cases created using the business and functional requirements obtained during the Discovery Phase.
Use cases are intended to describe specifi c tasks or activities that users are expected to perform
using the website. They typically are task-based and verifi able. This means that through testing you
should be able to determine whether the site behaved as expected after testing. If not, the use case
needs to be refi ned and clarifi ed. For example, a verifi able use case would be to “enter in the search
term <HR Form> and see fi ve results listed in the search results.” A non-verifi able use case would be
to “provide search functionality.”

If there is one overlooked aspect of website development, it is typically in the testing processes. As
you develop your use cases, be expansive and remember to not only cover just the tasks described in
the business requirements, but also commonly used website functions, such as search and contact
forms. Once your use cases have been fully developed, follow them throughout your testing process.

c02.indd 26c02.indd 26 12/21/2010 10:34:03 AM12/21/2010 10:34:03 AM

The Quality Assurance Phase x 27

As you identify issues during the use case testing, document the URL, the expected behavior, and
the actual results you encounter during the testing.

It is common to conduct multiple rounds of system testing before moving into
user acceptance testing. Remember also to test all aspects of the website. For
example, if your website has integration with a third-party tool or applica-
tion, make sure to test that the information captured in the CMS is accurately
migrated to the other system or tool.

As you identify specifi c issues, document them in a testing spreadsheet or defect tracking tool. Use
this defect tracking system with your development team to research, analyze, and resolve each indi-
vidual issue. As you resolve issues, document the response to the reported issue in the same tool.
This provides you with a detailed record of both testing issues documented as well as issue resolu-
tion. You can use the same format as you enter the next, and fi nal, phase of testing.

User Acceptance Testing

The fi nal phase of activity before completing and deploying the new website is to conduct user
acceptance testing. With the previous testing phase, you used IT developers and QA staff to do the
testing and issue resolution activities. In this phase, you use actual end users to complete the testing.

Before user acceptance testing can begin, however, it is important to ensure that the actual end
users of the CMS powered website have been trained and know how to manage the site and its
functionality. Ektron provides detailed system documentation as well as training materials to all of
its customers. However, you may fi nd developing custom author or administrator training materials
to be helpful as you educate your end users. It has been Ektron’s experience that delivering custom
training in an instructor-led, hands-on format is the most effective way to empower the author and
administrator audiences.

As before, the use cases will drive the testing effort. Ask your end users to follow the use cases and
report any identifi ed issues in the same testing spreadsheet format that you used in the earlier phase
of testing. Again, you may decide to do multiple rounds of user acceptance testing before you decide
that the site is ready for an appointment. As issues are identifi ed by your end users, involve your IT
staff in researching and resolving the reported issues.

When the testing process is complete, training delivered, and a fi nal check of system functionality,
you are ready to deploy the new Ektron-powered website to the public at large. Using Ektron’s eSync
technology, you can quickly deploy content and fi le system assets from your development to staging
and, ultimately, your production hosting environments. Once the site is deployed to the production
hosting environment, update the DNS entry for the website point to the production servers. Within
24 to 48 hours, the site will be available to the public at large and you will have your most visible
demonstration of the success of the project.

However, this is not necessarily the end of the project. Now that the site has been launched, it is
time to enter the ongoing maintenance mode that governs the website until the next major enhance-
ment or release. It is critically important that at this stage of the project, you begin the detailed

c02.indd 27c02.indd 27 12/21/2010 10:34:04 AM12/21/2010 10:34:04 AM

28 x CHAPTER 2 THE EKTRON WEB PROJECT METHODOLOGY

tracking and reporting of the KPI metrics you defi ned in the discovery phase of activities. If the ini-
tial investment in the website was based on demonstrable business impact, these KPI measurements
help to prove that the expected result has, in fact, been attained.

Remember, once the website is launched, you still have ample opportunities to tweak, modify, and
enhance the content, layout, and functionality of the website. Use this capability to measure your
expected results and make changes as appropriate. No other medium can allow you to quickly
change your mind and react to how your customers perceive and interact with your website
property. So many projects count success as the mirror launching of a new website. Real success,
however, is measured over time and in your newfound abilities to react to the marketplace.

TAKE HOME POINTS

Before this chapter on the Ektron website development methodology ends, the authors want to share
a couple of fi nal thoughts and important points to keep in mind:

 ‰ Carefully manage the scope of the project. If you do not do this, you are almost guaranteed
to miss your budgetary and timeline constraints. This is a problem that every website devel-
opment project faces. However, leveraging an effective change-management process can miti-
gate scope creep by using the discovery deliverables as a baseline to measure against.

For example, during the testing process, it is almost inevitable that business users will come
up with new ideas and ask for changes. As this occurs, make sure to document the request
and assess the impact of the change in both fi nancial and timeline views. Many times,
when presented with a specifi c dollar number and timeline change, business stakeholders
will reevaluate the request and either provide additional funding and time to complete the
change or decide that the change is something that can wait until the next phase. Effectively
managing change requests can be the difference between a project that launches on time and
on budget versus a project that never seems to launch and misses the budget wildly.

 ‰ Remember that a website is really never fully completed. Instead, websites live in specifi c time
frames, constantly evolving and changing to meet the expanding expectations and needs of
your customer audiences. Remember to revisit the functional requirements for the website
often, paying special attention to those items that were deemed appropriate for future expan-
sion and Ektron features that you may not have used during your initial development effort.

 ‰ Making simple changes to the website that adds functionality will extend the life and
business value of the website investment. A great example of this is an organization that
decides to implement Ektron’s core website analytics package, and later decides to extend
the feedback loop through the use of multivariate testing in a PageBuilder interface. For an
established site, this is an easy expansion that can signifi cantly help with KPIs. These types
of small enhancements increase the effectiveness of the original business investment in the
project and also serve to provide constant “little wins” related to the website that reminds
people of the value of both the site as well as the platform it’s built upon.

c02.indd 28c02.indd 28 12/21/2010 10:34:04 AM12/21/2010 10:34:04 AM

3
The Implementation Guide

 ‰ What is Ektron’s approach to the Development Lifecycle?

 ‰ What is an implementation guide?

 ‰ What is in the OnTrek implementation guide?

 ‰ What Best Practices do you use when creating an implementation

guide?

The implementation guide is an important step in building any website. It defi nes a set of
expectations that the development team can follow to produce a fully functioning website that
meets the needs of the business for which the site is being built. Ektron implementation guides
may differ slightly from what you are familiar with on other ASP.NET projects, just as the
way developers approach Ektron projects differs from standard ASP.NET projects. These
differences are discussed in the fi rst section of this chapter.

Following the discussion on the Ektron approach, this chapter describes the implementa-
tion guide in detail, and discusses the OnTrek implementation guide in particular. These
sections describe the content of the guide, and walk through some example components
of the document. You’ll also walk through the steps for creating an implementation guide;
each section is fully discussed so that in the future you can document your projects ahead
of time.

The full implementation guide for the OnTrek site is available for download
at p2p.wrox.com: this chapter will only cover a small subset of the function-
ality in the implementation guide. Also note that the document is designed
to convey the minimal information necessary for a developer to implement
against.

c03.indd 29c03.indd 29 12/28/2010 1:46:52 PM12/28/2010 1:46:52 PM

30 x CHAPTER 3 THE IMPLEMENTATION GUIDE

Finally, this chapter discusses some best practices and notes to keep in mind as you develop an
implementation guide for your project. Creating an effective implementation guide is the key to
minimizing the risk of scope creep and underestimation of initial scope.

THE EKTRON APPROACH

Before you dig into the implementation guide, a quick review of the Ektron Framework and how
you should approach it is in order. While the Ektron Framework is built on ASP.NET and utilizes
the component-based architecture inherent in the platform, Ektron takes it a step further through a
technology called PageBuilder.

PageBuilder is a feature that takes the concept of ASP.NET User Controls and moves it one step
further. In a normal ASP.NET implementation, the typical workfl ow is for designers to come up
with a site layout, and for developers to break that down into components called user controls,
which are then declaratively placed onto templates. This approach makes it easy and straightforward
for developers to maintain the site because it encapsulates features and layout elements into easily
reusable pieces of code.

PageBuilder takes .NET User Controls to the next level, providing controls that allow non-developers
to add components to pages and modify component settings. It eschews the need for a developer to
intervene, and entirely drops the requirement for Visual Studio from the page layout update cycle.

The basic Ektron implementation lifecycle approach is to remove the dependency on developers as
early in the website management cycle as possible. To this end, it is best to group the user interaction
requirements into three camps.

 ‰ Developer: The developer serves the same function as in a normal ASP.NET implementation,
working with designers to stabilize the styles used, as well as developing templates and com-
ponents. Where the exercise differs is that the components in this case are mostly PageBuilder
Widgets, which you can then place onto pages by the website production manager.

 ‰ Messaging Expert: This role is to manage the raw content elements that are used in the web-
site. Beyond a bare minimum, messaging experts do not need to know how content is used
on the site, and they do not need to worry about styling or functionality of the site. They sim-
ply generate the content that is then used by the website’s production manager.

 ‰ Web Production Manager: This is the key role that differentiates an Ektron implementation
using PageBuilder from a standard ASP.NET implementation. The website production man-
ager takes the content developed by the messaging expert, and the components and templates
created by the developers, and combines them through a drag-and-drop WYSIWYG layout
management process.

The addition of a website production manager role alleviates the need to have developers continually
returning to existing templates to add a small piece of functionality, or move an element from one
location on the page to another. Those requirements can, with the addition of PageBuilder, be moved
to a non-technical role fi lled by someone much closer to the business requirements side of the project.
PageBuilder is covered in greater detail in Chapter 9.

c03.indd 30c03.indd 30 12/28/2010 1:46:58 PM12/28/2010 1:46:58 PM

Implementation Guide x 31

 IMPLEMENTATION GUIDE

One of the most important deliverables that comes out of the discovery phase of the Ektron website
development methodology is the CMS implementation guide. Put simply, the CMS implementa-
tion guide provides a technical blueprint for exactly how the Ektron website will be constructed.
It defi nes, on a component-by-component basis, which server controls, widgets, user controls, or
other pieces of functionality are required to produce a given Web page. CMS implementation guides
are fairly technical documents and are not typically well-suited for presentation to non-technical
audiences.

Before proceeding, let’s review the discovery phase of Ektron’s site development methodology. The
discovery phase is intended to capture the requirements and design for the solution. It collects the
unique perspectives of business owners, marketing and user experience specialists, and technical or
engineering resources. Among the core deliverables that are produced during the discovery process are:

 ‰ The functional requirements guide: Captures, from a business perspective, how the site
should operate.

 ‰ The information architecture guide: Defi nes the structure of content in the Ektron Workarea
and the use of metadata and taxonomy.

 ‰ The CMS implementation guide: Builds upon both the functional requirements and infor-
mation architecture documents, including screenshots of user interface prototypes or
Wireframes. It explains step-by-step which components are necessary in order to produce the
desired functionality.

For a full discussion of the Implementation Process, which includes the discovery
phase, see Chapter 2.

Oftentimes, the construction of a website is compared to the construction of a building. Following
this analogy, you could compare the CMS implementation guide to the blueprints that construction
workers use as they assemble the structure. Similarly, application engineers and CMS architects
use the CMS implementation guide to guide the development of the actual Web pages and the com-
ponents that are required to create them. Done properly, the CMS implementation guide provides
enough detail and direction to the programming team so that they clearly understand all aspects of
what is to be produced.

From the perspective of document formatting, the CMS implementation guide consists of several
elements:

 ‰ Sitemap: This is included in the implementation guide merely as a reference to the overall
information architecture of the website. It is helpful to refer to the sitemap while constructing
the CMS implementation guide to ensure that all pages are properly documented.

 ‰ Page layouts, in Wireframe or screenshot formats: These provide a visual reference for each
page type that will be found in the website. Page layouts should include either screenshots of

c03.indd 31c03.indd 31 12/28/2010 1:46:59 PM12/28/2010 1:46:59 PM

32 x CHAPTER 3 THE IMPLEMENTATION GUIDE

approved Wireframes or actual screenshots of the fi nal user interface. By providing a visual
reference, application engineers and CMS architects can understand the visual aspects of the
programming tasks.

 ‰ Object tables that describe the components in each Wireframe or screenshot: The role of
the object tables is to provide an appropriate label, description, and documentation around
expected interactions on a component-by-component basis for each page layout type.

 ‰ Widget listing: As mentioned in the fi rst section of this chapter, PageBuilder is an important
part of building an Ektron-based website. It allows developers to encapsulate pieces of func-
tionality into widgets, which are user controls with additional functionality. These widgets
can then be placed onto pages by website production managers, reducing the need for
developers in the maintenance stage. The widget listing describes these page components
as standalone elements.

 ‰ Object tables specifi c to widgets: These describe the elements of a widget, so that a developer
can understand the functionality of that widget.

THE ONTREK IMPLEMENTATION GUIDE

The best way to understand how to construct the CMS implementation guide is to review an existing
document. To that end, Ektron has provided a copy of the OnTrek implementation guide with this
book, available at www.wrox.com. We encourage you to review this guide and to use it as a template
for your own projects. The OnTrek CMS implementation guide is based on a website that, following
Ektron best practices, heavily utilizes PageBuilder technology. As such, the CMS implementation guide
contains sections devoted to both the pages in the site and the widgets available for use on the site.

In the pages section, all aspects of the website are detailed, including a breakdown of product dis-
plays, search and detailed product information, the checkout process, event information, content
areas, careers and job postings, maps related to locations, a contact form, and much more. Because
the OnTrek site also includes social networking community functionality, the pages section also
includes overviews of community functionality, personal profi le information, friends, activity feeds,
blogs, photos, and other group-related functionality. Of course, common elements to all websites
are addressed, including search functionality, terms of use, and sitemaps.

The widgets section then documents the full list of widgets available on the site, with details about
functionality and the user interface, along with editing options and technical notes. Examples of
the kinds of widgets that are documented include most popular products, highest rated, tabbed
interfaces, recent posts, discussion forum topics and search functionality, social networking func-
tionality, career searches, search fi lters, e-commerce discounting rules, event registration, product
cross-selling, and accordion menus, among others. These widgets can then be incorporated into any
other part of the site by content managers.

For each section, object tables are included that describe the expected interaction and functionality
of each element of the page.

In this exploration of the OnTrek CMS implementation guide, you will review three representa-
tive pages, and their related object tables. You will also look at the wireframes for the widgets that
appear on those pages, followed by their object tables. The discussion begins with the homepage.

c03.indd 32c03.indd 32 12/28/2010 1:46:59 PM12/28/2010 1:46:59 PM

The OnTrek Implementation Guide x 33

The Homepage

The user interface for the homepage, shown in Figure 3-1, is really just a screenshot of the Wireframe.

Throughout the interface Wireframe, there are specifi c footnote references
embedded in the image. The placement of these footnote references indicates the
component that the reference is documenting and is cross-referenced in the page
object table.

FIGURE 3-1

For each footnote defi ned in the user interface, the object table, reproduced in Table 3-1, provides
a label, expected interaction for the component, and a description of how the component should be
constructed. For example, many of the components on the homepage are actually widgets. When
looking at the language selector, footnote number one, you’ll notice that the description of the

c03.indd 33c03.indd 33 12/28/2010 1:46:59 PM12/28/2010 1:46:59 PM

34 x CHAPTER 3 THE IMPLEMENTATION GUIDE

object table indicates its expected functionality, including the need for the language selector con-
trol content languages for all components found on the page, including menus. As you review the
remainder of the objects defi ned in this specifi c page, you’ll notice that the majority of the remaining
components are in fact, widgets.

TABLE 3-1: Object Table for the Homepage

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 Language Selector Language Selector is only shown on the

homepage. Should translate everything

on this page, including menus.

2 Header Widget Enter a custom header in the header

widget.

3 Banner Text Intro text for the site.

4 Banner Slider Banner with sliding images and text that

are managable through the CMS.

5 Content Block Display a content block.

6 News Tab OnClick:

 Case 1:

 Set Panel state

to News State

Lists recent News items.

7 Events Tab OnClick:

 Case 1:

 Set Panel state

to Events State

Lists the upcoming events. Confi guarble

for the calendar to pull events from and

for how many to display.

8 More News Link OnClick:

 Case 1:

 Open News in

Current Window

Link to News page.

9 News List OnClick:

 Case 1:

 Open News

Article Page in

Current Window

Lists the latest news item. Can be

confi gured to show X number of items.

10 News Widget Display item’s title, date published, and

summary. Link to article page.

Widget Settings:

choose what folder to pull from, how

many to show, enable subscription,

enable paging, how many per page.

c03.indd 34c03.indd 34 12/28/2010 1:47:00 PM12/28/2010 1:47:00 PM

The OnTrek Implementation Guide x 35

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

11 RSS Feed User can get the list in an RSS format, or

add the RSS feed to an RSS Reader (eg

Google Reader).

12 What Customers

Are Saying Widget

This display shows what multiple

comments enabled would look like.

Should allow user to choose which

comments to show, change the header

text, how many to show, enable paging,

how many per page, and whether or not

to rotate them on page refresh.

For each widget defi ned within the page, a similar screenshot
and object table are required. This example uses the What
Customers Are Saying Widget. Similar to the page interface, the
interface for the widget is separately documented in the CMS
implementation guide. As before, the separate object table,
related specifi cally to this widget, is also included. The User
Interface for the What Customers Are Saying Widget is shown
in Figure 3-2.

For the What Customers Are Saying Widget, the object table
provides detailed references to the desired functionality of
the widget, including how the functionality changes based on
whether a user is currently editing the page. The object table for
the What Customers Are Saying Widget is reproduced in Table 3-2.

TABLE 3-2: Object Table for the What Customers Are Saying Widget

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 What Customers Are

Saying Widget

This display shows what one comment

would look like.

Widget Settings:

Widget should allow user to choose

which comments to show (collections?

content list?), change the header text,

how many to show, enable paging, how

many per page, and whether or not to

rotate them on page refresh.

Product Page

The layout for the products page user interface, as shown in Figure 3-3, is different from the
homepage example in the last section. While maintaining the global navigation and company logo

FIGURE 3-2

c03.indd 35c03.indd 35 12/28/2010 1:47:00 PM12/28/2010 1:47:00 PM

36 x CHAPTER 3 THE IMPLEMENTATION GUIDE

across the top of the page, this page produces a new layout and function in the left column. Based
on this wireframe, the product details are shown. In the right column, widgets display similar
products, items listed as upgrades for the current product, and products other customers have
purchased.

FIGURE 3-3

The object table for the products page is more complicated than the fi rst example. As before, foot-
notes make visual references to individual components found in the page. Based on this example,
the CMS architect has created this layout leveraging a combination of Ektron Server Controls and
widgets. Notice also that in this section, the architect has defi ned specifi c interactions for certain
components. For example, several items contain an OnClick interaction. This signifi es that when the
user clicks on the item, the interface will respond by performing the action listed. The object table
for this page is reproduced in Table 3-3.

c03.indd 36c03.indd 36 12/28/2010 1:47:00 PM12/28/2010 1:47:00 PM

The OnTrek Implementation Guide x 37

TABLE 3-3: Object Table for the Products Page

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 Product

details

 Case 1:

 Open Product Page in

Current Window

Display the product title, image,

details, average rating, and add to cart

button.

2 Social Bar

Widget

Social Bar Widget allowing users to

add to favorites (visible when logged

in), E-mail link to someone, print the

page, tweet the URL, or facebook

the URL.

3 Average

rating

Display stars showing the average

rating for the product. If not yet rated,

display “Not yet rated.”

4 Add to Cart Add the item to the user’s cart.

5 Specifi cations

Tab

OnClick:

 Case 1:

 Set Panel state to

Specifi cations State

Displays detailed specifi cations of the

product.

6 Ratings &

Reviews Tab

OnClick:

 Case 1:

 Set Panel state to

Ratings State

Displays ratings and reviews entered

by customers for the current product.

7 Product

Specs

Display product specifi cations (size,

weight, etc).

8 Product

Image

OnClick:

 Case 1:

 Open Product Page in

Current Window

Image displayed inside the Product

Customer Sell Widget.

9 Product

Name

OnClick:

 Case 1:

 Open Product Page in

Current Window

 Name of product shown in 8.

10 Product

Customer

Sell Widget

Show products that customers have

also purchased when they purchased

this item. If none are available, do not

display.

continues

c03.indd 37c03.indd 37 12/28/2010 1:47:00 PM12/28/2010 1:47:00 PM

38 x CHAPTER 3 THE IMPLEMENTATION GUIDE

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

11 Product

Cross Sell

Widget

Recommends products to the user.

Displays products associated to the

product being displayed on the page

using the Recommendation server

control. If there are no associated

products, this should not display.

12 Product

Image

OnClick:

 Case 1:

 Open Product Page in

Current Window

Image for product displayed in 11.

13 Product

Name

OnClick:

 Case 1:

 Open Product Page in

Current Window

Name of product displayed in 11.

14 Product

Image

OnClick:

 Case 1:

 Open Product Page in

Current Window

Image for product displayed in 16.

15 Product

Name

OnClick:

 Case 1:

 Open Product Page in

Current Window

Name of product displayed in 16.

16 Product

Upsell

Widget

Display product upgrade(s) for the

product displayed on the page.

If no upgrade available, do not display.

As before, certain elements of the page interface are comprised of
widgets. An object table and widget screenshots are required for each
specifi ed widget. The user interface for the Product Cross Sell Widget
is shown in Figure 3-4.

The object table for the Product Cross Sell Widget is reproduced in
Table 3-4. This object table defi nes the display and available widget
settings that content managers can customize, as well as the link action for the displayed event.

FIGURE 3-4

TABLE 3-3 (continued)

c03.indd 38c03.indd 38 12/28/2010 1:47:00 PM12/28/2010 1:47:00 PM

The OnTrek Implementation Guide x 39

TABLE 3-4: Object Table for the Product Cross Sell Widget

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 Product Cross Sell

Widget

Recommends products to the user.

Displays products associated to the

product being displayed on the page

using the Recommendation server control.

Widget Settings:

Header text. How many items to display.

Set which product to make recommenda-

tions from.

2 Product Image OnClick:

 Case 1:

 Open Product

Page in Current

Window

Image for the product being cross sold.

3 Product Name OnClick:

 Case 1:

 Open Product

Page in Current

Window

Name of the product being cross sold.

User Dashboard Page

The fi nal example that you see in this section is related to the user’s personalized dashboard page.
Compared to the previous pages you’ve reviewed, the user dashboard is fairly complex. Consisting
of many server controls and a large amount of custom code, the user dashboard is a very powerful
and highly functional element of the OnTrek website. As before, the user interface relies upon a
consistent placement of the OnTrek logo and global navigational components across the top of
the page. In the left column, an accordion menu is presented that offers links to the user’s profi le,
groups, friends, favorites, a calendar, a blog, documents, and photos.

The right column of the dashboard page is devoted to the display of a user’s individual widgets.
These widgets are personalization controls that site visitors can add, modify, or remove. Thus, you
must defi ne those interactions in the implementation guide. Across the top of the right side of the
page, a status bar allows the users to update their friends with activity statuses. Below the status
bar, a scrolling list of widgets is displayed. Finally, below the scrolling tray of widgets are the actual
widgets that the users have selected for their individual dashboard. The user interface for the user
dashboard is shown in Figure 3-5.

c03.indd 39c03.indd 39 12/28/2010 1:47:01 PM12/28/2010 1:47:01 PM

40 x CHAPTER 3 THE IMPLEMENTATION GUIDE

FIGURE 3-5

The object table for the dashboard is similarly complex. However, in the page view, most of the
references point to individual widgets and as such, are defi ned in the widget object table. Please note
that the object table also includes guidance related to business rules that drive the functionality of
individual components. The object table for the user dashboard is reproduced in Table 3-5.

TABLE 3-5: Object Table for the User Dashboard Page

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 Profi le Avatar User profi le image uploaded by user.

2 Edit profi le OnClick:

 Case 1: Open Link

in Current Window

Edit profi le brings user to edit profi le

screen.

c03.indd 40c03.indd 40 12/28/2010 1:47:01 PM12/28/2010 1:47:01 PM

The OnTrek Implementation Guide x 41

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

3 My profi le Shows the user profi le basics. Uses

profi le format from Eintranet, an

earlier project.

4 Left Nav Tabs Tabs are prioritized in this order for

the profi le.

5 Status Bar This should be updated from the

current view on the Eintranet to use

this format.

6 Open Support

Tickets Dashboard

Widget

See Dashboard Widget specs.

(download the full Implementation

Guide for this section).

7 Most Popular

Groups Dashboard

Widget

See Dashboard Widget specs.

8 Forum Replies

Dashboard Widget

See Dashboard Widget specs.

9 Upcoming Events

Dashboard Widget

See Dashboard Widget specs.

10 Deal of the Day

Dashboard Widget

See Dashboard Widget specs.

11 Latest Forum Posts

Dashboard Widget

See Dashboard Widget specs.

12 Personalization

Dashboard

User’s personalized dashboard. Can

include any out-of-the-box widget,

plus the widgets shown here. This

view shows a proposed search wid-

get box that should function the same

as the PageBuilder Widget search.

We have selected the Most Popular Groups Dashboard Widget as an
example of the many widgets that make up the dashboard page. Note
the default settings are specifi ed in the widget object table and even
performance concerns are documented at this stage. The user interface
is shown in Figure 3-6, and the object table for the widget is reproduced
in Table 3-6.

F IGURE 3-6

c03.indd 41c03.indd 41 12/28/2010 1:47:01 PM12/28/2010 1:47:01 PM

42 x CHAPTER 3 THE IMPLEMENTATION GUIDE

TABLE 3-6: Object Table for the Most Popular Groups Dashboard Widget

FOOTNOTE LABEL INTERACTIONS DESCRIPTION

1 Most Popular Groups

Dashboard Widget

Widget for Personalization Dashboard.

Avatar and text link to the group profi le.

Widget Settings: Set how many groups

to display. Default is 5. (Set a max of 25

for performance.)

TAKE HOME POINTS: BEST PRACTICES FOR CREATING AN

IMPLEMENTATION GUIDE

Now that you have seen a detailed view of what a content management system implementation
guide looks like, this chapter will wrap up by sharing some best practice ideas to guide you as you
create your own implementation guides. See Table 3-7.

TABLE 3-7: Best Practice Ideas for Creating an Implementation Guide

IDEA DESCRIPTION

Be thorough. If there’s one area where CMS implementation guides are

not successful, it’s generally in their lack of thoroughness in

capturing all requirements. The amount of eff ort you spend

planning up front is returned to you many times over because

doing so streamlines the development process. Before fi naliz-

ing your implementation guide, cross-reference all aspects of

the guide to existing functional requirements and information

architecture standards.

Don’t cut corners. Make sure that you have an extensive set of Wireframes or

user interface prototypes to include in your implementation

guide. Ensure that your functional requirements and infor-

mation architecture documents are complete and thorough

before beginning work on the implementation guide.

Think strategically. With the Ektron Framework, you often have many diff erent

methods, controls, or components that accomplish similar

tasks. When considering diff erent options, always think long-

term. The goal of the implementation guide is not just to

defi ne how to build this current version of the website, but

also to provide the fl exibility that you need as the site evolves

and grows in the future. If you have questions about which

control to use, take advantage of the Ektron devCenter at

http://dev.ektron.com, where other Ektron developers

can share their thoughts and experiences with you.

c03.indd 42c03.indd 42 12/28/2010 1:47:01 PM12/28/2010 1:47:01 PM

Take Home Points: Best Practices for Creating an Implementation Guide x 43

IDEA DESCRIPTION

Develop your implementation guide

in multiple passes.

Involve other members of the development team in reviewing

your implementation guide to get their input and advice.

Remember to consider the various

contexts in which your pages will

be rendered.

For example, think about how the page performs for a general

website visitor, for a user who has login access, or for a user

who is a CMS account holder.

Remember to plan for user

interaction.

Keep in mind the fl ow of specifi c components of functionality.

For example, consider a login process. The interaction design

of this process is that users click a login button that opens a

new window. In the new window, users enter their usernames

and passwords and press the login button in the pop-up. If

successful, the login window closes and the page refreshes. If

not, an error message displays in the pop-up window and the

users have the opportunity to enter the user password again.

Wherever possible, reiterate

the business rules that govern

functionality.

As seen previously in this chapter, it is always helpful to

document relevant business rules in the context of individual

components. For example, keeping performance in mind

while developing business rules related to taxonomy-driven

lists can have a major impact in the overall performance of

your website. Including rules like “display only 10 matches”

in the context of the implementation guide ensures that your

development team will actually implement code in a way that

optimizes performance.

Remember that the implementation

guide is a living document.

In addition to providing documentation to the development

team that is initially building out the site, the implementation

guide is also used as a form of ongoing documentation about

the functionality the site contains and the key elements of that

functionality. Maintaining the implementation guide allows

you to bring new team members up to speed quickly, helps

alleviate duplicate code, and helps to keep new development

exercises in line with existing functionality.

c03.indd 43c03.indd 43 12/28/2010 1:47:01 PM12/28/2010 1:47:01 PM

c03.indd 44c03.indd 44 12/28/2010 1:47:02 PM12/28/2010 1:47:02 PM

4
Confi guring Your Development
Environment

 ‰ What do you need to confi gure your machine to use the Ektron

Framework?

 ‰ How do you install the Ektron Framework?

 ‰ What else do you need to know when you install?

In order to follow along with this book’s development samples, you’ll need a few programs
installed on your computer. This chapter covers the basic software requirements to develop for
the Ektron Framework, followed by instructions on setting up the OnTrek starter site on your
development machine, followed by a discussion about approaches for team development.

WHAT YOU NEED TO CONFIGURE YOUR MACHINE

Once your system is confi gured with the required software, you can install the Ektron
Framework. The list of required software to run Ektron locally as a developer is not too long.
You must have a copy of the following:

 ‰ Windows with IIS 6.0 or greater and .NET Framework 3.5 or greater, along with a
SQL Server 2005 or later instance available.

 ‰ Visual Studio 2005 or later. Any text editor will work for developing .NET code,
but Visual Studio provides IntelliSense and other features that are invaluable when
working with code you are not familiar with.

 ‰ Beyond that, you’ll simply need a recent browser — Internet Explorer 7 or greater,
or Firefox 2 or greater — and any Webkit browser such as Apple Safari or Google
Chrome, supported by the Ektron Framework.

c04.indd 45c04.indd 45 12/21/2010 10:34:43 AM12/21/2010 10:34:43 AM

46 x CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

 ‰ Visual Studio 2005 or later. Any text editor will work for developing .NET code,
but Visual Studio provides IntelliSense and other features that are invaluable when work-
ing with code you are not familiar with. Visual Web Developer is also an option that will
work for most developers, but keep in mind that it is limited in its debugging capabilities.
For example, Visual Web Developer cannot attach to a process, which is the recommended
method of debugging a site. Also, Visual Web Developer cannot be used to build Ektron
Extensions.

INSTALLING THE FRAMEWORK

The installer for the Ektron Framework can be found at http://www.ektron.com/download_
center/. The installer will set up the support fi les and Windows Service. It presents you with the
option of installing one of the included starter sites, which can be used either as examples or as
the basis of your fi nal site, to the local machine. Finally, it offers to install the SDK. This allows
for building Ektron Extensions. These expose system events like AddUser and OnPublish to the
developer.

The installer asks you at one point for a license key. For a local installation, it is easiest to just leave the
box blank — this sets the framework to work only when accessed through localhost. In a distributed
development environment with a central server, or when you are ready to move to a staging or produc-
tion server accessed through another URL, you need a license key for the URL. Trial license keys can
be requested through http://www.ektron.com/download_center/. To get a non-time-limited license,
speak to your account manager or sales engineer at Ektron.

You can install by doing the following:

1. Start your installation by running CMS400Basev80.exe. This installer guides you through
installing the core fi les and the Ektron Windows Service. Once completed, it asks you if you
would like to install a site. Select No, since you want to install a starter site.

2. Go to http://www.ektron.com/cms400-starter-sites.aspx and download the OnTrek
Starter Site. Running the installer adds the information needed to create an instance of the
site to your Program Files directory.

3. Once complete, go to Start Í All Programs Í Ektron Í CMS400v80 Í Utilities Í CMS400
Site Setup. In the Wizard that appears, select Full Installation and continue. Since you are devel-
oping on a localhost, leave the license-key fi eld blank. From the dropdown list of sites to install,
select OnTrek.

4. You are asked what site and host you want to install to — leave these as the defaults.

5. You need to specify where the site fi les will reside; the default here is fi ne, unless you need to
install somewhere else, for instance if you have multiple site roots defi ned in IIS. The Wizard
will now install the site fi les.

6. Once the installation completes, you will have a live site, but the site won’t do anything since
you haven’t set up the database yet. That database setup is the next thing the Wizard will ask
for. Specify the connection parameters to your SQL instance, and it will confi gure the site to
connect to the instance and create the database for the site.

c04.indd 46c04.indd 46 12/21/2010 10:34:45 AM12/21/2010 10:34:45 AM

Installing the Framework x 47

When this Wizard completes, you can go to http://localhost/OnTrek/, and the example site for
this book will be there.

Development Scenarios

When acting as a single developer, the requirement to manage the source and assets is easily ful-
fi lled. In this scenario, all development is done locally. When the developers are ready to push the
site live, they can copy all the fi les to the production home and perform a backup of the database
followed by a restore at the destination. However, when working with a team of developers, a num-
ber of additional requirements may present themselves.

Source Control

The fi rst item typically required when multiple developers need to collaborate is a source control
system. Almost any versioning system works — Subversion, Git, Perforce, and Visual SourceSafe are
all fi ne. Only the folders under development should be maintained in the repository. This means it is
typically safe to leave the Workarea unmanaged. It is also usually best to leave the .confi g fi les in the
root of the site unmanaged, as the confi guration from one machine to another is likely to change.

A typical setup for managing source is to use Subversion to manage the source code. A single server
is set up to view the current head revision of the source, and the database is set up on that server.
The process to set up this portion is as follows:

1. Install either a min site or a starter site to that machine, and then perform an svn import on
the directory. Make sure to exclude all .confi g fi les, as well as the Workarea, bin, uploaded-
fi les, and uploadedimages directories.

2. Once the import is complete, use svn checkout to turn the site directory into a working copy.

3. From here on, you can just run svn update to bring the machine to the head revision.
Depending on your source control platform choice, this can usually be automated. For
instance, Subversion has a folder that contains executable scripts, so it is straightforward to
attach to the post-commit event hook, and force a refresh of the server at that time. Likewise,
when using the Perforce daemon, it is possible to confi gure the daemon so that the working
directory is updated at a regular interval.

4. Every developer should then have their own copy of the site installed locally on their
machine, where changes are made through the development cycle. To initially set this up,
install a min site to each machine, and then perform an svn checkout to bring the site up to
the same fi le base as the other machines.

At this point the typical setup has each developer machine connect to the master database on the
review server, by modifying the web.confi g. Through the use of load balancing, the associated assets
are kept up-to-date across the machines.

Data Synchronization

There are two main options for managing content across a team of developers. The two options rely
on different confi gurations of client server architectures. The one you choose for your project will
depend on your license, your team size, and your requirements. The main difference between the

c04.indd 47c04.indd 47 12/21/2010 10:34:45 AM12/21/2010 10:34:45 AM

48 x CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

two choices is whether you utilize a single shared database for all developers, or whether each devel-
oper has a local database, where each database is synchronized to each other.

In both situations, it is advised that each developer have his/her own ASP.NET instance. This allows
for developers to feel free to use breakpoints, and debug output without interrupting the other devel-
opers on the project. Whether you share the database or use separate instances is determined by
personal preference.

The two options are:

 ‰ To use separate databases, one per development instance: If you want to use this method,
you should make sure you have eSync confi gured. eSync manages updating the database on
both sides through the use of the Microsoft Sync Framework. It can also optionally update
the templates and other fi les on the fi le system, but it is usually more straightforward to use
your source control software. eSync is included with an Enterprise license, and is available as
an addon with a Professional license.

 ‰ To have one shared database that’s used with many development servers: The benefi t with this
confi guration is there is no wait time for the database to be synchronized between the servers.
The only caveat is that you should use load balancing to make sure that assets are updated on
each of the development servers. Load balancing is a feature of the Ektron Framework which
allows multiple servers to keep assets including library items and search summaries synchro-
nized. If load balancing is not set up, any assets uploaded are not copied to the other sites.
This prevents features such as Search from functioning properly, and may cause content to
appear incorrectly. Figure 4-1 depicts the differences between the two options:

Option 1

Dev 1

IIS
Asset DB

Dev 3

IIS
Asset DB

Dev 2

IIS
Asset DB

Dev 4

eSync

IIS
Asset DB

Option 2

Dev 1

IIS
Asset

Dev 2

IIS
Asset

Dev 3

LB

LB

LB

LB

IIS
Asset

Dev 4

IIS
Asset

DB

FIG URE 4-1

More information on each of these methods can be found in the CMS400.NET Manual, installed
with the Ektron Framework. Chapter 18 in the manual covers eSync in depth, while Chapter 22 in
the manual has a section dedicated to load balancing.

c04.indd 48c04.indd 48 12/21/2010 10:34:46 AM12/21/2010 10:34:46 AM

Take Home Points x 49

FURTHER TIPS

There are a few tips to help you streamline your development process. Some of the items in this section
are performance tips that can help your team develop faster, and some are quirks to keep in mind that
make working with the Ektron Framework slightly different from working with other ASP.NET sites.

 ‰ Speed: One of the issues developers run into is not a problem, but rather a question of speed.
The typical development server is confi gured to build on demand by having all the source in
the website directory. When the ASP.NET worker process receives a request for a given page,
it ensures the fi les have not been modifi ed since the last time the site was compiled. If they
made changes, however, the ASP.NET worker process compiles the relevant fi les at that time.
This makes development straightforward, because there is no build process that must happen
after each edit, making it easier to modify code and test the modifi cations.

 ‰ Time: Many development teams are accustomed to building the site from Visual Studio
in order to debug the code they are writing. A frequent complaint is the amount of time
required to build the Workarea folder in the site folder. In a normal project, you can simply
right-click a particular folder and select Exclude from Project. However, in an Ektron proj-
ect, since there is mixed language, there can be no .csproj or .vbproj confi guration fi le, so
there is no way to mark a folder as excluded. The workaround for the inability to exclude
fi les is to simply mark the Workarea folder as hidden in Windows Explorer. This typically
reduces the build process by several minutes. This is necessary only in a project that is built
from Visual Studio — a compiled on-demand site will only compile the required fi les, which
rarely includes much of the Workarea.

 ‰ Debugging: Part of the reason teams sometimes decide to compile their project from Visual
Studio is a lack of clarity on how to enter into debug mode without pressing F5, which initi-
ates a build. However, debugging without precompiling is actually pretty straightforward,
and is, within Ektron, the preferred method of day-to-day development. To debug your site
in Visual Studio without compiling, fi rst make sure your web.confi g is set to debug mode.
This setting is stored as an attribute (‘debug=“true”’) in the Compilation tag in the System
.Web section. Now, in Visual Studio, select Debug Í Attach to Process. In the dialog box
that appears, fi nd the ASP.NET worker process (either aspnet_wp.exe or w3wp.exe, depend-
ing on your version of IIS and Windows) and attach to the process. Visual Studio will load
the debug DLLs, and you will be able to set breakpoints and debug your site live.

TAKE HOME POINTS

Setting up an Ektron development instance is fairly straightforward, but here are some take away points:

 ‰ All the elements of the Ektron Framework are bundled into an intuitive installer, which takes
most of the headache out of the operation.

 ‰ There are also several open source starter sites provided by Ektron that can be great jumping
off points for your own development efforts.

c04.indd 49c04.indd 49 12/21/2010 10:34:46 AM12/21/2010 10:34:46 AM

50 x CHAPTER 4 CONFIGURING YOUR DEVELOPMENT ENVIRONMENT

 ‰ Beyond single-server development, there are also several options that allow for rich collabo-
ration between developers, shortening the lifecycle of synchronization so that less time is
spent keeping everyone up-to-date, and more time is spent developing new features.

 ‰ By choosing an appropriate development practice early on, you can help ensure the success
of your project by keeping everything moving smoothly as you move towards completion of
your project.

c04.indd 50c04.indd 50 12/21/2010 10:34:46 AM12/21/2010 10:34:46 AM

PART II

Building the TechPoint Site

 � CHAPTER 5: Understanding Content Management Fundamentals

 � CHAPTER 6: Confi gure Commonly Used Components

 � CHAPTER 7: The Homepage

 � CHAPTER 8: Reaching Prospects

 � CHAPTER 9: Generating Leads through Campaign Optimization

 � CHAPTER 10: Supporting Customers

 � CHAPTER 11: Implementing the OnTrek Social Network

 � CHAPTER 12: Creating the Catalog of Products for the eCommerce

Storefront

 � CHAPTER 13: Constructing the Online Storefront with eCommerce

c05.indd 51c05.indd 51 12/28/2010 1:52:22 PM12/28/2010 1:52:22 PM

c05.indd 52c05.indd 52 12/28/2010 1:52:25 PM12/28/2010 1:52:25 PM

5
Understanding Content
Management Fundamentals

 ‰ How do you log into the CMS and use the Workarea?

 ‰ How do you work with content in the Ektron Framework?

 ‰ How can you organize content and assets using folders and the library?

 ‰ How do you manage permission structures and create approval chains?

Learning a new framework can be very confusing. You need to fi gure out what is most central
to the framework and what the overall stack looks like. This type of 30,000-ft. view can be
diffi cult, which is why the book addresses these fundamentals.

In the Ektron Framework, the most important concept to grasp is that of content. Almost
everything in the system is designed either as an extension of content, such as Calendar Events
and PageBuilder pages, or as an organizational tool for content, such as collections and
taxonomy. This densely knotted structure is, in many ways, a unique aspect of the Ektron
Framework. In most content management systems and portals there is a concept of content,
but content is not the basis for other things in those systems.

This chapter starts with the Workarea, which is a browser-based application installed into your site.
The Workarea is where the vast majority of management of your site happens. This chapter covers
how to log in to the system, and takes you on a tour to get a feel for navigation in the Workarea.

The next section covers how to create, work with, and display content. The interaction with
content covered here will be expounded upon in later chapters as you cover other features
based on core content such as HTML forms and PageBuilder pages.

You’ll also explore some concepts closely related to content, such as permissions, approval chains,
and history. These tools allow you as a developer to understand the features content authors will
need to interact with regularly, and how those features can impact your overall site design.

c05.indd 53c05.indd 53 12/28/2010 1:52:25 PM12/28/2010 1:52:25 PM

54 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

One of the largest things that impact site design is the overall site infrastructure, and you will cover
the concepts of folders and the library in this chapter as well. When you complete this chapter you
will understand how to address the information architecture of your site so that content authors can
manage the information of your site on an ongoing basis.

LOGIN AND WORKAREA

Almost all interaction with the Ektron CMS occurs from an application inside your site called the
Workarea. The Workarea provides an interface to manage your folder structure, content, menu sys-
tem and metadata, system setup — just about anything that is confi gurable and manageable for your
site. In this chapter, you’ll go through some of the basics of interacting with the Workarea applica-
tion, and learn how the features are organized.

The Workarea is the primary interaction point for content managers in an Ektron installation. It is
installed in the directory ~/Workarea. The Workarea is not precompiled or obfuscated, meaning you
can look at the code to see how it performs any action. It can also be customized to add functional-
ity, but this is only recommended for advanced users.

Before you dig into the Workarea itself, you’ll learn how to log into a freshly installed CMS400Min
site. Once you’ve logged in, you’ll learn the process of adding a user to the site and to a group. Then
you’ll do a run through of the Workarea, which is where all content customizations happen from
here on out.

The Ektron Framework has two primary types of users: membership users and content authors. The
Workarea is usable only by content authors and is available only if a correct license key is used. This
means no key is necessary for localhost operations, but a non-expired license key is required for any
domain access. The special user builtin, can always access the Workarea, which allows the license
key to be updated for a live site. The account types can be found in Table 5-1.

TABLE 5-1: Special Users in the Ektron Framework

USERNAME PASSWORD DESCRIPTION

Admin admin Automatically granted all permissions.

Builtin builtin An emergency account that can be used if all admin accounts are

accidentally disabled or locked out. Builtin can log in even if the

license key is invalid. The account is only able to access particular

areas of the CMS — particularly the user management and setup

screens.

InternalAdmin n/a Only used for programmatic access. It automatically passes all per-

mission checks.

Vs vs Used if data services for Visual Studio are enabled. It connects to

the server from the Ektron Framework Server Controls in Visual

Studio via Web services, and allows you to select hardcoded values

such as Content Block IDs.

c05.indd 54c05.indd 54 12/28/2010 1:52:27 PM12/28/2010 1:52:27 PM

Login and Workarea x 55

The password for the admin, builtin, and vs accounts should always be changed on any production
site. Until the site goes live, however, it is fi ne to leave these accounts with the stock information. In
addition to these special users, there are also two special user groups defi ned in Table 5-2.

TABLE 5-2: Special Groups in the Ektron Framework

 GROUP NAME DESCRIPTION

Everyone Every user in the system is automatically in this group.

Administrators Members of this group automatically pass all permission and role tests.

Members of the Administrators group have powerful privileges and can modify
anything in the framework, at will. Be careful who you grant this membership to
in a production site.

Since you are working with a freshly installed copy of the OnTrek site, log in with the admin user
and create an administrator account for use by a developer.

Logging In and Creating a User

To log into the site you follow these steps:

1. Simply go to the home page. Visit the freshly installed site at http://localhost/ontrek/
default.aspx unless you installed to a different location. On the home page, you’ll see a
link in the toolbar, shown in Figure 5-1, to log into the site.

2. Click the Login button and login as admin/admin. Once you’re logged in as a CMS user, the
Login button will be replaced by a link to the Workarea. If you are starting with a min site,
the process is slightly different. The min site ships with a simple template called login.aspx
(http://localhost/cms400min/cmslogin.aspx.), and doesn’t have the login in the afore-
mentioned toolbar. When you visit this template, you’ll see Figure 5-2 on the page.

This image is produced by the Login Server Control. The login server has the same func-
tionality as the toolbar on the homepage of the OnTrek site, but with a less form-fi tting
layout.

3. You may fi nd that there is no login available on the front end. If worse comes to worst, the
login functionality is available at http://localhost/OnTrek/workarea/login.aspx. Once
logged into the site, the Workarea can be launched by visiting http://localhost/OnTrek/
workarea/workarea.aspx.

4. Once logged in, you should create an account for use on the development site. This is espe-
cially important when you are sharing a demo site, because each login supports only one
session at a time. If you were to log in on another browser, the system would invalidate your
fi rst session.

c05.indd 55c05.indd 55 12/28/2010 1:52:28 PM12/28/2010 1:52:28 PM

56 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-1

5. Launch the Workarea now by clicking the Workarea link. When you enter the
Workarea, the fi rst thing you see is the Dashboard, pictured in Figure 5-3. This
chapter will walk through the tabs one-by-one after you’ve created your
development user.

FIGURE 5-3

FIGURE 5-2

c05.indd 56c05.indd 56 12/28/2010 1:52:28 PM12/28/2010 1:52:28 PM

Login and Workarea x 57

6. On the top right, select the Settings tab. Once you’re viewing the Settings tree, select Users
from it. In Figure 5-4, you’ll fi nd the Settings tree on the left and a list of users defi ned in the
system on the right.

FIGURE 5-4

7. Create a new user by clicking the Add icon just above the list of users. The Add a New User
to the System form has a list of fi elds that must be entered, as pictured in Figure 5-5.

8. Enter the username, fi rst and last name, display name, password, confi rm password, and
e-mail. Clicking the Save icon throws an error.

9. Click over to the Custom Properties tab and select a time zone for the user to correct the
error. Select your time zone, and click the Save icon.

Custom properties can be created that apply to all users at any time. These prop-
erties will appear under the Custom Properties tab on the user registration and
modifi cation screen, and can be used for programmatic purposes.

10. This user is now ready for use, except that as a developer, you will likely need administrator
privileges on your account. To add the newly created user to the administrator group, select
the User Groups node on the Settings tree.

11. You can see the two built-in groups shown in Figure 5-6. Click Administrators, and the page
will instead list the users in the Administrators group. The add icon on this screen allows you
to add your user to the group.

c05.indd 57c05.indd 57 12/28/2010 1:52:29 PM12/28/2010 1:52:29 PM

58 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-5

FIGURE 5-6

c05.indd 58c05.indd 58 12/28/2010 1:52:29 PM12/28/2010 1:52:29 PM

Login and Workarea x 59

12. Select the Dev1 checkbox in the list, shown in Figure 5-7, and click the Floppy icon
to save, then click OK on the confi rmation dialog. Now that Dev1 is a member of the
administrator group, Dev1 now has all privileges in the system. You can now close the
Workarea browser window, click Logout on the toolbar on the front page of the site, and
then log back in as Dev1.

FIGURE 5-7

Exploring the Workarea

Upon launching the Workarea, the fi rst view that comes up is the Dashboard, also known as the
Smart Desktop. The Dashboard is a personalized view into the CMS. It allows each user to add
widgets to the display and manage the layout of those widgets. The preloaded widgets can display
reports on content in certain states, eCommerce trends and orders, and analytics information. The
Workarea Dashboard uses the same personalization engine as Member User Dashboards, which are
covered in Chapter 11.

After the Dashboard tab comes the Content, Library, Settings, and Reports tabs. These tabs follow
a common layout. They are divided into two parts: one on the left and one on the right. The right
side, called the “display pane,” is used to show the interface of the particular option or content you
are currently modifying. The left side is called the “navigation pane,” and allows you to select the
particular feature you want to interact with in the display pane.

The Settings tab of the Workarea is the key to managing options on the Ektron Framework. This
area is where everything that isn’t managed content is confi gured. This includes users and groups,
and also more fundamental elements such as aliasing options and system templates.

c05.indd 59c05.indd 59 12/28/2010 1:52:30 PM12/28/2010 1:52:30 PM

60 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

The Dashboard Tab

The Desktop is the fi rst tab to appear because it is helpful to see what workfl ows require a user’s
interaction, as pictured in Figure 5-8.

Dashboard

tabs

FIGURE 5-8

This makes ongoing management of the content and components of the website easier. However,
this tab provides only a brief overview of the state of the system. To see the system in more depth, it
is necessary to switch tabs to other views. The tabs are at the top right of the Workarea, the second
tab being Content.

The Content Tab

The Content tab is where interaction with the primary elements of the CMS occurs. This Content
tab, as mentioned in the general discussion, is comprised of a navigation pane on the left and a dis-
play pane on the right. This is shown below in Figure 5-9.

In the navigation pane on the content tab, there are four accordions — Folders, Taxonomies,
Collections and Menus. Each accordion contains a “navigation tree,” which displays the respective
elements associated with that type. For example, in the folders accordion, the navigation tree shows
the folders at each level. Selecting a folder from the navigation tree updates the display pane to show
the details for that folder — in this case the detail view is the list of content within that folder.

It may seem unusual that all four accordions in the navigation pane of the Content tab do not dis-
play content. This is completely normal, since all four accordions are methods of organizing the
content. For instance, when showing the Collections accordion, the navigation tree lists each of the
collections defi ned in the site. Selecting one of the collections updates the display pane to show the
content associated with that collection.

Interactions with content items also occur through the Content tab. Selecting one of the content
items listed in the display pane when navigating the folders tree brings you to the content display

c05.indd 60c05.indd 60 12/28/2010 1:52:30 PM12/28/2010 1:52:30 PM

Login and Workarea x 61

page. This page lists all the details for a particular piece of content, and by interacting with the dis-
play pane toolbar, shown in Figure 5-10, a content author can manage all aspects of the content.

FIGURE 5-9

FIGURE 5-10

c05.indd 61c05.indd 61 12/28/2010 1:52:30 PM12/28/2010 1:52:30 PM

62 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

The Settings and Reports Tabs

The two last tabs oriented towards system management are the Settings tab and the Reports tab.
The Settings tab is where non–content oriented options are managed. This includes system wide
confi guration options like license keys, user and community management, as well as eCommerce
management. One of the most important items available in the Settings tab is the Setup pane, acces-
sible through Settings Í Confi guration Í Setup on the navigation tree. This is where the license key
is entered, among other things.

CONTENT ENTRY AND DISPLAY

Content is the fundamental unit of information displayed on your website. While not everything
in the Ektron Framework is based on content, most things are. For example, calendar events,
PageBuilder pages, and HTML forms are all based on content, whereas menus, taxonomy catego-
ries, and collections are not.

Content in the Ektron Framework follows a predetermined process. This process starts with its
addition to the site and ends with its eventual publication. The process incorporates approval chains
and permissions to ensure each piece of content has been approved by the necessary people before
going live to the site.

In addition to basic properties, such as creation dates, content items also have extensive roots
throughout the framework. For instance, content items can belong to taxonomy nodes, collections,
and appear on menus. They can have metadata associated with them, support multilingual repre-
sentations, and can be associated with URL aliases. This section won’t cover every connection that
content has, but will focus on the process of entering content, how to move it through publication
stages, and how, as a developer, to display it.

Content Storage and Status

Depending on the current version state, content is stored in one of three separate tables in the
database:

 ‰ content: The current live version of a piece of content is always found in the content table.
This is the version that is accessible to users who aren’t logged in, membership users, and
anyone not previewing the site.

 ‰ content_edit: This table stores the most current version of the content that has not yet been
published. Once the changes have been published, the row is removed from the content_
edit table and moved to the content table.

 ‰ content_history: This is where all previous checked in and published versions of content
go. Content can be restored from the content_history table by users with the correct
permissions.

Each version of content has a status associated with it. The possible content states are listed in
Table 5-3 and as a piece of content moves through the states, only certain actions can be taken. The
end goal in each case is to reach the A state, which means that content is viewable to users with the
correct permissions.

c05.indd 62c05.indd 62 12/28/2010 1:52:30 PM12/28/2010 1:52:30 PM

Content Entry and Display x 63

TABLE 5-3: Content States

LETTER MEANING DESCRIPTION POSSIBLE NEXT

STATES

A Approved Content has been through the entire workfl ow and is

published and available on the site.

O, M

O Checked

Out

Content is currently checked out to a user. This means

the item is currently being edited. It cannot be edited

by another user until it has been checked in.

I, S

I Checked In Content checked in for other users to edit. Has not yet

been published, so it not visible on the site.

A, O, S, M, P, T

S Submitted

for Approval

Content will enter this state only if it has an approval

chain it needs to complete. This state is entered when

the author submits the content into the chain after mak-

ing edits.

A, O, S, M, P, T

M Marked for

Deletion

The equivalent of the S state, but for deleting content.

When a user attempts to delete content from a folder

with an approval chain, the content will remain in the M

state until the request is approved or declined.

A, Deleted

P Pending Go

Live Date

The content has been approved and is ready to appear

on the site, but it has been marked with a go live date.

The content will remain in the P state until the go live

data occurs, at which point the content transitions to A

and is visible on the site.

A, O, M

T Awaiting

Completion

of Tasks

Tasks are items associated to a piece of content and

assigned to a person. A piece of content will not be

visible on the website until all tasks associated with it

have been completed. If there is nothing stopping a

piece of content from being displayed except for the

completion of tasks, it is in the T state. When the nec-

essary tasks are completed, it will move automatically

to A state and become visible on the site.

A, O, M

The movement from one state to the next is limited by the permissions of the current user, as well
as any applied approval chains and tasks associated with the content. For instance, the T state will
be reached only when attempting to publish a piece of content that has tasks associated with it.
Additionally, the S and M states will be reached only if an approval chain has been applied to the
folder. If the folder does not have an approval chain, the content moves directly to the A state or is
deleted, respectively.

Content in the Ektron Framework is managed through a lock model, which means that when one
user is editing content, no other user can edit at the same time. It’s very similar to a source con-
trol model, in that content can only be checked out to one user at a time, and the next user must

c05.indd 63c05.indd 63 12/28/2010 1:52:31 PM12/28/2010 1:52:31 PM

64 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

wait until the content has been checked back in before he or she in turn can check it out to edit
it. Publishing content to bring it live on the site can then be done with any version that has been
checked in. Each time the content is checked in or published, an additional record is made in the
history table that contains that version of the content.

Adding and Managing Content

This section covers some fundamental tasks associated with managing content in the Ektron
Framework.

 ‰ Creating a content item

 ‰ Viewing the content in the Workarea

 ‰ Interacting with the Document Management System (DMS) menu and editing in context

 ‰ Using the Content Block Server Control

Creating a Content Item

To create a content block in the installed site, open the Workarea and
navigate to Root Í Content in the folder tree. The display pane will update
a list of all the content in that folder. Hover over New in the display pane
toolbar to access the creation menu, and then select HTML content. See
Figure 5-11.

The page that appears to collect information about your new content has
several tabs, each of which has inputs associated with a particular aspect of
the content. In many cases, the tab is prepopulated with information inher-
ited from the folder. However, in some cases the tab is blank and informa-
tion must be entered at this time. This section fi rst covers the universally
available fi elds in this form, then iterates over the tabs, and fi nally looks at
the available options on the toolbar.

There are only two options on the form that aren’t included in a tab:

 ‰ The title of the content: The title must be unique within the folder. If it is not, then a number
in parentheses will be appended to the end of the name, per Microsoft naming conventions.

 ‰ The Content Searchable fi eld: This determines whether the content item will be returned in
content searches on the site. This only affects the Ektron built-in search results, not external
search engines such as Bing or Google.

Using the Content Pane Tabs

Let’s now move on to the tabs that are used to manage all other aspects of the content. Figure 5-12
displays the various tabs.

FIGURE 5-11

c05.indd 64c05.indd 64 12/28/2010 1:52:31 PM12/28/2010 1:52:31 PM

Content Entry and Display x 65

FIGURE 5-12

 ‰ Content: The fi rst tab, Content, is where the actual content is entered. The Ektron
eWebEdit400 editor is displayed inside the tab. eWebEdit400 is a full-featured JavaScript-
based HTML editor, and is compatible with any recent release of all the major browsers. The
discussion of the functionality in eWebEdit400 is outside the scope of this book. This editor
displays the content that will actually be displayed to users browsing on the site.

 ‰ Summary: The Summary tab also has an instance of eWebEdit400. This instance is used to
enter the summary for the content. The summary can be displayed optionally in many loca-
tions that would display a link to this content. For example, the summary can be displayed
alongside the link in search results, in folder listings using the ListSummary Server Control,
and in collection listings using the Collection Server Control. If you know that the sum-
mary won’t be displayed on the site, it is not necessary to fi ll it out, but it is considered Best
Practice to enter a summary here.

 ‰ Metadata: Metadata is additional information associated to the content. This can be in two
forms:

 ‰ Traditional, SEO-style metadata that would be rendered into the document such as
the description and keywords.

 ‰ Metadata in the Ektron Framework. That is data that associates this content to other
content, or stores settings for display or content tags.

c05.indd 65c05.indd 65 12/28/2010 1:52:31 PM12/28/2010 1:52:31 PM

66 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

The metadata defi nitions that apply to a given piece of content are inherited from the folder
where the content resides, and the values for the metadata may have defaults associated with
the defi nitions for the metadata. The values you want to use for this particular piece of con-
tent, however, should be entered in the area displayed in Figure 5-13.

FIGURE 5-13

 ‰ Alias: Aliases are alternative URLs that can be used to access the content in addition to the
quicklink for a given piece of content. This allows content managers to manage the SEO needs
for a given piece of content. The alias tab allows you to manage a manual alias for the content,
which is user entered, and also shows a list of the automatic aliases available for the content.

 ‰ Schedule: Pictured in Figure 5-14, this tab allows the content manager to set when the new
published version should go live, and when a piece of content should expire. It also allows
you to set the action to take upon expiration. These options can all be left blank, in which
case the content remains in its normal state indefi nitely. By setting a Start date for the con-
tent, however, you can control exactly when the content becomes visible. There are three
options for the action to take on expiration:

 ‰ Archive and remove from site: Changes the content to be archived. The content is
still visible in the Workarea by setting the fi lter to Archived Content, but is not vis-
ible on the site.

 ‰ Archive and remain on site: Removes the content from active navigation elements
such as ListSummaries, but is still located by search and by direct navigation such as
bookmarks. This option also archives the content.

c05.indd 66c05.indd 66 12/28/2010 1:52:31 PM12/28/2010 1:52:31 PM

Content Entry and Display x 67

 ‰ Add to the CMS Refresh Report: This adds an entry to a list of items that need to be
reviewed by an author. However, the content is still completely normal in terms of
front-end navigation and display, as well as with Workarea interaction.

FIGURE 5-14

 ‰ Comment: Comments are internal-only notes that can be entered for each piece of content.
These are not displayed anywhere on the front end. Instead, they are used to store informa-
tion that may be useful to a future editor of the content.

 ‰ Templates: The Templates tab, pictured in Figure 5-15, allows users to select the template
for this particular piece of content. The only allowed templates are the ones that the parent
folder is confi gured to use. This controls the template the content is rendered on when a user
follows a system-generated link to the content. However, any Content Block Server Control
on any template has the ability to display the content item if the controls DefaultContentID
property is set to the ID of the content item.

 ‰ Category: The Category tab, pictured in Figure 5-16, allows the content author to associate
the content item to any applicable taxonomy nodes. Only nodes that have been associated
with the parent folder are available for selection on this screen. Also remember that when a
piece of content is associated to a taxonomy node, that update happens outside of the normal
content workfl ow. In other words, if an author modifi es a piece of content to be associated to
a different node, that change happens immediately.

If they have been marked on the parent folder, the only required fi elds for content are the
title, content, metadata, and categories. Enter the following details into those fi elds now.
Table 5-4 provides the fi elds and corresponding values.

c05.indd 67c05.indd 67 12/28/2010 1:52:31 PM12/28/2010 1:52:31 PM

68 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-15

FIGURE 5-16

c05.indd 68c05.indd 68 12/28/2010 1:52:32 PM12/28/2010 1:52:32 PM

www.allitebooks.com

http://www.allitebooks.org

Content Entry and Display x 69

TABLE 5-4: Values

FIELD VALUE

Title Test Content

Content This is some test content.

Category Company

Using the Content Pane Toolbar

Now let’s examine the available buttons on the toolbar in the content entry
pane. Figure 5-17 displays the toolbar.

 ‰ Submit/Publish: This button will submit the content into the approval
chain if confi gured, and will publish the content immediately if there is
no approval chain for the folder.

 ‰ Checkin: Checks in the content but does not submit it to the approval
process or bring it live. Checking in content will allow other authors to begin working on
the content.

 ‰ Save: This keeps the content checked out to the current editor, locking it to other users, while
updating the copy in the database so that no changes will be lost.

 ‰ Cancel: Discards any changes made from the version in the database.

Submit the content now by clicking the fi rst button on the toolbar. This returns you to the View
Content screen, where you can see all the details of the content you just created.

Viewing the Content in the Workarea

The View Content screen, shown in Figure 5-18, displays almost the same interface as the Edit
Content screen. It has a toolbar with many more options, along with the same tabbed interface from
before, and even some of the tabs are the same. This section goes through the screen in the same
order as before, fi rst covering the display below the toolbar, and then diving into each item on the
toolbar itself.

 ‰ Properties: Shown in Figure 5-19, this displays everything you need to know at a system level
about the content. It displays the title, the ID, language, current content status, action dates,
template, system path, and content rating.

 ‰ Content: Shown in Figure 5-18, this renders the content that will be shown on the site. Content
is rendered without any custom stylesheets you may have confi gured for the folder. This differs
from the editor, which does interact with the content with custom stylesheets applied.

 ‰ Summary: Just like the Content tab, the Summary tab displays the HTML entered into the
summary. If nothing is entered for the summary, the summary is automatically generated by
the system from the content. Figure 5-20 displays the Summary tab.

Submit/Publish

Cancel

Save

Checkin

FIGURE 5-17

c05.indd 69c05.indd 69 12/28/2010 1:52:32 PM12/28/2010 1:52:32 PM

70 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-18

FIGURE 5-19

c05.indd 70c05.indd 70 12/28/2010 1:52:32 PM12/28/2010 1:52:32 PM

Content Entry and Display x 71

FIGURE 5-20

 ‰ Metadata: The Metadata tab, pictured in Figure 5-21, shows the values stored for each meta-
data defi nition for this content item. In some cases this will differ from what was entered on
the edit screen. These items, just like all items in the CMS, can be modifi ed by Framework
Plugins and Extensions. The reason it is mentioned explicitly here is that one of the exten-
sions shipped with the framework is a GeoMapping Plugin. This reads the data stored in the
MapAddress metafi eld, and converts it to a latitude and longitude, which are stored in the
corresponding metafi elds.

 ‰ Alias: Shown in Figure 5-22, this tab allows you to update the manual alias for the content if
aliasing has been enabled on the site, and it will also list any current automatically generated
aliases which can come from taxonomy or folder aliasing. For more information on aliasing,
see Chapter 6.

 ‰ Comment: This simply displays whatever information was entered into the Comment fi eld on
the Edit screen.

 ‰ Tasks: Shown in Figure 5-23, this displays a report of all tasks currently associated with the
content. Tasks are notes attached to a piece of content that can be assigned to specifi c users.
If there are any tasks associated with a piece of content, the content will not go live until they
have been marked as complete. Administrators can see all tasks associated with a piece of
content, but non-administrative users can only see tasks assigned to them.

 ‰ Category: Pictured in Figure 5-24, this simply lists all the taxonomy nodes the content item
has been associated with.

c05.indd 71c05.indd 71 12/28/2010 1:52:33 PM12/28/2010 1:52:33 PM

72 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-21

FIGURE 5-22

c05.indd 72c05.indd 72 12/28/2010 1:52:33 PM12/28/2010 1:52:33 PM

Content Entry and Display x 73

FIGURE 5-23

FIGURE 5-24

c05.indd 73c05.indd 73 12/28/2010 1:52:33 PM12/28/2010 1:52:33 PM

74 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

Using Toolbar Options When Editing Content

As you have seen, the tabs displayed when viewing a piece of content are very closely related to the
tabs that are visible when editing content. The toolbar however, is very different, as you’ll see in
Figure 5-25.

FIGURE 5-25

Let’s now look at each item and what it does.

 ‰ (Edit)

The Edit button allows a user to edit the piece of content. It will fi rst check the content out
to the user, preventing other users from making changes at the same time.

 ‰ (History)

The History screen, shown in Figure 5-26, displays a list of all the stored versions of a piece
of content. This includes each time the content has been checked in, and each time it has
been published. The History screen allows a user to restore a particular version of the con-
tent, as well as view the differences between any two versions of content. The title, content,
summary, metadata, and comments are all stored on a version-by-version basis — all other
items have no restore capability.

FIGURE 5-26

c05.indd 74c05.indd 74 12/28/2010 1:52:33 PM12/28/2010 1:52:33 PM

Content Entry and Display x 75

 ‰ (View Publish)

View Publish allows you to switch between the version of the content that is currently vis-
ible on the site and the version that has not yet been published. This option is available only
when there is a version that has been edited since the last time the content was published.

 ‰ (View Diff)

The View Diff functionality opens a new window that displays any differences between
the last published version of the content and the most recent edit of the content. This
option appears only when the content has been edited since the last time the content was
published.

 ‰ (Delete)

The Delete button will delete the current content from the website.

 ‰ (View Permissions)

View Permissions, shown in Figure 5-27, brings up the same permission management screen
as is used with folders. Content items inherit permissions from their parent folders by
default, but this can be overridden on a per item level. It is recommended that you have the
permissions be inherited, and override them only when necessary.

FIGURE 5-27

c05.indd 75c05.indd 75 12/28/2010 1:52:34 PM12/28/2010 1:52:34 PM

76 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

 ‰ (View Approvals)

View Approvals, pictured in Figure 5-28, are inherited the same way as permissions. The
parent folder settings are applied to the content by default, but can be overridden when
necessary.

FIGURE 5-28

 ‰ (Link Search)

Link Search produces a list of any content that links to this content. Figure 5-29 displays
the Search Content Folder. This is useful if you are, for example, considering deleting the
content item, but need to ensure that nothing relies on the item before doing so. The Broken
Link Checker can also help you solve for this scenario.

 ‰ (Add Task)

This is how you assign a task to users in the system so they can perform some action on
the current content item. Add Task produces a form where you can specify the priority,
category, type, start and due date, and description. The form is displayed in Figure 5-30.
The assigned user then receives a notifi cation to perform the task. Once complete, the item
returns to you for approval or rejection.

 ‰ (Content Reports)

The Content Reports interface shows you feedback for content left by users on your site. It
has three tabs, as pictured in Figure 5-31: Rating, Messages, and Flagging. The fi rst tab,
Rating, shows the star ratings and comments left by users using the Content Review Server
Control. The second tab, Messages, shows comments left by users using the MessageBoard

c05.indd 76c05.indd 76 12/28/2010 1:52:34 PM12/28/2010 1:52:34 PM

Content Entry and Display x 77

Server Control. The third tab shows fl ags selected for the content by users interacting with
the ContentFlagging Server Control.

FIGURE 5-29

FIGURE 5-30

c05.indd 77c05.indd 77 12/28/2010 1:52:35 PM12/28/2010 1:52:35 PM

78 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-31

 ‰ (Analytics)

When you click Analytics, a new window displays information about the page where the
content item appears. It only functions with publically accessible pages, meaning no local-
host addresses can be used. It shares information such as an SEO analysis of the page, W3C
Validator feedback, Alexa rank, image analysis, and traffi c charts.

 ‰ (Edit Properties)

Edit Properties, shown in Figure 5-32, allows you to select from two options: whether the
content is searchable and what fl agging defi nitions to use.

 ‰ (Export for Translation)

Export for Translation presents you with a list of languages to target for translation, along
with a history of translations. The export generates an XLIFF fi le, which can be directly
sent to a translation company. They will then return the fi le with translated entries, at which
point the fi le can be uploaded into the CMS to enter the data.

 ‰ (Switch and Add Translation)

The Language Toolbar allows you to select a different language version of the content. Each
language can have its own permissions, approval process, and metadata. In fact, everything
about the content, including everything that ties it to the rest of the system, can be modifi ed
on a language-by-language basis.

c05.indd 78c05.indd 78 12/28/2010 1:52:35 PM12/28/2010 1:52:35 PM

Content Entry and Display x 79

FIGURE 5-32

Interacting with the DMS Menu and Editing in Context

Not all interaction with a piece of content must happen through the content pane in the Workarea.
Content can also be managed from a workfl ow perspective through any content listing on the site
and in the Workarea. This interaction is performed through what is called the DMS menu, which is
displayed in Figure 5-33.

The DMS menu can be used to access the content pages, with options to view the content page in
the Workarea, view the content on the site, interact with the item’s properties, and move the item
through its workfl ow. The DMS menu is most useful for bringing these shortcuts to the front end of
the site. By combining the DMS menu with the inline editing capabilities of the Content Block Server
Control, much of the interaction that would require the user to launch the Workarea can instead be
performed on the site itself.

The in-context editing capabilities of the Content Block Server Control simplify the experience
of maintaining existing content. Anywhere the Content Block Server Control is used, a logged in
author has the ability on the Editors menu (Figure 5-34) to edit in context (Figure 5-35).

Hovering over the Editors menu produces many options. When a content author clicks Edit, it launches
the Workarea, allowing the user to edit the properties and the HTML content item in its entirety.
However, selecting Edit In Context allows the author to do cursory editing of the content item without
launching the Workarea. Editing in context takes place directly on the Web page, meaning the author
can see the applied CSS in real time, and see exactly how the content will look when it is published. The
drawback is that the inline editor does not have the full range of options that the eWebEdit400 editor in
the Workarea supplies to users. Table 5-5 describes the available options and what the options achieve.

c05.indd 79c05.indd 79 12/28/2010 1:52:35 PM12/28/2010 1:52:35 PM

80 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-33

FIGURE 5-34

c05.indd 80c05.indd 80 12/28/2010 1:52:36 PM12/28/2010 1:52:36 PM

Content Entry and Display x 81

FIGURE 5-35

TABLE 5-5: Edit in Context Options

ICON NAME DESCRIPTION

Save Saves the content with the current changes. This will also

check the content in, and submit it to the approval chain. In the

in-context editor, these actions cannot be separated.

Spell Check This will spell check the content currently entered. Spell Check

is not live as content is entered.

Add/Remove

Hyperlink

Manages hyperlinks in the content.

Add Library Item Allows for adding items from the library, and managing existing

library items.

Bold/Italic Text styling.

Cancel Cancels the edits and returns the content to the original state.

In-context editing is not too useful for managing content layout or styling. Instead it is more useful
for immediate textual changes.

c05.indd 81c05.indd 81 12/28/2010 1:52:36 PM12/28/2010 1:52:36 PM

82 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

Using the Content Block Server Control

The Content Block Server Control is probably the most commonly used server control in the
Ektron Framework. Its function is simple: It reads content items from the database and displays
them on the website. It can be hardcoded to a specifi c content item, it can be confi gured to read
the content ID from the query string, or the ID of the content to display can be set programmati-
cally at runtime.

For authors, the Content Block Server Control shows the Editors menu access point, which is a sil-
ver bullet rendered just above the content display on the Web page. The access point exposes options
to manage the content item directly from the website, including editing in context, managing tasks,
and viewing the history of the item. Most of these items launch the Workarea directly to the area of
interest. A few of them, including items that moved the content through the workfl ow, just perform
the selected action.

This section covers implementing the Content Block Server Control on a page. Follow these steps:

1. Open Visual Studio, and then open the website by selecting File Í Open Í Web Site.

2. On the Open Site dialog box that comes up, select File System and browse to C:\Inetpub\
wwwroot\OnTrek. In the Solution Explorer, right-click the root of the site, and select Add
New Item.

3. In the Add New Item dialog box, which is pictured in Figure 5-36, select Web Form with
Visual C# as the language. Check the Place code in separate fi le checkbox, without choosing
a master page. Enter in content.aspx for the fi lename.

FIGURE 5-36

The dialog box creates the content.aspx fi le, as well as the content.aspx.cs codebehind fi le.

4. To add the Content Block Server Control, you don’t need the codebehind, but the ASPX
fi le itself is where you will declaratively add your control. Make sure the ASPX fi le is
open now.

c05.indd 82c05.indd 82 12/28/2010 1:52:37 PM12/28/2010 1:52:37 PM

Content Entry and Display x 83

5. Once you are looking at the content.aspx fi le, switch to code view, and open the toolbox. As
part of the Ektron installation, the Ektron Server Controls are registered with Visual Studio.
This adds all the available controls into the toolbox, which allow you to simply drag the con-
trols onto the page. At this point, the code on the page should look like the code in Listing 5-1.

LISTING 5-1: Content.aspx

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”content.aspx.cs”

 Inherits=”content” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 </div>

 </form>

</body>

</html>

6. Now select the Content Block Server Control from the Ektron Server Controls tab in the
toolbox, and drag it between the <div> tags, as shown in Figure 5-37.

FIGURE 5-37

c05.indd 83c05.indd 83 12/28/2010 1:52:37 PM12/28/2010 1:52:37 PM

84 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

Dragging the Content Block Server Control onto the page modifi es the code to look like it
does in Figure 5-38.

7. Now open the Properties window, as shown on the right of Figure 5-38. When organizing
the properties by category, the Ektron properties are grouped together. The most important
property is highlighted in the screenshot — DefaultContentID specifi es the ID of the con-
tent item to display by default. Additionally, the DynamicParameter property specifi es which
parameter from the query string to read in order to override the DefaultContentID.

8. The Content Block Server Control retrieves and displays the appropriate content item based on
the permissions and language settings. To set the content item to display programmatically, set it
on the server control using code like the following snippet, which will run in the Page_Load event.

public void Page_Load()

{

 ContentBlock1.DefaultContentID = 123;

 ContentBlock1.Fill();

}

Calling the Fill method forces the server control to read from the database or cache. The data
can also be read from the content block programmatically after it has been loaded from the cache
or database, by reading the EkItem property from the Content Block Server Control. The EkItem
property returns an object of the type Ektron.Cms.Common.ContentBase, which in turn contains
all the information about the content item itself. Content can also be retrieved programmatically
without the use of the Content Block Server Control. This task is most frequently achieved through
the use of the Ektron.Cms.Core.Content.Content object. This object exposes methods for adding
content, updating content, deleting content, retrieving single pieces of content, and providing lists of
content through the use of criteria objects.

FIGURE 5-38

c05.indd 84c05.indd 84 12/28/2010 1:52:37 PM12/28/2010 1:52:37 PM

Folders and the Library x 85

Content is the core of the Ektron Framework. Most items in the CMS are based on the concept of
content, which allows these items to support related concepts such as metadata, permissions, and
workfl ow. Content is mostly authored through the Workarea and displayed on the front end of
the site. It can be retrieved and displayed through the use of the Content Block Server Control or
through programmatic APIs.

FOLDERS AND THE LIBRARY

Folders are the categorizing tool of the Ektron Framework. They are the most basic way of catego-
rizing content, and through the application of inheritance they also supply items contained in them
with allowed properties such as metadata, assigned taxonomies, and permissions.

This section explores the process of creating folders, including the properties associated with them.
It also covers the library and its uses.

In addition to containing content, folders are capable of storing other types of data. For instance, a
standard content folder can store HTML content, Smart Form content, documents, and PageBuilder
pages side-by-side. For consistency purposes, the Ektron Framework also has a concept of folder
types. Items such as blogs, calendars, and forums are simply folders with a different subtype. All the
APIs that allow a developer to interact with folders will also work with these other types of folders.

Folders have the concept of inheritance as well. By default, when a new folder is created, it inherits
permissions, metadata defi nitions, taxonomy subscriptions, templates, and breadcrumbs from its
parent folder. When content is created, it inherits from the containing folder any associated permis-
sions and applicable properties.

You can create a folder programmatically, but the most common way to create folders is through
the Workarea. The form to create a folder can be accessed by right-clicking the parent folder, in the
folder tree on the Content tab and selecting the New Folder icon. You can access the same form by
selecting the appropriate parent folder, and then selecting New on the menu in the right pane.

Folders can have many associated properties, ranging from permissions to approval chains, through
metadata to taxonomy. Options such as associated templates and allowed types of content are cov-
ered in this section.

In addition to fundamental content types, folders can also store additional data such as images,
multimedia fi les, and QuickLinks in what is called the library. The library is accessible through the
Library tab in the top-right side of the Workarea.

Implementation: Adding a Folder and Managing Library Items

In this section you won’t be following any particular part of the implementation guide, but instead
you will spend time experimenting with some of the options in folder confi guration. Since fold-
ers are one of the most fundamental parts of your site information architecture, it is important to
understand the folder confi guration options and what will be affected by those options. This section
also explores the concept and management of the library.

The implementation tasks in this section are slightly more freeform than most. Specifi cally, this
section covers:

c05.indd 85c05.indd 85 12/28/2010 1:52:38 PM12/28/2010 1:52:38 PM

86 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

 ‰ Navigating folders

 ‰ Creating a folder in the root of the site

 ‰ Modifying the properties for the folder

In later sections, you’ll learn about the concepts of approval chains and permissions. This chapter
will also cover:

 ‰ Navigating the library

 ‰ Adding items to the library

 ‰ More on the library

Navigating Folders

Open the Workarea and switch to the Content tab. The Content tab is where interaction with con-
tent and folders takes place. Looking at Figure 5-39, you can see the key elements of working with
folders. On the left is the folder tree, starting at the root folder, marked Folders, and continuing
down to list all the user-created folders. On the right is the folder menu, and below that the contents
in the folder.

FIGURE 5-39

Starting with the tree, one of the fi rst things you might notice is that some folders have different
icons. As mentioned earlier, folders have a concept of type in which each icon corresponds to a dif-
ferent type of folder. Table 5-6 provides a description of each folder type.

c05.indd 86c05.indd 86 12/28/2010 1:52:38 PM12/28/2010 1:52:38 PM

Folders and the Library x 87

TABLE 5-6: Folder Types

ICON FOLDER TYPE DESCRIPTION

Root Folder Contains all other folders in the installation. It is a normal folder in that it

can contain any standard content items.

Standard

Folder

Contains any standard content item. Other folder types are based on this

type.

Multisite

Folder

Serves as an artifi cial root in multisite confi gurations. Content within it will

inherit from the multisite confi guration for items such as QuickLinks.

Community

Folder

Where membership users can create content. It behaves diff erently dur-

ing syncing operations in order to preserve the content when moving

from a production server back to a staging server.

Blog Blogs contain regular content, but also have additional data such as links

to external blogs and sites. This data is designed to be displayed in the

Blog Server Control, which renders the content recognizably as a blog to

users browsing the site.

Discussion

Board

Also known as a forum; allows membership users to interact on diverse

topics. This folder type allows a structure to be created that mirrors the

structure users see on the front end of the site.

eCommerce

Catalog

A special type of folder that allows for items to be added that can be

interacted with as part of the eCommerce add-on.

WebCalendar This type of folder stores events for calendars.

Each of these folder types can be created either by selecting the folder you want to create it in, and
then selecting New on the toolbar menu in the content pane or by right-clicking the parent folder
and selecting the appropriate entry on the contextual menu. We will cover the majority of these
folder types in later chapters.

On the right side of Figure 5-39 you can see the list of content contained in this folder. Above that
are the menu items appropriate for this folder. Starting from the left are the following items:

 ‰ New allows a user to create new content and new subfolders where appropriate.

 ‰ View allows the user to fi lter the list of items by types, certain attributes, and language.

 ‰ Delete allows the user to delete content from the folder or the folder itself.

 ‰ Action allows the user to take additional actions such as copy and paste, or export content
for translation to another language.

Creating a Folder in the Root Folder

To create a folder, right-click the Root folder and select Add Folder, as shown in Figure 5-40.

c05.indd 87c05.indd 87 12/28/2010 1:52:38 PM12/28/2010 1:52:38 PM

88 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-40

This brings up the Add Folder interface. This interface is the same when editing a folder, and allows for
all properties of the folder to be modifi ed. Consider the tabs from left to right, as displayed in Figure 5-41.

FIGURE 5-41

c05.indd 88c05.indd 88 12/28/2010 1:52:38 PM12/28/2010 1:52:38 PM

Folders and the Library x 89

 ‰ Properties: This is where basic information is entered, such as the content name. The
Properties tab has two options:

 ‰ The stylesheet that’s used in the editor so that editing matches the look and feel of
the item when it is published.

 ‰ The fi eld Publish as PDF, which informs the system whether or not to automatically
convert Offi ce documents to PDF when published for greater accessibility by users
browsing the site.

 ‰ Taxonomy: Controls which taxonomies are associated with this folder. Taxonomies can be
marked either as assigned or as required. If required, content cannot be published until it is
assigned to one or more categories. By default, the settings for taxonomy are inherited from the
parent folder.

 ‰ Templates: Determine the form of QuickLinks for a given piece of content. Every time a
piece of content is created, the system creates stored URLs to the content in the form of the
assigned template, followed by a query parameter, which indicates which content item to
load. When you assign templates to a folder, you are indicating which templates are allowed
for users to base content on. Certain templates, called Wireframes, allow for PageBuilder
content to be created in this folder. If a Wireframe is not associated with a folder, PageBuilder
content cannot be created in that folder. Template confi guration is inherited by default.

 ‰ Flagging: Allows you to select a set of fl ags that users can choose to fl ag content. These fl ags
are frequently used for items as Helpful, or Inappropriate. Flagging is inherited from the par-
ent folder by default.

 ‰ Metadata: As highlighted in Figure 5-42, this tab contains a list of all the metadata defi ni-
tions in the system. The user is invited to mark some as assigned or required. These options
are inherited by default from the parent folder.

 ‰ Web Alerts: Web Alerts are e-mail notifi cations sent to users who subscribe to them when
new content is published on the site. The Web Alerts tab allows you to confi gure the form of
the notifi cations. This tab inherits from the parent folder by default.

 ‰ Smart Forms: Smart Forms are most easily understood as a graphically designed DTD for
XML. They are created within the CMS through eWebEditPro, which defi nes the HTML
comprising the fi eld elements, the format the XML is stored in, and the default XSLT data is
rendered against for display on the site. Unlike standard HTML content, Smart Form content
is not freeform. This allows for uniformity throughout the content.

The Smart Form tab on the folder confi guration allows the user to select which Smart
Forms are supported in this folder. The user can opt to have no Smart Forms, or Smart
Forms exclusively, or some combination thereof. The folder inherits these values from the
parent folder by default.

 ‰ Breadcrumbs: These generate the site map for a site. They are also used to create the bread-
crumb links that are frequently found at the top of a typical site design. These are inherited
by default, but the inherited behavior is rarely desirable.

When creating breadcrumbs, the items are displayed on the site in the same order they
appear on the page in the folder properties, with a preview of what they look like appear-
ing above the list. Reordering is achieved through the use of the green arrows, and the red
minus sign deletes an item.

c05.indd 89c05.indd 89 12/28/2010 1:52:39 PM12/28/2010 1:52:39 PM

90 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

You use the fi elds that follow to create or edit a given item in the breadcrumb trail. These
correspond with Figure 5-43.

FIGURE 5-42

FIGURE 5-43

c05.indd 90c05.indd 90 12/28/2010 1:52:39 PM12/28/2010 1:52:39 PM

Folders and the Library x 91

 ‰ Title: Sets what is displayed in the breadcrumb itself.

 ‰ URL link: Is the page or QuickLink the breadcrumb will route to.

 ‰ Description: Appears in the hover text for that item.

It is not necessary to confi gure most of the items on the tabs in the folder properties screen, except
when overriding the default values. But for most users, the default values will achieve what is
needed. To create the sample folder, simply enter the title Test Folder on the Properties tab, and click
the Save icon.

Modify the Properties of the Folder

Modifying the properties for the created folder is done by simply right-clicking the folder in the tree
and selecting Properties, or by selecting the folder in the tree and, on the right-side menu, selecting
View Í Properties. Once you’re viewing the properties, select the Edit icon to edit them.

Remember that changing options on the folder will not un-publish content in
that folder, even if it is in a broken state. For instance, removing a taxonomy
from the folder will not unassign content in that folder from the taxonomy.
Similarly, requiring an additional fi eld of metadata in a folder does not auto-
matically provide content in that folder with that additional metadata item until
they are republished.

Navigating the Library

The library, as displayed in Figure 5-44, is a parallel structure to the content tree. Every folder cre-
ated in the Content tab has an equivalent folder in the library. The difference between the two is the
type of stored content and the content’s uses.

FIGURE 5-44

c05.indd 91c05.indd 91 12/28/2010 1:52:39 PM12/28/2010 1:52:39 PM

92 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

The library stores fi les, images, and three types of links. It also stores these objects on a per-
language basis. Let’s go through the fi ve items on the list one-by-one.

 ‰ Files: The default allowed extensions for fi les uploaded to the library are PPt, PDF, XLS, and
DOC. This is a legacy option, and is still supported, but uploading these fi les into the content
tree, instead of the library, offers signifi cant advantages, such as permissions, a history of
modifi cations, approval chain support, and content scheduling. The library should be used
for fi les only when you don’t want the features provided by the content tree.

 ‰ Forms: This is a bit misleading, because the HTML forms themselves are stored in the con-
tent tab. What is stored here is the link that is used for the form, with an interface the same
as that used for QuickLinks except that it uses ekfrm as the query string parameter rather
than id.

 ‰ Hyperlinks: Hyperlinks are shortcuts to external sites. By storing them in the library, con-
tent authors can embed them into content throughout the site. By updating the URL in one
location you can ensure that content authors are always using the most up-to-date version
of the URL.

 ‰ Images: Images are the primary reason for everyday use of the library. By placing images into
the library, it is easy for content authors to select the image and embed it in their content on
the fl y.

 ‰ QuickLinks: QuickLinks are the other main item in the library. QuickLinks store the URL
that is used to reach a certain piece of content. They are automatically created when a piece
of content is created, and follow the format [template file name]?id=[id of content].
These QuickLinks can be updated manually by selecting the Update QuickLink button .

Adding Items to the Library

Let’s explore the functionality of the library by adding an image to the new folder. The image will
then be available for embedding into content items to CMS users with view permissions. Follow
these steps:

1. Start by selecting the Test Folder in the folder tree on the Library tab. From the dropdown of
types on the toolbar, select Images.

2. Click the green plus Add icon. This opens the Add Library Item form pictured in Figure 5-45.

3. At the top of the form, you need to enter a title and select a fi le for upload. Select an image
from your system and type in a title.

4. Below that you can enter a summary, metadata, and category for your image. This is because
these items have inherited selected options on the parallel content folder.

5. Once this information is fi lled out, select the Save icon to return to the list view.

The list view, pictured in Figure 5-46, provides a preview and fi lename of the image. The fi le is
served directly from that location by IIS when requested, with no pre- or post-processing. Selecting
the item returns you to viewing the details for that item.

c05.indd 92c05.indd 92 12/28/2010 1:52:40 PM12/28/2010 1:52:40 PM

Folders and the Library x 93

FIGURE 5-45

FIGURE 5-46

More on the Library

There are a couple of additional features in the library that haven’t yet been covered. The fi rst of
these features is search, which exists for both the content folders and the library folders. Search is
recursive, meaning you can search at the level of any ancestor folder of the content or library item
you are trying to fi nd. To search in the content, on the menu for your folder, select Action Í Search.
To search in a library folder, select the icon from the toolbar in the folder.

c05.indd 93c05.indd 93 12/28/2010 1:52:40 PM12/28/2010 1:52:40 PM

94 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

There is another type of search also available in the library, called Link Search. Link Search allows
you to fi nd all the content items throughout the system that have the selected library item embedded.
For example, this allows you to ensure that when you remove an item, all content items that rely on
the item have been updated not to use the item. To use the Link Search feature, select an item in the
library of any type, and select the Link Search icon .

Another feature worth mentioning about the library is the settings and how they are updated. For
instance, we mentioned that fi les are only supported with a few extensions. The list is longer for
images, but still holds true. However, you may want to add fi les to your site that are not on the sup-
ported fi le types list. This option and others can be updated.

As an administrator, select a folder in the library, and on the toolbar select the properties button
. The screen that comes up has many possible customizations, displayed in Figure 5-47.

FIGURE 5-47

 ‰ Image Extensions: A comma-delimited list of extensions allowed when uploading
images.

 ‰ Image Upload Path: The path that images uploaded to the library will be served from. It must
be under the site path, since the fi les are served directly from the disk. It is used to build the
appropriate URL to the library item.

 ‰ Physical Path: This is the location on disk that the images are uploaded into. This is auto-
matically generated based on the Image Upload Path.

 ‰ File Extensions: The list of supported extensions for fi les added to the library.

 ‰ File Upload Path: The path that fi les uploaded to the library will be served from. It follows
the same pattern as the Image Upload Path.

c05.indd 94c05.indd 94 12/28/2010 1:52:40 PM12/28/2010 1:52:40 PM

Permissions, Approvals, and Roles x 95

 ‰ Physical Path: This is the location on disk that fi les are uploaded into. This is automatically
generated based on the File Upload Path.

Under the Hood: Folders and Libraries

You won’t always be accessing folders and their contents via the Workarea. From a developer per-
spective, you are very likely to approach the information from a programmatic standpoint. Ektron
has a very large API for you to do so in addition to a lengthy series of server controls. For example,
the ListSummary Server Control will create a list of the contents of a folder and display it on the
Web page.

For API access, the Ektron.Cms.Framework.Core.Folder.Folder object contains all the operators
for simple creation, retrieval, updating, and deletion (CRUD) operations. These operate with the
Ektron.Cms.FolderData object.

The library is also accessible through the API, via the Ektron.Cms.API.Library object.

Folders and Library in Brief

Folders are one of the fundamental concepts in the Ektron Framework. They store many types of con-
tent, and associated data can be stored in the library. They support the concept of inheritance, and
nearly all properties passed on to content come from the folder it is contained in. Folders determine how
authors interact with and manage content, and support permissions and workfl ow on contained items.

PERMISSIONS, APPROVALS, AND ROLES

The Ektron Framework comes with a full permission model similar in nature to the permission
model featured in Windows. This permission model is based around inheritance of properties, with
the option to override at every level. It supports assigning permissions to individual users, as well as
on a group level.

In addition to permissions, the framework also supports managing content access through the use
of approval chain workfl ows, which allow content administrators to defi ne a set of individuals or
groups that must approve a piece of content before it goes live.

In this section you will explore the capabilities of the permission model for folders and content, the
approval chain model for content, and the role model objects other than content. Although these
systems perform their respective functions on different areas of the framework, they can be com-
bined in order to operate together.

Understanding Permissions

Permissions comprise a structure that controls whether a given user has access to perform a given
action on a given object. There are several methods of creating access control lists, but the method
that Ektron follows is closest to the Windows access control. It has the concept of user groups, as
well as single users for actors. Objects can be anything based on content. This group includes, but is
not limited to, Smart Forms, documents, HTML content, events, and PageBuilder pages. The
permission model in Ektron has a couple of points that must be understood.

c05.indd 95c05.indd 95 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

96 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

One thing to be aware of is that the View action is slightly different from other actions in that it
is checked only if a given piece of content is marked Private. If it is marked Private however, all
permission entries are treated exactly the same.

Another point to keep in mind is the method by which a given permission request is checked. In
the Ektron Framework, negative access control entries are not supported. The system will simply
loop through the list of direct entries (naming the particular user directly), and the loop of inherited
entries (naming groups the user is a member of), until it fi nds an entry that grants the user access. If
it doesn’t fi nd an entry granting access to the request object and action, it blocks that action.

Understanding Approval Chain Workfl ows

Approval chains are similar to permissions in that they restrict publishing rights to a given piece
of content. Approval chains in Ektron refer to a linear workfl ow, with each approval simply mov-
ing the content to the inbox of the next approver. If a piece of content resides in a folder that has an
approval chain defi ned, any request to publish the content or delete the content forces the content
to move through the entire approval chain before the requested action takes place. Each approver
along the way has several options: He can modify the content, approve the content, or decline the
requested modifi cation. Depending on the confi guration of the approval chain, modifying the con-
tent may force it back to the fi rst approver, so that each approver is effectively approving the fi nal
version of the content, or the approval chain can simply move the content forward through the
chain. Modifying the approval chain requires the Folder Admin role.

Understanding Roles

This leads the discussion into roles. Roles in Ektron are a secondary permission system that control
access to all objects that are not directly inherited from content. For instance, there is a Taxonomy
Administrator Role, as well as a Folder Admin Role. These roles respectively control whether a user
can modify taxonomy structures or modify folder properties. Just like permissions, roles are a fi rst
positive system. If a user appears in the list of entries for the role directly, or is a member of a group
in the list of entries for the role, that user is approved for that role. There are no negative entries.

Roles are not tied to individual items. For example, if a user has the Taxonomy Administrator role,
she can modify all taxonomies. Additionally, the Ektron framework allows custom roles to be cre-
ated and managed via the Workarea, and checked programmatically. This can be a useful way of
managing access to custom functionality in your website.

Managing Permissions and Workfl ow

You won’t be tying the implementation to any particular folder or set of functionality in this section;
instead you will just try on some of the various types of tasks required to maintain your permission
layout. The implementation section covers:

 ‰ Restricting permissions to a folder

 ‰ Setting up an approval chain

 ‰ Creating a custom role

c05.indd 96c05.indd 96 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

Permissions, Approvals, and Roles x 97

Restricting Permissions to a Folder

To edit the permissions associated with a folder, follow these steps:

1. View the properties of that folder by either selecting View Í Properties on the toolbar in the
content pane, or by selecting View Properties in the context menu in the content tree.

2. Once in the Properties pane, select the View Permissions icon from the toolbar . You
should see the Permissions table for this folder, as pictured in Figure 5-48.

FIGURE 5-48

The fi rst checkbox under the Standard tab is to enable or disable the inheritance of permis-
sions. The second checkbox determines whether the folder is marked private. As previously
noted, this only affects whether the read-only permission is followed as marked. If checked,
it restricts users from viewing the content unless they are specifi cally approved. The reason
this checkbox exists is that checking permissions can be costly, and because most content on
a website is designed to be publically accessible, Ektron can improve performance by simply
assuming everyone has read access unless specifi cally marked otherwise.

3. Uncheck the box for permission inheritance to modify the permissions associated with this
folder. The Workarea asks for confi rmation to break inheritance.

4. Approve the dialog box. When the Permission pane reloads, you see that the interface has not
changed much:

 ‰ Note that two buttons have been added to the toolbar, a plus icon and a minus
icon. The plus icon allows you to add actors to the list of entries. The minus icon
allows you to remove them. The other change is less obvious, but you can now click

c05.indd 97c05.indd 97 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

98 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

the name of each actor in the list, Everyone for instance, to modify the permissions
granted to that actor.

5. Add the user jedit to the list of users for the folder. Grant jedit all permissions and click Save
to continue. You should now have jedit and Everyone as your list of actors for the folder,
both with all permissions.

Setting Up an Approval Chain

Approval chains are also administered from the Folder Properties pane. Follow these steps:

1. Return to the Folder Properties pane by clicking View Properties in the context menu for a
given folder in the Folders tree, or by viewing a folder and selecting View Í Properties in the
toolbar.

2. Once you’re in the Properties view, select View Approvals on the toolbar . The fi rst pane
that comes up is the summary of the current approval chain. It starts as an empty list shown
in Figure 5-49.

FIGURE 5-49

3. To modify the approval method, select the Edit icon on the toolbar. This presents you with
two options: Force All Approvers and Do Not Force All Approvers. The difference between
these two options refers to the behavior when an approver modifi es the content
during the approval process:

c05.indd 98c05.indd 98 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

Permissions, Approvals, and Roles x 99

 ‰ If the chain is set to Force All Approvers, when the content is checked in after
editing, the approval chain is restarted from the beginning. Every approver sees the
content in its fi nal form.

 ‰ If the chain is set to Do Not Force All Approvers, the content simply moves forward
in the chain. Any approvers prior to the approver who edited the content do not see
the fi nal version.

4. Return to the main screen for the approvals. Click the plus icon to add an approver to the
list. Figure 5-50 shows the User Selection Interface that appears.

FIGURE 5-50

You’ll notice the users and groups displayed for addition to the approval chain is not the
complete list of all the users in the system. The list only displays those users explicitly
granted permissions for the folder. This is why you added jedit to the list of users.

5. Select jedit from the list now. Doing so returns you to the approval chain with jedit in the
list, as pictured in Figure 5-51.

Now that your approval chain has been confi gured with jedit, no piece of content in this folder will
go live until jedit has approved it. Remember approval chains are always serial, meaning if you add
a second user to the list, approval will fi rst be required from jedit, and then from the second user.
If you want any individual in a certain list of users to be able to approve the content, and not all of
those users, you should add those users to a group, and require approval from the group instead.

c05.indd 99c05.indd 99 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

100 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

FIGURE 5-51

Creating a Custom Role

Custom roles allow you to create a list of users who have access to specifi c functionality on your
site. They are confi gured in the Workarea and can be checked programmatically, allowing you to
administer easily access lists for your feature. For instance, you might create a site moderator role,
and add a Flag Server Control to pages throughout your site. You could then control the visibility of
the Flag Server Control by checking if the user is a member of your moderators role. To get to where
custom roles are defi ned in the Workarea, follow these steps:

1. Click the Settings tab, and navigate the tree to Settings Í Roles Í Custom Permissions. The
display pane then shows a page called Manage Custom Roles, as shown in Figure 5-52.

2. When you click the plus icon to add a new role, you are presented with a page fi rst asking for
the name of this role.

3. Enter CustomRole and click the Save icon to continue. You now are returned to the previous
screen, with your CustomRole showing up fi rst on the list of roles.

4. Clicking the CustomRole now brings you to the Manage Members for Role screen, as shown
in Figure 5-53.

Just like in the permissions screen, clicking the plus icon lets you select the users and groups
you want to add to this role. Clicking the minus icon removes them from the role.

5. To check programmatically whether a user is a member of the CustomRole, you simply call
the following code.

 Ektron.Cms.CommonApi _commonApi = new Ektron.Cms.CommonApi();

 if (_commonApi.GetRolePermissionSystem(“CustomRole”, _commonApi.UserId))

 {

c05.indd 100c05.indd 100 12/28/2010 1:52:41 PM12/28/2010 1:52:41 PM

Permissions, Approvals, and Roles x 101

 //is a member of role

 }

 else

 {

 //is not a member of role

 }

FIGURE 5-52

FI GURE 5-53

c05.indd 101c05.indd 101 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

102 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

Under the Hood

There are a few things to remember when working with permissions, roles, and approval chain
workfl ows. In this section we’ll cover those notes and discuss some best practices when working
with these subsystems.

Permission Types and Behaviors

There are over a dozen types of permissions that can be set in the Ektron Framework. Each type
of permission applies to a specifi c object and action type pair. If a positive setting is set, that user
has permission. The administrator account and all members of the administrator group are auto-
matically granted all permissions. Likewise, for programmatic access, the InternalAdmin account
(Ektron.Cms.Common.EkConstants.InternalAdmin) is automatically granted all permissions.
To use the InternalAdmin account for your programmatic calls, when you create an API object,
set the RequestInformation member variables CallerID and UserID to the InternalAdmin
constant.

Table 5-7 lists the permissions and what they affect.

TABLE 5-7: Permission Types

PERMISSION NAME DESCRIPTION

Read Only View permissions. This is ignored unless the content is marked “Private.”

Edit Edit permissions.

Add Add new item permissions.

Delete Delete item permissions.

Restore Restore a version of the content from the history.

Library Read Only View and download items in the corresponding library folder.

Add Images Permissions to add images to the corresponding library folder.

Add Files Permissions to add fi les to the corresponding library folder.

Add Hyperlinks Permissions to add hyperlinks to the corresponding library folder.

Overwrite Library Permissions to overwrite existing items in the corresponding library folder.

Collections The ability to add or remove items from collections associated with this folder.

Add Folders Permissions to add subfolders to this folder. This includes typed folders, such

as Calendars and Blogs.

Edit Folders Permissions to modify the folder properties for the selected folder.

Delete Folders Permissions to delete subfolders from this folder. This includes typed folders,

such as Calendars and Blogs.

c05.indd 102c05.indd 102 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

Permissions, Approvals, and Roles x 103

PERMISSION NAME DESCRIPTION

Traverse Folders Permissions to access folders under this folder. This overrides permissions on

subfolders, in that users must have traverse permissions on all parent folders

to perform any operation on a specifi c folder.

Modify

Preapproval

This lists the users that a piece of content is assigned to when a task is created

for it. It is then up to this user or group of users to assign it to an editor to per-

form the task.

Approval Chain Notes

Due to the way approval chains are implemented in the Ektron Framework, there are a couple of
things to keep in mind when developing against them. First, a user can’t be in the same approval
chain twice. The system sees the fi rst approval as satisfying the second condition, so the content
moves immediately past the user.

Also note that approval chains are language specifi c. If the site you are developing supports multilin-
gual content, remember to select the language from the View menu that you want to administer, and
then modify the approval chain to set it for that language.

When content is assigned to a user for approval, the system can send out an e–mail. There are a
couple steps involved in setting this up. Check the manual for details on how to enable the sending
of system e-mails.

Role Types and Actions

Roles in the Ektron Workarea are split into folder-specifi c roles, and system-wide roles. There is no
technical difference in the way these roles are applied, only that roles in the system–wide section affect
actions not associated with folders. Note also that administrators automatically pass all role tests.
Finally, remember it is Ektron Best Practice to create a group for roles, and make users a member of the
group, rather than having many users directly as role members. Table 5-8 displays the list of built-in roles.

TABLE 5-8: List of Built-In Roles

ROLE NAME DESCRIPTION

Alias-Admin Alias Admin members have the ability to modify the aliasing rules, includ-

ing adding new automatic aliases, changing existing aliases, and activat-

ing or deactivating aliasing altogether.

Alias-Edit This role applies to the granular ability to add and modify manual and

secondary aliases.

Analytics Viewer This allows users to view analytics reports on content and PageBuilder

pages.

Business Rule Editor Covers creating and editing business rules.

continues

c05.indd 103c05.indd 103 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

104 x CHAPTER 5 UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS

ROLE NAME DESCRIPTION

Collection and Menu

Admin

Allows users to create, modify, and delete collections and menus.

Collection Approver Defi nes the group of users that can approve changes to collections. Only

takes eff ect if collections require approvals.

Commerce Admin Allows for access to all eCommerce screens.

Community Allows for management of default community preferences, activity types,

messages, and management of notifi cations.

Community Group

Admin

Allows for management of existing community groups, and the ability to

create new groups.

Community Group

Create

Allows users to create groups and manage groups they created.

Master Layout Create Allows users to create Master Layout PageBuilder templates.

Message Board Admin Allows users to approve pending comments and delete existing com-

ments on message boards for groups, users, and content.

Metadata Admin Allows for creation, modifi cation, and deletion of metadata types.

Search Admin Allows for management of synonyms and suggested results in search.

Smart Forms Admin Allows for management of Smart Form defi nitions.

Synchronization Admin Allows users to manage sync settings, and perform sync operations.

Task Create Creates tasks.

Task Delete Deletes tasks.

Task Redirect Assigns tasks to users.

Taxonomy Administrator Allows users to create and edit taxonomies.

Template Confi guration Manages system templates.

User Admin Manages users and groups.

XLIFF Admin Allows users to export and import content to XLIFF format for translation

to other languages.

Folder User Admin Allows users to manage the properties for all folders they have at least

Read Only and Traverse permissions to. For more details, see the user

manual.

Move or Copy Allows users to perform Copy and Move operations in the Workarea in

folders they have the appropriate permissions to.

TABLE 5-8 (continued)

c05.indd 104c05.indd 104 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

Take Home Points x 105

To programmatically check whether a user is a member of a specifi c role, use the
GetRolePermissionSystem and IsARoleMember system calls in Ektron.Cms.CommonApi. The
built-in roles are defi ned in the enumeration Ektron.CMS.Common.EkEnumeration.CmsRoleId.

TAKE HOME POINTS

This chapter explored some of the fundamentals of the Ektron Framework. You may have noticed
that some of the structuring decisions that the Ektron team took in developing their framework
differ, sometimes signifi cantly, from other content systems out there:

The biggest differentiator from many systems out there is that in the Ektron Framework, almost
everything is based on content in an object-oriented pattern. This is helpful for developers in that
once you understand how features that interconnect with content — such as the categorization tools
like taxonomy, collections, and folders — function, you can generalize that understanding to fea-
tures other than core content. For content managers the same holds true, but more with respect to
the content creation and the process by which content goes live.

To recap, here are some of the ideas covered:

 ‰ The primary location of interaction from a content management perspective in the Ektron
Framework is the Workarea. You learned how to log in to the system, content authoring,
and how content and other features hang together in the Ektron Framework. You explored
how content is authored both from the Workarea, as well as managed from the site itself.

 ‰ Folders and library content, specifi cally how folders and content then recombine to create
other types of features, like blogs and forums.

 ‰ How inheritance factors into the system, and how the combination then informs the
approach you take in your information architecture.

 ‰ How folders work in the Ektron system.

 ‰ Permissions and roles, which is the way all actions are verifi ed and controlled in the Ektron
Framework. The use of permissions is necessary to ensure that authors do not accidentally
overstep into areas they should not be managing. Roles, on the other hand, are a great way
for administrators to enable authors to go above and beyond, and manage subsystems they
would not ordinarily be able to.

c05.indd 105c05.indd 105 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

c05.indd 106c05.indd 106 12/28/2010 1:52:42 PM12/28/2010 1:52:42 PM

6
Confi guring Commonly Used
Components

 ‰ How do you author structured content using Smart Forms?

 ‰ How do you organize content through taxonomy?

 ‰ How do you use aliasing to improve URL readability?

 ‰ How do you create language-specifi c editions of your site?

Once you have a few Web projects under your belt, you will notice that Web projects are
unique in their own way. Technical requirements vary signifi cantly from project to project,
and for any Web project to be truly successful, it needs to respond to the unique business
requirements for each site, incorporating the needs of stakeholders and customers. But focus-
ing on these differences might lead one to assume there is little commonality between them. In
reality, this is not true. This assumption focuses on differences of functionality, information
architecture, and even business requirements. But it overlooks the fact that the vast majority of
websites share common fundamental requirements and they are built upon common techno-
logical underpinnings, in spite of their implementation differences. This chapter builds on the
content management fundamentals of Chapter 5 by describing commonly used components
found in Ektron implementations. The frequency of their use stems from the fundamental
requirements of websites, which are:

 ‰ Content needs: Requirements often drive the need to repurpose information in many
ways on the site and across different platforms, to separate data from the presentation,
and to defi ne information in such a way that improves consistency and information
discovery. Each of these needs can be largely addressed in one fell swoop when infor-
mation is properly structured and available in a media-agile format like XML.

 ‰ Organize and classify information: The human brain is an amazing general-purpose
information processor. There is no computer available that comes close to matching the

c06.indd 107c06.indd 107 12/28/2010 1:54:02 PM12/28/2010 1:54:02 PM

108 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

human brain’s ability to identify patterns and classify information. This process of identifi ca-
tion and classifi cation is how you make sense of the world. It naturally follows that you use a
similar process for ordering the information on your websites. This identifi cation makes sense
of Web content for your site visitors by organizing it into content hierarchies and creating
meaningful information architectures.

 ‰ Meaningful navigation cues: These help orient your site visitors to their place and posi-
tion in the overall information architecture. In the real world, you use visual cues to orient
yourself spatially; it is something you do naturally without much thought. In the virtual
world, URLs are one of the most valuable communication signals you can use. They make
your information architecture visible and intelligible to your site visitors and provide
descriptions rich with meaning to help your site visitors have a sense of place and position
on the site.

 ‰ Exposing the site’s content to the widest possible audience: There are many things that can
be discussed here, but this chapter focuses on localization. Even though the primary language
of the Internet began as English, this changed as the Internet proliferated globally. From a
marketing standpoint, offering multilingual content exposes your website to an entirely new
audience at the cost of translating existing content. Relative to the cost of other marketing
efforts, this may prove to be among the most cost effective.

After reading this chapter, you will understand how to use the Ektron Framework to defi ne and
author structured content, how to organize content following your website’s information architec-
ture, how to craft meaningful URLs for navigation and SEO purposes, and how to expose your
website to a global audience. This chapter covers each of these four technologies in depth, focusing
on best practices, recommended confi gurations, and step-by-step instructions on implementing each
within the context of further developing the OnTrek website.

UNDERSTANDING THE TECHNOLOGY

Let’s take a look at each of the four needs described previously and see how they map to Ektron
technology. Each of the four technologies is summarized in the following paragraphs and will have
its own coverage in their respective “technical sections” later this chapter.

Structured content modeling and authoring are done using Ektron’s Smart Forms. From a devel-
oper’s perspective, Smart Forms provide a mechanism for creating strongly typed content defi nitions
used for content authoring. These defi nitions are called Smart Form Designs and are created using
the WYSIWYG form builder called Smart Form Designer. The designs can then be used as the basis
for different content types available to content authors in the Workarea. The designs consist of three
primary pieces:

 ‰ Structural defi nition: Visually expressed using user interface components like textboxes and
checkboxes. Internally, this form is represented as XML Schema and the content created
using it is defi ned as XML. From a content author’s perspective, these details are hidden.
Authors are simply presented with a Web form containing familiar user interface elements.

 ‰ Validation defi nition: Consists of the rules governing the validation of data provided by the
content author.

c06.indd 108c06.indd 108 12/28/2010 1:54:05 PM12/28/2010 1:54:05 PM

Smart Forms x 109

 ‰ Template: This governs the display of this information. This piece consists of an XSLT which
is designed to convert the XML to XHTML for use in the display layer on the site.

Ektron’s taxonomy feature provides a categorization system authors use to organize informa-
tion into meaningful hierarchies. These category structures can then be used to create navigation
structures, such as menus and directories, which guide users to the information they’re looking for.
Multiple taxonomies can be created to match the expectations by different audiences. For example,
on the OnTrek website, the product marketing material is managed in the content folder tree in
a folder called Products, as is all content authored by OnTrek’s marketing group. When author-
ing content, the marketing group classifi es the marketing material related to software products by
assigning the content one or more categories defi ned in the product taxonomy. This allows site visi-
tors to access the information by navigating through a product directory. Because some products
might exist in multiple categories, associating products, such as those with multiple categories,
means customers can fi nd software in multiple pathways.

The URL Aliasing feature of the Ektron Framework provides a powerful engine that lets you turn
undescriptive URLs into meaningful resource identifi ers. Using descriptive, keyword-rich URLs has
SEO benefi ts and improves your site’s position on search engine results pages. The human friendly
URLs also provide a navigation aid. This helps your site visitors to better understand the overall site
structure and determine their current location in the sitemap. This feature allows you to defi ne such
URLs in a number of ways. Automatic URL Aliasing can create URLs using the category structure
of the taxonomy hierarchy along with the content item’s title. For example, a content item titled
Barack Obama is categorized in U.S. > Executive Branch > Presidents, maps to the URL http://
localhost/US/Executive-Branch/Presidents/Barack-Obama/. Similarly, automatic aliases can
be created using the content folder tree and regular expressions. Manual aliasing comes in handy
when you need to override automatically generated URLs, or simply need to defi ne a unique alias for
a content item.

You can expose your website’s content to a global audience using content localization features. The
Language Export feature exports content items as a single bundle, packaged using XLIFF, an estab-
lished XML standard for language translation. These bundles are compressed and then delivered to
a translation company where the information is translated and returned in the same bundle, which
is then imported back into the system. This process makes offering professionally translated content
on your website a very straight forward and painless process. In addition to the Language Export
feature, Ektron’s localization technology offers the ability to translate content using manual transla-
tion or machine translation. Manual translation is often used when an organization employs a trans-
lation specialist and has a small amount of content to translate. Machine translation uses computer
generated translations when there is no budget for professional translation yet a requirement exists
for multilingual content.

SMART FORMS

Another pattern you will notice when having a number of websites under your belt is that websites
often contain the same types of information such as press releases, employee bios, and product
descriptions. You will fi nd these data types have the same discrete elements regardless of the type of
site you’re building. A press release has a title, an author, and a subtitle, whereas an employee has

c06.indd 109c06.indd 109 12/28/2010 1:54:06 PM12/28/2010 1:54:06 PM

110 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

a name, title, contact information, and bio. Using a freeform WYSIWYG content editor to produce
content having a highly consistent structure like this will predictably result in a few snags:

 ‰ Content items are often inconsistently authored: Sometimes press releases end up without
subtitles, others without descriptions.

 ‰ Content authors often make design decisions that cause the designers to cringe: Authors inad-
vertently add spacing where it doesn’t belong, or changing fonts and colors.

 ‰ Information frequently ends up tied to a particular use: This is because information may
contain presentation markup for a specifi c purpose, making it impossible to reuse elsewhere.

Unstructured content certainly has its place, but it does present the types of problems described
here. Namely, there’s no way to force structure, no way to separate the content from the presenta-
tion, and no way to reuse the content in other contexts such as mobile and syndication feeds.

To start, let’s look at how the term structured content is commonly defi ned. Wikipedia defi nes it in
the following way:

Structured content refers to information or content that has been broken down
and classifi ed using metadata. Structured content often refers to information that
has been classifi ed using XML, but can also relate to information classifi ed using
other standard or proprietary forms of metadata.

This defi nition touches on the key idea that the information has been broken into discrete chunks
having been classifi ed in some way. Web CMSs take different approaches as to how they support
chunking content into discrete pieces. Some favor using relational database structures while others use
metadata. At the core of the Ektron Framework, structured content is defi ned and stored as XML.

The Diff erence between Smart Forms and HTML Forms

Structured content is authored in Ektron using Smart Forms. These are not to be confused with
HTML forms as they are two completely separate technologies serving different purposes. The
primary difference being what is done with the data that is submitted through them. Data submit-
ted through the HTML form is stored in the database as unchangeable name-value pairs. This
data is almost exclusively used for report generation, and is submitted by site visitors. In contrast,
Smart Forms store content entered by site authors as fi rst class content items, which means they
have every behavior of content — they obey content permissions, fl ow through approval processes
and offer scheduled publishing. Everything content does, Smart Forms can do as well.

In spite of the fact that Smart Forms and HTML forms are entirely separate entities, they do
share some similarities simply because they both deal with technology for displaying forms on
Web pages. They both provide a wide variety of standard form input fi elds (such as textboxes,
select lists), and ways to validate input data. They are also both designed in similar ways, using
a WYSIWYG form designer. Chapter 9 has an entire section that discusses HTML forms. After
reading about Smart Forms, see that section for more information about HTML forms.

Understanding Smart Form Design

Before you can author content using a Smart Form, you need to fi rst defi ne a Smart Form Design. If
you’re familiar with Relation Databases Management Systems (RDBMS), you can think of a Smart

c06.indd 110c06.indd 110 12/28/2010 1:54:06 PM12/28/2010 1:54:06 PM

Smart Forms x 111

Form Design as the database table schema, however under the covers, a Smart Form Design is
represented as an XML Schema. A Smart Form Design is what you create to break down your
information into discrete chunks, each chunk having its own data type and User Interface (UI) for
gathering strongly typed values from the user. Because the Ektron Framework uses XML for storing
these custom defi ned chunks of information, it follows that these form elements map directly to the
core XML building blocks — XML Elements and XML Attributes — that are used to create content
that conforms to a schema.

Structuring your content well may sometimes feel like a form of art, but there are good resources
available to help with this. A recommended book is Content Management Bible, Bob Boiko, Wiley
Publishing, 2001.

Creating Smart Form Designs

The process of creating a Smart Form Design begins by navigating to the Data Designer in the
Workarea by following these steps:

Navigate to Settings Í Confi guration Í Smart Form Confi gurations, and use the Smart Form Data
Designer. Only members of the Administrators group or those given the Smart Form Admin Role
have the ability to create these. This interface allows you to build a Smart Form Design visually
using the user interface shown in Figure 6-1, called the Smart Form Data Designer.

FIGURE 6-1

c06.indd 111c06.indd 111 12/28/2010 1:54:06 PM12/28/2010 1:54:06 PM

112 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

As you move through the Data Designer, you’ll see dialog boxes that give you the ability to set the
properties on the input elements defi ned in the design. The properties include the options to defi ne
the structure of the XML to be produced, so you can specify whether data is stored as an XML
Element or XML Attribute or Text. Figure 6-2 shows a comparison of a simple Smart Form Design
(top) and the XML source of the Smart Form Content (bottom) created from it.

FIGURE 6-2

c06.indd 112c06.indd 112 12/28/2010 1:54:06 PM12/28/2010 1:54:06 PM

Smart Forms x 113

Once the Smart Form Design is defi ned, associate it to folders in your content folder tree. This has the
effect of defi ning which Smart Form Designs are available to content authors for creating Smart Form
Content. Figure 6-3 shows how this association affects the New Content Menu for content authors.

FIGURE 6-3

From a content authoring standpoint, the details of the XML Schema, elements, and attributes are
entirely hidden. Content creators need only focus exclusively on authoring content and need not
worry about the system implementation details or Smart Form Design process discussed so far.
Filling out the form and submitting it is as simple as fi lling out any form-based interface, and once
the form is submitted, structured XML content is created.

At this point, structured content has been authored and is stored using the schema you created
when you defi ned your Smart Form Design. But what would happen if you tried to display this
on a Web page; what would it look like? By default, each Smart Form Design has an associated
default presentation style associated with it. This default presentation is automatically generated
by the system when the defi nition is published and is defi ned using XSLT. This can be overridden
by providing a custom XSLT fi le, as shown in Figure 6-4. You can specify up to three custom
presentation styles on this screen. It is recommended that you use the default display XSLT fi le
as a starting point for your own custom display XSLT fi le. You access the Default Display XSLT
through the XSLT icon in the Smart Form Design. The Default Display XSLT is also discussed in
the “Under the Hood” section, later.

Retrieving, Manipulating, and Rendering Structured Data

The Ektron Framework provides a number of ways to retrieve, manipulate, and render structured
data, such as APIs, server controls, and widgets. The .NET XML Framework can be used as well.
Let’s look at each of these.

Using the Content Block Server Control

The Content Block Server Control (Chapter 5) allows you to retrieve and render content, includ-
ing Smart Form content, by its content ID. Unless you specify a custom defi ned XSLT, the default
display XSLT is used. Figure 6-5 shows how you override the default XSLT using the Content Block
DisplayXSLT property. XSLT is the primary method for customizing the markup of the Content
Block Server Control.

c06.indd 113c06.indd 113 12/28/2010 1:54:06 PM12/28/2010 1:54:06 PM

114 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

FIGURE 6-4

FIGURE 6-5

c06.indd 114c06.indd 114 12/28/2010 1:54:07 PM12/28/2010 1:54:07 PM

Smart Forms x 115

Although it is somewhat common to hear a .NET developer voice resistance to using XSLT for
transforming XML into HTML, it’s important to keep in mind that XSLT is a language specifi cally
designed for this purpose and it is an extremely powerful tool to have in your toolkit. Good devel-
opers always strive to use the right tool for the job, and in many cases, XSLT is just that tool. The
benefi ts of using XSLT are listed as follows:

 ‰ It is a declarative language and can be easily interspersed between HTML tags. This provides
a much more visual understanding of the markup structure.

 ‰ You don’t have to recompile every time you make a change to the presentation. Markup in
an XSLT becomes a sort of presentation confi guration fi le, separate from the website’s appli-
cation business logic.

 ‰ Complex transformations that take many lines of imperative code to express (procedural or
object oriented) can be achieved with a few XSLT statements.

Resistance to XSLT typically comes into play when developers are not familiar with it. To help
developers overcome common hurdles while learning XSLT, Ektron has written a number of
Knowledge Base articles on the Dev Center such as those shown in the following list. These articles
give solutions to common “gotchas.” Most issues occur when developers fail to recognize that XSLT
is a declarative language and try to write it using the imperative programming paradigm (writing
XSLT as if it were a procedural or object oriented language like VB or C#).

Helpful KB articles related to XSLT include:

 ‰ KB 0485: Gallery of Templates: http://dev.ektron.com/kb_article.aspx?id=485

 ‰ KB 9240: XSLT Support Summary: http://dev.ektron.com/kb_article.aspx?id=9240

Using the .NET Framework

The .NET Framework provides a number of ways to transform and render XML data, ranging from
the brute force approach of iterating over an XML data structure using XPath selectors and building
up HTML markup using StringBuilder, to data binding. The approach that Ektron developers seem
to be most comfortable with, however, is a hybrid of both approaches, which falls somewhere in the
middle, and is a best practice recommended by Ektron. This hybrid approach is to create .NET code
that maps the elements of your Smart Form Design to .NET data classes. Using this approach makes
it possible for you to access the Smart Form content directly in .NET without having to think about
XML, XSLT, or XPath in cases where it is not appropriate. With a native .NET data class in hand,
representing Smart Form data, you have two options:

 ‰ Databind to .NET Server Controls and use Server Control Templating provided by controls,
such as ListView or Repeater, to reference your fi eld properties right in your declarative
ASP.NET markup (See “Which Controls Support Templates?” on the MSDN http://msdn
.microsoft.com/en-us/library/h59db326.aspx).

 ‰ Programmatically access your class properties and manipulate the data as you need.

The process for generating a .NET Class from a Smart Form Design is simple and straightforward,
albeit somewhat manual. The general steps are listed as follows:

1. Export the Smart Form Design as XML Schema (*.XSD).

c06.indd 115c06.indd 115 12/28/2010 1:54:07 PM12/28/2010 1:54:07 PM

116 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

2. Transform the XSD into a C# class defi nition.

3. Retrieve Smart Form data and deserialize it into an instance of your class.

The more detailed steps are as follows:

1. Begin by retrieving your Smart Form Design as an XML Schema Defi nition fi le (*.XSD). This is
done through a RESTful interface provided by the Ektron Framework. Plug the following URL
into your browser: http://localhost/workarea/webservices/rest.svc/xmlconfigs/
{SMART-FORM-ID}.xsd. Replace SMART-FORM-ID with the ID of your Smart Form Design.

You can also access the XML Schema Defi nition fi le (*.XSD) by clicking the
XSD button in the Smart Form Design in the Workarea.

2. Use Microsoft’s XML Schema Defi nition tool, a command-line tool xsd.exe, to convert
XML Schema to a C# class. This tool is provided with Visual Studio and is also avail-
able as a free download from Microsoft (binaries, documentation, and confi guration
options are available through the MSDN, http://msdn.microsoft.com/en-us/library/
x6c1kb0s(VS.80).aspx).

For example, if you have a Smart Form Design representing a book that contains elements
such as ISBN, title, author, summary, and description, creating a C# class with the same
structure would be done by issuing the following command on the command line:

c:\>xsd.exe book.xsd /classes /language:CS /namespace:SmartForm.Book

The XML Schema Defi nition tool then creates a fi le named book.cs containing C# code defi ning
a class named Book in the namespace SmartForm, a portion of which is shown in Listing 6-1.

LISTING 6-1: A class generated using the Microsoft XML Schema Defi nition tool

//--

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:2.0.50727.3603

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

//

// This source code was auto-generated by xsd, Version=2.0.50727.42.

//

namespace SmartForm.BookStore

{

 using System.Xml.Serialization;

 /// <remarks/>

 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.42”)]

 [System.SerializableAttribute()]

c06.indd 116c06.indd 116 12/28/2010 1:54:07 PM12/28/2010 1:54:07 PM

Smart Forms x 117

 [System.Diagnostics.DebuggerStepThroughAttribute()]

 [System.ComponentModel.DesignerCategoryAttribute(“code”)]

 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)]

 [System.Xml.Serialization.XmlRootAttribute(Namespace=””, IsNullable=false)]

 public partial class Book {

 private string TitleField;

 private string IsbnField;

 private string AuthorField;

 private string DescriptionField;

 private float PriceField;

 /// <remarks/>

 [System.Xml.Serialization.XmlElementAttribute(“Title”)]

 public string Title {

 get {

 return this.TitleField;

 }

 set {

 this.TitleField = value;

 }

 }

 ...

3. Retrieve Smart Form data. This can be done using the Content Block Server Control or the
API. The following code sample shows a C# example that accesses this content using the
Content Block Server Control’s EkItem.Html property in codebehind. An alternative imple-
mentation might use the Content API methods as shown in Appendix B.

string xml = ContentBlock1.EkItem.Html;

SmartForm.Book book = Ektron.Cms.EkXml.Deserialize

(,

typeof(SmartForm.Book), xml) as SmartForm.Book;

4. The process of retrieving and deserializing Smart Form content can then be wrapped into a
utility class to provide a nice way to request and retrieve a strongly typed data object in one
line. The following snippet shows code that does just that:

Book book1 = SmartFormHelper.GetBook(bookId);

An alternative approach is to load the XML into the .NET XmlDocument and use XPath to select
elements. The situation where you may possibly use this approach is when you just want to access a
few pieces of data from the XmlDocument. If you don’t need to access all of the data available, you
might want to consider using XmlDocument and XPath to select the data you need, instead of map-
ping each of the XML elements to a data class.

Implementation

This section focuses on creating a Smart Form Design that you’ll use in Chapter 7 to build a
JavaScript-based banner rotator for the OnTrek homepage. Don’t worry about the technical imple-
mentation of that component at this point. Chapter 7 will cover those details. For now, suffi ce it to
say that the component rotates through a series of images and their associated text. The image cap-
tion, text description, and other information driving the component are defi ned through the Smart
Form Design that you will create here.

c06.indd 117c06.indd 117 12/28/2010 1:54:08 PM12/28/2010 1:54:08 PM

118 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

Figure 6-6 shows a screenshot of the component as it appears on the OnTrek homepage (top) and the
form that content editors will use to place new images, or modify existing ones, on the component
of the homepage (bottom).

FIGURE 6-6

c06.indd 118c06.indd 118 12/28/2010 1:54:08 PM12/28/2010 1:54:08 PM

Smart Forms x 119

Creating a Smart Form Design

Although this form is relatively simple, the following steps walk through the process of build-
ing a new Smart Form Design. The form contains the four form input fi elds shown in Figure 6-7
(Heading, Text, URL, and Duration).

FIGURE 6-7

1. Open the Workarea and navigate to Settings Í Confi guration Í Smart Form
Confi gurations.

Once upon a time, Smart Forms were called XML Confi gurations. Although this
terminology has been removed from Ektron’s Workarea, documentation, and
website, you might run across references to this terminology on the Ektron Dev
Center in older forum posts. Anytime you see XML Confi gurations, you can
mentally replace that phrase with Smart Forms.

2. Click the Add Smart Form icon.

3. In the Title fi eld, provide the name of the Smart Form Design. Name the form design
Featured Image.

c06.indd 119c06.indd 119 12/28/2010 1:54:09 PM12/28/2010 1:54:09 PM

120 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

4. Click the Save icon.

5. In the WYSIWYG Smart Form Designer, click into the main canvas and type in the string
Heading:

6. Leaving your cursor at the end of Heading, click on the Text Field button. The Text Field
dialog box appears as shown in Figure 6-8.

FIGURE 6-8

7. In Descriptive Name, provide the name Featured Image Heading; the other fi elds will auto-
populate. Take this moment to explore each of the options you have available here. Leave all
of the default values.

8. Repeat Steps 5-7 for the Text fi eld.

9. Again, repeat the same process for the URL fi eld; however, once the Text Field dialog box
appears, click the Validation tab as shown in Figure 6-9.

10. From the Validation pull-down menu, select URL. This validates the input and ensures that a
URL is provided.

11. Repeat the process for the Duration fi eld; this time, select Decimal number or blank from the
Validation menu.

12. Click the Update icon to save the Smart Form Design

c06.indd 120c06.indd 120 12/28/2010 1:54:09 PM12/28/2010 1:54:09 PM

Smart Forms x 121

FIGURE 6-9

Associating the Smart Form Design to the Content Tree

Before a Smart Form Design can be used to author content, it must be associated to one or more
folders in the content folder tree.

1. Open the Workarea and navigate to the content folder tree, MainSite/Content/Home/
HomePageBanner.

2. From the View menu, select Properties as shown in Figure 6-10

FIGURE 6-10

c06.indd 121c06.indd 121 12/28/2010 1:54:09 PM12/28/2010 1:54:09 PM

122 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

3. Click the Edit icon from the toolbar .

4. From the Edit screen, select Featured Image from the select menu on the Smart Forms tab as
shown in Figure 6-11.

FIGURE 6-11

5. Click the Add icon .

6. Save the folder confi guration by clicking the Save icon from the toolbar.

Creating Smart Form Data

Once the Smart Form Design is associated to the content folder tree, a content author can complete
a Smart Form and author structured content.

1. Open the Workarea and navigate to the content folder tree, MainSite/Content/Home/
HomePageBanner.

2. From the New menu, select Smart Form Í Featured Image.

3. In the content Title fi eld, provide the title of the featured image. In this case, name it New
Product Image.

4. In the Smart Form’s Heading fi eld, type the heading of the image, New Product Image.

5. In the Smart Form’s Text fi eld, type the text that displays at the bottom of the image, The
Newest Addition to Our Product Line.

6. In the Smart Form’s URL fi eld, type the URL path to the image, http://localhost/
OnTrek/images/img-banner1.png.

7. Click the Submit icon .

Under the Hood

Earlier in this section, we made the statement that Smart Form data is stored as XML in the content
table. This is true, but keep in mind that some select system attributes are defi ned as fi elds in the
database. This should not be too surprising, since Smart Form data is content stored in the content
table, and as discussed in Chapter 5, the content table contains a number of fi elds for core content
properties, such as Title and Author. One of the core fi elds in the content table is a fi eld titled Content
HTML, which stores the raw content itself. The Content HTML fi eld either contains structured

c06.indd 122c06.indd 122 12/28/2010 1:54:10 PM12/28/2010 1:54:10 PM

Smart Forms x 123

XML in cases when Smart Forms are being used or unstructured XHTML when content is authored
using the free-form WYSIWYG editor. In all cases, this fi eld must contain well formed XML.

Any content added through the Workarea or the site through server controls ensures that the con-
tent is well formed XML and does so by running the content through a Tidy process, which closes
unclosed tags. However, be advised that there are content APIs outside of the Framework API
namespace that intentionally circumvent the Tidy process. If you are adding XML content directly
into the system using a content API outside of the Framework namespace, you must ensure that the
XML content is well formed prior to the API call. Adding malformed XML to the content table will
have undesired effects on many parts of the system, like content rendering and search.

The Smart Form Designs themselves are stored in the xml_collection_tbl table. Understanding the
internal XML structure of the Smart Form Design might not improve your ability to work with the
Smart Form data produced; however, it certainly helps you to understand how the system behaves.
This might be helpful at some point when trying to debug your application. All the elements that
comprise a Smart Form Design are encapsulated into an XML entity called the Smart Form Design
Package, which consist of fi ve parts, described in Table 6-1. You can query the xml_collection_tbl
to see what the Smart Form Design Package looks like for a given Smart Form Design and copy the
Package XML into an XML reading tool (such as Altova’s XMLSpy) to see how your data maps to
the elements in Table 6-1.

TABLE 6-1: Internal Elements of a Smart Form Design

PART DESCRIPTION

1 Form Elements The form elements that make up the user interface of the data entry

aspect of the Smart Form Design. That is, the user interface that displays

when a content editor is authoring Smart Form data. This content is com-

posed of XHTML with custom tags and attributes that are needed for the

editor and for the internal behaviors of the content processing engine.

2 XML Schema Defi nes the structure of the XML as XML Schema. Earlier in this section,

you exported the Smart Form Design as XML Schema — this data was

extracted from the Smart Form Design Package.

3 Data Entry XSLT This is run against the XML described earlier containing the XHTML UI

elements. The results of this transformation defi ne how the Smart Form

Design renders in the browser. This XSLT is not something that should

be customized or modifi ed, and there are no Workarea screens or public

APIs for changing it.

4 Default Display

XSLT

Defi nes how the Smart Form Data renders by default in the Workarea and

on the website. This XSLT can be overridden both in the Workarea as

described earlier, and at runtime using something like the Content Block

Server Control’s Display XSLT property.

5 Default XML

Document

This is used when new content is created. Think of this as an XML tem-

plate that’s used internally to stub out what values exist by default during

the process of creating new Smart Form data.

c06.indd 123c06.indd 123 12/28/2010 1:54:10 PM12/28/2010 1:54:10 PM

124 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

TAXONOMY

The Ektron Framework gives administrators and those users who have been granted the taxonomy
administrator role, the ability to categorize content using its taxonomy engine, providing content
item level categorization using one-to-many relationships between content and categories.

Using a taxonomy for content organization lets you classify content in a way that refl ects how peo-
ple think, allowing you to build effective site navigation and pathways for accessing content through
search, menus, and sitemaps. These navigation paths can and should differ from how the content
is physically stored and managed in the content folder tree, since typically the set of people creat-
ing content is different from the set of people accessing content. As such, in practice, it is common
to see companies store content in folders organized by department (engineering, marketing, sales)
and use taxonomy categorization to control how that information is displayed on the website. This
allows you to leverage the content folder tree for defi ning things such as permissions and approval
processes (see Chapter 5, under the section “Permissions and Workfl ow” for more information).
Through taxonomies, you gain the ability to adapt and expand the site navigation as the content
repository grows and the site visitors’ needs change.

Ektron’s taxonomy is simple to use, but don’t let its simplicity belie its power. The taxonomies you
create will make themselves useful in many ways throughout the system.

From a data structure perspective, a taxonomy manifests itself as a boundless hierarchical struc-
ture consisting of many nodes representing categories and subcategories. The arrangement of
the hierarchy is such that the top-level nodes correspond to the most general categories and the
lower-level nodes to more specifi c ones. Because the taxonomy supports one-to-many relationships
between content and categories, there may be multiple pathways to reaching a given content item.
Technically, this means the taxonomy tree is not technically a tree because a cycle emerges once
a single content item has been associated with multiple categories. Conceptually it is fi ne to think
of the taxonomy as a tree because the category nodes themselves represent a tree structure and the
documentation refers to them as such.

Once confi gured, each category node in a taxonomy tree can be assigned custom properties that
can be populated by taxonomy administrators while creating and managing taxonomy catego-
ries. These properties are similar to folder metadata and their values are available to the items
associated with the category node through the Taxonomy API covered in the section “Under the
Hood” later in this chapter.

The taxonomy system is also language aware, which gives multi-language support. Once a lan-
guage-specifi c version of a taxonomy is created, a taxonomy is also created for each enabled lan-
guage. The Taxonomy ID for each of these is the same; therefore to uniquely identify a particular
taxonomy, you need the compound key consisting of Language ID and Taxonomy ID. For example,
if you create a taxonomy in English, and enable Spanish and Italian, you’ll have three taxonomies,
all with the same Taxonomy ID and each with their own Language ID.

Within Ektron Search (Chapter 7, “Search”), taxonomy plays a critical role in two signifi cant use cases:

 ‰ It can be used to power a faceted search that allows you to narrow search results by attributes.

 ‰ Content categorization also provides an effective way to disambiguate search results.

c06.indd 124c06.indd 124 12/28/2010 1:54:10 PM12/28/2010 1:54:10 PM

Taxonomy x 125

For example, when a user searches for Saturn it may be unclear if they are looking for information
on Saturn the car or Saturn the planet. By confi guring the Search Server Control to display taxon-
omy categories, as shown in Figure 6-12, taxonomy can be used in such situations, to disambiguate
search results and provide more accurate search results.

Browsing by category provides a powerful navigation paradigm, as it allows content authors to cre-
ate multiple taxonomies for different audiences, and provide different Menu Navigation structures
based on those taxonomies, giving navigation that matches the way your audience expects to fi nd
the content. There are a number of widgets and modules available through Ektron’s Developer
Exchange that create menu navigation from a taxonomy. You can view them at: http://dev
.ektron.com/exchange/searchcode.aspx?searchtext=taxonomy.

FIGURE 6-12

Taxonomy also plays an important role with URL aliasing, as described later in this chapter. Once
this type of automatic aliasing is enabled and confi gured, URLs are automatically generated based
on the hierarchical structure of the taxonomy.

Implementation

This section shows how to enable and confi gure the taxonomy used to defi ne OnTrek’s Information
Architecture. There are three concepts covered here:

 ‰ How to create a taxonomy

 ‰ How to associate that taxonomy with the folder structure so content authors can use it to
create content

 ‰ Two ways to categorize content

c06.indd 125c06.indd 125 12/28/2010 1:54:10 PM12/28/2010 1:54:10 PM

126 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

Creating a Taxonomy

Follow these steps to create your taxonomy:

1. From the Workarea, go to Content Í Taxonomies Í Taxonomies.

2. Choose a language for the taxonomy by using the View Í Language selector pull-down
menu.

3. Click the Add Taxonomy button. Also note that you can hover your cursor over Taxonomies
in the left panel, right-click the mouse, and click the Add Taxonomy menu item. The Add
Taxonomy screen appears.

4. Use Table 6-2 to complete the screen shown in Figure 6-13.

FIGURE 6-13

TABLE 6-2: Taxonomy Field Descriptions

FIELD DESCRIPTION

Category Title Give the taxonomy a title. OnTrek uses two taxonomies, OnTrek Site

Navigation and Featured Products. You’ll create the OnTrek Site

Navigation taxonomy here, so type that title in this fi eld.

Category Description A description appears on the Edit Taxonomy screen and is also avail-

able when programmatically accessing taxonomies through the API.

Populating this fi eld is optional.

c06.indd 126c06.indd 126 12/28/2010 1:54:10 PM12/28/2010 1:54:10 PM

Taxonomy x 127

FIELD DESCRIPTION

Taxonomy Image Populating this fi eld is optional for OnTrek. In general, however, you

can assign an image to a taxonomy and access this data through the

API to display a taxonomy image. See the section “Under the Hood” for

a code sample.

Template You’ll not populate this fi eld for OnTrek. If specifi ed, the template

provided here will be used by taxonomy-oriented controls such as

the Directory Server Control for its links rather than the one normally

associated with the content item. The value provided here is also made

available through the taxonomy API. OnTrek uses the default links

associated with the content item.

Inherit (only appears when

creating a category under-

neath a taxonomy)

Select this checkbox. Doing so indicates that you want this category to

inherit its template from the parent category or taxonomy.

Category Link: When the taxonomy node is displayed in a directory con-

trol, this will render the node as a link to another page. If left blank, the

directory will update to show the contents of the node on the same page.

Enable Select this checkbox. Doing so indicates that you want this category

and its subcategories to appear when this taxonomy appears on your

website. In the future, you can use this fi eld to block certain categories

from appearing as part of this taxonomy.

Confi guration A taxonomy can be associated with content, users, or groups. The

“OnTrek Site Navigation” taxonomy is a Content taxonomy, so select

that item here.

5. At this point, you have a taxonomy with no categories defi ned. To add categories to this new
taxonomy, click the Add Category button and populate the fi elds following the same pro-
cess outlined in Table 6-2. You can model your categories after the hierarchy defi ned in the
OnTrek website.

Assigning a Taxonomy Confi guration to a Folder

To allow content authors to categorize content while it is being authored, you must fi rst assign a tax-
onomy to a folder. To do this, follow these steps.

1. Navigate to the root OnTrek folder by clicking Content Í Folders.

2. Choose View Í Properties and click Edit.

3. On the Taxonomies tab, select the OnTrek Site Navigation taxonomy. This will make this partic-
ular taxonomy available to content authors creating content in all subfolders of this root folder.

Assigning Content to a Taxonomy/Category

The OnTrek website uses the OnTrek Site Navigation taxonomy to classify content as types of
“Knowledge Base Articles” and “Job Postings.” The Ektron Framework allows content authors to

c06.indd 127c06.indd 127 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

128 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

categorize content items like these by associating it with one or more taxonomy categories. There
are two ways to assign content to a taxonomy.

The fi rst way is by associating a content item to a taxonomy category by way of the content item. To
make this association:

1. Navigate to a content block.

2. Click the Category tab.

3. Expand the taxonomy to locate the desired category.

4. Select the appropriate categories by clicking the checkbox next to the category name.

The second way is by associating content to a taxonomy category by way of a specifi c category. To
do this, navigate to the Workarea Í Content Í Taxonomies and then:

1. Select the language of the taxonomy.

2. Select the category to which you want to associate content.

3. Click the “Assign Item(s) to the Taxonomy” icon in the toolbar, or alternatively, right-click
the category and choose “Assign Item(s)” from the context menu.

4. Navigate to the content item to which you want to associate a category.

5. Select the checkbox next to all content items you want to associate.

6. Click the Update icon to fi nish.

Additionally, in situations where you have a number of content items to categorize, selecting Assign
Folder(s) from the context menu allows you to categorize all content in a selected folder in one fell
swoop. Note, however, that this does not assign a taxonomy confi guration to the folder — it simply
creates an association between all content in that folder to the selected taxonomy category.

Under the Hood

The Taxonomy data object is stored in the system as a hierarchical structure in the content_taxonomy_
tbl. A Taxonomy ID can be considered a Category ID and the two are essentially the same. In some cases
you work with a control that asks you to defi ne a Taxonomy ID, and in other situations, a Category
ID. You can use these IDs from the taxonomy_tbl interchangeably. The following snippet shows how to
retrieve a taxonomy tree structure using the Content API and its TaxonomyRequest object.

 Ektron.Cms.TaxonomyRequest taxonomyRequest =

 new Ektron.Cms.TaxonomyRequest();

 taxonomyRequest.TaxonomyId = id;

 taxonomyRequest.TaxonomyType =

 Ektron.Cms.Common.EkEnumeration.TaxonomyType.Content;

 taxonomyRequest.IncludeItems = true;

 taxonomyRequest.Depth = 2;

 taxonomyRequest.TaxonomyLanguage = contentAPI.ContentLanguage;

 Ektron.Cms.API.Content.Taxonomy taxonomyManager =

c06.indd 128c06.indd 128 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

Taxonomy x 129

 new Ektron.Cms.API.Content.Taxonomy();

 TaxonomyData taxData = taxonomyManager.LoadTaxonomy(taxonomyRequest);

You can also use the API to retrieve and render additional information, such as the Taxonomy
Image mentioned in Table 6-2, by referencing the TaxonomyImage property of the TaxonomyData
object. The following snippet displays all images assigned to a taxonomy node by recursively calling
the ShowTaxonomyImages method.

 protected void ShowTaxonomyImages(long id)

 {

 Ektron.Cms.ContentAPI contentAPI = new Ektron.Cms.ContentAPI();

 Ektron.Cms.TaxonomyRequest taxonomyRequest =

 new Ektron.Cms.TaxonomyRequest();

 taxonomyRequest.TaxonomyId = id;

 taxonomyRequest.TaxonomyType =

 Ektron.Cms.Common.EkEnumeration.TaxonomyType.Content;

 taxonomyRequest.IncludeItems = true;

 taxonomyRequest.Depth = 2

 taxonomyRequest.TaxonomyLanguage = contentAPI.ContentLanguage;

 Ektron.Cms.API.Content.Taxonomy taxonomyManager =

 new Ektron.Cms.API.Content.Taxonomy();

 TaxonomyData taxData =

 taxonomyManager.LoadTaxonomy(taxonomyRequest);

 if (null != taxData)

 {

 // render each taxonomy nodes’ image

 if (!String.IsNullOrEmpty(taxData.TaxonomyImage))

 {

 string imagepath = contentAPI.SitePath + taxData.TaxonomyImage;

 literal1.Text = “<div>image: “ + imagepath + “</div>”;

 literal1.Text += “<div> ID: “ + taxData.TaxonomyId + “</div>”;

 literal1.Text += “<div> Title: “ + taxData.TaxonomyName + “</div>”;

 }

 // if child taxonomies exist, call recursively

 if (null != taxData.Taxonomy)

 {

 for (long i = 0; i < taxData.Taxonomy.Length; i++)

 {

 ShowTaxonomyImages(taxData.Taxonomy[i].TaxonomyId);

 }

 }

 }

 }

Taxonomy is used in many ways throughout Ektron. For an additional look at how taxonomy is
used see the Under the Hood section of “Users, Friends, Profi les” in Chapter 10, which covers how
the Community Framework uses the taxonomy for managing social relationships between users,
groups, and content.

c06.indd 129c06.indd 129 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

130 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

ALIASING

URL aliasing, also referred to as URL mapping, URL redirection, or URL rewriting, is the
process of modifying a URL’s appearance to be more easily understood by both humans and com-
puters (like search engines). Although a developer would recognize the URL http://localhost
/default.aspx?pageid=231&compid=832&userid=912&q=profile&cat=root to be syntactically
valid, even a skilled developer would need to closely examine each parameter and its value to guess
the page’s function. For someone other than a developer, it’s practically meaningless. Contrast
this with the following aliased URL, http://localhost/users/gsmith, which can be immedi-
ately identifi ed as a profi le page by developers and non-technical folks alike. The aliased URL uses
meaningful terms to describe the resource, instead of exposing the applications raw query string
parameters and values.

Unfriendly URLs, like the fi rst one shown previously, present three fundamental problems:

 ‰ The URLs introduce usability issues for humans: Consider the frequency in which URLs are
read, recited, and exchanged in print and electronic communications. Beyond being diffi cult
to read, they often cause technical problems when they’re copied into e-mail or text messages
and can result in broken hyperlinks spanning multiple lines.

 ‰ File extensions come and go: You especially see this if you look over the past 10 years of
Microsoft Web applications. In the early days, content was frequently served as static HTML
and the .htm extension was commonplace, which gave way to dynamically generated ASP
pages using an .asp extension, which faded as ASP.NET replaced it with its .aspx extension.
Suffi ce it to say, application frameworks will come and go, and your URLs should be tech-
nology agnostic. They should not refl ect the technology used to build it.

 ‰ URL aliasing is fundamental to a sound SEO strategy. This is the most important thing to
remember! Creating human-readable keyword-rich URLs optimizes a search engine’s ability
to rank and categorize your website, which improves the ability for search engine users to
fi nd your content.

Ektron’s URL aliasing makes is possible for content contributors to create and manage a site’s URL
structure. Back when websites were created and content was managed exclusively by IT folks, con-
tent editors and marketers had little direct control over the site’s information architecture exposed
through its URLs. The Ektron Framework makes it very straightforward for any contributor, when
granted the proper roles, to create and manage human readable and SEO friendly URLs, either
through an automatic or manual process.

Getting started with URL aliasing involves enabling and confi guring the feature, and then creating
and managing aliases. URL aliases can be generated in a number of ways, but in general, they fall
into three categories:

 ‰ Automatically created: Uses the structure of a taxonomy or folder tree

 ‰ Manually created: Created and managed by content authors

 ‰ Dynamically generated: Uses regular expressions or the name of a user or community group

c06.indd 130c06.indd 130 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

Aliasing x 131

Taxonomy Based Aliasing

Taxonomy based URL aliasing uses the site’s information architecture defi ned by a taxonomy to
create URLs that follow the same structure. This is a nice feature, as aliases can be automatically
created based on a taxonomy that is already in use. Taxonomy aliases use the nodes of the taxon-
omy tree plus the title of the content to create a URL. A URL alias for a content item titled “George
Washington” categorized within the taxonomy of United States politicians might be:

http://www.example.com/executive-branch/president/george-washington/

Since content can be associated with multiple categories, this means there might be more than one
alias for your content. For example, the content item titled Ronald Reagan might be categorized as
a president within a taxonomy of United States politicians, as well as an actor within a taxonomy of
movie actors. Enabling taxonomy aliasing for multiple taxonomies may be useful for fi nding infor-
mation, but might have unwanted implications from an SEO perspective, as search engines such as
Google often reduce the rank of a page when the same content appears on multiple pages.

Folder Based Aliasing

Folder based URL aliasing is similar to taxonomy aliasing, with the difference that folder aliases
use the folder structure of the content tree to derive their URL aliases. Folder aliasing is useful when
you have a meaningful and logical structure to your content tree and want to expose content using
this folder structure. One specifi c use for folder aliases is on an Intranet where content is organized
into separate folders by company department, so folder aliasing would create meaningful URLs for
corporate documents such as

http://intranet/departments/engineering/products/v1/specs/

RegEx Based Aliasing

RegEx based URL aliasing is useful when your website contains URLs that follow a certain predict-
able pattern, such as the URLs for blog posts. Typically such URLs follow a pattern like

http://www.example.com/my-blog/2001/12/31/my-blog-post/

When RegEx aliasing is enabled, the Ektron Framework will try to match requested URLs with
those patterns defi ned in the RegEx alias settings.

Community Aliasing

Community aliasing lets you assign an alias for community groups or users (Chapter 11,
“Community Groups”) so that a site visitor can enter a simple URL to fi nd them. For example, if
John wants to make a URL for a community group called Marketing, he sets the Community alias
so that a friendly URL such as

http://www.example.com/Marketing/

can be used to fi nd the group.

c06.indd 131c06.indd 131 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

132 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

Manual Aliasing

Manual aliasing offers content editors tight control over URL aliases assigned to content
items. Manual aliasing is useful when a URL falls outside of the patterns defi ned by the other
types of aliasing, such as when you need to include optional tracking parameters for market-
ing campaigns. Manual aliases are defi ned in the content editing screen’s Alias Tab depicted
in Figure 6-14, or in the Manual Aliasing Settings in the URL Aliasing Settings screen in the
Workarea.

Implementation

The OnTrek website uses both manual and automatic aliasing. This implementation section walks
through the process of enabling, confi guring, and defi ning aliases.

FIGURE 6-14

Enabling URL Aliasing

Only an administrator or a CMS user that has the role of URL Aliasing Administrator can enable
and confi gure this feature. Once this role has been granted, you will have access to the URL Alias
settings screen, shown in Figure 6-15, in the Workarea. To enable URL aliasing, fi rst decide which
of the types you want to use.

The OnTrek website uses all four types of aliasing (RegEx, Automatic, Manual, and Community).
To enable all four of these, do the following.

1. Go to Workarea Í Settings Í Confi guration Í URL Aliasing Í Settings.

2. Click the Edit icon.

c06.indd 132c06.indd 132 12/28/2010 1:54:11 PM12/28/2010 1:54:11 PM

Aliasing x 133

3. Select the checkboxes in the Enabled column next to the Manual, Automatic, Community,
and RegEx Labels.

4. Click the Save icon.

On this screen, as shown in Figure 6-15, you have the ability to enable and confi gure settings for
each of the four types of aliases shown (Manual, Automatic, RegEx, and Community).

To confi gure any of these options, click the Edit icon. From this screen you can defi ne what types of
pages can be aliases by listing their extension types in the Extension fi eld, with each extension sepa-
rated by a comma. A default confi guration will have both .aspx and the forward slash.

In cases where you’ve defi ned a URL alias, such as /default.aspx, that confl icts with the path of an
ASPX template that exists on the fi le system (e.g. c:\inetpub\wwwroot\default.aspx), you can use the
Override Template checkbox to defi ne whether the URL alias will be used. Checking this checkbox
tells the system to use the URL alias in place of the physical ASPX template.

FIGURE 6-15

The Disable Language Awareness property defi nes what happens when a visitor browses to content
using an alias and the site visitor changes the language of the site. In cases where this is checked
(enabled), content in the newly selected language appears. Otherwise, when unchecked, the site visi-
tor receives a 404 File Not Found message.

The Query String Action property defi nes a rule to handle query string parameters appended to an
aliased URL. Be careful to note that these rules apply to the aliased URL, not the target of the alias.
There are four possible rules each described in Table 6-3.

If a query string parameter is appended to an alias …

c06.indd 133c06.indd 133 12/28/2010 1:54:12 PM12/28/2010 1:54:12 PM

134 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

TABLE 6-3: URL Aliasing Parameter Resolution Logic

AND THE SELECTED RULE IS… THEN …

None The appended query string parameter is ignored.

Resolve Matched

Parameters within Alias

The Ektron Framework checks if the appended parameter is already

defi ned in the target URL. If so, the alias’ query string parameter takes

precedence. For example:

Target: http://www.OnTrek.com/contact.aspx?id=84&cat=user

Alias: http://www.OnTrek.com/user/jsmith?id=100

Result: http://www.OnTrek.com/contact

.aspx?id=100&cat=user

Note the result here: The fi nal URL has been updated with the new ID.

Replace All Parameters

within Alias

The Ektron Framework checks if the appended parameter is already

defi ned in the target URL. If so, the target URL’s query string param-

eters are replaced with the alias’ query string parameter values. For

example:

Target: http://www.OnTrek.com/contact.aspx?id=84&cat=user

Alias: http://www.OnTrek.com/user/jsmith?id=100

Result: http://www.OnTrek.com/contact.aspx?id=100

Note the result here: The query string parameters on the target URL

have been replaced by those appended to the aliased URL.

Append Parameters to

Alias

The Ektron Framework will take all query string parameters added to

the aliased URL and append them to the target URL.

Target: http://www.OnTrek.com/contact.aspx?id=84&cat=user

Alias: http://www.OnTrek.com/user/jsmith?id=100

Result: http://www.OnTrek.com/contact

.aspx?id=84&cat=user&id=100

Note the result here: The query string parameters on the aliased URL

are appended to those defi ned in the target URL.

Confi guring Taxonomy-Based URL Aliasing

Follow these steps to confi gure automatic aliasing using a taxonomy:

1. Go to Workarea Í Settings Í Confi guration Í URL Aliasing Í Automatic to bring up the
page shown in Figure 6-16.

2. Click the Add a New Alias icon .

c06.indd 134c06.indd 134 12/28/2010 1:54:12 PM12/28/2010 1:54:12 PM

Aliasing x 135

3. Select Source Type of Taxonomy from the pull-down menu.

4. To defi ne the Alias Root, click the Select button and choose the root element of the OnTrek
Site Navigation taxonomy.

5. For the Alias Format, choose ContentTitle.

6. For the Extension, choose the forward slash (/).

7. For the remaining values, select the default values provided.

8. Click the Save icon to save the confi guration.

FIGURE 6-16

Under the Hood

Because aliasing provides a level of indirection between the friendly URL and the actual target
URL, any performance-minded developer might be concerned with the perceived overhead of this
additional lookup occurring with every page request. Ektron has designed its URL aliasing engine
with these concerns in mind and has implemented an aliasing-caching engine that mitigates the
potential performance hit. The caching engine stores static objects in a list container in application
memory and holds those data objects for the duration of time, or Time To Live (TTL), specifi ed
on the Workarea Í Settings Í Confi guration Í URL Aliasing Í Settings screen. When caching is
enabled, the cache is checked for every request to the system. If there is a cache miss, the database is
accessed to retrieve the appropriate target URL for the alias and is then stored in the cache. If there
is a cache hit, the system returns with the cached URL. A cache hit with an expired TTL is consid-
ered a cache miss.

A powerful feature provided by Ektron’s URL aliasing is its RegEx aliasing engine. As described
earlier, this is a particularly useful feature when you need to defi ne URLs that follow a certain
predictable pattern, such as the URLs for blog posts. The system comes preconfi gured with aliases

c06.indd 135c06.indd 135 12/28/2010 1:54:12 PM12/28/2010 1:54:12 PM

136 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

to match common patterns. You can see the available expressions through the Expression Library,
which is accessible through the Add a Regular Expression screen. To access this screen and defi ne a
RegEx alias pattern:

1. Go to the Workarea Í Settings Í URL Aliasing Í RegEx.

2. Click the Add a Regular Expression screen, as shown in Figure 6-17.

3. In the Expression Name text fi eld, enter Blog Post Aliases.

4. Click Expression Library button to launch the Expression Library dialog box, shown in
Figure 6-18.

5. Click the second item in the list.

FIGURE 6-17

With this confi gured, now you have a URL
that matches the pattern commonly found in
URLs for blog posts, which includes a four digit
number representing the year, followed by a
two digit number representing the month,
(e.g. /2011/01/default.aspx). This URL maps
to /pagename.aspx, and passes along the year
and month to it as query string parameters. These parameters can be used within your application
to retrieve all posts that have been created during that particular month and year.

MULTILINGUAL SITES

The Ektron Framework makes it possible for Web developers to create fully localized versions of
websites offering language specifi c editions to visitors based on their language preferences. It also
provides content authors with the tools to manually author content in multiple languages, instantly

FIGURE 6-18

c06.indd 136c06.indd 136 12/28/2010 1:54:12 PM12/28/2010 1:54:12 PM

Multilingual Sites x 137

translate text between many languages using machine translation, or export content to a profes-
sional translation company.

The requirements for the OnTrek website state that the certain pages on the website must be
available in both Spanish and English, while retaining the same information architecture, naviga-
tion, and page layout. This is among the most common multilingual site requirements. The archi-
tectural considerations and best practices for implementing this approach are described in this
section.

Designing an Ektron Multilingual Website

Creating a successful multilingual website requires special consideration at each step of the website
design process. Graphic designers need to consider how their websites will render and behave in
foreign languages. A Web designer who speaks English, for example, might not consider what their
design looks like when rendering German text, which contains words that are typically 30 percent
longer than those in English. This increase in average word size can affect how things such as
menus, text, and images are positioned in potentially unexpected ways. Ektron recommends that the
targeted languages are defi ned as soon as possible in the discovery process, thereby allowing design-
ers time to consider these languages in their designs.

When designing the information architecture of the site, it is essential to understand how Ektron has
designed its multilingual capabilities, as it should infl uence the approach you take in organizing your
content folder tree. You need to understand how Ektron manages the relationship between each con-
tent item and each edition, or translated version of the content item. As you have already learned,
each content item has a number of properties, including a content ID and language ID. Each edition
has its own language specifi c properties, such as title and history. The unique identifi er for a specifi c
edition of content is represented by a compound key { Content ID, Language ID }.

To understand this better, let’s look at an example directly querying Ektron’s primary content
table, content_tbl. Figure 6-19 shows a query that selects content that has a Content ID of 84. The
query returns two records because this content has two editions available, English and Spanish.
Translating content will never change the content ID, but other properties, such as title, are unique
for that specifi c edition of content and may change according to the language.

Also notice in Figure 6-19 that the folder_id is the same for both editions. This is because translated
content is automatically placed into the same folder as the original source content. Although the
folder ID for an edition can change, meaning a specifi c edition can exist in a folder separate from
the original source content (for example, when a specifi c edition is moved from one folder to another
through the Workarea interface), it is highly recommended that each edition remain in the same
folder. Just as you typically create folders for related documents but don’t create separate folders for
document types (an Excel folder, Word folder), the folder tree structure should not map to language-
specifi c editions of content.

Ektron’s multisite feature creates a unique folder for managing the content for
each site. Therefore, it is not a best practice to use multisite to create separate
sites for each language. Instead, manage each subsequent language edition of a
given site in the same folder as the original language for that edition.

c06.indd 137c06.indd 137 12/28/2010 1:54:12 PM12/28/2010 1:54:12 PM

138 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

FIGURE 6-19

Although the OnTrek site does not use the content approval process, it is worth highlighting that
you can use the content approval process to create language-specifi c approval processes. Individuals
designated to approve content will most likely differ for each language and this feature allows for
separate approval chains for each edition of a content item. Chapter 5 has more information on con-
fi guring approval chains.

When the information architecture of your site differs from the organization of the content in the
folder tree, you can use taxonomies as described in the “Taxonomy” section of this chapter. Because
taxonomies are language aware, you can use them to control the rendering of the site in a way that
differs from its location in the content folder tree. This gives you the ability to create and organize
different multilingual hierarchies and provide different categorization structures, navigation aids,
and site maps for each language.

As a Web developer creating a multilingual website, you’ll need to look at content a little bit differ-
ently, primarily because the content that appears on a Web page may actually originate from any
one of a number of sources. Consider the various sources for content on a Web page: There is text
that is embedded directly into ASPX templates, codebehind, and JavaScript. There is also man-
aged content — that is, content stored and managed within the Ektron Framework. Lastly, there is
content that originates from external data sources, such as syndication feeds and third-party Web
services.

The Ektron Framework handles and simplifi es the process of displaying localized editions of con-
tent. Its server controls, widgets, and APIs retrieve the proper edition of the content based on the
current locale of the site, typically defi ned either by the site visitor or overridden by setting the

c06.indd 138c06.indd 138 12/28/2010 1:54:13 PM12/28/2010 1:54:13 PM

Multilingual Sites x 139

language ID through the API or server control properties. Any text requiring localization on your
website that falls outside of Ektron requires leveraging standard .NET localization strategies. This
typically consists of two activities:

 ‰ Managing text that would otherwise be directly embedded in buttons or labels in localized
XML fi les (fi les with a *.RESX extension).

 ‰ Using .NET localization APIs for retrieving and displaying the language appropriate text
from these fi les in your application.

The process of localizing non-managed content is beyond the scope of this
book. There are many resources available online on this topic. The Microsoft
Developer Network (MSDN) has good documentation on .NET Localization
APIs and the tools available for managing these *.RESX resource fi les. See
http://msdn.microsoft.com/en-us/magazine/cc163609.aspx.

Content authors use Ektron to create language-specifi c editions of content in one of the following
three ways:

 ‰ Manual translation: This is great to use in situations where editors are translating a small
amount of content, under a dozen content items or so. This is performed by CMS users and
is performed through the content editing interface of the Workarea. Content authors can use
the editor’s multilingual spell checking capabilities to check for misspelled words in a number
of languages. By default, the spell checker refers to the dictionary for the target language. For
example, if the content is U.S. English, the U.S. English dictionary is referenced. If the spell
checker does not have a dictionary that matches the target content language, it attempts to
fi nd related dictionaries. If unsuccessful, it defaults to U.S. English. The spell checker also
supports custom language dictionaries and the Ektron reference manual covers the steps
needed to defi ne and register one.

As stated, manual translation is ideal for small amounts of content. In cases
where more content must be translated, the best practice recommendation is to
use the language export feature described later.

 ‰ Machine translation: Refers to the process of using language translation algorithms to
translate text. Websites such as Babelfi sh (http://babelfish.yahoo.com/) and Google
Translate (http://translate.google.com/), as well as the slew of translation plug-ins for
Web browsers such as Firefox, have made the use of machine translation fairly common-
place. As such, people have become aware of technology’s inability to produce translations
that compare to those crafted by professional translators. In spite of their reputation for pro-
ducing less than perfect translations, machine translation technology is improving and might
prove useful in the following scenarios.

c06.indd 139c06.indd 139 12/28/2010 1:54:13 PM12/28/2010 1:54:13 PM

140 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

 ‰ You have discussion board posts that are authored in one language but are relevant
to a wider, global audience. These posts are informal by nature, written by the pub-
lic, and are time-sensitive, yet are often too copious to warrant spending time and
money to translate.

 ‰ You have no budget for professional quality translations and don’t mind presenting a
possibly imperfect translation (and potentially offending your readers).

 ‰ The translation is needed immediately and can’t wait for professional translation.

In cases such as these, you can use Ektron’s machine translation to translate content
through its Workarea interface in Figure 6-20. The process for translating content using
machine translation follows the same process for manually translating content, with the
exception that you click the Translate Content icon rather than translate it manually.

FIGURE 6-20

 ‰ Language export: This is Ektron’s recommended process of translating content. Language
export uses XLIFF, an XML format, to simplify and standardize data exchange between
translation companies and content providers. Ektron has been an early adopter of the XLIFF
standard and has received recognition for its localization capabilities. Through the Workarea
interface, content editors mark items for translation, and then export these items in bulk to
submit to a translation company. The export process copies the content marked for transla-
tion into XML documents following the XLIFF structure, and then compresses them into a
ZIP fi le. The translation company takes the compressed fi le, translates the content, and then
returns a translated version for importing into Ektron.

Even if you are not using a translation company, it will most likely benefi t your organization to
use the language export feature instead of the manual translation process. This can help you
to avoid accidentally missed translating elements, especially non-visible elements such as ALT
attributes. The text from attributes like the ALT marker on an IMG tag is included in XLIFF
documents, automatically marking them as phrases requiring translation. Another benefi t is that
XLIFF-compatible translation tools often employ the use of translation memory, which remem-
bers how phrases have been previously translated, saving time and creating a more effi cient trans-
lation process.

Ektron recommends using the following tools for translating content using its language export
feature.

c06.indd 140c06.indd 140 12/28/2010 1:54:14 PM12/28/2010 1:54:14 PM

Multilingual Sites x 141

 ‰ SDL Trados (http://www.trados.com/en/): The industry standard application most com-
monly used by professional translation companies.

 ‰ Heartsome Translation Studio (http://heartsome.net/EN/home.html): Costs much less than
SDL Trados and still provides many time- and money-saving features like translation memory.

Managing the Displayed Content Language

The Ektron Framework provides a number of ways to control which
content language to display to a site visitor. With the LanguageSelect
Server Control placed on a page, site visitors see the dropdown menu
shown in Figure 6-21. It contains the languages that are enabled on the
site so visitors just manually select the language for the site.

When you want to force users to view a site in a particular language, you can use the LanguageAPI
Server Control or the language APIs directly to achieve this. Doing so is often useful in situations
where you are using the following:

 ‰ Top Level Domain (TLD): This determines the country code and site language. For example,
if your site is accessible through the TLD .it (Italy), you might want to set the default lan-
guage to Italian.

 ‰ IP address location services: This provides another way to determine the location of the site
visitor. There are many services available online that can translate a visitor’s IP address into a
physical location, including their country.

 ‰ The browser’s locale: This is an effective way to determine the browsers preferred language
as string language = Request.ServerVariables(“HTTP_ACCEPT_LANGUAGE”); this
value can then be parsed and used to force the site to display the appropriate language.

 ‰ A custom user interface for selecting languages: An example of such an interface is one that
displays a list of fl ags representing the languages spoken by those countries. Site visitors can
click on a fl ag to select a language.

You can use the LanguageAPI Server Control in either of these situations. For example, the
following code looks at the hostname used to access the website and sets the site language accord-
ingly. Note the single line that sets the site language — you can fi nd this on the last line of the
SetSiteLanguage method. The remainder of the code extracts the Top Level Domain from
the URL. With the LanguageAPI Server Control on the page, you can then do the following:

 public void SetSiteLanguage(string url)

 {

 string tld = ExtractTLD(url);

 int lang = 1033; // default english

 switch(tld)

 {

 case “it”:

 lang = 1040; //Italian

 break;

 case “es”:

FIGURE 6-21

c06.indd 141c06.indd 141 12/28/2010 1:54:14 PM12/28/2010 1:54:14 PM

142 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

 case “mx”:

 lang = 1034; //Spanish

 default:

 lang = 1033; //default English

 }

 // Use the LanguageAPI Server Control to set the Language

 LanguageApi1.SiteLanguageID = lang;

}

 protected string ExtractTLD(string url)

 {

 string topLevelDomain = String.Empty;

 string host = ExtractHost(url);

 string[] tld = host.Split(‘.’);

 if (tld.Length > 0)

 {

 topLevelDomain = tld[tld.Length-1];

 }

 return topLevelDomain;

 }

 protected string ExtractHost(string url)

 {

 string domain = String.Empty;

 Regex rg = new Regex(@”http://([a-z\.]+)”,RegexOptions.IgnoreCase);

 if (rg.IsMatch(url))

 {

 domain = rg.Match(url).Result(“${1}”);

 }

 return domain;

 }

Implementation

As covered earlier in this chapter, there are many issues to consider when designing and creating a
multilingual website. The implementation process should follow the steps outlined in the Ektron ref-
erence manual (see the section “Setting Up a Multilingual Web Site”), which are:

 ‰ Enabling support for multiple language content

 ‰ Setting the default language

 ‰ Enabling languages your site will support

 ‰ Adding the language selection function to templates

 ‰ Creating metadata defi nitions for each supported language *

 ‰ Setting up approval chains for multilingual content *

 ‰ Setting up multilingual menus, collections, and taxonomies*

c06.indd 142c06.indd 142 12/28/2010 1:54:14 PM12/28/2010 1:54:14 PM

Multilingual Sites x 143

The * steps are not covered in this book as the OnTrek website’s confi guration
does not require them. However, if your site confi guration does require them, see
Chapter 14 of the Ektron reference manual.

Enabling Support for Multiple Language Content

To enable support for multiple language content, follow these steps:

1. Open the web.confi g fi le in a text editor.

2. Locate the ek_EnableMultilingual key and set it to 1 to enable this feature. To disable
this feature entirely throughout the site, set it to 0. Disabling the feature after multilin-
gual content has been created does not delete any of this content from the repository, but
it removes it from displaying on the website. For the OnTrek website, you’ll need to set
this to 1.

3. Save the web.confi g fi le (but keep it open if you need to set the default language in the fol-
lowing steps).

Setting the Default Language

By setting the default language, you are defi ning which edition of content will display when the site
visitor has not specifi ed a language, and when one has not been set programmatically through the
API or server controls.

To set the default language for your multi-language website:

1. Open the web.confi g fi le in a text editor.

2. Set the value of ek_DefaultContentLanguage to the locale ID of the default language. For
example, the locale ID for Spanish is 1034. For a list of locale IDs, go to the Workarea Í
Settings Í Confi guration Í Language Settings screen. For the OnTrek website, let’s set this
to English, 1033.

3. Save the web.confi g fi le.

Enabling Languages Your Site Will Support

To determine or confi gure which languages are available for creating content, see the Workarea’s
Language Settings screens.

1. Go to Workarea Í Settings Í Confi guration Í Language Settings to display the Language
Settings page shown in Figure 6-22.

2. Click the Edit button to edit the Language Settings.

3. Each language has two checkboxes. To enable a language in the Workarea, select the check-

box in the column with the yellow yield sign .

c06.indd 143c06.indd 143 12/28/2010 1:54:14 PM12/28/2010 1:54:14 PM

144 x CHAPTER 6 CONFIGURING COMMONLY USED COMPONENTS

F IGURE 6-22

Checking this column populates the language dropdown menus in the Workarea so content
editors can create content in this language.

4. Once the content has been translated and is ready to display on the website, select the check-

box under the column headed with a green checkmark .

For the OnTrek website, since you’ll have English and Spanish available in the Workarea and the
website, you should have both checkboxes enabled next to those languages.

Under the Hood

It’s worth pointing out that the Local Identifi er values used by Ektron are the same that are defi ned and
used by Microsoft, available in this Technical Reference on the MSDN: http://msdn.microsoft
.com/en-us/goglobal/bb964664.aspx. In this list you can see that Local Identifi er 1033 is English,
and 1034 is Spanish.

The Ektron reference manual contains a chapter dedicated to discussing working with multilingual
content. As mentioned earlier, this book covers the most common confi guration and the one used by
the OnTrek website. The Ektron reference manual covers other confi gurations, such as a confi gura-
tion where your site has only one language and that language is something other than U.S. English
as the default.

c06.indd 144c06.indd 144 12/28/2010 1:54:14 PM12/28/2010 1:54:14 PM

Take Home Points x 145

TAKE HOME POINTS

This chapter built upon the content-management fundamentals outlined in Chapter 5 by discussing
the components found commonly on Ektron powered websites. These components are used so fre-
quently because they address the basic needs and requirements of most websites, namely, structured
content authoring, content categorization, URL naming, and multilingual content rendering:

 ‰ Ektron Smart Form technology: Provides information architects and developers with the abil-
ity to create Smart Form Designs to defi ne structured data types using a WYSIWYG form
designer. The Smart Form Designs are used by content editors to create Smart Form data
which is stored in the system as XML and is available to developers through APIs, server
controls, and widgets. These offer a number of ways of retrieving, manipulating, and render-
ing this information, such as through using .NET data binding or XSLT transformations.

 ‰ Taxonomy: Helps your site visitors fi nd content using a navigation structure that is familiar
to them. Content authors create content and categorize it into the taxonomical structures
defi ned by information architects, allowing developers to retrieve that information by cat-
egory using the Directory Server Control and the Taxonomy APIs.

 ‰ URL aliasing: Allows for rewriting URLs to be more easily understood by humans and
machines such as search engines. With the Ektron Framework, you can create URL aliases
either manually or automatically by leveraging the structure of your folder structure and tax-
onomies or through patterns defi ned as regular expressions.

 ‰ Localization capabilities: It is often a requirement that an organization’s website be available
in multiple languages. With Ektron’s localization capabilities, the process of translating and
delivering content in multiple languages has been greatly simplifi ed. Editors can translate con-
tent manually or use its language export feature to send the content to a translation house.

c06.indd 145c06.indd 145 12/28/2010 1:54:15 PM12/28/2010 1:54:15 PM

c06.indd 146c06.indd 146 12/28/2010 1:54:15 PM12/28/2010 1:54:15 PM

7
The Homepage

 ‰ How do you use JavaScript and Smart Forms to build rich interfaces?

 ‰ How do you navigate using menus?

 ‰ How do you use search to navigate?

 ‰ How do you increase discoverability using breadcrumbs and

sitemaps?

 ‰ What do you do to allow users to register with your site?

With all the emphasis on campaign landing pages, micro sites, and search engine friendly
interior content pages, it is reasonable to ask whether a website’s homepage matters much
anymore. Although the homepage is often the most visited page on a website, its importance
has been overshadowed by the increased focus on lead generation by marketing groups. But
lead generation is not the only purpose for a website. Other major objectives mentioned
by marketing managers include supporting branding initiatives, creating a positive image
for the company and its products, building awareness of the organization, and distributing
product and company information to existing and potential customers. The homepage plays
an extremely important part in satisfying these objectives — no other page on your site will
have such a pivotal and multipurpose role.

This chapter discusses ways to implement a successful homepage by focusing on a number
of the most important elements of a homepage. Because the homepage must satisfy the needs
of many types of visitors, this chapter focuses on using navigation to guide site visitors in
the right direction through the use of menus, sitemaps, breadcrumbs, and search and goes in
depth on the technology available through Ektron Framework used to implement them. In
addition to navigation, the chapter also focuses on a specifi c technique for delivering atten-
tion-grabbing content that appeals to a wide audience. The technique uses a jQuery plug-in
for rotating through images and is a nice way to deliver multiple messages on the homepage
without diluting the focus and attention. Lastly, the chapter concludes with a discussion of
the registration methods available for membership users, showing the internal registration
methods as well as how to integrate Facebook Connect onto your site.

c07.indd 147c07.indd 147 12/28/2010 1:55:15 PM12/28/2010 1:55:15 PM

148 x CHAPTER 7 THE HOMEPAGE

USE CASE

This section introduces the use cases implemented for this chapter. Most of the remaining technical
chapters contain such a section. These sections give a discussion a meaningful context in which to
understand the technology. Each of these sections contain: a wireframe describing the organiza-
tion and composition of the page; the actors involved defi ning the roles and requirements of the site
visitor; the scenario, which includes bullet points that capture the expected actions performed by
the site visitor; and the outcome, which specifi es the success criteria for the scenario in quantifi able
terms and is typically tied to Web metrics for measurability.

LAUNCHING THE ONTREK WEBSITE

The OnTrek marketing team is leading the effort to launch the OnTrek website,
with careful attention being given to the look, feel, and function of the homepage.
The marketing team’s objectives for the homepage include: supporting the market-
ing department’s branding initiatives, creating a positive image for the company
and its products, and distributing information to existing and potential customers.

Wireframe

The Wireframe is a critical part of the Implementation Guide. In Chapter 2, you
learned about the Discovery Phase and the process by which the Implementation Guide
and Wireframes are created. Chapter 3 focused exclusively on the Implementation
Guide and in this chapter, you learned what a best-practice Implementation Guide
includes. For more detail on Wireframes and the Implementation Guide, see those
chapters. The Wireframe for the OnTrek homepage is shown in Figure 7-1.

Actor

John is the Director of IT at Acme Inc. and is researching security-related software
packages for his company’s network. He is specifi cally looking for information on
product functionality, supporting services, and licensing costs. In addition, John
is looking for basic information about the company such as the number of years in
business and the location of its headquarters.

Scenario

In this scenario, John:

1. Performs a Web search using an online search engine like Google or Bing to
fi nd companies that sell security related software packages.

2. Searches and clicks on a result in the results page that takes him to the OnTrek
homepage.

c07.indd 148c07.indd 148 12/28/2010 1:55:18 PM12/28/2010 1:55:18 PM

Use Case x 149

3. Arrives on the site with the primary objective being to fi nd product information.

4. Uses the site search and the menu navigation to locate the product info.

FIGURE 7-1

Outcome

A successful outcome in this use case is one where John visits the homepage and then
travels to the product and company information pages. In general, by using Web
Analytics (Chapter 9), you can track the abandon rate for the homepage, which is the
number of homepage visits that result in no further page views. A high abandon rate
implies that people visit the homepage and do not proceed any further. A general met-
ric for success is a low abandon rate for the homepage.

c07.indd 149c07.indd 149 12/28/2010 1:55:19 PM12/28/2010 1:55:19 PM

150 x CHAPTER 7 THE HOMEPAGE

TECHNOLOGY

It is diffi cult to predict why visitors will come to a homepage. Contrast this with a campaign-landing
page, where you know exactly how someone arrived (through a search advertisement or e-mail mar-
keting message) and you know what they’re looking for (a particular product or service). In order to
adequately address this visitor’s needs, the homepage needs to do two apparently competing things:

 ‰ The homepage needs to be general enough so that it is applicable to different users with
diverse goals, both in terms of the content presented and the navigation structures available.

 ‰ The homepage needs to deliver specifi c content and not dilute its message by being all things
to all people.

If you add these requirements so that content is consistent with the marketing department’s branding
efforts, you’ll begin to see how designing a persuasive homepage can be challenging.

Using Rotating Graphics

One popular way to present relevant and compelling information to a diverse set of users is through
the use of a prominently featured set of rotating graphics. This technique also increases the attractive-
ness of your site and provides an opportunity to display rich and interactive content. In this chapter
you’ll use the jQuery to create an RIA component for rotating through images promoting OnTrek’s
products and services. This component will be built using ASP.NET to generate markup, jQuery to
render it as a slider, and CSS to style the presentation. Although the implementation uses jQuery, the
described approach can be applied to components designed using Silverlight and Flex as well.

Adding Navigation

Another important factor for a successful homepage is navigation. The importance of navigation
stems from the general purpose nature of the homepage and the need to present site visitors with
clear indicators of possible next moves. There are a number of navigation aids that can be used and
this chapter focuses on the use of menus, website search, sitemaps, and breadcrumbs. You’ll use
Ektron Menus to manage the global navigation structure in the Workarea and you’ll render these on
the page using the Flex Menu Server Control. The implementation shows how you can override the
default behavior of the server control to provide tight management over the markup and the presen-
tation using XSLT, CSS, and jQuery.

Using Menu Links and Search

A good menu structure usually only provides links to a subset of the site’s overall content.
Considering that it’s realistic for an average-sized website to have hundreds of pages of content, it
makes sense for a navigation structure to provide site visitors with links to only the most important
and relevant items and not overload them with links to all possible resources. Search is a good way
to provide access to the remaining items and also give an alternative to menu navigation for those
who prefer it. The implementation section discusses how to develop a successful search strategy
using Ektron’s search technology, including the use of Web Analytics for tracking search terms site

c07.indd 150c07.indd 150 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 151

visitors use and tweaking results based on that data. The section also covers a deep look into Ektron
Search and provides architectural diagrams and code samples showing how to leverage the search
architecture.

Adding Navigation Indicators

Providing site visitors with navigation indicators that help them understand their current position
in the overall information architecture of the website is another critical factor for ensuring a happy
visitor and increasing page views. This chapter will show how to implement navigation using
Ektron’s Breadcrumb and Sitemap features.

Keep in mind that not all visitors to the homepage are fi rst-time visitors. The homepage is visited by
new users and existing membership users alike. It’s a good idea to offer membership users the ability
to log in directly from the homepage. This chapter also discusses ways to use Ektron’s registration
functionality, including both its native registration methods as well as its ability to integrate with
Facebook Connect.

RICH INTERACTION USING JQUERY, SMART FORMS, AND

HANDLERS

Rich Internet Applications, or RIAs, have been an important part of Internet design ever since
Flash became a commonly used Web element over a decade ago. Today the concept of RIAs has
been greatly extended. RIAs have gone from being a replacement for traditional HTML-based
development to including the concept of small pieces of rich functionality within a more typical page
experience. The collection of technologies has grown from the basic functionality of Flash, to an
ecosystem that includes Java, advanced Flash with server side data management, Silverlight, AJAX,
and HTML 5. Whether or not you as a developer agree with the development of RIA interfaces as
part of a Web experience, it is something that needs to be supported, and Ektron has made sure that
there are ways of doing so.

In order to support as many developer use cases as possible, the Ektron approach has always been
to supply a rich API in addition to the more typical server controls that are the usual fi rst stop for
developers. In addition to the API, there is also a built-in Web service package that is part of the
Workarea. This collection of Web services was originally created as part of the Plugin and Extension
architecture, but these Web services are also available to RIAs.

Types of Interaction

Solutions for rich client interaction can be logically divided into two areas:

 ‰ When you want more than just a statically displayed page, but you don’t require additional
data round trips from the server

 ‰ When you need to return to the server for more information based on user interaction

These are discussed in more detail in the following sections.

c07.indd 151c07.indd 151 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

152 x CHAPTER 7 THE HOMEPAGE

Adding More Than a Static Display

The fi rst group pertains to the original designs of rich interfaces. A typical solution was to create a
splash page, which might show a movie or some information before the users moved on to the site
itself. This type of interstitial is widely regarded today as detrimental to the usability of the site, and
is generally frowned upon.

The group of solutions that don’t require additional data from the server today has grown to be
more oriented towards producing a richer experience for the visitor. For instance, creating a client
side sorted table through the use of JavaScript is a very typical interface requirement. Like many
solutions requiring a richer sort of technology, this requirement can be solved through the use of a
simple link that informs the server to render the page again with a different sort order. However,
the modifi cation to use JavaScript client side eliminates a round trip to the server. That round trip is
a very expensive call, both in terms of wait time for the users, as well as in terms of server load, so
eliminating the call is very desirable.

Returning to the Server for More Information

The second group of solutions — those that require returning to the server for more information
in order to update the page for the users — fi rst became common with the use of AJAX. Microsoft
supplies a set of tools dubbed ASP.NET AJAX, which can simplify the development of these require-
ments through wrapping the calls back to the server in a standard framework that requires noth-
ing of the developer except to wrap the portion of the page to be rendered again in an ASP.NET
UpdatePanel Server Control. This solution provides a very simple way for developers to create a
lighter feeling Web solution and in many cases is perfectly acceptable. However, using the standard
Microsoft AJAX toolkit still requires a full-page lifecycle to occur on the server, even though only
the updated portion of the page is returned to the user. This means that of the two downsides to
using a standard anchor tag to update the page — the server render time and the client transfer
time — only the transfer time is reduced; the server render time remains the same.

The use of Web services, or RESTful services, has increasingly become an accepted method for
reducing both the bottlenecks at this point. While this solution is typically more complicated to
develop, the decrease in server load can sometimes be a worthwhile reason for this approach.
Any of the list of currently popular client side technologies allow for this mode of development.
Additionally, ASP.NET makes it very easy to develop a simple Web handler that can respond in any
format required.

Examples in This Chapter

This chapter covers two simplifi ed examples to help you understand how best to approach these
types of problems. The fi rst example you will explore using the jQuery library to animate the slider
on the homepage of the OnTrek website. The example starts by discussing the storage of content
specifi c for the interface, allowing for benefi ts like localization and easy updating. You will then
move onto generating appropriate output for the content to be displayed, and fi nally create some
code to actually render the slider.

The second example is about the creation and consumption of RESTful generic handlers. For this
example, you’ll create a simple ASHX Web handler that responds to queries with JSON, and the
authors will talk about consuming the results through the use of jQuery.

c07.indd 152c07.indd 152 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 153

On the homepage of the OnTrek website, there is an image rotator at the top of the page. The
images displayed, along with the accompanying text, all come from a settings content item stored in
the CMS as Smart Form content based on the Rotating Ad Smart Form defi nition. You created that
defi nition in the Smart Form section of Chapter 6. In this section, you will explore the following:

 ‰ Homepage image rotator using serialization

 ‰ Homepage image rotator using XSLT

 ‰ Web service creation and consumption

Homepage Image Rotator Using Serialization

In this section, you’ll be building the same example, that of the image rotator from the homepage of
the OnTrek starter site, in two different forms. The fi rst form, which you’ll produce now, uses the
same method used in the site itself. You’ll use Smart Forms to create the structured content types,
and then use existing query methods to render that data. In the next section, you’ll build the same
example, but with more home-grown code. In most cases, you’ll want to follow the approach used
in the fi rst case as demonstrated on the OnTrek website, particularly if you’re already familiar with
jQuery. However, there is almost always more than one way to accomplish a task; it can pay to
evaluate each method for the lessons learned.

The OnTrek start site comes prebuilt with a Smart Form defi nition called Home Page Banner.” One
of the common uses of Smart Forms is to use them to store settings for rich interface applications
as they allow for simple management of XML based options. Since XML is such an open standard
across languages and platforms, this allows developers to consume those settings from whatever
platform they may be developing on. In addition, using content as the basis for the options means
you have the ability to protect the confi guration through permissions and have multilingual versions
of the settings.

You read about how to use the Microsoft XML Schema Defi nition Tool in Chapter 6. In this
approach, you’ll build the class defi nition from the XSD for the Rotating Ad Smart Form, and
then use that to deserialize the settings from the Smart Form settings content item. You will then
databind the results into an ASP.NET Repeater Control to convert it to HTML. Once the results are
in an HTML format, you will use a jQuery plug-in to render the results into a slider interface.

Follow these steps to create an Image Rotator using Smart Form Serialization, databinding, and
jQuery.

1. Make sure your content item, based on the Home Page Banner Smart Form, has been
created. Open the Workarea content tab and go to MainSite/Content/Smart Forms/
HomePageBanner. There should be a content item called HomePageBanner there. If there
isn’t, create a new piece of content based on the Home Page Banner Smart Form now, and
make note of the ID of the newly created piece of content.

2. Retrieve the XSD for the Smart Form and convert it using the Microsoft XML Schema
Defi nition Tool into a serializable data class. Go to Settings Í Confi guration Í Smart Form
Confi guration in the Workarea, and then fi nd the row for the Home Page Banner Smart Form.

3. At this point, you can either retrieve the XSD for the Smart Form through the RESTful ser-
vice as covered in Chapter 6, or you can enter the Data Designer for the Smart Form, and

c07.indd 153c07.indd 153 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

154 x CHAPTER 7 THE HOMEPAGE

fi nd the icon of a document overlaid with XSD. Clicking that icon on the toolbar brings
up a modal window that contains the XSD. In either case, put the results into a fi le called
HomePageBanner.xsd in the path c:\. The HomePageBanner.xsd fi le is shown in Listing 7-1.

LISTING 7-1: HomePageBanner.xsd

<xs:schema elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

 <xs:element name=”GroupBox”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”SlideSpeed”>

 <xs:simpleType>

 <xs:restriction>

 <xs:simpleType>

 <xs:union memberTypes=”xs:nonNegativeInteger”>

 <xs:simpleType>

 <xs:restriction base=”xs:string”>

 <xs:length value=”0”/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name=”Slides” maxOccurs=”unbounded”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”Image”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”img” type=”imgDesignType” minOccurs=”0” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name=”Title” type=”xs:string” />

 <xs:element name=”Summary” type=”rich” />

 <xs:element name=”Link”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”a” type=”aDesignType” minOccurs=”0” />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

c07.indd 154c07.indd 154 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 155

 </xs:element>

 <xs:attributeGroup name=”coreattrs”>

 <xs:attribute name=”id” type=”xs:ID” />

 <xs:attribute name=”class” type=”xs:NMTOKENS” />

 <xs:attribute name=”style” type=”xs:string” />

 <xs:attribute name=”title” type=”xs:string” />

 </xs:attributeGroup>

 <xs:attributeGroup name=”i18n”>

 <xs:attribute name=”lang” type=”xs:language” />

 <xs:attribute name=”dir”>

 <xs:simpleType>

 <xs:restriction base=”xs:token”>

 <xs:enumeration value=”ltr” />

 <xs:enumeration value=”rtl” />

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:attributeGroup>

 <xs:attributeGroup name=”attrs”>

 <xs:attributeGroup ref=”coreattrs” />

 <xs:attributeGroup ref=”i18n” />

 </xs:attributeGroup>

 <xs:simpleType name=”FrameTarget”>

 <xs:restriction base=”xs:NMTOKEN”>

 <xs:pattern value=”_(blank|self|parent|top)|[A-Za-z]\c*” />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name=”aDesignType” mixed=”true”>

 <xs:sequence>

 <xs:any namespace=”##any” processContents=”skip” minOccurs=”0”

maxOccurs=”unbounded” />

 </xs:sequence>

 <xs:attributeGroup ref=”attrs” />

 <xs:attribute name=”href” type=”xs:anyURI” />

 <xs:attribute name=”target” type=”FrameTarget” />

 </xs:complexType>

 <xs:simpleType name=”ImgAlign”>

 <xs:restriction base=”xs:token”>

 <xs:enumeration value=”top” />

 <xs:enumeration value=”middle” />

 <xs:enumeration value=”bottom” />

 <xs:enumeration value=”left” />

 <xs:enumeration value=”right” />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name=”Length”>

 <xs:restriction base=”xs:string”>

 <xs:pattern value=”[-+]?(\d+|\d+(\.\d+)?%)” />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name=”imgDesignType”>

 <xs:attributeGroup ref=”attrs” />

 <xs:attribute name=”src” use=”required” type=”xs:anyURI” />

continues

c07.indd 155c07.indd 155 12/28/2010 1:55:20 PM12/28/2010 1:55:20 PM

156 x CHAPTER 7 THE HOMEPAGE

 <xs:attribute name=”alt” use=”required” type=”xs:string” />

 <xs:attribute name=”height” type=”Length” />

 <xs:attribute name=”width” type=”Length” />

 <xs:attribute name=”align” type=”ImgAlign” />

 <xs:attribute name=”border” type=”Length” />

 <xs:attribute name=”hspace” type=”xs:nonNegativeInteger” />

 <xs:attribute name=”vspace” type=”xs:nonNegativeInteger” />

 </xs:complexType>

 <xs:complexType name=”rich” mixed=”true”>

 <xs:sequence>

 <xs:any namespace=”##any” processContents=”skip” minOccurs=”0”

maxOccurs=”unbounded” />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

4. Use the Microsoft XML Schema Defi nition Tool to convert the XSD fi le into a C# class for
use in serializing and deserializing data. Chapter 6 mentions where this tool could be found.
It is run from the command line with the following syntax.

c:\>xsd.exe HomePageBanner.xsd /classes /language:CS /namespace:SmartForm

.HomePageBanner

5. Run that line now, after copying the HomePageBanner.xsd fi le to your C:\ drive. It generates
a fi le called HomePageBanner.cs. A portion of this fi le is reproduced in Listing 7-2.

LISTING 7-2: AdRotator.cs

//---

// <auto-generated>

// This code was generated by a tool.

// Runtime Version:2.0.50727.3615

//

// Changes to this file may cause incorrect behavior and will be lost if

// the code is regenerated.

// </auto-generated>

//--

//

// This source code was auto-generated by xsd, Version=2.0.50727.3038.

//

namespace SmarForm.HomePageBanner {

 using System.Xml.Serialization;

 /// <remarks/>

 [System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.3038”)]

 [System.SerializableAttribute()]

 [System.Diagnostics.DebuggerStepThroughAttribute()]

 [System.ComponentModel.DesignerCategoryAttribute(“code”)]

 [System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)]

 [System.Xml.Serialization.XmlRootAttribute(Namespace=””, IsNullable=false)]

LISTING 7-1 (continued)

c07.indd 156c07.indd 156 12/28/2010 1:55:21 PM12/28/2010 1:55:21 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 157

 public partial class GroupBox {

 private string slideSpeedField;

 private GroupBoxSlides[] slidesField;

 /// <remarks/>

 public string SlideSpeed {

 get {

 return this.slideSpeedField;

 }

 set {

 this.slideSpeedField = value;

 }

 }

 /// <remarks/>

 [System.Xml.Serialization.XmlElementAttribute(“Slides”)]

 public GroupBoxSlides[] Slides {

 get {

 return this.slidesField;

 }

 set {

 this.slidesField = value;

 }

 }

 }

 ...

Now you have the basis for deserializing the homepage banner settings into an object that
you can then databind to. The remaining steps are:

1. Create a repeater with the desired HTML structure.

2. Add some CSS.

3. Animate the results using jQuery.

The OnTrek site demonstrates this behavior in the default.aspx page, which then references
a user control that lives at ~\UserControls\slider\slider.ascx. This user control con-
tains all the code to build the slider interface, but for your efforts, you will create a new
blank page that will recreate the functionality.

6. Create a new page now in the root of your site called HomePageBannerSerialization.aspx.

7. Open the new page and put an ASP.NET Repeater Server Control on it.

8. Build the format for the HTML output. You have specifi c needs for the format of this output,
since you are using an existing jQuery plug-in to create the slider effect.

9. For this plug-in, you need to output each frame to be displayed as an li in a ul element. Within
each li, you need to display the title, summary, link, and background image for that frame.
With that in mind, update the Repeater to match the output you need. You also need to add
a Content Block Server Control so that you can retrieve the contents of the Ad Rotator Smart
Form content item in order to deserialize it. The code to achieve this is shown in Listing 7-3.

c07.indd 157c07.indd 157 12/28/2010 1:55:21 PM12/28/2010 1:55:21 PM

158 x CHAPTER 7 THE HOMEPAGE

LISTING 7-3: HomePageBannerSerialization.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”HomePageBannerSerialization.aspx.cs”

 Inherits=”HomePageBannerSerialization” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:ContentBlock ID=”uxBannerContentBlock”

 runat=”server” Visible=”false” />

 <ul class=”site-slider”>

 <asp:Repeater runat=”server” ID=”uxBannerRepeater”>

 <ItemTemplate>

 <div class=”content”

 style=”background: url(‘<%# DataBinder.Eval(

 Container.DataItem,

 “SlideImage”)%>’) no-repeat;”>

 <div class=”slideContent”>

 <h1>

 <%# DataBinder.Eval(Container.DataItem, “Title”)%>

 </h1>

 <p>

 <%# DataBinder.Eval(Container.DataItem, “Summary”)%>

 </p>

 <p class=”moreLink”>

 <a href=”<%# DataBinder.Eval(Container.DataItem, “LinkUrl”)%>”>

 <%# DataBinder.Eval(Container.DataItem, “LinkText”)%>

 </p>

 </div>

 </div>

 <div class=”clear”>

 </div>

 </ItemTemplate>

 </asp:Repeater>

 </div>

 </form>

</body>

</html>

10. Do the background data binding and ensure that the SmartForm.HomePageBanner
classes are included properly. For this example, put the generated classes inline in the

c07.indd 158c07.indd 158 12/28/2010 1:55:21 PM12/28/2010 1:55:21 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 159

HomePageBannerSerialization.aspx codebehind. You will also hook into the Page_Load
event to retrieve and deserialize the settings and do the databinding to the Repeater. This
code is shown in Listing 7-4.

LISTING 7-4: HomePageBannerSerialization.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class HomePageBannerSerialization : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 //Fill CB with SmartFormData//

 uxBannerContentBlock.DefaultContentID = 31;

 uxBannerContentBlock.Fill();

 string xml = uxBannerContentBlock.EkItem.Html;

 SmarForm.HomePageBanner.GroupBox groupBox = (SmarForm.HomePageBanner.GroupBox)

 Ektron.Cms.EkXml.Deserialize(

 typeof(SmarForm.HomePageBanner.GroupBox), xml);

 List<BannerSlide> slides = GetBannerSlides(groupBox.Slides);

 //DataBind//

 uxBannerRepeater.DataSource = slides;

 uxBannerRepeater.DataBind();

 }

 protected List<BannerSlide>

 GetBannerSlides(SmarForm.HomePageBanner.GroupBoxSlides[] groupBoxSlides)

 {

 List<BannerSlide> bSlides = new List<BannerSlide>();

 foreach (SmarForm.HomePageBanner.GroupBoxSlides gbSlide in groupBoxSlides)

 {

 bSlides.Add(new BannerSlide(gbSlide.Image.img.src, gbSlide.Title,

 gbSlide.Summary.Any[0].InnerText,

 gbSlide.Link.a.Any[0].InnerText, gbSlide.Link.a.href));

 }

 return bSlides;

 }

 public class BannerSlide

 {

 //properties//

 public string SlideImage { get; set; }

 public string Title { get; set; }

 public string Summary { get; set; }

 public string LinkText { get; set; }

 public string LinkUrl { get; set; }

continues

c07.indd 159c07.indd 159 12/28/2010 1:55:21 PM12/28/2010 1:55:21 PM

160 x CHAPTER 7 THE HOMEPAGE

 //constructor//

 public BannerSlide(string slideImage, string title, string summary,

 string linkText, string linkUrl)

 {

 SlideImage = slideImage;

 Title = title;

 Summary = summary;

 LinkText = linkText;

 LinkUrl = linkUrl;

 }

 }

}

#region SmartForm.HomePageBanner autogenerated classes

For brevity’s sake, this chapter has folded the autogenerated classes into the
region marker at the end of the fi le. Aside from that, there are a number of mov-
ing parts in the codebehind. The fi rst thing that happens is in the Page_Load
event; you set the Content Block Server Control on the declarative side to
retrieve the HomePageBanner content item. Then use the EkXml object to deseri-
alize the object into your generated class.

This chapter uses the EkXml object because it intelligently caches serializers. You
could just as easily use the built-in serialization routines in System.Xml, but those
are not logically cached in all situations, causing much longer page load times in
certain circumstances. It also simplifi es the calls into a single line versus the several
lines necessary for a normal deserialization call using the System.Xml objects.

11. The banner settings are then handed off to the GetBannerSlides method, which converts them
into a list of BannerSlide objects. You do this intermediate step just to ease the databinding
that takes place on the declarative side. Once that is done, simply set the list as the data-
source for the repeater, and call databind. The repeater then converts the objects into your
desired HTML.

12. Now that the hard part is done, include some CSS and fi re off some jQuery to convert the
results into an actual rotating display. Of these two parts, you will use the CSS built for
the homepage banner. On the jQuery side, the homepage uses a third party library called
bxSlider (available at http://bxslider.com) to perform the animations. So in all, you will
add two calls to register JavaScript fi les in the codebehind, and one call to register CSS in the
codebehind. These lines should be put in the Page_Load event of the page as the fi rst meth-
ods called in the event.

Ektron.Cms.API.JS.RegisterJS(this,

 “js/plugins/bxSlider/ektron.bxslider2.0.1.js”, “EktronBxSliderJS”);

LISTING 7-4 (continued)

c07.indd 160c07.indd 160 12/28/2010 1:55:21 PM12/28/2010 1:55:21 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 161

Ektron.Cms.API.JS.RegisterJS(this,

 “components/usercontrols/slider/ektron.site.slider.js”, “EktronSiteSliderJS”);

Ektron.Cms.API.Css.RegisterCss(this,

 “components/usercontrols/slider/ektron.site.slider.css”, “EktronSiteSliderCSS”);

The methods for registering client side scripts on a Web page are used for a couple of reasons.
The register methods ensure that all registered fi les are only included once. They can additionally
aggregate all registered fi les into a single JavaScript fi le and optionally minify the results.

The fi rst register call includes the bxSlider library. The second call includes the JavaScript required
to initialize the bxSlider. Finally, include the CSS to render the whole thing properly. Now when the
browser points to http://localhost/mainsite/homepagebannerserialization.aspx, the banner
is displayed properly. The rotating image banner is shown rendered on the homepage in Figure 7-2.

FIGURE 7-2

c07.indd 161c07.indd 161 12/28/2010 1:55:22 PM12/28/2010 1:55:22 PM

162 x CHAPTER 7 THE HOMEPAGE

Homepage Image Rotator Using XSLT

The method covered in the previous section, using serialization and an ASP.NET Repeater
Server Control to render the markup, is how the rotator built into the OnTrek starter site func-
tions. In the interest of expanding your knowledge, you will now build the same example with a
different approach. In this approach, you’ll use an XSLT to transform the settings into HTML,
and you won’t use a pre-built jQuery plug-in. Instead, you’ll write some custom jQuery to ani-
mate the results.

Creating the Custom XSLT

To create the custom XSLT, follow these steps:

1. Retrieve the XML for the settings content item. Log in to the Workarea, and in the content
tree browse to /MainSite/Content/Smart Forms/HomePageBanner.

2. In the content list pane, select HomePageBanner and click the Edit icon.

3. When the data is published, it is saved as an XML document with a reference back to the
Smart Form Design Package, which contains the automatically generated XSLT. Whenever the
content is displayed through a Content Block Server Control, the XML is transformed against
the built-in XSLT. Since that XSLT does not format the data as you want, you will write a
custom XSLT for the content now. In order to do so, you need to look at the generated XML.
At the bottom of the eWebEdit400 editor, there are two buttons .

These buttons switch between the data designer view and the XML view. Click the second
of these buttons now to view the automatically generated XML, and copy it to a text docu-
ment for later reference. A portion of the generated XML is listed in the following code
snippet.

<GroupBox>

 <SlideSpeed></SlideSpeed>

 <Slides>

 <Image>

 <img

 src=”/OnTrek/uploadedImages/Content/Home/HomePageBanner/img-banner1.

png”

 alt=”Banner1” />

 </Image>

 <Title>Lorem Ipsum</Title>

 <Summary>Vusce id nibh orci, sed tincidunt quam. Maecenas

 iaculis risus sed tortor tincidunt at egestas augue laoreet.

 Suspendisse consectetur, sem nec tempus elementum, felis lectus

 fermentum urna, id vehicula arcu turpis ac enim. Cum sociis

 natoque penatibus et magnis dis parturient montes, nascetur

 ridiculus mus. Vestibulum ante ipsum primis in faucibus orci

 luctus et ultrices posuere cubilia</Summary>

 <Link>

 Learn More

 </Link>

 </Slides>

 <Slides>

c07.indd 162c07.indd 162 12/28/2010 1:55:22 PM12/28/2010 1:55:22 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 163

 <Image>

 <img

 src=”/OnTrek/uploadedImages/Content/Home/HomePageBanner/img-banner2.

png”

 alt=”Banner2” />

 </Image>

 <Title>Vivamus vel metus vitae</Title>

 <Summary>Wusce id nibh orci, sed tincidunt quam. Maecenas

 iaculis risus sed tortor tincidunt at egestas augue laoreet.

 Suspendisse consectetur, sem nec tempus elementum, felis lectus

 fermentum urna, id vehicula arcu turpis ac enim. Cum sociis

 natoque penatibus et magnis dis parturient montes, nascetur

 ridiculus mus. Vestibulum ante ipsum primis in faucibus orci

 luctus et ultrices posuere cubilia</Summary>

 <Link>

 Learn More

 </Link>

 </Slides>

</GroupBox>

4. Based on this XML, you need to output some simple HTML that can be read by indexing
engines such as Google for SEO purposes. The HTML format you want to achieve is in the
following code snippet.

<div class=”rotator”>

 <div class=”panel”

 style=”background-

 image:url(

 ‘/OnTrek/uploadedImages/Content/Home/HomePageBanner/img-banner1.

png’);”>

 <h1>Lorem Ipsum</h1>

 <p>

 Vusce id nibh orci, sed tincidunt quam. Maecenas

 iaculis risus sed tortor tincidunt at egestas augue laoreet.

 Suspendisse consectetur, sem nec tempus elementum, felis lectus

 fermentum urna, id vehicula arcu turpis ac enim. Cum sociis

 natoque penatibus et magnis dis parturient montes, nascetur

 ridiculus mus. Vestibulum ante ipsum primis in faucibus orci

 luctus et ultrices posuere cubilia

 </p>

 Learn More

 </div>

 <div class=”panel”

 style=”display:none;background-

 image:url(

 ‘/OnTrek/uploadedImages/Content/Home/HomePageBanner/img-banner2.

png’);”>

 <h1>Vivamus vel metus vitae</h1>

 <p>

 Wusce id nibh orci, sed tincidunt quam. Maecenas

 iaculis risus sed tortor tincidunt at egestas augue laoreet.

 Suspendisse consectetur, sem nec tempus elementum, felis lectus

 fermentum urna, id vehicula arcu turpis ac enim. Cum sociis

 natoque penatibus et magnis dis parturient montes, nascetur

c07.indd 163c07.indd 163 12/28/2010 1:55:22 PM12/28/2010 1:55:22 PM

164 x CHAPTER 7 THE HOMEPAGE

 ridiculus mus. Vestibulum ante ipsum primis in faucibus orci

 luctus et ultrices posuere cubilia

 </p>

 Learn More

 </div>

</div>

The elements in the HTML closely correspond to the elements in the XML. The items in the
HTML should be self-evident.

5. Wrap the whole structure in a div with class rotator, and then that in turn contains panels.
Each panel has a background image, and displays the heading, the text, and a link to more
information. Then use jQuery to appropriately scroll through the items by hiding the current
item and showing the next item.

6. Next, you need to develop an XSLT that transforms from the XML into the format just
discussed.

7. Finally, you need to add some minimal styles and JavaScript to animate the fi nal rotator. The
XSLT is listed in the following code snippet.

<?xml version=”1.0” encoding=”utf-8”?>

<xsl:stylesheet version=”1.0”

 xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

 <xsl:template match=”/”>

 <div class=”rotator”>

 <xsl:for-each select=”/GroupBox/Slides”>

 <div class=”panel”>

 <xsl:choose>

 <xsl:when test=”position() != 1”>

 <xsl:attribute name=”style”>

 display:none;background-image:url(‘<xsl:value-of

 select=”Image/img/@src”/>’);

 </xsl:attribute>

 </xsl:when>

 <xsl:otherwise>

 <xsl:attribute name=”style”>

 background-image:url(‘<xsl:value-of

 select=”Image/img/@src”/>’);

 </xsl:attribute>

 </xsl:otherwise>

 </xsl:choose>

 <h1>

 <xsl:value-of select=”Title”/>

 </h1>

 <p>

 <xsl:value-of select=”Summary”/>

 </p>

 <xsl:copy-of select=”Link/a”></xsl:copy-of>

 </div>

 </xsl:for-each>

c07.indd 164c07.indd 164 12/28/2010 1:55:23 PM12/28/2010 1:55:23 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 165

 </div>

 </xsl:template>

</xsl:stylesheet>

This XSLT is as simple as it can be while achieving the goals set here. After the header informa-
tion, there is a single template, which matches the root of the document. Inside that template, there
is a containing div element, which is the root of the output. Then do a for-each on the panels
contained in the root node. Each panel is contained in a panel div. The panel div contains several
other elements, like an h1, a p, and an anchor. Each of these elements contains the corresponding
data. The choose acts as a switch based on whether or not the current panel is the fi rst panel. In the
case that it is, you simply set the background-image CSS property on the element. If it is not the fi rst
panel, then set the background-image property, but also mark the panel as invisible. You will then
use jQuery to animate between them.

XSLTs can be very complex; fortunately there are many resources for learning more about writing
them effectively. One point to consider that may assist your development efforts is how to debug
an XSLT in Visual Studio. While this is not foolproof, as the Ektron Framework’s internal XSL
Transform engine can switch between two types of engines, it can frequently help a developer fi gure
out just what is wrong with the transform.

Debugging the XSLT in Visual Studio

To debug an XSLT in Visual Studio, you need to have a fi le for the input XML, and a fi le for
the XSLT:

1. Take the XSLT shown in the previous section and save it into a fi le at ~\Xml\
HomePageBannerRotator.xslt.

2. Take the XML you copied from eWebEdit400, and save it to ~\Xml\
HomePageBannerRotator.xml.

3. Open both fi les in Visual Studio at the same time, and view the XSLT. In the Properties pane,
one of the items listed is Input. This property informs Visual Studio where the XML fi le is
against which it should perform the transform. This is shown in Figure 7-3.

4. Set the input to C:\Xml\ria.xml.

5. Test your transform by selecting XML Í Show XSLT Output.

Remember that .NET does not support XSLT 2. Ektron has worked around
that by using the built in XSLT 1 engine by default for transforms, but using
the bundled Saxon XSLT 2 processor for certain XSLT fi les that are marked
appropriately. To signal to the Ektron Framework that your XSLT should
be transformed via Saxon, you can either store the XSLT in a folder called
“saxon,” or you can include the line <saxon></saxon> inside your XSLT.
Remember that XSLT 2 fi les cannot be tested in Visual Studio.

c07.indd 165c07.indd 165 12/28/2010 1:55:23 PM12/28/2010 1:55:23 PM

166 x CHAPTER 7 THE HOMEPAGE

FIGURE 7-3

Setting Code to Use the XSLT

Now that you have the XSLT you wish to use, you need to set up your code to use it. You created
the fi rst example in the fi le HomePageBannerSerialization.aspx. Now, follow these steps:

1. Add a new Web Form to the root of your site, and call it HomePageBannerXSLT.aspx.

2. Make sure that the language is set to Visual C#, and that the Place Code in Separate File
checkbox is selected.

3. Once the fi le is created, drag a Content Block Server Control into the form element.

4. Set the DefaultContentID to the ID of the RIA Settings content item. For now, don’t set
the DisplayXSLT property. The code for HomePageBannerXSLT.aspx is shown in the
following code snippet.

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”HomePageBannerXSLT.aspx.cs”

 Inherits=”HomePageBannerXSLT” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

TagPrefi x=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

c07.indd 166c07.indd 166 12/28/2010 1:55:23 PM12/28/2010 1:55:23 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 167

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:ContentBlock ID=”SmartFormSettingsRetrieve” runat=”server”

DefaultContentID=”31” />

 </div>

 </form>

</body>

</html>

5. Save the fi le and then load it in the browser at http://localhost/OnTrek/
HomePageBannerXSLT.aspx. The loaded page is shown in Figure 7-4.

The ContentBlock Server Control will use the default XSLT from the Data
Design Package, which displays the data similarly to how it looked in the editor.

FIGURE 7-4

6. Set the Content Block Server Control to use the XSLT you developed. Set the property called
DisplayXSLT to the path ~/xmlfiles/ HomePageBannerRotator.xslt. This modifi cation
is shown here:

<CMS:ContentBlock ID=”SmartFormSettingsRetrieve”

 runat=”server” DefaultContentID=”554”

DisplayXslt=”~/xmlfi les/HomePageBannerRotator.xslt” />

c07.indd 167c07.indd 167 12/28/2010 1:55:23 PM12/28/2010 1:55:23 PM

168 x CHAPTER 7 THE HOMEPAGE

7. Refresh the page in the browser to see the transformed HTML, as shown in Figure 7-5.

FIGURE 7-5

Clearly, you’ll need some CSS to make this look right. The main thing you need to do is
set the width and height of the panels to the size of the images you are displaying. On the
homepage there are additional styles to set the font and display the text in appropriate
places, but for this example you’ll skip those complications.

8. Update the head of the HomePageBannerXSLT.aspx fi le to look like the following code
snippet.

<head runat=”server”>

 <title></title>

 <style type=”text/css”>

 div.rotator {

 width:470px; height:296px; min-height:296px; }

 div.panel {

 background-position:center;

 background-repeat:no-repeat;

 width:470px; height:296px; }

 </style>

</head>

9. Finally, you need some JavaScript to do the actual rotation. The Ektron Framework inter-
nally uses jQuery for most of the client side heavy lifting, so you’ll piggyback on that for
your own code.

Remember that the Ektron copy of jQuery is renamed to $ektron rather than $ so it won’t
confl ict with your code, but in all other respects it is effectively the same. The JavaScript to
run the rotator is listed in the following code snippet.

<script type=”text/javascript” language=”javascript”>

 //initialization of the rotator. We wrap it in the document ready so it

 //only runs after the entire DOM has been loaded.

 $ektron(document).ready(function() {

 if (“undefi ned” != typeof HomePageRotator) {

 //set up rotator

 HomePageRotator.setupRotator();

 //set up callback to switch to second item. from then on,

 //the movenextrotator function will set up the timers.

 window.setTimeout(

 HomePageRotator.moveNextRotator, HomePageRotator.TimeOut)

 }

 });

 //this will be our namespace for objects and

 //functions created for the rotator.

 if (“undefi ned” == typeof HomePageRotator) {

 var HomePageRotator = {

c07.indd 168c07.indd 168 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 169

 Panels: {}, //this stores the set of panels to rotate through

 TimeOut: 3000, //this stores the length of time to show each panel

 CurrentItem: 0, //this is the panel currently being displayed

 setupRotator: function() {

 //set the panels property to the retrieved set of panels

 HomePageRotator.Panels = $ektron(“div.panel”);

 },

 moveNextRotator: function() {

 //current displayed panel

 var curItem = HomePageRotator.CurrentItem;

 //next panel to display

 var nextItem = curItem + 1;

 if (nextItem >= HomePageRotator.Panels.length) nextItem = 0;

 //Animate the fade out of the current panel. Once the

 //animation has completed, start fading in the next panel.

 //Wait until that animation has completed, then update the

 //current item pointer and set up the callback to perform

 //the action again once the timer has run out.

 HomePageRotator.Panels.eq(curItem).fadeOut(500, function() {

 HomePageRotator.Panels.eq(nextItem).fadeIn(500, function() {

 HomePageRotator.CurrentItem = nextItem;

 window.setTimeout(

 HomePageRotator.moveNextRotator, HomePageRotator.TimeOut);

 });

 });

 }

 };

 }

</script>

This JavaScript might be a little unfamiliar looking — you’re using object oriented code for this. You
can think of this in three chunks of code:

 ‰ The fi rst serves as the initialize, which only runs after the document has been loaded. This
ensures when you run queries to fi nd the panels, they exist in the DOM.

 ‰ The second, as indicated in the comments, defi nes the namespace for your functions and
variables. In it you store the panel set, the length of time to display each panel, and the cur-
rent item that is displayed. You also have the setupRotator function, which sets the Panels
object.

 ‰ The third is the moveNextRotator function, which animates the transitions between panels
and sets up the callback to itself after the appropriate amount of time.

You’ve now created the image rotator for the homepage. This was a simple example of using
JavaScript to create a richer interface than displaying static HTML would yield. A common need,
however, is for the interface to dynamically update itself with fresh data based on user interaction.

Web Service Creation and Consumption

In this example, you will create an interface that lists the child nodes of a taxonomy, and uses an
AJAX call to retrieve the content items associated with the selected node. This particular set of

c07.indd 169c07.indd 169 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

170 x CHAPTER 7 THE HOMEPAGE

functionality would typically be implemented through the use of the Directory Server Control,
which does this out-of-the-box, but the example illustrates how to approach an AJAX require-
ment in an extensible way. The same approach can be used to create any interface that requires fast
responses on the client page. In this example, you will do the following:

 ‰ Create a page that renders the child nodes of a specifi ed node.

 ‰ Create a simple handler that accepts a JSON argument specifying the selected child node and
returns a JSON object containing the list of items to display.

 ‰ Modify the page to have a reusable template to display those items.

 ‰ Create the JavaScript using jQuery to retrieve and render the children.

Rendering the Children of a Specifi c Node

Start by creating a Web Form called SimpleHandler.aspx. Create this at the root of the site. The
purpose of this fi le is to list the taxonomy nodes that are children of a given node. In this case, you
will use the Taxonomies/OnTrek Site Navigation node, which has an ID of 189 in the default
OnTrek database. The page you create will have three main elements on it:

 ‰ A repeater to list the taxonomy nodes

 ‰ A div that will be the container that you use to display the children of the selected node

 ‰ The JavaScript to tie it all together

The code listing for SimpleHandler.aspx follows. In its current state it will display the ID of the
clicked taxonomy node in the results div, as displayed in the following code snippet.

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <asp:Repeater ID=”repeaterItemList” runat=”server”>

 <ItemTemplate>

 <%#

 DataBinder.Eval(Container.DataItem, “TaxonomyId”)

 %>

 <%#

 DataBinder.Eval(Container.DataItem, “TaxonomyName”)

 %>

 </ItemTemplate>

 </asp:Repeater>

 <div id=”ItemResults”>

 </div>

c07.indd 170c07.indd 170 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 171

 <script language=”javascript” type=”text/javascript”>

 //initialization of the Taxonomy links.

 //We wrap it in the document ready so it only runs

 //after the entire DOM has been loaded.

 $ektron(document).ready(function() {

 if (“undefined” != typeof TaxonomyHandler) {

 //When the link is clicked, fire the

 //getTaxonomyItems handler.

 $ektron(“a.taxonomyLink”).click(

 TaxonomyHandler.getTaxonomyItems

);

 }

 });

 //this will be our namespace for objects and functions

 //created for the handler example.

 if (“undefined” == typeof TaxonomyHandler) {

 var TaxonomyHandler = {

 getTaxonomyItems: function() {

 //this function will look inside the clicked link

 //to retrieve the id of the taxonomy item clicked.

 //It will then display the taxonomy id in the results div.

 var clickedAnchor = $ektron(this);

 var taxonomyId = clickedAnchor.find(“span.taxonomyId”).text();

 $ektron(“div#ItemResults”).html(taxonomyId);

 }

 };

 }

 </script>

 </form>

</body>

</html>

In the codebehind for the page, register the jQuery library to include it on the page, retrieve the
children nodes using the API, and then databind the nodes to the repeater. This code is listed in the
following snippet.

public partial class SimpleHandler : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 //include jQuery library

 Ektron.Cms.API.JS.RegisterJS(

 this,

 Ektron.Cms.API.JS.ManagedScript.EktronJS

);

 //set up objects we will use

 Ektron.Cms.API.Content.Taxonomy taxonomyAPI

 = new Ektron.Cms.API.Content.Taxonomy();

 Ektron.Cms.TaxonomyRequest taxonomyRequest

 = new Ektron.Cms.TaxonomyRequest();

 Ektron.Cms.TaxonomyData taxonomyData

 = null;

c07.indd 171c07.indd 171 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

172 x CHAPTER 7 THE HOMEPAGE

 //initialize the taxonomyrequest object

 //whether to include items or just sub nodes

 taxonomyRequest.IncludeItems

 = false;

 //the taxonomy id to retrieve the children of

 taxonomyRequest.TaxonomyId

 = 189;

 //the language of the items we should retrieve.

 //set it to the currently selected language

 taxonomyRequest.TaxonomyLanguage

 = taxonomyAPI.RequestInformationRef.ContentLanguage;

 //the taxonomy type

 taxonomyRequest.TaxonomyType

 = Ektron.Cms.Common.EkEnumeration.TaxonomyType.Content;

 //get the taxonomy item and children

 taxonomyData = taxonomyAPI.LoadTaxonomy(ref taxonomyRequest);

 //ensure the result is good, and databind it to the repeater

 if (taxonomyData != null && taxonomyData.TaxonomyHasChildren)

 {

 repeaterItemList.DataSource = taxonomyData.Taxonomy;

 repeaterItemList.DataBind();

 }

 }

}

Creating a Simple Handler

Now that you have a page that lists the nodes, the next step is to create the handler to retrieve the
children content of a selected node. You do this by following these steps:

1. Create a generic handler. You’ll use a handler because it is signifi cantly lighter than a full
page in the .NET Framework. You then return results to the query through JSON.

2. In the root of your site in Visual Studio, add a new item. Select Generic Handler
for the template, and Visual C# as the language, as shown in Figure 7-6. Name it
TaxonomyExampleService.ashx.

The code for this fi le uses the DataContractJsonSerializer class bundled with ASP.NET
3.5 to serialize the response and deserialize the request object. You also have the option
at this point of using the Serialization.JavaScriptSerializer object to serialize the
JSON, but using a DataContract has two large benefi ts:

 ‰ By marking the class as a DataContract, you can serialize to anything that there is a
serializer for, including XML.

 ‰ The DataContract gives you additional fl exibility because you can specify the prop-
erty names to serialize to in the JSON object.

c07.indd 172c07.indd 172 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 173

FIGURE 7-6

3. Using the standard serialization methods requires that you have a class defi nition for the
objects being serialized. The fi rst portion of the code is in the RequestItem class shown in
the following code snippet.

//this class is marked with the DataContract attribute

//to specify that it is serializable.

[System.Runtime.Serialization.DataContract]

public class RequestItem

{

 //this attribute marks that this property should be serialized.

 //the attached property specifi es the parent taxonomy node of

 //the requested children.

 [System.Runtime.Serialization.DataMember]

 public long TaxonomyID { get; set; }

 //this static method will take the serialized

 //requestitem object and deserialize it

 public static RequestItem Deserialize(string serializedItem)

 {

 System.IO.MemoryStream memoryStream = null;

 //declare a new requestitem so we don’t return a null object

 RequestItem requestItem = new RequestItem();

 if (serializedItem != null) // ensure the argument string exists

 {

 //create a new serializer object

 System.Runtime.Serialization.

c07.indd 173c07.indd 173 12/28/2010 1:55:24 PM12/28/2010 1:55:24 PM

174 x CHAPTER 7 THE HOMEPAGE

 Json.DataContractJsonSerializer requestItemSerializer

 = new System.Runtime.Serialization.Json.DataContractJsonSerializer(

 typeof(RequestItem));

 try

 {

 //get the bytestream for the serialized object

 memoryStream = new System.IO.MemoryStream(

 System.Text.Encoding.Unicode.GetBytes(serializedItem));

 //deserialize the object

 requestItem = requestItemSerializer.ReadObject(memoryStream)

 as RequestItem;

 }

 catch (Exception e)

 {

 throw new Exception(“Could not deserialize request”, e);

 }

 fi nally

 {

 //ensure the memorystream gets emptied

 memoryStream.Dispose();

 }

 }

 else

 {

 throw new Exception(“Request is null”);

 }

 return requestItem;

 }

}

4. The other class you need to defi ne is TaxonomyItem. The handler will return a generic list of
these, each of which will store the content ID, title, and QuickLink for a content item. This
class has a SerializeList method rather than a deserializer method, as you will serialize
the list to return it to the requesting page. Otherwise it is very similar to the RequestItem
class. The TaxonomyItem class’ code is listed in the following code snippet.

//this class is marked with the DataContract

//attribute to specify that it is serializable.

[System.Runtime.Serialization.DataContract]

public class TaxonomyItem

{

 //the properties listed below store the relevant

 //data for a given piece of content.

 //each is marked as a serializable property.

 [System.Runtime.Serialization.DataMember]

 public long ItemID { get; set; }

 [System.Runtime.Serialization.DataMember]

 public string ItemName { get; set; }

 [System.Runtime.Serialization.DataMember]

 public string ItemQuicklink { get; set; }

 //the constructor takes all three properties to initialize the object

 public TaxonomyItem(long ID, string Name, string Quicklink)

c07.indd 174c07.indd 174 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 175

 {

 ItemID = ID;

 ItemName = Name;

 ItemQuicklink = Quicklink;

 }

 //this method takes a list of taxonomyitems and serializes it as one unit.

 public static string SerializeList(List<TaxonomyItem> itemlist){

 System.IO.MemoryStream memoryStream = null;

 string serializedList = “”; //the return value

 if (itemlist != null) //ensure the input is valid before continuing

 {

 //create the serialization object

 System.Runtime.Serialization.Json.

 DataContractJsonSerializer responseItemSerializer

 = new System.Runtime.Serialization.Json.DataContractJsonSerializer(

 typeof(List<TaxonomyItem>));

 try

 {

 memoryStream = new System.IO.MemoryStream();

 //serialize the object and then write it to the output string

 responseItemSerializer.WriteObject(memoryStream, itemlist);

 serializedList = System.Text.Encoding.

 Default.GetString(memoryStream.ToArray());

 }

 catch (Exception e)

 {

 throw new Exception(“Could not serialize results”, e);

 }

 fi nally

 {

 memoryStream.Dispose();

 }

 }

 return serializedList;

 }

}

5. Now that you have your input and output classes, you need to fi ll in the ProcessRequest
method, and also the code that actually retrieves the child content. You do this by:

 ‰ Writing the method to get the content. The method will be called GetChildren, and
is mostly a modifi ed version of the taxonomy code you wrote to list the categories
in the fi rst place. The fi rst modifi cation to the earlier code is that you specify in the
TaxonomyRequest object to include content.

 ‰ Once you have the results, do not databind them to a repeater, but instead iterate
over them building a List<TaxonomyItem> to return from the method.

The code is listed in the following code snippet.

c07.indd 175c07.indd 175 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

176 x CHAPTER 7 THE HOMEPAGE

public List<TaxonomyItem> GetChildren(long taxonomyId)

{

 List<TaxonomyItem> contentItems = new List<TaxonomyItem>();

 //set up objects we will use

 Ektron.Cms.API.Content.Taxonomy taxonomyAPI

 = new Ektron.Cms.API.Content.Taxonomy();

 Ektron.Cms.TaxonomyRequest taxonomyRequest

 = new Ektron.Cms.TaxonomyRequest();

 Ektron.Cms.TaxonomyData taxonomyData

 = null;

 //initialize the taxonomyrequest object

 //whether to include items or just sub nodes

 taxonomyRequest.IncludeItems = true;

 //the taxonomy id to retrieve the children of

 taxonomyRequest.TaxonomyId = taxonomyId;

 //the language of the items we should retrieve.

 //set it to the currently selected language

 taxonomyRequest.TaxonomyLanguage

 = taxonomyAPI.RequestInformationRef.ContentLanguage;

 //the taxonomy type

 taxonomyRequest.TaxonomyType

 = Ektron.Cms.Common.EkEnumeration.TaxonomyType.Content;

 //get the taxonomy item and children

 taxonomyData = taxonomyAPI.LoadTaxonomy(ref taxonomyRequest);

 //ensure the result is good

 if (taxonomyData != null

 && taxonomyData.TaxonomyItems != null

 && taxonomyData.TaxonomyItems.Length > 0)

 {

 //iterate over the results, adding

 //converted items to the contentItems list

 foreach (TaxonomyItemData item in taxonomyData.TaxonomyItems)

 {

 contentItems.Add(

 new TaxonomyItem(

 item.TaxonomyItemId,

 item.TaxonomyItemTitle,

 item.TaxonomyItemQuickLink));

 }

 }

 return contentItems;

}

6. Add the ProcessRequest method. This method is very straightforward; it simply deserializes
the request item passed to the handler, calls GetChildren, and responds to the request with
the serialized results. The code is listed in the following snippet.

public void ProcessRequest (HttpContext context) {

 //we will return an empty string if there is a problem retrieving the

 //children.

c07.indd 176c07.indd 176 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 177

 string serializedResult = “”;

 List<TaxonomyItem> results = null;

 //deserialize the request

 RequestItem request = RequestItem.Deserialize(context.Request[“request”]);

 //get the child content items

 results = GetChildren(request.TaxonomyID);

 if (results != null)

 {

 //serialize the results

 serializedResult = TaxonomyItem.SerializeList(results);

 }

 context.Response.ContentType = “text/plain”;

 //write the serialized results

 context.Response.Write(serializedResult);

}

7. Now you have the complete code for your handler. Call this handler with an AJAX request
from the Web page, specifying a single argument with the key request. That argument will be a
serialized object containing the taxonomy ID. The complete code is reproduced in Listing 7-5.

LISTING 7-5: TaxonomyExampleService.ashx

<%@ WebHandler Language=”C#” Class=”TaxonomyExampleService” %>

using System;

using System.Web;

using Ektron.Cms;

using System.Collections.Generic;

public class TaxonomyExampleService : IHttpHandler {

 //this class is marked with the DataContract attribute

 //to specify that it is serializable.

 [System.Runtime.Serialization.DataContract]

 public class TaxonomyItem

 {

 //the properties listed below store the relevant

 //data for a given piece of content.

 //each is marked as a serializable property.

 [System.Runtime.Serialization.DataMember]

 public long ItemID { get; set; }

 [System.Runtime.Serialization.DataMember]

 public string ItemName { get; set; }

 [System.Runtime.Serialization.DataMember]

 public string ItemQuicklink { get; set; }

 //the constructor takes all three properties to initialize the object

 public TaxonomyItem(long ID, string Name, string Quicklink)

 {

continues

c07.indd 177c07.indd 177 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

178 x CHAPTER 7 THE HOMEPAGE

 ItemID = ID;

 ItemName = Name;

 ItemQuicklink = Quicklink;

 }

 //this method takes a list of taxonomyitems and serializes it as one unit.

 public static string SerializeList(List<TaxonomyItem> itemlist){

 System.IO.MemoryStream memoryStream = null;

 string serializedList = “”; //the return value

 if (itemlist != null) //ensure the input is valid before continuing

 {

 //create the serialization object

 System.Runtime.Serialization.Json.

 DataContractJsonSerializer responseItemSerializer

 = new System.Runtime.Serialization.Json.DataContractJsonSerializer(

 typeof(List<TaxonomyItem>));

 try

 {

 memoryStream = new System.IO.MemoryStream();

 //serialize the object and then write it to the output string

 responseItemSerializer.WriteObject(memoryStream, itemlist);

 serializedList = System.Text.Encoding.Default.GetString(

 memoryStream.ToArray());

 }

 catch (Exception e)

 {

 throw new Exception(“Could not serialize results”, e);

 }

 finally

 {

 memoryStream.Dispose();

 }

 }

 return serializedList;

 }

 }

 //this class is marked with the DataContract

 //attribute to specify that it is serializable.

 [System.Runtime.Serialization.DataContract]

 public class RequestItem

 {

 //this attribute marks that this property should be serialized.

 //the attached property specifies the parent taxonomy node

 //of the requested children.

 [System.Runtime.Serialization.DataMember]

 public long TaxonomyID { get; set; }

LISTING 7-5 (continued)

c07.indd 178c07.indd 178 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 179

 //this static method will take the serialized requestitem

 //object and deserialize it

 public static RequestItem Deserialize(string serializedItem)

 {

 System.IO.MemoryStream memoryStream = null;

 //declare a new requestitem so we don’t return a null object

 RequestItem requestItem = new RequestItem();

 if (serializedItem != null) // ensure the argument string exists

 {

 //create a new serializer object

 System.Runtime.Serialization.Json.

 DataContractJsonSerializer requestItemSerializer

 = new System.Runtime.Serialization.Json.DataContractJsonSerializer(

 typeof(RequestItem));

 try

 {

 //get the bytestream for the serialized object

 memoryStream = new System.IO.MemoryStream(

 System.Text.Encoding.Unicode.GetBytes(

 serializedItem));

 //deserialize the object

 requestItem = requestItemSerializer.ReadObject(memoryStream)

 as RequestItem;

 }

 catch (Exception e)

 {

 throw new Exception(“Could not deserialize request”, e);

 }

 finally

 {

 //ensure the memorystream gets emptied

 memoryStream.Dispose();

 }

 }

 else

 {

 throw new Exception(“Request is null”);

 }

 return requestItem;

 }

 }

 public void ProcessRequest (HttpContext context) {

 //we will return an empty string if there is a

 //problem retrieving the children.

 string serializedResult = “”;

 List<TaxonomyItem> results = null;

 //deserialize the request

 RequestItem request = RequestItem.Deserialize(

 context.Request[“request”]);

continues

c07.indd 179c07.indd 179 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

180 x CHAPTER 7 THE HOMEPAGE

 //get the child content items

 results = GetChildren(request.TaxonomyID);

 if (results != null)

 {

 //serialize the results

 serializedResult = TaxonomyItem.SerializeList(results);

 }

 context.Response.ContentType = “text/plain”;

 //write the serialized results

 context.Response.Write(serializedResult);

 }

 public List<TaxonomyItem> GetChildren(long taxonomyId)

 {

 List<TaxonomyItem> contentItems = new List<TaxonomyItem>();

 //set up objects we will use

 Ektron.Cms.API.Content.Taxonomy taxonomyAPI

 = new Ektron.Cms.API.Content.Taxonomy();

 Ektron.Cms.TaxonomyRequest taxonomyRequest

 = new Ektron.Cms.TaxonomyRequest();

 Ektron.Cms.TaxonomyData taxonomyData

 = null;

 //initialize the taxonomyrequest object

 //whether to include items or just sub nodes

 taxonomyRequest.IncludeItems = true;

 //the taxonomy id to retrieve the children of

 taxonomyRequest.TaxonomyId = taxonomyId;

 //the language of the items we should retrieve.

 //set it to the currently selected language

 taxonomyRequest.TaxonomyLanguage

 = taxonomyAPI.RequestInformationRef.ContentLanguage;

 //the taxonomy type

 taxonomyRequest.TaxonomyType

 = Ektron.Cms.Common.EkEnumeration.TaxonomyType.Content;

 //get the taxonomy item and children

 taxonomyData = taxonomyAPI.LoadTaxonomy(ref taxonomyRequest);

 //ensure the result is good

 if (taxonomyData != null

 && taxonomyData.TaxonomyItems != null

 && taxonomyData.TaxonomyItems.Length > 0)

 {

 //iterate over the results, adding converted

 //items to the contentItems list

 foreach (TaxonomyItemData item in taxonomyData.TaxonomyItems)

 {

LISTING 7-5 (continued)

c07.indd 180c07.indd 180 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 181

 contentItems.Add(

 new TaxonomyItem(

 item.TaxonomyItemId,

 item.TaxonomyItemTitle,

 item.TaxonomyItemQuickLink));

 }

 }

 return contentItems;

 }

 public bool IsReusable {

 get {

 return false;

 }

 }

}

Using a Reusable Template to Display Items

Now you need to return to the SimpleHandler.aspx fi le to create the glue to retrieve and display
these results. The fi rst section you add to the SimpleHandler.aspx fi le is a div just below the
repeater. This div is used by the JavaScript as a template for each item returned from the handler.
There are other methods of handling this sort of templating, but we have found this method allows
for the most fl exibility to developers, and keeps the template as part of the HTML. The template
then contains tokens that are replaced with the values from the handler. The HTML for the tem-
plate is listed in the following code snippet.

 <div id=”ItemResults”>

 <div id=”ItemTemplate” style=”display:none;”>

 #ID#: #NAME#

 </div>

 <div id=”DisplayedItems”></div>

 </div>

Compared to the earlier version of this fi le, you modifi ed the contents of the existing
ItemResults div to contain a template container, as well as a div with ID DisplayedItems. This
second div is what displays the results, rather than the outer div. The template div is styled to
“display: none;” as it will not be displayed to the user.

Creating JavaScript Using jQuery to Retrieve Children

Now you need to update the getTaxonomyItems method in the JavaScript to actually call the Web ser-
vice, and update the displayed items div. The update JavaScript is listed in the following code snippet.

//initialization of the Taxonomy links.

//We wrap it in the document ready so it only runs

//after the entire DOM has been loaded.

$ektron(document).ready(function() {

 if (“undefined” != typeof TaxonomyWebService) {

 //When the link is clicked, fire the

 //getTaxonomyItems handler.

c07.indd 181c07.indd 181 12/28/2010 1:55:25 PM12/28/2010 1:55:25 PM

182 x CHAPTER 7 THE HOMEPAGE

 $ektron(“a.taxonomyLink”).click(

 TaxonomyWebService.getTaxonomyItems

);

 }

});

//this will be our namespace for objects and functions

//created for the handler example.

if (“undefined” == typeof TaxonomyWebService) {

 var TaxonomyWebService = {

 getTaxonomyItems: function() {

 //this function will look inside the clicked link

 //to retrieve the id of the taxonomy item clicked.

 //It will then display the taxonomy id in the results div.

 var clickedAnchor = $ektron(this);

 //get the child span of the anchor-this contains the taxonomy id

 var taxonomyId = clickedAnchor.find(“span.taxonomyId”).text();

 //build the requestitem object

 var requestItem = { ‘TaxonomyID’: taxonomyId };

 //use the Ektron JSON library to serialize it

 //and build the complete object to send to the handler.

 var dataObject = { ‘Request’: Ektron.JSON.stringify(requestItem) };

 //use the jQuery ajax method to perform an ajax call to the handler.

 $ektron.ajax({

 url: ‘taxonomyexampleservice.ashx’,

 //this will cause jQuery to evaluate the return object as json

 dataType: ‘json’,

 type: ‘POST’, //the data should be sent as POST, not GET

 data: dataObject, //the ItemRequest object

 //the method to call when we get data back

 success: TaxonomyWebService.updateDisplay

 });

 },

 //the ajax method calls this when data is returned

 updateDisplay: function(data, textStatus, XMLHttpRequest) {

 //retrieve the template contents

 var template = $ektron(“div#ItemResults div#ItemTemplate”).html();

 //the string that will be built containing the html to display

 var results = “”;

 for (var i in data) {

 //perform string replacements for each token with the content

 //of the results

 var tmp = template;

 tmp = tmp.replace(/#ID#/g, data[i].ItemID);

 tmp = tmp.replace(/#QUICKLINK#/g, data[i].ItemQuicklink);

 tmp = tmp.replace(/#NAME#/g, data[i].ItemName);

 results += tmp;

 }

 //update the displayed items div with the constructed html

 $ektron(“div#ItemResults div#DisplayedItems”).html(results);

 }

 };

}

c07.indd 182c07.indd 182 12/28/2010 1:55:26 PM12/28/2010 1:55:26 PM

Rich Interaction Using jQuery, Smart Forms, and Handlers x 183

The changes in the JavaScript start with the addition of the AJAX call. You are setting the dataType
to JSON so the results are evaluated, rather than returned as a string. You are also passing the
dataObject as the POST data. The dataObject is comprised of a simple object you created, which
you used the Ektron JSON library to serialize. Remember that to use the Ektron JSON library, you
need to include the JSON fi le. The following code when placed in codebehind for this page does this.

Ektron.Cms.API.JS.RegisterJS(

 this, Ektron.Cms.API.JS.ManagedScript.EktronJsonJS);

The AJAX method also has a parameter called success which accepts a method. This method is set
to updateDisplay. The updateDisplay method handles the templating output. With these changes
your example is complete.

The Completed Code and Page

The complete code for the SimpleHandler.aspx fi le is shown in Listing 7-6.

LISTING 7-6: SimpleHandler.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”WebService.aspx.cs” Inherits=”WebService” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <asp:Repeater ID=”repeaterItemList” runat=”server”>

 <ItemTemplate>

 <%#

 DataBinder.Eval(Container.DataItem, “TaxonomyId”)

 %>

 <%#

 DataBinder.Eval(Container.DataItem, “TaxonomyName”)

 %>

 </ItemTemplate>

 </asp:Repeater>

 <div id=”ItemResults”>

 <div id=”ItemTemplate” style=”display:none;”>

 #ID#: #NAME#

 </div>

 <div id=”DisplayedItems”></div>

 </div>

 <script language=”javascript” type=”text/javascript”>

continues

c07.indd 183c07.indd 183 12/28/2010 1:55:26 PM12/28/2010 1:55:26 PM

184 x CHAPTER 7 THE HOMEPAGE

 //initialization of the Taxonomy links.

 //We wrap it in the document ready so it only runs

 //after the entire DOM has been loaded.

 $ektron(document).ready(function() {

 if (“undefined” != typeof TaxonomyWebService) {

 //When the link is clicked, fire the

 //getTaxonomyItems handler.

 $ektron(“a.taxonomyLink”).click(

 TaxonomyWebService.getTaxonomyItems

);

 }

 });

 //this will be our namespace for objects and functions

 //created for the handler example.

 if (“undefined” == typeof TaxonomyWebService) {

 var TaxonomyWebService = {

 getTaxonomyItems: function() {

 //this function will look inside the clicked link

 //to retrieve the id of the taxonomy item clicked.

 //It will then display the taxonomy id in the results div.

 var clickedAnchor = $ektron(this);

 //get the child span of the anchor-this contains the taxonomy id

 var taxonomyId = clickedAnchor.find(“span.taxonomyId”).text();

 //build the requestitem object

 var requestItem = { ‘TaxonomyID’: taxonomyId };

 //use the Ektron JSON library to serialize it, and build the complete

 // object to send to the handler.

 var dataObject = { ‘Request’: Ektron.JSON.stringify(requestItem) };

 //use the jQuery ajax method to perform an ajax call to the handler.

 $ektron.ajax({ url: ‘taxonomyexampleservice.ashx’,

 dataType: ‘json’, //this will cause jQuery

 //to evaluate the return object

 type: ‘POST’, //the data should be sent as POST, not GET

 data: dataObject, //the ItemRequest object

 success: TaxonomyWebService.updateDisplay

 //the method to call when

 //we get data back

 });

 },

 //the ajax method calls this when data is returned

 updateDisplay: function(data, textStatus, XMLHttpRequest) {

 //retrieve the template contents

 var template = $ektron(“div#ItemResults div#ItemTemplate”).html();

 //the string that will be built containing the html to display

 var results = “”;

 for (var i in data) {

 //perform string replacements for each token with the

 //content of the results

 var tmp = template;

LISTING 7-6 (continued)

c07.indd 184c07.indd 184 12/28/2010 1:55:26 PM12/28/2010 1:55:26 PM

Using Menus for Navigation x 185

 tmp = tmp.replace(/#ID#/g, data[i].ItemID);

 tmp = tmp.replace(/#QUICKLINK#/g, data[i].ItemQuicklink);

 tmp = tmp.replace(/#NAME#/g, data[i].ItemName);

 results += tmp;

 }

 //update the displayed items div with the constructed html

 $ektron(“div#ItemResults div#DisplayedItems”).html(results);

 }

 };

 }

 </script>

 </form>

</body>

</html>

Now visit http://localhost/OnTrek/simplehandler.aspx to see the com-
pleted page. As shown in Figure 7-7, the page fi rst lists a set of links that cor-
respond to the taxonomy nodes. When a user selects a link, the jQuery performs
an AJAX call to the TaxonomyExampleService.ashx, where the request is dese-
rialized and the child content is retrieved. The child content is then serialized and
returned to the jQuery where it is evaluated and templated before being displayed
as output.

USING MENUS FOR NAVIGATION

You may have heard the phrase “content is king.” The idea behind this is that the importance of
quality content on a website is second to none. The better the information, the more likely you will
have happy site visitors and growing traffi c. But if content is king, then navigation is queen, because
without navigational aids such as menus to direct site visitors to the content they’re looking for, the
content might as well not exist. Navigational structures such as menus make content accessible, and
are therefore just as important as the content itself. It’s no exaggeration to say that one of the most
fundamentally important tasks for a developer is creating effective website navigation. Failing to
create a well designed navigation will result in an overall decrease in your website’s visitors, sales,
conversions, and other metrics that defi ne your website’s success.

In the Implementation section, you’ll learn to create the main navigation for the OnTrek website. This
section focuses exclusively on the Ektron Menus feature and discusses strategies and best practices
for using Ektron Menus. After reading this section, you’ll understand what it takes to create a well
designed navigation structure. You’ll go through the process of implementing a globally accessible
menu on the OnTrek website using the Ektron Flex Menu Server Control.

Ektron Menu Basics

Let’s start by covering the basics of Ektron menus. The term menu in this section refers specifi cally
to the type of navigation structure that is created and managed using Ektron’s Menu feature.
Although you can use Ektron’s other navigation aids, such as collections, to create single-level
menu-like structures, this section covers only Ektron Menus.

FIGURE 7-7

c07.indd 185c07.indd 185 12/28/2010 1:55:26 PM12/28/2010 1:55:26 PM

186 x CHAPTER 7 THE HOMEPAGE

At a high level, creating a menu in Ektron is a two-phase process:

 ‰ The menu hierarchy is created by content managers in the Workarea shown in Figure 7-8

FIGURE 7-8

 ‰ It is then displayed on the site by developers using a menu server control.

Once the menu is available through the website, further management of the menu (adding, updating,
and removing menu items) happens in one of two ways. Since the server controls provides authen-
ticated users with the GUI needed to do this, as shown in Figure 7-9, management can be done
through the website itself or through the Workarea.

FIGURE 7-9

To manage and create menu structures, CMS users need to be part of either the
Administrators group (a CMS user belonging to the Collection and Menu Admin
role) or be granted permissions to the collections on the root folder.

c07.indd 186c07.indd 186 12/28/2010 1:55:26 PM12/28/2010 1:55:26 PM

Using Menus for Navigation x 187

Menus contain links to managed content items, library assets, external hyperlinks, or other menus
to create nested submenus. Because menus are language aware, you can create a language specifi c
edition of any menu in each supported language. The main menu object itself has a number of prop-
erties that are defi ned through the menu creation process, such as a title, description, and an image
link that controls the icon that appears on the Web page next to, or in place of, the menu item text.

To display a menu on the Web page, developers use one of the two Ektron Menu Server Controls:

 ‰ The Flex Menu Server Control

 ‰ The CMS Menu Server Control

The Flex Menu is extremely feature rich, has more confi guration options and server control proper-
ties, and is therefore a bit more complex than its counterpart. The CMS Menu, on the other hand,
has a minimalist feature set by design, and is less complex to set up and confi gure. Each menu has
its pros and cons and which you choose should be determined by your project’s requirements. Here
are some things to keep in mind when choosing between the Flex Menu and the CMS Menu.

Using the Flex Menu

The Flex Menu’s most prominent feature is its ability to intelligently highlight submenu items, based
on the page that is being visited, when the page is loaded. For example, if a site visitor navigates
directly to a website’s “product page,” the Flex Menu can automatically expand and highlight the
appropriate submenu item. This is an extremely valuable feature — consider the annoyance site visitors
often experience while navigating through a website using a standard hierarchical left-hand menu,
only to have it collapse with each click and page refresh. Without auto-expanding menus, the site
visitors have less indication of where they are in relation to the rest of the site and may miss oppor-
tunities to discover related information.

All the confi guration information that determines which menu item to select is defi ned in the
Workarea and executed by the server control, and therefore requires no custom coding. The server
control derives which item to select based on a set of conditions that take into account both the
menu’s confi guration options defi ned during the menu creation process and the data available at the
page runtime, such as the page being visited and the ID of the content item displayed. The “Working
with Menus” chapter of the Ektron Reference Manual lists the complete set of these rules; there
are nine in all. It’s a good idea to read through the complete list available in the Reference Manual
before working with the Flex Menu, but the fi rst two in the list are included here to give an under-
standing of what the rules look like.

1. The Flex Menu looks in the query string for parameters that indicate if a user has clicked on
a menu item. If it fi nds the item, it marks all ancestor menus as selected and processing stops.

2. The Flex Menu looks in the query string to see if a query string parameter defi ning a Content
ID or Form ID is present, and if so, checks to see if it matches an item in the menu. If a
match is found, the item is selected and processing stops.

This type of processing continues through all of the nine rules listed in the Reference Manual. If
a particular rule doesn’t fi nd a match, the processing continues to the next rule, otherwise it stops
processing. Once all rules are executed, if no matches are found, the menu renders collapsed with no
menu items selected. The processing rules are fi xed and cannot be changed. However, the item that’s

c07.indd 187c07.indd 187 12/28/2010 1:55:27 PM12/28/2010 1:55:27 PM

188 x CHAPTER 7 THE HOMEPAGE

selected is determined by your specifi c menu’s confi guration. The Flex Menu Server Control has a
debug mode that logs information to help developers understand why the Flex Menu made a par-
ticular selection. The following steps describe the process of enabling this logging feature.

1. Open the website’s web.confi g in a text editor.

2. In the system.diagnostics section, locate the setting for the LogLevel, and set it to verbose by
using the value “4”, that is, <setting name=”LogLevel” value=”4”/>.

3. The Flex Menu Server Control has a property called LogInfo that must also be set to True.
This value is False by default. See Table 7-1 for an abbreviated list of Flex Menu Server
Control properties. For a complete list, refer to the Flex Menu Server Control section of the
Ektron Reference Manual.

4. Refresh the page and view the recent events in the system’s event viewer.

TABLE 7-1: Flex Menu Server Control Properties

PROPERTY VALUE DATA TYPE

AutoCollapseBranches When set to true, all open submenus close once a new

submenu is expanded. When false, all open submenus

remain open as new submenus are expanded.

Boolean

CacheInterval Specifi es the amount of time in seconds that the

menu’s data is cached by the server control.

Double

DefaultMenuID The ID of the menu to display. Long

DisplayXslt The path to an XSLT fi le for rendering the menu. String

EnableMouseOverPopup When set to true, submenus expand once the cursor

moves over them. When false, submenus appear only

when clicked.

Boolean

EnableSmartOpen When set to true, submenus will open automatically

according to the menu confi guration defi ned in the

Workarea. When false, submenus do not automatically

expand.

Boolean

IncludeJS When set to true, the default JavaScript is loaded.

When false, it is not. You may want to set this to false if

you’re using a custom XSLT.

Boolean

SuppressAddEdit When set to False, additional Add and Edit menu items

are displayed and can be used from the site to further

manage the menu. When set to True, the Add and Edit

menu items are suppressed..

Boolean

The last thing to cover on the Flex Menu is controlling its presentation. The recommended
method for styling the Flex Menu is to use CSS. There are a number of samples available in the

c07.indd 188c07.indd 188 12/28/2010 1:55:27 PM12/28/2010 1:55:27 PM

Using Menus for Navigation x 189

CMS400Developer starter site (~/CMS400Developer/Developer/Menu/FlexMenu/) showing
different menu styles achieved by changing exclusively the CSS, including rendering the Flex
Menu horizontally (as used in a header navigation menu) and vertically (as used on a left-hand
navigation menu).

Modifying the markup produced by the Flex Menu Server Control is achieved through modifying
an XSLT fi le. Keep in mind that the default JavaScript produced by this control expects its HTML
markup to conform to a particular schema. So if you decide to modify the markup through the
XSLT, you’ll also want to write your own JavaScript for manipulating it. This also requires an
understanding of the XML structure produced by the Flex Menu Server Control, which contains
attributes noting things such as a particular item being selected. This approach is demonstrated as
you implement OnTrek’s global navigation menus.

Using the CMS Menu

There is much less to say about the second of the two menu server controls since the CMS Menu
Server Control does not try to solve the problem of auto-expanding menu items, and as such, is
much more simplistic in its implementation. The CMS Menu renders the menu structure into the
page and provides the markup, CSS, and JavaScript for default click event handling. If you don’t
need the menu to open itself, this is the menu to use. This control also allows you to modify its
markup by modifying its default XSLT. However, in this case, the XML is simplifi ed since it does
not contain the same markup elements to denote when a menu item is selected. The benefi t of using
this control is that there is little overhead since it does not auto-expand menus. The obvious draw-
back of using this control is that your site visitors need to drill back into the menu each time the
page loads, or you will need to write your own expansion logic.

There are three CMS Menu Server Control samples included in the CMS400Developer Menu sec-
tion. Two of them include JavaScript for their demos: One is the local fi le called CSSMenu.js, and the
other is the Workarea fi le ~/Workarea/java/cmsmenuapi.js. Both of these fi les are short and only a few
JavaScript functions. The third sample (menu.aspx) does not include any JavaScript and does not open
or close; it renders fully open.

You may have seen or used the DHTML Menu Server Control before. This is a
legacy menu that is still supported for upgrades and backwards-compatibility,
but it should otherwise not be used. If you’re using the DHTML Menu Server
Control and have the opportunity to revisit old code, it’s best to upgrade to
either the CMS Menu or the Flex Menu. The Smart Menu Server Control, which
was available in earlier versions of Ektron, has also been deprecated. You should
not use the DHTML Menu or the Smart Menu, and instead, use the CMS Menu
or the Flex Menu.

Understanding Menu Confi guration Options

Now that you understand the basics of how to create a menu and how to render the menu on the
site using either one of two menu server controls, let’s go into more depth on the menu confi guration
options that infl uence which menu item is automatically selected when using the Flex Menu Server

c07.indd 189c07.indd 189 12/28/2010 1:55:27 PM12/28/2010 1:55:27 PM

190 x CHAPTER 7 THE HOMEPAGE

Control. Since the CMS Menu does not provide the auto-expanding capabilities of the Flex Menu
Server Control, the Folder and Template Associations described next are ignored by the CMS Menu.
You should know which type of menu you plan on using on your website prior to creating the struc-
ture in the Workarea, since one requires more confi guration information than the other.

As discussed earlier, a menu can contain links to content items, library assets, external hyperlinks,
or submenus. The Add Menu Screen in Figure 7-10 shows the fi elds available when choosing to add
a new menu (or submenu).

FIGURE 7-10

The fi eld values are described in the Table 7-2. The fi nal two fi elds, Folder Associations and
Template Associations, are described outside of the table.

TABLE 7-2: Fields on the Add/Edit Menu Screen

FIELD DESCRIPTION

Title The label that displays in the menu on the Web page.

Image Link The image that appears next to, or in place of, the title. This fi eld is optional.

URL Link The URL that defi nes the hyperlink for the Title and Image Link. This fi eld is optional.

Template

Link

This fi eld applies to content only and defi nes the template used for all content on

this menu. This fi eld is optional. Not specifying a Template Link means the content’s

QuickLink is used.

c07.indd 190c07.indd 190 12/28/2010 1:55:28 PM12/28/2010 1:55:28 PM

Using Menus for Navigation x 191

FIELD DESCRIPTION

Description The description of the menu used mostly in the Workarea.

Folder

Associations

See the following section.

Template

Associations

See the following section.

The Folder Associations fi eld and The Template Associations fi eld are applicable only to the Flex
Menu and provide it with the information needed by the Flex Menu to control which items are
selected by default. Folder associations are used to instruct the menu to automatically expand when
a user visits a page containing a content item that lives in the specifi ed folders. For example, if you
associate the menu to the /MainSite/Pages/Products folder, and a user navigates to any content
item that resides in this folder, the Flex Menu automatically displays the items on the associated
submenu. The template associations are used in a similar way. They allow you to instruct the menu
to automatically expand when a user visits a page that uses the specifi ed template. For example, sup-
pose you have a template called ProductDetails.aspx that provides a detailed description for a given
product, and you associate this template to the Products Menu. Any time a visitor travels to the
Product Details template, the Flex Menu automatically displays the Products menu.

Designing your menu structure up front will help avoid a couple of painful pitfalls when working
with the Flex Menu. These include creating nested associations that result in unexpected content from
expanding, or creating impossible conditions that prevent any menus from expanding. If you run into
such a situation, refer back to the steps described in earlier sections to enable its verbose logging.

Implementing the Global Navigation Menu

There are two ways to create the menu structure in the Workarea. The fi rst is through the
Workarea’s Content Í Menu tab, and the second is through the New Í Menu option located in the
content folder tree. Creating a menu through the content folder tree has the added benefi t of being
able to use folder level permissions to control who has access to manage the menus. If you do not
need such granular control, use the Workarea’s Content Í Menu tab UI, which places the menus in
the root folder. This section shows the Content Í Menu option.

Creating a Subset of the Our Company Menu

The OnTrek website uses a persistent global navigation that displays in the header of each page on
the site. The following steps walk through the process of creating a subset of the “Our Company”
menu shown in Figure 7-11.

To create a new menu item via the Menus tab, follow these steps.

1. From the Workarea Í Menu tab, right-click the Menus item and then click Add Menu.

2. In the Add Menu screen, shown in Figure 7-10, provide the title: OnTrek Main Navigation
and leave all other fi elds blank.

c07.indd 191c07.indd 191 12/28/2010 1:55:28 PM12/28/2010 1:55:28 PM

192 x CHAPTER 7 THE HOMEPAGE

FIGURE 7-11

3. To add items to this menu, click the Add button , or alternatively, hover the cursor over
the menu in the left panel, right-click the mouse, and click Add Items. The Add New Item
screen displays a list of items that you can add to the menu.

4. Click the radio button next to Submenu and click Next.

5. In the Add Menu Item screen, provide the title Our Company and leave the other fi elds blank.

6. To add items to the “Our Company” submenu, click the Add button.

7. Click the radio button next to Content Item and click Next.

8. From the Add New Item “Our Company” screen, select the Contact Information item, then
click the Save button.

If you’ve installed the OnTrek Starter Site, the complete navigation structure will already exist in the
database.

Placing a Flex Menu in the Master Page

The global navigation of the OnTrek website is located in the header section of each page on the
site. You will now use a single Flex Menu rendered horizontally and placed in the website’s master
page. This implementation will use a custom XSLT to modify the markup, and also use the jQuery
Superfi sh plug-in to provide its styling and subtle animations.

1. From Visual Studio, open ~/templates/masterpages/main.aspx.

c07.indd 192c07.indd 192 12/28/2010 1:55:28 PM12/28/2010 1:55:28 PM

Using Menus for Navigation x 193

2. Place the Flex Menu Server Control onto the page by dragging and dropping from the Visual
Studio Toolbox into the header region of the template, just after the opening BODY tag. Use
the following Flex Menu parameter values to guide your implementation.

 <CMS:FlexMenu

 ID=”uxMenu”

 runat=”server”

 DefaultMenuID=”6”

 DisplayXslt=”~/components/usercontrols/menu/lightweight.xsl”

 WrapTag=”div”

 AutoCollapseBranches=”True”

 StartCollapsed=”True”

 EnableMouseOverPopUp=”False”

 EnableSmartOpen=”False”

 StartLevel=”1”

 MenuDepth=”0”

 EnableAjax=”False”

 MasterControlId=””

 CacheInterval=”600”

 IncludeJS=”false” />

In this snippet, you can see that the DefaultMenuID is 6, which points to the ID
of the root of the OnTrek menu created in the Workarea. Also note how the Flex
Menu specifi es its custom XSLT through the DisplayXslt property and then
suppresses the output of the default JavaScript by setting the IncludeJS attri-
bute to False. Custom JavaScript is needed anytime the Flex Menu’s HTML is
customized, as mentioned earlier, since the default JavaScript looks for HTML
that conforms to a particular schema.

Internally the Flex Menu Server Control receives the menu structure from the business tier
in the following XML format. The custom XSLT is used by the Flex Menu to transform this
XML into HTML, as shown in the following code snippet:

<MenuDataResult>

 <Info>

 <ControlMenuId>6</ControlMenuId>

 <CssFileName></CssFileName>

 <XslFileName>/OnTrek/components/usercontrols/menu/lightweight.xsl</

XslFileName>

 <WrappingClassName></WrappingClassName>

 <ControlId>uxMenu</ControlId>

 <ControlIdHash>e6aab43b8</ControlIdHash>

 <MasterControlIdHash></MasterControlIdHash>

 <GroupId></GroupId>

 <AppPath>/OnTrek/WorkArea/</AppPath>

 <SitePath>/OnTrek/</SitePath>

 <ButtonNoScriptLink>http://ws10247/OnTrek/default.aspx</

ButtonNoScriptLink>

 <AjaxEnabled>false</AjaxEnabled>

 <MenuFragment>false</MenuFragment>

c07.indd 193c07.indd 193 12/28/2010 1:55:28 PM12/28/2010 1:55:28 PM

194 x CHAPTER 7 THE HOMEPAGE

 <AutoCollapseBranches>true</AutoCollapseBranches>

 <StartCollapsed>true</StartCollapsed>

 <EnableSmartOpen>false</EnableSmartOpen>

 <EnableMouseOverPopUp>false</EnableMouseOverPopUp>

 <IsSlaveControl>false</IsSlaveControl>

 <StartLevel>1</StartLevel>

 <MenuDepth>0</MenuDepth>

 <SelectLevel>-1</SelectLevel>

 <SelectMenuIdString></SelectMenuIdString>

 <SelectItemIdString></SelectItemIdString>

 <SlaveStartLevelIds></SlaveStartLevelIds>

 <DefaultMenuIdString></DefaultMenuIdString>

 <SWRevision>8.0.0.073</SWRevision>

 <CacheInterval>600</CacheInterval>

 <UseCssHardLink>true</UseCssHardLink>

 <UseJavascriptHardLink>false</UseJavascriptHardLink>

 </Info>

 <Item>

 <Item>

 <ItemId>7</ItemId>

 <ItemType>Submenu</ItemType>

 <ItemSubType>0</ItemSubType>

 <ItemTitle>Products</ItemTitle>

 <ItemDescription></ItemDescription>

 <ItemImage></ItemImage>

 <ItemImageOverride>false</ItemImageOverride>

 <ItemSelected>false</ItemSelected>

 <ItemLevel>1</ItemLevel>

 <ItemIdString>e6aab43b8_6_7_7</ItemIdString>

 <Menu>

 <MenuId>7</MenuId>

 <Title>Products</Title>

 <Template></Template>

 <Type>content</Type>

 <Link></Link>

 <ParentId>6</ParentId>

 <AncestorId>6</AncestorId>

 <FolderId>0</FolderId>

 <Description></Description>

 <Image></Image>

 <ImageOverride>false</ImageOverride>

 <MenuIdString>e6aab43b8_6_7</MenuIdString>

 <MenuSelected>false</MenuSelected>

 <MenuLevel>1</MenuLevel>

 <ChildMenuSelected>false</ChildMenuSelected>

 <ChildMenuSelRelDepth>0</ChildMenuSelRelDepth>

3. Copy the lightweight.xsl fi le from your samples directory into the ~/compontents/
usercontrols/menu/ directory.

4. Open this XSLT and see how it uses various templates for matching and transforming the XML.

c07.indd 194c07.indd 194 12/28/2010 1:55:29 PM12/28/2010 1:55:29 PM

Using Menus for Navigation x 195

Under the Hood

In the CMS400Developer starter site, there are several fully functioning code samples showing
various ways to use the Flex Menu and the CMS Menu (~/CMS400Developer/Developer/Menu/).
These samples are shown in Tables 7-3 and 7-4.

TABLE 7-3: Example Customizations of the CMS Menu

SAMPLE DESCRIPTION

Cms:Menu control Demonstrates displaying the markup using the default XSLT, which

creates an unordered list using UL/LI tags.

Cms:Menu control Tree Uses CSS to style the default Tree-XSLT as a navigable tree, without

the use of JavaScript.

Cms:Menu control Tree 2 Displays the markup using the internal Unordered-List-XSLT

together with styling from CSSMenu.css and client-side control from

CSSMenu.js.

Cms:Menu control as XML This demonstrates how to display the control’s XML, using the internal

Unordered-List-XSLT (default) and a literal control; the codebehind

sets the menu to invisible and copies the controls XML to the literal

control for viewing.

TABLE 7-4: Example Customizations of the Flex Menu

SAMPLE DESCRIPTION

Lightweight Menu Largely follows the implementation steps of this chapter, though it may be

useful as a starting point for future projects, as it uses a minimal yet func-

tional JavaScript and XSLT fi les.

Expanding Demonstrates how to use CSS exclusively to render the Flex Menu as a ver-

tically oriented accordion menu.

Horizontal Shows how to confi gure the Flex Menu to render horizontally for use in a

header navigation.

508 Compliance This sample shows how to render the Flex Menu in such a way that it is

Section 508 compliant to ensure visually impaired site visitors can access

and navigate the menu structure.

In addition to these samples, there is another called the Master Slave Menu sample that demon-
strates a specifi c confi guration of the Flex Menu commonly implemented. The Master Slave Flex

c07.indd 195c07.indd 195 12/28/2010 1:55:29 PM12/28/2010 1:55:29 PM

196 x CHAPTER 7 THE HOMEPAGE

Menu is a two-part menu system that uses two Flex Menus together on a single page. Before getting
into the code sample, let’s clarify its purpose and outline its approach.

The fi rst of the two menus is the Master located in the page header, rendered just like the horizon-
tally oriented navigation menu you created for the OnTrek website. The second of the two menus is
located in the left-hand navigation area of the page, and renders vertically like an accordion menu,
as shown in the CMS400Developer starter site in Figure 7-12.

FIGURE 7-12

The Master menu renders the entire fi rst level of the menu horizontally while the Slave menu renders
the fi rst level and its children vertically. The Slave is called such because it follows the lead of the
Master and automatically expands based on the item selected from the Master menu. So for exam-
ple, if you click Departments Í Engineering Í Infrastructure from the horizontal navigation menu,
the left-hand navigation menu automatically expands out to highlight this location in the menu
structure. This is an extremely powerful way to give site visitors a solid sense of their current loca-
tion on the site. Historically, achieving this type of functionality with the Flex Menu was somewhat
complex. But with the Version 8 release, this process has been simplifi ed noticeably by leveraging
an approach using ASP.NET Master Pages and a new Flex Menu Server Control property called the
StartMenuId.

The ASP.NET Master Page is basic and it is simply used to render the Master Flex Menu horizon-
tally. Use the following code snippet.

c07.indd 196c07.indd 196 12/28/2010 1:55:29 PM12/28/2010 1:55:29 PM

Using Search for Navigation x 197

 <cms:FlexMenu

 ID=”TopMenu”

 runat=”server”

 DefaultMenuID=”89”

 EnableMouseOverPopUp=”True”

 EnableSmartOpen=”False”

 Stylesheet=”top_horizontal.css”

 DisplayXslt=”Demo.xsl”

 CacheInterval=”0”

 />

There are two tricks to getting the Slave Flex Menu to expand automatically.

 ‰ The brute force approach: This uses a separate ASP.NET template for each second level node
in the navigation menu and manually sets the StartMenuId parameter to the ID of the sub-
menu item to expand. Note that this StartMenuId parameter does not need to be the root
of the menu. Then, you confi gure your menu in the Workarea to expand (using the Template
Associations described earlier) using a URL that references each of these ASP.NET templates.
Use the following code snippet.

 <cms:FlexMenu

 ID=”SideMenu”

 runat=”server”

 DefaultMenuID=”89”

 StartMenuId=”91”

 EnableSmartOpen=”True”

 Stylesheet=”side_expand.css”

 DisplayXslt=”Demo.xsl”

 CacheInterval=”0”

 />

 ‰ Some codebehind required: This uses a single ASP.NET template and dynamically sets the
StartMenuId in programmatically based on rules that you have to defi ne and manage in
your codebehind.

The CMS400Developer sample has a complete working sample for you to analyze and use as a
starting point for your own Master Slave Flex Menu implementation.

USING SEARCH FOR NAVIGATION

Search is an important part of your website’s navigation and fi lls a specifi c void not handled by
the other navigation aids previously discussed. The importance of search appears to be well under-
stood, given that almost all companies report search as one of the primary means of navigation on
their sites. Unfortunately, as the study “Enriching Search: Effi ciency Without Spending,” by Jupiter
Research found out, almost 70 percent of all visitors using site search report that their searches
yielded useless information.

Deploying a successful site search requires more than simply making the Search textbox avail-
able on a Web page. This is where search-strategy planning comes in. Developing a search strategy
requires you to consider the information needs of your site visitors and the information architecture
of the website, and to understand what information is not readily available through the website’s

c07.indd 197c07.indd 197 12/28/2010 1:55:29 PM12/28/2010 1:55:29 PM

198 x CHAPTER 7 THE HOMEPAGE

navigation structures. A successful search strategy takes these factors into account, uses search
analytics to monitor its effectiveness, and tweaks the results in response regularly. The Ektron
Framework provides technology to complement this process. This section discusses how a site search
strategy can be used to ensure that your site search is effectively providing site visitors with the
information they want.

Starting with Ektron version 8.5, Ektron’s search technology leverages the Microsoft search stack.
The 8.5 release featured a major architectural overhaul of search, replacing its previous search
implementation which relied on Microsoft Index Server and redesigned it to leverage Microsoft’s
state of the art search technology.

Defi ning Your SiteSearch Strategy

Making sure that all information is accessible through a search interface is the most obvious
and critical part of any search strategy. Ektron’s core search engine satisfi es this requirement by
providing full text search for content such as HTML, Microsoft Offi ce Documents, Smart Forms,
and Shockwave Flash fi les. When content is published into the system, it is indexed and becomes
available to site visitors through widgets, server controls, and any other code using Ektron’s search
APIs. All types of managed content, including those previously listed and community generated
content, such as blog posts and discussion board topics, are indexed by default, as are searchable
metadata values if any have been defi ned (see the metadata section in Chapter 5). If there are cases
where you want to exclude particular content items from the search result, you have the ability to
remove them by selecting the Content Searchable checkbox shown in Figure 7-13.

FIGURE 7-13

c07.indd 198c07.indd 198 12/28/2010 1:55:29 PM12/28/2010 1:55:29 PM

Using Search for Navigation x 199

In addition to full text searches, Ektron also offers the ability to perform structured searches through
the XML fi elds stored in Smart Form Designs (see the Smart Forms section in Chapter 6), taxonomy
categories, as well as through searchable metadata defi nitions associated to content. Structured
search is useful when you want to retrieve and fi lter data by a specifi c fi eld, such as ContentType or
ContentID. Combining both structured and full-text search is extremely powerful and lets you formu-
late queries equivalent to “get only PDF documents that contain the text OnTrek.”

Including Folders in a Search Index Using Integrated Search

Continuing with the thread of making all information accessible through search is using Ektron’s
Integrated Search to include content from an external repository. Integrated Search is a natural fi t
when you have directories fi lled with fi les such as unmanaged HTML or Word documents in the
server’s fi le system (or accessible through a virtual path) and want them included in the search index.

To include a folder in the search index, follow these steps:

1. Click Workarea’s Settings Í Confi guration Í Integrated Search.

2. Click the Add Icon . This begins the process and allows you to specify the directories and
fi le types to include or exclude from the search results.

Searching with Social Networking

Ektron’s social networking functionality demonstrates how Ektron Search can be used to search
for people, colleagues, and community groups. The CommunitySearch Server Control allows you
to fi nd users by name and customize user properties, such as what department you work in, or your
favorite type of food. There are also APIs available for retrieving this type of information about
users and groups; these are discussed in more detail in Chapter 10 along with the rest of the com-
munity framework.

Tracking Searches with Ektron’s Search Phrase Report

Knowing what people are searching for and understanding whether their searches are successful are
essential parts of establishing an effective search strategy. The fi rst part of this is straightforward.
Start by looking at what search phrases people are using to fi nd information. Ektron’s Search Phrase
Report displays a unique list of all the terms entered by site visitors, along with a count representing
the number of times a term was used in a search, sorted in descending order with the most popular
search terms at the top of the list.

To fi nd this report, do the following:

1. This report is found in the Workarea by going to Reports Í Contents.

2. Click Search Phrase Report. You can see the form used to generate the report in Figure 7-14.

3. To make the most of the data, you need to fi lter the results. You can do this by specifying
a date range, a particular language, the minimum number of occurrences of the term, and
whether or not you want to include terms from the Workarea or the website, or both.

Determining whether a particular search was successful using the Search Phrase Report is not
always easy. The crux of the issue is that it’s close to impossible to determine whether a search is

c07.indd 199c07.indd 199 12/28/2010 1:55:30 PM12/28/2010 1:55:30 PM

200 x CHAPTER 7 THE HOMEPAGE

successful simply by identifying the search term and determining whether the searcher clicked on the
result. This is because the search term alone does not give an accurate picture of a searcher’s intent.
Even still, there are a number of warning fl ags to look out for in this report that can indicate poten-
tial problems. These are discussed in detail in the following sections.

FIGURE 7-14

A Search Phrase Report That Lacks Suffi cient Search Terms

This could indicate an obscured or improperly positioning Search textbox. Do people recognize that
search is available? You will most certainly have unhappy visitors if they don’t recognize that search
is a part of your navigation strategy. Offer search as part of your global navigation. Either put a
Search box or a link to one on the global navigation header on every page of your site.

Ambiguous Queries

These are searches resulting in two sets of results, each with completely different meanings. For
example, a search for the term “Saturn” might indicate a search for information on the planet,
but might also be a term used by someone researching a car. The WebSearch Server Control has a
property called ShowCategories that, when set to True, displays a navigable category tree when a
search term is entered that exists in a taxonomy. To return to the Saturn example, assuming your
content was categorized appropriately in a taxonomy and the ShowCategories property was set to
True, the “Filter by Category” link would appear and display choices allowing the visitor to fi lter
by Automobiles or Planets. If no content in the search results are assigned categories, the “Filter by
Category” link would not appear. This feature provides a nice way to disambiguate queries as well
as help site visitors fi lter search results when a site search returns too many results.

c07.indd 200c07.indd 200 12/28/2010 1:55:30 PM12/28/2010 1:55:30 PM

Using Search for Navigation x 201

Searches That Yield No Search Results

When this situation does occur, you have the opportunity to do a few things:

 ‰ Adding a collection: Because a page with no results is typically a dead end, it’s a good idea
to give the site visitor some further search instruction or a list of potentially useful links. You
might use a collection here to provide editorial control over which links are available.

 ‰ Logging the event: You might want to consider logging this event in some way. The Search
Phrase Report currently does not provide a report detailing search terms that yield no results,
but this is forthcoming. In the meantime, this is a situation that is easily detected and logged.
On the search results page, evaluate the number of search results available. If no results are
returned, you can use standard .NET logging to capture the search term. Evaluate this infor-
mation to determine why no results are returned. Is content missing? Are phrases commonly
misspelled?

Misspellings

One common way to deal with common misspellings is to use Ektron’s synonym search feature.
When you create a set of synonyms, Ektron searches for all terms in the set when a site visitor
searches for any of the terms. You can create a synonym set to contain each of the misspellings
of the name, product or object, so that users who searched for those misspellings receive results
containing the correct spelling. For example, assume that OnTrek has a common misspelling of
OnTerk (notice the transposed ‘e’ and ‘r’), which yields no results. Creating a synonym set con-
taining the set {OnTerk, OnTrek} yields the same results, even when someone searched using an
incorrect spelling. In addition to handling common misspellings, synonym search is also often
used to:

 ‰ Expand acronyms: For example, a synonym set could contain the terms {Web CMS, Web
Content Management, WCMS}.

 ‰ Create common word stems: Unless wildcards are used explicitly, search does not perform
stemming or pluralize nouns. For example, if you think a site visitor might enter {run, running,
runs} enter that set as a synonym set.

The following steps walk through the process of creating a synonym set for the misspellings,
OnTech and OnTeck.

You must be a member of the Administrators Group or assigned the Search
Admin role to create, edit, and delete Synonym Sets.

1. In the Workarea, go to Settings, Confi guration Í Search Í Synonym Sets.

2. Click the Add Icon .

3. Give the synonym set a meaningful name. This is only used for identifying the search set in
the Workarea.

4. Add the terms OnTech Plus and OnTeck Plus.

c07.indd 201c07.indd 201 12/28/2010 1:55:30 PM12/28/2010 1:55:30 PM

202 x CHAPTER 7 THE HOMEPAGE

5. Click the Check for Duplicates button. This compares terms in this set against the other
synonym sets in this language.

6. Click Save .

An additional way to deal with misspellings is to use the Did You Mean Search Widget available
through the Ektron Developer Exchange site. According to the developer of the widget, this compo-
nent “provides a list of terms similar to the terms a visitor performs a search on. Additionally, CMS
Administrators can promote items to Suggested Results or set a content item as unsearchable from
within the display of items returned. The Did-You-Mean terms are generated from your website
content, ensuring only relevant terms are returned. Each term in this result set has a corresponding
number (displayed in parentheses), which represents the number of items associated with that term.”
This widget is available for free on the Ektron Exchange at http://dev.ektron.com/exchange/
codeDownload.aspx?id=30638.

Overly General Search Terms

When site visitors use overly general search terms, they do not produce meaningful search results.
Ektron’s Suggested Results feature can be used here to force certain results to the top of the search
results for specifi c queries.

You add a suggested result through the Workarea. Once a suggested result has been created, it is
available immediately through all search APIs and server controls.

You must be a member of the Administrators Group or assigned the Search-Admin
role to create, edit, and delete Suggested Results.

1 From the Ektron CMS400.NET Workarea, go to Settings Í Confi guration Í Search Í
Suggested Results.

2. From the language dropdown, select a language for the suggested results.

3. Click the Add button .

4. Provide a title, link, and text, or browse to select an existing content item.

5. Click Save .

Popular Search Terms

You need to look for the presence of popular search terms that exist prominently in your primary
navigation. This is because a high correlation between the Phrase Report and your primary navi-
gation may indicate a possible fl aw in the navigation’s organization and design. Use this informa-
tion as a call to action to perform another round of quick informal task-based usability testing
on your menu navigation. Search should not be used as a crutch for poorly designed information
architecture.

c07.indd 202c07.indd 202 12/28/2010 1:55:30 PM12/28/2010 1:55:30 PM

Using Search for Navigation x 203

Adding Search to the Global Navigation

The OnTrek website follows the best practice recommendation of making search globally acces-
sible by placing a search textbox in the header on each page of the website. The implementation
has two parts:

 ‰ The search textbox placed on the website’s master page

 ‰ The page that handles the form submit, performs the search, and displays the results

The SiteSearch Server Controls are used to display the search results and the following steps show
how to confi gure SiteSearch Server Controls to handle submitting queries to another page. To see
how this is implemented on the OnTrek website, start by looking at the global header code:

1. Open ~\components\userControls\header\header.ascx.

2. Navigate to the bottom of the fi le, you’ll fi nd the following snippet:

 <asp:TextBox ID=”inputText” runat=”server”></asp:TextBox>

Insert IconMargin [FILENAME]

 <asp:LinkButton ID=”search” runat=”server” Text=”Search”

onclick=”search_Click” />

code snippet header.ascx

In this snippet you can see the code that defi nes the look and feel of the Search textbox, which is
very basic but which you can customize in any way you need. To force the search results to display
on a separate page, the onclick property is used to reference the search_Click event handler,
whose implementation can be seen in the following snippet:

 protected void search_Click(object sender, EventArgs e)

 {

 Response.Redirect(“~/SearchResults.aspx?q=” +

 Server.UrlPathEncode(inputText.Text));

 }

The SearchResults.aspx page then has the sole job of rendering search results for the search query
that is passed to in the query string. The complete source code for the SearchResults.aspx.cs code-
behind fi le is shown in code Listing 7-7.

LISTING 7-7: ~/SearchResults.aspx.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using Ektron.Cms.Controls;

public partial class SearchResults : System.Web.UI.Page

continues

c07.indd 203c07.indd 203 12/28/2010 1:55:31 PM12/28/2010 1:55:31 PM

204 x CHAPTER 7 THE HOMEPAGE

{

 protected void Page_PreRender(object sender, EventArgs e)

 {

 string searchText = Request.QueryString[“q”];

 TextBox inputText = searchInput.FindControl(“inputText”) as TextBox;

 inputText.Text = searchText;

 searchDataSource.QueryText = searchText;

 searchResults.DataBind();

 }

 protected void search_Click(object sender, EventArgs e)

 {

 LinkButton searchButton = sender as LinkButton;

 TextBox inputText =

 searchButton.NamingContainer.FindControl(“inputText”) as TextBox;

 searchInput.BasicQuery(true, inputText.Text);

 }

}

Reviewing the code in Listing 7-7 reveals that the SearchResults.aspx has two server controls
on it, one defi ning a datasource, and the other displaying the results. The relevant aspects of the
SearchResults.aspx template are shown in the following snippet, showing how these server controls
are used.

 <CMS:SiteSearchInput

 ID=”searchInput”

 DataSourceID=”searchDataSource”

 runat=”server”>

 <ItemTemplate>

 <asp:TextBox

 ID=”inputText”

 runat=”server”>

 </asp:TextBox>

 <asp:LinkButton

 ID=”search”

 runat=”server”

 OnClick=”search_Click”

 Text=”Search”

 ></asp:LinkButton>

 </ItemTemplate>

 </CMS:SiteSearchInput>

 <CMS:SiteSearchDataSource

 ID=”searchDataSource”

 runat=”server”></CMS:SiteSearchDataSource>

 <CMS:SiteSearchResults

 ID=”searchResults”

 DataSourceID=”searchDataSource”

 runat=”server”></CMS:SiteSearchResults>

code snippet SearchResults.aspx

LISTING 7-7 (continued)

c07.indd 204c07.indd 204 12/28/2010 1:55:31 PM12/28/2010 1:55:31 PM

Using Search for Navigation x 205

The SiteSearchInput Server Control defi nes how the search input displays on the page. Because it
supports nesting an ItemTemplate, you have full control over how the markup renders. Additionally
you’ll notice two more server control:

 ‰ SiteSearchDataSource: Allows you to defi ne the query data source and source text.

 ‰ SiteSearchResults: Allows you to customize the markup and display of the search results.

These decoupled controls give you ultimate control over how the search results display on the page.

Under the Hood

This section starts by discussing Ektron’s new search architecture and the deep integration
Ektron provides with Microsoft’s advanced search technology. The three search technologies
that Ektron supports are:

 ‰ Microsoft Search Server Express 2008 and 2010

 ‰ Microsoft Search Server 2008 and 2010

 ‰ Microsoft FAST Enterprise Search

A standard installation of Ektron includes Microsoft Search Server Express by default. But don’t let
the Express lead you to believe that it is feature disabled — in fact, Microsoft Search Server Express
is functionally equivalent to Microsoft Search Server in every way with only one important excep-
tion: That is, Search Server Express lacks the ability to run in a distributed search environment. This
means if you need to create a load balance search cluster, Microsoft Search Server must be used.
Otherwise, Microsoft Search Server Express will suit your needs. Additionally, integration with
Microsoft FAST Enterprise Search Server is also available as an upgrade option, which gives you
additional unique capabilities.

The version of Microsoft Search Server Express that is installed depends on the version of your
Windows Server operating system. If you installed Windows Server 2008 64 bit, Ektron will install
Search Server 2010 because it depends on this version to operate. Otherwise, Search Server 2008
will be installed.

On top of this Search Server, Ektron has built its deeply integrated Search Framework, which
includes all the plumbing that handles crawling content, catalog management, as well as developer
facing features like the Search Framework API, Search Widgets, SiteSearch Server Controls, Faceted
Search, Federated Search, and Site Search Analytics, to name a few. All these features depend on
the Ektron’s Search Framework, so this section covers how Ektron integrates with Microsoft Search
Server at the core, to give you an understanding of how content is crawled, indexed, and queried.

Crawling, Indexing, and Querying

In Figure 7-15, you can see the Ektron Search Framework’s overall architecture and process for
crawling and indexing content.

The process begins on the left hand side of the diagram with the Ektron user authoring content
either through the Workarea or directly on the website. This content item can be any type of man-
aged content, such as a content block, structured Smart Form data, or document through a content

c07.indd 205c07.indd 205 12/28/2010 1:55:31 PM12/28/2010 1:55:31 PM

206 x CHAPTER 7 THE HOMEPAGE

API, server control, or widget. Through a CMS Extension (see Appendix A), the publish pipeline
is modifi ed to notify the Ektron Windows Service that new content has been pushed. The Ektron
Windows Service then invokes a request for either a full or incremental crawl.

User

CMS

Site

CMS Server Search Server

CMS

Database

Search

Server

Catalog

Ektron

Windows

Service

Ektron

Search Server

Service

Microsoft

Search Server

Search

Notification

Strategy

1) Publish

Data

3) Notify

Subscribing

Components

8) Index

CMS

Data

5) Request

Full/Incremental

Crawl

6) Issue Crawl

2) Commit

Change

4) Signal Need

for Indexing

7) Retrieve Relevent

CMS Data Changes

FIGURE 7-15

 ‰ Incremental crawl: Crawls only what has changed without needing to rebuild the content
index. Most data changes result in an incremental crawl, including the creation of new con-
tent, deleting content, adding a user, and such. So as not to over-burden the Search Server
and the service, incremental crawl requests are issued on a user-confi gurable interval. The
request to crawl is fl agged and is issued when the interval expires. If no requests for an incre-
mental crawl have been issued when the interval expires, no crawl occurs.

 ‰ Full crawl: Crawls everything. The one type of action that requires you to initiate a full crawl
is one in which metadata (or any other object that results in the creation of new searchable
properties within Search Server, such as a taxonomy) is added. Full crawl requests, unlike the
incremental ones, are issued immediately. If a crawl (incremental or full) is already in prog-
ress, it will be interrupted and restarted. Upon completion of a full crawl, new searchable
properties in the system are mapped so that they can utilized in queries.

During the crawl, Search Server retrieves content by querying the database through the use of
stored procedures — it does not spider the website in the way that public internet search engines
do — and it is important to understand why. Crawling the database means that the search archi-
tecture has access to rich metadata, taxonomy, and other forms of structured information. This
is an advantage that site search has over public search engines like Google, who are limited in
this knowledge since all content is visible only through loosely structured HTML documents.
It is because of this type of indexing that Ektron can provide faceted search on custom user
properties.

c07.indd 206c07.indd 206 12/28/2010 1:55:32 PM12/28/2010 1:55:32 PM

Using Search for Navigation x 207

The process of content indexing is performed using IFilters, which are components that understand
how to handle a specifi c fi le format, such as Microsoft Word. The Ektron Framework is distributed
with IFilters to handle all common fi le formats such as Offi ce documents, text documents, Shockwave
Flash fi les, and PDF documents. It’s worth pointing out that IFilters can also index custom attributes
on fi les. These attributes include the fi le level metadata you see when you right-click a fi le and choose
Properties Í Advanced Option (or choose Details on Windows 7), as well hidden ones not available
through the Windows interface. All of this data is stored in the content index.

In Figure 7-16, you can see the overall architecture and process for querying and retrieving
information.

User

CMS

Site

CMS

Search

Framework

CMS Server Search Server

Search

Server

Catalog

Search Server

Web Service

Microsoft

Search Server

1) Issue Search

Query

9) Render Results

5) Query

Relevent

Index

2) Prepare

Query

8) Prepare

Result

Data

6) Return

Result

Data

4) Relay

Query

3) Submit Search

Request

7) Return Result

Response

FIGURE 7-16

The process is as follows:

 ‰ The site visitor initiating a query through a website search interface built using any of the site
search server controls or APIs.

 ‰ The query is processed and formatted into XML in preparation for querying the Search
Server. The XML document can be thought of as a search request confi guration fi le, and
includes the search phrase and confi guration parameters value, such as whether or not dupli-
cates should be trimmed, stemming is enabled, spellcheck should be used, and so forth.

The Microsoft Developer Network has an article describing the Schema for this
XML document available here http://msdn.microsoft.com/en-us/library/
ms563775.aspx.

 ‰ Once the XML search request has been created, it is passed to the Search Server Web Service
which manages all communication between Ektron and Microsoft Search Server.

 ‰ Once the request has been received, the Search Server Query Engine is then responsible for
performing the lookup against the relevant catalog indices and returning the results back.

c07.indd 207c07.indd 207 12/28/2010 1:55:32 PM12/28/2010 1:55:32 PM

208 x CHAPTER 7 THE HOMEPAGE

Using the Search Framework APIs

The Search Framework APIs follow the overall pattern established in the Framework API, which
was introduced briefl y in Chapter 1 and is covered more thoroughly as a whole in Appendix B.
This section builds on this by presenting code samples that implement various search-driven
use cases. The Ektron Dev Center also features a screencast highlighting the design goals of the
Framework API, why it was introduced, and how to work with it here: http://dev.ektron.com/
FrameworkAPI/. Although it isn’t required, it is recommended that you look through Appendix B
and watch the screencast before reading through these samples.

In this section, you look at a use case and see the constructs used to implement it. The following
snippet implements a search that defi nes two fi lters:

 ‰ One that specifi es that the content title must contain the phrase “ektron”

 ‰ The other that specifi es that the title must contain the phrase “corporation”

These two fi ltering criteria are grouped together using the SearchCriteriaFilterGroup. Because
the LocalOperation is set to AND, both of these fi lters must be true for a search result to be
included in the set. So content with the title “the ektron corporation” would be included, but
“ektron, inc.” would not.

 public void SearchTitleWithTwoFilters()

 {

 SearchServerContentCriteria contentCriteria =

 new SearchServerContentCriteria();

 ISearchCriteriaFilter filter1 =

 New SearchCriteriaFilter<string>(

 SearchCriteriaContentFields.Title,

 SearchCriteriaFilterOperator.Contains,

 “ektron”);

 ISearchCriteriaFilter filter2 = new SearchCriteriaFilter<string>(

 SearchCriteriaContentFields.Title,

 SearchCriteriaFilterOperator.Contains,

 “corporation”);

 SearchCriteriaFilterGroup groupFilter =

 new SearchCriteriaFilterGroup();

 groupFilter.AddFilter(filter1);

 groupFilter.AddFilter(filter2);

 groupFilter.Condition = LogicalOperation.And;

 contentCriteria.AddFilter(groupFilter);

 contentCriteria.PagingInfo = new PagingInfo(10, 1);

 ContentSearchResponse response = SearchManager.Search(contentCriteria);

 string query = response.ExecutedQuery;

 OutPutResult(response.RelavantResults);

 Console.WriteLine(“Query ‘{0}’...”, query);

 Console.WriteLine(“Showing results {0} - {1} out of {2}\n”,

 contentCriteria.PagingInfo.StartRow,

 contentCriteria.PagingInfo.EndRow,

 response.AvailableResultCount.ToString());

 }

c07.indd 208c07.indd 208 12/28/2010 1:55:32 PM12/28/2010 1:55:32 PM

Sitemap and Breadcrumbs x 209

You can also nest fi lter groups, which gives you the full ability to create complex, nested fi lter
expressions. The PagingInfo object defi nes how many results are returned and the current page
in the resultset. In cases where you are using search as an Application Search, you might only need
to return three results. Setting the paging info object to 3 ensures that you’re never returned more
results than needed.

The Search Framework APIs are also permission aware. This means that the results returned are
properly trimmed according to the content permissions granted to the site visitor. Developers have
the ability to force an administrator level access mode in cases where you’re looking to use the
Search Framework APIs as a general purpose API for content information retrieval. The following
show the enumeration values that can be passed to the Search Manager constructor to force the
Search Framework API into administrator level access mode.

 ‰ ApiAccessMode.Admin

 ‰ ApiAccessMode.LoggedInUser

This approach is often used when search is used for dynamic page generation using search. This
approach is also sometimes referred to as “application search” which is a term used to describe
applications built using search’s highly denormalized search catalogs as a delivery system, instead of
the highly normalized SQL database.

SITEMAP AND BREADCRUMBS

A major requirement of a website is to provide simple user and machine resources for discoverabil-
ity. In addition to menus, breadcrumbs and sitemaps allow for simple discovery in different ways:

 ‰ Sitemaps: Useful for indexing content by third-party search engines. The spiders that these
search engines use are designed to follow links to fi nd other pages. A sitemap makes it easy
for the spider to fi nd all the other pages on your site. The spider is a way of ensuring that all
of your pages are cross-linked.

 ‰ Breadcrumbs: These serve a slightly different purpose by allowing a site visitor to easily
discover the information architecture of your site. This, in combination with a well thought
out aliasing scheme, allows users to infer the location of interesting content based on where
they have already been in your site.

In the Ektron Framework, breadcrumbs can function in two different ways:

 ‰ The BreadCrumb Server Control acts as a positional indicator. It reads information from
the folder the content belongs to, and displays a list of parent links. For example, if you are
browsing a job listing, you may wish to display a breadcrumb like the following.

Jobs Í Engineering Í Nashua, NH

 ‰ The breadcrumbs can alternatively display a click trail for the current user. This shows users
the pages they landed on leading them to the current page. This type of breadcrumb trail is
less common, and less accepted due to usability concerns, but the option is there.

One point to remember is that the breadcrumb for a given piece of content is actually associated
with the folder that content belongs to. The breadcrumbs are also not generated recursively from

c07.indd 209c07.indd 209 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

210 x CHAPTER 7 THE HOMEPAGE

each folder, but are instead stored in their entirety in the folder the content appears in. These bread-
crumbs can also be inherited down the folder chain.

This section includes three implementation tutorials:

 ‰ Setting up breadcrumbs on the /Content/Products folder

 ‰ Implementing breadcrumbs on the products.aspx page

 ‰ Creating a sitemap.aspx page

On the dynamix.aspx page, from where most free content is loaded, part of the Wireframe indicates
that between the menu and the Content Block Server Control there is a breadcrumb acting as a
positional indicator.

Creating Breadcrumbs for the Products Folder

As covered in the Folder section of Chapter 5, breadcrumb settings are managed through the folder prop-
erties screen in the Workarea. Enter the Workarea now, and navigate in the Content tab to /Content
/Products. Select View Í Properties, and then select Edit from the toolbar in the Display pane.

As shown in Figure 7-17, the last tab in the folder properties is for breadcrumb settings. The top
checkbox is marked Inherit from parent folder. Breadcrumbs can be inherited from the parent
folder. This can simplify creating a basic structure for breadcrumbs, but it is also frequently a point
of confusion for content managers trying to set up breadcrumbs.

FIGURE 7-17

c07.indd 210c07.indd 210 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

Sitemap and Breadcrumbs x 211

One might expect the breadcrumb structure to automatically recurse through parent folders to
retrieve the appropriate list of links to display. Unfortunately, this is not how the system actually
works. Instead, from a given Content ID, the folder is retrieved. The system then checks if the folder
is marked to inherit breadcrumbs. If so, the system climbs through the parent folders until it fi nds a
folder that is not set to inherit. Once found, the list of links is listed from that folder, and no other
folders. What this means is that to construct the breadcrumbs you want to display, you create the
root-most folders breadcrumb settings fi rst and then move deeper into the tree breaking inheritance
as you go. Each time you break inheritance, the parent breadcrumb structure is copied to the current
folder, so you only are adding one level at a time.

Let’s create the breadcrumb trail for a folder now.

1. Make sure the inheritance checkbox is deselected, and you have the rest of the options to
work with. Because you are creating the root products folder, you want products directly
within this folder to have a breadcrumb like the following:

Home Í Products

2. To create the breadcrumb, fi ll out the title, URL link, and description fi elds shown in
Figure 7-17 with the following settings listed in Table 7-5.

TABLE 7-5: Settings for Home Breadcrumb

FIELD VALUE

Title Home

URL Link default.aspx

Description Home Page

3. Once you enter the settings, click the Add button, and the item will be added to the list
displayed above the form.

4. Repeat the process for the Products breadcrumb fi elds in Figure 7-18 with the settings listed
in Table 7-6.

TABLE 7-6: Settings for Products Breadcrumb

FIELD VALUE

Title Products

URL Link products.aspx

Description Products Home

The list of items can now be reordered, and a preview is displayed in the Path box.

5. Confi rm that what is displayed is what you intended, and then click Save on the toolbar.
Remember that this process must be repeated for each folder containing content that should
have a different breadcrumb trail.

c07.indd 211c07.indd 211 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

212 x CHAPTER 7 THE HOMEPAGE

FIGURE 7-18

Implementing the BreadCrumb Server Control

Now that the folder is confi gured, you need to implement the server control to display the breadcrumb
on the page. Follow these steps:

1. Fire up Visual Studio, and open the Products.aspx fi le.

2. Just above the Content Block Server Control, place the following line.

<CMS:FolderBreadCrumb ID=”Breadcrumb” runat=”server” />

3. There is also a BreadCrumb Server Control, instantiated with the following line. The
difference between the two is that the FolderBreadCrumb Server Control reads the
breadcrumb you set in the folder properties, and the BreadCrumb Server Control uses
the user history, where each page on the site that the user visits is appended to the bread-
crumb trail.

<CMS:BreadCrumb ID=”Breadcrumb” runat=”server” />

The FolderBreadcrumb Server Control reads the ID parameter from the query string. The
control then loads the appropriate breadcrumb for that piece of content. There are several
other parameters that are useful in confi guring the breadcrumb controls. These are listed in
Table 7-7.

c07.indd 212c07.indd 212 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

Sitemap and Breadcrumbs x 213

TABLE 7-7: BreadCrumb Server Control Properties

PROPERTY NAME DESCRIPTION

DefaultContentID If there is not a valid value in the query string, this is the value used for the

Content ID.

DynamicParameter Defaults to ID, which is what is used for normal content in QuickLinks.

Depending on the use case, you may want to manage breadcrumbs

based on a PageBuilder page rather than a content item displayed in a

ContentBlock control, in which case you may want to set this to “pageid.”

Language The LanguageID to use for display.

Mode Can be set to Normal or DisplayOnly — DisplayOnly will not render any

links; it will only display text.

Separator This is the character to separate entries with. It defaults to “>.”

Creating a Sitemap Page

Now that you covered how to create the breadcrumb settings, you can move onto the SiteMap
Server Control. You use the SiteMap Server Control to create a list of all the contents, recursively,
from a given folder. Each item is listed with its corresponding breadcrumb from the parent folder.

The following steps show you how to create a new Web form in Visual Studio, in the root of your site.

1. Name it Sitemap.aspx, and set it to use a separate codebehind fi le.

2. Drag the SiteMap Server Control from the toolbox to the inside of the Form element on the
page, as shown in the following code snippet.

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”sitemap.aspx.cs”

Inherits=”sitemap” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

TagPrefi x=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:Sitemap ID=”Sitemap1” runat=”server” />

 </div>

 </form>

</body>

</html>

c07.indd 213c07.indd 213 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

214 x CHAPTER 7 THE HOMEPAGE

The SiteMap Server Control works without any additional properties. When you load the page in
the browser, you get the output shown in Figure 7-19.

FIGURE 7-19

3. You can optionally fi ne-tune the display to match your needs. These parameters are listed in
the Table 7-8.

TABLE 7-8: SiteMap Server Control Properties

PROPERTY DESCRIPTION

ClassName The CSS class to wrap the sitemap display.

FolderID The folder ID to display the sitemap below. Defaults to zero, which

specifi es the root folder.

MaxLevel Specifi es the depth to go below the FolderID. Zero means unlimited.

StartingLevel Sets the number of levels to skip in the SiteMap. For instance, you

may want to only show the third tier folders, but show all of them.

In this case, FolderID would be zero, but StartingLevel would

be three.

Like most Ektron controls, the SiteMap Server Control also outputs XML and allows for custom
transforms using XSLT. The SiteMap Server Control exposes a property called XmlDoc, which
exposes the XML used for rendering; by setting the DisplayXSLT property you can specify a
custom XSLT to transform that XML.

c07.indd 214c07.indd 214 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

Registration x 215

REGISTRATION

It is increasingly common for Web presences to invite interaction from visitors which can range
from posting on forums to authoring wiki entries or just rating content. Most sites with these
interactions have users to register on the site rather than just posting anonymously. The Ektron
Framework provides for this necessity by supporting user membership.

Membership users in the Ektron Framework are a close relative to CMS users. The main distinc-
tion is that CMS users have access to the Workarea where membership users do not. With a typical
Ektron license, the number of CMS users allowed is limited, whereas the number of membership
users is usually unlimited.

Because membership users are a subset of CMS users, the management techniques and capabilities
of the two groups are very similar. Membership users can be granted read permissions on private
content, they can be members of groups, and they can even edit content from the website if allowed.

There are several server controls that make it easy to implement membership management on your
site. This section covers these server controls.

When setting up membership capabilities on your site, there are a couple of main capabilities that
you need to implement. These are:

 ‰ Allowing users to register on the site

 ‰ Allowing users to modify their properties

 ‰ Implementing a password reset feature

 ‰ Implementing Facebook registration

The last item on the list refers to Ektron’s feature that lets a user log in to your site with their
Facebook credentials. Ektron will then retrieve the user details from Facebook and create a user in
the system for them.

The Membership Server Control handles three out of the four situations previously listed. By deter-
mining whether the user is logged in, and by setting attributes on the server control, you can have it
handle most of the details of administering users. All of these examples are handled in the OnTrek
starter site, but the following sections have you using a simple page to demo these examples.

Allowing a User to Register on the Site

Registration is handled through the Membership Server Control, along with many other func-
tions. The Membership Server Control enforces custom attributes, and allows users to set up
every aspect of their membership on the site through a single interface. You start this example by
following these steps:

1. Create a new page called Membership.aspx. In Visual Studio, right-click the site root in the
Solution Explorer and select Add New Item. Select Web Form, and name it Membership.aspx.

2. Make sure you are in Source view, and drag the Membership Server Control from the toolbox to
within the form element. Listing 7-8 shows what the code will look like after you have done this.

c07.indd 215c07.indd 215 12/28/2010 1:55:33 PM12/28/2010 1:55:33 PM

216 x CHAPTER 7 THE HOMEPAGE

LISTING 7-8: Membership.aspx

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”Membership.aspx.cs”

Inherits=”Membership” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/

TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:Membership ID=”Membership1” runat=”server” />

 </div>

 </form>

</body>

</html>

The Membership control, when no options are specifi ed, serves two functions. If the user on the
site is not logged in, the Membership Server Control displays the registration interface, shown in
Figure 7-20. The tabs for this interface are as follows:

FIGURE 7-20

c07.indd 216c07.indd 216 12/28/2010 1:55:34 PM12/28/2010 1:55:34 PM

Registration x 217

 ‰ General: This has s for each category, starting with the key fi elds such as username and
password. The option that might be non-obvious is the Address fi eld. This fi eld exists so
that GeoMapping Server Control can search for users. By specifying the address, the Ektron
Framework can convert it to an appropriate latitude and longitude behind the scenes.

 ‰ Forum: Allows the users to specify options specifi cally for Forums on the site, such as which
editor to use, and what the forum signature should be.

 ‰ Tags: Allow the users to specify things such as interests or locations, which are then search-
able by other users.

 ‰ Custom: Contains a group of options that don’t fi t into the other categories. This tab is
shown in Figure 7-21.

FIGURE 7-21

For the most part, these options are confi gured in the Workarea on the Settings tab as
Custom User Attributes. More attributes can be added there, and some of the existing
options can be modifi ed or deleted. There are, however, a few options on this tab that can-
not be modifi ed:

 ‰ Features: This checkbox creates a user calendar for the users. A user calendar allows
users to add and share their schedules on the site through the WebCalendar interface.
For more information on user calendars, see Chapter 8.

 ‰ Time Zone: Also has to do with the WebCalendar. The WebCalendar internally
stores events in GMT, and converts them to the logged-in user’s time zone. This time
zone list is the same list used in Windows, so it allows for an appropriate amount of
granularity in location.

This interface may not be exactly what you as a developer want to display to the user at registration
time. As usual, the Ektron Framework provides for developing custom interfaces through the use of
the API. See the following code snippet for programmatically creating users.

c07.indd 217c07.indd 217 12/28/2010 1:55:34 PM12/28/2010 1:55:34 PM

218 x CHAPTER 7 THE HOMEPAGE

Ektron.Cms.UserData memDetails = new Ektron.Cms.UserData();

memDetails.Username = “Username”;

memDetails.FirstName = “First”;

memDetails.LastName = “Last”;

memDetails.Password = “Password”;

memDetails.DisplayName = “Displayname”;

try

{

 Ektron.Cms.Framework.Users.User user = new Ektron.Cms.Framework.Users.User();

 user.Add(memDetails);

}

catch (Exception ex)

{

 throw ex;

}

Allowing Users to Modify Their Properties

In addition to allowing a user to register for the site, the Membership Server Control supports many
other features. As you saw in the previous section, the server control generates an interface for users
to enter the initial details of their accounts. The default interface also works when users are already
logged in. Log in to your OnTrek site and refresh the Membership.aspx page. The interface now
displays with your information populating the fi elds, as is shown in Figure 7-22.

FIGURE 7-22

The membership control handles CMS user accounts, including the admin account, not just
membership users. As before, if you do not like the interface as shown, all of the actions can be

c07.indd 218c07.indd 218 12/28/2010 1:55:34 PM12/28/2010 1:55:34 PM

Registration x 219

performed through the API. The Framework User API class has methods for Update and Delete in
addition to the Add method.

Implementing a Password Reset Feature

As mentioned earlier, the Membership Server Control handles more than just registering and man-
aging users. By modifying the DisplayMode property on the Membership Server Control, you can
have it manage other functions. The following fi gures show what these options mean.

 ‰ DisplayMode=”AccountActivate” is shown in Figure 7-23.

FIGURE 7-23

This screen is needed only if the option Enable Verify E-mail in the Confi guration Í Setup
screen of the Settings tab in the Workarea is checked. If that option is turned on, then when
a user registers on the site, an e-mail is sent with a link to Workarea/ActivateUser.aspx.
You can specify your own page with the Membership Server Control by modifying the
Verifi cation e-mail in the Workarea. System e-mail messages are managed in the Settings tab
under Community Management Í Messages.

 ‰ DisplayMode=”ResetPassword” is shown in Figure 7-24.

FIGURE 7-24

This mode allows users to reset their passwords. It will send an e-mail to the registered
account. The e-mail sent will include a new randomly generated password. Remember that
the System E-mail address must be specifi ed in the Settings tab in the Workarea, under
Confi guration Í Setup.

 ‰ DisplayMode=”UnsubscribeSecured” is shown in Figure 7-25.

c07.indd 219c07.indd 219 12/28/2010 1:55:34 PM12/28/2010 1:55:34 PM

220 x CHAPTER 7 THE HOMEPAGE

FIGURE 7-25

It allows users to unsubscribe. Requires the username and password.

 ‰ DisplayMode=”UnsubscribeUnsecured” is shown in Figure 7-26.

FIGURE 7-26

It allows users to unsubscribe. It does not require the users to be logged in or enter a
password.

 ‰ DisplayMode=”UserRegistration” was shown previously in Figure 7-20.

This mode is the default and was covered in the previous examples. It allows users to
create and manage their accounts by inputting all the details necessary to deal with the
Ektron Framework.

Implementing Facebook Registration

A relatively new feature in the Ektron Framework is support of Facebook authentication. Using the
FacebookLogin Server Control allows users to authenticate against the Facebook servers. The process
opens a window on the Facebook site — prompting the users to log in to their Facebook accounts and
authorize the site to connect to their profi les — and then passes a token to your site. The token allows
the Ektron Framework to connect to Facebook and retrieve details about the users.

The FacebookLogin Server Control allows users to simply log in to the site using their Facebook
accounts. If the user is already logged in, the control allows connection between the two accounts. If
details are updated on the Facebook side, the modifi cations are replicated to the other site.

c07.indd 220c07.indd 220 12/28/2010 1:55:34 PM12/28/2010 1:55:34 PM

Registration x 221

The following steps walk through the user experience of the Facebook Connect feature.

1. The user clicks the Connect with Facebook button, shown in Figure 7-27.

FIGURE 7-27

2. When the user clicks the button, a new window pops up inviting the user to log in to Facebook
and authorize the site to connect to their Facebook profi le, as depicted in Figure 7-28.

FIGURE 7-28

3. Once the users have authenticated with Facebook, they are returned to your site, where they
are invited to log in if they have an account, or register if they do not have an account. This
step allows the system to collect any additional details that are required, such as the users’
time zones.

c07.indd 221c07.indd 221 12/28/2010 1:55:35 PM12/28/2010 1:55:35 PM

222 x CHAPTER 7 THE HOMEPAGE

Allowing for this process requires a few steps from developers. They must fi rst create a Facebook
application for their website, and then they must log the details for that application in the web.confi g.
Then the user interface must be defi ned for logging in.

The following steps walk you through creating a Facebook application.

1. First, if you don’t have a Facebook account, register on www.facebook.com.

2. Go to the Facebook Developer site at www.facebook.com/developer and log in.

3. Click the link Set up New Application.

4. Fill in the name for your application. This name is displayed to the users allowing access to
their profi les. It cannot contain any variation recognizable to the user as Facebook. The best
bet is to go with your site’s name or a variation of it.

A screen will come up displaying your Application ID, as shown in Figure 7-29, API key,
and Secret key. Ektron Framework uses these keys to authenticate itself with Facebook,
allowing it to connect to authenticated user profi les.

FIGURE 7-29

5. Open your web.confi g fi le in the root of your website, and copy the values you just received
from Facebook into the corresponding keys — these keys are listed next. The default keys
provided in your site are for use with localhost:

 <add key=”ek_FacebookApiKey” value=”fed65adedd83eec7e1e56f32f03d7303” />

 <add key=”ek_FacebookSecret” value=”92b7e5245d455fd9213c0b9af14f5805” />

6. Save your modifi cations to the web.confi g, and return to the Facebook developer site. Select
the Connect tab, and enter your website’s URL, as shown in Figure 7-30. You can change
this URL to the fi nal address at any time.

7. Save your settings on Facebook.

c07.indd 222c07.indd 222 12/28/2010 1:55:35 PM12/28/2010 1:55:35 PM

Take Home Points x 223

 FIGURE 7-30

Once this confi guration has been complete, you can simply place the FacebookLogin Server Control
on your page, and it will walk the users through the previous steps. For more information about
modifying the Facebook login process, see section 3-19 in the CMS400 Manual, which is installed
alongside the Ektron Framework in the Documentation folder (e.g. C:\Program Files\Ektron\
CMS400v80\Documentation\CMS400Manual.pdf).

TAKE HOME POINTS

This chapter focused on the main elements of a successful homepage:

 ‰ RIA: This section discussed using Smart Forms to store information usable in a rich format.
Smart Forms are a powerful way of storing settings for rich interfaces and applications. Since
the backend of a Smart Form is designed to store the content as straight XML, it is even pos-
sible to design a Smart Form to be directly serializable and deserializable from a class, while
remaining editable in the eWebEdit400 editor. This fl exibility means that content authors can
update settings directly, rather than relying on developers to do so for them.

 ‰ RESTful services: You use these to retrieve information from the Ektron Framework with
light call backs. The chapter didn’t cover platforms, such as Silverlight or Flash in these
examples. However, you can certainly extend these examples in that direction. For example,
a developer can use the same handler developed for the taxonomy example, and modify the
JSON serializer to be an XML, YAML, or even some other type of serializer depending on
the requirements of the consuming platform.

 ‰ Menus: This covered creating the global navigation for the OnTrek website using Ektron’s
native menu feature and for displaying the menu on the website using a customized Flex
Menu Server Control. You saw alternative ways to use the Flex Menu, including the Master
Slave implementation, which uses two menus in tandem. A Master displays the global hori-
zontal navigation menu. A Slave displays the left-hand vertical navigation menu, which alters
its currently selected item based on the item selected from the Master menu.

c07.indd 223c07.indd 223 12/28/2010 1:55:35 PM12/28/2010 1:55:35 PM

224 x CHAPTER 7 THE HOMEPAGE

 ‰ Search: You learned the best practice strategies for creating a successful website search imple-
mentation, including implementation strategies and how to fl ag potential problems that your
site visitors are having issues with fi nding relevant content. You saw how to create a globally
accessible search box and did a deep dive into the search architecture.

 ‰ The breadcrumb and sitemap: This showed basic navigational elements. The Ektron
Framework easily manages these site elements through the information architecture and con-
tent. It also allows you to separate the conceptual hierarchy of the frontend of your site from
the backend content management perspective by manually setting the sitemap entries.

 ‰ BreadCrumb and FolderBreadCrumb Server Controls: The BreadCrumb Control creates
easy-to-implement position indicators that you place site-wide so visitors can infer and
deduce the architecture of the site. The SiteMap Server Control allows for the same thing for
software discovery agents. When you team up both, you can expose the underpinnings of
your site to the world, ensuring that your content is easy to fi nd.

 ‰ Registration: Showed the process of registering users for your site, keeping user details up to
date, and allowing users to register through Facebook Connect. Membership management is
a crucial part of any website that allows for user interaction, and these tools should be used
as part of your site build out.

 ‰ The Membership Server Control: A versatile tool that can handle a large portion of that user
management. It allows for user registration, updating user profi les, and managing items like
password reset functionality and unsubscribing users.

 ‰ The Facebook Login Server Control: Users can connect their profi les to your website. This is
desirable to users because they can maintain their profi les at a single location. It’s desirable
for website administrators because it can serve as a traffi c driver. For instance, a user com-
menting on a story on your site can opt to cross-post her comment and a link to your story
to her wall on Facebook. This can alert the entire network to the story on your site, driving
what may be a substantial amount of traffi c to your site.

c07.indd 224c07.indd 224 12/28/2010 1:55:35 PM12/28/2010 1:55:35 PM

8
Reaching Prospects

 ‰ What is the ListSummary Server Control and how do you use it?

 ‰ How do you make use of calendars and events in the Ektron

Framework?

 ‰ How do you manage video on your website?

Reaching prospects and maintaining connections with existing customers are two of the most
important functions of your website. One of the ways this is done is through the use of cor-
porate event calendars. Calendars allow your users to see what public events your company is
holding, fi nd out about webinars, better understand the lifecycle of your technology, or simply
better connect with your service or sales representatives.

Video can also be a great connector of the Web, whether to disseminate technical information
and provide how-to’s, or to tap into your current customer base as an advertising technique to
sell your company’s wares. More and more frequently, if people have the option to fi nd infor-
mation through reading marketing copy or watching a fi ve-minute video, they are turning to
the video.

In this chapter, you’ll learn how to implement these fundamental tools, allowing you to utilize
them to increase your conversion rate. You’ll be looking at things from the perspective of a
testimonial page, but with slightly more generic examples that allow you to use these features
throughout your site, wherever they make sense.

USE CASE

This section gives you a continuation of the use cases that started in Chapter 7. It connects the
exercises you will perform in this chapter with the plan laid out in the implementation guide,
and puts a story to the features we will cover in this chapter, specifi cally the ListSummary
Server Control, calendars, and the DMS.

c08.indd 225c08.indd 225 12/28/2010 1:56:34 PM12/28/2010 1:56:34 PM

226 x CHAPTER 8 REACHING PROSPECTS

CONNECTING TO CLIENTS

Having developed the homepage in the last chapter, the OnTrek marketing team is
now looking to disseminate information to potential prospects. Their objectives are
to create a section of the site where they can list Customer Testimonials. This section
is a go-to location for the sales team for reaching potential clients, by helping them
understand how the OnTrek system can help their businesses. Additionally, they need
to implement calendars to keep clients up-to-date on trainings, open houses, Webinars,
and other corporate events. The combination of these two efforts allow them to more
clearly connect to potential and existing clients by maintaining that connection in a
more solid way, so clients are never in a position of not having enough information
about OnTrek’s product line and service offerings.

Wireframe

The example Wireframe for this chapter, shown in Figure 8-1, is the Video
Testimonials page. The goal of this page is to showcase existing customers, helping
drive interest in the OnTrek suite of products.

FIGURE 8-1

c08.indd 226c08.indd 226 12/28/2010 1:56:38 PM12/28/2010 1:56:38 PM

Technology x 227

Actor

Jack is the Director of IT at Acme Inc. and is researching security related software
packages for his company’s network. He is looking to understand how OnTrek’s
solution set has helped other companies in need of security related services and
products. Additionally, he wants to know how in-depth OnTrek’s support for its
existing customer base is, which means knowing the schedules for trainings and
technical Webinars.

Scenario

In this scenario, Jack:

Analyzes OnTrek and is interested in the product line, but needs to know how the
relationship will grow over time between Acme and OnTrek.

Needs to fi nd out about existing partnerships with current clients of OnTrek.

Looks at the menu of the site, and fi nds a section for Customer Testimonials.

Follows the link and arrives at the page with the primary objective being to fi nd
information about satisfi ed customers.

Uses the videos on the page to learn that information.

Outcome

A successful outcome in this use case is one where Jack can easily fi nd useful infor-
mation about current OnTrek customers. Using the videos, he should be able to
determine the satisfaction level of the existing customer base, as well as learn about
potential uses of the technology. Additionally, he should feel satisfi ed that there is
enough existing customer outreach through the use of the calendar to feel comfort-
able in closing a deal to purchase. The success rate of this group of technologies
can be measured through the use of analytics, and through customer reports sent
directly to the sales people.

TECHNOLOGY

It’s become a standard practice for companies to request references and testimonials when shopping
for expensive packages. When a company has a very good relationship with its existing customer
base, it’s a point of pride, and marketing is always interested in showing them off in the hopes of
higher conversion rates in their sales cycles. To answer these needs, it has become more and more
common to include videos of customer testimonials on company websites.

There are other reasons why videos are becoming a more popular way to disseminate information.
As mentioned earlier, people are increasingly interested in collecting information through a well-
crafted video than they are through trudging through pages of marketing copy. Additionally, some

c08.indd 227c08.indd 227 12/28/2010 1:56:39 PM12/28/2010 1:56:39 PM

228 x CHAPTER 8 REACHING PROSPECTS

forms of information are more easily delivered through video than through the written word. As
Webinars and other video tools become more popular, there is an increasing desire to house that
information in a viewable location. The Ektron Framework has solidly integrated such tools into its
feature set over time.

This chapter covers the use of calendars and ListSummaries. ListSummaries tend to be one of the
cornerstones of Web designs, by producing simple navigational elements that are always automati-
cally up-to-date. Through their rich customizability, they can produce simple lists of links or can
be the fundamental driver behind interfaces such as photo galleries. By allowing for customization
through XSLT, data binding, and EKML, ListSummaries and calendars have become one of the
chief problem-solving tools when building towards high-gloss projects.

Calendars, much like video, have become a de facto must-have on both client facing websites and
internal websites. As part of the rebuild of the feature in version 8.0 of the Ektron Framework,
calendars received the ability to behave more like content, by storing event defi nitions in an
XML back end. Being based on content allows them to utilize other features inherent in the
content model including permissions, workfl ow, categorization, and so on. This update also
introduced a much richer front-end interface modeled on Outlook, and a complete overhaul of
the recurring event capabilities.

The new calendar feature has a feature set commensurate with any other calendar on the
market — whether it’s exporting entire iCal feeds of calendars, sorting by category, or mashing
up multiple event feeds, the calendar feature can take your requirements and make them reality.

Taking this collection of three features, this chapter will run through the fundamentals of each and
discuss how they work under the covers. You will then practice implementing these features into
various scenarios.

LISTSUMMARY

ListSummaries are used to display a list of the content in a folder, and optionally, recursively down
the child folders. This is a typical feature on a website, and one of the oldest features in the Ektron
Framework. The usefulness of this server control fundamentally depends on how closely the
Information Architecture of your site matches the front end organization of your site, but in most
cases the two nearly mirror each other.

Due to this mirroring, you can use ListSummaries to show content related to what’s currently
being viewed, or a list of recently updated content, among other types of output. You can also use
ListSummaries with custom XSLTs. They can include the full HTML of the content they refer to,
allowing developers to provide features such as aggregated updates.

This section discusses the various ways you use a ListSummary on your site, and how to approach the
different uses from a development perspective. The specifi c examples you will work through are based
on the most common needs, which usually involve displaying a basic list of links, while still matching
the format and style of the page that the ListSummary occurs on. This section shows how to:

 ‰ Implement a basic ListSummary.

 ‰ Change the markup using XSLT.

 ‰ Change the markup using EKML.

c08.indd 228c08.indd 228 12/28/2010 1:56:40 PM12/28/2010 1:56:40 PM

ListSummary x 229

Implementing a Basic ListSummary

The ListSummary is a versatile control in the Ektron Framework tool belt. It serves a very basic
function, but through the use of a wide variety of properties, it can be stretched to provide a list of
links in almost every way imaginable. Table 8-1 contains these properties.

TABLE 8-1: ListSummary Server Control Properties

PROPERTY DESCRIPTION

CacheInterval Defi nes, in seconds, how long to cache the results. A value of zero spec-

ifi es not to cache the results.

ContentParameter Specifi es the query string parameter for content IDs. If the query string

contains a match for this, the ListSummary is replaced with a content

block displaying the specifi ed content item. If left unspecifi ed, the dis-

play will always be the ListSummary.

ContentType If this is specifi ed, the ListSummary fi lters to display only matching items

of that type. The value is an enumeration.

DisplayXslt Specifi es the path to the XSLT to render the results against.

FolderID The ListSummary retrieves the contents of the folder specifi ed by this

property.

GetAnalyticsData Returns Content View Count, Content Rating, and Content Rating

Average in the XML document. This information can then be used in a

custom XSLT.

GetHtml Specifi es whether to retrieve the HTML of the content items, or just the

details necessary to display a link and summary. This is typically set to

true only when you’re using a custom markup fi le that shows the HTML.

IncludeIcons Sets whether to display icons next to the displayed links. This property

has an eff ect only when one of the default XSLT values is used.

LinkTarget Sets the target on anchor tags in the default output. Can be set to

_blank, _self, _parent, or _top. Leave blank for normal link behavior.

MarkupLanguage Specifi es the path to an EKML fi le. If this is set, it will override any value

in DisplayXslt. EKML is a simplifi ed token replacement display layer

that can be easier to understand than XSLT.

MaxResults The number of results to retrieve.

OrderBy The key to sort items. Can be set to Title, DateModified,

DateCreated, LastEditorFname, LastEditorLname, StartDate (the

go live date of the content), Rated (the content rating of the item), or

ContentViewCount (the number of times the item has been viewed).

continues

c08.indd 229c08.indd 229 12/28/2010 1:56:40 PM12/28/2010 1:56:40 PM

230 x CHAPTER 8 REACHING PROSPECTS

PROPERTY DESCRIPTION

OrderByDirection Ascending or descending order.

Recursive Specifi es whether to retrieve items in subfolders.

SelTaxonomyID Specifi es the default category to add content to if added through

the access point displayed to logged-in authors just above the

ListSummary.

As is clear from Table 8-1, the methods for modifying the ListSummary Server Control are
quite varied. Let’s explore how some of those properties react when you use the ListSummary
on a page:

1. Start by creating a new Web form on your site called ListSummary.aspx. On the declarative
ASPX fi le, drag the ListSummary Server Control from the toolbox on the left into the page
between the form tags. This is shown in the following snippet.

<CMS:ListSummary

 ID=”uxListSummary”

 runat=”server” />

2. The snippet, as is, defaults to show only content items from the root folder in the Workarea.
The fi rst thing you might try is specifying a different folder to display, and turning recursive
display on.

<CMS:ListSummary

 ID=”uxListSummary”

 FolderID=”72”

 Recursive=”true”

 runat=”server” />

With the updated code in place, you now see all the content below the Pages folder in the
Workarea. It’s displaying a pretty long list of content now, as displayed in Figure 8-2, so you
should probably set a maximum on the number of items displayed.

3. The following snippet confi gures the ListSummary Server Control to display a maximum of
fi ve results per page, with paging set to on. It’s also set to display the results in alphabetical
order by title.

<CMS:ListSummary

 ID=”uxListSummary”

 FolderID=”72”

 Recursive=”true”

 MaxResults=”5”

 EnablePaging=”true”

 OrderBy=”Title”

 OrderByDirection=”Ascending”

 runat=”server” />

TABLE 8-1 (continued)

c08.indd 230c08.indd 230 12/28/2010 1:56:40 PM12/28/2010 1:56:40 PM

ListSummary x 231

This combination of settings provides a much more useful layout, as seen in Figure 8-3. The
paging is done via AJAX, which allows for fast and seamless user interaction.

FIGURE 8-2

FIGURE 8-3

There are also a few ways to change the way the ListSummary Server Control looks. By default, if
you don’t set the DisplayXslt property, the server control will use the ecmNavigation template.
There are, however, three other predefi ned options for display. You can set the DisplayXslt prop-
erty to None–Databind, which does not display anything, but populates the EkItems property so
the results can be worked with programmatically.

You can also set the DisplayXslt property to ecmTeaser or to ecmUnorderedList. These
are prebuilt documents that cannot be modifi ed, but can help you avoid having to author new
XSLT’s by covering common use cases. Figure 8-4 shows what the display looks like when set to
ecmTeaser.

c08.indd 231c08.indd 231 12/28/2010 1:56:40 PM12/28/2010 1:56:40 PM

232 x CHAPTER 8 REACHING PROSPECTS

FIGURE 8-4

Changing the HTML Markup Using XSLT

If you want to change the display layer to something that the standard options won’t allow for, you
can use a custom XSLT in those situations. To do so , follow these steps:

1. Retrieve the XML you will be transforming. You can do this by reading from the XmlDoc
property on the ListSummary Server Control at runtime, which involves adding a textbox to
the declarative ListSummary.aspx fi le.

2. In the codebehind, set the Text property of the textbox to the XmlDoc property, as in the
following snippet.

Textbox1.Text = uxListSummary.XmlDoc.OuterXml;

When you view the page in the browser, the textbox appears with the generated XML inside
it. A sample of the XML produced by the ListSummary is reproduced in Listing 8-1.

LISTING 8-1: ListSummary Server Control XML output

<Collection>

 <Content>

 <ID>58</ID>

 <Type>Content</Type>

 <Title>All Hardware Products</Title>

 <QuickLink>

 http://thunder2/OnTrek/Products/Hardware/All-Hardware-Products/</QuickLink>

c08.indd 232c08.indd 232 12/28/2010 1:56:41 PM12/28/2010 1:56:41 PM

ListSummary x 233

 <Teaser></Teaser>

 <Html></Html>

 <StartDate>1/1/0001 12:00:00 AM</StartDate>

 <DateModified>7/15/2010 5:50:29 AM</DateModified>

 <DateCreated>7/15/2010 5:47:18 AM</DateCreated>

 <EndDate>12/31/9999 11:59:59 PM</EndDate>

 <LastEditorFname>Application</LastEditorFname>

 <LastEditorLname>Administrator</LastEditorLname>

 <Hyperlink>

 All Hardware Products

 </Hyperlink>

 <DisplayStartDate></DisplayStartDate>

 <FolderID>84</FolderID>

 <ContentStatus>A</ContentStatus>

 <Language>1033</Language>

 <AssetInfo>

 <Id></Id>

 <Icon></Icon>

 <FileName></FileName>

 <FileExtension></FileExtension>

 <ImageUrl></ImageUrl>

 <Language>0</Language>

 <MimeName></MimeName>

 <MimeType></MimeType>

 <PluginType></PluginType>

 <PublishPdfActive>False</PublishPdfActive>

 <Status></Status>

 <Type>0</Type>

 <Version></Version>

 </AssetInfo>

 <DisplayDateModified>7/15/2010 5:50:29 AM</DisplayDateModified>

 <DisplayDateCreated>7/15/2010 5:47:18 AM</DisplayDateCreated>

 <DisplayEndDate></DisplayEndDate>

 <EndDateAction>Archive_Expire</EndDateAction>

 <Comment></Comment>

 <Image>/OnTrek/WorkArea/images/application/spacer.gif</Image>

 <ImageThumbnail>

 /OnTrek/WorkArea/images/application/thumb_spacer.png</ImageThumbnail>

 <FilePath>

 http://thunder2/OnTrek/Products/Hardware/All-Hardware-Products/</FilePath>

 </Content>

 <Content>

 <ID>57</ID>

 <Type>Content</Type>

 <Title>All Software Products</Title>

 <QuickLink>

 http://thunder2/OnTrek/Products/Software/All-Software-Products/</QuickLink>

 <Teaser></Teaser>

 <Html></Html>

 <StartDate>1/1/0001 12:00:00 AM</StartDate>

 <DateModified>7/15/2010 5:51:07 AM</DateModified>

 <DateCreated>7/15/2010 5:44:58 AM</DateCreated>

 <EndDate>12/31/9999 11:59:59 PM</EndDate>

continues

c08.indd 233c08.indd 233 12/28/2010 1:56:41 PM12/28/2010 1:56:41 PM

234 x CHAPTER 8 REACHING PROSPECTS

 <LastEditorFname>Application</LastEditorFname>

 <LastEditorLname>Administrator</LastEditorLname>

 <Hyperlink>

 All Software Products

 </Hyperlink>

 <DisplayStartDate></DisplayStartDate>

 <FolderID>84</FolderID>

 <ContentStatus>A</ContentStatus>

 <Language>1033</Language>

 <AssetInfo>

 <Id></Id>

 <Icon></Icon>

 <FileName></FileName>

 <FileExtension></FileExtension>

 <ImageUrl></ImageUrl>

 <Language>0</Language>

 <MimeName></MimeName>

 <MimeType></MimeType>

 <PluginType></PluginType>

 <PublishPdfActive>False</PublishPdfActive>

 <Status></Status>

 <Type>0</Type>

 <Version></Version>

 </AssetInfo>

 <DisplayDateModified>7/15/2010 5:51:07 AM</DisplayDateModified>

 <DisplayDateCreated>7/15/2010 5:44:58 AM</DisplayDateCreated>

 <DisplayEndDate></DisplayEndDate>

 <EndDateAction>Archive_Expire</EndDateAction>

 <Comment></Comment>

 <Image>/OnTrek/WorkArea/images/application/spacer.gif</Image>

 <ImageThumbnail>

 /OnTrek/WorkArea/images/application/thumb_spacer.png</ImageThumbnail>

 <FilePath>

 http://thunder2/OnTrek/Products/Software/All-Software-Products/</FilePath>

 </Content>

</Collection>

This XML document contains all the information you need to generate anything you want
to display. You may notice that the Html tag is empty for each content item; the property
GetHtml on the ListSummary determines whether or not to retrieve the HTML. There is a
slight performance hit to retrieve the HTML, which is why it defaults to off, but if required,
the HTML can be retrieved as well.

3. For the output, you’re going to generate some very simple HTML that will output an unor-
dered list of links. The output is very similar to the ecmUnorderedList output, but it should
serve as a reasonable basis for future development you may need to do. The output looks like
the following code snippet.

LISTING 8-1 (continued)

c08.indd 234c08.indd 234 12/28/2010 1:56:41 PM12/28/2010 1:56:41 PM

ListSummary x 235

 title of content

 title of content 2

 title of content 3

To achieve this output, the XSLT shown in Listing 8-2 will match the Collection/
Content section and then retrieve the inner tag for the hyperlink, and simply render it
into a list.

LISTING 8-2: UnorderedListSummary.xslt

<?xml version=”1.0” encoding=”utf-8”?>

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

 xmlns:msxsl=”urn:schemas-microsoft-com:xslt” exclude-result-prefixes=”msxsl”>

 <xsl:output method=”xml” indent=”yes”/>

 <xsl:template match=”Collection”>

 <xsl:for-each select=”Content”>

 <xsl:copy-of select=”Hyperlink/a”/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

4. This listing should be saved as a new fi le called ~\XmlFiles\UnorderedListSummary.xslt. To
set your ListSummary Server Control to use it, set the DisplayXslt property to the new
location, as shown in the following snippet.

<CMS:ListSummary

 ID=”ListSummary1”

 FolderID=”72”

 Recursive=”true”

 MaxResults=”5”

 EnablePaging=”true”

 OrderBy=”Title”

 OrderByDirection=”Ascending”

 DisplayXslt=”~\XmlFiles\UnorderedListSummary.xslt”

 runat=”server” />

This updates the display on the Web page to what is shown in Figure 8-5.

c08.indd 235c08.indd 235 12/28/2010 1:56:41 PM12/28/2010 1:56:41 PM

236 x CHAPTER 8 REACHING PROSPECTS

FIGURE 8-5

As you can see in Figure 8-5, paging is still functional, and the ListSummary respects the sorting
options you have specifi ed. This makes it simple to update the display because you don’t have
to reinvent the wheel by adding custom paging or internal sorting. It also means that under-the-
hood performance will be as fast as possible, since the transform is taking place on as small a
portion of the data as possible. The XML supplied for the transform only contains the informa-
tion that is currently being displayed to the end user, rather than the full result set.

Changing the Markup Using EKML

While XSL transforms are a powerful way of translating the display layer, Ektron is aware that not
all developers are completely comfortable with writing XSL transforms. To solve this issue, Ektron
has introduced EKML, short for Ektron Markup Language, which can handle basic transformations
through simple looping and string replacement of tokens. This language was introduced by Ektron
to allow developers to avoid complex XSLT’s in simple use cases.

The way EKML hooks into the ListSummary Server Control is very similar to the procedure for
XSLT documents. You create an EKML document, and set the MarkupLanguage property to the
location of the fi le. The ListSummary then caches the fi le and transforms the output according to
the structure defi ned in the markup document. The structure of the fi le is mostly HTML, with some
tags that defi ne where special processing needs to be done, such as loops. Table 8-2 contains the list
of special tags used in EKML.

TABLE 8-2: EKML Tags

TAG DESCRIPTION

ekmarkup The root element for EKML documents.

ekoutput The output from the server control goes between these tags.

ekrepeat Anything between these tags will be repeated for each item in the list.

ekbubbleinfo Defi nes the contents of a popup bubble. The bubble is invoked when a link,

which is inserted with the token [$ShowBubble], is clicked on by the user.

This tag is a sibling to the ekoutput tag.

c08.indd 236c08.indd 236 12/28/2010 1:56:41 PM12/28/2010 1:56:41 PM

ListSummary x 237

The EKML tags defi ne the basic structure of the EKML document. In addition to the tags there are
a whole series of tokens that are replaced with the appropriate values for the objects being displayed.
These tokens are outlined in Table 8-3.

TABLE 8-3: EKML Tokens Usable in ListSummaries

TOKEN DESCRIPTION

[$Comment] The item’s comment information.

[$ContentId] The ID of the content item.

[$DateCreated] The date the content item was created.

[$DateModified] The date the content item was last modifi ed.

[$EditorFirstName] First name of the most recent editor.

[$EditorLastName] Last name of the most recent editor.

[$FolderDescription] Description of the folder.

[$FolderId] ID of the folder.

[$FolderName] Name of the folder.

[$Html] The actual HTML of the content item.

[$HyperLink] Hyperlink to the item.

[$Image] Replaced with the path to the image defi ned in the item’s

metadata.

[$ImageIcon] Replaced with an image tag corresponding to the content type of

the current item.

[$ImageThumbnail] Replaced with the path to the thumbnail generated for the image

defi ned in the item’s metadata.

[$ItemCount] The number of items returned.

[$Language] The language currently being displayed.

[$QuickLink] The QuickLink of the content from the Library.

[$SERVER_NAME] The domain for the current page.

[$ShowBubble] Creates a link to display a bubble containing the template

defi ned in the ekbubbleinfo tag. Optionally, you can specify the

width and height in pixels in parentheses after the variable. For

example: [$ShowBubble(300,400)].

[$Status] Displays the status of the content item.

continues

c08.indd 237c08.indd 237 12/28/2010 1:56:42 PM12/28/2010 1:56:42 PM

238 x CHAPTER 8 REACHING PROSPECTS

TOKEN DESCRIPTION

[$Teaser] Displays the teaser for the item.

[$Title] Displays the title for the item.

[$UrlEncode(‘string’)] Runs a URL encoding function against the passed in string. The

passed in string can be the output of another token.

[$UrlParam(‘parameter’)] Outputs the value from the specifi ed query string param-

eter. For example, on the url test.aspx?id=233, the token

[$UrlParam(‘id’)] will output 233.

Now that you know the allowed tokens, you can create an EKML document that outputs the same
HTML as the XSLT you created earlier. Take the code from Listing 8-3 and save it in ~\XmlFiles\ as
UnorderedListSummary.ekml.

LISTING 8-3: UnorderedListSummary.ekml

<ekmarkup>

 <ekoutput>

 <ekrepeat>

 [$HyperLink]

 </ekrepeat>

 </ekoutput>

</ekmarkup>

Now you simply need to point the ListSummary Server Control at the new fi le by setting the
MarkupLanguage to point to the new fi le. This is outlined in the following snippet.

<CMS:ListSummary

 ID=”uxListSummary”

 FolderID=”72”

 Recursive=”true”

 MaxResults=”5”

 EnablePaging=”true”

 OrderBy=”Title”

 OrderByDirection=”Ascending”

 MarkupLanguage=”XmlFiles\UnorderedListSummary.ekml”

 runat=”server” />

The output of this update is shown in Figure 8-6. As is visible in the output, the HyperLink token is
actually replaced by a DMS menu style link. There is a bit more intelligence in the token then there
is following the same process with an XSLT. Using EKML can be a great way to simplify your devel-
opment efforts while creating rich and complex displays.

TABLE 8-3 (continued)

c08.indd 238c08.indd 238 12/28/2010 1:56:42 PM12/28/2010 1:56:42 PM

Calendars x 239

FIGURE 8-6

CALENDARS

Calendars have been a long-time feature of the Ektron Framework, but with version 8.0 they
received a major overhaul. Where the old version had calendars stored outside of content, the new
version makes calendars more like folders of events. Events themselves are stored as a subtype of
content, which allows events to take advantage of the feature set built around content. This includes
the capability of being categorized via taxonomy and the storage of associated metadata.

The interface also received a big facelift, and rather than using a simple table for output, they now
use a rich, complex interface. The interface comes by way of Telerik’s Scheduler component, and is
similar in look and feel to Outlook. Because the items themselves are now content, they can also be
displayed in the Content Block Server Control, the ListSummary Server Control, and almost any
other control designed to work with content.

In this section, you learn how to administer calendars in the Ektron Framework, and then you
move on to the many modes of displaying the events to users on your site. Finally, you learn how the
events are stored in the system.

Most calendar administration takes place in the Workarea. There are three types of calendars in the
Ektron Framework: system calendars, user calendars, and group calendars. The process of creating
each type is slightly different. The fi rst thing you do in this section is create one of each and learn
the differences.

Next, you work through some of the different methods of displaying these calendars on your site.
There are two modes of displaying calendar information: either as content or as a calendar. When
displaying an Ektron calendar using the calendar interface, you use the WebCalendar Server Control.
When displaying it as content, you can use a ListSummary, or any other content control. This chap-
ter covers using the WebCalendar, ListSummary, and Content Block Server Controls to display
events. Finally, it discusses how to use the API to retrieve a list of upcoming events from the system,
and how to modify the way some of the server controls render the information. In this section, you:

 ‰ Create a system calendar, a group calendar, and a user calendar.

 ‰ Display events using a WebCalendar Server Control with customizations.

c08.indd 239c08.indd 239 12/28/2010 1:56:42 PM12/28/2010 1:56:42 PM

240 x CHAPTER 8 REACHING PROSPECTS

 ‰ Display events using a ListSummary Server Control.

 ‰ Display events using a Content Block Server Control.

 ‰ Display a list of upcoming events.

 ‰ Output iCal feeds.

Creating a System Calendar, User Calendar, and Group Calendar

Creating a system calendar follows the same process as creating a standard folder in the Workarea.
The difference is what is displayed in the Content pane after creating it. To create a system calendar:

1. Open the Workarea after logging in as Admin, and go to the Content pane.

2. Right-click a folder in the folder tree and select Add Calendar. This brings up the Add
Calendar form, as seen in Figure 8-7.

FIGURE 8-7

This form is almost exactly the same as the Add Folder form, covered in Chapter 5.

3. Enter in a Calendar Name, select a taxonomy node, and then click Save. When the page
returns, it shows you an interface that is similar to the Folder View page, but with the excep-
tion that a calendar view is also visible. This is shown in Figure 8-8.

Interacting with the calendar in this view is the same as from the front end WebCalendar
Server Control, which is covered in more depth later in this section. The key point to note
about this view is that it supports dealing with events in two ways:

 ‰ Via the calendar itself: You use this to create new events, update event details, and
reschedule events.

c08.indd 240c08.indd 240 12/28/2010 1:56:42 PM12/28/2010 1:56:42 PM

Calendars x 241

 ‰ Via the interface you are used to using for content: The classic content interface is
useful in updating metadata, templates, and other related content details.

FIGURE 8-8

4. Try out the content interface now by fi rst creating an event. Double-click the calendar on a
day of your choice. This brings up the Edit Appointment form, shown in Figure 8-9.

5. The Title, Location, and Description fi elds are self-explanatory. The start date for the event
is shown underneath those three primary fi elds. By deselecting the All Day checkbox, three
additional fi elds will be shown. These fi elds allow you to specify the start time, as well as the
end date and time. Using these options allows you to specify the exact period that your event
will run. It is possible to create events that run for multiple days, but generally the preferred
practice is to use recurrence to defi ne the additional days, as each recurrence can then be
managed separately with its own details.

6. On the Recurrence tab, a single checkbox is shown, unchecked by default. By checking the
Recurrence checkbox, a group of additional fi elds is shown. These fi elds allow you to specify
the type of recurrence, as well as how long the event should run — defi nable as forever, after
a certain number of occurrences, or up until a specifi c date and time. The supported recur-
rence modes are:

 ‰ Daily

 ‰ Weekly

c08.indd 241c08.indd 241 12/28/2010 1:56:42 PM12/28/2010 1:56:42 PM

242 x CHAPTER 8 REACHING PROSPECTS

 ‰ Monthly by Date

 ‰ Monthly by Day

 ‰ Yearly

The difference between by Date and by Day is that the by Date option allows you to specify
a specifi c day number, where the by Day option is used for settings such as the fi rst day of
the month, or the last Sunday of the month.

FIGURE 8-9

7. There are two additional tabs on this form; these allow for setting taxonomy associations
and metadata settings. Because this calendar was associated with a taxonomy when you
created it, clicking that tab allows you to categorize this event into one or more taxonomy
nodes. Taxonomy categorization can be an integral part of how events are displayed, as each
created interface allows them to be fi ltered by taxonomy.

8. Enter My Event as the title for your event now, and and click Save, which returns you to
the calendar view, with the event listed above the calendar as well as shown on the calendar
itself, as shown in Figure 8-10.

As you can see, the new event has been added to the event list, along with the details of when the
event occurs and what type the event is. This event has the type Original, which means that it is the
base defi nition of the event. The other types are “Variance - Extra Occurrence” and “Variance -
Cancelled Occurrence.” Extra Occurrence means that it is a member of a recurring series whose

c08.indd 242c08.indd 242 12/28/2010 1:56:43 PM12/28/2010 1:56:43 PM

Calendars x 243

details have been changed for that day. A cancellation means that the event that should have
occurred on that day, due to a recurrence rule, has been cancelled.

FIGURE 8-10

The event is also shown with a DMS Menu instance, which allows content authors to perform
immediate actions on the content such as deleting it or moving it through an approval chain. Click
the title of the event on the list now to be taken to the detail view of the event. The detail view is
also shown in Figure 8-11.

The event detail view does not allow you to edit the event itself, but does allow you to manage the
summary, metadata, alias, content scheduling, templates, and taxonomy associations.

User and Group Calendars

User and group calendars are similar to system calendars in that they store events in the same way.
The difference is the location that these events are stored internally. When a user or community
group is created in the Ektron Framework, the system automatically adds a hidden folder for that
user or group. One of the properties available during the creation process is whether to create a cal-
endar for the new object — if checked, then a calendar folder is added underneath the private folder.

The upside to group and user calendars is that they maintain proper permissions automatically for
groups and users. The downside is that there is no content interface for the events or calendars in the
Workarea the way there is for System Calendars.

c08.indd 243c08.indd 243 12/28/2010 1:56:43 PM12/28/2010 1:56:43 PM

244 x CHAPTER 8 REACHING PROSPECTS

FIGURE 8-11

Let’s create a user calendar now.

1. Start by going to Settings Í Users in the Workarea, and select Admin.

2. Clicking the edit button brings up the edit user properties interface, with a tab labeled
Custom, shown in Figure 8-12.

FIGURE 8-12

c08.indd 244c08.indd 244 12/28/2010 1:56:43 PM12/28/2010 1:56:43 PM

Calendars x 245

3. On the Custom tab, there are two settings that are related to the calendar:

 ‰ Create User Calendar: Checking this box and saving creates the user calendar and
makes it available for use as a data source. It is not possible to roll back the creation of
a user calendar or a group calendar, as this can lead to loss of data. It is an option on
the user profi le for performance reasons — if your users do not create calendars, this
can make the system more responsive by reducing the number of folders in the system.

 ‰ Time Zone property: This list is generated from the Windows time zone list. When
a user selects a time zone, all calendar events from that time forward are calculated
from the version stored (based on GMT) to the user’s time zone. This allows users
across the globe to all see the event in their appropriate time zones. It is a required
fi eld, but if it has not been entered, for example for a user who was created program-
matically, the system displays the events in the server time zone.

4. Community groups have a similar method of creating user calendars, but the interface is
slightly different. Go to Settings Í Community Management Í Community Groups. Clicking
the Add Icon or selecting an existing group brings up the community group form. This form
has two checkboxes under the Features group, one of which is for Group Calendars, as
shown in Figure 8-13. The same caveats apply to this calendar as to user calendars.

FIGURE 8-13

c08.indd 245c08.indd 245 12/28/2010 1:56:43 PM12/28/2010 1:56:43 PM

246 x CHAPTER 8 REACHING PROSPECTS

Displaying Events Using a WebCalendar Server Control

The WebCalendar Server Control is the primary interface for Ektron calendars. The control uses the
Telerik Scheduler component internally for rendering, but supports a variety of overrides. Using the
server control with its default settings is straightforward. You’ll create these examples on a new Web
form. Create the Web form in the root of your site and call it Calendars.aspx, shown in Listing 8-4,
and drag the WebCalendar Server Control from the toolbox into the form of the new page.

LISTING 8-4: Calendars.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”calendars.aspx.cs” Inherits=”calendars” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title>Calendars</title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <CMS:WebCalendar ID=”uxWebCalendar” runat=”server”>

 </CMS:WebCalendar>

 </form>

</body>

</html>

The WebCalendar Server Control has a few key properties that are used as attributes on the control,
but data sources are encoded as inner XML. Table 8-4 shows the properties.

TABLE 8-4: WebCalendar Server Control Properties

PROPERTY DESCRIPTION

AllowEventEditing Setting this to false disallows editing (creating, updating,

and deleting) of events on the page. When true, events

are editable only if the logged-in user has the appropriate

permissions.

DefaultDisplayType The display mode the calendar is set to by default. Can be

set to Month, Week, or Day. Defaults to Month.

DisplayTemplatePath The path to the user control that will render the event on

the calendar. Defi nes bubble behavior as well as what

text displays. Defaults to ~\Workarea\WebCalendar\

DefaultTemplate\Display.ascx.

c08.indd 246c08.indd 246 12/28/2010 1:56:44 PM12/28/2010 1:56:44 PM

Calendars x 247

PROPERTY DESCRIPTION

IncludeJqueryTheme If set to false, this prevents the WebCalendar from

loading a jQuery theme, which is used to style the

form for creating and editing events. If set to true the

WebCalendar includes the Remond jQuery theme to

style the Edit Event form.

IncludeScriptManager The WebCalendar attempts to detect if there is already

a ScriptManager instance on the page. If there isn’t, it

adds one internally. Occasionally, depending on where

the external ScriptManager is in the control tree, it falsely

detects no ScriptManager. Set this to true if you run into

this issue.

UseUpdatePanel The WebCalendar uses an UpdatePanel internally to allow

for Async Postbacks. If you don’t want this behavior, set

UseUpdatePanel to false.

CssFile Defaults to ~/Workarea/WebCalendar/View/

WebCalendar.css. This can be pointed elsewhere to

modify the base styles.

In addition to the properties listed in Table 8-4, there are internally encoded properties to defi ne the
data sources for the calendar. The following code snippet shows a few examples of how this can be
achieved.

<CMS:WebCalendar ID=”uxWebCalendar” runat=”server”>

 <DataSource>

 <CMS:CalendarDataSource

 backColor=”AutoSelect”

 defaultId=”111”

 queryParam=”calendarId”

 sourceType=”SystemCalendar” />

 <CMS:CalendarDataSource

 backColor=”Blue”

 defaultId=”222”

 queryParam=”groupCalendarId”

 sourceType=”GroupCalendar” />

 <CMS:CalendarDataSource

 backColor=”DarkRed”

 defaultId=”333”

 queryParam=”userCalendarId”

 sourceType=”UserCalendar” />

 </DataSource>

</CMS:WebCalendar>

The WebCalendar in the previous snippet has three sources defi ned. Each source then has several
properties. Table 8-5 outlines the properties for CalendarDataSource.

c08.indd 247c08.indd 247 12/28/2010 1:56:44 PM12/28/2010 1:56:44 PM

248 x CHAPTER 8 REACHING PROSPECTS

TABLE 8-5: CalendarDataSource Properties

PROPERTY DESCRIPTION

defaultId The default ID to use. If the source is a system calendar, this is the folder ID. If the

source is a user or group calendar, this should be set to the user or group ID.

queryParam The query string parameter to use. If this is specifi ed and the query string contains

a parameter by the same name, the value overrides the defaultID property.

sourceType The type of the calendar. Can be GroupCalendar, UserCalendar, or

SystemCalendar. This switches the defaultID to key off the appropriate type.

backColor The color to display the event in. This is an enumeration.

In addition to these baseline data source properties, the CalendarDataSource tag also supports an
inner encoded list of taxonomy IDs to use as a fi lter against the particular source. For instance, a
developer can specify that the calendar should only show events from category ID 23 or 24 that are
in system calendar 432 using the following code snippet.

<CMS:WebCalendar ID=”uxWebCalendar” runat=”server”>

 <DataSource>

 <CMS:CalendarDataSource

 backColor=”AutoSelect”

 defaultId=”432”

 sourceType=”SystemCalendar”>

 <CMS:CategoryID categoryId=”23” />

 <CMS:CategoryID categoryId=”24” />

 </CMS:CalendarDataSource>

 </DataSource>

</CMS:WebCalendar>

When specifying multiple category IDs for a single data source, all events from
each category are included — it is an OR operation rather than an AND operation.

All of these settings can be confi gured through codebehind, allowing for items like a taxonomy tree fi l-
ter to be applied to the WebCalendar. The properties are stored as generic lists, making it straightfor-
ward to manage the sources. The following example achieves the same effect as the previous snippet.

Ektron.Cms.Controls.CalendarDataSource Source;

Source = new Ektron.Cms.Controls.CalendarDataSource();

Source.backColor = Ektron.Cms.Controls.EventColor.AutoSelect;

Source.defaultId = 432;

Source.sourceType = Ektron.Cms.Controls.SourceType.SystemCalendar;

Source.CategoryIDs.Add(new Ektron.Cms.Controls.CategoryID(23));

Source.CategoryIDs.Add(new Ektron.Cms.Controls.CategoryID(24));

uxWebCalendar.DataSource.Add(new Ektron.Cms.Controls.CalendarDataSource());

uxWebCalendar.Fill();

c08.indd 248c08.indd 248 12/28/2010 1:56:44 PM12/28/2010 1:56:44 PM

Calendars x 249

These steps allow you to display calendars on your site with a minimum of fuss, while achieving a
rich interface for your users and administrators. Deeper customizations can also be performed on
the WebCalendar — three main areas that people frequently want to customize on the WebCalendar
are the event rendering, the event editing form, and the styling on the calendar.

When referring to the event rendering of the WebCalendar, we are talking about the information
displayed for each event in the day, week, or month view. An example of the bubble is shown in
Figure 8-14. This bubble is created through the instantiation of a user control that is normally in
the Workarea at ~/Workarea/WebCalendar/DefaultTemplate/Display.ascx. To override this display,
copy the user control from the Workarea to another location on your site, and update the property
DisplayTemplatePath on the WebCalendar to refl ect the new location. The user control can then
be modifi ed to display anything you want.

FIGURE 8-14

As mentioned earlier, another common need is to modify the event editing form. This is also a user
control in the Workarea that is instantiated on demand. In this case, the user control is stored at
~/Workarea/WebCalendar/DefaultTemplate/AdvancedForm.ascx. There is no property that allows
this to be overridden to another location, but as the control is exposed, modifi cations can be made
directly to the control to support alternate functionality.

A caveat to modifying Workarea fi les is to remember that when you upgrade
your installation of the Ektron Framework, your modifi cations will be overwrit-
ten by the new versions of these fi les from Ektron.

c08.indd 249c08.indd 249 12/28/2010 1:56:45 PM12/28/2010 1:56:45 PM

250 x CHAPTER 8 REACHING PROSPECTS

A fi nal common set of modifi cations made to the WebCalendar is to customize the CSS included
by the control. The property CssFile allows you to point the WebCalendar somewhere other than
the default location for the CSS. The unmodifi ed fi le is stored in ~/Workarea/WebCalendar/View/
WebCalendar.css. To modify it, copy it somewhere else in the site, and update the CssFile prop-
erty to point at the new location. Inside the fi le, the style rules are broken into three main sections.
The fi le starts with the styles defi ned for the advanced form, followed by the base layout styles for
the WebCalendar view. That is then followed by a theme section, which defi nes the look and feel
including colors and images.

Displaying Events Using a ListSummary Server Control

Events stored in Ektron calendars are stored as a subtype of content. What this means is that all the
features that standard HTML content supports are also supported by WebCalendar events, including
taxonomy,metadata, search, permissions, and workfl ow.

 Additionally, since the events are stored in what is effectively a folder, they can be displayed by
most controls as standard content. For example, it is possible to use a ListSummary Server Control
to display a list of events from a calendar. As an example, the following code snippet will output the
result shown in Figure 8-15.

<form id=”form1” runat=”server”>

 <CMS:ListSummary runat=”server” ID=”uxListSummary” FolderID=”124” />

</form>

The tradeoff with this approach comes from how
the events are stored under-the-hood. As mentioned
earlier, the events are stored similarly to the iCalen-
dar standard. What this means is that the rules for
recurrence are stored as part of a master event, and
that additional occurrences or cancellations of recur-
rences are stored as variances in secondary content.
The outcome of this type of storage is that if you have
an event that recurs every week, it only shows up once
as a single piece of content. If you then cancel a single
occurrence of the event, the cancellation shows up as
a second piece of content. If you were then to modify a different occurrence and save it, you end up
with four total pieces of content. One of the additional items is the cancellation for that day, and the
other is the additional variance for that day.

For some uses this is fi ne, as you can write a custom XSLT against the XML to display what you
need from the event details, but in other cases you will be actually looking for a list of upcoming
events, which is covered later in this section.

Displaying Events Using a Content Block Server Control

In the same way the ListSummary Server Control can display a list of events from a calendar, you
can use the Content Block Server Control to display a detail view of an individual event. The Ektron
Framework internally uses an XSLT to transform the stored data for the event into a standardized

FIGURE 8-15

c08.indd 250c08.indd 250 12/28/2010 1:56:45 PM12/28/2010 1:56:45 PM

Calendars x 251

display layer. You can then combine this display layer with other standard Ektron controls, such as
the MessageBoard Server Control, to create a rich interface for people to interact with these events.
This section covers how to display the event on a Content Block Server Control, as well as how to
modify the display of the event by changing the XSLT.

In the Smart Form section of Chapter 6, you read how Smart Form designs are stored in packages. A
package contains fi ve major elements, from the schema to the input form. The key part of the pack-
age that is used to display the data in a content block, however, is the default XSLT.

Events in the Ektron Framework are based at their core on a Smart Form, which means the behavior
is almost exactly the same as any other Smart Form.

This includes the way the data is rendered through the Content Block Server Control. The hidden
Smart Form package contains a default XSLT that has the smarts to render the event defi nition in
an appropriate manner, depending on the language and time zone of the user. When an event ID is
specifi ed for a Content Block Server Control, it automatically renders the event using that predefi ned
XSLT. In this section, you render the event you created earlier using a content block. Once you’ve
investigated how the system behaves by default, you’ll learn how to create a custom XSLT for ren-
dering the data, while maintaining the intelligence supplied in the original.

To render an event into a Content Block Server Control, you need to know the event’s ID:

1. In the Workarea, navigate to the calendar built into the OnTrek site, at /MainSite/Content/
Company/Event Calendar.

2. Once there, look at the list of events that’s rendered just above the calendar in the Content
pane — the starter site ships with three events. We’ll display the Local User Group event,
which is ID 252, as shown in Figure 8-16.

FIGURE 8-16

c08.indd 251c08.indd 251 12/28/2010 1:56:45 PM12/28/2010 1:56:45 PM

252 x CHAPTER 8 REACHING PROSPECTS

You will use that value as the DefaultContentID value in the Content Block Server
Control.

3. Return to the Calendar.aspx fi le in Visual Studio, and replace the ListSummary Server
Control with a Content Block Server Control, as shown in the following snippet.

<form id=”form1” runat=”server”>

 <CMS:ContentBlock

 runat=”server”

 ID=”uxContentBlock”

 DefaultContentID=”252” />

</form>

When you reload the page in your browser, you should see something that resembles the
output shown in Figure 8-17. In this example, the event has a complex recurrence rule,
which is correctly interpreted by the XSLT and rendered into a verbal description of that
rule, displayed with the event.

FIGURE 8-17

While, the output is a bit bland, the markup is clean enough, so the display layer can be format-
ted using CSS to match the site it is being displayed on. But if you want to use different words for
some of the output, or change the order, or even skip some elements, a copy of the XSLT used in
the package is also provided in ~/Workarea/WebCalendar/XSL/default.xslt. This fi le can be cop-
ied elsewhere into your site, modifi ed at will, and then used to override the default package XSLT
for Web events.

To point your content block at the custom XSLT, use the DisplayXSLT property on the Content
Block Server Control. For example, on your site you copied the default XSLT to the XMLfi les direc-
tory, so you could update your content block code to look like the following snippet. Once you have
rewired it to use your custom XSLT, you can modify the webevent.xslt fi le until you are satisfi ed
with the format or language.

c08.indd 252c08.indd 252 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

Calendars x 253

<form id=”form1” runat=”server”>

 <CMS:ContentBlock

 runat=”server”

 DisplayXslt=”~/XmlFiles/webevent.xslt”

 ID=”uxContentBlock”

 DefaultContentID=”252” />

</form>

The XSLT fi le itself is fairly complex, and this section doesn’t go into it in depth, but there are
a few decisions that were made in the development of the WebCalendar system that may not be
apparent immediately. The main item to note is the custom extension functions that are used in the
XSLT — specifi cally ekext:convertUTCtoLocal and ekext:formatDateTime. By using the Saxon
processor packaged with the Ektron Framework to perform an XSLT2 conversion rather than an
XSLT1 conversion, Ektron could have avoided the need for these custom extensions, as date logic is
included with the XSLT2 specifi cation. However, the decision to use custom extensions was made
for two reasons: The localization included with the Saxon processor does not include data for all
regions, meaning that in some cases the localization of dates would fail. Additionally, by moving the
functions into the core Ektron stack, the XSLT became substantially simpler.

Display a List of Upcoming Events

The WebCalendar infrastructure also has a rich API for retrieving and modifying events. The major-
ity of this API can be accessed through the Ektron.Cms.Framework.Calendar.WebEvent class, but
there are a few additional functions available only through the Ektron.Cms.Content.Calendar
.WebEventManager class. Many of these functions are self-explanatory. For example there are func-
tions to Add, Delete, Update, and CancelOccurence. But the key function covered right now is the
GetEventOccurenceList function.

Whereas the ListSummary Server Control was useful in showing a list of events from the
perspective of content — one item per event defi nition, regardless of recurrences — the
GetEventOccurenceList is used to expand the recurrence rules into a full set of event occurrences,
and then correlate them with cancellations and additional occurrences. What this means is that
when you call GetEventOccurenceList you get output that matches exactly what you see on the
WebCalendar display for a given time period.

The output of this function is not added into a mode of display on the WebCalendar Server
Control because it is very straightforward to use one of the standard ASP.NET controls to display
the output. A common method of displaying the event list is to use the ASP.NET Repeater Server
Control.

Let’s walk through an example now of setting up the retrieval and display.

1. Return to the Calendar.aspx fi le in Visual Studio and open the codebehind for the fi le.

2. Retrieve the list of events. In this example, you’ll start with the current time and get the list
of events covered over the next month. You can optionally provide a Category ID to fi lter by,
but let’s skip that in this example.

3. Add the following code snippet to your fi le.

c08.indd 253c08.indd 253 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

254 x CHAPTER 8 REACHING PROSPECTS

 protected void Page_Load(object sender, EventArgs e)

 {

 List<Ektron.Cms.Common.Calendar.WebEventData> eventList;

 Ektron.Cms.Content.Calendar.WebEventManager webEventApi;

 webEventApi = new Ektron.Cms.Content.Calendar.WebEventManager();

 eventList = webEventApi.GetEventOccurrenceList(

 88, DateTime.Now, DateTime.Now.AddMonths(1));

 }

This code retrieves the list of WebEventData instances, each of which contains a single occurrence of
an event.

4. At this point, you can create an ASP.NET Repeater Server Control on the declarative side
and create that output formatting. Flip over to the Calendar.aspx fi le, and put the following
snippet in between the Form tags.

<asp:Repeater ID=”uxRepeater” runat=”server”>

 <ItemTemplate>

 Event Name: <%# Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).DisplayTitle%>

 Event Start: <%# Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).EventStart

.toString()%>

 Event Location: <%# Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).Location%>

 </ItemTemplate>

</asp:Repeater>

5. Now all that remains is to databind the Repeater Server Control to the list of occurrences
you retrieved through the API. The following amendment to the codebehind does this.

uxRepeater.DataSource = eventList;

uxRepeater.DataBind();

Now when you visit Calendar.aspx in your browser, you should get output like that shown in
Figure 8-18.

FIGURE 8-18

c08.indd 254c08.indd 254 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

Calendars x 255

For posterity’s sake, Listing 8-5 lists the complete code (both declarative and codebehind) for the
Calendar.aspx and Calendar.aspx.cs fi les.

LISTING 8-5: Calendar.aspx and Calendar.aspx.cs

CALENDAR.ASPX

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”calendars.aspx.cs” Inherits=”calendars” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title>Calendars</title>

</head>

<body>

<form id=”form1” runat=”server”>

 <asp:Repeater ID=”uxRepeater” runat=”server”>

 <ItemTemplate>

 Event Name: <%# (Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).DisplayTitle%>

 Event Start: <%# (Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).EventStart.toString()%>

 Event Location: <%# Container.DataItem as

 Ektron.Cms.Common.Calendar.WebEventData).Location”)%>

 </ItemTemplate>

 </asp:Repeater>

</form>

</body>

</html>

CALENDAR.ASPX.CS

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class calendars : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 List<Ektron.Cms.Common.Calendar.WebEventData> eventList;

 Ektron.Cms.Content.Calendar.WebEventManager webEventApi;

continues

c08.indd 255c08.indd 255 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

256 x CHAPTER 8 REACHING PROSPECTS

 webEventApi = new Ektron.Cms.Content.Calendar.WebEventManager();

 eventList = webEventApi.GetEventOccurrenceList(

 88, DateTime.Now, DateTime.Now.AddMonths(1));

 uxRepeater.DataSource = eventList;

 uxRepeater.DataBind();

 }

}

Outputting iCal Feeds

One fi nal frequently asked question about the feature set that WebCalendars provides is how
to export events from the Ektron Framework and import them into another application such as
Outlook, and vice versa. The Ektron Framework does not support importing iCal or vCal fi les from
other sources, but it generates them in order to move events from the framework to another software
platform.

In fact, the default interface for the WebCalendar Server Control includes a link to download the
.ICS fi le for each event. By hovering over the event link, the event bubble appears on the calendar,
including a download link, as seen in Figure 8-19.

FIGURE 8-19

LISTING 8-5 (continued)

c08.indd 256c08.indd 256 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

Video/Customer Testimonials x 257

The download link in the bubble points to the fi le ~/Workarea/WebCalendar/View/IcalGenerator
.ashx and includes the query string parameter eventid. This fi le generates feeds for entire calendars
as well, by specifying the calid query string parameter instead. This ability allows for programs to
have live feeds of calendars if they support it.

The feed generated supports version 2 of the iCal standard, which allows it to also specify the
originating time zone information for the event. This means that whenever users worldwide add
the event to their calendars, the event appears in their local time zones, and respects the translation
effects of moving across potentially two daylight savings boundaries in the case of a recurring event.

VIDEO/CUSTOMER TESTIMONIALS

This section covers how to work with video fi les and Flash in the CMS. The Ektron Framework is
designed to make this as straightforward as possible, while allowing developers to treat the videos as
content so that attributes can be set on the fi les and concepts such as metadata can still be applied to them.

There are also options other than managing your videos within the Ektron Framework. For exam-
ple, the Ektron Framework ships with a BrightCove PageBuilder Widget, which allows you to use
the BrightCove video management service and distributed content network to embed corporate vid-
eos into your site and easily track statistics. We’ll cover these in more depth after we discuss how to
serve your fi les from the Ektron Framework.

This section corresponds to the Testimonials section of OnTrek. The testimonials page is comprised
of a single Flash object that retrieves the testimonial information from a Smart Form confi guration,
and then displays it inside the container. In this scenario, you will simplify the example by working
with a single Flash object. This section covers how to add the object to the system, manage options
on it, and display it. It also discusses some of the alternatives to managing the video within the
Ektron Framework. The specifi c items in this section will be:

 ‰ Adding an object to the DMS

 ‰ Modifying settings on the managed object

 ‰ Displaying the managed object

 ‰ Alternatives to using the Ektron Framework to manage your assets

Adding an Object to the DMS

Adding assets to the framework is an action performed in the Workarea.

1. Open the Workarea and log in as Admin.

2. Once in the Workarea, navigate to the Content tab, and drill down in the tree to Mainsite/
Content/Clients/Client Testimonials.

3. Once in the folder, there is an icon on the toolbar that shows a window with a green arrow
. This is the main method of adding assets to the DMS. Clicking the icon brings up the

File Upload interface, which has two tabs:

c08.indd 257c08.indd 257 12/28/2010 1:56:46 PM12/28/2010 1:56:46 PM

258 x CHAPTER 8 REACHING PROSPECTS

 ‰ File Upload: Shown in Figure 8-20 this tab uses a standard fi le upload button normal
in most browsers. Simply navigate to the fi le and click upload to add the media to
your site as a managed item.

FIGURE 8-20

 ‰ Multiple DMS Documents: Shown in Figure 8-21 this tab provides an interface that
displays a fi le selector inline on the page, and can be used to upload multiple fi les at
the same time. It uses DAV as the backend service, which can be very user friendly,
but the downside is that it can be temperamental about its confi guration. This is why
both options are presented, so that even if DAV has a hiccough, you can still add fi les
to the DMS.

4. Go to the Multiple DMS Documents tab.

5. Navigate using the presented folder tree in the Web page to C:\Inetpub\wwwroot\OnTrek\
uploadedfi les\MainSite\Client_Testimonials, and check the box next to Beth tyler.fl v. Then
click Upload. When the fi le fi nishes uploading, the Content pane in the Workarea will
refresh to the list view of the content in the folder. The list now includes the Testimonial
.swf fi le.

The alternative to uploading through the upload interface is to select New Í DMS
Document. This interface is more similar to authoring HTML content, in that you can enter
the summary, categories, and metadata at the same time as you upload the fi le through the
standard fi le browser interface. This is shown in Figure 8-22. Either method of adding fi les
is fi ne, as you can get to the same interface now on your drag-and-drop uploaded fi le by
simply clicking it in the list of content in the folder.

c08.indd 258c08.indd 258 12/28/2010 1:56:47 PM12/28/2010 1:56:47 PM

Video/Customer Testimonials x 259

FIGURE 8-21

FIGURE 8-22

Click the fi le now to bring up the properties. In this interface, you can see that working with your
assets is exactly the same as working with normal HTML content, with all the same capabilities.

Modifying Settings on Managed Objects

Editing the settings on the uploaded Flash video also works the same way as normal content. Simply
click the edit icon on the toolbar, and you will be shown all the options available for the current
type of content. The edit screen is shown in Figure 8-23.

c08.indd 259c08.indd 259 12/28/2010 1:56:47 PM12/28/2010 1:56:47 PM

260 x CHAPTER 8 REACHING PROSPECTS

FIGURE 8-23

The main difference from normal content is that the Content tab shows a series of options that
affect how the Flash object is shown on the site. The options differ based on whether the object is a
SWF or other type of media. These options are outlined in Table 8-6.

TABLE 8-6: Flash Settings in the Workarea

SETTING DESCRIPTION

Width Width of the object in pixels. The DMS attempts to automatically retrieve this

value when the fi le is uploaded.

Height Height of the object in pixels. The DMS attempts to automatically retrieve this

value when the fi le is uploaded.

AutoStart A Boolean to determine whether the video should start playing immediately,

or whether it should be clicked on to initiate playing on the page.

Loop Sets whether to infi nitely loop the video. Use PlayCount if you want to loop a

specifi c number of times.

c08.indd 260c08.indd 260 12/28/2010 1:56:47 PM12/28/2010 1:56:47 PM

Video/Customer Testimonials x 261

SETTING DESCRIPTION

Menu Determines whether to show the menu.

ContextMenu Enables the right click context menu on videos.

BGColor Sets the default background color of the object tag when rendered in a

content block.

Align Determines where to align the object in its containing element. Can be set to

Left, Right, Top, or Bottom.

SAlign More specifi c align options for browsers that support it. Can be set to Left

Edge, Top Edge, Right Edge, Bottom Edge, Top Left, Top Right, Bottom Left,

and Bottom Right.

Quality The default quality level to use for the Flash player.

Scale Determines how to scale the object. Can be set to Default (Show all), No bor-

der, or Exact Fit.

WMode Sets Flash to the corresponding window mode: can be set to Window,

Transparent, or Opaque. This is frequently the issue in shine-through prob-

lems, where the Flash object covers up elements like menu navigation when

it shouldn’t. If you are having an issue with shine-through, try setting this to

Transparent.

uiMode Determines whether to show a full ui, or a minimized ui for video playback.

WindowlessVideo Microsoft alternative to WMode.

In addition to the options on this screen, there is a preview of the object, as well as an upload inter-
face. Remember that to update the object with a new version, it must have the same name; otherwise
it is uploaded as a different object in the DMS.

These settings are applied whenever the item is displayed through a Content Block Server Control,
and are implemented through setting the correct parameters on the object tag that is written to the
page. Flash objects can override certain of these settings, but in general they can help you to achieve
the exact look and feel you desire for your site.

Displaying the Managed Object

Working with objects in the DMS is very straightforward. All the logic to print the correct
HTML to the page is contained in the Content Block Server Control, which means all you need
to display them is that same control. Let’s test it out by creating a new page in the root of the site
called Video.aspx. Drag a Content Block Server Control onto the page so it looks like the code in
Listing 8-6.

c08.indd 261c08.indd 261 12/28/2010 1:56:47 PM12/28/2010 1:56:47 PM

262 x CHAPTER 8 REACHING PROSPECTS

LISTING 8-6: Video.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”Video.aspx.cs” Inherits=”Video” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:ContentBlock

 ID=”ContentBlock1”

 runat=”server”

 DefaultContentID=”86” />

 </div>

 </form>

</body>

</html>

Return to the Workarea and make sure your fi le has been published and then view the properties
to fi nd out the content ID of the video. Replace the number 86 with the appropriate value for your
object. When you save the fi le and view it in the browser, you will see your video playing with your
options.

Alternatives to Using the Ektron Framework

The Ektron Framework works very well for certain situations, such as rich applications, or raw SWF
fi les containing video. However, it isn’t the end-all be-all when it comes to video. For instance, FLV
videos, which require a Flash video player to be displayed, will not work with just a Content Block
Server Control to display them. There is, however a Flash Widget that can be used with PageBuilder
to display FLVs.

Ability to display is not the only consideration when making a choice about how to deliver your con-
tent. Also keep in mind that video is one of the most bandwidth-intensive functions you can perform
with a site. Additionally, because of the way ASP.NET is structured, it is not very good at keeping
connections open for long periods of time, which is something that downloading large fi les, like video,
requires. There is also the question of the ability to stream fi les — ASP.NET can be confi gured to do
stream fi les, but it does require some hacking around in the system to get streaming working.

Ektron is aware of these considerations. One solution supplied by Ektron is the BrightCove Widget,
which integrates with the third-party vendor to allow you to create a collection of videos that can be
displayed on your site with solid analytics and a clean player.

c08.indd 262c08.indd 262 12/28/2010 1:56:47 PM12/28/2010 1:56:47 PM

Take Home Points x 263

Another common solution is to use a free service like YouTube to manage your videos, and then
embed the player onto your page. All of these options allow you to easily share videos with potential
clients and site visitors.

TAKE HOME POINTS

In this chapter, you learned the following:

 ‰ ListSummary Server Control: You added one more fundamental feature to your tool belt in
the ListSummary Server Control, which allows you to easily generate lists of content based
on the folder they are contained in. It also allows for straightforward modifi cation of the
output layer through a rich selection of properties as well as the ability to modify the output
entirely through the use of XSLT and EKML.

 ‰ EKML: This is the fi rst time the book has covered EKML. While it can be simplistic, it can
also be a powerful way of easing development time through the elimination of one of the
more complicated aspects of developing for the Ektron Framework: the XSLT.

 ‰ XSL Transforms: These are an extremely powerful tool for translating from a raw data feed
to user interface ready HTML. In them, you have a Turing complete language that can do
nearly anything asked of it.

 ‰ Creating and Managing Calendars: These were completely rewritten for version 8.0 of the
Ektron Framework. Specifi cally, the chapter covered the concept of the three different cal-
endar types: user calendars, group calendars, and system calendars. These three types are
not very different in their underpinnings. But when displaying them, the system can simplify
things greatly for you by not requiring you to fi nd out a particular user’s hidden calendar ID,
as an example.

 ‰ Displaying Calendars and Events: This chapter also covered myriad ways of displaying the
data from them, as well as how to customize those display layers in depth. The ability to
signifi cantly change how an event is rendered in a Content Block Server Control and how to
modify the way event bubbles appear on the WebCalendar Server Control are both capabili-
ties that you will likely need to tap into at some point in your development exercises, and
now you have the tools to do so.

 ‰ Videos: You explored how videos are stored in the Ektron Framework. This increasingly use-
ful feature has been explored on many of the sites Ektron has been used for, and is one of
the primary identifi ed needs of many companies’ Web projects. The chapter discussed some
of the tradeoffs of using an external video management service, and also discussed the strong
capabilities and integration provided through object management in the DMS.

Through the judicious use of these features, you can deliver strong marketing campaigns to your
company, as well as help customers fi nd out about your organization and why they should become a
customer.

c08.indd 263c08.indd 263 12/28/2010 1:56:48 PM12/28/2010 1:56:48 PM

c08.indd 264c08.indd 264 12/28/2010 1:56:48 PM12/28/2010 1:56:48 PM

9
Generating Leads through
Campaign Optimization

 ‰ How do you create reusable PageBuilder Wireframes?

 ‰ How do you encapsulate functionality into PageBuilder Widgets?

 ‰ How do you optimize performance with Multivariate Testing and Web

Analytics?

 ‰ What are collections and HTML Forms?

One of the primary purposes of websites is to support an organization’s online marketing ini-
tiatives with SEO, branding, advertising, and lead generation. In many organizations, website
modifi cations need to occur rapidly to respond to sales and marketing efforts. Unfortunately,
these requests often overwhelm IT and development teams and create a backlog of work, inter-
rupting development schedules and affecting production deadlines. To add insult to injury,
there is often little understanding of how these online efforts are performing until there’s a
noticeable decline in leads (number of demo requests, downloads, search referrals, and so on).
Improving the performance of such campaigns only adds more high-priority crisis-mode work
to the IT and development backlogs.

The Ektron Framework provides developers with a set of tools that can improve an orga-
nization’s overall effi ciency by streamlining processes and removing the bottlenecks that
commonly exist between marketers and Web developers. The Ektron PageBuilder helps you
create reusable templates called PageBuilder Wireframes; with PageBuilder Widgets mar-
keters can quickly assemble and launch campaign landing pages, micro-sites, or marketing
forms without the involvement of IT or development; Ektron’s Multivariate Testing and Web
Analytics helps marketers determine page performance and optimize them as necessary; col-
lections and HTML forms, two technologies that are commonly used on landing pages, are
also discussed.

c09.indd 265c09.indd 265 12/28/2010 1:57:52 PM12/28/2010 1:57:52 PM

266 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

By the end of this chapter, you will understand how these tools help you launch and optimize new
campaign or marketing initiatives. The Ektron Framework gives people the tools they need to do
their jobs effi ciently. Web developers focus on building Web technology, while marketers focus on
assembling marketing pages, testing their performance, and optimizing their results.

USE CASE

This section gives you a continuation of the use cases that started in Chapter 8. It connects the
exercises you will perform in this chapter with the plan laid out in the implementation guide,
and puts a story to the features we will cover in this chapter, specifi cally the PageBuilder Feature,
Multivariate testing, Analytics, Collections, and HTML Forms. The Use Case outlined here intro-
duces the primary actor — Derek, a site visitor who is performing Internet research, describes the
expected scenario, and defi nes the desired outcome.

THE ONTREK CAMPAIGN LANDING PAGE

OnTrek’s Director of Marketing needs to launch a landing page to serve as a
starting point for visitors arriving from a new online advertising campaign. This
campaign is designed to attract technical people researching software products.
The information offered by the landing page will accommodate a technical audi-
ence and highlights a particular product offering from OnTrek. The landing page
includes a brief video clip featuring a product demonstration, links to product
white papers, and other product related resources. Figure 9-1 shows the Wireframe
taken from the OnTrek Implementation Guide discussed in Chapter 3.

Description

The OnTrek Software Evaluation Campaign Landing Page will provide technical
people researching for Doodads with the technical information they need to choose
OnTrek’s Doodads. The landing page will highlight the OnTrek Doodads API,
documentation, and training videos through a two-minute video. The goal of the
landing page is to convince the site visitors to provide their contact information to
receive a one-on-one demo from an OnTrek Sales Engineer.

Actor

Derek is an employee at Acme Inc. and is researching options for his company’s
new Doodad. Since Derek is a technical employee, he cares about the Doodad’s
ability to integrate with existing systems, so he is looking for something with an
API and documentation. Derek is primarily performing his research online
by reading reviews, discussion forums, and other information found through
Web searches.

c09.indd 266c09.indd 266 12/28/2010 1:57:56 PM12/28/2010 1:57:56 PM

Use Case x 267

FIGURE 9-1

Scenario

In this scenario, Derek:

1. Performs a Web search using a search engine such as Google or Bing to fi nd and
compare products. He searches using the phrase “Doodad” and notices a high-
lighted search result at the top of the list. This is a paid search listing purchased
by the OnTrek marketing group.

2. Clicks the paid search listing and is taken to the OnTrek campaign landing page.

3. Watches the two-minute video, which provides a technical overview of the
OnTrek Doodad API.

4. Clicks the links listed beneath the video to read through the supporting documen-
tation, which includes white papers and technical documentation.

continues

c09.indd 267c09.indd 267 12/28/2010 1:57:56 PM12/28/2010 1:57:56 PM

268 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

5. Clicks the call-to-action button to request a one-on-one technical demo with
an OnTrek Sales Engineer and is taken to the Request a Demo form.

6. Completes and submits the HTML form.

Outcome

We will track the number of visits to the landing page, the number of visits to the
HTML form, and the number of form completions. A successful outcome is a
request for a demo. A successful campaign is one where at least 2 percent of all
visitors to the landing page Request a Demo by submitting a form with valid con-
tact information.

UNDERSTANDING THE TECHNOLOGY

The cornerstone technology in this chapter is Ektron PageBuilder. From a developer’s perspective,
Ektron PageBuilder provides the framework on which the Ektron Widgets and Wireframes are
created. Widgets are ultimately .NET User Controls (.ASCX fi les) that encapsulate site functional-
ity and the user interface in a reusable way. Wireframes are reusable .NET templates (.ASPX fi les)
that defi ne DropZones, regions of the page that can be populated with widgets.

From a developer’s perspective, you leverage everything you know about .NET ASCX User Controls
and .NET ASPX Templates when creating Ektron PageBuilder Widgets and Wireframes. One advan-
tage of using a widget over a standard UserControl is that they allow someone like a Marketer to
manipulate the widget’s properties through the browser that a developer chooses to expose.

From a marketer’s perspective, PageBuilder allows non-technical people to quickly assemble Web
pages visually, in the Web browser, without needing physical access to the Web server or assistance
from a Web developer. The marketer selects a Wireframe, populates it with widgets, and publishes it
using a friendly URL (see Figure 9-2).

A developer has complete control and fl exibility over the Wireframes and widgets that are created
and exposed to the marketer through PageBuilder. The process of creating an Ektron Widget is iden-
tical to the process of creating a .NET User Control; an Ektron Widget is ultimately an extension of
a User Control since it derives from the System.Web.UserControl. Similarly, Wireframes are simply
ASPX templates that use special Ektron Server Controls for denoting DropZones. From a devel-
oper’s perspective, working with PageBuilder feels very much like building a componentized, User
Control-based ASP.NET website.

In this chapter, you’ll create a number of widgets componentized for the functionality required for
the Request a Demo landing page. One of these widgets encapsulates the Ektron Collections Server
Control. You can think of the Ektron Collections as a static list of managed content items, similar in
concept to a playlist in a music player such as Apple iTunes, in that the list is manually defi ned. The

(continued)

c09.indd 268c09.indd 268 12/28/2010 1:57:58 PM12/28/2010 1:57:58 PM

Understanding the Technology x 269

added benefi t is that any modifi cations to the collection can require the approval of an administra-
tor, so you have a single authority or group responsible for the collection content. Collections are also
language-aware, which means different versions of the content can display depending on the visitor’s
language selection for the site. The “Collections” technical section will walk you through the process
of creating a Collections Widget and go into more depth on its capabilities.

FIGURE 9-2

You’ll create another widget containing an HTML form that will be used to build the Request a
Demo form page. Ektron provides robust HTML form capabilities that allow you to build tradi-
tional HTML forms containing various input elements, such as textboxes, option lists, with the
added ability to defi ne client-side form validation rules, enable spell checking, and more, all using
the WYSIWYG authoring environment.

The purpose for the campaign landing page is to gather information from prospects. To deter-
mine whether or not the marketing campaign’s key success metrics are met, Web Analytics and
Multivariate Testing will be used. Web Analytics allow us to measure the number of impressions
and conversions, while Multivariate Testing will help us to optimize the overall performance of our
campaign by testing the effectiveness of content and modifying it according to the results of the test.

In summary, this section covers:

 ‰ PageBuilder

 ‰ Widgets

 ‰ Collections

c09.indd 269c09.indd 269 12/28/2010 1:57:58 PM12/28/2010 1:57:58 PM

270 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 ‰ HTML forms

 ‰ Multivariate Testing

 ‰ Web Analytics

IMPLEMENTATION USING COLLECTIONS

Collections have been referred to as the butter knife of the CMS — they’re simple and can be used
in a number of situations. As such, they’re often the fi rst tool a developer turns to when tight control
over a list of items is needed. In practice, you see projects use collections for promoting job postings,
announcing press releases, listing knowledge base articles, and providing the underpinnings of a
banner ad rotator. Given their inherent simplicity, ease of use, and overall fl exibility, you’ll fi nd col-
lections to be a very valuable addition to your Ektron Web developer toolbelt.

In its simplest form, a collection is a hand-crafted list of content items. Content authors create these
editorial-driven lists to serve as a navigation aid to help site visitors discover content objects such
as documents, multimedia, PageBuilder pages, or any type of managed asset. A collection is similar
in some ways to a ListSummary (see Chapter 8) because you can use a collection to display a list of
content items and developers can customize it to render those items in any conceivable way, such as
a bulleted list, Cover Flow, accordion, and so on. However, a collection is the only content list con-
trol that gives editors exclusive control over which items are included in the set and also control the
order of the items.

Marketing will use the Collection Widget that you implement in this section to place specifi cally
chosen content items (a white paper, technical documentation, and a customer testimonial) on the
campaign landing page.

Creating a collection starts in the Workarea, either from the Collections menu (Figure 9-3) or from
the content folder tree. Creating a collection follows the same two-step process regardless of which
location you create it in — provide a name for the collection and then browse the content folder
structure and select the items you want included. You can include any item available through the
content folder tree such as content blocks, blog posts, calendar events, and documents.

Collections are language-aware, which means that a website publishing content in multiple languages
can choose to create a language-specifi c edition of a collection. When a site visitor browses to a
language-specifi c version of the site, any collections present display in the currently selected language.

The two options available for displaying a collection on a Web page are as follows; each has its own
benefi t:

 ‰ The Collection Widget: Available to use on PageBuilder-driven sites. This is useful in situa-
tions where a business user, such as a member of the marketing department, needs the ability
to add or remove items from the collection.

 ‰ The Collection Server Control: Useful in cases where a developer needs to maintain control
over its display and position and wants to effectively “lock down” a list of items to prevent
modifi cations.

c09.indd 270c09.indd 270 12/28/2010 1:57:58 PM12/28/2010 1:57:58 PM

Implementation Using Collections x 271

The implementation section focuses on the Collection Widget because the goal
in this chapter is to allow a marketer to assemble the list of content items that
displays on the landing page.

The Request a Demo campaign landing page uses a collection to display the list of links. In this sec-
tion, you start the process of fl eshing out the landing page using the Collection Widget to implement
it. This section covers the following steps:

 ‰ Creating the collection

 ‰ Putting the Collection Widget on your site using PageBuilder

 ‰ Customizing the presentation of the collection

Creating a Collection

The process of creating a collection begins in the Workarea
through either the Collections menu or the Content menu. To
create a collection through the Collections menu, follow these
steps:

1. Click the Workarea’s Content tab. From this screen
you can either right-click the Collection list and select
Add Collection or click the Add icon, as shown in
Figure 9-3.

The Add Collection Form appears in the display pane
and allows you to defi ne your collection options, as
shown in Figure 9-4.

2. Enter Request a Demo Promotion as a name for your
collection in the Title fi eld. This must be a unique name
and can contain letters, numbers, and other characters.
The Title is available through the website if you choose
to display it. In practice it is typically used only within
the Workarea to identify your collection.

3. Enter the path to a .NET Template in the Template fi eld. If you specify a template, all links
in the list of content items will use this path. If you leave this fi eld empty, each content item
will use its QuickLink.

4. Enter a short description for your collection. Like the Title, this information is available to
the website, but in practice it is used within the Workarea.

5. Select the Include Subfolders checkbox. This permits users to populate the collection with
content items located in child folders; otherwise they’re limited to choosing content items
that exist in the selected folder exclusively.

FIGURE 9-3

c09.indd 271c09.indd 271 12/28/2010 1:57:58 PM12/28/2010 1:57:58 PM

272 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIGURE 9-4

6. Deselect the Approval is a required checkbox. If this box is checked, changes to the content
need to be approved by an authority before being published.

7. Click Save to save your collection. You are returned to the list of collections. You will see
your newly created collection in the list, as shown in Figure 9-5.

Adding to the Collection

Now that you’ve created the collection, you need to add to it. For the sake of this example, add
the following content items, located in the /MainSite/Content/Campaigns/SelfServe HelpDesk Pro
Release folder of the OnTrek starter site:

 ‰ About SelfServe HelpDesk Pro

 ‰ SelfServe HelpDesk Pro Datasheet

To add these items:

1. Navigate to the collection to which you want to add items.

2. Click the Add icon.

c09.indd 272c09.indd 272 12/28/2010 1:57:59 PM12/28/2010 1:57:59 PM

Implementation Using Collections x 273

3. Use the Path fi eld to navigate through the content tree and select the content items to include
in the collection, as shown in Figure 9-6. The Path value represents the location where
the collection was created in the content tree. For collections created via the Collections
Accordion item, the folder path is automatically set to the root.

FIGURE 9-5

4. If you are adding a specifi c type of content to the collection, you can use the All Types fi lter
to limit the content items displayed.

As previously noted, it is possible to have language-specifi c versions of each collection. From a devel-
oper’s perspective this has little impact, since the CMS handles selection of the appropriate version
of the collection based on the site’s language.

Putting the Collection on the Landing Page

From a developer’s standpoint, you can leverage the Collection Widget that comes with the CMS
with very little modifi cation, as it satisfi es the requirements outlined in the Implementation Guide.
The Collection Widget is provided with every installation of the CMS; you can fi nd it in the Widgets
directory under your site root.

c09.indd 273c09.indd 273 12/28/2010 1:57:59 PM12/28/2010 1:57:59 PM

274 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIGURE 9-6

To put the Collection Widget on your page:

1. Edit the SelfServ HelpDesk Campaign landing page located at /MainSite/Pages/Experiments
and expand the Widget Control Set (the process of Editing a PageBuilder page is discussed
later in this chapter).

2. Filter the list of controls visible by typing collection into the Filter Control List textbox, as
shown in Figure 9-7.

3. Drag and drop the Collection Widget into the location of the Wireframe defi ned in the
Implementation Guide.

4. Click the Edit icon in the top-right corner of the Collection Widget (see Figure 9-8). You will
now see the Editing Widget dialog box; the Collection Widget is in Edit mode, as shown in
Figure 9-9.

5. Select the collection you just created from the dropdown list of available collections. The
number preceding the name is its Collection ID.

6. Enter a page size. The Page Size fi eld indicates the number of items displayed in the list before
it starts to page. Although you only have three items to display, the Implementation Guide
specifi es that fi ve links may be displayed here, so let’s limit the number of items displayed.

c09.indd 274c09.indd 274 12/28/2010 1:57:59 PM12/28/2010 1:57:59 PM

Implementation Using Collections x 275

FIGURE 9-7

FIGURE 9-8

7. Deselect the Teaser checkbox. When selected, the Collection Widget displays the content
item’s link followed by its teaser.

8. Because the Implementation Guide limits the number of items to fi ve without paging, deselect
the EnablePaging checkbox.

9. The Implementation Guide calls for a list of links, with no icons displayed, so uncheck the
IncludeIcons checkbox.

10. Because the links should follow the URL defi ned in the QuickLink, deselect the
DisplaySelectedContent checkbox. When this is checked, links post back to the current page,
passing the content ID of the item clicked. The Collection Widget then displays that content
item inline.

Customizing the Presentation of the Collection Widget

From a developer’s standpoint, it is important to note that the Collection Widget is implemented
using the Collection Server Control. Just as with the Collection Widget, the Collection Server
Control is used to display a collection on a Web page. The widget simply acts as a wrapper for the
functionality.

The two are similar in that they both provide the ability to control which collection is displayed, how
many items appear, whether paging is enabled, and so on, but the server control provides options not

c09.indd 275c09.indd 275 12/28/2010 1:57:59 PM12/28/2010 1:57:59 PM

276 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

exposed through the widget. As a developer, you can take advantage of the Collection Server Control’s
additional capabilities by modifying the default implementation of the Collection Widget.

FIGURE 9-9

The Implementation Guide specifi es that the collection should display as a simple bulleted list of
links. If you look at the HTML source code produced by the widget, you will fi nd that its markup
uses an HTML <table>. We can modify its implementation and instruct the Collection Server
Control to display the items as a bulleted list using unordered list HTML elements (and)
instead of <table>, taking advantage that Ektron Server Controls expose their data as XML and
provide a mechanism for defi ning an XSLT to control the markup rendered to the browser.

The fi le that implements the Collection Widget is Collection.ascx and its source code is located in the
Widgets directory (~/Widgets/Collection.ascx). Opening the fi le shows a standard widget implemen-
tation using a MultiView Server Control with two view panels: View and Edit. Listing 9-1 shows the
source code for the View panel containing only an ASP: Label Server Control. The Collection Server
Control is instantiated in the Collection Widget’s codebehind fi le, so we’ll explore that next.

LISTING 9-1: ~/Widgets/Collection.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”Collection.ascx.cs” Inherits=”widgets_Collection” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

 TagPrefix=”CMS” %>

<asp:MultiView ID=”ViewSet” runat=”server”>

c09.indd 276c09.indd 276 12/28/2010 1:58:00 PM12/28/2010 1:58:00 PM

Implementation Using Collections x 277

 <asp:View ID=”View” runat=”server”>

 <asp:Label ID=”Text” runat=”server” Visible=”false”>Select a Collection</

asp:Label>

 </asp:View>

 <asp:View ID=”Edit” runat=”server”>

 <div id=”<%=ClientID%>_edit” class=”LSWidget”>

 <table style=”width: 95%;” class=”ekColEditView”>

 <tr>

 <td>Collection Id:</td>

 <td>

 <asp:DropDownList ID=”collectionlist” runat=”server”></asp:DropDownList>

 </td>

 </tr>

 <tr style=”font-size: 80%; color: #888;”>

 <td>Description:</td>

 <td>

 </td>

 </tr>

 <tr>

 <td>Page Size:</td>

 <td>

 <asp:TextBox ID=”pagesize” runat=”server” Style=”width: 95%;”></

asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Teaser:</td>

 <td>

 <asp:CheckBox ID=”TeaserCheckBox” runat=”server” Checked=”true” />

 </td>

 </tr>

 <tr>

 <td>EnablePaging:</td>

 <td>

 <asp:CheckBox ID=”EnablePagingCheckBox” runat=”server” Checked=”false”

/>

 </td>

 </tr>

 <tr>

 <td>IncludeIcons:</td>

 <td>

 <asp:CheckBox ID=”IncludeIconsCheckBox” runat=”server” Checked=”false”

/>

 </td>

 </tr>

 <tr>

 <td>AddText:</td>

 <td>

 <asp:TextBox ID=”AddTextTextBox” runat=”server”></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>SelTaxonomyID:</td>

continues

c09.indd 277c09.indd 277 12/28/2010 1:58:00 PM12/28/2010 1:58:00 PM

278 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 <td>

 <asp:TextBox ID=”SelTaxonomyIDTextBox” runat=”server”></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>DisplaySelectedContent:</td>

 <td>

 <asp:CheckBox ID=”DisplaySelectedContentCheckBox” runat=”server” />

 </td>

 </tr>

 <tr>

 <td></td>

 <td>

 <asp:Button ID=”CancelButton” CssClass=”LSCancel” runat=”server”

Text=”Cancel” OnClick=”CancelButton_Click” />

 <asp:Button ID=”Button1” runat=”server” OnClick=”SaveButton_Click”

Text=”Save” />

 </td>

 </tr>

 </table>

 </div>

 </asp:View>

</asp:MultiView>

To customize the markup created by the Collection Widget:

1. Open the Collection Widget codebehind, ~/Widgets/Collection.ascx.cs. The relevant section
of code is the SetOutput() method and begins on line 62. The source code for this method
is shown in Listing 9-2.

LISTING 9-2: SetOutput() Method from ~/Widgets/Collection.ascx.cs

 protected void SetOutput()

 {

 if (CollectionId > 0)

 {

 Ektron.Cms.Controls.Collection Collection1 = new Ektron.Cms.Controls.

Collection();

 Collection1.Page = Page;

 Collection1.DefaultCollectionID = CollectionId;

 Collection1.DisplayXslt = (Teaser) ? “ecmTeaser” : “ecmNavigation”;

 Collection1.IncludeIcons = IncludeIcons;

 Collection1.MaxResults = PageSize;

 Collection1.EnablePaging = EnablePaging;

 Collection1.AddText = AddText;

 Collection1.SelTaxonomyID = SelTaxonomyID;

 Collection1.ContentParameter = DisplaySelectedContent ? “id” : “no_id”;

 if (DisplaySelectedContent && Request.QueryString[“id”] != null)

 {

 long.TryParse(Request.QueryString[“id”], out DynamicId);

LISTING 9-1 (continued)

c09.indd 278c09.indd 278 12/28/2010 1:58:00 PM12/28/2010 1:58:00 PM

Implementation Using Collections x 279

 Collection1.DefaultCollectionID = DynamicId;

 }

 Collection1.CacheInterval =

 ((Page as PageBuilder) != null) ? (Page as PageBuilder).CacheInterval : 0;

 Collection1.Visible = true;

 View.Controls.Add(Collection1);

 Text.Visible = false;

 } else {

 Text.Visible = true;

 }

 }

2. Find and Modify the Collection1.DisplayXSLT property to the following:

Collection1.DisplayXSLT = (Teaser) ? “ecmTeaser” : “UnorderedList.XSLT”;

UnorderedList.XSLT is a fi le located in the Widgets directory alongside the
Collection Widget; it defi nes an XSLT tranformation that customizes the
markup for the control.

3. Save the modifi cations to the Collection.ascx.cs fi le.

The Collection Server Control has other properties that provide you with the ablity to customize
many aspects of its behavior. Table 9-1 outlines the most common ones.

TABLE 9-1: Collection Server Control Properties

FIELD DESCRIPTION

AddText The text specifi ed overrides the content for the Add Content menu

item. For example, if you have a news website, you can change “Add

Content” to “Add News Item.”

CacheInterval The amount of time in seconds the server control will cache the collec-

tion data. The default is zero (not cached).

ContentParameter The name of a QueryString parameter. When the parameter is found

in the QueryString, the collection is replaced with a content block.

DefaultCollectionID The ID of a collection that appears if no other Collection ID is identifi ed

or is not available. If you don’t know the ID of the collection, browse

for it using the CMS Explorer in Visual Studio by clicking the […] button

within the fi eld.

DisplayXSLT Defi nes an XSLT that can override the default presentation of the server

control.

DynamicParameter Defi nes whether the collection is dynamic.

continues

c09.indd 279c09.indd 279 12/28/2010 1:58:00 PM12/28/2010 1:58:00 PM

280 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIELD DESCRIPTION

EnablePaging This property, in conjunction with the MaxResults property, lets site

visitors view an unlimited number of collection items while controlling

the amount of screen space. To accomplish this, the collection display

is limited to the number set in the MaxResults property. If you set

this property to true, and the number of collection items exceeds the

MaxResults number, navigation aids appear below the last item. The

site visitor uses the aids to view additional items.

GetHTML Set to true if you want to retrieve and display content (HTML body)

for all content blocks in the collection, for example, to display content

inside a Web Server Control such as a GridView.

IncludeIcons In cases where you’re using the control’s default presentation, you can

specify whether you want the icons next to the collection list’s links

using this fi eld.

LinkTarget Specifi es the target for the links in the list. Valid choices are _blank,

_self, _parent, and _top.

MemberMenuActive Set this property to true to hide the dropdown menu next to a content

item when a membership user is logged in. If the value is true, the

menu will be hidden from Membership Users. If it is false, the menu will

be displayed.

SelTaxonomyID Defi nes the ID of a category node that is associated with the new con-

tent added to the collection from the server control.

Under the Hood: Collection Data Model

As a developer, you can use almost every feature of the framework without having to know what’s
going on under the hood; but sometimes the best way to learn something is to take it apart. In this
section, you look at the collection data model to understand what’s happening behind the scenes
when a collection is added.

The recommended way of reading, writing, updating, and deleting data is
through the APIs. ServerControls and widgets are also recommended as they
utilize APIs underneath as well. This section, however, shows how to read infor-
mation directly from the database using SQL statements for debugging purposes
only. Ektron strongly recommends that developers do not access the database
directly using SQL statements for any reason beyond debugging purposes.

TABLE 9-1 (continued)

c09.indd 280c09.indd 280 12/28/2010 1:58:01 PM12/28/2010 1:58:01 PM

Implementation Using Collections x 281

The data model for collections is implemented much as you might expect. The table named nav_tbl
stores information for each collection, such as the collection ID, name, description, and so on. Each
row in this table corresponds to a collection added to the system, so if you went through the process
of creating a collection in “Creating a Collection,” you’ll see that information stored here by issuing
the following SQL query:

select * from nav_tbl

Table 9-2 shows a subset of the fi elds available.

TABLE 9-2: Available Fields

FIELD NAME FIELD DESCRIPTION

nav_name Name of the collection.

nav_template The name and path of the ASPX template to use for links in the collection.

If none is displayed, the content item’s QuickLink is used.

nav_description The description of the collection.

folder_id The folder from which the collection’s content items can be drawn.

recursive When this fi eld is true, it indicates that content items can be selected from

subfolders of the folder specifi ed by folder_id.

user_id The user who created the collection.

status The current status of the collection, such as A approved, O checked out,

and so on.

published Indicates whether the collection has ever been published.

By looking at the schema, you will notice there is no place to store content information. This is
because it’s found in a separate table, nav_to_content_tbl, which is a many-to-many relationship
table that provides a place to map a collection to the content items assigned to it. To see this list of
collections and their assigned content items, issue the following SQL query:

SELECT nav_tbl.id, content.id

FROM content, nav_tbl

WHERE

content.id = nav_to_content_tbl.content_id AND

nav_tbl.id = nav_to_content_tbl.nav_id

Because you have the ability to put collections through an approval process, you have a fi nal table
nav_to_content_stage_tbl that has the same structure and function as nav_to_content_tbl but
is used for collections that are not yet published. If you’re viewing a published collection on your
website, content items are coming from the nav_to_content_tbl table. Otherwise, they’re coming
from the nav_to_content_stage_tbl.

c09.indd 281c09.indd 281 12/28/2010 1:58:01 PM12/28/2010 1:58:01 PM

282 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

PAGEBUILDER

PageBuilder addresses a typical issue in the lifecycle of sites: How does one keep the design of a site
fl uid and able to react quickly to marketplace needs, without involving a developer in every deci-
sion? By shifting layout design into the hands of content managers through a WYSIWYG editing
interface, the need to have a developer making endless modifi cations to endless templates is elimi-
nated. The number of templates is typically also reduced, frequently to just two Wireframes. The
encapsulation of functionality into widgets promotes code reuse and ease of maintenance.

PageBuilder is a relatively recent feature in the CMS. Its goal is to simplify the process of creating
pages, reduce dependencies on developer time, and allow for more varied designs. PageBuilder does
this by separating a page into two components:

 ‰ Wireframe: This is the HTML shell of the page with any constant functionality.

 ‰ Widgets: These contain encapsulated functionality and content.

The two elements combine into a single item called a layout, which is then stored and managed
similarly to content.

The process of working with PageBuilder begins by creating a Wireframe. A Wireframe is a normal
CMS template, with a few exceptions: First, it contains two extra user controls — the PageHost and
a number of DropZones. It also inherits from Ektron.Cms.PageBuilder.PageBuilder. The combi-
nation of these elements gives the Wireframe the supporting code it needs to render a given layout.

 ‰ PageHost User Controls: Manages the state of a given page, and displays the PageBuilder
menu as well as the widget list, which contains the icons to instantiate any widget onto the
layout.

 ‰ DropZone User Control: Usually exists in multiple locations on a given Wireframe, this con-
trol is where those widgets will wind up. These internally render horizontal lists of columns.
Vertical lists of widgets are rendered within those columns.

Internal to the widgets are the Widget Settings, which effectively store any data the developer has
determined should be stored. The Widget Settings are serialized into an XML string, which is stored
as a component in the overall layout which is the term used to describe the serialized PageData
stored in a content item. The other components in the layout XML are the defi nitions for the num-
ber and widths of the columns appearing in each DropZone. When the layout is serialized, it can in
turn be stored into a content item in the database.

Since the PageBuilder architecture is built on top of the basic content stack, this allows it to take
advantage of other CMS features, like aliasing, taxonomy, collections, and so on.

Once the Wireframe has been created, a layout is created based on that Wireframe by selecting
“New Page Layout” within a folder. This brings up a Wizard which accepts the title of the new
page, aliasing information, and metadata for the page. On completion of the Wizard, the user can
then start adding widgets to the page.

Looking at the Implementation Guide, you can see that your requirement in this section is to create
a landing page for capturing leads. This page will have a form, as well as a collection control, allow-
ing potential leads to download information.

c09.indd 282c09.indd 282 12/28/2010 1:58:01 PM12/28/2010 1:58:01 PM

PageBuilder x 283

As covered in the technical overview, creating the landing page for the lead center will have a num-
ber of steps. You won’t actually be constructing the widgets you use in this chapter, but in the next
technical section we’ll walk through constructing a widget for use on PageBuilder pages.

This section covers the following steps:

 ‰ Creating the Wireframe

 ‰ Associating the Wireframe to a folder

 ‰ Creating a layout based on the Wireframe

 ‰ Modifying the layout

Creating the Wireframe

Creating a Wireframe starts by creating the fi le in the website root. Once you’ve created the Web
form, you add it to the Workarea so that the CMS is aware of the form.

1. Open Visual Studio and add a Web form to the root of your site and select the master tem-
plate TwoColumnChannelRight.Master from ~\components\templates. Call the Web form
Promotions.pb.aspx.

2. Open the newly created fi le and add three register statements. These statements inform the
.NET runtime of the controls and assembly that will be referenced in the page.

3. Add the PageHost User Control, followed by a DropZone User Control. Note that you can
add the user controls and two of the register statements by switching to design view and
dragging them from ~\Workarea\PageBuilder\PageControls, or you can simply type the
code in.

<%@ Page Language=”C#”

 MasterPageFile=”~/components/templates/2ColumnChannelRight.master”

 AutoEventWireup=”true” CodeFile=”promotions.pb.aspx.cs”

 Inherits=”Ektron.Site.Promotions” Title=”Promotions” %>

<%@ Register Assembly=”Ektron.Cms.Widget”

 Namespace=”Ektron.Cms.PageBuilder” TagPrefi x=”PB” %>

<%@ Register Src=”Workarea/PageBuilder/PageControls/PageHost.ascx”

 TagName=”PageHost” TagPrefi x=”Ektron” %>

<%@ Register Src=”Workarea/PageBuilder/PageControls/DropZone.ascx”

 TagName=”DropZone” TagPrefi x=”Ektron” %>

<asp:Content ID=”contentBody”

 ContentPlaceHolderID=”uxContentBody” runat=”Server”>

 <Ektron:PageHost ID=”pageHost” runat=”server” />

 <Ektron:DropZone ID=”dropZoneContentBody” runat=”server”

AllowColumnResize=”false” AllowAddColumn=”false”>

 <ColumnDefi nitions>

 <PB:ColumnData columnID=”0” unit=”percent” width=”100” />

 </ColumnDefi nitions>

 </Ektron:DropZone>

</asp:Content>

<asp:Content ID=”channelRight” ContentPlaceHolderID=”uxChannel”

Runat=”Server”>

c09.indd 283c09.indd 283 12/28/2010 1:58:01 PM12/28/2010 1:58:01 PM

284 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 <Ektron:DropZone ID=”dropZoneChannelRight” runat=”server”

AllowColumnResize=”false” AllowAddColumn=”false”>

 <ColumnDefi nitions>

 <PB:ColumnData columnID=”0” unit=”percent” width=”100” />

 </ColumnDefi nitions>

 </Ektron:DropZone>

</asp:Content>

4. Now open the code of the page. You’ll have this page inherit from the PageBuilder class,
which in turn requires you to override the Error and Notify functions.

 using System;

 using System.Collections.Generic;

 using System.Web;

 using System.Web.UI;

 using System.Web.UI.WebControls;

 public partial class PSResources : Ektron.Cms.PageBuilder.

PageBuilder

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 public override void Error(string message)

 {

 throw new NotImplementedException();

 }

 public override void Notify(string message)

 {

 throw new NotImplementedException();

 }

 }

The Wireframe is now completed. When you view it in the browser when you log in, you should see
a page with the master page elements and the PageHost menu, but with all menu items disabled, as
shown in Figure 9-10.

FIGURE 9-10

The remaining step is to inform the CMS of your new Wireframe. This is done in the
Workarea.

c09.indd 284c09.indd 284 12/28/2010 1:58:01 PM12/28/2010 1:58:01 PM

PageBuilder x 285

1. Log in as an administrator.

2. In the Workarea, go to Settings/Confi guration/Template Confi guration, and click the Add
Template button . See Figure 9-11.

FIGURE 9-11

3. Click Add Template to bring up a new window that allows you to specify the location of
your template.

4. Click the “…” button and browse to the new Wireframe. Select the PageBuilder Wireframe
checkbox.

5. You can now choose which widgets will be allowed on layouts created for this
Wireframe.

6. Select ContentBlock and Collection, and then click Save. See Figure 9-12.

At this point, the CMS creates a thumbnail of the Wireframe so layout editors can see
where the DropZones are and what the page looks like in the Wizard when the editor creates
a new page.

c09.indd 285c09.indd 285 12/28/2010 1:58:02 PM12/28/2010 1:58:02 PM

286 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIGURE 9-12

Associating the Wireframe to a Folder

The next step is to associate the Wireframe to a folder in the CMS so it can be used to create
layouts.

1. In the Workarea, switch to the Content tab, and select /MainSite/Pages/Experiments.

2. In the campaign folder, select View Í Properties. See Figure 9-13.

3. Click Edit in the Properties screen (see Figure 9-14), and then select the Templates tab. Make
sure Inherit parent confi guration is unselected. Select Promotions.pb.aspx in the dropdown
list of templates. Finally, click the plus sign icon to add the Wireframe to the list of
allowed templates, as shown in Figure 9-14.

4. Click Save on the toolbar to save the properties. Now any user with
permission can add a layout to this folder based on the new Wireframe.

Creating a Layout Based on the Wireframe

Now that the Wireframe is confi gured and ready to go, you need to add a layout based on the
Wireframe. This layout displays the collection and form to the user browsing the site.

1. In the folder tree, browse to /Pages/Promotions.

2. When you hover over the New menu, you’ll notice you have the option to add a Page Layout
or a Master Layout.

c09.indd 286c09.indd 286 12/28/2010 1:58:02 PM12/28/2010 1:58:02 PM

PageBuilder x 287

FIGURE 9-13

FIGURE 9-14

c09.indd 287c09.indd 287 12/28/2010 1:58:02 PM12/28/2010 1:58:02 PM

288 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

3. Click Page Layout, and the Add New Page Wizard appears. See Figure 9-15.

FIGURE 9-15

4. On the fi rst page of the Wizard there are several available options:

 ‰ One that allows you to change folders.

 ‰ A list of all the Wireframes permitted in this folder along with thumbnails of the
Wireframes. The thumbnails can be replaced by overwriting the corresponding fi le
in ~/uploadedimages/Wireframesthumbnails. Editing the template options also auto-
matically generates a new thumbnail.

5. Select Promotions.pb.aspx as shown in Figure 9-15, and click Next.

The second page in the Wizard, shown in Figure 9-15, allows you to associate the layout
with one or more taxonomy nodes, assign a title to the layout, and confi gure any enabled
aliasing options. It displays the automatic aliases for selected taxonomy nodes in real time,
as well as any automatic folder aliasing. It also allows you to optionally specify a manual
alias for the page.

6. Enter Request a Demo in the Page Title fi eld (as shown in Figure 9-16) and use the automati-
cally generated Manual Alias, and then click Next.

You are presented with two tabs to specify the summary for this page, as well as any meta-
data associated with the folder, as shown in fi gure 9-17.

c09.indd 288c09.indd 288 12/28/2010 1:58:03 PM12/28/2010 1:58:03 PM

PageBuilder x 289

FIGURE 9-16

FIGURE 9-17

c09.indd 289c09.indd 289 12/28/2010 1:58:03 PM12/28/2010 1:58:03 PM

290 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

7. Click Finish. A dialog box will ask if you want to edit the new page. Select OK to be brought
to the new page for editing. The editing interface for PageBuilder is shown in Figure 9-18.

FIGURE 9-18

8. Clicking the up/down toggle brings down a list of widgets which you can drag and drop into
the DropZone. You also see a box with a blue title bar is the fi rst column in the DropZone.
Note the following:

 ‰ In this example, we set the AllowAddColumn property to false on the DropZones. If
we hadn’t, the blue title bar would also contain an add icon, which is a button to add
a new column to the DropZone.

 ‰ Likewise, we opted to disallow column resizing by setting AllowColumnResize to
false. If we hadn’t, a pencil icon would be shown that allows the layout editor to set
the width of the column.

 ‰ We also set the width of the default column to 100%. We optionally could have left
it unspecifi ed, which would let the column grow dynamically with the width of the
widgets contained in the column.

9. Place a content block in the column. Drag the Content Block icon from the widget tray into
the column. This is shown in Figure 9-19.

10. Once you have the Content Block Widget on the page, click the pencil icon to bring up the
Editing Widget dialog (shown in Figure 9-20) so you can edit the Content Block Widget’s
options.

c09.indd 290c09.indd 290 12/28/2010 1:58:03 PM12/28/2010 1:58:03 PM

PageBuilder x 291

FIGURE 9-19

FIGURE 9-20

11. Since it’s the lead capture page, put a form on here. Change the Filter By on the upper-right
corner from Content to Forms, as shown in Figure 9-21, and then navigate to MainSite/Content/
Company. In the results that appear below the folder list, select Contact Us and click Save.

12. Now go to File Í Publish.

The page is now live and users can interact with the form.

c09.indd 291c09.indd 291 12/28/2010 1:58:03 PM12/28/2010 1:58:03 PM

292 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIGURE 9-21

Under the Hood

The way that PageBuilder works versus earlier versions of the Ektron Framework (or other con-
tent management systems) may require a change in development approach. This is due to the large
amount of encapsulation of functionality and UI. Whereas the old approach was to create con-
ceptual Wireframes for pages and then build out the functionality of each template, or ASPX fi le
to match that Wireframe, PageBuilder turns conceptual Wireframes into actual Wireframes. The
new approach is to develop an ASPX Wireframe that has DropZones where the interchangeable
functionality blocks go. Instead of developing 15 pages that are variations on the same theme, the
developer now only needs to develop one Wireframe, and then allow the content author to drop pre-
developed discrete pieces of functionality (called widgets) into those spaces to create each individual
page. When paired with aliasing, this system provides a seamless experience for the end user, while
drastically simplifying development, maintenance, and content management.

Understanding the PageBuilder Structure

One of the key benefi ts to using the PageBuilder feature is its relationship with normal content.
Within the schema, PageBuilder layouts are stored as a subtype of standard content. All the normal
content interactions such as workfl ow, permissions, and state transitions are present in PageBuilder
layouts. They support multilingual representations, they can be displayed as part of a ListSummary
or collection, and they interact with taxonomy structures. They are also compatible with metadata,
aliasing, and social tools. The reliance on existing structures on the schema is also extended to the
Wireframes, which are the empty ASPX pages defi ned as the basis for layouts. The Wireframe infor-
mation is stored as a subtype of a standard template.

c09.indd 292c09.indd 292 12/28/2010 1:58:03 PM12/28/2010 1:58:03 PM

PageBuilder x 293

Conceptually, PageBuilder shares its roots with Smart Forms when it comes to storage of actual
layout data. Page layouts are serialized to XML, along with all the instance data for the widgets
on the page. Widgets have the ability to store any data desired through XML serialization. This
serialization can be data intensive, but it has the benefi t of being platform agnostic. Typically the
data for the layout is divorced from the content displayed — for example, a layout may contain a
ListSummary Widget and a Content Block Widget. The Content Block Widget would only store the
ID of the content to display, and the ListSummary Widget would only contain the ID of the folder
to generate the list, along with any instance display options such as which XSLT. The design pattern
has several benefi ts. As the underlying content is updated, the page always displays the most recent
version of the content. The design pattern has the implication that a CMS administrator can choose
to have one person or team in charge of layouts, with a separate person or team in charge of the
content itself. We’ll come back to how the data actually looks, but let’s fi rst discuss the structure of
a PageBuilder page.

PageBuilder uses several classes for behind-the-scenes data management, and several user controls
for display and interaction. We’ll go through all these in steps.

Understanding the Diff erence between a Layout and a Wireframe

The fi rst concept to understand is the difference between a layout and a Wireframe. As discussed
earlier, a layout is the data stored in the database that dictates the size of display areas, as well
as the contents of those areas in the form of widget data. A Wireframe is the physical fi le used
to render the page. These Wireframes are simply ASPX pages registered in the CMS with a few
modifi cations:

 ‰ The Wireframe must inherit from Ektron.Cms.PageBuilder.PageBuilder.

 ‰ The PageBuilder base class inherits from System.Web.UI.Page in turn.

This means you can do anything on a Wireframe that you can do on a standard page, but the inter-
mediate class can hook into events on that page early in the page lifecycle. The PageBuilder class
automatically handles the state of the page, the loading of PageData, and so forth. You’ll notice
when implementing the PageBuilder class you must also add two overrides to the Wireframe. The
two overrides are the Error and Notify functions, and are used to pass messages to the end user.
These functions are left abstract so the developer can handle the messages in a manner that fi ts the
page.

There are also a few user controls in the Workarea that must be referenced by your PageBuilder
Wireframe.

The three registrations in the snippet that follows register the PageHost User Control, the DropZone
User Control, and the PageBuilder namespace, which contains the ColumnData defi nition.

<%@ Register Src=”~/Workarea/PageBuilder/PageControls/PageHost.ascx”

 TagPrefix=”PB” TagName=”PageHost” %>

<%@ Register Src=”~/Workarea/PageBuilder/PageControls/DropZone.ascx”

 TagPrefix=”PB” TagName=”DropZone” %>

<%@ Register Assembly=”Ektron.Cms.Widget” Namespace=”Ektron.Cms.PageBuilder”

 TagPrefix=”PB” %>

c09.indd 293c09.indd 293 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

294 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

The PageHost and the DropZone perform nearly all the operations for editing and display of lay-
outs. The PageHost Control renders the menu bar that appears at the top of every layout to logged-
in CMS authors, as shown in Figure 9-22. The control allows for users to switch modes on the page
and place widgets on the page, and provides shortcuts to some Workarea functions. The PageHost
control should be placed on the page before all DropZones. CSS will force the PageHost control to
the top of the page, but the PageHost control should be placed as close to the beginning of the page
as possible within the <Body> tag.

FIGURE 9-22

Table 9-3 is a subset of the properties available on the PageHost User Control.

TABLE 9-3: Properties on the PageHost User Control

PROPERTY DESCRIPTION

CacheInterval Controls the length of time, in seconds, that the page layout data should be

cached upon reading from the database. Some widgets inherit from this set-

ting; for example, the Content Block Widget will cache for the same length of

time as its host Wireframe is set.

FolderID The folder that holds new layouts by default.

SelTaxonomyID The taxonomy node to associate new layouts with by default.

c09.indd 294c09.indd 294 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

PageBuilder x 295

PROPERTY DESCRIPTION

DefaultPageID The layout to load into this Wireframe if no layout is specifi ed via an alias or

query string.

ThemeName The theme to load for the DropZones and PageHost User Controls. This

defaults to TrueBlue. Theme packs are stored in ~/Workarea/PageBuilder/

PageControls/Themes.

The DropZone User Control renders the area into which widgets are placed. They internally render
out a list of columns, each of which can have a width applied, either in absolutes or percentages.
Within the columns, a vertical list of widgets is rendered. The widgets themselves are rendered
within another user control called the WidgetHost, which is dynamically created by the DropZone
as required for each widget. All these user controls are contained in ~/workarea/PageBuilder/
PageControls.

The DropZone User Control also has adjustable properties, and also allows you to optionally preset
column defi nitions as inner-encoded XML.

Table 9-4 is a subset of the properties available on the DropZone User Control.

TABLE 9-4: Properties on the DropZone User Control

PROPERTY DESCRIPTION

AllowAddColumn Controls whether the layout editor is allowed to add columns to

the DropZone.

AllowColumnResize Controls whether the layout editor is allowed to modify column

widths within the DropZone.

ColumnDefinitions Presets the columns that will appear to the layout editor on a new

layout. This is encoded as an inner element.

Understanding Storage

Now that you understand the concepts of Wireframes and layouts, let’s return to the question of
storage.

The layout information — all the data required to recreate the layout and inject it into a
Wireframe — is stored as an XML document in the database. The class that is serialized to produce
the XML is called the PageData class, and it has two main properties: Widgets and Zones.

The Widgets property is a List<WidgetData> object, and the Zones property is a
List<DropZoneData> object. These contain all the elements necessary to reconstruct the page
layout. WidgetData is a simple class. It contains a Settings string, the ColumnID the widget
appears in, an Order indicating where the WidgetData appears in the column, and a Boolean
called Minimized, which controls whether the widget is visible. The DropZoneData class is equally
simple; it contains a string called DropZoneID. When this string matches the control ID on a given

c09.indd 295c09.indd 295 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

296 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

DropZone, the data stored in the DropZoneData instance is used to instantiate a list of columns and
widgets inside that DropZone. The DropZoneData class contains a property called Columns, which is
a List<ColumnData>. The ColumnData class stores the information necessary to relate back to the
widgets, such as the ColumnID, in addition to display options, such as width and unit. In the code
Listing 9-3, you can see the serialized data.

LISTING 9-3: Serialized PageData Object

<PageData>

 <pageID>909</pageID>

 <languageID>1033</languageID>

 <title>EktronTechPlus</title>

 <Widgets>

 <WidgetData>

 <ID>7</ID>

 <ControlURL>ContentBlock.ascx</ControlURL>

 <ColumnID>0</ColumnID>

 <Order>0</Order>

 <Minimized>false</Minimized>

 <Settings>

 <ArrayOfDataStore>

 <dataStore>

 <Property>ContentBlockId</Property>

 <Value xsi:type=”xsd:long”>951</Value>

 <TypeName>System.Int64</TypeName>

 <AssemblyAndType>System.Int64, mscorlib,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</AssemblyAndType>

 </dataStore>

 </ArrayOfDataStore>

 </Settings>

 <DropID>Middle</DropID>

 <ColumnGuid>00000000-0000-0000-0000-000000000000</ColumnGuid>

 <ChildColumns />

 </WidgetData>

 </Widgets>

 <Zones>

 <DropZoneData>

 <DropZoneID>Middle</DropZoneID>

 <Columns>

 <ColumnData>

 <Guid>00000000-0000-0000-0000-000000000000</Guid>

 <Display>true</Display>

 <columnID>0</columnID>

 <width>100</width>

 <unit>percent</unit>

 </ColumnData>

 </Columns>

 </DropZoneData>

 </Zones>

</PageData>

You can see there is some basic information about the page, and then a list of widgets followed by a
list of DropZones. The DropZone corresponds to the DropZone with an ID value of “Middle” on

c09.indd 296c09.indd 296 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

Widgets x 297

the Wireframe and contains a single column of 100 percent width. In the widgets list is a single
widget, which is, in this case, the Content Block Widget, and it is set to appear in DropZone
Middle, column 0, at the top. The Content Block Widget has a single property to be set, and that
is the ContentBlockId property, type Int64 with a value of 951.

The next question we’ll look at is, “How does storing layouts affect the information architecture of
a site?”

A typical information architecture (IA) in a PageBuilder site has two main folders, one for con-
tent, and one for layouts, as you can see in Figure 9-23. This allows a separation of permissions,
workfl ow, and taxonomy based on the type of content. It also allows searches to be specifi ed only
on pages, or only content, depending on which is preferable. However, layouts and content can
exist side-by-side in the same folder.

FIGURE 9-23

WIDGETS

Widgets are a simple and straightforward way to encapsulate parts of your site for easy re-use. They
are designed for use with PageBuilder and Personalization, and are composed of a user control that
implements the interface Ektron.Cms.Widget.IWidget.

Using widgets as part of your site implementation allows you to grant greater leeway to content man-
agers in the system. By allowing them to work with PageBuilder to create entire layouts, they can
utilize the exact functionality required while maintaining the specifi ed look and feel across the site.

c09.indd 297c09.indd 297 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

298 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

Widgets are composed of a user control that’s instantiated at runtime according to the needs of the
page layout being displayed or the personalization dashboard being interacted with. Widgets man-
age their own data stores, include any relevant CSS and JavaScript, and have built-in code to handle
any user interaction occurring within the particular widget. If you have built a user control before,
working with widgets will be straightforward, with only a few modifi cations to the typical build
process required.

Widgets usually have a built-in editing screen for authors to set any required properties from the
Web interface. Since widgets are instantiated at runtime, the ways that CSS and JavaScript are
implemented slightly different. As a developer, you should also be aware that widgets are rendered
within a standard .NET UpdatePanel, meaning that most interactions with them will be by way of
Asynchronous PostBacks, rather than a standard full PostBack.

Development of a widget starts by creating a user control. The user control must live in the Widgets
directory under the site root. The primary modifi cation required is that user control should imple-
ment IWidget. IWidget doesn’t require any function overrides, but the IWidget decorator allows
for the underlying framework to determine via refl ection whether the user control is an Ektron
Widget. This allows you to create supporting user controls in the same directory or in subdirectories
without having the system identify them as additional widgets. For instance, you can create a tabbed
interface user control without the IWidget interface, put it in ~/widgets/usercontrols, and reference it
from several widgets. Because it cannot implement IWidget, it cannot display in the list of available
widgets within a PageBuilder page.

Once the widget has been created, the widget can be registered against the framework and associ-
ated with one or more Wireframes or master layouts. This association step allows an administrator
to determine which sections of the site the widget should be allowed to be instantiated in.

At this point, the widget can be utilized on any layouts based on the associated Wireframe. To
liven up the widget, you can hook in several events programmatically. These events allow for
switching to an editing interface. There are also methods available on the container host that
allow for data access.

Reviewing the implementation guide, you can see that the out-of-the-box widgets for collections
and HTML forms serve their purpose. However, you may run into a situation that demands the
creation of a new widget. In this section, you’ll work through creating a simpler version of a
Collection Widget.

In order to implement your new Collection Widget and set up the widget for use by content man-
agers, you will follow a full development process — you’ll create the user control, set up the event
hooks, and fi nish by associating the Collection Widget to a Wireframe for use.

This section covers the following steps:

 ‰ Creating the widget

 ‰ Hooking to events

 ‰ Creating an edit interface

 ‰ Handling instance data storage

c09.indd 298c09.indd 298 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

Widgets x 299

 ‰ Handling Edit, Cancel, and Save clicks

 ‰ Rendering the output

 ‰ Associating to the Wireframe

Creating the Widget

The public-facing widgets all live in ~/Widgets. If you want to build a widget for use in the
Workarea dashboard, those live in ~/workarea/Widgets. Because you are building a front-end wid-
get, create it in ~/Widgets.

1. In Visual Studio, right-click the Widgets directory in your site, and select Add New Item.

2. Select Web User Control and name the control MyTestControl.ascx.

3. Select Visual C# as the language and make sure that Place Code in Separate File is checked.

4. After you click OK, you should have a nearly blank source fi le. Go to the code on your
new widget, where you can make modifi cations to ensure the CMS recognizes it as a
widget.

In Listing 9-4, you can see the required changes (highlighted in bold) that allow the CMS to recog-
nize this as a widget. Specifi cally, when the widget is fi rst loaded, the system attempts to cast it into
an IWidget object. If that fails, further operations halt with the object.

LISTING 9-4: ~/Widgets/MyTestControl.ascx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using Ektron.Cms.Widget;

public partial class Widgets_MyTestControl : System.Web.UI.UserControl, IWidget

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

}

Hooking to Events

Now add some detail to have the WidgetHost display information about the widget. In Listing 9-5,
you perform two main actions. First, you retrieve the widget instance’s WidgetHost and store the
host locally. The WidgetHost fi res several events you can subscribe to, and several properties you
can populate.

c09.indd 299c09.indd 299 12/28/2010 1:58:04 PM12/28/2010 1:58:04 PM

300 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

LISTING 9-5: ~/Widgets/MyTestControl.ascx.cs

public partial class Widgets_MyTestControl :

 System.Web.UI.UserControl, IWidget

 {

 private IWidgetHost _host;

 protected void Page_Load(object sender, EventArgs e)

 {

 _host = Ektron.Cms.Widget.WidgetHost.GetHost(this);

 _host.Title = “My Collection Widget”;

 _host.Maximize +=

 new MaximizeDelegate(delegate() {

 this.Visible = true; });

 _host.Minimize +=

 new MinimizeDelegate(delegate() {

 this.Visible = false; });

 _host.HelpFile =

“http://localhost/ontrek/workarea/help/Widget%20Chapter/Using%20Widgets.htm”;

 }

First set the Title property. The contents of the Title property are displayed in the bar that is
visible above the widget when in edit mode. Minimize and Maximize are events that fi re when the
corresponding buttons are pressed on the host, and are only fi red when the widget is used on a per-
sonalization dashboard. Usually these control whether the widget is collapsed or visible. HelpFile
populates the URL the Help button links to.

If there is no subscribed function for any of the events on the WidgetHost, the icons will not show
up. For instance, if you do not set the HelpFile location, no Help File button will appear on the host.

Creating an Edit Interface

You also need to hook up the edit event, and set up some properties for storing instance data. But
before you do that, you must set up the front end. A typical approach to this is to use an ASP.NET
MultiView Control, which allows you to programmatically switch between two completely different
display interfaces, but other approaches, such as creating a UserControl for each view and setting
the Visible property on them can also be used. In this example we will be using a MultiView, so
start by adding the ASP.NET MultiView from the toolbox. One side of the control will contain the
edit, and one side will contain the view. Then add a simple form for capturing the confi guration for
the instance, and add the collection control for viewing the data.

As you can see in code Listing 9-6, you’ve created a very basic form for entering the instance data
required to display the user-selected collection. You’ve also created the display interface, which is
just a collection object. By putting both panes into a MultiView, you can easily switch between them
in code based on user interaction.

LISTING 9-6: ~/Widgets/MyTestControl.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”MyTestControl.ascx.cs” Inherits=”Widgets_MyTestControl” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

c09.indd 300c09.indd 300 12/28/2010 1:58:05 PM12/28/2010 1:58:05 PM

Widgets x 301

 TagPrefix=”CMS” %>

<asp:MultiView ID=”rootMultiView” runat=”server”>

 <asp:View ID=”editView” runat=”server”>

 <div class=”myTestControlEditView”>

 <fieldset>

 <legend>Editing My Collection Widget</legend>

 <table>

 <tr>

 <td>XSLT</td>

 <td>

 <asp:DropDownList

 ID=”ddlDisplayXSLT”

 runat=”server”>

 <asp:ListItem>ecmNavigation</asp:ListItem>

 <asp:ListItem>ecmTeaser</asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td>MaxResults</td>

 <td>

 <asp:TextBox

 ID=”txtMaxResults”

 runat=”server”>

 </asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>DefaultCollectionID</td>

 <td>

 <asp:TextBox

 ID=”txtDefaultCollectionID”

 runat=”server”></asp:TextBox>

 </td>

 </tr>

 </table>

 </fieldset>

 <asp:Button ID=”btnSave” runat=”server” />

 <asp:Button ID=”btnCancel” runat=”server” />

 </div>

 </asp:View>

 <asp:View ID=”displayView” runat=”server”>

 <CMS:Collection runat=”server” ID=”collectionControl” />

 </asp:View>

</asp:MultiView>

Handling Instance Data Storage

Now that you have a front-end interface defi ned, you can return to the codebehind and add
some properties. As is visible in Listing 9-7, you have opted in this widget to include only three
properties — the XSLT used for display, the number of results to display, and the Collection ID. A
more useful widget would probably have an interface that retrieves the collections currently defi ned
in the system and displays them in a dropdown. In fact, the Collection Widget that ships with the

c09.indd 301c09.indd 301 12/28/2010 1:58:05 PM12/28/2010 1:58:05 PM

302 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

CMS has exactly that ability. Now go ahead and create the storage properties for the options, as
shown in Listing 9-7.

LISTING 9-7: ~/Widgets/MyTestControl.ascx.cs

public partial class Widgets_MyTestControl : System.Web.UI.UserControl, IWidget

{

 private IWidgetHost _host;

 private string _displayXSLT;

 private int _maxresults;

 private long _defaultcollectionid;

 [WidgetDataMember(“ecmNavigation”)]

 public string DisplayXSLT

 {

 get { return _displayXSLT; }

 set { _displayXSLT = value; }

 }

 [WidgetDataMember(10)]

 public int MaxResults

 {

 get { return _maxresults; }

 set { _maxresults = value; }

 }

 [WidgetDataMember(-1)]

 public long DefaultCollectionID

 {

 get { return _defaultcollectionid; }

 set { _defaultcollectionid = value; }

 }

Listing 9-8 inserts some backing members as well as property assessors. The properties have been
tagged with the WidgetDataMember attribute, specifying they should be fi lled and managed as part
of the PageData. You may have noticed the argument for each of the attributes. For instance, on the
DisplayXSLT you have specifi ed ecmNavigation. This argument specifi es the default value the prop-
erty should be fi lled with if there is no value already stored for this instance of the widget.

You may feel something is missing from this implementation, namely how you will save and popu-
late these properties at runtime. The framework handles this in large part for you. When the widget
is instantiated, the WidgetHost automatically fi lls these properties with the stored values from the
PageHost object. The WidgetHost handles all serialization and deserialization for you automatically,
as long as the properties are tagged with the WidgetDataMember attribute. Saving is only slightly more
complicated in that you have to call the SaveWidgetDataMembers() method on the WidgetHost.

Handling Edit, Cancel, and Save Clicks

Now that you have the scaffolding of the widget completed, you need to hook it up to the remainder
of the events that can be fi red. Editing is triggered by clicking the Edit button on the WidgetHost,
which in turn fi res the WidgetHost.Edit event.

c09.indd 302c09.indd 302 12/28/2010 1:58:05 PM12/28/2010 1:58:05 PM

Widgets x 303

As is visible in Listing 9-8, you have create a method called EditButtonClicked to handle initial-
izing the edit screen, switching the view, and attaching it to the Edit event on the WidgetHost at the
end of the Load section.

LISTING 9-8: ~/Widgets/MyTestControl.ascx.cs

protected void Page_Load(object sender, EventArgs e)

 {

 _host = Ektron.Cms.Widget.WidgetHost.GetHost(this);

 _host.Title = “My Collection Widget”;

 _host.Maximize += new MaximizeDelegate(delegate() {

this.Visible = true; });

 _host.Minimize += new MinimizeDelegate(delegate() {

this.Visible = false; });

 _host.HelpFile = “http://www.wrox.com/Ektron/

collectionhelp.HTML”;

 _host.Edit += new EditDelegate(EditButtonClicked);

 }

 protected void EditButtonClicked(string settings)

 {

 ddlDisplayXSLT.SelectedValue = DisplayXSLT;

 txtMaxResults.Text = MaxResults.ToString();

 txtDefaultCollectionID.Text =

DefaultCollectionID.ToString();

 rootMultiView.SetActiveView(editView);

 }

Next you can wire up the Edit Pane buttons.

Listing 9-9 creates a Cancel method and a Save method. Not pictured here is the code that declara-
tively associates these methods to the corresponding buttons.

LISTING 9-9: ~/Widgets/MyTestControl.ascx.cs

 protected void btnCancel_Click(object sender, EventArgs e)

 {

 rootMultiView.SetActiveView(displayView);

 }

 protected void btnSave_Click(object sender, EventArgs e)

 {

 DisplayXSLT = ddlDisplayXSLT.SelectedValue;

 if (!int.TryParse(txtMaxResults.Text, out _maxresults))

MaxResults = 0;

 if (!long.TryParse(txtDefaultCollectionID.Text,

out _defaultcollectionid)) DefaultCollectionID = 0;

 _host.SaveWidgetDataMembers();

 rootMultiView.SetActiveView(displayView);

 }

c09.indd 303c09.indd 303 12/28/2010 1:58:05 PM12/28/2010 1:58:05 PM

304 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

The Cancel method is comparatively simple, because all that must be done is to disregard the data on
the form and then switch back to the display view. There is a bit more going on in the Save method.
As mentioned earlier, by marking the properties as WidgetDataMember’s, you have informed the
WidgetHost that these are properties you want to have managed for you. What this means is that
in the Save method all you need to do is read the values selected by the author, store them in
the properties, and then call _host.SaveWidgetDataMembers(). The WidgetHost takes care of
the details from there, reading all the values and serializing them to XML for you. In the context
of PageBuilder, the values aren’t written to the database until the user decides to Save, Check In,
or Publish the page. In the context of a dashboard, they can be written immediately to the user or
group’s personalization information.

The fi nal act of the Save method is to set the view back to the display pane, since the user fi nished
editing the widget.

Rendering the Output

The last bit of coding required for your widget is to add a function to set the properties on the
Collection Server Control from the properties on the widget. You’ll call that function from page
load, as well as Save and Cancel, to make sure that each time the active view changes to display
view, the collection has been updated with the most recent properties.

Listing 9-10 shows how the properties are updated in the Page_Load method. As you read in the
“Implementing Using Collections” section of this chapter, you can set the properties that display the
results on the Collection Server Control programmatically, which we are doing here. Remember to
call Fill when modifying properties, to ensure the control is rendered with the appropriate options.

LISTING 9-10: ~/Widgets/MyTestControl.ascx.cs

protected void Page_Load(object sender, EventArgs e)

 {

 _host = Ektron.Cms.Widget.WidgetHost.GetHost(this);

 _host.Title = “My Collection Widget”;

 _host.Maximize += new MaximizeDelegate(delegate() {

this.Visible = true; });

 _host.Minimize += new MinimizeDelegate(delegate() {

this.Visible = false; });

 _host.HelpFile = “http://www.wrox.com/

Ektron/collectionhelp.HTML”;

 _host.Edit += new EditDelegate(EditButtonClicked);

 SetOutput();

 }

 protected void btnCancel_Click(object sender, EventArgs e)

 {

 SetOutput();

 rootMultiView.SetActiveView(displayView);

 }

 protected void btnSave_Click(object sender, EventArgs e)

 {

c09.indd 304c09.indd 304 12/28/2010 1:58:06 PM12/28/2010 1:58:06 PM

Widgets x 305

 DisplayXSLT = ddlDisplayXSLT.SelectedValue;

 if (!int.TryParse(txtMaxResults.Text, out _maxresults))

MaxResults = 0;

 if (!long.TryParse(txtDefaultCollectionID.Text, out _defaultcollectionid))

 DefaultCollectionID = 0;

 _host.SaveWidgetDataMembers();

Associating to the Wireframe

Now that the widget is code complete, you are almost done. All that’s left is to register the widget
with the CMS and associate the widget with a template. Start by opening the Workarea.

1. Go to Settings Í Confi guration Í Personalizations Í Widgets. This page is shown in
Figure 9-24.

FIGURE 9-24

2. Click the Widget Sync button on this page.

The Widget Sync button does not refer to eSync, but rather to synchronizing the
list of widgets in the database with what is in the fi le system. Clicking this but-
ton synchronizes ~/Widgets and ~/workarea/Widgets. You should perform
synching only when you are adding or removing widgets from the system; if you
are modifying an existing widget, there is no need to resync.

c09.indd 305c09.indd 305 12/28/2010 1:58:06 PM12/28/2010 1:58:06 PM

306 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

3. Now that you have synchronized your widgets, you can see the new widget has been regis-
tered by the system. By clicking the image to the left of the name of the fi le, you open up the
editor for the global properties of the widget.

4. Click the edit icon next to MyTestControl.ascx. You can see in Figure 9-25 that you can
modify the Title and Label for the widget on this screen.

FIGURE 9-25

5. Change the Title and the Label to CustomCollection.

If you mark one of the properties as GlobalWidgetData, it shows up with a
simple editing interface. More detail on GlobalWidgetData can be found in the
“Under the Hood” section.

6. Click Save.

7. There is one fi nal step before you can use this widget on a page. You must associate the
widget with a template by clicking Settings Í Confi guration Í Template Confi guration
and selecting Promotions.pb.aspx. This brings up the template confi guration screen, shown
in fi gure 9-26.

8. Ensure that PageBuilder Wireframe is checked. Once it is checked, you are provided with a
list of all the widgets defi ned in the system. Scroll down until you fi nd CustomCollection at
the end of the list. Select the CustomCollection and it should turn green. Content editors can
now use that widget on any layout based on this template.

9. Click Save.

c09.indd 306c09.indd 306 12/28/2010 1:58:07 PM12/28/2010 1:58:07 PM

Widgets x 307

FIGURE 9-26

You’ll notice on the template-management page there is no icon showing the CustomCollection
Widget. Once you decide which icon to use, simply name it MyTestControl.ascx.jpg and put it in the
Widgets directory with the widget itself.

Under the Hood: Widgets

Going through the exercise of building a widget exposed most of the functionality of the framework
with regards to widgets, but we deliberately simplifi ed some of the aspects. It can be helpful to
understand the underlying structure of the platform being used, so we’ll cover those details here,
and examine some limitations and common issues developers run into when developing with
PageBuilder and Personalization.

The widget itself is instantiated through LoadControl into another user control, called the
WidgetHost. The WidgetHost contains the events we mentioned earlier, as well as the properties.
The WidgetHost also handles data storage and retrieval for the properties on the widget itself. Let’s
discuss the lifecycle of the widget fi rst.

On page _init, the WidgetHost reads the data stored for the widget being instantiated and the type
of the widget. The WidgetHost then instantiates the widget, and after instantiating, sets the proper-
ties marked with WidgetDataMember and GlobalWidgetData with the appropriate values. It also
adds the widget to the internal controls collection. At this point, the widget catches up to the page’s

c09.indd 307c09.indd 307 12/28/2010 1:58:07 PM12/28/2010 1:58:07 PM

308 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

lifecycle status, meaning the widget runs through its pre_init and its init. Page progression con-
tinues as normal. At the time the constructor in the widget runs, the properties have not been set,
but you can read their values at any point in the page lifecycle.

The events exposed by the WidgetHost are Edit, Maximize, Minimize, Create, and Close. These
events are fi red upon certain conditions, outlined in Table 9-5.

TABLE 9-5: Properties on the Events

EVENT OCCURS

Edit When the user clicks the Edit button on WidgetHost

Maximize When the user clicks the Restore button on WidgetHost (only in Personalization)

Minimize When the user clicks the Minimize button on WidgetHost (only in Personalization)

Create When the user fi rst drags the widget onto the page

Close When the user removes the widget from the page

The widget should subscribe to whatever events you want it to handle. If the widget does not subscribe
to the Edit event, for example, the Edit button will not appear on the WidgetHost.

There are also some properties on the WidgetHost you should be aware of, as described in Table 9-6.

TABLE 9-6: Properties on the WidgetHost

PROPERTY DESCRIPTION

HelpFile The URL used for the Help link on the WidgetHost. If left empty, the Help button

will not show up.

IsEditable A read-only Boolean that informs the widget whether it is editable. For instance, on a

PageBuilder page, the widget is only editable when the page is actually in Edit mode.

Title Use this property to set the string to be displayed on the WidgetHost above the

widget. This is always visible in Personalization, but is only visible while editing in

PageBuilder.

WidgetInfo The internal data construct used by PageBuilder to restore the widget. It can be

used to determine areas such as location on the page and to read the widget

settings manually.

ExpandOptions This enumeration controls the modal operation of the widget. If set to

Expandable.DontExpand, the widget will always render inline on the page. If

set to Expandable.ExpandOnEdit, when the user clicks on Edit, the widget’s

settings screen will automatically appear within a modal dialog box. The last

option, Expandable.ExpandOnExpand, creates another icon that takes the

current display of the widget and puts it into a modal. In PageBuilder, the Expand

button is only available while editing a page.

c09.indd 308c09.indd 308 12/28/2010 1:58:07 PM12/28/2010 1:58:07 PM

Widgets x 309

The WidgetHost assists with storage and retrieval of instance data. As covered in the “PageBuilder”
section, each PageBuilder page is stored in the database as XML. Within the page, each widget also
has storage available in the form of a string. In a given widget, the developer can decorate any public
properties on the widget with the attributes WidgetDataMember or GlobalWidgetData. Such attri-
butes take an argument for the default value of the property, but the real achievement is to inform
the system that the properties should be maintained as part of the PageData, or should be fi lled by the
system from the global data store. All properties decorated with the WidgetDataMember attribute will
be saved to the current PageData object when the method SaveWidgetDataMembers() is called on the
WidgetHost object. The data is loaded into those properties just after the constructor.

GlobalWidgetData is useful in situations where you have one property across the entire site that
needs to be maintained for all instances of a widget. An example might be if you have a SalesForce
Widget with a developer log-in and password. By marking those properties as GlobalWidgetData,
you make it easy to update later across the entire site. That editing occurs in the widget settings page
in the Workarea.

GlobalWidgetData, unlike WidgetDataMember, only supports a subset of data types for the prop-
erty. Where WidgetDataMembers can serialize any object whose class has been marked Serializable,
global properties have an automatically generated editing interface that respects data types. For
instance, if the property is marked as an Int, the editing interface for that widget only allows numer-
ics to be entered into the fi eld. Conversely, for DateTime types, the editing interface automatically
creates a datepicker instance for ease of data entry, and for enumerations, the editing interface auto-
matically creates a dropdown list. Here are the supported data types:

 ‰ DateTime

 ‰ Int

 ‰ Long

 ‰ Double

 ‰ Bool

 ‰ String

 ‰ Enumeration

Common Pitfalls

One of the most common areas of confusion for developers working with widgets is that inline
CSS and JavaScript do not appear to function. This is due to widgets having one or more ASP.NET
UpdatePanels in their ancestor trees. The standard ASP.NET method of dealing with UpdatePanels
is to use the ScriptManager to register scripts with the page. When using CMS400.NET however,
the recommended standard is to use the Ektron.Cms.Api.JS.RegisterJSInclude() function to
register the JavaScript, and the Ektron.Cms.Api.Css.RegisterCss() function to register CSS.

The fi rst benefi t of using these methods is that JavaScript is always run when the page fi nishes load-
ing, which is equivalent to Ektron.ready(). More importantly, it causes your scripts to work in
any location. RegisterJSInclude detects the situation for the current request — whether it is a full
postback or an asyncpostback — and include the script on the page in the appropriate way. For CSS,

c09.indd 309c09.indd 309 12/28/2010 1:58:07 PM12/28/2010 1:58:07 PM

310 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

the primary benefi t is that all the fi les for a given request/response cycle are aggregated, cutting back
on overhead. The client does not download many small fi les, but rather a few slightly larger fi les.

The biggest reason for aggregating CSS is that Internet Explorer places a limit of 32 CSS fi les at
the root level. By using RegisterCSS rather than appending a style tag to each widget, CSS fi les are
aggregated automatically, circumventing the limit, and style tags stay in the head, better conforming
to standards.

Debugging widgets can also trip up developers from time to time. The two places where code errors
can occur are compilation errors and runtime errors. The fi rst step in debugging is to determine the
type of error. You can do this easily by creating an empty ASPX page and directly referencing
the widget within the page as you would any other user control. Fix any thrown error until you have
no more compilation errors. If the widget is still functioning incorrectly, try attaching to the ASP
.NET worker process or w3wp process. Within Visual Studio, press Ctrl+Alt+E. This brings up an
exceptions screen. Make sure that Common Language Runtime Exceptions are checked and then try
interacting with the widget. Execution should break at the point where the widget fails.

HTML FORMS

You’ll use HTML forms when you need to collect information from site visitors. Ektron’s HTML
forms give authors the tools they need to create custom-tailored forms in a WYSIWYG editor and
deploy them on a page using PageBuilder.

In addition to capturing data, the set of tools provides those without HTML knowledge the ability
to create forms with advanced capabilities, such as validating against business rules and assigning
tasks for follow-up. The data that’s captured is available through Web-based reports for export to
Microsoft Excel, or to developers through APIs, server controls, and widgets.

The form rendered in the browser is no different from forms you may have handcrafted using
HTML. The difference is in how the form is created and deployed onto the website. Let’s explore
both in order to begin to understand HTML forms.

Creating a Form

HTML forms are entities that exist within the content structure of the Workarea. HTML forms
are actually extensions of the content data type and, therefore, inherit many types of capabilities,
namely language support, permissions, and scheduling (allowing authors to specify the time and
date a form should “go live” on the website).

Creating an HTML form with eWebEdit400 is done visually through dragging and dropping form
elements from the toolbar to the editor’s canvas. eWebEdit400 has further simplifi ed the process of
creating an HTML form by offering an HTML Form Wizard, which allows you to create a number
of popular types of forms (such as Polls, Contact Forms, and so on) quickly.

Displaying a Form

As is true with almost every object in the CMS, you retrieve and render HTML forms using a
widget, a server control, or the HTML form API.

c09.indd 310c09.indd 310 12/28/2010 1:58:08 PM12/28/2010 1:58:08 PM

HTML Forms x 311

 ‰ Widget: Every installation includes a Content Block Control Widget that allows a CMS user
with proper permissions to build a page that includes an HTML form. In the implementation
section, you’ll use this widget to place the “Request a Demo” form (as we’ll create shortly)
on a page.

 ‰ Server Control: Although an HTML form is ultimately content, you must use the FormBlock
Server Control and not the Content Block Server Control to render the form on a page. The
fi elds available for the FormBlock Server Control are listed in Table 9-7.

TABLE 9-7: Properties of the FormBlock Server Control

PROPERTY DESCRIPTION

ID The ID of the form that appears where you inserted the server control. If you

don’t know the ID of the form block, you can fi nd the ID in the Workarea or

use the CMS explorer to browse for it.

DynamicParameter The value specifi ed here will be used by the control when it looks in the

query string for a parameter by this name.

CacheInterval Sets the amount of time the server control’s data is cached. The default is 0

(zero).

AddValidation Set this parameter to true if you want to add validation to your HTML Form.

 ‰ HTML Form API: The data classes, methods, and properties available through the Ektron
.CMS.API.Content namespace provide you with everything you need for creating, deleting,
editing, and retrieving data from the system. The following shows a snippet of C# code for
retrieving an HTML form by its ID from the system.

Using the Ektron.CMS.API.Content namespace, you can do the following:

 Ektron.Cms.API.Content.Form formApi = new Ektron.Cms.API.Content.Form();

 Ektron.Cms.FormData form = formApi.GetForm(23);

Implementation: The “Request a Demo” Form

In this section, you’ll look at the implementation guide to review the requirements for the “Request a
Demo” form and work through the process of implementing the form. The purpose of the form is to
gather the contact information from the site visitors so that a sales engineer can follow up with a tech-
nical one-on-one demo. Another requirement is that a sales engineer must be notifi ed by e-mail when a
form is submitted and a task must be assigned to the sales engineer to follow up with the lead.

Implementation Tasks

In this section, you’ll complete the process of building the “Request a Demo” form using the basic
form you created earlier as a starting point. The requirements you have are:

 ‰ The HTML form must capture the site visitors’ contact information.

c09.indd 311c09.indd 311 12/28/2010 1:58:08 PM12/28/2010 1:58:08 PM

312 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 ‰ The HTML form must notify the sales engineer that a “Request a Demo” form has been
submitted.

 ‰ The HTML form uses the task functionality to assign a task to a sales engineer upon form
submission.

This section covers the following procedures:

 ‰ Reviewing the basic “Request a Demo” form created earlier

 ‰ Displaying the form on the Web page using the Content Block Widget and PageBuilder

Creating the Basic Contact Information Form

When you choose to create a new HTML form using the New menu in the Workarea, you’re
presented with a Wizard that guides you through the process, beginning with a list of sample
forms installed by default, as shown in Figure 9-27. Because the implementation guide specifi es
that you need to capture an individual’s basic contact information, you can choose the “Contact
Information” form from this Wizard or use the form created earlier.

1. Access the content folder by expanding the Folder accordion item in the Workarea.

2. Select the Folder that will contain the form. Because content permissions apply to forms, it
should also be noted that only administrators or content authors with suffi cient folder privi-
leges have the ability to create HTML forms. Put this form in /Content/Promotions/Forms.

3. In the Workarea File menu, hover over New to open the New menu.

4. From the New menu, select HTML Form/Survey.

5. As shown in fi gure 9-27, there are a number of HTML forms already set up for you to
choose from. You can pick the one that most closely matches your form or start with a blank
form. For now, choose Contact Information and click Next.

6. Enter the form’s Title and Description and click Next.

7. Select the individuals you want to assign a task to every time form data is submitted. For
now, leave this empty and click Next. This selection can be changed later by modifying the
form properties.

8. Specify the action you want the Form Block Server Control to take when the form is
submitted.

9. Customize the response message that displays when the form is submitted. The Merge Field
button appears on the toolbar, which lets you select from available fi elds to display in the
message. Click Next, and then click Done.

As you can see in Figure 9-28, you now have a basic “Contact Information” form that is ready
to publish and capture information. All of the information provided in the Wizard is accessible
through the form properties and can be modifi ed at any point if needed. Table 9-8 describes the
purpose of the two HTML Form specifi c tabs. The other tabs are covered when discussing content
in Chapter 5 (see Chapter 5: Content Management Fundamentals).

c09.indd 312c09.indd 312 12/28/2010 1:58:08 PM12/28/2010 1:58:08 PM

HTML Forms x 313

FIGURE 9-27

FIGURE 9-28

c09.indd 313c09.indd 313 12/28/2010 1:58:08 PM12/28/2010 1:58:08 PM

314 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

TABLE 9-8: Properties of Tabs

TAB NAME PURPOSE

Form A WYSIWYG display of the form. If the form is being edited, it will appear

within the eWebEdit400 authoring tool and form elements may be added,

removed, or modifi ed. You may also view or modify HTML source directly.

Post back message You can choose to 1) Display a message, 2) Redirect to a fi le or page,

3) Redirect to an action page, or 4) Display a report. Choose “Display a

Message” and customize the response message that is displayed when the

form is submitted.

This form uses an HTML table to display the labels and form elements in separate columns. The Text
Field form element is used for every fi eld except for State, which uses the Choices Field. The red aster-
isks indicate the form fi eld has some type of validation associated with it. Table 9-9 lists the validation
properties for an input fi eld.

1. Right-click the form fi eld.

2. Select Field Properties from the context menu.

3. Click the Validation tab and notice that the validation is set to Cannot be blank, as shown in
Figure 9-29.

FIGURE 9-29

c09.indd 314c09.indd 314 12/28/2010 1:58:08 PM12/28/2010 1:58:08 PM

HTML Forms x 315

TABLE 9-9: Properties on Field Inputs

FIELD TYPE DESCRIPTION

Text Field Use a text fi eld when you want the user to enter a free text response, or to dis-

play text on the screen.

Choices Field Use when you want a site visitor to select from a predetermined list. You can

allow a site visitor to select only one choice or more than one choice. You can

also determine the list’s items and appearance.

Checkbox Field A Checkbox Field is one character wide and accepts one of two possible val-

ues: checked or unchecked.

Calendar Field Use to insert a fi eld that lets a site visitor select a date.

Placing the “Request a Demo” Form on the Page

You should be fairly comfortable with the concept of dragging and dropping PageBuilder Widgets
from the Widget Tray into a PageBuilder Wireframe. Because HTML forms are ultimately content
items, the widget to use for placing an HTML form on a page is the Content Block Control Widget.
To select an HTML form using the Content Block Control Widget:

1. Drag and drop the Content Block Control Widget onto your page from the Ektron Widget
Tray.

2. Set the Filter By option to Forms. This is an important step because HTML forms are not
included in the result set by default.

3. Navigate the folder tree to fi nd the “Request a Demo” form, or click the Search tab and
search for your form by its name.

4. Hover your mouse over an item in the result set to see more information about that item in
the Content Preview Bubble, as you can see in Figure 9-30.

5. With your choice selected, click the Save button.

Under the Hood: HTML Form Data Model

Now that you understand the basics of working with HTML forms, you can dive into some detail
and look at the HTML form data model to see how the information is represented and stored in
the database. This knowledge isn’t required to use the feature or create HTML forms. Spending the
time familiarizing yourself with the inner workings gives you a solid understanding of how the sys-
tem is operating and inevitably saves you development time.

The core terminology to understand is:

 ‰ Form Fields: Text fi eld, text area, hidden text, choices, checkbox, select list, and so on

 ‰ Form Design: The HTML markup that composes the HTML form

 ‰ Form Properties: Attributes of the form, such as Title, ID, and so on

c09.indd 315c09.indd 315 12/28/2010 1:58:09 PM12/28/2010 1:58:09 PM

316 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

FIGURE 9-30

Form designs and core form properties are stored in the primary content table, content_tbl. Take
a look at the form design for the HTML form you created earlier and focus on three fi elds: type,
content_HTML, and summary. To fi nd this information in the database, do the following:

1. Open SQL Server Studio.

2. Issue this SQL command: SELECT id, content_HTML, summary FROM content_tbl
WHERE type=2 AND title=’My Test Form’. You’ll need to change the title to the one you
created, or leave the title clause out to see all of the forms available.

The type fi eld stores an integer that describes the type of content contained within the record. As
you can see in the SQL query, the type for HTML forms is 2. The content_HTML fi eld contains the
HTML for the form. A close look at the markup reveals standard HTML form elements along with
elements referencing custom tags and attributes. The custom elements are prefi xed by ekt_design_
ns and are used by the system for internal validation functions. All custom attributes are removed
prior to page rendering, except for those attributes used for form fi eld validation, so you see those
fi elds in your markup if you’re using the system’s HTML form validation functionality.

Because HTML forms are stored in content_HTML, they are ultimately a type of content. The forms
inherit the same features that content has including the ability to have different versions of the same
form available for different languages and the ability to schedule forms to “go live” at a specifi c time.

If you continue to explore the content_HTML table, you fi nd the properties that an HTML form
derives from content, such as Title, Summary, and ID. Properties that are unique to HTML forms
are found in the form_properties_tbl table.

c09.indd 316c09.indd 316 12/28/2010 1:58:09 PM12/28/2010 1:58:09 PM

HTML Forms x 317

The last table you should familiarize yourself with is the one that stores the form submissions, called
form_data_tbl. If you noted the ID of the form you created previously, you can fi nd the data sub-
mitted against it by executing this query, replacing the ID with the ID of your form:
SELECT * FROM form_data_tbl WHERE ID=23. The data is stored as name-value pairs (and not as
content), with the name representing the ID given to the form fi eld and the value representing the
information provided by the site visitor in that form element.

See Chapter 7 for coverage on Smart Forms and the differences between Smart
Forms and HTML Forms.

Multivariate Testing

Multivariate testing is process designed to increase the conversion rate of a given page. As a Web
design concept, this is typically achieved through varying the layout, graphics, and content of a page
through a series of possible confi gurations, and determining which collection of settings has the
highest level of conversions.

The strength of multivariate testing comes from its ability to test a number of variables at the
same time. The system creates a list of all possible combinations of layouts and content (called a
full factorial) and allows a marketer to run an experiment that shows each combination to site
visitors a roughly equal number of times. The success rate of each variation is then calculated by
determining what percentage of users follow a call to action to the determined target page. This
allows marketers to easily determine an optimum confi guration for a given page through auto-
mated trial and error. Multivariate testing relies on PageBuilder for its foundation. There are three
widgets that come into play, the fi rst is called the Multivariate Experiment Widget, the second is
the Multivariate Section Widget, and the third is the Multivariate Target Widget.

 ‰ Multivariate Experiment Widget

 ‰ Multivariate Section Widget

Multivariate Section Widget

The Multivariate Section Widget allows a marketer to create an internal set of columns, each con-
taining further widgets. In display mode, the section widget randomly shows one of the internal
columns, displaying the list of widgets defi ned for that column in its place. By adding a series of
columns in a given section widget, it is possible to create a series of different confi gurations, called
variants, which will be shown to end users browsing the site. If you use a single section widget on a
given layout, you are approximating A/B testing, which varies a single item on a given page in order
to determine which variation works best.

However, by using the fl exibility of PageBuilder to turn this section functionality into a widget,
Ektron built the functionality in such a way that multiple section widgets can be placed on the same
page, delivering full multivariate capabilities. Each section widget can have multiple columns, each
containing a set of widgets. The experiment widget, covered in the next portion of this section, then
uses factorial logic to determine all the possible combinations of the the columns in the section wid-
gets. The fi nal page delivered to each user will contain one of these variations.

c09.indd 317c09.indd 317 12/28/2010 1:58:09 PM12/28/2010 1:58:09 PM

318 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

The columns created internally in the section widget are stored in the widget settings for the sec-
tion widget, and the columns are instantiated by the widget at render time. This means that only the
widgets currently being displayed are actually instantiated.

Multivariate Experiment Widget

The Experiment Widget is used to manage the settings for the overall experiment being run. Behind
the scenes, it determines which combinations of content are displayed to users visiting the site, and
it stores statistics on what was shown to users. Combining the data that the experiment widget col-
lects with the data the target widget collects allows the experiment widget to display reports on the
overall effi cacy of each combination. This widget is the key that allows marketers to actually run
experiments.

When a marketer interacts with the experiment widget, they are shown two key interface elements.
The fi rst portion of the widget allows them to select a target page, which is where conversions will
actually be recorded. It also allows them to stop and start the experiment. Below the experiment
settings, a list of the available combinations is shown, along with details on the current conversion
rates, if an experiment is currently running.

When a site visitor views the page, the experiment widget remains invisible to them, but it performs
several key functions during their visit. The fi rst of these things is that it randomly selects a combi-
nation, also known as a variant or variation, from the list of available combinations. It then records
which variation it selected by storing it as an incomplete conversion in the database, and also in a
cookie on the user’s system, allowing it to reshow the exact same layout if the user returns to the
page. Finally, it informs the section widgets which column they should display in order to match the
selected variant.

Once an experiment is underway, the experiment widget will continue to follow the process outlined
above until the target number of test cases have been displayed, at which point the variant with the
highest percentage of successful conversions is promoted to always being displayed, and the experi-
ment ends. Typically, the number of test cases is set to a fi gure around 1,000, which is high enough
that statistical anomalies can be averaged out, but not so high that the experiment runs inordinately
long. A good way to determine what number to set this fi gure to is to take the number of combina-
tions available, determined by multiplying the number of columns in each section together, and mul-
tiplying it by a number between 100 and 250. This means that each combination will be shown to
over 100 users, which is usually considered a band large enough to glean accurate information from.

Multivariate Target Widget

The target widget is the third piece of the puzzle. This widget is designed to capture statistics on
successful conversions, and is placed on the target page. For instance, if a marketer is trying to drive
traffi c to a membership signup page, they may try several different combinations of graphics and
text on a campaign landing page. The target page would be the page that actually contains the form
to create an account. As each variation is shown to a user on the site on the campaign landing page,
the act of showing the particular combination is logged. When the user follows the link to the sign-
up page, the target widget then analyzes the cookie on the visitors system, and determines that they
participated in the experiment on the campaign page. It then reads which combination they were
shown, and logs it as a successful conversion.

c09.indd 318c09.indd 318 12/28/2010 1:58:09 PM12/28/2010 1:58:09 PM

HTML Forms x 319

Multivariate Use Example

Putting this fl ow together into an example, imagine a scenario in which you have two section
widgets and an experiment widget. In the fi rst section widget you might choose to have two varia-
tions, resulting in two hidden columns. In the fi rst variation, you may use a Content Block Widget
and a YouTube Widget to show a video. In the second variation, you might opt to put in a differ-
ent Content Block Widget and a Collection Widget to display associated documents. The items in
these variations can be extended, modifi ed, or more variations or columns can be added at any time.
Variation settings are stored in the WidgetData object for the section widget, which also means the
settings are part of the underlying data structure for the layout itself.

In addition to the center content defi ned by the fi rst section widget, in the right column you choose
to have your second section widget with another two variations, this time selecting two differ-
ent images for your call-to-action graphic, one in each variant. The variations are then defi ned by
a combination of a column selected from the fi rst section widget and a column selected from the
second section widget. For example, the fi rst section could display column A and the second sec-
tion column C, or the fi rst section could display column B and the second column D. Combinations
consisting of column B and C, or A and D are also valid. This totals four variations for the page.
The experiment widget calculates all the possible vaiations and shows each of these combinations
roughly equally, so at the end of the experiment you have a clear understanding of which combina-
tion of settings is most optimal to funnel conversions.

Looking at the implementation guide, you can see that an experiment is required in the campaign
landing page. This page deals with accepting incoming page views from e-mail and Web campaigns,
and funneling them through to a conversion page that contains a form. The form collects informa-
tion from users requesting a demo about the company’s software solutions.

Continuing the examples from this chapter, you now have one page completed which contains a
Collection Widget with documentation about OnTrek’s solutions and awards, and an HTML form
to accept information from visitors requesting further information and demos. Extend the example
in this section by splitting the contents of the single layout you have into two separate pages, one
with the collection and one with the form. Then modify the collection page to be the experiment
page and add HTML content from the site. Add the form page as well and set it as the target page.

The remaining sections cover the following steps:

 ‰ Creating an experiment.

 ‰ Modifying the contents of the section widget.

 ‰ Viewing the results and modifying the parameters of the experiment.

Creating an Experiment

To create an experiment, you need to have the experiment page and the target page ready to go:

1. Create a new page in /MainSite/Pages/Experiments called “Request a Demo Form Page”
using the Promotions.pb.aspx template.

2. On this target page, place a Content Block Widget in the center column, and set the source to
/MainSite/Content/Campaigns/SelfServe HelpDesk Pro Release/Request a Demo.

c09.indd 319c09.indd 319 12/28/2010 1:58:09 PM12/28/2010 1:58:09 PM

320 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

3. Also place a Multivariate Target Widget on this page. This will record successful conversions.

4. Publish the page.

5. Create the landing page, at /MainSite/Pages/Experiments/ Request a Demo Promotion, using
the Promotions.pb.aspx template and edit the layout.

6. Now that the groundwork is complete, start by adding a Multivariate Experiment Widget to
the center column. Click the “...” button on the widget to bring up the target page browser as
shown in Figure 9-31, and navigate to the Target page in /MainSite/Pages/Experiments/Request
a Demo Form Page. Before you click Start, you need to add a Multivariate Section Widget.

FIGURE 9-31

7. Go back to the toolbar and drag a Multivariate Section Widget into the center column. The
Multivariate Section Widget is shown in Figure 9-32.

The Multivariate Section Widget has some key UI elements. The 1/1 indicator tells you which vari-
ant of the section you’re looking at. Next to the indicator is a slider which can be dragged to select
a different variation. Finally, there is a + button, which allows you to add a variation to the section.
You can add as many of these section widgets to a page as you want.

Modifying the Contents of the Section Widget

Below the navigation tools in the widget is a blue header. The header indicates you can interact with
the contents just as you can with any column in a DropZone. Follow these steps:

1. Add a Content Block Widget inside the Multivariate Section Widget, as shown in Figure 9-33.

You can see there is now a Content Block Widget defi ned for Variation One with the same
user icons you are accustomed to seeing — Edit, Delete, and Help. No customization
needs to be done to a widget to allow it to be used in multivariate, as it is automatically
supported.

c09.indd 320c09.indd 320 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

HTML Forms x 321

FIGURE 9-32

FIGURE 9-33

c09.indd 321c09.indd 321 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

322 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

2. Set the Content Block Widget to use at /MainSite/Content/Campaigns/SelfServe HelpDesk
Pro Release/ Request a SelfServ Demo v1.

3. Return to the section widget and click the + button to add a second variation.

4. Drag another Content Block Widget into the second variation, and set its source to
/MainSite/Content/Campaigns/SelfServe HelpDesk Pro Release/ Pages/Promotions/Request a
SelfServ Demo v2.

You now have two variations of content on the page. Once you start the experiment, both
versions will be shown roughly equally to site visitors until the conclusion of the experiment.

5. Start the experiment to see how the reporting works.

Viewing the Results and Modifying the Parameters of the Experiment

Once the experiment has been started in the Multivariate Experiment Widget, the report becomes
available for viewing. You can see in Figure 9-34 that you have two variations available. If you have
a second section, also with two variations, there can be four combinations. If you have a third
section, this time with three variations, the number of combinations can be 2x2x3, or 8. Each
combination represents one variant from each section.

FIGURE 9-34

c09.indd 322c09.indd 322 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

HTML Forms x 323

There are three options available above each combination:

 ‰ Preview: Allows a preview of the combination by adjusting each section to display the
selected variant.

 ‰ Disable: Allows you to disable a specifi c combination. For instance, you may be measuring
the effectiveness of having a call-to-action in the center column versus right column. You
want to disable the combination that has the call to action in both columns.

 ‰ Promote: Clicking this button ends the experiment, and removes the section widgets while
moving the contents in the corresponding variation to the page itself. This happens automati-
cally when the target number of conversions happens.

You can start, stop, or modify the experiment at any time. The only limitation is that only admin-
istrators and users with the Multivariate-Tester role can manage the experiment. Any user with
editing privileges can modify the contents of an experiment.

Under the Hood: Multivariate

The data model for Multivariate is broken into two tables. The fi rst table, multivariate_experiment,
stores the experiment details such as the target page, maximum conversions, and the experiment
page ID. Listing 9-11 shows a select statement retrieving this information.

LISTING 9-11: SQL Query to Retrieve Experiment Details

SELECT TOP 1000 [id]

 ,[experiment_page_id]

 ,[target_page_id]

 ,[max_conversions]

FROM [multivariate_experiment]

The main table for results of the experiments however, is the multivariate_report table. As seen
in Listing 9-12, this table stores the unique GUID for the combination viewed, the total number of
hits, and the total number of conversions.

LISTING 9-12: SQL Query to Retrieve Experiment Conversions

SELECT TOP 1000 [id]

 ,[page_id]

 ,[hits]

 ,[conversions]

 ,[combination_guid]

 ,[disabled]

FROM [multivariate_report]

When a new variation is added by clicking the + icon on the Multivariate Section Widget, the vari-
ant is stored in the PageData object for the layout in the columns list. These column variations are

c09.indd 323c09.indd 323 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

324 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

not given a numerical column ID, but are instead given a random GUID for an ID. Combinations of
variations also have GUIDs for IDs. The combination GUIDs are created by XORing the variation
IDs together. This gives a reasonable assurance that each combination will have a unique identifi er.

To speed up the page-load process and minimize hits to the database, the current hits are counted
in the application cache until the threshold of 100 new results is reached. Hits are then bulk written
to the database. The safest way of getting the results of an experiment is to use the cached model as
is done in Listing 9-13

LISTING 9-13: Creating a Cached Multivariate Report Model

IMultivariateReportModel _reportModel =

 CachedMultivariateReportModel.FromModel(new

SqlMultivariateReportModel());

The cached model always returns the most up-to-date results.

Multivariate Brief

Multivariate testing is a powerful method of determining the effectiveness of varying versions of a
page. It leverages PageBuilder to allow for ease of running experiments, and can help an organization
to increase conversion rates with a minimum of fuss. There are many solutions to running A/B tests or
Multivariate tests on your website, but by using the Ektron Framework, you ensure that these transfor-
mations take place server side, meaning better search engine optimization with less JavaScript. Using
the Ektron Framework also means no development effort when integrating with a test suite.

WEB ANALYTICS

The key hallmark of a good objective is its ability to be measured. Web Analytics plays a funda-
mental role in validating the success of a website by recording and reporting on the metrics that will
help determine whether or not your site’s business objectives are being met. The Web metrics used to
determine this are called Key Performance Indicators (KPIs).

In this fi nal technical section, you learn how to use Ektron’s Traffi c Analytics to measure the effec-
tiveness of the Request a Form campaign by looking at the number of impressions, the click through
rate, and the conversions rate.

Traffi c Analytics versus Business Analytics

Ektron makes an important distinction between two different types of metrics collected on websites
and categorizes them separately as Traffi c Analytics and Business Analytics.

 ‰ Traffi c Analytics: Encompasses capturing and reporting of metrics related to all aspects of
Web traffi c, including where site visitors come from, what they click, what pages they visit,
how they respond to the content presented, covering all activities down to the page level.

 ‰ Business Analytics: Collects and provides similar data from a different perspective. For
instance, it can look at activities related to a particular content block or business event.

c09.indd 324c09.indd 324 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

Web Analytics x 325

The combination of Traffi c Analytics and Business Analytics makes the Ektron Framework’s Web
Analytics Framework extremely powerful. Leveraging both can help you to make more informed
decisions to determine quantitatively whether your website’s objectives are being met.

The Traffi c Analytics engine is designed to support a number of different Analytics providers such
as Google Analytics and Omniture through its use of the Provider Model Design Pattern. This
approach means that your website inherits all the tracking and reporting features provided by those
systems, allowing Ektron to take full advantage of the tools and reports of the top analytics provid-
ers. It also means that Ektron can combine this information with its own data to provide even more
insightful reports, such as the effect that changing content has on the page traffi c or the effectiveness
of different versions of the same content item.

Ektron simplifi es the process of using these providers, eliminating the need to manually tag pages
with snippets of tracking code, and offering the ability to track Web traffi c on the entire website or
limit data gathering to specifi c pages. The Ektron Framework automatically adds the tracking bea-
con to any PageBuilder page or ASPX template that contains an Ektron Server Control. It is strongly
recommended that you enable site-wide tracking and fi lter data through the reports as needed. Once
Web traffi c analytics is enabled at the site level, the process of data collection starts and information
is stored by the provider on their servers.

Analytics Reports

Although traffi c analytics data is stored remotely, the reporting is integrated closely with your web-
site and its content. A full suite of reports can be viewed through any Ektron-managed Web page
or through the report section of the Workarea. You can also view the reports from any interface
offered by your provider. For example, if you use Google Analytics, you can continue to use its Web
interface http://www.google.com/analytics/ as you normally would. Widgets are also available
for displaying Web traffi c analytics data. With the Analytics Report Widget, you can display a traf-
fi c report for the past seven days, customize it as needed, and integrate it into a PageBuilder page or
the Dashboard.

In cases where you need to provide metrics on custom events or the activities related to a particular
content item or user, you’ll want to look at Ektron’s Business Analytics engine. In contrast to the
Traffi c Analytics engine, the Business Analytics engine uses an Ektron Server Control for tagging
individual pages and logging statistical information related to custom defi ned events, the page URL,
content ID, user ID, and more. The server control writes this information to the database and can be
confi gured to store information in memory to minimize the number of transactions to the database.
You’ll see how to confi gure this later in the “Under the Hood: Analytics” section.

In the Report section of the Workarea, you can view Business Analytics reports covering the entire
site, individual templates, and individual content items. To view analytics data you must be a mem-
ber of the administrator group or assigned the Analytics Viewer role. A screenshot of the Business
Analytics report section is shown in Figure 9-35.

This section walks through the process of implementing a solution that uses Web Traffi c
Analytics to determine the effectiveness of the campaign landing page by measuring the number
of impressions (the number of times the page was viewed by a site visitor), the click through rate

c09.indd 325c09.indd 325 12/28/2010 1:58:10 PM12/28/2010 1:58:10 PM

326 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

(the percentage of visitors that click the “Request a Demo” button), and the conversion rate (the
percentage of visitors that complete the “Request a Demo” form).

FIGURE 9-35

Setting Up Site Wide Traffi c Analytics

These steps assume you are using Google Analytics as your Web Analytics provider. For steps on
confi guring the Omniture Provider, see the Web Analytics section of the Ektron Reference Manual.

1. If you don’t have one already, create a Gmail account (http://www.google.com) and sign
up for Google Web Analytics. When you set up a Google Web Analytics profi le for your site,
you are assigned a Profi le ID and a User Account. Take note of these as you will need them
to enable Traffi c Analytics on your site.

2. On the server that hosts Ektron CMS400.NET, go to c:\program fi les\ektron\
cms400v80\”Utilities\EncryptEmailPassword.exe.

3. Use that utility to encrypt the Gmail username and password that you obtained.

4. Open your website’s web.confi g fi le, located in the root of your site.

5. Find the AnalyticsdataProvider tag, which is shown in the following code snippet.

<AnalyticsDataProvider defaultProvider=”Google”>

<providers>

<add name=”www.techpoint.com-Google” type=”Ektron.Cms.Analytics.Providers.

GoogleAnalyticsProvider,

c09.indd 326c09.indd 326 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

Web Analytics x 327

Ektron.Cms.BusinessObjects” Username=”” Password=”” Profi leId=”” SiteURL=””

UserAccount=””

GoogleAnalyticsTrackingCodePath=”Analytics\template\googletrackingcode.ascx”

/>

</providers>

</AnalyticsDataProvider>

6. Use the element in Table 9-10 to populate the values of the AnalyticsDataProvider.

TABLE 9-10: Elements of the AnalyticsDataProvider Tag

ELEMENT PURPOSE

Name The text name of the site being tracked. Ektron recommends using the site name

followed by the provider name. For example, www.techpoint.com-Google.

Username The Gmail username you encrypted.

Password The Gmail password you encrypted.

Profi le ID The Google Analytics Profi le ID you obtained during your account creation.

Site URL The URL of your site. For example, you could set up one <providers> tag for

the dev.ektron.com site, and another for the www.ektron.com site. Do not include

a protocol, such as http://. The Site URL needs to match the development site

URL when you test in your development environment. For example, if the site path

is http://localhost/default.aspx, the site URL attribute needs to be local-

host. If there is no match, the Google beacon is not inserted onto your page.

User Account The Google Analytics Site URL you defi ned during your account creation.

7. You also have the ability to defi ne whether or not you want to include the traffi c from CMS
or membership users in your reports. Many site administrators want to exclude the activ-
ity from these users, and the SuppressBeacon setting found in the web.confi g code snippet
below allows you to control this. Table 9-11 that follows lists the possible settings for this
element.

 <analyticsSettings>

 <!-- Valid options: None, Members, Authors, All -->

 <add key=”suppressBeacon” value=”None”/>

 </analyticsSettings>

TABLE 9-11: SuppressBeacon Element Settings

VALUE DESCRIPTION

None Track all users, including authenticated membership and CMS users.

Members Track unauthenticated and log-in CMS users only. Do not track membership users.

Authors Track authenticated and logged-in membership users only. Do not track CMS users.

All Track unauthenticated users only. Do not track membership and CMS users.

c09.indd 327c09.indd 327 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

328 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

Once the steps to enable Traffi c Analytics have been successfully completed, you will see client side
tracking code, shown in the snippet that follows, automatically added to each PageBuilder page, as
well as any ASP.NET template that contains at least one Ektron Server Control. You can verify site
wide Traffi c Analytics is confi gured properly by loading such a Web page, viewing its source, and
fi nding the Google Web beacon.

<!-- Start Google Code -->

<script type=”text/javascript”>

var gaJsHost = ((“https:” == document.location.protocol) ? “https://ssl.” :

“http://www.”);

document.write(unescape(“%3Cscript src=’” + gaJsHost + “google-analytics.com/ga.js’

type=’text/javascript’%3E%3C/script%3E”));

</script>

<script type=”text/javascript”>

try {

var pageTracker = _gat._getTracker(“[USER ACCOUNT STRING]”);

pageTracker._trackPageview();

} catch(err) {}</script>

<!-- End Google Code -->

Measuring Eff ectiveness of the Campaign Using Traffi c Analytics

To determine the number of times the landing page was viewed by a site visitor:

1. Log in to your website and navigate to the campaign landing page.

2. Hover your cursor over the website Content Menu.

3. Click View Page Activity from the website Content Menu as shown in Figure 9-36 below.

4. The SEO page’s Traffi c Tab appears with traffi c information for this page.

Use the same process to determine the number of impressions to the Request a Demo form, and the
number of times the Request a Demo form has been submitted. The click through rate (CTR) can
be computed by dividing the number of request a demo form impressions by the page impressions.
The conversion rate can be determined by dividing the number of form submissions by the page. Use
the formulas shown in Table 9-12 for reference.

TABLE 9-12: Determining the Success of the Request a Demo Campaign

METRIC DESCRIPTION

Impressions Visits to the campaign landing page

Click Through Rate Form impressions � page impressions � 100

Conversions Form submissions � page impressions � 100

These reports can also be found through the Report section of the Workarea and through the
Google Web Analytics Dashboard http://www.google.com/analytics/.

c09.indd 328c09.indd 328 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

Web Analytics x 329

FIGURE 9-36

Under the Hood: Analytics

There may be times when you want to retrieve Traffi c Analytics data programmatically from the
system to use within the context of a custom report or application. Retrieving data from the Ektron
Framework is straightforward and its API simplifi es the process of access data from the Traffi c
Analytics providers, keeping the API classes and methods consistent regardless of which provider
is being used. Listing 9-14 provides an example of how to retrieve a report using the Analytics API
GetAllTrafficSources.

LISTING 9-14: Reports.ascx

using Ektron.Cms;

using Ektron.Cms.Analytics;

using Ektron.Cms.Analytics.Reporting;

using Ektron.Cms.Interfaces.Analytics.Provider;

using Ektron.Cms.Analytics.Providers;

class Example()

{

 public void DisplayReport()

continues

c09.indd 329c09.indd 329 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

330 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 {

 // Define the report objects and criteria

 IAnalytics _dataManager = ObjectFactory.GetAnalytics();

 string provider = “techpoint.com-google”;

 DateTime startDate = DateTime.Today.AddDays(-1).AddDays(-30);

 DateTime endDate = DateTime.Today.AddDays(-1);

 AnalyticsCriteria criteria = new AnalyticsCriteria();

 // Get traffic sources report

 AnalyticsReportData report =

 _dataManager.GetAllTrafficSources(

 provider, startDate, endDate, criteria);

 // Display report by databing to DataGrid

 DataBind(report);

 // for a complete sample including DataBind(), see

 // c:\Inetpub\CMS400Developer\Workarea\Analytics\reporting\Report.ascx

 }

}

If you’re planning on using the Business Analytics feature to capture custom defi ned or CMS events,
it is important to know that the logging of these events occurs with each request to a Web page.
This means that the application is potentially writing to the database with each Web request. To
mitigate the stress that activity could put on the database, the Ektron Framework buffers this data
in the website’s application memory and keeps it until a predetermined amount of information is
collected, at which point the information is written to the database in one transaction. To confi gure
these parameters, open the website’s web.config fi le and set the values of the parameters outlined
in Table 9-13. Note that decreasing the default values causes an increase in database writes, and
increasing the values decreases the frequency in which the database is written to.

TABLE 9-13: Controlling Business Analytics Caching

NAME DESCRIPTION

recordsBeforeWrite The number of unique template visits

timeBeforeWrite The number of seconds since the last time a database write occurred

TAKE HOME POINTS

Now that you’ve gone through the process of creating a complete landing page that satisfi es the
business case outlined by OnTrek’s marketing department, take a step back to appreciate all that
you accomplished and learned.

LISTING 9-14 (continued)

c09.indd 330c09.indd 330 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

Additional Practice Steps x 331

You placed the right tools in the hands of the right people to generate leads, optimized the process
by which these types of campaigns are launched, and provided a clear window into how these cam-
paigns perform. By any measure, you are set up to be a rock star with your marketing department.

To recap, here are the highlights of the technology sections we’ve covered:

 ‰ Collections: These provide a way to manage and display a static list of content items. You
used collections to provide tight control over the list of documents a site visitor is shown
while visiting the campaign landing page. Collections are also language-aware and can
require approval before modifi cations are visible on the website.

 ‰ PageBuilder: The biggest overall benefi t of this is ease of maintenance. Making it a strict
requirement that functionality be broken out into widgets forces developers into good habits
about encapsulating functionality. It also offl oads interface design from developers, meaning
there is less housekeeping to do in the long run.

 ‰ Widgets: These are a powerful method of encompassing functionality in such a way that a
developer is no longer required to instantiate them in a given instance. Widgets support
a string platform that minimizes the amount of code required, but the tradeoff is they do
require a bit more code than simply placing a server control on a given template.

 ‰ HTML forms: These improve upon standard HTML form technology by providing advanced
form input elements like Rich Text Editing and checkbox form validation, and also put form
creation in the hands of non-technical authoring and publishing through the WYSIWYG
editor.

 ‰ Multivariate Testing: This involves increasing the conversion rate of a given page and is
achieved through varying the layout, graphics, and content of a page through a series of
possible confi gurations and identifying which has the highest conversion rate.

 ‰ Web Analytics: These are divided into two frameworks. Traffi c Analytics integrates leading
Web analytics providers like Google Analytics and Omniture into the Ektron Framework.
Business Analytics provides content and user-specifi c reports, as well as the ability to track
and report on custom business events.

ADDITIONAL PRACTICE STEPS

The following exercises aim to broaden your knowledge of PageBuilder and HTML forms. As you’ve
seen, PageBuilder is a nice framework for building and deploying Web pages. The PageBuilder exer-
cises have you trying to create a custom widget, using the Global Widget Data storage, and using
PageBuilder master layouts. The practice step related to HTML forms references a KB article to cre-
ate an HTML form that includes a dynamically populated select list.

 ‰ For an advanced exercise in widget development, try creating a widget. It should use the
Twitter API to retrieve recent tweets from @Ektron and should allow the content author to
specify a list of other authors.

c09.indd 331c09.indd 331 12/28/2010 1:58:11 PM12/28/2010 1:58:11 PM

332 x CHAPTER 9 GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION

 ‰ For extra credit, rather than hardcoding @Ektron, make the default user that the widget
will follow be confi gurable in the Global Widget Data for your new widget. To get started,
take a look at the Ektron Twitter Widget, supplied in your installation. It is also available at
http://dev.ektron.com/exchange/codedownload.aspx?id=2147483754.

 ‰ To extend your knowledge and understanding of PageBuilder, create a new master layout.
Master layouts allow for a layout to serve as the basis for another layout, allowing many
pages to share elements in an inherited manner. Create a master layout that has navigation
elements in the right column, but leave the center column open for use in layouts using it.
For more information on master layouts, check pages 6–27 in the CMS400 Manual, installed
with the CMS.

 ‰ Consider reusing lists. When creating an HTML form, you will inevitably repeat the same
list of items in many forms, such as a list of products, offi ce locations, and so on. There are
Knowledge Base articles that explain how to defi ne and manage a list of items in such a way
that you can centrally manage that list making it easy to reuse them across multiple forms.
The most popular approach is outlined in KB7244 (Static XML-Driven Datalist). To under-
stand this approach, create a list using the method described in this article (Dynamic Data
Driven Datalists: http://dev.ektron.com/kb_article.aspx?id=7244).

c09.indd 332c09.indd 332 12/28/2010 1:58:12 PM12/28/2010 1:58:12 PM

10
Supporting Customers

 ‰ How do you support an existing customer base with Forums?

 ‰ How do you use blogs to connect to a community?

 ‰ How can you use a wiki to create community content?

 ‰ Can you use the SocialBar to share pages and media?

 ‰ What’s the easiest way to get feedback on content?

So far you have worked on managing the content and information architecture of your site.
You made sure the navigational elements help clients fi nd the content they are looking for
quickly and accurately, and you had begun to explore community outreach in the form of
calendars and surveys. The next step is to foster a deeper community, a natural meeting
ground for the people who work with your product on a day-to-day basis. Getting your
customers interacting on your site is one of the key pieces to building a community around
your product.

One of the fundamentals of creating that type of interplay is allowing users to author content
on your site, and manage it through the overall lifecycle. To that end, in this chapter you will
review some of the basic building blocks to help your site garner more user interaction.

This chapter also covers some of the control mechanisms available to manage all this user-
generated content. The ContentReview Server Control and ContentFlagging Server Control
allow you to farm out moderation duties to your user base, and easily run reports to ensure
that all the content you are exposing to the world is in good shape.

Of course, none of these features will bind your users into a community if you have no users.
So, this chapter also covers the SocialBar Server Control, which allows your visitors to post,
tweet, update Facebook statuses, and invite others to view the page without ever leaving it.
This can help you to grow your user base organically by tapping into the social network of all
your users.

c10.indd 333c10.indd 333 12/28/2010 2:17:57 PM12/28/2010 2:17:57 PM

334 x CHAPTER 10 SUPPORTING CUSTOMERS

UNDERSTANDING THE TECHNOLOGY

In this chapter you will cover a disparate group of technologies. They are all tools to drive customer
interaction. Some of the classic tools discussion in this section have been around since the early days
of the Internet, and some are more targeted at the particulars of the Ektron environment. All share
the common ability to get users more involved and to generate a sense of collaboration.

Forums

Forums are one of the best ways to support an existing customer base. An evolutionary descendant
of dial-up bulletin board systems and gaining in popularity in the 90s, forums have a long history of
being a natural way of managing non-real-time conversations. Because they’ve been around so long,
most Internet users are very comfortable at this point understanding how to interact with them.

As an example, Ektron uses forums extensively in the DevCenter to foster a community of develop-
ers. Even though the forum is on an Ektron property, questions are frequently answered by other
users because of the depth and successful nature of this community.

Much like some other features covered in this section, forums also have the benefi t of assisting not
only a single customer, but every customer who comes to the site later with the same question.

Because of this reusability, many companies have decided to make forums their front-line support
mechanism, backed up by a knowledge base, or wiki. This pairing of features allows for your com-
pany to disseminate answers to common and diffi cult questions, as well as to support the day-to-day
needs of your existing and potential customer base.

The Ektron Framework’s forum feature is a deep and well-developed piece of functionality. It’s
constructed from a basis of folders and content, with many boards being contained in a single forum
folder. Each board then contains many topics, with each topic being an individual piece of content.
The topics then contain responses, which are stored as associated data in a separate table.

The forum has several server controls specifi cally designed to display forum data, but because the
data is comprised of fundamental content types, the rest of the server controls designed to interact
with or rely on content, such as the ListSummary and ContentBlock, also work with topics. This
makes the forum, like many other framework features, a very capable and extensible system. In
addition to the server controls, there is a strong API available to retrieve and work with forum data.

Like so many other Ektron features, a wide variety of control mechanisms can be used without any
complication with the particular data type. For instance, attaching a ContentReview Server Control
to a post is easy.

Blogs

This feature can increase user involvement and communication. As a Web landmark, blogs have
been around since 1994, and have exploded in popularity over the past 10 years. Many companies
have successfully used blogs to keep customers and clients in the loop on key issues while post-
ing very high hit numbers. For instance, the Google Blog at googleblog.blogspot.com posted
as the 18th most popular blog on the Internet in the week of August 27, 2010. It only lost out to

c10.indd 334c10.indd 334 12/28/2010 2:18:00 PM12/28/2010 2:18:00 PM

Understanding the Technology x 335

professional blogs like the Huffi ngton Post, Gizmodo, and Engadget. Blogs can be a very key tool
for your organization to drive user interaction.

The next piece of technology you will explore is the blog feature. Blogs in the Ektron Framework,
like forums, are basically standard content. The major differentiators between blogs and standard
content are the additional abilities (such as a calendar displaying dates of blog entries) that the
server controls designed for blogs provide. The main Blog Server Control is actually composed of
several smaller server controls, each of which provides for a particular desired function. This makes
it very easy to mix and match the functionality for the specifi c requirements at hand. You’ll explore
the creation, moderation, and development of blogs in this section.

Wiki

This is a slightly more recent, but certainly no less popular, feature that the Ektron platform
provides as part of its framework. Because one of the most traffi cked websites on the Internet
is Wikipedia, it’s unlikely that any Web-savvy person has possibly avoided this type of tool. It’s
become a prized way of building an interacting customer base, due to the fact that any visitor can
produce content. Ektron has made it a little easier to create this type of feature as a wiki in the
Ektron Framework because:

 ‰ The ContentBlock Server Control allows you to display the content.

 ‰ The ListSummary Server Control provides simple navigation.

 ‰ The same rich text editor you use in the Workarea is used for the wiki on the front end.

 ‰ Community folders are the only basic folder type that allows membership users to create and
manage content within them.

What this means is that your customers don’t have to learn anything new to contribute to your
wiki, including avoiding custom markup. The wikis simply operate in a Word-like environment.
In-context editing is supported.

In this chapter you will build the wiki onto a PageBuilder page. You will then build a widget
to explore the two fi nal feature sets — the SocialBar Server Control and content fl agging and
review — which you will place onto the wiki PageBuilder page, easily and quickly extending its
capabilities to allow for customer outreach as well as moderation and reporting on content useful-
ness. You will explore how to implement these features as well as how to use them going forward
with respect to content-management needs.

In summary, the rest of this chapter covers the following in more detail:

 ‰ Forums

 ‰ Blogs

 ‰ Wikis

 ‰ The SocialBar Widget

 ‰ Content fl agging and content review

c10.indd 335c10.indd 335 12/28/2010 2:18:00 PM12/28/2010 2:18:00 PM

336 x CHAPTER 10 SUPPORTING CUSTOMERS

USE CASE

This section gives you a continuation of the use cases that started in Chapter 7. It connects the
exercises you will perform in this chapter with the plan laid out in the implementation guide, and
puts a story to the features we will cover in this chapter, specifi cally the set of community building
tools consisting of Forums, Wikis, Blogs, community authoring, and feedback tools.

ADDING A FORUM, A BLOG, AND A WIKI TO THE SITE

With the successful build-out of functionality of OnTrek’s base site, the Director
of Marketing would like to capture some excitement and involvement from the
customer base the company has been cultivating over the past several years. To
that end, marketing wants to add a forum for structured conversations, and a blog
to help customers track OnTrek’s business and technical directions. Marketing
also wants a wiki for documentation and as a repository for less structured con-
tent. Finally, there’s been a push to allow customers to easily tap into their social
networks as a word-of-mouth mechanism. In addition to these basics, marketing
wants to make sure that there are safeties in place, since much of the content for
these new features may come from untrustworthy sources.

This Use Case introduces the primary actor Derek, (a site visitor who has specifi c
technical questions about the product), describes the expected scenario, and defi nes
the desired outcome.

Wireframe

The example Wireframe for this chapter, shown in Figure 10-1, is the Support
Forum page. This page contains the Forum Server Control. We will be covering
features from additional sections of the Implementation Guide in this chapter
as well.

Description

This three-piece implementation will addresses fi ve separate needs. The third part
of the implementation covers the last three needs.

 ‰ A forum as a fi rst line defense for support issues, which resides on its own
page.

 ‰ A CEO blog, which helps customers to understand the direction of OnTrek
and managements goals. This also resides on its own page.

 ‰ A PageBuilder-based wiki that serves as a documentation repository and
promotes customer involvement. The wiki will also provide for the needs of
word-of-mouth promotions, as well as fl agging and reviewing of content.

c10.indd 336c10.indd 336 12/28/2010 2:18:00 PM12/28/2010 2:18:00 PM

Use Case x 337

FIGURE 10-1

Actor

Derek is an employee at Acme Inc. Having selected OnTrek’s venerable Doodad solu-
tion, he is now implementing it and has run into a road block. He is now attempting to
use OnTrek’s website to fi nd a good solution to his technical issue. He wants to use the
website as a primary resource rather than calling support immediately.

Scenario

In this scenario, Derek:

 ‰ Connects to the OnTrek site looking for a way to connect with other developers
and potentially OnTrek support.

 ‰ Locates the forums and performs a search for similar issues, without fi nding any
results.

continues

c10.indd 337c10.indd 337 12/28/2010 2:18:01 PM12/28/2010 2:18:01 PM

338 x CHAPTER 10 SUPPORTING CUSTOMERS

 ‰ Posts the inquiry about his particular problem.

 ‰ Scans the documentation wiki for a solution to his issue.

 ‰ Flags a piece of content on the wiki as “needs updating” because it appears to
refer to an older version of the product.

 ‰ Locating a page that discusses his issue, he notices a tip that solves his problem.
Because the tip is something that should be made more visible, he adds a link
through the editing functionality of the wiki.

 ‰ Solves his problem and continues on to the CEO blog, interested in what kinds
of features are being analyzed for the next version of the OnTrek Suite. It
already slices and dices; Derek is hoping that the next version will also julienne
fries. Finding out that it does, he cross posts the blog to his Twitter account.

Outcome

The OnTrek team benefi ts from Derek’s exercise because he made their documenta-
tion more concise, notifi ed them about outdated content, and extended OnTrek’s
outreach through his social network.

BUILDING FORUMS

Ektron has provided forum capabilities since version 6 of CMS400.Net. The feature relies on the
support infrastructure that is provided by the core content concepts in the Ektron Framework.
Unlike many forum solutions on the market, the level of integration between forums and the rest of
the framework is very strong, while still providing a full set of unique features such as RSS feeds of
posts and sub-categorization of topics.

By relying on folders to create the information architecture of your forum, your site administrators
can leverage their existing knowledge to manage the structure of the forums without having to learn
a different system. This integration means better response time between changing support needs and
implementation, which ultimately leads to a better overall customer experience.

This section discusses how the forums store data, and how they integrate with the rest of the Ektron
Framework. You will create a forum, and then implement the forum control on an example page. You
will then learn how to interact with the Forum Server Control from the front end of the site. Finally,
this section discusses how to customize the forum, and some of the other controls and APIs that allow
you to retrieve related data. The specifi c tasks in this section you will complete are the following:

 ‰ Creating forums in the Workarea

 ‰ Implementing the Forum Server Control

 (continued)

c10.indd 338c10.indd 338 12/28/2010 2:18:02 PM12/28/2010 2:18:02 PM

Building Forums x 339

 ‰ Interacting with the Forum Server Control

 ‰ Using additional server controls, APIs, and customizations

Creating Forums in the Workarea

The forum feature in the Ektron Framework is built on the same foundation as Folders and Content.
The structure of the forum mechanism, as you will see, is based around the concepts of boards,
which contain forums, which contain topics. A board is a type of folder that can only contain other
folders of the forum type. Forums, in turn, can contain topics, which are actually a single piece of
content. Topic responses are stored in the Task table associated with the topic.

This construction means that a list of topics can be generated through something as simple as the
ListSummary Server Control. It also means that topics can support taxonomy and content ratings.
Content ratings are commonly used by enabling the EnableThreadRating property on the Forum
Server Control, because other people’s opinions on the usefulness of the content can aid users in
scanning the topic list. Taxonomy is also gaining acceptance in allowing for additional, deeper cat-
egorization of posts. When combined with the Search function, this allows users to easily fi nd topics
that relate to their areas of interest.

The OnTrek site comes with a Discussion Board created at the path MainSite/Content/Support/
Support Forums. Rather than recreating the forums that already exist in the site, you will create a
new section for discussing Local User Groups. This section allows customers to connect at a local
level, and discuss what they learned through the company outreach program. Customers can discuss
their expectations and issues, and provide feedback to the OnTrek marketing team. You start with
two local user groups: one in New York and one in San Francisco. Because the forums are based so
closely on folders, the marketing team can utilize their existing knowledge and understanding of the
Ektron Framework to create more forums as required.

Understanding the Forum Creation Flow

To create a forum in the Workarea, follow these steps:

1. Log into your site as admin and navigate to the Workarea.

2. Switch to the Content tab, and navigate the content tree to MainSite/Content/Community.

3. Create the board and defi ne the topics for the board. Within the topic, create your forums
(more about this in the next sections).

Topics will then be created by users on the site, and responses will be added to those topics.
This fl ow is shown in Figure 10-2.

4. Once in the Community folder, hover over the New menu. As shown in Figure 10-3, one of
the options available is Discussion Board, the topic of our next section.

c10.indd 339c10.indd 339 12/28/2010 2:18:02 PM12/28/2010 2:18:02 PM

340 x CHAPTER 10 SUPPORTING CUSTOMERS

Discussion Board

Subjects

Discussion Forums

Topics

Responses

FIGURE 10-2

Creating a Discussion Board

You can create boards anywhere in the folder tree, and they inherit options from parent folders just
as other folders do. A board, however, is limited in its contents — it can only support forums within
it, and only topics can be created in forums.

Clicking New Í Discussion Board (see Figure 10-3) brings up the Add Discussion Board interface.
This interface accepts all the key elements required to create the new board. It is comprised of three
tabs outlined here: Properties, Template, and Subjects.

FIGURE 10-3

To create your new board, following these steps:

1. Click New Í Discussion Board (as shown in Figure 10-3).

c10.indd 340c10.indd 340 12/28/2010 2:18:03 PM12/28/2010 2:18:03 PM

Building Forums x 341

2. Click the Properties tab (shown in Figure 10-4). This is where the basic information about
the board is entered. The options include:

 ‰ Name: This is the Board name and it displays in the content tree in the Workarea.

 ‰ Title: This is displayed at the top of the Forum Server Control on the Web page.

 ‰ Require Authentication option: Determines whether users are required to log in to
the site in order to post.

 ‰ CSS Theme: This controls the overall look and feel of the forum control when
rendered. There are many options, each of which constitutes a different visual
theme, allowing you to match the forum control to the feel of the rest of your site.

 ‰ Style Sheet: Allows you to specify an additional CSS fi le to control the visual repre-
sentation of the text of posts within the forum and editor.

FIGURE 10-4

3. For the name and title, enter Community Forums.

4. Make sure Require Authentication is unchecked.

5. For the CSS Theme, select Modern.

6. Leave the stylesheet at its default value.

7. Click the Templates tab (shown in Figure 10-5). This tab allows you to select which template
to use to render the posts in the forum. This is used primarily to control the creation of the
QuickLinks for the forum posts.

8. For the template, select Login.aspx. You need to change this later when you have created the
template that this board will be displayed on.

9. Click the Subjects tab (shown in Figure 10-6). This tab allows you to categorize the forums
available into groups. This means that the subjects are not actual subfolders, but they still

c10.indd 341c10.indd 341 12/28/2010 2:18:03 PM12/28/2010 2:18:03 PM

342 x CHAPTER 10 SUPPORTING CUSTOMERS

group content together in the Workarea and the Forum Server Control. You’ll be creating
subject — Local User Groups. Your forums will be created within this subject since they all
belong to that group.

FIGURE 10-5

FIGURE 10-6

10. Click Save. This returns you to the content list view for the Community folder.

11. Select the newly created forum from the content tree to switch to the forum list view in the
Content pane, as shown in Figure 10-7.

c10.indd 342c10.indd 342 12/28/2010 2:18:03 PM12/28/2010 2:18:03 PM

Building Forums x 343

FIGURE 10-7

Understanding Discussion Forum Properties

Before you continue to create the discussion forums, go to the board’s properties by clicking View Í
Properties. Normally in the Ektron Framework for folders, the properties are very similar to the
interface shown when creating a new folder. However, in this case, you have a long list of newly
available fi elds. Let’s run through the new ones quickly in the following list.

 ‰ Properties: Shown in Figure 10-8, this has many more fi elds available when editing an
existing board:

FIGURE 10-8

c10.indd 343c10.indd 343 12/28/2010 2:18:03 PM12/28/2010 2:18:03 PM

344 x CHAPTER 10 SUPPORTING CUSTOMERS

 ‰ Accepted HTML fi eld: Allows you to specify a comma-delimited list of the HTML
tags that are allowed in posts and comments. By default, the embed tag is not
allowed, but depending on your site, you may want to add it to the list.

 ‰ Accepted Extensions list: Specifi es which fi les may be uploaded as attachments.
The notable exceptions you may want to override in this fi eld are extensions relating
to videos.

 ‰ Lock: This fi eld to specify whether the board is locked. If a board is locked, no one
can post topics or responses to it.

 ‰ Taxonomy: Shown in Figure 10-9, this allows you to specify whether topics must be catego-
rized, as well as determine which taxonomy to attach to the board. These options allow users
to specify which category nodes to search within.

FIGURE 10-9

 ‰ Template: This tab is unchanged from the add board interface.

 ‰ Subjects: This tab is also unchanged from the add board interface.

 ‰ Terms & Conditions: Shown in Figure 10-10, this allows you to specify verbiage that
users must accept before they are allowed to post a new topic or a response to a topic.
Users are required to accept the terms only once, after which they are free to interact
with the board.

 ‰ Breadcrumb: Shown in Figure 10-11, this tab allows you to defi ne the breadcrumb for the
board and forums underneath it.

c10.indd 344c10.indd 344 12/28/2010 2:18:04 PM12/28/2010 2:18:04 PM

Building Forums x 345

FIGURE 10-10

FIGURE 10-11

c10.indd 345c10.indd 345 12/28/2010 2:18:04 PM12/28/2010 2:18:04 PM

346 x CHAPTER 10 SUPPORTING CUSTOMERS

Creating Forums

At this point, you need to create two forums, one for New York, and one for San Francisco. To do
so, follow these steps:

1. Hovering over the New menu, you see that there are many options that you haven’t seen on
other folders:

 ‰ The Discussion Forum: Allows you to create the individual forums that comprise the
board.

 ‰ Subject: The internal group used to categorize posts.

 ‰ Restricted IP: Allows you to create a blacklist preventing problem users from posting
to the board.

 ‰ Replace Word: Allows you to create word fi lters — a common use case is to
create a bad word fi lter that automatically removes inappropriate words from
user posts.

 ‰ User Rank: Allows you to create a ladder system so that users browsing the site can
see at a glance which other users are frequently interacting with the system. It allows
you to name the ranks, associate an image with each rank, and set the number of
posts required to attain the rank. This information is then displayed with the user
details whenever they post to the board.

2. Click New Í Discussion Forum now to create the new forums. The interface to create the
forum is shown in Figure 10-12.

FIGURE 10-12

The fi elds shown on the Add Discussion Forum pane are explained in Table 10-1.

c10.indd 346c10.indd 346 12/28/2010 2:18:04 PM12/28/2010 2:18:04 PM

Building Forums x 347

TABLE 10-1: Fields on the Add Discussion Forum Form

FIELD DESCRIPTION

Name Name of the forum. This is displayed in the list of forums on the Forum

Server Control and in the Workarea.

Description This is displayed just under the name and helps users to navigate to the

appropriate location for their topic.

Sort Order Allows you to specify what order to display the forums in within each topic.

When the sort order is equivalent, alphabetical order is used. If you were

to create both forums with a sort order value of 1, as in this example, the

forums would be sorted ascending alphabetically.

Subject Specifi es which group this forum will be displayed in.

Moderate Comments Sets whether the comments should go live immediately or whether

they should not be displayed until a moderator specifi es that they are

acceptable.

Lock If a forum is locked, no user can post new topics or responses to that forum.

3. Enter the details for your two forums now. Set the name of the fi rst forum to New York, and
the Description to A place to discuss your user group expectations and experiences. Leave the
sort order as 1, and make sure that Moderate Comments is unchecked.

4. Click Save.

5. Repeat steps 2-4 with the same settings for the San Francisco forum. When fi nished, the
Community Forums forum list will show your two new forums. These are, of course, empty
at this point.

You’ll now jump to Visual Studio to create the template for your forums.

Implementing the Forum Server Control

Like the previous examples, you can create a blank template to explore the options for the Forum Server
Controls without the distraction of an intricate page surrounding it. To do so, follow these steps:

 1. Open your site in Visual Studio and create a new Web Form in the root of the site.

2. Call it UserGroupForum.aspx, and set the language to Visual C# with the code in a
separate fi le.

3. Once it has completed, drag the Forum Server Control from the Ektron section of the
toolbox onto the document between the Form tags. Your code should now look like the
following Listing 10-1.

c10.indd 347c10.indd 347 12/28/2010 2:18:04 PM12/28/2010 2:18:04 PM

348 x CHAPTER 10 SUPPORTING CUSTOMERS

LISTING 10-1: UserGroupForum.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”UserGroupForum.aspx.cs” Inherits=”UserGroupForum” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:Forum ID=”Forum1” runat=”server” />

 </div>

 </form>

</body>

</html>

The Forum control has a long list of properties that can be set to change the behavior. These
properties and their explanations are listed in Table 10-2.

TABLE 10-2: Forum Server Control Properties

PROPERTY DESCRIPTION

AllowAnonymousPost If set to true, the control adds a checkbox to the posting inter-

face, allowing users to specify that the post should be created

anonymously.

BoardID Specifi es the ID of the discussion board to display.

DefaultObjectID Specifi es a community group ID. If one exists, the Forum Server

Control then displays that group’s Community Forum.

DynamicForumParameter Sets the query string parameter that contains the forum ID. Defaults

to “f.”

DynamicGroupParameter Sets the query string parameter that contains the community group

ID. Defaults to “g.”

DynamicParameter Sets the query string parameter that contains the board ID. If set to

None - Use Default, only uses the value specifi ed in BoardID.

DynamicThreadParameter Sets the query string parameter that contains the thread ID. Defaults

to “t.”

c10.indd 348c10.indd 348 12/28/2010 2:18:05 PM12/28/2010 2:18:05 PM

Building Forums x 349

PROPERTY DESCRIPTION

EditorCSS Overrides the stylesheet to use inside the JavaScript editor pre-

sented to the users when posting.

EditorToolbar Overrides the default toolbars available inside the editor when post-

ing topics or comments. Set as a comma-separated list, the default

value is “StyleMenu,FontMenu,ParagraphMenu,TextFormatMenu,Link

Menu,ClipBoardMenu,SymbolsMenu,EmoticonSelect,WMV,Table.”

EnableForumQuickSelect If set to true, a dropdown with a list of all the forums is rendered

under the topic list, allowing users to quickly jump to a diff erent

forum.

EnableThreadRating If set to true, a fi ve star rating control is rendered whenever a topic

is displayed, allowing users to rate the thread. Additionally, the aver-

age ratings for each topic will be displayed inline in the topic display

view.

JavaScriptEditorHeight The height of the editor in pixels. Defaults to 400, with a minimum of

300.

JavaScriptEditorWidth The width of the editor in pixels. Defaults to 625, with a minimum of

500.

ObjectType Can be set to CommunityGroup or DiscussionBoard, and sets the

type of object to retrieve.

ProfileLink Formats the link to use when a user clicks on another user’s link or

avatar. The default is ?g=profile&u={0}. There are two tokens

that can be used in the url: {0} is replaced by the user’s ID, and {1}

is replaced by the user’s display name.

ShowCategories If set to true, the server control displays a fi lter by category option

which allows them to navigate within a forum by taxonomy.

Theme Overrides the theme set for the board in the Workarea. Prepend the

path with a “/” to make it relative to the site root; otherwise it is rela-

tive to the current path.

4. Returning to the code, update the BoardID property to refl ect the board you just created.
Make sure to update the ID to refl ect what it is in your installation. There is one other
modifi cation you must make to the page, which is to set ValidateRequest to false. This is
because the forum control posts HTML back to the server, which, by default, causes ASP
.NET to throw an error. The following code snippet shows the updated code.

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”UserGroupForum.aspx.cs” Inherits=”UserGroupForum”

 ValidateRequest=”false” %>

c10.indd 349c10.indd 349 12/28/2010 2:18:05 PM12/28/2010 2:18:05 PM

350 x CHAPTER 10 SUPPORTING CUSTOMERS

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefi x=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <div>

 <CMS:Forum ID=”Forum1” runat=”server” BoardID=”165” />

 </div>

 </form>

</body>

</html>

Now when you load the page in the browser, you are presented with the fully rendered
Forum Server Control, displaying your one subject containing two forums. This is shown in
Figure 10-13.

FIGURE 10-13

Interacting with the Forum Server Control

The front end of the Forum Server Control is going to be familiar to most Internet users. The initial
display lists the available forums.

Follow these simple steps to view the forum:

1. Click any forum name to reveal a display listing its topics.

c10.indd 350c10.indd 350 12/28/2010 2:18:05 PM12/28/2010 2:18:05 PM

Building Forums x 351

2, Click New Topic at the top of the display of the control. This displays the interface for
adding posts to the forum, which is shown in Figure 10-14.

FIGURE 10-14

The interface for adding a post allows the users to specify the title, declare what type of post it is,
enter the post itself, add attachments, and categorize the post. Once they’re done, users must click
Post to return to the list of topics.

Returning to the forum view as shown in Figure 10-15, there are a couple items at the top alongside
the new topic button that may not be immediately obvious.

Rss feedWeb alert

New Topic Categories

Search

FIGURE 10-15

c10.indd 351c10.indd 351 12/28/2010 2:18:05 PM12/28/2010 2:18:05 PM

352 x CHAPTER 10 SUPPORTING CUSTOMERS

From left to right, the icons are as follows:

 ‰ Web alert: In a system with Web alerts set up, this allows users to subscribe to the forum to
receive e-mail alerts when new topics are posted, or when responses are posted to existing
topics.

 ‰ RSS feed: This summarizes the recent posts into a feed to be viewed in any RSS 2.0 capable
viewer.

 ‰ New Topic: Allows the user to add a new topic or thread to the board where other users can
respond.

 ‰ Search: The search interface allows users to perform a plain text search within a particular
forum or across the entire board.

 ‰ Categories: This button displays a directory control relating back to the taxonomy defi ned
for the board. This can be a simple way of allowing users to fi nd topics relating to a particu-
lar issue with more granularity than just the list of forums within the board.

The fi nal area available to forum users is the Control Panel. By returning to the board display
rather than the forum display, the list of icons at the top right of the interface is updated, and
the Control Panel button replaces the Add Topic button. Clicking the Add Topic button brings
users to the Control Panel interface shown in Figure 10-16. The sections in the forum display are
as follows:

FIGURE 10-16

 ‰ Messaging: This is based around messaging, which allows users of the system to send notes
to each other.

 ‰ Quick Link: These are links to a couple of other key areas:

 ‰ Moderate: This is only available to users with moderate permissions for the board or
forum. It allows the users to see posts that have not yet been moderated and to either
approve or reject them.

c10.indd 352c10.indd 352 12/28/2010 2:18:05 PM12/28/2010 2:18:05 PM

Blogs x 353

 ‰ Profi le: Clicking this displays recent posts by the user, as well as statistics about the
user. It also includes a button to message the selected user.

 ‰ Notifi cations: Allows users to manage their subscriptions throughout the board.

Additional Server Controls and APIs

Now that you’ve learned about the fundamentals of the forum feature in the Ektron Framework,
there are some peripheral areas that you should be aware of. In addition to the Forum Server
Control, there are two other controls that return information about boards in the system.

 ‰ ActiveTopics Server Control: This returns the specifi ed number of most recent topics in the
board. This is similar to the way the ListSummary Server Control responds when it is pointed
at a particular board. However, in this case the ListSummary only looks at the modifi ed
date of the original topic post, and ignores the responses when calculating the age of the
topic. The ActiveTopics Server Control, by comparison, looks at the age of the most recent
response to determine which links to display. When instantiating the server control, specify
the board ID to examine, or optionally you can specify the query string parameters to evalu-
ate instead. The ActiveTopics Server Control is instantiated using the following code snippet.

<CMS:ActiveTopics ID=”ActiveTopics1” runat=”server” BoardID=”125” />

 ‰ PostHistory Server Control: This is another server control that can help you with alternate
displays. It displays a list of recently posted topics or responses submitted by a particular
user. Because it is limited to a single user, both the board ID and the user ID need to be speci-
fi ed on this control. This control is instantiated through the following code.

<CMS:PostHistory ID=”PostHistory1” runat=”server” BoardID=”125” UserID=”1” />

 ‰ APIs: In addition to the server controls to retrieve and display this information, there
are a couple of key APIs that allow you to retrieve or update information relating to
discussion boards”. The Ektron.Cms.API.Content namespace contains a class called
ThreadedDiscussion. The ThreadedDiscussion object, when instantiated, exposes several
methods that are useful for programmatically controlling your boards. For instance, there
are methods for AddForum, DeleteForum, and GetForum. There are also methods for manag-
ing forum subscriptions as well as getting the forums in a board and getting the active topics
within a forum.

BLOGS

Like discussion forums, blogs have been on the Internet since the beginning of time. Like forums,
blogs are stored in the system as a special type of folder, with special content within that folder.
They are rendered by the Blog Server Control, which is actually a composite of several other con-
trols. Because they are comprised of normal content, they have the same features as regular content,
including metadata, taxonomy, and searchability.

Blogs serve as a great way to connect to the community around your company. Many tech com-
panies use blogs to allow key personnel — including the CEO, CTO, product leads, or even
developers — to connect with their clients and keep them informed about product updates and

c10.indd 353c10.indd 353 12/28/2010 2:18:06 PM12/28/2010 2:18:06 PM

354 x CHAPTER 10 SUPPORTING CUSTOMERS

decision-making processes in real time. Internally blogs are also frequently used to provide daily or
weekly summaries from individuals to managers, and in the reverse to disseminate information to
the worker bees.

In this section you learn how to create a blog in the Workarea, and how to develop against it using
server controls. You set up an executive blog for the CEO of OnTrek, which serves as a marketing
tool to drive better customer relationships. Because this will be a point of public contact, you must
confi gure the blog to have an approval chain so that the marketing department can have fi nal review
of content before it becomes publically visible on the Internet. In this section, you will:

 ‰ Create a blog in the Workarea with an approval chain.

 ‰ Create a blank template with a blog control on it.

Create a Blog in the Workarea

Creating a blog is very similar to creating any other folder in the Workarea. Like forums, blogs have
a special interface when browsing their content through the Workarea, but much of the UI will be
very familiar at this point. To create a blog:

1. Open the Workarea after logging in as admin, and go to the Content pane.

2. In the Content tree, browse to MainSite/Content/Company and right-click the Company
Folder.

3. Select Add Blog to open the Add Blog interface, which is shown in Figure 10-17.

FIGURE 10-17

c10.indd 354c10.indd 354 12/28/2010 2:18:06 PM12/28/2010 2:18:06 PM

Blogs x 355

The form that comes up to add a blog is similar to the add folder form, with a subset of the
functionality available. From left to right, the tabs accept basic properties of the blog, the
taxonomies to assign content to, the default template to display the entries about subjects
that the blog entries will belong to, and the list of links to display in the blogroll. These tabs
are outlined in greater detail in Table 10-3.

TABLE 10-3: Tabs and Properties on the Add Blog Form

TAB FIELD DESCRIPTION

Properties Name Name of the blog.

Title Title of the blog.

Visibility Can be set to public or private; corresponds to the private

setting for normal content. When set to public, permissions

are not checked on the blog, and any site visitor can view

the blog. If private, a user must be logged in and must have

read privileges.

Enable Comments Enable or disable comments left on the blog by other users.

Moderate Comments Add comments posted by users to a queue that users with

the correct permissions can then approve before they

appear on the site.

Require Authentication Require users to be logged in before allowing them to

comment on a post.

Subjects Subjects Creates and manages subjects for the blog. The list of

subjects is then rendered as part of the Blog Server

Control. When a user selects a particular subject, all posts

tagged with that subject are displayed.

Blogroll Blogroll Creates a list of links to be rendered as part of the Blog

Server Control output, and specify the foreign site’s

relationship to your blog.

4. Create your CEO’s blog now. Enter CEO Blog as the title and name of the blog, and set the
visibility to Public. Leave comments enabled with moderation on.

5. In the Subjects tab, add three subjects by clicking the Add Subject button. For the fi rst subject,
add Technical Notes, for the second add Customer Stories, and for the third add Market
Movements.

6. Click Save. This returns you to the parent folder.

7. In the folder tree, click the new blog, which takes you to the CEO Blog, shown in
Figure 10-18.

c10.indd 355c10.indd 355 12/28/2010 2:18:06 PM12/28/2010 2:18:06 PM

356 x CHAPTER 10 SUPPORTING CUSTOMERS

FIGURE 10-18

8. Let’s add a new post now, by hovering over the New menu and selecting HTML Post. This
brings up the Add Content screen.

The Add Content screen was covered in Chapter 5. The only change from a basic
content form is on the Summary tab. For normal content, all that is shown in
this tab is a rich text fi eld for the summary of the content. Because this is a blog,
however, you have the opportunity to select the subject of the post from the list
of subjects you entered for the blog.

9. You can specify a trackback URL for the post. These fi elds are shown in Figure 10-19.
Again, since a blog post is just a special type of content, you can specify options applicable to
content such as an alias and content scheduling.

WHAT IS A TRACKBACK URL?

A trackback URL is the URL to a service corresponding to a blog post on a foreign
site. If trackbacks are enabled on a blog post you are reading, you will see a link or
a trackback URL on the post. If you put that URL into the trackback fi eld here, the
Ektron Framework will notify the foreign blog that you have posted a followup post
to the foreign post, and frequently this will create a link in the comments section of
their post linking to your post. It is a way for users reading content on the foreign
blog to be directed to your site, and thus can be useful in organically growing traffi c.

c10.indd 356c10.indd 356 12/28/2010 2:18:06 PM12/28/2010 2:18:06 PM

Blogs x 357

FIGURE 10-19

10. Enter some test content now for the post: Set the Title to be OnTrek Launch Party, and enter
some content for the post. Under summary, select Market Movements as the subject.

11. Click Publish. Once you have published the content, the View Content pane displays.

12. You’ll notice that under the HTML in the Content tab, there is a button to View
Comments for the post. Clicking this button takes you to a list of the comments for the
post, but of course there aren’t any just yet. You’ll add some when you set up the template
for the blog.

13. Set up the approval chain for this blog. You do this by returning to the blog view and right-
clicking CEO Blog in the Content tree. Then select View Properties.

14. Click View Permissions in the toolbar, which brings you to the Permissions pane you have
seen a number of times before now.

15. Uncheck Allow This Object to Inherit Permissions, and then click Add Permissions.
Select Marketing from the user list, and click Save. This brings up the Permission
List pane.

16. Click Enable All in this interface, and click Save again.

c10.indd 357c10.indd 357 12/28/2010 2:18:07 PM12/28/2010 2:18:07 PM

358 x CHAPTER 10 SUPPORTING CUSTOMERS

Now that you have added Marketing as a specifi c user in the permission list, you have the
ability to add this user as an approver in the approval chain.

17. Click the back icon to go back to the Properties view of the CEO Blog, and then click View
Approvals.

18. Click the plus icon, and select Marketing from the user list.

You now have an approval chain on the CEO Blog.

Create a Template with a Blog Server Control

You’ve created the blogs in the Workarea, but currently there is no way for users to read or interact
with the posts you author on the site. In this section, you’ll create a template for the blog, and also
explore how users can interact with the blog when browsing the site.

Creating the Page that Displays the Blog

Now you need to create the page that will display your blog. This involves knowing the ID of the
blog you want to display, and setting the options you wish to enable on the Blog Server Control. The
steps below outline this process.

1. Return to the folder properties for the CEO Blog folder, and make note of the ID of the
folder. In the sample case the folder ID is 168, but in your case it may be different.

2. Open the OnTrek website in Visual Studio, and add a new Web form to the root of the site
called CEOBlog.aspx.

3. Once the CEOBlog.aspx page comes up, drag the Blog Server Control from the Ektron
section of the toolbox into the form element of the page. Your code will then look like
Listing 10-2.

LISTING 10-2: CEOBlog.aspx

<%@ Page Language=”C#” AutoEventWireup=”true”

 CodeFile=”CEOBlog.aspx.cs” Inherits=”CEOBlog” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>

<head runat=”server”>

 <title></title>

</head>

<body>

 <form id=”form1” runat=”server”>

 <CMS:Blog ID=”Blog1” runat=”server” BlogID=”128” />

 </form>

</body>

</html>

c10.indd 358c10.indd 358 12/28/2010 2:18:07 PM12/28/2010 2:18:07 PM

Blogs x 359

When you load this page in the browser, the output will look like Figure 10-20.

FIGURE 10-20

The Blog Server Control does have a series of properties that you can use to customize its behavior
and user interface. Table 10-4 lists a subset of these properties.

TABLE 10-4: Blog Server Control Properties

PROPERTY DESCRIPTION

ArchiveMode Can be set to year or month. This property determines the grouping of

the archive links. If set to month, which is the default, there is a link for

each month which has an entry. If set to year, a list of years is displayed.

BlogID Sets the ID of the blog to display.

BlogStartDateRange Specifi es the date to start displaying results from. Can be set to none,

which displays all entries, monthly for entries in the past month, quarterly

for three months, biyearly for six months, or yearly for all entries in the

past year.

DateToStart Similar to BlogStartDateRange, this allows you to select a specifi c

date rather than a rolling time range for blog entries to appear.

DefaultUserID The Blog Server Control is also used to display user blogs created as an

option during registration. Setting DefaultUserID to the ID of the user

retrieves that user’s blog.

DynamicParameter Set this to the query string parameter containing the Blog ID if you want

to dynamically set the value.

continues

c10.indd 359c10.indd 359 12/28/2010 2:18:07 PM12/28/2010 2:18:07 PM

360 x CHAPTER 10 SUPPORTING CUSTOMERS

PROPERTY DESCRIPTION

DynamicUserParameter Similar to DynamicParameter but used to set the query string parameter

containing the User ID.

MaxResults The number of results to show. If set to zero, the Blog Server Control

displays all the results matching the parameters selected.

ShowHeader Selects whether to show the tagline for the blog.

ShowRSS Determines whether to show the RSS feed link at the top of the blog.

In addition to managing the UI of the Blog Server Control through the properties, you can also
manage the display layer in more depth by using the constituent server control of the Blog Server
Control. There are eight of these sub-controls that comprise the full Blog Server Control as shown in
Table 10-5.

TABLE 10-5: The Blog Server Sub-controls

SERVER SUB-CONTROL DESCRIPTION VISUAL REPRESENTATION

BlogEntries Displays a list of blog entries.

BlogPost Displays a single blog post on

a page.

TABLE 10-4 (continued)

c10.indd 360c10.indd 360 12/28/2010 2:18:07 PM12/28/2010 2:18:07 PM

Blogs x 361

SERVER SUB-CONTROL DESCRIPTION VISUAL REPRESENTATION

BlogCalendar Displays a calendar with the

dates that have corresponding

entries highlighted.

BlogRoll Displays the list of links for that

blog.

BlogCategories Displays the category links for

the blog.

BlogRecentPosts Displays the most recent posts

for a given blog. The number of

posts to display is set through

the NumberofPosts property.

BlogRSS Displays the RSS link for the

selected blog.

Through these individual controls, you can build any interface for your blog.

Working with the Commenting System

Now that you have a page for your blog, you can experiment with the commenting system. Allowing
comments on your blog is a good way to build up a rapport with repeat visitors, and allows users to
expound on content you have posted. It is another way of adding user generated content to your site,
which increases the value of the site to future visitors. Follow these steps:

1. Go back to the Workarea and set your template properly. Go to Settings Í Confi guration Í
Template Confi guration, and add a new template called CEOBlog.aspx.

2. Switch to the Content tab and browse to MainSite/Content/Company and right-click
CEO Blog.

3. Select View Properties, and in the Properties pane select Edit Properties.

4. Switch to the Templates tab where you will deselect the Inherit Parent Confi guration check-
box, and add CEOBlog.aspx to the list of templates from the template dropdown. Set it as
the default for the folder, and click Save.

c10.indd 361c10.indd 361 12/28/2010 2:18:07 PM12/28/2010 2:18:07 PM

362 x CHAPTER 10 SUPPORTING CUSTOMERS

5. Return to the CEOBlog.aspx page in the browser, and you will see one entry for the OnTrek
Launch Party. Click the comments link at the bottom of the entry, and the page will be
updated with the interface shown in Figure 10-21.

FIGURE 10-21

6. Enter a comment and click Post Comment. The page updates to thank you for posting a
comment, but no new comments appear because Comment Moderation is turned on.

7. Return to the Workarea now, and in the CEO Blog folder, select OnTrek Launch Party. On
the Content tab, select View Comments Now to show the comment you just posted, as in the
example in Figure 10-22.

From here you have three options: approve, edit, and delete.

8. Click Approve Now.

9. Switch back to the front-end CEOBlog.aspx fi le, and refresh the page.

The new comment now appears in the blog.

c10.indd 362c10.indd 362 12/28/2010 2:18:08 PM12/28/2010 2:18:08 PM

Wikis x 363

FIGURE 10-22

WIKIS

Wikis are designed to allow a combination of CMS authors and membership users to quickly
develop a communal space of documents and content, which is useful in a number of scenarios. One
example is as a documentation repository, or knowledge base, where technical representatives can
post content that can later be expanded upon by anyone. Wikis are usually organized through tax-
onomy. The main difference between a wiki and any other folder is that you can add a wiki links to
content that does not yet exist. When this occurs, the Ektron Framework creates the piece of content
you link to so that you can edit and manage it in the future.

You’ve already learned about the primary folder type — regular content folders — which contain con-
tent mainly generated by CMS Authors. Wikis require you to utilize an alternative folder type called
community folders, In community folders, content can be generated by either CMS authors or by
membership users. The reason this different type of folder is needed for membership-generated content
has to do with the way content is synchronized between staging servers and production servers.

In this section, you learn how to create and manage a wiki by performing the following tasks:

 ‰ Creating a wiki in the Workarea

 ‰ Using the wiki feature in the site

c10.indd 363c10.indd 363 12/28/2010 2:18:08 PM12/28/2010 2:18:08 PM

364 x CHAPTER 10 SUPPORTING CUSTOMERS

Creating a Wiki in the Workarea

Community folders allow membership users to add content to and edit content in that folder. The
interface that allows membership users to add content is different from the normal interface because
membership users don’t have access to items like template management or workfl ow. The member-
ship interface does, however, retain taxonomy management. Also keep in mind that community
folders can only contain standard HTML content, and cannot include Smart Forms, HTML forms,
or other types of special content.

To create a wiki, follow these steps:

1. Open the Workarea and click the Content tab.

2. In the Content tree, browse to MainSite/Content/Community, righting-clicking the
Community folder, and selecting Add Community Folder.

The Add Community folder interface is exactly the same as the Add Folder
interface covered in Chapter 5.

3. Name the new folder Documentation Wiki, and leave all other options as they are.

4. Click Save and you are returned to the community folder. Now you need to update the
permissions to allow membership users to author content in the new folder.

5. Select the Documentation Wiki folder from the Content tree, and then select View Í
Properties.

6. Once the Properties pane is displayed, select the lock icon to enter into the Permissions pane,
shown in Figure 10-23.

7. At the top-right of the Permissions pane, you’ll notice a dropdown for User Type. Initially
this displays CMS users, but you can change it to show the permissions for membership users
as well. Uncheck Allow This Object to Inherit Permissions, and then switch the dropdown to
Membership users.

8. Click the Add icon, and you are presented with a list of the membership users and groups
currently defi ned in the system. Select the group All_Members checkbox, and then click Save.

9. On the next page, select the Read, Edit, Add, Add Images, and Add Files checkboxes. This
ensures that your community can easily manage everything about the wiki.

10. Click Save and you return to the Permissions list with the new group added.

Using the Wiki Feature in the Site

The wiki feature front-end is based around the ContentBlock Server Control, and the ListSummary
Server Control. The approach in the Ektron Framework is to enable WYSIWYG editing for users,
and avoid the confusing normal wiki markup, while allowing users to create links to content that
does not exist yet. Therefore, the interface for managing and interacting with content is very similar

c10.indd 364c10.indd 364 12/28/2010 2:18:08 PM12/28/2010 2:18:08 PM

Wikis x 365

to the existing interface for CMS authors but it avoids contact with the Workarea itself. This imple-
mentation section focuses on a couple of areas:

FIGURE 10-23

 ‰ Creating a new PageBuilder page with a ListSummary Widget and a ContentBlock Widget
that you’ll use to display the wiki.

 ‰ Learning the process of creating content as a membership user.

 ‰ Learning to edit existing content. You’ll also create cross-links to existing content as well
as content that has not yet been created, and explore how the wiki can grow organically
over time.

Creating a New PageBuilder Page

In this example, you will build your Wiki out of a simple combination of a ListSummary Widget
and a ContentBlock Widget on a PageBuilder page. This will allow us to easily add features from the
community feature toolbox. You could also develop this on a non-PageBuilder page. To get started:

1. Open the Workarea, and switch to the Content tab.

2. In the Content tree, browse to MainSite/Pages/Community.

3. When the folder pane comes up for the community folder, hover over New, and select Page
Layout. This brings up the Add New Page Wizard, shown in Figure 10-24.

c10.indd 365c10.indd 365 12/28/2010 2:18:08 PM12/28/2010 2:18:08 PM

366 x CHAPTER 10 SUPPORTING CUSTOMERS

FIGURE 10-24

4. Make sure the community.pb.aspx template is selected, and click Next.

5. The next screen of the Wizard asks for the page title; call this page wiki. If manual aliasing
has been enabled, this creates an alias called /wiki/, which is where you access this page.

6. In the taxonomy list, open the OnTrek Site Navigation node, and select the Community node
under it. This creates an automatic taxonomy alias at /OnTrek Site Navigation/Community/
Wiki/.

7. To proceed to the fi nal screen, click Next.

8. The third screen of the Wizard has two tabs, the fi rst for metadata, and the second for the
summary. You can leave both of these blank for now, so click Finish. The server will work
for a moment, and then ask if you want to begin editing the page now.

9. Click OK, and the new page opens in a new window. The page will be empty, as shown in
Figure 10-25.

10. Open the widget tray and fi rst drag a ListSummary Widget onto the right DropZone.

11. Reopen the widget tray and add a ContentBlock Widget to the left DropZone. Now that the
two widgets are on the page, you need to hook them up to the community folder you created.

12. Click the Edit button on the ListSummary.

13. Switch to the Folder tab, and drill down in the tree to MainSite/Content/Community/
Documentation Wiki.

14. Once you have selected the folder, switch back to the Property tab, and enable paging.

c10.indd 366c10.indd 366 12/28/2010 2:18:09 PM12/28/2010 2:18:09 PM

Wikis x 367

FIGURE 10-25

15. Click Save.

16. Publish the page now by selecting File Í Publish.

Using the Wiki and Creating Links

The barebones Wiki is now ready to use. You’ll start by creating some content in the Wiki as a
membership user, and learn about creating new content from existing content. The steps below will
walk you through the process:

1. Log out of the system and log back in as jmember/jmember. This user is an automatically
created membership user. Once you are logged in as jmember, and you return to the wiki
page, you will see what is shown in Figure 10-26. The page consists of almost nothing,
except for a silver access point where the ListSummary is rendered.

2. Hover over the access point, and you’ll see two options: Add Content and Logout.

3. Click Add Content now, and a new window opens containing a two-tab interface. The fi rst
tab allows you to name and enter the content for the page, and the second tab allows you to
categorize the content.

4. Enter the title Welcome. For content, enter The OnTrek Documentation Wiki will help to
keep you updated on recent products.

5. Creating a wiki link from your page to a page that hasn’t yet been created is straightfor-
ward from this point. Select the word products from the just entered text, and click the Add
Wiki Link button on the toolbar. This brings up the Add/Edit Wiki Link form, shown in
Figure 10-27, which has two tabs:

c10.indd 367c10.indd 367 12/28/2010 2:18:09 PM12/28/2010 2:18:09 PM

368 x CHAPTER 10 SUPPORTING CUSTOMERS

FIGURE 10-26

FIGURE 10-27

 ‰ New Content: This tab allows you to add wiki links and creates destination content
item in the same folder as the current content. It also allows you to name the new
content.

 ‰ Related Content: This tab allows you to search for already existing content related to
the currently highlighted term.

6. For now, enter products for the Article Title fi eld in the New Content tab and click Save.
The form will go away, and your new link will be highlighted in blue. Click Publish Now,

c10.indd 368c10.indd 368 12/28/2010 2:18:09 PM12/28/2010 2:18:09 PM

The SocialBar Server Control x 369

and the form closes. Your wiki page also refreshes, and you’ll notice in Figure 10-28 that the
ListSummary now has two items, one for the Welcome page, and one for the Products page.

FIGURE 10-28

Editing Existing Content

To edit the content you just created, click the Welcome link on the ListSummary. This updates the
page showing the Welcome content you created in the ContentBlock Widget. Above the content
itself, there is another access point. This time the menu items on the access point are:

 ‰ Edit in Context: This works the same way as it does for a CMS author.

 ‰ Edit: This brings up the same form you used to enter the content in the fi rst place.

 ‰ View History: This will allow you to roll back in time and see what changes occurred to the
content from it’s original creation.

 ‰ Logout: Logs out the currently logged-in user from the site.

The content created in Community folders also supports all the same items as normal content. You
can easily use taxonomy navigation in addition to the ListSummary, and use the MessageBoard
Server Control, for instance, to create a more dynamic and easy-to-use page. This ability to easily
construct a robust feature set can help you to develop against requirements quickly and fl exibly.

THE SOCIALBAR SERVER CONTROL

The SocialBar Server Control is one of the simpler controls in the Ektron Framework toolkit. It
allows users to easily share pages with social media sites such as Twitter, Facebook, and Digg,
and integrates with Ektron Framework Favorites and Invites. It can be a great way to drive traffi c

c10.indd 369c10.indd 369 12/28/2010 2:18:10 PM12/28/2010 2:18:10 PM

370 x CHAPTER 10 SUPPORTING CUSTOMERS

to your site, by tapping into the network of your users to branch out further. A screenshot of the
SocialBar Server Control is shown in Figure 10-29.

FIGURE 10-29

This section explores how to implement the SocialBar Server Control, and also investigates integrat-
ing it with the Invite Server Control and the Favorites Server Control. You will implement a widget
using the SocialBar Server Control, and place it on the wiki page you created in the previous section.

Implementing the SocialBar Widget

Implementing a widget, as covered in Chapter 9, begins with creating a user control in the ~/widgets
directory of your site. Follow these steps:

1. Open your site in Visual Studio, and in the solution explorer, browse to the Widgets directory.

2. Right-click the directory and select Add New Item.

3. In the pop-up menu, select Web User Control and name the widget SocialBar.ascx.

4. When the declarative fi le comes up, right-click it and select View Code.

5. Update the class defi nition to specify that the widget inherits from the UserControl class
to also implement the Ektron.Cms.Widget.IWidget interface. This allows the system to
determine that this user control is actually a widget and should be used as such. The
widget codebehind should now look like the following snippet.

public partial class widgets_socialbar : System.Web.UI.UserControl,

 Ektron.Cms.Widget.IWidget

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

}

6. Switch back to the declarative socialbar.ascx fi le and drag the SocialBar Server Control from
the toolbox into the fi le. You will be building this widget without any edit screen, so the
options are always the default. Table 10-6 outlines the properties available on the SocialBar
Server Control.

TABLE 10-6: SocialBar Server Control Properties

PROPERTY DESCRIPTION

DefaultObjectID This value is used if the DynamicObjectParameter is blank, or there

is no corresponding item in the query string. If this item is not speci-

fi ed and the DynamicObjectParameter is also left blank, the SocialBar

Server Control operates with the URL of the current page instead.

c10.indd 370c10.indd 370 12/28/2010 2:18:10 PM12/28/2010 2:18:10 PM

The SocialBar Server Control x 371

PROPERTY DESCRIPTION

DisplayXSLT Allows you to override the stylesheet used to display the items on

the page.

DoInitFill If set to false, the server control postpones the fi ll event until the Page

Render event rather than fi lling on Page Init. This is useful if properties

will be changed in codebehind later in the lifecycle of the page.

DynamicObjectParameter Sets the query string parameter used to retrieve the object ID to

render the SocialBar against.

IncludeIcons Sets whether icons are displayed for each link on the SocialBar.

InviteURL Sets the URL for the invite page. Can contain two tokens that are

replaced at render time with the appropriate values: {0} is used for

the object ID and {1} is used for the object type. An example URL

is invite.aspx?id={0}&type={1}.

Items The Items property is the key to the SocialBar Server Control. It

accepts a comma-separated list of names of services to display. The

list is shown in Table 10-7.

MarkupLanguage Specifi es the path to the EKML fi le to use to display the items.

MessagingUrl If PrivateMessageUser or PrivateMessageAdmin is in the Items

list property, they render a link based on the URL specifi ed in this

property.

ObjectType The type of the object the Social Bar is displaying links for. Can be

set to Content, User, or Group. Group specifi es a community group,

not a user group.

Stylesheet Path to the CSS fi le that styles the control.

The Items property determines the list of services to display links for. It accepts a comma-separated
list. The supported options are listed in Table 10-7.

TABLE 10-7: Valid Options for the Items Property of the SocialBar Server Control

ITEM NAME DESCRIPTION

Addto The output of this option depends on the ObjectType specifi ed. If

the ObjectType is set to User, the SocialBar displays a link to Add a

Colleague, Cancel Colleague request, or Remove From Colleagues

depending on the current status of the relationship between the logged-

in user and the user the SocialBar is associated with. If the ObjectType is

a Group, the options are Join Group, Leave Group, or Cancel Request to

Join. For Content, the options are Add to Favorites and Remove Favorites.

continues

c10.indd 371c10.indd 371 12/28/2010 2:18:10 PM12/28/2010 2:18:10 PM

372 x CHAPTER 10 SUPPORTING CUSTOMERS

ITEM NAME DESCRIPTION

Invite Displays the link specifi ed in the InviteURL property. Allows a user to send

an e-mail inviting another user to look at the content.

GroupInvite Allows the logged-in user to invite colleagues or unregistered users to join

the group. Displayed only if the ObjectType is Group.

Email Displays a mailto: link that launches the users e-mail client to send a link to

their friends.

Digg Allows the user to submit to Digg.com.

Delicious Allows the user to submit to del.icio.us.

Facebook Allows the user to post the link to Facebook.

Google Allows the user to post the link to Google’s bookmarking service.

Furl Allows the user to submit to Furl.

Technorati Allows the user to submit to Technorati.

Twitter Allows the user to post the link to Twitter.

Yahoo Allows the user to submit to Yahoo’s bookmarking service.

Print Prints the page.

PrivateMessageUser Links to a messaging page to allow the user to send a private message within

the site to another user. Functions only when ObjectType is set to User.

PrivateMessageAdmin Links to a messaging page to allow the user to send a private message

within the site to the community group’s administrator. Functions only

when ObjectType is set to Group.

With these options in mind, set up the properties for the SocialBar Server Control inside the
SocialBar Widget using these basic steps:

1. Set up the SocialBar to use an ObjectType of content and a DynamicObjectParameter of
ID or PageID, but in this case it makes more sense to leave both properties blank and let the
SocialBar work with the current URL instead.

2. You will also use a custom list of items, including the invite option, which means you’ll need
to specify the InviteURL. The declarative side of the widget then looks like Listing 10-3.

LISTING 10-3: SocialBar.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”socialbar.ascx.cs” Inherits=”widgets_socialbar” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

TABLE 10-7 (continued)

c10.indd 372c10.indd 372 12/28/2010 2:18:10 PM12/28/2010 2:18:10 PM

The SocialBar Server Control x 373

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<cms:socialbar

 runat=”server”

 InviteURL=”Invite.aspx”

 Items=”Invite, Addto, Email, Digg, Delicious, Print, Twitter, FaceBook”>

</cms:socialbar>

3. Also remember to create an icon for your widget. For now, simply make a copy of the
content block icon at ~/widgets/contentblock.ascx.jpg and name the new copy ~/widgets/
socialbar.ascx.jpg.

4. Add the widget you just created to the Framework, associate it with the Wireframe you’re
currently using, and add it to the page.

5. You’ll also need to confi gure the Invite Server Control on the invite.aspx page, and then you
can test the whole thing.

6. To add the widget to the Framework, open the Workarea, and go to the Settings tab.

7. In the Settings tree, navigate to Confi guration Í Personalizations Í Widgets.

8. In the toolbar of the Widgets pane, there is a button to resync the widgets. Click it now and
OK the prompt, and the SocialBar Widget should be appended to the list.

9. Now you need to associate it to the template. In the settings tree, navigate to Confi guration Í
Template Confi guration. In the list of templates that appears, select the fi le Community.pb.aspx
(Wireframe Template). The Update Template screen will appear, as shown in Figure 10-30.

FIGURE 10-30

10. In the list of available widgets, fi nd the SocialBar Widget. Select it so it turns green and click
Update Template.

c10.indd 373c10.indd 373 12/28/2010 2:18:10 PM12/28/2010 2:18:10 PM

374 x CHAPTER 10 SUPPORTING CUSTOMERS

11. Return to the page you created for your wiki at /wiki.aspx, and enter editing mode by select-
ing File Í Edit on the Pagehost menu.

12. Once in edit mode, type socialbar into the fi lter box at the right side of the pagehost toolbar,
and drag the SocialBar to beneath the ContentBlock Widget, as shown in Figure 10-31.

13. Publish the page.

FIGURE 10-31

As you can see in Figure 10-31, the page now has a list of links to popular services, as well
as an Invite link and a link to add the page to your favorites, which is a list of bookmarks
kept on the site.

14. Now you need to create the Invite.aspx page so the invite link works. In Visual Studio,
right-click the root of your site in the Solution Explorer and select Add New Item.

15. In the pop-up menu, make sure Web Form is selected, and name it invite.aspx. Also select the
master page ~/components/templates/Full.master. This master page contains two placeholders,
one for the breadcrumb and one for the content body.

 16. When the declarative fi le appears, drag the Invite Server Control from the toolbox into the
uxContent content section.

The Invite Server Control is part of the community framework. It allows users to
send an e-mail inviting other users to come visit and register on your site. When
the control is rendered, the user sees a two-part form, with one fi eld allowing
the user to add a list of e-mail addresses and a second fi eld fi lled initially with
a default message specifi ed in the OptionalMessageText property. You’ll defi ne
your text for this invite in the Workarea, but fi rst…

c10.indd 374c10.indd 374 12/28/2010 2:18:11 PM12/28/2010 2:18:11 PM

The SocialBar Server Control x 375

17. Run through the properties available to the Invite Server Control. These properties are listed
in Table 10-8.

TABLE 10-8: Invite Server Control Properties

PROPERTY DESCRIPTION

DisplayXslt The path to a custom XSLT to render against.

DoInitFill By default set to true; set to false to fi ll the control at the page render

event. Use this if programmatically modifying the control properties later

in the lifecycle.

FriendMessageId The ID of the message to send for a FriendInvitation type e-mail.

InviteMessageId The ID of the message to send for a GroupInvitation type e-mail.

OptionalMessageText This text is displayed by default in the Invite form, and is folded into the

form e-mail specifi ed in the Workarea.

Stylesheet Use this to override the default stylesheet. Accepts a path to a diff erent

stylesheet.

18. Go back to the Workarea to defi ne the e-mail message to be sent. In the Workarea, switch to the
Settings tab, and in the Settings tree, drill down to Community Management Í Messages. This
brings up a list of all the messages currently defi ned in the system, as shown in Figure 10-32.

FIGURE 10-32

c10.indd 375c10.indd 375 12/28/2010 2:18:11 PM12/28/2010 2:18:11 PM

376 x CHAPTER 10 SUPPORTING CUSTOMERS

19. Click the plus icon to add a new message. The form that comes up has four fi elds. In the title
fi eld, enter Join me at OnTrek. In the type dropdown, select FriendInvitation. Leave the Default
checkbox unselected. The text of e-mail messages uses a token-based string replacement system
to allow you to easily create form e-mails. Table 10-9 shows a list of the tokens available.

TABLE 10-9: Community E-Mail Message Tokens

TOKEN DESCRIPTION

@appOptionalText@ This is replaced with the text the user types into the Optional

Message fi eld on the Invite Server Control.

@appSenderName@ The name of the sender of the invitation.

@appFriendDisplayName@ The name of the recipient of the invitation.

@appInvitedEmail@ The e-mail address of the recipient of the invitation.

@appInviteId@ Replaced with the invite ID. This is typically used to track the invite

through to registration so that the action the user was invited to do

can be completed when the new user registers.

@appGroupName@ The group a person is being invited to join.

20. Enter the e-mail body as shown here:

@appSenderName@ has invited you to be part of the community at OnTrek.

@appOptionalText@

21. Click Add Email Message and you will be returned to the list of messages, with the new
message in the list.

22. Make a note of the ID of the message, and return to the invite.aspx page in Visual Studio.

23. Update your options on the control so the declarative looks like Listing 10-4. Make sure to swap
out the InviteMessageId value with the appropriate value for the message you just created.

LISTING 10-4: invite.aspx

<%@ Page Title=”” Language=”C#”

 MasterPageFile=”~/components/templates/Full.master”

 AutoEventWireup=”true”

 CodeFile=”invite.aspx.cs”

 Inherits=”invite” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls”

 TagPrefix=”CMS” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”uxContentBody” Runat=”Server”>

 <cms:invite runat=”server”

 InviteMessageId=”91”

c10.indd 376c10.indd 376 12/28/2010 2:18:11 PM12/28/2010 2:18:11 PM

The SocialBar Server Control x 377

 OptionalMessageText=”Hey, this site is pretty awesome. Come check it out!”>

 </cms:invite>

</asp:Content>

24. Save the fi le and open /invite.aspx in your browser. It should look like Figure 10-33.

FIGURE 10-33

25. There is one step left to have the Invite Server Control completely functional, and that is to
confi gure the e-mail server and outgoing e-mail address. The outgoing e-mail address defaults
to invitations@example.com, but it can be updated by setting a key in the web.confi g fi le.
Open the web.confi g fi le now, and fi nd the line containing the key ek_InvitationFromEmail.
Set the value to something appropriate for your organization.

The process of setting up your e-mail server depends on a few additional pieces.
The Microsoft Messaging Queue must be installed, and the Asynchronous
Processor Service must be confi gured. These steps are outlined in detail in the
Ektron CMS400 manual, installed with the Framework. The manual is accessi-
ble by going through the Start menu, to All Programs Í Ektron Í CMS400v80
Í Documentation Í CMS400 Manual. The details on confi guring the e-mail
server are covered in Chapter 1 of the manual.

Now that all your pieces are put together, users who visit the wiki page can easily notify their
friends about the content they have found through the use of the SocialBar.

c10.indd 377c10.indd 377 12/28/2010 2:18:11 PM12/28/2010 2:18:11 PM

378 x CHAPTER 10 SUPPORTING CUSTOMERS

CONTENT FLAGGING AND CONTENT REVIEW

With the social nature of the wiki, content administrators of your site give up some basis of their
control over the site. This is the nature of all social tools, but carries the risk of inappropriate con-
tent being added, as well as the possibility of subpar content remaining on the site due to lack of
visibility and feedback. An easy way to combat these issues without sacrifi cing the positive feed-
back of user-generated content is to use the Content Flagging and Review features of the Ektron
Framework.

These two pieces are also part of the social networking feature set of the framework, and support
similar but different functionality. The ContentFlagging Control allows users to fl ag a piece of
content with one of a set of predefi ned options. For example, you might use a list of options that
allows users to identify inappropriate content, such as Sexually Explicit, Mature Content, Graphic
Violence, or Hate Speech. This allows you to spread your moderation effort easily into the commu-
nity, easing the workload of content administrators. The tags that users apply to content on the site
are not visible on the site itself, but are instead used to generate reports in the Workarea.

The ContentReview Server Control, on the other hand, is used to collect information about a given
piece of content and share it with other visitors. This is very common in eCommerce, but is also very
useful in wiki settings as it can help your regular contributors understand the needs of the view-
ing audience. The server control can be used in a fi ve-star manner, aggregating the ratings of many
people into a visual indicator that can be taken in at a glance, or it can be used for textual reviews
and comments.

In this section, you fi rst explore how to set up fl ag defi nitions in the Workarea, then you implement
both server controls into the widget you previously completed, and fi nally you explore how to run
reports against them in the Workarea.

Setting Up Flagging Defi nitions

Flagging defi nitions are applied to content on a folder-by-folder basis, much like metadata defi ni-
tions. This means that you can have a set of different fl agging defi nitions for each folder if you want.
All the fl agging defi nitions are managed through the Workarea. You’ll create a defi nition for your
wiki, and assign it to that folder now. To do so, follow these steps:

1. Open the Workarea and log in as admin.

2. The fl agging defi nitions are managed through the Settings tab, so switch to that tab.

3. In the Settings tree drill down to Community Management Í Flagging Í Flagging
Defi nitions. This displays the list of current fl agging defi nitions in the system.

4. Click the plus icon to add a new defi nition. The Add Flagging Defi nition pane should be up
now, as shown in Figure 10-34.

5. The form has two fi elds and an interface to add the actual defi nitions. For the name fi eld,
enter Wiki Flags. Then add four options to the defi nition, Inappropriate Content, Inaccurate
Content, Irrelevant Content, and Needs Updating. These are the four fl ags that users can
apply to content in the wiki. Click Save.

c10.indd 378c10.indd 378 12/28/2010 2:18:12 PM12/28/2010 2:18:12 PM

Content Flagging and Content Review x 379

FIGURE 10-34

6. Apply the fl ags to the wiki folder. In the Content tab, go to the Content tree and drill down
to MainSite Í Content Í Community Í Documentation Wiki. On the Folder pane, select
View Í Properties from the toolbar. Once the properties come up, select Edit Properties
on the toolbar, and switch to the Flagging tab. Deselect the Inherit Parent Confi guration
checkbox, which enables the dropdown underneath it. Select Wiki Flags and click Save. As
is clear from the fact that the fl ag selector is a dropdown, only one fl ag defi nition can be
applied per folder.

7. Move onto modifying the SocialBar Widget to display the ContentFlagging Server Control
and ContentReview Server Control in addition to the SocialBar Server Control. This is
covered in the next section.

Implementing the ContentFlagging and ContentReview

Server Controls

In this section, you implement the additional server controls on the widget you previously created.
You can easily create a new widget for each of the server controls, allowing for a bit more granular-
ity in the decision of which controls to display, but in this scenario you know you want all three
controls to appear on every wiki page, so it makes it a bit easier to just put them into the same wid-
get. To do so, follow these steps:

1. Open Visual Studio, and open the previously created ~/widgets/socialbar.ascx fi le.

c10.indd 379c10.indd 379 12/28/2010 2:18:12 PM12/28/2010 2:18:12 PM

380 x CHAPTER 10 SUPPORTING CUSTOMERS

2. Beneath the SocialBar Server Control, drag a ContentFlagging Server Control onto the
page from the toolbox. The properties for the ContentFlagging Server Control are listed in
Table 10-10.

TABLE 10-10: ContentFlagging Server Control Properties

PROPERTY DESCRIPTION

DefaultContentID Sets the Content ID to review if DynamicParameter is not set or if there is

no matching query string parameter.

DisplayXSLT Path to a custom XSLT.

DoInitFill If set to false, this prevents the control from fi lling the internal collection at

Page Init, and instead waits until after any postbacks to do its fi ll. Use this if

you are programmatically setting properties on the server control.

DynamicParameter The query string parameter that will specify the content ID to fl ag.

FlagImage Sets a path to an image to display rather than the text on the page.

FlagText Sets the text to render for the link to fl ag the content. An example would

be “Click here to fl ag this content.” If FlagImage is set, this will be

ignored.

StyleSheet Set this to specify a custom stylesheet rather than the standard stylesheet.

3. With these properties in mind, you need to update the ContentFlagging Server Control to
read the ID parameter from the query string. You also need to set the FlagText to be some-
thing a little less conspicuous. Update the socialbar.ascx fi le to match Listing 10-5.

LISTING 10-5: socialbar.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”socialbar.ascx.cs” Inherits=”widgets_socialbar” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<cms:socialbar

 runat=”server”

 InviteURL=”Invite.aspx”

 Items=”Invite, Addto, Email, Digg, Delicious, Print, Twitter, FaceBook”>

</cms:socialbar>

<CMS:ContentFlagging

 ID=”ContentFlagging1”

 runat=”server”

 DynamicParameter=”id”

 FlagText=”Problem with this content?” />

4. Add the ContentReview Server Control. This server control does not require you to add any
defi nitions to the system, because it is much more free-form. You’ll use the fi ve-star plus

c10.indd 380c10.indd 380 12/28/2010 2:18:12 PM12/28/2010 2:18:12 PM

Content Flagging and Content Review x 381

comment mode, so that users can provide textual feedback as well as a simple numerical
rating. You’ll also want to display the ratings on the page, rather than hiding them. Start
by dragging the ContentReview Server Control onto the socialbar.ascx fi le, underneath the
ContentFlagging Server Control. The properties for the ContentReview Server Control are
listed in Table 10-11.

TABLE 10-11: ContentReview Server Control Properties

PROPERTY DESCRIPTION

DefaultContentID Sets the ID to use by default if the DynamicParameter is not set or no

matching query string parameter was found in the URL.

DoInitFill If set to false, this prevents fetching data until after the postback event.

You use this if you plan to programmatically set properties on the

server control later in the lifecycle to prevent fetching data twice.

DisplayXslt This property accepts a path to a custom XSLT, or can be set to one of

a list of pre-built XSLTs. The available options are:

 ‰ Ajax 5 Stars: Simple fi ve-star rating that updates in place.

 ‰ Ajax 5 Stars Comment: Same as Ajax 5 Stars, but also shows a

comment box for text entry.

 ‰ Ajax 5 Stars with Increments: Same as Ajax 5 stars, but allows for

half-star increments.

 ‰ 5 Stars: Non-Ajax version of Five Stars Comment.

 ‰ 5 Stars with Increments: Allows for half-star ratings, as well as

text reviews.

 ‰ Review List: Displays the list of reviews for a given piece of con-

tent or user.

DynamicParameter Specifi es the query string parameter used to set the current content

ID. The server control then loads the reviews belonging to that content

item.

DynamicUserParameter The ContentReview Server Control can also display a single user’s

reviews from across the site. You can set this property to specify the

query string parameter containing the User ID in that situation.

GetReviews Specifi es whether to retrieve reviews. You can set this to None so that

reviews are not retrieved; Content so reviews for the appropriate

content ID are retrieved; or User so reviews from the given user are

returned.

MaxReviews The maximum number of reviews to retrieve. When set to zero, all

reviews are retrieved.

continues

c10.indd 381c10.indd 381 12/28/2010 2:18:12 PM12/28/2010 2:18:12 PM

382 x CHAPTER 10 SUPPORTING CUSTOMERS

PROPERTY DESCRIPTION

Moderate Setting this to true prevents reviews from being displayed until they are

moderated.

RatingsMinimum The minimum number of reviews a content item must receive before

the average rating is displayed. When set to zero, the average is dis-

played after the fi rst review.

UserID Acts as a fi lter for reviews, so that you can display a user’s review for a

particular piece of content. If left blank, all user reviews for that content

are displayed. GetReviews must be set to User for this property to

have an eff ect.

5. As you may have noticed in the DisplayXslt property, you have several options for collect-
ing data, but only one for displaying previously collected data. So for this example, you must
actually have two ContentReview Server Controls on your widget, one to collect new ratings,
and one to display the reviews. You set the fi rst to not get reviews. You also turn moderation
on. The code with these updates should look like Listing 10-6.

LISTING 10-6: socialbar.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”socialbar.ascx.cs” Inherits=”widgets_socialbar” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<cms:socialbar

 runat=”server”

 InviteURL=”Invite.aspx”

 Items=”Invite, Addto, Email, Digg, Delicious, Print, Twitter, FaceBook”>

</cms:socialbar>

<CMS:ContentFlagging

 ID=”ContentFlagging1”

 runat=”server”

 DynamicParameter=”id”

 FlagText=”Problem with this content?” />

<CMS:ContentReview

 ID=”ContentReview1”

 runat=”server”

 DisplayXslt=”5 Stars”

 DynamicParameter=”id”

 Moderate=”True” />

<CMS:ContentReview

 ID=”ContentReview2”

 runat=”server”

 DisplayXslt=”Review List”

 DynamicParameter=”id”

 GetReviews=”content”

 MaxReviews=”10” />

TABLE 10-11 (continued)

c10.indd 382c10.indd 382 12/28/2010 2:18:12 PM12/28/2010 2:18:12 PM

Content Flagging and Content Review x 383

Now when you load the page in the browser, you see the three new elements:

 ‰ The link that says “Problem with this content?” When you click this link, you get the inter-
face shown in Figure 10-35. This interface allows you to select one of the fl ags defi ned in the
Workarea, as well as add a comment explaining the problem.

FIGURE 10-35

 ‰ The fi ve-star review interface: Below the fl agging interface, you’ll see this interface. Here, you
select the number of stars you want to give the content, as well as type a comment.

 ‰ The list of reviews previously given for this content: This is located below the fi ve-star
review area.

Flag and rate the content now. The next section explores how to report against the content fl ags and
reviews.

Running Flagging and Review Reports, and Moderating Reviews

Now that you have entered some data into the fl agging and review systems, you can jump into the
Workarea to see how to report and deal with the information as it comes in. First you’ll look at the
fl agging report to see which items have recently been fl agged.

To work with the fl agging and review data, follow these steps:

1. Open the Workarea logged in as admin. Most content reporting is handled through the
Reports tab, so switch to that.

2. In the Reports tree, drill down to Contents Í Content Flags. The Content Reports pane
displays in the right, showing the fl agged content, as shown in Figure 10-36.

As is shown, the list contains your wiki document, fl agged as Needs Updating.

c10.indd 383c10.indd 383 12/28/2010 2:18:13 PM12/28/2010 2:18:13 PM

384 x CHAPTER 10 SUPPORTING CUSTOMERS

FIGURE 10-36

3. Click the link for the Needs Updating fl ag to update the display. This will show the fl ag
details, and allow you to edit or delete the fl ag. You can see the details by browsing to the
content item directly from the content as well.

4. You can also moderate reviews from the Reports tab. In the Reports tree, navigate to
Contents Í Content Reviews. This shows a list of all the pending content reviews, as shown in
Figure 10-37. By clicking one, you can see the specifi c details of that review and edit it as well.

You can also quickly moderate many reviews by simply running down the left
two columns of the report and selecting the Approve or Decline option for each
one, and then clicking the Save icon. Once you have moderated a review, it will
no longer appear in the report.

5. As mentioned earlier, these reports can be run against an individual piece of content as well.
In the Content pane in the Workarea, navigate to MainSite Í Content Í Community Í
Documentation Wiki in the Content tree.

6. Select the content you previously rated from the list in the Content pane, and the Workarea
shows you that piece of content. On the toolbar in the Content pane, select the Content
Report icon (). This brings up the Reporting pane, which displays the ratings as well as
the fl ags for the particular piece of content. The initial display, shown in Figure 10-38, shows
the ratings for the content.

c10.indd 384c10.indd 384 12/28/2010 2:18:13 PM12/28/2010 2:18:13 PM

Content Flagging and Content Review x 385

FIGURE 10-37

FIGURE 10-38

c10.indd 385c10.indd 385 12/28/2010 2:18:13 PM12/28/2010 2:18:13 PM

386 x CHAPTER 10 SUPPORTING CUSTOMERS

The Rating tab immediately summarizes the star ratings the content has received.

7. Click the Get Reviews button. You’ll see a list of all the reviews for that comment,
along with links to edit and delete them. You can also export to Excel from this
interface.

8. The Flagging tab is very similar to the Rating tab — it allows you to specify a date range
to retrieve the fl ags from. It does not allow you to edit the fl ags on the content, but it does
allow you to purge them once they have been addressed. The Flagging tab is shown in
Figure 10-39.

FIGURE 10-39

9. You can add widgets to your Smart Desktop in the Workarea to see the fl ags and reviews
when you launch the Workarea. In the Desktop tab in the Workarea, click the wide
down arrow on the right of the desktop title bar. This displays the list of widgets.
Drag the ContentReviews and ContentFlags Widgets onto the desktop, as shown in
Figure 10-40. These widgets allows you to quickly see if there is anything that needs to
be dealt with.

c10.indd 386c10.indd 386 12/28/2010 2:18:14 PM12/28/2010 2:18:14 PM

Take Home Points x 387

F IGURE 10-40

TAKE HOME POINTS

This chapter covered a diverse set of features, all targeted at a particular need — to involve the
customer base in an active social life based around your company’s product. The chapter covered
the following:

 ‰ Fundamental tools: forums, blogs, and wikis.

 ‰ Some approaches to reach out through the current customer base into their social networks
to provide for word-of-mouth advertising.

 ‰ How to manage the user-generated content going forward, by spreading some of the review-
ing and moderation out to the existing customer base.

 ‰ How to create forums and manage them. You explored the server control set that supports
forums, and learned about how to customize the user experience.

 ‰ How to create a blog in the Workarea, and how to manage and moderate comments on the
blog. You also learned about the constituent pieces of the Blog Server Control, as well as
how to recombine them to get specifi c functionality.

 ‰ All about wikis. You learned about community folders — the benefi ts and downsides. You
learned how the existing server control library can utilize the community folder to invite

c10.indd 387c10.indd 387 12/28/2010 2:18:14 PM12/28/2010 2:18:14 PM

388 x CHAPTER 10 SUPPORTING CUSTOMERS

users to participate with the site in a deeper way. You also constructed the wiki page using
the PageBuilder feature, which provided a review of how to work with PageBuilder.

 ‰ Extending the wiki page you created by building a new widget to display the SocialBar Server
Control. This allowed users to reach out to their networks on other sites.

 ‰ Extending the SocialBar Widget you created with the ContentReview and ContentFlagging
Server Controls. These controls operate in slightly different ways, and with slightly different
goals, but the fi nal outcome of using them is similar in that they allow the content authors
and managers to gain insight about the usefulness of the content on their sites.

 ‰ You also learned about the Invite Server Control, which allows users to send e-mails through
the system to their colleagues, inviting them to become involved on the site.

By utilizing the community features in the Ektron Framework, the OnTrek team needs to give up
a certain amount of control over what appears on the site, but is able to foster a vibrant commu-
nity around the OnTrek suite. This community will help them secure more business in the future,
through word of mouth advertising which occurs through cross-posting OnTrek’s content to other
social bookmarking and networking sites, and by demonstrating to potential customers that there is
a wide array of current users. The net result is that OnTrek is able to spread its reputation in an easy
and organic way.

c10.indd 388c10.indd 388 12/28/2010 2:18:14 PM12/28/2010 2:18:14 PM

11
Implementing the OnTrek
Social Network

 ‰ How do you establish a social network including users, friends, and

profi les?

 ‰ How do you connect members with community groups?

 ‰ Can you use dashboards as personalized portals of information?

 ‰ How do you stay up-to-date on members’ activity streams?

 ‰ What is the purpose of micro-messaging?

It is no exaggeration to say that social media has fundamentally changed the way businesses
operate and engage with customers. Changes are happening to the way corporations are doing
business as a result. Information is being shared regularly through many different online venues.
Organizations that listen and participate in such conversations gain an advantage over their
customers by increasing sales, extending marketing opportunities, and increasing customer
loyalty through improved support and public relations.

Prior to the age of social media, businesses were used to communicating directly both with
customers and employees in one outward direction. This is no longer the case. Customers talk
about the brands with which they interact in open forums on the Internet; employees blog
about their company on personal websites and ask questions around the virtual water cooler.
Businesses can no longer ignore the comments that people have. Communication is at the core
of social media and if you are not engaging in the conversation on your own website, the
conversation will happen elsewhere.

Social media is not just for external communities; it is also relevant for employees, which
corporations are trying to leverage to improve their corporate culture and productivity. As
new employees join the workforce, they expect or even demand that these social tools are a
part of their everyday activities.

c11.indd 389c11.indd 389 12/28/2010 2:01:05 PM12/28/2010 2:01:05 PM

390 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

The OnTrek website uses social functionality to foster the community’s involvement in many aspects
of the website’s functions. In Chapter 10, you learned how to use Web 2.0 type communication
tools to provide support to existing clients through the use of blogs, wikis, and discussion boards.
This chapter continues the conversation by showing how to use the social networking functionality
for site visitors to discover relevant information, to discuss topics with like-minded individuals, and
to discover community members in need of (or able to provide) help.

THE IMPORTANCE OF SOCIAL NETWORKING

To ensure that your site’s social functionality can provide these services and meet the expectations
of community members, this chapter looks at the components that form the core of social network-
ing sites and shows how they are implemented in the OnTrek website using the Ektron Community
Framework. Keep in mind that this framework encompasses both Web 2.0 and the social network-
ing type functionality. Often times these two concepts are used interchangeably; however, Ektron
does not do so. Ektron uses the phrase Web 2.0 to refer to the broad set of technologies that facili-
tates a two-way conversation between site visitors and site owners (through blogs, wikis, discussion
boards, and so on; see Chapter 10). Ektron uses social software to refer specifi cally to the technol-
ogy that allows users to form connections among one another and share information through those
connections. This section and chapter focuses exclusively on the social networking aspects of the
Ektron Community Framework.

The most important aspects of social networks are as follows:

 ‰ The individual members: Each member typically has his or her own profi le that serves as
their virtual presence on the website. Profi les often show contact information, various docu-
ments such as photos, videos, and blog posts, and list the member’s friends, which signifi es
users who have been granted some elevated level of trust.

 ‰ The community group: This group allows members to unite around a common purpose and
share information on a specifi c subject. A group also has a group profi le, which serves as its
homepage on the site and is usually the epicenter of the group activity. Group administrators
can set permissions on groups so they are public and open to anyone or private, which means
members must get approval to join. Group members can share information, discover others
with similar interests, and work collaboratively to create documents.

 ‰ Activity streams: On both user profi les and group profi les it is common to fi nd activity
streams that list activities related to the group or member. The member profi le includes the
activities related to that individual, such as friending (for example, “John is now friends with
Susan”) and content creation (for example, “John uploaded a new video entitled Summer
Vacation”). Similarly, on the group profi le, the activity stream includes activities that occur
within the group itself, such as membership activities (for example, “John is now a member
of the Sales Group”) and collaboration activities (for example, “John published a new docu-
ment entitled Engineering Product Specifi cation”). In addition to reading the activity stream
online, members can often request updates to be delivered via instant messaging, SMS, or
through e-mail.

c11.indd 390c11.indd 390 12/28/2010 2:01:09 PM12/28/2010 2:01:09 PM

Technology x 391

 ‰ Micro-messaging or micro-blogging: This is a way of communicating that allows members
to publish very short messages, share status updates (for example, “what are you doing
now?”), and post relevant URLs and other interesting bits of information. Micro-messages
can either be publicly visible to all members of the social network or only to friends. Twitter,
which popularized micro-messaging, is often used in a number of ways — to crowd source
for answers to questions in real-time, to keep aware of trending news topics, and to promote
an event or other marketing event. Most micro-messages are text but some services allow for
video and other multimedia formats.

TECHNOLOGY

When Ektron launched the fi rst version of its Community Framework in 2006, there were no other
Web content management vendors with this type of deeply integrated framework. Ektron recognized
that a paradigm shift was underway that would fundamentally change what people would come to
expect from websites, both public-facing websites and internal corporate intranets.

The Community Framework is composed of dozens of server controls and widgets, as well as a dozen
more APIs, ranging from Web 2.0 type controls such as blogs and discussion boards, to the social
networking components discussed here. This chapter focuses on the following aspects of the Ektron
Community Framework:

 ‰ Community members, colleagues, and user profi les

 ‰ Community groups and group profi les

 ‰ Activity streams and notifi cations

 ‰ Micro-messaging

 ‰ Personalization dashboards

Any time a membership user is created, the user is automatically given the plumbing needed for
participation in a social network, such as the ability to establish connections with other users
called colleagues, and storage for personal information. From a developer’s point of view, no
work is needed to confi gure or enable this underlying structural aspect of a social network; it is
an inherent part of the system. Once a user has been created, the User Profi le Server Control and
APIs can be used to display the profi le for that user on the website. It is from the user profi le that
users manage their colleagues, personal information, privacy settings, and so forth.

User profi les are also a place for community members to establish personal “dashboards” of infor-
mation. Similar in concept to iGoogle (www.google.com/ig), a member’s personal dashboard
becomes a place where information can be aggregated from across the Internet or the organization.
The information kept on the dashboard can serve two purposes:

 ‰ Community members use it to organize information into one centralized location.

 ‰ Members use it to share information with others visiting the profi le.

c11.indd 391c11.indd 391 12/28/2010 2:01:09 PM12/28/2010 2:01:09 PM

392 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

Ektron’s Community Groups are created by community members as a place to discuss particular
topics and share information with its list of members. Community members either join community
groups out of interest or because they’re invited to join by the group’s administrator. Community
profi les are displayed using the Community Group Profi le Server Control and APIs and contain
information similar to that found in the user’s profi le.

Keeping community members up-to-date on all of the activities occurring within their social
network of colleagues and the community groups is of critical importance. As such, the Ektron
Community Framework includes a general-purpose notifi cation engine to alert members when
certain activities of interest take place. These notifi cations can be delivered in a number of
ways, including through e-mail and through the website’s activity stream timeline, using the
ActivityStream Server Control and APIs.

Later in this chapter, you’ll see how to incorporate micro-messaging into the user profi le, allow-
ing members to publish micro-messages to the system and keep their colleagues and community
groups apprised of their activity. Micro-messages are a type of activity, which means that members
can choose to be notifi ed of micro-message posts through a number of different channels, including
SMS or the activity stream. Also, later in this chapter, you’ll see how to work with micro-messaging
through the Community Framework’s MicroMessage Server Control, and you’ll walk through its
integration onto the user profi le, as implemented on the OnTrek website.

USERS, FRIENDS, AND PROFILES

Community members, friends, and user profi les form three of the most basic elements of a social
network.

As far as the Ektron database is concerned, the members of a website’s community are one or the
other of the following:

 ‰ CMS users: Created by a CMS admin.

 ‰ Membership users: Created either by a CMS admin through the Workarea, or by the site
visitor through the website during the membership registration process (see the section
“Allowing a User to Register on the Site” in Chapter 7).

Any time either type of user is created, they are automatically given the plumbing needed for
participation in a social network, such as the ability to establish connections with other users
(called colleagues) and storage for personal information. From a developer’s point-of-view, no
work is needed to confi gure or enable this underlying structural aspect of a social network; it is
an inherent part of the system.

Understanding the Friending Process

Once a user is in the system, she can begin establishing connections with other members. This
process is typically called friending and two users who have friended each other are called
colleagues. It is worthwhile noting that the system uses a symmetric friending paradigm like
Facebook, which means that both users need to establish the friendship connection before they’re
considered colleagues. It does not use the asymmetric follow approach used on sites such as
Twitter, where one user can follow another without the approval of the person being followed.

c11.indd 392c11.indd 392 12/28/2010 2:01:09 PM12/28/2010 2:01:09 PM

Users, Friends, and Profi les x 393

The CommunitySearch Server Control is one of the primary methods for community members to
discover other potential connections by searching by name, interests, tags, or even location. The
search results display members of the social network and include a link that members can use to
issue a friend request. Figure 11-1 shows the search results, including the friend request link as
displayed by the CommunitySearch Server Control. In addition to the CommunitySearch Server
Control, there are APIs available that can be used to issue friend requests. You’ll read about these
APIs later in the User Profi le “Under the Hood” section.

FIGURE 11-1

Understanding User Profi le Functionality

A user profi le is a Web page that contains personal information for a community member. This infor-
mation often includes a photograph, avatar, contact information, and other personal details that defi ne
the member’s digital identity. On a corporate social network, such as an intranet, a profi le contains
work-related information, such as an individual’s role and their supervisor’s name. A profi le can also
store and share data. Users of sites such as MySpace and Facebook often upload videos and publish
blog posts through their profi les.

Profi les often provide community-generated content attribution, with the avatar and display name
serving as the hyperlink pointing to the user’s profi le. In this way, profi le links become a key aspect
of social networking functionality, serving as a way to discover new users and learn more informa-
tion about the person authoring the information. Figure 11-2 shows a posted message using the
MessageBoard Server Control and shows how the post is attributed to a particular user through the
use of an avatar and hyperlink to that user’s profi le.

c11.indd 393c11.indd 393 12/28/2010 2:01:09 PM12/28/2010 2:01:09 PM

394 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

FIGURE 11-2

The UserProfi le Server Control can be used to display a user profi le for any CMS or membership
user. The user profi le displayed by the server control is very basic, and an example of its default
display is shown in Figure 11-3. Users who are logged on have the ability to edit their profi les by
clicking the Edit Profi le link that appears in the top-right corner.

FIGURE 11-3

The default presentation can be customized by defi ning a custom XSLT and registering it using the
server control’s DisplayXSLT property. However, often the requirements for a website’s user profi le
are more complex than the UserProfi le Server Control can achieve, and so the stock server control
may not be an option. Instead, the Ektron Community Framework APIs are frequently used to build
a user profi le. The OnTrek website is no exception — the user profi le section of OnTrek is essentially
an application unto itself.

c11.indd 394c11.indd 394 12/28/2010 2:01:09 PM12/28/2010 2:01:09 PM

Users, Friends, and Profi les x 395

You can create friendly URLs for your members’ profi les. For example, rather
than referring to a specifi c member’s profi le as /user/profi le.aspx?id=239, you
can use /users/ john-smith, by enabling the Community Aliasing for Users fea-
ture. See the “Aliasing” section in Chapter 6 or more information.

In addition to this basic information, user profi les often also include links to other items:

 ‰ Community Documents: Every user in the system (both CMS and membership users) has
a personal content repository associated with his account. This repository can be accessed
and managed using the CommunityDocuments Server Control. This control allows users
to create and share personal content on the website. Figure 11-4 shows the output of the
CommunityDocuments Server Control prior to the user uploading any content.

FIGURE 11-4

 ‰ Private Messaging: The Messaging Server Control allows community members to send and
receive private messages. This is an important feature, as it offers a way for community
members to communicate information that should not or cannot be shared publically on the
website.

 ‰ Colleagues: The Friends Server Control displays a list of users who are colleagues of a particu-
lar community member. This control is typically located on a user profi le and is set to display
the list of the member’s current colleagues, pending colleagues, and invited colleagues.

 ‰ Community Groups: The CommunityGroupList Server Control displays a list of community
groups and can be used to present:

 ‰ Community groups a user has joined

 ‰ Community groups the user has been invited to join

 ‰ Community groups the user has requested to join

 ‰ Message Boards: The MessageBoard Server Control allows community members to author
comments about a user, community group, or content item. The MessageBoard Server
Control may be associated with a user, a community group, or with content. Moderation is
also available, and requires that messages are approved prior to displaying on the website.

OnTrek’s user profi les contain heavy client-side requirements, including the ability for users to:

 ‰ Create folders by right-clicking elements and invoking a context menu.

 ‰ Hide and show profi le elements using sliding accordions.

 ‰ Organize colleagues by dragging and dropping their avatars into folders.

c11.indd 395c11.indd 395 12/28/2010 2:01:10 PM12/28/2010 2:01:10 PM

396 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

With such highly interactive and specialized behavior requirements, using the UserProfi le Server
Control is not possible. Instead, the user profi le section of the OnTrek website uses the Ektron
Community Framework APIs extensively, and it serves as a good example of how to use those APIs
to power a rich, interactive user experience.

OnTrek’s user profi le is logically divided into three tiers:

 ‰ Presentation tier: Uses jQuery to create the interactive client-side experience.

 ‰ Middle tier: Uses ASHX handlers to encapsulate business logic.

 ‰ Ektron’s APIs: For all data and CMS needs.

Overall, the OnTrek user profi le presents a nice architectural model and clean pattern to follow
when this type of rich functionality is required. It’s a good example of what can be done with
jQuery, .NET, and Ektron.

In this implementation section, you will focus your attention on the Ektron specifi c pieces of its
implementation, namely the setup and confi guration steps and the areas of the user profi le appli-
cation that use the Community Framework Server Controls and APIs. Later, in the User Profi le
“Under the Hood” section, you will continue to probe deeper into the implementation by looking
into the source of the ASHX handlers and discovering a number of Community Framework API
gems contained there.

If you’re interested in learning more about jQuery and its possible uses with
Ektron, you can fi nd additional information in the RIA section of Chapter 6,
which uses jQuery and Ektron Smart Forms to provide an interactive image
rotation component.

Confi guring Community Member Templates

For any community implementation, you’ll need to defi ne the location to the user profi les, commu-
nity groups, and other community pages. This is done by specifying the URL to these pages in the
Community Templates screen in the Workarea. These paths are used by the system when links to
these pages are generated. For example, the search results displayed by the CommunitySearch
Server Control include a hyperlink to the profi le of the community member (as shown earlier in
Figure 11-1). The hyperlink displayed by the control uses the information specifi ed in this screen.

To specify these paths, do the following.

1. Go to Workarea Í Settings Í Community Management Í Templates. You will see the
screen shown in Figure 11-5. This screen contains two sets of templates: user related and
group related.

2. In the User Templates section, enter the values in Table 11-1 as defi ned in the OnTrek
implementation guide:

c11.indd 396c11.indd 396 12/28/2010 2:01:10 PM12/28/2010 2:01:10 PM

Users, Friends, and Profi les x 397

FIGURE 11-5

TABLE 11-1: User Templates values

DOCUMENT VALUE TO ENTER EXPLANATION

Community

Document

exchange/codedownload.aspx URL for the page hosting the

CommunityDocuments Server Control

(or similar functionality using the APIs)

Photo Gallery /profi le.aspx URL for the page hosting the

PhotoGallery Server Control

Calendar /workarea/communitycalendar.aspx The Calendar for the individual user

Profi le /user/profi le.aspx the URL for the user profi le

Journal /user/blog.aspx URL for the page hosting a blog control

or similar

OnTrek’s User Profi le User Control

When logged in as Admin, opening OnTrek’s Admin user profi le in your Web browser will show
something similar to the screen shown in Figure 11-6. You’ll notice that there are two major regions
defi ned for the user profi le.

c11.indd 397c11.indd 397 12/28/2010 2:01:10 PM12/28/2010 2:01:10 PM

398 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 ‰ The fi rst region occupies the left-side navigation and contains accordion items stacked verti-
cally. At the top of the stack is the user’s avatar, and then beneath it follows the Groups,
Colleagues, Blog, Dashboard, Documents, Favorites, and Photos.

 ‰ The second region occupies the majority of the real estate of the profi le’s center. This con-
tains information that is contextual to the selected accordion item. For example, when the
accordion item containing the user’s avatar is selected, the main region displays the fi ve tabs
shown in Figure 11-6.

FIGURE 11-6

The implementation of the user profi le is encapsulated into a single user control called ~/Profi le/
UserProfi le.ascx; see Listing 11-1 (which is shorted for brevity). The two regions described previ-
ously (the accordion and the body) map to physical regions of this user control:

 ‰ The accordion items are wrapped with <div class=”accordion”> and defi ne the content
and behavior for each of the individual accordion items (shown in Listing 11-1).

 ‰ The main region, or body, is wrapped with <div class=”body”> and uses an ASP.NET
MultiView Server Control to load the appropriate view based on the selected accordion item.

LISTING 11-1: ~/Profi le/UserProfi le.ascx

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”UserProfile.ascx.cs”

Inherits=”Ektron.Profile.UserProfile” %>

<%@ Register TagPrefix=”CMS” Assembly=”Ektron.Cms.Controls”

c11.indd 398c11.indd 398 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

Users, Friends, and Profi les x 399

 Namespace=”Ektron.Cms.Controls” %>

<%@ Register TagName=”Blog” Src=”./Accordion/Blog.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Calendar” Src=”./Accordion/Calendar.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Colleagues” Src=”./Accordion/Friends.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Dashboard” Src=”./Accordion/Dashboard.User.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Documents” Src=”./Accordion/Documents.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Favorites” Src=”./Accordion/Favorites.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Groups” Src=”./Accordion/Groups.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”Photos” Src=”./Accordion/Photos.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”User” Src=”./Accordion/User.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”TreeView” Src=”./Accordion/TreeView/treeview.ascx”

 TagPrefix=”Ektron” %>

<%@ Register TagName=”TreeviewContextMenu”

 Src=”./Accordion/TreeView/treeview.contextmenu.ascx”

 TagPrefix=”Ektron” %>

<asp:ScriptManager ID=”uxScriptManager” runat=”server” ScriptMode=”Release” />

<Ektron:TreeviewContextMenu ID=”treeviewContextMenu” runat=”server” />

<div class=”profileOverlay”></div>

<div class=”userProfile profile”>

 <input id=”profile-focusHelper” type=”hidden” name=”profile” value=”” />

 <div class=”profile”>

 <!-- REGION 1 - “accordion” -->

 <asp:UpdatePanel ID=”upProfile”

 runat=”server”

 ChildrenAsTriggers=”false”

 UpdateMode=”Conditional”>

 <ContentTemplate>

 <div class=”width-6”>

 <div class=”rail”>

 <CMS:UserProfile ID=”cmsUserProfile”

 runat=”server”

 Visible=”true” />

 <div class=”accordion”>

 <h3>

 <asp:LinkButton ID=”uxAccordionLinkUser”

 runat=”server” CssClass=”user” OnCommand=”uxAccordion_Click”

 CommandArgument=”user”></asp:LinkButton>

 <input id=”uxAccordionDataUser” runat=”server”

 type=”hidden” name=”accordionData”

 class=”accordionData” />

 </h3>

 <div>

continues

c11.indd 399c11.indd 399 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

400 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 <div class=”user”>

 <asp:Literal runat=”server” ID=”uxAvatar” />

 <asp:MultiView ID=”mvUserAccordion”

 runat=”server”>

 <asp:View

 ID=”uxUserAccordionEditProfile”

 runat=”server”>

 <a id=”uxUserAccordionEditProfileLink”

 runat=”server”

 class=”ek_thickbox ui-button ui-widget

 ui-state-default ui-corner-all

 ui-button-text-icon”>

 <span class=”ui-button-icon-primary

 ui-icon ui-icon-pencil”>

 Edit Profile

 </asp:View>

 <!--

 -- remaining Views removed for brevity, see

 -- source code for complete listing

 -->

 </asp:MultiView>

 </div>

 </div>

 </div>

 </div>

 </div>

 <!-- REGION 2 - “body” -->

 <asp:UpdatePanel ID=”upBody” runat=”server” UpdateMode=”Always”>

 <ContentTemplate>

 <div class=”body”>

 <input type=”hidden” class=”profileData”

 id=”uxProfileData” runat=”server” name=”profile” />

 <input type=”hidden” class=”hostData”

 id=”uxHostData” runat=”server” name=”profile” />

 <h3>

 <asp:Literal ID=”uxHeaderUser” runat=”server” />

 <asp:Literal ID=”uxHeaderStatus” runat=”server” />

 </h3>

 <asp:MultiView ID=”mvProfileBody” runat=”server”>

 <asp:View ID=”vwUser” runat=”server”>

 <Ektron:User ID=”ucUser” runat=”server”

 Mode=”User” />

 </asp:View>

 <!--

 -- remaining Views removed for brevity, see

 -- source code for complete listing

 -->

 </asp:MultiView>

LISTING 11-1 (continued)

c11.indd 400c11.indd 400 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

Users, Friends, and Profi les x 401

 </div>

 </ContentTemplate>

 </asp:UpdatePanel>

 </div>

 </ContentTemplate>

 </asp:UpdatePanel>

 </div>

</div>

In the associated codebehind fi le, ~/Profi le/UserProfi le.ascx.cs, the click event handler is responsible
for handling the click events and loading the appropriate view:

protected void uxAccordion_Click(object sender, CommandEventArgs e)

 {

 this.activeTabId = (string)e.CommandArgument;

 this.activeTabIndex = this.GetControlIndex(this.activeTabId);

 OnSelectedUserControl();

 SetBody();

 }

The User Profi le code so far has been more .NET code than Ektron Framework API; but it’s impor-
tant code to highlight for a few reasons. First, it demonstrates a practical real-world implementation
of a user profi le that incorporates most every standard element found in social networking profi les
built using the Ektron Community Framework. Second, it will serve as a reference point for most
every one of the remaining technical sections in this chapter.

The Friends User Control

At the very top of the UserProfi le.ascx source code shown in Listing 11-1, you’ll notice a number of
Register statements that reference additional user controls. You’ll now take a look at one of these
specifi c user controls, the Friends.ascx control in order to better understand how this component of
the User Profi le is implemented and show how it uses the CommunityFramework API to display a
list of the member’s colleagues, as shown in code Listing 11-2.

LISTING 11-2 ~/Profi le/Accordion/Friends.ascx

<%@ Control Language=”C#” AutoEventWireup=”true” CodeFile=”Friends.ascx.cs”

Inherits=”Ektron.Profile.Friends” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

TagPrefix=”CMS” %>

<div class=”colleagues members”>

 <asp:PlaceHolder ID=”uxFindColleague” runat=”server”>

 <div class=”findColleagues clearfix”>

 <label for=”colleagues”>Find a colleague...</label>

 <input type=”text” id=”colleagues” name=”colleagues”

 maxlength=”50” class=”findFriend” value=”” />

 <a href=”#FindColleague”

 class=”ui-button ui-widget ui-state-default

 ui-corner-all ui-button-text-icon”

 title=”Find a colleague”

continues

c11.indd 401c11.indd 401 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

402 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 onclick=”Ektron.Profile.Colleagues.find(this);return false;”>

 Find

 </div>

 </asp:PlaceHolder>

 <asp:MultiView ID=”uxColleagues” runat=”server”>

 <asp:View ID=”uxColleaguesUser” runat=”server”>

 <div class=”types”>

 <asp:Literal ID=”uxFriendsLabel”

 runat=”server” />

 <li id=”uxColleaguesAwaitingTab” runat=”server”>

 <a href=”#<%= uxColleaguesInvitedPanel.ClientID %>”>

 <asp:Literal ID=”uxOutgoingRequests”

 runat=”server” />

 <li id=”uxColleaguesNewInvitesTab” runat=”server”>

 <a href=”#<%= uxColleaguesPendingPanel.ClientID %>”>

 <asp:Literal ID=”uxIncomingRequests”

 runat=”server” />

 <asp:Label id=”uxNewInvites” runat=”server”>

 <img id=”uxColleaguesNewInvites”

 runat=”server” visible=”false”

 enableviewstate=”false” /></asp:Label>

 <div id=”colleagues-1”>

 <asp:Literal ID=”uxColleaguesCurrent” runat=”server” />

 </div>

 <div id=”uxColleaguesInvitedPanel” runat=”server”>

 <asp:Literal ID=”uxColleaguesInvited” runat=”server” />

 </div>

 <div id=”uxColleaguesPendingPanel” runat=”server”>

 <asp:Literal ID=”uxColleaguesPending” runat=”server” />

 </div>

 </div>

 </asp:View>

 <asp:View ID=”uxColleaguesNone” runat=”server”>

 <p class=”noColleagues”>

 <asp:Image ID=”uxNoColleagues” runat=”server” />

 </p>

 </asp:View>

 </asp:MultiView>

 <CMS:Friends ID=”cmsFriends” runat=”server”

 Visible=”false” MaxResults=”200” />

 <CMS:CommunityGroupMembers ID=”cmsMembers”

 runat=”server” Visible=”false” />

</div>

LISTING 11-2 (continued)

c11.indd 402c11.indd 402 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

Users, Friends, and Profi les x 403

The lines of particular interest are at the bottom, where you can see two references to two of the
Ektron Framework’s Server Controls, namely, the Friends Server Control (CMS:Friends) and the
CommunityGroupMembers Server Control (CMS:CommunityGroupMembers). These two controls
are placed side by side since this code fi le is shared across the implementation of the user and group
profi les. On the user profi le, the Friends Server Control is used to list a member’s colleagues. On the
group profi le, the CommunityGroupMembers Server Control is used to display the group’s mem-
bers. Both of these controls have their visibility set to False, which means the display is being con-
trolled through code. If you were to open its corresponding codebehind (Friends.ascx.cs), you would
fi nd the following code snippet:

 private void GetUserProfile()

 {

 bool hasColleagues = false;

 string colleagues;

 XsltArgumentList xsltArgs;

 xsltArgs = new System.Xml.Xsl.XsltArgumentList();

 //Get Colleagues

 cmsFriends.DefaultUserID = this.ProfileId;

 cmsFriends.DisplayMode =

 Ektron.Cms.Controls.Friends.eDisplayMode.Directory;

 cmsFriends.DefaultFolderID = this.UserCookieData.CookieData.Colleagues.

Context[this.UserCookieData.CookieData.Colleagues.Context.Count - 1];

 cmsFriends.Hide = true;

 cmsFriends.Fill();

 xsltArgs.AddParam(“mode”, “”, “colleagues”);

 xsltArgs.AddParam(“sitePath”, “”, this.contentApi.SitePath);

 xsltArgs.AddParam(“permission”, “”, Enum.

GetName(typeof(UserPermission), this.UserProfileData.Permission).ToLower());

 xsltArgs.AddParam(“profileMode”, “”, Enum.GetName(typeof(ProfileType),

this.Mode).ToLower());

 colleagues = EkXml.XSLTransform(cmsFriends.XmlDoc.InnerXml,

this.xsltPathCmsFriends, true, false, xsltArgs, false, null, Constants.

CacheProfileInterval);

 uxColleaguesCurrent.Text = colleagues;

In the underlying user control, the developer sets additional parameters to the Friends Server
Control, namely, DefaultUserID, DisplayMode, and DefaultFolderID — the three most important
parameters of the Friends Server Control.

The purpose of the DefaultUserID parameter is straightforward, with the specifi ed value represent-
ing the default user ID that will be used by the control.

Since this server control has the ability to display four types of colleagues (current colleagues
grouped by category, current colleagues listed in alphabetical order, pending colleagues, and invited
colleagues), it is necessary to indicate which type you want returned. This is specifi ed through the
DisplayMode property, which is set to retrieve data in Directory mode (current colleagues grouped
by category). The DefaultFolderID property correspondingly indicates which category colleagues
should be selected from.

You may be wondering, though, why this code was manipulated in codebehind. Looking at this
code further, it becomes apparent why the developer decided to set the control’s visibility to False

c11.indd 403c11.indd 403 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

404 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

and to manipulate its display through codebehind: It presents a solution to a problem that many
have run across previously. The problem is, when using the DisplayXSLT property of a server con-
trol, how can you pass along custom parameters to the transformation? The solution is one that can
only be implemented in codebehind. You create an XsltArgumentList object, defi ne your parameter
values, and use the EkXml’s transformation routine, which accepts an XSLTArgs object as a param-
eter. The result is the same had you used the DisplayXSLT property, with the exception and benefi t
that this transformation allows you to pass arguments.

Take a look through the other user controls that are registered at the top of the
page, namely:

 ‰ ./Accordion/Blog.ascx

 ‰ ./Accordion/Calendar.ascx

 ‰ ./Accordion/Dashboard.User.ascx

 ‰ ./Accordion/Documents.ascx

 ‰ ./Accordion/Favorites.ascx

 ‰ ./Accordion/Groups.ascx

 ‰ ./Accordion/Photos.ascx

 ‰ ./Accordion/User.ascx

Each is worth exploring further as they contain useful lines of code that can save
you time when building your own user profi le.

Under the Hood

Given the heavy client-side requirements of the OnTrek profi le, the application uses jQuery to
achieve much of the rich client behavior. To facilitate client and server communication, the user
profi le application exposes Community Framework APIs over HTTP through the use of .NET
ASHX handlers, and returns data formatted using JSON. ASHX handlers are a good choice when
implementing this type of service because they avoid much of the overhead involved in rendering a
full ASPX page. For example, ASHX handlers entirely skip the normal page lifecycle, reducing the
computational overhead of a given request.

In the ~/Profi le/Handlers/ folders, you’ll fi nd all of the following fi les:

 ‰ profi le.blogs.router.ashx

 ‰ profi le.calendar.group.router.ashx

 ‰ profi le.calendar.user.router.ashx

 ‰ profi le.colleagues.ashx

 ‰ profi le.documents.ashx

c11.indd 404c11.indd 404 12/28/2010 2:01:11 PM12/28/2010 2:01:11 PM

Users, Friends, and Profi les x 405

 ‰ profi le.documents.router.ashx

 ‰ profi le.favorites.ashx

 ‰ profi le.forum.router.ashx

 ‰ profi le.groups.ashx

 ‰ profi le.members.ashx

 ‰ profi le.photos.ashx

Each handler uses the Framework API in some way, exposing features that are not available through
the Workarea or server controls. This section cherry picks through a few of the hidden pearls of
these handlers, but there are many others not covered here, so it is highly advised that you spend
some time browsing through these fi les at some point since they provide examples for things that
haven’t been exposed before.

The ProcessRequest Entry Point in Services

Let’s start by looking at how the ProcessRequest method defi ned in ~/Profi le/Handlers/profi le
.colleagues.ashx handles various requests. It uses a switch statement to dispatch processing based
on the type of action that is requested. The following snippet shows the relevant section of that
ASHX handler:

 public void ProcessRequest(HttpContext context)

 {

 //set header info

 context.Response.ContentType = “application/json”;

 context.Response.Cache.SetNoStore();

 context.Response.Cache.SetRevalidation(

 HttpCacheRevalidation.AllCaches);

 GetTaxonomyTreeData();

 TaxonomyRequest taxonomyRequest;

 switch (this.Action)

 {

 case RequestAction.AddColleague:

 this.friendsApi.AddPendingFriend(this.ColleagueId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.ApproveColleague:

 this.friendsApi.AcceptPendingFriendForUser(this.ColleagueId,

 this.UserId);

 this.response = @”{“”Status””:””OK””}”;

 break;

Understanding the RequestAction.AddFolder Implementation

Reviewing the implementation details of some of the RequestAction handlers might not be necessary
in some cases, as the source code spans only a few lines. However, there are others operations which
are more complex, like the implementation for the RequestAction.AddFolder shown in the follow-
ing code snippet, that need explaining:

c11.indd 405c11.indd 405 12/28/2010 2:01:12 PM12/28/2010 2:01:12 PM

406 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 case RequestAction.AddFolder:

 try

 {

 //add new node

 taxonomyData = new TaxonomyData();

 taxonomyData.TaxonomyDescription = String.Empty;

 taxonomyData.TaxonomyName = Convert.ToString(this.CategoryName);

 // community items have no language;

 taxonomyData.TaxonomyLanguage = 0;

 taxonomyData.TaxonomyType = (this.Mode == ProfileType.User) ?

 EkEnumeration.TaxonomyType.User : EkEnumeration.TaxonomyType.

Group;

 taxonomyData.TaxonomyParentId =

 long.Parse(this.RequestTaxonomyData.Id);

 long newCategoryId =

 contentApi.EkContentRef.CreateTaxonomy(taxonomyData);

 //get new node

 taxonomyRequest = new TaxonomyRequest();

 taxonomyRequest.TaxonomyId = newCategoryId;

 taxonomyRequest.TaxonomyType = EkEnumeration.TaxonomyType.User;

 // limit the taxonomy to just the level required

 taxonomyRequest.IncludeItems = false;

 taxonomyRequest.ReadCount = false;

 taxonomyRequest.Depth = 1;

 taxonomyData = this.contentApi.LoadTaxonomy(ref taxonomyRequest);

 //translate to treeview

 TranslateTaxonomyData(taxonomyData);

 //set response

 this.response = this.jsonSerializer.Serialize(this.TreeView);

 }

To understand the previous code snippet, you should fi rst understand the use case for the code.
In this instance, the use case is: “As a developer, I can create new folders for organizing col-
leagues.” Allowing for this type of organization means that the user can place colleagues into
logical groups based on their relationship to the colleague. For example, as a community mem-
ber, you might choose to place all of marketing colleagues into a newly created folder called
Marketing.

How Taxonomy Structures Relate to the Community Platform

Looking at the implementation, you might be surprised to fi nd references to Taxonomy APIs and
Taxonomy data classes in code for creating a new folder. This is because taxonomy is actually an
extremely central part of the Community Framework and it serves a number of important purposes.
By default, every user in the system has a user taxonomy associated to it. Although there is only
one user taxonomy per user (a one-to-one mapping between a user and user taxonomy), there are
predefi ned user taxonomy categories created to manage the relationships between the user and other
community-related items, such as community groups, colleagues, and content. These predefi ned
categories are child categories of the root folder.

c11.indd 406c11.indd 406 12/28/2010 2:01:12 PM12/28/2010 2:01:12 PM

Users, Friends, and Profi les x 407

The two signifi cant differences between user taxonomies and content taxonomies are that user tax-
onomies are not language-aware, and also, there is no UI for managing them in the Workarea.

 Given this new information, it now becomes clearer why the RequestAction.AddFolder handler
references the Taxonomy API to create a new “folder” for organizing colleagues. You’re actually
creating new categories for this information behind the scenes and through the process of categoriz-
ing colleagues, documents, and community groups. You’re establishing an organized relationship
between a user and these objects.

Exploring the ~/Profi le/Handlers/profi le.colleauges.ashx further, you will see a number of refer-
ences to the Ektron.Cms.Community.FriendsAPI namespace. This provides an interface for per-
forming many of the actions you’d expect to have, including the ability to issue friend requests
and approve friend requests. The following code snippet from that fi le shows how to do each of
these respectively.

 case RequestAction.AddColleague:

 this.friendsApi.AddPendingFriend(this.ColleagueId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.ApproveColleague:

 this.friendsApi.AcceptPendingFriendForUser(this.ColleagueId,

 this.UserId);

 this.response = @”{“”Status””:””OK””}”;

 break;

Retrieving a List of Friends Using the API

Another important point to know and highlight is how to retrieve a list of friends using the API. The
following code snippet shows the procedures needed to get a list of colleagues for a given user. This
code uses the same GetList/Criteria pattern that the Ektron’s Framework APIs use (See Appendix B for
more information about the Framework API, including cookbook style code snippets). The nice thing
about the Framework API is its consistent use of GetList() for retrieving a list of items. Once you’ve
used it, you know how to use it for other datatypes.

 Ektron.Cms.API.Community.CommunityGroup groupApi =

 new Ektron.Cms.API.Community.CommunityGroup();

 Criteria<Ektron.Cms.CommunityGroupProperty> criteria =

 new Criteria<Ektron.Cms.CommunityGroupProperty>();

 criteria.AddFilter(Ektron.Cms.CommunityGroupProperty.GroupName,

 CriteriaFilterOperator.StartsWith,

 “H”);

 List<Ektron.Cms.CommunityGroupData> groupList = groupApi.GetList(criteria);

 gvCommunitGroups.DataSource = groupList;

 gvCommunitGroups.DataBind();

The next code snippet shows how to retrieve a list of favorites using the same GetList/Criteria pat-
tern. Notice the similarity between the two, despite the fact that they’re querying for and returning
entirely different datatypes.

 Ektron.Cms.API.Community.CommunityGroup groupApi =

 new Ektron.Cms.API.Community.CommunityGroup();

 Criteria<Ektron.Cms.CommunityGroupProperty> criteria =

c11.indd 407c11.indd 407 12/28/2010 2:01:12 PM12/28/2010 2:01:12 PM

408 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 new Criteria<Ektron.Cms.CommunityGroupProperty>();

 criteria.AddFilter(Ektron.Cms.CommunityGroupProperty.GroupName,

 CriteriaFilterOperator.StartsWith,

 “H”);

 List<Ektron.Cms.CommunityGroupData> groupList = groupApi.GetList(criteria);

 gvCommunitGroups.DataSource = groupList;

 gvCommunitGroups.DataBind();

In both cases you’ll also notice that the lists are data-bound to data-bindable server controls like
the .NET ListView Server Control and the GridView Server Control. This pattern can be repli-
cated for many of the community datatypes, making the process of data retrieval intuitive and
straightforward.

For a developer screencast covering the Framework API, including code samples
and documentation, see http://dev.ektron.com/FrameworkAPI/.

COMMUNITY GROUPS

One way to draw people to join a social network is to show that it is possible to connect with
other members of the community who have similar interests. Community groups often serve this
purpose and offer members the ability to discuss topics and discover new members in the process.
Community groups often have profi les much like community users, which contain the same types
of capabilities. They have their own message boards, or walls, threaded discussion boards, and
displays of members belonging to the group.

Community groups also serve a purpose on internal intranets. In this context, community groups
function as a collaborative workspace where members can work cooperatively to author content,
manage project calendars, blog about project status, and use the activity stream timeline to see what
has recently happened in the group.

Active community groups are often major hubs of activity on social networking sites, and it is
important to make sure that community members are aware of them. These groups help members
connect and give them a strong connection to the site, increasing the likelihood that they’ll remain
an active part of your community. The Ektron Community Framework supports the creation of
community groups and also the technology to keep people informed of new community groups,
activity community groups, and others.

The CommunityGroupProfi le Server Control displays the basic information about a community
group, including attributes such as group name, description, number of members, and the group
administrator. The CommunityGroupProfi le Server Control shares much of the purpose and func-
tion of the UserProfi le Server Control covered in the previous section, and there are many parallels
between the two server controls and the set of APIs used to manage and display them.

c11.indd 408c11.indd 408 12/28/2010 2:01:12 PM12/28/2010 2:01:12 PM

Community Groups x 409

How Users Discover Community Groups

There are a number of ways for community members to discover new community groups, including
the following:

 ‰ Community group search: This facilitates the discovery of new members by exploring group
names, descriptions, tags, and other custom defi ned attributes. The CommunitySearch Server
Control and related APIs were covered in a previous section in this chapter (see “Users,
Friends, and Profi les”).

 ‰ List of most popular and most active community groups: The CommunityGroupList Server
Control displays a list of community groups and can be confi gured to display them by name,
how recently they were created, or how popular they are. When associated with a user, this
control can also be used to show community groups with which a user is associated, a list of
community groups the user has been invited to join, or any restricted community groups the
user has asked to join, where his acceptance is pending.

 ‰ The community’s activity streams: In real life, what compels someone to join a group, pur-
chase a car, or eat particular foods, is often infl uenced by what other people are doing. If
you see a number of people lined up to purchase the latest gadget, your instincts might com-
pel you to check it out and maybe even purchase it. The activity stream provides a window
into what people are doing, and when community members see others fl ocking to particular
groups, they’ll stop to explore and see if it is something that interests them. Activity streams
are covered in the upcoming section in this chapter called “Activity Streams”.

Creating a Community Group

Community groups can be created through the Workarea and through the website. In many cases,
the website is the primary place where community groups are created since membership users do
not have access to the Workarea. If you’re interested in exposing this functionality to your site visi-
tors, consider using the CommunityGroupBrowser Server Control, which, in addition to allowing
visitors to browse existing groups, also has the ability to create a new group. Offering visitors the
ability to create community groups “on demand” is an extremely important piece in the social tech-
nology puzzle. Site administrators will never be able to predict which groups should be created and
who should administer them. Putting this power in the hands of the community is the right way to
approach this.

The Diff erence between a Member User Group and a Community Group

It is important to keep in mind that membership user groups and community groups are two com-
pletely different concepts and are used in entirely different use cases. There has been some confusion
in the past about this, mostly because some use the terms “membership users” and “community
members” interchangeably. To clarify this, CMS Administrators use membership user groups to
grant content permissions to groups of membership users, whereas community groups are created by
the community to facilitate information exchange around a topic or idea, as discussed here.

c11.indd 409c11.indd 409 12/28/2010 2:01:13 PM12/28/2010 2:01:13 PM

410 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

If you read through the previous section in this chapter titled “Users, Friends, and Profi les,” recall
that the OnTrek user profi le had heavy client-side requirements and needed to use the Community
Framework APIs for its implementation. If you haven’t read that section yet, take a few minutes to
do so. Much of what was described there, in terms of requirements and implementation approach,
holds true for the group profi le. In fact, OnTrek’s group profi le code is organized into the same three
logical tiers discussed earlier (a presentation tier using jQuery, a middle tier encapsulating business
logic using ASHX handlers, and a data tier using Ektron Framework APIs for CMS and data needs).
In addition, it was implemented in such a way that a fair amount of the source code is shared across
both the group and user profi les.

Creating a New Community Group

Community groups are used on the OnTrek website to facilitate conversations around the OnTrek
product line. Since having this community group was a planned part of the initial site requirements
and design, the group was created by a CMS admin. The following is a walkthrough of creating a
new community group in the Workarea.

1. Open Workarea Í Settings Í Community Management Í Community Groups. This com-
mand shows the list of existing community groups, as shown in Figure 11-7.

FIGURE 11-7

2. Click the Add New Community Group icon .

c11.indd 410c11.indd 410 12/28/2010 2:01:13 PM12/28/2010 2:01:13 PM

Community Groups x 411

3. On the Add New Community Group screen, you have a number of form fi elds available to
describe the community group. These fi elds are grouped into three categories, organized and
separated by tabs.

 ‰ Properties tab: Here you are required to provide a group name, assign an administra-
tor, and specify whether the group is open or restricted. The following list describes
select fi elds for data entry.

 ‰ Administrator: Administrator here refers to the group administrator, which is
an individual who has the privilege to delete a group or edit its properties. By
default, the person who created the group is the group administrator. You can
delegate administrative responsibilities to a user by clicking the Browse button
and selecting a different user.

 ‰ Membership: Membership can either be extended to everyone (public) or
restricted to those users who have been granted access to join (private).

 ‰ Enable Distribute: If you want to offer the administrator the ability to move
content from the Community Group to the content folder tree, check this box.

 ‰ Tags tab: Use this to associate short, one word descriptions to the community group.
For example, tags for an “New England Patriots Fans” community group might be
“football,” “sports,” or “fans.”

 ‰ Categories tab: Note that this tab might not be displayed on your installation. It will
not show up if you have not defi ned at least one taxonomy for community groups.
To enable the tab, simply create a new taxonomy (see Chapter 6) and make sure
to select the group checkbox to indicate you want to categorize community groups
using the taxonomy.

4. Click Save.

Confi guring Community Group Templates

Just as you previously defi ned the location to various community member pages, you’ll follow the
same process for community group templates. To review, you must specify the URL paths used by
the system when links to group pages are used. For example, the community group search results
displayed by the CommunityGroupList Server Control include a hyperlink to the profi le of the
community group. This hyperlink uses the URL specifi ed in this screen.

To specify these paths, do the following.

1. Go to Workarea Í Settings Í Community Management Í Templates. You will see the
screen shown in Figure 11-8. This screen contains two sets of templates — user related ones
and group related ones.

2. In the Group Templates section, enter the values shown in Table 11-2, as defi ned in the
OnTrek implementation guide.

c11.indd 411c11.indd 411 12/28/2010 2:01:13 PM12/28/2010 2:01:13 PM

412 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

FIGURE 11-8

TABLE 11-2 Community Group Templates in OnTrek

TEMPLATE NAME TEMPLATE PATH DESCRIPTION

Community

Document

/Profi le/Documents.aspx The URL for the page hosting the

CommunityDocuments Server Control

Photo Gallery /Profi le/GroupPhotos.aspx The URL for the page hosting the

PhotoGallery Server Control

Profi le / GroupProfi le.aspx The URL for the group profi le

Journal / GroupProfi le.aspx The URL for the page hosting the group

blog

Forum /Workarea/CommunityForum.aspx The URL for the page hosting a

threaded discussion control

OnTrek’s Group Profi le User Control

The primary use of a community group is to facilitate communication and interaction between
community members, and OnTrek’s Group Profi le User Control includes many features to achieve
this. The screen in Figure 11-9 shows its primary view, which contains a list of the activities that
have recently taken place in the group, notes that have been posted to the group message board, and
group information.

c11.indd 412c11.indd 412 12/28/2010 2:01:13 PM12/28/2010 2:01:13 PM

Community Groups x 413

FIGURE 11-9

If you’ve read the previous section of this chapter (called “Users, Friends, and Profi les”), this
interface should look very familiar. The implementation of the Group Profi le User Control
for the OnTrek website breaks the functionality into two groups (just as was done in the User
Profi le User Control) and those two groups are: the functionality contained within the accor-
dion and the functionality contained within the main body. The items in the main body are
contextual to the selected accordion item, and change accordingly when a new accordion item is
selected.

Main Body Functionality

The source code for the Group Profi le User Control can be found in ~/Profi le/GroupProfi le.ascx.
As this was covered in the previous technical section, this section focuses on a few of the real work-
horses of the profi le, which are the user controls that are registered at the top of the document.
These are:

 ‰ ./Accordion/Blog.ascx

 ‰ ./Accordion/Calendar.ascx

 ‰ ./Accordion/Dashboard.Group.ascx

 ‰ ./Accordion/Documents.ascx

 ‰ ./Accordion/Forum.ascx

 ‰ ./Accordion/Friends.ascx

 ‰ ./Accordion/Group.ascx

 ‰ ./Accordion/Photos.ascx

c11.indd 413c11.indd 413 12/28/2010 2:01:13 PM12/28/2010 2:01:13 PM

414 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

Each is used to defi ne the behavior of the main body of the profi le. Which control is loaded is deter-
mined through the use of a .NET MultiView Server Control in the following way:

 <asp:MultiView ID=”mvProfileBody” runat=”server”>

 <asp:View ID=”vwGroup” runat=”server”>

 <Ektron:Group ID=”ucGroup” runat=”server” Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwMembers” runat=”server”>

 <Ektron:Members ID=”ucMembers” runat=”server” Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwDocuments” runat=”server”>

 <Ektron:Documents ID=”ucDocuments” runat=”server”

 Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwBlog” runat=”server”>

 <Ektron:Blog ID=”ucBlog” runat=”server” Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwCalendar” runat=”server”>

 <Ektron:Calendar ID=”ucCalendar” runat=”server”

 Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwForum” runat=”server”>

 <Ektron:Forum ID=”ucForum” runat=”server” Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwDashboard” runat=”server”>

 <Ektron:Dashboard ID=”ucDashboard” runat=”server”

 Mode=”Group” />

 </asp:View>

 <asp:View ID=”vwPhotos” runat=”server”>

 <Ektron:Photos ID=”ucPhotos” runat=”server” Mode=”Group” />

 </asp:View>

 </asp:MultiView>

Accordion Functionality

When a user clicks the accordion item labeled “Members,” the Members User Control is loaded.
Looking up at the register statements on the top of the page, you can see that the Member control is
defi ned in Friends.ascx. You might recall that you looked into this fi le in Listing 11-2 in the previous
section, since the user and group profi les share this code fi le. In this section, you’ll examine this fi le
again, except this time you’ll see how it is used to display a list of the group members. At the bottom
of Listing 11-2, you’ll fi nd the following snippet:

<CMS:CommunityGroupMembers ID=”cmsMembers” runat=”server” Visible=”false” />

The visibility for this control is set to false, which previously has meant that it is being used
in codebehind. Opening ~/Profi le/Accordion/Friends.ascx.cs, you see the following snippet
defi ned for retrieving member information in the GetGroupProfi le method. You can see it fol-
lows a very similar pattern to the User Profi le implementation seen earlier. Specifi cally, it refer-
ences the CommunityGroupMembers Server Control by its ID cmsMembers to populate the
DefaultCommunityGroupID and DisplayMode properties.

 private void GetGroupProfile()

 {

 this.communityGroupApi = new CommunityGroupAPI();

c11.indd 414c11.indd 414 12/28/2010 2:01:14 PM12/28/2010 2:01:14 PM

Community Groups x 415

 this.communityGroupData =

 communityGroupApi.GetCommunityGroupByID(this.ProfileId);

 this.xsltPathCmsFriends = this.contentApi.SitePath +

 “profile/xslt/cmsGroupMembers.xsl”;

 bool hasColleagues = false;

 string colleagues;

 XsltArgumentList xsltArgs;

 xsltArgs = new System.Xml.Xsl.XsltArgumentList();

 //Get Members

 cmsMembers.DefaultCommunityGroupID = this.ProfileId;

 cmsMembers.DisplayMode = CommunityGroupMembers.eDisplayMode.Members;

 cmsMembers.Hide = true;

 cmsMembers.Fill();

 xsltArgs.AddParam(“mode”, “”, “members”);

 xsltArgs.AddParam(“sitePath”, “”, this.contentApi.SitePath);

 xsltArgs.AddParam(“permission”, “”,

 Enum.GetName(

 typeof(GroupPermission),

 this.GroupProfileData.Permission).ToLower());

 xsltArgs.AddParam(“isGroupAdmin”, “”,

 this.GroupProfileData.IsGroupAdmin.ToString().ToLower());

 xsltArgs.AddParam(“myId”, “”, this.UserId);

 xsltArgs.AddParam(“groupAdminId”, “”,

 this.communityGroupData.GroupAdmin.Id.ToString());

 colleagues = EkXml.XSLTransform(cmsMembers.XmlDoc.InnerXml,

 this.xsltPathCmsFriends, true, false, xsltArgs, false,

 null, Constants.CacheProfileInterval);

 uxColleaguesCurrent.Text = colleagues;

Table 11-3 shows a list of the commonly used properties of the CommunityGroupMembers Server
Control, and a description of what the impact of each property is.

TABLE 11-3: Select Properties of the CommunityGroupMembers Server Control

PROPERTY DESCRIPTION

CacheInterval Sets the amount of time, in seconds, that the server control’s data

is cached. The default value is 0.

DefaultCommunityGroupId The community group ID that is used by default.

DisplayMode Defi nes which type of members are displayed, Members or

PendingMembers.

DisplayXSLT Defi nes the XSLT that is used to customize the markup presented

by the control.

DynamicParameter Gets or sets the QueryString parameter to read a community

group ID dynamically. To use the default community group ID,

leave this blank.

continues

c11.indd 415c11.indd 415 12/28/2010 2:01:14 PM12/28/2010 2:01:14 PM

416 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

PROPERTY DESCRIPTION

Link Allows you to override the UserProfi le template URL defi ned in the

Workarea. You can embed the following two tokens:

 * {0} - Represents the User’s ID

 * {1} - Represents the User’s Name

to create a URL such as this:

* /UserProfile.aspx?gid={0}&gn={1}

MaxResults The maximum number of items to return.

Another noteworthy section of the previous snippet is found at the top of the GetGroupProfi le
method, where you can see the CommunityGroupAPI being used to programmatically retrieve group
information by the group’s ID. This information gathers data that is passed as an XSLT argument into
the XSLT transformation. At the bottom of the GetGroupProfi le method, you can see that the result of
this transformation is rendered to the page using an ASP.NET Literal Server Control.

The register statements at the top of the GroupProfi le.ascx include the following
user controls:

 ‰ ./Accordion/Blog.ascx

 ‰ ./Accordion/Calendar.ascx

 ‰ ./Accordion/Dashboard.User.ascx

 ‰ ./Accordion/Documents.ascx

 ‰ ./Accordion/Favorites.ascx

 ‰ ./Accordion/Groups.ascx

 ‰ ./Accordion/Photos.ascx

 ‰ ./Accordion/User.ascx

Each of these fi les contains code that can be repurposed for use in your own user
profi le. Make sure to explore these fi les further.

Under the Hood

To further your understanding of the Community Framework APIs relevant for Community Groups
and the group profi le, this section continues to look through the list of ASHX handlers listed earlier
in the chapter. In the ProcessRequest method in ~/Profi le/Handlers/profi le.members.ashx, you’ll fi nd
the following snippet

 public void ProcessRequest(HttpContext context)

 {

TABLE 11-3 (continued)

c11.indd 416c11.indd 416 12/28/2010 2:01:14 PM12/28/2010 2:01:14 PM

Community Groups x 417

 //set header info

 context.Response.ContentType = “application/json”;

 context.Response.Cache.SetNoStore();

 context.Response.Cache.SetRevalidation(

 HttpCacheRevalidation.AllCaches);

 GetRequestParams();

 switch (this.Action)

 {

 case RequestAction.AcceptInvitation:

 long userAccepting = 0;

 if (this.MemberId > 0) {

 userAccepting = this.MemberId;

 } else {

 userAccepting = this.contentApi.UserId;

 }

 this.groupApi.AcceptGroupInvite(userAccepting, this.GroupId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.AddMember:

 this.groupApi.AddUserToCommunityGroup(this.GroupId,

 this.MemberId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.ApproveMember:

 this.groupApi.ApprovePendingGroupUser(this.MemberId,

 this.GroupId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.DeclineInvitation:

 long userDeclining = 0;

 if (this.MemberId > 0) {

 userDeclining = this.MemberId;

 } else {

 userDeclining = this.contentApi.UserId;

 }

 this.groupApi.DeclineGroupInvite(userDeclining, this.GroupId);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.DeleteMember:

 if (this.IsPending) {

 this.groupApi.DeletePendingGroupUser(this.MemberId,

 this.GroupId);

 } else {

 this.groupApi.RemoveUserFromCommunityGroup(this.GroupId,

 this.MemberId);

 }

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.JoinGroup:

 this.groupApi.AddUserToCommunityGroup(this.GroupId,

 this.MemberId);

 if (this.contentApi.IsAdmin()) {

c11.indd 417c11.indd 417 12/28/2010 2:01:14 PM12/28/2010 2:01:14 PM

418 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 this.groupApi.ApprovePendingGroupUser(this.UserId,

 this.GroupId);

 }

 break;

 case RequestAction.LeaveGroup:

 long idToLeave = 0;

 if (this.MemberId > 0) {

 idToLeave = this.MemberId;

 } else {

 idToLeave = this.UserId;

 }

 this.groupApi.RemoveUserFromCommunityGroup(this.GroupId,

 idToLeave);

 this.response = @”{“”Status””:””OK””}”;

 break;

 case RequestAction.CancelJoinRequest:

 this.groupApi.CancelJoinRequestForCommunityGroup(this.GroupId,

 this.UserId);

 break;

 }

 }

This method defi nes the business rules executed when various actions occur. The current action is
evaluated in a switch statement and processed accordingly. The group-related actions handled in
this method are AcceptInvitation, AddMember, ApproveMember, DeclineInvitation, DeleteMember,
JoinGroup, and LeaveGroup.

Looking through these action handlers, it is clear that the bulk of the work is performed through
the Community Group API that was instantiated earlier in the fi le through the following code:

groupApi = new Ektron.Cms.Community.CommunityGroupAPI();

This API provides the following methods that are used to implement these action handlers.

groupApi.AcceptGroupInvite(userAccepting, GroupId);

groupApi.AddUserToCommunityGroup(GroupId, MemberId);

groupApi.ApprovePendingGroupUser(MemberId, GroupId);

groupApi.CancelJoinRequestForCommunityGroup(GroupId, UserId);

groupApi.DeclineGroupInvite(userDeclining, GroupId);

groupApi.RemoveUserFromCommunityGroup(GroupId);

The Framework API has the ability to retrieve a list of groups using the GetList/Criteria pattern
described earlier

The Framework API is covered as well in Appendix B. See this appendix for
more information about the Framework API, including cookbook style code
snippets.

 Ektron.Cms.API.Community.CommunityGroup groupApi = new

Ektron.Cms.API.Community.CommunityGroup();

 Criteria<Ektron.Cms.CommunityGroupProperty> criteria = new

c11.indd 418c11.indd 418 12/28/2010 2:01:14 PM12/28/2010 2:01:14 PM

Dashboards x 419

Criteria<Ektron.Cms.CommunityGroupProperty>();

 criteria.AddFilter(Ektron.Cms.CommunityGroupProperty.GroupName,

CriteriaFilterOperator.StartsWith, “H”);

 List<Ektron.Cms.CommunityGroupData> groupList = groupApi.GetList(criteria);

 gvCommunitGroups.DataSource = groupList;

 gvCommunitGroups.DataBind();

The results set returned from the Framework API’s GetList method is data-bound to a data-bindable
control (in this case the ASP.NET GridView Server Control), which gives developers and designers
fi ne-grained control over the markup that is produced.

DASHBOARDS

Ektron’s Dashboards allow site visitors to create personalized portals of information, aggregating
data from various sources, simplifying the decision-making process by gathering information into
one single location. These portals can be personalized for an individual based on their interests, or
for an entire group of people based on the collective purpose of that group. For example, as an indi-
vidual member of the marketing department, you might have a dashboard fi lled with various types
of Web analytics information as well as a list of tasks waiting for your attention.

Sites like iGoogle have made it possible to create such dashboards centered around the Search textbox.
As an iGoogle user, any time you launch your browser to perform a Google search, you’re presented
your iGoogle gadgets keeping you informed of any changes to the information in which you’re inter-
ested, such as stocks, or the weather.

As a developer using Ektron, you have access to its dashboard feature which means you can
easily implement dashboards on your website, allowing your visitors to create personalized por-
tals of widgets to aggregate information and to keep people on the site from switching to other
applications.

Site visitors using this feature can drag widgets into their personalized dashboard to display e-mail,
events, syndication feeds, and Web analytics, as well as perform tasks related to their roles (see
Figure 11-10). As a content author, you can make edits to content right from the dashboard. As a
human resources manager, you can add new posts to the list of available jobs, without having to
navigate to the Workarea or to the jobs section of a website.

What’s on the Dashboard?

A dashboard consists of multiple pages, each containing a number of tabs, with each tab containing
a number of columns, and each column a number of widgets. A group dashboard is used by group
members to set up a portal page that addresses that group’s unique needs. Any group member can
view and create or edit the page’s content.

Tabs can be made public or private. A private tab is available for viewing and editing only by its
creator. This means that on a private group dashboard, only group members can view and create or
edit it. If a tab is public, anyone can view the tab and its widgets, but authentication is often required
because viewing some types of content requires content permissions and valid credentials. So, If the
tab is public, anyone can view it but only the group members can create and edit the content.

c11.indd 419c11.indd 419 12/28/2010 2:01:15 PM12/28/2010 2:01:15 PM

420 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

Because widgets are just user controls, you can create your widgets and expose them through the
Widget Tray, or extend the ones already shipped with the product, or extend the ones that are
already there. Personalization lets a membership user or community group member customize a
single page on the site for their own use. A PageBuilder page, on the other hand, lets an Ektron user
create pages on the actual website.

FIGURE 11-10

Using the Dashbard Components and Widget Spaces

The OnTrek user and group profi le pages each include a dashboard component. The dashboard compo-
nent is a personalization control that requires a few confi guration steps. Before opening Visual Studio,
you must fi rst go to the Workarea to create a new widget space. A widget space is simply a collection of
widgets that you can use to present to members to populate their dashboards. You can create multiple
widget spaces. For example, one group of users could only be allowed to create dashboards with Sales
and Marketing Widgets, whereas another group might only be able to select from Engineering and
Support Widgets. The process of creating a widget space also assigns it a widget space ID.

To create a widget space:

1. Go to the Workarea Í Settings Í Confi guration Í Personalization Í Widget Space screen.

2. Click the Add button.

3. Enter a title for the widget space. This title is a descriptive name that is used only in the
Workarea.

c11.indd 420c11.indd 420 12/28/2010 2:01:15 PM12/28/2010 2:01:15 PM

Dashboards x 421

4. Select the Group Space checkbox if you’ll use this widget space for a Community Group
Dashboard. Leave it deselected if you intend to use it for a User Group Dashboard. See
Figure 11-11.

5. Select the widgets to include in the widget space. The widgets included here are available to
site visitors and appear in the dashboard’s Widget Tray.

6. Click the Save button and take note of the ID of the widget space.

The dashboard implementation for OnTrek can be found in ~/Profi le/Accordion/Dashboard.ascx
and in Listing 11-3. The source code is extremely simple, as it registers the personalization user con-
trol that is shipped by Ektron in the Workarea, which handles the bulk of the work.

LISTING 11-3 Dasboard.ascx: The User Profi le Dashboard

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”Dashboard.User.ascx.cs”

 Inherits=”UserControls_Profile_Dashboard_User” %>

<%@ Register TagName=”Personalization”

 Src=”~/Workarea/Personalization/personalization.ascx”

 TagPrefix=”ucEktron” %>

<div class=”dashboard”>

 <asp:PlaceHolder ID=”ph1” runat=”server” />

</div>

FIGURE 11-11

c11.indd 421c11.indd 421 12/28/2010 2:01:15 PM12/28/2010 2:01:15 PM

422 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

To implement the dashboard user control on your own page, follow these steps.

1. Open Visual Studio and create a new Web form.

2. From the toolbox, drag-and-drop a Script Manager from the AJAX extensions on the
Toolbox. You might need to download the Microsoft AJAX Library if this item is not
available on the Toolbox.

3. In Visual Studio’s folder browser, navigate to the following folder: workarea/personalization/.

4. Drag-and-drop a personalization user control (personalization.ascx).

5. In the User Control’s property box, specify the widget space ID that you created earlier.

ACTIVITY STREAMS

An activity stream is a list of tasks or actions that a person performs and that friends and colleagues
read to keep informed about that person. The feature was fi rst popularized on social networking sites
like Facebook so users could share pictures with friends, comment on a friend’s activities, register for
events, or exchange contact information with another friend. Ektron sees the power of such lists in
other contexts as well. On the eIntranet, Ektron’s intranet product, Ektron uses activity streams to
keep employees informed of business activities. On public-facing sites, activity streams are more than
for informing friends of new photos, as demonstrated in the OnTrek website; they can notify mem-
bers when knowledge-based articles are published or when product blog posts are written.

Activity streams are also useful in helping people fi nd information in two new ways:

 ‰ Through timeline navigation: Often times, you publish documents only to discover you
need to make edits soon after. Timeline navigation allows you to fi nd a document through
your personal activity stream, providing an alternative to searching for it or navigating to it
through a folder or menu structure.

 ‰ Through social navigation: Activity streams mean users can “share” activities, which is in
effect a way of providing a “vote” for the activity. This causes popular activities to bubble to
the top of the activity stream, and when items are repeatedly shared, they remain at the top
longer, thus giving greater visibility to popular items.

Using Activity Streams to Your Advantage

Like most technologies, the many benefi ts of activity streams may blind you to the importance of
building a strategy to take full advantage of streams. When social networks are active, activity streams
grow quickly, which increases the possibility that a useful activity message will be lost in the noise. In
this section, you’ll learn the key concepts needed to get working with activity streams and learn ways
to implement them to improve their “signal to noise” ratio. In the Activity Streams “Under the Hood”
section you’ll dive into the underlying Notifi cation Framework used by the activity streams, and learn
how to extend that framework to support custom notifi cation agents and activity types.

Why would you want to use activity streams on your community site? Here are six reasons:

 ‰ Discovery: Activity streams give community members the ability to fi nd and navigate to
relevant and timely information as it is created in real time.

c11.indd 422c11.indd 422 12/28/2010 2:01:15 PM12/28/2010 2:01:15 PM

Activity Streams x 423

 ‰ Awareness: Activity streams give members insight into the public events and workplace
activities that may impact their goals.

 ‰ Collaboration: With greater awareness comes more involvement with and contribution of
ideas to projects that would otherwise remain unnoticed.

 ‰ Notifi cation: You can send your members notifi cation of time sensitive events delivered
through text and e-mail messages.

 ‰ Stickiness: As notifi cations drive people back to the site, and streams give greater awareness
of info available on it, now site visitors have more reasons to visit the site and engage with its
members.

 ‰ SEO: Think of the activity stream as a dynamic “sitemap” pointing to the latest active con-
tent, giving search crawlers a window into the most up-to-date content, and increasing the
possibility of fi nding information through search results.

Using the ActivityStream Widget to Manage Streams

To understand how to use an activity stream, look at the ActivityStream Widget illustrated in Figure 11-12.
By default, this widget is confi gured to show all the activities from the current user’s social network. When
users log in and view this widget, they see all their colleagues’ activities plus those activities that occur
within the community groups to which the users belong. This activity stream also considers content and
community group permissions; so for example, if a colleague posts a document to a private group that you
do not belong to, you do not see it in your activity stream. Likewise, if you update private content that only
you can see, none of your colleagues are notifi ed of this event.

FIGURE 11-12

c11.indd 423c11.indd 423 12/28/2010 2:01:15 PM12/28/2010 2:01:15 PM

424 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

Users of the ActivityStream Widget can fi lter the activities by clicking the Filter button. Doing so
opens a textbox that accepts the names of users and community groups and updates the widget’s
display to include the activities from only those names. The fi ltering defi ned on the widget persists
in the widget storage (see Chapter 9). Therefore, you can use multiple ActivityStream Widgets on
a PageBuilder Page or dashboard, with each instance of the widget having its own fi lter criteria.
Users can also populate their dashboards with these widgets fi ltered in such a way as to improve the
“signal to noise” ratio. For example, on an intranet, a marketing manager might fi lter the widget to
display only activities from his direct reports. On a public website like OnTrek, site visitors might
include only activities from OnTrek employees or other product experts.

A site visitor can also globally control what displays in the activity stream by managing activ-
ity preferences either through the site’s membership profi le settings or the Workarea (if they
have Workarea permissions). Figure 11-13 shows the Activities settings screen, which has three
sections:

 ‰ Colleagues: Allows users to control what type of user displays by default in controls like the
ActivityStream Widget. Any fi ltering done at the widget level fi lters off of this information.

 ‰ Community Groups: Allows users to control what type of community group activities
displays by default in controls. Any fi ltering done at the widget level fi lters off of this
information.

 ‰ My Activities: Here, users can control which of their activities are published into the activity
stream.

FIGURE 11-13

c11.indd 424c11.indd 424 12/28/2010 2:01:16 PM12/28/2010 2:01:16 PM

Activity Streams x 425

In Figure 11-13 you’ll also notice that, in addition to the Activity Stream column, there are two
additional columns, SMS and Email, which you use to confi gure notifi cation of activities on your
mobile device or through your e-mail account. As you might have guessed from this screen, the
activity stream system sits on top of a larger Notifi cation Framework. This topic’s “Under the
Hood” section covers the Notifi cation Framework and demonstrates its extensibility by showing
how to create custom Notifi cation Agents and custom Activity Types.

Using the Server Control to Manage Streams

In addition to the ActivityStream Widget, there is a server control and APIs for working with and
displaying activities. Much like its widget counterpart, the ActivityStream Server Control displays
activities from the current user’s social network of colleagues and community groups per their activity
notifi cation settings. The server control, however, does not provide the same type of user-driven fi lter-
ing through the GUI as does the widget. Instead, you can programmatically control the ActivityStream
Server Control through its API in codebehind; you must do any fi ltering using code like this:

// You can exclude the current user from the stream

activityStreamCtrl.ExcludeUserIds.Add(CurrentUserID);

// You can also choose to exclude certain groups

activityStreamCtrl.ExcludeGroupIds.Add(GroupId1);

activityStreamCtrl.ExcludeGroupIds.Add(GroupId2);

The control has a number of properties that modify its behavior, including displaying a particular
community group or user’s activities, or a set of users’ activities. If you want to display the activity
stream associated with a particular group instead of the logged-in user’s activity stream, set the con-
trol’s ObjectType property to User or Group to specify that the control is associated with a commu-
nity group. Then set its DefaultObjectID property to the community group ID for the particular
community group. The important point to note here is that once this confi guration is made, the user
who views this page will see the activities of this particular group, regardless if they’re a member of
the group or not.

This brings up a very important attribute of the activity and notifi cation system. Although, by default,
only those activities to which a user has permission to see will appear for them, developers can over-
ride this and force the server control to display activities from the global activities, which might not
fall within the activities the logged-in user has specifi ed in their settings. The ActivityStream API also
has the same ability, that is to either retrieve activities and fi lter them according to community group,
content permissions and confi guration settings, or to allow a developer to defi ne the logic that governs
which activities display. A partial list of properties is listed in Table 11-4.

TABLE 11-4 Selected Properties from the Activity Stream Server Control

PROPERTY DESCRIPTION

CacheInterval Sets the amount of time, in seconds, that the server control’s data is

cached. The default value is 0.

DefaultObjectID The ID of the object whose activity stream is to display. If you want to

display a user’s activities, set the ObjectType property to User and set

DefaultObjectID to the user’s ID.

continues

c11.indd 425c11.indd 425 12/28/2010 2:01:16 PM12/28/2010 2:01:16 PM

426 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

PROPERTY DESCRIPTION

DisplayXSLT Defi nes the XSLT that customizes the markup presented by the control.

MaxResults The maximum number of activities to display in the activity stream.

ObjectType Activity streams can be displayed for a user or a group. This property lets

you defi ne which to display. Then use the DefaultObjectID to specify the

ID of the user or group.

Looking through Table 11-4, you can see that you control the activity stream markup using XSLT
by setting the DisplayXSLT property, just as you would for most Ektron server controls. Providing
your own XSLT overrides the default presentation and allows you to customize how the activity
stream displays. Keep in mind that any of the default functionality provided by the server control
will be overridden as well, so you’ll have to implement your own paging.

Querying the Activity Stream Using the Activity Stream API

Another approach to customizing the activity stream markup is to query the activity stream using
the Activity Stream API and then data-bind the results to a templatable server control like the ASP
.NET ListView or Repeater Server Controls. This approach uses standard ASP.NET data binding
and templating functionality and therefore means that your markup is controlled in an ASPX tem-
plate or ASCX User Control. Listing 11-4 shows an ASPX template hosting an ASP.NET ListView
Server Control to render a list of activities with custom markup.

LISTING 11-4: CustomStreamDisplay.aspx

<body>

 <form id=”form1”>

 <div>

 <h1>Activity Stream</h1>

 <asp:ListView ID=”listViewActivityStream” runat=”server”>

 <LayoutTemplate>

 <div id=”ActivityList”>

 <asp:PlaceHolder ID=”itemPlaceHolder” runat=”server”>

 </div>

 </LayoutTemplate>

 <ItemTemplate>

 <div id=”ActivityMessage”>

 <img class=”ActivityAvatar” alt=”Avatar”

 src=”<% #Eval(“ActionUser.Avatar”) %>”/>

 <%#Eval(“ActionUser.DisplayName”) %>

 <div class=”date”><%#Eval(“Date”) %></div>

 <div><%#Eval(“Message”) %></div>

 </div>

TABLE 11-4 (continued)

c11.indd 426c11.indd 426 12/28/2010 2:01:16 PM12/28/2010 2:01:16 PM

Activity Streams x 427

 </ItemTemplate>

 <EmptyDataTemplate>

 <h3>No activities have been posted yet.</h3>

 </EmptyDataTemplate>

 </asp:ListView>

 </div>

 </form>

</body>

In Listing 11-5, you fi nd the code that retrieves the activity list using the ActivityStream API. In
this example, the GetUserActivityStream (long) method retrieves the activities from a particular
user’s social network. You can also use this API to retrieve a specifi c user’s activities, or the activi-
ties for one or more community groups. Once you retrieve the activity list, the ASP.NET ListView’s
DataBind() method data-binds the activity list to the ListView Server Control.

LISTING 11-5 CustomStreamDisplay.aspx.cs

Using Ektron.Cms;

using Ektron.Cms.Framework;

using Ektron.Cms.Activity;

using ActivityStreamApi = Ektron.CMS.Framework.Activity;

public partial class Developer_ActivityStream_CustomStreamDisplay :

 System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 DisplayActivityStream();

 }

 private void DisplayActivityStream()

 {

 PagingInfo pageInfo = new PagingInfo();

 pageInfo.TotalRecords = 10;

 ActivityStreamApi activityStreamApi = new ActivityStreamApi();

 long userId = activityStreamApi.RequestInformation.UserId;

 List<ActivityData> listActivities =

 activityStreamApi.GetUserActivityStream(userId);

 listViewActivityStream.DataSource = listActivities;

 listViewActivityStream.DataBind();

 }

Using the Activity Stream on the Community Homepage

The OnTrek site uses activity streams primarily to give site visitors a way to fi nd the information
being contributed (discovery), to give a greater understanding of what is happening within the com-
munity (awareness), and to allow site visitors to be notifi ed of time-sensitive information, such as

c11.indd 427c11.indd 427 12/28/2010 2:01:16 PM12/28/2010 2:01:16 PM

428 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

product security patches (notifi cation). This is done through the activity stream integration on the
community homepage, through the use of the ActivityStream Server Control. The implementation
for this is very straightforward since it uses the standard ActivityStream Server Control with no
customizations.

1. In Visual Studio, open ~\OnTrek\Pages\Community.aspx.

2. Drag-and-drop the ActivityStream Server Control onto the page template.

The OnTrek website has implemented this feature on the ~\OnTrek\Pages\
Community.aspx template.

Under the Hood

There are a few items which can be customized to allow for a greater degree of fl exibility when
working with activity streams. In this section you’ll be exposed to customizing the messages
published when activities occur, as well as adding new activity types to your implementation.

Enabling the Notifi cations and Activity Streams

Although the activity stream framework is installed and enabled by default on all new installations
of Ektron, upgrades from installations prior to version 8.0 have this feature disabled. The reason
for this is that in order to enable the feature on upgrades, you must run a script that updates each
user’s default activity preference settings, which in some databases represents a very large number
of records and could increase the time it takes to upgrade the site. For this reason, administrators
wanting to use this feature must enable the feature manually once the upgrade process is complete.
This is done in the Workarea by navigating to Settings Í Community Management Í Notifi cations
Í Settings and clicking Publish Notifi cations. This will update the appropriate records in the data-
base, and after a short wait your notifi cations will begin functioning.

Customizing Activity Messages

The messages that display in activity streams, although specifi c to the activity that has occurred (for
example, “Derek is now friends with Gerson”), follow a general format that you defi ne by following
these steps:

1. Go to the Workarea in Settings Í Community Management Í Notifi cations Í Messages.
This screen lists all the notifi cation message templates that the notifi cation architecture uses,
activity streams included.

2. Modify a template by clicking the title of a particular notifi cation message template then
clicking Edit. Figure 11-14 shows the screen where you edit notifi cation message templates.

3. In Figure 11-14, there are two key areas to keep in mind:

 ‰ Tokens: Lists all of the Notifi cation Message Template Tokens that are applicable to
this particular message. You can place these anywhere in the Text or Plain Text fi elds.

c11.indd 428c11.indd 428 12/28/2010 2:01:16 PM12/28/2010 2:01:16 PM

Activity Streams x 429

 ‰ Text and Plain Text: These fi elds defi ne the actual text of the message, once the
tokens have been processed by the notifi cation engine. For example, once the site
user named Derek updates a content titled “My Weekly Status,” the tokens in the
string “@SubjectUser.DisplayName@ updated content ‘@content.Title@’” would be
replaced, yielding a fi nal output of “Derek updated content ‘My Weekly Status’.”

On this screen you can copy the tokens you want to display from the Tokens fi eld and paste
them into the Text and Plain Text fi elds so they are rendered into the fi nal output.

FIGURE 11-14

4. Once you have fi lled in the fi elds, click Save, and from that point forward the defi ned message
will be used in notifi cations when the specifi ed activity occurs.

Creating a Custom Activity Type

The notifi cation framework makes it possible to defi ne custom activity types, which means that you
can tailor the activities in an activity stream to the types of activities that are happening on that site.
For example, on a website for stock traders, the activity stream could include messages such as “Bill
rated the stock NAOC positively” or “Bill put the stock NNEJ on his favorites list.” On an intranet,
the activity stream could include a message such as “John logged in.” Creating and raising a custom
activity is a two-step process. The rest of this section walks through how to create a custom activity
type that will be raised when a user logs into the site.

First, you must add a new Custom Activity defi nition in the Workarea.

1. Go to Settings Í Notifi cations Í Activity Types, which lists all of the system’s currently con-
fi gured activities. See Figure 11-15.

c11.indd 429c11.indd 429 12/28/2010 2:01:17 PM12/28/2010 2:01:17 PM

430 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

FIGURE 11-15

2. Click the Add icon ().

3. Type User Logged In for the name of the custom activity type name.

4. Specify the action scope. The action scope is the context in which the activity is raised. There
are two types of activities:

 ‰ Community Group: Those raised by a user from within a community group.

 ‰ User: All other activities.

The User Log In activity is raised outside of a community group, so you should select User.

5. Now that the activity type has been registered, take note of its Activity Type ID, as displayed in
the list shown in Figure 11-16. The activity ID in this development environment is ID 1001.

Now, users must modify their preferences to defi ne how they want to be notifi ed when the User
Logged In activity occurs. As shown earlier, this is controlled on the Users Activities preferences
screen shown in Figure 11-17. Make sure to select the User Logged In checkbox on the Colleagues
and My Activities sections.

Writing the code to raise a custom activity is a straightforward three-step process:

1. Using the ActivityAPI, create an instance of the ActivityData object and specify the ActivityTypeId
of your newly created custom activity as defi ned in the Workarea (mine was 1001).

2. Raise the activity using the ActivityAPI’s Publish() method.

3. Encapsulate this code into a method and call this method in the code from which you want
the activity to be raised.

c11.indd 430c11.indd 430 12/28/2010 2:01:17 PM12/28/2010 2:01:17 PM

Activity Streams x 431

FIGURE 11-16

FIGURE 11-17

c11.indd 431c11.indd 431 12/28/2010 2:01:17 PM12/28/2010 2:01:17 PM

432 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

You can see an example of this in the following code snippet, which defi nes the
RaisedLoggedInActivity() and encapsulates the code that defi nes the ActivityData object
and then raises it. Because you want the custom activity to be raised anytime a site visitor logs in,
you must insert a reference to the custom RaisedLoggedInActivity() method wherever your login
processing logic is defi ned.

 private void RaiseLoggedInActivity()

 {

 // The user is now logged in, get their ID

 Ektron.Cms.Framework.Activity.Activity activityApi =

 new Ektron.Cms.Framework.Activity.ActivityApi();

 ActivityUserInfo activityUser = new ActivityUserInfo();

 activityUser.Id = activityApi.UserId;

 // Define the “User Logged In” activity

 ActivityData activityData = new ActivityData();

 // Reference to the user that raised the activity

 activityData.ActionUser = activityUser;

 // Our activity type ID as defined in the Workarea

 activityData.ActivityTypeId = 1001;

 // The activity message that is put in the Activity Stream

 activityData.Message = “<p>I logged in</p>”;

 // The language ID of this particular message

 activityData.LanguageId = 1033;

 // Raise the “User Logged In” activity

 activityApi.Publish(activityData);

 }

It is also worth noting that the activity message for custom activities does not
use the activity message template to defi ne the message format. Instead, the
message is defi ned by setting the Message attribute of the ActivityData object
as is done in the previous code snippet. One benefi t of this approach is that
these messages could be defi ned as XML, which implies that you can add any
custom metadata to the message and keep the message data separate from its
presentation.

For more information on activity streams, take a look at the Ektron Developer screencast
titled “Getting Activity Streams on Your Website,” which includes a video walkthrough of
some of these concepts and pointers to a Notifi cation Architecture diagram as well as a docu-
ment describing how to troubleshoot the notifi cation system. See http://dev.ektron.com/
getting-activity-streams-on-your-website/.

c11.indd 432c11.indd 432 12/28/2010 2:01:18 PM12/28/2010 2:01:18 PM

Micro-Messaging x 433

MICRO-MESSAGING

It took the general Web population some time to make heads or tails out of Twitter-style micro-
messaging after its arrival in 2006. Over the years, micro-messaging has become an extremely
important communication tool and one that you need to consider when planning your website’s
community strategy.

What niche does micro-messaging fi ll that made it so popular? Prior to micro-messaging, there
was no way to deliver quick and frequent bursts of information to a large audience — something
that combined the brevity of instant messaging with the public nature of blogging. What originally
started off as a means for primarily updating personal status has evolved into a marketing plat-
form — a way to solicit feedback from customers, a means for promoting events, and an opportu-
nity to build relationships. This mode of communication has its place on both third-party sites like
Twitter and on your own website. While there are signifi cant business benefi ts to participating in
micro-messaging in both places, this section focuses on why you might want to use micro-messaging
on your site and how to best integrate it there.

Micro-Messaging Strategies

Use cases for micro-messaging on a public-facing site differ somewhat from those on an internal
one. The OnTrek site uses micro-messaging within the context of the OnTrek community to engage
members in a conversation with OnTrek employees and other members of the community. This
allows the marketing group to have an authentic and public conversation with the community, share
information that they’ve found, and publically send stuff to their friends.

On an intranet such as Ektron’s eIntranet, micro-messaging becomes a way to give employees a
greater awareness of what’s happening around them. In either scenario, micro-messaging facilitates
building a tighter knit community by allowing members to share what they’re thinking, what they’re
doing, and what is capturing their attention.

Ektron provides two ways to display and post micro-messages on a website: the MicroMessage
Server Control and the Community APIs. By default, the MicroMessaging Server Control shows
posts (also sometimes called status updates) from members of the visitor’s social network of col-
leagues. A single micro-message post consists of the name of the user posting the message, the
micro-message post itself, and the age of the post. The control’s DisplayMode property can control
the displayed micro-messages. The four DisplayModes are shown in Table 11-5.

TABLE 11-5: MicroMessage Server Control DisplayMode Options

DISPLAYMODE DESCRIPTION USE CASE

User Micro-messages from a

specifi c user

Use this mode when you want to provide a list of

messages for a particular user. For example, the

user profi le might contain a list of a particular indi-

vidual’s micro-messages.

continues

c11.indd 433c11.indd 433 12/28/2010 2:01:18 PM12/28/2010 2:01:18 PM

434 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

DISPLAYMODE DESCRIPTION USE CASE

Colleagues Micro-messages from a

specifi c user’s social net-

work of colleagues

Use this mode when you want to display micro-

messages from the colleagues of a particular user.

For example, a community homepage might use this

mode so users can see what micro-messages their

colleagues have posted.

TimeLine Micro-messages for all

users that have marked

their profi les as “public”

Use this mode when you want to display all mes-

sages marked as public, including messages from

those users that are outside of a user’s social net-

work of colleagues.

Message A single micro-message Use this mode when you want to have a page that

displays a single micro-message. This is useful as

it gives site visitors a permanent link to a single

message.

Micro-messages are a type of activity in the notifi cation framework (see the
section entitled “Activity Streams” earlier in this chapter) which indicate that
visitors can choose to be notifi ed of micro-messages via SMS, e-mail, and
other custom notifi cation agents that may have been optionally created. It
also means that micro-messages will appear in the activity stream through the
ActivityStream Widget, Server Control, and APIs.

The MicroMessage Server Control also displays a Search tab when the micro-message search fea-
ture is enabled, which allows users to search through micro-messages published by the logged-in
user, their colleagues, and all members whose profi les are public. The results are fi ltered to include
only those messages that contain each of the search terms entered by the users. Exact matching is
achieved by surrounding phrases with quotes. It’s important to note that this feature does not use
the larger search architecture (see Chapter 7) used by the system for searching managed items like
content, documents, and so on. If this feature is not enabled, and you want to offer your site visitors
the ability to search micro-messages, you need to do the following:

1. Install the Full Text Search component of the Microsoft SQL Server. To do this, insert the SQL
Server Installation disc and select Full Text Search from the installation options. This allows you
to enable and add the Full Text Search component to an existing SQL Server installation.

2. Run the FullTextIndex.sql script on your database. You can fi nd this script in: Program Files\
Ektron\CMS400v80\Utilities\SiteSetup\Database\FullTextIndex.sql.

3. Verify that the Full Text Index is confi gured properly by viewing an ASPX template con-
taining the MicroMessaging Server Control. The Search tab appears on the control once
the system is confi gured properly.

TABLE 11-5 (continued)

c11.indd 434c11.indd 434 12/28/2010 2:01:18 PM12/28/2010 2:01:18 PM

Micro-Messaging x 435

The properties of the MicroMessaging Server Control are similar to many Ektron Server Controls and
allow you to customize its behavior in a number of signifi cant ways. Table 11-6 lists the signifi cant
server control properties.

TABLE 11-6: Properties on the MicroMessaging Server Control

PROPERTY DESCRIPTION

CacheInterval Sets the amount of time, in seconds, that the server control’s data

is cached. The default value is 0.

DefaultObjectId In cases where you’re displaying a user’s micro-messaging stream,

this value represents the user ID.

DisplayXSLT Defi nes the XSLT that customizes the markup presented by the

control.

DynamicObjectParameter Defi nes the name of the parameter that is evaluated to read an

object ID dynamically. By default, its value is id. If you want to over-

ride this to a value such as UserId, specify that here.

MaxResults The maximum number of messages to return. 0 signifi es that an

unlimited number of results should be returned.

Adding Micro-Messaging to the User Profi le

Micro-messaging is included in the OnTrek website through the user’s profi le. Following Ektron’s
general best practices, its implementation is encapsulated into a custom user control and is found in
~/Profi le/Accordion/User.ascx.

Given the Wireframe for the user profi le on the OnTrek site, it is required that the textbox that
accepts the user input for micro-messages is visually separated from the list of existing micro-
messages, as shown in Figure 11-18. This indicates that the MicroMessaging Server Control’s
default presentation cannot be used because it displays the textbox vertically stacked above
the list of micro-messages. For this reason, an external textbox captures the visitor’s text input
and a server control renders the micro-messages separately. When the Submit button is clicked,
the micro-message is programmatically submitted using the MicroMessaging API, and the list of
micro-messages is updated.

To examine the code that brings these pieces together, and see an example of how to use an external
textbox to post micro-messages, follow the steps below.

1. Open the user control found at ~/Profi le/Accordion/User.ascx. This user profi le page has fi ve
tabs, including one for My Activity, which is the label used for micro-messages and activity
notifi cations. Look through the source code and notice how it uses an ASP.NET MultiView
Server Control for controlling which view to present based on the selected tab.

c11.indd 435c11.indd 435 12/28/2010 2:01:19 PM12/28/2010 2:01:19 PM

436 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

FIGURE 11-18

2. Towards the top of the server control, you will notice the following snippet of code for ren-
dering the textbox for posting micro-messages and the “Share” button:

<div id=”uxStatusWrapper” runat=”server” class=”clearfi x setStatus”>

 <asp:TextBox ID=”uxStatus” runat=”server” CssClass=”status”

 Columns=”30” Text=”What are you working on?”></asp:TextBox>

 <p class=”setStatus”>

 <asp:LinkButton ID=”uxSetStatus” runat=”server” OnClick=”uxSetStatus_

Click” />

 <span class=”ui-button ui-widget ui-state-default

 ui-corner-all ui-button-text-icon setStatusButton” >

 </

span>

 Share

 </p>

</div>

3. On the LinkButton, notice the OnClick attribute. This references the uxSetStatus_Click
event handler which has the following implementation:

 protected void uxSetStatus_Click(object sender, EventArgs e)

 {

 //set status

c11.indd 436c11.indd 436 12/28/2010 2:01:19 PM12/28/2010 2:01:19 PM

Micro-Messaging x 437

 Ektron.Cms.Framework.SocialNetworking.MicroMessage statusApi =

new MicroMessage();

 Ektron.Cms.MicroMessageData statusData = new MicroMessageData();

 statusData.UserId = this.contentApi.UserId;

 statusData.MessageText = uxStatus.Text;

 statusApi.Add(statusData);

 //render ui

 this.Profi leData.SetStatus(“- “ + uxStatus.Text);

 uxStatus.Text = “What are you working on?”;

 uxSetStatus.Visible = true;

 //reload activity stream (colleagues)

 cmsActivityStream.ExcludeUserIds.Add(this.Profi leId);

 cmsActivityStream.Fill();

 //reload activity stream (me)

 LoadMyActivityStream();

 }

This event handler uses the MicroMessage API and MicroMessageData class for defi ning
and adding the message to the user’s list of micro-messages. The ActivityStream Server
Control, which displays a list of all the user’s activities including all posted micro-messages,
is used to render the list.

You may wonder why the ActivityStream Server Control was used in place of
the MicroMessaging Server Control. This is simply because OnTrek’s require-
ments specifi ed that all activities for a user must be displayed and not just
micro-messages. If the requirements specifi ed that only micro-messages should
be displayed, you could replace this implementation with the MicroMessaging
Server Control.

Under the Hood

Micro-messages have the potential to reach a very wide audience; this makes micro-messaging an
attractive target for spam and related abuse by ill-intentioned community members. Developers
and administrators can use the spam-fi ltering capabilities of the micro-message system to fi lter
out spam prior to it being added to the system. The system-defi ned spam fi lters are available when
you use the MicroMessage Server control. Enabling the fi lters is perfomed through the use of the
SpamControlType and SpamTimeSpan properties. These properties allow you to implement the
following rules:

 ‰ Block a message when the same message has been posted within a single calendar day.

 ‰ Block a message when the same message has been posted within a specifi ed time period, rela-
tive to the time of the fi rst post.

c11.indd 437c11.indd 437 12/28/2010 2:01:19 PM12/28/2010 2:01:19 PM

438 x CHAPTER 11 IMPLEMENTING THE ONTREK SOCIAL NETWORK

 ‰ Block a message when the same message has been posted within a specifi ed time period. The
rule is specifi ed using the SpamControlType property of the server control, and each of the
three rules corresponds to a particular value:

 ‰ SameUserMessageDay

 ‰ SameUserTimeDelay

 ‰ SameMessageTimeDelay

Spam control is turned off by default.

In cases where you need to defi ne your own spam-fi ltering rules, you can implement your own fi l-
ter by setting SpamControlType to Custom and overriding the server control’s CustomSpamMethod
in codebehind. Listing 11-6 shows an example of blocking messages that contain the word
“spam.”

LISTING 11-6: ~/CMS400Developer/Developer/MicroMessaging/CustomSpam.aspx.vb

Imports System

Imports Ektron.Cms

Imports Ektron.Cms.Framework

Partial Class Developer_MicroMessaging_CustomSpam

 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles Me.Load

 Me.MicroMessaging1.CustomSpamMethod(AddressOf SpamHandler)

 End Sub

 Private Function SpamHandler(ByVal data As MicroMessageData) As Boolean

 If data.MessageText.IndexOf(“spam”,

StringComparison.CurrentCultureIgnoreCase) > -1 Then

 Return True

 End If

 End Function

End Class

TAKE HOME POINTS

This chapter discussed core components of a social networking site built using the Ektron
Community Framework. It explains how the Community Framework contains APIs and Server
Controls that can be used to implement the Web 2.0 type features discussed in Chapter 10 to facili-
tate community generated content through blogs, wikis, and discussion boards. It also covers how
social networking features allow users to create and benefi t from social connections between com-
munity members.

c11.indd 438c11.indd 438 12/28/2010 2:01:20 PM12/28/2010 2:01:20 PM

Take Home Points x 439

The key features of social networking are as follows:

 ‰ Ektron’s friending infrastructure: Of all the social networking functionality discussed in this
chapter, none is more important than the ability for community members to establish links
between one another. Through Ektron’s friending infrastructure, community members can
establish such connections and use the resulting “social graph” (the network of connections
that form between users) to further discover information, stay on top of the news, and share
content. You learned about user profi les and saw how they can be used to display much
of the information created and shared by users using the UserProfi le Server Control. The
OnTrek implementation was also covered, and it showed how APIs were used to present a
highly customized presentation.

 ‰ Community groups: In this chapter, you learned how community members form community
groups. Discovery of community groups primarily happens either through the community
group search functionality, which allows members to search for groups by name or tag, or
by navigating through the list of most active, most popular, or most recently added groups.
Community groups allow members to come together to discuss and collaborate on particular
topics.

 ‰ Activity streams: Once users are connected to a social graph and belong to community
groups, it’s important to have some way to know what has happened in these circles since
the last visit. This is where activity streams are useful. Activity streams provide the list of
activities for a user, a social network, a community group, or some combination of them.
Most community-related events fl ow through the notifi cation system, which allows users to
be notifi ed through the activity stream, but Ektron can also use SMS, e-mail, and potentially
other custom notifi cation agents.

 ‰ Micro-messages: Another way to keep members of a social network informed of the events
that have the potential to impact them in some way is through the use of micro-messaging.
Community members post short micro-messages that typically include some type of status
information (for example, “I’m currently working on the Q2 sales projections”), buzz-wor-
thy content such as a link worth sharing, information about an upcoming event, and so on.
Micro-messages are also an activity type, which means they also raise events in the notifi ca-
tion system and are then made available through SMS, e-mail, and other gateways.

c11.indd 439c11.indd 439 12/28/2010 2:01:20 PM12/28/2010 2:01:20 PM

c11.indd 440c11.indd 440 12/28/2010 2:01:20 PM12/28/2010 2:01:20 PM

12
Creating the Catalog of Products
for the eCommerce Storefront

 ‰ How do you confi gure product, payment, and shipping for

eCommerce?

 ‰ How do you create catalogs and products for a storefront?

 ‰ How do you enable marketing incentives using coupons?

 ‰ What’s the best way to work with product reports and order

management?

The eCommerce feature of Ektron is one of the largest new features in the product. It supports
the entire lifecycle of commerce transactions, with a rich suite of features to enable complex
processes. In this chapter and the next, you will be working through the process of implement-
ing the eCommerce feature on the OnTrek website. In this chapter, you approach things from
the Workarea side, so it’s more about confi guring your site to enable eCommerce, and then
creating the catalog of products. You will also work with reports, and move products through
the fulfi llment process. The next chapter approaches the subject from a more technical view-
point, covering how to implement the server controls necessary to create a seamless shopping
experience for site visitors.

In this chapter, you spend your time confi guring the basic options of eCommerce, including
tax structures and shipping options. You’ll work with currencies and payment options and
learn about notifi cations. You will go through the process of creating product types and learn
about the various capabilities of each class of product type. You’ll create a catalog in parallel
with the existing catalogs on the OnTrek site, and a sample product as well, learning about the
options available at each step. You’ll also explore how coupons can support the user experi-
ence by offering a wide array of discount structures.

Finally, you’ll examine the capabilities of the reporting subsystem and order workfl ow sys-
tem. You’ll learn how to extend the workfl ow process, and how to move items through it.
You will also walk through the various steps in completing purchases, and see how the his-
torical data is managed.

c12.indd 441c12.indd 441 12/28/2010 2:19:22 PM12/28/2010 2:19:22 PM

442 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

USE CASE

Now that the infrastructure of the community, support, and marketing portions of the OnTrek
website have been constructed, you are left with the eCommerce functionality of the website. The
eCommerce piece is a fairly large portion to chew off, so the OnTrek implementation team has
decided to break it into two pieces, the fi rst of which is the fundamental act of creating the infra-
structure of shipping, tax, coupons, and product inventory so that customers can order goods
directly from OnTrek through the website.

ADDING ECOMMERCE FUNCTIONALITY

This use case introduces the primary actor Dan, a site administrator and devel-
oper, who has been charged with populating the OnTrek website with the catalog
of goods that OnTrek offers to its clientele. It describes the expected scenario and
defi nes the desired outcome.

Wireframe

The example Wireframe for this chapter, shown in Figure 12-1, is the eCommerce
landing page, which lists out some selected products from the OnTrek catalog, and
invites the user to add them to their cart or browse for further products.

Description

This use case defi nes the process Dan must follow to build up the underlying infra-
structure in order to create a fully functioning eCommerce solution on the OnTrek
website. It will walk through basic confi guration, and creation of the catalog of
products, so that the developer, Ted, has the necessary content to develop the front-
facing portion of the codebase to support the actual purchasing process.

Actor

Dan is a member of the marketing team at OnTrek. Through feedback on the site,
his manager has determined that users browsing the OnTrek site would be much
more likely to convert to customers if they could do so online rather than having
to deal with the sales team during what is mostly a manual process at this point.
Armed with his convictions, the manager has tasked Dan with managing the pro-
cess of creating an online shopping experience using the Ektron Framework. Dan
will then hand off the completed foundation to the IT team for development of the
front end of the shopping cart experience.

Scenario

In this scenario, Dan:

 ‰ Confi gures the underlying options for supported regions and currencies

c12.indd 442c12.indd 442 12/28/2010 2:19:26 PM12/28/2010 2:19:26 PM

Use Case x 443

 ‰ Confi gures higher level options, such as taxes and shipping support

 ‰ Connects the site with an online payment gateway to accept funds from customers

 ‰ Creates the notifi cation messages that customers will receive

 ‰ Creates a set of product types that will support the various categories of goods
that OnTrek wants to sell

 ‰ Creates the catalog structure to store the inventory

 ‰ Creates the set of products that OnTrek sells

Outcome

The OnTrek marketing team is now prepared to hand off the site to a dedicated devel-
oper to build out the eCommerce functionality supporting the online purchasing of
goods by OnTrek customers.

FIGURE 12-1

c12.indd 443c12.indd 443 12/28/2010 2:19:26 PM12/28/2010 2:19:26 PM

444 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

UNDERSTANDING THE TECHNOLOGY

In this chapter, you will cover the underlying requirements in the build out of an eCommerce feature
for an existing website. This chapter doesn’t cover the code development side, which is instead reserved
for the next chapter, but will spend a lot of time covering all the various options that can impact how
the eCommerce feature of your site works.

For the confi guration of the site options, you’ll delve into the shipment providers and payment gateway
providers. The ability to modify these providers in the Ektron Framework allows you a large amount
of fl exibility in matching the capabilities your site provides to your business model. You’ll also learn
how to build custom providers in the next chapter. You’ll explore how taxes are confi gured, as well
as currencies, regions, and types of payments. These features make it easy to participate in the global
marketplace, without needing customizations. You’ll also take an in-depth look at how e-mail notifi ca-
tion messages are constructed.

Once that has been completed, you’ll examine product types and classes and how to build them.
The eCommerce feature allows for the specifi cation of Smart Form-like product confi gurations,
allowing you to easily capture the relevant data for each class of product, ensuring consistency for
users browsing your site. This chapter will discuss some best practices and things to keep in mind
when building these types, and will discuss how to manage them going forward.

The chapter will then cover coupons, including how to create them, how they are applied, and the
variety of ways they can affect your customers’ orders. Coupons also can be limited in their applica-
tion; this creates a safety net by limiting your exposure to discounts.

Armed with the product types, you’ll explore how to create actual catalogs of goods, and then dive
into creating products and groups of products. Working with the catalogs and products is similar
to working with content, allowing you to leverage the knowledge you’ve already gained about the
Ektron Framework. The chapter will also discuss the reporting options available, including order
workfl ows and how to extend them. The chapter will end with a discussion on the states of orders,
and how to manage orders as they move through the workfl ow. There will be further discussion of
customizing the default workfl ow behavior in Chapter 13, however the default workfl ow the eCom-
merce feature ships with will cover the needs of most developers.

CONFIGURING ECOMMERCE

In a production environment, eCommerce has a couple of key requirements to be enabled for use. First
and foremost, it requires a license. Like a few other features in the Ektron Framework, the eCommerce
feature is not included in the standard license, but can be added to a standard or professional license
through the use of a module license. The eCommerce feature is included with an enterprise license,
however. When working in a keyless environment, as is the norm for developers building code on a
Localhost site, the feature will also be enabled. In this situation, the server is only accessible through
the loopback interface, so users will not be able to visit the site via a host name.

In the OnTrek environment, if the license is not enabled, any pages that interact with the eCommerce
feature will return an error stating the feature is not enabled. In addition, any menu items that point

c12.indd 444c12.indd 444 12/28/2010 2:19:27 PM12/28/2010 2:19:27 PM

Confi guring eCommerce x 445

to a page that has an eCommerce item on it will be hidden. If you can’t see any eCommerce links in
your installation, or when you follow an eCommerce link you receive an error, please speak with your
Ektron sales representative.

Once the eCommerce feature is enabled on your site, you must enter the Workarea to set up the
appropriate confi guration options in order for your server controls to render properly. In this sec-
tion, you learn how to confi gure the basic aspects of the eCommerce feature. In the next section,
you work with some products in the workfl ow and some supporting features. For the confi guration
aspect, this section specifi cally covers the following areas:

 ‰ Managing major confi guration options

 ‰ Confi guring the settings for shipping and taxes

 ‰ Confi guring payment methods and currencies

 ‰ Creating product types

Managing Major Confi guration Options

The majority of the confi guration for eCommerce takes place in the Settings tab in the Workarea.
To get to the eCommerce confi guration section follow these steps:

1. Log into the Workarea now as admin and switch to the Settings tab.

2. Directly under the Settings entry in the Settings tree, there should be a node for Commerce. If
there isn’t, please speak to an Ektron sales representative about getting a trial license with the
eCommerce feature.

3. To enter the new license key, go to Workarea Í Settings Í Settings Tree Í Confi guration Í
Setup.

4. Under the eCommerce node, there are six major groups of items. The fi rst area covered in
this section is the Confi guration node. Open this now, and you’ll see six items underneath it,
as shown in Figure 12-2.

 FIGURE 12-2

c12.indd 445c12.indd 445 12/28/2010 2:19:27 PM12/28/2010 2:19:27 PM

446 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

These items manage settings that act system wide, and control availability of catalogs in the site
among other things. The following list enumerates each item and describes what it is used for. After
covering the items from a high level, the subsequent sections will dive a little deeper into each item.

 ‰ Countries: Allows you to manage the list of countries usable throughout the system. This
populates the list of options in areas throughout the eCommerce feature, for example, tax
management and warehouse management.

 ‰ Currencies: The eCommerce system allows use of all currencies throughout the world. In this
item, you can choose which currencies should be supported on your site, as well as manage
exchange rates.

 ‰ Card: This node supports creating new payment options and managing existing payment
options. For instance, you may want to allow for gift cards that act like credit cards in the
payment options on your site. You can use this area to create the defi nition so that the option
appears in the payment type dropdown presented to customers when they check out.

 ‰ Messages: Customers of your site will be accustomed to receiving e-mail notifi cations at
several events during the order fulfi llment lifecycle. This section is used to manage the form
letters sent when those events take place.

 ‰ Payment Options: This area allows you to confi gure gateways used to collect payment on
orders. There are several gateways with re-built connectors that can be used out-of-the-box.
In addition, the eCommerce feature is built in an extensible way so that you can build addi-
tional providers for further gateways painlessly.

 ‰ Regions: While the eCommerce Framework comes with a list of predefi ned countries and
regions, these may change over time or be inadequate for your needs. The Regions area
allows you to update the regions of each country as needed. For instance, in the United
States, each state is a region.

Countries

The Countries pane, shown in Figure 12-3, contains the list of countries throughout the world. It stores
numeric ISO code, as well as the long and short ISO abbreviations. This list is used in two main ways:

 ‰ To defi ne country level taxes: These can optionally be overridden with regional settings. For
instance, in the U.S., there is no sales tax if the sale crosses state borders. This means that the
country tax for a company based in Massachusetts would be 0, whereas orders shipping to
Massachusetts would have the sales tax applied; in this case it is 6.25 percent.

 ‰ To determine shipping costs. The country list allows you to enable or disable appropriate
countries as shipping destinations. The shipping provider then uses the country code to
correctly determine the cost of shipping to that location.

To enable or disable a country for customer locations, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Confi guration Í Countries, and
select the country from the Countries pane, as shown in Figure 12-3.

This brings you into the details pane for the country you selected. At this point, you see
the same details as in the list, including the full name of the country, the numeric ISO code

c12.indd 446c12.indd 446 12/28/2010 2:19:27 PM12/28/2010 2:19:27 PM

Confi guring eCommerce x 447

along with the short and long ISO abbreviation for the country, and an indicator of whether
the country is enabled.

FIGURE 12-3

2. Click Edit the toolbar to edit these settings now, and you will see the Edit Country screen as
shown in Figure 12-4.

3. On the Edit Country screen you can enable or disable the country at will. Enabled countries
will appear on dropdowns of customer locations and shipping destinations.

Currencies

The Currencies pane allows you to manage the list of supported currencies. There are no internal
limitations in the eCommerce engine restricting the use of currencies. The system comes preloaded
with all currencies defi ned in the ISO 4217 name list. Each currency is stored with a name, the
numeric ISO code, the ISO abbreviated name, and the exchange rate.

Currencies are switched on the site by using the Currency Select Server Control, which operates
very similarly to the Language Select Server Control, allowing the end users to select the currency
for the item being priced. A default currency can be selected for the site by setting the value of the
ek_ecom_DefaultCurrencyId tag in the web.confi g fi le at the root of your site.

Remember not to change the ek_ecom_DefaultCurrencyId tag after creating
products, as it can corrupt the pricing of those products on the site.

c12.indd 447c12.indd 447 12/28/2010 2:19:28 PM12/28/2010 2:19:28 PM

448 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-4

While pricing on a per-currency basis can be performed for each item individually, you also
have the option of having the Ektron Framework automatically calculate the appropriate price
for each product by using the exchange rate defi ned for that currency. The exchange rate cal-
culation is performed against the default currency. For example, out-of-the-box, the default
currency is U.S. dollars. Each additional enabled currency then can have its own exchange rate
that would be calculated against the dollar in this case. So let’s say you kept the USD as the
default currency, and enabled GBP as an alternate currency with an exchange rate of 1 USD =
.65 GBP. If you were to then create a product with a price of 100 USD, site visitors could use
the Currency Select Server Control to switch currencies to GBP, in which case they would see
the price automatically calculated as 65 GBP. These calculations are performed as needed, so if
you were to then modify the exchange rate for GBP, the price would refl ect the change on the
site immediately.

To manage the currencies for your site, follow these steps:

1. Go to Workarea Í SettingsÍ Settings Tree Í Commerce Í Confi guration Í Currencies.
This will bring up the Currencies pane, as shown in Figure 12-5.

2. You can fi lter the list of currencies using the Search box on the toolbar. A currency can be
edited by selecting the currency from the list. This brings up a modal window that allows you
to edit the details of that currency, as shown in Figure 12-6. This modal allows you to mod-
ify the name, whether or not the currency is enabled, and the exchange rate versus the default
currency.

c12.indd 448c12.indd 448 12/28/2010 2:19:28 PM12/28/2010 2:19:28 PM

Confi guring eCommerce x 449

FIGURE 12-5

FIGURE 12-6

c12.indd 449c12.indd 449 12/28/2010 2:19:28 PM12/28/2010 2:19:28 PM

450 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

3. You can also update the exchange rates for all the enabled currencies from a single screen.
From the Currencies pane, select Action Í Edit Exchange Rates. This brings up a modal list-
ing each of the active currencies, with a textbox showing the current exchange rate where
you can enter a new exchange rate, or disable any of the active exchange rates. This modal is
shown in Figure 12-7.

4. When you are fi nished editing, select Action Í Update to save your edits.

FIGURE 12-7

The currency exchange rates can also be programmatically manipulated through the Ektron.Cms
.Commerce.ExchangeRateApi. This API can be used to keep your stored exchange rates up-to-date
with market conditions if desired. This operation is more advanced, however, and is beyond the
scope of this book.

Card

The Ektron eCommerce feature comes with fi ve predefi ned credit card types: American Express,
Diners Club, Discover, MasterCard, and Visa. These card types are used to populate the credit card
type dropdown in the checkout process. Each card specifi cation can be updated with custom naming,
icons, and regular expressions for early validation of that card type.

There are two main actions available in this area. New cards can be added, and current cards
can be updated. To perform either of these actions, go to Workarea Í Settings Í Settings Tree Í

c12.indd 450c12.indd 450 12/28/2010 2:19:29 PM12/28/2010 2:19:29 PM

Confi guring eCommerce x 451

Commerce Í Confi guration Í Card. This brings you to the Card Types pane, pictured in
Figure 12-8. This pane contains a list of the currently defi ned card types, and shows whether each
type will be available on the site.

FIGURE 12-8

 ‰ To add a new card type: Select New Í Card Type from the toolbar menu of the Card
Types pane. This brings up the editing interface for cards, allowing you to enter a name, an
image to use as an icon, a regular expression to provide early validation, and a checkbox
to mark the new card as accepted. Only cards marked as accepted show up in the card type
dropdown.

 ‰ To edit the existing cards: Simply select the card from the list, which brings up the same
interface used for new cards but is pre-populated with the current options. The Edit Card
Type pane is shown in Figure 12-9.

Messages

There are several occasions during the order and fulfi llment process when notifi cations are typically
sent to the ordering party. The messages center allows you to defi ne the format used in the e-mails
that are sent when these events occur. The events and the associated message type are described in
Table 12-1.

c12.indd 451c12.indd 451 12/28/2010 2:19:29 PM12/28/2010 2:19:29 PM

452 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-9

TABLE 12-1: eCommerce Message Types

EVENT MESSAGE TYPE DESCRIPTION

Order Submission OrderReceived Occurs when an order is placed on the website.

Order Cancellation OrderCancelled Occurs when an order is cancelled.

Order Shipped OrderShipped Occurs when an order is shipped from the

warehouse.

Order Completed OrderCompleted Occurs when an order is closed out and

completed.

The messages used in eCommerce follow the same token string replacement method employed in
other messages throughout the system. The acceptable tokens are listed in Table 12-2.

TABLE 12-2: eCommerce Message Tokens

TOKEN STRING DESCRIPTION

@CustomerFirstName@ First name of the customer.

@CustomerLastName@ Last name of the customer.

c12.indd 452c12.indd 452 12/28/2010 2:19:29 PM12/28/2010 2:19:29 PM

Confi guring eCommerce x 453

TOKEN STRING DESCRIPTION

@OrderId@ ID of the order.

@OrderSubTotal@ Total cost of the order excluding taxes, shipping, and coupons.

@OrderTotal@ Total cost of the order to be charged to the customer.

@OrderShippingTotal@ Cost of shipping the order.

@OrderCouponTotal@ Value of coupons applied to the order.

@OrderTaxTotal@ Total tax applied to the order.

@OrderItemTitle@ The title of an individual item on the order. This token must be

used within the @OrderItemStart@ and @OrderItemEnd@ loop

markers.

@OrderItemSalePrice@ Sale price of an individual item on the order. This token must be

used within the @OrderItemStart@ and @OrderItemEnd@ loop

markers.

@OrderItemQuantity@ Quantity for a given line item on the order. This token must be

used within the @OrderItemStart@ and @OrderItemEnd@ loop

markers.

@OrderItemTotal@ The total cost of a given line item. Excludes taxes and shipping; is

calculated by multiplying the item quantity by the item sale price.

This token must be used within the @OrderItemStart@ and

@OrderItemEnd@ loop markers.

@OrderItemStart@ and

@OrderItemEnd@

These markers are used to specify the start and end location of

the text to repeat for each line item in the order.

@TrackingUrl@ Replaced with the URL for the order shipment tracking page.

The eCommerce messaging system uses the same underlying technology as the content notifi cation
system. This means that for these e-mails to be sent, the CDOSYS SMTP and relay information
must be confi gured properly in the web.confi g, as well as in IIS.

For more information on this process, see “Confi guring E-Mail for Tasks and
Content” in Chapter 1 of the CMS400 manual, installed with the Ektron
Framework on your system.

To create or modify the messages for your eCommerce system, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Confi guration Í Messages. This
will bring up the list of predefi ned messages, as shown in Figure 12-10.

c12.indd 453c12.indd 453 12/28/2010 2:19:29 PM12/28/2010 2:19:29 PM

454 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-10

2. From there you can either select an existing message to edit, or you can create a new message
by selecting the Add icon from the toolbar. Additionally, you can create messages for each
language enabled on your site by selecting the appropriate language in the dropdown on the
Messages pane toolbar. When the system generates the e-mail for a specifi c event, it uses the
message template in that user’s language.

3. Select the Order Confi rmation message now, and select Edit on the resulting pane. The view
updates with the edit screen, as shown in Figure 12-11. As is shown in the screenshot, the
editing interface is a rich HTML editor, meaning you can easily create detailed attractive
message formats. This message also shows a relatively complex e-mail format.

Payment Options

There are two types of payment options available in the eCommerce subsystem. The fi rst type is
PayPal, which is commonly accepted on many sites. The second type is to use a payment gateway,
which allows you to hook up a merchant account directly to your website for immediate payment
processing.

Setting Up PayPal

Using PayPal is frequently a less complicated way of enabling payment on your site but requires that
the user be handed off to the PayPal website to complete the payment process. As this happens via a
customized page you can still maintain some level of custom branding on the destination page. This
is in contrast to a payment gateway, however, where the users never leave your site to complete their
purchases.

c12.indd 454c12.indd 454 12/28/2010 2:19:29 PM12/28/2010 2:19:29 PM

Confi guring eCommerce x 455

FIGURE 12-11

There are two ways for the customer to use PayPal during the checkout process.

 ‰ If the customer selects PayPal from the Shopping Cart screen, the process proceeds as fol-
lows, and is illustrated in Figure 12-12.

1. The customer starts on the cart screen.

2. The customer selects PayPal as the payment method.

3. The PayPal website comes up, requiring the customer to log into their PayPal account.

4. The customer selects the payment and address information from their PayPal stored
data.

5. The information is passed back to the eCommerce system, pre-populating the addresses
for shipment and billing.

6. Shipping and billing information is presented to the user for modifi cations.

7. Additional costs, such as shipping and taxes, are determined based on the addresses.

8. The customer confi rms the order.

9. The customer returns to PayPal to fi nish checking out.

 ‰ If the customers do not click the PayPal button on the Shopping Cart screen, they follow
a slightly different process. They manually enter the addresses rather than having them
be pre-populated from the PayPal account. The rest of the process, however, is exactly
the same.

c12.indd 455c12.indd 455 12/28/2010 2:19:30 PM12/28/2010 2:19:30 PM

456 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

Cart Screen

1 2 3

6 5 4

7 8 9

eCommerce Shipping screen–

address can be updated

Choose shipping method Review order Choose payment method

and submit order

Ektron eCommerce Billing

Screen–address can be

updated

Review Credit Card Info, Ship to

an e-mail Address

Click PayPal button Log in to PayPal

FIGURE 12-12

To enable PayPal support, follow these steps:

1. Create an account on PayPal as a seller.

2. Update the PayPalUser, PayPalPwd, and PayPalSignature keys in your web.confi g with the
API username, password, and signature exposed by PayPal for that account.

3. Enable PayPal as a valid option in the Workarea.

4. You can customize the PayPal payment page to match your site more closely. These steps
are covered in depth in “Enabling PayPal Support” in Chapter 17 of the CMS400 manual,
installed with the Ektron Framework on your machine.

To enable PayPal in the Workarea, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Confi guration Í Payment
Options. This will bring you to the Payment Options pane, which lists in two tabs all the
available payment methods on your site. This is shown in Figure 12-13.

2. From the toolbar, select Action Í Edit Payment Options, which brings you to the Edit
Payment Options pane.

3. Check PayPal, and click Save to enable PayPal as a valid option on your site.

c12.indd 456c12.indd 456 12/28/2010 2:19:30 PM12/28/2010 2:19:30 PM

Confi guring eCommerce x 457

FIGURE 12-13

Setting Up a Payment Gateway

The other option for accepting payments on your website is to use a payment gateway. A payment
gateway is a service that accepts credit card payments on behalf of your website, through a back chan-
nel. From the customer’s point of view, the experience appears to take place exclusively on your site.

The Ektron Framework ships with three payment gateway modules, supporting Authorize.Net,
PayFlow, as well as a manual gateway that allows you to use an offl ine payment service. You can use
this service, for instance, if you don’t have a Web-enabled merchant account, but instead manually
run credit cards at a physical location. In addition, the gateway system follows a provider model,
allowing you to extend the system by creating custom gateway software to hook into other merchant
account companies.

Gateways allow you to process payments other than credit cards as well; for instance, it is possible
to accept payment by check through a gateway. Depending on the type of payment, the processing
method may vary. The process for credit cards is outlined here:

1. The gateway provider on your site must fi rst send the transaction information, such as the
credit card number and amount, to a merchant account processor.

2. The merchant account processing system then passes the information to the Credit Card
Interchange, which then passes the information to the credit card issuer.

3. The credit card issuer approves or declines the transaction and passes the appropriate funds
back through the Credit Card Interchange.

c12.indd 457c12.indd 457 12/28/2010 2:19:30 PM12/28/2010 2:19:30 PM

458 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

4. The Credit Card Interchange passes the results back to the merchant account processor,
which sends the received funds to your account, and the result of the transaction to the
gateway provider on your site.

5. Finally, the gateway provider saves the results of the transaction to the database.

Notice that the gateway provider does not save the credit card information in that process. For
security purposes, customer account information is never stored, only transaction results are.

In order to accept gateway transactions, you must fi rst create a relationship with a payment gate-
way provider. As mentioned earlier, the eCommerce system supports Authorize.Net and PayFlow
out-of-the-box, so if you do not yet have a merchant account, it is recommended that you choose
one of these providers to minimize implementation time.

The eCommerce system supports entries for multiple gateways, but will only ever use one gateway
at a time. In the Workarea, one gateway is marked as the primary gateway, and that gateway is used
for all transactions. That gateway cannot be deleted unless another gateway is marked as default.

Managing gateways takes place in the Workarea, at Workarea Í Settings Í Settings Tree Í Commerce
Í Confi guration Í Payment Options. The second tab in this screen, as shown in Figure 12-14, lists
the gateway providers currently defi ned in the system. From here, you can edit the settings of the
existing gateway, or create a new gateway defi nition.

FIGURE 12-14

To modify an existing gateway defi nition, click the name in the list of gateways. Click the Edit
button to modify the values shown to you. Table 12-3 lists and explains each fi eld.

c12.indd 458c12.indd 458 12/28/2010 2:19:30 PM12/28/2010 2:19:30 PM

Confi guring eCommerce x 459

TABLE 12-3: Payment Gateway Form Fields

FIELD DESCRIPTION

Name The name of the payment gateway provider. This list is generated from the

installed provider modules on your site.

Default This fi eld specifi es whether this gateway is the default provider. Only the

default provider is used to process payments.

User ID This is your user ID with the gateway provider. It identifi es your account to

ensure the payment goes to the correct account.

Password The password for your gateway provider account.

Custom Values Some providers require additional details; for instance, PayFlow requires a ven-

dor and partner string to be specifi ed. These additional values are put into the

Custom Values fi elds.

Credit Cards Specifi es whether the gateway supports credit cards.

Checks Specifi es whether the gateway supports checks.

Adding a gateway defi nition to the system takes place through the same form. From the Payment
Options pane, select New Í Payment Gateway. This brings up the same form, but with no default
values, as shown in Figure 12-15.

FIGURE 12-15

c12.indd 459c12.indd 459 12/28/2010 2:19:30 PM12/28/2010 2:19:30 PM

460 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

Checks are a special case in the eCommerce system. If supported by your gateway, checks are listed
in the Payment Method dropdown on the payment screen during the checkout process. The cus-
tomer is then asked to specify their bank name, account number, and routing number, as shown in
Figure 12-16.

FIGURE 12-16

The process by which check payments are processed also differs slightly from the normal
process. The process for processing these payments is as follows.

1. The eCommerce CMS user goes to the View Payment screen on the order, and selects Action
Í Capture, which starts the payment collection process by submitting the information to the
customer’s bank.

2. After a few days, the funds are transferred to the merchant account, at which point the
eCommerce CMS user updates the order by selecting Action Í Mark as Settled on the View
Payment screen for the order.

From this point, the order processing continues as normal.

Regions

Regions are used in much the same way as countries. They defi ne a list of geographic areas within
a country for the purposes of taxes. The list of regions is displayed as part of the checkout process
when collecting address information for billing and shipping. These regions’ defi nitions vary from
country to country — for instance, in the United States, each region is a state, as that is the variance
for tax structures.

By default, the regions defi ned in the eCommerce system are the 50 U.S. states, the District of
Columbia, and 9 Canadian Provinces. To add further regions for other countries, follow these
steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Confi guration Í Regions. This
displays the Regions pane, as shown in Figure 12-17.

2. From this screen, select New Í Region. This brings up the Add Region form. The elements of
this form are listed and described in Table 12-4.

c12.indd 460c12.indd 460 12/28/2010 2:19:31 PM12/28/2010 2:19:31 PM

Confi guring eCommerce x 461

FIGURE 12-17

TABLE 12-4: Add Region Form Fields

FIELD DESCRIPTION

Name The name of the region.

Code An abbreviation for the region.

Country The country this region belongs to. This list is generated from the

list of enabled countries; if the country you want is not shown, go to

Workarea Í Settings Í Settings Tree Í Commerce Í Confi guration

Í Countries and enable the country if it exists or create it if it doesn’t.

Enabled This controls whether the region is displayed in the region dropdown in

the Checkout Server Control.

Add another region to this

country?

If checked, the form reloads after adding the region, allowing you to

quickly add another region.

3. To enable the region for use, check the Enabled checkbox. Click the save icon to save the item.

Confi guring the Settings for Shipping and Taxes

Now that you have set up the major confi guration options, you’re ready to move into the shipping
and taxes sections. The shipping section allows the confi guration of shipping options available to

c12.indd 461c12.indd 461 12/28/2010 2:19:31 PM12/28/2010 2:19:31 PM

462 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

the customers on the site, and enables you to hook into external systems so that you can provide
accurate shipping cost estimates. The taxes section gives you the ability to defi ne tax rates based on
geographic locations so that customers do not overpay or underpay taxes on their goods.

Shipping Methods, Warehouses, and Packages

Much like the payment model, the shipping system follows a provider model, so that you can create
plug-ins that allow for shipping through methods not supported out-of-the-box. The eCommerce
system ships with providers for FedEx and UPS out-of-the-box, along with a Flat rate provider that
charges a fi xed cost.

The providers available for the system are defi ned in the shipment.confi g fi le at the root of your
site. This fi le contains the type data needed to instantiate your provider. You’ll notice that it has an
entry for each of the three shipment providers the system ships with. The FedEx and UPS entries
are incomplete in a new installation. In order to use these in a production environment, you need to
contact the appropriate company to obtain the following information:

 ‰ Sservice URL

 ‰ Key

 ‰ Password

 ‰ Account number

 ‰ Meter number

 ‰ Transaction ID.

This information must then be entered into the shipment.confi g fi le.

Because the shipment provider is read in from the shipment.confi g fi le, and this
fi le exists at the root of the site, in a multisite environment you must ensure that
each multisite contains an exact copy of this fi le.

While any number of shipping providers can be defi ned in the shipment.confi g fi le, only one pro-
vider can be active in the system at a time. The default shipment provider is selected through the
attribute defaultProvider on the shipmentProvider tag in the shipment.confi g fi le. If the new
shipping method does not match the desired provider’s offerings, you should ensure that the default
is set correctly.

Your inventory can also be managed through the eCommerce Framework, relying on the concept of
warehouses. The system supports multiple warehouses, but only calculates cost for shipping from
the default warehouse.

The fi nal piece of the shipment puzzle is to defi ne packages. Packages allow you to specify stan-
dard box sizes along with weight restrictions. The shipping calculator built into the eCommerce
Framework uses the box defi nitions along with the list of products to be shipped to the destination
to approximate the best fi t into the smallest-sized and fewest number of packages. This minimized
number of boxes is then passed into the shipment provider for cost estimation. If the ordered item

c12.indd 462c12.indd 462 12/28/2010 2:19:31 PM12/28/2010 2:19:31 PM

Confi guring eCommerce x 463

exceeds the size of the largest defi ned package, the dimensions of that item are passed directly to the
shipment provider instead.

To add a shipping method, managing your warehouse and defi ning packages, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Shipping Í Methods. This
brings up the Shipping Methods pane, which lists the currently defi ned methods. These are
shown in Figure 12-18.

FIGURE 12-18

2. Select New Í Shipping Method. This brings up the Add Shipping Method pane. This has
three main fi elds, as described in Table 12-5.

TABLE 12-5: Add Shipping Method Form Fields

FIELD DESCRIPTION

Name The name for the level of service that displays to the users as part of the checkout

process in the Checkout Server Control.

Active Specifi es whether the specifi ed service level is available as a choice on the

checkout form.

Provider

Service

The internal name for the level of service. Clicking View Options shows a drop-

down displaying valid options gathered from the shipment provider. Selecting one

of the dropdown options fi lls in this fi eld with the appropriate value.

c12.indd 463c12.indd 463 12/28/2010 2:19:31 PM12/28/2010 2:19:31 PM

464 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

3. The management of warehouses takes place in the Workarea at Workarea Í Settings Í
Settings Tree Í Commerce Í Shipping Í Warehouses.

One of the requirements for the eCommerce platform to work correctly is that at
least one warehouse be defi ned in the system. This is required even if you are not
managing inventory online, or are dealing exclusively in online products.

4. To create a warehouse, go to the Warehouses pane at Workarea Í Settings Í Settings Tree
Í Commerce Í Shipping Í Warehouses, and select New Í Warehouse from the toolbar
menu. This brings up the Add Warehouse form, shown in Figure 12-19.

FIGURE 12-19

The fi elds on this form are mainly designed to capture the location of the warehouse, which
is then passed to the shipment provider to calculate the shipping cost for each order so that
the customers can be charged appropriately. The fi elds are described in Table 12-6.

TABLE 12-6: Create Warehouse Form Fields

FIELD DESCRIPTION

Name Name of the warehouse.

Street1, Street2 The street address of the warehouse.

City The city of the warehouse.

c12.indd 464c12.indd 464 12/28/2010 2:19:32 PM12/28/2010 2:19:32 PM

Confi guring eCommerce x 465

FIELD DESCRIPTION

Postal Code The postal code of the warehouse.

Country The country of the warehouse.

State/Province The state or province of the warehouse.

Default Warehouse Specifi es whether this warehouse should be used in cost calculations. If

default, this is the only warehouse used in calculations.

5. Package management takes place through the Packages pane at Workarea Í Settings Í Settings
Tree Í Commerce Í Shipping Í Packages. This pane lists the predefi ned packages in the system,
and allows you to create new packages or edit existing packages. This is shown in Figure 12-20.

FIGURE 12-20

6. To add a new package, select New Í Package. This brings up the New Package form, which is the
same form used when editing existing packages. The fi elds for this form are listed in Table 12-7.

TABLE 12-7: New Package Form Fields

FIELD DESCRIPTION

Name The name you choose to use for this package size.

Length Length of the packages. The unit you use should match the unit that appears to the

right of the fi eld, either inches or centimeters.

continues

c12.indd 465c12.indd 465 12/28/2010 2:19:32 PM12/28/2010 2:19:32 PM

466 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIELD DESCRIPTION

Height Height of the package in the correct unit.

Width Width of the package in the correct unit.

Max Weight The maximum weight this package can support, with the units matching the units

on the fi eld — pounds or kilograms.

Taxes

The Ektron eCommerce package supports a fairly complex tax structure, allowing you to create
classes of goods that are taxed at different rates, as well as variances of those rates based on desti-
nation locations. Management of these rates takes place through the Workarea in the Workarea Í
Settings Í Settings Tree Í Commerce Í Taxes section. The fi rst step in setting up the tax rates is
creating the classes of goods you plan to sell.

The eCommerce feature comes preloaded with four tax classes: alcohol, goods, services, and
tobacco. You can add, update, or delete these classes at any time. This list populates the Tax Class
fi eld when editing catalog entries, so that each product is categorized correctly. To manage these tax
classes, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Tax Í Classes. This brings up
the list of existing categories, as shown in Figure 12-21.

FIGURE 12-21

TABLE 12-7 (continued)

c12.indd 466c12.indd 466 12/28/2010 2:19:32 PM12/28/2010 2:19:32 PM

Creating a Catalog and Product x 467

2. To edit one of the existing categories, click its name.

3. To add a new category, select New Í Tax Class. This brings up the Add Tax Class form,
which contains a single fi eld for Name. The actual administration of the tax rates takes place
elsewhere, since the tax rates are dependent on geographic location.

Taxes are applied to the order through a waterfall method. For each item in the order, the tax class
of that item is found, and then the eCommerce engine tries to fi nd a matching tuple that defi nes the
tax code for the shipping destinations postal code and tax class. If it fi nds a match, it applies that
rate and stops. If there is no matching tuple, the engine then looks at the regional tax rate for the
destination and tax class. Again, if it fi nds a match, it applies the match and quits; otherwise the
engine then checks the country rate.

If for a given destination you must apply multiple levels of taxes, you should build the combined rates
into the smallest applicable geographic area. For instance, if in your postal code you must pay a
5 percent sales tax, and in your state you must pay a 4 percent sales tax, you should enter a 9 percent
sales tax for your postal code, and 4 percent at the state level.

The three remaining screens in the Tax section on the Settings tree are for managing the rates
at each geographic level. The Postal tax table allows you to enter rates for the postal code level,
Regional at the regional level, among other levels.

As an example of managing the rates, this section explores how to set up the rates for a given state.
Assume you have a company based out of Massachusetts. The state sales tax in Massachusetts is
6.25 percent. This means that for orders going to Massachusetts, you need to charge the appropriate
tax. For orders going outside the state, there is no tax. To set up the rates for a given state, follow
these steps:

1. Open the Regional tax table, by going to Workarea Í Settings Í Settings Tree Í Commerce
Í Tax Í Regional Tax Tables. The Regions Tax Table pane comes up with a list of all the
regions defi ned in the system.

2. Click a region name. The display updates to show you the tax rates for that region. Find
Massachusetts in the list, and click it. The stored tax rates are 0 percent across the board, as
shown in Figure 12-22.

3. Click the link “Click here to edit the tax rates,” and the display updates to show the detail
view of that region.

4. Click Edit on the toolbar, and then select the Tax Rates.

5. Update the Goods category to refl ect the 6.25 percent tax, and click the save icon on the
toolbar.

CREATING A CATALOG AND PRODUCT

Now that the fundamentals of your eCommerce site have been set up, you are ready to create the prod-
ucts. Before you can jump into the products themselves though, you need to confi gure your product
types. Once you have defi ned the types, you need to create a catalog to house the products. Finally,
you can then create the products themselves. In this section, you look at those items in that order.

c12.indd 467c12.indd 467 12/28/2010 2:19:32 PM12/28/2010 2:19:32 PM

468 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-22

Creating Product Types

Product types are used to defi ne the different categories of products you sell on your site. A type def-
inition allows you to specify the type of information you capture about each product belonging to
that type. For instance, you might have a product type for books, in which you can specify the title,
author, synopsis, ISBN, and page count. You may also want to carry movies on your site, which
have a series of other properties to capture, such as the title, year, lead actors, synopsis, and several
reviews. Having a product type for each line of goods allows you to require the relevant details so
your customers can easily understand the product, and your catalog managers can ensure that rel-
evant details are captured.

In addition to the fi eld defi nition, called the content page, the other main detail to note in a product
type is the class of the type. There are four classes of product types. The class of a type affects both
the management of the products based on that type as well as the process of purchasing products of
that type. The classes are outlined in Table 12-8.

TABLE 12-8: Product Classes

CLASS DESCRIPTION

Kit A type of product that contains a list of free text options. The options can aff ect the

overall price of the product. For instance, a laptop’s price will go up or down based

on the amount of memory in it, as well as the hard drive size.

c12.indd 468c12.indd 468 12/28/2010 2:19:32 PM12/28/2010 2:19:32 PM

Creating a Catalog and Product x 469

CLASS DESCRIPTION

Bundle A single item that consists of other items from the catalog. It has its own price and

images separate from the underlying product entries. For instance, when buying

a desktop computer, you may want a bundle consisting of a monitor, a keyboard,

and a mouse, with a discounted overall price.

Product Products can be a simple product, which is a single entry, or a complex product.

A complex product is similar to a bundle in that it takes several simple products

and groups them together, but unlike a bundle it maintains each simple product’s

price and details, and the customer interacts with them as separate products. The

benefi t is that on the Product List or Product Search, only the complex product

is displayed. It’s only when the users get to the product details that they choose

a specifi c variant of the product with its own price. For instance, you may have

Kingston Value RAM, available in diff erent speeds, at diff erent prices. By grouping

them into a complex product, you create less overhead when people are trying to

decide on the type of memory they should get, only presenting them with a choice

of speed after they’ve made the choice of brand.

Subscription A subscription is fundamentally diff erent from other types of products in that it

allows for recurring billing. In addition, it adds purchasers into a specifi ed member-

ship group, allowing you to manage the group’s access to private content.

Product types are used when creating a catalog, in much the same way that Smart Forms are used
when creating content folders. They dictate the types of products that you can add to each catalog.
Let’s investigate creating a new product type now. You’ll create a type for training videos on OnTrek:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Catalog Í Product Types to
see the list of currently defi ned product types in the system. The View Product Types pane
comes up, showing you the title and class of each product type in the system. This is shown
in Figure 12-23.

2. To create a new product type, select New Í Product Type from the toolbar. This brings up
the Add Product Type pane, with three tabs. The fi elds and their descriptions are listed in
Table 12-9.

TABLE 12-9: Add Product Type Form Fields

TAB FIELD DESCRIPTION

Properties Title The title of the type. It displays under the new menu in catalogs it

is assigned to.

Description A description of the product type.

Class The class of the product type, selected from Product, Kit, Bundle,

or Subscription.

continues

c12.indd 469c12.indd 469 12/28/2010 2:19:33 PM12/28/2010 2:19:33 PM

470 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

TAB FIELD DESCRIPTION

Attributes Attributes Used to manage secondary information about the product. The

types of data are limited to free text, dates, numeric, and Boolean

values. You can compare attributes to metadata on a Smart Form

versus the content stored inside the Smart Form itself.

Media

Defaults

Thumbnails Allows you to specify a set of thumbnail sizes to generate. These

are generated from the main image associated with products

based on this type, and are usable in the display page for prod-

ucts, as well as on product lists.

FIGURE 12-23

3. For the training video product type, enter Training Video for the title and description, and
select Product as the class.

4. On the Media Defaults tab, add two entries, one called large at 150 x 125 pixels, and one
called small at 70 x 58 pixels.

5. Click Save, and move to the second stage of type creation, which is to create the content page
(similar to a Smart Form) for the product type.

6. Add three text fi elds with titles to this form: title, description, and running time. Set the
description fi eld to be multi-line.

TABLE 12-9 (continued)

c12.indd 470c12.indd 470 12/28/2010 2:19:33 PM12/28/2010 2:19:33 PM

Creating a Catalog and Product x 471

This example is simple, but when you are designing product types for your cata-
log, spend time to make sure you’re getting the information you’ll need going
forward. Also remember that much like Smart Forms, products based on a type
are not automatically updated or fl agged when the underlying type is modifi ed.
This means that doing updates to the product type’s content page after products
have been entered based on the type may break those products. Spend time up
front designing these pages so you don’t fi nd yourself struggling with a poor
design later.

7. The fi nal content page is shown in Figure 12-24. Click Save and return to the overview of the
new product type.

Now that you have a product type to work with, you can create a catalog to contain your training
videos.

FIGURE 12-24

Creating a Catalog

Catalogs are the method by which products are organized, and they serve as the storage location in
the Content Tree for those products. They function just like content folders, and are required in order
to create products. Creating a catalog is very similar to creating a content folder. Instead of picking
Smart Forms, however, you pick product types. Create a catalog now by following these steps:

c12.indd 471c12.indd 471 12/28/2010 2:19:33 PM12/28/2010 2:19:33 PM

472 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

1. Go to Workarea Í Content Í Folder Tree Í MainSite Í Content Í Store.

2. Select New Í Catalog from the toolbar.

3. Name the new catalog Videos, and then switch to the Product Types tab. The tab is shown in
Figure 12-25. This tab is very similar to the Smart Form tab in a normal folder.

FIGURE 12-25

4. Deselect the Inherit parent confi guration checkbox, and add Training Video from the drop-
down to the list.

5. Click Save — you are returned to the Store catalog.

6. Select the new Videos catalog from the folder tree, and the view is updated with the list of
products currently in the folder.

As is visible from the catalog view shown in Figure 12-26, the interface is almost the same as a
folder. For instance, catalogs are language specifi c, meaning that you can create translations for
each product in the catalog. One of the only differences is that under the View menu, the options
for fi ltering the view are catalog-centric — having to do with the class of product. You can fi lter the
view by All Types, Products, Kits, Bundles, or Subscriptions.

Now that you have the catalog created, you need to create a training video product.

c12.indd 472c12.indd 472 12/28/2010 2:19:33 PM12/28/2010 2:19:33 PM

Creating a Catalog and Product x 473

FIGURE 12-26

Creating a Product

As we discussed, the goal of the new catalog is to house a series of training videos available for
purchase. We have the catalog in place, so now we will add our fi rst training video for sale.

The SmartForm Content Tabs

To view the SmartForm content tabs, select New Í Training Video. This brings up an interface
similar to adding Smart Form based content, The following list explains the various SmartForm
content tabs from left to right.

 ‰ Content: This is the same tab (see Figure 12-27) you see when working with Smart Forms.
You’ll recognize the Smart Form design from when you put together the product type design.

 ‰ Summary: The Summary is displayed in search results, and in the ProductList Server Control
as shown in Figure 12-28.

 ‰ Properties: Shown in Figure 12-29, you use this to manage system-level product properties
that are required. By default this includes the SKU, how many items are in a single purchase
(such as 2 DIMMS of memory in a single order of dual channel RAM), tax class, whether the
item is purchasable, the dimensions, and inventory data for the item.

c12.indd 473c12.indd 473 12/28/2010 2:19:34 PM12/28/2010 2:19:34 PM

474 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-27

FIGURE 12-28

c12.indd 474c12.indd 474 12/28/2010 2:19:34 PM12/28/2010 2:19:34 PM

Creating a Catalog and Product x 475

FIGURE 12-29

 ‰ Pricing: Shown in Figure 12-30, this allows you to enter pricing details about the product.
The list price usually displays the original price, or the manufacturer’s suggested retail price
for the product. The sales price below that is what you are actually selling the product for.
Additionally, beneath the standard pricing you can add tier pricing; for instance you may
want to sell a $20 item for $15 as long as the customer orders more than 10 of them. Finally,
you may notice that in the top-right side of the interface you can select other currencies.
You can manually set the price in a foreign currency here. If you don’t set the price manu-
ally, the price in the foreign currency is calculated based on the exchange rates defi ned in the
Currency screen in the Settings tab.

 ‰ Attributes: Shown in Figure 12-31, this manages any custom properties that were created as part
of the product type defi nition. If no custom properties were defi ned, this tab won’t show up.

 ‰ Media: Shown in Figure 12-32, this allows you to specify the images to display for a product
on the site. You can add an image from the library or upload one. Adding an image automati-
cally creates the thumbnails of the original based on the thumbnail defi nitions in the product
type specifi cation. Once an image is added, you can specify details about it, such as the title, alt
text, and whether to show it in the product gallery. You can also choose one of the uploaded
images to use as the product icon. All the images are available in XSLTs on the Product Server
Controls, allowing you to specify what size to use in which scenarios (except for the Product
Search Server Control, which always uses the full-size version of the default product icon).

c12.indd 475c12.indd 475 12/28/2010 2:19:34 PM12/28/2010 2:19:34 PM

476 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-30

FIGURE 12-31

 ‰ Items: As shown in Figure 12-33, you use this for all product classes, but in different ways.
For simple products, when you use it to select additional products, it turns the simple prod-
uct into a complex product, allowing grouping of common products. When working with:

 ‰ A bundle class product type: You can select the other products that combine to make
this bundle.

c12.indd 476c12.indd 476 12/28/2010 2:19:34 PM12/28/2010 2:19:34 PM

Creating a Catalog and Product x 477

 ‰ Kit class product types: You can work with the groups of options that make up the
kit, and specify how they modify the price.

 ‰ A subscription class type: You can select the membership group where purchasers
should be added.

FIGURE 12-32

FIGURE 12-33

 ‰ Metadata: The Metadata tab (shown in Figure 12-34) is the same as for normal content.

 ‰ Alias: Aliases (shown in Figure 12-35) also work the same way as normal content, and can be
a useful way of managing SEO for your product catalogs.

c12.indd 477c12.indd 477 12/28/2010 2:19:35 PM12/28/2010 2:19:35 PM

478 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

FIGURE 12-34

FIGURE 12-35

c12.indd 478c12.indd 478 12/28/2010 2:19:35 PM12/28/2010 2:19:35 PM

Creating a Catalog and Product x 479

 ‰ Schedule: Just like normal content, you can schedule a go-live date and set expiration dates
for products in your catalog.

FIGURE 12-36

 ‰ Category: You also have the ability to use taxonomy to categorize your catalog items (see
Figure 12-37).

FIGURE 12-37

Creating a New Product in a Video Catalog

Now that you know what all the tabs are all about, follow these steps to create a new product in the
Videos catalog:

c12.indd 479c12.indd 479 12/28/2010 2:19:35 PM12/28/2010 2:19:35 PM

480 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

1. Select New Í Training Video. This brings up an interface similar to adding Smart Form
based content, as shown in Figure 12-38.

FIGURE 12-38

2. Enter Administrator Training Video for the title.

3. Switch to the Content tab, and in the title fi eld on the custom form, enter “Administrator
Training Video,” and “See step by step directions on the included DVD for administering
your OnTrek Software” for the description. Enter “6 hours” for the running time.

4. Switch to the Pricing tab and enter in a list price of $800, and a sales price of $750.

5. Fill out any required fi elds on the Metadata and Category tabs.

6. Select Action from the toolbar, and click Submit.

In addition to the familiar interface of editing items through the Workarea, you can also man-
age most of the properties on catalog items through the front end of your site, through the editor’s
menu. You can look at the options that are new when viewing an existing product in the Workarea.
Browse to Workarea Í Content Í Folder Tree Í MainSite Í Content Í Store Í Hardware, and
select the Basic Wireless Router product.

You’ll notice, as shown in Figure 12-39, that the toolbar has some additional items on it that are
not on regular content. Specifi cally, the View menu has two new items, Cross Sell and Up Sell. You
can use these items to drive additional sales by presenting customers with additional options as they
shop on your site.

c12.indd 480c12.indd 480 12/28/2010 2:19:35 PM12/28/2010 2:19:35 PM

Coupons x 481

FIGURE 12-39

 ‰ Cross Sell: Offers items that are related to the product in question. For instance, a monitor
and a laptop bag would both be good cross sell items for a customer buying a laptop.

 ‰ Up Sell: Is a higher end, more expensive laptop than the one the customer is currently
looking at.

The interfaces for adding cross sell and up sell items are the same, simply displaying a list of items, and
allowing you to add more by browsing the catalog in a modal window to fi nd the target product.

COUPONS

Coupons are one of the features that can easily be overlooked in the eCommerce product. They are rich
in their capabilities, and are useful tools in aiding marketing efforts. The capabilities of coupons include
discounting by a dollar amount or by a percentage. If you discount by a percentage, you specify a maxi-
mum dollar value of the discount. You have a wide range of options to restrict usage including:

 ‰ Applying coupons to specifi c products

 ‰ Applying to the most or least expensive item in a shopping cart

 ‰ Specifying that a customer can only use a coupon once

c12.indd 481c12.indd 481 12/28/2010 2:19:36 PM12/28/2010 2:19:36 PM

482 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

 ‰ Limiting a coupon so it’s only applied when other coupons are not applied

 ‰ Specifying a date range the coupon is valid for

 ‰ Specifying a maximum number of redemptions for a given coupon

 ‰ Specifying a minimum order value before a coupon can be used

This rich set of capabilities means that you can create a coupon to fi t any situation you run into.
Let’s explore the process of creating coupons now. Creating a coupon is a four-step process, with
the fi rst step being to specify the type of coupon. Next is setting up the discount, followed by
setting up the scope of the coupon. Finally, you can specify the catalog items the coupon can be
applied to.

To create a coupon, follow these steps:

1. Go to Workarea Í Settings Í Settings Tree Í Commerce Í Catalog Í Coupons. This brings
up the Coupons pane, as shown in Figure 12-40. This pane lists all the coupons defi ned in the
system, and allows you to add new coupons.

FIGURE 12-40

2. Click Add Coupon now, and you will see the Add Coupon pane. It consists of a Wizard.

3. Fill in the fi rst window of the Wizard:

a. Specify the type, as shown in Figure 12-41.

The coupon type step allows you to specify the fundamental elements of the coupon. Table
12-10 lists the fi elds in this form along with a description of each fi eld.

c12.indd 482c12.indd 482 12/28/2010 2:19:36 PM12/28/2010 2:19:36 PM

Coupons x 483

FIGURE 12-41

TABLE 12-10: Add Coupon Type Step Fields

FIELD DESCRIPTION

Type Can be set to Amount or Percentage and dictates the type of the discount.

Code The code the users must enter to activate the coupon in their carts. Because it

does not make sense to have two coupons with the same code, the Validate Code

button next to the fi eld allows you to check if the code you want for the coupon is

available.

Description Allows you to specify a description for the coupon.

Currency Allows you to specify currency this coupon can be used with. A coupon can be

used with a single currency only if it is a numeric discount, and is rejected if the

user is browsing the site with a diff erent currency. If the coupon is a percentage

discount, it can be used with any currency.

Status Set to Enable to allow users to use this coupon provided the other conditions for

the coupon are met.

b. Specify the discount amount. If, on the fi rst step (specifying the type), you selected
Amount for the type, you can specify exactly what that discount should be. If instead,
you specifi ed that this should be a percentage discount, in this step you specify what
that percentage should be, along with a maximum amount for the discount. If the
maximum is left at 0, there is no maximum. If you specify a maximum amount and

c12.indd 483c12.indd 483 12/28/2010 2:19:36 PM12/28/2010 2:19:36 PM

484 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

the percentage would result in a discount larger than that amount, the discount still
applies, but is whatever you specifi ed as the maximum rather than the percentage
calculation.

c. The Scope screen allows you to limit the coupon’s usability. It is shown in Figure 12-42,
and Table 12-11 lists the fi elds and descriptions found on the Scope pane.

FIGURE 12-42

TABLE 12-11: Add Coupon Scope Step Fields

FIELD DESCRIPTION

Apply Coupon To Sets how coupons can be applied. Can be set to Entire

shopping cart, items that have been approved for use with

the coupon, just the most expensive accepted item in the

cart, or just the least expensive item in the cart.

One per Customer Whether a customer can reuse the same coupon.

Can be combined with other coupons A fl ag to set whether the coupon should only be applied

singly or whether it can be applied in conjunction with

other coupons.

Maximum redemptions The number of times the coupon can be redeemed before

it expires and is invalid.

Minimum required cart value The value the cart must contain before the coupon can be

applied.

c12.indd 484c12.indd 484 12/28/2010 2:19:36 PM12/28/2010 2:19:36 PM

Product Reports and Order Management x 485

FIELD DESCRIPTION

Start Date The beginning of the period that the coupon can be

redeemed.

End Date The end of the period the coupon is valid.

d. You can modify Items only if the Apply Coupon To fi eld has been set to something
other than the entire shopping cart. If set to All Accepted Items instead, you have
the opportunity on this screen to specify the list of included items, and the list of
excluded items. If an item satisfi es conditions on both lists, it is excluded. This means
that, depending on whether you have a large list of items you want the coupon to
be accepted for, or a small list to accept it for, you can approach the list from either
direction.

4. Click Finish to return to the list of coupons.

PRODUCT REPORTS AND ORDER MANAGEMENT

At this point you have all the administrative areas of your eCommerce solution set up. What
remains is the processing of reports, and actually running orders through the system. This section
fi rst covers the various reports that can be run to get snapshots of how many orders and which
orders are in various states of fulfi llment, and then covers the process by which orders are pushed
through from the initial receipt of an order to the fulfi llment of that order.

Reports

The eCommerce reports are accessible through two locations in the Workarea. These locations are:

 ‰ Workarea Í Settings Í Settings Tree Í Commerce Í Reports

 ‰ Workarea Í Reports Í Reports Tree Í Commerce

The same set of reports are in both locations, but depending on the roles the eCommerce user is
assigned to, they may not be able to access the reports through the Settings tab. Additionally, these
reports are all available as widgets so that you can add them to the Desktop in the Workarea.

Report Types

There are fi ve reports the eCommerce system provides.

 ‰ Customer Reports: Summarizes the top customers in several categories. It displays the name
of the customer, the number of orders the customer has submitted, the total dollar amount
the customer has purchased, and the date the person fi rst became a customer.

The report can be run against several types of data: by selecting the most recent link, a
dropdown displays, allowing you to report against the most recent customers, the most
valuable customers, and the most active customers.

c12.indd 485c12.indd 485 12/28/2010 2:19:37 PM12/28/2010 2:19:37 PM

486 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

 ‰ Key Performance Indicators: Lets you compare sales and orders from two time periods. You
can set the time periods to compare by clicking the This Month link in the period column. It
displays a dropdown containing many options for time periods, ranging from today and yes-
terday to comparing whole years. Set the current period and previous period, and then click
the refresh button to update the report.

 ‰ Payment Reports: This lists the received payments within a given time period. You can use
it to reconcile fi nancial statements with the ordering system. It displays the date the payment
was captured, the last four digits of the credit card, the type of payment, the transaction ID,
the amount of the transaction, and how much of the transaction, if any, was voided.

A report can be run by using the calendar icons to specify a start and end date for the
report, and then clicking the Set New Dates link to update the report.

 ‰ Sales Trends: Generates a line graph of order volume versus date. The X-axis of the graph
can be set to daily or monthly by selecting the period link at the top of the report.

 ‰ Top Products: Displays the most successful products on your site. It is ordered by the quan-
tity sold, and can be run by selecting the period and the number of records to display, and
then clicking the Update button.

Using the eCommerce Order Workfl ow

In addition to these high-level reports, you can run reports against fulfi llment criteria, which is use-
ful in pushing orders through the order workfl ow. Before you look at those reports, take a moment
and look at how orders move through the eCommerce system.

The eCommerce system supports creating custom workfl ows through the
Windows Workfl ow Foundation. For more information on this, see Chapter 13
of this book. For most cases, the default workfl ow will be capable of supporting
your needs.

The built-in order processing workfl ow is as follows:

1. Submission of an order on the site. At this point the payment is processed for authorization,
but has not yet been captured.

2. The order goes into a queue. Once in the queue, it awaits interaction by an eCommerce CMS
user, and it can be marked as fraudulent, or it can be captured, in which case the transaction
actually takes place.

3. The order is updated and has the following status:

 ‰ Complete: With the default workfl ow, this happens as soon as the order is shipped
but with custom workfl ows it could represent some post-sale activity as having been
completed.

 ‰ Cancelled: The order was cancelled either by the customer or by a site eCommerce
administrator.

c12.indd 486c12.indd 486 12/28/2010 2:19:37 PM12/28/2010 2:19:37 PM

Product Reports and Order Management x 487

 ‰ InProcess: The state an order is in after it has been submitted, but when payment has
not yet been captured for it.

The process is simplifi ed for intangible goods, and is almost completely automated in that scenario.
The workfl ow map is shown in Figure 12-43.

FIGURE 12-43

c12.indd 487c12.indd 487 12/28/2010 2:19:37 PM12/28/2010 2:19:37 PM

488 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

Using the Manual Workfl ow

The manual state transitions in that workfl ow take place through the View Order screen, which you
can open by accessing individual orders through the Orders report:

1. Access the Orders report by navigating to Workarea Í SettingsÍ Settings Tree Í
Commerce Í Fulfi llment Í Orders. This pane displays a list of the orders in the system,
ordered by submission date and time, in descending order.

2. Select orders by the date range, the customer, or the catalog item.

3. When you have found an order that requires processing, click the order to enter the View
Order screen.

Order Management

The View Order screen, shown in Figure 12-44, has a list of tabs that contain information about the
order. When an order is placed, the information about the items, coupons, and so on is all copied
out of the original locations into a permanent location in the database so that the order details are
never lost, even if the details of the original items change. The tabs display that copied data, so the
View Order screen always shows the correct data for that order.

F IGURE 12-44

In order from left to right, the tabs display the following information.

 ‰ Summary: Shows the order ID, the person who placed the order, and the order value. It also
allows you to capture notes about the order.

 ‰ Status: The Status tab shows the current status of the order, as well as the status history.

 ‰ Payment: Displays the list of payments applied to this order. By clicking a payment you can
retrieve the details of that payment, including the transaction ID, the gateway, the type of
payment, the last four digits of the card number, the amount received, and the date of autho-
rization and capture.

c12.indd 488c12.indd 488 12/28/2010 2:19:37 PM12/28/2010 2:19:37 PM

Take Home Points x 489

 ‰ Coupons: Displays any coupons that were applied to the order, and the effect of those
coupons.

 ‰ Address: Displays the billing and shipping addresses associated with the order, and allows
you to edit them. In addition, it displays the tracking method and number if one has been
entered.

 ‰ Description: Displays the items that are in the order, allowing you to fulfi ll the order and ship
the items.

 ‰ Workfl ow: Displays a log of the actions the order workfl ow engine has applied to the order
up to this point.

Most of the interaction that takes place with orders is done through this screen, by selecting appro-
priate entries on the Action menu. When an order is received, you want to capture the order, then
track it:

1. Selecting Action Í Capture causes the order to be captured, meaning that the payment gate-
way provider submits a conversion order to the payment gateway system, requesting that the
authorization it approved earlier be converted to a payment. At this time, the customer’s card
is deducted the amount, and your account is credited the amount.

2. Once the order ships, next update the tracking number for the order. Select Action Í Edit
Tracking Number to enter the details, and mark the order as shipped. At this point, the cus-
tomer receives an e-mail containing the tracking number.

You can also mark the order as fraud and cancel the order. If your organization deems an order to
be fraudulent, select Action Í Mark as Fraud. The order is not completed from this point. Selecting
Action Í Cancel Order changes the order’s status to cancelled and ceases operation at that point.
The built-in order workfl ow has no activities defi ned for either of these end conditions, but you can
modify and extend these to perform actions necessary to your business, if required.

TAKE HOME POINTS

This chapter covered a large subset of the activities required to get the eCommerce feature function-
ing on your site, including the following:

 ‰ The basic confi guration of geographic locations, such as countries and regions.

 ‰ The currencies in use at each location and how to manage exchange rates for those
currencies.

 ‰ How to manage the card types defi ned in the system as well as the payment options.

 ‰ How to manage the messages defi ned in the system.

 ‰ Some of the settings that rely on the lower order settings, such as tax structures. This
included how those tax structures are used to calculate the correct taxes on each order, as
well as how to set them based on geographic shipping destination.

c12.indd 489c12.indd 489 12/28/2010 2:19:38 PM12/28/2010 2:19:38 PM

490 x CHAPTER 12 CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT

 ‰ How to manage the shipping options, including the way goods are packaged, the provid-
ers you can specify as handlers for your shipping needs, and the warehouses your goods are
stored in.

 ‰ How it all comes together to calculate the correct cost for shipping the order.

 ‰ Creating product types, which you learned are basically an extension of Smart Forms.

 ‰ Creating a catalog, which was a lot like working with folders

 ‰ Creating a simple item.

 ‰ The other item classes, and how they can be used to fulfi ll complex needs in your inventory.

 ‰ Coupons, and how you can use them to support marketing needs.

 ‰ About the different types of coupons, how you can manage the reusability of those coupons,
and how you can extract the most value out of making coupons available to customers.

 ‰ The overall process of handling and processing orders. You learned how to run reports to
fi nd out the success rate of your store, and how to fulfi ll orders from start to fi nish.

 ‰ The actions available to you on a per-order basis.

 ‰ How to create a successful strategy for approaching the fulfi llment of orders.

c12.indd 490c12.indd 490 12/28/2010 2:19:38 PM12/28/2010 2:19:38 PM

13
Constructing the Online
Storefront with eCommerce

 ‰ What are the eCommerce server controls and how do you implement

with them?

 ‰ How do you create a custom order workfl ow?

 ‰ How do you build a payment gateway provider?

The last chapter closely investigated the eCommerce feature and how it relates to the Workarea.
It dealt with confi guring the basic setup for eCommerce, and you learned how to create catalogs
and products. What you didn’t do at all in that chapter was work with the eCommerce feature
from a developer’s perspective. That’s what you’ll approach in this chapter.

The eCommerce Framework is exciting due to the way it addresses the developer experience in
one of the most open portions of the Ektron Framework. While at a high level it closely resem-
bles working with the rest of the framework, with a set of easily deployable server controls and
out-of-the-box functionality, it also provides a large number of programmatic hooks so you
can customize the capabilities to a large degree.

This chapter starts by looking in depth at the server control set that the eCommerce feature
provides, exploring each control’s capabilities and customizability. You will learn when they
are used, and how to use them. You then take a close look at how the eCommerce experience
was developed for the OnTrek site, looking specifi cally at the product browsing experience and
the ordering experience. You’ll fi nd that the out-of-the-box implementation is suffi cient for
most of these needs.

You will then spend the remainder of this chapter looking at a couple of ways that the
eCommerce capability set can be easily extended. First you’ll look at creating custom order
workfl ows. The stock Ektron eCommerce workfl ow is generally suffi cient for most customer
needs, but many businesses have complex business processes. Leveraging the Windows
Workfl ow Foundation allows Ektron to expose a key part of the business process to

c13.indd 491c13.indd 491 12/28/2010 2:03:12 PM12/28/2010 2:03:12 PM

492 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

developers, creating the capability to incorporate those complex business processes directly into their
websites. You will look at using the CMS400 SDK as a base to develop these custom workfl ows.

Second, you will dig into the process of building a custom payment gateway provider for use on
your site. While Ektron ships with support for PayPal, Payfl ow, and Authorize.Net, among other
payment gateways, and if you already have a merchant account, it is not unlikely that it might be
with a different company than those. This will give you some insight into how to build a provider so
that you can continue to use your current merchant account provider, while leveraging the capabili-
ties of the Ektron eCommerce solution.

USE CASE

As the OnTrek development team continues their buildout of the eCommerce capabilities of their
website, they enter into the actual development phase for the website. The website needs to support
customers coming to the site, fi nding a product they are interested in, and purchasing the product all
through the commerce engine.

This buildout includes the ability to seek out products, read reviews of those products, add them
to a shopping cart, and fi nally check out of the site by purchasing their goods via credit card
payment.

SETTING UP AN ESTORE

This Use Case introduces the primary actor Derek, a site visitor who went
through the research process for OnTrek’s wares, and has decided to purchase
those goods on the website. It describes the expected scenario and defi nes the
desired outcome.

Wireframe

The example Wireframe for this chapter, shown in Figure 13-1, is the eCommerce
landing page, which lists out some selected products from the OnTrek catalog, and
invites the user to add them to their cart or browse for further products.

Description

The implementation of this section will culminate in the ability for Derek to pur-
chase goods on the OnTrek website. At the completion of this exercise, he will be
able to search for goods on the website, read descriptions of those goods, purchase
the goods, and effectively maintain his account and order history. In the backend,
the team will also be developing a custom Payment Gateway Provider to allow
them to maintain their existing merchant account, and they will be also be address-
ing the needs of the post-sales support team by modifying the default order work-
fl ow used by the eCommerce engine.

c13.indd 492c13.indd 492 12/28/2010 2:03:15 PM12/28/2010 2:03:15 PM

Use Case x 493

FIGURE 13-1

Actor

Derek is an employee at Acme Inc. Having researched OnTrek’s product offering thor-
oughly, he is now ready to take the plunge and purchase their hardware. He wants to
use the website for the entire transaction, rather than dealing with smarmy salespeople.

Scenario

In this scenario, Derek:

 ‰ Connects to the OnTrek site looking for a way to purchase OnTrek’s hardware
offerings.

 ‰ Comes to the store landing page, where he scans through the top rated hardware.

 ‰ Finds a link to the hardware he is interested in, and then continues on to the
product detail page.

continues

c13.indd 493c13.indd 493 12/28/2010 2:03:15 PM12/28/2010 2:03:15 PM

494 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 ‰ From the product detail page, he adds the item to his cart.

 ‰ Proceeds to check out, entering in his payment and shipping details, and
completing the purchase.

 ‰ Returns to the site to view his order history and check the status of his order,
at a later time.

Outcome

By implementing the eCommerce functionality on their website, the OnTrek team
attracts millions of users just like Derek, and sells out of their goods in a week.
They are bought out by Microsoft the following week, and everybody gets stock
options valued in the millions. Each member of the team buys a private island in
Dubai, and retires in the lap of luxury.

ECOMMERCE SERVER CONTROLS AND IMPLEMENTATION

Just like working with the rest of your website in the Ektron Framework, eCommerce has two major
steps to implementation. The fi rst step, creating the catalog and products, you completed in the last
chapter. In this section, you’ll work on understanding the server controls available as part of the
eCommerce suite, and then look at the methodology for implementation followed in OnTrek.

There are nine server controls related to eCommerce functionality. These can be broken into two
groups, the fi rst group being those controls that relate to the browsing experience. These controls are:

 ‰ CurrencySelect Server Control

 ‰ ProductSearch Server Control

 ‰ ProductList Server Control

 ‰ Product Server Control

 ‰ Recommendation Server Control

In addition to these controls, there are another four controls that allow the users to manage the rest of
the purchase experience. These controls revolve around account maintenance, and the order process.
They are listed here:

 ‰ MyAccount Server Control

 ‰ OrderList Server Control

 ‰ Cart Server Control

 ‰ Checkout Server Control

This section explores each of these controls, briefl y covering the functionality of the browsing expe-
rience controls. You’ll then learn about the purchase of experience controls, with additional time

 (continued)

c13.indd 494c13.indd 494 12/28/2010 2:03:17 PM12/28/2010 2:03:17 PM

eCommerce Server Controls and Implementation x 495

spent on the Cart Server Control and the Checkout Server Control as you explore the information
fl ow of those controls.

Finally, you will examine some sample pages from the OnTrek site to understand how these pieces
all fi t together to create a functioning eCommerce implementation. To cover this collection of infor-
mation, this section contains the following elements:

 ‰ Browsing experience controls

 ‰ Purchase and maintenance controls

 ‰ OnTrek eCommerce implementation

Browsing Experience Controls

Of the nine eCommerce controls, fi ve controls relate to the catalog browsing experience users go
through on the site. These will become the heart of the purchasing process in your implementation.
The controls are defi ned as follows:

 ‰ CurrencySelect Server Control: Much like the Language Server Control, this Control displays a list
of available currencies on your site. When a user selects a different language from the dropdown,
all the prices displayed by the other eCommerce controls are converted to the new currency.

 ‰ ProductSearch Server Control: This is based on the WebSearch Server Control, but is
designed to only search for products listed in the catalog. It has two interfaces for searching,
which are displayed on two tabs when it renders. The fi rst interface is a basic textual search,
whereas the second allows for advanced searching — it allows the users to specify fi lters such
as price below, and price above. Additionally, the ProductSearch control allows the users to
optionally fi lter the products shown by taxonomy categories.

 ‰ ProductList Server Control: This is similar to a ListSummary in that it displays a list of cata-
log items. The interface is a little more complex than a standard ListSummary, allowing for
sorting of the items, and displaying the thumbnail and price as well as the link to the prod-
uct. It also has a richer set of capabilities in the backend developer experience, allowing for
many different types of sources to generate the list of products to display. For instance, it can
use one or more catalogs or taxonomy nodes to determine which products to show. It can
also be set to a collection, or a specifi c list of products.

 ‰ Product Server Control: This is used to display the details of any given product type. It relates
to the ContentBlock Server Control, but is specifi cally designed to display catalog items. The
default output of the Product Server Control includes the image and gallery of additional
images, along with the title, description, and price for the particular product being shown.
It also displays an Add to Cart button to allow your visitors to purchase the product. In the
case of Bundle, Complex, or Kit products, the server control also displays the variants and
allows the users to select options, if appropriate.

 ‰ Recommendation Server Control: This hooks into the list of CrossSell and UpSell products
associated with the specifi ed item, and displays them on the website as a list of items under
the title, “You might also like.” In addition to displaying a list of items with links to view
more details about the products, it can also display an Add to Cart button to allow users to
purchase the item with a minimum number of clicks.

c13.indd 495c13.indd 495 12/28/2010 2:03:17 PM12/28/2010 2:03:17 PM

496 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

CurrencySelect Server Control

The CurrencySelect Server Control, pictured in Figure 13-2, retrieves the list of enabled currencies
for the site and displays that list in a dropdown so that site visitors can easily switch the currency
that prices are displayed in. The currency that the user selects is not stored in the user profi le, but
instead in a cookie. If the user clears their cookies, the currency needs to be reselected.

FIGURE 13-2

There are no properties that need to be confi gured for the CurrencySelect Server Control to operate.
To implement it, simply place the following code snippet in your page.

<CMS:CurrencySelect ID=”CurrencySelect1” runat=”server” />

ProductSearch Server Control

The ProductSearch Server Control is divided into two interfaces, with the basic interface shown
in Figure 13-3. The Basic Search is a purely textual search, and fi nds products that are published,
active, and searchable. The products must also be contained in the catalog specifi ed in the CatalogId
property, and they must contain the text either in the description or in associated metadata. The
user must also have read permission or the product must be public.

FIGURE 13-3

The advanced interface allows for more directed searching, and is shown in Figure 13-4. The text
can be divided into words that must be contained in the item, phrases that must be contained, a set
of which at least one member must be contained, and a list of words that must not appear in the
item or metadata. Additionally, the user can specify fi lters for the minimum price, maximum price,
and product SKU. The price fi lters compare to the product’s sale price, not the list price.

FIGURE 13-4

c13.indd 496c13.indd 496 12/28/2010 2:03:17 PM12/28/2010 2:03:17 PM

eCommerce Server Controls and Implementation x 497

In addition to searching by text, the results displayed can be fi ltered by category. If the developer
sets the ShowCategories property to true, a Filter by Category link appears below the Search box.
When this link is clicked, a tree containing the available nodes appears, and the user can select
which nodes to include products from.

You can customize the search results display format via XSLT, but by default they contain the
thumbnail, name of the product, product SKU, description, list price, sale price, and an Add to
Cart button if the product is available for purchase. The default search results interface is shown in
Figure 13-5.

FIGURE 13-5

The properties used to modify the functioning or display of the ProductSearch Server Control are
listed in Table 13-1.

TABLE 13-1: ProductSearch Server Control Properties

PROPERTY DESCRIPTION

ButtonImgSrc The path to an image to use for the submit button.

ButtonText The string to use for the submit button if an image is not specifi ed,

or as the ALT text if an image is specifi ed.

CatalogId The catalog to search within. If the Recursive property is False, the

search only returns products directly in this folder.

CustomOrderBy This property supersedes the OrderBy property if set, and allows

you to specify the result ordering by a property’s friendly name in

the indexing service.

CustomXml By populating this property with an XML snippet, the snippet

appended to the end of the XML output of the control prior to

being processed by the XSLT. This allows you to send additional

information to the XSLT.

continues

c13.indd 497c13.indd 497 12/28/2010 2:03:17 PM12/28/2010 2:03:17 PM

498 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

PROPERTY DESCRIPTION

DisplayXslt Allows you to specify the path to a custom XSLT for rendering.

The default XSLT is located at ~\Workarea\Xslt\Commerce\

ProductSearch.xsl.

DynamicProductParameter Specifi es the query string parameter to include the link generated

to take users from the search results to the product details page.

EnableAdvancedLink Controls whether the Advanced tab is displayed on the search

interface.

LinkTarget Specifi es the value of the target attribute for links generated for

product details.

LoadingImage The image that is displayed while search results are being loaded

via AJAX.

MaxTeaserLength If the DisplayXslt property is set to ecmteaser, and the

ShowCustomSummary property is set to false, this property can

be set to an integer value, and the item teaser is truncated to that

length. Under other conditions, this property is ignored.

OrderBy Sets the fi eld by which the results are ordered. Has a large number

of preset options, including FolderName, Title, and DateModifi ed.

If the CustomOrderBy property is set, this property is ignored.

OrderDirection Determines whether the sort order is used to display the results.

Can be set to Ascending or Descending.

Recursive Determines whether the catalog specifi ed in CatalogId is

searched, or that catalog, plus all subfolders.

ResultsPageSize Determines the maximum number of results per page.

ResultTagId Specifi es the tag that should be used to display the search results.

This allows you to display the search interface at one location in

the page, and display the results in a completely diff erent location

on the same page.

ShowCategories Boolean that determines whether to display the Filter by Category

Link. If you want to show the link, ShowSearchBoxAlways must

also be set to true.

ShowCustomSummary If you set this to true, the item’s summary is retrieved and dis-

played rather than the search characterization for that item.

Defaults to false.

TABLE 13-1 (continued)

c13.indd 498c13.indd 498 12/28/2010 2:03:18 PM12/28/2010 2:03:18 PM

eCommerce Server Controls and Implementation x 499

PROPERTY DESCRIPTION

ShowSearchBoxAlways If you set this to false, the search box is not displayed when results

are shown.

TaxonomyOperator Specifi es the operator used when a user selects multiple catego-

ries in the taxonomy fi lter. If set to And, products are only shown

that appear in all the categories selected. Or it requires only that

the product appear in one of the selected categories.

TemplateCart This must be set for the Add to Cart button to appear. Can be set

to a relative or absolute path to the template containing the Cart

Server Control.

TemplateProduct The relative or absolute path to the template containing the

Product Server Control. This is used to build the link to the product

detail page.

An example implementation of a ProductSearch Server Control might look something like the
following code snippet.

<CMS:ProductSearch ID=”ProductSearch” runat=”server”

ButtonText=”Search” CatalogId=”136” OrderBy=”Title”

OrderDirection=”Ascending” ResultsPageSize=”20”

ShowCategories=”True” ShowCustomSummary=”True”

TaxonomyOperator=”or” TemplateCart=”Cart.aspx”

TemplateProduct=”ProductDetail.aspx” Recursive=”true” />

This code would output a display as depicted in Figure 13-6.

FIGURE 13-6

c13.indd 499c13.indd 499 12/28/2010 2:03:18 PM12/28/2010 2:03:18 PM

500 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

ProductList Server Control

The ProductList Server Control is most easily compared with the ListSummary Server Control.
However, unlike the ListSummary Server Control, the ProductList Server Control has the ability
to display products not just from a given catalog or folder, but also from a collection or taxonomy
category. It can also display a list of hardcoded products. This makes it more like a combination of
the ListSummary Server Control, the Collection Server Control, the ContentList Server Control,
and the Directory Server Control. The default output of the ProductList Server Control is shown in
Figure 13-7.

FIGURE 13-7

The ProductList Server Control’s default display shows the product thumbnail, the title, the list
price, and the sale price. Additionally, it contains a dropdown allowing the users to specify the sort
order. The list can be sorted by Title, SKU, Price ascending or descending, Rating ascending or
descending, and number of ratings.

Table 13-2 contains the list of properties available for the ProductList Server Control. It may
be unclear at fi rst how to set up the sources for the product list — this is done by setting the
SourceType to Catalog, CatalogList, Taxonomy, TaxonomyList, Collection, or IdList. If you are set-
ting the source type to one of the options supporting a list setting (CatalogList, TaxonomyList, or
IdList), you can specify the list as a comma-separated string containing the specifi c IDs in the IdList
property. Otherwise, the ID of the object should be placed in the SourceId property.

c13.indd 500c13.indd 500 12/28/2010 2:03:18 PM12/28/2010 2:03:18 PM

eCommerce Server Controls and Implementation x 501

TABLE 13-2: ProductList Server Control Properties

PROPERTY DESCRIPTION

CustomXml Allows you to specify additional XML to be inserted into the generated

XML before transformation by the XSLT takes place. This allows you to

pass parameters or extra details into your custom XSLT easily.

DisplayXslt Path to a custom XSLT to use to render the results. The default XSLT is

located at ~\Workarea\Xslt\Commerce\ProductList.xsl.

DynamicParameter Sets the query string parameter to use for the Source ID. This does not

operate with the IdList property, only with the SourceId property.

GetAnalyticsData If set to true, the display for a given product in the list is updated to

include the average rating for the product along with the number of rat-

ings that product has received.

IdList A comma-separated list of IDs corresponding to the type set in

SourceType. Only used when SourceType is set to IdList, TaxonomyList,

or CatalogList.

LoadingImage The image that is displayed while the product list is retrieving results.

OrderBy This allows for more granularity in how results are sorted. If you want to

use one of the modes listed here, you must set SortMode to None, which

also prevents users on the site from switching the sort order. Available

options are:

AverageRating, CatalogId, CollItemsDisplayOrder (usable

when the source is a collection,) ContentStatus, CurrencyId,

EndDate, EntryType, GoLive, Html, Id, IsArchived, IsBuyable,

IsPublished, LanguageId, LastEditDate, LastEditorFirstName,

LastEditorLastName, ListPrice, Media, NumberRated,

ProductTypeId, SalesPrice, Sku, Status, Summary, TaxClassId,

TaxItemsDisplayOrder (usable when the source is a taxonomy,)

Title, and ViewCount.

PageSize The number of items to show per page.

PageSpan In the paging display, this controls how many page links are shown

before and after the current page. For instance, if there are fi ve pages

of results, the user is on page three, and this is set to 1, then the paging

links are First… 3 4 5 …Last.

SortMode Sets the default item selected in the Sort By dropdown. Can be set to

Title, SKU, Price Descending, Price Ascending, Highest rated, Lowest

rated, and Most rated.

SourceId The ID of the source to use. This value is only read when the

SourceType is set to Catalog, Collection, or Taxonomy.

continues

c13.indd 501c13.indd 501 12/28/2010 2:03:18 PM12/28/2010 2:03:18 PM

502 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

PROPERTY DESCRIPTION

SourceType Has two types of sources available to read products from. The Catalog,

Taxonomy, and Collection options allow you to choose a specifi c item

to retrieve the products from. The CatalogList, TaxonomyList, and IdList

options allow you to choose a list of products or sources to retrieve

products from. If specifying a single source, set the SourceId with that

value. When specifying a list of items or sources, set the IdList property

with a comma separated list containing the IDs.

TaxonomyDepth When the source is either Taxonomy or TaxonomyList, this determines

how far beneath the given category to retrieve. The default is 1, and it is

recommended to keep the value 1, as recursively retrieving taxonomy

categories can become computationally expensive.

TemplateProduct The relative or absolute path to the template containing the Product

Server Control.

An example implementation of a ProductList Server Control might look something like the following
code snippet.

<CMS:ProductList ID=”ProductList” runat=”server”

 GetAnalyticsData=”True” PageSize=”10” PageSpan=”2”

 SortMode=”HighestRated” SourceType=”CatalogList”

 IdList=”137,138,139” />

This code would output a display exemplifi ed in Figure 13-8.

FIGURE 13-8

TABLE 13-2 (continued)

c13.indd 502c13.indd 502 12/28/2010 2:03:18 PM12/28/2010 2:03:18 PM

eCommerce Server Controls and Implementation x 503

Product Server Control

The Product Server Control is closely related to the ContentBlock Server Control. It displays
all the information about a given catalog entry, including the title, description, image and asso-
ciated secondary images, the sale price, and a link to add the item to the cart. This is shown in
Figure 13-9.

FIGURE 13-9

Additionally, the Product Server Control has the smarts to display the relevant information for
product types other than Simple Product. For example, when working with a Bundled Product,
the Product Server Control displays an additional area beginning with “This Bundle Includes” and
then lists the items contained in the bundle along with their thumbnails and details. For Complex
Products, the section is shown beginning with the text “Variants” and then listing the thumbnail,
details, and price for each option. Kits are similar to Complex Products, with the section starting
with “Options” and then listing each type of option with radio buttons for the selections available
for that option, along with the uplift for choosing that option. Figure 13-10 shows a screenshot of
the output of the Product Server Control for a kit product.

FIGURE 13-10

Table 13-3 lists the available properties for the Product Server Control.

c13.indd 503c13.indd 503 12/28/2010 2:03:19 PM12/28/2010 2:03:19 PM

504 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

TABLE 13-3: Product Server Control Properties

PROPERTY DESCRIPTION

CustomXml Specifi es additional XML to append to the generated XML before it is

passed to the XSLT for fi nal transformation.

DefaultProductID Specify the Product ID here if you want to hardcode it.

DisplayXslt Specifi es the XSLT to use to display the product. The default XSLT is

located at ~\Workarea\Xslt\Commerce\product.xsl.

DynamicParameter Specifi es that the Product Server Control should read the product ID from

the query string parameter.

ImageGallery If this is set to List, the list of images specifi ed on the media tab for the

product are shown beneath the primary image. If a user clicks one of

the thumbnails, the full image is shown. If set to None, the gallery is not

displayed.

OverrideXslt Like all Smart Forms, products have up to four XSLTs that you can specify

for the display layer. When managing the product confi guration, there

is a packaged XSLT, as well as three additional XSLTs that the path can

specify. You can set this property to 0, 1, 2, or 3. If set to 0, the packaged

XSLT displays the product. Otherwise, the XSLT fi les specifi ed as additional

display XSLTs is used. If the DisplayXslt property is set, this property is

ignored.

ShowAddToCart Controls whether the Add to Cart button appears on the Product Server

Control. The link will not be shown regardless of this value if the Buyable

checkbox is unchecked for a given product.

TemplateCart The relative or absolute path to the template containing the Cart Server

Control. This is used to generate the links for the Add to Cart button.

An example implementation of a Product Server Control might look something like the following
code snippet.

<CMS:Product ID=”Product” runat=”server”

 DynamicParameter=”id” ImageGallery=”List” ShowAddToCart=”true” />

This code would output a display as exemplifi ed in Figure 13-11.

Recommendation Server Control

The Recommendation Server Control allows you to display the CrossSell and UpSell opportuni-
ties you defi ned in the product options. Typically displayed alongside the Product Server Control, it
shows the product thumbnail, title, price, and optionally an Add to Cart button. This can be useful
in getting the most bang out of your eCommerce implementation, by steering customers to a more
expensive variant of the product they are currently looking at, or by prompting them to purchase

c13.indd 504c13.indd 504 12/28/2010 2:03:19 PM12/28/2010 2:03:19 PM

eCommerce Server Controls and Implementation x 505

an additional item that might also be interesting to them. The Recommendation Server Control is
shown in Figure 13-12.

FIGURE 13-11

FIGURE 13-12

The properties available on the Recommendation Server Control are listed in Table 13-4.

TABLE 13-4: Recommendation Server Control Properties

PROPERTY DESCRIPTION

CustomXml Allows you to specify a string containing custom XML that you want

to inject into the XML generated by the control. This injection will

occur prior to transformation by the XSLT.

DefaultProductID Specify this if you do not want the control to act dynamically

based on the query string.

DisplayXslt Allows you to specify a custom XSLT fi le to use when render-

ing results. The default fi le used is ~\Workarea\Xslt\Commerce\

Recommendation.xsl.

continues

c13.indd 505c13.indd 505 12/28/2010 2:03:19 PM12/28/2010 2:03:19 PM

506 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

PROPERTY DESCRIPTION

DynamicCartParameter Specifi es the query string parameter that should be used to pass

the product ID to the Cart Server Control. This is used when build-

ing the URL used in the Add To Cart link.

DynamicProductParameter Specifi es the query string parameter that should be used to pass

the product ID to the Product Server Control. This is used when

building the URL used in the details link.

PageSize Specifi es the number of items to show per page.

RecommendationType Can be set to CrossSell or UpSell, and determines which group

of associated products are shown in the Recommendation Server

Control.

TemplateCart Specifi es the relative or absolute path to the template containing

the Cart Server Control. Used to generate the Add to Cart links.

TemplateProduct Specifi es the relative or absolute path to the template containing

the Product Server Control. Used to generate the detail links.

An example implementation of a Recommendation Server Control might look something like the
following code snippet.

<CMS:Recommendation ID=”Recommendation” runat=”server”

 DynamicCartParameter=”product” DynamicProductParameter=”id”

 RecommendationType=”CrossSell” TemplateCart=”cart.aspx”

 TemplateProduct=”product.aspx” />

This code would output a display as shown in Figure 13-13.

FIGURE 13-13

Purchase and Maintenance Controls

Now that you have explored the controls relating to the catalog browsing experience, you’ll explore
the last four controls, which relate to account maintenance and the actual purchasing process. The
controls are described as follows:

TABLE 13-4 (continued)

c13.indd 506c13.indd 506 12/28/2010 2:03:19 PM12/28/2010 2:03:19 PM

eCommerce Server Controls and Implementation x 507

 ‰ MyAccount Server Control: The area where the customers can manage their user details,
including their names, e-mail addresses, passwords, billing addresses, and a list of shipping
addresses. Remember that the Ektron Framework does not store credit card information, so
customers cannot manage that information from this control.

 ‰ OrderList Server Control: Allows customers to view the list of past orders associated with
that account. It displays the order date and number, along with the current status of the
order. They can also examine the past orders in detail, viewing what items they ordered and
the status of those individual items, the shipping and billing addresses associated with the
order, and the pricing details of the order.

 ‰ Cart Server Control: Allows the customers to view the items they have currently selected to
purchase, and manage quantities of those purchases. They can view the pricing details, and
apply coupons to these items as well. Additionally, the Cart Server Control allows them to
save carts containing items they are interested in, and recall those carts at any time.

 ‰ Checkout Server Control: Takes the customers through the process of purchasing their goods.
This is a multistep process, starting with collecting the billing and shipping information,
reviewing the order, supplying the payment information, and fi nally receiving notifi cation
of the successful order placement. It supports checking out both registered and unregistered
users, and allows unregistered users to create accounts as part of the checkout process.

MyAccount Server Control

The MyAccount Server Control is a counterpart to the Profi le Server Control. It allows users to
manage some items that are not available in the Profi le Server Control, notably the billing and ship-
ping addresses that the customer wishes to use.

It behaves differently based on the user viewing it. If users visit the page when they are not logged
in, they are redirected to the URL specifi ed in the web.confi g at the key “ek_RedirectToLoginURL.”
Alternatively, if users view the control but are missing information that is required for their account,
they are required to enter that information before moving on.

The fi elds that the MyAccount Server Control captures are the fi rst name, last name, e-mail address,
and password. These are all required values in the system. For the billing and shipping addresses,
customers can enter their names, company, address, city, state, postal code, country, and phone
number. For each address stored, the only fi eld not required is the company. Additionally, the con-
trol is capable of capturing additional data specifi ed through Custom User Properties, by specifying
the properties to capture through the CustomerPropertyID property.

The properties available to the MyAccount Server Control are listed in Table 13-5.

TABLE 13-5: MyAccount Server Control Properties

PROPERTY DESCRIPTION

CustomerPropertyID A comma-separated list of Custom User Properties to capture on the

user properties pane. These properties can be modifi ed in the Workarea

at Settings Í Confi guration Í Custom Properties.

continues

c13.indd 507c13.indd 507 12/28/2010 2:03:20 PM12/28/2010 2:03:20 PM

508 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

PROPERTY DESCRIPTION

CustomXML Allows you to inject XML into the generated XML before it is passed to

the XSLT for transformation.

DefaultCountryID The Country ID to select by default when customers are entering

new addresses. The IDs can be found in the Workarea at Settings Í

Commerce Í Confi guration Í Countries.

DisplayXslt Allows you to specify a custom XSLT document to use to render the

output of the control. The default XSLT is at ~\Workarea\Xslt\Commerce\

MyAccount.xsl.

LoadingImage The image that is shown while the control is performing an AJAX fetch

of data.

RedirectUrl The relative or absolute path to a page containing the login control. If

this is not set, the web.confi g key “ek_RedirectToLoginURL” is checked

for a value.

An example implementation of a MyAccount Server Control might look something like the following
code snippet.

<CMS:MyAccount ID=”MyAccount” runat=”server”

 CustomPropertyID=”240” DefaultCountryId=”840” RedirectUrl=”Login.aspx” />

This code would output a display as depicted in Figure 13-14.

FIGURE 13-14

OrderList Server Control

The OrderList Server Control is generally used in conjunction with the MyAccount Server Control.
It allows users to look through their past orders and get status updates on orders still in progress. It
is shown in Figure 13-15.

Users can also dive into the details of a particular order by selecting that order from the list. The
display updates to show the overall status of the order, along with the date it was placed and the
ID of the order. It displays the Ship To and the Bill To names and addresses associated with the
order, along with a list of the items in the order and their individual prices. It also displays the order

TABLE 13-5 (continued)

c13.indd 508c13.indd 508 12/28/2010 2:03:20 PM12/28/2010 2:03:20 PM

eCommerce Server Controls and Implementation x 509

subtotal, coupon total, taxes applied, shipping cost, and total amount that was or will be charged to
the customer. This view is shown in Figure 13-16.

FIGURE 13-15

FIGURE 13-16

The properties available to the MyAccount Server Control are listed in Table 13-6.

TABLE 13-6: OrderList Server Control Properties

PROPERTY DESCRIPTION

CustomXML Allows you to inject XML into the generated XML before it is

passed to the XSLT for transformation.

DefaultUserID The User ID whose orders will be displayed. If this is not set, the

current user’s orders are shown instead.

continues

c13.indd 509c13.indd 509 12/28/2010 2:03:20 PM12/28/2010 2:03:20 PM

510 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

PROPERTY DESCRIPTION

DisplayXslt Allows you to specify a custom XSLT document to use to render

the output of the control. The default XSLT is at ~\Workarea\Xslt\

Commerce\OrderList.xsl.

DynamicProductParameter The query string parameter to fi ll with the product ID when building

a link to the product detail page.

DynamicOrderParameter The query string parameter to read when displaying a particular

order.

GuestOrderView If set to true, guest accounts can view their orders by entering the

particular order number as well as their e-mail addresses.

MaxResults Specifi es the maximum number of orders to display before

switching to the paged interface.

PageSize Specifi es the number of orders to show per page.

TemplateProduct An absolute or relative path to a template containing the Product

Server Control. If this is set, the title of a product inside an order

becomes a link to view the details of that product.

An example implementation of an OrderList Server Control might look something like the following
code snippet.

<CMS:OrderList ID=”OrderList” runat=”server”

DynamicOrderParameter=”OID” DynamicProductParameter=”id”

TemplateProduct=”Product.aspx” />

This code would output a display as shown in Figure 13-17.

FIGURE 13-17

Cart Server Control

The Cart Server Control allows users to manage multiple carts containing items of interest
to them. They can save a currently selected list of items for long-term decision-making by
giving the cart a name, or restore old carts by selecting them. They can also manage the
items in a given cart by deleting them, or modifying the quantities in the cart. It is shown in
Figure 13-18.

TABLE 13-6 (continued)

c13.indd 510c13.indd 510 12/28/2010 2:03:21 PM12/28/2010 2:03:21 PM

eCommerce Server Controls and Implementation x 511

FIGURE 13-18

In addition to the basics of cart management, users can also apply coupons to the cart or items in a
cart, before moving on to the checkout process. The properties available to the Cart Server Control
are listed in Table 13-7.

TABLE 13-7: Cart Server Control Properties

PROPERTY DESCRIPTION

CustomXML Allows you to inject XML into the generated XML before it is

passed to the XSLT for transformation.

DisplayXslt Allows you to specify a custom XSLT document to use to render

the output of the control. The default XSLT is at ~\Workarea\Xslt\

Commerce\Cart.xsl.

DynamicProductParameter The query string parameter to fi ll with the product ID when building

a link to the product detail page.

EnableCoupons If this is set to false, the Apply Coupon button is hidden.

LoadingImage The image to display when the cart performs an AJAX fetch of data

from the server.

TemplateCheckout An absolute or relative path to a template containing the Checkout

Server Control. This is used to build the link to the checkout page.

TemplateProduct An absolute or relative path to a template containing the Product

Server Control. If this is not set, the QuickLink for the product is

used for the Details link.

TemplateShopping This is the URL to continue to when the user selects the Continue

Shopping link.

c13.indd 511c13.indd 511 12/28/2010 2:03:21 PM12/28/2010 2:03:21 PM

512 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

An example implementation of a Cart Server Control might look something like the following
code snippet.

<CMS:Cart ID=”Cart” runat=”server”

 DynamicProductParameter=”id” EnableCoupons=”true”

 EnableImages=”true” TemplateCheckout=”Checkout.aspx”

 TemplateProduct=”Product.aspx” TemplateShopping=”Store.aspx” />

This code would output a display as depicted in Figure 13-19.

FIGURE 13-19

Checkout Server Control

The Checkout Server Control is the fi nal control that users interact with as part of their shopping
experience on your site. It takes them from having a cart full of items, to actually purchasing those
items by selecting the billing and shipping addresses to use, and providing payment details. This
control has the most hooks into the rest of the system, relying on tax providers, shipping providers,
and payment gateways to complete its task. It is shown in Figure 13-20.

The control acts differently depending on whether the customer currently checking out is
logged in. If the user has not yet logged in, he’s invited to do so, but he’s also presented with
the option of creating a profi le in line with the checkout procedure, or of checking out without
creating a profi le. This choice is shown in Figure 13-21. The steps for the checkout process are
as follows:

c13.indd 512c13.indd 512 12/28/2010 2:03:21 PM12/28/2010 2:03:21 PM

eCommerce Server Controls and Implementation x 513

FIGURE 13-20

FIGURE 13-21

1. Billing information: When users are logged in, this is pre-populated with their saved data.

2. Shipping information: The shipping address defaults to the billing address, unless they have
saved addresses, in which case the list of addresses currently saved to the account are shown,
along with the option of editing or deleting those addresses, or adding a new address. This is
shown in Figure 13-22.

3. Shipping method: This screen displays the options available, along with the estimated cost
of each method. These methods are read from the available methods in the Workarea, which
are confi gured through the use of a shipping provider.

4. Order review: The user will then have the opportunity to review the order, which shows
them all the updated associated charges, such as taxes and shipping costs. They also have the
ability to edit their carts at this point.

c13.indd 513c13.indd 513 12/28/2010 2:03:21 PM12/28/2010 2:03:21 PM

514 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

FIGURE 13-22

5. Order submission: Finally, the next step allows users to submit the order. It is on this screen
that they have the option of selecting a payment method and entering the details of their
payment option, as shown in Figure 13-23.

FIGURE 13-23

6. Thank you message: These options, like the shipping options, are read in from the settings
defi ned in the Workarea at the Payment Options screen. Once the users submit their informa-
tion on this page, the charge is sent to the payment gateway, and the order is recorded in the
database. Users are then presented with a thank you message.

The properties available to the Checkout Server Control are listed in Table 13-8.

c13.indd 514c13.indd 514 12/28/2010 2:03:22 PM12/28/2010 2:03:22 PM

eCommerce Server Controls and Implementation x 515

TABLE 13-8: Checkout Server Control Properties

PROPERTY DESCRIPTION

CurrentPhase Allows you to jump the users to specifi c phases in the check-

out process by modifying the value in codebehind. The avail-

able phases are: Login, BillingInfo, BillingInfoEntry, ShippingInfo,

ShippingInfoEntry, ShippingMethodSelect, ReviewOrder,

SubmitOrder, Complete, Error_EmptyBasket, and Error_

UnhandledException. For example, you might want to off er the

users the ability to jump back to the ShippingMethodSelect phase

from the ReviewOrder phase.

CustomXML Allows you to inject XML into the generated XML before it is passed

to the XSLT for transformation.

DefaultCountryId The default country shown in the billing and shipping address

dropdown.

DynamicPhaseParameter The query string parameter that stores the phase ID.

DisplayXslt Allows you to specify a custom XSLT document to use to render

the output of the control. The default XSLT is at ~\Workarea\Xslt\

Commerce\Checkout\Standard\Checkout.xsl.

FriendlyErrorMessage This text is shown to the users if an unhandled error occurs.

AllowGuestCheckout Set to true to allow guests to check out without creating an account.

IsSSLRequired If set to true, the Checkout Server Control automatically switches

the user to an SSL connection. This requires that an SSL certifi cate

be installed to your site, and is strongly recommended for produc-

tion eCommerce implementations.

LoadingImage The image to display when the cart performs an AJAX fetch of data

from the server.

TemplateCart The path to a template that contains the Cart Server Control.

TemplateOrderHistory The path to a template that contains the OrderList Server Control.

TemplateRecoverPassword The path to a template that allows the users to recover their

passwords.

TemplateShopping This is the URL to continue to when the users select the Continue

Shopping link.

An example implementation of a Checkout Server Control might look something like the following
code snippet.

<CMS:Checkout ID=”Checkout” runat=”server”

 AllowGuestCheckout=”True” DefaultCountryId=”840”

c13.indd 515c13.indd 515 12/28/2010 2:03:22 PM12/28/2010 2:03:22 PM

516 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 FriendlyErrorMessage=”Oops, something broke!”

 TemplateCart=”ShoppingCart.aspx”

 TemplateOrderHistory=”OrderHistory.aspx”

 TemplateRecoverPassword=”RecoverPassword.aspx”

 TemplateShopping=”Store.aspx” />

This code would output a display as shown in Figure 13-24.

FIGURE 13-24

OnTrek eCommerce Implementation

Now that you have examined the server controls that make up the eCommerce development experi-
ence, this section takes a look at how those pieces come together in the OnTrek site to create a uni-
fi ed shopping experience.

Understanding the Landing Page

The OnTrek implementation of eCommerce is based around a single template that changes its
presentation based on what the current view is. It presents three possible views to the users — the
landing page for the commerce section, the product search view, and the product detail view.
PageBuilder is used for the landing view, but the other two views are more fi rm in the presentation,
with only the right channel being modifi able. In the case of the PageBuilder based landing page,
you’ll be using the default layout as installed in the OnTrek site.

This section starts by taking a look at how the product detail structure works. It’s based around the
products.pb.aspx Wireframe, which contains a multiview exposing the different views the page can
handle. The contents of this page are reproduced in Listing 13-1.

LISTING 13-1: ~/products.pb.aspx

<%@ Page Language=”C#”

 MasterPageFile=”~/components/templates/2ColumnChannelRight.master”

 AutoEventWireup=”true” CodeFile=”products.pb.aspx.cs”

c13.indd 516c13.indd 516 12/28/2010 2:03:22 PM12/28/2010 2:03:22 PM

eCommerce Server Controls and Implementation x 517

 Inherits=”Ektron.Site.Products.Products” Title=”Products” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<%@ Register Assembly=”Ektron.Cms.Widget”

 Namespace=”Ektron.Cms.PageBuilder” TagPrefix=”PB” %>

<%@ Register Src=”~/Workarea/PageBuilder/PageControls/PageHost.ascx”

 TagName=”PageHost” TagPrefix=”CMS” %>

<%@ Register Src=”~/Workarea/PageBuilder/PageControls/DropZone.ascx”

 TagName=”DropZone” TagPrefix=”CMS” %>

<%@ Register

 Src=”~/Components/userControls/products/products.productDescription.ascx”

 TagName=”ProductDescription” TagPrefix=”uc” %>

<%@ Register

 Src=”~/Components/userControls/products/products.productSearch.ascx”

 TagName=”ProductSearch” TagPrefix=”uc” %>

<asp:Content ID=”contentBody” ContentPlaceHolderID=”uxContentBody” runat=”Server”>

 <CMS:PageHost ID=”pageHost” runat=”server” />

 <asp:MultiView ID=”uxProductsMultiView” runat=”server”>

 <asp:View ID=”uxProductsLandingView” runat=”server”>

 <CMS:DropZone ID=”cmsDropZoneLanding” runat=”server”

 AllowColumnResize=”false” AllowAddColumn=”false”>

 <ColumnDefinitions>

 <PB:ColumnData columnID=”1” unit=”percent” width=”100” />

 </ColumnDefinitions>

 </CMS:DropZone>

 </asp:View>

 <asp:View ID=”uxProductSearchView” runat=”server”>

 <CMS:ContentBlock runat=”server” ID=”cmsContentProductSearch”

 DefaultContentID=”122” />

 <uc:ProductSearch ID=”ucProductSearch” runat=”server” />

 </asp:View>

 <asp:View ID=”uxProductDescriptionView” runat=”server”>

 <uc:ProductDescription ID=”ucProductDescription” runat=”server” />

 </asp:View>

 </asp:MultiView>

</asp:Content>

<asp:Content ID=”channelRight” ContentPlaceHolderID=”uxChannel” runat=”Server”>

 <asp:PlaceHolder ID=”uxProductsChannelRightPlaceholder” runat=”server” />

 <CMS:DropZone ID=”cmsDropZoneProducts” runat=”server”

 AllowColumnResize=”false” AllowAddColumn=”false”>

 <ColumnDefinitions>

 <PB:ColumnData columnID=”0” unit=”percent” width=”100” />

 </ColumnDefinitions>

 </CMS:DropZone>

</asp:Content>

The multiview in this fi le exposes three views: uxProductsLandingView, uxProductSearchView,
and uxProductDescriptionView. Then the right side of the page is made up of a single PageBuilder
DropZone, making it customizable. Let’s take a look at the codebehind of this fi le to get a clearer
picture of what is happening. Listing 13-2 contains the codebehind in products.pb.aspx.cs.

c13.indd 517c13.indd 517 12/28/2010 2:03:22 PM12/28/2010 2:03:22 PM

518 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

LISTING 13-2: ~\Products.pb.aspx.cs

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using Ektron.Cms;

using Ektron.Cms.API;

using Ektron.Cms.PageBuilder;

using Ektron.Site;

using Ektron.OnTrek;

namespace Ektron.Site.Products

{

 [LicenseRequirement(Ektron.Cms.DataIO.LicenseManager.Feature.eCommerce)]

 public partial class Products : SitePageBuilder

 {

 protected void Page_Init(object sender, EventArgs e)

 {

 Ektron.OnTrek.Utility.Current.SiteUtility.BreadcrumbControl.DoInitFill

 = false;

 Ektron.OnTrek.Utility.Current.SiteUtility.BreadcrumbControl

 .AddContentTitleToBreadcrumb

 = true;

Ektron.OnTrek.Utility.Current.SiteUtility.BreadcrumbControl.DynamicParameter

 = “pageid”;

 }

 public override void OnPageReady(object sender, EventArgs e)

 {

 SetActiveView();

 }

 #region helpers

 public override void Error(string message)

 {

 jsAlert(message);

 }

 public override void Notify(string message)

 {

 jsAlert(message);

 }

 public void jsAlert(string message)

 {

 try

 {

 Literal lit = new Literal();

 lit.Text = “<script type=\”\” language=\”\”>{0}</script>”;

 lit.Text = string.Format(lit.Text, “alert(‘” + message + “’);”);

 Form.Controls.Add(lit);

 }

 catch (Exception)

c13.indd 518c13.indd 518 12/28/2010 2:03:22 PM12/28/2010 2:03:22 PM

eCommerce Server Controls and Implementation x 519

 {

 }

 } private void SetActiveView()

 {

 long PageID = SiteData.Current.PageBuilder.PageId;

 switch (PageID)

 {

 case 53:

 uxProductsMultiView.SetActiveView(uxProductsLandingView);

 break;

 case 82:

 uxProductsMultiView.SetActiveView(uxProductSearchView);

 break;

 default:

 if (!String.IsNullOrEmpty(Request.QueryString[“id”]))

 {

Ektron.OnTrek.Utility.Current.SiteUtility.BreadcrumbControl.DynamicParameter

 = “id”;

 }

 // anything else and the user is viewing a specific product

 UserControl ucProductsCrossSell =

 (UserControl)Page.LoadControl(SiteData.Current.Cms.SitePath +

 “components/userControls/products/products.CrossSell.ascx”);

 UserControl ucProductsUpSell =

 (UserControl)Page.LoadControl(SiteData.Current.Cms.SitePath +

 “components/userControls/products/products.UpSell.ascx”);

 uxProductsChannelRightPlaceholder.Controls.Add(ucProductsCrossSell);

 uxProductsChannelRightPlaceholder.Controls.Add(ucProductsUpSell);

 uxProductsMultiView.SetActiveView(uxProductDescriptionView);

 break;

 }

 }

 #endregion

 }

}

In Listing 13-2, the key portion is the SetActiveView method, which is called on the page ready
event. It is clear from this code that the Wireframe is designed to display two layouts in particular,
layout ID 53, which is the landing page for the eCommerce section, and layout ID 82, which is the
product search page. Any other page layout means that this is actually a product being displayed.

Understanding the User Controls

Now that you understand how the product page switches between the three modes — search, brows-
ing, and product detail — you can take a look at the user controls that encapsulate those pieces of
functionality to see how they work in more detail. Let’s start by looking at the landing portion, con-
tained in the uxProductsLandingView view. This view is highlighted in Figure 13-25.

By default, this DropZone in this view contains a ContentBlock Widget that is set to display the
intro text, and two custom widgets.

 ‰ Site-ProductSearch Widget: This was custom built for the OnTrek site and contains a
ProductSearch Server Control.

c13.indd 519c13.indd 519 12/28/2010 2:03:23 PM12/28/2010 2:03:23 PM

520 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 ‰ Site-FeaturedProduct Widget: Contains the collection of controls that make up the featured
products section.

FIGURE 13-25

Let’s dive into the FeaturedProduct Widget, which is located at ~/widgets/Site-FeaturedProducts
.ascx, and shown in Listing 13-3.

LISTING 13-3: ~/widgets/Site-FeaturedProducts.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”Site-FeaturedProducts.ascx.cs”

 Inherits=”Ektron.Site.Widgets.FeaturedProducts” %>

<%@ Register Assembly=”Ektron.Cms.Controls”

 Namespace=”Ektron.Cms.Controls” TagPrefix=”CMS” %>

<div>

 <h2><asp:Literal ID=”uxFeaturedProductsTitle” runat=”server” /></h2>

 <CMS:Collection ID=”cmsFeaturedProducts”

 Visible=”false” Random=”false”

 DefaultCollectionID=”4”

 SelTaxonomyID=”190” GetHtml=”true”

 runat=”server” AddText=”Add Featued Product”

 class=”Site-FeaturedProductCollection” />

 <CMS:ProductList ID=”cmsFeaturedProductsList”

 SortMode=”None” SourceType=”Collection”

c13.indd 520c13.indd 520 12/28/2010 2:03:23 PM12/28/2010 2:03:23 PM

eCommerce Server Controls and Implementation x 521

 SourceId=”4” SuppressWrapperTags=”true”

 OrderBy=”CollItemsDisplayOrder” runat=”server” />

</div>

This user control is very simple: It contains a title block, an invisible collection control, and a
ProductList Server Control. The codebehind for this fi le only contains a few lines of interest, shown
in the following code snippet.

cmsFeaturedProducts.Fill();

uxFeaturedProductsTitle.Text = cmsFeaturedProducts.CollectionTitle;

cmsFeaturedProductsList.DisplayXslt = Ektron.Site.SiteData.Current.Cms.SitePath +

 “widgets/Site-FeaturedProducts/Site-FeaturedProducts.xsl”;

What happens in this user control is that the Collection Server Control is being loaded to retrieve
the title, which is then populated into the Literal at the top of the user control. The actual prod-
uct display is then handled exclusively by the ProductList Server Control, which simply displays
collection ID 4. It uses a custom XSLT to render the results, which is stored at ~/widgets/
Site-FeaturedProducts/Site-FeaturedProducts.xsl.

This shows the power of the out-of-the-box eCommerce controls, that so little modifi cation is
needed to create a rich interface.

Understanding the Product Detail Interface

Let’s jump in a different direction now, and take a look at the product detail interface. When you
click a product link, you are presented with the page shown in Figure 13-26 in the browser.

FIGURE 13-26

c13.indd 521c13.indd 521 12/28/2010 2:03:23 PM12/28/2010 2:03:23 PM

522 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

You know from looking at the products.pb.aspx Wireframe that the entire display layer for the
product detail interface is actually handled by a single user control, which exists at ~/Components/
userControls/products/products.productDescription.ascx. Let’s take a look at the source and code-
behind for that user control now, in Listing 13-4.

LISTING 13-4: ~/Components/userControls/products/products.productDescription.ascx

<%@ Control Language=”C#” AutoEventWireup=”true”

 CodeFile=”products.productDescription.ascx.cs”

 Inherits=”Ektron.Site.Products.ProductDescription” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

 TagPrefix=”CMS” %>

<%@ Register Src=”~/Components/userControls/rating/averageRating.ascx”

 TagName=”AverageRating” TagPrefix=”uc” %>

<div class=”site-productDescription”>

 <div class=”clearfix”>

 <h1 class=”span-14”><asp:Literal ID=”uxProductTitle” runat=”server” /></h1>

 <div class=”span-4 last ektron-ui-floatRight socialAndRatingsWrapper”>

 <CMS:SocialBar ID=”cmsSocialBar” WrapTag=”div”

 CssClass=”ektron-ui-floatRight” DynamicObjectParameter=”id”

 ObjectType=”Content” Direction=”LeftToRight”

 Items=”Addto,Email,Print,Twitter,FaceBook” runat=”server” />

 <uc:AverageRating ID=”ucAverageRating” TextAlignment=”Right”

 Title=”Average Rating:” runat=”server” />

 </div>

 </div>

 <CMS:Product ID=”cmsProductView” DynamicParameter=”id” runat=”server”

 CssClass=”productBasicInfo” />

 <div class=”site-products-productTabs”>

 Ratings & Reviews

 Specifications

 <div id=”Ratings” class=”clearfix”>

 <cms:ContentReview ID=”cmsContentReviews” WrapTag=”div” runat=”server”

 DynamicParameter=”id” DisplayXslt=”Review List”

 GetReviews=”content” />

 <cms:ContentReview ID=”cmsContentRatings” WrapTag=”div” runat=”server”

 DynamicParameter=”id” />

 </div>

 <div id=”Specifications”>

 <asp:Xml ID=”uxSpecificationsXml” runat=”server” />

 </div>

 </div>

</div>

In the code, you can see that the key parts of this user control are the SocialBar and ContentReview
Server Controls, with the product itself being displayed by the Product Server Control. The Product
Server Control itself has very few properties set in the declarative side, and only two properties set
in the codebehind, as shown in the following snippet.

// set product view params

cmsProductView.TemplateCart = SiteData.Current.Cms.SitePath + “cart.aspx”;

c13.indd 522c13.indd 522 12/28/2010 2:03:24 PM12/28/2010 2:03:24 PM

eCommerce Server Controls and Implementation x 523

cmsProductView.DisplayXslt = SiteData.Current.Cms.SitePath +

 “components/usercontrols/products/products.productDescription.xsl”;

cmsProductView.Fill();

As with the ProductList Server Control, you are dealing with a near stock eCommerce Server
Control, with a customized XSLT to provide the styling needed for the site.

Understanding the Server Controls

Having looked at how some of the product interaction works, you can take a look at some of the more
complex server controls, like the Cart Server Control and the Checkout Server Control. On one of the
product pages, click the Add to Cart button to see the cart.aspx page, as shown in Figure 13-27.

FIGURE 13-27

All the interaction with the cart takes place on the Cart.aspx page, so let’s look at the code for that,
as shown in Listing 13-5.

LISTING 13-5: ~\Cart.aspx

<%@ Page Language=”C#” MasterPageFile=”~/components/templates/Full.master”

 AutoEventWireup=”true” CodeFile=”cart.aspx.cs”

 Inherits=”Ektron.Site.Cart” Title=”My Cart” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

continues

c13.indd 523c13.indd 523 12/28/2010 2:03:24 PM12/28/2010 2:03:24 PM

524 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 TagPrefix=”CMS” %>

<asp:Content ID=”contentBody” ContentPlaceHolderID=”uxContentBody” Runat=”Server”>

 <CMS:Cart ID=”cmsCart” EnableCoupons=”true” EnableImages=”true” runat=”server” />

</asp:Content>

This fi le is exceedingly simple. Containing a lone Cart Server Control, it is a straightforward exam-
ple of implementing the shopping cart portion of your eCommerce site. The codebehind is no more
complex, with the relevant lines shown in the following snippet.

cmsCart.TemplateCheckout = SiteData.Current.Cms.SitePath + “checkout.aspx”;

cmsCart.TemplateShopping = SiteData.Current.Cms.SitePath + “Products”;

cmsCart.DisplayXslt = SiteData.Current.Cms.SitePath + “XmlFiles/cart.xsl”;

This codebehind is adding pointers to the correct URLs when a customer is ready to check out or
wants to continue shopping. This example uses a slightly customized XSL on this server control.
Let’s now continue with the Checkout Server Control.

When you click checkout on the cart page, you are brought to the checkout.aspx page, which
is shown in Figure 13-28. This page is also very straightforward, with only the one item being
displayed.

FIGURE 13-28

LISTING 13-5 (continued)

c13.indd 524c13.indd 524 12/28/2010 2:03:24 PM12/28/2010 2:03:24 PM

Custom Order Workfl ow x 525

Looking at the code for the checkout.aspx page, you can see that just like the cart.aspx page, this is
a nearly stock control. This is shown in Listing 13-6.

LISTING 13-6: ~\Checkout.aspx

<%@ Page Language=”C#” MasterPageFile=”~/components/templates/Full.master”

 AutoEventWireup=”true” CodeFile=”checkout.aspx.cs”

 Inherits=”Ektron.Site.Checkout” Title=”OnTrek: Checkout” %>

<%@ Register Assembly=”Ektron.Cms.Controls” Namespace=”Ektron.Cms.Controls”

 TagPrefix=”CMS” %>

<asp:Content ID=”contentBody” ContentPlaceHolderID=”uxContentBody” Runat=”Server”>

 <h2>Checkout</h2>

 <CMS:Checkout ID=”cmsCheckout” Stylesheet=”css/ektron.site.checkout.css”

 IsSSLRequired=”false” runat=”server” />

</asp:Content>

And again like the cart.aspx page, the codebehind is very simple. It simply sets up the CSS stylesheet
and sets some fi le pointers to allow for link construction.

cmsCheckout.Stylesheet = SiteData.Current.Cms.SitePath

 + “css/ektron.site.checkout.css”;

cmsCheckout.TemplateCart = SiteData.Current.Cms.SitePath

 + “cart.aspx”;

cmsCheckout.TemplateOrderHistory = SiteData.Current.Cms.SitePath

 + “account.orderHistory.aspx”;

cmsCheckout.TemplateShopping = SiteData.Current.Cms.SitePath

 + “Products”;

Having looked through some key elements of the eCommerce implementation on the OnTrek site,
you should now have some ideas about how to implement the functionality on your own site.

CUSTOM ORDER WORKFLOW

One of the huge strengths of the Ektron eCommerce package is the many extension points available
in the infrastructure. One example of these points is the ability to create new order workfl ows from
whole cloth. This section explores this process and shows a step-by-step process for building a new
workfl ow engine.

The order workfl ow engine in the eCommerce feature is built around the Windows Workfl ow
Foundation, which is Microsoft’s framework for building complex workfl ow implementations. It
allows developers to construct these workfl ow patterns by chaining together predefi ned pieces of func-
tionality, called activities. These activities consist of anything from conditional blocks to custom code.

This section requires that you install CMS400 SDK to your system. Additionally, you must install
the Visual Studio 2005 extensions for Windows Workfl ow Foundation if you are running Visual
Studio 2005. Visual Studio 2008 already has this tool integrated. The Visual Studio 2005 exten-
sions can be downloaded at:

http://www.microsoft.com/downloads/en/details

.aspx?FamilyId=5D61409E-1FA3-48CF-8023-E8F38E709BA6&displaylang=en

c13.indd 525c13.indd 525 12/28/2010 2:03:24 PM12/28/2010 2:03:24 PM

526 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

This section looks at Ektron’s predefi ned activities, builds a new activity, and then builds a custom
workfl ow that utilizes that activity. You will then incorporate the new workfl ow into OnTrek. The
sections are as follows:

 ‰ Windows Workfl ow Foundation basics

 ‰ Creating a custom activity

 ‰ Building a workfl ow

 ‰ Using a custom workfl ow in an Ektron site

Windows Workfl ow Foundation Basics

The Windows Workfl ow Foundation is designed to be incorporated into a variety of applications,
and to be the basic engine for providing workfl ow technology across Windows applications. It’s
built around handling both system and human workfl ows as well as both simple sequential work-
fl ows and complex state machine workfl ows that can handle outside events.

There are six major components used in the workfl ow engine.

 ‰ Activity: The basic unit of work. There is a list of basic activities provided as part of the tool-
box, similar to the basic server controls provided to an ASP.NET developer. These activities
are chained together, with the output of one activity being the input of the next activity. This
allows for complex operations to take place.

 ‰ Workfl ow: The combination of many activities that implement a subset or the entirety of a
business process.

 ‰ Windows Workfl ow Foundation designer: A tool integrated with Visual Studio. It allows
you, as a developer, to construct a workfl ow to solve your business needs.

 ‰ Windows Workfl ow Foundation base activity library: This is analogous to the toolbox used
in .NET development, containing basic chunks of capabilities that you can combine in novel
ways to address your specifi c needs. They may not cover all the scenarios, which is why you
are also able to build custom activities.

 ‰ Windows Workfl ow Foundation runtime engine: Provides the basic platform required to
execute a workfl ow. This handles communication with the outside world, such as Web ser-
vices and event mechanisms. This is, for the most part, invisible to the developer, just like
the ASP.NET worker process.

 ‰ Host process: In this case, the Ektron Framework provides the supporting functionality
required to manage the workfl ow. Functionality includes persisting workfl ow state, handling
transactions, and any other capabilities the developers need to expose.

Most of these components can be safely shelved for now, so you can focus on the two most important
parts — activities and workfl ows. Workfl ows, as mentioned, are made up of a series of activities.
These activities generally take one of two forms: blocks that control the fl ow of events, and blocks
that execute functionality. Table 13-9 contains some of the activities exposed as part of the base
activity library:

c13.indd 526c13.indd 526 12/28/2010 2:03:24 PM12/28/2010 2:03:24 PM

Custom Order Workfl ow x 527

TABLE 13-9: Activities Exposed as Part of the Base Activity Library

ACTIVITY DESCRIPTION

IfElse Conditionally switches the workfl ow between two or more paths, based on a

custom rule.

While Loops through one or more activities, checking a condition before each

execution loop.

Sequence Executes many activities, one at a time, waiting to start the next activity until

the previous has completed.

Parallel Branches the workfl ow into two separate processes, and ensures that both sides

have completed execution before continuing to the next activity in the fl ow.

Code Executes a piece of custom code.

Listen Allows you to bind to an event, and begins running the activities attached to

it when that event is raised.

Delay Allows you to suspend execution of a workfl ow for a set amount of time.

InvokeMethod Executes a method in the application.

EventSink Acts as a target to be called from outside the workfl ow, but inside the

application.

InvokeWorkflow Begins execution on another workfl ow.

InvokeWebService Calls a Web service method.

Terminate Ends the current workfl ow.

Using these activities will allow you to build up the basis of your new workfl ow, but if you need to
go beyond these basic abilities, it can sometimes be useful to build custom activities.

Creating a Custom Activity

Let’s assume that you’ll need to publish a new piece of content whenever an item is purchased from
the store. You can follow these steps:

1. Start by opening Visual Studio and selecting File Í New Í Project.

2. Under Project Types, select Visual C# Í Workfl ow, and then under Templates, select
Workfl ow Activity Library.

3. Name the project OnTrek.Activities and select OK. This takes you to the design view of the
Activity1 activity, as shown in Figure 13-29.

4. Ensure that the name of your activity refl ects what it does. In the Solution Explorer, right-
click Activity1.cs, select Rename, and enter the new name AddContentActivity. This renames
the fi le as well as the class contained in it.

c13.indd 527c13.indd 527 12/28/2010 2:03:25 PM12/28/2010 2:03:25 PM

528 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

FIGURE 13-29

5. Update the code to add content. Right-click the fi le AddContentActivity.cs in the Solution
Explorer, and select View Code.

6. Ensure that the class defi ned in the fi le inherits from System.Workfl ow.ComponentModel
.Activity, as this is the base class for all activities in the workfl ow engine.

There are a few other skeletal items needed to defi ne the activity as well.

7. The fi rst piece of code to insert is the descriptors for the properties you will use. You
fi rst need to set up DependencyPropertys for each property, and register them with
the workfl ow engine. This informs the engine which properties are available to be set
from outside the activity so that the activity can perform its function. Once you have the
DependencyPropertys defi ned, you create the actual properties, which retrieve and set the
values via the base class. This section of code looks like the following snippet.

public static DependencyProperty ContentTitleProperty =

 DependencyProperty.Register(“ContentTitle”, typeof(string),

 typeof(AddContentActivity));

public static DependencyProperty FolderIdProperty =

 DependencyProperty.Register(“FolderId”, typeof(long),

 typeof(AddContentActivity));

public string ContentTitle

{

 get

 {

 return Convert.ToString(base.GetValue(ContentTitleProperty));

c13.indd 528c13.indd 528 12/28/2010 2:03:25 PM12/28/2010 2:03:25 PM

Custom Order Workfl ow x 529

 }

 set

 {

 base.SetValue(ContentTitleProperty, value);

 }

}

public long FolderId

{

 get

 {

 return Convert.ToInt64(base.GetValue(FolderIdProperty));

 }

 set

 {

 base.SetValue(FolderIdProperty, value);

 }

}

8. Create a constructor that applies the name of the activity to the base class, as shown in the
following snippet.

public AddContentActivity()

{

 base.Name = “AddContentToCMS”;

}

9. The fi nal section is to actually execute the unit of work this activity handles, which is
done by overriding the Execute method. To add the content, you need to get access to the
Ektron DLLs, so right-click the OnTrek.Activities project in the Solution Explorer and
select Add Reference. In the window that comes up, select the Browse tab, and browse to
your site location, which is by default C:\Inetpub\wwwroot\OnTrek\bin. Select the fi les
Ektron.Cms.ObjectFactory.dll, Ektron.Cms.BusinessApi.dll, Ektron.Cms.Common.dll,
and Ektron.Cms.Framework.dll.

10. Click OK.

11. Once you have your references added, you can add the code that will add content to the site.
This code looks like the following snippet.

protected override ActivityExecutionStatus Execute(

 ActivityExecutionContext executionContext)

{

 ActivityExecutionStatus status = ActivityExecutionStatus.Closed;

 try

 {

 Ektron.Cms.Framework.Core.Content.Content frameworkContentApi

 = new Ektron.Cms.Framework.Core.Content.Content(

 Ektron.Cms.Framework.ApiAccessMode.Admin);

 Ektron.Cms.ContentData newContent = new Ektron.Cms.ContentData();

 newContent.FolderId = FolderId;

c13.indd 529c13.indd 529 12/28/2010 2:03:25 PM12/28/2010 2:03:25 PM

530 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 newContent.Html = “Product Purchased!”;

 newContent.Title = ContentTitle;

 frameworkContentApi.Add(newContent);

 }

 catch (Exception ex)

 {

 status = ActivityExecutionStatus.Faulting;

 }

 return status;

}

Putting all these elements together nets you a fi le that defi nes an activity that adds a piece of con-
tent to the CMS. You can now use this activity in any workfl ow. The complete fi le is reproduced in
Listing 13-7.

LISTING 13-7: AddContentActivity.cs

using System;

using System.ComponentModel;

using System.ComponentModel.Design;

using System.Collections;

using System.Drawing;

using System.Linq;

using System.Workflow.ComponentModel.Compiler;

using System.Workflow.ComponentModel.Serialization;

using System.Workflow.ComponentModel;

using System.Workflow.ComponentModel.Design;

using System.Workflow.Runtime;

using System.Workflow.Activities;

using System.Workflow.Activities.Rules;

namespace OnTrek.Activities

{

 public partial class AddContentActivity : System.Workflow.ComponentModel.Activity

 {

 public static DependencyProperty ContentTitleProperty =

 DependencyProperty.Register(“ContentTitle”, typeof(string),

 typeof(AddContentActivity));

 public static DependencyProperty FolderIdProperty =

 DependencyProperty.Register(“FolderId”, typeof(long),

 typeof(AddContentActivity));

 public string ContentTitle

 {

 get

 {

 return Convert.ToString(base.GetValue(ContentTitleProperty));

 }

 set

 {

 base.SetValue(ContentTitleProperty, value);

 }

c13.indd 530c13.indd 530 12/28/2010 2:03:25 PM12/28/2010 2:03:25 PM

Custom Order Workfl ow x 531

 }

 public long FolderId

 {

 get

 {

 return Convert.ToInt64(base.GetValue(FolderIdProperty));

 }

 set

 {

 base.SetValue(FolderIdProperty, value);

 }

 }

 protected override ActivityExecutionStatus Execute(

 ActivityExecutionContext executionContext)

 {

 ActivityExecutionStatus status = ActivityExecutionStatus.Closed;

 try

 {

 Ektron.Cms.Framework.Core.Content.Content frameworkContentApi

 = new Ektron.Cms.Framework.Core.Content.Content(

 Ektron.Cms.Framework.ApiAccessMode.Admin);

 Ektron.Cms.ContentData newContent = new Ektron.Cms.ContentData();

 newContent.FolderId = FolderId;

 newContent.Html = “Product Purchased!”;

 newContent.Title = ContentTitle;

 frameworkContentApi.Add(newContent);

 }

 catch (Exception ex)

 {

 status = ActivityExecutionStatus.Faulting;

 }

 return status;

 }

 }

}

Building a Workfl ow

With your newly created activity, you are now ready to create a complete workfl ow to handle orders
as they come in. Rather than build the workfl ow from scratch, in this example you will use the stock
Ektron workfl ow and add your element to it. To do so, follow these steps:

1. In the Solution Explorer, right-click the OnTrek.Activities Solution and select Add Í New
Project.

2. Select Visual C#Í Workfl ow under Project types, and under templates select Ektron
Ordering Sequential Workfl ow.

c13.indd 531c13.indd 531 12/28/2010 2:03:25 PM12/28/2010 2:03:25 PM

532 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

If the Ektron Ordering Sequential Workfl ow template does not appear in your
Add Project window, make sure to copy the “Ektron Ordering Sequential Flow
.zip” fi le from C:\Program File\Ektron\CMS400SDK\Commerce\Workfl ow\
Templates\VS2008 to C:\Documents and Settings\~user name~\My Documents\
Visual Studio 2008\Templates\ProjectTemplates\Visual C#\Workfl ow.

3. Name the project OnTrekWorkfl ow and select OK. This creates a workfl ow project with the
default Ektron workfl ow in it.

4. Double-click the Workfl ow1.cs fi le, and you are presented with the design view of the work-
fl ow, as shown in Figure 13-30.

FIGURE 13-30

5. Open the toolbox, and you are presented with a list of activities that can be used in the
workfl ow. The existing workfl ow also has a whole list of activities used, beginning with
HandleReceivedEvent, which responds to an order event, and moving through a decision
tree based on whether the order is Tangible or Intangible, and so on.

Ektron also provides a series of activities, which you can add to the toolbox

1. Right-click inside the toolbox and select Choose Items.

2. In the dialog box that comes up, under .NET Framework Components, select Browse,
and browse to your bin folder of your site, by default at C:\inetpub\wwwroot\OnTrek\
bin. Select the Ektron.Workfl ow.dll fi le.

3. You are returned to the Choose Toolbox Items display, where you should click OK.

c13.indd 532c13.indd 532 12/28/2010 2:03:26 PM12/28/2010 2:03:26 PM

Custom Order Workfl ow x 533

This process adds the activities, shown in Table 13-10, to your toolbox:

TABLE 13-10: Activities that the Workfl ow Process Adds to the Toolbox

ACTIVITY DESCRIPTION

AdvancedEmailActivity Sends a specifi ed type of e-mail for the current

order.

BasicEmailActivity Sends a generic e-mail.

CaptureOrderActivity Submits the order information to the payment

gateway.

CheckDelayedPaymentTypeActivity Checks whether the payment type is a delayed pay-

ment, such as a check.

CheckStockActivity Checks whether the item is in stock.

CheckTangibleItemsActivity Checks whether the item is a tangible item that

needs to be shipped or is a virtual item such as an

article or download.

MakePaymentSettledActivity Updates the order to be settled.

OrderCancelledEventActivity Triggers when an order is cancelled.

OrderCapturedEventActivity Triggers when an order is captured.

OrderFraudEventActivity Triggers when an order is marked as fraudulent.

OrderProcessedEventActivity Triggers when an order is being processed.

OrderReceivedEventActivity Triggers when an order is marked received.

OrderShippedEventActivity Triggers when an order is marked shipped.

OrderUpdatedEventActivity Triggers when an order is updated.

UpdateOrderActivity Updates the order records.

6. Add your custom-built add content activity to the workfl ow after the SendReceivedEmail
activity. First you need to add the activity to the toolbox. Because the project is in the same
solution, simply right-click the OnTrek.Activities project in the Solution Explorer, and
select Build. This should add the AddContentActivity item to your toolbox, as shown in
Figure 13-31.

7. Return to the Workfl ow1.cs fi le if you don’t already have it up, and drag the
AddContentActivity onto the green arrow between the SendReceivedEmail and
CheckTangibleItems activities at the top of the workfl ow. Your workfl ow is updated, as
shown in Figure 13-32.

8. Set the FolderId property to 0, and the ContentTitle property to “Activity” on the
AddContentActivity in the Properties pane, and the workfl ow is done.

c13.indd 533c13.indd 533 12/28/2010 2:03:26 PM12/28/2010 2:03:26 PM

534 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

FIGURE 13-31

FIGURE 13-32

c13.indd 534c13.indd 534 12/28/2010 2:03:26 PM12/28/2010 2:03:26 PM

Custom Order Workfl ow x 535

Using a Custom Workfl ow in an Ektron Site

Now that the workfl ow has been created, you need to build it, and then confi gure the site to use it
rather than the pre-built workfl ow. To do so, follow these steps:

1. Right-click the workfl ow in the Solution Explorer, and select Build. This constructs the DLL
containing the new workfl ow.

2. Copy the DLL you just built into the bin directory of the website by opening the project
directory for your workfl ow in Windows Explorer and browsing down two levels into bin/
debug or bin/release (depending on what your target was during the build process). In that
folder, you will fi nd a workfl ow DLL corresponding to your project. Copy this fi le into your
site bin directory, which is at C:\inetpub\wwwroot\ontrek\bin by default.

3. Launch the Workarea for the site logged in as the admin user. In the Workarea, browse
to Settings Í Commerce Í Fulfi llment Í Order Workfl ow, and you will be taken to the
Order Workfl ow pane. This pane contains a dropdown that’s dynamically loaded from all
the available workfl ows. You should see your new workfl ow in the dropdown, as shown in
Figure 13-33.

FIGURE 13-33

4. Select your new workfl ow, and then select Action Í Save. By default, your new workfl ow
will be used rather than any of the existing workfl ows.

c13.indd 535c13.indd 535 12/28/2010 2:03:27 PM12/28/2010 2:03:27 PM

536 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

If your workfl ow is not showing up in the dropdown, you may need to update the
references to the Ektron DLL’s in your workfl ow project. Delete the existing refer-
ences and add references to the same DLL’s in your site bin directory. Once the
workfl ow has been installed, you can click the magnifying glass next to the drop-
down to see a visual representation of the workfl ow, as shown in Figure 13-34.

FIGURE 13-34

I
r

BUILDING A PAYMENT GATEWAY PROVIDER

Like order workfl ows, the ability to create custom payment gateways is a powerful way of custom-
izing your eCommerce installation. While the Ektron eCommerce feature set ships with two prebuilt
gateways, one for PayFlow, and one for Authorize.net, there are many other gateway providers
out there, and if you already have an eCommerce setup that you are rebuilding using the Ektron
Framework, it is quite possible you’re using a gateway that is unsupported out-of-the-box.

In this section, you’ll create a gateway provider that doesn’t actually connect to anywhere or autho-
rize anything, but it provides a starting example for how to connect to an external gateway. In this
section you will:

 ‰ Learn about payment gateways.

 ‰ Create a gateway provider.

 ‰ Install the gateway provider into the OnTrek website.

c13.indd 536c13.indd 536 12/28/2010 2:03:27 PM12/28/2010 2:03:27 PM

Building a Payment Gateway Provider x 537

Brief Overview of Payment Gateways

A payment gateway is typically a Web service of some type that authorizes payments in real time for
eCommerce websites. It performs an action that is the same as that performed by credit card readers
at physical stores, collecting the details about the payment type, authorizing the charge, and then
performing the actual exchange of funds.

Payment gateways differ in the way they operate depending on the type of payment, but as an exam-
ple, for most credit card gateways, the order of operations to complete a charge is as follows:

1. The customer places the order on the website.

2. The website passes the payment information to the payment gateway.

3. The payment gateway passes the information to the payment processor.

4. The payment processor passes the information to the credit card association (Visa or
MasterCard).

5. The credit card association passes the information to the bank servicing the card.

6. The bank approves or declines the transaction, and sends the result back to the association.

7. The association passes the result to the payment processor.

8. The payment processor passes the result to the payment gateway.

9. The payment gateway passes the result to the website.

The transaction of funds then takes place separately, with batch processing of the various transac-
tions that have taken place.

In the Ektron implementation, the details on how to connect to the payment gateway from the
website is all contained within a payment gateway provider, which is what you will be building in
this section.

As an example of the type of transaction that takes place between the payment gateway provider
and the payment gateway, for Authorize.Net, the data in Table 13-11 is posted to the Web service
URL https://test.authorize.net/gateway/transact.dll.

TABLE 13-11: Authorize.Net Sample Post Data

POST FIELD EXAMPLE DATA DESCRIPTION

x_login API_LOGIN_ID The login for your authorize.net account.

x_tran_key TRANSACTION_KEY The transaction key for your authorize.net account.

x_delim_data TRUE Specifi es whether the response should be delimited.

x_delim_char | The delimiter character to use for the response.

continues

c13.indd 537c13.indd 537 12/28/2010 2:03:27 PM12/28/2010 2:03:27 PM

538 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

POST FIELD EXAMPLE DATA DESCRIPTION

x_relay_

response

FALSE Routes the result to your Web server using an out-of-

band connection.

x_type AUTH_CAPTURE The type of card transaction.

x_method CC The method of payment.

x_card_num 4111111111111111 The credit card number.

x_exp_date 0115 The expiration date of the card.

x_amount 19.99 The transaction amount.

x_description Sample Transaction A description of the transaction.

x_first_name John First name of the customer.

x_last_name Doe Last name of the customer.

x_address 1234 Street Address of the customer.

x_state WA State of the customer.

x_zip 95004 ZIP code of the customer.

Each gateway has a different set of requirements for the data to be sent, and has differing meth-
ods of attaching that data to the request, but the general formula is very similar from gateway to
gateway.

Creating a Gateway Provider

The gateway providers the Ektron Framework ships with are open source. The source for them is
installed at C:\Program Files\Ektron\CMS400SDK\Commerce\Providers\Commerce.Providers\
PaymentGateways by default, and they can be used as a launching point for new provider
implementations.

Creating a New Provider from Scratch

In this case, you will create a new provider from scratch, by following these steps:

1. Open Visual Studio and go to File Í New Í Project.

2. In the New Project window, select C# under Project Types, and select Class Library under
templates.

3. Name the project OnTrek.Commerce.Provider and select OK.

4. Once the project comes up, you must fi rst add a reference to the provider base class DLL, so
right-click the project in the Solution Explorer and select Add Reference.

TABLE 13-11 (continued)

c13.indd 538c13.indd 538 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

Building a Payment Gateway Provider x 539

5. In the resulting window, switch to the Browse tab, and navigate to your website’s bin direc-
tory, which is at C:\Inetpub\wwwroot\ontrek\bin by default.

6. Select the fi les Ektron.Cms.Commerce.dll, Ektron.Cms.Common.dll, Ektron.Cms.ObjectFactory
.dll, Ektron.Cms.Instrumentation.dll, and System.Confi guration.dll and select OK.

7. Now that you have your references set up, you need to rename your class to something
more suitable than Class1. Right-click Class1.cs in the Solution Explorer and select Rename.
Rename the class to SamplePaymentGatewayProvider.cs, and when Visual Studio asks if
you’d like to update the references, select OK.

8. The fi nal step in this initial portion of the process is to set the provider to inherit from the
class Ektron.Cms.Commerce.PaymentGatewayProvider. Once you have set the inheritance,
right-click the PaymentGatewayProvider class name and select Implement Abstract Class.
Your code should now look like the following code snippet.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Ontrek.Commerce.Provider

{

 public class SamplePaymentGatewayProvider:

 Ektron.Cms.Commerce.PaymentGatewayProvider

 {

 public override string Authorize()

 {

 throw new NotImplementedException();

 }

 public override string AuthorizeAndCapture()

 {

 throw new NotImplementedException();

 }

 public override string CapturePreauthorization(string transactionId)

 {

 throw new NotImplementedException();

 }

 public override string VoidPreAuthorization(string transactionId)

 {

 throw new NotImplementedException();

 }

 }

}

Implementing the abstract method creates four methods that you can customize in order to support
transaction management through the gateway. These methods and their purposes are outlined here:

 ‰ Authorize(): Preauthorizes a transaction — in other words, ensures that payment can be
collected at a later date. This simply checks to make sure the funds are available.

c13.indd 539c13.indd 539 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

540 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

 ‰ AuthorizeAndCapture(): Combines the authorization and capture of funds into one step.
When a payment is captured, the funds are removed from the account holder.

 ‰ CapturePreauthorization(): Allows you to capture payment on a transaction that was
previously preauthorized.

 ‰ VoidPreAuthorization(): Cancels a preauthorization hold on an account, thus cancelling the
transaction altogether.

As each method is called, the base class exposes several fi elds containing information about the
current transaction. A subset of these fi elds is listed in Table 13-12.

TABLE 13-12: Fields in the PaymentGatewayProvider Class

FIELD DESCRIPTION

Amount Amount for the transaction.

Authorization Contains the details about the authorization.

Basket Contains information about the basket for the current order.

BillingAddress The billing address for this order.

CurrencyId The currency used for the order.

CustomerId The ID of the current user.

IsSubmissionSuccess Flag indicating whether the submission was successful.

Order All the information about the current order.

OrderId The ID of the current order.

PaymentMethod The payment method selected.

SubmissionError Description for when there is an error submitting.

SupportsCheckPayments Flag to indicate whether this gateway supports checks.

SupportsCreditCardPayments Flag to indicate whether this gateway supports credit cards.

SupportsRecurringPayments Flag to indicate whether this gateway supports recurring

payments.

Each method implemented in the provider would normally connect with an external gateway, and
then update a set of fi elds in these objects. In this example, you will skip the fi rst step of connecting
externally. The following sections list the updated code for each method, and then walk through
what the method achieves.

The Authorize Method

The Authorize method is shown in the following code snippet.

c13.indd 540c13.indd 540 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

Building a Payment Gateway Provider x 541

public override string Authorize()

{

 if (PaymentMethod.GetType() != typeof(Ektron.Cms.Commerce.CreditCardPayment))

 {

 throw new Ektron.Cms.Commerce.Exceptions.AuthorizationException(

 “Invalid Payment Type”);

 }

 Ektron.Cms.Commerce.CreditCardPayment creditCard =

 (Ektron.Cms.Commerce.CreditCardPayment)this.PaymentMethod;

 if (creditCard.ExpirationDate.IsExpired())

 {

 throw new Ektron.Cms.Commerce.Exceptions.Payment.CreditCard

 .CardExpiredException(

 “Card Is Expired”);

 }

 IsSubmissionSuccess = true;

 Authorization.AuthorizedOn = DateTime.Now;

 Authorization.TransactionId = new Guid().ToString();

 return Authorization.TransactionId;

}

This code does the following:

 ‰ It ensures that the payment type is a credit card.

 ‰ Once the payment type is confi rmed, it casts the payment method information into a credit
card payment, and checks if the card has been expired.

 ‰ It updates the submission success fl ag and saves the authorization information. In a real gate-
way provider, you would connect to the gateway after the expiration check and potentially a
few other basic sanity checks, and actually collect the information of whether the transaction
was successful, and store the actual details.

The AuthorizeAndCapture Method

The next method, AuthorizeAndCapture, is similarly simple. It is listed in the following
snippet.

public override string AuthorizeAndCapture()

{

 IsSubmissionSuccess = true;

 Authorization.AuthorizedOn = DateTime.Now;

 Authorization.CapturedOn = DateTime.Now;

 Authorization.TransactionId = new Guid().ToString();

 return Authorization.TransactionId;

}

Just like authorize, you skip the actual communication piece, and instead directly update the
transaction with some made up information. This is the information required to move the pay-
ment forward in the system, however. CapturePreauthorization and VoidPreAuthorization are also
straightforward, merely updating the details locally. When you combine the whole fi le, you get
Listing 13-8.

c13.indd 541c13.indd 541 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

542 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

LISTING 13-8: SamplePaymentGatewayProvider.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Ontrek.Commerce.Provider

{

 public class SamplePaymentGatewayProvider :

 Ektron.Cms.Commerce.PaymentGatewayProvider

 {

 public override string Authorize()

 {

 if (PaymentMethod.GetType() != typeof(Ektron.Cms.Commerce.CreditCardPayment))

 {

 throw new Ektron.Cms.Commerce.Exceptions.AuthorizationException(

 “Invalid Payment Type”);

 }

 Ektron.Cms.Commerce.CreditCardPayment creditCard =

 (Ektron.Cms.Commerce.CreditCardPayment)this.PaymentMethod;

 if (creditCard.ExpirationDate.IsExpired())

 {

 throw new

 Ektron.Cms.Commerce.Exceptions.Payment.CreditCard.CardExpiredException(

 “Card Is Expired”);

 }

 IsSubmissionSuccess = true;

 Authorization.AuthorizedOn = DateTime.Now;

 Authorization.TransactionId = new Guid().ToString();

 return Authorization.TransactionId;

 }

 public override string AuthorizeAndCapture()

 {

 IsSubmissionSuccess = true;

 Authorization.AuthorizedOn = DateTime.Now;

 Authorization.CapturedOn = DateTime.Now;

 Authorization.TransactionId = new Guid().ToString();

 return Authorization.TransactionId;

 }

 public override string CapturePreauthorization(string transactionId)

 {

 IsSubmissionSuccess = true;

 Authorization.CapturedOn = DateTime.Now;

 return Authorization.TransactionId;

 }

 public override string VoidPreAuthorization(string transactionId)

 {

 IsSubmissionSuccess = true;

 Authorization.VoidedOn = DateTime.Now;

 return Authorization.TransactionId;

 }

 }

}

c13.indd 542c13.indd 542 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

Building a Payment Gateway Provider x 543

Installing the Gateway Provider into the OnTrek Website

Now that you have your provider built out, you need to install it to the site. You can do so by
following these steps:

1. Right-click the OnTrek.Commerce.Provider project in the Solution Explorer and selecting
Build.

2. Once the build has completed, navigate to the bin folder in Windows Explorer and copy
the OnTrek.Commerce.Provider.dll fi le into your site bin directory, normally at C:\inetpub\
wwwroot\ontrek\bin.

3. Register the provider in the web.config for your site. Open the web.config, and navi-
gate to the EktronPaymentGateway section. First add a new key under the provider’s
tag with the name SamplePaymentGatewayProvider, and the type Ontrek.Commerce
.Provider.SamplePaymentGatewayProvider. Then update the defaultProvider attribute
on the EktronPaymentGateway tag to refl ect the name of the new provider, in this case
SamplePaymentGatewayProvider. The section should now look like the following
code snippet.

 <EktronPaymentGateway defaultProvider=”SamplePaymentGatewayProvider”>

 <providers>

 <add name=”Manual”

 type=”Ektron.Cms.Commerce.Providers.Payment.ManualPayment” />

 <add name=”PayFlow”

 type=”Ektron.Cms.Commerce.Providers.Payment.PayFlowPayment” />

 <add name=”AuthorizeNet”

 type=”Ektron.Cms.Commerce.Providers.Payment.AuthorizeNetPayment” />

 <add name=”PayPal”

 type=”Ektron.Cms.Commerce.Providers.Payment.PayPalGateway”

 AuthValuesEncrypted=”false” PayPalUser=””

 PayPalPwd=”” PayPalSignature=””

 CheckoutUrl=”https://www.sandbox.paypal.com/cgi-bin/webscr”

 CheckoutTestUrl=”https://www.sandbox.paypal.com/cgi-bin/webscr”

 NVPUrl=”https://api-3t.sandbox.paypal.com/nvp”

 NVPTestUrl=”https://api-3t.sandbox.paypal.com/nvp”

 PayPalVersion=”53.0”

 apiparamHDRIMG=”https://ektron.com/images/homepage-logo-small.jpg” />

 <add name=”SagePay”

 type=”Ektron.Cms.Commerce.Providers.Payment.SagePayGateway”

 SagePayVersion=”2.23” SimulatorMode=”false”

 Description=”Ektron CMS Order” />

 <add name=”PayFlowWebSitePaymentsPro”

type=”Ektron.Cms.Commerce.Providers.Payment.PayFlowWebSitePaymentsProPayment”

 />

 <add name=”SamplePaymentGatewayProvider”

 type=”Ontrek.Commerce.Provider.SamplePaymentGatewayProvider” />

 </providers>

 </EktronPaymentGateway>

4. Save the web.confi g fi le and open the Workarea.

5. In the Workarea, navigate to Settings Í Commerce Í Confi guration Í Payment
Options.

c13.indd 543c13.indd 543 12/28/2010 2:03:28 PM12/28/2010 2:03:28 PM

544 x CHAPTER 13 CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE

6. In the Payment Options pane, select New Í Payment Gateway.

7. From the New Payment Gateway screen, select SamplePaymentGatewayProvider, and check
the Cards checkbox, then click Save.

Your site will now use the custom provider you just created.

TAKE HOME POINTS

This chapter was devoted to gaining a deeper understanding of the developer experience surround-
ing the eCommerce feature set. Continuing on the education path started in the last chapter, which
covered Workarea-based confi guration and product management exercises, this chapter focused
on how to implement the front-end user experience necessary to allow customers to hand you their
money. Discussions included:

 ‰ The controls that allow users to browse to specifi c products and gather information
about them:

 ‰ CurrencySelect Server Control

 ‰ ProductSearch Server Control

 ‰ ProductList Server Control

 ‰ Product Server Control

 ‰ Recommendation Server Control

 ‰ The controls that manipulate the actual purchasing experience:

 ‰ MyAccount Server Control

 ‰ OrderList Server Control

 ‰ Cart Server Control

 ‰ Checkout Server Control

 ‰ Implementing a full eCommerce experience using the server controls, specifi cally the model
followed by the OnTrek team.

 ‰ Creating a custom order workfl ow, built on the Windows Workfl ow Foundation. You also
learned about creating custom activities, and how to install your completed order workfl ow.

 ‰ Creating a custom payment gateway, allowing you more fl exibility in choosing your mer-
chant account provider.

The combination of development exercises covered in this chapter should give you the confi dence
needed to address whatever business needs your company presents you with when it comes to
eCommerce implementations.

c13.indd 544c13.indd 544 12/28/2010 2:03:29 PM12/28/2010 2:03:29 PM

PART III

Deploying the TechPoint Site

 � CHAPTER 14: Deploying Your Website

 � CHAPTER 15: Maintaining Your Website

 � CHAPTER 16: Next Steps

c14.indd 545c14.indd 545 12/28/2010 2:25:24 PM12/28/2010 2:25:24 PM

c14.indd 546c14.indd 546 12/28/2010 2:25:27 PM12/28/2010 2:25:27 PM

14
Deploying Your Website

 ‰ How do you meet the pre-conditions for a successful deployment?

 ‰ What are the diff erent deployment scenarios?

 ‰ What are the fi nal stages of deployment?

It’s late at night. Project managers, developers, and QA engineers are pacing around in nervous
anticipation with little to do besides hover and wait. There’s a feeling of excitement tinged
with anxiety. In the end, it boils down to a few fi nal clicks of a mouse and the words “it’s live”
and everyone holds their breath to see what happens next...

Does the website launch succeed? Does it fail? Success and failure are usually determined
by one factor — preparation. What sort of preparation was done leading up to the launch?
Oftentimes the answer is, unfortunately, very little. Too frequently engineers, managers, and
operations folk pour blood, sweat, and tears into the development and testing of a website
only to have it fall apart during the “fi nal push” into the production environment. If you’ve
been involved with any number of Web deployments, it’s a safe bet to say you’ve experienced
this at some level at some point in time.

A number of the problems that are commonly experienced during Web deployments stem from
the misconception that there is a single “silver bullet” deployment confi guration applicable
to most every organization, and even worse, that this “silver bullet” confi guration can be
deployed, at the push of a button, at the bottom of the ninth inning. To understand why there
is no single applicable confi guration, let’s start by asking just three of the many questions that
you need to think through during deployment planning:

 ‰ How does content fl ow through your website’s production environment?

 ‰ What are the performance requirements for the site?

 ‰ What is the budget for hardware?

c14.indd 547c14.indd 547 12/28/2010 2:25:27 PM12/28/2010 2:25:27 PM

548 x CHAPTER 14 DEPLOYING YOUR WEBSITE

As you can imagine, every organization will have different answers for these questions. As such,
there are many production confi gurations possible, but this is often forgotten when it comes time to
move the website from development into its home in the production environment.

So what can be done to ensure a successful deployment? The good news is, there’s quite a bit that
can and must be done. This chapter defi nes what is needed to ensure your website has a successful
deployment into a live production environment and will help to replace the jitters surrounding your
release with a confi dent excitement.

PRE-CONDITIONS FOR A SUCCESSFUL DEPLOYMENT

This section covers everything that you need to consider and complete before deployment can begin.
In other books you might fi nd the term “pre-deployment” used, but this is not a preferred label
because it gives the impression that there is a dedicated “pre-deployment” phase where all these
items are completed. In fact, there is no such phase. Instead, we favor the phrase “pre-conditions”
for deployment because it implies that there are tasks that are hard prerequisites for a successful
deployment, without implying that there’s a dedicated time for completing them

These pre-conditions are items that must be considered and occur well before deployment — during
discovery, development, and testing. Chances are, the later these items are considered, the greater
the chance that something will be overlooked or neglected due to time constraints. The goal of
formulating this into a list is to help you start thinking of these items well before the actual talk
of deployment begins. Read through each of the following sections and their corresponding bullet
points and be careful not to make assumptions about what’s included. There are valuable tips that
were tough lessons learned by someone else.

Creating the Discovery Collateral

The discovery process is an extremely important part of the overall website delivery process, as it
is the period where requirements are gathered, defi ned, documented, and shared with members of
the project team. From a deployment standpoint, this process is important because these collateral
documents are pivotal for each of the subsequent development phases, and in particular, for the
Final User Acceptance Testing phase (Final UAT).

Final UAT is the period in which the key stakeholders and end users are given an opportunity to verify
fi rst hand that the website meets their expectations as expressed in the requirements documents.
Having a well-written set of requirements makes the process of Final UAT much more effective and
gives everyone a common reference point when questions and potential disagreements arise around
expected behavior.

In addition to Final UAT, the requirements documents also include the performance expectations
of the site, which details how many site visitors will be expected to use the site over time, page
load time expectations, and availability expectations. This information is critical to have in order
to perform effective load testing that proves the website can sustain these expected loads.

Call to action:

 ‰ I have written requirements that capture the expected behavior of the website.

 ‰ I have written requirements that capture the website’s performance requirements.

c14.indd 548c14.indd 548 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

Pre-Conditions for a Successful Deployment x 549

Completion of the Development Process

The development process is a phase during which the requirements are implemented and functional
testing is performed. Saying this is a pre-condition for deployment might sound obvious, however,
we have seen many situations where people begin the process of deployment while changes are still
being made to the codebase. To “save time,” some project managers or team leads succumb to the
false idea of performing development and deployment-related activities in parallel. The problem
this has on deployment is simple — without having fi nalized code in place, one of the most critical
components of the deployment process, namely the source code, is a moving target as you’re try-
ing to install it. Trying to deploy an incomplete codebase inevitably leads to patches being pushed,
servers being upgraded, and source code and software versions being out of sync across servers in
the deployment. There will be a number of moving parts during the deployment process — but the
source code should not be among them.

Another situation that underscores the importance of fi nishing development before starting the
deployment process is the case in which well-intentioned network and operations folks, eager to pre-
pare for deployment, begin the process of installing the pre-requisite software components onto the
production hardware and confi gure it many weeks or months in advance of code completion. This
might sound like a good idea; why not get a good head start?

The problem this presents, however, is that the actual version of the components used in devel-
opment may end up changing during the development process, which could result in the need to
upgrade, re-install, or re-confi gure the software components in the production environment. For
example, imagine that the developers are building on version 8.0.1 at the start of the project. The
Net Ops folks might reasonably assume that version 8.0.1 is what will be deployed, so they install
the same base software confi guration in production in anticipation of the eventual release.

However, developers continue to upgrade their environments with incremental updates during the
development process, so by the time the release makes its way to production, its base version is out
of sync with the software previously installed. This means that the production environment needs to
be upgraded and reconfi gured. It’s best to wait until the software version is locked and confi guration
options have been fi nalized.

Call to action:

 ‰ I have verifi ed that the website source code is code-complete.

 ‰ I have determined the version of the software.

 ‰ I have ensured the source code is managed through a source control system, such as
Subversion (SVN) or Perforce.

 ‰ I have a permanent development environment established for making code-level changes to
the website.

Creating the Staging Environment

A staging environment is an important part of the overall deployment architecture. In some cases,
organizations choose to use a staging environment to approve content changes or other modifi ca-
tions to the website such as changes to graphic design, look and feel, or code fi les. In environments
such as these, code changes are made in a local development environment and then propagated

c14.indd 549c14.indd 549 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

550 x CHAPTER 14 DEPLOYING YOUR WEBSITE

to the staged environment. Content changes are made in the staged environment as it serves as an
internal replica of the website deployed in the production environment.

However, even in cases in which the organization’s fi nal deployment scenario does not include an
“offi cial” staging environment used as described here (that is, to approve content or code modifi ca-
tions), an internal staging environment is important to have for other reasons.

One important reason is that a staged environment that mirrors the production environment can
be used in the event a problem arises in production that requires troubleshooting. Consider a
scenario in which your organization has no formal staging server after your website is deployed.
A few months after a successful launch, you’re starting to notice some type of unexpected behav-
ior on the website — let’s say that an error is occasionally displaying and you need some assistance
in troubleshooting and diagnosing the issue, so you give a call to Ektron support.

Without being able to access a staged environment, Ektron Support may request a copy of your
production database, its code templates or error log, and then take all of this and re-build a staged
environment on Ektron’s support servers. All of this can take hours or even days, which may add
unnecessary lag time in critical situations where each hour feels like an eternity. You can mitigate
this possibility by keeping an internal staged server in sync with your production environment. In
such a scenario, the support department could perform a good number of troubleshooting steps on
the staged server and potentially resolve the issue without needing to create a replicated environ-
ment. If possible, the hardware of the server hosting the staging environment should mirror the
hardware of a machine in the production environment. Similar machines allow for more accurate
diagnosis and troubleshooting and also provide a good environment for stress and load testing
before the website is put into the fi nal production environment.

Call to action:

 ‰ I have a staged environment on an internal server that contains the fi nal source code and fi nal
versions of software components.

 ‰ I have a staged environment that mirrors the performance of a machine in my production
environment.

Content Is in a Staged Environment

Final User Acceptance Testing occurs in the staged environment, and in order for it to be truly
effective, the website needs to be fi lled with real-world content. How many times have you seen
other developers test with “asdf” fi nger-rolls as input to textboxes or use single letter characters
for fi rst names and last names, failing to observe how the application behaves with real content?

Content migration must happen before deployment so that User Acceptance Testing efforts are
not wasted testing the website without actual data. Additionally, performance and load testing
results are more meaningful when the website has a realistic volume of content. Lastly, because
the deployment process ultimately leads to customers, employees, and prospects visiting your
website, you need to make sure approved content is available, loaded, and ready to go once the
fi nal push to production occurs.

c14.indd 550c14.indd 550 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

Pre-Conditions for a Successful Deployment x 551

There are two ways Ektron recommends migrating content into Ektron from an external repository:

 ‰ Using the Ektron content and metadata APIs

 ‰ Manually entering content using the Workarea user interface

Using the Ektron APIs, you can create applications that write and import content into the staging
environment. When doing so, you must consider how the metadata associated with existing content
items map to the metadata available in Ektron, create the associated metadata types, and import
both the content and the associated metadata. Likewise, it’s important to consider permission,
workfl ow, folder hierarchies, and all the related items surrounding content.

In cases where you’re working with a system that does not work with a CMS or RDBMS (such as a
site build using static HTML fi les or content hard coded into ASPX templates), you can use scraping
scripts to pull content from the site and then use the Ektron APIs to import that content into the sys-
tem. Alternatively, if the volume of content is somewhat small, it might be easier to manually import
the content. There are many companies that offer manual content migration services at hourly rates.

Call to action:

 ‰ I have verifi ed that the content has been approved by the editorial team.

 ‰ I have verifi ed that the fi nal content has been migrated into the staged environment.

Completion of System Testing

For someone unfamiliar with the testing process, the idea that there are several distinct types of
testing can sometimes come as a surprise. These tests include:

 ‰ Functional testing

 ‰ Final User Acceptance testing

 ‰ Performance testing

 ‰ Load testing

 ‰ Stress testing

 ‰ Security testing

Ensuring that everyone on the project is aware of the various types of testing and their importance
can be as important as the tests themselves, because without this awareness, some choose to artifi -
cially meet deadlines by removing or short-changing the testing process.

Functional Testing

This type of testing is performed by a developer and QA engineer during the development process.
Developers need to test their code according to the use cases and functional requirements as defi ned
during the discovery process. Ektron encourages its developers to perform what is called “pair testing”

c14.indd 551c14.indd 551 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

552 x CHAPTER 14 DEPLOYING YOUR WEBSITE

during the development process, which consists of a developer and a QA engineer sitting side-by-side
testing the software to ensure it properly implements the use cases by performing black box testing
and negative testing, among other tests. Having a QA Engineer sit down and work with a developer
helps the developer to gain or improve their knowledge of software testing, and gives the QA engineer
a better understanding of how the application functions and was built. The ultimate purpose of devel-
oper level functional testing is to catch the obvious bugs. Nothing slows down fi nal User Acceptance
Testing and weakens confi dence in the website like the repeated discovery of obvious defects.

Final User Acceptance Testing

Once the staged environment has been properly set up, fi lled with fi nal content, and has seen its
source code go through functional testing, it is time to perform Final User Acceptance Testing with
the key stakeholders and site users on a staged machine in a controlled test environment. The purpose
of this is to make sure that each member of the testing team has the ability to voice any concerns and
have them cross checked with the requirements documents as a sanity check. The ultimate goal is to
give the team confi dence that the site meets the overall project objectives and, in the event that there
are last-minute issues or concerns, they are addressed before the deployment of the website.

Many studies have shown that the cost of fi nding a defect increases by orders of magnitude the later
it is found in the website development pipeline. If a defect is found and fi xed while the website is in
development, the fi x involves a single person (the developer). If the defect is found in QA and fi xed
by a developer, it involves two people. If it is found in the fi eld by a customer, reported by a techni-
cal support engineer, fi xed by a developer, and verifi ed by a QA engineer, it involves (at least) four
people. This model obviously doesn’t take into account the negative fi nancial effects that defects can
have, due to the loss of an existing or potential customer. Suffi ce it to say the earlier in the chain
that defects are found; the less costly they are to fi x.

Call to action:

 ‰ I have gone through the process of Final User Acceptance Testing with my stakeholders and
key website end users.

Performance Testing

Some developers use the terms performance testing, load testing, and stress testing interchange-
ably. However, because there are important and signifi cant differences among them, this chapter
discusses each and highlights why they should be covered. The goal of performance testing is to
identify and eliminate bottlenecks during the development and testing process. This is not to test
how the site performs under any real-world type of load — that is covered during load and stress
testing. Instead, performance testing is about identifying potential bottlenecks in an application,
database reads, disk writes, network activity, and memory consumption, and establishing a baseline
of performance for future performance tests. This helps developers to understand whether certain
changes are increasing or decreasing these baselines. Because there is no production level load or
stress placed on the system, performance testing is typically done during the development process on
the developer’s machine.

Checklist:

 ‰ I have established a set of performance baselines for at least the homepage and key interior
content pages.

c14.indd 552c14.indd 552 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

Pre-Conditions for a Successful Deployment x 553

Load Testing

Wikipedia defi nes load testing as “the process of putting demand on a system or device and mea-
suring its response.” The fi rst goal of load testing is to fi nd bugs that show themselves only when
the system is under a reasonable load. The bugs that show up here are typically memory leaks and
resource management bugs, for example, not closing SQL connections. These are diffi cult bugs to
fi nd when you are a single developer testing on a single machine, but they show up pretty quickly
when you are using a tool to simulate real traffi c.

The second goal is to ensure that the application meets the performance baseline over time. Because
the staged environment ideally mirrors the hardware of a production machine, real-world load tests
can be run against it. In cases in which the hardware confi guration of the staging machine is signifi -
cantly different than the hardware confi guration of the production machines, it may be necessary to
temporarily “borrow” the production machine hardware for the load test. If your website confi gu-
ration has multiple machines behind a load balancer, consider taking one machine from the cluster
over the weekend.

The load test operates at the highest load the system can accept while still performing as expected.
It is important to note that the goal of load testing is not to cause the system to fail. It should try to
keep the system working at its peak capacity, but no more. The system should behave well during
load tests because this load should represent the maximum number of users that the site should
reasonably be able to handle.

Call to action:

 ‰ I have performed a load test on at least the homepage and key interior content pages. The
system was able to perform at a level that indicates it can handle the expected peak traffi c
load of the production website.

Stress Testing

Stress testing tries to cause the system to fail by overwhelming its resources to surface issues that are
more easily noticed when the system is pushed to its limits. During stress testing, take note of how
the system fails and determine what can be done to either prevent the scenario or recover from it,
should it happen in a production environment.

Call to action:

 ‰ I have performed a battery of stress tests on at least the homepage and key interior content
pages to observe how the system behaves under a traffi c stress that is greater than the
expected traffi c level to ensure the desired recovery from failure.

Security Testing

The purpose of security testing is to fi nd and eliminate any issues with the application that compro-
mise your application, the system, or its data. It’s smart to begin security testing in the discovery
phase by establishing your security goals for the website. Some goals will be different, depending
on whether you’re running a marketing campaign page or an online store and need to ensure com-
pliance with PCI Data Security Standard (PCI DSS). Some goals will be the same, for example,
does the application prevent cross site scripting or SQL Injection attacks? Once goals have been
established, make sure that developers are aware of them and are educated on ways to prevent them

c14.indd 553c14.indd 553 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

554 x CHAPTER 14 DEPLOYING YOUR WEBSITE

during the development process. Security isn’t a feature that can be bolted on at the end of a project.
After the development process is complete, testing tools can be useful in automating the process of
probing the site for vulnerabilities. Tools might uncover a number of weaknesses, but manual testing
is often needed to uncover the more insidious bugs.

Call to action:

 ‰ I have verifi ed that the site has gone through security testing and have responded to any
issues that surfaced during the process.

UNDERSTANDING THE DIFFERENT DEPLOYMENT SCENARIOS

Up to this point, this chapter has focused on pre-conditions for deployment. Keep in mind that
all the pre-conditions discussed so far hold true regardless of which deployment confi guration is
decided upon. This section will outline different types of confi guration possibilities and highlight
the things you need to consider while trying to decide upon your own.

Understanding the Basic Terminology

Although deployment scenarios differ from organization to organization based on a project’s goals
and requirements, they will each be comprised of the same basic building blocks. Most everyone is
familiar with the concept of a development environment, and has a general understanding of what a
staging environment is for, but for the sake of completeness, it is worth taking a few paragraphs to
explain their generally accepted purpose.

 ‰ Development environment: This environment typically has a complete working version of
the website, but will not always have the content that is visible on the public site. Developers
might occasionally pull down content from the production website if it helps to debug a
problem, develop a new feature, or design a new layout. However, typically the content in
the development environment is not in sync with the content on the website. Source code is
often not in sync with the website either, because the development environment is the loca-
tion where developers modify the source code to build new features and fi x defects.

 ‰ Source Control repository: This Source Control Management System (SCMS) such as SVN
or Perforce is used by developers to store the source code fi les of the website. The SCMS does
not typically store anything other than the website’s source code. The website’s documents
and assets are excluded from the SCMS and instead are stored within the Ektron content
management system. Although Ektron is used to synchronize source control fi les across
machines in the deployment scenario, it should not be used in place of an SCMS. You still
need to keep your source code in an SCMS.

 ‰ Staging environment: The staging environment is the location that is used to test new features
or verify content before it makes its way to the production website. The staging environment
usually matches the production environment in terms of its source code and content, except
in cases when content has been modifi ed by an editor or a new feature has been added by a
developer through an update to its source code from the development environment. The staging
environment is less volatile than the development environment as the only changes being made

c14.indd 554c14.indd 554 12/28/2010 2:25:29 PM12/28/2010 2:25:29 PM

Understanding the Diff erent Deployment Scenarios x 555

are those that have made it through the development process and are in fi nished form awaiting
fi nal approval.

 ‰ Pre-Staging environment: Some organizations choose to have a pre-staging environment that
is used by QA engineers and developers to vet technical changes made to the website’s source
code and keep the staging environment as a place to moderate content changes. This scenario
is not too common but it is seen in organizations with large editorial and Web development
teams as a way to prevent people from stepping on toes and to minimize the volatility of any
one single environment.

 ‰ Production environment: The production environment serves the live traffi c to the website.
This may represent a single physical machine or a cluster of machines sitting behind a load
balancer. In the cases of a public website, this sits outside of the corporate network.

 ‰ Deployment environment: The deployment environment represents the manner in which
each of the previously mentioned environments connects and enforces such things as con-
tent authoring policies, workfl ow and approval processes, and changes to source code. It is
sometimes also referred to as the deployment plan, the deployment scenario, the deployment
architecture, or Web deployment.

Determining the Content Flow

One of the fi rst concepts to consider when you are determining how to architect your deployment
environment is the content fl ow — how does the content move throughout the entire produc-
tion system, from content creation on the staging machine to content delivery in the production
environment? Looking at all deployment scenarios from this perspective, you will fi nd that they
all fall at some place along a spectrum; where one end of the spectrum represents websites where
content is authored exclusively by the community, sites such as Wikipedia; and at the other end
you have the editorially driven “one way push” websites, such as brochure-ware and marketing
micro-sites. Both ends of the spectrum represent a one-way fl ow of information, but in different
directions.

But there are few purely community-driven sites such as Wikipedia. The number of old corporate
“brochure-ware-style” websites is also dwindling. Most modern websites fall somewhere in the middle
of these two points of the spectrum — sites that have both editorially-driven and community-driven
content — and this is where it gets interesting. It is where you’ll fi nd various scenarios supporting the
fl ow of content back and forth between the production environment and the staging environment.
Figure 14-1 shows different deployment scenarios, focusing in on the movement of content within the
deployment content fl ow. Consider where your deployment architecture fi ts on this spectrum; where is
your content authoring taking place? Who is authoring it?

The next point to consider is what sort of approval process will be used with content authoring?
Even when you are supporting community driven content, it might be the case that you want to
put an approval process around it. For example, it is not uncommon to have an approval process
around community authored content, as you frequently see with blog comments. Another real-
world example is the case of a software company using community-generated content to augment its
online technical documentation. Using an approval process that includes the organization’s technical
writers benefi ts community-authored content, with editorial correction and approval. Figure 14-2

c14.indd 555c14.indd 555 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

556 x CHAPTER 14 DEPLOYING YOUR WEBSITE

presents a diagram showing how such an approval process fl ow might look on a single-production
environment.

Development

Production

ProductionStaging

ProductionStaging

Development ProductionStaging

FIGURE 14-1

Understanding the fl ow of content is not only important for planning the overall pattern of your
deployment scenario, but is also critical in determining the performance requirements of content-
authoring environments. In cases where the public website is the content-authoring environment,
your performance assessment is usually well thought out. But most websites have some element
of editorially-authored content, which means you need to ask yourself how many content authors
will be producing and managing content. In a situation where you have a signifi cant number
of content authors, you might need to consider having content authoring occur on a dedicated

c14.indd 556c14.indd 556 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

Understanding the Diff erent Deployment Scenarios x 557

staging environment with multiple machines to handle the load that can occur when content
producers are logged-in and authoring simultaneously. Even if you don’t have the number of
authors requiring this type of authoring environment, you might still benefi t from having a for-
mal staging server in your deployment architecture production environment, as it gives them a
single place to make edits without having to touch the production server. In this case, the content
authors will make content changes in a staged environment and push those content changes to
the production environment. Figure 14-3 shows a diagram with a formal staging and production
environment.

Development ProductionStaging

3 4

5

2

6

1

FIGURE 14-2

Development ProductionStaging

FIGURE 14-3

Call to action:

 ‰ I understand how content will fl ow throughout my deployment environment. Whether it is
authored in production by the community, in staging by an editorial staff and then pushed
to production, some combination of these, or something else entirely, the fl ow of it has been
defi ned. The purpose of this call-to-action is to establish how many environments your pro-
duction environment will have, such as dev, staging, pre-production, and production.

 ‰ A content production process has been established and everyone in my organization under-
stands what workfl ows and content approval processes are in place.

 ‰ I know how many content producers will be authoring and managing content and where
they will be doing so. This information is needed to determine whether a dedicated staging
environment is needed and what type of hardware is needed for it.

c14.indd 557c14.indd 557 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

558 x CHAPTER 14 DEPLOYING YOUR WEBSITE

Now that you’ve worked through the process of establishing what your content fl ow looks like and
have an understanding of how many different environments you have in your deployment architec-
ture, the chapter will move onto the options available for moving content and source code from one
environment to the next.

MOVING CONTENT WITH OR WITHOUT ESYNC

Moving content through environments of a deployment scenario has historically been a challenge
for organizations. Even today the problem is often solved through the use of time-consuming
manual processes that are wrought with the potential for human error. How many times have you
been asked to upload something on a website or to make a “quick change” on some current content?
Without the right plan and the supporting technology in place to facilitate the desired movement
of content through your deployment architecture, these types of scenarios will inevitably become
accepted practice.

The previous section looked to defi ne a pattern that describes how content moves through your
deployment architecture. This section assumes that you’ve got a handle on this and are now looking
to decide on the right technology for supporting the deployment architecture. Depending on what
you determined to be your requirements here, different options present themselves. This section
discusses these options, focusing on how to support the fl ow of content with and without Ektron’s
eSync.

Moving Content with eSync

Ektron’s eSync was designed to solve the challenges of moving content from one environment to
another. This sounds like a simple and straightforward problem. Information from one database
is moved to a different database. Simple enough, right? If you’ve ever tried to solve this problem
yourself, either manually or in some automated fashion, you understand the complexities that are
involved with data synchronization and can appreciate what Ektron’s eSync brings to the table. For
anyone who does not understand the complexities surrounding this, it is important to be aware of
them because in doing so, you will understand why certain deployment environments fundamentally
require the use of eSync.

Let’s begin by looking at typical data transactions that occur in any normal Web deployment that
has at least a staging and a production environment. In such a scenario, you will eventually ask
some of the following questions:

 ‰ How do I move a single content change from my staging environment to my production
environment without affecting the availability of my website? Without pushing other content
changes that are not ready?

 ‰ How can I update my staging environment with the data from my production environment
so that I have a local copy of all data, including the content authored by the community?
And do it without destroying the new content I’ve been authoring in staging?

 ‰ How can I quickly push through a correction for a typo that I found on the website that
originates in a code fi le? Without having to involve a small army of IT people?

c14.indd 558c14.indd 558 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

Moving Content with or without eSync x 559

Ektron’s eSync solves the technology challenges that are associated with these questions. On a website
without Ektron eSync, moving a single content item in the ways described here is a diffi cult and usu-
ally manual process. Also, moving code fi les from one environment to the next usually requires the
availability of a developer, access to the servers, IT folks with the proper passwords and access, and
perhaps a formal QA cycle: ultimately adding up to a good amount of time and creating a lot of risk.

Ektron’s eSync solves these problems by providing a bi-directional synchronization technology that
allows for incremental and full synchronization of both content and website templates between two
servers in a deployment. This means that select changes can be sent to the production environment,
without having to send over the entire database or fi le structure. Figure 14-4 shows a deployment
architecture with staging and production Environments that uses eSync to keep information in sync.

SQL SQL

SQL

WEB

Development Staging

Fallover Server

Production
Load

Balancing

FIGURE 14-4

eSync solves very real content deployment pains with its sophisticated synchronization technology
and the benefi ts of using eSync are clear. So why wouldn’t it be used in all cases? One reason may
be its licensing cost is prohibitive for your organization — the project’s budget simply won’t allow
it. Additionally, while there are some deployment scenarios that have a hard requirement of eSync,
there are others where it is merely a recommendation. To understand when it is a requirement, and
when it is a recommendation, see Table 14-1.

TABLE 14-1: Deployment Scenario Data Flows and Process

PLAN DATA FLOW PROCESS

1 Data moves in one direction from staging to production. eSync

2 Data moves in both directions between production and staging. eSync

continues

c14.indd 559c14.indd 559 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

560 x CHAPTER 14 DEPLOYING YOUR WEBSITE

PLAN DATA FLOW PROCESS

3 Templates move in both directions between staging and production. eSync

4 Data moves in one direction from production to staging. eSync/Other

5 Templates move in one direction from staging to production. eSync/Other

6 Templates move in one direction from production to staging. eSync/Other

7 Data is authored just in production. Other

Table 14-2 describes each scenario above, explaining how eSync satisfi es the requirements of that
particular deployment plan. To summarize, however, you can apply the following rule of thumb: If
you need to do incremental content updates (for example, push a single content item change) or want
content to fl ow in two directions, you need eSync.

TABLE 14-2: Deployment Plan Descriptions

PLAN DESCRIPTION

1 Requires eSync because content fl ows from staging to production. Without eSync, develop-

ers need to come up with a homegrown synchronization process, or resort to a database

backup and restore that has the seriously negative side eff ect of taking the website offl ine.

2 Requires eSync because content fl ows in both directions. Any bidirectional synchronization

needs to take into account situations where one repository has information that the other

does not, and it needs to have a strategy for moving content and handling confl icts when the

same content has changed on both sides. These problems are solved by eSync.

3 Requires eSync because website templates move in both directions. This plan was included

for completeness, but it is not common because modifying templates on both staging and

production is not a best practice.

4 Recommends eSync but does not require it in all scenarios. It is required in any situation

where individual content items are moving from production to staging. It is not required

otherwise, because it is possible to use a database backup and restore to move production

content into your staging environment. This also has the negative side eff ect of taking your

staging environment offl ine while the database restore completes.

5

and

6

Recommend eSync but do not require it. It is not required because there are many com-

mon fi le transfer tools that can be used to push templates in one direction. eSync is

recommended, however, because it provides additional capabilities such as scheduled

synchronization.

7 Does not require or recommend eSync because no data is moving toward or away from the

production environment. This deployment plan is discussed in the next section, “Moving

Content without eSync.”

TABLE 14-1 (continued)

c14.indd 560c14.indd 560 12/28/2010 2:25:30 PM12/28/2010 2:25:30 PM

Moving Content with or without eSync x 561

If your deployment plan falls into any of the scenarios where eSync is recommended but not
required, make sure to look down the road and consider future requirements as well. One major
pitfall that developers and network operation engineers have run into in the past is trying to “bolt”
eSync after deployment into a deployment scenario that hasn’t been designed with eSync in mind.
Similarly, if your scenario does require eSync, it is extremely important to not expect to “tack” at
the end without considering everything discussed in this chapter so far. Both of these pitfalls have
been encountered when eSync is installed into a production environment with little defi nition of
how the data will move, resulting in repeated confi guration changes as this extremely signifi cant
detail is worked out. Save yourself the headache and make sure that the people processes such as
content fl ow, approval processes, and content workfl ows are well understood before you try to put
technology processes in place.

The purpose of discussing eSync in this chapter is limited to understanding how
you use it in a deployment confi guration. Confi guring eSync is beyond the scope
of this book. There is documentation available online and good material on
confi guring eSync in the Ektron Reference Manual. Please see these resources for
more information about setting up, confi guring, and managing eSync.

Moving Content without eSync

When eSync is not an option, you’ll need to consider how to architect your website and your
deployment scenario in a way that supports the desired fl ow of your content. The following
section discusses these confi gurations and makes recommendations about technologies other
than eSync that you can use.

Content Authoring in Production: Virtual Staging

In Deployment Plan #6, you read that eSync was not required nor recommended
because no data moves to or away from the production environment. In this scenario,
the recommendation is virtual staging. Virtual staging is a confi guration where edito-
rially created content is authored on the same server that the website visitors access.
For example, if your website is accessible to your site visitors through the URL
www.mysite.com/, your content authors would also create new content through the
URL www.mysite.com/. Because no physical staged environment exists, content authors can publish
this information into a “virtual” staging environment using the system’s content preview capabilities
to see how the content would appear to site visitors, without having to publish it publically. When a
content author is authenticated with the system, a “Preview” button appears on pages that use the
Login Server Control. The output of this server control is shown in Figure 14-5.

When you click on the Preview button, all server controls know to display the website as if the
checked-in content were published. You can additionally use the workfl ow approval processes to
ensure that content is fi rst viewed and approved by other members of the editorial staff to prevent
accidental publishing of content directly onto the website. Virtual staging is created by the combina-
tion of using content preview along with the content approval process.

FIGURE 14-5

c14.indd 561c14.indd 561 12/28/2010 2:25:31 PM12/28/2010 2:25:31 PM

562 x CHAPTER 14 DEPLOYING YOUR WEBSITE

If you are using the content APIs on your website and want to use virtual stag-
ing, keep in mind that you will need to set the preview state on the Content API.
The following snippet shows how this is specifi ed in the GetContentMetadataList
method. Look at the API’s documentation or IntelliSense to know where to
specify this property. All server controls handle this automatically.

ContentAPI api = new ContentAPI();

bool InPreviewMode = Convert.ToBoolean(api.SitePreview);

CustomAttributeList ContentMeta =

 api.GetContentMetadataList(ContentBlock1.EkItem.Id, InPreviewMode);

Why would you choose to use Virtual Staging? It is an effective deployment confi guration when
both the number of content editors and the volume of content changes are minimal, and your site
does not have any of the data synchronization requirements previously described.

Moving Data and/or Templates from Production to Staging

If your production environment does not require data to fl ow back and forth between staging and
production (bi-directional movement of data and templates) and instead enforces that data fl ow
from production to staging in one single direction, you have the option to:

 ‰ Pull the templates from production to staging using a fi le transfer protocol such as FTP or
RSYNC, among others.

 ‰ Pull the database from production to staging using a method such as backup/restore, keeping
in mind that this will cause your staging server to be unavailable while the database restore
process completes.

Figure 14-6 shows a diagram depicting this confi guration.

Development ProductionStaging

FIGURE 14-6

While eSync is not a requirement for this confi guration, it is recommended because it allows for the
possibilities of transferring select content items, which is not possible without eSync. Also, transferring
a database using backup restore is a brute force process that transfers all or nothing. Although it can
be automated, it is typically a manual process and is therefore prone to human error. The advantage of
eSync is its ability to move both data and templates from production to staging in an automated fash-
ion, removing the potential for the problems associated with backing up and restoring a database.

c14.indd 562c14.indd 562 12/28/2010 2:25:31 PM12/28/2010 2:25:31 PM

The Deployment x 563

Templates Move from Staging to Production

If your staging environment is exclusively used to test and verify changes to templates and code and
not to verify content changes to push to production, you have the option to:

Push the templates and code fi les from staging to production using any fi le transfer protocol
using FTP or RSYNC, among others.

Again, eSync has the added benefi t that it can be used to schedule items and is available in the event
that future requirements ask that content items be synchronized as well. For example:

Call to action:

I understand what technology will be used to support the content fl ow and move content
and templates between environments of my deployment architecture.

THE DEPLOYMENT

At this point in the process, you’ve got a good understanding of how your deployment architecture is
organized. Now is the time to peel back a few layers and put the pieces of the architecture in place.

Installing Your Website on Another Server

Before installing your website onto another server, it is important to verify that the new environ-
ment meets the hardware and software requirements outlined in Table 1-2 in Chapter 1. Once
you’ve verifi ed this, installing Ektron on another environment begins with the process outlined in
Chapter 4 (it uses the CMS400Min.exe). Replicating the CMS400Min.exe installation processes
is not recommended because the installer performs many functions, including modifying the IIS
metabase, installing Windows services, and updating the Windows Registry. You should expect
these things to happen in a particular order. Additionally, the installer offers logging and reporting
on the status of the install.

Once you have done this, you have two possible ways to continue installing your site into the pro-
duction environment for the fi rst time:

 ‰ Manually copying your website

 ‰ Using the Package and Deploy Wizard

As you can imagine, although possible (and even common), manually copying your website, involves
performing a number of steps that are simplifi ed through automation with the Package and Deploy
Wizard.

Manually Deploying Your Website

Although it is highly advised that you do not try to manually install Ektron, it is common for devel-
opers to manually install an existing website onto the server once the website is developed, tested,
and ready to be deployed. The following check list of items should be followed in order.

1. Install the CMS400Min onto the production server. Make sure that all of the servers in your
deployment scenario are using the version with which the site was developed.

c14.indd 563c14.indd 563 12/28/2010 2:25:31 PM12/28/2010 2:25:31 PM

564 x CHAPTER 14 DEPLOYING YOUR WEBSITE

2. Back up and restore the database. Before you begin the process of performing the backup
and restore, make sure you fi rst clean the database and remove references to development
and staging servers. To do so:

 ‰ Delete all entries from the following tables: AssetServerTable, perform_action, and
failed_action.

 ‰ Perform a database backup for full recovery model, which ensures that all informa-
tion is included.

 ‰ Transfer the backup fi le to the database server in the production environment and
run through the process of performing a standard database restore.

3. Import the templates, Wireframes, and Widgets:

 ‰ Export the templates, Wireframes, widgets, and other site resource fi les (such as
JavaScript and CSS) from the source control system and compress them into a single
ZIP fi le, making sure that the fi le structure aligns with the production website.

 ‰ Move the ZIP fi le to the production server and unzip it into the root of the site.

4. Export the Asset library:

 ‰ Move folders and fi les that were most likely not in source control to the proper
location on the production server. This may include fi les in the DMS Assets,
PrivateAssets, and UploadedFiles.

 ‰ Navigate to the AssetLibrary folder using Windows Explorer. By default, the
AssetLibrary folder is created on the server’s C drive.

To fi nd where this is located on your server, you can do the following:

 ‰ Navigate to your site’s AssetLibrary folder, open the AssetManagement.confi g fi le,
and check the StorageLocation path.

 ‰ Navigate to the folder specifi ed in the StorageLocation path and copy it. Next,
move it to AssetLibrary folder on the production server, open the AssetManagement
.confi g fi le on the production server, and update the StorageLocation path with the
new folder name.

5. Update the web.confi g fi le:

 ‰ The web.confi g fi le holds confi guration information for the site. Copy the web.confi g
fi le from the production server to the development or staging server. Compare the
fi les and manually merge any changes required by the custom implementation.

 ‰ Move the updated fi le back to the production site.

 ‰ Update the database connection string with the new database name, username, and
password.

Using the Package and Deploy Tool

You use the Package and Deploy tool packaging your site and deploying it to a remote server. This
tool performs all of the steps that a manual deployment performs. You can fi nd the PackageSite.exe

c14.indd 564c14.indd 564 12/28/2010 2:25:32 PM12/28/2010 2:25:32 PM

The Deployment x 565

utility in Ektron’s application directory (typically C:\Program Files\Ektron\CMS400v80\Utilities\
PackageSite\PackageSite.exe). It packages your site, database, AssetLibrary, and site fi les for easy
deployment to your production server.

This tool is also useful if you need to set up a new development or staging environment. To get
started with this, do the following:

1. Launch the Package Site utility by double-clicking PackageSite.exe.

2. From the pull-down menu (shown in Figure 14-7), select the site you want to package, and
click Next.

 FIGURE 14-7

3. Browse to the directory where this site is located (for example, c:\inetpub\wwwroot).

4. Browse to the path where you want the package to be created and saved. This can be in any
location. Select your path and then click Next.

5. Enter the name of the package and click Next.

6. Enter the name of your database server, username, and password. For trusted connections,
you can leave the username and password blank.

7. Once you’ve provided this information, click Next. The installer will now copy all the
templates, CSS, assets, and so on, including any subfolders.

If you are using Subversion or another source control system, you may have a
number of .svn folders in your site tree. You should delete them from the output
folder after you package the site. To strip .svn folders using TortoiseSVN you can
export a folder to itself or you can recursively delete folders from a command
prompt with this command:

FOR /r %f IN (.svn) DO RD /s /q “%f”

c14.indd 565c14.indd 565 12/28/2010 2:25:32 PM12/28/2010 2:25:32 PM

566 x CHAPTER 14 DEPLOYING YOUR WEBSITE

If your database connection test passes, the utility starts packaging the site. You will see the
status window displaying percentages complete. If your database is large, this step can take
a long time. It uses Ektron’s SQL Generator to turn all the data in your database into a text
fi le named cms400_data.sql with a large number of SQL INSERT statements.

8. After the site is packaged, a new window opens with instructions on how to restore the site
on a production server.

Your site has now been packaged and is ready to be deployed. To begin the deployment process:

1. Navigate to the folder where the site package was saved. It should contain the following
folders:

 ‰ assetlibrary

 ‰ content

 ‰ setup

2. Move the entire packaged site folder to the production server.

3. On your production machine, double-click CMS400Base.exe (if not installed already). Make
sure that all machines in your deployment scenario are using the same version.

4. When the Site Setup Installation automatically runs, stop it by clicking Cancel on the site
setup utility for now; you will rerun this later.

5. Copy the packaged folder to the Ektron\CMS400v80\startersites folder.

6. Run the Site Setup utility by clicking Start Í AllPrograms Í Ektron Í CMS400 v80 Í
Utilities Í CMS400 Site Setup. When you get to the dropdown list of sites to install, choose
your packaged site name.

7. Follow the prompts and fi nish the install.

Congratulations, you’ve now installed your website onto the production server.

After the Installation

Now that you’ve installed your website, here’s a list of things to perform or verify, prior to the fi nal
launch of your website.

1. Verify that everything has been deleted from the AssetServerTable.

2. Verify that everything has been deleted from the Perform_Action table.

3. Verify that everything has been deleted from the failed_action table.

4. Consider purging content history. This is done through the folder properties in the
Workarea’s content folder tree.

5. Delete any test content, users, or folders from the Workarea.

6. Designers often use “Lorem Ipsum” as a placeholder for actual content; verify that it has all
been removed by searching for “Ipsum.”

c14.indd 566c14.indd 566 12/28/2010 2:25:32 PM12/28/2010 2:25:32 PM

The Deployment x 567

Securing the Server

Securing an Ektron system involves reviewing the permission structure on your website, renam-
ing or removing a Web services fi le, and changing the default passwords for superusers, as shown
next.

ServerControlWS.asmx is the Web service that permits the server controls to communicate with the
system from Visual Studio for design-time display purposes (it is not used by the server controls at
runtime on the website). The path is coded in the web.confi g fi le and appears in the following way:

<!-- Web Service URL for Server Controls design time -->

<add key=”WSPath”

 value=”http://localhost/CMS400Developer/Workarea/ServerControlWS.asmx” />

It is strongly advised to remove or change the name of this fi le and update the web.confi g value
accordingly. Failing to do so exposes your site to vulnerabilities that could allow someone to access
or modify the content of your website.

There are two default super user accounts in Ektron. Because these default users also have default
passwords, failing to change these passwords means that anyone with knowledge of Ektron can
log into your system and make administrator level changes. To change the Admin password, do the
following:

1. In the Workarea, navigate to Settings Í Users.

2. Click the Admin user.

3. Click the Edit Users button.

4. In the Password fi eld enter a new password.

5. In the Confi rm Password fi eld, confi rm the new password.

6. Click Save.

The Builtin user is an account that can be used to modify system settings. This account is not shown
in the user screen, so you need to change its password by following these steps:

1. In the Workarea, navigate to Settings Í Confi gurations Í Setup.

2. Click the Edit button.

3. Find the Built in User fi eld.

4. In the Password and Confi rm Password fi elds, enter the new password.

5. Click the Update button.

Lastly, by this point in the deployment process, you should feel comfortable with the permission
structure of your content tree, but it is worth taking a second look through it to make sure that all
the permissions look correct and do not grant elevated or undesired access to users in your system.
When the system is fi rst installed, the Everyone group has all permissions. This is most likely already
removed, but checking to verify this is the safe thing to do.

c14.indd 567c14.indd 567 12/28/2010 2:25:32 PM12/28/2010 2:25:32 PM

568 x CHAPTER 14 DEPLOYING YOUR WEBSITE

TAKE HOME POINTS

This chapter covered the deployment process and what it takes to ensure a successful deployment.
It started by discussing the pre-conditions for a successful deployment. The pre-conditions are
things that must be done before the point of deployment, and a checklist was provided summariz-
ing each of them. If you have met each of the pre-conditions, you now have a code complete website
that is properly installed in a staged environment and has been thoroughly tested. The following list
aggregates each of the bullet points outlined earlier:

 ‰ I have written requirements that capture the expected behavior of the website.

 ‰ I have written requirements that capture the website’s performance requirements.

 ‰ I have verifi ed that the website source code is code-complete.

 ‰ I have determined the version of the software.

 ‰ I have ensured the source code is managed through a source control system, such as SVN
or Perforce.

 ‰ I have a permanent development environment established for making code-level changes to
the website.

 ‰ I have a staged environment on an internal server that contains the fi nal source code and fi nal
versions of software components.

 ‰ I have a staged environment that mirrors the performance of a machine in my production
environment.

 ‰ I have verifi ed that the fi nal content for the site has either been newly created or migrated
from an existing repository into the staged environment

 ‰ I have gone through the process of Final User Acceptance Testing with my stakeholders and
key website end users.

 ‰ I have an established a set of performance baselines for at least the homepage and key inte-
rior content pages.

 ‰ I have performed a load test on at least the homepage and key interior content pages. The
system was able to perform at a level that indicates it can handle the expected peak traffi c
load of the production website.

 ‰ I have performed a battery of stress tests on at least the homepage and key interior content
pages to observe how the system behaves under a traffi c stress that is greater than the
expected traffi c level to ensure the desired recoverability from failure.

 ‰ I have verifi ed that the site has gone through security testing, and Final User Acceptance
Testing.

The chapter then discussed deployment scenarios, by defi ning terminology and helping to under-
stand which scenario makes the most sense by focusing on the fl ow of content in the deployment.
The availability of eSync, which offers powerful synchronization capabilities, depends on the chosen
confi guration. This section outlined different ways to move website content and templates between

c14.indd 568c14.indd 568 12/28/2010 2:25:32 PM12/28/2010 2:25:32 PM

Take Home Points x 569

environments within your website’s deployment architecture. Table 14-1 can be used to help
determine what options are available for particular scenarios. In many cases, specifi cally any time
content fl ows from a staging environment to a production environment, eSync needs to be used to
move information. When content exclusively fl ows in the other direction, eSync is a recommended
best practice but not a requirement.

Finally, this chapter discussed the technical aspects of deployment, which includes a discussion of
moving your website to a staged and production environment, the steps required to secure it, and
best practices for verifying that the confi guration is set up as you intended.

c14.indd 569c14.indd 569 12/28/2010 2:25:33 PM12/28/2010 2:25:33 PM

c14.indd 570c14.indd 570 12/28/2010 2:25:33 PM12/28/2010 2:25:33 PM

15
Maintaining Your Website

 ‰ What are the essentials for creating an eff ective maintenance plan?

 ‰ How do you maintain content freshness?

 ‰ How do you ensure that your site is available?

 ‰ What do you need to do to increase your site’s performance?

 ‰ What are the basics for a user friendly site?

 ‰ How do you drive traffi c to your site?

 ‰ What do you need to have in place to avert disaster?

Your website is live and has been up-and-running with no issues for some time now. With
a seemingly functional website, happy site visitors, and no complaints from management,
you decide that the website project was a success. With one solid success under your belt, it’s
time to move on to new projects and new challenges…that is until your phone starts ringing
because your manager suddenly realized Web sales are far from her expectations, or the inter-
mittent errors that have gone undetected by you have not gone unnoticed by customers, among
other problems.

CREATING AN EFFECTIVE MAINTENANCE PLAN

Every website requires maintenance and having a website maintenance plan in effect can help
prevent these types of issues by defi ning what success looks like, monitoring for success (or the
lack there of), and taking actions that lead you in the right direction. It’s unrealistic to think
that a website, even one that was an initial success, will remain successful without some level
of active and ongoing maintenance.

c15.indd 571c15.indd 571 12/28/2010 2:04:40 PM12/28/2010 2:04:40 PM

572 x CHAPTER 15 MAINTAINING YOUR WEBSITE

This chapter describes the activities that are needed to ensure the long-term success of your website.
In general, all maintenance-related activities can be generalized into the following process or meth-
odology. You will need to:

 ‰ Capture data such as site usage, server performance, and Web metrics that describe the
activity on the website and the behaviors of its site visitors.

 ‰ Analyze the data to understand how it compares to the desired outcomes as defi ned by the
Key Performance Indicators (KPIs).

 ‰ Act upon this data to improve the overall website experience.

Some of the items that you might think about tracking so that you can solve for issues using the
methodology outlined previously are:

 ‰ Number of visitors to your site

 ‰ Number of members on your site

 ‰ Average page load speed

 ‰ Advertising revenue generated

 ‰ Feedback from users on your content

 ‰ Type and frequency of server errors

Capturing Data

The fi rst part of creating your maintenance plan is determining which data needs to be captured.
Some of the data points you collect will be the same regardless of the purpose of your website, be it
a content website or an eCommerce one. These include statistics server errors and page load speeds
Other metrics will be custom tailored to capture the information relevant to your site’s unique Key
Performance Indicators (KPIs). For instance, a shoe store might need to capture the volume of
transactions related to a certain type of shoe (for example, “number of sales of the cross training
running sneaker”) while an xyz website may add more value by tracking abc (for example “hij”).
Ensuring that all the proper information is being logged is extremely important. You don’t want to
be in a situation where you are trying to answer a specifi c question only to realize that the data you
need to analyze is not being captured. Once you’ve done this, you can take the next step, which is to
analyze that data.

Analyzing Data

To perform meaningful analysis and provide meaningful answers, you need to ask meaningful ques-
tions. The type of analysis you perform on your data needs to be guided by the success criteria for
your website. Some success criteria are driven by KPIs that are unique to your site. A good question
is driven by desired outcomes. Some critical success metrics relevant to all websites are those around
a website’s physical performance. Here are some examples:

 ‰ How quickly does my website respond to my visitors interactions?

 ‰ What level of availability does my website have?

c15.indd 572c15.indd 572 12/28/2010 2:04:44 PM12/28/2010 2:04:44 PM

Maintaining Content Freshness x 573

Based on the questions you’ve asked, you can now look to your data to fi nd the answer. Sometimes
fi nding the right data might be easy. For example, a question such as “how many visible errors have
appeared on my website” might be answered by simply looking in a particular log fi le. However, in
other cases, fi nding the answer might not be so straightforward and requires you to dig into multiple
datasets to determine a good answer. A question such as “are my site searches yielding relevant
results” can be challenging to answer. In cases where you’re dealing with a diffi cult question, make
sure the right question is being asked before you start looking. A sign of a good question is that it
focuses on the business and important business outcomes.

Acting upon Data

Once you’ve asked the right questions and analyzed the data, it’s time to compare the results to the
expected outcome. If you’ve reached the desired outcome, briefl y congratulate yourself and then
prepare for a new set of desired outcomes (for example, higher revenues)! If you’ve missed the mark,
put together an action plan that can bring you to your goal. Actions might include:

 ‰ Replacing or scaling hardware to handle the increasing website traffi c demands

 ‰ Updating your product roadmap to refl ect the evolving requirements of your site visitor

 ‰ Strategizing on ways to grow the size of your site’s visitors through the use of social media
marketing, search engine optimization, or search engine marketing

If you repeat this process at regular intervals and add automation whenever possible you will not
only avoid the chicken-little “sky is falling” disaster scenarios described earlier but you will also
have your website on track for long-term success.

Understanding the desired outcomes for your website is an important task and
one that needs to be understood before you put together a maintenance plan.
If you don’t know what the longer term business goals are for your website,
involve someone that does.

This chapter provides you with some insight into things you’ll need to keep in mind while formulat-
ing your maintenance plan. You’ll also read about lessons learned, pitfalls to avoid, useful tools, and
tips and tricks.

MAINTAINING CONTENT FRESHNESS

How often have you come across a website with blatantly stale information? Websites seem to forget
that one of the primary reasons people visit them is to gather some type of information. This informa-
tion needs to be timely and relevant. Small details like an old copyright notice at the bottom of the
page can leave your site visitors with the impression that the website has been abandoned or neglected.
Here are some points to consider in setting up or reviewing to help keep your content fresh.

 ‰ Run content reports.

 ‰ Perform content “spot checks.”

c15.indd 573c15.indd 573 12/28/2010 2:04:44 PM12/28/2010 2:04:44 PM

574 x CHAPTER 15 MAINTAINING YOUR WEBSITE

Running Content Reports

The Refresh Reminder Report can prompt you to review content that may have become stale and
in need of editorial review. As you learned earlier in Chapter 5, every managed content item in
the system has the ability to specify an end date. This date can be set by an author while creating
or editing content. Depending on which option is chosen by the content author, the content item
can either be archived and removed from the site, or remain on the site but added to the Refresh
Report, once the date has passed.

To set the end date for a content item:

1. Open the Workarea Í Content screen.

2. Open a content item to edit.

3. From the content edit screen, select the Schedule tab.

4. Set the start date. Setting this has the effect of publishing content at the specifi ed point in
the future.

5. Set the end date.

6. Specify what you want to happen once the end date has passed. As you can see in Figure 15-1,
your three options are:

 ‰ Archive and remove from the site (expire)

 ‰ Archive and remain on the site

 ‰ Add to the CMS Refresh Report

7. Select Add to the CMS Refresh Report to have this content item included once the date
has passed.

Alternatively, if you are certain that content is no longer relevant after a certain date, you should
select the Archive and Remove from the Site (Expire) option. An example of content that might
need to expire on a particular date could be a time-sensitive marketing promotion that needs to be
removed from the site once the marketing campaign ends. Using this option has the effect of not
only removing the content from the website once the end date has passed, but also causes the con-
tent item to appear on the Expired Content Report.

In cases where you’re looking to see what content is pending expiration, use the Content to Expire
Report. This report lists all content whose end date occurs between today and a number of days that
you specify and gives you the opportunity to modify the end date if needed.

Another useful content report to help determine the freshness of the content on your website and
identify any items worthy of an editorial review is the Site Update Activity Report. This report, as
shown in Figure 15-2, lists how many content items were published within a time span that you
provide. This report can be used while trying to answer questions like:

 ‰ How much information has the editorial team created and published to the website?

 ‰ How does the freshness of content relate to average length of time on the website?

c15.indd 574c15.indd 574 12/28/2010 2:04:44 PM12/28/2010 2:04:44 PM

Maintaining Content Freshness x 575

FIGURE 15-1

FIGURE 15-2

c15.indd 575c15.indd 575 12/28/2010 2:04:44 PM12/28/2010 2:04:44 PM

576 x CHAPTER 15 MAINTAINING YOUR WEBSITE

Each of the content reports discussed here can be found in the Workarea’s Report section in the
following way:

1. Open the Workarea and navigate to Reports.

2. Expand the Report tree to fi nd the following:

 ‰ Reports Í Contents Í Refresh Reminder

 ‰ Reports Í Contents Í Expired Content

 ‰ Reports Í Contents Í Content to Expire

 ‰ Reports Í Contents Í Site Update Activity

Performing “Spot Checks”

As mentioned earlier, it’s important to remember that reports can only tell you so much. It’s better
to turn to a report only after you’ve formulated some meaningful business question and are using
the report as a data point in discovering an answer. Also keep in mind that there might be content
on your website that is unmanaged and this information will not appear in the report. For this
reason, it’s worth conducting a “spot check” content review every once in a while looking for signs
of stale, unmanaged content. Good places to check are the website’s images, such as logos and ban-
ners, and any information that appears in the header and footer.

While you’re performing a manual content scan, consider checking other items that might be
out-of-date, yet may not be managed content and not listed in these content reports. Has your
company changed locations? Opened a new offi ce? Changed its 1-800 number? Check the privacy
policy — has there been a change in the way your company handles customer information, such as
e-mail addresses, that should be refl ected there?

All businesses naturally experience some rate of attrition, which, from a maintenance perspective,
means that any templates that list employee information, such as a “management team” page or a
community hub, should be checked occasionally for references to employees who no longer work for
the company. For those active employees, take a moment to verify that their contact information is
correct — checking items such as phone numbers, e-mail addresses, and social media handles.

In addition to content being affected by the changes in personnel, you need to make sure that your
website’s content permissions and approval processes are revisited to keep track of how they’re
affected by changes in roles, hiring, and attrition. Key questions to ask here include the following:

 ‰ Have the right people been included in the content approval process?

 ‰ Are the current approval processes out-of-date?

 ‰ Are there new employees that should be included?

 ‰ Are there ex-employees with permission to access the system?

Another item to check related to changing employees are HTML forms — many forms trigger
some type of notifi cation activity such as an e-mail notifi cation prompting an individual to
take some type of next-action step. When employees change roles, e-mails may potentially be

c15.indd 576c15.indd 576 12/28/2010 2:04:45 PM12/28/2010 2:04:45 PM

Maintaining Availability x 577

dropped or ignored, which can cost the loss of a sale or create an aggravated customer. Schedule
time to review the HTML forms on the site and make sure that they are being sent to the proper
individuals. On a related note, spam has been known to render useless any e-mail accounts listed on
a public website. This also holds true for group e-mail addresses (such as “sales@mycompany
.com”), which should also be checked to make sure they are still active.

MAINTAINING AVAILABILITY

Any period of time where your website is unavailable can cause a number of serious issues, ranging
from the obvious issues when site visitors are unable to complete sales transactions to the less-
considered ones such as search engine spiders being unavailable to update search results. Large scale
outages occur less frequently but are highly visible and certainly more dramatic. These larger outages
can be detected easily enough through the use of networking and application monitoring tools such as
What’s Up Gold (by Ipswitch, Inc) or Nagios. These tools monitor your website and network for issues
and alert employees when things go wrong. Brief outages, on the other hand, occur more frequently but
often fl y right under the radar, going unnoticed, yet still negatively impacting online transactions.
It is important to monitor both the large outages and the small hiccups to maintain a successful,
well-functioning website.

Any fault-tolerant website should be designed to continue to function in spite of system errors. In
most cases, these errors are not visible to the end user and are instead logged. Ensuring that your
Web application is logging errors is critical in being able to answer questions around availability.
This section outlines places that you can review to fi nd information to provide answers and identify
potential issues requiring attention.

By default, Ektron logs any application errors to the server’s Event Viewer, as shown in Figure 15-3.

FIGURE 15-3

c15.indd 577c15.indd 577 12/28/2010 2:04:45 PM12/28/2010 2:04:45 PM

578 x CHAPTER 15 MAINTAINING YOUR WEBSITE

You can modify this behavior to have system warning and diagnostic messages included as well.
This is confi gured in the web.confi g fi le, which has a setting to defi ne the type of information logged
into the Event Viewer. To modify this, open the web.confi g fi le and change the LogLevel value
shown in the following snippet to the integer that corresponds to the level of the message to log.

<system.diagnostics>

 <switches>

 <!-- Determines the level of messages that are logged

 1 = Error: Only Errors are logged.

 2 = Warning: Only warnings and Errors are logged.

 3 = Information: Only Informationals, Warnings, and Errors are logged.

 4 = Verbose: Everything is logged.

 -->

 <add name=”LogLevel” value=”1” />

 </switches>

Ektron uses the Microsoft Logging Application Block internally to log these system messages.
This means you have the ability to control a number of characteristics through the application
.confi g fi le also located in the website’s root directory. You can control these characteristics in
three easy steps:

1. Specify where these messages are physically stored. If you don’t want to log to the Event
Viewer, you can confi gure your system to log to a SQL Server database, or other data store.

2. Specify different locations for each type of message. A practical use case here would be to log
all error messages to the Event Viewer, so they’re picked up through system error monitoring
tools, but log everything else into a database for an external log fi le.

3. Choose to be notifi ed of messages through e-mail or another way.

For more information on these confi gurations, http://msdn.microsoft.com/
en-us/library/cc309506.aspx.

Beyond application errors, there are other undesirable events that you want to keep an eye out
for, such as issues with your hyperlinks. Broken links not only give the impression that your site
is unavailable, but it is a source of serious frustration to visitors. Your maintenance plan should
include the use of Ektron’s “Bad Link Report,” which scans your website for broken links. This
report includes only content that is managed by the system and it does not spider all pages on
the website.

In addition to using the Bad Link Report, consider reviewing your HTTP logs regularly. This
may seem redundant, but the Web servers’ HTTP logs need to be reviewed frequently, looking for
any HTTP 4xx Client Errors or 5xx Server Errors. This is important to check for HTTP 404 File
Not Found errors, in addition to the Bad Link Report, since it will include HTTP 404 errors for
unmanaged resources such as CSS, JavaScript fi les, and images.

Log Parser is another log processing tool that is extremely powerful and available free from
Microsoft’s website. If the idea of being able to query the Event View, HTTP Log Files, and so

c15.indd 578c15.indd 578 12/28/2010 2:04:45 PM12/28/2010 2:04:45 PM

Maintaining Performance x 579

on, using a SQL-like syntax is appealing, this is the power tool for you. Since you can run it from
the command line as well as through a GUI, scheduling report generation is simple through the use
of Windows Scheduler.

The last point to mention here is to review your domain names. Make sure to keep a list of the
domain names that you own and when they expire. Many individuals (and organizations) quickly
grab expired domain names soon after their expiration date has passed, which can result in your
company losing an important asset. This risk can be mitigated by renewing your domain name for
a longer period of time, keeping up-to-date on when it expires, and keeping the registration and
contact information correct.

Automate as many of these processes as possible. It’s a bad idea to put too much
faith in the memory of any individual to remember to check for issues, especially
considering they are highly amenable to automation.

MAINTAINING PERFORMANCE

A website’s throughput, or the average rate of successful responses it elicits, is a function of four
characteristics: the traffi c load, the hardware confi guration, the software design and confi guration,
and the volume of data stored in the system. This means that if you change one of these variables in
some way, you affect, either negatively or positively, the performance of the website. It’s important
to keep this in mind as you log, analyze, and act on data related to performance, since there is no
single dial to turn to in order to “improve performance.” Answering performance-related questions
can often require looking into multiple sources of data for answers.

The best way to keep tabs on performance is through constant and automated monitoring of key
metrics. From a hardware perspective, these metrics indicate the server’s health and include such
items as memory, CPU, hard disk, and network utilization. PerfMon is a server tool that collects data
on potentially hundreds of data points, including those previously listed as well as more granular
data points related to ASP.NET, IIS, SQL Server, and the .NET CLR. Figure 15-4 shows a picture of
PerfMon capturing and logging CPU utilization. Running PerfMon takes resources itself, as does the
overhead of sampling the dataset too frequently. Therefore, when using PerfMon for ongoing analysis,
it is best to keep the sampling rate low.

Depending on your website’s implementation, the amount of data in a system may affect your system’s
performance. It is therefore a good idea to remain aware of how much of the website’s code scales
relative to the size of some dataset such as the number users, the amount of content, the number of
folders, and the nodes in a taxonomy, among others. In general, the point is to understand how the
architecture of your website scales according to the growth of data, and to keep track of the amount
of this data when relevant.

Ektron also gives you the ability to delete historical versions of content in a folder using the Purge
History option, shown in Figure 15-5. This is useful when you have a large number of content or
document revisions that are no longer necessary.

c15.indd 579c15.indd 579 12/28/2010 2:04:45 PM12/28/2010 2:04:45 PM

580 x CHAPTER 15 MAINTAINING YOUR WEBSITE

FIGURE 15-4

FIGURE 15-5

In the case of managed content, each revision occupies a record in the content table. In the case of
a managed document, it additionally keeps a document for each saved version. If you have a large
number of sizable documents, you might want to run through the process of purging history to free
up disk or database space. To run purge history, do the following:

c15.indd 580c15.indd 580 12/28/2010 2:04:46 PM12/28/2010 2:04:46 PM

Maintaining Usability x 581

1. Open the Workarea Í Content folder tree.

2. Select the folder whose history you want to purge.

3. Access the folder’s Properties screen.

4. On this screen you have the ability to specify various purge options, including whether you
want to purge recursively and the time frame that you want to purge, among other options.

5. Click the Purge History button and then OK to continue.

Website throughput is measured in a number of ways, including pages per second and requests per
second. The performance and load testing performed during staging and deployment should have
given you a solid sense of the average throughput for your website under normal and above-average
traffi c conditions. Using this as a baseline, you can then turn to throughput monitoring solutions,
such as Keynote, to track ongoing throughput relative to the baselines you established during
your controlled tests. Services such as Keynote are nice because they give you an understanding
of your website’s actual throughput experienced by site visitors, without the need to take servers
out of production for a dedicated load test. Figure 15-6 shows a sample report provided by Keynote.

FIGURE 15-6

MAINTAINING USABILITY

If you are doing your job, your website will undoubtedly continue to change long after the initial
launch date. Small incremental changes might not seem substantial enough to warrant usability
testing, but over time they can add up to signifi cant changes to the overall user experience.

c15.indd 581c15.indd 581 12/28/2010 2:04:46 PM12/28/2010 2:04:46 PM

582 x CHAPTER 15 MAINTAINING YOUR WEBSITE

Given this, it’s worth conducting a usability study once in a while to make sure that website visi-
tors are still able to fi nd what they’re looking for and accomplish their goals. If you conducted
usability studies during discovery or development, consider repeating portions of the usability
study that cover the areas that have changed. A usability study does not need to be elaborate and
formal. While it’s a good idea to get a cross-section of your customer base, a lot of information
can be gleaned by pulling in an existing employee to run through a quick study and gut-check
usability assertions.

It’s also a good idea to make sure that your documentation team is made aware of these small
incremental changes as they occur so they can update the website’s help guide or reference manual
if there’s one associated with the website. Small changes in text, labels, and navigation can greatly
affect procedural steps found in most help manuals and ultimately further confuse the site visitors
looking to the help manual for guidance.

Graphic design also plays an important part in the overall perception of the website. Take note of
how your website’s design compares to other websites. Does your website’s design feel outdated?
Have incremental changes been made to the design and it’s no longer accurately refl ecting the brand-
ing efforts of the marketing department? This last question might be diffi cult to answer yourself, so
if you’re unsure, ask a design or marketing colleague for help.

MAINTAINING (AND BUILDING) REACH

This section is not intended to offer a one-size-fi ts-all roadmap for building the traffi c to your web-
site. Instead, it will offer you points to consider as you create your maintenance plan:

 ‰ What questions should you ask?

 ‰ What data should you log?

 ‰ What analysis should you perform?

Before you can think about increasing your website’s traffi c, start by asking good questions and
making sure the data is available for meaningful analysis. Some of these questions may include:

 ‰ Do you have a good understanding of who is currently using your website?

 ‰ Do you know what they like about it?

 ‰ What problems do they have?

If you artifi cially gain traffi c without understanding your current base of site visitors, you stand the
risk of putting a ton of effort into simply having an increase in unhappy site visitors.

Chapter 9 covered Ektron’s approach to Web Analytics through the support of integration with
Web Analytics providers such as Google Analytics and Omniture. Through these Web Analytics
providers, you have the ability to capture and analyze most any statistic related to the activities on
your website.

c15.indd 582c15.indd 582 12/28/2010 2:04:46 PM12/28/2010 2:04:46 PM

Maintaining (and Building) Reach x 583

A long-term strategy will offer no single way to increase traffi c to your website. Maintaining and
building your website’s online presence requires a holistic look at your website’s traffi c from many
different angles. Such a strategy will most likely involve some elements of:

 ‰ Search engine marketing

 ‰ Search engine optimization

 ‰ Social media strategy

 ‰ Online advertising

 ‰ Print advertising

Not all organizations can afford to have a full-time employee focused on SEO to ensure your posi-
tion in the search engines. Out of the items listed here, this one often falls on the shoulders of a Web
developer. If this is a responsibility that you will have, it’s important to make sure you’re setting
SEO-related goals and are therefore capturing, analyzing, and taking action on data related to the
position of your website in the search indexes.

Once content-related SEO considerations have been addressed (such as content relevance, metadata,
and keywords), your attention should turn to how many inbound links you have pointing to your
website. This is a very important metric since each link is, in effect, a “vote” for your website and
its content. Imagine trying to determine the best place to get pizza in your town and being able to
query the phone records to see which one gets the most phone calls. The one that gets more phone
orders might give an indication as to which is more popular, and therefore, could be inferred as
having better pizza. Similarly, search engines use the number and quality of links pointing to your
website as a metric to determine rank.

How many inbound links are pointing to your site? You can use the advanced search syntax of
Google to show you the number of inbound links pointing to your website. For example, the follow-
ing query shows all links pointing to mysite.com that do not originate from the domain mysite.com:

 link:mysite.com -site:mysite.com

Understanding, measuring, and tracking key SEO metrics is important in improving your search
engine standing. It has been said that “what is tracked, improves.” How does your search engine
ranking compare to when you fi rst launched? After six months? After a year?

Ektron provides an SEO tool that is helpful in gathering tracking information like this. The tool
analyzes your website for W3C compliance, Alexa rankings, image ALT text, keyword density, and
metadata, and also gives you an indication of your website’s score for these metrics. Figure 15-7
shows a screenshot of the SEO tool.

If SEO concepts like these sound foreign, consider talking with someone who understands SEO and
is willing to offer some advice. Additionally, there are many good authoritative blogs on the subject.
Investing a little time to learn about search engines and how they rank Web pages can yield big
rewards in terms of your website’s search traffi c.

c15.indd 583c15.indd 583 12/28/2010 2:04:46 PM12/28/2010 2:04:46 PM

584 x CHAPTER 15 MAINTAINING YOUR WEBSITE

 FIGURE 15-7

MAINTAINING CALM DURING DISASTER RECOVERY

“By failing to prepare, you are preparing to fail,” said Benjamin Franklin. Although a crisis situa-
tion may never happen, it’s important to consider the points of failure in your system, to have a plan
in place if something were to go wrong, and to have practiced this plan to verify that there are no
chinks in the armor. If you’ve followed along and have gone through the process of putting together
a maintenance plan according to the guidance provided here, you will be in a good position to
dodge most bullets because you are proactively dealing with potential hiccups rather than reactively
dealing with a crisis situation.

But in the event that a crisis situation does occur, what can you do to prepare for it? How can you
mitigate the disruption caused by it?

The fi rst step is understanding the constraints of your deployment architecture and what it means
for recovery, failover, and general availability. What happens if the hard drive fails in production?
Have you built redundancy into all of your hardware? At what level of availability are you striving
for? Availability is typically expressed in terms of the uptime for a given year.

 ‰ 99 percent (“two nines”) is equivalent to 3.65 days of downtime per year

 ‰ 99.9 percent (“three nines”) is equivalent to 8.76 hours of downtime per year

 ‰ 99.99 percent (“four nines”) is equivalent to 8.76 hours of downtime per year

The point here is not to push you to “four nines” but for you to set the expectations of your deploy-
ment scenarios and to organize your disaster recovery plans correspondingly.

c15.indd 584c15.indd 584 12/28/2010 2:04:47 PM12/28/2010 2:04:47 PM

Take Home Points x 585

The most important things to have backed up are:

 ‰ Source code (including templates, JavaScript, CSS, codebehind, and so on)

 ‰ Content (including database and assets stored on the fi lesystem)

 ‰ Software (including installation and confi guration options)

Source code should already be managed in a Source Control Management System and in sync with
your production environment. Content found in databases needs to be confi gured for automatic
backups with backup storage living on a network separate from your production server. Software
licenses and installation executables need to be backed up.

Once your plan is in place, it is important to perform a disaster recovery dry-run to make sure that
you have all the information in place to recover from a crisis situation. It’s one thing to know you
have daily backups of your database, but how useful are database backups when you’re trying to
hunt down software, licenses, and passwords to get the backup restored? Having periodic dry-runs
will give you a level of confi dence in your disaster recovery plans.

TAKE HOME POINTS

The success of your website is ultimately gauged on its ability to deliver on longer term goals. Failing
to have a plan in place for maintaining your website inevitably results in a website that at best,
appears abandoned and at worst, becomes unusable.

This chapter provided:

 ‰ A general process for creating an effective maintenance plan using business goals and KPIs to
drive what data is monitored and analyzed.

 ‰ A discussion showing that once your plan is in place, you greatly reduce the chances of
needing to reactively deal with a problem because you are proactively tuning your website
for success.

c15.indd 585c15.indd 585 12/28/2010 2:04:47 PM12/28/2010 2:04:47 PM

c15.indd 586c15.indd 586 12/28/2010 2:04:47 PM12/28/2010 2:04:47 PM

16
Next Steps

 ‰ What have you learned thus far?

 ‰ Why should you engage with the Ektron developer community?

 ‰ What Professional Services does Ektron off er?

 ‰ What online resource does Ektron Off er?

In past chapters, you learned all about Ektron, its Framework, tools, features, and community.
This chapter not only reviews what you’ve learned so far, but also gives you some guidance on
what to do with your newly gained knowledge, including a full list of webinars available to you.

REVIEWING WHAT YOU LEARNED

In the fi rst three chapters, you gained a high-level understanding of the Ektron Framework, its
architecture, and major components; you learned about the services and solutions offered by
Ektron’s professional services division; and you were introduced to the Web project methodology
followed by Ektron’s own Best Practice and Professional Services teams.

In the 10 chapters that followed, you learned how to set up an Ektron development environ-
ment and build a complete website using the Ektron Framework. Each chapter focused on
a specifi c area of the OnTrek website and walked through the process of understanding its
implementation by focusing on the key concepts of the technology used, a review of the
implementation, and a look “Under the Hood” to gain a deeper understanding of the inner
workings of the particular technology.

In the fi nal two chapters, you read about the deployment process, including considerations for
designing your deployment architecture, pre-conditions for deployment, and steps for physi-
cally deploying your website. You also learned about the maintenance process and a systematic
approach to understanding which data to capture, analyze, and act upon for a comprehensive
and holistic approach to website maintenance.

c16.indd 587c16.indd 587 12/21/2010 4:49:54 PM12/21/2010 4:49:54 PM

588 x CHAPTER 16 NEXT STEPS

This chapter details the various available resources as you continue to work with Ektron. A primary
resource is the Ektron online community. It also explains how to reach out to Ektron technical sup-
port when you need more information than the online community can provide. Finally, this chapter
lists developer resources — including screencasts and webinars — designed to help you further build
on your knowledge of the Ektron product.

CONNECTING WITH EKTRON AND THE ONLINE COMMUNITY

At any point during your Web projects, it’s important to know that there is a great amount of
help literally available at your fi ngers. The Ektron developer community has a large presence on
social networking sites such as Twitter and Facebook. On Twitter, Ektron regularly watches and
responds to the stream of Twitter posts that contain the word Ektron (or #ektron). Public con-
versations between Ektron employees, developers, and community members are very common
on Twitter. Engaging with the Ektron community on social networking sites such as these is
something Ektron looks at as an opportunity to assist customers through hurdles, connect
them with the resources to ensure a projects success, and engage in conversation. Twitter has
shown to be a very powerful way for Ektron employees to connect with Ektron developers and
customers alike.

Ektron also uses both Twitter and Facebook as a way to share information such as product
webinars, technical screencasts, as well as the Web projects completed by Ektron’s partners and
customers. Joining Ektron’s Facebook group is a good idea as it provides another opportunity
for you to engage Ektron in a conversation. Ektron’s tagline, “What do you want your website to
do?,” is more than just empty marketing jargon — it captures the importance of customer feed-
back to Ektron for the growth of the company and its products. By joining these communities you
can participate in discussions that have the potential to impact the future direction of the com-
pany and even see one of your feature ideas go from concept, to conversation, to product release
and ultimately to infl uencing the direction of the product.

In addition to Twitter and Facebook, Ektron has its own Developer Community hub, called
the Ektron Dev Center (http://dev.ektron.com), which serves as a centralized location for
developers to communicate with one another and with Ektron’s own technical engineer staff.
The discussion boards are very active on the Dev Center and contributions to them come
from both the Ektron Developer Community and Ektron’s own engineering teams. These
discussion boards are a great place to post questions, request feedback, and seek help when
troubleshooting.

In cases when you need more support than what’s offered through the online community, keep in
mind that Ektron offers full technical support to all customers with active maintenance, as well
as access to all product downloads, including all new software releases. Maintenance needs to
be renewed yearly; once the one year anniversary of the purchase date passes, your maintenance
expires. To prevent this from happening, you must renew your maintenance agreement with your
account manager in advance of your maintenance expiration date.

c16.indd 588c16.indd 588 12/21/2010 4:49:57 PM12/21/2010 4:49:57 PM

Connecting with Ektron and the Online Community x 589

A Quick Review of Ektron’s Technical Support

Chapter 1 covered the four ways to contact technical support, but it’s worth repeating so I’ll
summarize it here (for more information on this, see Chapter 1):

 ‰ Phone Support: Phone calls are answered immediately by a Technical Support Engineer
(TSE), who triages your issue, gathers information, and creates a case. A TSE is then assigned
to the case and must return the call within two hours. When you have a critical issue needing
attention, use phone support.

 ‰ United States: 1-866-4-EKTRON x7002

 ‰ United Kingdom: +44-1628-509-040

 ‰ Australia: +61-2-9248-7222

 ‰ Web Form Support: Technical support cases initiated using the Web form (http://dev
.ektron.com/requestsupport) will receive a call from a TSE responding to the customer
within four to six hours.

 ‰ E-mail Support: Technical support cases initiated by sending e-mail to support@ektron.com
will receive a response from a TSE within 24 hours. This is a good option for lower-priority
issues that still require a resolution.

 ‰ Chat Support: Basic questions can be answered through live chat on the Ektron website from
8:30 a.m. to 5:30 p.m. EST (http://ektron.com/support/).

You may have noticed that the Dev Center and social networking sites like Twitter and Facebook
are not listed as ways to engage Ektron Support for assistance. Don’t infer from this they shouldn’t
be used or are not taken seriously. They’re not listed simply because Ektron does not offer a Service
Level Agreement (SLA) around this type of community-driven support. Given that responses on
these social media outlets come primarily from the community as opposed to offi cial Ektron repre-
sentatives, predicting and guaranteeing the time it will take to receive a response from the community
is not possible. In some cases it may take as little as an hour, other times a day or more. It’s also
entirely possible that a question posted on the Dev Center might not get a response all together.

In cases like this, it’s important to keep in mind Ektron’s technical support team. If you have an issue
that needs a response, and you are not getting the response you need from the Ektron community,
contact Ektron Support using one of the four ways outlined earlier. Which of the four methods
you use to contact support depends on how quickly you need resolution to the issue. Keeping these
options in mind and using the right support channel will help you to avoid unnecessary waits and
get you a quick resolution.

Don’t Forget Your Account Manager

Don’t forget the fact that once you purchase a license you also have access to a dedicated Account
Manager. Oftentimes customers misunderstand the role of the account manager and as a result, miss
out on an opportunity to tap into a valuable resource that is freely available to every Ektron customer.
At the most basic level, the Account Manager is the customer relations point of contact — someone

c16.indd 589c16.indd 589 12/21/2010 4:49:57 PM12/21/2010 4:49:57 PM

590 x CHAPTER 16 NEXT STEPS

who you work with when you purchase or renew your license, or need to discuss upgrading to access
new features. More importantly, however, the Account Manager serves as your advocate within the
Ektron organization. This is helpful when you need an Ektron contact to act as a champion for such
things as a feature request and escalating support issues to the management team. Keeping your main-
tenance agreement plan active gives you access to your Account Manager and to Ektron support.

UTILIZING EKTRON’S PROFESSIONAL SERVICES AND

TRAINING PACKAGES

Ektron offers a full range of services that can be leveraged in a number of different ways at various
points during the lifecycle of your Web project. These include:

 ‰ Best Practice

 ‰ Application Engineering

 ‰ Training packages

Both Best Practice and Application Engineering offer services that can help your project when
needed by bringing in Ektron application engineers and project managers experienced in building,
deploying, and managing Ektron projects. Additionally, Ektron’s training services pay an important
role in the process of education for many different types of people involved in your Web project.
The Application Engineering department is fi lled with seasoned Web project managers, business
analysts, CMS Architects, developers, and QA testers who know how to take a project from the dis-
covery phase to the delivery and deployment phase. They can be leveraged to complete entire Web
projects or used to augment your own-in house development efforts.

The Best Practices department can support your Web project by giving you access to a best practice
solution engineer. This resource serves as an advanced support system — giving you greater access
and availability to the specifi c individual assigned to your project who can provide you with help for
items such as architectural guidance, deployment confi guration recommendations, and experienced
troubleshooting.

Ektron offers a number of different training packages so you can receive raining based on the
requirements of your Web project and the roles of the individuals needing training. Training ses-
sions include Administrator Training, Developer Training, Advanced Developer Training, and
Customized Training. There are facilities at which this training takes place available throughout
the world. Additionally, Ektron offers personalized training that allows you to defi ne a customized
training plan tailored to the needs of your organization.

LEVERAGING ONLINE DEVELOPER RESOURCES

Ektron regularly produces webinars and screencasts that offer developer guidance on new and exist-
ing technologies. The following sections features a sampling of some of the more popular webinars
and screencasts that can help you continue to learn about the Ektron Framework and give you ideas
about ways to further integrate this technology into your Web projects.

c16.indd 590c16.indd 590 12/21/2010 4:49:57 PM12/21/2010 4:49:57 PM

Leveraging Online Developer Resources x 591

The Ektron Exchange (http://dev.ektron.com/exchange/) is another excel-
lent resource where you can fi nd code submitted by both Ektron Engineers and
members of the Ektron developer community available for reuse in your own
Web projects. The most popular type of code currently available through the
Ektron Exchange are PageBuilder Widgets; you can fi nd widgets readily avail-
able for features like rotating banners, taxonomy driven menus, integration with
bit.ly for URL shortening, and many others.

The Framework API

http://dev.ektron.com/FrameworkAPI/

Webinar description: The Framework API represents a new API for Ektron offi cially launched
in its 8.0 release. The design goals of this API are to provide an API that offers discoverability,
consistency, and simplicity.

CMS Extensions

http://dev.ektron.com/ExtensionFramework/

Webinar description: The CMS Extension Framework is the new extensibility architecture released in
version 8.0. This screencast discusses the benefi ts it provides over the plug-in architecture, including:

 ‰ Context: You have direct access to the Web application from within the extension, including,
HTTP Context, Session, Cache, and all of Ektron’s CMS APIs.

 ‰ Easier to debug: You can attach Visual Studio directly to IIS and set breakpoints just as you
would when debugging any Web application.

 ‰ Performance: Previously, you had to use Web services to access the Web application context.
Since you have direct access with CMS Extensions, you no longer have to issue Web
service calls.

 ‰ No Windows service: Since CMS Extensions run within the context of the Web application,
no Windows service is needed.

Integrating Ektron with a Content Delivery Network

www.ektron.com/Resources/Webinars/Integrating-Ektron-with-a-Content-Delivery-Network/

Webinar description: A content delivery network (CDN) is a powerful infrastructure of servers
made available to maximize bandwidth for access to your Web data, reducing page load times and
improving user experience. The webinar discusses:

 ‰ What a CDN is as well as its technical benefi ts

 ‰ Other services available through CDN providers, such as Akamai

 ‰ How to integrate with Akamai via a CMS extensions (plug-ins) for forward caching
capabilities

c16.indd 591c16.indd 591 12/21/2010 4:49:57 PM12/21/2010 4:49:57 PM

592 x CHAPTER 16 NEXT STEPS

Building Your First Ektron eCommerce Site

www.ektron.com/Resources/Webinars/Building-Your-First-Ektron-eCommerce-Site/

Webinar description: As part of Ektron, you can have a single application running both your
website and online marketplace, which allows you to manage both from the same interface. Jason
Arden takes you through the initial steps to get your store up-and-running.

During this webinar, you learn how to:

 ‰ Utilize the eCommerce server controls.

 ‰ Create a Landing page for your products.

 ‰ Create a Product Detail page.

 ‰ Create a Product Search page.

 ‰ Create a Checkout process.

 ‰ Create a My Account page for previous shoppers.

Utilizing the Ektron eCommerce APIs

www.ektron.com/Resources/Webinars/Utilizing-the-Ektron-eCommerce-APIs/

Webinar description: Covers working with eCommerce functionality and utilizing the API layer.
Developers gain an understanding of how to access, add, update, and delete data programmatically
around:

 ‰ Customers and customer information

 ‰ Products and product catalogs

 ‰ Baskets and coupons

Introduction to the Ektron eCommerce Workfl ow Engine

www.ektron.com/Resources/Webinars/eCommerce-Workflow-Engine.aspx

Webinar description: Covers creating and customizing an eCommerce workfl ow utilizing the
Windows Workfl ow Foundation (WF) available within .NET 3.0. Workfl ows are composed of
activities and each activity represents a portion of your business processes. Covers how to work with
different types of activities and how to create your own. The webinar wraps up by adding the new
workfl ow to the Ektron CMS and walking you through the purchase process.

Agenda:

 ‰ Introduction to the Windows Workfl ow Foundation

 ‰ Creating a workfl ow from a workfl ow template

 ‰ Working with the Ektron activities

 ‰ Creating your own activities

 ‰ Adding a new workfl ow to the CMS

c16.indd 592c16.indd 592 12/21/2010 4:49:59 PM12/21/2010 4:49:59 PM

Leveraging Online Developer Resources x 593

Creating Your Own eCommerce Payment Gateway Provider

www.ektron.com/Resources/Webinars/Creating-Your-Own-Payment-Gateway-Provider/

Webinar description: A payment gateway provider is a pluggable component that is integrated into
Ektron’s eCommerce module. A payment provider handles eCommerce customer payments by
utilizing third-party payment gateways. Ektron comes with several payment providers, including
Authorize.NET and PayFlow. This webinar covers how to create your own payment gateway
provider for use within your own Ektron-powered website.

Hands On with the Content Targeting Widget

www.ektron.com/Resources/Webinars/Hands-on-with-the-Content-Targeting-Widget/

Webinar description: The Content Targeting Widget in PageBuilder can be one of the most impor-
tant elements in your developer toolkit. Learn how to use targeting technology to build better user
experiences.

Agenda:

 ‰ How the Targeting Widget is architected

 ‰ Out-of-the-box Conditions Rulesets such as Referral URLs, Cookies, User Properties,
User Groups, and query string Parameters

 ‰ How to add new Condition Rulesets

 ‰ How to use the underlying framework of the Targeting Widget to provide a customized
user experience

Introduction to Ektron eSync

www.ektron.com/Resources/Webinars/eSync-Revolutionize-the-way-you-build-deploy-and-

maintain-your-Web-site/

Webinar description: eSync was designed specifi cally to meet the needs of enterprise-level websites.
It is the next generation in advanced Web synchronization technology and this webinar shows how
it can revolutionize the way you build, deploy, and maintain your website.

Agenda:

 ‰ Bi-directionally manage content changes and membership information.

 ‰ Deploy your fi rst, second, or tenth revision of your website with zero site downtime.

 ‰ Move only the changes you want to move, from single pieces of content and specifi c
functionality to entire sites.

 ‰ Manage multiple servers across a server farm, the globe, or in a load balancing
environment.

 ‰ Strategically schedule synchronization.

 ‰ Build out complete development environments in minutes.

c16.indd 593c16.indd 593 12/21/2010 4:50:00 PM12/21/2010 4:50:00 PM

594 x CHAPTER 16 NEXT STEPS

Introduction to the Ektron Marketing Optimization Suite

www.ektron.com/Resources/Webinars/Ektron-Marketing-Optimization-Suite/

Webinar description: An agile marketing department needs the ability to gain real-time insight into
the behavior of website visitors and optimize the Web experience to drive business results.

Agenda:

 ‰ Create marketing campaigns and landing pages without the need for Web developers.

 ‰ Deliver personalized content in real time to all your site visitors and customer segments.

 ‰ Test different combinations of copy, images, and page layout to drive site visitors to
take action.

 ‰ Make your Google, Omniture, and Webtrends data-actionable.

 ‰ Enforce Search Engine Optimization best practices and identify areas for SEO
improvement.

 ‰ Score site visitors and prospects based on their activities on your website.

Ektron Widgets in Version 8

www.ektron.com/Resources/Webinars/Building-Widgets/

Webinar description: With the release of PageBuilder, Ektron revolutionized how websites are built
and maintained. An important part of this strategy was the separation of functionality from display
that was created through the use of widgets.

Writing an RIA Application with Ektron

www.ektron.com/Resources/Webinars/Writing-An-RIA-Application-On-Top-Of-The-Ektron-

Platform/

Webinar description: Building an RIA on top of the Ektron platform. Code and concepts covered
are relevant to any developer building RIAs with Flash, Flex, or Silverlight.

This webinar covers basic concepts, such as how to pull data out of the CMS for display within an
RIA. It also demonstrates best practices for data manipulation within the CMS.

In this webinar, you learn how to:

 ‰ Display HTML/XML managed content in an RIA

 ‰ Add data to the CMS

 ‰ Create a mini app for data manipulation

c16.indd 594c16.indd 594 12/21/2010 4:50:00 PM12/21/2010 4:50:00 PM

Take Home Points x 595

TAKE HOME POINTS

Ektron is a very transparent company that is actively involved in online social media communities.
Its transparency gives you the an opportunity to connect with Ektron employees to ask questions,
voice your thoughts, and provide feedback on the platform, support, services, or overall experience
with Ektron in general. To recap:

 ‰ Ektron offers formal methods for receiving assistance through dedicated Support and
Professional Services. You can use these services any time you need offi cial support from
Ektron to support the success of your Web project.

 ‰ Ektron Training is available for those customers who need custom, developer, administrator,
or onsite training courses.

 ‰ The Training department is committed to creating online video training collateral for access
by the general user community. This comes at no cost via the Ektron homepage, educational
screencasts and webinars.

c16.indd 595c16.indd 595 12/21/2010 4:50:00 PM12/21/2010 4:50:00 PM

c16.indd 596c16.indd 596 12/21/2010 4:50:00 PM12/21/2010 4:50:00 PM

PART IV

Appendixes

 � APPENDIX A: CMS Extensions

 � APPENDIX B: Framework API

 � APPENDIX C: Performance Checklist

bapp01.indd 597bapp01.indd 597 12/21/2010 4:51:15 PM12/21/2010 4:51:15 PM

bapp01.indd 598bapp01.indd 598 12/21/2010 4:51:17 PM12/21/2010 4:51:17 PM

A
CMS Extensions

One of the strengths of the Ektron Framework is the ability to hook into events in the system
and run custom code against them. You experimented with some of the methods for running
custom code against system events through the eCommerce Workfl ow engine and eCommerce
Provider interfaces in Chapter 13. In this appendix, you will look at working with content and
user oriented events using the CMS Extension system.

BENEFITS OF EKTRON FRAMEWORK, VERSION 8

Prior to version 8 of the Ektron Framework, the methodology for running custom code on
certain events was to use plug-in extensions; however, with version 8 and the addition of CMS
Extensions, several benefi ts are brought into play over the old system.

 ‰ The handler executes in the context of the request. Executing in the context of the request
means that your code will have access to the user session, the different caches, and the
HTTP Context of the request. In previous versions, when working with the plug-in
architecture, the custom code was executed outside of the request, which meant that only
some of the additional information was exposed to the custom code, limiting the ability
of the developer to understand the action that was taking place. With CMS Extensions,
however, your code runs in the same reference frame as the Ektron Framework itself, so
all the features you have in a page are available from your extension also.

 ‰ Extensions perform better than plug-ins. Since plug-ins ran outside of the context of the
CMS, in order to interact with the CMS itself through API calls, you fi rst had to con-
nect via a Web service. Since extensions run in the same context, there is no overhead
when executing system calls.

 ‰ It is easier to construct more complex system interactions. Without the added overhead
of building Web services for your CMS interaction, you can easily build up rich func-
tionality in the same manner you would when using API calls on the page directly. This
means less code, which leads directly to less development time and easier maintenance.
Additionally, debugging your code is also simplifi ed, since you are able to simply attach
a debugger in the same manner as you would on a page.

bapp01.indd 599bapp01.indd 599 12/21/2010 4:51:17 PM12/21/2010 4:51:17 PM

600 x APPENDIX A CMS EXTENSIONS

BUILDING YOUR EXTENSION

This appendix constructs a sample extension that operates on every piece of content as it is being
published and appends a link to search Google for similar Web pages. The link uses the title of the
content being published for the search terms. This is a simple example, but the steps show how you
can connect your custom code to the events, and even modify the item currently being operated on.

1. To start building your extension, open Visual Studio and select File Í New Í Project. This
will bring up the New Project screen. Under Project Types, select Visual C#, and under
templates select Class Library. Name the project GoogleExtension, and click OK.

2. The new solution and project will be created, and it will contain a single class fi le to begin
with, called Class1.cs. Rename the fi le CustomContentStrategy.cs by right-clicking the fi le in
the Solution Explorer and selecting Rename.

3. Next you need to add some project references so that you can properly hook into the Ektron
Framework. Right-click on the GoogleExtension project in the Solution Explorer, and select
Add Reference. Switch to the Browse tab, and navigate to your site bin folder, which in this
instance is located at C:\inetpub\wwwroot\OnTrek\bin. Select the following two fi les: Ektron
.Cms.Common.dll and Ektron.Cms.ObjectFactory.dll. Click OK.

4. Now that the fundamentals are in place, you are ready to construct the code for your exten-
sion. Open the CustomContentStrategy.cs fi le and start by adding the following lines to the
top of the fi le after the existing using statements.

using Ektron.Cms;

using Ektron.Cms.Common;

using Ektron.Cms.Extensibility;

using Ektron.Cms.Extensibility.Content;

5. Next you need to set the CustomContentStrategy class to inherit from the Ektron.Cms
.Extensibility.ContentStrategy class as shown in the following snippet. This class
contains the default behaviors for events that happen to content as it moves through the
workfl ow, and provides a set of overrides that can be used to extend the default behavior.

public class CustomContentStrategy : Ektron.Cms.Extensibility.ContentStrategy

Available Strategies and Overrides

There are a large number of strategy classes to base your custom class on, and each strategy class
contains a number of override functions for which you can write custom code. Table A-1 contains a
list of the available strategies and overrides.

TABLE A-1: Strategy Classes and Events

STRATEGY EVENT SIGNATURE

ContentStrategy OnBeforeAddContent(ContentData, CmsEventArgs)

OnAfterAddContent(ContentData, CmsEventArgs)

bapp01.indd 600bapp01.indd 600 12/21/2010 4:51:19 PM12/21/2010 4:51:19 PM

Building Your Extension x 601

STRATEGY EVENT SIGNATURE

OnBeforeDeleteContent(long, CmsEventArgs)

OnAfterDeleteContent(long, CmsEventArgs)

OnBeforePublishContent(ContentData, CmsEventArgs)

OnAfterPublishContent(ContentData, CmsEventArgs)

OnBeforeUpdateContent(ContentData, CmsEventArgs)

OnAfterUpdateContent(ContentData, CmsEventArgs)

CommunityGroupStrategy OnAdd(CommunityGroupData, CmsEventArgs)

OnAfterUserAdd(long, long, CmsEventArgs)

OnAfterUserDelete(long, long, CmsEventArgs)

OnDelete(long, CmsEventArgs)

OnUpdate(CommunityGroupData, CmsEventArgs)

FolderStrategy OnBeforeAddFolder(FolderData, CmsEventArgs)

OnAfterAddFolder(FolderData, CmsEventArgs)

OnBeforeDeleteFolder(long, CmsEventArgs)

OnAfterDeleteFolder(long, CmsEventArgs)

OnBeforeUpdateFolder(FolderData, CmsEventArgs)

OnAfterUpdateFolder(FolderData, CmsEventArgs)

MessageBoardStrategy OnAdd(MessageBoardData, CmsEventArgs)

OnAfterReplyAdd(MessageBoardData, CmsEventArgs)

OnDelete(long, CmsEventArgs)

OnMessageApprove(MessageBoardData, CmsEventArgs)

OnUpdate(MessageBoardData, CmsEventArgs)

MicroMessageStrategy OnBeforeAdd(MicroMessageData, CmsEventArgs)

OnAfterAdd(MicroMessageData, CmsEventArgs)

OnBeforeDelete(long, CmsEventArgs)

OnAfterDelete(long, CmsEventArgs)

TagStrategy OnAdd(TagData, CmsEventArgs)

OnDelete(long, CmsEventArgs)

OnUpdate(TagData, CmsEventArgs)

TaxonomyStrategy OnBeforeAdd(TaxonomyData, CmsEventArgs)

OnAfterAdd(TaxonomyData, CmsEventArgs)

OnBeforeAssignItem(TaxonomyRequest, CmsEventArgs)

continues

bapp01.indd 601bapp01.indd 601 12/21/2010 4:51:19 PM12/21/2010 4:51:19 PM

602 x APPENDIX A CMS EXTENSIONS

STRATEGY EVENT SIGNATURE

OnAfterAssignItem(TaxonomyRequest, CmsEventArgs)

OnBeforeDelete(long, CmsEventArgs)

OnAfterDelete(long, CmsEventArgs)

OnBeforeUpdate(TaxonomyData, CmsEventArgs)

OnAfterUpdate(TaxonomyData, CmsEventArgs)

UserStrategy OnBeforeAddUser(UserData, CmsEventArgs)

OnAfterAddUser(UserData, CmsEventArgs)

OnAfterColleagueRequest(ActionRequestData, CmsEventArgs)

OnAfterAddColleague(long, long, CmsEventArgs)

OnBeforeDeleteUser(long, CmsEventArgs)

OnAfterDeleteUser(long, CmsEventArgs)

OnBeforeLogin(UserData, CmsEventArgs)

OnAfterLogin(UserData, CmsEventArgs)

OnBeforeUpdateUser(UserData, CmsEventArgs)

OnAfterUpdateUser(UserData, CmsEventArgs)

WebEventStrategy OnBeforeAdd(WebEventData, CmsEventArgs)

OnAfterAdd(WebEventData, CmsEventArgs)

OnBeforeAddVariance(WebEventData, CmsEventArgs)

OnAfterAddVariance(WebEventData, CmsEventArgs)

OnBeforeCancelOccurrence(WebEventData, CmsEventArgs)

OnAfterCancelOccurrence(WebEventData, CmsEventArgs)

OnBeforeDelete(long, CmsEventArgs)

OnAfterDelete(long, CmsEventArgs)

OnBeforePublish(WebEventData, CmsEventArgs)

OnAfterPublish(WebEventData, CmsEventArgs)

OnBeforeUpdate(WebEventData, CmsEventArgs)

OnAfterUpdate(WebEventData, CmsEventArgs)

The Completed Extension

Selecting from the available events in the ContentStrategy class, you will be updating the content
before it gets published, so you will use the OnBeforePublishContent event. Adding the method

TABLE A-1 (continued)

bapp01.indd 602bapp01.indd 602 12/21/2010 4:51:19 PM12/21/2010 4:51:19 PM

Building Your Extension x 603

override to your CustomContentStrategy class, and populating the method with the code to
append the link to Google will yield the fi nished fi le, as shown in Listing A-1.

LISTING A-1: CustomContentStrategy.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Ektron.Cms;

using Ektron.Cms.Common;

using Ektron.Cms.Extensibility;

using Ektron.Cms.Extensibility.Content;

namespace GoogleExtension

{

 public class CustomContentStrategy : Ektron.Cms.Extensibility.ContentStrategy

 {

 public override void OnBeforePublishContent(Ektron.Cms.ContentData contentData,

 CmsEventArgs eventArgs)

 {

 string searchPhrase = contentData.Title.Replace(“ “, “+”);

 string searchLink = “”;

 searchLink += “<a href=’http://www.google.com/search?q=”;

 searchLink += searchPhrase + “’>”;

 searchLink += “Search Google for similar content”;

 searchLink += “”;

 contentData.Html = contentData.Title + “
” + searchLink;

 base.OnBeforePublishContent(contentData, eventArgs);

 }

 }

}

Registering Your Extension

Now that you have your extension completed, build the assembly and then copy the GoogleExtension
.dll fi le from the bin directory of your project into the bin directory of your website. All that remains is
to make the ObjectFactory in the Ektron Framework aware of the new strategy.

Extensions must be registered by modifying the ObjectFactory.confi g fi le in the root of your website:

1. Open the fi le now and browse to the <strategies> node in the <add name=“Content”>
section in the fi le.

2. Add a new key in the format shown in the following snippet. For this format, the type
consists of the namespace and class name, followed by a comma, followed by the assembly
name. Unless you modify it, the assembly name is the same as your project name.

<add name=”GoogleExtension”

 type=”GoogleExtension.CustomContentStrategy, GoogleExtension”/>

bapp01.indd 603bapp01.indd 603 12/21/2010 4:51:19 PM12/21/2010 4:51:19 PM

604 x APPENDIX A CMS EXTENSIONS

Table A-2 lists the valid set of names for use with extensions on children of the <objectStrategies>
node.

TABLE A-2: Valid Names in the objectStrategies Section of the objectFactory.confi g File

Content MessageBoard Taxonomy

CommunityGroup MicroMessage User

Folder Tag WebEvent

Your extension should now be up-and-running, and any events that are overridden will fi re at the
appropriate times.

bapp01.indd 604bapp01.indd 604 12/21/2010 4:51:19 PM12/21/2010 4:51:19 PM

B
Framework API

The Framework API is the newest member of the API set that Ektron includes with CMS400
.NET. It was added to promote discoverability and consistency. Discoverability means that
a developer should be able to guess the namespace, object name, and method to use without
having to read through huge amounts of documentation. With a well designed API, users
should be able to intuit their way through a situation using context clues delivered by the
naming of objects and IntelliSense.

For consistency, the goal was to make the API work in similar ways for similar functions.
Therefore, it should be easy to understand how to work with a given object because it works
in the same way as other objects you have already used. The fi nal goal was to make the API
simple to use. It should make easy things easy to do, while steering developers down the path
of having easily maintainable code that follows best practices, without needing to keep a large
number of rules in mind.

This appendix discusses some of the overall themes of the Framework API, and then jumps
into a few snippets demonstrating how to achieve some typical simple goals.

WORKING WITH THE FRAMEWORK API

There are two points to understand before you can effectively work with the Framework API.
The fi rst is how the API interacts with the underlying permission model, and the second is the
overall construction of the API. For the Framework API, the permissions fl ag is set when the
API objects are initially created, by specifying a switch in the constructor for the object.

Framework Object Constructors

When creating a new Framework object to perform actions, the constructor has an optional
parameter to specify the access mode for that object. For instance, when creating a new
Content object, the code will look like the following snippet.

Ektron.Cms.Framework.Core.Content.Content content

 = new Ektron.Cms.Framework.Core.Content.Content(

 Ektron.Cms.Framework.ApiAccessMode.Admin);

bapp02.indd 605bapp02.indd 605 12/21/2010 4:52:04 PM12/21/2010 4:52:04 PM

606 x APPENDIX B FRAMEWORK API

This snippet contains the optional parameter specifying the access mode, which in this case is set to
Admin. The two valid options in the enumeration are:

 ‰ Ektron.Cms.Framework.ApiAccessMode.Admin: The Admin mode specifi es that permissions
should be ignored for all actions undertaken via this object.

 ‰ Ektron.Cms.Framework.ApiAccessMode.LoggedInUser: When set to LoggedInUser,
the object will query and work within the permissions set for the current user.

There is no way to set the objects to work as a different user than the current logged-in user or an
administrative user. However, this ability to switch between the two options allows you to easily
circumvent the permissions model when you run into a task that requires it.

You can also skip this parameter, in which case the default behavior is to act as the currently logged
in user. When objects are created as the current user, the system will properly maintain user attribu-
tions in the history for the item.

Where to Find the Framework API

The Framework API lives in the namespace Ektron.Cms.Framework. The namespace then contains
a series of further namespaces, each of which contains objects for dealing with a particular data
type in the CMS.

 ‰ Ektron.Cms.Framework.Activity: The activity namespace contains objects needed to
manage user and group activity streams.

 ‰ Ektron.Cms.Framework.Analytics: The analytics namespace contains the object needed to
manage business analytics, and reporting services that expose data about site visitors.

 ‰ Ektron.Cms.Framework.Calendar: The calendar namespace is used to manage calendars
and events on the WebCalendar stack.

 ‰ Ektron.Cms.Framework.Core: The core namespace contains objects to manage content and
folders, as well as custom properties, which allow you to add programmatically maintained
data to any CMS object.

 ‰ Ektron.Cms.Framework.Messaging: The messaging namespace is used to work with e-mail
message defi nitions.

 ‰ Ektron.Cms.Framework.Notifications: The notifi cations namespace is used to work with
the notifi cations engine, which allows the sending of messages through a variety of mediums,
including e-mail and SMS messages.

 ‰ Ektron.Cms.Framework.SocialNetworking: The social networking namespace contains
tools to work with the social networking feature, including MicroMessaging.

 ‰ Ektron.Cms.Framework.Users: The users framework, appropriately, allows you to perform
operations on users in the system.

Each namespace may contain one or more objects to work with data in a given area. The
Framework API, as the newest member of the APIs made available to developers, will continue to
expand and should be the fi rst stop for people developing against the Ektron Framework.

bapp02.indd 606bapp02.indd 606 12/21/2010 4:52:06 PM12/21/2010 4:52:06 PM

CRUD Operations on Content x 607

CRUD OPERATIONS ON CONTENT

Now that you have looked at a high level at what is available in the Framework API, let’s dive in for
a deeper look at how to perform CRUD (create, retrieve, update, and delete) operations using the
API. These examples work with content, but the methodology is the same across all the objects that
the Framework API exposes.

Create

The creation methods in the framework API are called Add(). In each case the Add() method will
take in a data object and store the data in the database. In the Content object, the data object is of
type Ektron.Cms.ContentData, and is passed in by reference, which means the appropriate fi elds
are updated in place after the content has been added to the system. The following snippet adds a
new piece of content to the root folder with the language set to English.

//create the Content object set to observe permissions

Ektron.Cms.Framework.Core.Content.Content ContentAPI =

 new Ektron.Cms.Framework.Core.Content.Content();

//set up the contentdata object

Ektron.Cms.ContentData newContent = new Ektron.Cms.ContentData();

newContent.LanguageId = 1033;

newContent.FolderId = 0;

newContent.Title = “Content Added through the Framework API”;

newContent.Teaser = “The summary for my content”;

newContent.Html = “<p>The HTML for programmatically added content</p>”;

//add the content

ContentAPI.Add(newContent);

//output the new content ID

Response.Write(newContent.Id.ToString());

Retrieve

Retrieving content is equally simple. The method used for retrieving a single item is called
GetItem(), and is named that way across the entire Framework API. It will return a data object, in
this case an instance of Ektron.Cms.ContentData. The following snippet retrieves the content item
with ID 30, in the current language. Remember that this will respect the permissions of the logged-
in user, so if they don’t have permission to the content, the object returned will be empty unless you
instantiate the object in ApiAccessMode.Admin.

//create the Content object set to observe permissions

Ektron.Cms.Framework.Core.Content.Content ContentAPI =

 new Ektron.Cms.Framework.Core.Content.Content();

//retrieve the content

Ektron.Cms.ContentData contentData;

contentData = ContentAPI.GetItem(30);

//output the retrieved item’s content

Response.Write(contentData.Html);

bapp02.indd 607bapp02.indd 607 12/21/2010 4:52:06 PM12/21/2010 4:52:06 PM

608 x APPENDIX B FRAMEWORK API

Retrieving a List of Data

In addition to retrieving single pieces of data, sometimes you’ll need to retrieve a list of items
matching a constraint. In the framework API, this is done through the use of Criteria objects.
Every API object in the Framework API provides a method called GetList(), which accepts a
Criteria object. Criteria objects in turn accept items from an appropriate enumeration con-
taining fi elds to search against, along with an operator and operand. The method to add these
tuples is called AddFilter().

There are several additional properties on the Criteria object that allow you to defi ne output
parameters. These properties are listed here:

 ‰ Filters: Allows you to examine or modify the fi lters currently applied.

 ‰ OrderByField: The resulting list is sorted by the fi eld specifi ed in this property.

 ‰ OrderByDirection: Specifi es whether to sort the output in ascending or descending order.

 ‰ PagingInfo: Contains properties allowing for control over paging of the results.

The following code snippet shows how you might retrieve a list of content from the root folder that
is published. It also specifi es a fi lter to retrieve items only with the word “TitleSearch” in the title of
the content.

//create the Content object set to observe permissions

Ektron.Cms.Framework.Core.Content.Content ContentAPI

 = new Ektron.Cms.Framework.Core.Content.Content();

//create the criteria object

Ektron.Cms.Common.Criteria<Ektron.Cms.Common.ContentProperty> myCriteria

 = new Ektron.Cms.Common.Criteria<Ektron.Cms.Common.ContentProperty>();

//add a filter to specify the root folder

myCriteria.AddFilter(

 Ektron.Cms.Common.ContentProperty.FolderId,

 Ektron.Cms.Common.CriteriaFilterOperator.EqualTo,

 0);

//add a filter to only retrieve published items

myCriteria.AddFilter(

 Ektron.Cms.Common.ContentProperty.IsPublished,

 Ektron.Cms.Common.CriteriaFilterOperator.EqualTo,

 true);

//add a filter to only retrieve items that contain the word “TitleSearch”

//in the title

myCriteria.AddFilter(

 Ektron.Cms.Common.ContentProperty.Title,

 Ektron.Cms.Common.CriteriaFilterOperator.Contains,

 “TitleSearch”);

//create the output object

List<Ektron.Cms.ContentData> resultList;

//retrieve the results

resultList = ContentAPI.GetList(myCriteria);

bapp02.indd 608bapp02.indd 608 12/21/2010 4:52:06 PM12/21/2010 4:52:06 PM

Take Home Points x 609

Update

Updating is, as one would expect, done through the Update() method. This method takes in the
data item and updates the database with the modifi ed fi elds. This action requires that the developer
fi rst retrieve the existing item, and then they can call the Update() method after modifying some
properties. The following example retrieves the content item with ID 30 and updates the Title
property before saving it back to the database.

//create the Content object set to observe permissions

Ektron.Cms.Framework.Core.Content.Content ContentAPI =

 new Ektron.Cms.Framework.Core.Content.Content();

//get the content item

Ektron.Cms.ContentData myContent;

myContent = ContentAPI.GetItem(30);

//update a field on the content item

myContent.Title = “This was updated”;

//save the updates

ContentAPI.Update(myContent);

Delete

The fi nal piece of CRUD operations is to delete an item from the database. The method used when
deleting items is called Delete(), and just like the rest of the methods in the Framework API, it will
respect the logged-in user’s permissions unless the API object was instantiated in Admin mode. The
following snippet deletes the item with ID 30.

//create the Content object set to observe permissions

Ektron.Cms.Framework.Core.Content.Content ContentAPI =

 new Ektron.Cms.Framework.Core.Content.Content();

//delete the content item

ContentAPI.Delete(30);

TAKE HOME POINTS

There are cases where the Framework API will not perform the exact function you need in a par-
ticular instance. In those cases, you will need to look at some of the other APIs exposed by Ektron.
However, if you can perform a given function with the Framework API, that should always be your
fi rst stop.

bapp02.indd 609bapp02.indd 609 12/21/2010 4:52:06 PM12/21/2010 4:52:06 PM

bapp02.indd 610bapp02.indd 610 12/21/2010 4:52:06 PM12/21/2010 4:52:06 PM

C
Performance Checklist

Chapters 14 and 15 briefl y discussed some of the things to keep an eye on when deploying
and maintaining your website. Some of the items covered included performance monitoring,
and tracking availability and uptime. This appendix provides a checklist of items that should
be addressed and kept in mind while developing and maintaining your website to maximize
performance.

The items in the checklist require involvement from many roles in your organization, ranging
from the developer to the hardware experts and administrators. By addressing these issues, you
will be able to provide a highly available and effi cient site that is able to serve your expanding
business needs.

HARDWARE REQUIREMENTS

As mentioned in Chapter 1, the minimum recommended hardware requirements to run the
Ektron Framework are a Core 2 processor or greater with 4GB of RAM, and a RAID Array
for storage. The requirements will scale with your usage metrics, however. The benchmark for
your running website requires that the server load should nominally be less than 75% CPU
usage, with spikes remaining below 85% utilization. Your memory usage should be below
50% of the system memory. The reasoning behind keeping the usage well below maximum
capacity is that if the load increases enough to overwhelm the server, requests will begin tim-
ing out and returning errors, and the server may not get a chance to catch up to the request
cycle. This downward spiral can bring a server to its knees, so it’s best to be on the safe side.

APPROPRIATE SQL SERVER DEPLOYMENT

It is strongly recommended that your SQL Server instance exist on a separate machine from
the Web server. This is for two primary reasons.

bapp03.indd 611bapp03.indd 611 12/21/2010 10:32:22 AM12/21/2010 10:32:22 AM

612 x APPENDIX C PERFORMANCE CHECKLIST

 ‰ Security: As the Web server must, by defi nition, be accessible to potentially public users, this
means that the server is also exposed to the outside world. To minimize risk, it is recom-
mended that the database backing your site be located elsewhere in the network, behind a
fi rewall. You can then confi gure the fi rewall to accept connections only from the Web server,
substantially decreasing the ability for intruders to access and modify the data.

 ‰ Performance: By separating the roles of Web server and database server, you will better be
able to manage the hardware requirements of each capability, fi ne-tuning the machines to
serve their given function.

APPROPRIATE AND JUDICIOUS CACHING

Caching different aspects of your site can be one of the most powerful ways to increase the perfor-
mance you can achieve from given hardware. By minimizing the amount of back and forth between
the database server, and reducing the amount of time running complex code on your pages, you can
drastically increase the number of pages a server can produce. Caching in the Ektron Framework
falls into three main categories.

 ‰ Data caching: This method is usually the fi rst thing that developers should ensure is in use.
This type of caching includes setting the CacheInterval property on the built-in server con-
trols, which will store the data for a given set of properties in the application cache. It also
includes storing relevant data, especially data that is costly to produce, in either the applica-
tion cache, or the session state. By storing this data, you reduce the amount of time the server
spends retrieving the data from the database or analyzing the data. The server still needs to
go through the render cycle to produce markup suitable for sending to the client.

 ‰ Fragment caching: Fragment caching is the next step after data caching. By wrapping costly
elements of your page into a user control and setting directives for fragment caching on
those, the server will cache the actual HTML output for that piece of the page, allowing it
to skip the render cycle for those sections of the page. This method can allow you to avoid
repetitive code at low cost, while keeping dynamic elements of the page confi gured to render
the results fresh for each page load. For instance, a list of recent messages to a user would not
be a suitable candidate for fragment caching, but the menu system for the site might be.

 ‰ Output caching: Output caching is like fragment caching on steroids. It performs the same
basic functionality, but instead of caching the markup for a small portion of the page, the
ASP.NET worker process will cache the entire rendered version of the page. This eliminates
the majority of code that must be run in order to produce the markup, but at the cost of
dynamic elements not being run every time. This can affect elements like tracking code or
user profi les, where each render should show individualized output for the specifi c user
browsing the site. Output caching can be confi gured to cache multiple versions of the same
page, through the VaryByParam, VaryByHeader, VaryByControl, and VaryByCustom
attributes, which can frequently give you the fl exibility you need to create an effi cient and
functional caching approach.

For more information on data caching when working with the Ektron Server Controls, see
Chapter 26 in the Ektron CMS400 Manual, installed with the framework on your system. For
information on ASP.NET caching methods, see http://msdn.microsoft.com/en-us/library
/xsbfdd8c%28v=VS.85%29.aspx.

bapp03.indd 612bapp03.indd 612 12/21/2010 10:32:26 AM12/21/2010 10:32:26 AM

Externalize Resources and Use CDNs Where Applicable x 613

CODE PROFILING

Using a tool like the Redgate’s ANTS Performance Profi ler will allow you to connect to your
development server instance in real time and analyze the slow portions of your code. Attaching
to your server and requesting the more popular pages on your site a few times will allow you to
iteratively rework the code to maximize the throughput and eliminate wasteful code, sometimes
with extremely large performance gains. This can be a very powerful tool and should not be
underestimated.

COMPILED SITE

Compiling your site ensures that every page has been built, eliminating lengthy just-in-time compila-
tion. It also will alert you to errors and warnings that your code may throw when visitors browse your
site. It serves as a sanity check for your code as well a performance boost over uncompiled sites. There
are many tools available to help automate this process, such as NANT and Cruise Control.

EVENT ERROR MAINTENANCE

When errors occur on your website, they are entered into the Event Log in Windows. This is
costly for two reasons: The errors themselves mean that something went wrong on your website,
and that visitors are not receiving the functionality you intended. Additionally, the process of
generating and logging each error causes additional overhead that can easily be avoided through
analysis and debugging.

GZIP RESPONSE COMPRESSION

In the hierarchy of round trip time for a Web request, typically the slowest part of retrieving
information is the time that the server spends actually constructing the response. This is followed
by the length of time it takes to send the response through the network. Enabling response com-
pression minimizes this time by reducing the amount of information that needs to be funneled
through the pipe, at a slight processor cost. IIS can be confi gured to do this automatically, and is a
recommended procedure.

EXTERNALIZE RESOURCES AND USE CDNS WHERE APPLICABLE

Using content delivery networks (CDNs) helps your website’s performance by reducing the number
of requests to your server. In a typical page load, in addition to the actual HTML being displayed
by the browser, there may be as many as 10 to 30 times as much data being retrieved through sepa-
rate responses that are needed to display the fi nal page. This additional data includes JavaScript,
CSS, images, videos, and any other resources that do not change from page load to page load, but
can represent a large fraction of the overall traffi c that the Web server must support. Each of these
requests, in addition to utilizing available network bandwidth and IO throughput, also requires that
IIS utilize one of the available threads to service it. By offl oading these requests to an external highly

bapp03.indd 613bapp03.indd 613 12/21/2010 10:32:26 AM12/21/2010 10:32:26 AM

614 x APPENDIX C PERFORMANCE CHECKLIST

developed network, not only can you reduce the load on your server, thus increasing the capability
to generate and serve pages, you might also be able to reduce your costs by using the less expensive
bandwidth and storage made available by CDN companies such as Akamai or Amazon.

REQUEST MINIMIZATION

Going hand-in-hand with the CDN recommendation, the number of requests a browser must
make in order to display a page can dramatically increase the rendering time of that page. You
should seek to reduce the number of requests required to retrieve all the pieces of a page by
combining separate fi les into single requests. A typical site may have many disparate CSS and
JavaScript fi les — while this aids in maintainability of the codebase, if the fi les are kept sepa-
rate it means many more round trips to the server, increasing render time and server load as the
server has to respond many more times. There are two approaches to minimizing the number of
requests: One is to compile these disparate CSS and JavaScript fi les into a smaller number of fi les
pre-deployment by copying the separate contents into a common fi le or set of fi les and updating
the references to these fi les throughout the site.

The alternative method is to use the Ektron.Cms.API.JS.RegisterJs and Ektron.Cms.API.Css
.RegisterCss functions. These functions will attempt to automatically aggregate multiple fi les into
a single request, no matter what control includes them. This method requires that you include your
CSS and JavaScript from codebehind, but it is the method that Ektron uses internally, as it allows
for higher performing code without additional development work.

bapp03.indd 614bapp03.indd 614 12/21/2010 10:32:26 AM12/21/2010 10:32:26 AM

GLOSSARY

The following is a list of terms defi ned in this book. Italicized words refer to other glossary terms.

activity streams On both user profi les and group profi les, this is a list of activities related to
the group or member.

Agile methodologies Instead of defi ning all aspects of the project requirements up front,
this defi nes requirements while the development effort is ongoing. The project is broken into a
series of sprints, at the end of which customers are presented with results, and requirements are
refi ned based on their feedback. As feedback is incorporated into subsequent sprints, the website
increasingly nears a fi nal format.

All-in-One Provides all features and functionality “out-of-the-box” without requiring integra-
tion with other third-party systems.

ambiguous queries Searches resulting in two sets of results, each with completely different
meanings.

API Namespace A namespace provides a way of categorizing classes.

Application Engineering Professional Services Designed to fi ll in the blanks on your project,
this option is useful when you need either a turn-key solution, or when you’ve hit a rough spot
and your deadlines are looming.

Application Search A programmatic search that does not just deliver results based on a site
visitor’s query but rather based on criteria that includes queries on text, metadata, properties,
and more.

Approval chains Similar to permissions in that they restrict publishing rights to a given piece
of content. In Ektron, these refer to a linear workfl ow, with each approval simply moving the
content to the inbox of the next approver.

Best Practice Services Giving you access to a dedicated on-call solution engineer at low cost,
this is the king of advanced support systems, where you might need faster turnaround times
than normal support can provide, or where you want the assurance of having someone who
knows your project and has been involved with it to be available at any time.

Best-of-Breed Specialized tools useful for a singular purpose. What Best-of-Breed systems
lack in breadth, they make up for in depth.

Blogs Allow for a simple interface to post content, keeping customers and clients in the loop
on key issues.

Board A type of folder that can only contain other folders of the forum type.

bgloss.indd 615bgloss.indd 615 12/21/2010 10:32:44 AM12/21/2010 10:32:44 AM

616 x GLOSSARY

Breadcrumbs Navigational cues showing the hierarchy of content, which allow site visitors to
easily discover the information architecture on a site.

Business Analytics Collects and provides reports on data pertaining to visitor activities and
viewing habits. This differs from Site Analytics in that it usually refers to performance on items
like conversions in the sales cycle.

catalog In the context of eCommerce, this is a folder that contains a collection of products or
services for sale on a site.

Certifi ed Developer Training In depth, hands-on, technical training covering best practices,
development, deployment, and methodology.

Certifi ed System Administrator Training A training from which any Webmaster, Web
administrator, or IT staff responsible for the ongoing website management and maintenance
benefi ts.

CMS implementation guide This is a document that defi nes server controls and API calls,
Elements of customization must meet the business, user experience, and technical requirements
for the project. Typically, a technical developer who is already familiar with the Ektron Server
Controls and APIs develops the CMS implementation guide.

CMS Namespace The home for all of Ektron’s APIs, both the internal ones and the public
ones. If you’re looking to programmatically access the CMS and cannot fi nd an API to use
either in the Framework Namespace or the API Namespace, the CMS Namespace gives you
what you need.

colleagues In terms of social networking, this is a list of users who are colleagues of a
particular community member.

collection A static list of managed content items, similar in concept to a playlist in a music
player such as Apple iTunes in that the list is manually defi ned.

Community aliasing Allows you to assign an alias for community groups or users so that a
site visitor can enter a simple URL to fi nd them.

Community Documents Every user in a social network (both CMS and membership users)
has a personal content repository associated with his account. This repository can be accessed
and managed using the CommunityDocuments Server Control.

Community folders Content in these folders can be generated either by the CMS author or by
membership users. This allows for synchronization between staging and production servers.

community group Individual members who unite around a common purpose or share infor-
mation on a specifi c subject.

complex product Similar to a bundle in that it takes several simple products and groups
them together, but unlike a bundle it maintains each simple product’s price and details, and
the customer interacts with them as separate products.

Content Block Server Control This reads content items from the database and displays them
on the website. It can be hardcoded to a specifi c content item, it can be confi gured to read the

bgloss.indd 616bgloss.indd 616 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

GLOSSARY x 617

content ID from the query string, or the ID of the content to display can be set programmatically
at runtime.

content fl ow How content moves throughout an entire production system, from content
creation on the staging machine to content delivery in the production environment.

Content localization features Helps you expose your website’s content to a global audience
by managing multilingual versions of a content item.

Content tab Where users interact with the primary elements of the CMS.

coupons In the context of eCommerce, these are customer incentives that allow users to dis-
count a percentage of a product they are purchasing.

customer reports Reports generated by the eCommerce subsystem on recent and top customers.

Dashboards Ektron’s Dashboards allow site visitors to create personalized portals of infor-
mation, aggregating data from various sources into one location and thus simplifying the
decision-making process.

Deployment Environment This is the location that has the live site installed.

Dev Center A peer-to peer support area for clients to assist one another with problems and
ask general questions, with input from Ektron technical support and engineering staff.

Development Environment: This environment typically has a complete working version of
the website, but will not always have the content that is visible on the public site.

Discovery phase In website development, this phase is designed to capture the detail level
view of requirements from the perspective of business, creative, and technical stakeholders.
Fundamentally, the discovery phase is focused on answering the question: “What do you want
your website to do?”

DropZones Regions of the page that can be populated with widgets. Part of the PageBuilder
infrastructure.

EKML An Ektron created language that handles basic XML to XHTML transformations
through simple looping and string replacement of tokens.

Ekron PageBuilder Provides the framework on which the Ektron Widgets and Wireframes
are created.

Ektron A global Web solutions leader, providing Web content management, marketing
optimization, and a social software platform; founded in 1998 and headquartered in
Nashua, New Hampshire.

Ektron Exchange (http://dev.ektron.com/exchange) Providing over 30 ready-to-use
widgets, this community-based website lets developers upload and share code with the Ektron
developer community.

Ektron Framework A collection of features and technologies installed as an application on a
website. Its primary function is Web content management, but it also has features supporting
diverse needs like eCommerce and analytics.

bgloss.indd 617bgloss.indd 617 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

618 x GLOSSARY

Ektron Smart Form An ideal way to handle content that follows a very structured format, such
as Press releases. The data is stored internally as XML, and the defi nition contains information
necessary to create forms for easy data entry.

End User Training While the other training types are geared toward people who administer
your site, the end user training is geared to help your users understand the system and to facilitate
end user adoption.

eSync An Ektron feature designed to solve the challenges of moving content from one
environment to another.

Exchange Community An extension of the Dev Center, this community is where Developers
can upload and showcase their code, add-ons, and widgets with others.

Final User Acceptance Testing (Final UAT) The period of time in which the key stakeholders
and end users are given an opportunity to verify fi rsthand that the website meets their expecta-
tions as expressed in the requirements documents.

Flex Menu A server control used to render menus in the Ektron Framework. It supports richer
interfaces and complex confi gurations.

Folder aliasing Similar to taxonomy aliasing, with the difference that folder aliases use the
folder structure of the content tree to derive their URL aliases. This is useful when you have
a meaningful and logical structure to your content tree and want to expose content using this
folder structure.

Forums Allow for easy management of threaded discussions, centered around a given theme.
They are the evolutionary descendant of dial-up bulletin board systems.

Framework API The newest member of the Ektron API, it was designed in response to
feedback received from developers that the legacy APIs could be cumbersome.

friending (friended) A process in which a member establishes a connection with another
member.

full factorial The method used to generate the list of possible combinations that can be displayed
in a multivariate experiment. The combination list is created by taking every single possible com-
bination of columns from each Multivariate Section.

functional requirements document Using the feedback captured during the business
stakeholder interviews and any subsequent prioritization sessions, this documents the specifi c
functional and business requirements of the website.

functional requirements guide Captures, from a business perspective, how the site should
operate.

HTML forms Allow you to build traditional HTML forms containing standard input elements
such as textboxes and option lists, with the added ability to defi ne client-side form validation
rules, enable spell checking, and more, all using the WYSIWYG authoring environment.

IFilters Components that understand how to handle a specifi c fi le format, such as Microsoft
Word, Offi ce documents, text documents, Shockwave Flash fi les, and PDF documents.

bgloss.indd 618bgloss.indd 618 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

GLOSSARY x 619

Implementation phase In Web development, this phase is where you start building to the
specifi cations you have been developing.

information architecture guide This document defi nes the types of information you’ll fi nd
on the site, as well as the structure of the information and how the content items relate to one
another through metadata and taxonomy.

key performance indicator report Lets you compare sales and orders from two time periods.

Language Export feature Helps you export content items as a single zip fi le. These bundles
are compressed and then delivered to a translation company where the information is translated
and returned in the same bundle, which is then imported back into the system.

Page Layout An XML serialized package which stores all the necessary information to recreate
a PageBuilder page, including the width of each column, and the widgets as well as the data
that displays in each column.

ListSummaries Display a list of the content in a folder, and optionally recursively down the
child folders.

Load balancing A feature of the Ektron Framework that allows multiple servers to keep
assets including library items and search summaries synchronized. If load balancing is not set
up, any assets uploaded are not copied to the other sites.

load testing The process of putting demand on a system or device and measuring its response.

Lock model The method used to manage content in the Ektron Framework. Very similar to a
source control model, in this model, when one user is editing content, no other user can edit at
the same time.

Machine translation Refers to the process of using language translation algorithms to trans-
late text. Websites such as Babelfi sh and Google Translate, as well as the slew of translation
plug-ins for Web browsers such as Firefox, have made the use of machine translation fairly
commonplace.

Manual aliasing Offers content editors tight control over URL aliases assigned to content
items. You use this when a URL falls outside of the patterns defi ned by the other types of
aliasing or when you need to override automatically generated URLs.

Manual translation This is great to use in situations where editors are translating a small
amount of content, under a dozen content items or so. This is performed by CMS users and is
performed through the content editing interface of the Workarea.

Message Boards Allows community members to publically author comments about a user,
community group or content item.

Metadata Additional information associated to the content.

micro blogging See micro messaging.

micro messaging A method of communicating where members publish very short messages,
share status updates, and post relevant URLs and other interesting bits of information.

bgloss.indd 619bgloss.indd 619 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

620 x GLOSSARY

navigation indicators Guides in a website that help users determine their current position in
the overall information architecture.

overly general search terms Searches that do not produce meaningful results. You can use
Ektron’s Suggested Results feature to force certain results to the top of the search in these
circumstances.

PageBuilder A feature that takes the concept of ASP.Net User Controls and moves it one
step further by providing controls that allow non-developers to add components to pages, and
modify component settings. It eschews the need for a developer to intervene, and entirely drops
the requirement for Visual Studio from the page layout update cycle.

PageBuilder Wireframes In contrast to traditional CMS templates, these defi ne specifi c zones
where content and widgets are placed. With this basic framework in place, content authors
can drag-and-drop pre-built pieces of functionality or content into the zones defi ned by the
PageBuilder Wireframe.

payment report Lists the received payments within a given time period.

performance testing Testing for the purpose of identifying and eliminating bottlenecks
during the development and testing process of a website.

Permissions A structure that controls whether a given user has access to perform a given
action on a given object.

Pre-Staging Environment Some organizations choose to have this specifi cally for use by QA
engineers and developers to vet technical changes made to the website’s source code and keep
the staging environment as a place to moderate content changes.

Private messaging The Messaging Server Control allows community members to send and
receive private messages. This is an important feature, as it offers a way for community mem-
bers to communicate information that should not or cannot be shared publically on the website.

product bundle A single item that consists of other items from the catalog. It has its own
price and images separate from the underlying product entries. For instance, when buying a
desktop computer, you may want a bundle consisting of a monitor, a keyboard, and a mouse,
with a discounted overall price.

product kit A type of product that contains a list of free text options. The options can affect
the overall price of the product. For instance, a laptop’s price will go up or down based on the
amount of memory in it, as well as the hard drive size.

product reports Snapshots of how many orders users have made on a site as well as the
various states of the orders’ fulfi llment.

product subscription A product type that allows for recurring billing.

Production Environment Serves the live website to users. This may represent a single physical
machine or a cluster of machines sitting behind a load balancer. In the cases of a public website,
this frequently sits outside of the corporate network.

bgloss.indd 620bgloss.indd 620 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

GLOSSARY x 621

Quality Assurance phase The testing phase of the project methodology, this phase is
intended to capture and resolve any issues, bugs, or problems with the website.

Quick Start Consulting A fast-paced training that covers the essentials to get you up to speed
and running with Ektron.

RegEx aliasing Useful when your website contains URLs that follow a certain predictable
pattern, such as the URLs for blog posts. When enabled, the Ektron Framework will try to
match requested URLs with those patterns defi ned in the RegEx alias settings.

Report tab The area of the Workarea where users can generate reports.

RIAs Stands for “Rich Internet Applications and is a Web application with many characteristics
similar to a desktop application and which a browser or plug-in delivers.

sales trends report Generates a line graph of order volume versus date using data from the
eCommerce system.

Search APIs See Application Search.

security testing Testing specifi cally for fi nding and eliminating any issues with the application
that compromise your application, the system, or its data.

Settings tab Where non–content oriented options are managed. This includes system
wide confi guration options like license keys, user and community management, as well as
eCommerce management.

simple product The basic product type that allows you to store information about a single
item. The other product types, including kits and bundles, allow for alteration of components
of the item, simple products do not.

Sitemap A list of key content items and pages in your site. Useful for indexing content by
third-party search engines because they are designed to follow links to fi nd other pages.

Smart Form Design Package All the elements that comprise a Smart Form Design are
encapsulated into this XML entity.

Smart Form Designs Smart Forms defi nitions, which you create using the WYSIWYG form
builder called Smart Form Designer.

Smart Forms From a developer’s perspective, these provide structured content modeling
and authoring as well as a mechanism for creating strongly typed content defi nitions used for
content authoring.

Source Control Repository A software package, such as SVN or Perforce, that is used
by developers to store the source code fi les of the website. Typically this will also provide
versioning of the source fi les, allowing for comparison between revisions, and rollback of
changes.

Staging Environment The location that is used to test new features or verify content before it
makes its way to the production website.

bgloss.indd 621bgloss.indd 621 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

622 x GLOSSARY

stress testing Testing that tries to cause a system to fail by overwhelming its resources for the
purpose of locating weak points.

Structured content Information or content made up of elements which are individually
defi ned. Structured content often refers to information that has been classifi ed using XML, but
can also relate to information classifi ed using other standard or proprietary forms of metadata.

synonym search A set of searches that contain possible misspellings of a name, product, or
object. These result in incorrectly spelled search terms yielding correctly spelled names results.

Taxonomy A content-categorization system authors use to organize information into mean-
ingful hierarchies. These category structures can then be used to create navigation structures,
such as menus and directories, which guide users to the information they’re looking for.

Taxonomy aliasing Uses the site’s information architecture defi ned by a taxonomy to create
URLs that follow the same structure, thus allowing aliases to be automatically created based on
a taxonomy that is already in use.

Tidy process A process that cleans up non standard HTML. All content is run through this
process as it is being published.

Top Level Domain (TLD) The last part of the domain name of a site. In the US, common
TLDs are .COM, .EDU, .ORG, and .NET, but the country signifi er is also a TLD; for instance
.CA, or .UK.

top products report Displays the most successful products on your site.

Traffi c Analytics Encompasses capturing and reporting of metrics related to all aspects of
Web traffi c, including where site visitors come from, what they click on, what pages they visit,
how they respond to the content presented, covering all activities down to the page level.

URL Aliasing feature A powerful engine that lets you turn undescriptive URLs into meaningful
resource identifi ers. The URL Aliasing feature is also called URL mapping, URL redirection and
URL rewriting.

Waterfall-based methodologies With this approach, the project begins with a comprehensive
discovery effort, consisting of stakeholder interviews, functional requirements gathering, techni-
cal solution development, and the creation of user experience components. This is all used as a
base-line to measure the progress of the project.

Widget Space A collection of widgets that you present to users of a social network so they
can populate Dashboards. See also: Dashboards.

Widgets Extended .NET User Controls that encapsulate site functionality and the user interface
in a reusable way.

Wireframe This is a mockup of a fi nal page that allows stakeholders and developers to
understand the desired functionality. Differs from PageBuilder Wireframe.

Workarea Almost all content management activities in the Ektron Framework happen here.
The Workarea provides an interface to manage your folder structure, content, menu system and
metadata, and system setup.

bgloss.indd 622bgloss.indd 622 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

GLOSSARY x 623

XML Confi gurations The old term for Smart Forms. Although this terminology has been
removed from Ektron’s Workarea, documentation, and website, you might run across refer-
ences to this terminology on the Ektron Dev Center in older forum posts.

XSL Transforms A complete language designed to transform XML from one format to
another. Within the Ektron Framework, XSL transforms are typically used to convert XML
into XHTML for display on the website.

bgloss.indd 623bgloss.indd 623 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

bgloss.indd 624bgloss.indd 624 12/21/2010 10:32:45 AM12/21/2010 10:32:45 AM

625

INDEX

A

accordion functionality, 414–416
Account Manager at Ektron, 589–590
ActiveTopics Server Control, 353
Activities, 424

User Logged In, 430–431
activities (Windows Workfl ow Foundation), custom,

527–531
Activity Stream API, 426–427
activity streams, 439

advantages, 422–428
community homepage, 427–428
enabling, 428
Facebook, 422
fi ltering, 424
message customization, 428–429
queries, 426–427
social navigation, 422
timeline navigation, 422

activity types, 429–432
ActivityStream Server Control, 425–426
ActivityStream Widget, 423–425
Add Blog form, 355
Add Files permission, 102
Add Folder Interface, 88

Breadcrumbs tab, 89
Flagging tab, 89
Metadata tab, 89
Properties tab, 89
Smart Forms tab, 89
Taxonomy tab, 89
Templates tab, 89
Web Alerts tab, 89

Add Folders permission, 102
Add Hyperlinks permission, 102
Add Images permission, 102
Add permission, 102
AddContentActivity.cs, 530–531
Admin, 54
AdRotator.cs, 156–157
agile methodologies, 18
Alias-Admin built-in role, 103
Alias-Edit built-in role, 103
aliases

manual aliasing, 109
query string parameters, 134
RegEx aliasing engine, 136
URL aliasing, 109, 130

community aliasing, 132
enabling, 133–135
folder based, 132
manual aliasing, 132
parameter resolution logic, 134–135
RegEx based, 132
taxonomy based, 131–132, 135–136

aliasing, 130–131
All-In-One approach, 8–9
AllowAnonymousPost property, 348
Analytics Viewer built-in role, 103
AnalyticsDataProvider tag, 327
API Namespace, 11
APIs (Application Programming Interface)

Activity Stream API, 426–427
folders and, 95
forums, 353
Framework, 591
Tidy process, 123

Application Engineering, 6, 590
approval chains, 96

language, 103
setup, 98–100
users in twice, 103

ASHX handler, 405
ASP.NET Master Page, 196–197
.ASPX templates, 24

Wireframes, 268
associating Wireframes to folders, 286, 305–307
authentication, Facebook, 220–223
Authorize method, 540–541
AuthorizeAndCapture method, 541–542
availability, 577–579

B

backups, 585
Bad Link Report, 578
Best-of-Breed approach, 9
Best Practice Services, 6, 590

bindex.indd 625bindex.indd 625 12/21/2010 3:18:22 PM12/21/2010 3:18:22 PM

626

best practices – classes

best practices, implementation guide creation,
42–43

Blog folder, 87
Blog Server Control, 335, 353

properties, 359–360
templates, 358–363

Blog Server Sub-controls, 360–361
blogs, 334–335

commenting system, 361–363
folders, 353
Google Blog, 334
trackback URLs, 356
use case, 336–338
Workarea, creating, 354–358

BoardID property, 348
boards, 339
Boiko, Bob, Content Management Bible, 111
Breadcrumb feature, 151
BreadCrumb Server Control, 209, 224

FolderBreadcrumb Server Control, 212–213
implementing, 212–213
properties, 213

breadcrumbs, 209, 224
click trail, 209
creating, Products folder, 210–212
forums, 344
parent folders, 211

Breadcrumbs tab (Add Folder interface), 89
BrightCove PageBuilder Widget, 257
broken links, 578
browsers, language and, 142
built-in roles

Alias-Admin, 103
Alias-Edit, 103
Analytics Viewer, 103
Business Rule Editor, 103
Collection and Menu Admin, 104
Collection Approver, 104
Commerce Admin, 104
Community, 104
Community Group Admin, 104
Community Group Create, 104
Folder User Admin, 104
Master Layout Create, 104
Message Board Admin, 104
Metadata Admin, 104
Move or Copy, 104
Search Admin, 104
Smart Forms Admin, 104
Synchronization Admin, 104
Task Create, 104
Task Delete, 104
Task Redirect, 104
Taxonomy Administrator, 104
Template Confi guration, 104
User Admin, 104
XLIFF Admin, 104

Builtin, 54
Business Analytics, Traffi c Analytics and, 324–325
business case, 18–19
business requirements, stakeholder interviews, 20–21
Business Rule Editor built-in role, 103
bxSlider library, 161

C

caching engine, 136
TTL (Time To Live), 136

CALENDAR.ASPX, 255
CALENDAR.ASPX.CS, 255–256
CalendarDataSource, properties, 248
calendars, 225, 228

community groups, 245
creation, 263
displaying, 263
event list

cancellations, 243
new events, 242–243

events, 263
upcoming, 253–256

group, creating, 243–245
managing, 263
recurrences, 241–242
system, creating, 240–243
Telerik Scheduler, 239
updates, 239
user, creating, 243–245
Workarea, 239

Calendars.aspx, 246
campaign effectiveness, measuring, 328–329
campaign landing page. See OnTrek Campaign Landing

Page
capturing data, 572
Card Types pane, eCommerce confi guration,

450–451
Cart Server Control, 507, 510–512, 522–525
Cart.aspx, 523–524
catalog (eCommerce), 467–468, 471–472

video, 479–481
CDN (content delivery network), 591
CEOBlog.aspx, 358
chat support, 6
Checkout Server Control, 507, 512–516
child nodes

handlers, 172–181
rendering, 170–172
retrieving, JavaScript, 181–183

classes
as DataContract, 172
DataContractJsonSerializer, 172
defi nitions, serialization and, 173
DropZoneData, 296
PaymentGatewayProvider, 540
products, 468–469

bindex.indd 626bindex.indd 626 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

627

client side scripts – community groups

RequestItem, 173
TaxonomyItem, 174
XML Schema Defi nition tool, 117–118

client side scripts, registering, 161
CMS Extension Framework, 591
CMS implementation guide, 23, 31–32

document formatting
object tables, 32
page layouts, 31–32
sitemap, 31
widget listing, 32

OnTrek implementation guide and, 32
CMS Menu, 189

customization examples, 195
CMS Menu Server Control, 187

samples, 189
CMS menus, 186
CMS Namespace, 11
CMS Refresh Report, 67–68
CMS400Min site, 54
code, setting to use XSLT, 166–169
code listings

/Widgets/Collection.ascx, 276–278
/Widgets/MyTestControl.ascx, 300–301
/Widgets/MyTestControl.ascx.cs, 299, 302
AddContentActivity.cs, 530–531
AdRotator.cs, 156–157
CALENDAR.ASPX, 255
CALENDAR.ASPX.CS, 255–256
Calendars.aspx, 246
Cart.aspx, 523–524
CEOBlog.aspx, 358
CustomStreamDisplay.aspx, 426–427
CustomStreamDisplay.aspx.cs, 427
Dashboard.ascx, 421–422
Friends.ascx, 401–404
HomePageBannerSerialization.aspx, 158–159
HomePageBannerSerialization.aspx.cs, 159–160
HomePageBanner.xsd, 154–156
Invite.aspx, 376–377
Membership.aspx, 216
SamplePaymentGatewayProvider.cs, 542
SearchResults.aspx.cs, 203–204
SetOutput() method from /Widgets/Collection.

ascx.cs, 278–279
SimpleHandler.aspx, 183–185
SocialBar.ascx, 372–373
socialbar.ascx, 380–381, 382–383
TaxonomyExampleService.ashx, 177–181
UnorderedListSummary.ekml, 238–239
UnorderedListSummary.xslt, 235
UserGroupForum.aspx, 348

Collection and Menu Admin built-in role, 104
Collection Approver built-in role, 104
collection data model, 280
Collection Server Control, properties, 279–280
Collection Widget

implementation, 298
implementation fi le, 276–278
presentation, 275–280

collections
adding to, 272–273
assigned content items, 281
Collection Server Control, 270
Collection Widget, 270
creating, 270, 271–272
defi nition, 270
displaying, 270
on landing page, 273–274
language, 270

Collections menu, 270
Collections permission, 102
Collections Server Control, 268
Collections Widget, 269
commenting system in blog, 361–363
Commerce Admin built-in role, 104
community aliasing, 132
Community built-in role, 104
Community folder, 87
community folders (Wikis), 363
Community Framework, 390

activity streams, 390
alerts, 392
APIs, 396
colleagues, 392
community group, 390
Community Groups, 392
Framework API, retrieving friends, 407–408
friending, 392–393
friending infrastructure, 439
Friends Server Control, 401–404
importance of, 390–391
members, 390, 392

dashboard, 391–392
templates, 396–397

micro-blogging, 391
micro-messaging, 391, 392
notifi cations, 392
searches, 199
taxonomy and, 406–407
user profi les, 391, 393–396

Colleagues, 395
Community Documents, 395
Community Groups, 395
Message Boards, 395
Private Messaging, 395
tiers, 396

UserProfi le Server Control, 394, 397–404
users, 392

Community Group Admin built-in role, 104
Community Group Create built-in role, 104
Community Group Profi le Server Control, 392
community groups, 408–409, 439

activity streams, 409

bindex.indd 627bindex.indd 627 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

628

community homepage – Dashboard.ascx

enabling, 428
calendars, 245
creating, 409–411
intranets, 408
membership user groups comparison, 409–410
notifi cations, enabling, 428
templates, 411–412
user discovery, 409

community homepage, activity stream, 427–428
CommunityGroupBrowser Server Control, 409
CommunityGroupList Server Control, 409
CommunityGroupMembers Server Control, 403

properties, 415–416
CommunityGroupProfi le Server Control, 408
CommunitySearch Server Control, 409
company background, 3–4
confi guration, 24

eCommerce, 444–445
licensing, 444
packages, 462–466
Settings tab, 445–461
shipping, 461–467
shipping methods, 462–466
taxes, 461, 466–467
warehouses, 462–466

menus, 189–191
taxonomy, folder assignment, 128

contact information form, 312–315
contact methods, 6
containers, list containers, 136
content

authors, 54
collections, 281
creating items, 64
displayed language, 141–142
DMS menu, 79
editing, toolbar options and, 74–79
exporting, 109
fl agging, defi nition setup, 378–379
fl ow, deployment, 555–558
folder tree, permissions, 125
full factorial, 317
historical versions, 579
language-specifi c editions, 140
localization features, 109
lock model, 63–64
migration, 25–26
multilingual sites, 139

enabling support, 143–144
organization, taxonomy, 124
process, 62
reports, 574–576
searches, excluding, 198
spot checks, 576–577
states, 63
status, 62–64

storage, 62–64
structured, 110
taxonomy, 128–129
tree, associating to Smart Form Designs, 121–123
unstructured, 110
website needs, 107

Content Block Server Control, 79
event display, 250–253
implementing, 82–84
Smart Forms, 251
Tidy process, 123
Wikis, 364
XSLT, overriding, 112–113

Content HTML fi eld, 123
Content Management Bible (Boiko), 111
Content Management Bible (Boiko), 111
content managers, Workarea, 54
Content pane toolbar, 69
Content tab (Workarea), 60–61
Content Targeting Widget Webinar, 593
ContentBlock Widget, 519
ContentFlagging Server Control, 333

implementing, 379–383
properties, 380

ContentReview Server Control, 333, 378
implementing, 379–383
properties, 381–382

Countries pane, eCommerce confi guration, 446–447
coupons (eCommerce), 481–482

scope, 484–485
types, 483–484

crawling
full, 206
incremental, 206
Search Framework, 205–207

Credit Card Interchange, 458
CSS (Cascading Style Sheets), 10

Firebug, 10
Flex menu, 188–189

Currencies pane, eCommerce confi guration, 447–450
CurrencySelect Server Control, 495, 496
custom role creation, 100–101
customer testimonials, 257–263
customers

blogs, 334–335
forums and, 334
Wikis, 335

CustomStreamDisplay.aspx, 426–427
CustomStreamDisplay.aspx.cs, 427

D

dashboard page, OnTrek implementation guide, 39–42
object table, 40–41

Dashboard.ascx, 421–422

bindex.indd 628bindex.indd 628 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

629

dashboards – eCommerce

dashboards, 60, 419
Activities, 424
activity streams, fi ltering, 424
components, 420–422
contents, 419–420
personalized, 419
tabs, public/private, 419
user controls, implementing, 422
widget spaces, 420–422
widgets, 59
Workarea, 56

data analysis, maintenance and, 572–573
data capture, 572
Data Designer, Smart Form Designs, 111
data storage, 13
data structures, taxonomy and, 125
data synchronization, Ektron Framework, installation,

47–48
DataBinding, 10
databinding, Image Rotator, 153–161
DataContract, 172
DataContractJsonSerializer class, 172
debugging

Flex Menu Server Control, 188
XSLT, Visual Studio, 165–166

DefaultObjectID property, 348
Delete Folders permission, 102
Delete permission, 102
deliverables, Discovery Phase

CMS implementation guide, 23, 31
functional requirements document, 23, 31
information architecture document, 23, 31

deployment
content moving, 561–563

eSync, 558–561
production to staging, 562
staging to production, 563

manual, 563–564
Package and Deploy tool, 564–566
plan descriptions, 560
scenarios, 554

content fl ow, 555–558
data fl ows and process, 559–560
Deployment Environment, 555
Development Environment, 554
Pre-Staging Environment, 555
Production Environment, 555
Source Control Repository, 554
Staging Environment, 554–555
virtual staging, 561–562

server security, 567
Dev Center, 4

forums, 334
Developer Community hub, 588
Developers, 30
development process, 549

development scenarios, 47
DHTML Menu Server Control, 189
Did You Mean search widget, 202
Directory Server Control, 170
Disable Language Awareness property, 134
disaster recovery

backups, 585
uptime and, 584

discovery collateral, 548
Discovery Phase, 19–20

deliverables
CMS implementation guide, 23, 31
functional requirements document, 23, 31
information architecture document, 23, 31

kickoff, 20
project manager, selection, 20
project plan, developing, 20–23

Discussion Board, folder, 87
discussion board, creating, 340–343
DMS, objects, adding, 257–259
DMS menu, 79

Content Block Server Control and, 79
domain names, 579
DropZone User Control, 282

properties, 295
DropZoneData class, 296
DropZones, 268, 282

ContentBlock Widget, 519
DynamicForumParameter property, 348
DynamicGroupParameter property, 348
DynamicParameter property, 348
DynamicThreadParameter property, 348

E

e-mail message tokens, 376
e-mail support, 5
eCommerce, 441

browsing experience, controls, 495–506
card types, 450–451
Cart Server Control, 507, 510–512
Cart.aspx, 523–524
catalog, 467–468, 471–472
Checkout Server Control, 507, 512–516
confi guration, 444–445

licensing, 444
packages, 462–466
Settings tab, 445–461
shipping, 461–467
shipping methods, 462–466
taxes, 461, 466–467
warehouses, 462–466

countries, 446–447
coupons, 481–482

scope, 484–485

bindex.indd 629bindex.indd 629 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

630

eCommerce APIs Webinar – EnableThreadRating property

types, 483–484
currencies, 447–450
CurrencySelect Server Control, 495, 496
implementation, 516–525
landing page, 516–519
maintenance controls, 506–516
messages, 451

creating, 453–454
modifying, 453–454
tokens, 452–453
types, 452

MyAccount Server Control, 507–508
order management, 488–489
order workfl ow, 486–487
OrderList Server Control, 507, 508–510
payment

gateway, 457–459, 536–544
PayPal, 454–460

product detail interface, 521–523
Product Server Control, 495, 503–504
ProductList Server Control, 495, 500–502
products, 467–468

classes, 468–469
reports, 485–488
SmartForm content tabs, 473–479
types, 468–471
video catalog, 479–481

ProductSearch Server Control, 495, 496–498
purchase controls, 506–516
Recommendation Server Control, 495, 504–506
regions, 459–461
use case, 442–443
Webinar, 592

eCommerce APIs Webinar, 592
eCommerce Catalog folder, 87
eCommerce payment gateway provider webinar, 593
eCommerce site build Webinar, 592
eCommerce Workfl ow Engine Webinar, 592
Edit Folders permission, 102
Edit In Context, 79–80

Add Library Item option, 81
Add/Remove Hyperlink option, 81
Bold/Italic option, 81
Cancel option, 81
Save option, 81
Spell Check option, 81

edit interface for widgets, 300–301
Edit permission, 102
EditButtonClicked event, 303
editing screen for widgets, 298
EditorCSS property, 349
EditorToolbar property, 349
EKML (Ektron Markup Language), 10, 263

ListSummary Server Control, 236–239
tokens, 237–238

tags, 236
UnorderedListSummary.ekml, 238–239

Ektron
Application Engineering, 6, 590
Best Practice Services, 6, 590
company background, 3–4
confi guration, 24
contact methods, 6
Hosting Solutions, 7
online community, 4, 588

Account Manager, 589–590
Developer Community hub, 588
Facebook, 588

technical support, 589
training, 7
users, 15–16
Webinars, 590–591

CDN (content delivery network) integration, 591
CMS Extension Framework, 591
Content Targeting Widget, 593
eCommerce APIs, 592
eCommerce payment gateway provider, 593
eCommerce site build, 592
eCommerce Workfl ow Engine, 592
eSync, 593
Framework API, 591
Marketing Optimization Suite, 594
Widgets in Version 8, 594
Writing RIA Application, 594

Ektron Certifi ed Developer Training, 7
Ektron Certifi ed System Administrator Training, 7
Ektron Collections, 268
Ektron Custom End User or Administrator Training, 7
Ektron End User Training, 7
Ektron Exchange Community, 4, 591
Ektron Framework, 16

alternatives, 262–263
background, 7
Ektron.CMS, 11
Ektron.CMS.API, 11
Ektron.CMS.Framework, 11
installation, 46–47

data synchronization, 47–48
development scenarios, 47
license key, 46
source control, 47

Server Controls, 9
functionality, 10

special groups, 55
special users, 54–55

Ektron Menus, 185
Ektron Ordering Sequential Workfl ow, 532
Ektron Quick Start Consulting, 7
Ektron Reference Manual, menus, 187
Ektron Smart Form, 26, 145
EkXml object, 160
EnableForumQuickSelect property, 349
EnableThreadRating property, 349

Forum Server Control, 339

bindex.indd 630bindex.indd 630 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

631

eSync – forms

eSync, 24
moving content, 558–561
Webinar, 593

event list (calendar)
new events, 242–243
upcoming, 253–256

Event Viewer, 577–578
events

EditButtonClicked, 303
Page_Load, 160
Smart Forms, 251
WebCalendar Server Control, 246
WidgetHost, 308
WidgetHost.Edit, 302
widgets, 299–300

experiments
creating, 319–320
parameters, 322–323
results, 322–323

Expired Content Report, 574
extensions

fi les, 94
images, 94

F

Facebook, 4
activity streams, 422
authentication, 220–223
Ektron presence, 588
FacebookLogin Server Control, 220–223

FacebookLogin Server Control, 224
FAST Enterprise Search, 205
fi elds

Add Discussion Forum form, 347
product types, 469–470
taxonomy, 127–128
XML, structured searches, 199

fi les
extensions, 94

URL aliasing and, 131
library, 92
upload path, 94

Fill method, 84
Final UAT (Final User Acceptance), 548

testing, 552
Firebug

CSS and, 10
HTML and, 10

fl agging and review data, 383–387
fl agging defi nitions, setup, 378–379
Flagging tab, 386

Add Folder interface, 89
Flash settings in Work area, 260–261
Flex Menu

CSS, 188–189

customization examples, 195
master page, 192–194
presentation, 188–189
Reference Manual, 187
rules, 187

Flex Menu Server Control, 187
debug mode, 188
logging feature, 188
properties

AutoCollapseBranches, 188
CacheInterval, 188
DefaultMenuID, 188
DisplayXslt, 188
EnableMouseOverPopup, 188
EnableSmartOpen, 188
IncludeJS, 188
SuppressAddEdit, 188

XSLT to modify markup, 189
Folder Admin Role, 96
folder based URL aliasing, 132
folder-specifi c roles, 103
Folder User Admin built-in role, 104
FolderBreadcrumb Server Control, 212–213, 224
folders

adding, 85–95
APIs and, 95
Blog, 87
blogs, 353
boards, 339
Community, 87
community folders (Wikis), 363
creating, 85
data types stored, 85
Discussion Board, 87
eCommerce Catalog, 87
forums, 338
inheritance, 85
Multisite, 87
navigating, 86–87
permissions, restricting to, 97–98
Products, breadcrumbs, 210–212
properties, 85

modifying, 91
Root, 87

folder creation, 87–91
searches, Integrated Search, 199
Standard, 87
taxonomy confi guration, 128
types, 85, 87
WebCalendar, 87
Wireframe associating, 286

FormBlock Server Control properties, 311
forms

HTML
capabilities, 269
contact information, 312–315
creating, 310–311

bindex.indd 631bindex.indd 631 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

632

Forum Server Control – Image Rotator

displaying, 310–311
form data model, 315–317
Request a Demo, 311–315

library, 92
Forum Server Control

EnableThreadRating, 339
implementation, 347–351
interactions, 350–353
properties, 348–349

forums, 334, 338–339
Add Discussion Forum form, 347
APIs, 353
breadcrumbs, 344
creation fl ow, 339–340
Dev Center, 334
display

Messaging, 352
Notifi cation, 353
Profi le, 353
Quick Link, 352

folders and, 338
ListSummary Server Control, 339
properties, 343–345
server controls, 334
subjects, 344
taxonomy, 344
templates, 344
Terms & Conditions, 344
use case, 336–338
viewing, 350–351
Workarea, 339

creating, 346–347
discussion board, 340–343

Framework API, 11, 591
retrieving friends, 407–408

friending infrastructure, 439
friends in Community Framework, 392–393
Friends Server Control, 401–404
Friends.ascx, 401–404
Front-End Widgets, 299
full factorial, 317
functional requirements document, 23
functional testing, 551–552

G

gateway provider, 538–542
installation, 543–544

Generic Handler template, 172
GetBannerSlides method, 160
GetChildren method, 175–176
GetRolePermissionSystem system call, 104
GetUserActivityStream method, 427
global search accessibility, 203–205
Google Blog, 334
graphics, rotating, 150

serialization, 153–161
group calendar, creating, 243–245
Group Profi le User Control, 412–416

source code, 413–414
groups, special groups, 55

H

handlers, child nodes, 172–181
history, Purge History, 579–581
Home Page Banner, 153
homepage, 147

interactions, types, 151–153
menus, 185
navigation

links, 150–151
search, 150–151

navigation indicators, 151
rotating graphics, 150

serialization, 153–161
XSLT, 162–165

server, returning to, 152
static displays, 152
use case, 148–149

HomePageBannerSerialization.aspx, 157–159
HomePageBannerSerialization.aspx.cs, 159–160
HomePageBanner.xsd, 154–156
Hosting Solutions, 7
HTML form data model, 315–317
HTML Form Wizard, 310–311
HTML (HyperText Markup Language)

Firebug, 10
forms

capabilities, 269
compared to Smart Forms, 110
contact information, 312–315
creating, 310–311
displaying, 310–311
Request a Demo, 311–315

ListSummaries, XSLT and, 232–236
hyperlinks

broken, 578
library, 92

I

IA (information architecture), 22
iCal, feed output, 256–257
IFilters, 207
Image Rotator

creating, 153–161
XSLT

custom, 162–165
debugging, 165–166
setting code to use, 166–169

bindex.indd 632bindex.indd 632 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

633

images – ListSummaries

images
extensions, 94
library, 92
upload path, 94

implementation, 19
Collection Widget, 276–278
phases, 19

implementation guides, best practices, 42–43
Implementation Phase, 19

content migration, 25–26
development, 24–25

in-context editing, Content Block Server Control, 79
indexing

IFilters, 207
Search Framework, 205–207

information architecture document, 23
inheritance, folders, 85
installation, Ektron Framework, 46–47

data synchronization, 47–48
development scenarios, 47
license key, 46
source control, 47

instances, data storage, 301–302
Integrated Search, folders, 199
interactions, types, 151–153
interfaces

Add Discussion Board, 340
Add Folder, 88
IWidget, 298
product detail, 521–523

InternalAdmin, 54
intranets, community groups, 408
Invite Server Control, 374

e-mail message tokens, 376
properties, 375

Invite.aspx, 376–377
IP address location services, 142
IsARoleMember system call, 104
IWidget interface, 298

J

JavaScript, children, retrieving, 181–183
JavaScriptEditorHeight property, 349
JavaScriptEditorWidth property, 349
jQuery

Image Rotator, 153–161
images, rotating, 150

K

kickoff meeting, 20
KPIs (Key Performance Indicators), 324

metrics, 572

L

LanguageSelect Server Control, 141
language

approval chains, 103
collections, 270
Disable Language Awareness property, 134
language-specifi c editions of content, 140
menus, 187
multilingual sites

APIs, 142
browser locale, 142
default, 144
designing, 137–138
editions, 138, 140
enabling support, 144–145
forcing viewing, 142
IP address location services, 142
managing displayed, 141–142
user interface, 142

taxonomy, 125
translation

machine, 140
manual, 140

Language Export, 109, 141
Language toolbar, 78
LanguageAPI Server Control, 142
layout, 282

compared to Wireframes, 293–295
creating, based on Wireframe, 286–292
full factorial, 317

library, 85
adding items, 92–93
bxSlider, 161
fi les, 92
folders, searching, 93–95
forms, 92
hyperlinks, 92
images, 92
navigating, 91–92
QuickLinks, 85, 92

Library Read Only permission, 102
license key, 46

Workarea and, content authors, 54
licensing, eCommerce, 444
Link Searches, 94
links

homepage, 150–151
Wikis, 367–369

list containers, 136
ListSummaries, 228

DisplayXslt property, 231
implementing, 229–232
server control properties, 229–230
UnorderedListSummary.ekml, 238–239
UnorderedListSummary.xslt, 235

bindex.indd 633bindex.indd 633 12/21/2010 3:18:23 PM12/21/2010 3:18:23 PM

634

ListSummary Server Control – multilingual sites

XSLTs, 228
HTML markup and, 232–236

ListSummary Server Control, 263
appearance, 231
EKML, 236–239

tokens, 237–238
event display, 250
forums, 339
Wikis, 364
XML output, 232–235

load testing, 553
localization of text, 139–140
lock model, 63–64
log in, OnTrek site, 55–56
Log Parser, 578–579
Logging Application Block (Microsoft), 578
loops, permissions, 96

M

machine translation of language, 140
maintenance

availability, 577–579
content freshness, 573
content reports, 574–576
data analysis, 572–573
data capture, 572
disaster recovery, 584–585
performance, 579–581
planning, 571–573
reach, 582–584
usability, 581–582

managed objects, 259–261
displaying, 261–262

manual aliasing, 109, 132
manual translation of language, 140
Marketing Optimization Suite Webinar, 594
Master Layout Create built-in role, 104
Master menu, 196–197
master page

ASP.NET, 196–197
Flex Menu, 192–194

membership, capabilities, 215
Membership control, 216
Membership Server Control, 215–218, 224
membership user groups, community group comparison,

409–410
membership users, 54, 215

server controls, 215
Membership.aspx, 216
menus, 223

Add/Edit Menu screen fi elds, 190–191
CMS Menu, 189
CMS Menu Server Control, 187
Collections, 270
confi guration, 189–191

creating, phases, 186
displaying, 187
DMS, 79
Flex Menu Server Control, 187
items, adding, 191–192
language, 187
Master, 196–197
navigation, 185
Slave, 196–197

Menus tab, new items, 191–192
Message Board Admin built-in role, 104
MessageBoard Server Control, 251
messages

activity streams, 428–429
eCommerce, 451

creating, 453–454
modifying, 453–454
tokens, 452–453
types, 452

micro-messaging, 433
Messaging Experts, 30
Metadata Admin built-in role, 104
Metadata tab (Add Folder interface), 89
methodologies

agile, 18
waterfall-based, 18

methods
Authorize, 540–541
AuthorizeAndCapture, 541–542
Fill, 84
GetBannerSlides, 160
GetChildren, 175–176
GetUserActivityStream, 427
Page_Load, 304
ProcessRequest, 176–177, 405
RaisedLoggedInActivity(), 432
SerializeList, 174
updateDisplay, 183

micro-messaging, 392, 433, 439
user profi le, 435–437

MicroMessage Server Control, 433–435
properties, 435

Microsoft Logging Application Block, 578
misspellings in searches, 201–202
Modify Preapproval permission, 103
Move or Copy built-in role, 104
multilingual sites

browser locale, 142
content, 139

enabling support, 143–144
forcing language, 142

default language, 144
designing, 137–138
editions, 138

language-specifi c editions, 140
IP address location services, 142
languages, enabling support, 144–145

bindex.indd 634bindex.indd 634 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

635

Multisite folder – Page_Load event

user interface, 142
Multisite folder, 87
Multivariate Experiment Widget, 317, 318
Multivariate Section Widget, 317–318

content modifi cation, 320–322
Multivariate Target Widget, 317, 318
multivariate testing, 317–323
Multivariate Testing and Web Analytics, 265
Multivariate use example, 319
MyAccount Server Control, 507–508

N

navigating
folders, 86–87
homepage

links, 150–151
search, 150–151

library, 91–92
searches for, 197–198

navigation, menus, 185
navigation indicators, 151
.NET ASCX User controls, 268
.NET Classes, generating from Smart Form

Design, 116
.NET Framework, 116–118

Smart Form Designs, 116
nodes, child

handlers, 172–181
rendering, 170–172

notifi cations, enabling, 428

O

object tables, OnTrek implementation guide
dashboard page, 40–41
homepage, 34–35
Product Cross Sell Widget, 38–39
product page, 37–38
What Customers Are Saying Widget, 35

objects
EkXml, 160
managed, 259–261

displaying, 261–262
ObjectType property, 349
onclick property, 203
online community (Ektron), 4

Account Manager, 589–590
Dev Center, 4
Developer Community hub, 588
Ektron Exchange Community, 4
Facebook, 4, 588
Twitter, 588
web addresses, 4
Webinars, 590–591

CDN (Content Delivery Network), 591
CMS Extension Framework, 591
Content Targeting Widget, 593
eCommerce APIs, 592
eCommerce payment gateway provider, 593
eCommerce site build, 592
eCommerce Workfl ow Engine, 592
eSync, 593
Framework API, 591
Marketing Optimization Suite, 594
Widgets in Version 8, 594
Writing RIA Application, 594

online presence, 582–584
OnTrek Campaign Landing Page, 266–268

collection, 273–274
OnTrek implementation guide, 29

CMS implementation guide and, 32
dashboard page, 39–42

object table, 40–41
homepage, 33–35

object tables, 34–35
What Customers Are Saying Widget, 35

product page, 35–36
object tables, 37–38
Product Cross Sell Widget, 38–39

OnTrek Information Architecture, taxonomy and, 126
OnTrek site

eCommerce and, licensing, 444–445
Group Profi le User Control, 412–416
launching, 148
log in, 55–56
testimonials, 257

order workfl ow (eCommerce), 486–487
Ektron Site, 535–536
Windows Workfl ow Foundation, 525–527

activities in toolbox, 533
activity creation, 527–531
building workfl ow, 531–534

OrderList Server Control, 507, 508–510
Overwrite Library permission, 102

P

Package and Deploy tool, 564–566
Page Host User Controls, 282

properties, 294–295
PageBuilder, 12–13

Smart Forms and, 293
structure, 292–293
user controls, 30
Widgets, 265, 268, 282
Wikis, 365–367
Wireframes, 26, 265, 268, 282

creating, 282
PageHost, 282
Page_Load event, 160

bindex.indd 635bindex.indd 635 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

636

Page_Load method – Purge History

Page_Load method, property updates, 304
parameters

experiments, 322–323
parameter resolution logic, 134–135

parent folders, breadcrumbs, 211
passwords

resetting, 219–220
special users, 55

payment gateway, 457–458, 536–537
form fi elds, 459
gateway provider, creating, 538–542
provider, installation, 543–544

PaymentGatewayProvider class, 540
PayPal for eCommerce, setup, 454–457
performance

metrics monitoring, 579
PerfMon, 579
testing, 552

permissions, 95–96
Add, 102
Add Files, 102
Add Folders, 102
Add Hyperlinks, 102
Add Images, 102
Collections, 102
content folder tree, 125
Delete, 102
Delete Folders, 102
Edit, 102
Edit Folders, 102
Library Read Only, 102
Modify Preapproval, 103
Overwrite Library, 102
Read Only, 102
Restore, 102
restricting to folders, 97–98
roles, 96
Search Framework API, 209
Traverse Folders, 103

phases of menu creation, 186
phone support, 5
popular search terms, 202
PostHistory Server Control, 353
presence online, 582–584
ProcessRequest method, 176–177, 405
product detail interface, 521–523
Product Server Control, 495, 503

properties, 504
ProductList Server Control, 495, 500–502
products (eCommerce), 467–468

classes, 468–469
reports, types, 485–486
SmartForm content tabs, 473–479
types, 468–471
video catalog, 479–481

Products folder, breadcrumbs, 210–212

ProductSearch Server Control, 495, 496–497
properties, 497–499

ProfileLink property, 349
project manager, selection, 20
project plan

business requirements, stakeholder interviews,
20–21

Discovery Phase deliverables, 23
technical requirements, 21–22
user experience requirements, 22–23

properties
ActivityStream Server Control, 425–426
Add Blog form, 355
Blog Server Control, 359–360
BreadCrumb Server Control, 213
CalendarDataSource, 248
Cart Server Control, 510–512
Checkout Server Control, 515
Collection Server Control, 279–280
CommunityGroupMembers Server Control,

415–416
ContentFlagging Server Control, 380
ContentReview Server Control, 381–382
Disable Language Awareness, 134
DropZone User Control, 295
EnableThreadRating, 339
folders, 85

modifying, 91
FormBlock Server Control, 311
Forum Server Control, 348–349
forums, 343–345
Invite Server Control, 375
ListSummaries, 229–230
MicroMessage Server Control, 435
MyAccount Server Control, 507–508
onclick, 203
OrderList Server Control, 509–510
Page Host User Controls, 294–295
Page_Load method, 304
Product Server Control, 504
ProductList Server Control, 501–502
ProductSearch Server Control, 497–499
Query String Action, 134
Recommendation Server Control,

505–506
SiteMap Server Control, 214
SocialBar Server Control, 370–371
users, modifying, 218–219
WebCalendar Server Control, 246–247
WidgetHost, 308
Widgets, 295
Zones, 295

Properties tab (Add Folder interface), 89
Provider Model Design Pattern, 325
Public-Facing Widgets, 299
Purge History, 579–581

bindex.indd 636bindex.indd 636 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

637

Quality Assurance Phase – searches

Q

Quality Assurance Phase, 19
system testing, 26–27
user acceptance testing, 27–28

queries, activity streams, 426–427
queries in searches

ambiguous, 200
architecture, 207
Search Framework, 205–207
Search Server, 207

Query String Action property, 134
query string parameters, aliases and, 134
QuickLinks, library, 85, 92

R

RaisedLoggedInActivity() method, 432
RDBMS (Relation Databases Management systems),

110–111
Read Only permission, 102
Recommendation Server Control, 495, 504–505

properties, 505–506
recovery, 584–585
Refresh Reminder Report, 574
RegEx aliasing engine, 136
RegEx based URL aliasing, 132
registration, 224

membership users, 215–218
Reporting pane, 384
reports

Bad Link Report, 578
content reports, 574–576

Expired Content Report, 574
Refresh Reminder Report, 574

eCommerce
Customer Reports, 485
Key Performance Indicators, 486
Payment, 486
Top Products, 486

Reports tab (Workarea), 62
Reports tree, 384
Search Phrase Report, 199–200
Web Analytics, 325–326

Request a Demo form, 311–315
RequestAction.AddFolder, 405–406
RequestItem class, 173
requirements, software, 45–46
resetting passwords, 219–220
RESTful interface, 116
RESTful services, 152, 223
Restore permission, 102
restricting permissions to folders, 97–98
results

experiments, 322–323

from searches, none, 201
reusable templates, 181
RIAs (Rich Internet Applications), 151, 223

writing, Webinar, 594
Rogers, Bill, 3
Rogers, Ed, 3
roles, 96

custom, creating, 100–101
Folder Admin Role, 96
folder-specifi c, 103
system-wide, 103

Root folder, folder creation, 87–91
root folder, 87
Rotating Ad Smart Form, 153
rotating graphics, 150

serialization, 153–161
rules, Flex Menu, 187

S

SamplePaymentGatewayProvider.cs, 542
scripts, client side, registering, 161
Search Admin built-in role, 104
Search Framework, 205

crawling, 205–207
indexing, 205–207
querying, 205–207
Search Framework API, 208–209

permissions, 209
Search Phrase Report, 199–200

insuffi cient search terms, 200
Search Server, queries, 207
Search Server 2008, 205
Search Server 2010, 205
Search Server Express 2008, 205
Search Server Express 2010, 205
searches, 224

content, excluding, 198
Did You Mean Widget, 202
folders, Integrated Search, 199
general terms, 202
global accessibility, 203–205
homepage, 150–151
library, 93–95

Link Searches, 94
misspellings, 201–202
navigation, 197–198
no results, 201
popular terms, 202
queries, ambiguous, 200
SiteSearch, strategy, 198–202
SiteSearch Server Controls, 203–205
SiteSearchInput Server Dontrol, 205
social networking, 199
Suggested Results feature, 202

bindex.indd 637bindex.indd 637 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

638

SearchResults.aspx.cs – Smart Form Designs

synonym search, 201–202
technologies supported, 205
tracking, 199–200
XML fi elds, 199

SearchResults.aspx.cs, 203–204
securing server, 567
security testing, 553–554
SEO (search engine optimization)

online presence and, 583–584
URL aliasing and, 131

serialization
class defi nitions, 173
DataContractJson-Serializer, 172
EkXml object, 160
rotating graphics, 153–161
Serialization.JavaScriptSerializer, 172

Serialization.JavaScriptSerializer object, 172
SerializeList method, 174
server

returning to, 152
security, 567

server controls, 9
ActiveTopics Server Control, 353
ActivityStream Server Control, 425–426
Blog Server Control, 335, 353
BreadCrumb Server Control, 209
Cart Server Control, 507, 510–512, 522–525
Checkout Server Control, 507, 512–516
CMS Menu Server Control, 187
Collection Server Control, 279–280
Collections Server Control, 268
Community Group Profi le Server Control, 392
CommunityGroupBrowser Server Control, 409
CommunityGroupList Server Control, 409
CommunityGroupMembers Server Control, 403
CommunityGroupProfi le Server Control, 408
CommunitySearch Server Control, 409
Content Block Server Control, 79
ContentFlagging Server Control, 333, 379–383
ContentReview Server Control, 378, 379–383
CSS, 10
CurrencySelect Server Control, 495, 496
DataBinding, 10
DHTML Menu Server Control, 189
EkML, 10
FacebookLogin Server Control, 224
Flex Menu Server Control, 187
FolderBreadcrumb Server Control, 212–213
FormBlock Server Control, 311
Forum Server Control, 347–351
forums, 334
Friends Server Control, 401–404
functionality, 10
Invite Server Control, 374

properties, 375
LangageSelect Server Control, 141

LanguageAPI Server Control, 142
ListSummary Server Control, 263
membership management, 215
Membership Server Control, 215–218
MessageBoard Server Control, 251
MicroMessage Server Control, 433–435
MyAccount Server Control, 507–508
OrderList Server Control, 507, 508–510
PostHistory Server Control, 353
Product Server Control, 495, 503

properties, 504
ProductList Server Control, 495, 500–502
ProductSearch Server Control, 495, 496–498

properties, 497–499
Recommendation Server Control, 495, 504–505

properties, 505–506
SiteMap Server Control, 213–214
SiteSearch Server Controls, 203–205
SiteSearchInput Server Control, 205
SocialBar Server Control, 333, 369–370

properties, 370–371
SocialBar.ascx, 372–373

User Profi le Server Control, 391
UserProfi le Server Control, 394
WebCalendar Server Control, 239
XSLT, 10

ServerControlWS.asmx, 567
Settings tab (Workarea), 62

eCommerce, 445–446
Countries pane, 446–447
Currencies pane, 447–450
messages, 451–454
Regions pane, 459–461

shipping (eCommerce), 461–467
ShowCategories property, 349
SimpleHandler.aspx, 170–172, 183–185
Site-FeaturedProduct Widget, 520
Site-ProductSearch Widget, 519
SiteMap, 151, 213–214, 224
SiteMap Server Control, 213–214

properties, 214
sitemaps, 209
SiteSearch, 198–202
SiteSearch Server Controls, 203–205
SiteSearchInput Server Control, 205
Slave menu, 196–197
Smart Desktop, 59. See also Dashboard
Smart Form Data, creating, 123
Smart Form Design Package, 123–124
Smart Form Designer, 108
Smart Form Designs, 108, 110–111

content trees, associating to, 121–123
creating, 111–112, 118–121
Data Entry XSLT, 124
form elements, 124
.NET Classes, generating, 116

bindex.indd 638bindex.indd 638 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

639

Smart Forms – templates

.NET Framework, 116
XML content, default, 124
XML Schema, 111, 124
XSLT, default display, 124

Smart Forms, 108, 109–110
built-in role, 104
compared to HTML forms, 110
Content Block Server Control, 251
events, 251
Home Page Banner, 153
Image Rotator, serialization, 153–161
PageBuilder and, 293
products, 473–479
Rotating Ad, 153

Smart Forms tab (Add Folder interface), 89
social media, uses, 389
social navigation, activity streams, 422
social networking. See Community Framework
SocialBar Server Control, 333

e-mail, message tokens, 376
Invite Server Control, 374
Items property options, 371–372
overview, 369–370
properties, 370–371
SocialBar.ascx, 372–373
widget implementation, 370–377

SocialBar.ascx, 372–373, 380–381, 382–383
software requirements, 45–46
source control, 47
Source Control Management System, 585
special groups, 55
special users, 54–55
splash pages, usability and, 152
spot checks, 576–577
sprints, 18
SQL (Structured Query Language), 13
staging environment, 549–550

content, 550–551
stakeholder interviews for business plan, 20–21
static displays, 152
storage, 295

instance data, 301–302
stored procedures, 13
storefront, use case, 492–494
storing content, 62
stress testing, 553
StringBuilder, 116
structured content, 110
structured data, Content Block Server Control, 112–116
Suggested Results feature in searches, 202
SuppressBeacon element, 327–328
Synchronization Admin built-in role, 104
synonym search, 201–202
system calendar

creating, 240–243
recurrences, 241–242

system calls
GetRolePermissionSystem, 104
IsARoleMember, 104

system requirements, 13–14
system testing, 26–27

Final UAT testing, 552
functional testing, 551–552
load testing, 553
performance testing, 552
security testing, 553–554
stress testing, 553

system-wide roles, 103

T

tags, unclosed, 123
Task Create built-in role, 104
Task Delete built-in role, 104
Task Redirect built-in role, 104
taxes (eCommerce), 461–467
taxonomy, 109, 145

browsing by category, 125
Community Framework and, 406–407
confi guration, folder assignment, 128
content, adding, 128–129
content organization and, 124
creating, 126–128
data structures and, 125
fi elds, 127–128
forums, 344
language awareness, 125
site rendering, 139
taxonomy based URL aliasing, 131–132

confi guring, 135–136
taxonomy tree, 125
use cases, 125
Wikis, 363

Taxonomy Administrator built-in role, 104
Taxonomy data object, 129
Taxonomy ID, 129
Taxonomy tab (Add Folder interface), 89
TaxonomyExampleService.ashx, 177–181
TaxonomyItem class, 174
technical requirements, 21–22
technical support, 16, 589

chat support, 6
contact methods, 6
e-mail support, 5
phone, 5
Web form, 5

Telerik Scheduler, 239
WebCalendar Server Control, 246

Template Confi guration built-in role, 104
templates, 109

.ASPX, 24

bindex.indd 639bindex.indd 639 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

640

Templates tab – video

Blog Server Control, 358–363
community groups, 411–412
forums, 344
Generic Handler, 172
reusable, 181
XHTML, 24–25

Templates tab (Add Folder interface), 89
testimonials, 257–263
text localization, 139–140
Theme property, 349
Tidy process, 123
timeline navigation, activity streams, 422
TLD (Top Level Domain), 142
tokens, e-mail messages, 376
toolbar

Add Task button, 76
Analytics button, 78
Content Reports button, 76–77
Delete button, 75
Edit button, 74
Edit Properties button, 78
Export for Translation button, 78
History button, 74
Language toolbar, 78
Link Search button, 76
View Approvals button, 76
View Diff button, 75
View Permissions button, 75
View Publish button, 75

trackback URL, 356
tracking searches, 199–200
Traditional Ektron content block, 26
Traffi c Analytics

Business Analytics and, 324–325
campaign effectiveness, 328–329
site wide, 326–328

training, 7, 16
translating content

Heartstone Translation Studio, 141
language export, 141
machine, 140
manual, 140
SDL Trados, 141

Traverse Folders permission, 103
TTL (Time To Live), 136
Twitter presence, 588

U

UnorderedListSummary.ekml, 238–239
UnorderedListSummary.xslt, 235
unstructured content, 110
updateDisplay method, 183
uptime, 584
URLs

aliasing, 109, 130, 145–146
community aliasing, 132
Disable Language Awareness property, 134
enabling, 133–135
fi le extensions and, 131
folder based, 132
manual aliasing, 132
parameter resolution logic, 134–135
Query String Action property, 134
RegEx based, 132
SEO and, 131
taxonomy based, 131–132

confi guring, 135–136
trackback URLs, 356
usability for humans, 131

usability, 582
use cases

blogs, 336–338
connecting to clients, 226–227
eCommerce, 442–443
forums, 336–338
homepage, 148–149
OnTrek Campaign Landing Page, 266–268
storefront, 492–494
Wikis, 336–338

user acceptance testing, 27–28
User Admin built-in role, 104
user calendar, creating, 243–245
user controls

dashboards, implementing, 422
PageBuilder, 30
widgets, 268, 298

user experience requirements, 22–23
User Logged In activity, 430–431
User Profi le Server Control, 391
user profi les, micro-messaging, 435–437
UserGroupForum.aspx, 348
UserProfi le Server Control, 394, 397–404
users

community group discovery, 409
content authors, 54
Developer, 30
membership, 54, 215
Messaging Expert, 30
properties, modifying, 218–219
registering, allowing, 215–218
special users, 54–55
Web Production Manager, 30

V

Variance-Cancelled Occurrence events (calandar), 242
Variance-Extra Occurrence events (calandar), 242
video, 225, 227–228

customer testimonials, 257–263

bindex.indd 640bindex.indd 640 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

641

video catalog – Wikis

video catalog (eCommerce), 479–481
videos, 263
virtual staging, 561–562
Visual Studio, XSLT, debugging, 165–166
Vs, 54

W

waterfall-based methodologies, 18
taxes on sales, 467

WCMS (Web content management system), 7
Web Alerts tab (Add Folder interface), 89
Web Analytics, 324

reach and, 582–583
reports, 325–326
Traffi c Analytics

Business Analytics and, 324–325
site wide, 326–328

Web form support, 5
Web Production Managers, 30
Web services, 152

consumption, 169–170
creation, 169–170

WebCalendar, folder, 87
WebCalendar Server Control, 239

displaying events, 246–250
properties, 246–247
Telerik Scheduler, 246

WebEventData, 254
Webinars, 590–591

CDN (Content Delivery Network), 591
CMS Extension Framework, 591
Content Targeting Widget, 593
eCommerce APIs, 592
eCommerce payment gateway provider, 593
eCommerce site build, 592
eCommerce Workfl ow Engine, 592
eSync, 593
Framework API, 591
Marketing Optimization Suite, 594
Widgets in Version 8, 594
Writing RIA Application, 594

websites
audience, 108
business case, 18–19
content needs, 107
deploying

development process, 549
discovery collateral, 548
pre-conditions, 548–554
staging environment, 549–551
system testing, 551–554

multilingual, designing, 137–138
navigation cues, 108
organization, 108

project startup, 18
structural defi nition, 108
templates, 109
validation defi nition, 108

Widget Settings, 282
widget spaces, 420–422
Widget Sync button, 305
Widget Tray, 420
WidgetDataMember attribute, 302
WidgetHost, 299, 307

events
Close, 308
Create, 308
Edit, 308
Maximize, 308
Minimize, 308

properties, 308
WidgetHost.Edit event, 302
widgets, 12, 297–298

ActivityStream, 423–425
BrightCove PageBuilder Widget, 257
Collection Widget, 270
Collections Widget, 269
ContentBlock Widget, 519
creating, 299–307
Did You Mean, 202
DropZones, 268
edit interface, 300–301
editing screen, 298
events, 299–300
Front-End Widgets, 299
instantiation, 307
Multivariate Experiment Widget, 317, 318
Multivariate Section Widget, 317–318

content modifi cation, 320–322
Multivariate Target Widget, 317, 318
PageBuilder, 282
PageBuilder Widgets, 265
preloaded, 59
Public-Facing, 299
Site-FeaturedProduct Widget, 520
Site-ProductSearch Widget, 519
SocialBar, implementing, 370–377
user controls and, 268, 298
Widget Tray, 420

Widgets in Version 8 Webinar, 594
Widgets property, 295
wiki feature, 364–365
Wikis, 335

community folders, 363
Content Block Server Control, 364
creating, 364
editing existing content, 369
links, 367–369
ListSummary Server Control, 364
PageBuilder page, 365–367

bindex.indd 641bindex.indd 641 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

642

Windows Service – Zones property

taxonomy and, 363
use case, 336–338
using, 367–369

Windows Service, crawls, 206
Windows Workfl ow Foundation, 525

activities, 526
base activity library, 527
custom, 527–531
toolbox, 533

base activity library, 526, 527
designer, 526
Host process, 526
overview, 526–527
runtime engine, 526
workfl ow, 526

building, 531–534
Wireframes, 22, 26, 148

ASPX templates, 268
associating, 305–307
compared to layouts, 293–295
creating, 282, 283–286
folder associations, 286
layout creation, 286–292
PageBuilder, 282

wizards, HTML Form Wizard, 310–311
Workarea

Activities, 424
blogs, creating, 354–358
calendars, 239
community groups, creating, 410–411
content, viewing, 69–73
content authors, license key, 54
content managers, 54
Content pane toolbar, 69
Content tab, 59, 60–61

Alias tab, 66
Category tab, 67
Comment tab, 67
Metadata tab, 65
Schedule tab, 66–67
Summary tab, 65
Templates tab, 67

Dashboard, 56, 60
Data Designer, Smart Form Designs, 111
Flash settings, 260–261
folders, boards, 339
forums, 339

creating, 346–347
creation fl ow, 339–340
discussion board, 340–343
Discussion Forum, 346
properties, 343–345
Replace Word, 346
Restricted IP, 346
Subject, 346

User Rank, 346
viewing, 350–351

launching, 56
Library tab, 59
PayPal, 456–457
Report section, 576
Reports tab, 59, 62
Settings tab, 59, 62
Smart Desktop, 59
View Content Screen

Alias, 71
Category, 71
Comment, 71
Content, 69
Metadata, 71
Properties, 69
Summary, 69
Tasks, 71

Wikis, creating, 364
Writing RIA Application Webinar, 594

X

XHTML templates, 24–25
XLIFF Admin built-in role, 104
XML (eXtensible Markup Language)

fi elds, structured searches, 199
Widget Settings, 282

XML Schema, Smart Form Designs, 111
XML Schema Defi nition fi le, 116
XML Schema Defi nition tool, 116–117

classes, 117–118
XPath, 116
.XSD fi le, 116
XSL Transforms, 263
XSLT (XML Stylesheet Language for

Transformations), 10
benefi ts, 115
Flex Menu Server Control markup, 189
Image Rotator

custom XSLT, 162–165
debugging, 165–166
setting code to use, 166–169

Knowledge Base articles, 115
ListSummaries, 228

HTML markup and, 232–236
overriding,Content Block Server

Control, 112–113
XsltArgumentList object, 404

Z

Zones property, 295

bindex.indd 642bindex.indd 642 12/21/2010 3:18:24 PM12/21/2010 3:18:24 PM

	Wow! eBook
	Ektron Developer’s Guide
	CONTENTS
	INTRODUCTION
	PART I: GETTING STARTED
	CHAPTER 1: INTRODUCING EKTRON
	Ektron: The Company
	Ektron’s Community, Support, and Services
	Ektron’s Online Community
	Ektron Technical Support
	Ektron’s Best Practices and Professional Services
	Ektron Training

	Ektron, the Framework
	All-in-One versus Best-of-Breed
	Developing with the Ektron Framework
	System Requirements

	Who Uses Ektron?
	Take Home Points

	CHAPTER 2: THE EKTRON WEB PROJECT METHODOLOGY
	Iterative/Waterfall versus Agile Approaches
	The Business Case: Where It All Starts
	Understanding the Implementation Process
	The Discovery Phase
	Kicking Off the Project
	Developing a Project Plan

	The Implementation Phase
	Starting Development
	Content Migration

	The Quality Assurance Phase
	System Testing
	User Acceptance Testing

	Take Home Points

	CHAPTER 3: THE IMPLEMENTATION GUIDE
	The Ektron Approach
	Implementation Guide
	The OnTrek Implementation Guide
	The Homepage
	Product Page
	User Dashboard Page

	Take Home Points: Best Practices for Creating an Implementation Guide

	CHAPTER 4: CONFIGURING YOUR DEVELOPMENT ENVIRONMENT
	What You Need to Configure Your Machine
	Installing the Framework
	Development Scenarios
	Source Control
	Data Synchronization

	Further Tips
	Take Home Points

	PART II: BUILDING THE TECHPOINT SITE
	CHAPTER 5: UNDERSTANDING CONTENT MANAGEMENT FUNDAMENTALS
	Login and Workarea
	Logging In and Creating a User
	Exploring the Workarea

	Content Entry and Display
	Content Storage and Status
	Adding and Managing Content
	Using the Content Block Server Control

	Folders and the Library
	Implementation: Adding a Folder and Managing Library Items
	Under the Hood: Folders and Libraries
	Folders and Library in Brief

	Permissions, Approvals, and Roles
	Understanding Permissions
	Understanding Approval Chain Workflows
	Understanding Roles
	Managing Permissions and Workflow
	Under the Hood

	Take Home Points

	CHAPTER 6: CONFIGURING COMMONLY USED COMPONENTS
	Understanding the Technology
	Smart Forms
	The Difference between Smart Forms and HTML Forms
	Understanding Smart Form Design
	Creating Smart Form Designs
	Retrieving, Manipulating, and Rendering Structured Data
	Implementation
	Under the Hood

	Taxonomy
	Implementation
	Under the Hood

	Aliasing
	Taxonomy Based Aliasing
	Folder Based Aliasing
	RegEx Based Aliasing
	Community Aliasing
	Manual Aliasing
	Implementation
	Under the Hood

	Multilingual Sites
	Designing an Ektron Multilingual Website
	Managing the Displayed Content Language
	Implementation
	Under the Hood

	Take Home Points

	CHAPTER 7: THE HOMEPAGE
	Use Case
	Technology
	Using Rotating Graphics
	Adding Navigation

	Rich Interaction Using jQuery, Smart Forms, and Handlers
	Types of Interaction
	Homepage Image Rotator Using Serialization
	Homepage Image Rotator Using XSLT
	Web Service Creation and Consumption

	Using Menus for Navigation
	Ektron Menu Basics
	Implementing the Global Navigation Menu
	Under the Hood

	Using Search for Navigation
	Defining Your SiteSearch Strategy
	Adding Search to the Global Navigation
	Under the Hood

	Sitemap and Breadcrumbs
	Creating Breadcrumbs for the Products Folder
	Implementing the BreadCrumb Server Control
	Creating a Sitemap Page

	Registration
	Allowing a User to Register on the Site
	Allowing Users to Modify Their Properties
	Implementing a Password Reset Feature
	Implementing Facebook Registration

	Take Home Points

	CHAPTER 8: REACHING PROSPECTS
	Use Case
	Technology
	ListSummary
	Implementing a Basic ListSummary
	Changing the HTML Markup Using XSLT
	Changing the Markup Using EKML

	Calendars
	Creating a System Calendar, User Calendar, and Group Calendar
	Displaying Events Using a WebCalendar Server Control
	Displaying Events Using a ListSummary Server Control
	Displaying Events Using a Content Block Server Control
	Display a List of Upcoming Events
	Outputting iCal Feeds

	Video/Customer Testimonials
	Adding an Object to the DMS
	Modifying Settings on Managed Objects
	Displaying the Managed Object
	Alternatives to Using the Ektron Framework

	Take Home Points

	CHAPTER 9: GENERATING LEADS THROUGH CAMPAIGN OPTIMIZATION
	Use Case
	Understanding the Technology
	Implementation Using Collections
	Creating a Collection
	Adding to the Collection
	Putting the Collection on the Landing Page
	Customizing the Presentation of the Collection Widget
	Under the Hood: Collection Data Model

	PageBuilder
	Creating the Wireframe
	Associating the Wireframe to a Folder
	Creating a Layout Based on the Wireframe
	Under the Hood

	Widgets
	Creating the Widget
	Under the Hood: Widgets

	HTML Forms
	Creating a Form
	Implementation: The “Request a Demo” Form
	Under the Hood: HTML Form Data Model
	Multivariate Testing
	Under the Hood: Multivariate
	Multivariate Brief

	Web Analytics
	Traffic Analytics versus Business Analytics
	Analytics Reports
	Setting Up Site Wide Traffic Analytics
	Measuring Effectiveness of the Campaign Using Traffic Analytics
	Under the Hood: Analytics

	Take Home Points
	Additional Practice Steps

	CHAPTER 10: SUPPORTING CUSTOMERS
	Understanding the Technology
	Forums
	Blogs
	Wiki

	Use Case
	Building Forums
	Creating Forums in the Workarea

	Blogs
	Create a Blog in the Workarea
	Create a Template with a Blog Server Control

	Wikis
	Creating a Wiki in the Workarea
	Using the Wiki Feature in the Site
	Creating a New PageBuilder Page
	Using the Wiki and Creating Links
	Editing Existing Content

	The SocialBar Server Control
	Implementing the SocialBar Widget

	Content Flagging and Content Review
	Setting Up Flagging Definitions
	Implementing the ContentFlagging and ContentReview Server Controls
	Running Flagging and Review Reports, and Moderating Reviews

	Take Home Points

	CHAPTER 11: IMPLEMENTING THE ONTREK SOCIAL NETWORK
	The Importance of Social Networking
	Technology
	Users, Friends, and Profiles
	Understanding the Friending Process
	Understanding User Profile Functionality
	Configuring Community Member Templates
	OnTrek’s User Profile User Control
	Under the Hood

	Community Groups
	How Users Discover Community Groups
	Creating a Community Group
	Configuring Community Group Templates
	OnTrek’s Group Profile User Control
	Under the Hood

	Dashboards
	What’s on the Dashboard?
	Using the Dashbard Components and Widget Spaces

	Activity Streams
	Using Activity Streams to Your Advantage
	Under the Hood

	Micro-Messaging
	Micro-Messaging Strategies
	Adding Micro-Messaging to the User Profile
	Under the Hood

	Take Home Points

	CHAPTER 12: CREATING THE CATALOG OF PRODUCTS FOR THE ECOMMERCE STOREFRONT
	Use Case
	Understanding the Technology
	Configuring eCommerce
	Managing Major Configuration Options
	Configuring the Settings for Shipping and Taxes

	Creating a Catalog and Product
	Creating Product Types
	Creating a Catalog
	Creating a Product

	Coupons
	Product Reports and Order Management
	Reports
	Order Management

	Take Home Points

	CHAPTER 13: CONSTRUCTING THE ONLINE STOREFRONT WITH ECOMMERCE
	Use Case
	eCommerce Server Controls and Implementation
	Browsing Experience Controls
	Purchase and Maintenance Controls
	OnTrek eCommerce Implementation

	Custom Order Workflow
	Windows Workflow Foundation Basics
	Creating a Custom Activity
	Building a Workflow
	Using a Custom Workflow in an Ektron Site

	Building a Payment Gateway Provider
	Brief Overview of Payment Gateways
	Creating a Gateway Provider
	Installing the Gateway Provider into the OnTrek Website

	Take Home Points

	PART III: DEPLOYING THE TECHPOINT SITE
	CHAPTER 14: DEPLOYING YOUR WEBSITE
	Pre-Conditions for a Successful Deployment
	Creating the Discovery Collateral
	Completion of the Development Process
	Creating the Staging Environment
	Content Is in a Staged Environment
	Completion of System Testing

	Understanding the Different Deployment Scenarios
	Understanding the Basic Terminology
	Determining the Content Flow

	Moving Content with or without eSync
	Moving Content with eSync
	Moving Content without eSync

	The Deployment
	Installing Your Website on Another Server
	Securing the Server

	Take Home Points

	CHAPTER 15: MAINTAINING YOUR WEBSITE
	Creating an Effective Maintenance Plan
	Capturing Data
	Analyzing Data
	Acting upon Data

	Maintaining Content Freshness
	Running Content Reports
	Performing “Spot Checks”

	Maintaining Availability
	Maintaining Performance
	Maintaining Usability
	Maintaining (and Building) Reach
	Maintaining Calm During Disaster Recovery
	Take Home Points

	CHAPTER 16: NEXT STEPS
	Reviewing What You Learned
	Connecting with Ektron and the Online Community
	A Quick Review of Ektron’s Technical Support
	Don’t Forget Your Account Manager

	Utilizing Ektron’s Professional Services and Training Packages
	Leveraging Online Developer Resources
	The Framework API
	CMS Extensions
	Integrating Ektron with a Content Delivery Network
	Building Your First Ektron eCommerce Site
	Utilizing the Ektron eCommerce APIs
	Introduction to the Ektron eCommerce Work. ow Engine
	Creating Your Own eCommerce Payment Gateway Provider
	Hands On with the Content Targeting Widget
	Introduction to Ektron eSync
	Introduction to the Ektron Marketing Optimization Suite
	Ektron Widgets in Version 8
	Writing an RIA Application with Ektron

	Take Home Points

	PART IV: APPENDIXES
	APPENDIX A: CMS EXTENSIONS
	Benefits of Ektron Framework, Version 8
	Building Your Extension
	Available Strategies and Overrides
	The Completed Extension
	Registering Your Extension

	APPENDIX B: FRAMEWORK API
	Working with the Framework API
	Framework Object Constructors
	Where to Find the Framework API

	CRUD Operations on Content
	Create
	Retrieve
	Retrieving a List of Data
	Update
	Delete

	Take Home Points

	APPENDIX C: PERFORMANCE CHECKLIST
	Hardware Requirements
	Appropriate SQL Server Deployment
	Appropriate and Judicious Caching
	Code Profiling
	Compiled Site
	Event Error Maintenance
	Gzip Response Compression
	Externalize Resources and Use CDNs Where Applicable
	Request Minimization

	Glossary
	INDEX

