
Electron: From
Beginner to Pro

Learn to Build Cross Platform Desktop
Applications using GitHub’s Electron
—
Chris Griffith
Leif Wells

www.allitebooks.com

http://www.allitebooks.org

Electron:
From Beginner to Pro
Learn to Build Cross Platform Desktop
Applications using Github’s Electron

Chris Griffith

Leif Wells

www.allitebooks.com

http://www.allitebooks.org

Electron: From Beginner to Pro: Learn to Build Cross Platform Desktop Applications
using Github’s Electron

Chris Griffith Leif Wells
San Diego, California, USA Atlanta, Georgia, USA

ISBN-13 (pbk): 978-1-4842-2825-8 ISBN-13 (electronic): 978-1-4842-2826-5
https://doi.org/10.1007/978-1-4842-2826-5

Library of Congress Control Number: 2017959877

Copyright © 2017 by Chris Griffith, Leif Wells

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Lily Madar
Coordinating Editor: Nancy Chen
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484228258. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2826-5
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484228258
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents

About the Authors �� xi

About the Technical Reviewer ��� xiii

 ■Chapter 1: Welcome to Electron �� 1

What Is Electron? ��� 1

What Is Node? �� 2

What Is Chromium? �� 2

Who Is Using Electron?��� 2

What Do I Need to Know? ��� 3

Why Should I Choose Electron? �� 3

Electron’s Advantages �� 4

Beyond the Sandbox ��� 5

Offline First Design ��� 5

How Does Electron Work? �� 5

The Main Process ��� 6

The Render Process �� 6

Other Solutions ��� 7

Summary �� 7

 ■Chapter 2: Installing Electron �� 9

Before Installing ��� 9

Installing Node �� 9

Installing Node for macOS �� 11

Installing Node on Windows ��� 16

Installing Git on macOS �� 20

www.allitebooks.com

http://www.allitebooks.org

■ Contents

iv

Installing Node on Windows ��� 22

Installing Git on Windows ��� 28

Installing Electron ��� 38

Summary �� 40

 ■Chapter 3: The Electron Quick Start �� 41

Getting the Quick Start Code �� 41

Updating the Project to Make It Yours �� 42

The Main Process File �� 44

The Quick Start’s Renderer Process ��� 48

Summary �� 51

 ■Chapter 4: BrowserWindow Basics ��� 53

Getting Started ��� 53

Disabling Chrome DevTools �� 53

Update Code to Use the ready-to-show Event ��� 56

BrowserWindow Options Argument �� 57

Basic Window Properties (width, height, minWidth, minHeight, maxWidth, maxHeight) ���������������������� 59

The center, x and y Properties �� 59

The resizable and movable Properties �� 60

The title Property �� 61

Other Window Types ��� 66

Frameless Windows �� 66

Transparent Windows ��� 70

Summary �� 72

 ■Chapter 5: Adding Custom Menus ��� 73

Getting Started ��� 73

Menu Templates ��� 75

macOS’s Application Menu ��� 76

Defining Keyboard Shortcuts and Menu Item Roles ��� 76

Creating Submenus and Checkmarks �� 80

www.allitebooks.com

http://www.allitebooks.org

■ Contents

v

Completing the macOS’s Application Menu ��� 83

macOS’s Window Menu Modifications ��� 84

Contextual Menus ��� 90

Summary �� 92

 ■Chapter 6: Understanding the IPC Module ��� 93

Getting Started ��� 93

Synchronous IPC Messaging �� 94

Asynchronous IPC Messaging �� 98

Managing Event Listeners �� 101

Summary �� 102

 ■Chapter 7: Working with the Dialog Module �� 103

Getting Started ��� 103

The File Open Dialog �� 103

Additional Open Dialog Properties �� 106

Selecting a File ��� 108

The BrowserWindow Parameter ��� 110

A Brief Look at Node’s FS Module �� 112

Working Directories �� 115

The File Save Dialog ��� 116

The Message Dialog ��� 119

Custom Icons �� 125

Handling the Response ��� 127

Error Dialogs ��� 127

Summary �� 128

 ■Chapter 8: WebContents, Screens, and Locales ��� 129

Getting Started ��� 129

Discovering Electron’s WebContents �� 130

A Little Setup Before We Begin��� 134

WebContents Events��� 137

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

The “did-start-loading” Event �� 139

The capturePage Method ��� 144

The printToPDF Method �� 149

Getting Information about Screens �� 152

Finding Locales �� 156

Summary �� 157

 ■Chapter 9: The Dock Icon on macOS ��� 159

Getting Started ��� 159

The Application’s Dock Icon ��� 160

Making the Dock Icon Bounce �� 163

Changing the Dock Icon ��� 164

Dock Icon Badges ��� 165

Summary �� 167

 ■Chapter 10: Shell ��� 169

Getting Started ��� 169

Making the System Alert Sound ��� 170

Showing Files in the Operating System ��� 171

Opening Files with the Operating System �� 172

Opening HTML Files with the Operating System �� 173

Summary �� 174

 ■Chapter 11: Online/Offline Detection ��� 175

Getting Started ��� 175

Using the Renderer Process to Detect Online Status ��� 176

Pros and Cons of the Renderer-Only Solution �� 182

The Main Process-Only Solution �� 183

Pros and Cons of a Main Process-Only Approach �� 187

The Combined Approach �� 187

Summary �� 188

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

 ■Chapter 12: Advanced BrowserWindow �� 189

Loading an Application ��� 189

Splash Window ��� 189

Installing the Quick Start �� 190

Setting Up a Splash Window �� 190

Creating the Splash Window File �� 191

Showing the Version in Our Splash Window ��� 193

Loading the Main Window �� 196

Setting Up the Main Window �� 197

Summary �� 198

 ■Chapter 13: Debugging Your Electron Application ��� 199

Chromium’s Dev Tools �� 199

Debugging the Main Process ��� 201

Debugging the Main Process in VS Code �� 201

Debugging the Main Process in node-inspector ��� 204

Chrome DevTools Extensions ��� 206

Devtron ��� 207

Require Graph ��� 208

Event Listeners ��� 209

IPC Monitor ��� 210

Linter �� 211

Accessibility �� 212

Spectron ��� 212

Summary �� 212

 ■Chapter 14: Testing with Spectron �� 213

Getting Started ��� 213

Adding a Test File ��� 215

Using Spectron’s browserWindow API ��� 218

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Testing the Size of the browserWindow ��� 222

Testing Interactions in the Renderer Process ��� 223

Make the Example Interactive �� 224

Summary �� 229

 ■Chapter 15: Building Your Application ��� 231

Installing Electron Builder �� 231

Adjusting your Build Directories ��� 231

Updating the package�json file ��� 232

Building for Windows on macOS �� 233

Building for Linux on macOS �� 233

Configuration Options ��� 233

Testing Our First Build �� 235

Configuring the App Icon �� 238

Configuring the macOS DMG �� 238

Configuring the Windows Installer �� 239

Summary �� 244

 ■Chapter 16: Auto Updating Your Application ��� 245

Auto Updating macOS �� 245

Auto Update Server Options ��� 248

Testing Our Auto Update ��� 250

Signing Your Application ��� 250

Building the Application - macOS ��� 251

Generating an Update ��� 251

Auto Updating Windows Applications ��� 252

Signing Your Windows Application �� 254

Customizing the Squirrel Installer �� 255

Generating Our First Build �� 258

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Generating an Update ��� 259

Alternative Solutions �� 260

Summary �� 261

 ■Chapter 17: Additional Resources ��� 263

Additional Electron APIs ��� 263

desktopCapturer ��� 263

crashReporter ��� 263

ClientRequest ��� 263

net �� 264

DownloadItem ��� 264

Electron Forge �� 264

Community Resources ��� 264

Summary �� 265

Index ��� 267

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Chris Griffith is a User Experience Lead at a home automation and
security company and is also an instructor at the University of California,
San Diego Extension, teaching mobile application development. He is also
an Adobe Community Professional specializing in PhoneGap/Cordova
and Experience Design. Chris is regularly invited to speak at conferences
such as Fluent, Adobe MAX, and ngConf. He has developed several mobile
applications, a variety of code-hinters, and ConfiGAP for PhoneGap Build.
In addition, he has served as a technical reviewer for several publications
and written for uxmag.com. In his spare time, Chris spends time with his
family, sea kayaking, hiking, and drinking craft beer with friends. You can
follow him on Twitter @chrisgriffith or at chrisgriffith.wordpress.com.

Leif Wells is a Web and Mobile Application Developer working as a
contractor from his home in Atlanta, Georgia. He currently enjoys working
with Electron, the Ionic and Angular stack, and has recently become
obsessed with automated testing.

His experiences working as a team member on large Enterprise-level
projects as well as a single developer on small products have matured him
into a seasoned professional. Leif has organized and supported technical
communities both online and in Atlanta, and often speaks at conferences
and user groups.

Leif enjoys good movies, great sushi, and hanging out with his
canine companion, Miss Bonnie. He has been known to blog irregularly at
https://leifwells.github.io/ and can be found on Twitter as
@leifwells.

https://leifwells.github.io/

xiii

About the Technical Reviewer

Lily Madar is a Creative Technologist from London, UK, who, for the last
decade, has worked with various web technologies and frameworks for a
range of digital creative and media agencies. Some of her work includes
interactive displays powered by web technologies and can be seen in the
British Museum or the Serpentine Gallery (both in London).

Outside of work, she is an active hackathon participant with recent
wins at TADHack and GeoHack.
She also writes tutorials exploring the latest web and digital trends and runs
hardware workshops for beginners.

When not coding, she is experimenting with Arduino circuits, crochet,
and other crafts, making her a full-stack developer in hardware, software,
and yarn-ware!

1© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_1

CHAPTER 1

Welcome to Electron

GitHub Electron (or simply Electron) allows you to build desktop applications using just HTML, CSS, and
JavaScript. Sounds like a pretty ambitious statement to make. But it is indeed true, just as Apache Cordova
(also known as PhoneGap) enables you to create mobile applications also with just HTML, CSS, JS, and so
does Electron for the desktop.

Originally released in July 2013 by Cheng Zhao, an engineer at Github, it was part of their effort to
produce a new code editor, Atom. Initially, the project was known as the Atom Shell but was soon rebranded
simply as Electron. Although other solutions existed, this project quickly gained traction within the
development community. In fact, Adobe AIR, released back in 2008, originally supported building desktop
applications with HTML, CSS, and JavaScript, in addition to ActionScript. So the desire to leverage web
technologies beyond the browser is certainly not a new one.

In this book, we will take you through the entire Electron ecosystem from its initial setup, through its
key features, like creating native menus and windows and more, and how to deploy our app so it can be
distributed to our users. Rather bog you down in understanding some abstract sample applications, we are
going to be focusing on the core code needing to make Electron work. So, you don't need to know the latest
framework to use Electron, but having some basic knowledge with Node.js is useful.

Here is a brief outline of what we are going to be covering:

•	 Setting up Electron

•	 Exploring creating the application’s window

•	 Adding native menus

•	 Implementing native dialogs

•	 Learning how to interact with the user’s system

•	 Creating installable and auto-updating applications

So, if you are ready to start learning about Electron, let's get started.

What Is Electron?
Electron is a blend of two incredibly popular technologies: Node.js (or simply Node) and Chromium. Thus,
any web application you have written can run on Electron. Similarly, any Node application you have written
can run on Electron. But the power of Electron is that you can use both solutions together.

This book is about how to use these two technologies together to create rich and engaging desktop
applications. For example, we have been developing a simple desktop application that will assist developers
generate their manifest.json file for their Progressive Web Apps. For those unfamiliar with Progressive Web
Apps (PWAs), they are web apps that use modern web capabilities to deliver native app-like experiences

https://doi.org/10.1007/978-1-4842-2826-5_1

Chapter 1 ■ WelCome to eleCtron

2

within the browser. We could have simply written a Node script that developers could run from the
command line. But instead we leverage Electron to create a more compelling desktop application. It is one
that allows you to auto-generate the app icons simply by dragging the image on the application, and it will
save out the collection for you.

Breaking Electron down into its two components (thankfully the physics naming stopped and we aren’t
referring to these subparts as quarks), they each have specific functions.

The Node component handles things like file system access, compiled module support, and CommonJS
Module support. The Chromium component handles things like rendering HTML and CSS, its own
JavaScript engine, and the full suite of Web APIs.

Electron is a straightforward runtime. It is not a massive framework/library like Angular or React,
but rather a collection of APIs that we can leverage with those or other frameworks. The structure of an
Electron application is also open to personal taste. Usually, the UI framework will have more to say about the
directory structure than Electron’s requirements. However, there are general guidelines that would be wise
to follow when developing.

What Is Node?
Node.js was initially released in 2009 as an open source project, enabling developers to create server-side
applications using JavaScript. What made this project interesting was that it leveraged Google’s newly open
sourced V8 engine to act as its JavaScript runtime. Atop of that runtime, the project added APIs for accessing
the local file system, creating servers, as well as the ability to load modules.

Node has enjoyed a tremendous surge of popularity from across the development community. As such,
there is a huge collection of modules that are available for use within your Electron application.

What Is Chromium?
Chromium is the open source version of Google’s Chrome web browser. Although it shares much of the
same code base and feature set, there are a few differences (albeit minor) and it is released under a different
license. What is included with Electron is technically the Chromium Content Module (CCM). Quite the
mouthful, hence why most simply refer it is as Chromium. But what is the Chromium Content Module? It is
the core code that makes a web browser a web browser. It includes the Blink rendering engine and its own
V8 JavaScript engine. The CCM will handle retrieving and rendering HTML, loading and parsing CSS, and
executing JavaScript as well.

The CCM only focuses on the core needs to render a web page. Additional features, like supporting
Chrome Extensions, or syncing your Chrome bookmarks, are not supported. Just remember that its core
purpose is to render web content.

Who Is Using Electron?
So many open source projects come and go. Is Electron worth investing your time and energy into learn?
Yes. Although, Electron’s original purpose was to act as the shell for GitHub’s Atom editor, companies large
and small found it to be a good solution for their development needs. Since it was backed by a recognizable
company, the risks were a bit lower than trusting your next big thing on an unproven project. If you go to atom.
electron.io you can see a massive collection of applications that have been released with Electron as its core.

Obviously Github is actively supporting it, as it is the foundation of their Atom editor. But who else? The
very popular team messaging application Slack is built atop Electron, enabling them to develop a common
UI across the operating systems. If Atom is not your code editor of choice, then Microsoft’s Visual Studio
Code might be. This popular editor is also built atop Electron. This is currently our editor of choice at the
moment. The team at Microsoft has leveraged common development languages of HTML, CSS,

Chapter 1 ■ WelCome to eleCtron

3

and JavaScript to create a very compelling editor tuned for working with TypeScript and more that works
across both macOS and Windows.

A variety of familiar web tools have also been able to transform themselves into the desktop-based
applications. If you are familiar with Yeoman, a web project generator, there is now a version with a user
interface instead of the standard command-line version you are probably familiar with. The team at
Basecamp, a popular project management tool, now supports an out of browser experience. If you have
worked with Zeplin.io to inspect your visual designs, then the desktop version was developed with Electron.
The Postman API inspection tool is another great example of what is possible as an Electron application.

These are just some of the examples of some first-class web applications that have been able to break
free from the browser and create desktop-centric versions of their applications. If you would like to explore
some other applications that have been built with Electron, visit https://electron.atom.io/apps/.

What Do I Need to Know?
Unlike traditional desktop development, the only skills you need to have to develop with Electron are a good
understanding of HTML, CSS, and JavaScript, and a touch of Node. Being comfortable with your command
line wouldn’t hurt either. The fact that we can leverage our existing skills and take them from the browser on
to the desktop is what is exciting about Electron. We will be using Git to seed our starter Electron apps, but
nothing more than that is needed. But working with a version control system is always a recommended skill.

This book is going to take a slightly different approach to covering how Electron works. Since it is
simply a runtime, it is framework agnostic. So rather than working through an application built in the
framework that you don’t know, we are going to just stick with vanilla JavaScript. Now, you should have a
modest understanding of HTML and CSS. As for your JavaScript skills, if you have a general understanding of
modern JavaScript (aka ES6), you will be fine.

Another area that can be helpful to have is some experience with Node. We will be using the module
system throughout this book. But we will provide some foundations on these and any advanced topics that
we might need to cover in this book.

Why Should I Choose Electron?
We can assume by the fact you have bought this book, that either there is a need to build a desktop
application for yourself, a client or your employer, or you are simply curious about it.

If you have done any web application developing, you no doubt understand the challenges of having
to support a wide range of browsers, each with different levels of standards support. Don’t get us wrong,
the browser’s standard support has come a long way in recent years. But, there are still workarounds and
polyfills needed to properly deploy a web application to the world. For those working with enterprise clients,
you may be further handicapped to legacy browsers and operating systems. When you create an Electron
application, you embed a copy of the Chromium engine with the application, so you know exactly what
features your application and support have and how your content will render. For example, if you want to
use Flexbox as part of your layout solution, you safely can do so (Figure 1-1). If using the Service Worker
or Fetch API is something needed for your application, you only need to make sure that the build Electron
supports it.

https://electron.atom.io/apps/

Chapter 1 ■ WelCome to eleCtron

4

No longer will referencing a feature on caniuse.com be disappointing but rather one of possibilities.
As a general rule, Electron updates its Chromium module about two weeks after it is released to the

public. The Node component typically takes a bit longer to update. As you begin to embark on larger
Electron projects, you will want to also monitor the development process of both of these projects. There
might be an issue that you need to be aware or feature added that can greatly make your life easier. But, don’t
worry – once you can package your application, those runtimes are baked into your application.

Electron’s Advantages
Electron applications are just like any other desktop application as they are installed locally on the user’s
hard drive. They can be launched directly from the Windows taskbar or from the OSX Dock, and there is no
need to launch a browser and navigate to some url to run your application. When you need to open or save a
file, these dialogs are native in appearance and interaction. Your Electron application can support full drag-
and-drop interaction with a local file system, or even associate itself with a file type, so when a user double-
clicks the associated file your app will open.

Figure 1-1. The FlexBox support table from caniuse.com

Chapter 1 ■ WelCome to eleCtron

5

We also have the ability have custom application menus that conform to each platform’s user interface
guidelines. Contextual menus are available that allow your user to control-click or right-click to display your
custom menu. We will show you how to add this functionality in a later chapter.

If you need to trigger a system-wide notification, we can leverage Chromium’s Notification API to do so.
Electron will go even further that traditional window desktop applications, and create applications that only
live in the menubar or system tray.

Electron provides a solid framework that will allow you to develop first-class desktop applications.

Beyond the Sandbox
If you have ever worked with an external API, then you are probably familiar with the restrictions that you
have to work. We all have fought with Cross Origin Resource Sharing issues, or establishing proxies in order
to allow our web application to work correctly.

Electron operates in a much looser environment with regard to security than your browser. The general
assumption is that the user has actively chosen to install and run this application. As such, a degree of trust
is then assumed between the user and application.

This allows our Electron application much more freedom, but at the same time we have to use this
power with caution.

Offline First Design
With typical web application development, you can usually assume the user is online. Now this is changing
with the increase in Progressive Web Apps, but some level of online capability is there for your web app
to function. Electron applications have to take the opposite approach. You should not assume that you
have an Internet connection. In fact, portions of this chapter were written at 35,000 feet on a plane without
WiFi. But I was still able to write in a completely offline mode. Even if your application is dependent on
communicating with a back end, you can design your application to function in an offline mode, and sync
the data once a connection is reestablished. You will need to take some time to consider how this design
pattern will affect the interaction and development of your Electron application.

How Does Electron Work?
Electron-based applications run in two distinct processes: the main process and the render process
(Figure 1-2). Each of these two processes has a specific responsibility within your application. While Electron
provides a good collection of Node modules for use within your application, many of these modules are only
available within a specific process. Knowing these restrictions will help you design the code structure of your
application. For example, access to the operating system APIs are restricted to just the main process, and
access to the system’s clipboard is available to both the main and render process. Knowing this dual-process
structure is important, as it will define where some aspects of your application’s code need to reside.

Chapter 1 ■ WelCome to eleCtron

6

The Main Process
Within the main process is where your application will handle various system-level activities, like life-cycle
events (starting up, preparing to quit, actually quitting, switching between the foreground and background,
as just a few examples). This is also the process where application menus are created, as well as any native
dialogs, like file open or file save. Our main process is what is used to bootstrap our application. This is the
JavaScript file that is referenced within our package.json file, but more on that in the later chapters.

The Render Process
The main process also has another responsibility, which is to spawn any render processes. It is these
processes that would display the UI of your application. Each of these render processes will load your
content and execute it within its own thread. We can spawn as many windows as we need for our
application. Now unlike a standard web app, each of these processes has access to all the installed Node
modules, giving you a lot of capabilities.

The render process is isolated from any interaction with any system-level events. Remember, those
interactions must be done within the main process. However, Electron does include an interprocess
communication system to allow for events and data to be passed back and forth between the main and any
renderer process.

One last thing to note, your Electron app actually does not need to have a render process, but it most
likely will. This is a perfect option for taking your Node scripts and making them friendlier to use.

Electron

Main Process Renderer Process

File system access

Compiled Module support

CommonJS Modules

HTML & CSS Renderer

Document Object Model
(DOM) Access

Web API

Figure 1-2. The two processes that power an Electron application

Chapter 1 ■ WelCome to eleCtron

7

Other Solutions
Electron is not the only solution that will enable you to take your web content and enable it to become a
desktop application. The most common alternative to using Electron is known as NW.js (originally known as
node-webkit). These two projects share some common legacy, remember Cheng Zhao? Well before creating
Electron, he was actively involved with the node-webkit project.

Table 1-1 lists some key differences between the projects.

Table 1-1. Project differences

Electron NW.JS

Chromium Type Current build of Chromium A forked version of Chromium

Node Process design Separate Node processes Shared Node process

Auto-Updating Built-in API Not included

Crash Reporting Built-in API Not included

Windows Support Windows 7 or later Windows XP or later

Some of the key takeaways from this table are the fact that NW.js uses a forked (or copy of the original
code) version of Chromium. This may introduce issues such as standards support or delays in improvements
or fixes within the Chromium module. Some use functions like Auto-Updating and Crash Reporting must be
handled with your own custom solution, rather than leveraging the built-in APIs. The Node process design
is also worth noting. Since Electron uses separate processes, it should be more performant than an NW.js
application that must share the Node process. One of NW.js’ advantages is the fact it supports a much older
version of Windows. If your target audience might include that legacy operating system, then NW.js would
be your only option between the two.

Summary
This chapter has given you a general overview of Electron. We have touched on its two core technologies:
Node and Chromium, as well as introduced its dual-process design. You should have an initial sense of what
an Electron-based application is capable of.

In the coming chapters, we will begin exploring these capabilities in much more detail, as well as some
we did not even mention yet.

9© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_2

CHAPTER 2

Installing Electron

Getting your work environment configured to use Electron is fairly straightforward, but there are a couple
of items required to get you started. If you are an experienced developer, you probably already have Node
and Git installed. If so, feel free to skip to the Install Electron section of this chapter. If not, let’s get started by
installing Node.

Before Installing
These days, people install new programs on their computers and devices every day without thinking about
it. While all of the programs you need to install to work with Electron are safe, any time you wish to install
programs on your computer, you should always ensure that you have completed a backup of your computer.
Better safe than sorry.

Installing Node
Node is the biggest thing to happen to JavaScript this century. Node is a runtime built with JavaScript that
is being used by everyone from hobbyists to Enterprise developers to program anything from Internet of
Things (IoT) devices to servers. JavaScript developers use Node daily to assist in the automation of their daily
work. Electron uses Node to create cross platform desktop applications.

To install Node, you need to head over to http://nodejs.org and download Node using the easily
identifiable download buttons on their site (Figure 2-1).

https://doi.org/10.1007/978-1-4842-2826-5_2
http://nodejs.org/

Chapter 2 ■ InstallIng eleCtron

10

As you can see in this screenshot, there are two buttons available: one for the “LTS” version and
another for the “Current” version. “LTS” stands for Long Term Support, meaning that the maintainers of
Node decided that version 6 had reached a point of stability that everyone could rely upon; and no more
development updates, beyond critical bug fixes and security updates, would be added. They did this so that
development on the newer version, the one labeled “Current” could begin in earnest. While the current
version can work for you, we are using the LTS version at the time of writing this book. Regardless of that, you
need to be aware of your choices in this regard.

Please note: We are also citing version numbers in this chapter at the time of our writing this book.
The software you need to install, specifically Node and Electron, are fast-moving projects that are updated
regularly. The version numbers cited here may not match the available version numbers at the time of your
reading.

Currently, Electron version 1.6.6 ships a version of Node, version 7.4.0, which is slightly behind the
currently available version 7.10.0. So what does this mean to you? If there are features of Node 7.4.0 that
you would like to use with your Electron app, you should download and install the current version of Node,
and be aware that there may be features of 7.10.0 that will not be available in your application when you
distribute it.

As mentioned before, for the purposes of this book we will be installing the LTS version of Node.

Figure 2-1. The Node.js Website

Chapter 2 ■ InstallIng eleCtron

11

Installing Node for macOS
Download the LTS version of Node from the Node Website (http://nodejs.org), locate the downloaded
file, and double-click it. This is a fairly simple installer. Follow the instructions provided and you will install
Node (Figure 2-2).

Figure 2-2. First screen of the Node installer

http://nodejs.org/

Chapter 2 ■ InstallIng eleCtron

12

Every software that you install these days has to have a Software License Agreement (Figure 2-3).
Read it (or not, we won’t tell) and hit “Continue,” and then click the “Agree” button of the overlaying window
that appears.

Figure 2-3. The Software License Agreement

Chapter 2 ■ InstallIng eleCtron

13

Select “Install for all users of this computer,” and then click “Continue” here (Figure 2-4) as we need to
install Node for all users.

Figure 2-4. Select where to install Node

Chapter 2 ■ InstallIng eleCtron

14

The installer needs this so that it can install Node into a protected area of your operating system. Once
the password is entered, you are off to the races.

Figure 2-5. Selecting your installation type

Finally, we are ready to install (Figure 2-5). At this point, when you click “Install” you will be asked for
your system’s admin password.

Chapter 2 ■ InstallIng eleCtron

15

Figure 2-6 shows the final screen. You’ve done it! To test this out, let’s open up the terminal application
and test the version using the node –version command. You should see the version number you installed.

Figure 2-6. Installation is complete

Chapter 2 ■ InstallIng eleCtron

16

Installing Node on Windows
The installation process for Node on Windows is very similar to the process for macOS.

From the Node Website (http://nodejs.org), download the LTS version of Node for Windows.
Once the file is downloaded, find the downloaded file and double-click it to get the install process started
(Figure 2-7).

Figure 2-7. The first screen of the Node for Windows installer

http://nodejs.org/

Chapter 2 ■ InstallIng eleCtron

17

When you click the Next button, you will see the Software License Agreement (Figure 2-8).
Click the check box next to the text “I accept the terms in the License Agreement” and click the Next button
to continue.

Figure 2-8. The End-User License Agreement for Windows

Chapter 2 ■ InstallIng eleCtron

18

Figure 2-9. The Destination Folder screen

The next screen is the Destination Folder screen (Figure 2-9) where you may choose to customize where
Node will be installed. For our purposes, there is no reason to override the default path of "C:\Program
Files\nodejs\", but if you wish to change this for your system, this is where you would do that. When you
have decided upon a path, click the Next button.

Chapter 2 ■ InstallIng eleCtron

19

The next screen in the Node installer’s process is the Custom Setup (Figure 2-10) screen. Again, we
recommend accepting the default settings for your Node install.

Figure 2-10. The Custom Setup screen

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ InstallIng eleCtron

20

After a minute of two, you should be presented with the final screen, the Completed screen
(Figure 2-12). Click the Finish button. Open a new Command Prompt window and run the node –version
command to assure your installation is working.

Installing Git on macOS
Now that we have Node installed, we need to install a version control system so we can use the starter code
and other code repositories that appear in this book. Git, a very popular open source version control system,
is what we are using and will install. Git is popular because of its size and ease of use. Older version control
systems were often clunky, huge, and inflexible.

Figure 2-11. The Ready to install Node.js screen

The next screen you will be presented is the Ready to install screen (Figure 2-11). Click the Install button.

Chapter 2 ■ InstallIng eleCtron

21

To get started, head over to https://git-scm.com to find the download link on their site. As you can see
in Figure 2-12, you find the link to download the latest version of Git inside the image of the computer.

Figure 2-12. The Git website (https://git-scm.com/)

https://git-scm.com/
https://git-scm.com/

Chapter 2 ■ InstallIng eleCtron

22

Figure 2-13. The Git website download page

Installing Node on Windows
The installation process for Node on Windows is very similar to the process for macOS.

Clicking that link will take you to the download page (Figure 2-13).

Chapter 2 ■ InstallIng eleCtron

23

Double-click the installer .pkg file, and you may see a security warning from macOS that will not allow
you to install Git.

If you see the screen shown in Figure 2-15, it’s ok. This is macOS’s way to protect your system from
installers from unknown sources. To get around this, you will need to open up System Preferences ➤ Security
& Privacy and go to the General tab. There you will find a notification that looks like this.

Download the file, locate the downloaded file on your system, and double-click the file to mount the
installer. You should see a folder like that in Figure 2-14.

Figure 2-14. The downloaded Git install file opened

Figure 2-15. macOS warning message for Git installer

Chapter 2 ■ InstallIng eleCtron

24

Click the “Open Anyway” button (Figure 2-16) to allow the installer to run, and you should see the
installer UI load.

Figure 2-16. macOS Security & Privacy control panel. Note the “Open Anyway” button

Chapter 2 ■ InstallIng eleCtron

25

Continue through the steps of the installer (Figures 2-17 through 2-19) to complete the installation.
Once you have Git installed, let’s test the results. Open up a Terminal window and type the following

command:

git --version

Figure 2-17. The Git installer’s introduction screen

Chapter 2 ■ InstallIng eleCtron

26

Figure 2-18. The Git installer’s Installation Type screen

Chapter 2 ■ InstallIng eleCtron

27

Figure 2-19. The Git installer Summary screen

Chapter 2 ■ InstallIng eleCtron

28

Yay! You have Git installed! You should see something like the results in Figure 2-20.

Figure 2-20. Displaying the installed version number of git in the Terminal window

Please note that if you are a Homebrew user, installing Git is really simple. Open up a Terminal window
and type the following command and follow the screen guidance (the default settings should work for most
developers):

brew install git

Installing Git on Windows
Installing Git on Windows is a very similar process as on macOS. When you arrive at the Git Website
(http://git-scm.com) on a Windows system, you are presented with the latest version of Git for Windows
(Figure 2-21). In our case, the version 2.14.3, but by the time you read this book that version may have
changed.

http://git-scm.com/

Chapter 2 ■ InstallIng eleCtron

29

Figure 2-21. The Git Website as it appears on a Windows system

Select the link to download Git for Windows to begin the download process. Once the file is
downloaded, find and doubleclick the file to get the installation process started.

Chapter 2 ■ InstallIng eleCtron

30

Figure 2-22. The Information Screen

The first screen you are presented by the Git installer is the Information screen (Figure 2-22). This
screen displays the GNU General Public License for your review. Click the Next button to continue the
process.

Chapter 2 ■ InstallIng eleCtron

31

The next screen displayed is the Select Components screen (Figure 2-23) where you may choose which
of the Git components you wish to install. For our purposes, the default settings are what we suggest you use,
so click Next for the next screen.

Figure 2-23. The Select Components screen

Chapter 2 ■ InstallIng eleCtron

32

The next screen is the Adjusting your PATH environment screen (Figure 2-24) where you choose
how you want to use Git on the command line, setting the PATH for your application for your system. The
second option “Use Git from the Windows Command Prompt” is the choice we made because it gave us the
flexibility to use either the Git Bash application or the Windows Command Prompt. Click Next to continue.

Figure 2-24. The Adjusting your PATH environment screen

The next screen presented by the Git installer is the Choosing HTTPS transport backend (Figure 2-25)
screen. This screen allows you to choose how to communicate over a secure connection while using Git.
Our suggestion is to choose the default “Use the OpenSSL library” option which should work for most
developers. If you work on a system in a more strict corporate environment, you may need to select the “Use
the native Windows Secure Channel library.” Check with your System Administrator if you have any doubts
about which option is best for you. Make your choice, then click the Next button.

Chapter 2 ■ InstallIng eleCtron

33

The next screen is the Configuring the line ending conversions screen (Figure 2-26) where you need to
decide how Git will handle line endings for files downloaded and uploaded by Git. Windows systems handle
line endings differently than Unix systems, and Git accounts for those differences by changing the line
endings at download to a Windows-friendly type and changes them to a Unix-friendly type upon committing
to the repository. The “Checkout Windows-style, commit Unix-style line endings” is the option we are
recommending, but we are making the assumption that you will be working alone. If you plan on using Git
in a team environment, you may wish to choose one of the other options, though the default option will most
likely be the one your team has chosen. Before making your choice, you should check with a team leader to
make sure you conform to team requirements otherwise you may create problems when committing new
code to the team repository. Make your selection and click the Next button.

Figure 2-25. The Choosing HTTPS transport backend screen

Chapter 2 ■ InstallIng eleCtron

34

Figure 2-26. The Configuring the line ending conversions screen

Chapter 2 ■ InstallIng eleCtron

35

The Configuring the terminal emulator to use with Git Bash screen (Figure 2-27) is the next screen and,
again, we recommend using the default setting which is “Use MinTTY.” The “Use Windows’ default console
window” option can be limiting. This will only effect developers who choose to use the Git Bash application.

Figure 2-27. Configuring the terminal emulator to use with Git Bash screen

Chapter 2 ■ InstallIng eleCtron

36

The next screen in the Git installation process is the Configuring extra options screen (Figure 2-28).
The first item, Enable file system caching, is recommended as the description states it provides significant
performance. The second option, Enable Git Credential Manager, also recommended, will assist you with
accessing your repositories securely. Finally, we can click the Install button to continue.

Figure 2-28. The Configuring extra options screen

Chapter 2 ■ InstallIng eleCtron

37

The Git installer will run for a few moments and then present you with the Completing the Git Setup
Wizard screen (Figure 2-29). On this screen you see two check boxes. We recommend selecting the Launch
Git Bash check box, and deselecting the View Release Notes check box (unless you wish to view the notes).
Once you click the Finish button, you will be presented with the Git Bash application. Verify out your
installation by entering the git –version command as seen in Figure 2-30.

Figure 2-29. Completing the Git Setup Wizard screen

Chapter 2 ■ InstallIng eleCtron

38

Installing Electron
One of the best features of Node is NPM, the Node Package Manager. Node Package Manager is how
thousands of code libraries are distributed across the Internet. Need to add a feature or API to your
project? Fire up a terminal window and use NPM to install it. With NPM, Node has truly standardized code
distribution.

So, of course, we need to use NPM to install Electron. When installing a package like Electron, we have
two options: (1) to install Electron locally, on a per project basis; or (2) globally so that any project can use it.
Since you will be using Electron with each code sample in this book, we suggest installing Electron globally.
Open a Terminal window and enter the following command:

npm install –g electron

Later, if you need to install Electron in a project, you should use this command:

npm install --save-dev electron

This is a commonly used command so let’s break it down so that you understand how it works. First,
npm is the utility we are using to install Electron. Second, install is the command. Third, the –g is shorthand
for global, meaning our intention is to install Electron globally, making it accessible from anywhere on our
computer. Finally, electron, obviously, is the name of the package we are installing. Note that the name is
lowercase.

Once you hit enter, the command kicks in and messages should begin filling your screen. Don’t freak
out. This is expected. At the end of the process, you should be seeing something like Figure 2-31.

Figure 2-30. Terminal showing the results of running the git –version command

Chapter 2 ■ InstallIng eleCtron

39

To test your install, enter the following command:

electron –version

Figure 2-31. Installing Electron globally

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ InstallIng eleCtron

40

You should see the installed version number appear in the Terminal window (Figure 2-32).

Figure 2-32. Checking the installed version of Electron

You can also enter electron to see an Electron application that allows you to drag and drop a Web
application into the window to see it run.

Summary
You now have everything you need to work with Electron, as well as being able to participate with the
samples used in this book. Good luck and enjoy coding with Electron.

41© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_3

CHAPTER 3

The Electron Quick Start

Getting started with Electron can be confusing. Where do you put files? What do you name files? What code
do you need to start with? How should your code be organized?

Luckily for us, folks who work on Electron have created a Github repository to assist you, and us, with
getting started with Electron. We will be using the Electron Quick Start as the starting point for our example
applications in this book. The Electron Quick Start is located at https://github.com/electron/electron-
quick-start on Github. Review the code in this repository. It is very simple, and it contains code to handle
the basic needs of an Electron application.

There are many ways to write the code for Electron’s Renderer Process. You could use any number of
frameworks: Angular, React, Vue… frankly, too many to be named here. We’re leaving this decision to you.
Our goal with this book is to ensure you understand how to code for Electron, in both the Main and Renderer
Processes, and by using a vanilla approach as the Quick Start’s code can focus on Electron’s features and
create a foundation upon which you may build.

Getting the Quick Start Code
You will need to have Git, Node, and npm installed on your computer to build from the Electron Quick Start.

Developers usually have a directory on their system where they keep their code projects. Typically,
there can be a HOME/Code/ directory. For the purposes of this book, we are going to assume this is where
your code is kept. Please remember to use the path to the code on your system when you see HOME/Code/.

Open your terminal application. On Mac OS X, this application is located in the Applications/Utilities
folder. On Windows it is located in Start | Program Files | Accessories | Command Prompt, although you
might prefer using Git Bash, to download examples more easily.

From your terminal application, change directories to your Code folder. From your Code folder, enter
the following command:

git clone https://github.com/electron/electron-quick-start quick-start

This command creates a copy of the Electron Quick Start repository inside the quick-start folder in the
path from which the command was made.

Now, change directories into the quick-start directory:

cd quick-start

Now clear the repository’s history so we can start from scratch from Git’s perspective:

git init

https://doi.org/10.1007/978-1-4842-2826-5_3
https://github.com/electron/electron-quick-start
https://github.com/electron/electron-quick-start

Chapter 3 ■ the eleCtron QuiCk Start

42

You should see a message like the following:

Reinitialized existing Git repository in /Users/<username>/Code//quick-start/.git/

One of the nice things about Git repositories and npm is that you don’t need to carry around external
modular code with you all the time. We just need to ask npm to install the node modules associated with this
project by using the following command:

npm install

Now you are ready to open your new project inside your favorite integrated development environment.
We are using Microsoft Visual Studio Code, so you will see that UI in many of our screenshots.

Updating the Project to Make It Yours
The first step after setting up your new Electron project is to update the package.json file. If you are starting
a completely new project, without example files, the package.json file will be created when running npm init.

Right now, the file should look something like this:

{
 "name": "electron-quick-start",
 "version": "1.0.0",
 "description": "A minimal Electron application",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },
 "repository": "https://github.com/electron/electron-quick-start",
 "keywords": [
 "Electron",
 "quick",
 "start",
 "tutorial",
 "demo"
],
 "author": "GitHub",
 "license": "CC0-1.0",
 "devDependencies": {
 "electron": "^1.4.1"
 }
}

Some things to take note of here:

•	 “name”: The name of your application. The expected format is using lowercase
letters with dashes between words. In the samples we are building for this book, the
name isn’t all that important, but for future application, the name may be critical.
Make certain to update this to the name you wish to use and keep it up to date.

•	 “version”: This represents the version of your application’s code. It should be
updated to match the current release of the application.

Chapter 3 ■ the eleCtron QuiCk Start

43

•	 “description”: This key, oddly enough, is where you place a brief description of your
application.

•	 “main”: This key is critical. This is where you tell Electron to locate the code for the
Main Process. If you decide to create a directory for this file to keep your project’s
structure neat, you will need to update this node to reflect that change. Otherwise,
Electron will fail to run.

•	 “scripts”: This key tells Node Package Manager (npm) what actions to take for
specific commands. Here, entering npm run start results in the command electron.
being run. This is a convenient way to organize commands.

•	 “repository”: This key points to the repository where your code is stored. Feel free to
change this to your repository.

•	 “keywords”: Enter any keywords that may be used to describe your application.

•	 “author”: That’s you! Put your name or your organization’s name here.

•	 “license”: This is the code representing which license you’ve decided to release your
code under. You’ll find over 500 license types at this link: https://gist.github.
com/robertkowalski/7620849. Before releasing an application or the code for a
repository, you should take the time to examine your licensing options.

•	 “Dependencies” and “devDependencies”: These are a list of names and versions of
modules that are required for the project. There is currently no dependencies key for
this project. The devDependencies key contains “electron,” which is used to create
our application. These properties will get updated when you install new modules.

Now that we’ve examined the package.json file, let’s take a look at the application by using this
command:

npm start

https://gist.github.com/robertkowalski/7620849
https://gist.github.com/robertkowalski/7620849

Chapter 3 ■ the eleCtron QuiCk Start

44

You should see something similar to Figure 3-1 on your screen.

 ■ Note You can quit this application using the typical means: command-q, electron ➤ Quit on Mac oS X or
File ➤ Quit on Windows. From the terminal application you may also enter the control-c key combination to
quit the application.

Next we’ll take a look at the code that makes this starter project work.

The Main Process File
As we mentioned before, Electron has two processes: the Main Process and the Renderer Process. In our
starter project, the code for the Main Process resides inside the main.js file.

Figure 3-1. The starter Electron application’s main window and development tools

Chapter 3 ■ the eleCtron QuiCk Start

45

 ■ Note naming the Main process file main.js is a best practice. and it makes good sense: the main.js file
represents the starting point for node to fire up your Main process. While you may decide to organize the code
for your Main process into a sensible directory and file structure, you should keep a main.js file to represent
the starting point for your project.

The main.js file contains basic code required for any Electron application as well as some helpful
comments, as shown in Listing 3-1.

Listing 3-1. main.js

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow

const path = require('path')
const url = require('url')

// Keep a global reference of the window object, if you don't, the window will
// be closed automatically when the JavaScript object is garbage collected.
let mainWindow

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
}

// This method will be called when Electron has finished
// initialization and is ready to create browser windows.
// Some APIs can only be used after this event occurs.
app.on('ready', createWindow)

Chapter 3 ■ the eleCtron QuiCk Start

46

// Quit when all windows are closed.
app.on('window-all-closed', function () {
 // On OS X it is common for applications and their menu bar
 // to stay active until the user quits explicitly with Cmd + Q
 if (process.platform !== 'darwin') {
 app.quit()
 }
})

app.on('activate', function () {
 // On OS X it's common to re-create a window in the app when the
 // dock icon is clicked and there are no other windows open.
 if (mainWindow === null) {
 createWindow()
 }
})

// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and require them here.

The top of the file gives us access to the modules required for this application:

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow

const path = require('path')
const url = require('url')

The electron constant is, as you’d expect, the Electron module. It gives you access to all of the Electron
APIs as well as any extensions to Node that Electron provides.

The app constant is the part of the Electron API that gives you access to the event life cycle of our
application. We’ll see examples of how app is used further down in the code.

The BrowserWindow constant represents your Renderer Process. We will use BrowserWindow to create
an instance of Chromium, the windows that make up the UIs of our application.

The path and url constants represent Node modules, part of the Node API that is accessible by
any Electron application. url is used to help with creating URLs. path helps with dealing with files and
directories.

The next piece of code comes with some guidance in the form of a comment:

// Keep a global reference of the window object, if you don't, the window will
// be closed automatically when the JavaScript object is garbage collected.
let mainWindow

 ■ Note if you start working with a project and you open a window but it disappears, the Main process may
not have a reference to the mainWindow. this will also occur with any other windows you may create.

Chapter 3 ■ the eleCtron QuiCk Start

47

The next bit of code is the createWindow method that creates your main window:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
}

This method does the following steps:

•	 Creates an instance of a BrowserWindow, passing along an object used to configure
that window to be 800 pixels wide and 600 pixels high.

•	 Loads that window using the path and url modules to access the index.html file. This
file is the starting point for your Renderer Process.

•	 The line `mainWindow.webContents.openDevTools()` does what you think it does:
opens up the Developer Tools that are part of Chromium. These tools are extremely
helpful for debugging the Renderer Process.

•	 Listens for the `closed` event on the new window instance. The guidance here is
around how to manage multiple windows, if the app uses them. The function here
merely nulls your window instance, but this is where you may wish to add code in
the future.

Finally, we get to the part of the code where the app listeners control when the window is created, and
when the application quits.

// This method will be called when Electron has finished
// initialization and is ready to create browser windows.
// Some APIs can only be used after this event occurs.
app.on('ready', createWindow)

// Quit when all windows are closed.
app.on('window-all-closed', function () {
 // On OS X it is common for applications and their menu bar
 // to stay active until the user quits explicitly with Cmd + Q

Chapter 3 ■ the eleCtron QuiCk Start

48

 if (process.platform !== 'darwin') {
 app.quit()
 }
})

app.on('activate', function () {
 // On OS X it's common to re-create a window in the app when the
 // dock icon is clicked and there are no other windows open.
 if (mainWindow === null) {
 createWindow()
 }
})

// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and require them here.

The app instance is listening to three events here: `ready`, `window-all-closed`, and `activate`.
Upon receiving the `ready` event, the createWindow that we discussed above is called.
As the commented guidance references, the `windows-all-closed` is listened for because on the Mac

OS X platform you can close all of an application’s windows but not quit the application. That is not true on
Windows and Linux, so this code quits the application on those platforms.

Also of note, here is the use of `process`, part of the Node API. For instance, `process.platform` will
return `darwin` for Mac OS X, and `win32` for the Windows platform. Even on Windows 64-bit, process.
platform will read `win32`, while process.arch (stands for Architecture) will return `x64`.And since you
can have an application open without any windows open on the Mac OS X platform, the `active` event is
listened for and creates a new window when emitted. This bit of code is not testing to see which platform the
application is on because this condition - where the `active` event is emitted and `mainWindow === null`
will only occur on the Mac OS X platform.

Finally, at the very bottom of the main.js file we are given more guidance, letting us know that we should
add more Main Process code here or require other files if that is how you wish to organize your code.

The Quick Start’s Renderer Process
As we mentioned before, the main.js file identifies the html file used to start up Electron’s renderer process.
The process is started using the mainWindow.loadURL() call in this code block:

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

Using Node’s url.format() method, this code creates a path to the index.html file by joining the file
name with the Electron variable __dirname that points us to the file in the root of our project.

Chapter 3 ■ the eleCtron QuiCk Start

49

Let’s review the index.html file:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello World!</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <!-- All of the Node.js APIs are available in this renderer process. -->
 We are using Node.js <script>document.write(process.versions.node)</script>,
 Chromium <script>document.write(process.versions.chrome)</script>,
 and Electron <script>document.write(process.versions.electron)</script>.
 </body>

 <script>
 // You can also require other files to run in this process
 require('./renderer.js')
 </script>
</html>

Again, another simple file, this one is a basic HTML file. But there are a few important points to
remember about this file to help you understand how Electron works.

First, in the middle of the page there are several script tags that contain calls to Node’s process API:

<!-- All of the Node.js APIs are available in this renderer process. -->
 We are using Node.js <script>document.write(process.versions.node)</script>,
 Chromium <script>document.write(process.versions.chrome)</script>,
 and Electron <script>document.write(process.versions.electron)</script>.

As you can see from the comment, all of Node’s APIs are available to the renderer process, which is why
you have access to the process API inside this HTML file. In this instance, the code lets us see which versions
of Node, Chromium, and Electron are being used with this application. Figure 3-1 shows how this renders.

Chapter 3 ■ the eleCtron QuiCk Start

50

This code isn’t necessary but it is useful in helping us understand how Electron works. The other
important piece to the index.html file is the script tag at the bottom of the file:

<script>
 // You can also require other files to run in this process
 require('./renderer.js')
</script>

This tag uses require to import the renderer.js file. In most cases, this will be the starting point for the
JavaScript for your application. If we take a look at the actual file, we will see it only contains the following
comment:

// This file is required by the index.html file and will
// be executed in the renderer process for that window.
// All of the Node.js APIs are available in this process.

Figure 3-2. The starter Electron application, the version numbers dynamically added

Chapter 3 ■ the eleCtron QuiCk Start

51

Summary
There are many ways you can build your Electron application. If you go with a vanilla approach - that is,
just using plain old JavaScript instead of a framework - this is the file you’ll be working in. Since there are
so many ways to build an Electron application, far too many to cover in one book, we will be focusing on
leveraging Electron’s features using simple JavaScript examples. Using the Electron Quick Start as a starting
point for our exercises will be helpful in keeping this focus.

53© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_4

CHAPTER 4

BrowserWindow Basics

As explained in earlier chapters, the Renderer Process is where your application appears. The Renderer
Process uses Chromium to render your user interface. The Main Process creates Renderer Processes by
creating instances of the BrowserWindow object.

In this chapter, we explore the basic options for creating BrowserWindow instances as well as explore
the frameless and transparent window types.

Getting Started
Let’s take a moment to make this package.json match our own by updating some nodes.

 1. Change the name node to "browser-window-sample".

 2. Change the version number to "0.0.1" since we are just starting out. If you are
unfamiliar with semantic versioning, version numbers are broken into three
elements: MAJOR.MINOR.PATCH. As this is our starting point, we will begin
numbering with 0.0.1.

 3. In the description let’s use something like "A sample Electron application to
demonstrate BrowserWindow creation".

 4. Remove the repository property. If you decide to put your results in a repository
you can change or re-add this property with the correct address.

 5. Keywords can be "Electron," "BrowserWindow," "sample".

 6. "author": Your name goes here.

 7. If you wish to change the licensing type, you can do that with this property. By
default, it is set to Creative Commons 1.0 Universal. There are many alternative
options available; choose the one that best suits your needs.

Disabling Chrome DevTools
In this chapter, we will be repeatedly starting and stopping our project to see how different settings affect the
window our project creates. We also need to make sure that Dev Tools are turned off so they don’t interfere
with what we see. Open the main.js file and find the line in the code that makes the Dev Tools appear and
comment it like this (note the highlighted code added):

// Open the DevTools.
// mainWindow.webContents.openDevTools()

https://doi.org/10.1007/978-1-4842-2826-5_4

Chapter 4 ■ Browserwindow BasiCs

54

Now that the Dev Tools are out of the way, let’s take a look at what the default code without the Dev Tools
creates (Figure 4-1). From the terminal application, navigate to the project folder and run the following command:

npm start

Remember this command as we will be using it many times in this chapter.
As you can see, this is a simple window. Nothing exciting here. Let’s review the code that initializes this

window in the createWindow method inside the main.js file:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

Figure 4-1. The starter Electron window without the Chrome DevTools

Chapter 4 ■ Browserwindow BasiCs

55

 // Open the DevTools.
 // mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
}

When createWindow is called, the mainWindow variable is created by calling the new BrowserWindow
constructor. There is an argument being passed to the constructor in the form of an object with the
properties of width and height.

Lower in that code block we call the loadURL method on the mainWindow. The argument required
for the loadURL method is created using Node’s url module, a utility module that assists in the creation and
formatting of URLs:

// and load the index.html of the app.
mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

The format method from the url module allows you to create a link to the file that the Renderer Process
will use to render. Note the properties used in the argument for the format method. This is the way Node
likes to have URLs created:

•	 pathname: uses Node’s path module to create a string by connecting the two pieces
of the path, __dirname (a Node global), and the name of the file to be rendered.

•	 protocol: the loading protocol to use. Typically for Electron, ‘file:’ is the setting.
Please note the use of the colon.

•	 slashes: Setting this to true adds ‘//’ to the protocol making it ‘file:///’, in this case
making it properly use three slashes.

After we load the file for the window, we need to add a listener to the window so we can capture the
‘closed’ event and, as is best practice for desktop applications, clear the mainWindow variable:

// Emitted when the window is closed.
mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
})

Chapter 4 ■ Browserwindow BasiCs

56

Update Code to Use the ready-to-show Event
The first change we will make to our code is to establish a best practice of waiting for the BrowserWindow’s
ready-to-show event before showing the window. This best practice is recommended in Electron’s
documentation and is often overlooked. When you create a BrowserWindow directly, as our code does
currently, the Renderer Process starts and immediately displays. But the content you are displaying may
not be fully rendered. To avoid this condition we will listen for the ‘ready-to-show’ event and call the
BrowserWindow’s show() method to display the window. Make the following changes to the createWindow
method:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({
 show: false,
 backgroundColor: '#FFF',
 width: 800,
 height: 600
 })

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 // mainWindow.webContents.openDevTools()

 // Wait for 'ready-to-show' to display our window
 mainWindow.once('ready-to-show', () => {
 mainWindow.show()
 })

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
}

At the top of this code block we’ve added the show property set to false, which prevents the created
window from displaying.

Chapter 4 ■ Browserwindow BasiCs

57

The next new property is the backgroundColor. The best practice here is to try to match the background
color used in your application so that if the window does display before the content is rendered, there won’t
be a flash between displaying the window’s default background color of ‘#FFF’ (white) and the background
color of your application. This setting is effective with the show property set to true but is a good practice to
generally follow. This property only accepts hexcodes for its value and not colors defined in rgb() or rgba(). It
is worth noting that this parameter only accepts hexadecimal values, and nothing of the form rgb() or rgba().

Later in the code block we’ve added the listener for the ‘ready-to-show’ event. In our current code, this
event occurs quickly since we are not loading up a lot of code and assets in our sample like you might with a
real application. We are also using one of the new ES6 features, the fat arrow function. If you are not familiar
with this feature, it provides a shorthand notation to have a callback execute it function.

In ES5, we would have written a simple multiply function like this:

var multiply = function (x,y) {
 return x * y;
}

But in ES6, using the new arrow function formation, we can write the same function this way:

var multiply = (x, y) => { return x * y };

The arrow function example allows us to accomplish the same result with fewer lines of code and
approximately half the typing.

Now that we have established these best practices, let’s explore BrowserWindow’s options.

BrowserWindow Options Argument
Let’s do an experiment here to give us some insight into how the BrowserWindow’s argument works. If you
haven’t done so already, quit the application and delete the argument object making that line of code look
like this:

mainWindow = new BrowserWindow()

Chapter 4 ■ Browserwindow BasiCs

58

Run the npm start command to see how the window appears (Figure 4-2).

Figure 4-2. The starter Electron window opening using the ‘ready-to-show’ event

If it appears that nothing has changed, you are correct. The window is centered on the screen and is 800
pixels wide, 600 pixels high. If you grab the title bar, the window will move. Grab the any edge of the window
and you can resize it to any size you would like.

The points being made here are:

•	 The BrowserWindow’s options argument is not required.

•	 The BrowserWindow has defaults in place so that, if you do not enter options like the
width and height properties in the argument, the window will still appear.

A list of all available options can be found in the Electron documentation <https://electron.atom.
io/docs/api/browser-window/#class-browserwindow>

In this case, the default for width is 800(px) and the default is 600(px). The documentation for the
BrowserWindow cites over 40 optional properties, all with defaults. Let’s continue by looking at some of the
other window properties to which we have access.

https://electron.atom.io/docs/api/browser-window/#class-browserwindow
https://electron.atom.io/docs/api/browser-window/#class-browserwindow

Chapter 4 ■ Browserwindow BasiCs

59

Basic Window Properties (width, height, minWidth, minHeight,
maxWidth, maxHeight)
Let’s update the code to add an argument to the BrowserWindow method.

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: "#FFF", // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true // DEFAULT: true
})

Take a moment to note what we are trying to illustrate with the comments in this code. On the left side
are the window properties we wish to affect. On the right side are comments informing us of the default
for each of these properties. While these comments aren’t required, they will help us moving through this
chapter.

Now, run npm start in the terminal and see how these additional properties change our window. No
need to give you a screenshot. The initial appearance of the window hasn’t changed. While the screen size is
800 x 600 pixels, if you try resizing the window you’ll find that you cannot make it smaller than it currently is
and no larger than 1024 x 768 pixels.

Please be aware that these sizing constraints are user-oriented constraints. Once the window is created,
you may resize it using BrowserWindow methods like setBounds(bounds) and setSize(width, height)
to change the size of your window. If you do decide to resize your window, you should take a look at the
setMinimumSize(width, height) and setMaximumSize(width, height) to apply new resize constraints.

The center, x and y Properties
You may notice that this code is not passing a center property in the options argument. Best practices
suggest that if your application is a single window application, it should initially appear in the center of the
screen. Since our example application is loading in the center of the screen, we can assume that the default
setting for center is true even though the default is not currently documented.

Also, not appearing in our code are the x and y options, which control where the top left corner of the
window will appear. The defaults for these options are to center the window. That is, when you do not pass
the x and y options as part of the options argument for BrowserWindow, Electron does the math taking
the width and height properties along with screen dimensions and sets the x and y properties so that the
window is centered. Setting the x and y options essentially turns the center option to false.

The x and y options are the only options that are optionally required. What does that mean? If you pass
the x option you must pass the y option. The same goes when passing the y option; the x option must be
passed as well. If you pass either of these options by themselves, the option is ignored.

For the purposes of this exercise, these properties will not be added to our code. The default settings
will do.

Chapter 4 ■ Browserwindow BasiCs

60

The resizable and movable Properties
Let’s make another change to the code so we can see how changing the resizable and movable properties
affect the other properties:

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: ‘#FFF’ // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: false, // DEFAULT: true
 movable: false // DEFAULT: true
})

After you quit the application and run npm start again you’ll find that changing the resizable property
to false restricts any resizing of the application. In effect, the minWidth, minHeight, maxWidth, and maxHeight
properties are basically ignored. That doesn’t mean you should ignore these properties if your window is not
resizable. You may wish to turn the resizable property on and off. Setting minimum and maximum sizes is a
good practice.

Now try moving the window by dragging the title bar. This window will not move. A best practice here
would be to always use the default setting of movable: true unless there is a compelling reason to make it
immovable. Most desktop applications allow a user to decide where they want the application’s windows to
appear.

The alwaysOnTop property is another setting that is important. The default setting for this property
is false. Setting alwaysOnTop to true means that while the application is running, this window is above
all other windows in the application and on the computer. We can add alwaysOnTop to the bottom of our
options argument and reset our resizable and movable properties so our code looks like this:

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: ‘#FFF’ // DEFAULT: ‘#FFF’
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: true // DEFAULT: false
})

Quit the application and run npm start to see this in action. As described, the window stays on top
of everything, even windows belonging to the operating system. Again, the best practice is to go with the
default setting of false with this property unless there is a compelling reason for blocking all other user
interfaces and irritating users.

Chapter 4 ■ Browserwindow BasiCs

61

The title Property
You would think that something like the title property would be something simple. Well, it is, but it may not
work the way you might think, so pay attention. The title property is used in the title bar of your window. The
Electron documentation says that the title property is, like all the other properties, and the default for title is
“Electron.” But let’s look at how it really works.

Without adding any code to our project, run the npm start command and look at the text that appears in
the title bar (Figure 4-3):

Figure 4-3. Our application name shown in the window’s title bar

See, there it is: “Hello, World!” Where is that coming from? Let’s find out. Quit the application and open
the index.html file in the project. This is the file that our BrowserWindow is being told to render. Up in the
head element of that file you will see the title element:

<head>
 <meta charset="UTF-8">
 <title>Hello World!</title>
</head>

Chapter 4 ■ Browserwindow BasiCs

62

So, we’ve learned that the text in the title element of the head element of our rendered HTML file will
be used in the title bar of our application. But let’s dig a little deeper. Open the main.js file in the project and
add the title option to the BrowserWindow argument object (make sure you reset alwaysOnTop to false):

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: '#FFF' // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: false, // DEFAULT: false
 title: “Goodbye, Moon?” // DEFAULT: “Electron”
})

Run the npm start command and look at our results (Figure 4-4).

Figure 4-4. Updating the Electron Window title

Chapter 4 ■ Browserwindow BasiCs

63

Wait, what? Why aren’t we seeing "Goodbye, Moon?" in our title bar? You see, the HTML content that
the Renderer Process is rendering overrides the optional title argument. Let’s prove this out. Go back to the
index.html file and comment out the title element:

<head>
 <meta charset="UTF-8">
 <!-- <title>Hello World!</title> -->
</head>

Now run npm start and see what displays in the title bar (Figure 4-5).

Figure 4-5. Our Electron window title properly updated

There’s our "Goodbye, Moon?" Nice. Let’s take this experiment one step further and comment out the
title optional argument.

// title: "Goodbye, Moon?" // DEFAULT: "Electron"

Chapter 4 ■ Browserwindow BasiCs

64

Now our code has the title argument commented in the main.js file as well as the title element
comment in the index.html file commented so we should see the default setting of "Electron" in our title
bar, right? Run the npm start command to see (Figure 4-6):

Figure 4-6. The Electron window title via the package.json value

OK, what just happened? Are you seeing what we are seeing? We’re seeing the text "browser-window-sample"
in the title bar, but you may see something else. At the time of this writing, we asked the contributors to the Electron
project if this was on purpose but haven’t gotten a response. Needless to say, if you changed the package.json
property like we suggested at the beginning of this chapter you could be seeing the text you placed there. Weird,
right? Let’s test this out by deleting that line in the package.json file. Normally, we’d ask you to comment that line,
but commenting isn’t allowed in JSON. Please remember to re-create that line after this experiment. So, without the
name property in our package.json file we can run the npm start command and finally see (Figure 4-7):

Chapter 4 ■ Browserwindow BasiCs

65

"Electron"! Hizzah! We were confused at first, too. But we learned something, right? If you do not
provide a title argument when you create a BrowserWindow instance, or you do not provide a title in the
HTML file you are rendering you will probably get a title that you don’t want. (Make sure you re-create the
name line in the package.json file.)

Best practices for the title option are to take control of the text that appears in your title bar. You may
wish to do this in the Main Process or the Renderer Process. Depending on what kind of application you’ve
created, the text that appears in the title bar could be dynamic. You may need to add a "*" at the end or
beginning of the title text to indicate that a file hasn’t been saved. The file being loaded by the Renderer
Process might be a template that dynamically loads other files, or even navigates to other files. Making sure
that the title element is in the HTML file by default may work in many cases, but if not give thought to which
of the processes makes sense to manage the text that appears in the title bar.

To change the title dynamically on macOS, you can call mainWindow.setTitle (‘Goodbye, Moon’); this
will override your window title (even when it is set in the HTML). Windows (the Operating System) is trickier
and will retain the default title (either from HTML or package.json until the user interacts with the window
(maximize/minimize/resize).

Figure 4-7. The Electron window title restored

Chapter 4 ■ Browserwindow BasiCs

66

Other Window Types
While the windows we have been creating so far in this chapter are typically the kind of windows applications
will use, there are two other window types we should mention: frameless and transparent windows.

Frameless Windows
A frameless window is a window that has no chrome. This means that the window will appear without any
borders or toolbars associated with a browser window and only display the HTML content provided. Let’s
look at how a frameless window is created.

Frameless windows can be created by using the frame option and setting it to false. Add this option at
the bottom of our BrowserWindow code like so:

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: ‘#FFF’ // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: false // DEFAULT: false
 title: 'Goodbye, Moon?', // DEFAULT: "Electron"
 frame: false // DEFAULT: true
})

Chapter 4 ■ Browserwindow BasiCs

67

Now we can run the npm start command and look at a frameless window (Figure 4-8).

There it is, a frameless, naked window. No borders. No title bar. No toolbars. Just the bare window. But
we need to review some of the things that we can’t see that are missing. If you are running on macOS, the
first thing you may notice is the normal windows controls that appear in the upper left corner aren’t there.
You know, the traffic light on its side with a red, yellow, and green button. With those controls missing, you
can’t close this window using the mouse. Speaking of the mouse, try moving this window. You can’t. There
is no title bar for you to grab. In some cases, this behavior may be desirable. But we might want to have the
window appear as frameless but still give users typical control over the window, so we need to make sure we
can get these features back if we need them.

To get a frameless window on macOS that has the window controls, we must create the frameless
window a different way. To get the desired window, we do not use the frame option at all. We need to use
the titleBarStyle option. The default option for titleBarStyle is ‘default’, but we want to use the ‘hidden’ or
‘hidden-inset’ options. Comment the line with the frame option and then add the following code:

// Create the browser window.
mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: '#FFF' // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600

Figure 4-8. Our Electron application in a frameless window

Chapter 4 ■ Browserwindow BasiCs

68

 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: false, // DEFAULT: false
 title: 'Goodbye, Moon?', // DEFAULT: “Electron”
 // frame: false, // DEFAULT: true
 titleBarStyle: 'hidden' // DEFAULT: 'default'
})

Run the npm start command and look (Figure 4-9).

Figure 4-9. The Electron application in a frameless window with window controls added

Here we see that the window controls are shown, but, as the option ‘hidden’ suggests, the title bar is not
seen. The other option for titleBarStyle is ‘hidden-inset’. We can change that code and take a look at how that
window displays. Quit the application if it is still running, make the following change to the code, and run
the npm start command:

titleBarStyle: 'hidden-inset' // DEFAULT: 'default'

Chapter 4 ■ Browserwindow BasiCs

69

The change is subtle (Figure 4-10). As compared to the ‘hidden’ setting, the controls have slightly inset into
the window. Choose which option to suit your purposes. Note: this property has no effect on Windows OS.

Figure 4-10. The Electron application in a frameless window with window controls added in the inset mode

Now, we need to see about getting the ability to move our frameless window back. For this issue we
need to rely upon some CSS. If we want to make the whole window movable, we can simple apply a style
to the body of the HTML being rendered. Quit the application if it is still running, open the index.html, and
make the following change to the body element:

<body style="-webkit-app-region: drag">

Run the npm start command and test out our application.
No reason to show you a screenshot, but we should discuss the effects this change has made. Use your

mouse to click-hold anywhere near the top area of the window and move the window around. Yes! We can
move our window. But let’s check doing the same on the bottom area of the window. No dice. What is going
on here?

Since we are applying the CSS fix to the body element, only that element will trigger dragging, but the
body element is restricted to the size of the content. Quit the application so we may make a change to our
CSS so we can see what is really happening:

<body style="border:1px solid red;-webkit-app-region: drag">

Chapter 4 ■ Browserwindow BasiCs

70

When we run the npm start command we see a red box around the content at the top of the window.
Now we can see where we can drag the window around and where we cannot. This is because the
boundaries of body element are constrained by the content it holds. So, this technique may not be the best
way to re-create this feature. Let’s also consider what happens to button elements that may be applied inside
the body element. The CSS overrides the button behavior so now your buttons don’t work. What about
selecting text? No, that won’t work either.

What have we learned from this experiment? The best practice for moving a frameless window would be
to provide an element at the top of the window that can be made draggable. The user expects this behavior
and not click-holding anywhere on the window.

Note that if you set the window property movable to false, it will override the CSS property we’ve set on
the body and prevent dragging.

Transparent Windows
Another window type we can explore is a transparent window. This window type is just what you might
expect: you can see anything underneath the window. Before we explore making our window transparent,
take heed to this warning: you may find that you have lost your application. At 100% transparent, you won’t
see it. It can be disorienting, so don’t panic. If you get confused, go back to your terminal window and use
the control-c keyboard combination to stop the application.

Let’s make some changes to our main.js file to make a transparent window possible:

mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 backgroundColor: ‘#FFF’ // DEFAULT: ‘#FFF’
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: false // DEFAULT: false
 frame: false, // DEFAULT: true
 // title: 'Goodbye, Moon?', // DEFAULT: ‘default’
 transparent: true // DEFAULT: false
})

Chapter 4 ■ Browserwindow BasiCs

71

Run the npm start command and prepare yourself to be amazed (Figure 4-11).

Figure 4-11. The Electron window with transparency enabled

Wait a minute. That’s not a transparent window. It looks exactly like a frameless window. It seems that
just setting the transparent option to true isn’t enough. Let’s change one more option, the backgroundColor
option, and see what we get. Specifically, we will comment out the option:

mainWindow = new BrowserWindow({
 show: false, // DEFAULT: true
 // backgroundColor: '#FFF' // DEFAULT: '#FFF'
 width: 800, // DEFAULT: 800
 height: 600, // DEFAULT: 600
 minWidth: 800, // DEFAULT: 0
 maxWidth: 1024, // DEFAULT: UNLIMITED
 minHeight: 600, // DEFAULT: 0
 maxHeight: 768, // DEFAULT: UNLIMITED
 resizable: true, // DEFAULT: true
 movable: true, // DEFAULT: true
 alwaysOnTop: false // DEFAULT: false
 frame: false // DEFAULT: true
 // titleBarStyle: 'hidden' // DEFAULT: 'default'
 transparent: true // DEFAULT: false
})

Chapter 4 ■ Browserwindow BasiCs

72

Yeah, that is more like it. Depending on what is on your screen, you can barely see the text of the index.
html. We’ve made a transparent window, but we need to know about the restrictions for this window, too.
With the frame option set to false, you have all the restrictions as a typical frameless window: no title bar, no
toolbars, and the window will not move without modification. Add to these restrictions that you may find it
nearly impossible to resize a transparent window. How could you? You can’t see the edges of the window.
Be aware: setting the reset option to true can make a transparent window stop working. More restrictions
and information about creating transparent windows on different platforms can be found in Electron’s
documentation. Please note that on Windows, this property has for effect to make the whole window and its
content disappear, rendering the application unusable.

Please be responsible when you use transparent windows. You do not want the users of your application
to think you are playing tricks; but you could set an rgba() background-color on your <html> or <body> tags
to obtain a semi-transparent window that gives you a background but lets you see what’s underneath.

Summary
In this chapter, we explored the basic options of BrowserWindow creation: show, width, height, minWidth,
maxWidth, minHeight, maxHeight, resizable, movable, and alwaysOnTop. We also explored two window types:
frameless and transparent. The knowledge we gained here will help us as we move into the next chapters.

Figure 4-12. The Electron window with transparency properly enabled

73© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_5

CHAPTER 5

Adding Custom Menus

Menus are also something that traditional web app have never had access to. The application menus
were always that of the browsers. If the user accessed a contextual menu on the page, the default browser
contextual menu would appear. Web apps had no ability to change either one. However, Electron gives you
full control over creating both application-level menus, as well as contextual menus.

We will explore creating both the application-level menus and the contextual menus. Electron uses the
Menu and the MenuItem modules together to create the custom menus that your application will use.

Getting Started
Let’s clone a fresh copy of the Electron Quick Start example.

git clone https://github.com/electron/electron-quick-start custom-menu-demo

Next, change your active directory to electron-quick-start.

cd custom-menu-demo

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

You might have noticed that our previous Electron samples already included a standard application
menu. In fact, it is a robust menu system with many of the standard functions already defined (Figure 5-1).

https://doi.org/10.1007/978-1-4842-2826-5_5

Chapter 5 ■ adding Custom menus

74

Figure 5-1. The default Electron menu

Electron
 About electron-quick-start

 Services

 Hide electron-quick-start
 Hide Others
 Show All

 Quit

Edit
 Undo
 Redo

 Cut
 Copy
 Paste
 Select All

 Start Dictation
 Emoji & Symbols

View
 Reload
 Toggle Full Screen
 Toggle Developer Tools

 App Menu Demo

Window
 Minimize
 Close

 Reopen Window

 Being All to Front

 Hello World

Help
 Search
 Learn More

Figure 5-2. Menu hierarchy diagram

But if we want to have a custom menu in our application, then the creation of the entire menu must be
defined by the developer. So, let’s get started building our basic application menu. Figure 5-2 shows what our
final menu structure will look like on macOS.

Now the application menu is only available in the main process, so let’s open the main.js file in our
editor. Within our existing constants, we will define another for our Menu module:

const Menu = electron.Menu

Chapter 5 ■ adding Custom menus

75

Then once our application is ready, we can attach our menu. Locate this function in main.js

app.on('ready', createWindow)

and replace it with this:

app.on('ready', function () {
 const menu = Menu.buildFromTemplate(template)
 Menu.setApplicationMenu(menu)
 createWindow()
})

One of the methods in the Menu module is the ability to create a menu object from a template. Rather
than append each menu item one by one, Electron gives us the ability to create a menu template and have it
properly generate our menu object for us. Once we have created our menu object, we can replace the default
application menu that the Electron shell provides.

 ■ Note if you run the application in its current state, you will encounter an error, as we have not defined a
template yet.

Menu Templates
Let’s start creating our menu template. For any modest application, you will have quite a lengthy template,
so we are going to build up our template in steps to ensure that the formatting is correct.

After we define the mainWindow variable, add this code block for a simple menu that will have two
top-level menus, and each with a single menu item:

let template = [{
 label: 'Menu 1',
 submenu: [{
 label: 'Menu item 1'
 }]
}, {
 label: 'Menu 2',
 submenu: [{
 label: 'Another Menu item'
 }, {
 label: 'One More Menu Item'
 }]
}]

The menu template is an array of objects. Each object will define an individual menu that will be shown
in the application’s menu bar. To define text that will be shown, we assign that value to its label property. In
this code sample, we are defining two menus: Menu 1 and Menu 2.

To define the menu items – the elements that are shown when a user selects that menu – we set the submenu
property to an array of menu objects. For Menu 1, we only define one menu item with a label of Menu item 1. For
the second menu, Menu 2, we will define two menu items: Another Menu Item and One More Menu Item.

Before we test out our menu, we need to make a special adjustment for running on macOS.

Chapter 5 ■ adding Custom menus

76

macOS’s Application Menu
Ignoring the Apple menu, which is systemwide, on macOS, the first menu item of the application menu is
the application’s name. Currently, this menu is labeled Electron, since that is the root application that we are
using. Once we build our application for distribution, this label will reflect our actual application name.

This application menu is where you will find the applications preference’s menu, the ability to hide
the application or other applications, and the quit menu. If we simply define our menu template without
accommodating for this special menu, we will have an issue. Our first menu definition will be incorrectly
displayed. The main menu label will not be shown, but the menu items will be inserted under the
application menu.

To solve this, we will need to shift our menus one position if we are running on macOS. After the
template definition in the main.js file, we can add this code to offset our template if we are running on a
macOS system:

if (process.platform === 'darwin') {
 const name = electron.app.getName()
 template.unshift({
 label: name,
 submenu: [{
 label: 'Quit',
 accelerator: 'Command+Q',
 click: function () {
 app.quit()
 }
 }]
 })
}

This will only adjust our menu structure. The traditional menu items that we typically would see in this
menu will not be there. However, we did include the Quit menu item to make working with this sample a
bit easier. We will address adding in the rest of the menu items for the macOS application menu later in the
chapter. For now, let’s explore expanding our menus.

Defining Keyboard Shortcuts and Menu Item Roles
Let’s replace our simple menu template with one that is more complex, like a standard Edit menu. Here is
the template we will use:

let template = [{
 label: 'Edit App',
 submenu: [{
 label: 'Undo',
 accelerator: 'CmdOrCtrl+Z',
 role: 'undo'
 }, {
 label: 'Redo',
 accelerator: 'Shift+CmdOrCtrl+Z',
 role: 'redo'
 }, {
 type: 'separator'
 }, {

Chapter 5 ■ adding Custom menus

77

 label: 'Cut',
 accelerator: 'CmdOrCtrl+X',
 role: 'cut'
 }, {
 label: 'Copy',
 accelerator: 'CmdOrCtrl+C',
 role: 'copy'
 }, {
 label: 'Paste',
 accelerator: 'CmdOrCtrl+V',
 role: 'paste'
 }, {
 label: 'Select All',
 accelerator: 'CmdOrCtrl+A',
 role: 'selectall'
 }]
}]

We set the top-level menu’s name through using the label property. Now, standard convention for the
Edit menu is simply to call it Edit; we are changing it to Edit App so you can verify that the menu is your
menu and not the predefined Electron Edit menu.

 ■ Note You should always follow the platform convention for keyboard shortcuts and menu naming. refer to
each platform’s user interface guidelines forfurther information.

Next, we will set the submenu with an array of menu items. Let’s look at the first submenu:

{
 label: 'Undo',
 accelerator: 'CmdOrCtrl+Z',
 role: 'undo'
}

Again, we set the menu’s name through using the label property. Next, we define the accelerator. This is
an optional property, but this is how you define the keyboard shortcut for the menu item. We can listen for
the following modifiers:

•	 Command (or Cmd for short)

•	 Control (or Ctrl for short)

•	 CommandOrControl (or CmdOrCtrl for short)

•	 Alt

•	 Option

•	 AltGr

•	 Shift

•	 Super

Chapter 5 ■ adding Custom menus

78

The modifier is then combined with a keycode to define our accelerator. In our snippet, our accelerator
is set to be ‘CmdOrCtrl+Z’. This means that if the user presses either the Command key or the Control key
(based on the platform) and the Z key, the menu item will be triggered.

Since our Electron application will be running on a variety of platforms, we need a solution to properly
map our accelerators to the platform’s conventions. For example, on Windows and Linux, there Is no
Command key. But by using the CommandOrControl modifier, Electron will properly map the modifier to
the correct key based on the platform.

Although the Option modifier does exist, it is recommended that you use Alt instead. The Option key
only exists on macOS, whereas the Alt key is available on all platforms.

The Super key is mapped to the Windows key on Windows and Linux and Cmd on macOS.
It is also possible to combine modifiers together. Typically, this is just including the Shift modifier as an

additional keypress.
The next property that is defined is role. While many of our menu items might trigger custom actions

within our application, many of them will simply map to a standard role. Rather than try to implement the
behavior of each action in a click function, we can leverage the built-in role behavior.

The role property can have the following values:

•	 undo

•	 redo

•	 cut

•	 copy

•	 paste

•	 pasteandmatchstyle

•	 selectall

•	 delete

•	 minimize - Minimize current window

•	 close - Close current window

•	 quit- Quit the application

•	 reload - Reload the current window

•	 toggledevtools - Toggle developer tools in the current window

•	 togglefullscreen- Toggle full screen mode on the current window

•	 resetzoom - Reset the focused page’s zoom level to the original size

•	 zoomin - Zoom in the focused page by 10%

•	 zoomout - Zoom out the focused page by 10%

On OSX, the role can also have following additional values:

•	 about - Map to the orderFrontStandardAboutPanel action

•	 hide - Map to the hide action

•	 hideothers - Map to the hideOtherApplications action

•	 unhide - Map to the unhideAllApplications action

•	 startspeaking - Map to the startSpeaking action

Chapter 5 ■ adding Custom menus

79

•	 stopspeaking - Map to the stopSpeaking action

•	 front - Map to the arrangeInFront action

•	 zoom - Map to the performZoom action

•	 window - The submenu is a “Window” menu

•	 help - The submenu is a “Help” menu

•	 services - The submenu is a “Services” menu

If you don’t want to use one of the predefined roles, you can set the click property to call a custom
function

{
 label: 'Generate Icon',
 click: doGenerateIcon
}

Now when the user selects the Generate Icon menu item, our custom function doGenerateIcon will be
called. Electron will automatically pass in three parameters: menuItem, browserWIndow, and event, into
our function. The menuItem parameter can be used to determine which menu item the function was called
from. The browserWindow parameter will tell us which window had focus when the function was called.
This is important when you have a multi-window application and need to affect something in a specific
renderer view. The final parameter, event, will tell have the state of the modifier keys when the function was
triggered.

 ■ Note on macos, if you specify a menu item’s role, you can only affect the label and the accelerator.
all other menu item options are ignored.

There are several other menu item properties that you should be aware of. The first is the simple
separator. This menu item will insert the horizontal line in the menu (Figure 5-3).

{
 type: 'separator'
 }

Chapter 5 ■ adding Custom menus

80

Creating Submenus and Checkmarks
Another menu type that you will use is the submenu. We already used it to define the menus under each
menu name. But if you want to create a submenu from a menu item, this is the type you will use. After the
Select All definition in our Edit App menu, let’s add a demonstration of both the separator and a submenu:

{
 label: 'Select All',
 accelerator: 'CmdOrCtrl+A',
 role: 'selectall'
 }, {
 type: 'separator'
 }, {
 label: 'My Submenu',
 submenu: [
 {
 label: 'Item 1'
 },

Figure 5-3. The Edit Menu

Chapter 5 ■ adding Custom menus

81

Figure 5-4. Our custom submenu

 {
 label: 'Item 2'
 }
]
 }

Figure 5-4 shows what this looks like.

In addition to these menu item types, there are several other properties that can be set on a menu item.
These are setting the enable property. If this is set to false, the menu item will be grayed out and unclickable.
To hidden a menu completely, set the visible property to false.

Often you might want to indicate that a menu item’s function is active. Typically, this is shown through
using a checkmark next to the menu name (see Figure 5-5). Electron offers two methods to achieve this.
The first is the checkbox type. Set the type of the menu item to ‘checkbox’. The status checkbox is set via the
checked property.

{
 label: 'Item 1',
 type: 'checkbox',
 checked: true
}

Chapter 5 ■ adding Custom menus

82

The toggling of the checkbox will be managed completely by your application.
If your menu item is a part of collection of options, where one item must always be selected, then you

can use the menu item type ‘radio’.

{
 label: 'Item 1',
 type: 'radio',
 checked: false
},
{
 label: 'Item 2',
 type: 'radio'
,
 checked: true
}

Electron will handle the switching of the checkmark between the menu items automatically for you, but
you will still need to handle the application logic of that selection yourself.

Figure 5-5. The menuitem with a checkmark

Chapter 5 ■ adding Custom menus

83

Completing the macOS’s Application Menu
Earlier in this chapter, we added a brief bit of code, to adjust our menus on macOS to render correctly. Now,
let’s return to that code block and replace it with the completed version (see Figure 5-6).

if (process.platform === 'darwin') {
 let name = 'App Name'
 template.unshift({
 label: name,
 submenu: [
 {
 label: `About ${name}`,
 role: 'about',
 },
 { type: 'separator' },
 {
 label: 'Preferences',
 accelerator: 'Command+,',
 click: appPrefs
 },
 { type: 'separator' },
 {
 label: 'Services',
 role: 'services',
 submenu: [],
 },
 { type: 'separator' },
 {
 label: `Hide ${name}`,
 accelerator: 'Command+H',
 role: 'hide',
 }, {
 label: 'Hide Others',
 accelerator: 'Command+Alt+H',
 role: 'hideothers',

 }, {
 label: 'Show All',
 role: 'unhide',
 },
 { type: 'separator' },
 {
 label: `Quit ${name}`,
 accelerator: 'Command+Q',
 click: function () {
 app.quit()
 }
 }]
 })
}

Chapter 5 ■ adding Custom menus

84

 ■ Note the preferences menu calls a custom function, appprefs, which is not defined; the rest of the
template can rely on the built menu roles. also, our quit menu item will perform an immediate quit. if your
application needs to check if a file needs to be saved, you will need to expand this function to allow for that
functionality.

macOS’s Window Menu Modifications
OSX also has another menu modification that is needed to align with its user interface guidelines. The
‘Window’ menu has some additional menu items that need to be included, such as ‘Bring All to Front’. There
is also the ability to close or minimize the current window from this menu as well.

Figure 5-6. The application menu on macOS

Chapter 5 ■ adding Custom menus

85

The standard Window menu will look like this:

{
 label: 'Window',
 role: 'window',
 submenu: [{
 label: 'Minimize',
 accelerator: 'CmdOrCtrl+M',
 role: 'minimize'
 }, {
 label: 'Close',
 accelerator: 'CmdOrCtrl+W',
 role: 'close'
 }, {
 type: 'separator'
 }, {
 label: 'Reopen Window',
 accelerator: 'CmdOrCtrl+Shift+T',
 enabled: false,
 key: 'reopenMenuItem',
 click: function () {
 app.emit('activate')
 }
 }]
}

Add this new menu to our template. Since the menu templates can get very lengthy and have complex
nesting, we will assign each menu to its own variable then push it onto the template array. This helps keep
the code a bit more manageable.

let windowMenu = {
 label: 'Window',
 role: 'window',
 submenu: [{
 label: 'Minimize',
 accelerator: 'CmdOrCtrl+M',
 role: 'minimize'
 }, {
 label: 'Close',
 accelerator: 'CmdOrCtrl+W',
 role: 'close'
 }, {
 type: 'separator'
 }, {
 label: 'Reopen Window',
 accelerator: 'CmdOrCtrl+Shift+T',
 enabled: false,
 key: 'reopenMenuItem',

Chapter 5 ■ adding Custom menus

86

 click: function () {
 app.emit('activate')
 }
 }]
}

template.push(windowMenu)

We can then extend this base menu to include a ‘Bring All to Front’ menu item, and a separator
before it. Since the template is just an array of objects, we can just select the correct index, then adjust the
submenu. For our sample menu template, our Window menu is at index 2. Remember, we shifted the menus
by 1 to accommodate the Application menu on macOS (see Figure 5-7).

Figure 5-7. The Bring All to Front menu inserted into the Window Menu

Chapter 5 ■ adding Custom menus

87

Then we simply push our two new menu items onto the submenu.

if (process.platform === 'darwin') {
 ...

 template[2].submenu.push({
 type: 'separator'
 }, {
 label: 'Bring All to Front',
 role: 'front'
 })
}

Here is a complete starter menu system for your Electron application:

let template = [{
 label: 'Edit',
 submenu: [{
 label: 'Undo',
 accelerator: 'CmdOrCtrl+Z',
 role: 'undo'
 }, {
 label: 'Redo',
 accelerator: 'Shift+CmdOrCtrl+Z',
 role: 'redo'
 }, {
 type: 'separator'
 }, {
 label: 'Cut',
 accelerator: 'CmdOrCtrl+X',
 role: 'cut'
 }, {
 label: 'Copy',
 accelerator: 'CmdOrCtrl+C',
 role: 'copy'
 }, {
 label: 'Paste',
 accelerator: 'CmdOrCtrl+V',
 role: 'paste'
 }, {
 label: 'Select All',
 accelerator: 'CmdOrCtrl+A',
 role: 'selectall'
 }]
}, {
 label: 'View',
 submenu: [{
 label: 'Reload',
 accelerator: 'CmdOrCtrl+R',
 click: function (item, focusedWindow) {

Chapter 5 ■ adding Custom menus

88

 if (focusedWindow) {
 // on reload, start fresh and close any old
 // open secondary windows
 if (focusedWindow.id === 1) {
 BrowserWindow.getAllWindows().forEach(function (win) {
 if (win.id > 1) {
 win.close()
 }
 })
 }
 focusedWindow.reload()
 }
 }
 }, {
 label: 'Toggle Full Screen',
 accelerator: (function () {
 if (process.platform === 'darwin') {
 return 'Ctrl+Command+F'
 } else {
 return 'F11'
 }
 })(),
 click: function (item, focusedWindow) {
 if (focusedWindow) {
 focusedWindow.setFullScreen(!focusedWindow.isFullScreen())
 }
 }
 }, {
 label: 'Toggle Developer Tools',
 accelerator: (function () {
 if (process.platform === 'darwin') {
 return 'Alt+Command+I'
 } else {
 return 'Ctrl+Shift+I'
 }
 })(),
 click: function (item, focusedWindow) {
 if (focusedWindow) {
 focusedWindow.toggleDevTools()
 }
 }
 }]
}, {
 label: 'Window',
 role: 'window',
 submenu: [{
 label: 'Minimize',
 accelerator: 'CmdOrCtrl+M',
 role: 'minimize'
 }, {

Chapter 5 ■ adding Custom menus

89

 label: 'Close',
 accelerator: 'CmdOrCtrl+W',
 role: 'close'
 }, {
 type: 'separator'
 }, {
 label: 'Reopen Window',
 accelerator: 'CmdOrCtrl+Shift+T',
 enabled: false,
 key: 'reopenMenuItem',
 click: function () {
 app.emit('activate')
 }
 }]
}, {
 label: 'Help',
 role: 'help',
 submenu: [{
 label: 'Learn More',
 click: function () {
 electron.shell.openExternal('http://electron.atom.io')
 }
 }]
}]

Since we have now included a View menu into our template, we will adjust the index value for the Bring
All to Front menuitem by one.

template[3].submenu.push({
 type: 'separator'
}, {
 label: 'Bring All to Front',
 role: 'front'
 }
)

Chapter 5 ■ adding Custom menus

90

Figure 5-8. The contextual menu

Contextual Menus
Electron can also create a context, or right-click menu, with the Menu and MenuItem modules as well.
Figure 5-8 shows what a contextual menu looks like.

Unlike the application menu, where a default one is included, there is no default contextual menu built in.
This functionality must be completely written by us. However, since the user action occurs within the window
itself, the click event is occurring within the Renderer Process. But, the Menu and MenuItem modules can only
be directly used by the Main Process. We can’t directly mix using APIs that are allowed in the specific processes.
There are two solutions to this problem of using an API in a different process. The first solution is to leverage
the Remote module. From the documentation, the remote module provides a simple way to do inter-process
communication (IPC) between the renderer process (web page) and the main process.

By importing this module in the renderer.js file, we can in turn access the Menu module within our
Render process. Here is a simple contextual menu sample.

const { remote } = require('electron')
const { Menu } = remote

const myContextMenu = Menu.buildFromTemplate ([
 { label: 'Cut', role: 'cut' },

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ adding Custom menus

91

 { label: 'Copy', role: 'copy' },
 { label: 'Paste', role: 'paste' },
 { label: 'Select All', role: 'selectall' },
 { type: 'separator' },
 { label: 'Custom', click() { console.log('Custom Menu') } }
])

window.addEventListener('contextmenu', (event) => {
 event.preventDefault()
 myContextMenu.popup()
})

The other solution is to use the IPC (Inter-Process Communication) module directly. This method
might be preferred since interactions with the contextual menu might have an impact on the application’s
menu. Keeping all the menu-related code in one process might make more organizational sense. Although
we will cover the IPC module in detail in a later chapter, let’s outline the code to show this solution.

Main Process (in main.js)

////
//Contextual Menu Imports
const MenuItem = electron.MenuItem
const ipc = electron.ipcMain

...

//////
//Contextual Menu
//////
const contextMenu = new Menu()
contextMenu.append(new MenuItem({ label: 'Cut', role: 'cut' }))
contextMenu.append(new MenuItem({ label: 'Copy', role: 'copy' }))
contextMenu.append(new MenuItem({ label: 'Paste', role: 'paste' }))
contextMenu.append(new MenuItem({ label: 'Select All', role: 'selectall' }))
contextMenu.append(new MenuItem({ type: 'separator' }))
contextMenu.append(new MenuItem({ label: 'Custom', click() { console.log('Custom Menu') }
}))

ipc.on('show-context-menu', function (event) {
 const win = BrowserWindow.fromWebContents(event.sender)
 contextMenu.popup(win)
})

Renderer Process [in renderer.js]
const { remote, ipcRenderer } = require('electron')
const ipc = ipcRenderer

window.addEventListener('contextmenu', (event) => {
 event.preventDefault()
 ipc.send('show-context-menu')
})

Chapter 5 ■ adding Custom menus

92

In this code sample, we are recreating the same menu from our first contextual menu sample using the
direct menu style. Then we create an IPC event listener. This listener will listen for our custom event, ‘show-
context-menu’. It will then resolve from which window our message came from, then trigger the contextual
menu using the popup method.

On the Renderer process, we have the same event listener for the contextmenu event. But instead of directly
triggering the menu, we use the IPC send command to broadcast our custom event to the Main process.

Summary
In this chapter, we have explored the various options you have when creating your application’s menu
system. We covered how to assign key commands, or accelerators, to menu items; how to enable or disable
an menuitem; and how to have it trigger either prebuilt actions or custom code.

We also briefly looked at how to have custom context, or right-click, menus with our Electron
application, giving it one more layer of a ‘native’ feel.

93© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_6

CHAPTER 6

Understanding the IPC Module

We briefly saw the use of the inter-process communication (IPC) module as one solution for having
contextual menus in our application. In this chapter, we are going to explore this module in greater depth.
Now, this is not the most glamorous part of API, but it is certainly the workhorse that much of our real-world
applications will rely upon.

Getting Started
Since Electron applications are broken into two separate processes (main and render), we need a system to
communicate between them. That system is in the IPC module. This module allows you to send and receive
synchronous and asynchronous messages between the processes. Each process has a specific module:
ipcRenderer and ipcMain (Figure 6-1).

Main Process Renderer Process

IPC

Figure 6-1. The IPC API provides a communication bridge between the processes.

Let’s clone a fresh copy of Electron.

git clone https://github.com/electron/electron-quick-start ipc-example

Next, change your active directory to electron-quick-start.

cd ipc-example

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

With our fresh copy of Electron, let’s begin exploring the various IPC solutions.

https://doi.org/10.1007/978-1-4842-2826-5_6

Chapter 6 ■ Understanding the ipC ModUle

94

Synchronous IPC Messaging
Let’s begin by defining a few quick styles for our button and response field, the result of this can be seen in
Figure 6-2. Open the index.html file and place this style block within our <head> tag:

<style>
 p {
 font-family: sans-serif;
 border: 1px solid #ccc;
 border-radius: 4px;
 padding: .5rem;
 background-color: #ddd;
 box-shadow: inset 0 0 2px #aaa;
 }

 button {
 color: rebeccapurple;
 font-family: sans-serif;
 font-weight: bold;
 padding: .5rem;
 background-color: #ccc;
 box-shadow: 2px 2px 2px #ccc;
 }
</style>

Next, replace the content within the <body> tag with the following:

<button id="sendSyncMsgBtn">Ping Main Process</button>
<p id="syncReply">Awaiting response</p>

Chapter 6 ■ Understanding the ipC ModUle

95

Now, let’s open the renderer.js to add the code that will be triggered when we click our button, as well as
the code needed to accept the response back.

First, we need to import the correct IPC module. Since this code will be executed in the Renderer
process, we will use the IPCRenderer module.

const ipc = require('electron').ipcRenderer

Next, we need to get the reference to our button.

const syncMsgBtn = document.getElementById('sendSyncMsgBtn')

With our reference, we can attach our event listener to it:

syncMsgBtn.addEventListener('click', function () {

})

Figure 6-2. Our Electron application with our button

Chapter 6 ■ Understanding the ipC ModUle

96

Working with IPC, is much like Isaac Newton’s Third Law of motion (for every action, there is an equal
and opposite reaction), for every IPC send there must be an IPC receive method.

The basic structure of this call is

ipcRenderer.sendSync (channel, [, arg1][, arg2], [,...})

The channel value is a string that is used as a message identifier. It is this identifier that the companion
method will be listening for. You can optionally send additional values as arguments. These can be any
JavaScript primitive (string, number, arrays, objects). In the spirit of communications, let’s have our function
send the famous words from Alexander Graham Bell:

syncMsgBtn.addEventListener('click', function () {
 const reply = ipc.sendSync('synchronous-message', 'Mr. Watson, come here.')
})

Whenever, we are working with IPC events, once we write our sending function, we switch to the other
process and write the companion stub function. So, let’s switch to the main.js file and do this.

The Main process will also need to import the IPC module as well.

const ipc = electron.ipcMain

Now, we can write our receiver function. The function is straightforward, and we define which channel
it should listen on, and a function to execute.

ipc.on('synchronous-message', function (event, arg) {

})

 ■ Note often when coding electron application, we have multiple files open at the same time. More than
once, we have forgotten to save all the files and wonder why our code does not work. You might want to start to
learn the key command to perform a save all to ensure all the files are saved and your code will execute properly.

The callback function has two arguments: the event object and the arguments. While the arguments
will contain the data that our sending function passed over, the event object has some special functions. The
event object has the built-in ability to respond to the sender. Meaning, there is no need to write another set
of listeners and receivers to communicate a response.

For synchronous IPC messages, the method is

event.returnValue

Chapter 6 ■ Understanding the ipC ModUle

97

This value can be a string, a number or an object. For this example, let’s just keep it a string.

ipc.on('synchronous-message', function (event, arg) {
 event.returnValue = 'I heard you!'
})

Switching back to the renderer.js file, we can now add the code to handle this returned value. The value
that we sent over from the main process will be stored in the reply.

syncMsgBtn.addEventListener('click', function () {
 const reply = ipc.sendSync('synchronous-message', 'Mr. Watson, come here.')
 console.log(reply)
})

We will then craft a simple message that we will display. Let’s use the new templating feature in ES6 to
do this. This is done using the $() syntax, so the message can be written as such:

const message = `Synchronous message reply: ${reply}`

If you have not used the ${} syntax before, it greatly improves the readability of your concatenated
strings. You will also note we are using ` or back ticks instead of ' or ". This is another new habit to try to pick
up. The advantage of using ` is you can now have your string extend for more than one line. However, in this
case we don’t need it.

With our message string constructed, we can update the innerHTML our paragraph:

document.getElementById('syncReply').innerHTML = message

Here is the complete code:

syncMsgBtn.addEventListener('click', function () {
 const reply = ipc.sendSync('synchronous-message', 'Mr. Watson, come here.')
 console.log(reply)
 const message = `Synchronous message reply: ${reply}`
 document.getElementById('syncReply').innerHTML = message
})

Chapter 6 ■ Understanding the ipC ModUle

98

Save all the files and run the application. Click the button, and our message should appear in the
window (Figure 6-3).

Figure 6-3. The result of our IPC call being displayed

This is the basics of using synchronous IPC within Electron. Now, let’s explore using IPC messaging in
an asynchronous fashion.

Asynchronous IPC Messaging
Often, the event that we trigger by sending our IPC message might take a noticeable amount of time for the
method to finish and the response returned to the renderer process. This will leave our renderer process
nonfunctioning. Certainly not the best user experience for your application. For these situations, we can use
the asynchronous IPC methods instead.

Let’s add two more elements to our HTML file, the result of this can be seen in Figure 6-3:

<button id="sendAsyncMsgBtn">Ping Main Process Async</button>
<p id="asyncReply">Awaiting async response</p>

Chapter 6 ■ Understanding the ipC ModUle

99

Switching to our renderer.js file, we will get the reference to our new button:

const asyncMsgBtn = document.getElementById('sendAsyncMsgBtn')

then like before, we will create an event listener for the button click:

asyncMsgBtn.addEventListener('click', function () {

})

Figure 6-4. Our Electron application with the async UI ready

Chapter 6 ■ Understanding the ipC ModUle

100

There are two key differences in working with asynchronous IPC messages. The first is instead of using
the sendSync method, we use the send method instead.

asyncMsgBtn.addEventListener('click', function () {
 ipc.send('asynchronous-message', ''That's one small step for man')
})

The other difference is that we now need to explicitly write the callback function that will handle the
response from the Main process.

ipc.on('asynchronous-reply', function (event, arg) {
 const message = `Asynchronous message reply: ${arg}`
 document.getElementById('asyncReply').innerHTML = message
})

The IPC code in the Main process changes slightly as well in the main.js file. The actual listener does
remain the same, but the method to respond changes. Instead of calling the returnValue method on the
Event object, we now use event.sender.send to respond.

ipc.on('asynchronous-message', function (event, arg) {
 if (arg === 'That’s one small step for man') {
 event.sender.send('asynchronous-reply', ', one giant leap for mankind.')
 }
})

 ■ Note if we are using a different channel name for our asynchronous response, this allows us to have
multiple ipC messaging flows occurring.

Go ahead and save the files and run the application. You should be able trigger both styles of IPC
messaging (Figure 6-5).

Chapter 6 ■ Understanding the ipC ModUle

101

Managing Event Listeners
Much like we probably heard as a child about cleaning up after yourself, the same holds true for any event
listener or IPC listener we might create within our Electron application. The IPC modules have the same
syntax for either the sync or async process. If we want to remove a single listener from the method on the
Main process, the syntax is:

ipcMain.removeListener(channel name, function)

and from the Renderer process:

ipcRenderer.removeListener(channel name, function)

The function should be the reference to the function that was executed by the on method.

Figure 6-5. Our Electron application, showing the results of our IPC call

Chapter 6 ■ Understanding the ipC ModUle

102

If you need to remove all the listeners on a specific channel, you can use the removeAllListeners
method to do so. Here is the basic syntax:

ipcMain.removeAllListeners(channel)

and

ipcRenderer.removeAllListeners(channel)

In both of our earlier examples, our two event listeners had their functions defined within the listener
itself. For example, if our Main process needed to know if a user had logged into our system, we could have
this event shell:

function userDidLogin() {
 ipcRenderer.on('userLogin', this.handleLoginSuccess);
}

function userDidLogout() {
 ipcRenderer.removeListener('userLogin', this.handleLoginSuccess);
}

function handleLoginSuccess(event, args) {
 console.log('data', args.data);
}

This could be tied to changing a Menu Item based on the user’s login status, or some other method.
For this example, once we have had the state change, there is no need to keep listening for that event. By
removing it, that is one less thing our application must concern itself with.

Electron’s IPC module provides one more useful methods along these same lines. That method is:

ipc.once(channel, listener)

This method is available for both the Main and Renderer process. The method will listen on the
specific channel. Once it has received the event, it will execute the listener function, then remove itself from
the IPC listeners.

Summary
Although the IPC module does not have a lot of methods – just variations of sending and receiving – it is
the backbone for our Electron processes to coexist. You will use this module to possibly start a third-party
Node library in the Main process from a user action in the Renderer process. In our next chapter, we will be
leveraging them quite a bit to work with Electron’s dialog module.

103© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_7

CHAPTER 7

Working with the Dialog Module

The Electron dialog module provides us with the ability to display native system-level dialogs, including file
open, file save, and various alerts. If you have written traditional web apps, you will know that these types
of dialogs are not all available to you. In this chapter, we will look at the three dialog types and many of the
parameters we can control.

The Dialog module is restricted to the Main process, meaning to interact with it we will either need to
call its methods from a menu event, via the Inter-Process Communication (IPC) module from the Renderer
process, or by using the Remote module (as seen in a previous chapter).

Getting Started
Let’s clone a fresh copy of Electron so we have a clean starting point for exploring interacting with the Dialog
Module.

git clone https://github.com/electron/electron-quick-start dialog-example

Next, change your active directory to electron-quick-start.

cd dialog-example

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

The File Open Dialog
Unlike using the File API to open and read a file, as we would in a traditional web app, in Electron we will use
a combination of the Dialog module and Node’s FS module. The basic method to display a File Open dialog
is dialog.showOpenDialog.

We will begin by opening the index.html file and replace the content within the <body> tag with

<button id="select-directory">Choose a directory</button>
<textarea id="selectedItem"></textarea>

https://doi.org/10.1007/978-1-4842-2826-5_7

Chapter 7 ■ Working With the Dialog MoDule

104

This will give us control to trigger our File Open Dialog, and a container to display the results of the
interaction. For a touch of style, add this CSS (within the <head> tag) as well:

<style>
 button {
 color: rebeccapurple;
 font-family: sans-serif;
 font-weight: bold;
 padding: .5rem;
 background-color: #ccc;
 box-shadow: 2px 2px 2px #ccc;
 display: block;
 margin: 1em;
 }

 textarea {
 width: 90%;
 }
</style>

Next, switch to the renderer.js file. Here we need to attach an event listener to the button to
communicate to the Main process. Since we are going to be using the IPC module, we need to import it.

const ipc = require('electron').ipcRenderer

Now, we need the reference to the button

const selectDirBtn = document.getElementById('select-directory')

Finally, we can define our event listener for this button:

selectDirBtn.addEventListener('click', function (event) {
 ipc.send('open-directory-dialog')
})

We will use the synchronous IPC call, since the application is basically ‘frozen’ while the dialog is being
displayed.

Turning to the main.js file, we need to write the companion listener for the IPC event we just made.
Again, we need to import the IPC module into our code. Additionally, the Dialog module will be needed as
well. These should go at the beginning of the code:

const ipc = electron.ipcMain
const dialog = electron.dialog

With both the IPC module and Dialog module defined, we can write the event listener. The event
listener is simply:

ipc.on('open-directory-dialog', function (event) {})

Within this function, we will make our call to the Dialog module to display the File Open dialog. This
method has three optional parameters, but two of them will almost always be used.

Chapter 7 ■ Working With the Dialog MoDule

105

The first parameter is a reference to the BrowserWindow object. On macOS, it is common for dialogs to
appear as connected sheets to the active window, and not appear detached. We will look at this parameter
later in the chapter. For now, we can ignore it from our parameters.

The second parameter that can be passed into method is an object that contains the various dialog
settings. We will explore these after we have our first dialog up and running. For this initial sample, we need
to set the properties that the Open Dialog can have. Table 7-1 lists the attributes that can be set.

These properties can be combined and passed in as an array, or as a string if only one property is
needed.

On Windows and Linux an open dialog cannot be both a file selector and a directory selector, so if you
set properties to [‘openFile’, ‘openDirectory’] on these platforms, a directory selector will be shown.

For our code, we will allow selecting a directory. Our options object is simply:

{
 properties: ['openDirectory']
}

The final parameter is the callback function, assuming you want to do something with the selection.
This callback will be passed in either a string or an array of strings, each representing the file path to the
selected item(s). For this sample code, we will simply take the result and use the IPC module to send it to the
Renderer process. Here is the completed code:

ipc.on('open-directory-dialog', function (event) {
 dialog.showOpenDialog({
 properties: ['openDirectory']
 }, function (files) {
 if (files) event.sender.send('selectedItem, files)
 })
})

One final thing to add to our demo is to write the event listener for the ‘selected-directory’ IPC event in
the Renderer.

ipc.on('selectedItem, function (event, path) {
 document.getElementById('selectedItem').innerHTML = �You selected: ${path}�
})

This function will then write out the path to our textarea.

Table 7-1. The Dialog Module showOpenDialog properties

Property name Dialog Action

openFile Will allow files to be selected.

openDirectory Will allow directories to be selected.

multiSelections Will allow multiple items to be selected.

createDirectory Will add a ‘New Folder’ button to the dialog (macOS only).

showHiddenFiles Will display normally hidden system files.

promptToCreate Will prompt for the creation of a file path if entered by the user (Windows only).

Chapter 7 ■ Working With the Dialog MoDule

106

Save the files and run our application using npm start.
Clicking the ‘Choose a directory’ button, then select a directory on your computer. The path

information will then be sent from the Main process to the Renderer process and be displayed in the text
area, as shown in Figure 7-1.

Figure 7-1. The select directory style dialog

Additional Open Dialog Properties
The showOpenDialog has several other properties that can be set within the options object. The first is the
title property.

On Windows, this string will be displayed on the top of the dialog as shown in Figure 7-2.

Chapter 7 ■ Working With the Dialog MoDule

107

 ■ Note the title property is ignored on macoS.

The next property that can be set allows you to define an initial path that the dialog will open to. This can
be very useful to pre-navigate the user to the proper directory. You will need to pass a properly constructed
path. If we wanted to have our dialog start at our Documents directory, the call would look like this.

dialog.showOpenDialog({
 title: 'Select a workspace...',
 properties: ['openFile'],
 defaultPath: '/Users/<username>/Documents/',
}, function (files) {
 if (files) event.sender.send('selectedItem, files)
})

Figure 7-2. The title property being displayed

Chapter 7 ■ Working With the Dialog MoDule

108

Of course you will need to switch the path based on the platform. For example, here we define the user’s
document directory based on the platform. That’s why you should prefer the use of dirname or ./,
and use the path module rather than hard-code the default path.

let startPath = ''
if (process.platform === 'darwin') {
 let startPath = '/Users/<username>/Documents/'
}

You can also change the label text on the default button by setting the buttonLabel property. This will
override the default ‘Open’ label from the system dialog.

dialog.showOpenDialog({
 title: 'Select a workspace...',
 properties: ['openFile'],
 defaultPath: '/Users/<username>/Documents/',
 buttonLabel: "Select..."
}, function (files) {
 if (files) event.sender.send('selected-directory', files)
})

Selecting a File
Instead of selecting a directory, let’s see how to select a specific file from the local file system. In the index.
html file, let’s add a new button after our Choose a directory button:

<button id="select-file">Choose an image file</button>

In the renderer.js file, get the reference to this button:

const selectFileBtn = document.getElementById('select-file')
and also add the event listener
selectFileBtn.addEventListener('click', function (event) {
 ipc.send('open-file-dialog')
})

Now, let’s turn to the main.js file and add our initial code:

ipc.on('open-file-dialog', function (event) {
 let startPath = ''

 if (process.platform === 'darwin') {
 startPath = '/Users/<username>/Documents/'
 }

 dialog.showOpenDialog({
 title: 'Select a workspace...',
 properties: ['openFile'],
 defaultPath: startPath,

Chapter 7 ■ Working With the Dialog MoDule

109

 buttonLabel: "Select...",
 }, function (files) {
 if (files) event.sender.send('selectedItem', files)
 })
})

This should look almost identical to the directory code from earlier. The only change is that the
properties array is now set to openFile instead of openDirectory.

The last property you might want to include is to set a file filter. This allows you to control the files that
the user can select from within the dialog. This is the array of objects that defines the display label and the
allowable file extensions. When defining the extensions, you only need to include the extension and not the
dot nor the wildcard element (e.g., ‘.jpg’ and ‘*.jpg’). So, our code will now look like this:

ipc.on('open-file-dialog', function (event) {
 let startPath = '';

 if (process.platform === 'darwin') {
 startPath = '/Users/chrisgriffith/Documents/'
 }

 dialog.showOpenDialog({
 title: 'Select a file...',
 properties: ['openFile'],
 defaultPath: startPath,
 buttonLabel: "Select...",
 filters: [
 { name: 'Images', extensions: ['jpg', 'png', 'gif'] }
]
 }, function (files) {
 if (files) event.sender.send('selectedItem', files)
 })
})

On Windows, this information will be shown as a drop-down menu that will allow you to switch the
filters (Figure 7-3).

Chapter 7 ■ Working With the Dialog MoDule

110

On macOS, this control is not shown, but the filter is still applied to the dialog. Please note we’ve
changed the ‘openDirectory’ property to ‘openFile’ in this instance.

The BrowserWindow Parameter
We skipped the initial parameter that the showOpenDialog supports since it is optional. On macOS, it is
quite common to have the Open dialog attach itself to the actual application window and not have it open in
a separate window, as shown in Figure 7-4.

Figure 7-3. The Save as type option being displayed

Chapter 7 ■ Working With the Dialog MoDule

111

If you choose to not attach the dialog to the application window, note that the file dialog is not
automatically centered, and you will need to programmatically position it. To attach a dialog to the
application window, simply pass in the reference to the application window into the dialog’s show method.
Here is the basic code needed to display the dialog to select a file. Once the user has selected a file, the code
will emit an IPC event to the renderer process with information on the selected files.

dialog.showOpenDialog(mainWindow, {
 title: 'Select a file...',
 properties: ['openFile'],
 defaultPath: '/Users/<username>/Documents/',
 buttonLabel: "Select...",
 filters: [
 { name: 'Images', extensions: ['jpg', 'png', 'gif'] },
 { name: 'Text', extensions: ['txt'] }
]
}, function (files) {
 if (files) event.sender.send('selected-directory', files)
})

Figure 7-4. The Open File dialog on macOS attached to the Application Window

Chapter 7 ■ Working With the Dialog MoDule

112

Just remember, if your application is going to support multiple windows, you need to ensure that you
are referencing the correct window instance to attach the dialog to.

A Brief Look at Node’s FS Module
The reading and writing of files is handled using one of Node’s core modules, FS (aka File System). This
module provides both synchronous as well as asynchronous versions of each of its methods. As a rule, is it
better to use the asynchronous option over the synchronous option. By doing so, we should not block our
user interaction, since the code’s execution thread will not be blocked. The basic functions available to us
are the following:

•	 Open or create a file

•	 Get file status and information

•	 Write content to a file

•	 Read a file’s contents

•	 Close a file

•	 Delete a file

To use the fs module, import it using the standard method:

const fs = require('fs')

Opening a File
For most operations, you will not need to manually open and close the file you are working with. The
standard read and write commands will do this automatically for you. However, if you are working with
streaming content or needing to access specific blocks within the file, you will need to use this method to
properly work with that file. Each of the parameters for the fs module is described in Table 7-2.

fs.open(path, flags[, mode], callback)

Table 7-2. The FS Module’s open method’s parameters

Parameter Description

path This string is the full file path and file name.

flags Controls the interactions with the file (see Table 7-3).

mode Optional parameter that defines the permissions.

callback This function receives two arguments: the error code and the file descriptor.

The FS module’s flag’s parameter supports several different access settings to the file, and these are
listed in Table 7-3.

Chapter 7 ■ Working With the Dialog MoDule

113

Getting File Information
If you need to get information about a file, use the fs.stats method. This is quite useful in determining if
the file is a real file or if it is a directory. Here is a snippet that takes in a file path, then outputs to the console,
the file information:

fs.stat(filePath, function (err, stats) {
 if (err) {
 return console.error(err)
 }
 console.log(stats)
 console.log("Got file info successfully!")

 // Check file type
 console.log("isFile ? " + stats.isFile())
 console.log("isDirectory ? " + stats.isDirectory())
})

gives us:

fs.Stats
atime: Mon Mar 13 2017 15:13:31 GMT-0700 (PDT)
birthtime: Mon Mar 13 2017 15:09:16 GMT-0700 (PDT)
blksize: 4096blocks: 8
ctime: Mon Mar 13 2017 15:13:12 GMT-0700 (PDT)
dev: 16777220
gid: 1859252656ino: 30007351
mode: 33188
mtime: Mon Mar 13 2017 15:13:12 GMT-0700 (PDT)

Table 7-3. FS Modules’ access flag values

Flag Description

r Opens the file for reading.

r+ Opens the file for reading and writing.

rs Opens the file for reading, synchronous mode.

rs+ Opens the file for reading and writing, synchronous mode.

w Opens the file for writing. If the file does not exist, it will be created. If the file does exist, it will
be overwritten.

wx Opens the file for writing. If the file does exist, the function will fail.

w+ Opens the file for reading and writing. If the file does not exist, it will be created. If the file does
exist, it will be overwritten.

a Open file for appending. The file is created if it does not exist.

a+ Open file for reading and appending. The file is created if it does not exist.

ax Opens the file for appending. If the file does exist, the function will fail.

ax+ Open file for reading and appending. If the file does exist, the function will fail.

Chapter 7 ■ Working With the Dialog MoDule

114

nlink: 1
rdev: 0
size: 603
uid: 224974590

Got file info successfully!
isFile ? true
isDirectory ? false

Writing a File
To write a file to the user’s file system, simply use the fs.writeFile method. The parameters for this module
are shown in Table 7-4.

fs.writeFile(file, data[, options], callback)

fs.writeFile(fileName, content, function (err) {
 if(err){
 console.log("An error occurred creating the file "+ err.message)
 } else {
 console.log ("The file has been successfully saved")
 }
})

Reading Files
To read a file from a user’s computer, it can be done in two variations: reading the complete file or partially
reading the file. The more common method will be reading the complete file. Here is a code snippet to do this:

fs.readFile(filepath, 'utf-8', function (err, data) {
 if(err){
 alert("An error occurred reading the file :" + err.message)
 return
 }
 //Display the file contents
 console.log("The file content is : " + data)
})

Table 7-4. The FS Module’s parameters

Parameter Description

path This string is the full file path and file name.

flags Controls the interactions with the file (see Table 7-3).

mode Optional parameter holds details about encoding, mode, and flag. By default, the values of
encoding are utf8, mode is octal value 0666, and flag is ‘w’.

callback This function receives two arguments: the error code and the file descriptor.

Chapter 7 ■ Working With the Dialog MoDule

115

If you want to read the file in synchronous mode, use fs.readFileSync() instead. If you need to perform a
partial read of a file, refer to the documentation for the fs module, available at <nodejs.org/api/fs.html>.

Deleting a File
If you need to delete a file on the user’s computer, then you will use the fs.unlink() method. Since these
commands are based on the standard POSIX functions (a standard command set for manipulating files and
directories), the delete function is referred to as unlink. As a good measure, you should use the fs.existsSync
() method to test if the file exists before attempting to delete it.

if (fs.existsSync(filePath)) {
 fs.unlink(filepath,function(err){
 if(err){
 console.log("An error ocurred updating the file"+ err.message)
 return
 }
 console.log("File succesfully deleted")
 })
}

Watching for Updates
Another useful method available in the fs module is the fs.watch() method.

fs.watch(fileName, {
 persistent: true
}, function(event, filename) {
 console.log(event + " event occurred on " + filename)
})

Working Directories
In all the previous examples, we were working with just files. The fs module also supports working with
directories as well. To create a new directory, use the fs.mkdir() method.

fs.mkdir(myDir, function(err){
 if (err) {
 console.log('mkdir err:'+err)
 }

 console.log('New Directory Created')
})

Chapter 7 ■ Working With the Dialog MoDule

116

Reading the Directory Contents
Often, reading the entire contents of a directory is needed. To perform this action, use the fs.readdir()
or fs.readdirSync() methods. The result of calling either method will be an array for files and directories
contained within the parent directory. If we read the electron-quick-start directory using this code:

fs.readdir('./', function(err, files){
 if (err) {
 console.log(‘readdir err:'+err)
 return
 }
 console.log(files)
})

we will get the following array back:

 [".git", ".gitignore", "LICENSE.md", "README.md", "index.html", "main.js", "node_modules",
"package.json", "renderer.js"]

Deleting a Directory
When you need to remove a directory from the user’s computer, the fs.rmdir() or fs.rmdirSync() methods
can be used. Simply pass in the path to the directory to the methods. It will not prompt the user about the
action.

fs.rmdir(myDir, function(err){
 if (err) {
 console.log('rmdir err:'+err)
 return
 }
 console.log('deleted the directory')
})

For more about this module, refer to the Node documentation as there are many other methods you
should be aware of.

The File Save Dialog
The showSaveDialog method is like the openFileDialog, just with fewer parameters. Let’s add a new button
to our index.html:

<button id="save-file">Save</button>

and in the render.js file add this code:

const saveFileBtn = document.getElementById('saveFile')

saveFileBtn.addEventListener('click', function (event) {
 ipc.send('save-file-dialog')
})

Chapter 7 ■ Working With the Dialog MoDule

117

Finally, in the main.js, we will add our IPC listener:

ipc.on('save-file-dialog', function (event) {})

Let’s explore the parameters we can set in the showSaveDialog. Just like its companion, the first
parameter is the reference to the application window. This parameter is optional; if it is included then the
dialog will appear as an attached sheet (Figure 7-5).

Figure 7-5. The dialog with the sheet option enabled

The Save Dialog has four options that can be set: title, defaultPath, buttonLabel, and filters. These
parameters should be familiar from the File Open dialog.

ipc.on('save-file-dialog', function (event) {
 let startPath = '';

 if (process.platform === 'darwin') {
 startPath = '/Users/<username>/Documents/'
 }

Chapter 7 ■ Working With the Dialog MoDule

118

 dialog.showSaveDialog({
 title: 'Save file...',
 defaultPath: '/Users/<username>/Documents/highscores.txt',
 buttonLabel: "Save",
 filters: [
 { name: 'Text', extensions: ['txt'] }
]
 }, function (file) {
 console.log(file)

 })
})

There are a few minor differences to be aware of. The first difference is the defaultPath string. If you
simply pass in just a path, the dialog will default to use ‘Untitled’ as the filename. If you want to send this
dialog with a suggested filename, include it as part of the defaultPath.

The second difference is that the file will inherit the extension from the last time in the FileFilter array
(if one is set). So, if you do not set the default name, you might want to take care to set the preferred
extension via the filters. Note, if the Hide Extension option is enabled, the filename will not show the
extension, regardless of the FileFilter setting.

The result of this method will be the full file path that the user selected.

/Users/<username>/Documents/highscores.txt

The actual writing of the file would be done via the Node FS module]. For this simple example, we will
save a small text string as our high score data. Here is the complete File Save dialog

ipc.on('save-file-dialog', function (event) {
 let startPath = "";

 if (process.platform === 'darwin') {
 startPath = '/Users/<username>/Documents/'
 }

 dialog.showSaveDialog({
 title: 'Save file...',
 defaultPath: startPath +'highscores.txt',
 buttonLabel: "Save",
 filters: [
 { name: 'Text', extensions: ['txt'] }
]
 }, function (file) {
 console.log(file);
 if (file) {
 let theData = "Chris,10000"
 FS.writeFile(file, theData, function (err) {
 if (err === null) {
 console.log('It\'s saved!');

Chapter 7 ■ Working With the Dialog MoDule

119

 } else {
 //ERROR OCCURRED
 console.log(err);
 }
 });
 }
 })
})

The Message Dialog
In addition to the tandem File Open and File Save methods, the Dialog API also supports displaying a
Message Dialog (Figure 7-6). These dialogs are often referred to as Alert Dialogs.

Figure 7-6. A sample Message Dialog

Chapter 7 ■ Working With the Dialog MoDule

120

Figure 7-7. The Info type MessageBox on Windows

Figure 7-8. The error type MessageBox on Windows

The showMessageBox method also follows the same general parameter sequence: browserWindow,
options, and the callback function. There are four variations of the MessageBox; info, error, question, and
none. These are defined by setting the type property in the options object. On macOS, there is no
difference in display of these MessageBox types, but on Windows, the icon will change to reflect the type
(see Figures 7-7 through 7-10).

Chapter 7 ■ Working With the Dialog MoDule

121

Let’s extend our Electron Dialog sample to support displaying these types.
In our index.html, we will add four buttons, one for each type:

<h2>Message Box</h2>
<button id="info">Info Type Dialog</button>
<button id="error">Error Type Dialog</button>
<button id="question">Question Type Dialog</button>
<button id="none">None Type Dialog</button>

In our renderer.js file, we will get the references to each of the buttons:

const infoDialogBtn = document.getElementById('info')
const errorDialogBtn = document.getElementById('error')
const questionDialogBtn = document.getElementById('question')
const noneDialogBtn = document.getElementById('none')

Figure 7-9. The Warning type MessageBox on Windows

Figure 7-10. The none type MessageBox on Windows

Chapter 7 ■ Working With the Dialog MoDule

122

then create the click EventListeners for each button:

infoDialogBtn.addEventListener('click', function (event) {
 ipc.send('display-dialog', 'info')
})

errorDialogBtn.addEventListener('click', function (event) {
 ipc.send('display-dialog', 'error')
})

questionDialogBtn.addEventListener('click', function (event) {
 ipc.send('display-dialog', 'question')
})

noneDialogBtn.addEventListener('click', function (event) {
 ipc.send('display-dialog', 'none')
})

We will use the fact that we can send additional arguments in our IPC call to pass along the dialog type
we want to display. In the main.js file we can create this starter listener.

ipc.on('display-dialog', function (event, dialogType) {
 console.log(dialogType)
})

Let’s expand out the properties in the options parameter for our dialog. The first property to set will be
defining the custom button labels. This property will accept either a string for the label or an array of strings
for labels. On macOS, the order of the button is laid out from the right to the left. On Windows, the buttons
are laid out vertically. So, setting our dialog buttons to this array to:

dialog.showMessageBox({
 buttons: ['Save', 'Cancel', 'Don\'t Save']
})

This will cause our dialogs to look like this (without the title or description, as they haven’t been added
yet) in Figure 7-11.

Chapter 7 ■ Working With the Dialog MoDule

123

Another thing to note, on Windows: if this array contains the string ‘Cancel’ or ‘No’, then it will
automatically be positioned along the bottom of the dialog.

The next property you can set is the defaultId. This integer will tell the dialog which item in the button
array to set as the default button. Since we want the Save button to be the default action, we can set this
value to 0, although, without this parameter, the default value would also be 0.

defaultId: 0

The canceled property is only used on the Windows platform, and only if the buttons array does not
contain either ‘Cancel’ or ‘No’. Since Windows message dialogs also contain a close button in the upper right,
this is the index value we can assign to the element. If your buttons array does contain either string, that
button will return the same value as the displayed Cancel or No button.

With our buttons defined, we can turn our attention to the text in the dialog. The dialog method has
three separate text elements: title, message, and detail.

The title property is only used on Windows, and it is displayed along the top of the dialog box.
The next display property is the message string. This is text that is displayed in a larger font and bold on

the preceding Mac OSX example.

Figure 7-11. A Message Dialog on macOS

Chapter 7 ■ Working With the Dialog MoDule

124

The final text display property is the detail string. This is what is shown in the body of the dialog. Here is
our showMessageBox code so far:

dialog.showMessageBox({
 type: dialogType,
 buttons: ['Save', 'Cancel', 'Don\'t Save'],
 defaultId: 0,
 cancelId: 1,
 title: 'Save Score',
 message: 'Backup your score file?',
 detail: 'Message detail'
})

This code will create a dialog that looks like Figure 7-12.

Figure 7-12. The Message Dialog Box

Chapter 7 ■ Working With the Dialog MoDule

125

First, we need to import the nativeImage module from Electron in our main.js file.

const nativeImage = electron.nativeImage

This module will allow us to work with the icons in a more convenient fashion. Here we will reference
the custom icon:

let warningIcon= nativeImage.createFromPath('images/warning.png') [Please suggest using the
path module here]

Then in the dialog options, we can set the icon property to this value:

ipc.on('display-dialog', function (event, dialogType) {
dialog.showMessageBox({
 type: dialogType,
 buttons: ['Save', 'Cancel', 'Don\'t Save'],
 defaultId: 0,
 cancelId: 1,
 title: 'Save Score',
 message: 'Backup your score file?',
 detail: 'Message detail',
 icon: warningIcon
 }, function (index) {
 console.log(index)
 });
})

Figure 7-13. A sample custom icon

Custom Icons
On Mac, the icon that is displayed with each dialog type is the application icon. If you want to have a custom
icon, say a warning icon with your app icon overlaid over it, see what is shown in Figure 7-13.

Chapter 7 ■ Working With the Dialog MoDule

126

So, now when we display our dialog, our custom icon is displayed instead of the default icon (Figure 7-14).

Figure 7-14. The dialog using our custom icon

You might consider writing your dialog method to be more generic in nature, switching out icons,
labels, and button text as needed via input parameters.

Chapter 7 ■ Working With the Dialog MoDule

127

Handling the Response
The callback function will accept the index value of the response from the dialog.

ipc.on('display-dialog', function (event, dialogType) {
 console.log(dialogType)
 dialog.showMessageBox({
 type: dialogType,
 buttons: ['Save', 'Cancel', 'Don\'t Save'],
 defaultId: 0,
 cancelId: 1,
 title: 'Save Score',
 message: 'Backup your score file?',
 detail: 'Message detail',
 icon: warningIcon
 }, function (index) {
 console.log(index)
 })
})

Depending on how you structure your code, you might handle the response within this function, or
send back an ipc message to the Renderer process to handle it.

Error Dialogs
Although the showMessageBox does have an error type, there is an additional method we can call for when
the app has yet to emit its ready event. This is the showErrorBox method; see Figure 7-15 for a sample of this.
This method takes in two parameters: a title and its content. Custom icons are not supported at this time.

dialog.showErrorBox('Frak!', 'Cyclons reported on the port hanger deck!')

Chapter 7 ■ Working With the Dialog MoDule

128

Figure 7-15. The Error message dialog. It will use the application’s icon by default.

This method does not support custom icons nor changing buttons options (there is a default ‘OK’
button that will dismiss the box but cannot be customized). Also, note there is no callback function, since
there is only the single response that can occur.

Summary
In this chapter, we explore the File Save and File Open dialogs and their display options. We also looked at
the Message dialog as well. The variations of this method were examined, so you can display the proper type
per the platform’s user interface guidelines. Finally, we demonstrated the simple Error dialog method.

129© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_8

CHAPTER 8

WebContents, Screens,
and Locales

The development team at GitHub has added many good features to Electron. There are a few features that
we would like to make you aware of and experiment with in this chapter.

First, we’ll take a look at a property of the BrowserWindow called webContents, which has many events
and methods but we’ll be focusing on a few items with which we think you should become familiar: capturing
events, managing windows, and capturing a window as an image or pdf file. After that, we’ll take a look at the
screens module and learn how to detect the screens attached to your user’s system. Finally, we’ll review how
to detect the system’s locale so you can display the correct language in your application for your users.

Let’s get started by setting up the Electron Quick Start project so we have a clean place to start.

Getting Started
As with each of these examples, we are using the Electron Quick Start example. We will use git clone to create
a new copy of the quick start in a new folder, in this case named webcontents-screens-locale-example.
First, open terminal and navigate to the folder where you would like to place your code.

git clone https://github.com/electron/electron-quick-start webcontents-screens-locale-example

Next, change your active directory to electron-quick-start.

cd webcontents-screen-locals-example

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

https://doi.org/10.1007/978-1-4842-2826-5_8

Chapter 8 ■ WebContents, sCreens, and LoCaLes

130

Let’s take a moment to modify this package.json file to match our own by updating some nodes.

 1. Change the name node to “webcontents-screens-locale-example.”

 2. Change the version number to “0.0.1” since we are just starting out.

 3. In the description let’s use something like “A sample Electron application to
demonstrate online detection.”

 4. Remove the repository node. If you decide to put your results in a repository you
can change or re-add this node with the correct address.

 5. Keywords can be “Electron,” “webcontents,”, “screens,” “locale,” “example.”

 6. “author”: Your name goes here.

 7. Let’s change the “license” node to “MIT.”

Now that we have our webcontents-screens-locale-example project created and have made certain that
it runs, let’s start making some changes to the code.

Discovering Electron’s WebContents
If you wanted to build a Web browser with GitHub Electron, you would use the Electron’s webContents event
emitter. A lot. Mind you, we don’t suggest you build a browser with Electron. People have done it, but it
sounds like a lot of work. Nevertheless, many of the events and methods inside the webContents object deal
with things your application probably won’t need except for a few items we’d like to draw to your attention.

The web contents can be accessed directly in the Main Process or as part of a BrowserWindow’s instance.
How you access the events and methods of webContents will depend upon what you are trying to accomplish.
In this chapter, we will try to give you some guidance on how to access these events and methods.

The first thing we should do is take a look at what webContents look like when printed to the console.
Open the main.js file in your favorite code editor and start by adding the line for the webContents constant
along with the console log statement as it appears below at the top of your code:

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow
const webContents = electron.webContents

const path = require('path')
const url = require('url')

console.log('webContents', webContents.getAllWebContents())

All we are doing here is creating a constant that gives us access to Electron’s webContents object and
then logging the contents of webContents object to the console using webContent’s getAllWebContents()
method. Save the file, and in your terminal application run the npm start command and take a look at the
output (Figure 8-1).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

131

Well, that wasn’t in any way exciting. The only output we are seeing is webContents []. Of course,
we have done this on purpose so that we can show you that this early in the application startup process,
webContents is an empty array. In other words, we won’t see anything inside this array until we add a
BrowserWindow object to the screen. Let’s do that now.

At the bottom of the createWindow function, add the console log seen at here at the bottom of the
createWindow method to your code.

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 // mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {

Figure 8-1. Message in the console reveals webContents at startup is an empty array

Chapter 8 ■ WebContents, sCreens, and LoCaLes

132

 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })

 console.log('webContents', webContents.getAllWebContents());
}

Quit the sample Electron application, save your file, and run the npm start command in the terminal
again so we can look at what appears inside webContents after we have created a window in our application
(Figure 8-2).

Figure 8-2. New console log shows the webContents array after a window is created

Chapter 8 ■ WebContents, sCreens, and LoCaLes

133

That is more like it, right? That is a lot of data! We’ll print it out here so we can review what is there.

webContents []
webContents [WebContents {
 webContents: [Circular],
 history: [],
 currentIndex: -1,
 pendingIndex: -1,
 inPageIndex: -1,
 _events:
 { 'navigation-entry-commited': [Function],
 'ipc-message': [Function],
 'ipc-message-sync': [Function],
 'pepper-context-menu': [Function],
 'devtools-reload-page': [Function],
 'will-navigate': [Function],
 'did-navigate': [Function],
 destroyed: [Object],
 'devtools-opened': [Function],
 '-new-window': [Function],
 '-web-contents-created': [Function],
 '-add-new-contents': [Function],
 move: [Function],
 activate: [Function],
 'page-title-updated': [Function] },
 _eventsCount: 15,
 _maxListeners: 0,
 browserWindowOptions: { width: 800, height: 600 } }]

Of course, the first line is our first console log call that returns an empty array. The second line is where
things get interesting. Inside the array is a WebContents object that is represented here in a naked kind of
way. You can see that there is a history array that would hold objects representing the pages loaded by this
window. The currentIndex, pendingIndex and inPageIndex are how the WebContents tracks the history. The
next set of lines is an object that contains references to internal events that WebContents uses. Finally, at the
bottom is the browserWindowOptions object that shows the options that were specified when our window
was created. Let’s test this out.

Inside our createWindow method, update the code with the following line in bold.

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600, title: 'hello world'})

Now we can run the npm start command and see the title of our window in the console log output
(Figure 8-3).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

134

See how that works? In case you can’t read it, the interesting part looks like this:

browserWindowOptions: { width: 800, height: 600, title: 'hello world' }

A Little Setup Before We Begin
To make this example more effective for the content we are presenting, we need to make some updates
to our current code. This example is going to create two windows, and we could also create two separate
methods. But let’s be practical and update our current createWindow method to be a little more dynamic.
Let’s change createWindow to look like this:

function createWindow (fileStr, options) {
 // Create the browser window.
 let win= new BrowserWindow(options)

 // and load the index.html of the app.
 win.loadURL(url.format({
 pathname: path.join(__dirname, fileStr),

Figure 8-3. The console output for the webContents array

Chapter 8 ■ WebContents, sCreens, and LoCaLes

135

 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 // win.webContents.openDevTools()

 // Emitted when the window is closed.
 win.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 win = null
 })

 return win
}

Note the items in bold. Our createWindow method now takes two arguments: fileStr which is expected
to be the name of the file our window will load, and options that is expected to be an object containing the
setting for the window. Next, we create a variable named “win” for our new window, instantiate that window
passing the options argument, load the URL for that window using the fileStr argument, and finally return
the window.

Now to make this work, we need to make a change inside our “ready” event listener. Make the following
change:

app.on('ready', () => {
 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN' })
})

Here, we are setting our mainWindow variable by passing arguments to the createWindow method.
Nice. Now, there is one more thing to do to make this work. Open your index.html file and remove the text
from inside the title tag in the header. The code should look like this:

<head>
 <meta charset="UTF-8">
 <title></title>
 </head>

The reason we are clearing the title in the HTML header here is that currently, on the macOS, if there is
a title in the header it does not get overwritten in the Electron window creation process. This does not occur
on the Windows platform.

Let’s run the npm start command in the terminal to make sure it works (Figure 8-4).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

136

Note that the title in the title bar is now “MAIN.” Nice, right. A window created in a more dynamic way.
One more change and we’ll be ready to move on. First, at the top of our file, update the following line so we
have a new variable named secondWindow.

let mainWindow, secondWindow

Now, let’s update our “ready” listener to create another window:

app.on('ready', () => {
 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN' })
 secondWindow = createWindow('index.html', { width: 400, height: 400, title: 'SECOND' })
})

If we’ve done everything properly, we should see two windows. Let’s check it out by running the npm
start command (Figure 8-5).

Figure 8-4. Our updated Main Window

Chapter 8 ■ WebContents, sCreens, and LoCaLes

137

That does it. Now we’re ready to move on to adding a few event listeners to our project.

WebContents Events
So, now that you have a little idea of what the WebContents object represents and can set up the project to
load two windows, let’s start leveraging webContents to get a little more information. The BrowserWindow’s
WebContents object emits a couple of events that you might need to use in your application. To give you an
idea of what those events are, here’s an alphabetical list of them:

•	 “before-input-event”

•	 “certificate-error”

•	 “context-menu”

•	 “crashed”

•	 “cursor-changed”

•	 “destroyed”

Figure 8-5. Our main and second windows load

Chapter 8 ■ WebContents, sCreens, and LoCaLes

138

•	 “devtools-closed”

•	 “devtools-focused”

•	 “devtools-opened”

•	 “devtools-reload-page”

•	 “did-change-theme-color”

•	 “did-fail-load”

•	 “did-finish-load”

•	 “did-frame-finish-load”

•	 “did-get-response-details”

•	 “did-get-redirect-request”

•	 “did-navigate”

•	 “did-navigate-in-page”

•	 “did-start-loading”

•	 “did-stop-loading”

•	 “dom-ready”

•	 “found-in-page”

•	 “login”

•	 “media-started-playing”

•	 “media-paused”

•	 “new-window”

•	 “page-favicon-updated”

•	 “paint”

•	 “plugin-crashed”

•	 “select-client-certificate”

•	 “select-bluetooth-device”

•	 “update-target-url”

•	 “will-attach-webview”

•	 “will-navigate”

•	 “will-prevent-unload”

Depending on what the application you are building does, not all of these events will be relevant to
you. They are named very practically, so you can guess what they represent. We listed each of them here
to give you an idea of how many events webContents emits, and if any of them peak an interest you should
review the documentation to get a clear idea of what they do. Our assumption is that you will be creating an
application that, for the most part, is self-contained and doesn’t load a web application from the Internet.
Under that assumption we are going to focus on a couple of events that you may find helpful: “did-start-
loading,” “did-get-response-details,” “dom-ready,” “did-finish-load,” and “did-stop-loading.”

Chapter 8 ■ WebContents, sCreens, and LoCaLes

139

If you wish to explore any of the other events available, feel free to use the resulting code from this
exercise as a starting point for your investigations.

The “did-start-loading” Event
The first event we will look at is the “did-start-loading” event. This event is fired by the window’s
WebContent’s object and happens, oddly enough, when the window begins loading. For various reasons,
we may wish to capture this event on the Main Process in our application, perhaps to inform the user of this
activity, or to trigger another activity. Let’s create a listener inside our createWindow method to see how this
works. Inside the main.js file, at the bottom of the createWindow method and before the return window line,
add this event handler:

win.webContents.on('did-start-loading', event => {
 console.log('did-start-loading', event.sender.webContents.browserWindowOptions.title)
})

This is a pretty simple event listener typically used in debugging. Since we know that the event.sender
is a BrowserWindow object and has a webContents property, we can log the browserWindowOptions’ title
property in the console. Run the npm start command to see this working (Figure 8-6).

Figure 8-6. The message we sent to the console was not received

Chapter 8 ■ WebContents, sCreens, and LoCaLes

140

Hold on. That didn’t work. What did we do wrong? It is good practice to place event listeners on any
object before the event is fired. In this case, since the “did-start-loading” event is fired when window.
loadURL() is called, we need to attach that event before that line. Move that line up in our code to appear
immediately below the creation of the win variable:

function createWindow (fileStr, options) {
 // Create the browser window.
 let win = new BrowserWindow(options)

 win.webContents.on('did-start-loading', event => {
 console.log('did-start-loading', event.sender.webContents.browserWindowOptions.title)
 })

Now we can run the npm start command to see if the event is properly captured (Figure 8-7).

Figure 8-7. Now the console messages appear in the terminal window

Chapter 8 ■ WebContents, sCreens, and LoCaLes

141

Now we can see the console log along with the title we sent to the createWindow method. Awesome.
Now we can add a couple of more events that may be important to capture in your application: “dom-ready,”
“did-finish-load,” and “did-stop-loading.” In the main.js file, just below the “did-start-loading” event listener,
add listeners for “dom-ready,” “did-finish-load,” and “did-stop-loading” like below:

function createWindow (fileStr, options) {
 // Create the browser window.
 let window = new BrowserWindow(options)

 window.webContents.on('did-start-loading', event => {
 console.log('did-start-loading', event.sender.webContents.browserWindowOptions.title)
 })

 window.webContents.on('dom-ready', event => {
 console.log('dom-ready')
 })

 window.webContents.on('did-finish-load', event => {
 console.log('did-finish-load', event.sender.webContents.getTitle())
 })

 window.webContents.on('did-stop-loading', event => {
 console.log('did-stop-loading', event.sender.webContents.id)
 })

 // and load the index.html of the app.
 window.loadURL(url.format({
 pathname: path.join(__dirname, fileStr),
 protocol: 'file:',
 slashes: true
 }))

 // Emitted when the window is closed.
 window.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 window = null
 })

 return window
}

We have included these events on purpose and each has a specific purpose. Notice how we have
different console log calls in each listener. The listener of “dom-ready” is just logging the event name,
while “did-finish-load” logs the sender’s WebContent’s title, and the “did-stop-loading” logs the sender’s
WebContent’s id.

As a side note, try to remember the difference between these event names: “load” and “loading” in
“did-finish-load” and “did-stop-loading.” If you decide to use both events and one of them isn’t being
captured, you may have incorrectly used “did-finish-loading,” for instance, instead of “did-finish-load.”
These two event names might catch you off guard.

Chapter 8 ■ WebContents, sCreens, and LoCaLes

142

Run the npm start command in the terminal and see what happens (Figure 8-8).

Interesting, right? Here’s a printout of the console logs so we can review them.

did-start-loading MAIN
did-start-loading SECOND
dom-ready
dom-ready
did-finish-load index.html
did-stop-loading 1
did-finish-load index.html
did-stop-loading 2

Note first that there are two of each message logged. The first two messages help you understand why,
of course, and that is because we are opening two windows. Now, let’s take a moment to consider our new
event listeners’ console logs.

Were you expecting “dom-ready” to show up last? Or “did-finish-load”? As Web developers we are
typically conditioned to keep an eye on the “dom-ready” event, but both “did-finish-load” and “did-stop-
loading” occur after the “dom-ready” event is fired. And if the application that your BrowserWindow object
is loading is complex - like an Angular or React application instead of the simple index.html file we are
currently loading - there may be things that application may also be waiting for the “dom-ready” event to
fire, as well. If your Main Process is waiting for the window to be ready before attempting to interact with it,
you may wish to rely upon the “did-stop-loading” event.

Figure 8-8. Messages from the event listeners appear in the terminal window

Chapter 8 ■ WebContents, sCreens, and LoCaLes

143

Why isn’t the “did-finish-load” event logging “MAIN” or “SECOND” instead of “index.html”? We were
wondering that as well. In our investigations, it seemed that relying upon the getTitle method would be poor
form since it is not showing the information we requested. At least we can see the ids appear to be correct in
the “did-stop-loading.”

Let’s try something else in the “did-finish-load” listener and see if we can’t do better. Change the
following code in bold in the main.js file:

 window.webContents.on('did-finish-load', event => {
 console.log('did-finish-load', BrowserWindow.fromId(event.sender.webContents.id).
getTitle())
 })

Again, note that if you have not removed the title text inside the header of the HTML, that text may be
captured instead of the text that was dynamically set.

What we are doing here is leveraging the BrowserWindow class’ fromId method with the event sender’s
WebContent’s id to get the window object so we can call getTitle() on it. I know that sounds like technical
gymnastics, but if you want a consistent way to get the window title, this method may be helpful.

Run the npm start command and see it in action (Figure 8-9).

Figure 8-9. Better information captured by event listeners

Chapter 8 ■ WebContents, sCreens, and LoCaLes

144

The capturePage Method
The WebContents object has another nice feature that you may wish to take advantage of: the capturePage
method. Capturing your application’s screen is a feature that developers often are charged with creating.
Luckily for us, the developers at Electron have made it easy for us to capture an image of our window, and
Electron’s Inter-Process Communication makes it easy to communicate between the Main and Renderer
Processes, and Node.js makes it easy to save that image. This example will take a moment to set up, but we
are certain you will find it rewarding.

Let’s begin in the Renderer process. Open your index.html file. Remember, we are using this file as the
basis for both our “MAIN” and “SECOND” windows, so changes in this file will appear in both windows. Inside
the index.html code, make the following update just above the closing tag of the body element (</body>):

 <div>
 <button id="captureButton">Capture PNG</button>
 </div>

Basically, we just added a button to the window. Now, open the renderer.js file, which is where the
JavaScript code for the Renderer Process is being kept. Right now there are just a few lines of commented
text. Add the following code to the file:

const { ipcRenderer } = require('electron')

document.getElementById('captureButton').addEventListener('click',
captureButtonClickHandler)

function captureButtonClickHandler() {
 ipcRenderer.send('capture-window')
}

In the first line of our code we add Electron’s ipcRenderer module to our project. If you remember from
an earlier chapter, the ipcRenderer is how the Renderer Process communicates with the Main Process. The
next line is the click listener for the “captureButton” element we added to the index.html file. Finally, we
added the captureButtonClickHandler method inside, which we call the Main Process with the “capture-
window” event. Before we move on to the Main Process part of this example, let’s run the npm start
command and take a look at what we’ve got (Figure 8-10).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

145

Two windows? Check. New button on each window? Check. We’ve passed inspection! Now open the
main.js file and add the following code in bold to the top of the file:

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow
const webContents = electron.webContents
const ipcMain = electron.ipcMain

const path = require('path')
const url = require('url')
const fs = require('fs')

// Keep a global reference of the window object, if you don't, the window will
// be closed automatically when the JavaScript object is garbage collected.
let mainWindow, secondWindow, windowToCapture

Here we are adding ipcMain, the Main Process module for Inter-Process Communication, along with
“fs,” the file system module from Node.js that gives us access to the computer’s drive. Finally, we add the
windowToCapture variable, which we will be using in a moment. Also, you may wish to delete the console.
log() line here, as it is unnecessary.

Figure 8-10. The new button appears in both windows

Chapter 8 ■ WebContents, sCreens, and LoCaLes

146

Next, at the bottom of the main.js file, add this code:

ipcMain.on('capture-window', event => {
 windowToCapture = BrowserWindow.fromId(event.sender.webContents.id)
 let bounds = windowToCapture.getBounds()
 windowToCapture.webContents.capturePage({x: 0, y: 0, width: bounds.width, height: bounds.
height}, imageCaptured)
})

function imageCaptured(image) {
 let desktop = app.getPath('desktop')
 let filePath = desktop + '/' + windowToCapture.getTitle() + '-captured-file.png'
 console.log(filePath)
 let png = image.toPNG()

 fs.writeFileSync(filePath, png)
}

The first item here is the “capture-window” event listener, which sets the windowToCapture variable,
creates a bounds object (an object that contains x, y, width, and height properties) by accessing the
BrowserWindow’s getBounds method. Finally, the listener calls the BrowserWindow’s WebContents’
capturePage method, passing 0 for x and y and then the bounds object’s width and height. The second
argument for the capturePage method is the name of the callback function, imageCaptured, which is
invoked when capturePage completes its work.

The imageCaptured method, which expects a NativeImage object to be passed in, comes next.
NativeImage is a handy object provided by Electron, which allows developers the ability to create application
icons in the PNG and JPEG formats, to handle situations like this. Next, the method creates a variable named
desktop, a string that represents the path to the computer’s desktop folder, by calling app.getPath(‘desktop’).
Best practice would be to present a dialog that allows the user to choose where to place this file, but we can
take a shortcut here to save time. Check out the Dialogs chapter to get more information about Dialogs, and,
as always, ask the user where they want files to be saved.

Once we have the desktop path, we combine it with the title of the window and add “-captured-file.
png” to it. Please observe that the desktop path does not end in a trailing “/”, which is why we’ve added it
between the desktop path and the window title. And, then we call the NativeImage method toPNG(), which
converts the image of our window into a variable named png. Now that we have the png and the path to
where we’d like to save it, all we need to do is save the png file. This is where the FS module comes in. Using
the writeFileSync method and passing the path and the png, we trigger a write function that will either work
or throw an error.

As a side note, if you are planning on saving files with your Electron application, make sure you
familiarize yourself with the Node.js FS module and the writeFileSync and writeFile methods. We are using
writeFileSync here because it suits our purposes, but the writeFile method works asynchronously, which
may be more useful for avoiding user interface blocking when saving large files.

Let’s save our files and give the npm start command a go and see how it works. When the application
loads, click the “capture image” button. An image should be saved to your desktop.

We chose to click on the button in the window named “SECOND,” so these are our results (Figure 8-11).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

147

Awesome. Our code saved a file to the desktop and named it correctly. Open up the file so we can take a
look at it (Figure 8-12).

Figure 8-11. Capturing the window. Note the saved file on the desktop.

Figure 8-12. The captured image. Note the color of the button.

Chapter 8 ■ WebContents, sCreens, and LoCaLes

148

OK. This isn’t right. There are two problems with this file. First, why is the button blue? That is because
when we grabbed the image, the button was in the down position. So, the image is correctly showing the
button, but that isn’t what we want today. Also, notice that the background of the image is gray. Shouldn’t it
be white like it appears on the screen?

We can fix these problems fairly easily. First, inside our “ready” listener in the main.js file, place the
following updates in bold:

app.on('ready', () => {
 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN',
backgroundColor: '#FFF' })

 secondWindow = createWindow('index.html', { width: 400, height: 400, title: 'SECOND',
backgroundColor: '#FFF' })

})

Here, we’ve added the background color property to our options object so that when the window is
created it has a background color. Without this property being set, Electron thinks it doesn’t have a color and
makes the image appear to have a gray background (it is actually transparent).

Next, we want to grab the image of the window after the button has been released. There are a few
ways to do this. We choose to use JavaScript’s setTimout method to trigger the capturePage method. In the
“capture-window” listener, make the following changes in bold:

ipcMain.on('capture-window', event => {
 windowToCapture = BrowserWindow.fromId(event.sender.webContents.id)
 let bounds = windowToCapture.getBounds()
 // DO THIS TO CAPTURE THE SCREEN WITH UP BUTTONS
 setTimeout(() => {
 windowToCapture.webContents.capturePage({x: 0, y: 0, width: bounds.width,
height: bounds.height}, imageCaptured)

 }, 500)
})

This code waits half a second (that is what the 500 argument represents in milliseconds for
setTimeout()), and then calls the same function as before to capture the window image. Give it a try to see
your results (Figure 8-13).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

149

Alright! That is more like it! Great job!

The printToPDF Method
Like the capturePage method, the WebContents’ printToPDF method can be equally helpful. It is basically
the same setup as the capturePage exercise. Let’s get started.

Open your index.html file and add the following code in bold to add a second button:

<body>
 <h1>Hello World!</h1>
 <!-- All of the Node.js APIs are available in this renderer process. -->
 We are using Node.js <script>document.write(process.versions.node)</script>,
 Chromium <script>document.write(process.versions.chrome)</script>,
 and Electron <script>document.write(process.versions.electron)</script>.
 <div>

 <button id="captureButton">Capture PNG</button>
 <button id="printButton">Print to PDF</button>

 </div>
 </body>

Figure 8-13. Captured image of the window without the button down state

Chapter 8 ■ WebContents, sCreens, and LoCaLes

150

Then, in the renderer.js, update this line at the top of the file with the code in bold which will add a new
variable named windowToPrint.

let mainWindow, secondWindow, windowToCapture, windowToPrint

Now, add the following code in bold to listen to the click event and broadcast an event over Inter-
Process Communication to the Main Process:

const { ipcRenderer } = require('electron')

document.getElementById('captureButton').addEventListener('click',
captureButtonClickHandler)
document.getElementById('printButton').addEventListener('click', printButtonClickHandler)

function captureButtonClickHandler() {
 ipcRenderer.send('capture-window')
}

function printButtonClickHandler() {
 ipcRenderer.send('print-to-pdf')
}

Now, open the main.js file and add the following code to the bottom of the file:

ipcMain.on('print-to-pdf', event => {
 windowToPrint = BrowserWindow.fromId(event.sender.webContents.id)

 windowToPrint.webContents.printToPDF({}, pdfCreated)
})

function pdfCreated(error, data) {
 let desktop = app.getPath('desktop')
 let filePath = desktop + '/' + windowToPrint.getTitle() + '-printed.pdf'

 if(error) {
 console.error(error.message)
 }
 if(data) {
 fs.writeFile(filePath, data, error => {
 if(error) {
 console.error(error.message)
 }
 })
 }
}

Just like in the capturePage section of this chapter, we are listening for an event over IPC, and this time
it is the “print-to-pdf” event we broadcast from the Renderer Process. We create a BrowserWindow object
by leveraging the Event’s WebContents object’s id property and then call that BrowserWindow object’s
Webcontents’ printToPDF method. The first argument for the printToPDF method is an object that holds any
custom options you may like to set, options like margins of the page, the size of the page, and whether the

Chapter 8 ■ WebContents, sCreens, and LoCaLes

151

background of the window should be captured. We are sending along an empty object, which means we are
accepting the default options for this PDF file. Finally, like before, we use the FS module to write the file to
the desktop. Save your files and run the npm start command in the console to see your results, which should
look like the following screenshots (Figures 8-14 and 8-15).

Figure 8-14. Using printToPDF saved a file to the desktop

Figure 8-15. The PDF that was created using printToPDF

Chapter 8 ■ WebContents, sCreens, and LoCaLes

152

Getting Information about Screens
Another practical feature that your Electron may need to access is Electron’s screen module. The screen
module gives you information about the screen or screens attached to the user’s computer. You can also
use screen to listen for when new displays are added or removed, or when the displays change size. Some of
these items may seem unimportant for the kind of application you are planning to build, so this exercise will
take you through the process of using one of the practical features of screen: using the screen module to set
the location of a window.

We are going to continue working with this chapter’s code, but please take a moment to comment or
remove any of the console logs in your code so we can have a clean terminal window to work with.

As developers, we often work using multiple monitors attached to our computers. This is the case with
the computer we are using here, so we will take advantage of that fact. Let’s begin by adding a method to the
bottom of our main.js file.

// SCREEN FUNCTIONS AND EVENTS
function getScreenInfo() {
 let screen = electron.screen
 let currentScreens = screen.getAllDisplays()
 console.log('screens', currentScreens)
}

This method creates a variable named screen by referencing electron.screen, which is important to
remember. If we had created a constant at the top of this file to represent the screens module, we would have
received an error stating that electron.screens isn’t available until after the application is ready. This makes
sense: it is not until the application has initialized that it can access the computer’s screen.

Next, we use the getAllDisplays method to create the currentScreens variable. Then, we log the contents
of the currentScreens variable so we can take a look at what they look like in the terminal window.

Now we need to call this method. Inside our “ready” listener for our application, update the code in
bold to call getScreenInfo():

app.on('ready', () => {
 getScreenInfo()
 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN',
backgroundColor: '#FFF' })
 secondWindow = createWindow('index.html', { width: 400, height: 400, title: 'SECOND',
backgroundColor: '#FFF' })
})

Let’s take a look at our results by running the npm start command in the terminal (Figure 8-16).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

153

That’s a lot of data in the terminal window. Let’s print it out here so we can review it together.

screens [{ id: 709428740,
 bounds: { x: 0, y: 0, width: 1920, height: 1200 },
 workArea: { x: 0, y: 23, width: 1920, height: 1173 },
 size: { width: 1920, height: 1200 },
 workAreaSize: { width: 1920, height: 1173 },
 scaleFactor: 1,
 rotation: 0,
 touchSupport: 'unknown' },
 { id: 69731266,
 bounds: { x: 1920, y: 300, width: 1440, height: 900 },
 workArea: { x: 1920, y: 300, width: 1440, height: 900 },
 size: { width: 1440, height: 900 },
 workAreaSize: { width: 1440, height: 900 },
 scaleFactor: 2,
 rotation: 0,
 touchSupport: 'unknown' },
 { id: 709428739,
 bounds: { x: -1920, y: 0, width: 1920, height: 1200 },
 workArea: { x: -1920, y: 0, width: 1920, height: 1200 },
 size: { width: 1920, height: 1200 },
 workAreaSize: { width: 1920, height: 1200 },
 scaleFactor: 1,
 rotation: 0,
 touchSupport: 'unknown' }]

Figure 8-16. Information about the screens appears in the terminal window

Chapter 8 ■ WebContents, sCreens, and LoCaLes

154

First, note that the screen variable is an array of three objects. Those three objects represent the three
monitors, or screens, attached to this computer. Each of these objects has properties of bounds, workArea, size,
workAreaSize, scaleFactor, rotation, and touchSupport. That is a lot of information. Take a look at the bounds
property of each object. Note that the coordinates do not overlap. For instance, the three x properties are 0,
1920, and -1920. That means that screen 1 is in the middle at 0, screen 2 is to the right of screen 1 at 1920, and
screen 3 is to the left of the screen 1 at -1920. Hopefully that makes sense. But, for practical purposes, this is way
too much information, so let’s update our code and use a different method to narrow down our scope.

Update the getScreenInfo method to match the following code. We are commenting out our original call
to getAllDisplays and adding a call for getPrimaryDisplay.

// SCREEN FUNCTIONS AND EVENTS
function getScreenInfo() {
 let screen = electron.screen

 let primaryScreen = screen.getPrimaryDisplay()
 console.log('prime', primaryScreen)
}

Now, let’s give the npm start command a try and see what we get (Figure 8-17).

Figure 8-17. Information about the primary display appears in the terminal window

Chapter 8 ■ WebContents, sCreens, and LoCaLes

155

OK, so, the getPrimaryDisplay method returns on screen. Nice. Same properties as the objects we
received from the getAllDisplays, only this object represents the screen the user has designated as their main
screen (or, in this case, the screen where the macOS dock is located). Let’s use this information to position
our second screen.

First, inside our getScreenInfo method, let’s comment two lines and return the bounds of the
getPrimaryDisplay so we can use it later. Make the following updates to the method:

// SCREEN FUNCTIONS AND EVENTS
function getScreenInfo() {
 let screen = electron.screen

 return screen.getPrimaryDisplay().bounds
}

Now, we need to put that information to use. Inside the “ready” listener, make the following changes
in bold:

app.on('ready', () => {
 let screenBounds = getScreenInfo()

 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN',
backgroundColor: '#FFF' })

 let newX = screenBounds.width - 400
 let newY = screenBounds.height - 400
 secondWindow = createWindow('index.html', { x: newX, y: newY, width: 400, height: 400,
title: 'SECOND', backgroundColor: '#FFF' })
})

What we are doing here is placing the secondWindow into the bottom right corner of our primary
screen by using a little Math and updating our window options. First, we create a variable named
screenBounds and call the getScreenInfo method to set it. Then we take the width property of screen bounds
and, since we know that the width of the second window is 400 pixels, we subtract the window’s width. Then,
we do the same with height. That gets us the new x and y coordinates that we use to position our second
window. It is important to remember on macOS, when the dock is locked on the screen and window cannot
overlap the dock when it is resized, and therefore the bounds will never equal that of the primary screen.
Also, remember from the BrowserWindow chapter that we must use both the x and y properties with setting
the options for a window; otherwise the properties are ignored.

Run the npm start command and see where the second window displays (Figure 8-18).

Chapter 8 ■ WebContents, sCreens, and LoCaLes

156

Finding Locales
The final practical feature we will review in this chapter is Electron’s Locales feature. Locales are used
to discover the language settings on the computer being used. Internationalization, or i18n is so named
because the word begins with an “I,” ends in an “n,” and has 18 characters in between; and localization, or
l10n, is important because these days, an Electron application can easily be distributed through the Internet
to users all around the world. Wouldn’t it be nice to display text and menu items in the language preferred by
the user? Of course, you would since you like your users and want them to enjoy using your application.

How you implement your i18n features will be up to you. The Web application you are displaying in
your Renderer Process probably has modules available to implement i18n, but you still need to detect
it. Sure, you can check the window.navigator.userLanguage in the Renderer Process, but to create the
application’s menus are created in the Main Process. Discovering the locale of the system your application is
running on in the Main Process is essential.

For now, let’s add the following line in bold to our “ready” listener.

app.on('ready', () => {
 console.log(app.getLocale())

 mainWindow = createWindow('index.html', { width: 800, height: 600, title: 'MAIN',
backgroundColor: '#FFF' })

 let newX = screenBounds.width - 400
 let newY = screenBounds.height - 400

Figure 8-18. The second window appears in the bottom corner

Chapter 8 ■ WebContents, sCreens, and LoCaLes

157

 secondWindow = createWindow('index.html', { x: newX, y: newY, width: 400, height: 400,
title: 'SECOND', backgroundColor: '#FFF' })

})

Now, run the npm start command and take a look at your terminal window (Figure 8-19).

On this computer, the log entry in the terminal window says en-US, which, of course, means that this
computer has been set up to display English and things like currency and units of measurement based on
how people who live in the United States would see them. In the Electron documentation, you will find a
long list of languages that can be discovered using getLocale(). Now that you know how to access the locale,
there is absolutely no reason to not get internationalization running for your application.

Summary
In this chapter, we took a look at webContents, screen, and Locales. We learned how to access the webContents
object’s methods like getTitle() on BrowserWindow objects. We created listeners for important webContents
events. We learned how to create an image and PDF file from a window using the webContents object’s
capturePage() and printToPDF() methods. We learned how to get information on all the displays attached to
the user’s computer and how to identify the primary display. And, finally, we learned how to discover what
locale the user’s computer has been set up to use. We hope that you found this information helpful.

Figure 8-19. The locale appears in the terminal window

159© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_9

CHAPTER 9

The Dock Icon on macOS

The dock is the row of applications that appear at the bottom of your main screen in macOS (Figure 9-1).
The dock allows you to see icons for applications you commonly use; applications that are active; and, of
course, the lovely trash can. The dock has an option to be hidden, which is a setting some users may choose.
When the dock is hidden, you can get the dock to appear by moving your mouse to the area it normally sits.
Application icons that appear in the dock can bounce when the application needs your attention. They can
also inform you of useful events. For instance, the Mail application icon will show you how many unread
email messages there are in your inbox.

Each of these dock features are expected features of your application, and the folks at GitHub have made
these features part of Electron. This chapter focuses on features only available with macOS applications. If you
are never intending to create applications for macOS, we’ll understand if you choose to skip this chapter.

Getting Started
As with each of these examples, we are using the Electron Quick Start example. We will use git clone to create
a new copy of the quick start in a new folder, in this case named electron-dock-example.

 1. Open terminal and navigate to the folder where you would like to place
your code:

git clone https://github.com/electron/electron-quick-start electron-dock-example

 2. Change your active directory to electron-quick-start:

cd electron-dock-example

Figure 9-1. The dock

https://doi.org/10.1007/978-1-4842-2826-5_9

Chapter 9 ■ the DoCk ICon on maCoS

160

 3. Install the dependencies:

npm install

 4. Reset Git:

git init

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

Let’s take a moment to modify this package.json file to match our own by updating some nodes.

 1. Change the name node to "electron-dock-example."

 2. Change the version number to "0.0.1" since we are just starting out.

 3. In the description let’s use something like "A sample Electron application to
demonstrate macOS dock features."

 4. Remove the repository node. If you decide to put your results in a repository you
can re-add this node with the correct path.

 5. Keywords can be "Electron," "macOS," "dock," "example.".

 6. "author": Your name goes here.

 7. Let’s change the “license” node to "MIT."

Now that we have our electron-dock-example project created and have made certain that it runs, let’s
start making some changes to the code.

The Application’s Dock Icon
At this point you have the quick start project installed in the electron-dock-example folder and have tested
it to make sure it works. Alright, then, let’s get started with the simplest of features: setting the dock icon for
your application.

The first thing we need to do is create a few icons. We know we’re terrible for asking a developer to
create graphics. But we’re really not asking all that much. We need three icons for this exercise. Apple has
guidelines for application icons located at https://developer.apple.com/macos/human-interface-
guidelines/icons-and-images/app-icon/ (Figure 9-2).

https://developer.apple.com/macos/human-interface-guidelines/icons-and-images/app-icon/
https://developer.apple.com/macos/human-interface-guidelines/icons-and-images/app-icon/

Chapter 9 ■ the DoCk ICon on maCoS

161

As a side note, if this URL works when you read it, great. Unfortunately, Apple enjoys changing their
guidelines web site often. If the link does not work, do a search on the site for “app icon,” and that should get
you to a page like this one.

Another side note: you haven’t given Apple’s Human Interface Guidelines site a visit? If you are building
applications for Apple’s operating systems, you really should spend some time with this documentation. You
could save yourself some heartache.

The guidelines state that graphics for application icons can range in sizes from 16px x 16px to 1024px
x 1024px, and you should create graphics for all these sizes for your published application. For our
purposes, we need three graphics at 1024px x 1024px. They can be simple, single-color graphics as long as
you can tell the difference between each of them.

If you are afraid of making graphics, visit the book's page on apress.com to access the graphics created
for this exercise: 1.png, 2.png, and 3.png. Create a new folder on the root of the project named “assets” and
place the files there.

Open your favorite code editor and select the main.js file. Inside the createWindow method, find the line
where the BrowserWindow object is invoked and add the icon property to the argument object like we show here:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600, icon: path.join(__dirname,
'assets/1.png')})

Figure 9-2. Apple’s Human Interface Guidelines Web site

Chapter 9 ■ the DoCk ICon on maCoS

162

Now, run the npm start command. The result is shown in Figure 9-3.

Wait. That’s not our icon, is it? No. That definitely isn’t our icon. What did we do wrong? Nothing, really.
If you are working on a Windows or Linux machine, you’ve done nothing wrong. This is how you set the icon
for a window on those platforms, but not the icon in the Mac OS X dock. Let’s leave this code as it is.

Now let’s change the code to set the icon in the macOS dock for real. We get access to the dock through
Electron’s app module. At the bottom of the createWindow method, place this line of code
app.dock.setIcon(path.join(__dirname, 'assets/2.png')) inside the if statement testing whether you are on
macOS like it appears below. In this line of code, we are accessing the app module's dock object and setting
the icon.

// Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
 if (process.platform === 'darwin') {
 app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
 }
}

Run the npm start command and take a look at your dock. If you are using the graphics we provided,
you should see a yellow smiley face staring back at you from the dock, as shown in Figure 9-4.

Figure 9-3. Setting the icon property when creating a BrowserWindow object does not set the icon on macOS.

Chapter 9 ■ the DoCk ICon on maCoS

163

Making the Dock Icon Bounce
Now that we have our icon appearing in the dock, let’s make it dance. One of the most important things the
dock icon can do is to get the user’s attention by bouncing. A bouncing dock icon can be seen even if the
dock is hidden. There are two types of bouncing: informational and critical. The default bouncing type is
informational, which means that the icon will bounce for one second. A bounce set for critical will make the
icon bounce until either the application becomes active or the bouncing has been canceled.

Let’s make our icon bounce. Add the following line of code in bold to your createWindow method:

app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
app.dock.bounce()

Run the npm start command in your terminal and see what happens.
Hang on. Nothing happens. You haven’t done anything wrong. The point of this step in our exercise is

that the icon will not bounce if the application is focused. There is no reason for the dock to try to get your
attention if the application is active. So, to test bouncing out we need to change some code and rely upon the
speed of your reflexes.

First, let’s make the icon bounce inside a setTimeout method. Change the line we just added with the
following code:

app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
setTimeout(() => {
 app.dock.bounce()
}, 5000)

This code essentially says to make the icon bounce after five seconds.
Second, to see the application’s icon bounce in the dock, we need to make sure that the application is

not focused. As in, we need to make sure that our application isn’t the application in the foreground. This is
where your reflexes come in. When you run the npm start command this time, as soon as the application is
visible, click on your desktop. This will make the macOS Finder come to focus. Then you can see your icon
bounce. Give it a try.

How did that work for you? Did you see your application’s icon bounce high once? Awesome, right?
Let’s update our code so we don’t have to speed click anymore. One of the events we have access to for

our window is the blur event. That is, the event that is emitted when the application goes out of focus. We
can use that event to trigger our bounce call.

Figure 9-4. The application icon has been set using app.dock.setIcon

Chapter 9 ■ the DoCk ICon on maCoS

164

Update your code:

 app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
 mainWindow.on('blur', () => {
 setTimeout(() => {
 app.dock.bounce('critical')
 }, 5000)
 })

So, instead of the bounce call being made after five seconds immediately after the application is
launched, the call will be made five seconds after the blur event is fired. We’ve also added the 'critical'
argument to our bounce call. This means that when the icon starts bouncing, it won’t stop until the
application becomes focused again.

This change makes our example more like a real application scenario: our application becomes inactive
(you’ll still have to activate the Finder by clicking the desktop), and an activity inside our application needs
the user’s attention (in this case, the timer is triggered). When you run the npm start command in the
terminal and click the desktop, after five seconds the icon will bounce and continue to bounce. Click on the
application or the dock icon to activate the application. The icon stops bouncing. Click on the desktop again,
and after five seconds the icon will begin bouncing again. Give it a try.

Earlier we mentioned canceling a bouncing dock icon, so we should mention that you typically will
not need to manually cancel a bouncing dock icon. Getting the user’s attention typically results in the user
activating the application, which automatically cancels a bouncing dock icon. Nevertheless, there is one
scenario where canceling a bouncing icon could be necessary. Suppose your application is reliant upon a
connection to the network, and while your application is in the background the network connection is severed.
After the change in connection is detected, the application will make the dock icon bounce using the critical
argument so the dock icon will bounce until the application comes to the foreground. Suppose the application
continued to detect the connection status and the connection is restored. In this case, when the connection
is reestablished the app.dock.cancelBounce method is called to stop the bouncing. If you choose to use
cancelBounce, be aware that you will need to capture the id of the dock icon when you create it and pass that id
as an argument for the cancelBounce method. While we won’t be using the cancel method in this example, we
wanted to inform you of how to cancel a bouncing dock icon when necessary.

Changing the Dock Icon
Now let’s take one more step that can be helpful. Remember that third image we put into our assets folder?
Let’s put that to use. Make the following updates to your code using the code in bold:

 app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
 mainWindow.on('blur', () => {
 setTimeout(() => {
 app.dock.setIcon(path.join(__dirname, 'assets/3.png'))
 app.dock.bounce('critical')
 }, 5000)
 })
 mainWindow.on('focus', () => {
 app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
 })

Chapter 9 ■ the DoCk ICon on maCoS

165

These changes allow us to change the icon when we make the icon bounce. See where we set the icon
to the 3.png file? Changing the icon is another way to let the user know the application needs their attention,
but it can also be used to show that the application has entered a specific condition. For instance, when the
Cisco AnyConnect Secure Mobility Client application, a virtual private network (VPN) application, connects
to a network, the application icon can change from a normal icon to one that indicates you are connected to
the VPN (Figure 9-5).

Give this code a try by entering npm start into your terminal; click the desktop; and in five seconds you
will see our red, sad face icon bouncing in the dock.

Dock Icon Badges
Great. Now we know how to set the application icon in the dock and make it bounce. What else can we make
it do? How about show a badge? You’ve seen badges before. On macOS, they appear as a red dot atop your
dock icon, typically showing a number. The Mail application will show a badge to indicate how many unread
messages are in your inbox. Slack will show a badge to indicate you have new messages in one of your channels.

The Electron team have made it fairly simple to add a badge to your application icon. The
app.dock.setBadge method takes a string argument to set the text in your badge. Let’s give this a try by
updating our code:

app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
mainWindow.on('blur', () => {
 setTimeout(() => {
 app.dock.setBadge('!')
 app.dock.setIcon(path.join(__dirname, 'assets/3.png'))
 app.dock.bounce('critical')
 }, 5000)
})
mainWindow.on('focus', () => {
app.dock.setBadge('')
 app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
})

This code sets the badge to show with an exclamation point inside our ‘blur’ event listener and resets
it inside the ‘focus’ event listener. Note that we pass an empty string - app.dock.setBadge('') - to reset the
badge and make the red dot disappear. You can experiment with other text if you like, but Apple’s guidelines
suggest keeping it simple and to use one character or a number. If your application needs to let the user
know that there are hundreds of messages waiting for them, for instance, you may wish to make the badge
text “99+”, or do what the folks at Slack do and set the badge to “*”.

Figure 9-5. Images captured of different dock icons used by a popular VPN application

Chapter 9 ■ the DoCk ICon on maCoS

166

Let’s take this example one step further and change the badge text based on reading the current badge
text. Update the code to match the following code:

app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
mainWindow.on('blur', () => {
 setTimeout(() => {
 let badgeString = app.dock.getBadge()
 if(badgeString === '') {
 app.dock.setBadge('1')
 } else {
 app.dock.setBadge((parseInt(badgeString) + 1).toString())
 }
 app.dock.setIcon(path.join(__dirname, 'assets/3.png'))
 app.dock.bounce('critical')
 }, 5000)
})
mainWindow.on('focus', () => { app.dock.setIcon(path.join(__dirname, 'assets/2.png'))
})

Inside the "blur" event listener we are setting a badgeString variable to be equal to the text of the
current badge using the app.dock.getBadge method. Then we change the badge based on that text in the
if…else statement. If the app.dock.getBadge returns an empty string, we set the badge to a string containing
the number 1. Otherwise, we run app.dock.setBadge((parseInt(badgeString) + 1).toString()) that
updates the badge by converting the current badge string to a number adding 1 to that number and then
converting that number to a string. Keep in mind that setBadge expects an argument and that argument
must be a string.

The expected behavior for this updated code is that we will start off without a badge showing, and every
time the application receives a blur event, the badge count will update by one. Run the npm start command
in the terminal and see this code in action! When the application is not the focused application, your dock
should have an icon that looks like Figure 9-6.

Did it work as expected? Great. If not, make sure your blur and focus listeners are properly set as they
are in the code sample above. You may debug your code by adding some console.log statements to make it
clear that your listeners are working. Remember, the results of console.log statements placed in the Main
Process appear in the terminal window.

Figure 9-6. Our dock icon as it appears with the application in the background and with a badge set to 2

Chapter 9 ■ the DoCk ICon on maCoS

167

Summary
Dock icons do more than just show macOS users that your application is running. They bounce to get the
user’s attention. They change to indicate a change in application state. They give users more information
about the application by showing badges. These application features are expected if you are building an
application for macOS, so knowing how to properly use the dock icon is important.

169© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_10

CHAPTER 10

Shell

Electron’s shell functionality assists developers with helpful ways to interact with the desktop environment.
The methods within shell are designed as shortcuts to assist us in identifying and opening that files our
application cannot (and should not) open itself. Your application can open files in the background, which
is usually how you can use shell. But you may wish to allow your users to open files themselves by giving
them access to a File ➤ Open menu. You may wish to open files with your application for various reasons: to
open saved preference files saved by the application, to open a user’s files saved earlier by the application, or
to load data for your application saved as flat files (JSON or text files). Also, keep in mind that the Renderer
Process of your application is essentially a Web browser, so you can load any HTML files. When your
Electron application creates or references files or URLs, the people who use your applications expect the
application to assist them with locating and opening those files or URLs. With shell, Electron makes these
tasks easy for developers and users.

Best Practice: While Electron’s shell functions are available in both the Main and Renderer processes,
we recommend that you use it in your Main process so that you can better control its use. Use Inter-Process
Communication (IPC) as a bridge between your Renderer process and Main process to make these
functions work.

In this chapter, we’ll start with the Electron Quick Start project and add the Electron shell methods
beep, showItemInFolder, openItem, and openExternal.

Getting Started
As with each of these examples, we start off using the Electron Quick Start project. We will use git clone to
create a new copy of the quick start in a new folder, in this case named electron-shell-example.

 1. Open terminal and navigate to the folder where you would like to place your code:

git clone https://github.com/electron/electron-quick-start electron-shell-example

 2. Change your active directory to electron-quick-start:

cd electron-shell-example

 3. Install the dependencies:

npm install

 4. Reset Git:

git init

https://doi.org/10.1007/978-1-4842-2826-5_10

Chapter 10 ■ Shell

170

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

Let’s take a moment to modify this package.json file and match our own by updating some nodes.

 1. Change the name node to “electron-shell-example.”

 2. Change the version number to “0.0.1” since we are just starting out.

 3. In the description let’s use something like “A sample Electron application to
demonstrate shell features.”

 4. Remove the repository node. If you decide to put your results in a repository you
can change or re-add this node with the correct address.

 5. Keywords can be “Electron,” “shell,” and “example.”

 6. “author”: Your name goes here.

 7. Let’s change the “license” node to “MIT”.

Now that we have our electron-shell-example project created and have made certain that it runs, let’s
start making some changes to the code.

Making the System Alert Sound
Let’s begin with the most simple of the shell methods, shell.beep – which prompts the computer to make the
system beep sound. Open the main.js file in the root of the project and add this line to the top of your file:

const { shell } = require('electron')

This syntax, using the module name shell inside curly braces, gives you access to Electron’s shell
package and now you can add the methods by referencing the shell variable. Let’s give that a try.

At the bottom of your createWindow method, add the shell.beep call:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

 // Open the DevTools.
 // mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })
 shell.beep()
}

Chapter 10 ■ Shell

171

Let’s test this out by opening the Terminal application and entering npm start to load our application.
Did you hear the beep? Cool, right? OK, maybe not so cool, but it works. If you did not hear the beep, please
make sure that your computer’s sound is not muted or that you don’t have headsets that you are not wearing
plugged in. We’d use shell.beep if we wanted to get the user’s attention along with something like making the
dock icon bounce. Using the system’s beep can be annoying, so be responsible and use it sparingly.

Let’s take shell.beep one step further and add it to the renderer.js file, too, like so:

// This file is required by the index.html file and will
// be executed in the renderer process for that window.
// All of the Node.js APIs are available in this process.

const { shell } = require('electron')

shell.beep()

Now, run npm start in Terminal and you should hear two beeps: one from the Main process and one
from the Renderer process. Like we said earlier, we don’t believe using shell.beep in the Renderer process is
a good idea - we like keeping our system integration in the Main process - but we wanted to make sure you
know how to do it if you found a proper use case.

Showing Files in the Operating System
Let’s move on to something more practical like revealing a file in the user’s operating system. This is a fairly
practical feature that your application may need. Suppose as part of a process in your application a file is
generated, and you would like to present that file in its containing folder. This is the method you would use
to make that happen.

Before we start, make sure that you remove both of the shell.beep calls we just created because, like we
just said, beeping can be annoying.

First, let’s create a new text file so we can test out this method. In your code editor, create a new file on
the root of the project and name it test.txt and place some text inside of it, say, “shell is swell.”

Now that we have a test file we can use shell.showItemInFolder. In your main.js file, update the code
inside the createWindow method to look like this:

let filePath = app.getAppPath() + '/test.txt'
shell.showItemInFolder(filePath)

In this code we’re using the Main process app package’s getAppPath method to get the application
path so that we can locate our test.txt file. We add ‘/’ and the file name so that the filePath variable becomes
a string representing the file we would like to use. The leading ‘/’ is important because getAppPath does
not end in a “/” and without it, the path will be incorrect and the file will not be found. We pass the filePath
variable in the next line as the path argument for our showItemInFolder method.

Before you start the application again, make sure to check if the folder you want to open isn’t already
open so you aren’t disappointed in the results. Now, when you run npm start from Terminal, you will see the
folder and file, as shown in Figure 10-1.

Chapter 10 ■ Shell

172

Please notice that the correct folder is open and the correct file is selected, highlighting it to the user.
Mission accomplished!

Opening Files with the Operating System
Now that we’ve located a file in our operating system, let’s build off that feature to open that file using shell.
openItem method. This method allows you to open files in the assigned application for the file type. For
instance, suppose your application creates a text file for the user. To open that file for the user, you would use
shell.openItem. We’re going to continue using the test.txt file for this example, and in our system the file will
open in the default text editor on Mac OS X.

Update your code with the following highlighted updates:

let filePath = app.getAppPath() + '/test.txt'
shell.openItem(filePath)

Now, run npm start in Terminal and you will see this method in action (Figure 10-2).

Figure 10-1. This image shows shell.openItemInFolder opening a folder and highlighting a file in the Mac OS
X Finder

Chapter 10 ■ Shell

173

Notice that our Electron application has opened our text file with TextEdit. This is useful for common
system text and image files, files that already have an assigned default application. One common file type that
shell.openItem doesn’t work well with is HTML files. That is where shell.openExternal comes in. Best practice
for opening a file with an external application should require user interaction. If the user hasn't used the File ➤
Open menu item or a specific button in your Renderer Process, let the user know a file will be opened.

Opening HTML Files with the Operating System
Opening HTML files in Electron is a little tricky. You see, Electron is essentially a browser so opening an HTML
file using shell might be a little confusing: are we opening the HTML file in Electron or in a browser? If you open
an HTML file in your current Chromium window, your application will disappear while you could provide a
back button, and restarting your application from the point you left may be difficult. So, shell.openItem doesn’t
open HTML files. We need to use shell.openExternal and it will open in your default browser.

Before we start this example, we need to create another file on the project root, this time naming it test.
html and entering the text “test html file” into the file. In this example, we’re not actually using a file coded in
HTML, just a file with the .html file extension.

Now we can update the main.js file to match the following following code:

 let filePath = 'file:///' + app.getAppPath() + '/test.html'

 shell.openExternal(filePath)

Figure 10-2. This image shows shell.openItem opening a text file with the system’s default text editor, TextEdit

Chapter 10 ■ Shell

174

In this code we’ve added two lines. In the first line we’re creating the variable filePath but this time we
are creating a string in the URL format prefixing it with “file:///” so that our browser understands that this
file is on our file system and not on a server somewhere on the Internet. If we want to open a URL online, we
could set this string to a typical URL like https://electron.atom.io/ or any real address.

Best Practice: An Electron application has full access to the user’s system just like any desktop
application. As a Web developer, working with the imbedded security of a browser may make you
ill-prepared to work in the desktop environment. Follow security guidelines for desktop application
development for the platforms on which your application will be running. Do no harm.

Run the npm start command in Terminal to see the file opened by your browser. See how our simple
HTML file is opened and displayed in Chrome, our default browser (Figure 10-3).

There are some caveats to this scenario, though. If you are going to use shell to open HTML file, we
recommend that you limit the HTML file to use simple syntax and be careful of using external CSS and image
files without doing proper testing in multiple browsers on target platforms. Each browser handles “file:///”
addresses a little differently, so if you keep things simple this might work for you.

Summary
In this chapter we took a look at a few of the methods that are part of Electron’s shell package: shell.beep -
a simple command to make the system beep sound occur; shell.openItemInFolder – the method that
allows your application to display a file in the user’s operating system; shell.openItem – the method to use
when you want your application to open a file with the default application for that file type; and
shell.openExternal – the method that opens files and Internet URLs. These shell methods could be necessary for
any application. We recommend using shell in the Main process to keep your system integration in one place.

Figure 10-3. This image shows the result using shell.openExternal to open an HTML file

https://electron.atom.io/

175© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_11

CHAPTER 11

Online/Offline Detection

These days, developers tend to assume that the people using their applications are always online. One
could even assume that just because someone is using a desktop or laptop computer, they will be within
reach of an Ethernet cable or Wi-Fi signal. Reality teaches us that this assumption isn’t correct and that as a
developer of desktop applications we need to plan accordingly.

Using the cloud to store the artifacts of a user’s activities is a normal condition of modern web
applications. You would assume correctly that if the user has logged into your application, then they
are online. But when you deploy code to the desktop using Electron, the application code is inside the
executable file and not on a server. If you are relying upon a connection to the Internet, detecting whether
that connection is live is a fundamental task.

In this chapter, we will create a sample application that checks to see if the computer that the application
is running on is online and inform the user that a change has occurred. Through the process of creating this
sample, we will look at various techniques of online detection and create a solution that utilizes both the main
and the renderer processes. A typical Node developer may try to put everything inside the Main Process.
A typical web developer may try to put everything inside the Renderer Process. In this chapter, we believe that
you will see that if you leverage the features of both processes, you will achieve a much more elegant solution.

Getting Started
As with each of these examples, we are using the Electron Quick Start example. We will use git clone to create
a new copy of the quick start in a new folder, in this case named online-detection-example. First, open the
terminal and navigate to the folder where you would like to place your code.

git clone https://github.com/electron/electron-quick-start online-detection-example

Next, change your active directory to online-detection-example.

cd online-detection-example

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

https://doi.org/10.1007/978-1-4842-2826-5_11

Chapter 11 ■ Online/Offline DeteCtiOn

176

Let’s take a moment to modify this package.json file to match our own by updating some nodes.

 1. Change the name node to "online-detection-example."

 2. Change the version number to "0.0.1" since we are just starting out.

 3. In the description let’s use something like "A sample Electron application to
demonstrate online detection."

 4. Remove the repository node. If you decide to put your results in a repository, you
can change re-add this node with the correct address.

 5. Keywords can be "Electron," "online," "detection," "sample."

 6. "author": Your name goes here.

 7. Let’s change the “license” node to "MIT."

Using the Renderer Process to Detect Online Status
Typically, in any web application you would use an event listener to detect changes in online status. It would
look something like this:

window.addEventListener('online', updateOnlineStatus)
window.addEventListener('offline', updateOnlineStatus)

This example code is waiting for the window object to emit either an online or offline event, and when
either of these events occur the updateOnlineStatus function is called. It is a fairly simple technique to
assemble, so let’s get started.

First, we’ll set up our HTML and CSS files. Inside our index.html file let’s change the body tag to the
following code:

<body>
 <div class="container">
 <header>
 <h1>Are You Online?</h1>
 <div class="button-holder">
 <button id="checkStatusButton" type="button">Check Status</button>
 </div>
 </header>
 <section class="main">

 <h2 id="h2-online">You are Online</h2>
 <h2 id="h2-offline">You are NOT Online</h2>

 </section>

 <footer></footer>
 </div>
</body>

This code separates the body tag into three sections: header, main, and footer. Inside the header tag we
are placing an h1 for the title and a button with the id of “checkStatusButton.” We will leave the footer empty
of content, but we will style it in our CSS.

Chapter 11 ■ Online/Offline DeteCtiOn

177

The section tag is where our main content will reside. It holds three h2 elements with id attributes.
Those ids will be used to show or hide these h2 elements depending upon the current online status.

Now that we have the basic structure created for our example, we need to create CSS for layout and
styling. First, we need to create a CSS file, then we will add a link to our index.html file so it will be used.

First, in the root of your project, create a new file and name it “index.css.”
Here’s code for the index.css file:

html,
body {
 padding: 0;
 margin: 0;
}

body {
 font-family: 'Helvetica Neue', Helvetica, sans-serif;
}

header {
 position: absolute;
 width: 100%;
 height: 20px;
 top: 0;
 left: 0;
 padding-left: 15px;
 padding-top: 5px;
 background-color: #CCC;
 border-bottom: 1px solid #999;
}

header h1 {
 font-size: 12px;
 font-weight: bolder;
 margin: 0;
 padding: 0;
}

.button-holder {
 position: absolute;
 right: 25px;
 bottom: 5px;
 width: auto;
 height: auto;
 padding-top: 5px;
}

section {
 width: 100%;
 margin-top: 30px;
}

Chapter 11 ■ Online/Offline DeteCtiOn

178

section h2 {
 display: none;
 font-size: 48px;
 font-weight: 100;
 margin: 0;
 padding: 0;
 text-align: center;
}

footer {
 position: absolute;
 left: 0;
 bottom: 0;
 width: 100%;
 height: 10px;
 padding-bottom: 5px;
 border-top: 1px solid #999;
 background-color: #CCC;

}

We are keeping the CSS simple here, but the highlights are the following:

•	 The .button-holder tag positions the button to the right side in the header.

•	 section and section h2 are used to style our main section.

•	 footer gives us a nice gray bar.

Now that we have our CSS file, let’s link to it in our project. Open the index.html file and add the
following highlighted code to the head tag:

<head>
 <meta charset="UTF-8">
 <title>Are You Online?</title>
 <link rel="stylesheet" type="text/css" href="index.css">
 </head>

If we run our project now, it looks like Figure 11-1.

Chapter 11 ■ Online/Offline DeteCtiOn

179

Notice that you don’t see anything in the main container. That is because our CSS for section h2 tag is
using display: none; so that all of them are hidden. Now we can add some JavaScript to detect whether our
application is online and reveal the appropriate h2 element.

Open the renderer.js file. It currently has commented lines at the top of the file. We’ll delete those
comments and enter the following code:

const updateOnlineStatus = () => {

 if(navigator.onLine) {
 document.body.style.backgroundColor = 'green'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'block'
 document.getElementById('h2-offline').style.display = 'none'
 } else {
 document.body.style.backgroundColor = 'red'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'none'
 document.getElementById('h2-offline').style.display = 'block'
 }
}

Figure 11-1. The example’s empty UI

Chapter 11 ■ Online/Offline DeteCtiOn

180

window.addEventListener('online', updateOnlineStatus)
window.addEventListener('offline', updateOnlineStatus)
document.getElementById('checkStatusButton').addEventListener('click', updateOnlineStatus)

updateOnlineStatus()

At the top of this code block is our updateOnlineStatus method. This is where all the action takes place.
The status variable is created by checking whether navigator.onLine method returns a string of 'online'
or 'offline'. From there the code branches with code that changes the styles of the corresponding h1
tags to make the correct message appear as well as the background color of the body tag. At the bottom of
this code block we have the event listeners. There is one each for the “online” and “offline” events that call
our updateOnlineStatus method, and one for the “click” event on the header button. Finally, we call the
updateOnlineStatus method that gets our application going.

Now, if you look at the bottom of our index.html file you will see that the renderer.js file is already being
referenced:

<script>
 // You can also require other files to run in this process
 require('./renderer.js')
</script>

If we launch our application using npm start (and you are online), you should see Figure 11-2.

Figure 11-2. The example’s UI showing the computer is online

Chapter 11 ■ Online/Offline DeteCtiOn

181

And if you disconnect from your Internet, you should see Figure 11-3.

We can take this sample one step further by adding an additional feature: Notification. The Notification
API is part of the HTML specification and an excellent choice of a UI element for informing the user of
important information. Using a Notification also allows us to inform the user of a change in online status
when our application is not in the foreground.

We can create a Notification to our code at the bottom of our updateOnlineStatus method:

const updateOnlineStatus = () => {
 let status = navigator.onLine ? 'online' : 'offline'
 console.log(status)
 if(navigator.onLine) {
 document.body.style.backgroundColor = 'green'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'block'
 document.getElementById('h2-offline').style.display = 'none'
 } else {
 document.body.style.backgroundColor = 'red'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'none'
 document.getElementById('h2-offline').style.display = 'block'
 }

Figure 11-3. The example’s UI showing the computer is not online

Chapter 11 ■ Online/Offline DeteCtiOn

182

 let note = new Notification('You are ' + status , { body: 'You are now ' + status })
 note.onclick = () => {
 console.log('Notification clicked!')
 }
}

The new code for this method begins with a let note, which creates a variable as a Notification object that
has an argument that is a simple bit of text. The next lines create a console message when the notification is
clicked. This is a simple example of using the HTML5 Notification API, which comes with Chromium.

Now when you turn on or off your Internet access, you will see a notification in the upper-right corner of
your screen (Figure 11-4).

Pros and Cons of the Renderer-Only Solution
This example works great! It uses the Window and Notification APIs available in our Chromium-based
Renderer Process and works reliably when we manually change our own Internet access.

But there is one major drawback to this solution: LieFi. This is the condition that many people get into
when they are able to connect to a router, but the router is not connected to the Internet. You see that you
have a 5-bar connection, but you can’t load anything from the Web. Your connection is a lie. If you are not
worried about this condition, feel free to use and improve upon this sample. Otherwise, let’s take a look at a
solution that uses the Main Process.

Figure 11-4. A notification has appeared in the upper-right corner of the screen

Chapter 11 ■ Online/Offline DeteCtiOn

183

The Main Process-Only Solution
Since our Renderer-Only Online/Offline detection may not be enough to satisfy our requirements, we should
try using the Main Process. We need a way to get Node to check if there is an active link to the Web. To do
this, we need to add a module to our project. Luckily, GitHub user @sindresorhus has created a module
named is-online (https://github.com/sindresorhus/is-online). If you don’t know, @sindresorhus is
the person who hosts Awesome Electron (https://github.com/sindresorhus/awesome-electron), a page
of helpful Electron links. Take a look when you get the chance. The is-online module pings root servers and
if it gets a response within 2 seconds, it knows your application is really online. No lies here. We will need
to create an interval, a loop of code that gets called at a set period, to call is-online. Finally, we will need
to tell our renderer process what the current status is so it can be displayed using Electron’s Inter-Process
Communication (IPC). So let’s get started.

To install is-online, we need to run the following command in your terminal application from the root of
our project:

npm install is-online --save

Take a look at your package.json file at the root of your project. There should be a new dependencies
node and it should look like this:

"dependencies": {
 "is-online": "^7.0.0"
}

At the time of this writing, version 7.0.0 was available. You may see a higher version number, but that is
good. Now we can start using is-online in our Main Process. Open the main.js file in the root of the project
and add the following highlighted lines of code to the top of the file:

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow

const path = require('path')
const url = require('url')

const ipcMain = electron.ipcMain
const isOnline = require('is-online')

let checkIsOnlineInterval
let currentOnlineStatus

The first line gives us access to Electron’s Inter-Process Communications API, which we will be using to
send messages from the Main Process to the Renderer Process. The second line allows us to use the is-online
module. The third line creates a variable checkIsOnlineInterval that will be used to create an interval in
which we will check online status. The fourth line creates the currentOnlineStatus variable that will be
used to hold the current connection status.

https://github.com/sindresorhus/is-online
https://github.com/sindresorhus/awesome-electron

Chapter 11 ■ Online/Offline DeteCtiOn

184

At the bottom of the main.js file we will insert the following method:

function checkIsOnline() {
 isOnline().then(online => {
 console.log("Online? " + online)
 mainWindow.webContents.send('update-online-status' , { online: online })
 if(currentOnlineStatus !== online) {
 if (process.platform === 'darwin') {
 app.dock.bounce('informational')
 }
 }

 currentOnlineStatus = online
 })
}

This is the function we will be calling to find out if we are online. The isOnline function returns a
Promise and inside the then method we make a IPC call, 'update-online-status', to the renderer process
along with an argument object that holds the reference to our online status.

In the next if statement we want to notify the user if the status is offline by bouncing the application icon
in the dock if you are on the macOS platform:

app.dock.bounce('informational')

The dock is a reference to the collection of icons typically found at the bottom of the screen on the
macOS computer, so this is obviously a Mac-only feature. This line of code uses the app reference created
at the top of our file and accesses that object’s dock object’s bounce method. You can pass the argument
“informational,” like we’ve done here, or “critical.” With the “informational” argument, the icon is only
bounced for a second. With “critical” the icon will bounce until the application is activated or app.dock.
cancelBounce(id) is called. We’ll look at that scenario in another chapter.

Finally, we set the currentOnlineStatus variable to match the online status so that we may refer to it later.
Now we need to create an interval so that we may call the checkIsOnline repeatedly. Place the following

code at the bottom of your main.js file:

function startCheckingOnlineStatus() {
 checkIsOnlineInterval = setInterval(checkIsOnline, 10000)
}

The setInterval method creates an interval that calls the checkIsOnline method. For our purposes here,
we are setting the time between checks to 10000, which translates to 10 seconds. Now that we have created
the method for creating the interval, we have to call it to get it started. Place the following highlighted code at
the bottom of our createWindow method:

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600})

 // and load the index.html of the app.
 mainWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'index.html'),
 protocol: 'file:',
 slashes: true
 }))

Chapter 11 ■ Online/Offline DeteCtiOn

185

 // Open the DevTools.
 mainWindow.webContents.openDevTools()

 // Emitted when the window is closed.
 mainWindow.on('closed', function () {
 // Dereference the window object, usually you would store windows
 // in an array if your app supports multi windows, this is the time
 // when you should delete the corresponding element.
 mainWindow = null
 })

 startCheckingOnlineStatus()
}

Now, when the main window is created the interval is also created.

 ■ Note inside our checkisOnline method, we make a console call:

console.log("Online? " + online)

It is important to remember that when we create console messages in the Main Process, these messages
do not appear in the Chromium DevTools console window. These messages will appear in the terminal
window where you called npm start to launch your application.

Let’s enter npm start into our terminal window to start the app and see how it works. You should see
messages in the terminal window every 10 seconds (Figure 11-5).

Figure 11-5. Messages from the Main Process are appearing in the terminal window

Chapter 11 ■ Online/Offline DeteCtiOn

186

Great! Since users of your application will never see a terminal window, we need to do a little work in
the code for our renderer process so we can better inform them of any changes in the online status.

Update the following highlighted lines in the renderer.js file:

const { ipcRenderer } = require('electron')
let onlineStatus

const updateOnlineStatus = (event, status) => {
 if(status.online) {
 document.body.style.backgroundColor = 'green'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'block'
 document.getElementById('h2-offline').style.display = 'none'
 } else {
 document.body.style.backgroundColor = 'red'
 document.getElementById('h2-checking').style.display = 'none'
 document.getElementById('h2-online').style.display = 'none'
 document.getElementById('h2-offline').style.display = 'block'
 }

if(this.onlineStatus !== undefined && this.onlineStatus !== status.online) {
 let note = new Notification('You are ' + (status.online ? 'online' : 'offline'),
 { body: 'You are now ' + (status.online ? 'online' : 'offline')})
 note.onclick = () => {
 console.log('Notification clicked!')
 }
 }

 this.onlineStatus = status.online
}

ipcRenderer.on('update-online-status', updateOnlineStatus)

On the top line of this new code block is a reference to ipcRenderer, which we are getting from Electron.
The ipcRenderer will allow the Renderer Process to receive messages from the Main Process. We’ll set that
up in a moment.

In the second line we create a variable onlineStatus that will be used to hold the current online status.
The updateOnlineStatus method is created next. It is expecting two arguments, event and status. The

event argument is sent by default by the Main Process. The status argument represents an object that has an
online property, a Boolean that indicates whether the application is online.

We set the onlineStatus variable in the next block of code in the if statement inside our
updateOnlineStatus method:

if(this.onlineStatus !== undefined && this.onlineStatus !== status.online)

We don’t need to update the user if the online status has not changed. This if statement is asking if our
onlineStatus variable exists and if it is not the same as the online property of the status argument; and if
so, we need to update the screen. The status argument is also used when creating the Notification, so we
need to update the code there as well. At the bottom of the updateOnlineStatus method we update our
onlineStatus variable.

Chapter 11 ■ Online/Offline DeteCtiOn

187

At the bottom of this code block we set up the listener for the IPC call from inside the checkIsOnline
method in the Main Process (main.js):

ipcRenderer.on('update-online-status', updateOnlineStatus)

This means that the ipcRenderer object is waiting for the 'update-online-status' event and when it
occurs the updateOnlineStatus method will be called.

Of note, we commented out those last three lines. We’ll be using them again in the next section of this
chapter, but for now we do not need them.

Now enter npm start into our terminal window to start the app and see how these updates work.

Pros and Cons of a Main Process-Only Approach
As you can see, doing all the online detection in the Main Process works well. We are able to avoid the
Lie-Fi effect and let the Renderer Process know of any changes in online status. But there is an issue
with this approach: the interval. Typically, running an interval every 10 seconds forever is not advisable,
but as this is the only way we are doing the detection, the shorter the time frame the better. Also, we are
waiting until 10 seconds before checking. And if we extend the times between checks, that is all the more
chances for us to miss a change in online status.

Let’s try to see if we can combine the Renderer Process scenario with the Main Process scenario to make
a better solution to online detection.

The Combined Approach
As we’ve seen so far, both the approaches to online detection we’ve tried so far have had some problems. We
cannot trust the Renderer Process-Only solution because it couldn’t prevent Lie-Fi, the condition where a
computer may be connected to a router, but that router does not have a connection to the Internet. The Main
Process-Only solution uses a timer, which makes detection less reliable due to the time between detection
events. So, let’s combine approaches to make a superior solution.

Most of the changes required for our new solution occur inside our renderer.js file. First, we will add a
new method to the file just below the updateOnlineStatus method:

constcheckOnlineStatus = () => {
 document.body.style.backgroundColor = 'white'
 document.getElementById('h2-checking').style.display = 'block'
 document.getElementById('h2-online').style.display = 'none'
 document.getElementById('h2-offline').style.display = 'none'

 ipcRenderer.send('check-online-status')
}

This new method does two things: it changes the UI state to a checking state, one that has a white
background and shows the text “Checking…”, and then the method sends a ‘check-online-status’ IPC
message to the Main Process.

Below the new checkOnlineStatus method are lines we commented in the previous solution. Let’s
uncomment and change them to look like this:

window.addEventListener('online', checkOnlineStatus)
window.addEventListener('offline', checkOnlineStatus)
document.getElementById('checkStatusButton').addEventListener('click', checkOnlineStatus,
false)

Chapter 11 ■ Online/Offline DeteCtiOn

188

As you can see, we changed the handlers for these event listeners to use the new checkOnlineStatus
method. This means that with each of these events, we will be asking the Main Process to check the status
as opposed to going ahead and changing it. Even though the window’s online or offline events are accurate,
instead of letting the Renderer Process go ahead and react to the status change, this code informs the Main
Process that there has been a status change and allows it to run detection as well, making the Main Process
central in the detection of online status.

Finally, let’s add a call at the bottom of our code:

checkOnlineStatus()

By adding this code, we are kicking off our new detection routine immediately as the Renderer Process
starts preventing any time gap in Main Process detection.

Now we can move back to our main.js file. Changes here, too, are fairly simple. At the bottom of the file,
we need to listen for the check-online-status IPC call:

ipcMain.on('check-online-status', checkIsOnline)

With this listener, the Main Process triggers the checkIsOnline method that detects the online status
and then informs any parts of our application listening for the update-online-status event.

Give it a try by running npm start and make sure you take your computer online/offline to see how
quickly the detection works.

Summary
Our goal in this chapter was to create an online detection solution. We added code that allowed the
Renderer Process to handle online/offline detection using the navigator.onLine method available in
Chromium. We then investigated using a Node module, is-online, to detect online status from within the
Main Process. Finally, we combined the two approaches to create a better solution. Along the way, we hope
that we revealed that evaluating a solution to a problem with an Electron application requires a developer to
look beyond the traditional, typical front-end or back-end web developer roles, and better solutions can be
found by leveraging both the Main and Renderer Processes to create a more complete result. You can create
powerful Electron applications utilizing your knowledge and skills of Node, HTML/CSS/Javascript, and
available open source projects.

189© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_12

CHAPTER 12

Advanced BrowserWindow

In an earlier chapter, we discussed how to create windows using the BrowserWindow object. But we’ve often
found that simply creating windows is not enough. An effective application may need to create more than
one window and instigate communication between windows. We thought that a great way to teach you the
basics of these concepts would be to implement a simple splash screen example.

In this chapter, we will reinforce the creation of windows using the BrowserWindow object, create
a frameless and non-resizable window, retrieve and display the version of the application, integrate
communication between these windows using inter-process communication (IPC), and set up a simulation
for a slow starting application.

Loading an Application
Users typically start Electron applications, like any other desktop applications, by clicking or double-clicking
on an icon in their computer’s system interface. Everyone has experience with this interaction: you find the
application icon, you click it, and your application appears on the screen. But what happens between when
the user clicks and the application appears? Most likely, a lot happens: the application code is initialized;
user authorization is checked; user preferences are loaded; and data is acquired via an online service or local
database, processing that data for display. Any and all of these tasks can take many seconds.

It is important to remember how a BrowserWindow object gets displayed using the default parameters.
When Chromium is ready, the blank window frame will appear then, and as soon as the application is ready
Chromium will render the application UI. Since our starter code doesn’t really do anything taxing to the
CPU, we don’t even notice it. If the application you’re building is very simple, this may not be a problem.
If not, your users may experience something that appears like the application is broken while waiting for
the application to render. And if we’ve learned anything from mobile development over the past 10 years,
it’s that users don’t like waiting for applications to start, even on their desktop computers. This is where a
splash window comes in.

Splash Window
Every application can use a splash window. With desktop applications, a splash window is similar to a
mobile application’s splash window in that it gives the user immediate feedback that the application is
loading and provides cover for any system information gathering, user preferences, and any pre-loading
of data. Some applications use a splash window as a starting point: click here to load a recent file. Other
applications just show the splash window as a branding exercise. Either way, it is good to know how to get
started creating a splash window.

https://doi.org/10.1007/978-1-4842-2826-5_12

Chapter 12 ■ advanCed Browserwindow

190

Installing the Quick Start
As with each of these examples, we are using the Electron Quick Start example. We will use git clone to
create a new copy of the quick start in a new folder, in this case named splash-window-example. First, open
terminal and navigate to the folder where you would like to place your code.

git clone https://github.com/electron/electron-quick-start splash-window-example

Next, change your active directory to splash-window-example.

cd splash-window-example

Now, we need to install the dependencies:

npm install

Finally, reset Git with

git init

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

Setting Up a Splash Window
Now that you have created your splash-window-example project and installed dependencies, we should
update some code to make this project uniquely ours.

In your code editor, find the package.json file in the root of your project and open it to make the
following changes in bold:

{
 "name": "splash-window-example",
 "version": "1.0.1",
 "description": "An example app using a splash window",
 "main": "main.js",
 "scripts": {
 "start": "electron ."
 },
 "repository": "",
 "keywords": [
 "Electron",
 "splash",
 "window",
 "example"
],
 "author": "Your Name Here",
 "license": "CC0-1.0",
 "devDependencies": {
 "electron": "~1.6.2"
 }
}

Chapter 12 ■ advanCed Browserwindow

191

Best Practice: When you use a starter project to build your application, it is important to remember that
the original author’s information is in the package.json file. Since you are not going to be committing code
back to the starter project, it is important for you to update this information to avoid problems. And try to
remember to keep information like version and description in your package.json file up to date.

Changes to the package.json aren’t necessary, but we like to start with this first because when we forget
to do it we end up doing it later anyway. First we updated the name value to splash-window-example. Next
we updated the version to 1.0.1 (but you can use any number you’d like). We’ve updated the keywords array
with the words Electron, splash, window, and example. Finally, we changed the author value. In the code
snippet above it says “Your Name Here,” but you can enter your name.

Creating the Splash Window File
Our next step will be to create the file and code needed to create our splash window. Since the quick
start code already uses the index.html file as the starting point for the application’s user interface, we will
continue using it but update the main.js file to open the splash window first. But before we do that, let’s
create some new code.

In the root of your project use your code editor to create a file named splash.html and place the
following code inside it.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title></title>
 </head>
 <body>

 </body>
</html>

Yeah, this is really basic HTML but we have to start somewhere, right? Now, open up the main.js file that
is on the root of your project. This starting point of your application is we need to modify it to open our new
splash window file. Near the top of the file, find the line that says let mainWindow and place the following
code in bold beneath it.

let mainWindow
let splashWindow

function createSplashWindow() {
 splashWindow = new BrowserWindow({
 width: 320,
 height: 240,
 frame: false,
 resizable: false,
 backgroundColor: '#FFF',
 alwaysOnTop: true,
 show: false
 })

Chapter 12 ■ advanCed Browserwindow

192

 splashWindow.loadURL(url.format({
 pathname: path.join(__dirname, 'splash.html'),
 protocol: 'file',
 slashes: true
 }))

 splashWindow.on('closed', () => {
 splashWindow = null
 })

 splashWindow.once('ready-to-show', () => {
 splashWindow.show()
 })
}

On the first line, we create the splashWindow variable that we can reference from anywhere in our
main.js file. The createSplashWindow method is the next piece of code. In the first section, we are creating a
BrowserWindow object using the width, height, frame, resizable, backgroundColor, alwaysOnTop, and show
properties. Let’s evaluate these properties so that we understand why we are setting these properties with
these values.

First, we are setting the width and height to arbitrary numbers – your typical size of 320 by 240 pixels.
These numbers may change depending on the design of the content you may be placing inside your splash
window. For now, since our splash window will be basically blank, we’ll go with this size. The next property,
frame, is the property that sets the frame around the window. For our styling purposes, we’re going to set frame
to false so there will not be a border around our splash window. The resizable property controls whether the
user can resize our splash window. Combined with having no frame, this is a visual indication to the user that
this window doesn’t expect any interaction. Finally, we have the alwaysOnTop and show properties. We want
the splash window to appear above all of our other windows, so we need alwaysOnTop to be set to true. If we
did not use the alwaysOnTop setting, or if we set it to false, the next window we created would appear over our
splash window. Setting the show property to false gives us the ability to display our splash window once it is
ready. Later in this method we use the ‘ready-to-show’ event to show our splash window.

In the next section of our createSplashWindow method we load the splash.html file into our
BrowserWindow object using BrowserWindow’s loadURL method. This method uses the path module that is
loading earlier in our code (not represented in the snippet above).

The last two sections of code inside createSplashWindow are event listeners. We listen for the closed
event occurring from the splashWindow so we can remove the splashWindow from memory by setting it to
null. Since we have set our splash window to be created with the show property set to false, this is where we
make our splash window visible.

Now that you’ve created the createSplashWindow method, we need to call it. In the code, find the line
where the ‘ready’ event listener is set and change createWindow to the following:

app.on('ready', createSplashWindow)

Open up your terminal application, navigate to your project folder and run the npm start command to
get a visual idea of where we are so far (Figure 12-1).

Chapter 12 ■ advanCed Browserwindow

193

OK, so it’s not very exiting – the programmer’s equivalent of ghosts roasting marshmallows in a blizzard.
This is the reason designers are on our projects. Let’s add a little magic to our splash window display.

Showing the Version in Our Splash Window
Something commonly displayed in a splash window is the version of your application. While we could
simply put some text in our HTML file to display the version, that would mean that we would have to
remember to update that item to keep it in sync with the real version number. In our project we track the
version inside package.json file. Keeping the version number in one place is a good idea, so let’s use Electron
to grab that version number and display it inside our splash window.

The first thing we need to do is retrieve our version number. Open up the main.js file found at the root of
your project. At the top of the file where several modules are created, add the code in bold below.

const electron = require('electron')
// Module to control application life.
const app = electron.app
// Inter-Process Communication (IPC)
const ipcMain = electron.ipcMain
// Module to create native browser window.
const BrowserWindow = electron.BrowserWindow

Figure 12-1. Our initial splash window

Chapter 12 ■ advanCed Browserwindow

194

We added a comment here to remind us that this code adds the IPC module to our main.js file. Now,
scroll to the bottom of the file where you see the comment included in the following snippet and add:

// In this file you can include the rest of your app's specific main process
// code. You can also put them in separate files and require them here.

//SPLASH WINDOW: REQUEST FOR VERSION
ipcMain.on('get-version', event => {
 console.log('app version: ', app.getVersion())
 event.sender.send('set-version', app.getVersion())
})

In the earlier chapter covering IPC, we covered how this works, but let’s review this code here as a
reminder. Inside the main.js file we added the ipcMain module, which is required to allow the Main Process
to send and receive messages to and from the Renderer process. In the second snippet we added an event
listener for the ‘get-version’ event. When we receive that event, we get the version using the getVersion
method on our app object and send the version back to the sender. That version number is the string that
appears in the package.json file. Remember, we changed that earlier in the chapter. Inside the listener we
also have a console.log command that displays our version number in the terminal window.

Now that our code is set to get the version and display the version number in the terminal window, we
need to get the splash window to trigger the event. Open the splash.html file and add the following code just
below the closing body tag (</ body>):

<script>
 const { ipcRenderer } = require('electron')

 ipcRenderer.send('get-version')

</script>

Inside the script tag we imported the ipcRenderer module and sent the ‘get-version’ event to the Main
Process.

Now that we’ve set up code to get the version number, let’s take a look at what that looks like (Figure 12-2).

Chapter 12 ■ advanCed Browserwindow

195

Notice that you can see “1.0.1” in the terminal window. Yay! If you want to experiment further, you can quit
your application, open the package.json file, and change the version value and test your application again.

Now let’s make the version number appear inside the splash window. Open the splash.html and add a
paragraph tag inside the body tag to the file like it is below, and update the code inside the script tag to listen
for the ‘set-version’ event.

<html>
 <head>
 <meta charset="UTF-8">
 <title></title>
 </head>
 <body>
 <p>version </p>
 </body>
 <script>
 const { ipcRenderer } = require('electron')

 ipcRenderer.on('set-version', (event, arg) => {

 const versionSpan = document.getElementById('versionSpan')
 versionSpan.innerHTML = arg
 })
 ipcRenderer.send('get-version')

 </script>
</html>

Figure 12-2. The application version number appears in the terminal window

Chapter 12 ■ advanCed Browserwindow

196

As you can see here, this is where we are using IPC inside our splash window. Inside our script tag, we
create the constant ipcRenderer, the IPC module required for use inside the Renderer Process. We use the
ipcRenderer to first listen for the ‘set-version’ event, then to send the ‘get-version’ event. It is important to
note that these event name strings match in both the Main and Renderer Process’ codes. For instance, if you
send a ‘get-version’ event from your Renderer Process and your Main Process is expecting the event to be
‘my-get-version’, your communication will fail.

Inside our listener for the ‘set-version’ event, we capture the version as a returned argument and set
code in the span with the id of ‘versionSpan’ with the argument. Fairly simple fair, but let’s take a look at the
result (Figure 12-3).

Nice! As we said earlier, a designer would hate your new splash window, but we have the information
we wanted: a splash window that displays the version number of our application. But we are far from being
finished. We need to display the main application window now, right?

Loading the Main Window
Now that our simple splash window is appearing when we start our application, we need to show our main
window. Open up the main.js file and add the following code listed in bold.

 splashWindow.once('ready-to-show', () => {
 splashWindow.show()
 createWindow()
 })

Figure 12-3. The version number is displayed in the splash window

Chapter 12 ■ advanCed Browserwindow

197

All we are basically doing here is calling the createWindow method inside our splashWindow’s ‘ready-
to-show’ event listener. Let’s see what happens when we run the npm start command now (Figure 12-4).

That’s great. We’re done. Let’s pack up and go home.
OK, so, maybe that wasn’t all that great after all. First, our splash window stays there on top of our main

window, immovable and in the way. Second, both windows appear to load immediately and at the same
time. That’s mostly because these windows are very simple and don’t require a lot of CPU power to push to
the screen. We need to update our code to make our splash window and main window behave like we wish.

Setting Up the Main Window
To make our splash window example work as we would like we need to set up our simple main window to
fake as though our application takes a few seconds to load so that we can see how a splash window really
works. So, let’s get started.

To start off, let’s update the renderer.js file to simulate the application loading something. Think of this
like the time it would take to load data from a local or online database. To demonstrate this, we will add a
timer to the main window.

Open your renderer.js file and add the following code.

// This file is required by the index.html file and will
// be executed in the renderer process for that window.
// All of the Node.js APIs are available in this process.
const { ipcRenderer } = require('electron')

Figure 12-4. The splash window appears above the main window

Chapter 12 ■ advanCed Browserwindow

198

setTimeout(() => {
 ipcRenderer.send('app-init')
 }, 5000)

As a reminder, our renderer.js file is the Javascript file linked to the index.html. It controls Electron’s
Renderer Process. The code we just added is fairly simple. Just like in our splash.html file, we’ve added the
ipcRenderer constant so we can send messages through Electron’s IPC feature. Below our ipcRenderer
declaration we have a simple Javascript timeout function, setTimeout, which waits five seconds to send an
‘app-init’ event to the Main Process.

Now open the main.js file so we can listen for the ‘app-init’ event. Add the following code to the bottom
of the file.

// MAIN WINDOW: FINISHED LOADING
ipcMain.on('app-init', event => {
 if (splashWindow) {
 setTimeout(() => {
 splashWindow.close()
 }, 2000)
 }

 mainWindow.show()
})

Earlier we added the ipcMain constant to our file, so we can use it again here. This code is our listener
for the ‘app-init’ event that we just set up in the renderer.js file. The first thing you see is that we are checking
to see if the splashWindow exists before setting another time out for two seconds before closing the
splashWindow using the close method. Finally, we make a call to show the mainWindow.

One more thing needs to be changed for our example to work. Toward the top of the file inside the
createWindow method you need to make the following change in bold so the main window doesn’t
automatically show.

function createWindow () {
 // Create the browser window.
 mainWindow = new BrowserWindow({width: 800, height: 600, show: false})

So, before we test our new code, let’s review what it is doing. First, the Main Process creates and shows
the splash window. When the splash window is shown, the main window (the Renderer Process) is loaded,
which triggers a five-second timer that then fires off a ‘app-init’ event, which when captured in the Main
Process shows the main window, and creates a two-second timer that dismisses the splash window.

At this point, a window shot is pointless as what you will experience when running this code is
animated windows. So, run the npm start command and see your splash window in action.

Summary
In this chapter, we created an example application that uses a splash window to create the impression with
users that our application has started to cover for any startup activities that may slow down rendering of the
main application window. To create our splash window, we used BrowserWindow’s frameless, resizable, and
alwaysOnTop parameters to make the splash window appear differently than your main application window.
We used IPC to get the version number and display it in our splash window as well as have our main window
tell our Main Process when it is ready. And, finally, we used a timer to momentarily hold our splash window
on screen before making it disappear.

199© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_13

CHAPTER 13

Debugging Your Electron
Application

Hopefully, the only debugging that you have had to do, so far, while exploring this book, has been to fix a
simple typo. But, there will come a time as you begin to develop your Electron application that you will
need to debug your code in a more complex fashion. In this chapter, we will look at some of the tools and
techniques available to you.

Chromium’s Dev Tools
You should already be familiar with the primary tool that you can use to debug your Renderer process, the
built-in Dev Tools from Chromium. By default, the electron-quick-start code base has these tools enabled.
To display the DevTools, simply call

mainWindow.webContents.openDevTools()

This command will then open a copy of the DevTools within our application’s window, as shown in
Figure 13-1. These are the same tools that you have probably used when debugging in Google Chrome.

https://doi.org/10.1007/978-1-4842-2826-5_13

Chapter 13 ■ Debugging Your eleCtron appliCation

200

We can inspect individual HTML elements and explore the CSS styles for them as well. The familiar
JavaScript console is available, allowing us to examine our JavaScript code’s outputs.

There are two other related Electron commands you should be aware of. If you want to close the
instance of the DevTools, you can simply call

mainWindow.webContents.closeDevTools()

But, rather than manage the hiding and showing of the DevTools while you are developing, often
an additional set of menu items is added that is specific to debugging. This is a technique we use when
developing our Electron project. It is nothing fancy, just a top-level menu named Debug and single menu
item that allows us to toggle the display of the DevTools. The actual command is simply this:

mainWindow.webContents.toggleDevTools()

Here is the menu snippet for our Debug menu that you can insert into your menu definition:

{
 label: 'Debug',
 submenu: [
 {
 label: 'Toggle Developer Tools',
 accelerator: (function () {
 if (process.platform === 'darwin') {
 return 'Alt+Command+I'
 } else {
 return 'Ctrl+Shift+I'
 }
 })(),

Figure 13-1. Chrome Dev Tools

Chapter 13 ■ Debugging Your eleCtron appliCation

201

 click: function (item, focusedWindow) {
 if (focusedWindow) {
 focusedWindow.toggleDevTools()
 }
 }
 }
]
}

We are passing the reference to the active BrowserWindow to our click function with the
focusedWindow parameter. This parameter will allow us to toggle the DevTools on the correct window if our
Electron application has multiple windows.

For more on using Chrome’s DevTools, see https://developer.chrome.com/devtools for a detailed
tutorial on using them.

Debugging the Main Process
While the Chrome DevTools allows us to debug the Renderer Process, debugging the Main Process requires
some additional changes to do so. Since the Main Process is our Node process, it executes without being
directly exposed. To debug any code that is running within this process, we must rely on external debuggers
that support the V8 debugging protocol. Two common tools that support this are VS Code and node-inspector.

Debugging the Main Process in VS Code
One of the easiest methods to debug Electron’s Main Process is to use the built-in debugging tools in VS
Code. VS Code has built-in debugging support for Node.js and can debug JavaScript, TypeScript, and any
other language that gets transpiled to JavaScript.

 ■ Note For those unfamiliar with the term transpiling, it is the process of taking one language and
re-creating it in another. examples are writing in CoffeeScript and producing standard JavaScript.

To use this, we need to add a debug configuration to our project. First, we need to create a .vscode
directory if one does not already exist, at the top level of our project. Within this directory, create a
launch.json file. This file will contain the debug configurations that VS Code will use to connect to our
instance of our Electron app.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Debug Electron Main Process",
 "type": "node",
 "request": "launch",
 "cwd": "${workspaceRoot}",
 "runtimeExecutable": "${workspaceRoot}/node_modules/.bin/electron",
 "program": "${workspaceRoot}/main.js"
 }
]
}

https://developer.chrome.com/devtools

Chapter 13 ■ Debugging Your eleCtron appliCation

202

For Windows, use "${workspaceRoot}/node_modules/.bin/electron.cmd" for a runtimeExecutable.
With VS Code set up to debug our Main Process, let’s try it out. Add a breakpoint in your main.js file by

double-clicking in the left gutter on the line you want the breakpoint to be added, as shown in Figure 13-2.
Next, switch to the Debug view in VS Code (Shift-Cmd-D).

Figure 13-2. VS Code’s Debug Panel

Chapter 13 ■ Debugging Your eleCtron appliCation

203

Next, make sure the Debug Electron Main Process configuration is selected from the drop-down menu
in the debug pane, as shown in Figure 13-3.

Figure 13-3. The Debug Target option menu

Chapter 13 ■ Debugging Your eleCtron appliCation

204

Then click the green debug button next to that menu. VS Code will then launch Electron for you and
once a breakpoint is reached, give you the ability inspect your code’s state, as shown in Figure 13-4. In
earlier version of VS Code, there were reported issues using this. The suggested workaround was to uncheck
both the Exceptions breakpoint options. According to the filed issue on Github (https://github.com/
Microsoft/vscode/issues/16321), this problem has been resolved. But there is nothing more frustrating
than not being able to debug to a bug.

For more information on debugging with VS Code, visit https://code.visualstudio.com/Docs/
editor/debugging.

Debugging the Main Process in node-inspector
If your background is more of a NodeJs developer, rather than a front-end developer, you might be more
familiar using a tool like node-inspector, as shown in Figure 13-5. To use this solution with Electron, we need
to perform several installation steps.

Figure 13-4. The debugger in VS Code for the main process

https://github.com/Microsoft/vscode/issues/16321)
https://github.com/Microsoft/vscode/issues/16321)
https://code.visualstudio.com/Docs/editor/debugging
https://code.visualstudio.com/Docs/editor/debugging

Chapter 13 ■ Debugging Your eleCtron appliCation

205

First, we need to install the node-gyp required tools. For those unfamiliar with node-gyp, it is a cross
platform command-line tool written in Node.js for compiling native add-on modules for Node.js. Detailed
instructions for this installation can be found at: https://github.com/nodejs/node-gyp#installation

Next, we can install node-inspector itself. This package wraps the node-inspector package to work with
Electron.

npm install node-inspector --save-dev

Now, the next installation is the node-pre-gyp package. This package is an interface between npm and
node-gyp, and allows the use of C++ addons from third party binaries.

npm install node-pre-gyp

With both packages installed, let’s go ahead and recompile the node-inspector v8 modules for Electron.

$ node_modules/.bin/node-pre-gyp --target=VERSION --runtime=electron --fallback-to-build
--directory node_modules/v8-debug/ --dist-url=https://atom.io/download/atom-shell reinstall
$ node_modules/.bin/node-pre-gyp --target=VERSION --runtime=electron --fallback-to-build
--directory node_modules/v8-profiler/ --dist-url=https://atom.io/download/atom-shell
reinstall

 ■ Note You will need to update the target argument to be your electron version number.

Now, we need to be able to run Electron with the debug port enabled. This is done with a command-
line switch, --debug=[port]. With this switch, Electron will listen for the V8 debugger protocol messages.
The default port is 5858. You can either launch Electron directly from the command line using

electron --debug=5858 .

or you can edit the scripts in package.json file to include this switch:

"scripts": {
 "start": "electron --debug=5858 ."
}

If you want to pause execution on the first line of JavaScript, use the –debug-brk switch instead

electron --debug-brk=5858 .

With Electron running, open another terminal window to be able to start the node-inspector server.

ELECTRON_RUN_AS_NODE=true path/to/electron.app|exe node_modules/node-inspector/bin/
inspector.js

Now, open http://127.0.0.1:8080/debug?ws=127.0.0.1:8080&port=5858 in Chrome. You may have
to click pause if starting with --debug-brk to force the UI to update.

https://github.com/nodejs/node-gyp#installation

Chapter 13 ■ Debugging Your eleCtron appliCation

206

You can now use the node-inspector to debug your application.

Chrome DevTools Extensions
Chrome’s DevTools can be extended using add-on extensions. This can be quite useful, as you will probably
be building your Electron application with an additional framework like React or Angular. The following
DevTools Extensions are tested and guaranteed to work in Electron:

•	 Ember Inspector

•	 React Developer Tools

•	 Backbone Debugger

•	 jQuery Debugger

•	 AngularJS Batarang

Figure 13-5. node-inspector working with our Electron app

Chapter 13 ■ Debugging Your eleCtron appliCation

207

•	 Vue.js devtools

•	 Cerebral Debugger

•	 Redux DevTools Extension

To use one of these extensions, visit http://electron.atom.io/docs/tutorial/devtools-extension/
for the steps for their installation.

Devtron
There is also a dedicated DevTools extension just for Electron known as Devtron. This extension was built
to focus on some Electron-specific needs, like monitoring IPC messages and linting. Installing Devtron is
on a project-by-project basis. For our look at what this extension can do, we will use the sample app we built
when exploring Electron’s IPC system. With your command line’s working directory set to that project, type
in the following command:

npm install devtron --save-dev

This will install the package for use as a development-only dependency. Go ahead and launch our
Electron application using npm start.

To use Devtron with your Electron application, you will need to be able to access Chrome’s DevTools,
as shown in Figure 13-6. The DevTools extension should be now loaded and available as an option along the
top of the DevTools window.

Let’s explore the five sections in Devtron

Figure 13-6. Devtron’s user interface

http://electron.atom.io/docs/tutorial/devtools-extension/

Chapter 13 ■ Debugging Your eleCtron appliCation

208

Require Graph
As your Electron application grows in complexity, you will be relying on the use of more and more libraries.
The Require Graph pane, shown in Figure 13-7, allows you to view and trace the loading order of your
JavaScript files. To see the output of this inspection, click the Load Graph button.

Not only can we see the load order of our libraries, but we see the dependencies as well. If you start to
encounter startup time issues or rendering slowdowns, using this graph might help you uncover the bottleneck.

Figure 13-7. The Require Graph interface

Chapter 13 ■ Debugging Your eleCtron appliCation

209

Event Listeners
Devtron enables you to explore the events and listeners that your app has registered, as shown in Figure 13-8.
Unfortunately, it will only listen on the core Electron APIs, meaning that none of your custom listeners will
be tracked, like a button press in the UI. But as you build out your application, you will begin to interact more
with these core events to provide your user a more native application experience, and you will want to ensure
they are properly registered and active.

Here we see our application’s createWindow function that is call from the electron.remote.app ready event.

Figure 13-8. Devtron’s Event Listener interface

Chapter 13 ■ Debugging Your eleCtron appliCation

210

IPC Monitor
During our exploration of using Electron’s IPC module, we tracked the messages using simple console
logging. Devtron’s IPC monitoring panel allows you to track and inspect the IPC messages (both
synchronous and asynchronous), as shown in Figure 13-9. Since the IPC messaging traffic can be quite
heavy in a complex application, you need to manually enable the event recording. Click the Record in the
toolbar to start the recording. If you have any IPC messages you can trigger, go ahead and trigger them. Each
IPC channel is logged, along with the arguments that are passed.

Here we see the results of triggering our sample sync and async IPC messages from our sample IPC
application in Chapter 6.

Figure 13-9. Devtron’s IPC monitoring interface

http://dx.doi.org/10.1007/978-1-4842-2826-5_6

Chapter 13 ■ Debugging Your eleCtron appliCation

211

Linter
Devtron also provides some application-level linting that you can invoke. While it does not go deep into
your code and check for application-specific issues, the Devtron linter will check your application for some
common issues like handling various error events, as shown in Figure 13-10.

For our simple IPC demo application, the linter reported:

•	 We were not using the most current version of Electron.

•	 We had bundled our app into an asar archive.

•	 We do not handle the crashed event.

•	 We do not handle the unresponsive event.

•	 We do not handle the uncaughtException event.

While not an issue for our demo, when building a releasable application, these are items that your code
should address.

Figure 13-10. Devtron Lint Check interface

Chapter 13 ■ Debugging Your eleCtron appliCation

212

Accessibility
Devtron will also perform a basic accessibility audit of your application. Click the Audit App button to have
Devtron scan your app for common accessibility issues, as shown in Figure 13-11.

For example, we failed the accessibility requirement to have the content’s human language indicated.
This is an easy fix to perform. In the index.html, replace <html> with <html lang=“en”>. To learn more about
what each of these issues refers to, use the docs button to view a detailed guide on the rule Devtron uses.

As you can see, Devtron can provide some useful tools when debugging your Electron application.

Spectron
Most commercial grade applications will employ some form of automated testing for their application. Spectron
is a framework that allows you to write your integration tests for your Electron app. It is built using a combination
of ChromeDriver and WebdriverIO, so both the Main Process and Renderer Process can be tested.

To install Spectron, simply navigate to your project’s main directory and run

npm install spectron --save-dev

Spectron supports working with continuous integration services like Travis or AppVeyor, and is
compatible with many testing libraries like Mocha, Jasmine, and Chai. Now, writing the actual tests is beyond
the scope of this book, but to learn more about Spectron, visit https://electron.atom.io/spectron/.

Summary
As developers, you are always striving to ship a product without any bugs or issues. In this chapter, we
explored several techniques and tools you can use to debug the special nature of an Electron application. For
those looking to leverage integration testing of their application, we introduce you to the Spectron module.

Figure 13-11. Devtron’s Accessibility interface

https://electron.atom.io/spectron/

213© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_14

CHAPTER 14

Testing with Spectron

“Testing is Hard.”
This is something you may have heard before. Experienced developers have heard it a number of times

over their careers. Testing, be it unit testing or end-to-end testing, seems to have fluctuated in and out of
vogue with many developers over the years. But testing has always been important. The ability to test an
application in an automated way is an invaluable asset to individual developers and Enterprise teams alike.

Since you are reading this chapter, we will assume you have already decided that testing your Electron
application is a great idea. We agree. And, so it would seem, the developers on the Electron team agree,
as well, because Spectron, a test harness for Electron, was created to assist Electron developers with
their testing practice. Spectron allows developers a practical way to load their application and test your
implementation of the Electron API as well as your own code. Spectron has a robust API that allows
developers to test properties of windows created, the webContents object, and anything else you would like
to use from the Electron API to test your application.

As we have stated in earlier chapters, we are focused on providing examples of code for Electron; so
in this chapter we will not be discussing testing of your web-standard application, the code that runs in
the Renderer Process. The assumption is that you will be unit testing your own code externally to Electron,
which is advisable (having more automated tests is always a good thing). This chapter will focus on testing
the Main Process and then adding some simple code to our Renderer Process as an example of a Renderer to
Main Process test.

In this chapter, we will set up Spectron and use Mocha and Chai to run a few simple tests on elements
of the Electron API and on custom methods. We will use Spectron as our test runner, the library that controls
our tests. Mocha is the testing framework, the library that gives us a defined structure for our tests, which
we will use for our tests. You will see methods named “describe,” “beforeEach,” and “it,” which are the
fundamental methods of Mocha. Chai is the assertion library we will use inside Mocha’s “it” methods and is
the meat of our tests. Chai assists us by validating the conditions that we are testing. You will see how these
three libraries work as we move through this exercise.

Getting Started
As with each of these examples, we are using the Electron Quick Start example. We will use git clone to create
a new copy of the quick start in a new folder, in this case named spectron-test-example. First, open the
terminal and navigate to the folder where you would like to place your code.

git clone https://github.com/electron/electron-quick-start spectron-test-example

Next, change your active directory to the new directory:

cd spectron-test-example

https://doi.org/10.1007/978-1-4842-2826-5_14

Chapter 14 ■ testing with speCtron

214

Now, we need to install the dependencies:

npm install

Finally, reset Git with this command:

git init

Now we need to install Spectron, the testing harness that will allow us to run tests on Electron projects.
We’ll install Spectron into our project as a developer dependency using the --save-dev setting. Type this
command into your terminal and hit enter:

npm install --save-dev spectron

Spectron is very flexible in that it allows you to use any number of testing frameworks to run your tests.
For this chapter, we will be adding Mocha and Chai. From the Mocha Website at https://mochajs.org/
Mocha is described as “a feature-rich JavaScript test framework running on Node.js and in the browser.”
We’ve checked with many Node developers who recommend Mocha as an industry standard. If you’ve done
some testing in the past, you may have already installed Mocha globally. We’ll install Mocha in the project as
a developer dependency by running the following command in the terminal application:

npm install --save-dev mocha

If you’d like, you may choose to install Mocha globally with this command:

npm install -g mocha

Chai is an assertion library, a tool that verifies that the assumptions used in testing Node and browser
corrections are correct. In testing, assertions will look like expect(1).toEqual(1), except where you see the
first number 1, a test would provide an application’s condition, then along with the expected condition (the
second number 1). In between the conditions, in this case toEqual, is a phrase that expresses the test for those
conditions. Chai allows developers to more easily test their code and has three different assertion styles:
expect, should, and assert. These styles make Chai very flexible for developers. We’ll be using expect in our
testing, which you will see later. Install Chai into the project as developer dependencies using this command:

npm install --save-dev chai

Now that you have our example project installed, type npm start into your terminal application just to
make sure the application loads and runs as expected.

Let’s take a moment to modify this package.json file to match our own by updating some nodes.

 1. Change the name node to “spectron-test-example.”

 2. Change the version number to “0.0.1” since we are just starting out.

 3. In the description let’s use something like “A sample Electron application to
demonstrate testing using Spectron.”

 4. Remove the repository node. If you decide to put your results in a repository, you
can change re-add this node with the correct address.

 5. Keywords can be “Electron,” “Spectron,” “Testing,” “Mocha,” “Chai.”

 6. “author”: Your name goes here.

 7. Let’s change the “license” node to “MIT.”

https://mochajs.org/

Chapter 14 ■ testing with speCtron

215

Since we have the package.json open, let’s add one more important element that will assist us in
running our tests. In the "scripts" section, add the "test" line in the package.json file as you see below:

"scripts": {
 "start": "electron .",
 "test": "mocha"
 },

This is a really simple line that calls Mocha, which will run our tests. We invoke this script by typing npm
test into our terminal application. Of course, you could just type mocha into the terminal and get the same
result, but the practice of creating a script item is enforced here because often testing requires more steps
than just invoking Mocha.

We aren’t ready to run our test script yet, but before moving forward, now would be a good time to run
the npm start command again to make sure that our application starts and everything is working.

Adding a Test File
Now that we have our application set up, let’s get our testing set up. When you invoke Mocha this way, Mocha
expects to find a test file, named test.js by default, in the current working folder. Add a new file to the root of
our project and name it “test.js”. In your own projects you can move the file to another folder, but if you do,
you will need to change the “test” script in the package.json file to reflect that change. For instance, mocha /
testing/test.js would be the required change if you moved the test file into a folder named “testing.”

Add the following code to the “test.js” file:

const electron = require('electron')
const Application = require('spectron').Application
const expect = require('chai').expect

describe('SPECTRON EXAMPLE', function() {
 this.timeout(10000)
 global.app = null

 before(() => {
 app = new Application({
 path: electron,
 args: ['.'],
 })
 return app.start()
 .then(() => {
 app.client.waitUntilWindowLoaded()
 app.browserWindow.show()
 return app
 })
 })

 after(() => {
 if(app && app.isRunning()) {
 return app.stop()
 }
 })})

Chapter 14 ■ testing with speCtron

216

At the top of our file we require the modules required for testing to work. First, we create an electron
variable. Next, we add Spectron’s Application module, which will allow us to create a link to our application.
We use the electron variable to create the path to the install location of Electron (inside our node_modules
folder) when we use our Application variable to create our test application. The next line creates an expect
variable giving us the expect style support from Chai.

The rest of the code is typical testing boilerplate using describe, before and after, to control our
test. The describe function is the main structure of the test. When we run our test, the test title 'SPECTRON
EXAMPLE' will appear in the terminal as a visual cue. You will see how it works. Inside the describe we first
create a timeout variable for Mocha and Spectron that sets the amount of time they will wait for tests to run.
We have set this variable to 10000, which translates to 10 seconds. When testing your application in the future,
you may need to adjust this time higher if, for instance, your application loads a lot of data from the Internet.
Next, we create a global variable called app that we create inside the beforeEach method and use throughout
the tests. We create our application using the Application module we added earlier. Note the path property
inside the argument being passed to Application, which we mentioned earlier. The args property at the
bottom of the before you see we run app.start which starts our application. This means that before any test
runs, we start our application. This is what is called “stand up,” or standing up our application.

In the after method we test to see if the application exists and that the application is still running, and
if so, we stop it. This is called “tear down,” or tearing down our application.

It is important to understand what this means to us from an experiential aspect. When we run tests,
what we will see is the application’s window open and then close fairly quickly. The tests we will be running
are very fast, so the application will only appear for a moment.

There are two monumentally important items to remember about this code. First, note the structure
within the before method. See how it is using Promises to run the app.start process? We will be using this
type of syntax throughout our tests. Second, note that we are using the arrow syntax, which is, () => , in
our before and after methods. This modern JavaScript syntax assists us in providing easier scoping for our
code. But, look at the describe method. It is not using an arrow function. It is actually using an anonymous
function. Why is that? Because there is a bug in Spectron that will make your testing not work. So, please
remember this and avoid the hours of pain we experienced.

Now that we have our structure set up, let’s add an actual test. Inside the describe method and below
and outside of the after method, add the following code:

it('should open a window', () => {
 return app.client.waitUntilWindowLoaded()
 .getWindowCount()
 .then(count => {
 expect(count).to.equal(1)
 })
 })

Here we are testing to see if a window is opened by our application. If you remember from earlier
examples that are based on electron-quick-start, opening a window is the first thing that happens. Note the
title “should open a window.” Coupled with the title in the describe method, it should read like a sentence:
“SPECTRON EXAMPLE” “should open a window.” This is standard testing practice and will make more
sense once you see the test running.

Notice the structure inside our it method. Since we are building a Promise chain, the first line begins
with return. Here we use the app.client.waitUntilWindowLoaded method from the Spectron API to wait for
the application to load before we begin our test. The app, of course, is the Application instance we created
earlier in our before method. The app.client is a reference to the client property of the Application instance,
which is an instance of WebDriverIO, a great library that allows developers to control browsers and mobile
applications. Finally, the waitUntilWindowLoaded does exactly what it name says: waits for the window to
load. This is a helpful best practice that will avoid a test trying to run before the application is fully loaded.

Chapter 14 ■ testing with speCtron

217

In the next line, the getWindowCount method is called, which returns a Promise that is captured inside
our then method’s code. Then the actual test is performed using the expect style of testing provided by Chai.
Note the syntax of the expect chain. Chai’s syntax makes testing a little easier. It reads like a sentence.
“Expect (the count) to equal 1.” Makes sense?

Before we run our test, please take note that we have not changed our application’s code as of yet. We
know that the application runs because we set it up and tested it using the npm start command. We will
need to modify our application’s code, but for now we are ready to run our test. In the terminal, enter the
following command:

npm test

Figure 14-1 shows the results of our test inside the terminal.

Figure 14-1. Our first passing test

Note, again, how the results appear in the terminal and can be read like sentences. The green check and
the end results of “1 passing (2s)” in green means we have successfully passed our single test.

We should break our test so we can see it fail. In the expect line, change the 1 to 2 like so:

expect(count).to.equal(2);

Now, run npm test again and you should see results like those in Figure 14-2, although you will
probably have to scroll up to see it. Notice how the structure of the output has changed to give you
information about why the test failed.

Chapter 14 ■ testing with speCtron

218

“AssertionError: expected 1 to equal 2” matches the syntax of our test, “Expect (the count) to equal 2.”
See how it all comes together?

One important note to Windows users: You may see an extra terminal window appear over your
application when you run your tests. It is annoying, but not harmful. There appears to be a bug in either
Electron or Spectron and there have been issues filed about it. Hopefully this bug will be removed by the
time this book is published.

Using Spectron’s browserWindow API
Now that we have tested the existence of the application’s window and set it to fail, revert that code so that
we have a passing test and we will add more tests.

expect(count).to.equal(1)

Add the following test below our first test. We’ve added the first test here to remind you what it should
look like as a passing test:

it('should open a working window', () => {
 return app.client.waitUntilWindowLoaded()
 .browserWindow.isVisible()
 .then(res => {
 expect(res).to.be.true
 })

Figure 14-2. Our first test did not pass!

Chapter 14 ■ testing with speCtron

219

 .browserWindow.isFocused()
 .then(res => {
 expect(res).to.be.true
 })
 .browserWindow.isMinimized()
 .then(res => {
 expect(res).to.be.false
 })
 .browserWindow.isDevToolsOpened()
 .then(res => {
 expect(res).to.be.false
 })
 })

Our “should open a working window” test makes sure that the window we create is visible, is focused, is
not minimized and does not have Dev Tools open. Let’s see how that works. First, we again are waiting until the
application window has loaded with Spectron’s app.client.waitUntilWindowLoaded call. After that, we have
chained together several calls to the browserWindow API to get some information. First, we call browserWindow.
isVisible that returns a promise in which we run our test. Next, we call browserWindow.isFocused to assess
whether the window is focused. Next, browserWindow.isMinimized is called to test whether the window has
been minimized on launch. And, finally, we use browser.isDevToolsOpened to make sure the Dev Tools aren’t
opened. Coinicidentally, this is a very practical test seeing as you might run these tests before checking your
code into a repository. It would prevent you from committing code that displays the Dev Tools.

Let’s run our tests and see the output in the terminal application. Save the test file and run the npm test
command (Figure 14-3).

Figure 14-3. Our second test passes

Chapter 14 ■ testing with speCtron

220

Awesome! You passed two tests. But, sometimes testing can make you paranoid. Did we really pass
these tests? Let’s add a few console calls to the code so we can see them in the terminal window to relieve
our stress:

it('should open a working window', () => {
 return app.client.waitUntilWindowLoaded()
 .browserWindow.isVisible()
 .then(res => {
 console.log('visible:', res)
 expect(res).to.be.true
 })
 .browserWindow.isFocused()
 .then(res => {
 console.log('focused:', res)
 expect(res).to.be.true
 })
 .browserWindow.isMinimized()
 .then(res => {
 console.log('minimized:', res)
 expect(res).to.be.false
 })
 .browserWindow.isDevToolsOpened()
 .then(res => {
 console.log('devTools:', res)
 expect(res).to.be.false
 })
 })

As you can see, we are logging the result (the res variable, “res” for response) received with each call.
We should see this output in the terminal window when we run the npm test command. The output should
look like that in Figure 14-4.

Chapter 14 ■ testing with speCtron

221

Great. Now you know how you can use the console command to assist with debugging your tests. You
may want to remove or comment the console calls as we move forward to our next task, testing the size of
our browserWindow.

Another important note that can trip you up. Open your main.js file in the root of our project and
uncomment (remove the two slashes in front of the line) of the following line and turn on the DevTools.

mainWindow.webContents.openDevTools()

Now, run the npm test command again and see what happens. There is not a lot of information in
Figure 14-5 to make you understand what is actually making our test fail. Basically, there is a bug in Spectron
(https://github.com/electron/spectron/issues/174) that makes the test throw errors when the
DevTools are open.

Figure 14-4. Our second test passing with log messages

https://github.com/electron/spectron/issues/174

Chapter 14 ■ testing with speCtron

222

Since end-to-end testing like this should be done with production-level code, you would never test with
the DevTools open. So, hopefully, if you run into this, you’ll remember our tip.

Testing the Size of the browserWindow
Another practical test would be to test the properties of the window we are opening. Your application may
open a window that opens windows and dynamically sets their size based on the computer’s screen size.
If so, you will need to test that. In the following simplified test, we are going to check the bounds of the
window, the left, top, width, and height of the window, to test if they are as expected.

Take a quick look inside your main.js file. Inside the createWindow method you will see this line:

mainWindow = new BrowserWindow({width: 800, height: 600})

From this line we can tell that our window will be 800 by 600 pixels in size. Inside your test.js file, add
the following test below the previous test at the bottom of the code inside our describe method.

it('should open a window to correct size', () => {
 return app.client.waitUntilWindowLoaded()
 .browserWindow.getBounds()
 .then(res => {
 console.log('bounds:', res)
 expect(res.width).to.equal(800)
 expect(res.height).to.equal(600)
 })})

Figure 14-5. Tests fail when DevTools are open

Chapter 14 ■ testing with speCtron

223

Again, we begin with applying the best practice of waiting for our window to load with
waitUntilWindowLoad. After the window loads, the browserWindow.getBounds API call gets us the bounds
object. The browserWindow part of that line represents the Application instance’s browserWindow property,
which is a reference to the window object that has been created. The getBounds method returns an object
via a Promise, which, again, we capture in our then method. Then, we are console logging the results before
testing the width and height, and then we are testing those values. Let’s run the npm test command again to
see if our test passes (Figure 14-6).

Figure 14-6. Our third test passing with log statement showing the bounds object

Notice the output from the console log command we added for the result listed in the terminal: bounds:
{ height: 600, width: 800, x: 560, y: 278 }. We added that line of code to reveal what the bounds
object returned from the browserWindow.getBounds API call. It has four properties: x and y for the location
of the upper left corner of the window, and width and height for the width and height of the window. These
properties can be used many ways in our tests.

Testing Interactions in the Renderer Process
Testing our application, specifically the part of the project that runs in the Renderer Process, is the next part
of our example. In your own Electron applications you will create an application using HTML, CSS, and
JavaScript. Our example is built upon the electron-starter project, which is just an HTML file that doesn’t
really do much, so there isn’t very much to test.

Chapter 14 ■ testing with speCtron

224

Make the Example Interactive
Let’s start by updating our HTML. In the root of the project, open the index.html file and add a button to the
bottom of the body tag like you see below.

<body>
 <h1>Hello World!</h1>
 <!-- All of the Node.js APIs are available in this renderer process. -->
 We are using Node.js <script>document.write(process.versions.node)</script>,
 Chromium <script>document.write(process.versions.chrome)</script>,
 and Electron <script>document.write(process.versions.electron)</script>.

 <button id="foobarButton">Get Foobar</button>

</body>

A simple button with the id of “foobarButton” has been added. It also displays the label “Get Foobar.”
Next, we need to make this button do something. Open the renderer.js file and add the following code:

const ipcRenderer = require('electron').ipcRenderer

const foobarButton = document.getElementById('foobarButton')

foobarButton.addEventListener('click', () => {
 ipcRenderer.send('foobar', ['hello'])
})

ipcRenderer.on('barfoo', (event, args) => {
 foobarButton.innerText = args
})

Let’s carefully review this code. First, we are adding Electron’s Inter-Process Communication (IPC)
module, which allows the Renderer Process and Main Process to communicate with each other. You can find
out more about how IPC works in an earlier chapter of this book. Next, we identify the button with the id of
“foobarButton” and save it as the variable foobarButton. In the next section, we add a click event listener
to our button, which uses the IPC send method to send an event named “foobar” to the Main Process along
with the string “hello” inside the argument array. Finally, we create an IPC listener for the “barfoo” event.
This event expects an event and an argument to be coming from our Main Process. We use the argument
string to change the text of our button.

So, to recap, we’ve added a button that, when clicked, sends a message “hello” to the Main Process and
then waits for the Main Process to send a message back, which we use to change the button’s label. Take
a moment and run the npm start command just to make sure you do not receive errors and it lays out like
Figure 14-7.

Chapter 14 ■ testing with speCtron

225

Now, let’s add code to our Main Process to make this actually work. Open the main.js file on your project’s
root and add the following line near the top of the file, specifically after the electron constant is created:

const { ipcMain } = electron

Just like the ipcRenderer instance we created in the renderer.js file, the ipcMain gives us access to IPC
so that we can send and receive events with the Renderer Process. We use it in the next bit of code we need
to place at the bottom of our main.js file:

ipcMain.on('foobar', (event, args) => {
 event.sender.send('barfoo', args[0] + '!')
})

This piece of code creates an event listener on the ipcMain instance, listening for the “foobar” event
coming from the Renderer Process, the event that is sent when the “foobarButton” is clicked. The listener
receives an event and arguments. If you remember from the code we placed into the renderer.js file earlier,
the arguments are in an array. We use the received event as a reference to send back a message, “barfoo”
along with the first item in the argument array. The capturing of the event is important and should not
be overlooked. While you could keep a reference to the windows you create (just like the electron-starter

Figure 14-7. Our new button renders properly

Chapter 14 ■ testing with speCtron

226

code we are using creates the mainWindow variable) and call window.webContents.send, the best practice
would be to ensure that you are responding to the proper window. Consider if you want to send the “foobar”
event from multiple windows. Capturing and using the event from that window and using that event to
communicate back to that specific “sender” will mean only that window would receive the response.

Now, before we build our test for this interaction, we should run the npm start command to make
certain the code we’ve assembled runs properly. Run the code, click the button, and you should see the
button label change (Figure 14-8).

Figure 14-8. After clicking the button, the button label changes to “hello!”

Great, now let’s build a test for our new feature. Open the test.js file and add the following code to the
bottom of our describe, just below the last test:

it('should call foobar', () => {
 return app.client.waitUntilWindowLoaded()
 .then(() => {
 return app.client.getText('#foobarButton')
 })
 .then(text => {
 expect(text).to.equal('Get Foobar')
 console.log(text)

Chapter 14 ■ testing with speCtron

227

 return app.client.click('#foobarButton')
 })
 .then(() => {
 return app.client.getText('#foobarButton')
 })
 .then(text => {
 console.log(text)
 expect(text).to.equal('hello')
 })
 })

Now, this code requires careful review because it is a little different that the previous tests. In this test we
are chaining together several Promises. Notice that inside each of the then methods, there is a return? That
is because we want the code to continue to the next then(). Let’s walk through the code and explain what is
happening.

We start with the app.client.waitUntilWindowLoaded call that returns a Promise. We capture that
Promise and then return the app.client.getText WebDriverIO API call for the id “foobarButton” (the “#” in
front of the name means that we are asking for the id). WebDriverIO, the library we are using to control the
browser and help get information about what the browser is displaying, can use CSS class names as well as
the id attributes as identifiers, so you won’t necessarily need to add ids to all the elements with which you
are planning to interact. The getText method returns a Promise that we capture and then test that the text
returned is “Get Foobar” (which we also log to the console). Next, we return the Promise from the click
method. When we pass the id to the click method, WebDriverIO will simulate the clicking action on the
element matching that id. We capture the results of the click method, then getText for the “foobarButton”
once more, and in the final then we test to see if the message we sent, the string “hello,” is returned.

Now that we understand the code for our test, let’s run the npm test command and get the results of
our test. You’ll notice in Figure 14-9 that we are seeing the console logs “Get Foobar” and “hello,” so we are
capturing the button label, but wait. How did our new test fail? We sent “hello,” but we are receiving “hello!”?
That’s right. We tricked you. We failed to mention that our code alters the string before sending it back.

Chapter 14 ■ testing with speCtron

228

Take a look at this line of code inside your main.js file:

event.sender.send('barfoo', args[0] + '!')

See where we added an exclaimation point to the end of the sent string? Let’s fix that by adding an
exclaimation to this line of the test:

expect(text).to.equal('hello!')

You should also remove the console.log calls to make our output clean. Now you should see all your
tests pass (Figure 14-10).

Figure 14-9. Our final test fails because “hello!” does not equal “hello.”

Chapter 14 ■ testing with speCtron

229

Figure 14-10. All our tests have passed!

Summary
In this chapter, we installed Spectron, Mocha, and Chai to test our Electron application. We added two new
scripts to our package.json so that we can build and test our application. We used the Spectron API in our
first test to test if our application created a window, in a second test to check that the window was working
as expected, and in a third test to check the window size. We then learned how to access custom functions in
the Main Process by setting an environment variable using Spectron and then checking for that variable in
our Main Process.

We hope that this chapter is helpful to you in many ways. Do you feel more comfortable with setting up
testing for an Electron application? Using the Spectron API for testing an Electron application with Mocha
and Chai is reasonably straightforward, right?

Maybe now you will say, “Testing is fun!”

231© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_15

CHAPTER 15

Building Your Application

Now is it time to turn our attention to how to transform your Electron application into one that can be easily
be distributed. Throughout this book, we have simply been using the stand-alone version of Electron and
having it load our collection of HTML and JavaScript files. The de facto solution to take your project’s files
and create a stand-alone native application is a, npm package aptly called electron-builder. In this chapter,
we will look at configuring our application so we can build our stand-alone applications.

We recommend creating a test application to work through setting up the process and exploring the
differences that various parameters can have. By exploring with a simple application, you can initially ignore
any additional requirements that your actual application might have.

If you are not familiar with Electron Builder, it supports the following:

•	 Building and Packing your Electron application for macOS, Windows, and Linux.

•	 Support Code Signing of the application,

•	 Generates Auto Update ready applications,

Installing Electron Builder
To install Electron Builder simply run

npm install electron-builder --save-dev

Once this package is installed, we can begin modifying our package.json file and our directory structure
to support using Electron Builder. Let’s start with the easy one, the directories.

Adjusting your Build Directories
Electron Builder is going to look for various build assets within a directory named build. If you have a
directory named this already, you will need to adjust your existing build process. Electron Builder tends to
be a bit rigid about directory structure and asset names.

Another directory you will want to create is the dist directory. This directory will serve as the location of
the outputs from running electron builder.

Finally, create another directory named app. Although you don’t have to do this, we recommend
keeping your actual application within its own directory named app. Move the index.html, main.js and
renderer.js files into this new directory, as shown in Figure 15-1.

https://doi.org/10.1007/978-1-4842-2826-5_15

Chapter 15 ■ Building Your appliCation

232

Updating the package.json file
Electron Builder is controlled through setting properties in the package.json file and executing npm scripts.
Let’s add in the script that we will call to perform our build. Within the scripts object, we will add our dist
script. This script will execute the build command for us. It is here we can define our target platforms and
architectures (see tables below)

Build Platforms Description

--mac, -m, -o, --macos Build for macOS

--win, -w, --windows Build for Windows

--linux, -l Build for Linux

Build Architectures Description

--x64 Build for x64

--ia32 Build for ia32

Figure 15-1. The revised directory structure

Chapter 15 ■ Building Your appliCation

233

So, to build for all three platforms and architectures our script will be:

"scripts": {
 "start": "electron .",
 "dist": "build -mwl --x64 --ia32"
}

Before we continue defining additional build parameters, we may need to perform some additional
installations. If you are developing on a Mac, it is possible to build for both Windows and Linux.
Unfortunately, the converse does not apply.

Building for Windows on macOS
To create a Windows executable on a macOS computer, you need to install the following two packages: Wine
and Mono. If you are not familiar with these packages, Wine is a free implementation of Windows on Unix,
and Mono is an open source implementation of Microsoft's .NET Framework. To install them, we will use
Homebrew, another software package manager. Don’t worry, it should already be installed on your Mac.
From the command line, enter:

brew install wine --without-x11
brew install mono

Once these two packages have been installed, which can take a few minutes, you can now build
Windows-friendly Electron apps.

Building for Linux on macOS
To build an Electron app for Linux on macOS install these two packages:

brew install gnu-tar graphicsmagick xz
brew install rpm

With those installations in place, we can turn to defining the actual build parameters for each platform.

Configuration Options
Within our package.json file, we will be adding our build configuration options. Here is a bare minimum script:

"build": {
 "appId": "com.your-company.electron-app-name",
 "copyright": "Copyright © 2017 YOUR-NAME",
 "productName": "My Electron App",
 "electronVersion": "1.4.1",
 "mac": {
 "category": "public.app-category.developer-tools"
 },
 "win": {
 "target": [
 "nsis"
]

Chapter 15 ■ Building Your appliCation

234

 },
 "linux": {
 "target": [
 "AppImage",
 "deb"
]
 }
}

Let’s look at each parameter in more detail.
appId
This is a reverse domain notation identifier for your application. It is used as CFBundleIdentifier for

MacOS and as Application User Model ID for Windows. If none is supplied, electron builder will default to
com.electron.${name}. This serves as the unique ID for your application.

copyright
The copyright information that is displayed in the applications information window. If none is provided

it will default to Copyright © year author.
productName
Unlike the name property, this value can include spaces and other special characters. This will be the

displayed name of the application. If none is provided, the name value is used.
electronVersion
If you want to specify exactly with version of Electron you want to package, set this value. It is

recommended that you define this value; otherwise you may package your application with a later version of
Electron than the version you may have been developing against.

mac
This is where we will set macOS specific options. We will explore additional options later in this chapter.

In this example, we define the category that our application would be sorted by. For the complete list of
valid entries, see Apple’s documentation at https://developer.apple.com/library/ios/documentation/
General/Reference/InfoPlistKeyReference/Articles/LaunchServicesKeys.html#//apple_ref/doc/
uid/TP40009250-SW8.

windows
This is where we will set Windows-specific options. We will explore additional options later in this chapter.

For this example, we are defining the target build to be the NSIS (Nullsoft Scriptable Install System) format.
linux
This is where we will set Linux specific options. We will explore additional options later in this chapter.

For this example, we are we are defining the target build to be the AppImage and Debian formats.
Since we moved our entry point to our app, we need to adjust the value of the main property:

"main": "./app/main.js"

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/LaunchServicesKeys.html#//apple_ref/doc/uid/TP40009250-SW8
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/LaunchServicesKeys.html#//apple_ref/doc/uid/TP40009250-SW8
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/LaunchServicesKeys.html#//apple_ref/doc/uid/TP40009250-SW8

Chapter 15 ■ Building Your appliCation

235

Testing Our First Build
With our package.json file saved, from the command line run npm run dist. In the terminal you will see the
following output, as shown in Figure 15-2:

Figure 15-2. Initial build output

Chapter 15 ■ Building Your appliCation

236

Go ahead and open the dist directory and you will see the various outputs from our build process, as
shown in Figure 15-3.

Since the Electron binaries for each platform were not installed, electron builder will automatically
download them. Once they are downloaded to the dist directory, future builds will not need to perform this
task, unless you remove those files. Go ahead and try out the packaged sample app for your platform(s).

Figure 15-3. The dist folder contents

Chapter 15 ■ Building Your appliCation

237

For macOS user, double-click on the Electron Builder-1.0.0.dmg. This will display the default app install
window for us (see Figure 15-4). Copy our new Electron Builder app into our Applications folder.

If you launch it, you will see the same app that you have been playing with throughout this book.
For Windows users, double-click the Electron Builder Setup 1.0.0.exe file to install the Electron Builder app.
For Linux users, use either .deb or .AppImage file for your system.
With our initial test build completed, let’s move on to making the actual application a bit more polished.

Figure 15-4. The default OSX installer window

Chapter 15 ■ Building Your appliCation

238

Configuring the App Icon
As you saw during the build, the process informed us that “Application icon is not set, default Electron icon
will be used.” Let’s address this issue. By default, electron builder will look for these resources with the build
directory. The macOS app icon is built from the icon.icns that we need to include. This file is a collection of
six icons, each at a different size:

•	 16px

•	 32px

•	 128px

•	 256px (OS X 10.5+)

•	 512px (OS X 10.5+)

•	 1024px (OS X 10.7+)

There are several online icon generators that you can use, such as https://iconverticons.com/online/.
For our Windows app, we need to include an icon.ico file. This only needs to include a 256x256 pixel icon.
The Linux icon set will be generated automatically based on the macOS icon.icns file.

Configuring the macOS DMG
Often developers will provide a custom background image for the macOS install window. This is done by
providing a custom background image. Figure 15-5 shows a sample of this type of customization.

Figure 15-5. The ConfiGAP install window with the custom background image

https://iconverticons.com/online/

Chapter 15 ■ Building Your appliCation

239

Electron Builder can use either a file named background.png or background.tif. The default size of this
image is 540x380. You can change the size of the background to another value; however, you will need to
adjust the location of your app’s icon and the Applications folder alias icon. To do this you need to use the
contents property. This array should contain the x and y locations of each element, the Applications alias,
and the app itself.

Another adjustment you can make is the size of the icons that are displayed within the installer window
by setting the icon-size. As a reference, the default size is 80 pixels.

We can also change the virtual drive that is created when a user double-clicks the dmg file. Both the
name and icon are settable using the title and icon properties, respectively.

Here are the dmg properties for the ConfiGAP dmg:

"dmg": {
 "title": "ConfiGAP Installer",
 "background": "./build/background.png",
 "icon": "./build/installer.icns",
 "iconSize": 128,
 "contents": [
 {
 "x": 388,
 "y": 160,
 "type": "link",
 "path": "/Applications"
 },
 {
 "x": 128,
 "y": 160,
 "type": "file",
 "path": ""
 }
]
}

If you do not want to supply an image, you can set the background color through the backgroundColor
property.

Configuring the Windows Installer
The Windows Installer can also be customized for a better user experience. There are two styles of Windows
installers, referred to as either one-click (see Figure 15-6) or ‘boring’ by the Electron Builder documentation.
All these options are defined with the nsis properties object. There are several properties that you will want
to define for either type of installer:

installerIcon

This is the icon that is shown within the install dialog. The default file is named installerIcon.ico.

installerHeaderIcon

This is the icon that the final installer will use once built. It will default to build/installerHeaderIcon.ico
or application icon. This is used by the one-click installer only.

artifactName

This is the name of the installer file itself. By default, it will be the ${productName} Setup ${version}.exe.

Chapter 15 ■ Building Your appliCation

240

If you want to use the boring installer, then set the oneClick property to false. When using this style of
installer there are several other properties that you will want to configure:

installerHeader

This is the 150 x 57 bmp graphic that is shown in the upper right of the installation screen (see Figure 15-7).

Figure 15-6. One-Click Installer Dialog

Chapter 15 ■ Building Your appliCation

241

Figure 15-7. The position of the header graphic in the installer window

Chapter 15 ■ Building Your appliCation

242

installerSidebar

This is the 164 x 314 bmp graphic that is shown along the left of the installation complete screen
(see Figure 15-8).

Figure 15-8. The position of the sidebar graphic in the installer window

Chapter 15 ■ Building Your appliCation

243

uninstallerSidebar

This is the 164 x 314 bmp graphic that is shown along the left of the uninstallation start screen (see
Figure 15-9).

Here is a sample for a one-click installer:

"nsis" : {
 "oneClick": true,
 "artifactName": "Electron Builder Setup.exe",
 "installerIcon": "./build/installerIcon.ico",
 "installerHeaderIcon": "./build/installerHeaderIcon.ico"
 }

Figure 15-9. The position of the sidebar graphic in the uninstaller window

Chapter 15 ■ Building Your appliCation

244

and for a boring installer:

"nsis": {
 "oneClick": false,
 "artifactName": "Electron Builder Setup.exe",
 "installerIcon": "./build/installerIcon.ico",
 "installerHeader": "./build/installerHeader.bmp",
 "installerSidebar": "./build/installerSidebar.bmp",
 "uninstallerSidebar": "./build/uninstallerSidebar.bmp"
}

There are several other properties that you can define for either NSIS-based installer. To learn more about
them, visit https://github.com/electron-userland/electron-builder/wiki/Options#NsisOptions.

Summary
In this chapter we have touched on the major elements you need to include in your package.json file in
order to package and build releasable Electron applications. We also looked at some of the supporting assets
that are needed to create professional-looking installers. We urge you to take the time and review all the
additional options available from this solution. Visit https://github.com/electron-userland/electron-
builder/wiki/Options for more information. There are so many other parameters that you can set when
building your stand-alone Electron application.

In the next chapter, we will look at how to support auto-updating our applications.

https://github.com/electron-userland/electron-builder/wiki/Options#NsisOptions
https://github.com/electron-userland/electron-builder/wiki/Options
https://github.com/electron-userland/electron-builder/wiki/Options

245© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_16

CHAPTER 16

Auto Updating Your Application

Now that we have successfully built an app that we can distribute, we need to begin to think long term. How
do we inform the user that a new feature has been added to your awesome app (or worse, you had to fix a
bug)? Electron includes an auto-update module that we can leverage to assist in the tasks needing to check
for an update, and properly install them. This process can be broken down into three primary tasks: the base
code we need to include in our Electron application, the modifications needed for the build process, and the
proper distribution of the app.

Electron has an auto-updater module that is part of the core framework. This module is just an interface
to Squirrel (https://github.com/Squirrel). It is this framework that handles the tasks of checking for
a new version, downloading, it and performing the actual upgrade. However, both macOS and Windows
interact with this module in different ways. Unfortunately, Linux-based Electron apps cannot use this
module to auto update themselves.

Before we begin adding this functionality to your Electron app, we strongly recommend that you work
through the process with a sample app first, rather than add this to an existing Electron application. This
will let you quickly test out the workflow and configurations without the overhead that your full Electron
application might have. We will continue to extend the sample app from the previous chapter, as we will
need to be using packaged Electron applications in order to test the auto-updating feature.

Auto Updating macOS
The auto updating functionality on macOS is built atop Squirrel.Mac. As such, there is a minimal amount of
work we need to do to support this on the client side. First, we need to include the Auto Update module in
our main.js file:

const autoUpdater =electron.autoUpdater

This module broadcasts four events:

•	 checking-for-update

•	 update-available

•	 update-not-available

•	 error

Using these events, we can manage the life cycle of auto updating. Let’s add these to our app:

autoUpdater.addListener("update-available", function(event) {
 console.log('Update Available')
})

https://doi.org/10.1007/978-1-4842-2826-5_16
https://github.com/Squirrel

Chapter 16 ■ auto updating Your appliCation

246

autoUpdater.addListener("update-downloaded", function(event, releaseNotes, releaseName,
releaseDate, updateURL) {
 console.log("Update Downloaded")
 console.log('releaseNotes', releaseNotes)
 console.log('releaseNotes', releaseName)
 console.log('releaseNotes', releaseDate)
 console.log('releaseNotes', updateURL)

})

autoUpdater.addListener("error", function(error) {
 console.log(Error, error)
})

autoUpdater.addListener("checking-for-update", function(event) {
 console.log('releaseNotes', 'Checking for Update')
})

autoUpdater.addListener("update-not-available", function(event) {
 console.log('releaseNotes', 'Update Not Available')
})

We can use these events to provide feedback to the user on the status of the auto-update process. Next,
we need to configure our Electron application where to check for a new version.

Squirrel for Mac will ping a remote url and then handle the response. If the server responds with an
HTTP status of 204, the Auto Updater will understand that no update is available. If the server responds with
an HTTP status of 200, an update is available and a bit of JSON is sent back. Here is a sample response:

{
 "url": "http://mycompany.com/myapp/releases/myrelease",
 "name": "My Release Name",
 "notes": "These are some release notes",
 "pub_date": "2017-03-18T12:29:53+01:00"
}

This JSON response needs to contain at a minimum the url to the update. The other properties are
optional. The Auto Updater will use this url value to automatically download the update for us.

To set the url that the Auto Update will check against, we use the setFeedURL method. Once this is set,
we can then call the checkForUpdates method and perform the actual check. Here is some sample code that
will get the app’s current version, and then call our custom endpoint to perform the auto-update check.

let appVersion = app.getVersion()

let updateUrl = 'https://apress-electron-manager.herokuapp.com/updates/latest?v=' +
appVersion

Then within the createWindow function, add this snippet of code:
if (process.platform === 'darwin') {
 autoUpdater.setFeedURL(updateUrl)
 autoUpdater.checkForUpdates()
}

Chapter 16 ■ auto updating Your appliCation

247

User Feedback
Let’s update those event handlers to provide some feedback to the user about the auto-update process.
These dialogs should be familiar to you from the earlier chapter on dialogs.

const dialog = electron.dialog

autoUpdater.addListener("update-available", function (event) {
 console.log('Update Available')
 dialog.showMessageBox({
 type: "info",
 title: "Update Available",
 message: 'There is an update available.' + appVersion,
 buttons: ["Update", "Skip"]
 }, function (index) {
 console.log(index)
 })
})

autoUpdater.addListener("update-downloaded", function (event, releaseNotes, releaseName,
releaseDate, updateURL) {
 console.log('releaseNotes', "Update Downloaded")
 console.log('releaseNotes', releaseNotes)
 console.log('releaseNotes', releaseName)
 console.log('releaseNotes', releaseDate)
 console.log('releaseNotes', updateURL)

 dialog.showMessageBox({
 type: "info",
 title: "Update Downloaded",
 message: "Update has downloaded",
 detail: releaseNotes,
 buttons: ["Install", "Skip"]
 }, function (index) {
 if (index === 0) {
 autoUpdater.quitAndInstall()
 }
 autoUpdater.quitAndInstall()
 })
})

autoUpdater.addListener("error", function (error) {
 console.log('Error')
 console.log(error)
 dialog.showMessageBox({
 type: "warning",
 title: "Update Error",
 message: 'An error occurred. ' + error,
 buttons: ["OK"]
 })
})

Chapter 16 ■ auto updating Your appliCation

248

autoUpdater.addListener("checking-for-update", function (event) {
 console.log('releaseNotes', 'Checking for Update')
})

autoUpdater.addListener("update-not-available", function (event) {
 console.log('releaseNotes', 'Update Not Available')
 dialog.showMessageBox({
 type: "warning",
 title: "No Updates",
 message: 'No update available at this time.',
 buttons: ["OK"]
 })
})

You will probably want to adjust these for a better user experience.

Auto Update Server Options
There are several prebuilt solutions available for you to use. The Auto Update module’s documentation lists
these as options:

•	 nuts: A smart release server for your applications, using GitHub as a back end. Auto
updates with Squirrel (Mac & Windows). [https://github.com/GitbookIO/nuts]

•	 electron-release-server: A fully featured, self-hosted release server for electron
applications, compatible with auto updater. [https://github.com/ArekSredzki/
electron-release-server]

•	 squirrel-updates-server: A simple node.js server for Squirrel.Mac and Squirrel.
Windows that uses GitHub releases. [https://github.com/Aluxian/squirrel-
updates-server]

•	 squirrel-release-server: A simple PHP application for Squirrel.Windows that reads
updates from a folder. Supports delta updates. [https://github.com/Arcath/
squirrel-release-server]

However, there is not too much to the server-side code, so let’s set up our own server using Heroku.
Now, this is completely optional; so if you are comfortable working with servers, then please feel free to skip
to the next section.

Setting Up Heroku
Heroku is a platform as a service (PaaS) that enables developers to build, run, and operate applications
entirely in the cloud. It offers a free development option, so we can test out our Auto Update engine without
needing to have to pay for a server.

If you do not have a Heroku account, go to https://signup.heroku.com/login and create one. Select
Node.js as the primary development language.

Once, you have completed the signup process, you will be able to create a new Heroku app. Give your
app a custom name, and then select the region you wish the app to run from.

Heroku offers several deployment methods: the Heroku CLI, GitHub, or Dropbox. Feel free to use
whatever method you are the most comfortable with. Let’s get the code together that will power our auto
update server.

https://github.com/GitbookIO/nuts
https://github.com/ArekSredzki/electron-release-server
https://github.com/ArekSredzki/electron-release-server
https://github.com/Aluxian/squirrel-updates-server
https://github.com/Aluxian/squirrel-updates-server
https://github.com/Arcath/squirrel-release-server
https://github.com/Arcath/squirrel-release-server
https://signup.heroku.com/login

Chapter 16 ■ auto updating Your appliCation

249

The Auto-Update Server
What we are doing is running a simple Express server on Heroku that will take the application’s version
number as a parameter. Our server will check this value, and return the proper response. You certainly could
run your own server, but rather than take on the responsibility of being a server admin, using a service like
Heroku takes care of that issue. Here is the complete app.js file that will power our server:

'use strict'
const fs = require('fs')
const express = require('express')
const path = require('path')
const app = express()

app.get('/updates/latest', function (req, res) {
 const latest = getLatestRelease()
 const clientVersion = req.query.v

 if (clientVersion === latest) {
 res.status(204).end()
 } else {
 let baseURL = getBaseUrl()
 let updateURL = baseURL + '/releases/darwin/' + latest + '/electron.zip'

 res.json({
 url: updateURL,
 name: "My Release Name",
 notes: "These are some release notes",
 pub_date: "2017-04-18T12:29:53+01:00"

 })
 }
})

let getLatestRelease = () => {
 const dir = __dirname + '/releases/darwin'

 const versionsDesc = fs.readdirSync(dir).filter((file) => {
 const filePath = path.join(dir, file)
 return fs.statSync(filePath).isDirectory()
 }).reverse()

 return versionsDesc[0];
}

let getBaseUrl = () => {
 if (process.env.NODE_ENV === 'development') {
 return 'http://localhost:3000'
 } else {
 return 'http://your-company.com'
 }
}

Chapter 16 ■ auto updating Your appliCation

250

app.listen(process.env.PORT || 3000, () => {
 console.log(`Express server listening on port ${process.env.PORT || 3000}`)
});

There are just a few to note in this code block that you need to be aware of. First, the server resolves the
latest version of your app by traversing the /releases/darwin/ directory. Within the darwin directory, you
will have addition directories, one for each release. Since this will be our first release, we have a directory
named 1.0.0. In order for a git repo to store a directory, it needs to have a file within it. This can be either a
.gitkeep file or just a dummy file. Otherwise, our version directory structure will not be captured, and thus
not transferred to the Heroku server. As we add new releases of our app, we need to update this directory
structure to reflect our new version.

The other note about this code block is the url that is returned in the JSON to where the actual update
is stored. This can be on a traditional server, hosted on S3 or GitHub. That choice is up to you to determine.
You will need to modify getBaseUrl function to point to the base url, as well as the updateURL’s path. This
code sample shows a self-hosted solution.

Once you have finished updating your code to point to where you will host your update, deploy this
server code to your Heroku account.

Testing Our Auto Update
Once you have deployed your server code to Heroku, let’s test it in our browser. Simply go to
https://<your=app-name>.herokuapp.com/updates/latest?v=1.0.0

and you should see the following in the window:

{"url":"http://your-company.com/releases/darwin/1.0.0/electron.zip","name":"My Release
Name","notes":"These are some release notes","pub_date":"2017-04-18T12:29:53+01:00"}

This means our server is running and responding properly. We can now return to our Electron code and
complete the changes we need to make.

Signing Your Application
To have auto updating function properly, our Electron applications need to be signed. Otherwise, the
auto-updating mechanism will not function. For self-distributed apps and testing, we can generate our own
certificate by using the Keychain Access tool, found in the /Applications/Utilities directory.

Create new certificate:
Keychain Access ➤ Certificate Assistant ➤ Create a Certificate…
Give your certificate a name and select Code Signing as the Certificate Type. Next, we need to set the

trust level. To do this, locate the newly created certificate in the panel, and double-click to open it. Then
change the When using this certificate to Always Trust. This will allow our Electron application to be
properly signed.

We need to now set the CSC_NAME environment variable, so the signing can occur when we build our
application. In your terminal and in our application’s active directory, run

export CSC_NAME="Certificate Name"

Now, when we build our application it will be signed and auto updating will function.
If you are planning to distribute through the macOS store, you will need a signing certificate from Apple.

For more on this process see: https://github.com/electron/electron/blob/master/docs/tutorial/
mac-app-store-submission-guide.md

https://github.com/electron/electron/blob/master/docs/tutorial/mac-app-store-submission-guide.md
https://github.com/electron/electron/blob/master/docs/tutorial/mac-app-store-submission-guide.md

Chapter 16 ■ auto updating Your appliCation

251

Building the Application - macOS
With our update server in place and running, and our signing certificate generated and installed, we are
ready to build the first version of our app. In the main.js file, you will need to update the updateURL variable
to reflect your Heroku server before proceeding. To reduce our build times, let’s only build for macOS. Adjust
the dist script in the package.json file to:

"dist": "build -m"

Now, let’s build our application.

npm run dist

After a few moments, we should have our .dmg file, our .app file, as well as out .zip of our application.
Go ahead and run the application. Once it launches, the Auto Update module will ping our server. Since we
only have version 1.0.0 of our app, it will report back that there is no update (Figure 16-1).

Generating an Update
To generate an update, we need to do three things. First, build a new version of the application with a new
version number. To do this, we just need to change the version number in our package.json file:

"version": "1.0.1"

Then, just rebuild our app. Although we did not make any code changes, the app will still respond as
version 1.0.1.

Second, we need to upload our new build to where we store the application.
Third, we need to update our Heroku server to respond correctly based on the proper version number.

Just duplicate our 1.0.0 directory and rename it to match our app’s new version. Then upload the new
structure to Heroku, and have the server restart.

With all three steps complete, go ahead and run the app. After a few moments, the app should inform
you that an update is available (Figure 16-2).

Figure 16-1. Our app informing the user that no update is available

Chapter 16 ■ auto updating Your appliCation

252

Click the Update button to update the application (Figure 16-3).

The app will automatically quit and then relaunch. With that, we have a working auto-update system for
our macOS Electron applications.

Auto Updating Windows Applications
The auto-update module for Windows is also based on Squirrel; however, it takes a different approach to
how it manages the updates. Unlike the Mac, where a custom server response is needed, auto updating on
Windows relies on delta packages and a special RELEASES file. We will show how to properly create these
files, so auto updating can occur on Windows.

In addition to having Electron Builder installed, we also need to install another node module, Electron
Builder Squirrel Windows:

npm install electron-builder-squirrel-windows --save-dev

This is a plug-in module for use by Electron Builder.
In the previous chapter, we built our Electron application to be built using the NSIS format.

Figure 16-3. The Auto Update module has downloaded the update and is ready to apply it

Figure 16-2. The Auto Update module has detected an update

Chapter 16 ■ auto updating Your appliCation

253

 ■ Note if you need to target x32-based Windows platforms, continue to use the nSiS distribution format. if you
are targeting x64-based Windows platforms, you can use the Squirrel-based distribution format without issue.

Now, we want to have Electron Builder use Squirrel as our target. In the package.json, change

"win": {
 "target": [
 "nsis"
],

to

"win": {
 "target": [
 "squirrel"
],

You also might want to temporarily change the build flags to only generate Windows builds. This will
save some time while you are learning the process. To do this set the dist script to

"dist": "build -w --x64"

Now, when we execute npm run dist in our terminal, electron builder will generate three files for us:

•	 Electron Demo Setup 1.0.1.exe

•	 autoupdatedemo-1.0.1-full.nupkg

•	 RELEASES

The first file is the installer that you can distribute. It contains both the Squirrel runtime and your
application. The second file is your application’s source code stored within a special binary. As we generate
new versions of our application, Squirrel will reference the .nupkg files to create delta packages. We
will touch on this shortly. The final file is a text that contains a listing of all the app versions, along with
checksums and the file name of the *.nupkgs.

 ■ Note this build process can be done on macoS, provided you have install Wine. See this guide for more
information on how to install it: https://www.davidbaumgold.com/tutorials/wine-mac/ as well as the previous
chapter.

To build for Squirrel, we need to add a new attribute, squirrelWindows, within our build object in the
package.json file:

"build": {
 "appId": "com.ajsoftware.electronapp",
 "copyright": "Copyright © 2017 Chris Griffith",
 "productName": "Electron Demo",
 "electronVersion": "1.4.1",
 "win": {
 "target": [

https://www.davidbaumgold.com/tutorials/wine-mac/

Chapter 16 ■ auto updating Your appliCation

254

 "squirrel"
]
 },
 "squirrelWindows": {

 }
 }

Before we generate our first release of our application, there are several attributes we need to define.
The first is the app icon. Just like in the previous chapter, we can set the icon attribute to an .ico file.

"win": {
 "target": [
 "squirrel"
],
 "icon": "./build/icon.ico"
 }

Signing Your Windows Application
Like building auto-updating apps for macOS, Windows apps must also be signed. Otherwise, anti-virus/
malware scanners might flag your application, or Windows SmartScreen may require special actions to enable
to run it. We doubt this is the user experience you want. There are a variety of third-party certificate vendors
that can issue you a certificate that will allow you to formally sign your application. Unfortunately, these
options are not free. Thankfully, there is a method to generate your own certificate for development and testing
purposes. If you plan to release your application to the public, you will need to formally sign your application.

To generate your own .pfx file, which Electron Builder uses to sign your application, you will need to use
OpenSSL. What is OpenSSL, from their website:

OpenSSL is an open source project that provides a robust, commercial-grade, and full-
featured toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL)
protocols.

If you are building your application on a macOS computer, OpenSSL is already installed. If you are
building your Electron application on a Windows computer, you will need to download an installer from
https://wiki.openssl.org/index.php/Binaries.

To generate our *.pfx file, we need to first generate a private key and certificate. OpenSSL will allow us to
do all three steps. With OpenSSL installed, and then launch your terminal to first generate our private key:

openssl genrsa -aes128 -out privateKey.key 2048

You will be prompted to enter a passphrase for the key. Enter something that you will remember, and
store it in a safe place. This information cannot be recovered.

Next, we can use that key to generate our certificate:

openssl req -new -x509 -days 365 -key privateKey.key -out certificate.crt

It will prompt you to enter the passphrase you just created for the key file. It will then ask you a series of
questions that it will use to identify the certificate. Here is a sample of those questions.

You are about to be asked to enter information that will be incorporated

https://wiki.openssl.org/index.php/Binaries

Chapter 16 ■ auto updating Your appliCation

255

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:YORU COUNTRY
State or Province Name (full name) [Some-State]:YOUR STATE
Locality Name (eg, city) []:YOUR CITY
Organization Name (eg, company) [Internet Widgits Pty Ltd]:YOUR COMPANY
Organizational Unit Name (eg, section) []:YOUR UNIT
Common Name (e.g. server FQDN or YOUR name) []:YOUR NAME
Email Address []:your-name@somewhere.com

Now, with our private key and certificate generated, we can combine them into a .pfx file by using this
command:

openssl pkcs12 -export -out certificate.pfx -inkey privateKey.key -in certificate.crt

You will once again be prompted for the passphrase for your privateKey. Then you will be asked for the
password that will be used to unlock the pfx file. Safely store all three files, as they are uniquely generated.
With our pfx file created, we can modify the package.json to enable signing of our Windows application. We
place our *.pfx file in a cert directory within our general development directory. Set the certificateFile to the
location of the *.pfx file, and the certificatePassword to the export password.

"win": {
 "target": [
 "squirrel"
],
 "certificateFile": "./certificate.pfx",
 "certificatePassword": "your-password",
 "icon": "./build/icon.ico"
 },

Customizing the Squirrel Installer
Unlike the NSIS installer, using the Squirrel installer actually has very few configurations. The first item we
can set is the icon for the generated setup.exe file. Typically, this will be the same as your application’s icon.
But unlike, the application icon, the location of this file must be remotely hosted. We typically place it in the
same directory that we stored the Windows updates.

"squirrelWindows": {
 "iconUrl": "http://your-company.com/releases/win/icon.ico",
 }

Next, we can modify the loading animation that is displayed by Squirrel as it silently installs your
application. The default image looks like Figure 16-4, albeit animated.

Chapter 16 ■ auto updating Your appliCation

256

You can easily replace with your own gif file. Simply set the loadingGif to a file. You do not need to have
this image be animated.

"squirrelWindows": {
 "iconUrl": "http://your-company.com/releases/win/icon.ico",
 "loadingGif": "./build/loader.gif"
 }

The next item to adjust is a subtle one. When Squirrel installs your application, it places it within the
AppData directory. It will create a new directory based either on your app ID or the name attribute. When
Squirrel creates the folder to install your application, and by default it will use your app ID. However, since
your app ID will probably follow the pattern of com.company-name.app-name, Windows will truncate the
directory name to just com. Instead, we recommend using your name attribute instead. To do this, add
useAppIdAsId and set it to false.

"squirrelWindows": {
 "iconUrl": "http://your-company.com/releases/win/icon.ico",
 "loadingGif": "./build/loader.gif",
 "useAppIdAsId": false
 }

This will now enable us to build our Windows application, but we need to make some additional
changes to the main.js file to support auto updating with Squirrel. First, we need to set a new updateURL to
check for any updates. Here is the new code block for this.

if (process.platform === 'darwin') {
 autoUpdater.setFeedURL(updateUrl)
 autoUpdater.checkForUpdates()
} else {
 updateUrl = "http://your-company.com/releases/win/"
 autoUpdater.setFeedURL(updateUrl)
 autoUpdater.checkForUpdates()
}

Figure 16-4. Default Squirrel Loading GIF

Chapter 16 ■ auto updating Your appliCation

257

Since our app is now dependent on Squirrel to manage itself, we need to properly handle those events
before our application creates its window. These events center around the various installation or uninstall
steps that might need to occur. Here is a complete code sample that handles each of the Squirrel events that
should be added to the main.js file:

if (handleSquirrelEvent()) {
 // squirrel event handled and app will exit in 1000ms, so don't do anything else
 return
}

function handleSquirrelEvent() {
 if (process.argv.length === 1) {
 return false
 }

 const ChildProcess = require('child_process')
 const path = require('path')

 const appFolder = path.resolve(process.execPath, '..')
 const rootAtomFolder = path.resolve(appFolder, '..')
 const updateDotExe = path.resolve(path.join(rootAtomFolder, 'Update.exe'))
 const exeName = path.basename(process.execPath)

 const spawn = function (command, args) {
 let spawnedProcess, error

 try {
 spawnedProcess = ChildProcess.spawn(command, args, { detached: true })
 } catch (error) { }

 return spawnedProcess
 }

 const spawnUpdate = function (args) {
 return spawn(updateDotExe, args)
 }

 const squirrelEvent = process.argv[1]
 switch (squirrelEvent) {
 case '--squirrel-install':
 case '--squirrel-updated':
 // Optionally do things such as:
 // - Add your .exe to the PATH
 // - Write to the registry for things like file associations and
 // explorer context menus

 // Install desktop and start menu shortcuts
 spawnUpdate(['--createShortcut', exeName])

 setTimeout(app.quit, 1000)
 return true

Chapter 16 ■ auto updating Your appliCation

258

 case '--squirrel-uninstall':
 // Undo anything you did in the --squirrel-install and
 // --squirrel-updated handlers

 // Remove desktop and start menu shortcuts
 spawnUpdate(['--removeShortcut', exeName])

 setTimeout(app.quit, 1000)
 return true

 case '--squirrel-obsolete':
 // This is called on the outgoing version of your app before
 // we update to the new version - it's the opposite of
 // --squirrel-updated

 app.quit()
 return true
 }
}

You might be wondering about the spawn code that is referenced in this sample. If you recall, Squirrel
installs our app with the AppData folder. Unfortunately, it does not auto generate a shortcut for the user and
place it on their desktop. That spawn code will do this as part of the install or update process. Our standard auto-
update events will still be triggered, so we need to have the code in place to allow Squirrel to perform its tasks.

Generating Our First Build
With our app’s code updated to handle the Squirrel events and the url to check for any updates, let’s properly
generate our application. From the terminal:

npm run dist

This process will take a few moments to complete. Once it has completed, go ahead and launch the
xxx-setup.exe on a Windows machine. You should see your screen loading gif, then a shortcut created on the
desktop. The auto-update check should also run (Figure 16-5).

Since we have not provided any update files, you will see a dialog informing you that no updates are
available. So, let’s make an update!

Figure 16-5. The No Update dialog

Chapter 16 ■ auto updating Your appliCation

259

Generating an Update
To properly generate an update and the associated files, we need to follow some simple steps. First, those
three files that we generated for our first release need to be uploaded to the server that our auto update url is
pointing to.

 ■ Note You technically don’t need to use a remote server. if you run a local server, say using express, you
can reference that url instead.

Second, we need to update the package.json file to inform Electron Builder where to reference our
remote releases.

"squirrelWindows": {
 "iconUrl": "http://your-company.com/releases/win/icon.ico",
 "remoteReleases": "http://your-company.com/releases/win/",
 "loadingGif": "./build/loader.gif",
 "useAppIdAsId": false
 }

This url should be the same as our auto-update URL in our application code. Now when we build our
new application, electron builder will use the files hosted there to generate our *-delta.nupkg file, as well as
update the RELEASES file with the new data.

Finally, you need to update the version number in the package.json. If you want to make a simple
change to the index.html, you can do that as well.

With those changes in place, execute the npm run dist command again. The process will take a bit
longer as the remote files are accessed. When it is complete, we will have several new files alongside of the
files from the first build:

autoupdatedemo-1.0.0-full.nupkg

autoupdatedemo-1.0.1-delta.nupkg

autoupdatedemo-1.0.1-full.nupkg

Electron Demo Setup 1.0.0.exe

Electron Demo Setup 1.0.1.exe

RELEASES

Upload these new files, along with the RELEASES file to the server. Once they have transferred, launch
the application again on your Window machine. This time, there will be an update available (Figure 16-6).

Chapter 16 ■ auto updating Your appliCation

260

Click the Update button, and the update will be downloaded for us (Figure 16-7).

Once that is done, we can install it and relaunch our application. Our application is now up to date! You
now have the framework in place to auto update your Electron application on Windows.

Alternative Solutions
Now, using Electron Builder is not the only option to create packaged Electron application. The Electron team
also has a Windows installer module. The package can be found at https://github.com/electron/windows-
installer. This module does expose more settings for your Squirrel instance. You might want to consider
looking at this solution if your application needs additional parameters configured, like a custom-loading Gif.

Figure 16-7. The AutoUpdate Downloaded dialog

Figure 16-6. The AutoUpdate dialog

https://github.com/electron/windows-installer
https://github.com/electron/windows-installer

Chapter 16 ■ auto updating Your appliCation

261

Another option you might also explore is Electron Forge (https://beta.electronforge.io/).
Developed by the same team as Electron Builder, this project aims to be a single command-line interface
for Electron. It supports packaging to a wide range of platforms. What is interesting is, it uses Electron’s
Windows Installer for any Squirrel packages. This effort is very intriguing, and it could be a nice solution to
for your Electron development workflow.

Finally, we want to touch on Electron Builder itself. If you spend some time reading the documentation,
you might notice it has a section on auto updating. Instead of using Electron’s built-in Auto Update module,
it instead relies on their own electron-updater module. There may be advantages to using this solution
instead of the built-in solution, but you will need to make that call yourself.

Summary
You should have the framework in place to enable auto updating for both macOS and Windows. Both
platforms require unique solutions to enable this functionality. Now that you have built these exploration
apps, you can fold the code into your actual application.

You can also improve the dialog messaging and user interaction of the update process. A common
improvement would be to allow the user to check for an update via a menu item. You may also wish to
provide some feedback that the update is being downloaded.

https://beta.electronforge.io/

263© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5_17

CHAPTER 17

Additional Resources

Hopefully by now you have a solid starting point to build and code your Electron application. We have
touched on many of the core features that most desktop applications require: native menus and dialogs,
platform-specific installers, integration with the local file system, and more. The challenge is taking these
features and integrating them in your actual application.

Understanding that Electron is built atop two separate systems, you should be able to isolate much
of the Electron-specific code from the main process, leaving your renderer process free to your core
application. As we come to the end of this book, we want to cover some of the various loose ends that we
need to touch upon before you begin writing the next awesome Electron app!

Additional Electron APIs
While we introduced you to a lot of the core APIs that Electron offers, we did not cover every one. But, we
would be remiss if we did not touch briefly on some of the other APIs that you should be aware of:

desktopCapturer
This API allows you to capture audio and video from the user desktop. This API is built atop the
webkitGetUserMedia API. It should be noted that whenever you access media recording functions, you need
to be transparent with the user about performing the recording action.

crashReporter
Electron has this built-in API that will submit crash reports to a remote server. It does require some
additional server configurations in order to accept the crash reports from your application.

ClientRequest
This powerful API is used to make HTTP/HTTPS requests via the main process. The actual method
implements Node’s Writable Stream interface. Some examples of supported streams are the following:

•	 HTTP request

•	 HTTP responses

•	 fs write streams

•	 zlib streams

•	 crypto streams

•	 TCP sockets

https://doi.org/10.1007/978-1-4842-2826-5_17

Chapter 17 ■ additional resourCes

264

net
Although like the HTTP and HTTPs modules in Node.js, this API uses Chromium’s native networking library
instead. Better support for web proxies is one reason you might consider this solution instead of the Node.js
modules.

DownloadItem
You can use this API to control file downloads from remote sources. This works well if you need to interact
with remote files.

Electron Forge
Billed as the command-line interface for Electron applications, this project is being developed by Electron
Userland. You might recognize that name, as they are the developers of the npm modules electron-packager
and electron-builder.

The main idea of this project is to provide a CLI for many of the common Electron tasks, including
scaffolding a new Electron app, installing new Node modules, packaging and publishing. This is certainly
an effort that we are closely following for use in our next Electron application. To learn more about this tool,
visit https://beta.electronforge.io/.

Community Resources
The success of any open source project is, in part, due to the strength of the community around it. Electron is
fortunate to have an active community that new and experienced developers can turn to when dealing with
an issue or looking for a solution. Here is a list of some of the more popular channels that you can become a
part of:

•	 Discuss (https://discuss.atom.io/c/electron)

•	 Reddit (https://www.reddit.com/r/electronjs)

•	 Stack Overflow (http://stackoverflow.com/questions/tagged/electron)

•	 @electronjs on Twitter (https://twitter.com/electronjs)

•	 #atom-shell on Freenode (http://webchat.freenode.net/?channels=atom-shell)

•	 #electron on Atom Slack (http://atom-slack.herokuapp.com/)

•	 electron-jp (Japanese) (https://electron-jp-slackin.herokuapp.com/)

•	 electron-br (Brazilian Portuguese) (https://electron-br.slack.com/)

•	 electron-kr (Korean) (http://www.meetup.com/electronkr)

•	 @electron_ru on Telegram (Russian) (https://telegram.me/electron_ru)

•	 electronjs on Facebook (https://www.facebook.com/groups/electronjs/)

We should not forget that Electron is an open source project living and breathing on GitHub. Take the
time to look over the issues for the project, or you can even contribute to the project.

https://beta.electronforge.io/
https://discuss.atom.io/c/electron
https://www.reddit.com/r/electronjs
http://stackoverflow.com/questions/tagged/electron
https://twitter.com/electronjs
http://webchat.freenode.net/?channels=atom-shell
http://atom-slack.herokuapp.com/
https://electron-jp-slackin.herokuapp.com/
https://electron-br.slack.com/
http://www.meetup.com/electronkr
https://telegram.me/electron_ru
https://www.facebook.com/groups/electronjs/

Chapter 17 ■ additional resourCes

265

Summary
This concludes our journey together through this book. We tried to cover many of the various parts of
Electron and its supporting technologies at a reasonable depth and in an order that made sense. There is
nowhere near enough space or time for this book to cover each and every part of Electron, but this should
give you a very strong base on which to rapidly build amazing, sleek, and performant desktop applications.
Keep trying new things, and join us in the journey of making Electron a great framework!

267© Chris Griffith, Leif Wells 2017
C. Griffith, L. Wells, Electron: From Beginner to Pro, https://doi.org/10.1007/978-1-4842-2826-5

��������� A
Auto updates

build application, 251
generate an update, 251
Heroku, 248
macOS, 245
server options, 248
signing your application, 250
testing, 250
update server, 249
user feedback, 247
windows applications, 252

downloaded dialog, 260
Electron Builder, 260
generate an update, 259
No Update dialog, 258
sign in, 254
Squirrel Installer, 255

��������� B
BrowserWindow

argument
alwaysOnTop property, 60
basic window properties, 59
frameless window, 66
movable properties, 60
ready-to-show’ event, 58
resizable property, 60
title property, 61
transparent window, 70
center, x and y properties, 59

Chrome DevTools, 54
code updation, 56
show() method, 56

��������� C
Chrome Dev tools, 54, 200

debug menu, 200
extensions, 206

Chromium, 2
createWindow method, 54, 56

��������� D
Debugging, main process

node-inspector, 204
target option, 203
in VS Code, 201

Devtron
accessibility audit, 212
description, 207
event listeners, 209
IPC monitor, 210
linter, 211
Require Graph pane, 208
user interface, 207

Dialog module, 103
BrowserWindow parameter, 110
error dialogs, 127
file directories, 115

delete, 116
read, 116

file open dialog, 103
file selection, 108
message dialog, 119

callback function, 127
custom icons, 125
error type, 120
on macOS, 123
showMessageBox method, 120
warning type, 121

Node’s FS module, 112
access flag values, 112
delete, 115
file information, 113
fs.watch() method, 115
open method, 112
to read, 114
to write, 114

showOpenDialog
properties, 105–106

Index

https://doi.org/10.1007/978-1-4842-2826-5

■ INDEX

268

showSaveDialog method, 116
title property, 107

Dock icon, 159
Apple’s Human Interface Guidelines, 161
application setting, 160
badges, 165
bounce, 163
change icon, 165
npm start command, 160, 162
package.json file, 160

��������� E
Electron

advantages, 4
APIs, 263

ClientRequest (main process), 263
community resources, 264
crashReporter (both processes), 263
desktopCapturer (renderer process), 263
DownloadItem (main process), 264
electron forge, 264
.net (main process), 264

beyond sandbox, 5
chromium, 2
definition, 1
FlexBox support table, 4
main process, 6, 44
node, 2
NW.js, 7
overview, 2
package.json file creation, 42
render process, 6, 48
window title properly, 63

Electron Builder, 231
app icon configuration, 238

macOS DMG, 238
windows installer, 239

configuration options, 233
directory structure, 231
dist directory, 236
Linux on macOS, 233
OSX installer window, 237
package.json file, 232
testing, 235
windows on macOS, 233

��������� F, G
Finding locales, 156
Frameless window, 66

��������� H
Heroku, 248

��������� I, J, K
Installation, 9

electron, 38
git, 20
Node, 9

Inter-process communication (IPC)
module, 93, 189, 224

asynchronous message, 98
communication bridge, 93
event listeners, 101
synchronous message, 94

��������� L
loadURL method, 55

��������� M, N
Menus, 73

additional values, 78
checkmark, 82
contextual menu, 90
edit, 80
hierarchy diagram, 74
keyboard shortcuts, 77
macOS’s application, 76, 83
modifier, 78
role property, 78
submenus, 80
super key, 78
templates, 75
window modification, 84

��������� O, P
Online/offline detection

checkIsOnline method, 188
checkOnlineStatus method, 187
combined approach, 187
main process, 183
render process, 176
updateOnlineStatus

method, 187

��������� Q
Quick Start code, 41

Dialog module (cont.)

■ INDEX

269

��������� R
Renderer process, 223–224

��������� S
Screens, 152
Shell, 169

package.json file, 170
shell.beep, 170
shell.beep method, 170
shell.openExternal(filePath)

method, 173
shell.openItem(filePath) method, 172
shell.showItemInFolder(filePath)

method, 171
Spectron testing, 212, 214

add test.js file, 215
browserWindow API, 218
click method, 227
describe method, 216
getWindowCount method, 217
log statement, 223
package.json file, 214
project creation, 224
renderer process, 223
screen size, 222
window.webContents.send()

method, 226

Splash window, 189
file creation, 191
installation, 190
load main window, 196
renderer.js file, 197
set up, 190
version number, 193

��������� T
Transparent window, 70

��������� U, V
url.format() method, 48

��������� W, X, Y, Z
WebContents

capturePage method, 144
createWindow() method, 134
did-finish-load event, 141
did-start-loading event, 139, 141
empty array, 131
events, 137
getAllWebContents() method, 130
imageCaptured method, 146
overview, 130
printToPDF method, 149

	Contents
	About the Authors
	About the Technical Reviewer
	Chapter 1: Welcome to Electron
	What Is Electron?
	What Is Node?
	What Is Chromium?

	Who Is Using Electron?
	What Do I Need to Know?
	Why Should I Choose Electron?
	Electron’s Advantages
	Beyond the Sandbox
	Offline First Design

	How Does Electron Work?
	The Main Process
	The Render Process
	Other Solutions

	Summary

	Chapter 2: Installing Electron
	Before Installing
	Installing Node
	Installing Node for macOS
	Installing Node on Windows

	Installing Git on macOS
	Installing Node on Windows
	Installing Git on Windows

	Installing Electron
	Summary

	Chapter 3: The Electron Quick Start
	Getting the Quick Start Code
	Updating the Project to Make It Yours
	The Main Process File
	The Quick Start’s Renderer Process
	Summary

	Chapter 4: BrowserWindow Basics
	Getting Started
	Disabling Chrome DevTools

	Update Code to Use the ready-to-show Event
	BrowserWindow Options Argument
	Basic Window Properties (width, height, minWidth, minHeight, maxWidth, maxHeight)
	The center, x and y Properties
	The resizable and movable Properties
	The title Property

	Other Window Types
	Frameless Windows
	Transparent Windows

	Summary

	Chapter 5: Adding Custom Menus
	Getting Started
	Menu Templates
	macOS’s Application Menu
	Defining Keyboard Shortcuts and Menu Item Roles
	Creating Submenus and Checkmarks
	Completing the macOS’s Application Menu
	macOS’s Window Menu Modifications

	Contextual Menus
	Summary

	Chapter 6: Understanding the IPC Module
	Getting Started
	Synchronous IPC Messaging
	Asynchronous IPC Messaging
	Managing Event Listeners
	Summary

	Chapter 7: Working with the Dialog Module
	Getting Started
	The File Open Dialog
	Additional Open Dialog Properties
	Selecting a File
	The BrowserWindow Parameter
	A Brief Look at Node’s FS Module
	Opening a File
	Getting File Information
	Writing a File
	Reading Files
	Deleting a File
	Watching for Updates

	Working Directories
	Reading the Directory Contents
	Deleting a Directory

	The File Save Dialog
	The Message Dialog
	Custom Icons
	Handling the Response

	Error Dialogs
	Summary

	Chapter 8: WebContents, Screens, and Locales
	Getting Started
	Discovering Electron’s WebContents
	A Little Setup Before We Begin
	WebContents Events
	The “did-start-loading” Event
	The capturePage Method
	The printToPDF Method
	Getting Information about Screens
	Finding Locales
	Summary

	Chapter 9: The Dock Icon on macOS
	Getting Started
	The Application’s Dock Icon
	Making the Dock Icon Bounce
	Changing the Dock Icon
	Dock Icon Badges
	Summary

	Chapter 10: Shell
	Getting Started
	Making the System Alert Sound
	Showing Files in the Operating System
	Opening Files with the Operating System
	Opening HTML Files with the Operating System
	Summary

	Chapter 11: Online/Offline Detection
	Getting Started
	Using the Renderer Process to Detect Online Status
	Pros and Cons of the Renderer-Only Solution
	The Main Process-Only Solution
	Pros and Cons of a Main Process-Only Approach
	The Combined Approach
	Summary

	Chapter 12: Advanced BrowserWindow
	Loading an Application
	Splash Window
	Installing the Quick Start
	Setting Up a Splash Window
	Creating the Splash Window File
	Showing the Version in Our Splash Window
	Loading the Main Window
	Setting Up the Main Window
	Summary

	Chapter 13: Debugging Your Electron Application
	Chromium’s Dev Tools
	Debugging the Main Process
	Debugging the Main Process in VS Code
	Debugging the Main Process in node-inspector

	Chrome DevTools Extensions
	Devtron
	Require Graph
	Event Listeners
	IPC Monitor
	Linter
	Accessibility

	Spectron
	Summary

	Chapter 14: Testing with Spectron
	Getting Started
	Adding a Test File
	Using Spectron’s browserWindow API
	Testing the Size of the browserWindow
	Testing Interactions in the Renderer Process
	Make the Example Interactive
	Summary

	Chapter 15: Building Your Application
	Installing Electron Builder
	Adjusting your Build Directories
	Updating the package.json file
	Building for Windows on macOS
	Building for Linux on macOS

	Configuration Options
	Testing Our First Build
	Configuring the App Icon
	Configuring the macOS DMG
	Configuring the Windows Installer

	Summary

	Chapter 16: Auto Updating Your Application
	Auto Updating macOS
	User Feedback
	Auto Update Server Options
	Setting Up Heroku
	The Auto-Update Server

	Testing Our Auto Update
	Signing Your Application
	Building the Application - macOS
	Generating an Update

	Auto Updating Windows Applications
	Signing Your Windows Application
	Customizing the Squirrel Installer
	Generating Our First Build
	Generating an Update
	Alternative Solutions

	Summary

	Chapter 17: Additional Resources
	Additional Electron APIs
	desktopCapturer
	crashReporter
	ClientRequest
	net
	DownloadItem

	Electron Forge
	Community Resources
	Summary

	Index

