
Enhancing Adobe
Acrobat DC Forms
with JavaScript

—
Jennifer Harder

www.allitebooks.com

http://www.allitebooks.org

Enhancing Adobe
Acrobat DC Forms

with JavaScript

Jennifer Harder

www.allitebooks.com

http://www.allitebooks.org

Enhancing Adobe Acrobat DC Forms with JavaScript

Jennifer Harder
Delta, British Columbia, Canada

ISBN-13 (pbk): 978-1-4842-2892-0 ISBN-13 (electronic): 978-1-4842-2893-7
DOI 10.1007/978-1-4842-2893-7

Library of Congress Control Number: 2017954339

Copyright © 2017 by Jennifer Harder

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Technical Reviewer: Dan Carr
Coordinating Editor: Jessica Vakili
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-2892-0. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-2892-0
http://www.apress.com/978-1-4842-2892-0
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Part 1: Basic Form Improvements ���������������������������������� 1

 ■Chapter 1: A Fundamental Forms Primer ��������������������������������������� 3

 ■Chapter 2: Introduction to Actions ��� 27

 ■Chapter 3: Creating a QR Code Custom Stamp ����������������������������� 45

 ■Chapter 4: Buttons, Navigation, Form and Non-Form Actions ������ 55

 ■ Part 2: Simplified Field Notation and
Basic JavaScript ��� 91

 ■ Chapter 5: Introduction to Simplified Field Notation
and JavaScript ��� 93

 ■Chapter 6: Basic and Complex Calculations ������������������������������� 111

 ■Chapter 7: Format Calculations �� 123

 ■ Chapter 8: Various JavaScript Alerts, Notes, and
Time Stamps ��� 139

 ■ Chapter 9: Create Help for Clients with Rollover Text
and Alerts ��� 155

 ■Chapter 10: Various Types of Formatting with JavaScript ��������� 173

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

iv

 ■Part 3: Working with More Complex Forms ���������������� 193

 ■ Chapter 11: Validation with Text Boxes, Alerts, and
Radio Buttons ��� 195

 ■Chapter 12: Working with Dropdown Menus ������������������������������ 217

 ■Chapter 13: Working with List Boxes ��� 239

 ■Chapter 14: Advanced Navigation: The Popup Menu ������������������ 265

 ■Part 4: Beyond the Basics��� 273

 ■Chapter 15: Action Wizard and JavaScript ��������������������������������� 275

 ■Chapter 16: Multi-State Check Boxes ��� 285

 ■Chapter 17: Importing an Image into a Button ��������������������������� 295

 ■Chapter 18: Multiple Formatting �� 299

 ■Chapter 19: Digital Signatures and Barcodes ����������������������������� 311

 ■Part 5: Putting It into Practice ������������������������������������ 325

 ■Chapter 20: Homework Assignments ��� 327

Index �� 357

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author ��� xv

About the Technical Reviewer ��� xvii

Acknowledgments �� xix

Introduction �� xxi

 ■Part 1: Basic Form Improvements ���������������������������������� 1

 ■Chapter 1: A Fundamental Forms Primer ��������������������������������������� 3

Forms Review�� 3

Fields Refresher �� 8

Properties Refresher ��� 9
Text Box Field Properties and New Date Field Properties ��������������������������������������� 11

Dropdown Properties �� 12

List Box Properties�� 13

Check Box Properties ��� 14

Radio Button Properties �� 15

Button Properties and Image Properties��� 16

Digital Signature Properties �� 17

Barcode Properties ��� 18

Tabs Refresher �� 18

Summary ��� 25

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

 ■Chapter 2: Introduction to Actions ��� 27

Getting Started �� 27

Rating Forms Value Averaging and Sum: Working with Text Fields ������� 28
The Validate Tab �� 30

Page 2 of Project: The Calculate Tab for the Grand Total Using Sum ����� 33

Sum and Averaging Using Check Boxes or Radio Buttons
with Text Fields�� 35

Using Radio Buttons on Page 3 of the Project �� 36

Using Check Boxes on Page 3 of the Project �� 38

Basic Action Button Triggers for Reset Buttons and Printing Buttons �����40

Reset Button ��� 41

Print Form Button ��� 42

Summary ��� 44

 ■Chapter 3: Creating a QR Code Custom Stamp ����������������������������� 45

Customizing Your QR Code Stamp ��� 46

QR Code Creation �� 47

Using the Stamp Tool ��� 50

Final Thoughts: QR Code for Professional Printing �������������������������������� 53

Summary ��� 53

 ■Chapter 4: Buttons, Navigation, Form and Non-Form Actions ������ 55

Creating a Button Icon ��� 56

Example of a Button as a Label Only �� 57

Non-Form Properties Actions �� 59

Pages �� 60

Bookmarks ��� 61

Web Hyperlinks ��� 63

Rich Media Non-Form Navigation Buttons ��� 64

Layers Basic Actions ��� 65

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

Triggers for Actions ��� 67

Choose an Action That Requires No Code ��� 68

Newsletter Navigation with Buttons �� 72

Form Navigation with a Button as Helpful Hint ������������������������������������� 77

Adding a Comb of Characters �� 80

Before Comb and After Comb ��� 80

More Action Triggers to Show and Hide �� 82

Hide and Clear Fields Button �� 84

Set Layer Visibility ��� 86

Using Bookmarks�� 87

Using Buttons ��� 88

Summary ��� 90

 ■ Part 2: Simplified Field Notation and
Basic JavaScript ��� 91

 ■ Chapter 5: Introduction to Simplified Field Notation
and JavaScript ��� 93

Getting Started �� 93

Text Field, Date, and Dropdown Menu Properties ���������������������������������� 94

Action Tab ��� 94

Format Tab �� 95

Validate Tab �� 97

Calculate Tab �� 97

Check Box, Radio Button, Image Field, and Button Properties ������������������������������� 99

List Box Properties�� 99

Digital Signature Properties �� 100

Barcode Properties ��� 102

Global Document JavaScript �� 103

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Web Links and References ��� 107

Regular Forms vs� E-Sign Forms �� 107

JavaScript and Acrobat on the Document Level ���������������������������������� 108

Summary ��� 109

 ■Chapter 6: Basic and Complex Calculations ������������������������������� 111

Getting Started �� 112

Sum Value ��� 112

Simplified Field Notation ��� 113

JavaScript Custom Calculation Script ��� 115

Final Thoughts ��� 117

The Final Line of Code �� 119

Dropdown Alternatives ��� 120

Summary ��� 121

 ■Chapter 7: Format Calculations �� 123

Number Formatting ��� 125

Formatting with a Percentage ��� 126

A Workaround for the Percentage ��� 126

Date Formatting �� 129

Time Formatting �� 133

Final Thoughts ��� 137

Dropdown Alternatives ��� 137

Summary ��� 137

 ■ Chapter 8: Various JavaScript Alerts, Notes, and
Time Stamps ��� 139

Alert Types ��� 140

Create a Document JavaScript �� 141

Viewer Version and Validation Alert ��� 143

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Document Actions ��� 145

Document Will Close ��� 146

Document Will Print �� 147

Alerts Working with Buttons �� 147

Adding a Comment Note, Signature, and Time Stamp ������������������������� 149

Summary ��� 154

 ■ Chapter 9: Create Help for Clients with Rollover Text
and Alerts ��� 155

The Rollover Method ��� 156

Mouse Enter ��� 159

Mouse Exit �� 160

Extra Non-Custom JavaScript Check Box Example �� 160

The Default Text Method �� 160

The Alert Method ��� 162

Customer’s Full Name �� 163

Date �� 165

Customer Order Code ��� 167

Customer’s Company Name ��� 169

Final Thoughts ��� 170

Summary ��� 171

 ■Chapter 10: Various Types of Formatting with JavaScript ��������� 173

Adding Global Formatting to Text Fields �� 173

Color Properties ��� 177

Multi-Line Buttons ��� 177

Multi-Line Text ��� 180

Complex Formatting Using Check Boxes and Text Fields �������������������� 183

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Silent Printing �� 189

Final Thoughts ��� 191

Summary ��� 192

 ■Part 3: Working with More Complex Forms ���������������� 193

 ■ Chapter 11: Validation with Text Boxes, Alerts, and
Radio Buttons ��� 195

Money Transfer Example ��� 195

Changing the Shipping Price Using Radio Buttons ������������������������������ 201

Text Field Validation with Regular Expressions ����������������������������������� 204

Telephone Validation ��� 206

Name Validation �� 208

Account Number Validation �� 210

Email and URL Validation �� 210

Another Phone and Date Example with Two Variables ��� 211

Final Thoughts ��� 212

Summary ��� 215

 ■Chapter 12: Working with Dropdown Menus ������������������������������ 217

Current Skills Request Form ��� 217

Parts Order Form ��� 223

Final Thoughts ��� 237

Load a Lengthy Single Dropdown or List Menu �� 237

Summary ��� 238

 ■Chapter 13: Working with List Boxes ��� 239

List Box Priority List with Control Buttons ��� 240

The Add Button ��� 244

The Delete Button ��� 244

The Clear or Reset Button ��� 245

 ■ Contents

xi

The Up Button ��� 245

The Down Button �� 246

Check Box, Dropdown, and List Box Example 1 ���������������������������������� 247

Check Box, List Box, and Multi-Dropdown Example 2 ������������������������� 252

Button Slide Show Variation �� 258

Extra Example Priority List Improved �� 258

Final Thoughts ��� 262

Hidden Fields �� 262

Using List Boxes for Number Rating ��� 263

Summary ��� 264

 ■Chapter 14: Advanced Navigation: The Popup Menu ������������������ 265

The Popup Menu Example ��� 266

Final Thoughts ��� 270

Summary ��� 271

 ■Part 4: Beyond the Basics��� 273

 ■Chapter 15: Action Wizard and JavaScript ��������������������������������� 275

Working with Action Wizard��� 275

Reuse JavaScript from Chapter 8 ��� 282

Is It a Custom Action or a Custom Command? ������������������������������������ 283

Create and Manage Custom Commands �� 283

Summary ��� 283

 ■Chapter 16: Multi-State Check Boxes ��� 285

The Problem of Multi-State Check Boxes �� 285

Bonus Star Rating Idea �� 291

Select All or Deselect All Check Boxes at Once ����������������������������������� 292

Summary ��� 293

■ Contents

xii

 ■Chapter 17: Importing an Image into a Button ��������������������������� 295

Creating the Button ��� 296

Summary ��� 298

 ■Chapter 18: Multiple Formatting �� 299

The Problem of Multiple Formatting �� 299

Option 1: Do It Yourself �� 301

Price Script ��� 302

No Price Script �� 303

Option 2: Call a Professional�� 308

Summary ��� 310

 ■Chapter 19: Digital Signatures and Barcodes ����������������������������� 311

Digital Signatures and Security ��� 311

Barcodes ��� 321

Summary ��� 323

 ■Part 5: Putting It into Practice ������������������������������������ 325

 ■Chapter 20: Homework Assignments ��� 327

Homework Assignment 1: Show and Hide �� 327

Homework Assignment 2: Working with JavaScript to
Create Formulas �� 339

Area of a Circle
A = π r 2 ��� 341

Field: CircumferenceRow1 Circumference of a Circle
C = 2 π r ��� 341

Field: VolumeRow1 Volume of a Sphere
V = 4/3 π r3 ��� 342

Field: FahrenheitRow1 Celsius to Fahrenheit to Formula�
(°C x 9/5) + 32 = °F� ��� 342

Field: CelsiusRow1_2 Fahrenheit to Celsius Formula�
(°F - 32) x 5/9 = °C ��� 342

 ■ Contents

xiii

Homework Assignment 3: Custom Validation and
Regular Expressions �� 344

Homework Assignment 4: Personal Dropdown Menu and
Definitions Text Box ��� 350

Summary ��� 356

Index �� 357

About the Author

Jennifer Harder has worked in the graphic design
industry for over 10 years. She has a degree in Graphic
Communications and is currently teaching Acrobat,
InDesign, and Dreamweaver courses at Langara
College. As a freelancer, Jennifer frequently works with
Adobe PDFs and checks them before they go to print
or are uploaded to the Web. She enjoys talking about
Adobe software and her interests include writing,
illustration, and working on her websites.

xv

xvii

About the Technical
Reviewer

Dan Carr is a veteran software developer and UX designer specializing in vanilla
JavaScript, web components, React, and Node. During a decade of consulting with Adobe,
Dan produced articles, tutorials, and product features for Dreamweaver, Flash, Flex, and
Authorware. Life currently finds him enjoying the weather in Westside Los Angeles.

xix

Acknowledgments

For their patience and advice, I would like to thank the following people, for without them
I could never have written this book:

•	 My parents, for encouraging me to read large computer textbooks
that would one day inspire me to write my own book.

•	 My Dad, for reviewing the first draft before I sent a proposal.

•	 My program coordinator, Raymond Chow, at Langara College,
who gave me the chance to teach evening courses when others
would not give me that opportunity or believe that I had anything
worthy to contribute.

•	 My printing boss, Eddie, at Pender Copy Ltd., who knows how
much work it is to put together a large document and how much
effort I put into working with Adobe software.

At Apress, I would like to thank Natalie and Jessica for showing me how to lay out
a professional textbook and pointing out that even when you think you’ve written it all,
there’s still more to write. Also thanks to Jim Markham and the technical reviewers Dan
Carr and Karl Kremer for taking the time to test my files and for providing encouraging
comments. And thanks to the rest of the Apress team for printing this book and making
my dream a reality. I am truly grateful and blessed.

xxi

Introduction

Welcome to the first step in an exciting journey I call Enhancing Adobe Acrobat DC Forms
with JavaScript.

My journey into learning about Adobe software began 17 years ago when I started
college. I took a two-year Graphic Communications course in Vancouver, BC. While
learning about how to set up documents for print layout using QuarkXPress and later
Adobe InDesign, I created PDF files. At that point, I only saw the PDF as a transition from
one file format to the next production step, from layout to the printing press. It never
crossed my mind what else could be done with PDF files in Adobe Acrobat.

Several years after graduating, while doing freelance work for one of my clients,
I began to investigate the features of Acrobat to discover what else the program had to
offer. In 2008, I decided to learn more about web design and improve my layout skills
in Adobe software. After finishing three certificates in Web Design at Langara College
Continuing Studies, I realized that I wanted to help students learn more about Adobe
software. There were times through the journey when I read different computer books
and felt, “OK I’ve finished this tutorial or project, but how does this relate to the real world
and what I’m trying to accomplish?” In 2011, I became a Teaching Assistant at Langara
College and this gave me the opportunity to write my own course on introducing students
to Adobe Acrobat. While writing it, I realized there was a lot more that could be said about
Acrobat than what I could present in three-evening course. At that point, I was looking at
one icon in the Acrobat menu that perplexed me. It was called JavaScript.

JavaScript in Acrobat? What is this doing here? The only JavaScript that I knew about
at that point was through building websites. I had built a few basic template forms using
LiveCycle Designer, MS Word, and Acrobat, but I had never used JavaScript in the Acrobat
program. So I began to wonder how JavaScript could improve my forms.

So, this is when and how the idea began for developing a book for students on the
topic of Acrobat and JavaScript. After years of research, looking at Adobe and Acrobat
forums, and studying the questions and concerns users had when trying to add JavaScript
to Acrobat, I came to the following conclusions:

•	 Users are looking for simple solutions to programing an Acrobat
form that they will use in real-world situations. Many are looking
for the same answers.

•	 When documentation is not written in a simplified manner, the
average user becomes intimidated. They will shy away from using
the JavaScript menu and eventually give up and ignore the tool.
To them, JavaScript coding is like a foreign language, and the
average person who has not taken web design lessons does not
have a clue what it means or where the code should be inserted,
since the form field’s property dialog boxes look nothing like a
web page.

■ IntroduCtIon

xxii

•	 At some point, it’s important to share with others what you have
learned about Acrobat and JavaScript and not keep your thoughts
to yourself. That’s what leads to innovative ideas. However, these
thoughts need to be organized so that the user can find the
solution quickly and be able to comprehend it.

Shortly after compiling my notes, Adobe introduced the latest version Acrobat DC.
I saw that the layout of the program had changed and now there was no book to show the
user how to add JavaScript in this new format. I completed the first draft of my Advanced
Adobe course and had it approved by my Program Coordinator at the college. In 2016,
I realized I could reach a wider audience if the book was published and so I approached
Apress. They saw my vision, and that is how this book came to be in your possession.

Understanding How Acrobat DC and Its Forms
Work with JavaScript
If you are currently using Adobe Acrobat Pro XI or older, it’s time to upgrade to the new
Acrobat DC Pro. You can either acquire Adobe Acrobat DC as a stand-alone program
through Adobe or get a Creative Cloud subscription and enjoy all the exciting Adobe
programs for a monthly fee. Refer to these links and check if your computer’s operating
system meets the system requirements needed for the upgrade:

https://helpx.adobe.com/creative-cloud/system-requirements.html
https://helpx.adobe.com/acrobat/system-requirements.html

Make sure to follow the online instructions and tutorials for installing and working
with Acrobat and Creative Cloud.

If you are new to Adobe Acrobat DC, I encourage you to first read the book Adobe
Acrobat DC Classroom in a Book by Brie Gyncild and Lisa Fridsma. This book will give
you a basic overview of the new Acrobat DC features as well as form basics in Chapter 10.
However, that book does not go into detail regarding forms when working with JavaScript.
I consider my book to be the part 2 for intermediate and advanced users to take their
forms to the next level.

Adobe Acrobat DC will allow you to add form fields to any PDF file, as I will explain
further in Chapter 1. It can even work with pre-existing form fields that were created
in Adobe InDesign CC when the file was exported as an interactive PDF. However,
it’s important that your client views and interacts with the forms in Acrobat DC Pro,
Standard, or Acrobat Reader. Other PDF readers, like Mac Preview, have been known to
corrupt the JavaScript programing, so keep this in mind when you email the forms.

Another possibility is that the user may have disable the use of JavaScript under
Edit ➤ Preferences Categories JavaScript.

https://helpx.adobe.com/creative-cloud/system-requirements.html
https://helpx.adobe.com/acrobat/system-requirements.html
http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

 ■ IntroduCtIon

xxiii

See Figure I-1 for how your JavaScript preferences should appear.

The following is an explanation from the Adobe website on some of the settings.
See https://helpx.adobe.com/acrobat/using/javascripts-pdfs-security-risk.html
for more information.

•	 Enable Acrobat JavaScript: Uncheck to disable JavaScript
completely or restrict JavaScript through APIs.

•	 Enable menu items JavaScript execution privileges: Enables
executing JavaScript by clicking menu items. When off, privileged
JavaScript calls can be executed through the menu. Executing
non-privileged JavaScript calls through menu items is not blocked
whether this box is checked or not.

Figure I-1. Acrobat DC’s Preferences menu for enabling and disabling JavaScript and
security features

https://helpx.adobe.com/acrobat/using/javascripts-pdfs-security-risk.html

■ IntroduCtIon

xxiv

•	 Enable global object security policy: Allows JavaScript globally
through APIs, or trusts specific documents containing JavaScripts.

The debugger and the JavaScript Editor options will be looked more closely in
Chapter 5.

Note that you will not be working with any JavaScript that could create a security risk
so you can leave this area at the default settings for these chapters as you work with the
files you download.

In most cases, Adobe Acrobat DC will auto-detect in a PDF where form fields can be
added in a form, but it’s not a perfect science. It’s up to you as the author to edit and test
your forms for errors as you build them and add your JavaScript code.

What to Expect from this Book
Enhancing Adobe Acrobat DC Forms with JavaScript covers up-to-date, real working
examples that you can easily download, practice with, and edit to suit your own projects.
Using screenshots from Adobe Acrobat DC, users of previous versions will also be able
to utilize these techniques. This book also shows work-arounds and solutions to various
form issues you might encounter. JavaScript does not need to be scary. Feel empowered
by it and improve your PDF documents!

What You’ll Learn
You’ll learn the following from this book:

•	 How to create calculations, rating forms, and QR code stamps
using the form elements

•	 Simplified field notation and basic JavaScript for Acrobat

•	 How to use buttons for navigation

•	 How to create complex forms that include dropdown and list
boxes in combination with other form fields

•	 Action Wizard and JavaScript

•	 Improved form navigation and printing of forms

•	 Various types of alerts and custom validations to improve
client-entered data

http://dx.doi.org/10.1007/978-1-4842-2893-7_5

PART 1

Basic Form Improvements

3© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_1

CHAPTER 1

A Fundamental Forms
Primer

Creating the right form before you add JavaScript to your PDF fields takes time and careful
planning. Therefore, it’s important that you become familiar with each of the form tools
and the properties that are associated with them. This chapter provides a quick overview
of forms, fields, properties, and tabs that will serve as the basis for future chapters. If you
are already comfortable with these topics, feel free to jump ahead to Chapter 2.

Forms Review
Each form field has within it properties that can be accessed by right-clicking on the form
field. The properties of that form field are organized by a use of tabs. Each form field has
slightly different properties and therefore different tabs.

Throughout this book you will be working on lessons with a variety of different
PDF forms and documents for a fictitious company called The Tourmaline Mining
Corporation.

Each chapter (except for Chapters 1 and 5) comes with JavaScript in a .txt file and
PDF files that you can open and compare. You can either view the final PDF file or use the
start PDF file and follow along with the notes in these chapters. You can find the files at
www.apress.com/9781484228920.

 ■ Note Please be aware that the PDF files used with this book should only be opened
in Adobe Acrobat Pro or Acrobat Reader XI or DC and not in Mac Preview or any other PDF
creation/reader program. Other PDF readers have been known to corrupt the JavaScript
code within the Acrobat PDF files and then the calculations fail to work.

Upon opening Acrobat DC, make sure to check your preferences at Edit Preferences
➤ Forms. They should be set to the default settings shown in Figure 1-1.

http://dx.doi.org/10.1007/978-1-4842-2893-7_2
http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_5
http://www.apress.com/9781484228920

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

4

The book assumes that you are familiar with filling in basic forms or have used PDF
forms in the past. If you are unsure of how to use the Prepare Form tool (shown in Figure 1-2)
and its auto-detection of fields in Acrobat DC, this section provides a refresher.

Draw out your form either by hand or create it in MS Word, Adobe Illustrator, or
Adobe InDesign, and decide what steps you want the form to do and accomplish. Then
plan how to execute your goals. Is what you want the form to do possible? Do you need to
simplify the form? Or do you need to learn more about the topic of forms to create what
you want?

Except for the program of Adobe InDesign, you cannot assemble the form’s
interactive fields outside of Acrobat, so you need to make a PDF to do that. Until you
are ready to make the PDF, continue to assemble the form in your layout program until
it looks the way it should. Then create the PDF. Once you have the final PDF, open it in
Acrobat DC and follow these steps to add interactivity:

 1. Click Tools ➤ Prepare Form Tool.

 2. While in the tool, choose your file and make sure that form
field auto-detection is ON. Do not check “This document
requires signatures” (Figure 1-2).

Figure 1-1. Default settings for the Forms tool

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

5

 3. Click Start. Acrobat will scan the file for fields; if it detects
any, it will create the field. However, it is not perfect in its
detection, so you may have to add, delete, or edit some fields
afterward.

 4. Once you have added your fields, save the file as a new PDF.
The new PDF is now an interactive form. Refer to Figure 1-3.

Figure 1-2. The Prepare Form tool when you first create a new form

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

6

You can now begin adding your formatting and actions to the properties of each
field. Test it, and ask others to try it on their computer, before you send it to your clients.
Always keep a backup on a disk or USB drive in case something happens to your main
computer. Also make a printout of the PDF and all code in case you need to refer to it later
for another project.

Once the fields are in the form, you can open the fields any time with the Prepare
Form tool; you do not need to run the auto-detection again for that form.

You can exit the Prepare Form area partially by toggling the Preview/Edit button in
the upper right (Figure 1-4). To exit the Prepare Form tool completely, you must click the
X in the upper right (Figure 1-4).

Figure 1-3. Saving the new PDF form in a folder after auto-detection is completed

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

7

For more information on basic forms or basic form creation, check out the following
links before you proceed any further in this book:

•	 https://helpx.adobe.com/acrobat/using/pdf-form-field-
properties.html

•	 https://helpx.adobe.com/acrobat/using/pdf-forms-basics.
html#pdf_forms_basics

•	 https://helpx.adobe.com/acrobat/using/creating-
distributing-pdf-forms.html#creating_and_distributing_
pdf_forms

•	 https://helpx.adobe.com/acrobat/using/pdf-form-field-
basics.html#pdf_form_field_basics

Figure 1-4. The Prepare Form tool and the tools for adding and working with the fields.
Note the Preview/Edit toggle and Exit (X) buttons in the upper right. Also note the view of a
form while in Edit mode.

https://helpx.adobe.com/acrobat/using/pdf-form-field-properties.html
https://helpx.adobe.com/acrobat/using/pdf-form-field-properties.html
https://helpx.adobe.com/acrobat/using/pdf-forms-basics.html#pdf_forms_basics
https://helpx.adobe.com/acrobat/using/pdf-forms-basics.html#pdf_forms_basics
https://helpx.adobe.com/acrobat/using/creating-distributing-pdf-forms.html#creating_and_distributing_pdf_forms
https://helpx.adobe.com/acrobat/using/creating-distributing-pdf-forms.html#creating_and_distributing_pdf_forms
https://helpx.adobe.com/acrobat/using/creating-distributing-pdf-forms.html#creating_and_distributing_pdf_forms
https://helpx.adobe.com/acrobat/using/pdf-form-field-basics.html#pdf_form_field_basics
https://helpx.adobe.com/acrobat/using/pdf-form-field-basics.html#pdf_form_field_basics

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

8

Other form tools, such as the Align and Distribute options, are found in the pane
on the right-hand side and in the More dropdown menu (Figure 1-5). I will go into more
detail about the JavaScript area in later in the book. Refer to the previous web links for
more details.

Fields Refresher
Fields can be blank and inactive, or they can contain a script that, upon entering or
clicking a trigger, sets the action in motion. For example, they can execute a menu item
or import form data. In Acrobat, the Forms Menu tool area contains all the field options
listed below plus the Selection tool. These fields can be used in any form, while the
Selection tool is just an arrow that allows you to select, size, and move them around.

•	 Selection tool: Select, size, and move fields.

•	 Text box: Type name or numbers into field.

•	 Check box: Select multiple options of an item.

Figure 1-5. Additional options found in the right-hand pane of the Prepare Form tool

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

9

•	 Radio button: Select one option from a group: yes or no.

•	 List box: Select one or multiple items in a list.

•	 Dropdown list: Select an option from a list.

•	 Button: Initiates an action like reset or submit.

•	 Image field (new): Same as button, only with some JavaScript
added (more on this topic later).

•	 Date field (new): Same as text field, but pre-formatted to date. It
can operate as a date picker.

•	 Digital signature: Electronically sign with your signature.

•	 Barcode: For a product barcode reader.

These items are also shown in Figure 1-6. To access them, select Tools ➤ Prepare
Form and then choose a document. The icons will then appear at the bottom.

 ■ Note If you require a custom QR Code, you can create one in InDesign CC 2014 or
higher. QR Codes are like barcodes, and we will look at them more closely in Chapter 3.

Properties Refresher
Each form field contains properties that can be easily accessed while you are in form
editing mode. Simply right-click the field you want to edit and choose Properties
(Figure 1-7). Then select the property you want to work with in the various tabs that will
appear in the dialog box.

Figure 1-6. Form tools available when working with a PDF from in Adobe Acrobat DC.
You can access them by going to the Tools tab and selecting the Prepare Form tool.

http://dx.doi.org/10.1007/978-1-4842-2893-7_3

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

10

Various properties can be set for each field depending upon which field is chosen
because the amount of properties varies. The properties are organized into sections
using tabs. Refer here to Figures 1-8 through 1-15. Properties can be typed in, checked,
or unchecked. The settings are applied as soon as you exit the field and move to another
field in the Properties dialog box or by clicking the Close button. However, the settings are
not fully saved until you save the PDF file.

To review, to work with the form fields, you must be in the Prepare Forms tool in Edit
mode. You will know you are in Edit mode because the Preview button toggle is in the
upper-right and the name of each field will appear. You can now either edit one field at a
time or multiple fields.

Use the Selection tool and either click one field or mark several and then right-click
and choose Properties from the menu.

 ■ Note If you select several fields at once, you may not have access to all tabs
depending on the type of fields selected. If you have selected several fields, what you type in
the tab properties will apply to all fields selected.

Figure 1-7. Right-click a field to reveal its properties

www.allitebooks.com

http://www.allitebooks.org

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

11

You will now be inside the form’s properties dialog box. Now you can change
properties within each tab; when you are done, click the Close button to close the dialog
box and save your PDF file to confirm the changes.

The following sections provide a cursory look at the properties associated with the
form fields listed earlier in the chapter.

Text Box Field Properties and New Date Field Properties
The text field and date field have eight tabs to organize their properties. The only
difference between a text field and a date field is that the format category for a date field
is preset to Date while the format category for a text field is preset to None. Note that the
heading of the dialog box for both is “Text Field Properties.” Refer to Figure 1-8.

Figure 1-8. Text field and date properties

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

12

Dropdown Properties
The Dropdown Properties dialog box also has eight tabs to organize the properties.
The tabs have the same names as the text field properties and contain many equivalent
properties; however, if you compare the Options tab on the Text Field Properties dialog
box to the Options tab on the Dropdown Properties dialog box, it will look different
because dropdown menus are meant to hold multiple export values while a text field can
only hold one default value.

While it is an option, the Calculate tab is rarely used with the Dropdown menu.
Refer to Figure 1-9.

Figure 1-9. Dropdown Properties dialog box

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

13

Figure 1-10. List Box Properties dialog box

List Box Properties
List box properties act like dropdown menus. However, there are only six tabs to organize
the properties. Like dropdown menus, they can have multiple export values. Unlike
dropdown menus, you can select more than one value at a time. Refer here to Figure 1-10.

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

14

Figure 1-11. Check Box Properties dialog box

Check Box Properties
The Check Box Properties dialog box has five tabs to organize the properties. A check box
can either be checked on or off. You cannot enter text into a check box; however, you can
give it a word or number value. Like all other properties, you can alter its appearance and
color (via the Appearance and Option tabs). Check boxes can act separately or in groups.
Refer to Figure 1-11.

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

15

Radio Button Properties
The Radio Button Properties dialog box, like the check box dialog box, has five tabs to
organize the properties. A radio button must come in pairs that can either be checked on
or off. While one is on, the other is off. You cannot enter text into a radio button; however,
you can give it a word or number value. Like all other properties, you can alter its
appearance and color (Appearance and Option tabs). You can have more than one group
of radio buttons, but there must always be at least two in the group. Refer to Figure 1-12.

Figure 1-12. Radio Button Properties dialog box

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

16

Figure 1-13. Button Properties dialog box

Button Properties and Image Properties
Button properties and image properties are identical except that image properties have a
small bit of code in the Actions tab to allow the importing of an image. See Chapter 17 for
details. Both contain five tabs and the tabs each have identical properties. Unlike buttons,
images can have more than two states and they operate independently. Refer to Figure 1-13.

http://dx.doi.org/10.1007/978-1-4842-2893-7_17

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

17

Digital Signature Properties
Digital signatures are used for signing electronic PDF forms with a client’s digital signature,
which is stored on their computer. The digital signature field appears like the text field;
however, it only has five tabs to organize its properties and is specifically designated for
signature only. Chapter 19 offers more details on digital signatures. Refer here to Figure 1-14.

Figure 1-14. Digital Signature Properties dialog box

http://dx.doi.org/10.1007/978-1-4842-2893-7_19

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

18

Tabs Refresher
As mentioned, all form fields have similar tabs, as listed here.

In the General tab,

•	 Name: The name of the field.

•	 Tooltip: This adds a type of accessibility text to the field so that
people with visual impairments can scan over the field and know
the purpose of the field.

Barcode Properties
The barcode field properties are organized under five tabs. A barcode’s main purpose is to
create a scannable barcode that relates to the information that is entered into the various
fields around it. Chapter 19 offers more details on barcodes. Refer here to Figure 1-15.

Figure 1-15. Barcode Field Properties dialog box

http://dx.doi.org/10.1007/978-1-4842-2893-7_19

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

19

•	 Common properties: Form field whether visible, hidden, or
printable visible or hidden. Not available to barcodes.

•	 Orientation: Adjusts the angle of the field. Not available to
barcodes.

•	 Read only: You can read the text within but not alter it. Not
available to barcodes.

•	 Required: This field is required to complete the form. Not
available to buttons, image fields, and barcodes.

In the Appearance tab (not available to barcodes),

•	 Border and colors:

•	 Border color: Color of the border surrounding the field.

•	 Line thickness: The thickness of the border: thin, medium,
or thick.

•	 Fill color: The fill color of the field.

•	 Line style: The style of the line going around the field: solid,
dashed, beveled, inset, underline.

•	 Text: Font size (not available to signatures), text color, and font
(not available to check boxes or radio buttons).

In the Position tab,

•	 Units: Units of measurement of the size and position of the
field(s): Points, picas, millimeters, centimeters, inches.

•	 Position units: Left, right, top, bottom, width, and height.

•	 Check “Do not change height and with when changing position.”
if you do not want the size of the box to alter during movement
with the Selection tool. Unchecking it may cause the form field to
scale.

In the Options tab (not available to digital signatures and only for text and date fields),

•	 Alignment: Aligns text left, center, or right.

•	 Default value: Temporary or default text for field.

•	 Field for file selection: Used to select a file’s text link info. Not
available for the date field.

•	 Password: Creates *** to mask the actual text. Not available for the
date field.

•	 Check spelling: Indicates if there is a spelling error when
checked.

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

20

•	 Multi-line: Allows you to enter more than one line of text in the
field. Not available for the date field.

•	 Scroll long text: If there is more text than the field can handle, a
scroll bar appears.

•	 Allow rich text formatting: Allows users to make the text bold or
italic. Not available for the date field.

•	 Limit of characters: The amount characters allowed in a field.

•	 Comb of characters: Creates a divider between characters so they
are easier to read later and compare (see Chapter 4).

For list boxes and dropdown menus only:

•	 Item: Enter the item name.

•	 Export value: Enter its export value letter or numbers.

•	 List item: Lists all the items.

•	 Add, Delete, Up, Down buttons: Add, remove, or alter an item's
order in the list.

•	 Sort items: Sort alphabetically.

•	 Allow user to enter custom text: Allow the user to enter their
own text. Not available for list boxes.

•	 Check spelling: Indicates if there is a spelling error when
checked. Not available for list boxes.

•	 Commit selected value immediately: When selected, the value
may interact with another field’s value.

•	 Multiple selection: Lets you select multiple items in a list box only.

For check boxes and radio buttons only:

•	 Style: Check, circle, cross, diamond, square, Star.

•	 Export value: Value of field. For check box only.

•	 Radio button choice: Same as export value.

•	 Check box is checked by default: Appears checked when the
form opens.

•	 (Radio) button is checked by default: Appears filled when the
form opens.

•	 (Radio) buttons with the same name and choice are selected in
unison.

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

21

For buttons and image fields:

•	 Layout: Adds a layout for the icon and label (see Chapter 4).

•	 Advanced button: Creates a more advanced layout for the Icon
button (see Chapter 4).

•	 Behavior alters the states of the button: None push, outline,
invert (see Chapter 4).

•	 Icon and label state:

•	 State: How the button appears in up, down, and rollover
states.

•	 Label: The text name on the button.

•	 Icon: A thumbnail of the chosen icon.

•	 Choose icon: Allows you to choose an icon.

•	 Clear: Clears the icon from the field.

For barcodes only:

•	 Symbiology: Distinct types of barcodes available.

•	 Compress data encoding barcode

•	 Decode condition: Custom and manage barcode parameters,
such as how the barcode will be decoded by some device.

•	 Settings: Setting of that barcode.

In the Action tab (for all form fields; more info in Chapters 4 and 5),

•	 Add an action: Select what triggers the action when the field is
entered.

•	 Select action: What kind of action is triggered.

•	 Add button: Adds the action.

•	 Up button: Moves the action in its order.

•	 Down button: Moves the action in its order.

•	 Edit button: Edits the action in the JavaScript Editor.

•	 Delete button: Deletes the action.

In the Format tab (the Text, Date Field, and Dropdown menus; refer to Chapters 6
and 7 for a detailed explanation),

•	 None: For text and numbers with no true numeric value.

•	 Number: Formats the numbers with or without decimal places,
currency symbol, location, and negative style.

http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://dx.doi.org/10.1007/978-1-4842-2893-7_5
http://dx.doi.org/10.1007/978-1-4842-2893-7_6
http://dx.doi.org/10.1007/978-1-4842-2893-7_7

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

22

•	 Percentage: Formats the percentage.

•	 Date: Formats the type of date.

•	 Time: Formats the type time.

•	 Special: ZIP code, phone number, social security number, and
arbitrary mask.

•	 Custom: Create custom scripts called Format and Key Stroke.

In the Validate tab (Text, Date Field, and Dropdown menus),

•	 Field value is not validated: Does not require validation.

•	 Field value is in range: Numbers 1-5.

•	 Run a custom validation script.

In the Calculate tab (Text, Date Field, and Dropdown menus),

•	 Value is not calculated.

•	 Value is the (sum, product, average, minimum, maximum) for
the following fields: Pick a button to choose the fields.

•	 Simplified field notation: Edit allows you to enter a script in the
JavaScript Editor.

•	 Custom calculation script: Edit allows you to enter it in the
JavaScript Editor.

In the Selection Change tab (list box only),

•	 Do nothing (if no action is required).

•	 Execute this script: Add a custom script. Edit allows you to enter
it in the JavaScript Editor.

In the Signed tab (Digital Signature field only; refer to Chapter 19),

•	 Nothing happens when signed.

•	 Mark as read-only: All fields or only certain ones. Pick button to
choose the fields.

•	 This script executes when the field is signed: Edit allows you to
enter in the JavaScript Editor.

In the Value tab (Barcode field only; refer to Chapter 19 for more info),

•	 Encoding using tab delimitated or XML: Pick button to choose
the fields.

•	 Include field names.

•	 Custom calculation script: Edit allows you to enter in the
JavaScript Editor.

http://dx.doi.org/10.1007/978-1-4842-2893-7_19
http://dx.doi.org/10.1007/978-1-4842-2893-7_19

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

23

Found with all tabs and fields:

•	 Locked: When selected, prevents any further changes to any form
field properties until unlocked.

•	 Close: This button closes the form field’s Properties dialog box. If
you are changing the properties of multiple fields, you can leave
the Properties dialog box open. Click each field to change its
properties. And then click the Close button.

The following are the tabs you’ll find in most of the fields. Figure 1-16 shows the tabs
found in the Text Field Properties dialog box.

Bear in mind that the properties can differ depending upon the type of field chosen.
For example, the Options tab properties are different for a text field versus a barcode or a
radio button (Figure 1-17).

Figure 1-16. The tabs that contain the properties

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

24

Figure 1-17. Three fields (text field, bar code, and radio) that have different properties in
their Options tab

ChAPteR 1 ■ A FunDAMentAl FORMS PRIMeR

25

Summary
This chapter covered the basics of form fields, their tabs, and the properties within those
tabs. The next chapter will be an introduction to the basic actions that you can apply to
fields.

27© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_2

CHAPTER 2

Introduction to Actions

Now that you have reviewed the basic form properties, you will begin your study of
JavaScript by taking a closer look at several types of automatic or preprogramed actions
that can be applied within various tabs within each field. In this chapter, you’ll be working
with forms and you’ll discover how actions can be applied.

Getting Started
If you want to work along in this lesson or review the final result, download the Chapter 2
files from www.apress.com/9781484228920. The file with the label “Start” is the file
without the code and the file with the label “End” is the final result. You will also find
folders with original MS Word and PDF files if you would like to edit them plus a folder
containing the original scripts if you would like to add them to your own PDF forms.

 ■ Note To view the properties of a field, you must select the Prepare Form tool. Only then
can you right-click or double-click on a field to review its properties. If you are creating your
form from an original PDF that contains no form fields, refer to the “Forms Review” section
in Chapter 1.

You can apply actions to all form fields. Actions, as you will see in more detail in
Chapter 4 and later chapters, can trigger off various events such as alert boxes or cause
a field to display a final calculation or a button to reset fields in a form. However, some
actions work better with certain form fields than others.

For instance, applying an action to a radio button might give you some very select
calculations but if you want to add up those values, using check boxes or text fields would
probably be a better option.

If there are fields on the page, you can open and view their properties by clicking
the Prepare Form tool and either right-clicking the field and choosing Properties from
the menu or double-clicking the field itself. The text fields contain no information in the
Actions tab and are blank. However, as you’ll see shortly, other tabs within the field and
other field types do contain information that will cause an event to occur. See Figure 2-1.

http://dx.doi.org/10.1007/978-1-4842-2893-7_2
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_4

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

28

Here you can see one of the many areas where you can add actions and a trigger,
which I will discuss in more detail shortly.

Rating Forms Value Averaging and Sum: Working
with Text Fields
Let’s look at several ways to use a combination of text boxes, radio buttons, and check
boxes to do averaging and summing.

Let’s say you want to create a survey to see if your clients have any concerns about your
customer service or interactions. You can create a rating form that helps you determine
where you need to improve. On page 1 of the Customer Survey PDF example shown in
Figure 2-2, in the final “End” form the fields in this survey are formatted with a setting of
Number rather than None so that the client cannot enter in letters, only numbers.

Figure 2-1. The Action tab in the Text Field Properties dialog box

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

29

To insure a client puts the correct information into a field, it is important to limit
their options. You can change the formatting by selecting from the “Select format
category” dropdown menu.

Figure 2-3 provides an example of the formatting used in the Format tab of the Text
Fields Properties dialog box.

Figure 2-2. Example of a customer survey form and the Form Tools used

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

30

The Validate Tab
You can limit the client’s options even further by setting a range of numbers in the same
field under the Validate tab. Now the client can only enter numbers that range from 1 to 5.
If they enter a 6 or higher, a warning will occur. Figure 2-4 shows the warning.

Figure 2-3. The formatting for each of the text fields on page 1 of the Customer Survey file

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

31

Figure 2-4. The Validate tab of each of the text fields on page 1 with the values set from 1-5
to limit the range input

www.allitebooks.com

http://www.allitebooks.org

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

32

Figure 2-5. The Calculate tab for the final result

If you inspect the Calculate tab for the Grand Total or Final Result field on page
1 of the project (and as in Figures 2-5 and 2-6), you can see how the field will receive
data from other fields using the “Value is ________ of the following fields” and picking
“Average” plus the various text fields that this field will gather information from.

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

33

To access other fields and their data for this final field, click the Pick button to access
field selection. Select only the fields you want to calculate. When done, click OK. You can
also select or deselect all fields. This will allow you to make your selections faster, rather
than checking off or on all the fields one at a time.

 ■ Tip If you have trouble selecting the check box, you can highlight it and press the
space bar on your keyboard. This toggles the check box on or off.

The Final Result text field is set to read-only in the General tab so that a client cannot
alter the final result.

Page 2 of Project: The Calculate Tab for the Grand
Total Using Sum
The only difference between this form and the one on page 1 is that the Final Result value
in the Calculate tab was changed to sum (+). Refer to Figure 2-7.

Figure 2-6. The Field Selection dialog box

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

34

 ■ Note I selected only fields on page 2. If I need fields from other pages to complete the
calculation, such as page 1 or 3, I would pick these fields as well. Form calculations can be
on as many pages within the PDF document as required.

 ■ Alternate Dropdown Rating If you skip past page 3 down to page 4 of this example,
you can see how, with this same form, you can replace some of the text fields with dropdown
menus to rate. While similar to text fields, I find this method a suitable alternative if you want
your client to use very specific values. also, it eliminates the need for validation on each
dropdown because the values are already set. To set an export value for a dropdown menu,
you need to set the value for each menu item in the Options tab. Refer to Figures 2-8 and 2-9.

Figure 2-7. The Calculate tab for the final result on page 2

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

35

On Page 4 you can see how by choosing a word that has a numeric value applied to it,
the Final Result field takes that information and adds it to what is already calculated.

Sum and Averaging Using Check Boxes or Radio
Buttons with Text Fields
While text fields and dropdowns are useful for surveys on pages 1, 2, and 4, sometimes
radio buttons and check boxes will do a more efficient job. Look at Page 3 of the PDF file
as shown in Figure 2-10.

Figure 2-9. One of the dropdown fields extended

Figure 2-8. The Dropdown Properties dialog box for the selections on page 4 of the
customer survey

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

36

Using Radio Buttons on Page 3 of the Project
In the Options tab, the choices can be set to any number value (1, 2, 3, or even negative
numbers if required). Figures 2-11 and 2-12 display how this is entered in the dialog boxes.

Figure 2-10. Page 3 of the customer survey

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

37

Figure 2-11. Radio button properties in the Option tab on page 3 of the customer survey

Figure 2-12. Text field properties in the Calculate tab with the radio group selected on
page 3 of the customer survey and how the group of buttons appears in the Prepare Form
Preview fields on the right-side bar list

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

38

A text field is then used to calculate the sum of the radio group, as in Figure 2-13. To
operate correctly, radio buttons must always be in groups of two or more.

Figure 2-13. Text field properties in the Calculate tab on page 3 of the customer survey

The Final Result text box is used to calculate the average rating of the other text boxes
linked to the radio button groups.

Using Check Boxes on Page 3 of the Project
Figure 2-14 shows how similar values can be entered into the Options tab of a Check Box
Properties dialog box.

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

39

Check boxes can be used in a comparable way in the Options tab and given an export
value of 1, 2, 3… or even negative numbers for a negative rating.

The Final Result text field can sum up the check boxes values. See Figure 2-15.

Figure 2-14. The Options tab of the Check Box Properties dialog box on page 3 of the
customer survey

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

40

 ■ Note The check boxes can operate independently and don’t need to be grouped.

Basic Action Button Triggers for Reset Buttons
and Printing Buttons
There are many basic actions that can be added to buttons, as you’ll see in Chapter 4 and
later. However, for this lesson let’s focus on two that are used quite frequently in forms:
the Reset and Print actions.

Figure 2-15. An example of the Calculate tab with the check boxes selected on page 3 of the
PDF and how the check boxes appear not grouped in the Prepare Form Preview Fields on
the right-side bar list

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

41

Reset Button
If a client makes a mistake in several fields or wants to clear the entire form rather than
highlight and press the Delete or Backspace key for each field, it is helpful to add a Delete
button to your form. Figure 2-16 displays what this action looks like in the Action tab.

Figure 2-16. Button properties in the Actions tab

All fields or only the comments can be reset by a button; it’s your choice.

 1. Make sure the select trigger is set to Mouse Up.

 2. Select the action of “Reset a Form” from the Select Action menu.

 3. Click the Add button to add the action.

 4. Then click the Edit button at the bottom of the Properties box
to select which fields you would like to reset, as in Figure 2-17.
When done, click OK.

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

42

Figure 2-17. The Reset a Form options in the Actions tab

Print Form Button
Add the File ➤ Print action if you want to create a Print button for the whole document.
Refer to Figure 2-18 and to page 1 of the project’s PDF file to review this action.

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

43

However, if you need only a specific page to print, you need to add a JavaScript
instead. To see a preview of this, refer to pages 2 and 4 of the PDF file and to Figure 2-19.
I’ll discuss this more in later chapters.

Figure 2-18. The File ➤ Print options in the Actions tab

Figure 2-19. Adding JavaScript in the Actions tab

ChaPTeR 2 ■ InTRODuCTIOn TO aCTIOns

44

When you are done viewing the form, click the X in the upper right-hand corner of
the preview to close the Prepare Form tool.

Summary
As you saw in this chapter, you can use the Prepare Form tool and its respective
properties in a variety of ways to create various customer rating surveys to suit your
needs. By looking through the tabs, you can also see that many of the form fields have
similar properties, while others have properties that only relate to that specific field. As
you progress though the lessons you will discover how knowing which types of fields to
use will be important as the forms become more complex.

45© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_3

CHAPTER 3

Creating a QR Code Custom
Stamp

You’ve all probably opened and viewed a PDF file. And the program that made that
possible was most likely Adobe Acrobat Reader or Acrobat Pro DC. For many computer
users, Reader has become the industry standard simply because it is a freeware program
that anyone can download for Mac or PC platforms.

When you are reviewing the file with your client, Acrobat DC allows you to view and
add comments to a PDF document.

Acrobat also allows you to create barcodes and QR codes with the Prepare Form
tool. However, the information generated in the barcode and QR code only applies to the
surrounding form fields and not to specific text elsewhere in the document (see Figure 3-1).
Currently, with the Comment tool you cannot generate a custom QR code, so this chapter
shows you a way to get around this situation.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 3 files from www.apress.com/9781484228920. You will find the original Adobe
InDesign, QR image, and PDF files if you would like to edit them.

To view the properties of a field, you must select the Prepare Form tool. Only then can you
right-click or double-click on a field to review its properties.

http://dx.doi.org/10.1007/978-1-4842-2893-7_3
http://www.apress.com/9781484228920

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

46

Customizing Your QR Code Stamp
It’s become popular to place a QR code on business cards, resumes, and newsletters;
these codes can be read by smartphones. However, Acrobat only allows you to create a
QR code that applies to forms. For your resume or letterhead, you might want a QR code
to only contain the URL of your company website or just some text. The solution is to
build your own custom QR code stamp that you can place in your online PDFs for clients
to view. The following exercise will show you how.

 ■ Note If you plan to use the QR code for professional print material, always place it into
the original document (ms Word or Adobe InDesign CC 2014 or later) rather than using the
Acrobat stamp tool. While the stamp image will print out fine on your home computer, it may
not print out when sent to some professional printers depending on if the layout requires
altering. see details on how to do this in the “Final Thoughts” section at the end of the chapter.

Figure 3-1. The Barcode Field Properties dialog box with an example of a created QR code

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

47

QR Code Creation
Either create a QR code using InDesign CC 2014 or later, software that allows you to
generate a QR code, or ask a graphic designer in your company to create one for you.
Copy the image into a program like Adobe Photoshop and save the file as a greyscale
JPEG 200px by 200px with a 72ppi being an appropriate size. Test it with your smartphone
app to make sure it works correctly. See Figure 3-2.

Open the PDF file in which you plan to add the QR code in Acrobat Reader or Pro DC
via File ➤ Open. Refer to Figure 3-3.

Select the PDF file you want to open.
Select the Stamp button in the Tools menu. Refer to Figure 3-4.

Select the Custom Stamps option. Choose Create. Refer to Figure 3-5.

Figure 3-2. A generated QR code

Figure 3-3. The File menu

Figure 3-4. The Stamp tool

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

48

Create the custom stamp. When you choose this option, you will be presented with
the Select Image for Custom Stamp dialog box. Click the Browse button to locate your file.
Refer to Figure 3-6.

In Acrobat Pro DC, you can browse and use several different file formats including
JPEG, TIFF, GIF, and PNG. Refer to Figure 3-7.

Figure 3-5. The Stamp Tool menu

Figure 3-6. The Select Image for Custom Stamp dialog box

Figure 3-7. Browse for the QR code

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

49

In this case, choose a JPEG graphic of the QR code that you or your graphic designer
have already created.

Click the Open button and you will be returned to the previous dialog box. Refer here
to Figure 3-8.

If you like how the image looks, click OK. Otherwise, browse for another image. You
may need to make minor adjustments in a program like Photoshop for spacing needs
to reduce or increase the size. If you do, make sure to keep the shape square and don’t
distort the QR code. Click OK to proceed to the next dialog box.

Before you can use the custom stamp, Acrobat wants you to choose a folder category
for your stamp and give it a name. You can either create a new folder by typing a name in
or choose from current folders that are available in the Category dropdown menu. Refer
here to Figure 3-9.

Figure 3-8. The Select Image for Custom Stamp dialog box with a QR code visible

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

50

You have the option to down-sample the stamp to reduce the file size. In the case of
the QR, I might uncheck this to preserve quality. In this case, the file is only 45KB, which
is not large. When you are done, click OK.

Using the Stamp Tool
The stamp is created. You can go to your file folder in the Stamp dropdown menu and
choose your new custom stamp. Refer to Figure 3-10.

At this point, a dialog box may appear that will request an initial identity setup. This
is so the client will know who made this approval stamp for security reason. You do not
have to fill in all the boxes. When you’re done, click the Complete button. You should only
do this identity setup once for your new stamp. If you do not see this box, it may mean
that you or someone else already set this area up. Refer to Figure 3-11. You can check this
under Edit ➤ Preferences ➤ Categories: Identity and adjust your information there.

Figure 3-9. The Create Custom Stamp dialog box

Figure 3-10. Created QR code stamp in the Stamp menu

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

51

The mouse cursor will now turn into the stamp. You can move it around on the page
until you find where you want to place the stamp. Click the mouse button and the stamp
will be set. If you don’t like where it is set, you can move it around. The mouse turns into
four arrows. If you hold down the mouse icon on the stamp, you can move the stamp
around, twist, or scale it.

If for some reason you need to delete the stamp later, you can go to the Custom
Stamps ➤ Manage box and remove it from your custom list. Refer here to Figure 3-12.

Figure 3-11. Identity setup for new stamps

Figure 3-12. The Stamp Tool menu and the Manage Custom Stamps dialog box

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

52

Custom QR stamps as in Figure 3-13 can also have comments attached. You can
attach a comment in the Comment tool section.

Figure 3-13. The Comment tool

Now your comments list has a stamp comment. In here you can add further
information about the stamp by double-clicking it to add to a comment. If you need to
delete the QR code stamp, just select it and press the Delete button on the keyboard or
right-click and select Delete.

You can add this QR code stamp to as many places in the document as required.
When you’re done, save the file and email to a client or post it on your website.

If you need to print the document, choose the “Document and Stamps” option in the
Print dialog box. Refer here to Figure 3-14. If you just choose the Document option only,
the QR code stamp will not print.

ChAPTeR 3 ■ CReATIng A QR CODe CusTOm sTAmP

53

Final Thoughts: QR Code for Professional Printing
If you plan to send your resume or a newsletter to a company and you want to ensure that
the QR code will print out regardless of the print document settings, I recommend typing
your resume/newsletter in a program like MS Word, and then choosing the location
where you want to place your QR code. Then in the above menu, choose Insert ➤ Picture.
Refer here to Figure 3-15.

Figure 3-15. Insert an image in MS Word

Figure 3-14. Print settings for stamps. Choosing “Document and Stamps” will insure that
the QR code stamp prints.

Locate your JPEG image and then click the Insert button. The image will be inserted.
Finally, click Save as or print your file as a PDF. This will ensure that the QR code is
embedded in the document and will print with the rest of your resume.

Summary
In this chapter, you learned how you can turn a QR code into a custom stamp that you can
use in a form or any PDF document. The stamp can also be modified and scaled.

Creating the QR code in this manner, rather than just as a form field, allows for a
wider range of possibilities.

For more information about how to create a QR code in Adobe InDesign CC 2014 or
later visit, https://helpx.adobe.com/indesign/using/generate-qr-code.html.

https://helpx.adobe.com/indesign/using/generate-qr-code.html

55© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_4

CHAPTER 4

Buttons, Navigation, Form
and Non-Form Actions

In Chapter 2, you saw a few simple examples of actions you could create with buttons.
Now you will focus on a few more. This chapter will cover

•	 A review of the Action tab’s properties in various fields and
non-form items

•	 Looking at built-in triggers and actions that require no coding

•	 Applying what you discover to buttons for page navigation

•	 How to use button icons rather than just text

•	 How a button can become a help icon to show or hide
information in an order form

•	 How a check box can show or hide information in combination
with a reset button

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 4 files from www.apress.com/9781484228920. The file with the label “Start” is
the file without the code and the file with the label “End” is the final result. You will also
find folders with original MS Word and PDF files if you would like to edit them and a folder
containing the original images if you would like to add them to your own PDF forms.

To view the properties of a field you must select the Prepare Form tool. Only then can you
right-click or double-click a field to review its properties.

If you are creating your form from an original PDF that contains no form fields, refer to the
“Forms Review” section in Chapter 1.

http://dx.doi.org/10.1007/978-1-4842-2893-7_2
http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

56

Creating a Button Icon
Not all buttons have to be just text; you can also have text and an image or just an image
that you created in a program like Adobe Photoshop or GIMP. As in the QR code stamp
example in Chapter 3, the file can be many formats including a JPEG, GIF, or PNG.

The icon for the button is placed in the Options tab when you click the Choose Icon
button (Figure 4-1).

Choose the layout setting of the icon only or have the icon on top or in another
location if you want to use the icon in combination with text (known as a label).

The layout options are

•	 Label only (this setting will not allow you to add an icon)

•	 Icon only

•	 Icon top, label bottom

•	 Label top, icon bottom

•	 Icon left, label right

•	 Label left, icon right

•	 Label over icon

The Advanced button will allow you to adjust the placement of the icon precisely
(refer to Figure 4-2).

Figure 4-1. The Option tab with the Choose Icon button

http://dx.doi.org/10.1007/978-1-4842-2893-7_3

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

57

Example of a Button as a Label Only
Figure 4-3 is an example of a button with only a label applied, as found in the Newsletter
file. This button’s label says Next Page because you want the user to go to the next page
when they click the button. The label is a helpful hint so that the user will know what will
happen when the button is clicked. These types of buttons can be used in any document
that contains three or more pages.

Figure 4-2. Clicking the Advanced button in the Options tab opens the Icon Placement
dialog box

Figure 4-3. Label-only button

 ■ Note The current state is up based on the behavior of the button.

a behavior like push will give other options; instead of one icon or label you could add three.
See Figure 4-4 for some of the options.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

58

Figure 4-5 shows an example of a three-button group that has an icon image
and some actions applied to them. Without actions, these buttons would function
independently and not interact with each other.

If you enter each of the buttons properties, you will see, as in Figure 4-6, various hide
and show actions.

Figure 4-4. Example of various behaviors and states applied to a button

Figure 4-5. Example button group with different show and hide fields applied to each
button in the Order Form PDF

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

59

All actions can be

•	 Added using the Add button

•	 Rearranged using the Up and Down buttons

•	 Edited using the Edit button

•	 Deleted using the Delete button

 ■ Note With the Show/hide action you need to apply the action to each field one at a
time. Some actions, like Reset, allow you to apply the actions to more than one field or
collectively. Refer to Figure 2-17 of Chapter 2.

Non-Form Properties Actions
The following sections take a quick look at the kinds of properties you can apply actions
to that are not part of forms.

Figure 4-6. Example button group with show and hide fields applied

http://dx.doi.org/10.1007/978-1-4842-2893-7_2Fig#17
http://dx.doi.org/10.1007/978-1-4842-2893-7_2

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

60

Pages
For this example, refer to the Newsletter Navigation PDF file and see Figure 4-7.

Under View ➤ Show/Hide ➤ Navigation Panes ➤ Page Thumbnails you will find on
the left-hand side of Acrobat all the page thumbnails of your current document.

Select one of the pages in the Thumbnail section and from the dropdown choose
Page Properties at the bottom of the options list to access this dialog box
(refer to Figure 4-8).

Figure 4-7. Accessing the page thumbnails

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

61

Pages can have actions applied for improved navigation. Remember that you can
access this area on the left side of Acrobat in the Page Thumbnail section. Alternately, you
can right-click on a thumbnail and choose Page Properties from the list.

Bookmarks
For this example, refer to the Newsletter Navigation PDF file.

Under View ➤ Show/Hide ➤ Navigation Panes ➤ Bookmarks you will find on the
left-hand side of Acrobat all the bookmarks of your current document (refer to Figure 4-9).

Figure 4-8. The Page Properties option in the Action tab

Figure 4-9. Bookmarks found in the Newsletter file in the Navigation Panes area

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

62

Select one of the bookmarks and from the Options menu at the bottom of the list
choose Properties. This will allow you to add or view the actions for the bookmark
(refer to Figure 4-10).

Figure 4-10. Bookmark properties in the Action tab

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

63

Remember that you can access this area on the left side of Acrobat in the Bookmark
Thumbnail section. Alternately, you can right-click on a bookmark and choose Properties
from the list.

Web Hyperlinks
For this example, refer to the Newsletter Navigation PDF file.

You can access this area under Tools ➤ Edit PDF ➤ Link ➤ Add or Edit Web or
Document Link if a link already exists. Then right-click the link and choose Properties
from the list. (refer to Figure 4-11).

Alternately, outside of the Edit PDF tool, you can Select the link by right-clicking the
link and choosing Edit Link from the list (refer to Figure 4-12).

Figure 4-11. Accessing link properties in the Action tab

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

64

Rich Media Non-Form Navigation Buttons
For this example, refer to the Floor Plan Layout PDF file.

Buttons can be added either via the Forms tool or the Rich Media tool (refer to
Figure 4-13).

Figure 4-13. Rich Media Button Properties dialog box in the Action tab

Figure 4-12. Accessing the link properties in the Action tab outside of the Edit PDF tool

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

65

Non-form button actions can be used for video media, 3D models, navigation, or later
for forms while working with the Rich Media tool. However, after you close the file and open
it again, to access the buttons properties, you will need to go into the Prepare Form tool to
edit the button actions because you lose access after exiting the Rich Media tool.

Layers Basic Actions
For this example, refer to the Floor Plan Layout PDF file.

Under View ➤ Show/Hide ➤ Navigation Panes ➤ Layers you will find on the
left-hand side of Acrobat all the layers of your current document (refer to Figure 4-14).

Figure 4-14. Access to the layers in the Navigation Panes area

To access the Layer properties, you can select a layer and from the Options menu
and choose Layer Properties from the bottom of the list. Alternately, you can right-click
on a layer and choose Properties (refer to Figure 4-15).

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

66

Figure 4-15. Layer properties as seen in the Floor Plan example when you select a layer
and either choose from the Options menu or right-click the layer in the Navigation pane

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

67

•	 Layer actions have some similarities to Acrobat page transitions.

•	 Layers can have a default state of on or off.

•	 Layers are good for use as overlays to show, for example, optional
layouts of a room or floor. The layers can be separated and
exported out of program such as Adobe InDesign when you create
an interactive PDF.

•	 Unlike other actions, they can be tricky to set up and are best kept
to one or two layers.

As you can see, most of these non-form properties can be accessed in the navigation
pane/thumbnail area in Acrobat. The same is true for layers.

Triggers for Actions
Before you choose an action, it is important to select a trigger.

Trigger + Select Action = Result You Want
The most common trigger to use in digital forms is Mouse Up, as seen in Figure 4-16.

The following describes this and a few other actions you may encounter:

Mouse Up: When the mouse button is released after a click.
This is the most common button trigger because it gives the
user one last chance to drag the pointer off the button and not
activate the action.

Mouse Down: When the mouse button is clicked (without being
released). In most cases, Mouse Up is the preferred trigger.

Mouse Enter: When the pointer enters the field or play area.

Mouse Exit: When the pointer exits the field or play area.

Figure 4-16. Various action triggers that can be selected

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

68

On Receive Focus (media clips only): When the link area
receives focus, either through a mouse action or tabbing. Also
called On Focus.

On Lose Focus (media clips only): When the focus moves to
a different link area. Also called On Blur.

The exceptions to properties not having an available trigger are bookmarks and hyperlinks.
It is assumed that you will click the link with your mouse or finger and that the action

of going to that page or URL will be executed.
Refer to the following Adobe link for more details: https://helpx.adobe.com/

acrobat/using/applying-actions-scripts-pdfs.html.

Choose an Action That Requires No Code
There are many actions you can choose from. As you can see in Figure 4-17, once you
choose a trigger you can add an action to a button that will allow you to move to another
page or print all the pages in the document.

Figure 4-17. Various actions that can be selected

You will look at some specific actions shortly. However, take a moment to review
some of the actions that are available in this list:

Execute a menu item: Executes a specified menu command
as the action.

Go to a 3D/multimedia view: Jumps to the specified 3D view.

https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html
https://helpx.adobe.com/acrobat/using/applying-actions-scripts-pdfs.html

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

69

Go to a page view: Jumps to the specified destination in the
current document.

Import form data: Brings in form data from another file, and
places it in the active form.

Multimedia operation (Acrobat 9 and later): Executes a
specified action for a multimedia object in the file (such as
playing a sound file). The multimedia object must be added to
the file before you can specify an action for it.

Open a file: Launches and opens a file. If you are distributing
a PDF file with a link to another file, the reader needs the
native application of that linked file to open it successfully.
(You may need to add opening preferences for the target file).

Open a web link: Jumps to the specified destination on the
Internet. You can use HTTP, FTP, and mailto protocols to
define your link.

Play a sound: Plays the specified sound file. The sound is
embedded into the PDF document in a cross-platform format.

Play media (Acrobat 5, or Acrobat 6 and later compatible):
Plays the specified QuickTime or AVI movie that was created
as Acrobat 5 or 6-compatible. The specified movie must be
embedded in a PDF document.

Read an article: Follows an article thread in the active
document.

Reset a form: Clears previously entered data in a form. You
can control the fields that are reset with the Select Fields
dialog box.

Run a JavaScript: Runs the specified JavaScript. This requires
JavaScript to do some custom action.

Set layer visibility: Determines which layer settings are
active. Before you add this action, specify the appropriate
layer settings.

Show/hide a field: Toggles between showing and hiding
a field in a PDF document. This option is especially useful
in form fields. For example, if you want an object to pop up
whenever the pointer is over a button, you can set an action
that shows a field on the Mouse Enter trigger and hides a field
on Mouse Exit.

Submit a form: Sends the form data to the specified URL. You
may need someone in your IT department to help you test this
first (refer to Figure 4-18).

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

70

It is important to note, in the case of the “Execute a menu item,” additional possible
variations to the action will appear when the Add button is clicked, such as assorted
options for page and document navigation. Figures 4-19 and 4-20 illustrate what options
are available.

Figure 4-19. An example of an action added to the Actions tab from the selected action
“Execute a menu item”

Figure 4-18. Submit Form Selections dialog box

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

71

In the Actions tab, more than one action can be added using the Add button. One
example is to show and hide items on a form; refer to Figure 4-21. It shows some fields
and then hides others.

Figure 4-20. The many different menu options that are available

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

72

Newsletter Navigation with Buttons
Open the Newsletter Navigation End file in the Chapter 4 folder. Test the buttons. You can
use labels with or without images to enhance the navigation experience. See Figure 4-22
for the buttons with an example of an action applied.

Figure 4-21. Multiple actions applied to one field

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

73

Figure 4-22. Applying an action to a button to navigate to another page (see pages 1-3 of
the Newsletter End file)

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

74

Choose an action of “Execute a menu item” and apply one of the following types of
navigation to your button:

View ➤ Page Navigation ➤

•	 First Page

•	 Previous Page

•	 Next Page

•	 Last Page

•	 Go to Page

•	 Previous View

•	 Next View

As shown back in Figure 4-20, other types of viewing include

•	 Page Display

•	 Zoom

•	 Portfolio

•	 Show/Hide of Panes

•	 Full Screen Mode

The Next Page button and the right-pointing arrow icon button in the Newsletter
Document have had the action View ➤ Page Navigation ➤ Next Page applied. The
Previous Page button and the left-pointing arrow button have had the action View ➤ Page
Navigation ➤ Previous Page applied.

To navigate to a file in the same folder or an attachment within the PDF document,
see Figure 4-23 with the Go to Form button and the actions applied.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

75

Figure 4-23. Navigate to a file somewhere on your hard drive or within the PDF file. Refer
to page 4 of the Newsletter End PDF.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

76

With the Go To Form button created, you could do one of the following to open the
form:

•	 Open a file.

•	 Execute a menu item ➤ View ➤ Show/Hide ➤ Navigation Pane ➤
Attachments.

As mentioned earlier, navigation can be a link or even a bookmark.
In the Newsletter Navigation PDF, you can alter the URL link called “New finds in

China.” This link can either go to a website or it additionally can have a bookmark that
will anchor or jump to that to when clicked. If your bookmark name is no longer the same
as the section title because you altered the link action, you can rename the bookmark, as
you can see in Figure 4-24. The bookmark has now been renamed and matches the URL
or section it is jumping to.

Figure 4-24. A bookmark can be used a link to a section within a book or to navigate to a
URL

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

77

Figure 4-25. Show and hide example

Form Navigation with a Button as Helpful Hint
If a client is unsure what to enter in a field, a hint can be created to give information.
Open the TMC Order Form End example to see how this is done.

This example uses “Show/hide a field” to accomplish this. Refer to the button next to
the Customer Order Code and Figure 4-25.

Here is a breakdown of each of the buttons:

•	 Info button: Show-Close, Show-Info Window, Hide-Info
(Figure 4-26).

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

78

•	 Close button: Hide-Close, Hide-Info Window, Show-Info
(Figure 4-27).

Figure 4-26. The Info button is visible at first glance

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

79

Figure 4-27. The Close button appears on top of the Info Window button

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

80

•	 Info Window button: No actions applied. Leave Action tabs blank
(Figure 4-28).

Adding a Comb of Characters
A comb of characters spreads the user-entered text evenly across the width of the text
field. If a border color is specified in the Appearance tab, each character entered in the
field is separated by lines of that color. This option is available only when no other check
box is selected; refer to Figure 4-29.

 ■ Note When entering a code, it can helpful to add a comb of characters properties so
that the client knows they have entered the correct amount of letters or numbers.

Before Comb and After Comb
Figure 4-30 shows how a text field in the Option tab properties appears before you apply
the comb of characters. When you uncheck all other options, only then will the comb of
characters be available to alter how many characters will be in it.

Figure 4-28. The Info Window button appears below the Close button

Figure 4-29. Without and with a comb of characters

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

81

So that the comb of characters displays correctly, go into the Appearance tab and
add a border color, line thickness, and line style so that the comb will appear; refer to
Figure 4-31.

Figure 4-30. Adding the comb of characters to the text field in the Options tab

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

82

There are other ways to help clients when they are unsure what to enter into a field,
and we will look at them in later chapters.

More Action Triggers to Show and Hide
Check boxes and buttons can be used in combination to create fields that show or hide. Refer
here to the TMC Order Form End file to see the final example and Figures 4-32 and 4-33.

Figure 4-31. Adjusting the appearance of the comb in the Appearance tab

Figure 4-32. Show and hide a shipping address using a check box

www.allitebooks.com

http://www.allitebooks.org

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

83

Figure 4-33. Show and hide a shipping address using a check box

The settings for the check box actions are
Show Text and Button fields (Figure 4-34):

•	 First_Name_2

•	 Last_Name_2

•	 Address_2

•	 City_2

•	 Province_2

•	 Country_2

•	 Postal Code_2

•	 Hide and Clear Fields Button

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

84

Figure 4-34. When the check box is click, some fields in the form will show that they were
hidden. Since you must set the show fields one at a time, refer to the list to see which field
should have the Show setting.

Figure 4-35. Reset button

Hide and Clear Fields Button
This button uses a combination of Reset and Show/Hide. If the shipping address is the
same, you don’t want to store duplicate data, so you clear the fields that were shown
when the check box was checked and hide them again along with the button. Refer to
Figure 4-35.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

85

Figure 4-36. When the button is clicked, some fields in the form will hide that were shown.
Since you must set the hide fields one at a time, refer to the list to see which field should
have the Hide setting.

The settings for the button actions are shown in Figure 4-36.

Hide Text and Button fields:

•	 First_Name_2

•	 Last_Name_2

•	 Address_2

•	 City_2

•	 Province_2

•	 Country_2

•	 Postal Code_2

•	 Hide and Clear Fields Button

Finally, reset all the fields mentioned in the check box except for the button, which
cannot be reset. Refer to Figure 4-37.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

86

Set Layer Visibility
As mentioned earlier, adding and setting layer visibility in a document can be tricky.
One of the examples in this chapter is a file of a floor plan, showing how this can be
achieved if you have a document with one or more layers. You can either use bookmarks
or buttons to show and hide your layers. Refer to Figure 4-38.

Figure 4-37. Reset button that clears the information in the fields and hides them again

Figure 4-38. The layers in the floor plan PDF

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

87

 ■ Note In the properties of each layer, I have set only the default mode of the title layer
to be on when the document opens; the others are set to Off. Remember that to access the
properties of a layer you need to right-click the layer and choose properties.

More details about adding and working with layers can be found at https://helpx.
adobe.com/acrobat/using/pdf-layers.html.

Using Bookmarks
If you don’t want to use buttons, you can alternatively use bookmarks to show and hide
layers. See Figure 4-39.

Figure 4-39. Setting Bookmark properties

Begin by making sure that the layers you want visible or hidden are on or off to create
the correct view for your bookmark.

Once you’ve created a bookmark, you can right-click it and choose Properties from
the menu. The properties will appear. Then select the Actions tab as in Figure 4-40.

https://helpx.adobe.com/acrobat/using/pdf-layers.html
https://helpx.adobe.com/acrobat/using/pdf-layers.html

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

88

Notice that the action “Go to a page in this document” is already added. However,
you will need to add the action of “Set layer visibility.” Upon clicking Add, an info warning
will appear reminding you that whatever the current state the layers are in now will be
what this bookmark will display. If you do not like your layer visibility, click Cancel and
set your layers to the correct state before choosing OK to add this action.

Now your bookmark should be able to show or hide the layer. As with any action, it
can be removed by clicking the Delete button.

Using Buttons
As with bookmarks, buttons can be used as well. Refer to Figure 4-41. However, you may
want to hide some buttons along with the layers while some layers are visible to reduce
clutter. Also, you may want to reset all the layers to the off or hidden state as well with
a button. You can review the file to see what the final effect looks like. The bulleted list
below shows what settings were applied to each button. As with the bookmarks, make
sure that the layers are in the state you want before you set the layer visibility for each
button. Make sure to test your file when you’re done.

Figure 4-40. Bookmark Action properties

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

89

•	 Show Floor Plan button: Set layer visibility, Show Vendor
Number, and Show-Hide Layers Button.

•	 Show Vendor Numbers button: Set layer visibility.

•	 Hide Layer button: Set layer visibility, Hide Vendor Number, and
Hide-Hide Layers Button.

•	 In the Layers pane, only the title layer is set to on; all other layers
are turned off.

•	 Only turn on layers that you want visible before adding the action
of layer visibility to each button. Click OK to confirm setting. Refer
to Figure 4-42.

Figure 4-41. Example of settings applied to the buttons

Figure 4-42. This is the info alert that appears as layer visiblity is set

Once you are finished setting the buttons, return the layers to your default settings,
save the file, and close it.

ChaPTER 4 ■ BuTTOnS, navIgaTIOn, FORM anD nOn-FORM aCTIOnS

90

Summary
This chapter covered a lot of topics concerning actions that can be applied to form fields
and non-form items like layers, bookmarks, buttons, pages, and links. As you can see,
Acrobat offers a lot of options in regard to navigation and controlling how you view or
hide fields.

At this point, you haven’t added any custom JavaScript. You’ve only used the settings
that come with the Acrobat Actions tab. However, in part 2, you are going to look at
running your own JavaScript and how this effects what you input into your form fields.

Before you go any farther in this book, take some time to practice these actions on
your own and try adding them to a few of your own projects.

PART 2

Simplified Field Notation
and Basic JavaScript

93© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_5

CHAPTER 5

Introduction to Simplified
Field Notation and
JavaScript

In this chapter, you will first explore simplified field notation (SFN) used in Excel and how
it compares to JavaScript. This will set the groundwork for what you can expect in the rest
of the book.

The JavaScript that you will be using in the following chapters is only for the form or
navigation within a document and is not as advanced as programmer’s JavaScript used
in software or the Web. That is a whole other topic not discussed in this book. Mostly you
will focus on simple math formulas that can be used to improve your forms, and one that
clients will use in Reader.

 ■ Note This chapter does not reference any files so there are none that need to be
downloaded for this lesson.

Getting Started
From the text files (.txt) provided in the following lessons, you will copy and paste it into
the correct dialog box areas and do very minor modifications to the code.

Some common uses for JavaScript in Acrobat are

•	 Interaction and addition of watermarks, bookmarks, links, and
annotations

•	 Automatically filling in form fields

•	 Changing the appearance of information in text fields as the
information itself changes

•	 Navigation of the document, such as zooming in and going to
specific pages

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

94

•	 Printing of the document

•	 Controlling security settings, signatures, and custom validation

•	 Assisting the Action Wizard to speed up tasks

The JavaScript entry can be found under the following fields and tabs:

•	 Text, Date, and Dropdown menus: Actions (Execute a
JavaScript), Format Custom (Custom Format and Custom
Keystroke), Validate, Calculate (Custom Calculation Script)

•	 Check Box, Radio Button, Image Field, and Button: Actions

•	 List Box: Actions and Selection Change

•	 Signed: Actions and Signed change (Execute a Script)

•	 Barcode: Actions and Value (Custom)

•	 Main JavaScript Box (Global)/Document JavaScript

Text Field, Date, and Dropdown Menu Properties
The following sections provide examples of what JavaScript added to these field tabs
looks like.

Action Tab
Actions happen upon entering or exiting the field, as seen in Figure 5-1.

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

95

Format Tab
A custom format allows changes to text color, as seen in Figure 5-2. A custom keystroke
allows events to change within the field when a certain criterion has been reached.

Figure 5-1. The Action tab in the Text Field Properties dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

96

Figure 5-2. The Format tab in the Text Field Properties dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

97

Calculate Tab
The Calculate tab offers custom calculations that can’t be done with SFN or Value, as seen
in Figure 5-4.

Validate Tab
Similar to a custom format, in the Validate tab certain criteria are checked and must be
met before you can proceed, as seen in Figure 5-3.

Figure 5-3. The Validate tab in the Text Field Properties dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

98

Figure 5-4. The Calculate tab in the Field Properties Calculate dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

99

Check Box, Radio Button, Image Field, and Button
 Properties
Buttons can also be used as hidden fields if required, as seen in Figure 5-5.

List Box Properties
Besides the Actions tab, the Selection Change tab is an area for adding a script when you
want to change the field that is being selected. Refer to Figure 5-6.

Figure 5-5. The Action tab in the Button Properties dialog box is the only tab where you
can add actions. The same goes for check boxes and radio buttons.

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

100

Figure 5-6. The Actions and Selection Change tabs

Digital Signature Properties
You can add actions to a digital signature’s properties either in Actions or the Signed
tab. The Signed tab is like the Validate tab in other fields. Validation occurs when some
criteria are met. Refer to Figure 5-7.

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

101

Figure 5-7. The Actions and Signed tabs in the Digital Signature Properties dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

102

Barcode Properties
As with other fields, you can add actions to barcodes. However, the barcode creates its
own value script in the Value tab. Its value depends on what is in the form as a whole in
regard to types of fields and their input values. Refer to Figure 5-8.

Figure 5-8. The Action and Value tabs in the Barcode Field Properties dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

103

Regardless of what type of field you plan to use, all actions and their edits are accessed
through the JavaScript Editor box, which holds the script. You can access this editing area
when you click the Edit or Add buttons. The Add button is generally seen, as in Figure 5-9,
in the Actions tab. The Edit button can also be found in the Actions tab, but is seen in other
tabs as well like Format, Validate, and Calculate; they all lead to the JavaScript Editor.

Global Document JavaScript
Now let’s look at global document JavaScript. If you have a document open, go to the
Tools tab and select the JavaScript tool. You will now be able to view all the subtools, as
seen in Figure 5-10.

Figure 5-9. Access to the JavaScript Editor through the Edit or Add buttons, which are
found in the Actions, Format, Validate, and Calculate tabs

Figure 5-10. JavaScript tool and its submenu items

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

104

Actions that happen globally can affect more than one field. These types of actions
will affect many fields throughout the file. Fields can call upon a single global function to
reduce typing and size of the document, as seen in Figure 5-11. You will look at this area
in more detail in later chapters.

Figure 5-11. Document JavaScripts dialog box

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

105

Figure 5-12. Document Actions dialog box

Additional actions that are specific to the document can be added using the
Document Actions tool, as seen in Figure 5-12.

Alerts can be placed here when these following events happen.

 ■ Note You can’t add more document actions here without advanced scripting knowledge.

You can also view all your JavaScripts at once under the All JavaScript tool, which
opens the JavaScript Editor. Refer to Figure 5-10.

If there are errors, you can use debugger to help you. However, I find it helps to
have some knowledge of JavaScript structure and do the editing in a program like
Notepad++ or Adobe Dreamweaver where there is more room to type. Editing programs
like Dreamweaver also show you clearly with numbers on the left-hand side which line
in the code you are on. Acrobat does not have these visual cues, only a text reference in
the lower right side of the editor, which I find not useful for detailed code editing. Refer to
Figure 5-13.

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

106

When you’ve finished typing in your editing program, copy the code back into
Acrobat’s JavaScript Editor and run the debugger again and test (Figures 5-13 and 5-14) .

Figure 5-13. JavaScript Debugger dialog box with settings

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

107

Web Links and References
For the full library, refer to version 10 for XI and DC:

www.adobe.com/devnet/acrobat/javascript.html

Current known support of JavaScript 1.8.
To learn more about JavaScript, visit www.w3schools.com/js/.

Regular Forms vs. E-Sign Forms
The E-Sign form tools are new to Acrobat DC and do contain digital signature fields for
the document cloud. While they look similar, they do not operate the same as regular
electronic form fields and do not allow for JavaScript. For those reasons, we will not be
looking at them in-depth. However, if you would like to learn more about how to use
them, read Adobe Acrobat DC Classroom in a Book by Brie Gyncild and Lisa Fridsma,
especially Chapter 8 on signatures and security. For now, refer to Figure 5-15.

Figure 5-14. How JavaScript appears in an program like Dreamweaver or Notepad ++
compared to how the code appears in Acrobat DC (no numbered lines)

Regular Form Fields

E-Sign Form Fields

Figure 5-15. Two types of form field tools found in Acrobat DC

http://www.adobe.com/devnet/acrobat/javascript.html
http://www.w3schools.com/js/
http://dx.doi.org/10.1007/978-1-4842-2893-7_8

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

108

You can access the E-Sign fields shown in Figure 5-15 if you begin your Prepare Form
by checking “This Document requires signatures” (Figure 5-16) and then clicking Start.
For your forms in this book, this option should always remain unchecked.

Figure 5-16. How to create E-Sign forms. For the forms you are working with, keep this
unchecked.

JavaScript and Acrobat on the Document Level
In Acrobat, in order to have a solution you need to follow this equation: Trigger + Select
Action = Result You Want

In addition to knowing what’s being triggered, you need to know where the results
are going to end up. In the case of forms, data or a value is going to be taken from a field
(text, dropdown, check box, radio button, etc.) and the collection of that data is going to
be deposited into a final field as the result you want. Whether using a value, simplified
field notation, or JavaScript, it’s important to know the exact name of those fields. If you
do not know the exact name, you will not get a result and the form will be useless.
To avoid confusion with fields, each must have a unique name.

ChapTer 5 ■ InTroduCTIon To SImplIfIed fIeld noTaTIon and JavaSCrIpT

109

The exception with naming is radio button groups, which act collectively; however,
their groups must have distinct names. With all other fields, there can’t be two or more
named Sum1 within a form; it should be Sum1 and Sum2 and so on.

Follow along with the form examples provided in order to complete the lessons.
The PDFs with the name “End” are the final result.

Summary
JavaScript can be added in a variety of areas; it all depends on what type of form field you
plan to use. In the next chapter, you will see how a knowledge of JavaScript can improve
forms that you use for creating calculations.

111© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_6

CHAPTER 6

Basic and Complex
Calculations

In the first example of JavaScript calculations in this chapter, we will compare three
methods: Value, simplified field notation (SFN), and JavaScript as found in the Calculate
tab in the Text and Dropdown Menu form fields, as shown in Figure 6-1.

While Value is generally the most straightforward way of dealing with calculations
for beginner form creators, you will soon discover that there are limitations to Value, so
simplified field notation and JavaScript might be better options. This chapter will show
the strengths and weaknesses of each method.

Example

Product (x)
Sum (+)

Subtract (-)
Divide (/)
Average
Minimum
Maximum

Object 1 Object 2 Total

Figure 6-1. Inside the Acrobat Calculate Tab Examples PDF file

Chapter 6 ■ BasiC and Complex CalCulations

112

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 6 files from www.apress.com/9781484228920. the file with the label “start” is the
file without the code and the file with the label “end” is the final result. You will also find
folders with original ms Word, excel, and pdF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own pdF forms.

if you are creating your form from an original pdF, refer to the “Forms review” section in
Chapter 1.

remember that to view the properties of a field you must select the prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Getting Started
Let’s take the addition or sum example, which is common to all methods regardless of
which method or option you choose in the Calculate tab. Refer to the Acrobat Calculate
Tab PDF file in the folder for this chapter. Refer to Figure 6-2.

Sum Value
In the Calculate tab, select the “Value is the…” button and pick sum (+) from the
dropdown menu. Notice there are field names of some of the fields in the form in the grey
area (Figure 6-3).

Figure 6-2. The Calculate tab is common to all three methods we will discuss shortly

http://dx.doi.org/10.1007/978-1-4842-2893-7_6
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

Chapter 6 ■ BasiC and Complex CalCulations

113

In this example and Figure 6-3, you are getting data or value from two fields: Object
1Sum and Object 2Sum. They add together in the field TotalSum to offer a result. These
values were entered by selection using the Pick button.

Simplified Field Notation
Now let’s look at simplified field notation. Notice in the Calculate tab in Figure 6-4 that
the button called Simplified Field Notation is selected.

Figure 6-3. Entering the sum value into the Calculate tab

Chapter 6 ■ BasiC and Complex CalCulations

114

 ■ Note With sFn and Javascript you cannot pick or select your fields; you must type the
information directly into the Javascript editor. refer to Figures 6-4 and 6-6.

The second way of accomplishing this is SFN, which is common to a program like
Microsoft Excel. While this is similar to the value sum example, there are differences.
In the previous sum example, you could have spaces between the words in the fields.
However, Object 1Sum in SFN must be written as Object1Sum. There can be no breaks
using SFN. This rule is very strict. Any break in the name of the field and it will not
calculate. If you need a break, use an underscore (_), as in Object1Sum_2 or use what
is known as the camel method where each new word is capitalized, but with no breaks
(ObjectSum).

Another difference to SFN is the addition of a plus symbol (+) to show that you
are adding these two field values within the field TotalSum_2. If you were multiplying,
you would use an asterisk (*), subtraction a minus (-), and division a slash (/). If you’ve
ever taken algebra, you’ll be familiar with parentheses (). Whatever occurs within them
happens first before the calculation continues. Refer to Figure 6-5.

Figure 6-4. Entering the simplified field notation into the Calculate tab

Chapter 6 ■ BasiC and Complex CalCulations

115

To type this code into the editor, you must first click the Edit button. Then you can
type. When done, click OK to exit.

Here you can see (Object1MoreComplex*2) + (Object2MoreComplex-7) =
TotalMoreComplex

If you put numbers into these fields, this should be your answer:

(5*2) + (10-7) = 13

JavaScript Custom Calculation Script
The final method we will look at is a custom calculation script. Figure 6-6 shows the
“Custom calculation script” button selected.

Figure 6-6. Entering the custom calculation script into the Calculate tab

Figure 6-5. Entering the SFN into the Calculate tab for a more complex calculation

Chapter 6 ■ BasiC and Complex CalCulations

116

To type this code into the editor, you must first click the Edit button. Then you can
type. When done, click OK to exit.

In the case of JavaScript, you can again see that there are similarities and differences
in the way the code is set up. In order to translate the fields into the language of
JavaScript, you need to use variables to hold the fields. Variables act as information
containers. In JavaScript, the word variable uses the short form var. After the word var
you add a name. In this example, to keep it simple, let’s use the name a. This variable
called a will now hold whatever value comes into the text field Object1Sum_3. Once a
variable is named the first time, it does not need to have the word var attached and can
be used anywhere in the script as just a. To ensure that the number input will follow
through correctly, add this.getField which means “get the data in this field.” At the
end of the variable, use a semicolon (;) to indicate that that is the end of this variable
statement. The same is true for the second variable, b.

The final part of the script is

event.value = a.value + b.value;

It’s very similar to the SFN example. However, you need to add the .value on the end
of each variable to remind Acrobat that you want the value of each and the final value to
be added in the final field. The final field, TotalSum_3, is represented by event.value. In
this final field, the event of the addition taking place is the result. It is important to note
that the final field does not need a variable name because of the way Acrobat contains the
script within the final field.

Where the naming of variables is concerned, it’s OK to have the names longer than
one letter, like a. You can give them more meaningful names like age or sum. In the final
example it would be written like this:

event.value = age.value + sum.value;

A few other things to remember about variables are

•	 All JavaScript variables must be identified with unique names.

•	 Names can contain letters, digits, and underscores.

•	 Names must begin with a letter.

•	 Names are case sensitive (y and Y are different variables).

•	 Reserved words (like JavaScript keywords) cannot be used as
names. I would not create a variable like var event because
event is a key JavaScript word used in the final event.
For example,
event.value = age.value + event.value;
might not function since event.value has already been
used once.

Chapter 6 ■ BasiC and Complex CalCulations

117

Final Thoughts
You have seen three ways in which addition can be done: Value, simplified field notation,
and a JavaScript custom calculation script. However, which one is right for your project?
Do you need to learn Acrobat JavaScript at all?

In most simple calculation projects, I recommend using Value or SFN in various
parts of the form. However, if you take a look at the example, you will see Value and SFN
do not equally cover all issues. For Value, you cannot subtract or divide. SFN cannot find
minimum or maximum numbers. In this case, you may have to use a combination of both
these calculations in your form.

 ■ Note Javascript can do all of these calculation as well as many others. also, as you
will see in Chapter 12, when the Javascript becomes more complex, it’s not always a good
idea to mix Values and sFn with Javascript as this can lead to some fields not responding
correctly. Consistent coding methods are crucial for form calculations to run smoothly.

For example,

var q = this.getField("Object1Minimum_3");
var r = this.getField("Object2Minimum_3");
event.value=Math.min(q.value,r.value);

You can use the JavaScript math formula Math.min to get my minimum number
similar to the value example. You could use Math.max to get the maximum number.
There are other math formulas that are not available to us via Value or SFN, but are with
JavaScript:

•	 Math.abs(x): Returns the absolute value of x.

•	 Math.acos(x): Returns the arccosine of x, in radians.

•	 Math.asin(x): Returns the arcsine of x, in radians.

•	 Math.atan(x): Returns the arctangent of x as a numeric value
between -PI/2 and PI/2 radians.

•	 Math.atan2(y,x): Returns the arctangent of the quotient of its
arguments.

•	 Math.ceil(x): Returns x, rounded upwards to the nearest integer.

•	 Math.cos(x): Returns the cosine of x (x is in radians).

•	 Math.exp(x): Returns the value of Ex, where E is Euler’s number.

http://dx.doi.org/10.1007/978-1-4842-2893-7_12

Chapter 6 ■ BasiC and Complex CalCulations

118

•	 Math.floor(x): Returns x, rounded downwards to the nearest
integer.

•	 Math.log(x): Returns the natural logarithm (base E) of x.

•	 Math.PI: Gives the formula of p.

•	 Math.pow(x,y): Returns the value of x to the power of y.

•	 Math.random(): Returns a random number between 0 and 1.

•	 Math.round(x): Rounds x to the nearest integer. Example: Round
up a subtotal.

•	 Math.sin(x): Returns the sine of x (x is in radians).

•	 Math.sqrt(x): Returns the square root of x.

•	 Math.tan(x): Returns the tangent of an angle.

From www.w3schools.com/jsref/jsref_obj_math.asp.
One final thing, which you could not do in this form without JavaScript is format the

number 0. Sometimes on a form you do not want the 0 to be present if no calculation has
been added to the first two fields; you just want it blank. Refer to Figure 6-7.

Figure 6-7. Adding a validation script into the Validate tab of the Total field. Before and
after adding the script.

http://www.w3schools.com/jsref/jsref_obj_math.asp

Chapter 6 ■ BasiC and Complex CalCulations

119

This looks better.
Along with the Calculate tab script, enter the following into your Validate tab:

// Custom Validate script for text field
if (event.value == 0) event.value = "";

To start off this script in text field Object1Sum_3, write a comment to remind yourself
what you’re doing.

A double slash (//) always starts off a comment. They can be written anywhere
in JavaScript and will not affect the calculations. Consider them a place for helpful
reminders.

Another type of commenting you can use is for longer, paragraph-sized comments:

/* This type of comment is for lots of text */

However, I generally prefer to use // due to the small space Acrobat provides.

The Final Line of Code

if (event.value == 0) event.value = "";

This is what is known as a conditional statement and you will look at them in detail
later. Essentially it is saying, “if no value or number from the other two fields has been
entered (both are blank), then leave the final value field blank as well.”

One final item: If you used this script in subtraction or addition with negative
numbers and you needed to see the 0, (Example: 5-5=0) you might not see the 0. If you
need to see the 0 only when the fields are full, you can use a more complex and stricter
validation.

== is not a strict comparison. A result like 5-5=0 might work, but 0-0=0 or 0x5=0
might not work because the validation regards 0 and a blank field as the same thing.

=== is a strict comparison, so now a result like 0-0=0 or 0x5=0 will work because the
validation regards 0 and a blank field as not the same thing and will put a 0 in the results
field. You could write the following to keep your 0:

if (event.value === 0) event.value = "";

However, Acrobat seems to act quirky and not get the intended result where the final
field is blank if no values are added. So here’s the alternate code:

//Sum Validation to insure 0 is not missing from an actual calculation
if (a.value !== a.defaultValue && b.value !== b.defaultValue) {
event.value = a.value*1 + b.value*1 ;
} else {
event.value ="" ;
}

Chapter 6 ■ BasiC and Complex CalCulations

120

This code allows you to have the field blank if no numbers are in the other fields and
still retain the 0 if the final result is 0. In this case, you used !== (strict not equal) which is
similar to strict comparison, ===, but in reverse and checks the current value against the
default. If no value is found in both of the other value fields, the event.value will remain
blank. Notice you used another conditional statement, if/else.

For other operators and comparisons refer to www.w3schools.com/js/js_
comparisons.asp.

 ■ Note in the subtraction example, in the Calculate tab examples end option 2 Validate
pdF, change

event.value = a.value*1 + b.value*1 ;

to

event.value = f.value*1 - g.value*1;

For the code to operate correctly the values in the Validate tab must match what is in the
Calculate tab.

When you are done viewing the forms, click the X in the upper right-hand corner
of the Preview to close off the Prepare Form tool. Refer to the “Forms Review” section in
Chapter 1 if you are unsure what this button looks like.

Dropdown Alternatives
As in Chapter 2, for this example, you can replace some of the text fields with dropdown
menus to calculate. While similar to text fields, I find this method a good alternative if
you want your client to use very specific values, and it eliminates the need for validation
on each dropdown because the values are already set. You should not replace the final
text field with a dropdown. Even though these Validate and Calculate tabs do work with
dropdowns, the end result is really only one value. In Part 3, you will see how to use
JavaScript to get more than one result into a dropdown menu when required.

 ■ Note With dropdowns i left the Validation blank because i was using specific numbers.
unlike text fields, there always is a value and never a blank value. refer to the Calculation
tab example that contains a dropdown menus pdF in the file folder for this chapter.

http://www.w3schools.com/js/js_comparisons.asp
http://www.w3schools.com/js/js_comparisons.asp
http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_2

Chapter 6 ■ BasiC and Complex CalCulations

121

Summary
In this chapter, you looked at the three ways you can add calculations to your form fields
using the Calculate tab.

•	 Value

•	 Simplified field notation

•	 JavaScript

While each example became progressively more complex, a broader range of
possibilities opened up as you moved toward JavaScript.

You also saw how adding JavaScript to your Validation tab made it possible to see
when the Total field was being utilized and when it was not. Giving clients accurate form
information updates is important.

In the next chapter, you will explore how custom JavaScript can affect the Format tab
when it comes to

•	 Number

•	 Percentage

•	 Date

•	 Time

123© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_7

CHAPTER 7

Format Calculations

In this chapter, you’ll be working with Number, Percentage, Date, and Time formats using
simplified field notation (SFN) and Value. Let’s look at where it works and doesn’t. You’ll
also need some JavaScript to assist you.

Like in Microsoft Excel (see Figure 7-1), sometimes you must work with different formats
of numbers; you don’t always deal with just 1+1. Other formats you might encounter are

•	 Percentage (98%)

•	 Date (June 25, 2014)

•	 Time (8:30 am)

Figure 7-1. Formatting cells in MS Excel

Chapter 7 ■ Format CalCulations

124

The same is true when you work in Acrobat.
Text fields and dropdown menus offer the options shown in Figure 7-2.

Table 7-1 compares formatting in Acrobat to Excel.

Figure 7-2. Formatting cells in Acrobat DC

Table 7-1. Comparison of Acrobat and Excel Formatting Options

Acrobat Excel

None General, Text

Number Number, Currency, Accounting, Scientific

Percentage Percentage

Date Date

Time Time

Special Special

Custom Custom

Possibly accomplished with Custom or
using two separate formatted number fields

Fraction

As you can see, most formatting is similar. None or general is considered a default
setting; the field could contain generic numbers or text. However, they would not be used
in a calculation.

Chapter 7 ■ Format CalCulations

125

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 7 files from www.apress.com/9781484228920. the file with the label “start” is
the file without the code and the file with the label “end” is the final result. You will also
find folders with original ms Word and pDF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own pDF forms.

remember that to view the properties of a field you must select the prepare Form tool; only
then can you right-click or double click a field to review its properties.

Number Formatting
You can accomplish most of your calculations using a combination of Value and SFN.
To view, refer to the Format Calculation Tab Example PDF in the file folder for this
chapter. Refer to Figure 7-3 as well as the settings in Figures 7-4 and 7-5. For an additional
example, refer to the Invoice Form PDF.

Figure 7-3. An example of a field formatted with Number

Figure 7-4. Settings applied to the fields in the Format tab

http://dx.doi.org/10.1007/978-1-4842-2893-7_7
http://www.apress.com/9781484228920

Chapter 7 ■ Format CalCulations

126

However, as you saw in the math example in Chapter 6, sometimes when doing
more scientific calculations (Math.tan(x)) you need to use a custom calculation script or
JavaScript to assist you.

Formatting with a Percentage
Like Number formatting, Percentage works well with Value and SFN. To view, refer to the
Format Calculation Tab Example PDF in the file folder for this chapter. For an additional
example, refer to the Invoice Form PDF (Figure 7-6).

Figure 7-5. Possible settings applied to the Total field whether it be Value or SNF

Figure 7-6. An example of a field formatted with Percentage

However, keep in mind when you type in 1, Acrobat interprets that to mean 100%, so if
you want 1% you need to type in 0.01 and the 1% will appear as the number you entered.

A Workaround for the Percentage
If you are concerned that clients will not understand this formatting, you can add a
helpful hint using JavaScript, which you’ll explore later. If you don’t want to add a helpful
hint, another alternative is to improve this formatting. Let’s create a custom formatting so
that when 1 is pressed only 1% will be entered rather than 100%.

http://dx.doi.org/10.1007/978-1-4842-2893-7_6

Chapter 7 ■ Format CalCulations

127

To do this, you need to create a custom format for each percent field that you will
be entering percents into. Refer here to Figure 7-7. Fields that will not have data entered,
such as the Total, which has been set to read only in the General tab, can be left as the
format of Percent.

Note that your version may read Number custom or Custom options in the label area
but this does not affect the calculations. Under the Format tab, enter the following code
using the Edit button:

if (event.value !=="" && !isNaN(event.value)){
event.value = util.printf("%.2f%",event.value*100);
}else{
event.value = "";
}

Then add a custom validation to the Validate tab. Refer here to Figure 7-8.

if (event.value !== "") {
event.value = event.value / 100 ;
}

Figure 7-7. Custom format script rather than Percentage added to the Format tab

Chapter 7 ■ Format CalCulations

128

Refer to the AcrobatFormTabCalcExamples_AlternatePercentageFormat PDF.
What you have done in this example is tell the field’s validation to remain blank if

nothing is entered. You then tell the formatting to disregard items that are not numbers.
Then you ask it to display in the following manner using the above field calculation: it
moves the math decimals so that it understands 1 to mean 1% rather than 100%.

event.value = util.printf("%.2f%",event.value*100);

The result you get when you enter a number is

Addition of Percentage: 1.00% + 1.00% = 2.00%

As mentioned earlier, for the final summing field, you do not need to create any
custom script. You can leave it as a percentage format and use either Value or SFN in the
Calculate area. Refer here to Figure 7-9.

Figure 7-8. Validation script added to the Validation tab

Chapter 7 ■ Format CalCulations

129

 ■ Note Within the Custom Format and Validate tab is another example (Figure 7-7)
of a conditional or if/else statement. if/else statements set a condition. “if” the following
conditions are met, do whatever is within the brackets ({}). the other option, “else,” in the
code above gives the alternative. if “if” does not work, then do the “else,” which is whatever
is within its brackets. as you shall see later, for longer conditions you will also add additional
conditions, “else if,” between the if and else if you have more than two options.

Date Formatting
Date formatting is easy to do for one field. To view, refer to the Format Calculation Tab
Example PDF in the file folder for this chapter. Refer to here to Figure 7-10.

Figure 7-9. Format tab and Calculate tab for the Total field

Chapter 7 ■ Format CalCulations

130

Once again you need to look to JavaScript to assist you.
Suppose that you want to create a hotel form that deals with check in and check out

dates. Refer to Table 7-2 to see an example.

However, when it comes to adding or subtracting dates from one another, Value and
SFN do not work well.

Date: March 3, 2015 + 1.00 = 4.2015

As you can see, this math makes no sense and trying to use two dates can often run
into errors; refer to Figure 7-11.

Figure 7-11. Example of an error warning that happens when you try to add two fields
that are formatted with dates

Figure 7-10. Selecting a format of date in the Format tab

Chapter 7 ■ Format CalCulations

131

Table 7-2. Table of Formatted Dates

Format Number In Number Out Total

Date: Mar 3, 2015 March 9, 2015 6

Figure 7-12. Setting for the DateEnd field in the Format tab

Figure 7-13. Setting for the Total field in the Format tab

The Number In or DateStart field is formatted as a date. The Number Out or DateEnd
field is formatted as None so it can have both text and a number in it. As mentioned,
Acrobat does not like to add or do a calculation on two formatted dates. It prefers to work
with one date and None or a Number format. Refer to Figure 7-12.

The Total field is formatted as number; with a custom calculation, it then takes over
to complete the formula. Refer to Figures 7-13 and 7-14.

Chapter 7 ■ Format CalCulations

132

The code is

var strStart = this.getField("DateStart").value;
var strEnd = this.getField("DateEnd").value;
if(strStart.length && strEnd.length)
{
 var dateStart = util.scand("mmm d, yyyy",strStart);
 var dateEnd = util.scand("mmm d, yyyy",strEnd);
 var diff = dateEnd.getTime() - dateStart.getTime();
 var oneDay = 24 * 60 * 60 * 1000;
 var days = Math.floor(diff/oneDay)+1;
 event.value = days;
}
else{
 event.value = 0;
}

Figure 7-14. Setting for the Total field in the Calculate tab

Chapter 7 ■ Format CalCulations

133

The code grabs the start date and the end date and gets a value from each of them.
Those values are then added into a conditional statement that says the solution will either
be a number or “else” it will be 0. The if statement makes sure that the values of start date
and end date are indeed numbers. Length helps you get a number and the length of each
variable (var strStart and var strEnd) is checked against the formatting “mmm d, yyyy”.
It’s important that this is the same formatting found in the Number In or DateStart field or
this calculation will not work.

The util.scand() part of the code is a function that can convert any date string by
using the date symbols, but it has to know the exact format of the date for this to work.
Once this is done for both fields, the end date and start date are recognized as time using
the JavaScript .getTime() method. This returns a number in milliseconds (Example:
1432672724073) which could be quite long. This is not the answer you want. You want to
know how many days. Once the getTime of the dateStart is subtracted from the getTime
of the dateEnd, you then figure out how long one day is and divide that from the result of
the two dates.

Math.floor then rounds down to the nearest day.
You could not have done this calculation in Acrobat without JavaScript.

 ■ Note i added a +1 to the variable days because this gave me a more accurate number.
example:

var days = Math.floor(diff/oneDay)+1;

however, if you don’t count half days, feel free to remove the +1.

Time Formatting
Time formatting is in many ways similar to date formatting. You can even add time
to your date depending on what you intend for the field. To view, see to the Format
Calculation Tab Example PDF in the file folder for this chapter. Refer here to Figure 7-15.

Chapter 7 ■ Format CalCulations

134

Figure 7-15. Comparison of Time and Date formatting in the Format tab

However, while they’re similar, you can use some SFN rather than JavaScript to do a
simple subtraction of time.

To see how using a Value does not work well in the calculation area, refer to
Tables 7-3 and 7-4.

Chapter 7 ■ Format CalCulations

135

Now let’s use SFN.
To make this work correctly, let’s say Joe came in at 4:30 a.m. and left at 3:30 p.m.

(formatted as 15:30). He therefore stayed a total of 11 hours.
Both NumberInTime and NumberOutTime fields are formatted this way. Refer here

to Figure 7-16.

Table 7-4. Formatting Total Using SFN in the Calculate Tab

Format Number In Number Out Total

Date: 04:30 15:30 11:00

Figure 7-16. Formatting the in and out fields with Time in the Format tab

Table 7-3. Formatting Total Using Value in the Calculate Tab

Format Number In Number Out Total

Date: 12:15 27 39.15

Chapter 7 ■ Format CalCulations

136

Figure 7-18. Using SFN in the Total field in the Calculate tab

The TotalTime field is then formatted as a number. Refer here to Figure 7-17.

Figure 7-17. Number format for Total field in the Format tab

The last thing that is done is the SFN under the Calculate tab. Refer here to Figure 7-18.

Chapter 7 ■ Format CalCulations

137

NumberOutTime - NumberInTime gives you the number of hours that work was
done in the day.

Final Thoughts
As you can see from the above formatting examples, there are times where you can use Value
and SFN. However, in some cases they will not give you the results you want. If the calculation
becomes complicated or scientific, you may need to look for a custom JavaScript to assist you.

Dropdown Alternatives
As in Chapter 2 and Chapter 6, there is a dropdown alternative in this chapter’s folder,
if your clients are required to enter very specific values.

Summary
In this chapter, you focused on using the Format tab while working in either text fields or
dropdown menus.

You looked at formatting using

•	 None

•	 Number

•	 Percentage

•	 Date

•	 Time

•	 Custom

While Acrobat has some automatic solutions for some formats, in this case you needed
to create either a calculation using Value, SFN, or JavaScript to get the results you wanted.

You also looked at how custom formatting interacted with code in the Validate tab.
In Part 3, you’ll look at the Validate tab in more detail.

In the next chapter, you’ll look at how you can add various alerts to your document
using JavaScript and add some JavaScript to buttons that will create notes and time stamps.

http://dx.doi.org/10.1007/978-1-4842-2893-7_2
http://dx.doi.org/10.1007/978-1-4842-2893-7_6

139© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_8

CHAPTER 8

Various JavaScript Alerts,
Notes, and Time Stamps

As you have seen in previous chapters, JavaScript is very useful for forms when you want
to do calculations.

However, sometimes you want to accomplish things that are non-form related.
In this chapter, you’ll create an alert that welcomes a person when they open your

PDF newsletter or catalog, like the one in Figure 8-1.

Figure 8-1. An informational message that appears when someone opens the Newsletter
PDF file

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

140

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 8 files from www.apress.com/9781484228920. the file with the label “start” is the
file without the code and the file with the label “end” is the final result. You will also find a
folder containing the original scripts if you would like to add them to your own pdF forms.

if you are creating your form from an original pdF, refer to the “Forms review” section in
Chapter 1.

remember that to view the properties of a field, you must select the prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Alert Types
JavaScript has at least four alert types that you can use to alert your clients to an event.
It also has four button types that you can choose from. Figure 8-1 shows the info/status
type. I chose this because I did not want to scare the person with a warning, which this is
not. It is more of greeting.

Table 8-1 provides a breakdown of the alerts.

Table 8-1. A Table of Alert Types

Icon Type # Button Type

0 Error 0

1 Warning 1

2 Question 2

3 Status/Info 3

In order to achieve this alert, you need to add it globally, which means that it is part
of the whole document. When the document opens, you want to see this alert.

http://dx.doi.org/10.1007/978-1-4842-2893-7_8
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

141

To do that, you need to go to the JavaScript tool in the Tools menu. Refer to
Figures 8-2 and 8-3.

Figure 8-2. The JavaScript tool

Figure 8-3. The JavaScript Tool menu

Create a Document JavaScript
Now you need to choose Document JavaScripts from the JavaScript menu (Figure 8-3).
To view, refer to the Newsletter PDF in this chapter’s file folder.

When you first start creating your JavaScript for the document, the console will
appear blank. No JavaScripts have been created, so you’ll need to follow these steps.

 1. Type in a script name. Refer here to Figure 8-4.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

142

 2. Then click the Add button on the right. Refer here to Figure 8-5.

Figure 8-4. The Document JavaScripts dialog box

Figure 8-5. The Add button

 3. Enter the following script:

//Welcome Message on start
app.alert("Welcome to our Newsletter!",3,0);

The first line with the //, as mentioned earlier, is a comment.
It has nothing to do with the function of the code; it is just a
reminder of what the code is about.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

143

The real code is this:

app.alert("Welcome to our Newsletter!",3,0);

It is calling up an alert message. Within this app.alert(), you
can put your custom text (“Welcome to our Newsletter!” in
this example). Then you chose what type of icon and button
you want to appear. Refer here to Figure 8-6.

Figure 8-6. The code and message typed into the JavaScript Editor

•	 3 refers to the Alert Icon type (in this case Status/Info). Refer
to Table 8-1.

•	 0 refers to the Button type (in this case, the OK button).

Depending upon the type of alert, you might choose other options.

 4. Click the OK button in the console when done typing.
Save your work.

Viewer Version and Validation Alert
Let’s say you want to make sure that your customer’s version of Reader is up-to-date
enough to accomplish certain tasks.

You might create your own Viewer validation script such as viewerVersion. Refer
here to Figure 8-7.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

144

Figure 8-7. Document JavaScript dialog box displaying three scripts used in the
Newsletter PDF

//What version of Acrobat
if (typeof(app.viewerVersion)!="undefined")
if (app.viewerVersion <7.5){
 var msg = "You must use Adobe Acrobat or Adobe Reader version 7.5 or

above to complete this form.";
 app.alert(msg,1,0);
}

This code makes sure that when the document opens in Reader, the code interacts
with the client’s software and checks itself against the conditional statement and warns
the client, using 1 (reference Table 8-1) if the version is earlier than 7.5, that they’re going
to have difficulty completing this form. The client then knows they need to upgrade.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

145

You could also create a viewerType validation.

if (typeof(app.viewerType)!="undefined")

if (app.viewerType == "Reader")
{
var msg = "You must use Acrobat Standard, Acrobat Pro, or Acrobat Pro
Extended to complete this form.";
app.alert(msg,1,0);
}

If the client is in Reader and not Acrobat Pro, they might have an issue completing
this form due to certain settings that the programmer is aware of. If you are in Acrobat
Pro, this error is ignored.

When done, click OK and save your work.

 ■ Note if you think that your client may open their file in a different reader or pdF
program, you may need to alter your code to reflect that. remember that a program like mac
preview may corrupt the Javascript in your forms, so run a test of the alert with a client or
coworker first.

Document Actions
Other types of global alerts may need to be set up in another area. Let’s choose Document
Actions. Refer to Figure 8-8.

Figure 8-8. The JavaScript Tool menu

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

146

Document Will Close
When the document closes, you might want to add a friendly goodbye to the customer to
thank them for taking the time to read the newsletter. Click the Edit button to enter the
following code:

app.alert("Thanks for looking at our Newsletter!",3,0);

Click the OK button when done.
The script is similar to the enter greeting; however, you need to enter it into this

section in order for it to work.

Figure 8-9. The Document Actions dialog box

In this Newsletter example, you can see two document actions. You know this
because there is a dot beside each action that has been created. Refer here to Figure 8-9.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

147

Document Will Print
You might enter something like a message before the document prints:

var msg = "Hope you found what you were looking for."
app.alert(msg,3,1);

 ■ Note in this case, the message was written as a separate variable, var msg.

i could have written it as one line:

app.alert("Hope you found what you were looking for.",3,1);

and the same thing would have happened.

however, it is good to know how to write it the other way if you think your message is
lengthy or you might use it more than once.

The other options available in this area are

•	 Will Save: Message appears before saving

•	 Did Save: Message appears after saving

•	 Did Print: Message appears after document prints

When you’re done, click the OK button and save your work.
You will look further into global document JavaScripts later throughout the

following lessons.

Alerts Working with Buttons
Not all alerts have to be global. Sometimes you want an alert only to happen on the push
of a button or when you enter text incorrectly into a text box. To view this button, refer to
Figure 8-10 and the Newsletter PDF on page 4.

Figure 8-10. The alert message button found in the Newsletter PDF

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

148

You can then add an alert action to the button using a JavaScript in the Button
Properties Actions tab. Refer here to Figure 8-12.

Figure 8-11. Buttons are found in either the Prepare Form or Rich Media tools.

Figure 8-12. The Action tab in the Button Properties dialog box running a JavaScript
action. Text is entered into the JavaScript Editor.

As before, you set a trigger of Mouse Up and select the action of “Run a JavaScript.”
Then you click the Add button and add the following text:

//Message Alert Button
var msg = "This is my first JavaScript Alert Message";
app.alert(msg,3,0);

You can create a button either in the Prepare Form area or Rich Media area. Refer
here to Figure 8-11.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

149

Click OK to exit the editor, click Close to exit the Button Properties screen,
and save your work.

Figure 8-13 shows the alert the button produced when clicked. You will look further
into these types of alerts later.

Figure 8-13. The alert message that was produced when clicked

Figure 8-14. A button that will add a comment or sticky note to the page

Figure 8-15. The “Run a JavaScript” action

Adding a Comment Note, Signature, and Time Stamp
As you can see, buttons are great for alerts, but you can also use them to add both
non-form and form items to a page.

For instance, maybe you want to encourage your client to add a comment to a
specific page once they are done proofing it. You could add a button. See the Project
Comment PDF to follow along. Refer here to Figures 8-14 and 8-15.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

150

Like before, in order to do this you need to run a JavaScript. Click the Add button.
Refer here to Figures 8-15 and 8-16.

Figure 8-16. Text entered into the JavaScript Editor

This time you need to type

//Add a Comment/Sticky note
var annot = this.addAnnot({
page: this.pageNum,
type: "Text",
rect: [187, 168, 487, 243],
strokeColor: color.yellow
});

Here’s what it means. When the button is clicked, it will call upon addAnnot or the
annotation/comment. A comment sticky note will be added to the page that the button is
on, this.pageNum.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

151

It will allow you to add text. The type of comment will be set to certain coordinates
on the page. This comment will have an icon color of yellow. Refer to Figure 8-17.

Figure 8-17. Resulting comment when client clicks the button and then enters some text

Figure 8-18. The “Signature Field and Time Stamp” button

The client can then enter their text.
You will consider other types of color formatting later.
Another thing that you can do with a button is use it to add form fields and a time

stamp. Refer to the Project Comment PDF and Figure 8-18.

Sometimes you want a button to do two things at once and this is a way of speeding
up the process. Again, you run a JavaScript in the Actions tab. Refer here to Figure 8-19.

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

152

Figure 8-19. The JavaScript added for the Time Stamp button

Both scripts are in the same editor. Refer here to Figure 8-20.

Figure 8-20. Resulting Signature field

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

153

The signature

//Adding a signature field automatically
var c = this.addField({
cName: "clientSignature",
cFieldType: "signature",
nPageNum: this.pageNum,
oCoords: [35,74,176,112]
})

This first section controls where the signature is being placed. It has been given the
name “clientSignature” so that it is identifiable because all fields need a distinct name.
The type of field is a signature, which is for signatures only and not for

•	 Text: Example: cFieldType: “text”

•	 Button: Example: cFieldType: “button”

•	 Dropdown: Example: cFieldType: “combobox”

•	 List Box: Example: cFieldType: “listbox”

•	 Check box: Example: cFieldType: “checkbox”

•	 Radio Button: Example: cFieldType: “radiobutton”

Time stamp
This Page was viewed on May 27, 2015

//script that creates the text field
{
var r = [200, 200, 400, 300];
var i = this.pageNum;
var f = this.addField(String("completeDate."+i),"text",i,r);
f.textSize = 10;
f.alignment = "right";
f.textColor = color.blue;
f.fillColor = color.transparent;
f.textfont = font.HelvB;
f.strokeColor = color.transparent;
f.value = String("This page was reviewed on: " + util.printd("mmm dd, yyyy",
new Date()));
f.readonly = true;
}

Chapter 8 ■ Various JaVasCript alerts, Notes, aNd time stamps

154

Next, the time stamp is added to the page with today’s date.

 ■ Note You can format its color to blue and choose a font as well. this text (“this page
was reviewed on: date”) is now locked in, because readonly was set to true. if you want
this text to be edited in some way later, you could have set it to false. this is what is known
as a Boolean expression; it can only ever be true or false.

You will look at other reasons to format text and the fields later.

Summary
In this chapter, you added some global alerts to your document and alerts to buttons
as well. You also discovered that you can use buttons to create comment/sticky notes,
signature fields, and time stamps. As you can see, alerts are useful for non-form
documents and adding comments.

In the next chapter, you’ll take a look at how alerts can assist you in forms.

155© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_9

CHAPTER 9

Create Help for Clients with
Rollover Text and Alerts

In Chapter 4, you learned that you can create a small help menu with the order form
using buttons that hide and show. However, if you need your text to be more detailed, this
method might not always be the best solution. Luckily, in Acrobat there are a few other
methods you can use that can assist you with creating help for your client.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 9 files from www.apress.com/9781484228920. The file with the label “Start” is the
file without the code and the file with the label “End” is the final result. You will also find a
folder containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF, refer to the “Forms Review” section in
Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

http://dx.doi.org/10.1007/978-1-4842-2893-7_4
http://dx.doi.org/10.1007/978-1-4842-2893-7_9
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

156

The Rollover Method
Let’s look at the rollover method first. Refer here to Figure 9-1.

Figure 9-1. When you roll over a text field, different information appears in the red text
box to give your client a hint

In this example (see the Rollover End PDF), you can see that when a client moves
over a field, the red box in the upper corner of the form provides a helpful hint so that
they know what to type if they’re not sure. This is very useful when a client needs to know
how to type in the correct date format. A hint is always welcomed.

As the client moves out of the field, it becomes blank again until the next field is
rolled over. The client now knows what to type and errors are avoided when the form is
returned to you.

In this example, the following fields are all controlled by a JavaScript globally and
within the fields:

•	 Customer Full Name

•	 Date

•	 Order Code

•	 Customers Company Name

The red help box, txtHelp, has no JavaScript internally; however, it is referenced
globally by all fields.

First, let’s take a look at the global or document JavaScripts. In the JavaScript tool,
select Document JavaScripts. Refer to Figures 9-2 and 9-3.

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

157

Figure 9-2. The JavaScript tool

Figure 9-3. Document JavaScripts

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

158

You can see there are two document JavaScripts.
HelpExit is a global function that controls those fields that will be accessing the red

stroked help field, txtHelp.
As the user exits the field, it returns to a blank state.

function HelpExit()
{
 var helpText = this.getField("txtHelp");
 helpText.value ="";
}

The other JavaScript is helpText; this function contains an array.

var gHelpText = [// Create a variable, gHelpText
 "What’s your full name?", //String#0
 "mm/dd/yyyy", //String#1
 "Your customer code is on the form that was emailed to you.", //String#2
 "What’s your Company Name?" //String#3
]

An array is written with the [] brackets, which you will see more of later. It contains
multiple variables or strings within itself. These variable strings can then be accessed by
other fields.

 ■ Note JavaScript seems to support the three types of arrays: indexed, objects (a.k.a.
associative arrays), and nested (in the sense that they can hold an array within an array).
In this chapter, you have been looking at the basic index type which, even though no
actual numbers are in the array, based on the order you can still call on a number or
string reference from 0-3. In Chapter 12 and 13, you will see examples of more complex
associative arrays or objects which deal with words rather than numbers to do the indexing;
these array/objects will be nested.

Now let’s take a look at one of the fields that needs help: Customer’s Full Name.
In the case of the four fields that are showing “help” in the red stroked box, they all

have the following two JavaScripts. Refer to Figure 9-4.

•	 When the mouse or cursor enters, run a JavaScript.

•	 When the mouse or cursor exits, run a JavaScript.

http://dx.doi.org/10.1007/978-1-4842-2893-7_12
http://dx.doi.org/10.1007/978-1-4842-2893-7_13

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

159

Mouse Enter

var helpText = this.getField("txtHelp");
helpText.value =gHelpText[0];

As the mouse enters the field, JavaScript is asked to access some text from the document
JavaScript helpText function array gHelpText. With arrays, the number 0 always
represents the first item in an array, like so:

0= "What's your full name?"
1= "mm/dd/yyyy"
2= "Your customer code is on the form that was emailed to you."
3= "What's your Company Name?"

And so on, if there were more items in the array.
In the case of the Date field, you can see it is the same except for the number in the

array you accessed. This time the Mouse Enter setting is 1. For the Order Code field, it’s 2,
and for the Customer’s Company Name field, it’s 3.

var helpText = this.getField("txtHelp");
helpText.value =gHelpText[1];

Figure 9-4. Run a JavaScript on Mouse Enter and Mouse Exit

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

160

Mouse Exit

HelpExit();

In the case of the mouse exit portion, all actions will be the same for all four fields.
When the mouse or cursor exits the red stroked help box, it becomes blank.

Writing global document JavaScript like this can be helpful if for some reason you
need to change some code inside this function. Any field that had this function attached
would now do the new action rather than you having to go manually through and change
each one.

Extra Non-Custom JavaScript Check Box Example
As in the form in Chapter 4, there are the examples of the Shipping Address hide and
show text fields. Review this area if you can’t remember how it works. However, this area
contains no custom JavaScript, so we’ll continue to the next example. Refer to Figure 9-5.

Figure 9-5. Review of Shipping Address check box and button examples

The Default Text Method
The rollover is a good method for some forms, but on others it may not work well, such as
when fields are near the bottom of the page or forms that are two pages or more. As with
forms on the Internet, the default text is sometimes found within the actual field. You can
add default text to a field in the Options tab. However, when the user clicks that field, the
text does not disappear; it remains. You have to select the text first and then delete it. This
can become awkward and frustrating to the client who just wants to start typing. Refer to
Figure 9-6. Add this to blank text field and test it.

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

161

Instead of adding the default text here, you can create a custom format in the Format
tab with this script. Refer here to Figures 9-7 and 9-8.

Figure 9-6. Adding default text to the Text field in the Options tab

Figure 9-7. Adding a custom script to the Format tab

Figure 9-8. Custom default text (top) and the text entered (bottom)

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

162

Figure 9-9. Text is entered into an alert box and is then entered into the field once the user
clicks OK and then tabs out of that field

See the Text End PDF file for this exercise.

// Custom Format script
if (!event.value){
 event.value = "What is your full name?";
 event.target.textColor = color.gray;
}
else{
 event.target.textColor = color.black;
}

Figure 9-8 shows the difference.
In this example, the default text is grey as long as nothing is in the field and will

disappear when the field is clicked and the new text is typed in. The new text will be
black. You can apply this same code to the Customer’s Company Name field. No global or
JavaScript actions need to be applied.

For some text boxes this is a good method. However, for other boxes that have
explanations longer than the field or must also be formatted as a date or number, using
this custom format may not be ideal. Let’s look at another option for those instances.

 ■ Note if (!event.value) becomes a type of Boolean or a true and false statement
(if not) when you add the exclamation point. In this case of default text, if there is no value
entered in the text field, here is what you should fill it with. without this exclamation point,
the default text will not fill in.

The Alert Method
Is there some other way that the message can move along with the client as they enter
fields down the form? Yes, it can be done with alert boxes. Another cool feature of alert
boxes is if you set them up correctly, you can enter text into them and the text will then be
transferred to the correct form field. Refer to Figure 9-9.

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

163

In this example (see the Alert End PDF file), there is no global document JavaScript
so we can skip that area for now.

Again there are four text fields:

•	 Customer’s Full Name

•	 Date

•	 Order Code

•	 Customer’s Company Name

This time there is no red-stroked txtHelp field; you will use the alert boxes to do that work.

Customer’s Full Name
This time you will only run one JavaScript per field. Do not worry about an exit function
because the alert box will take care of that for you, as you shall see. In this case, use On
Focus, which activates when anyone clicks into the box. Refer to Figure 9-10.

Figure 9-10. Run a JavaScript in the Actions tab

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

164

This is the code:

var t = event.target; // the target field
var cResponse = app.response({
 cQuestion: "Type your name First, Last",
 cTitle: "Name",
 cDefault: "Name not added",
 cLabel: "Type your name"});
{
 if (cResponse == null){ // if Cancel is selected
 app.alert ("You cancelled adding your name.");
 cResponse = "";
 }
 else{
 app.alert("You typed your name as: \""+cResponse+"\" \n\n Tab out of the

field to register your name",3);
 }
}
t.value = cResponse; // places the data from the dialog to the target field

In Figure 9-11, you can see that the Alert creates a description and a space for the
user to type their name as requested.

If the user hits cancel, the warning they will get is “You cancelled adding your name.”
And the text field will go back to blank. Refer to Figure 9-12.

Figure 9-11. The JavaScript help message

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

165

Figure 9-12. The JavaScript warning when the user hits cancel

Figure 9-13. The JavaScript confirmation after the user clicks OK

If the user types in their name, they get “You typed your name as: [client name]”.
Once the client tabs out of that field, their name is confirmed. Refer to Figure 9-13.

Let’s move to the next field. Notice how again you use the if/else condition to get two
possible answers.

Date
The Date field behaves in a similar fashion. However, remember to make sure this field is
formatted to a date that matches the text. Refer to Figure 9-14.

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

166

Figure 9-14. The Date Options menu in the Format tab

Now go to the Actions tab and use the same setting as with the Customer’s Full
Name, altering the text to suit your needs. Refer to Figures 9-15 and 9-16.

Figure 9-15. Run a JavaScript for the Date field

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

167

The code:

var t = event.target; // the target field
var cResponse = app.response({
 cQuestion: "Type the Date mm / dd / yyyy",
 cTitle: "Date",
 cDefault: "Date not added",
 cLabel: "Type the Date"});
{
 if (cResponse == null){ // if Cancel is selected
 app.alert ("You cancelled adding the date.");
 cResponse = "";
 }
 else{
 app.alert("You typed the date as: \""+cResponse+"\" \n\n Tab out of the

field to register the date",3);
 }
}
t.value = cResponse; // places the data from the dialog to the target field

Customer Order Code
You will construct the customer order code in the same way as the date, only the code will
be different. Refer to Figure 9-17 to see the result.

Figure 9-16. JavaScript help message for the Date field

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

168

Figure 9-17. JavaScript help message for customer order code and confirmation message

The customer order code functions similarly and you could have set the format
to number. However, you may want letters and numbers in your code, so leave the
formatting to None.

// Customer Code or Credit Card Example
var t = event.target; // the target field
var cResponse = app.response({
 cQuestion: "Type your Customer Order Code number using numbers/letters

only and without dashes",
 cTitle: "Customer Order Code",
 cLabel: "Type your 16 digit code number"});
{
 if (cResponse == null){ // if Cancel is selected
 app.alert ("You cancelled adding your code.");
 cResponse = "";
}
 else {
 if (cResponse.length != 16){
 app.alert("Type the complete number/letters without dashes or there may

be more or less than 16 digits.");
 cResponse = "";}

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

169

 else{
 app.alert("You typed your Order Code number as: \""+cResponse+"\" \n\n

Tab out of the field to register the card number",3);}
 }
}
t.value = cResponse; // places the data from the dialog to the target field

Notice how the outer else statement does its own conditional check to make sure
that there are 16 characters inside the field. If there are not, the alert might remind you
to type without dashes or that there are not 16 characters typed in, if you decide to adjust
the message.

Customer’s Company Name
This code is similar to the Customer’s Full Name field. Refer to Figure 9-18.

// Company name
var t = event.target; // the target field
var cResponse = app.response({
 cQuestion: "Type your Company’s Name",
 cTitle: "Company Name",
 cDefault: "Company Name not added",
 cLabel: "Type your Company name"});
{
 if (cResponse == null){ // if Cancel is selected
 app.alert ("You cancelled adding your Company’s name.");
 cResponse = "";
 }
 else{
 app.alert("You typed your Company name as: \""+cResponse+"\" \n\n Tab

out of the field to register your name",3);}
}
t.value = cResponse; // places the data from the dialog to the target field

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

170

Final Thoughts
As you can see, there are several ways that you can help your customers fill out forms.
Not all fields must offer help. Some are unmistakable and self-explanatory. However,
if your client is not familiar with a word or maybe needs a translation because their
English is not the best, this might be a possible workaround. If your form is one page, a
rollover may be just fine. However, on forms with two pages or more where the help is
spread out, I recommend the alert method.

 ■ Note Recently adobe acrobat DC added the Popup menu for Date. So adding the
alert method to the Date is optional since when the user chooses a date, it formats itself
automatically. In this case, you may choose to alter or remove the alert altogether. Refer to
Figure 9-19.

Figure 9-18. JavaScript help message for company name and the confirmation message

ChaPTER 9 ■ CREaTE hElP FoR ClIEnTS wITh RollovER TExT anD alERTS

171

Summary
In this chapter, you learned about three possible methods for creating help for your
clients when they work with text fields. You also saw how to reuse document JavaScript in
many fields and how you can apply custom formatting to text fields.

In the next chapter, you are going to see what other options you have to alter the text
within your fields depending upon the numbers that are entered.

Figure 9-19. The new Date Popup menu that appears in the latest version of Acrobat

173© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_10

CHAPTER 10

Various Types of Formatting
with JavaScript

In the last chapter, you looked at creating various alerts that could assist your clients in
knowing when they entered incorrect information. In this chapter, you will explore ways
that you can globally and individually alter the appearance of various fields so that they
conform to a set format you choose. You will also alter the appearance of the resultant
value depending on what radio buttons or check boxes are chosen. Other topics you will
tackle are

•	 Buttons that allow their label to run onto more than one line

•	 How to allow a client’s text in a multi-line text field to flow into
another text field when there is not enough room in the current
field

•	 Using JavaScript and a button to print only one page or range of
pages rather than printing the entire document

Adding Global Formatting to Text Fields
With forms, formatting font or field colors can be accomplished quite easily using the
properties in the Appearance and Option tabs. Refer here to Figure 10-1.

Chapter 10 ■ Various types of formatting with JaVasCript

174

On other occasions, you may want all the fields to have the same color or font.
You could select all the fields and then right-click Properties and set the Appearance tab.
Refer here to Figure 10-2.

However, this might lead to errors, and you might not get the result you intended
especially if you forgot to select something.

Figure 10-1. The Appearance and Options tabs showing formatting choices

Figure 10-2. The Appearance tab with multiple fields highlighted at the same time

Chapter 10 ■ Various types of formatting with JaVasCript

175

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 10 files from www.apress.com/9781484228920. the file with the label “start” is the
file without the code and the file with the label “end” is the final result. you will also find a
folder containing the original scripts if you would like to add them to your own pDf forms.

if you are creating your form from an original pDf, refer to the “forms review” section in
Chapter 1.

remember that to view the properties of a field you must select the prepare form tool; only
then can you right-click or double-click a field to review its properties.

Using JavaScript, you can change the color quickly. To do things globally you need
to go into your document JavaScript. See the Customer Survey PDF End Part 2 in this
chapter’s file folder. Refer to Figure 10-3 for the formatting code.

Here is a JavaScript called fieldsRed. Enter the following code:

// Script to set the font and size of text fields
for (var i = 0; i < numFields; i++) {
 // Get a reference to the current field
 var f = getField(getNthFieldName(i));

Figure 10-3. The JavaScript tool inside the Document JavaScripts dialog box

http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

Chapter 10 ■ Various types of formatting with JaVasCript

176

 // If it’s a text field, set the font and font size
 if (f.type == "text") {
 f.strokeColor = color.red;
 }
}

To find just the text fields and apply a stroke color of red to them, use a JavaScript
for() loop. Refer to Figure 10-4 to see the result.

Loops are not seen very often in Acrobat JavaScript. The most commonly used is the
for() loop. There are other loops used in JavaScript, like while and do while. For the sake
of simplification, let’s just focus on the for() loop.

The for() loop contains three statements:

"var i = 0; i < numFields; i++"

The variable var i = 0; is executed before the loop (the code block) starts.
The 0 field, like the array example earlier, is the starting point.

i < numFields; defines the condition for running the loop (the code block). var i
is less than (<) numFields. Your form may be very large. You don’t know how many fields
there are, so you use numFields instead of an actual number. You want the loop to keep
on going until you reach the end of the form.

i++ is executed each time after the loop (the code block) has been executed.
This keeps the loop going until the end is reached.

This middle section acts as the control:

var f = getField(getNthFieldName(i));
 // If it’s a text field, set the font and font size
if (f.type == "text") {
f.strokeColor = color.red;
}

When the amount of fields has been collected, you check using a conditional if
statement that they are indeed strictly text fields. If they are, then a stoke color of red can
be applied. Notice how the button fields didn’t have a red stroke applied to them; they
were canceled out during the loop.

To format other fields instead of text, format these lines:

•	 if (f.type == "checkbox")

•	 if (f.type == "radio")

•	 if (f.type == "button")

•	 if (f.type == "signature")

Figure 10-4. The result of adding the for() loop to the code

Chapter 10 ■ Various types of formatting with JaVasCript

177

•	 if (f.type == "combobox")

•	 if (f.type == "listbox")

Or with this loop, if you want to change the stroke color to blue, you can change this line:

f.strokeColor = color.blue;

All the fields that had a red colored stroke will all become blue instantly and you
didn’t have to worry about selecting them all.

Color Properties
Other colors you could try are defined in Table 10-1.

Multi-Line Buttons
Another type of formatting that you may want to add is having the text of buttons on two
or more lines. Buttons without this type of formatting often have the text on one line.
There is no automatic way to tell the text to spread on to two lines, as you can see in
Figure 10-5.

Table 10-1. Color Properties

Color Object Keyword Equivalent JavaScript

Transparent color.transparent ["T"]

Black color.black ["G", 0]

White color.white ["G", 1]

Red color.red ["RGB", 1,0,0]

Green color.green ["RGB", 0,1,0]

Blue color.blue ["RGB", 0, 0, 1]

Cyan color.cyan ["CMYK", 1,0,0,0]

Magenta color.magenta ["CMYK", 0,1 0,0]

Yellow color.yellow ["CMYK", 0,0,1,0]

Dark Gray color.dkGray ["G", 0.25]

Gray color.gray ["G", 0.5]

Light Gray color.ltGray ["G", 0.75]

Figure 10-5. A reset button with the text spreading on one line

Chapter 10 ■ Various types of formatting with JaVasCript

178

The button becomes longer and longer. An option is to make the text smaller.
Unfortunately, it then becomes difficult to read. You could create an icon graphic, but
then the text won’t be editable if you need to change it quickly. Refer here to Figure 10-6
to see the current properties of the button.

Figure 10-6. Button Properties Appearance and Option tabs with the label of Reset
Comments

Chapter 10 ■ Various types of formatting with JaVasCript

179

Once again JavaScript has a solution. Refer here to Figure 10-7.

Besides resetting the comment field, this adds a JavaScript to the button.
Here is the code:

this.getField("MyButton").buttonSetCaption("Reset\n Comments");

Just one line does what you need. Call upon the name of the button, “MyButton”, and
tell it that you want to set a caption same as label in the Option tab. To make the words on
two lines, use the invisible character, " \n". Another name for this is a metacharacter.
Basically what it means is a new line, so the word Comments goes onto the second line.
This is very handy when the button requires several lines of text.

 ■ Note you may have noticed that you used the metacharacter \n in Chapter 9 when
you were creating alert boxes and needed line breaks. in Chapter 11, you will look at some
regular expressions where metacharacters can be use with other patterns.

Figure 10-7. Run a JavaScript to make the text multi-line

http://dx.doi.org/10.1007/978-1-4842-2893-7_9
http://dx.doi.org/10.1007/978-1-4842-2893-7_11

Chapter 10 ■ Various types of formatting with JaVasCript

180

Multi-Line Text
Buttons aren’t the only fields that require multiple lines. Text fields that require a lot of
text such as comments can be made multi-line as well. If you've reviewed your form
basics you'll know that you can make a text field multi-line simply by selecting the multi-
line check box. Refer here to Figure 10-8 to see an example of this.

When creating a text comments field, a plus symbol appears at the end of the field
once it’s filled with type. Refer to Figure 10-8.

With comments, if you want to read them on your computer, you might check the
“Scroll long text” box.

While this makes it easier to read on the computer, when you go to print you may not
see all of the text that was in the box.

Unfortunately, Acrobat does not have expandable boxes. This is a problem if your
form requires that a client write a lengthy statement and you only have a small amount of
room at the end of the page.

Here is a workaround. Create a second page and allow the text to flow into a second
comment text field.

Figure 10-8. In the Options tab, the Multi-line box is checked so you get a scroll box

Chapter 10 ■ Various types of formatting with JaVasCript

181

Rather than using the Actions tab this time, let’s add a custom format in the Format
tab. Refer here to Figure 10-9.

On the first field, Comments1, put the following code:
Custom Format Script

event.target.textColor = ["RGB",0,0,1];

I did not have to write this line, but I wanted to show how you can adjust the color of text,
as you saw in the stroke example earlier. I want this textColor to be different than the other
fields. I could have just as easily set it over in the Appearance tab. Refer here to Figure 10-10.

Figure 10-9. The Custom Keystroke Script settings applied

Chapter 10 ■ Various types of formatting with JaVasCript

182

However, later in Chapter 11, you will see a more complex example where this is not
always what you want to do; there, formatting color with JavaScript is a better option.

The Custom Keystroke Script

if (event.fieldFull || event.willCommit)
 this.getField("Comments2").setFocus();

This code allows the user to type. When the script senses that the box is full, it moves
onto the next box named Comments2.

If you need a third box for some reason, you can add the following lines in the
Comments2 box:

//Second to 3rd box if required
var t2=this.getField("Comments2");
if (event.fieldFull)
{
 getField("Comments3").setFocus();
}

The final field, Comments3, does not require any JavaScript and the Format tab can
be set to None. Refer here to Figure 10-11.

Figure 10-11. In the Format tab, the category is set to None

Figure 10-10. The Apperance tab showing the set font size, text color, and font

http://dx.doi.org/10.1007/978-1-4842-2893-7_11

Chapter 10 ■ Various types of formatting with JaVasCript

183

This example is a good workaround. One note of caution: Only use this flow method
for typing directly into the field. I found that pasting text in does not always flow into the
second and subsequent boxes.

Complex Formatting Using Check Boxes and Text
Fields
In Figure 10-12, you can see how check boxes can be used for addition and subtraction
ratings. Like with radio buttons, you don’t need JavaScript to do this. See the Survey End
Part 2b PDF file.

All you need to do is give the check boxes a negative or positive value in the Options
tab. Refer here to Figure 10-13.

Figure 10-12. A survey where the font style and color of the box changes depending upon
the rating

Chapter 10 ■ Various types of formatting with JaVasCript

184

In the Calculate tab of text field Final Result_4, you can use the value of sum (+) to
add them all up. Refer here to Figure 10-14.

Figure 10-14. Set the value to sum (+) in the Calculate tab in the Text Field Properties window

Figure 10-13. Check box properties in the Options tab set to positive and negative export values

Chapter 10 ■ Various types of formatting with JaVasCript

185

However, sometimes you may want to alert yourself to the fact that the rating is
becoming negative.

You can format your appearance of the box and text once in the Appearance tab
without JavaScript. Unfortunately, if the number changes from positive to negative, its
appearance will not change without adding a conditional script into the Validate tab
section. Refer here to Figure 10-15.

Here is the code:

//get negative number
if (event.value > 0){
 //event.value = event.value*-1;
 //for text color.black
 event.target.textColor =["RGB",0,0,0];
 // textFont or fontFamily
 event.target.textFont =font.Times;
 //Size
 event.target.textSize = 11;

 //for field color.none
 event.target.strokeColor = ["T"];
 event.target.fillColor = color.transparent;
 //left=0, centered=1, right=2
 event.target.alignment ="left";
}

Figure 10-15. The Validate tab with a custom validation script

Chapter 10 ■ Various types of formatting with JaVasCript

186

else{
 event.target.textColor = ["RGB",1,0,0];
 // textFont or fontFamily
 event.target.textFont =font.Helv;
 //Size
 event.target.textSize = 14;
 //for field color.red
 event.target.strokeColor = ["RGB",1,0,0];
 //fill of field
 event.target.fillColor = color.yellow;
 // Borders 0=none, 1=thin, 2=medium, 3 = thick
 event.target.lineWidth =2;
 // Border Style border.s= solid, border.b= beveled, border.d = dashed,

border.i = inset, border.u = underline
 event.target.borderStyle = border.d;
 //left=0, centered=1, right=2
 event.target.alignment ="center";
}

While this might seem very complex at first glance, in reality it is not. You are merely
changing your formatting as the number changes.

Here is a simplified breakdown:

if (event.value > 0){
 // Change my formatting
}
else {
 //Change my formatting to something else
}

When the number is greater than (>) 0, please change the format of the fonts, color, and
field to something defined. When it is less than (<) 0, change it to something else defined.

The formats affected are
Text color or textColor: This effects the color of the text. You could say color.black

or ["RGB",0,0,0];.

event.target.textColor = ["RGB",0,0,0];
event.target.textColor = ["RGB",1,0,0];
//this is a red color

Text font or textFont:

event.target.textFont =font.Times;
event.target.textFont =font.Helv;

Chapter 10 ■ Various types of formatting with JaVasCript

187

 ■ Note for bold, italic, or bold italic font styles:

event.target.textFont=font.TimesBI; or font.HelvBI;

event.target.textFont=font.TimesI; or font.HelvI;

event.target.textFont=font.TimesB; or font.HelvB;

Text size or textSize: To change the size of the text

event.target.textSize = 11;
event.target.textSize = 14;

Stroke color or strokeColor: The stroke around the field

event.target.strokeColor = ["T"]; // transparent
event.target.strokeColor = ["RGB",1,0,0]; // red

Fill color or fillColor: The fill of the field

event.target.fillColor = color.transparent;
event.target.fillColor = color.yellow;

Border width or lineWidth: The width of the field

// Borders 0=none, 1=thin, 2=medium, 3 = thick
event.target.lineWidth =2;

Border style or borderStyle: The style of the border field

// Border Style border.s= solid, border.b= beveled, border.d = dashed,
border.i = inset, border.u = underline
event.target.borderStyle = border.d;

Text alignment or the alignment within the field

//left=0, centered=1, right=2
event.target.alignment ="left";
event.target.alignment ="center";

You don’t have to use all of these. However, with if/else conditionals you need to
make sure you have in most cases an on or off state (when “if” formats like this, then
“else” formats like that).

Some other formatting you can use with some PDF tools, but not form fields, are the
following:

Chapter 10 ■ Various types of formatting with JaVasCript

188

Font family or fontFamily: Used for an array (many fonts listed) when you are trying
to make sure that the user font will display similar on all computers.

Font style or fontStyle: There are two styles: normal or italic.

event.target.fontStyle = "italic";

Font stretch or fontStretch: There are several styles to choose from: normal (default),
ultra-condensed, extra-condensed, condensed, semi-condensed, semi-expanded,
expanded, extra-expanded, ultra-expanded.

event.target.fontStretch= "expanded";

Font weight or fontWeight: This takes over for bold fonts. Normal is anything under
700 and bold is anything over 700. The options are 100, 200, 300, 400, 500, 600, 700, 800, 900.

event.target.fontWeight= 400;

strikethrough: Draws a line through the words. It can either be true or false.

event.target.strikethrough=true;
event.target.strikethrough=false;

subscript: The text is subscripted, reduced point size, and lower baseline.

event.target.subscript=true;
event.target.subscript=false;

superscript: The text is superscripted, lowered point size, and raised baseline.

event.target.superscript=true;
event.target.superscript=false;

underline: The text is underlined.

event.target.underline=true;
event.target.underline=false;

rotation: This is used to rotate the field. Not used that often. Make sure that you
test it in Reader first before you try this with a client, as it might have unexpected results.
Numbers you might use are 0, 45, 90, 180, or 270 depending on the rotation.

event.target.rotation=0;
event.target.rotation=90;

Chapter 10 ■ Various types of formatting with JaVasCript

189

Silent Printing
Refer to Figure 10-16 on how to print all pages in a document with a button.

One final feature about this form is silent printing. In most cases, when you want to
print a document in Acrobat, you just go to the menu and Choose File ➤ Print. As seen in
Chapter 2, you can do this with a button and the Actions tab. However, this action prints
the whole document, which may not be what you want to do. Maybe you want to print out
just the form page(s). Refer here to Figure 10-17.

Figure 10-16. The “Execute a menu item” action in the Actions tab. File ➤ Print to print
the document.

http://dx.doi.org/10.1007/978-1-4842-2893-7_2

Chapter 10 ■ Various types of formatting with JaVasCript

190

Here is the code you can use to run an action in the Actions tab of the button:

// Print current page silently
this.print(false, this.pageNum, this.pageNum);

When you add the code to a button, only the page that this button is on will print.
If the user gets the message shown in Figure 10-18, they just press the Yes button and

continue.

Figure 10-17. Run a JavaScript to print specific pages

Figure 10-18. Acrobat Alert message appears regarding printing

When you need to print this form page and the ones below it, change the code to this:

// Print current page silently and the range below it
this.print(false, this.pageNum, this.pageNum+1);

If there are more pages in the range, this.pageNum+1 becomes this.pageNum+2 and
so on.

Chapter 10 ■ Various types of formatting with JaVasCript

191

Once again, this is like an array:

this.pageNum (0) = page 1
this.pageNum+1 = page 2
this.pageNum+2 = page 3

and so on.

Final Thoughts
As you can see, there are many useful ways you can customize forms with JavaScript to
suit your needs.

•	 Custom text

•	 Fields

•	 Buttons

•	 Printing

A final note on formatting with textFont:
An alternate way of writing the line

event.target.textFont=font.Helv;

is to put the actual name in quote marks, like

event.target.textFont="Helvetica";

Here, the style is added with a dash:

event.target.textFont="Helvetica-Bold";

Another name for italic:

event.target.textFont="Helvetica-Oblique";

Two styles are often fused together:

event.target.textFont="Helvetica-BoldOblique";

A better method for uncommon names:

event.target.textFont="MinionPro-Regular";

Chapter 10 ■ Various types of formatting with JaVasCript

192

Access to less traditional styles:

event.target.textFont="Arial-Black"; - event.target.textFont="ArialNarrow";

Not all styles use the dash. Refer to your computer’s control panel area for the correct
font names. For example: MinionPro-Italic is written as MinionPro-It. When you enter an
incorrect name, you will not get the font or font style you require. Also, be aware that your
client’s computer may not have all specialized fonts so stick to safe names like Times,
Courier, Arial, or Helvetica to avoid text field font issues.

Summary
As you saw in this chapter, there are many options you can use to format form fields and
non-form items. Sometimes custom formatting is used and other times the Validation tab
is a better option. You can add JavaScript globally to affect many fields or to the Actions
tab to affect just one. I recommend spending some time reviewing this chapter before
moving on to Part 3. Add some of this JavaScript to one of you own forms.

For most of Part 2, you have focused on adding JavaScript to text fields and buttons.
However, as you will see in Part 3, PDF forms can be complex once you start adding
JavaScript to radio buttons, check boxes, dropdown menus, and list boxes.

PART 3

Working with More
Complex Forms

195© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_11

CHAPTER 11

Validation with Text Boxes,
Alerts, and Radio Buttons

The JavaScript becomes more complex as multiple form fields work in tandem.
As you’ve seen in past examples, to avoid errors you need to create warnings or alerts

so clients will enter the correct information.
Text boxes are not the only field item that alerts or choices can be applied to. You can

also use radio buttons.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 11 files from www.apress.com/9781484228920. The file with the label “Start” is
the file without the code and the file with the label “End” is the final result. You will also
find folders with original MS Word and PDF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF, refer to the “Forms Review” section in
Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Money Transfer Example
The money transfer example is a wonderful way to see how validation can be applied to
fields that do not have the Validate tab in their Properties dialog box. Refer to Figure 11-1.

http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

196

Sometimes you may want to transfer an amount of money into another type of
account. See the TMC Account Transfer End PDF file. Refer to Figures 11-1, 11-2, and 11-3.

The choice in Figure 11-2 gives you no warning, because you are transferring money
from Checking to Savings. However, if you want to transfer from Savings to Savings, you
would get a warning; see Figure 11-3.

This type of transfer gives you a warning.
You would also get a warning if you transferred from Checking to Checking and

Money Market Pro to Money Market Pro.
Figure 11-4 shows how the buttons are set up in the Form Edit mode.

Figure 11-1. In this money transfer example you can choose to transfer your money to
another account

Figure 11-2. Checking to Savings or Money Market Pro is a possible transfer

Figure 11-3. Savings to Savings account transfer with warning

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

197

As mentioned earlier, radio buttons must always be grouped to work together. They
can have different values/choices but they need to be part of the same group. Refer here
to Figure 11-5.

Here you can see the setup for the from.group radio buttons. In this case, I have
selected just the one with the choice of checking so that you can see its properties. If you
choose savings or mm, the only difference would be the choice in the Options tab. Refer
here to Figure 11-6.

Figure 11-4. Radio button layout: the left is the From group and the right is the To group

Figure 11-5. The Form tool shows the grouping of the radio buttons

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

198

Figure 11-6. Settings for the radio buttons in the from.group in the General, Options, and
Actions tabs. The only difference is the radio button choice.

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

199

On the left-hand side, the from.group radio buttons contain no actions.
However, the to.group radio buttons do contain an action because they are the

second choice that may or may not trigger a warning based on whether its choice
matches the first choice. Refer here to Figure 11-7.

//to.group radio button 1 checking

var rfrom = this.getField("from.group");
var rtrans = event.target;
var msg = "You cannot transfer funds from Checking to Checking";

Figure 11-7. Settings for the radio buttons in the to.group Actions tab. The code is for a
transfer from Checking to Checking account.

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

200

if (rfrom.value == "checking"){
 app.alert(msg);
 rfrom.value = "";
 rtrans.value = "";
}

Here you have two variables: rfrom and rtrans. The first variable, var rfrom,
represents the whole radio button group from.group. The second variable, var rtrans,
represents the current field, which is part of to.group and has a choice of checking. An
alert message is written and appears if the two choices do match exactly:

var msg = "You cannot transfer funds from Checking to Checking";

Once the alert's OK button is pressed, the if statement also resets the two variables.

rfrom.value = "";
rtrans.value = "";

They become blank as if never checked.
Similar code can be written for the savings and money market pro radio buttons:
Savings Code

//to.group radio button 2 savings
var rfrom = this.getField("from.group");
var rtrans = event.target;
var msg = "You cannot transfer funds from Savings to Savings";

if (rfrom.value == "savings"){
 app.alert(msg);
 rfrom.value = "";
 rtrans.value = "";
}

Money Market Pro Code

//to.group radio button 3 mm
var rfrom = this.getField("from.group");
var rtrans = event.target;
var msg = "You cannot transfer funds from Money Market Pro to Money Market
Pro";

if (rfrom.value == "mm"){
 app.alert(msg);
 rfrom.value = "";
 rtrans.value = "";
}

As you can see, when two fields' choices match, an alert can be triggered.

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

201

Changing the Shipping Price Using Radio Buttons
As you’ve seen in past projects, check boxes and radio buttons can be used to adjust
numbers in text boxes. Let’s look at another example of how this can be done with prices.
See the Invoice Form Shipping Change End PDF file. Refer here to Figure 11-8.

These numbers will vary depending on what you input. If you choose a different
company like FedEx, the shipping charge changes again.

How does this work?
Most of this form is set up like most invoice forms, which use a combination of Value

and simplified field notation (SFN) and very little JavaScript. However, this example
contains a new field called discount and the radio buttons to the lower left.

The field called discount is just formatted as a number and has no action applied
to it. However, you are going to call upon it once you start using the radio buttons.
The buttons are as one group, each with their own choices. Refer here to Figure 11-9.

Figure 11-8. Invoice form for adjusting the shipping price using radio buttons

Figure 11-9. Radio button properties in the Options tab

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

202

The panel on the left of the Prepare Form tool shows how the buttons are grouped.
Then you add a JavaScript to each radio button. Refer here to Figure 11-10.

This is similar code for each radio button:

//Shipping Price Charge
var oShip = this.getField("Shipping");
var oSub = this.getField("Total");
var oDiscount = this.getField("discount");

if(oSub.value <200)
 var oRate = (oSub.value - oDiscount.value)*.25;
else
 var oRate =0;
 oShip.value = oRate;

The code says that if the subtotal before or after the discount is under or less than
$200, then add a shipping (that is the Total Price *.25) to get the shipping price. However,
if the price is over $200 even with the discount (else statement), the shipping is 0 dollars,
or free.

Figure 11-10. The Radio Button Properties screen in the Actions tab, with the action of
“Run a JavaScript”

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

203

As you can see, you can apply this function to other couriers like this:

var oShip = this.getField("Shipping");
var oSub = this.getField("Total");
var oDiscount = this.getField("discount");

if(oSub.value <200)
 var oRate = (oSub.value - oDiscount.value)*.17;
else
 var oRate =0;
 oShip.value = oRate;

You could change the price from

var oRate = (oSub.value - oDiscount.value)*.17;

to

(oSub.value - oDiscount.value)*.13;

Or you could change the dollar limit from

if (oSub.value <200)

to

if (oSub.value <300)

depending on the preferences of the courier company.

 ■ Note You could have written the conditional part of the code with the added brackets ({}).

if(oSub.value <200){
 var oRate = (oSub.value - oDiscount.value)*.17;
}
else{
 var oRate =0;
 oShip.value = oRate;
}

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

204

 ■ Note In this case, it was a very small and uncomplicated conditional script and I
left some brackets sets out. JavaScript will sometimes let you do that to make code less
complicated. however, in other cases, if you leave them out, you may get an error warning
or the script will not function correctly. If you are unsure or want to keep the code accurate,
I recommend leaving the brackets in complex examples in order to avoid confusion.

One final item you add to each radio button is the ability to reset/refresh the
shipping when you click the radio button again rather than having click another radio
button (On Mouse Down ➤ Reset form). Check off only for the Shipping field. Refer here
to Figure 11-11.

Text Field Validation with Regular Expressions
Another feature to try in this form (see the Invoice Form Shipping Change End r2 PDF file)
is a telephone validation script. Refer here to Figure 11-12.

Figure 11-11. Radio button settings in the Actions tab to refresh the shipping

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

205

If the client does not type in the text field the correct way, an alert will happen. The
correct format is displayed in Figure 11-13.

Figure 11-12. Telephone text field validation in the Validate tab and the alert that is
produced when the input is incorrect

Figure 11-13. Top: Incorrectly entered information appears red. Bottom: Correctly entered
information in the Telephone text field.

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

206

After the OK button in the alert is clicked, the text in the text field turns red and will
not change back to black until the user types in the correct format.

Telephone Validation
Here is the JavaScript:

var rgexTele = /^[(]{0,1}[0-9]{3}[)]{0,1}[-\s\.]{0,1}[0-9]{3}[-\s\.]{0,1}
[0-9]{4}$/;
if(rgexTele.test(event.value)){
 event.target.textColor = color.black; //Change text to black
{
else{
 event.target.textColor = ["RGB",1,0,0]; //Change text to red
 app.alert("Invalid Telephone Number");
}

In order to accomplish this, you use a form of JavaScript called a regular expression.
You saw a very simple example of this when you created your multi-line button using \n,
the new line, and you created a metacharacter in Chapter 10. When you combine more
than one metacharacter you create a pattern and this combination of characters creates a
regular expression. This time you are going to use a more complex regular expression.

/^[(]{0,1}[0-9]{3}[)]{0,1}[-\s\.]{0,1}[0-9]{3}[-\s\.]{0,1}[0-9]{4}$/

This portion of the expression is saying that the code must be

•	 Three digits ranging within parenthesis from 0 to 9 in the first
section that can be separated by either a dash, space, or dot

•	 Three digits ranging from 0 to 9 in the second section that can be
separated by either a dash, space, or dot

•	 Four digits ranging from 0 to 9 in the last section

The following examples are acceptable:

•	 (123) 456-7890

•	 123-456-7890

•	 123.456.7890

•	 123 456 7890

•	 1234567890

Anything more or less than 10 digits is unacceptable.
You could have used the format Special Phone Number or Arbitrary Mask if you did

not want to write this. Refer to Figure 11-14.

http://dx.doi.org/10.1007/978-1-4842-2893-7_10

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

207

However, doing so would not have given you the custom number and color
formatting, used to show the difference between correct and incorrect. So, leave format as
None and enter the following code into the Validate tab:

if(rgexTele.test(event.value)){
 event.target.textColor = color.black;
//Change text to black
}
else{
event.target.textColor = ["RGB",1,0,0]; //Change text to red
app.alert("Invalid Telephone Number"); }

If the text matches the regular expression format, leave it as black. If not (else), send
out a warning and change the text to red until it is corrected and matches the regular
expression.

Figure 11-14. The Special Phone Number format can only format as one option

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

208

There are a lot of good regular expressions that can be used and I recommend
exploring them.

 ■ Note according to adobe documentation, the format of Special arbitrary Mask will
allow you to use some basic regular expressions such as

A: accepts only letters (a-Z, a-z)

X: accepts spaces and printable characters, including all characters available on a standard
keyboard and anSI characters in the ranges of 32-126 and 128-255

O: letter accepts alphanumeric characters (a-Z, a-z, and 0-9)

9: accepts only numeric characters (0-9)

For example, a mask setting AAA- –q#999 accepts the input of BRT- -q#123 and OOO@XXX
accepts the input of v12@2up. however, as you’ll see, regular expressions with JavaScript
offer a wider range of possibilities.

See the Text Field Validation End PDF file. Refer here to Figure 11-15.

Name Validation
Use this script if you want to have a first and last name in the same field. Refer here to
Figure 11-16.

Field Validations with Regular Expressions

What is your First and Last Name?
Example: A6BF-479X-2139

Date
Date #2
Name
Serial #
Address
Email
URL/Web
Telephone
Telephone #2

Reset

Figure 11-15. Text field examples to which you can add regular expressions

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

209

// Custom Validation of Name
var re = /^[A-Z][a-z]+ [A-Z][a-z]+$/
if(event.value !=""){
 if (re.test(event.value)== false){
 app.alert("That does not appear to be a valid name. I need a first and

last name.");
 event.rc = false;
 }
}

 ■ Note The following are basic examples of regular expression metacharacters:

[abc]: Find any character between the brackets

[A-Z]: any character from uppercase a to uppercase Z

[a-z]: any character from lowercase a to lowercase z

[A-z]: any character from uppercase a to lowercase z

[0-9]: Find any digit between the brackets

.: Find a single character, except newline or line terminator

Figure 11-16. Running a custom validation script

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

210

\d: Find a digit

\n: Find a newline character

\s: Find a whitespace character

\w: Find a word character

For more detailed information on regular expressions, visit www.w3schools.com/jsref/
jsref_obj_regexp.asp.

In this field, the name needs a first and last name that contains uppercase and
lowercase letters, like John Smith. If the user types in JS or just J, they will get the error
alert “That does not appear to be a valid name. I need a first and last name.” When
they click the OK button on the error alert, the field returns to blank (event.rc = false;)
and they must try again and no further information is processed.

Account Number Validation
Use this script if you want to create a field where a person must enter a special account
number or serial number. Refer to Figures 11-15 and 11-16 for where to enter the code.

//account number
//A6BF-479X-2139
var re = /^[A-Z]\d[A-Z]{2}-\d{3}[A-Z]-\d{4}$/
//prevent alert if field is blank
if(event.value !=""){
 if (re.test(event.value)== false){
 app.alert("I’m sorry. That is not a valid account number.");
 event.rc = false;
 }
}

In this field, the code must be uppercase letter, number digit, two uppercase letters,
then a dash, three number digits, uppercase letter, then another dash, four number digits.
This must be correct or an error alert will happen and the field will be returned to blank.

Email and URL Validation
Use the following script if you want to create a field where a person must enter an email
or a URL. Refer to Figures 11-15 and 11-16 for where to enter the code.

 //email
var re = /^\w+([\.-]?\w+)*@\w+([\.-]?\w+)*(\.\w{2,3})+$/;
//prevent alert if field is blank
if(event.value !=""){

http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://www.w3schools.com/jsref/jsref_obj_regexp.asp

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

211

 if (re.test(event.value)== false){
 app.alert("I’m sorry. That is not a valid email address.");
 event.rc = false;
 }
}

As you can see, the code is like the others except that this time you need to use the
following format to check for the email names and the @ symbol. So jennifer@email.com
would be correct, but excluding the @ symbol would trigger an alert. If you were creating
a validation for a URL website, you would need to adjust the code to perhaps something
like this:

var re = /^(http:\/\/www\.|https:\/\/www\.|http:\/\/|https:\/\/)[a-z0-9]+
([\-\.]{1}[a-z0-9]+)*\.[a-z]{2,5}(:[0-9]{1,5})?(\/.*)?$/;

And then you could add an alert to reflect if there was an error (example: http://
www.mysite.com).

app.alert("I’m sorry. That is not a valid URL address.");

Another Phone and Date Example with Two Variables
Use this script if you want to create a field where a person must enter a phone number or
date with two options. Refer to Figures 11-15 and 11-16 for where to enter the code. For
the alert warning message, see Figure 11-17.

//phone validation alert
var re7Digits = /^(\d{3})-(\d{4})$/;
var re10Digits = /^(\d{3})-(\d{3})-(\d{4})$/;
//prevent alert if field is blank
if(event.value !=""){
 if (re7Digits.test(event.value)== false && re10Digits.test(event.

value)== false){

Figure 11-17. The alert warning when a telephone number is added incorrectly

http://www.mysite.com/
http://www.mysite.com/

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

212

app.alert("I’m sorry. That is not a valid 7 or 10 digit phone number. ");
 event.rc = false;
 }
}

This final example deals with the option to enter a 7-digit or 10-digit code. While not
as complex as the first phone example, it does show how to have two formatting options
inside one validation. By using the && you are asking for two conditions to be false or
true. If true, no alert warning will happen; if false, the alert will happen and the fields will
be set back to blank.

You could also use this example with a Date text field, if you set the variables to
something like this:

var re6Date = /^(\d{1,2})\/(\d{1,2})\/(\d{2})$/;
var re8Date = /^(\d{1,2})\/(\d{1,2})\/(\d{4})$/;

Make a few adjustments to the variable names in the conditional statement so
they match. You would have two options (12/31/05 or 12/31/2005) for date formats
for a person to enter. However, be aware that if this is something that is going into the
database, it might cause errors, so check with the people who oversee the database before
you set an alternate date entry.

 ■ Note With the update of acrobat DC you can alternately set your formatting of the date
field to Date to access the popup menu. Refer to Chapter 1 if you need to see a screen shot.
however, when you have two alternate date options, you must set the Format tab to none and
place the code in the Validate tab. Doing this does not give you access to the popup menu.

Final Thoughts
As you can see, errors in typing and selection can be avoided if you have the correct
warnings and validations in place. You can assist yourself and your clients when you take
the guesswork out of a form.

If you are planning to work with the gray default text method from Chapter 9 and
combine it with the regular expression examples from this chapter, it can easily be done
by adding this custom format under the Format tab. (See the Invoice Form Shipping
Change End r2 PDF and Field Validations End files). Refer here to Figure 11-18.

http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_9

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

213

if (!event.value){ event.value = "What is your First and Last Name?";
 event.target.textColor = color.gray;
}else{
 event.target.textColor = color.black;
}

Remember to use the validation code for each field from earlier in this chapter if it is
not already applied. Refer here to Figure 11-19.

Figure 11-19. Run the custom validation script

Figure 11-18. A custom format script can be added if you want default text

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

214

However, for the telephone validation in this file, a minor adjustment needs to be
made to the custom format script to work with three colors rather than two and still get an
alert message. Refer here to Figure 11-20.

The code:

var rgexTele = /^[(]{0,1}[0-9]{3}[)]{0,1}[-\s\.]{0,1}[0-9]{3}[-\s\.]{0,1}
[0-9]{4}$/;
if (!event.value){
 event.value = "Example: 999-999-9999";
 event.target.textColor = color.gray;
}
else if(rgexTele.test(event.value)){
 event.target.textColor = color.black;
}
else{
 event.target.textColor = ["RGB",1,0,0]; //Change text to red
}

 ■ Note Be cautious using this method with the phone number with two variables
because it could cause an issue and may not display correctly. also, don’t use default text
when a field is formatted to Date, to avoid errors and warnings in acrobat; when a field is
formatted to Date, it cannot accept any other text.

Figure 11-20. Changing the custom format script

ChaPTER 11 ■ ValIDaTIon WITh TExT BoxES, alERTS, anD RaDIo BuTTonS

215

Summary
In this chapter, you learned several ways to add validation to radio buttons and text fields.
You also saw a variety of ways to use the validation in combination with formatting to create
fields that will alert clients when they chose or typed incorrect information into a field.

Besides warning clients, radio buttons can be used to adjust shipping rates when
used in an invoice or order form. They can also be used to refresh or reset a value so your
client sees the correct information.

Finally, you also explored a variety of regular expressions which can be used in the
Text Field Properties Format and Validation tabs rather than just relying on the formatting
that comes with Acrobat, such as Special.

In the next chapter, you will be working with dropdown menus. You’ll see how they
can interact with text fields and other dropdown menus.

217© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_12

CHAPTER 12

Working with Dropdown
Menus

So far you have looked at ways to improve text boxes, buttons, radio buttons, and check
boxes with JavaScript. However, there are other types of fields that can be dynamic
as well. In this chapter, you are going to take a look at incorporating JavaScript with
dropdown menus so that information will be accurately entered or calculated in order to
avoid clients entering incorrect information.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 12 files from www.apress.com/9781484228920. The file with the label “Start” is
the file without the code and the file with the label “End” is the final result. You will also
find folders with original MS Word and PDF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF, refer to the “Forms Review” section in
Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Current Skills Request Form
In a small company, an employer may want to ask their employees to submit a form to HR
that informs them of the employee’s current skill set. In this example, an employee selects
the name of their department from the dropdown menu, and their name and some of
their information is automatically entered in. If their department is not on the list, they
can still type that information in themselves. See the Request Form End PDF. Refer here
to Figure 12-1.

http://dx.doi.org/10.1007/978-1-4842-2893-7_12
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

218

This automatic action has two parts: a document JavaScript and a script attached to
the dropdown menu. Refer here to Figures 12-2 and 12-3.

Figure 12-1. The Current Skills Request Form project

Figure 12-2. Enter the JavaScript tool and choose the Document JavaScripts tool

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

219

The Document JavaScript I’ve created is called SetSelectValues:

//Global Document SetSelectValues Script

// Place all prepopulation data into a single data structure
var DeptInfo = { Accounting:{ contact: "Kathy Jones",
 title: "Chief Officer",
 email: "accounting@tmc.com",
 deptnum: "tmc1434",
 deptphone: "999-999-9922"},
 Engineering:{ contact: "Frank R. Smith",
 title: "Senior Specialist",
 email: "engineering@tmc.com",
 deptnum: "tmc1435",
 deptphone: "999-999-9921" },
 "Graphic Department":{ contact: "Nancy Smith",
 title: "Artwork Planner",
 email: "graphics@tmc.com",
 deptnum: "tmc1436",
 deptphone: "999-999-9923" },

Figure 12-3. Inside the document JavaScripts dialog box with the script SetSelectValues
entered with the Add button

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

220

 ITSupport:{ contact: "Troy Carson",
 title: "Official Coder",
 email: "it@tmc.com",
 deptnum: "tmc1437",
 deptphone: "999-999-9927" },
 Marketing:{ contact: "Janice Walker",
 title: "Marketing Advisor ",
 email: "marketing@tmc.com",
 deptnum: "tmc1438",
 deptphone: "999-999-9925" },
 "Mine Site Safety":{ contact: "Rick James",
 title: "Safety Officer",
 email: "mss@tmc.com",
 deptnum: "tmc1439",
 deptphone: "999-999-9924"},
 };
function SetSelectValues(cDeptName)
{
 this.getField("DeptContact").value = DeptInfo[cDeptName].contact;
 this.getField("DeptTitle").value = DeptInfo[cDeptName].title;
 this.getField("DeptEmail").value = DeptInfo[cDeptName].email;
 this.getField("DeptNumber").value = DeptInfo[cDeptName].deptnum;
 this.getField("DeptPhone").value = DeptInfo[cDeptName].deptphone;
}

SetSelectValues is a function that is calling upon an array variable called
DeptInfo. Remember that an array is a complex variable that can hold multiple pieces of
information. In the array above there are six departments:

•	 Accounting

•	 Engineering

•	 Graphic Department

•	 Marketing

•	 IT Support

•	 Mine Site Safety

Each department has five text fields that must be filled in:

•	 Contact

•	 Title

•	 Email

•	 Department Number

•	 Department Phone

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

221

In a sense, this has become an array within an array, or a nested array.

 ■ Note This type of array is, as mentioned in Chapter 9, called an associative array.
a better term is an associative syntax, in the case of JavaScript when referring to these
object literals with in the square brackets []. Rather than using indexes or numbers 0-3
to call upon a variable, it uses words to call up information or object literals/variables. It
is also nested in that it can hold another object literal within an object literal. Later in this
chapter you will see another example that is also nested.

The last part the function SetSelectValues must now draw in each of these parts
from the associative syntax so that when a selection from the dropdown menu is chosen
the correct information is filtered in the correct order.

Notice how each field is calling for an item called cDeptName; however, you don’t see
it anywhere in the global function as a variable or part of the associative syntax. What is
this? cDeptName refers to the dropdown field DepartmentNames. Refer to Figure 12-4.

Figure 12-4. The dropdown and text fields in Prepare Form Tool view

Check “Allow user to enter custom text” in the Dropdown Options tab. This way if a
department is not on the list, the user can enter the information themselves. Also check
“Commit selected values immediately” to allow the text to fill the other fields as soon as
the dropdown selection is released. It is optional to check the “Check spelling” box. Refer
to Figure 12-5.

http://dx.doi.org/10.1007/978-1-4842-2893-7_9

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

222

Figure 12-6. The Format tab with a custom setting and a custom keystroke script

Figure 12-5. The Dropdown Properties Options tab that is referenced in the document
JavaScript

Now go to the Format tab. Refer to Figure 12-6.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

223

Enter the following JavaScript into the Format tab’s custom keystroke script section:

// Custom Format Script
if(event.willCommit){
 if(event.value == " "){
 this.resetForm(["DeptContact","DeptTitle","DeptEmail","DeptNumber",

"DeptPhone"]);
}
 else{
 SetSelectValues(event.value);
}
}

Now you have created this field and applied JavaScript to the custom keystroke script
area (See Figure 12-6). The script “will commit” because this was also checked in the
Options tab (See Figure 12-5) and do one of two things:

•	 If you set the dropdown menu to blank, all the text fields will
become blank or “ ” and it will reset these form fields.

•	 Otherwise (else) it will make a connection with the function
SetSelectValue found within the document JavaScript so that the
information or values will flow through to the text fields.

Without this trigger to the function, the dropdown field would not be able to place
any data in the dropdown list. Note that if the selection is set back to blank information
in the dropdown menu, then the fields will reset themselves immediately because it is
part of the willCommit event. And as mentioned earlier, a person who could not find their
information in the list could enter their own data in the blank area.

 ■ Note no JavaScript code was applied to the text fields.

Parts Order Form
Sometimes a client has to search through multiple items and then through multiple
subitems in order to find the exact information or item they are looking for. For instance,
in a job setting, there may be more than one type of screw, in retail more than one size of
T-shirt or more than one color. In just about any job, you can find items that have several
variations, and those variations might have different prices depending upon their size
and material.

The parts order form is a simplified example of this scenario. See the Parts Order
Form End PDF. Refer here to Figure 12-7.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

224

Once the user chooses a name, they can choose a description. Once the description
is chosen, a price is then set for the part. Refer here to Figure 12-9.

This time the form contains two connecting dropdown menus: Name and
Description. Refer to Figure 12-8.

Figure 12-7. Dropdown menus in the parts order form project

Figure 12-8. The two connecting dropdown menus found in the current project

Figure 12-9. The Description dropdown menu changes the Price field

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

225

All the customer has to do is decide how many parts he wants to buy, and the order
form prices start to fill in. Refer here to Figure 12-10.

Let’s look at this in depth. Once again you will need to create some global document
JavaScript. Refer here to Figure 12-11.

Figure 12-10. When a client enters a quantity, this changes the total price

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

226

Figure 12-11. Document JavaScripts that will affect various fields in the project

As you can see, with the addition of another dropdown, more JavaScript is required.
The first thing you need to do is create your associative syntax/object literal array

and the function addItems. Each associative syntax oArray is separated with a comma.

// Global Document addItems
var oArray = {
 Drills: [["-","None"], ["Small",19.95], ["Medium",29.95],

["Large",39.95], ["Extra Large",44.95]],
 Lubricants: [["-","None"], ["Oil",69.95], ["Grease",49.95], ["Super

Smooth",79.95],["Averge",139.95]],
 Gears: [["-","None"], ["Small",149.95], ["Medium",159.95],

["Large",219.95], ["Very Large",339.95]],
 Mining:[["-","None"], ["Hard Hat",39.95], ["Pick",29.95], ["Axe",19.95],

["Shovel",49.95]]
};
function SetDescriptionEntries(){
if(event.willCommit){
 var cRowName = event.target.name.split(".").shift();
 var list = oArray[event.value];
 if((list != null) && (list.length > 0)){
 this.getField(cRowName + ".Description").setItems(list);
 }

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

227

 else{
 this.getField(cRowName + ".Description").clearItems();
 }
 this.getField(cRowName + ".Each").value = 0;
 }
 }

 ■ Note If for some reason on another page you need to add a separate set of dropdown
menus, you must create another document JavaScript like addItems2 and then change the
associative syntax/object’s name and the function’s name to avoid a clash.

In the previous single dropdown example, you had to take the data from the item in
the dropdown and copy it to other text fields. This time you have to copy the subitems
to another dropdown menu called description. Again, if no value is found in the name
dropdown, the description value remains blank and no choice is available. In this
example, for array (oArray), the associative syntax is divided into four item names:

•	 Drills

•	 Lubricants

•	 Gears

•	 Mining

Each part of the associative syntax name divides into another dropdown for a subitem
description and a text field that contains the price/each item. You will see shortly how
this function to separate the price is called upon.

Then you need to add SetEachValue in the document JavaScript:

function SetEachValue(){
 if(!event.willCommit){
 var cRowName = event.target.name.split(".").shift();
 var nSelection = 0;
 if(!isNaN(event.changeEx))
 nSelection = event.changeEx;
 this.getField(cRowName + ".Each").value = nSelection;
 }
}

The fields have like Row1.Item, Row2.item, and so on. Using this type of order or
schema allows the document JavaScript to easily call each item through the function.
Because this type of form is so complex, using ordered and meaningful names is crucial.

If the event will not commit, this refers to the exclamation point (!) override, then the
value is 0. This takes care of any missing numbers in the object array. If a non-number
(NaN) like a word was entered instead, the value will remain 0. Otherwise, the function
SetDescriptionEnteries will enter the value found in the associative syntax for price/
each item.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

228

This is the setting for the price of each item that was chosen from the description
dropdown menu. The description and price are split here into their respective fields
using the split method. You can see this because of the methods called .split()
and .shift(). The shift method removes the first item in the associative example
["Oil",69.95] and leaves only the price that will now go into the price of each item field.

There are other methods that you can use to add or remove elements or object
literals from the associative syntax. Here are a few explained for your reference:

•	 pop(): Removes the last element from the array and returns the
remaining elements. Example: ["Oil",69.95] = Oil

•	 push(): Adds a new element to the end of an array and gives a
new length count

•	 unshift(): Adds new elements to the beginning an array and
gives a new length count

•	 splice(): Adds/removes elements from an array anywhere

For more information on methods and what else they can do, visit these links:

•	 www.w3schools.com/js/js_array_methods.asp

•	 www.w3schools.com/jsref/jsref_split.asp

•	 www.w3schools.com/jsref/jsref_obj_array.asp

I created the function SetEachValue here in the Document JavaScript because I
will be using it multiple times and I want to be able to call on it as many times as I like
depending on how many dropdowns I have. Also, I do not have to rewrite this code for
each field, which could lead to errors.

The last function is used to calculate the item total (calculateRowTotal) of the row.
This is not the Subtotal or Final Total fields, which can only be found out when you have
finished adding up multiple items. Refer to the Parts Order Form End PDF.

// Global Document calculateRowTotal
function CalculateRowTotal()
{
 var cRowName = event.target.name.split(".").shift();
 event.value = this.getField(cRowName + ".Each").value * this.

getField(cRowName + ".Qty").value;
}

This function once again uses the shift method. However, only the price is
calculated against the quantity field so that the Item Row Total price is now calculated.

Like the SetEachValue() function, this will be used multiple times so you create it
the Document JavaScripts tool. Whenever you have a function that you think you will use
many times, it’s good to set it up in the Document JavaScripts tool.

Now you will take a look at the first row of your parts order form to see where it all
fits. You will skip the Label field since it is not part of the project.

www.w3schools.com/js/js_array_methods.asp
www.w3schools.com/jsref/jsref_split.asp
www.w3schools.com/jsref/jsref_obj_array.asp

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

229

The first dropdown, Row1.item, is set up like Figure 12-12 so that it can reference the
associative syntax/object called oArray. In the Options tab, you do not put anything in the
value Export Value; this needs to remain blank.

In the Format tab’s Custom field, you call upon the SetDescriptionEntries
function, which is found in the Document JavaScript addItems. This references the
associative syntax oArray and lets the next dropdown fields of Row1.Description and
Row1.each fill with information. Refer to Figure 12-13.

Figure 12-12. Dropdown properties in the Options tab in the first dropdown menu

Figure 12-13. The custom keystroke script in the first dropdown menu

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

230

// Format Custom Keystroke for Name
SetDescriptionEntries();

For all the other item dropdowns, you repeat these steps in the Option and Format
tabs. To see how you use this same function in the other dropdown fields, refer to
Figure 12-14.

The description dropdown Row1.Description is left blank like this and you do not
preset in its Options tab. JavaScript will do that work for you. Refer to Figure 12-15.

Figure 12-14. Dropdown fields requiring same options and format settings

Figure 12-15. Dropdown properties in the Options tab in the second dropdown menu

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

231

The SetEachValue function is now called upon in the Format tab’s Custom field to
get the value into the price of each field and can be added to the other description fields.
See Figure 12-17. Remember, if the price was left out of the associative syntax or was text,
the price will come in as 0 or $0.00. Refer to Figure 12-16.

Figure 12-17. Dropdown fields requiring same options and format settings

Figure 12-16. The custom keystroke script for the second dropdown menu

// Format Custom Keystroke for Description
SetEachValue();

This code is entered into each description drop-down menu. Refer to Figure 12-17.

The price of each field Row1.Each has no JavaScript in it. Its settings come from the
SetEachValue function in the previous dropdown menu. However, it has been formatted
to Number with a currency symbol. Refer to Figure 12-18.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

232

The same is true of the quantity column, Row1.Qty. It contains no JavaScript. It just
needs to be formatted to Number with no currency symbol and the decimal place set to 0.
This field will be referenced shortly. Refer to Figure 12-19.

Figure 12-18. The text field properties in the Format tab are set to Number

Figure 12-19. The text field properties in the Format tab are set to Number without a
currency symbol

The final area, Item Total (formatted to Number with currency symbol), now
multiplies the information from the Price of Each and Quantity fields. Again, the
calculation function was reference from the document JavaScript section and can be
applied to multiple fields. Refer to Figure 12-20.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

233

Figure 12-20. Text field properties in the Calculate tab’s custom calculation script

Figure 12-21. Final text fields that need to be calculated in the project

// Calculate Script Items
CalculateRowTotal();

Set the itemTotal fields to read-only in the General tab.
Now make sure that your fields, SubTotal, Discount, Tax, Shipping and Total, are all

formatted to Number with a currency symbol. SubTotal and Total should be set to read-only
in the General tab so that the client does not overwrite a number. Refer to Figure 12-21.

In past Invoice forms, you used Value or Simplified Field Notation. Here you might
be tempted to use these options to add up your subtotal and final total. Refer here to
Figure 12-22.

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

234

While the above examples do work, I found them to be a bit buggy and they did not
refresh well. We don’t want users of our form to get frustrated and confused as to why
their inputs are not working smoothly. In the end, what I discovered was that you need
to add or subtract everything with JavaScript and then the form will run smoothly. In the
Subtotal field, I placed the following script into the Calculate tab’s Custom Calculation
Script field. Refer to Figure 12-23.

//Subtotal Script
var a = this.getField("Row1.itemTotal");
var b = this.getField("Row2.itemTotal");
var c = this.getField("Row3.itemTotal");
var d = this.getField("Row4.itemTotal");
var f = this.getField("Row5.itemTotal");
event.value =a.value + b.value + c.value + d.value + f.value;

Figure 12-22. Some field calculations do not require JavaScript

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

235

Figure 12-23. Text field properties in the Calculate tab for the SubTotal field

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

236

Then for the Grand Total or Total Field, I used this script:

//Total Script
var g = this.getField("SubTotal");
var h = this.getField("Discount");
var j = this.getField("Tax");
var k = this.getField("Shipping");
event.value =g.value - h.value + j.value + k.value;

This worked the best for me for this example.

Figure 12-24. Text field properties in the Calculate tab for the Total field

As you can see, it is like an example you tried in earlier lessons such as Chapter 6.
Refer to Figure 12-24.

http://dx.doi.org/10.1007/978-1-4842-2893-7_6

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

237

Final Thoughts
When making a complex form with multiple dropdowns, it’s best to plan it out on paper
or a drawing program first and decide what you would like to do. You may need an
associative syntax with object literals or a global function, but write it all out first.

Once you’ve built the form, similar to what I have done, make sure that number
areas are formatted to Number correctly, and then add the JavaScript. Test the form or
maybe get others to test it. It’s important to work out all the bugs before your customers
use it. The focus here is to avoid client errors and frustration and to get the results you
want when working with fields in a form.

Load a Lengthy Single Dropdown or List Menu
While not as complex as the examples above, occasionally you may need to load only a
single dropdown menu with 30 or more items that don’t affect other fields or menus in
the form. See the Load Single Menu folder.

Having to enter this into a dropdown or list menu can be labor intensive: you must
select the Options tab, enter a name, enter a value, and then click the Add button for
each item. Also, you may want the same information in multiple menus that change
often (see the Time Sheet PDF example). To save time for lengthy single menus, I have
included extra files where I have put all my code for the menu into the global Document
JavaScript area. I call this function LoadOptions. You can view the code on the following
pages and will find it in the supplied text file as well. As always, make sure that your
fields have the same name as what is written in the JavaScript so that the connection will
work correctly. Refer to Figure 12-25.

Figure 12-25. The LoadOptions script

ChaPTER 12 ■ WoRkIng WITh DRoPDoWn MEnuS

238

The following code is added to the Document JavaScripts tool:

// define array of entries and export values for dropdown array
// define array of states and abbreviations
var aMinerals = new Array(["Select Mineral", ""],
 ["Diamond", "DI"],
 ["Emerald", "EM"],
 ["Garnet", "GA"],
 ["Opal", "OP"],
 ["Ruby", "RB"],
 ["Sapphire", "SP"]);
// function to load a combo/list box with an array of values
function LoadOptions(oField, aValues) {
 var bResult = false;
// load array of values into field object
 if(oField.type != "combobox" && oField.type != "listbox") {
 app.alert("Load Options function requires a combobox or listbox", 0, 0);
 bResult = false;
}
 else{
 oField.setItems(aValues); // set values
 bResult = true;
}
return bResult;
} // end LoadOptions
// load the data - comment out after updating when only doing array changes
LoadOptions(this.getField('Dropdown1'), aMinerals);
LoadOptions(this.getField('ListBox1'), aMinerals);

The above example works for dropdown or list box menus. If you are not using a list
box, you can comment that line out or add more LoadOptions if other dropdowns require
the same object literals that may change often. Remember to give all dropdown fields a
distinct name.

Summary
In this chapter, while working with dropdown menus and text boxes, you encountered
some complex JavaScript. You learned how nested associative/object literals work and
how you can extract information from those associative syntax functions. You also saw the
benefit of document JavaScript and how writing the script in one location saved you time
so you didn’t have to write multiple edits in several locations, only reference the script or
other fields.

In the next chapter, you are going to take a more detailed look at probably one of the
most underused fields: the list box. You've just seen as with dropdown menus that you
can load text into them using document JavaScript. However, they're not as compact as a
dropdown, so what else can you do with them?

239© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_13

CHAPTER 13

Working with List Boxes

The last main type of form field you are going to explore is list boxes. In my experience,
list boxes are the most underused of form fields. While they may not be as compact as
dropdowns, they are great for helping organize a list of priorities. Refer to Figure 13-1.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 13 files from www.apress.com/9781484228920. The file with the label “Start” is
the file without the code and the file with the label “End” is the final result. You will also
find folders with original MS Word and PDF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF that contains no form fields, refer to the
“Forms Review” section in Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

http://dx.doi.org/10.1007/978-1-4842-2893-7_13
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

240

List Box Priority List with Control Buttons
Figure 13-1 shows list boxes (see the Priority List End PDF file). As you can see, there are
list boxes and five buttons. I’ll discuss the lower text field and button later.

Figure 13-1. List Box Priory project with buttons and a custom form field with a button
that allows you to add your own priority to the final list

The Add button transfers the selected phrase one at a time over to the right list box.
The Delete button deletes a selected phrase from the right list. The Clear button resets the
whole form. The Up and Down buttons reorder the selected phrase either up or down.
You have complete control over your list of priorities.

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

241

Here’s how it works. You start with some global document JavaScript. Refer to
Figure 13-2.

This JavaScript is called addToPriority:

//Global addToPriority Script

function addToPriorityList(cEntry){
 var OrgLFld = this.getField("priorityList");
 var bFound = false;
for(var i=0;i<OrgLFld.numItems;i++){
 if(OrgLFld.getItemAt(i,false) == cEntry){
 bFound = true;
 break;
 }
 }
 if(!bFound){
 OrgLFld.insertItemAt({cName:cEntry, nIdx:-1});}
}

In this addToPriorityList function you are selecting items from the qualityList list
box form field and using the buttons to move those items over to the priorityList list box
form field. Notice that you are using a for loop to loop through all of the object literals
found with the associative syntax (see Chapters 9 and 12) that are found in the qualityList.

Figure 13-2. The document JavaScript added to the PDF project

http://dx.doi.org/10.1007/978-1-4842-2893-7_9
http://dx.doi.org/10.1007/978-1-4842-2893-7_12

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

242

When an item is found that will be added by the Add button, it will be broken out and
inserted into the priorityList but only once. You can see this with the variable bfound;
it’s set to true and then false if an attempt is made to enter it again. You can only enter it
again if it is cleared or deleted from the priorityList.

The qualityList list box form field has been set up like this. No script is directly
applied to it; it is only called upon. The same is true for the priorityList; it, however,
contains no entries. Refer here to Figures 13-3, 13-4, and 13-5.

Figure 13-3. List boxes and buttons in the Prepare Form view

Figure 13-4. The list box properties in the Options tab for qualityList

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

243

Only the buttons contain the actions. Refer to Figure 13-6.

Figure 13-5. The list box properties in the Options tab for priorityList

Figure 13-6. The list box properties in the Actions tab for buttons and how the buttons
appear in the Prepare Form view and normally

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

244

The Add Button
Refer to Figure 13-7.

// Add Button
var OrgLFld = this.getField("qualityList");
if(OrgLFld){
var cEntry = OrgLFld.getItemAt(OrgLFld.currentValueIndices,false);
addToPriorityList(cEntry);
}

Notice how it calls on the function addToPriorityList and gets the items from the
qualityList and adds the item to the priorityList field only once.

The Delete Button
Refer to Figure 13-8.

// Delete Button

var OrgLFld = this.getField("priorityList");
var prev = OrgLFld.currentValueIndices;
if(OrgLFld.currentValueIndices > -1){
 OrgLFld.deleteItemAt(OrgLFld.currentValueIndices);
 if(OrgLFld.numItems > prev){
 OrgLFld.currentValueIndices = prev;}
 else if(OrgLFld.numItems > 0){
 OrgLFld.currentValueIndices = prev-1;}
}

The Delete button’s script looks at what was previously added or just selected.
Whatever is currently selected when the delete button is pressed is removed from the
priortyList list box form field.

Figure 13-7. The Add button

Figure 13-8. The Delete button deletes list items from the priority list

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

245

The Clear or Reset Button
Refer to Figure 13-9.

You could have simply used your actions to reset the form with no code. However,
sometimes you just want to clear a specific list, and reset alone is not enough.

// Clear Button
this.getField("priorityList").clearItems();

The .clearItems() acts as a reset for the priortyList.

The Up Button
The Up button moves items up in the list. Refer to Figure 13-10.

//Up Button
OrgLFld = this.getField("priorityList");
if(OrgLFld){
 var prevIdx = OrgLFld.currentValueIndices;
 if(prevIdx > 0){
 var curValue = OrgLFld.getItemAt(prevIdx);
 OrgLFld.deleteItemAt(prevIdx);
 OrgLFld.insertItemAt({cName:curValue, nIdx:prevIdx-1});
 OrgLFld.currentValueIndices = prevIdx - 1;
 }
}

It acts like an organizer or index. For instance, in an array or associative syntax, the
first item or object literal is 0, then 1, then 2, and so on. In order for an item that is a 2
rank in the list to move upwards, it must become rank 1 or the highest rank, which is 0.
By using prevIdx - 1 you are telling the button to move this item one back or one higher.

Figure 13-9. The Clear Button resets/clears the priority list

Figure 13-10. The Up button moves an item up in the list

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

246

The Down Button
The Down button works in reverse, moving items down the list. Refer to Figure 13-11.

//Down Button
OrgLFld = this.getField("priorityList");
if(OrgLFld){
 var prevIdx = OrgLFld.currentValueIndices;
 if((prevIdx >= 0) && (prevIdx < (OrgLFld.numItems -1))){
 var curValue = OrgLFld.getItemAt(prevIdx);
 OrgLFld.deleteItemAt(prevIdx);
 OrgLFld.insertItemAt({cName:curValue, nIdx:prevIdx+1});
 OrgLFld.currentValueIndices = prevIdx + 1;
 }
}

This time, if an item is a rank of 2, it will become a rank 3 if that is possible. In the if
conditional statement, a check is made: is the item greater (>) or equal (=) to zero, and
(&&) is it less than (<) but not already the last item. By using prevIdx + 1, you are telling
the button to move this item one forward or one lower in the priorityList list box.

The Add New Priority button allows the user to add a custom priority that might not
be on the original list. Unlike dropdown menus, you cannot add text directly to a list box.
Like any list item, it can be deleted. Noticed that, as in earlier lessons like Chapter 9, you
can add a default text format to the text field so that it will always be filled. The same word
will not enter twice. The button has the following code and resets the text field after an
addition. Refer to Figure 13-12.

var textValue = this.getField("customAdd").value;
 var listField = this.getField("priorityList");
 if (textValue) {
 listField.insertItemAt(textValue, textValue, -1);
 }

List boxes are useful and creative way to organize priorities. You will improve upon
this list later in the chapter.

Figure 13-11. The Down button moves a priority down in the list

Figure 13-12. This text field allows you to enter a new priority and the Add New Priority
button allows you to add that priority to the list

http://dx.doi.org/10.1007/978-1-4842-2893-7_9

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

247

Check Box, Dropdown, and List Box Example 1
A single list box can be used in combination with other form field items as well. See the
TMC Free Newsletter End Option 1 file. Refer to Figure 13-13.

This example uses a check box to reveal a dropdown menu. When an item in the
dropdown is selected, it reveals a secondary choice in the list box. Refer to Figure 13-14.

Figure 13-13. This project allows you to chose a free newsletter after making a selection
from the dropdown menu. The menu only appears if you check the check box.

Figure 13-14. Choice of a free newsletter fields in the Prepare Form view

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

248

Here you begin with a global document JavaScript called SetTitleEntries. Refer to
Figure 13-15.

Enter the following code:

//Set Title Enteries
var oArray = {
 Investment: [["-"], ["How to Make a Million in Mining"],
 ["Investing Wisely in Jade"], ["Playing the Market with Lead"],
 ["Investing in Bonds and Silver"]],
Mining: [["-"], ["Gold Today"], ["Silver Futures"], ["Copper
Watch"],["Stake the Claim"]],
Gold: [["-"], ["Global Annual Gold Festival"],
 ["Gold Watch"], ["All that Glitters"],
 ["Fool's Gold"]],
"Tourmaline Mining": [["-"], ["Tourmaline Queen"],
 ["Waltermelon Gem"], ["Pick and Shovel"],
 ["Rocks and Gems"]],
};

Figure 13-15. The document JavaScript for the newsletter PDF file

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

249

function SetTitleEntries(){
 if(event.willCommit){
 var list = oArray[event.value];
 if((list != null) && (list.length > 0)){
 this.getField("ListTitles").setItems(list);
 }
 else{
 this.getField("ListTitles").clearItems();
 }
 }
}

Notice how, as in the previous dropdown examples, you are using an associative
syntax/object called oArray to contain all your dropdown items in the cboNewsletters
dropdown field and subitems that will go into the list box field called ListTiles. Different
subselection items appear in the list box based the selection made in the dropdown. It’s
important that the names in the associative syntax match the names in the dropdown;
otherwise, errors can result and these fields will not work correctly. Always double-check
your work for errors. When you have a name in your associative syntax that is two words,
always put quotes around it, like "Tourmaline Mining"; if it is one word, it needs no
quotes, like Mining. If no item is selected in the dropdown, the list box is cleared.

The check box has a script applied to it to show and hide fields. You could have used
the no script action to show and hide as well. However, in some cases you need to write
JavaScript to confirm you are getting the results you want when doing on and off actions.
Refer to Figure 13-16.

//Check Box JavaScript
var topicFld = this.getField("cboNewsletters");
var clistT = this.getField("ListTitles");

if (event.target.value == "Yes"){
 topicFld.display = display.visible;
 clistT.display = display.visible;
 }
else {
 topicFld.display = display.hidden;
 clistT.display = display.hidden;
}

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

250

For the dropdown menu, make sure to check “Commit selected value immediately”
in the Options tab so that the items for the list box will appear once the selection is made.

The final part of the script is called in the dropdown in the Format area as a custom
script. Refer to Figure 13-17.

//dropdown script custom format script
SetTitleEntries()

Figure 13-16. The Check Box Properties screen showing the Actions tab

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

251

Here it calls upon the document JavaScript to help it populate the list box correctly.
Until called upon, the list box will remain blank. Also, no script is applied to the list

box; it is only called upon when required. Refer to Figure 13-18.

Figure 13-17. The dropdown menu properties in the Options and Format tabs

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

252

 ■ Important Note Prior to 2006 if you wanted to show or hide a field you would write.

genreFld.hidden = false;
genreFld.hidden = true;

This method has been deprecated and should be written as shown in the following
examples. Refer also to Figure 13-30.

genreFld.display = display.visible;
genreFld.display = display.hidden;
a.display = display.noPrint //field text visible on screen, but does not print
a.display = display.noView // field text hidden on screen, but prints

Check Box, List Box, and Multi-Dropdown
Example 2
For a variation on this theme, you could try it in reverse order. Previously, you started
off with a dropdown menu, so now start with a list box. The list box, depending upon
which selection is made, reveals various dropdown menus that contain selections. You
may prefer one option over the other so I am showing both. See the TMC Free Newsletter
Option 2 PDF file. Refer to Figure 13-19.

Figure 13-18. The properties in the Options tab are blank

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

253

This time there is no document JavaScript, based on the way that I set up the file.
Refer to Figure 13-20.

Figure 13-19. The list box and dropdown menu options for the second free newsletter project

Figure 13-20. This project contains no document JavaScript

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

254

The check box contains this script to show and hide items. Refer to Figure 13-21.

//Check Box JavaScript
var listT = this.getField("ListTitle");
var investments = this.getField("Investments");
var mining = this.getField("Mining");
var gold = this.getField("Gold");

if (event.target.value == "Yes"){
 listT.display = display.visible;
}
else {
 listT.display = display.hidden;
 investments.display = display.hidden;
 mining.display = display.hidden;
 gold.display = display.hidden;
}

Figure 13-21. The check box properties in the Options and Actions tabs

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

255

Notice how there are more items to show or hide depending upon what is
happening. You can choose what you want to see or hide using the if/else conditional
statements. See Part 2 of this book if you need to review if/else statements.

Now let’s move on to the list box field.
Unlike the earlier dropdown, the items in the list box named ListTitle do have export

values, as you’ll see shortly. Refer to Figures 13-22 and 13-23.

Figure 13-22. The Options tab in the List Box Properties dialog box

Figure 13-23. The Selection Change tab in the List Box Properties dialog box

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

256

This time the script is added to a different tab. It is controlled in the Selection
Change tab.

List boxes do not have a Format tab and a setting of Custom is not an option; they
must be controlled here.

Execute this script:

// Combo Box Selection Change Text Example
var investments = this.getField("Investments");
var mining = this.getField("Mining");
var gold = this.getField("Gold");
if (event.changeEx == "IV"){
 investments.display = display.visible;
 mining.display = display.hidden;
 gold.display = display.hidden;
}
else if (event.changeEx == "MN"){
 investments.display = display.hidden;
 mining.display = display.visible;
 gold.display = display.hidden;
}
else if (event.changeEx == "GD"){
 investments.display = display.hidden;
 mining.display = display.hidden;
 gold.display = display.visible;
}
else if (event.changeEx == "None"){
 investments.display = display.hidden;
 mining.display = display.hidden;
 gold.display = display.hidden;
 }

Once again, you add more if/else conditional statements. Notice how this code is
all about the hiding or showing of dropdowns based on their value in the list box and the
dropdown menu’s name. Refer to Figure 13-24.

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

257

Figure 13-24. The list box properties in the Options tab compared to the dropdown
properties in the Options tab

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

258

This time the dropdown menus have no actions applied to them; they are only called
upon. However, rather than using a document JavaScript and creating an associative
syntax, they do contain their items with no values preset, only referenced by the selection
change of the list box.

Button Slide Show Variation
This last example could also be used with buttons that contain images if you want to
create a type of slide show for a client. You can find a sample of this in the extra slide
show project folder called Mineral Identifier. Explore this file further on your own
and format it to suit your needs. For long lists, the order of the JavaScript variables should
always match the same order as the options in the Options tab from top to bottom;
otherwise, errors are likely to occur.

Extra Example Priority List Improved
Now that you’ve discovered a few things about list boxes, let’s look at how you can
improve the priority list earlier in this project. You can see how this interaction might
work and you can add a text box below for an added description of a speaker’s topic to
assist your organization. To see the full code, go to the Priority List End Guest Speaker
PDF file. Refer to Figure 13-25.

Figure 13-25. A list box project with guest speakers and text fields containing their
topics below

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

259

The buttons’ code will remain the same except for the names of the list boxes;
speakerList replaces qualityList, and orderTalkList replaces priorityList. However, the
document JavaScript will be altered. Now it is called talkExport. Refer to Figure 13-26.

function addToTalkList(cEntry){
 // Acquire the Distribution List Field
 var OrgLFld = this.getField("orderTalkList");

 // Make sure entry does not already exist
 // by comparing it to all of the existing entries
 var bFound = false;
 for(var i=0;i<OrgLFld.numItems;i++){
 if(OrgLFld.getItemAt(i,false) == cEntry){
 bFound = true;
 break;
 }
 }
 if(!bFound){
 // Insert entry at end of list
 OrgLFld.insertItemAt({cName:cEntry, nIdx:-1});
 }
}

Figure 13-26. Document JavaScript added to the PDF file

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

260

function GetMasterExport(cEntry){
 // Acquire the Master List Field
 var OrgLFld = this.getField("speakerList");
 for(var i=0;i<OrgLFld.numItems;i++){
// If item matches, then return the export value
 if(OrgLFld.getItemAt(i,false) == cEntry){
 return OrgLFld.getItemAt(i,true);
 }
 }
 return null;
}

You add an extra script to deal with values that will act as the speakers’ topics. You
want to transfer this information as well to the right, so you add the GetMasterExport
function which, if everything is correct or true, will help display the value or speaker
topic. Otherwise, it will not display.

Figure 13-27 shows what this looks like in the left list box. Notice how each name has
a value.

Figure 13-27. The list box properties in the Options tab for the left list box

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

261

The list box on the right should remain blank. However, only here make sure to check
“Commit selected value immediately” in the Options tab or the values will not commit
properly in the text box below. Refer to Figure 13-28.

The final script is this time found in the list boxes in the Selection Change tab.
For the left list box:

//Selection Change for First List box

if(event.willCommit){
 addToTalkList(event.value, this.cLastValEx);
 this.cLastValEx = null;
}
else{
 this.getField("Topic1").value = event.changeEx;
}

Figure 13-28. The list box properties in the Options tab on the right list box

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

262

This adds the value as text to text field Topic1.
For the right list box:

//Selection Change for Second List Box
if(event.willCommit){
 if(event.value){
 this.getField("Topic2").value = GetMasterExport(event.value);}
 else{
 this.getField("Topic2").value = "";}
}

This adds the value as text to text field Topic2 after it has been exported over to
the left.

In the extra example, you also add a text field and buttons to this file in case the user
wants to add a last-minute guest speaker with their topic. See the Guestspeakers Extra
PDF file for details. Refer to Figure 13-29.

Final Thoughts
As you can see, there is no right or wrong way to organize your list boxes. You can also
use them to interact with text boxes or even in combination with check boxes or radio
buttons. Depending upon the form, one way or another will help you accomplish your
goal.

Hidden Fields

 ■ Note For those of you who are more familiar with JavaScript, buttons and text fields
can also be used as a hidden object field if an extra calculation in a form needs a hidden
function. While there are no examples in this chapter, things like double-clicking on a list
item to transfer it or a complex calculation that you don’t want the client to see (see the
Invoice Form in an earlier lesson), those fields can be set to hidden in the general tab or set
or no color in the appearance tab to avoid form clutter for the client. Refer to Figure 13-30.

Figure 13-29. Adding a guest speaker and their topic to the left list box and text field,
which can later be added to the right list box and text field and then reordered

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

263

Using List Boxes for Number Rating
It is possible to use two or more list boxes to add values together in a final text field.
However, I find this method to be buggy and it does not allow for multiple selection
values to be added together. List boxes, as mentioned earlier, do not contain a Format tab
so the final text field can only control the calculation output of the value as a true number.
When working with specific multiple number selections, a dropdown menu or text field
should be used instead of a list box.

Figure 13-30. A hidden button can have a fill and border color of none in the Appearance
tab or set to Hidden in the General tab

ChaPTER 13 ■ WoRkIng WITh LIST BoxES

264

Summary
As you can see, list boxes can be used in combination with other types of form fields. You
can use them to transfer information from one list box to another or to a dropdown menu
or a text field. You can even use them with buttons to create a slide show of images.

In the next chapter, you are going to look at a type of dropdown menu that you might
not have heard of before in Acrobat: the popup menu.

265© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_14

CHAPTER 14

Advanced Navigation:
The Popup Menu

In this chapter, you’ll look at the final example on buttons and navigation: a popup menu.
Popups are great non-form way to get from one page to another in a document and can
act like a Table of Contents, as shown in Figure 14-1. The files can be found in the Gem
Show Booklet PDF in this chapter’s download folder.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 14 files from www.apress.com/9781484228920. The file with the label “Start” is
the file without the code and the file with the label “End” is the final result. You will also
find folders with original PDF files if you would like to edit them and a folder containing the
original scripts if you would like to add them to your own PDF forms.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

http://dx.doi.org/10.1007/978-1-4842-2893-7_14
http://www.apress.com/9781484228920

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

266

Figure 14-1. An example of a Popup Menu in the PDF file

The Popup Menu Example
In this example, you’ll use a similar conditional statement to the if/else. This one is easier
to write and is called the switch case break. Like the previous example, it works well for
running through the associative syntax and its objects with in the square brackets ([]). To
begin, add a document JavaScript called CloseWarning. Refer to Figure 14-2.

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

267

Figure 14-2. The document JavaScript with the close warning

Now add the following JavaScript:

// Global CloseWarning

function CloseWarning(){
var btn = app.alert("Are you sure you want to quit?",2,2);
 if (btn == 4){
 this.closeDoc();
 }
}

This JavaScript creates an option in the dropdown menu to close the document.
Depending on where you want it to be within the associative syntax, it is based on the
number. In this case, I chose 4 but you may have to adjust this in your list. You can also
attach an alert message to it. Refer to Figure 14-3.

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

268

The button itself has the following JavaScript and associative syntax:

var itemPicked = app.popUpMenu("Information","About BC Lapidary Society",
["Dealers","TMC Gem Show Dealers","BCompany","GCompany","MCompany",
"SCompany"] ,"-","Quiz", "Close Document");

switch(itemPicked){
case "Information":
this.pageNum = 1;
break;

case "About BC Lapidary Society":
this.pageNum = 3;
break;

case "TMC Gem Show Dealers":
this.pageNum = 5;
break;

case "BCompany":
this.pageNum = 6;
break;

case "GCompany":
this.pageNum = 7;
break;

case "MCompany":
this.pageNum = 8;
break;

Figure 14-3. Button properties in the Actions tab

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

269

case "SCompany":
this.pageNum = 9;
break;

case "Quiz":
this.pageNum = 10;
break;

case "Close Document":
CloseWarning();
break;

//optional
 default:
app.alert("Not found here.");
break;
}

The script helps you navigate app.popUpMenu. The associative syntax helps you
navigate to the page you want. Remember that 5 is actually page 6. Like arrays, they start
at 0 so page 1 is actually page 0. So, make sure that you test your popup menu as you
go along to make sure you can navigate to the page you want. Subitems are placed in
brackets ([]) and you must make a horizontal divider using a dash (-). However, do not
include it as part of the conditional switch case break statement.

case "Close Document":
CloseWarning();
break;

This calls upon the function rather than a number, like the others. You want the
document to close when this is pressed.

You can add a default statement as an option. If nothing is found in the list, an alert
comes up:

app.alert("Not found here.");

You do not have to add this part to the switch expression; it’s optional.
On the final page, create a Back button to get back to the top. You can put an item

like this on other pages if you want to. Refer to Figure 14-4.

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

270

As you can see, it requires no JavaScript, but it is nice to have for navigation purposes.

 ■ Note Beyond the customization shown with the app.popUpMenu, you can’t alter its
color or fonts like the app.Alert; it’s hardwired into the application.

Final Thoughts
I hope that you have enjoyed these lessons. I have also included the following extra
lessons in Part 4:

•	 Action Wizard: Create a task using JavaScript

•	 Faux multi-state check boxes

•	 5-star rating button

•	 Import an image into a button

•	 Mass formatting of numbers

•	 Digital signatures and barcodes

In the meantime, practice the previous lessons first to build up your JavaScript
knowledge. If you want some extra practice, you can also jump to Part 5 (Chapter 20)
where there are four assignments that reference Chapters 1-12 of this book.

Figure 14-4. Button properties in the Actions tab for the Back to First Page button. Execute
a menu item ➤ View ➤ Page Navigation ➤ First Page.

http://dx.doi.org/10.1007/978-1-4842-2893-7_14
http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_12

ChaPTER 14 ■ aDvanCED navIgaTIon: ThE PoPuP MEnu

271

Summary
In this chapter, you looked at the popup menu and how it can improve navigation in a
document. You also learned about JavaScript’s switch case break statement.

PART 4

Beyond the Basics

275© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_15

CHAPTER 15

Action Wizard and JavaScript

This chapter is a collection of extra lessons that I added to the end of the book for those
who are more advanced users of JavaScript.

The Action Wizard is another tool that is available to us in Adobe Acrobat. With it you
can create tasks or repetitive actions that you can save and then later use in multiple PDF
files (Figure 15-1).

Working with Action Wizard
Action Wizard comes with some precreated actions already available. However, you can
use the Create New Action dialog box to create new actions by adding an action from a
choice of available tools like the ones you saw in the Form Properties Actions tab. And just
like in that tab you can create a JavaScript action when you choose “Execute a JavaScript.”
Refer here to Figures 15-3 and 15-4.

Figure 15-1. These are tools you can find in the Action Wizard menu

Chapter 15 ■ aCtion Wizard and JavaSCript

276

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 15 files from www.apress.com/978148422892. You will find a folder containing the
original script and .sequ files if you would like to add them to your own action Wizard files.

Let’s look at an example of this. Here’s how to auto-add the name of the PDF file in
Acrobat Wizard for Acrobat Pro:

 1. Begin by opening a file you want to apply this action to
(File ➤ Open).

 2. Go to Tools ➤ Action Wizard ➤ New Action, as seen in
Figure 15-2.

 3. Choose More Tools ➤ Execute JavaScript. Refer here to
Figure 15-3 and Figure 15-4.

Figure 15-2. Go to Action Wizard ➤ New Action to begin the project

http://dx.doi.org/10.1007/978-1-4842-2893-7_15
http://www.apress.com/978148422892

Chapter 15 ■ aCtion Wizard and JavaSCript

277

Figure 15-3. The Create New Action selections; there are many to choose from

Figure 15-4. More Tools ➤ Execute JavaScript

 4. Once selected, click the “Add to Right-Hand Pane” button to
move the tool over to the “Actions steps to show” side. Refer
here to Figure 15-5.

Figure 15-5. The “Add to Right-Hand Pane” button

Chapter 15 ■ aCtion Wizard and JavaSCript

278

 5. Once the Execute JavaScript option is on the right-hand side,
double-click Specified Settings to enter the JavaScript Editor.
Refer here to Figure 15-6.

Figure 15-6. Enter the JavaScript Editor upon opening the specified settings

Chapter 15 ■ aCtion Wizard and JavaSCript

279

The Editor appears and allows you to begin to type.

 6. Enter the following code:

/* Put script title here */
this.addWatermarkFromText({
 cText: this.documentFileName.replace(/\.pdf$/i, ""),
 nFontSize: 12,
 cFont: "Arial,Bold",
 aColor: color.red,
 nOpacity: 0.4,
 nVertAlign: app.constants.align.bottom,
 nHorizAlign:app.constants.align.left,
 nVertValue: 18
});

This script is using a regular expression, which you saw
in Chapter 11. You are removing or replacing the .pdf
extension with a blank area. The /i acts as modifier so that
the .pdf is made blank. You are also requesting that the
script add the name of this file at the bottom of the page in
a font size of 12 and a vertical value or position of 18. You’re
also making the font red with an opacity of 40%. If you just
want the text to be a default of black, you can remove the
aColor and nOpacity lines.

It should look something like this file name .

For more information on regular expressions, go to
www.w3schools.com/jsref/jsref_obj_regexp.asp.

 ■ Note if you want to keep the .pdf at the end of the watermark, remove the command
of .replace(/\.pdf$/i, "").

nVertAlign: app.constants.align. can be top, center, or bottom.

nHorizAlign:app.constants.align. can be left, center, or right.

 7. When you are done, click the OK button to close the JavaScript
Editor.

 8. Now click the Save button. Refer here to Figure 15-7.

Figure 15-7. The Save button that allows you to save the action

http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://www.w3schools.com/jsref/jsref_obj_regexp.asp

Chapter 15 ■ aCtion Wizard and JavaSCript

280

 9. Then give it a title in the Action Name box and a description in
the Save Action dialog box. Refer here to Figure 15-8.

 10. When done, click Save and the action is added to the Actions
List on the right-hand side. Refer here to Figure 15-9.

If you want to make adjustments/edits or remove this action, you can do so under
Manage Actions. Refer to Figure 15-10.

Figure 15-8. Add a name and description to the action

Figure 15-9. The action is added to the Actions List

Chapter 15 ■ aCtion Wizard and JavaSCript

281

 11. To execute, click the action. Click Start and then OK to the
action when the editor appears, and it will add the text to the
bottom of the file. If you like what you see, save the file. Refer
here to Figure 15-11.

Figure 15-10. The Manage Actions tool

Figure 15-11. The Action Wizard adds a watermark to the file

Chapter 15 ■ aCtion Wizard and JavaSCript

282

JavaScript actions can be imported and exported if you want to share your actions
with your friends and coworkers. Refer to Figure 15-10. They are saved as a .sequ file, as is
the one for this example in the folder. You can also find more actions on the Web.

Reuse JavaScript from Chapter 8
By using the same steps above, you can also use some of the JavaScript code to create a
time stamp and add a signature field to multiple documents.

//Adding a signature field automatically
var c = this.addField({
cName: "clientSignature",
cFieldType: "signature",
nPageNum: this.pageNum,
oCoords: [35,74,176,112]
})

//script that creates the text field
{
var r = [200, 200, 400, 300];
var i = this.pageNum;
var f = this.addField(String("completeDate."+i),"text",i,r);
f.textSize = 10;
f.alignment = "right";
f.textColor = color.blue;
f.fillColor = color.transparent;
f.textfont = font.HelvB;
f.strokeColor = color.transparent;
f.value = String("This page was reviewed on: " + util.printd("mmm dd, yyyy",
new Date()));
f.readonly = true;

}

 ■ Note You can also access document JavaScripts as well. refer to Figure 15-12.

Figure 15-12. The JavaScript options

http://dx.doi.org/10.1007/978-1-4842-2893-7_8

Chapter 15 ■ aCtion Wizard and JavaSCript

283

Is It a Custom Action or a Custom Command?
Custom commands in Figure 15-13 are single-step and applicable to the current
document, while actions are multi-step sequences and applicable to multiple files.
Refer here to Figure 15-14.

Figure 15-14. The New Custom Command dialog box

Figure 15-13. Action and command options

Create and Manage Custom Commands
Custom commands allow you to preconfigure commands such as watermark, header, and
footer to reduce the amount of time each command takes to set up. This saves time for
repetitive tasks.

Whether an action or command, either one can use JavaScript. Refer to Figure 15-14.

Summary
In this chapter, you looked at a tool known as the Action Wizard. This versatile tool allows
you to apply your JavaScript actions in multiple documents and saves you time. You can
also share these actions with other Acrobat Pro users and they can use the code as well.
Take some time to add a few new actions to your Action Wizard tools and PDF documents.

285© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_16

CHAPTER 16

Multi-State Check Boxes

When space is limited in a document it is often helpful to be able to combine multiple
states into one field. For example, suppose that you have a form and in it you would like
to be able to change the setting from blank to a check symbol (representing yes) to an X
or cross symbol (representing no or wrong). Or maybe you have multiple symbols that
represent distinct levels. As the user who fills out the form advances in skill, they require a
frequent update to their status in a specific order. In this chapter, you’ll see how to create
a type of multi-state check box using a button field.

The Problem of Multi-State Check Boxes
If you had lots of room, you could do the following with radio buttons:

Do you like our newsletter? • Yes ❍ No ❍ Undecided

• Level 1 ❍ Level 2 ❍ Level 3

As you have discovered with Acrobat, radio buttons come in groups and you can
only choose one option. They also appear in one state (On • or Off ❍); there is no third or
fourth option.

You can also use check boxes to save space. Yes could mean checked and No could
be unchecked. However, once again there is no third option and the person filling in the
form may not be sure if not checking means No or Undecided.

Do you like our newsletter? ❏ Yes ❏ No or ✓ Yes ✓ No (I like it however...).
✓ Level 1 ✓ Level 2 ❏ Level 3 – Here I might want people to know I am Level 2

now but this takes up a lot of space.
To save space, a more visual clue with a check box would be the following:
Do you like our newsletter?

❏ - This means I have not answered yet

✔ - This means Yes, I do

✘ - This means No, I don’t

Or current level ❶
❷
❸

Chapter 16 ■ Multi-State CheCk BoxeS

286

With Acrobat check boxes, you can choose more than one. Unfortunately, they are
not able to have three or more states, only on or off.

The best way to achieve a multi-state goal is to mimic a check box with a button field
and some JavaScript actions. Refer to Figure 16-1.

Figure 16-1. The Prepare Form tool for making a button look like a check box

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 16 files from www.apress.com/9781484228920. the file with the label “Start” is
the file without the code and the file with the label “end” is the final result. You will also
find folders with original MS Word and pDF files if you would like to edit them and a folder
containing the original scripts if you would like to add them to your own pDF forms.

if you are creating your form from an original pDF, refer to the “Forms review” section in
Chapter 1.

remember that to view the properties of a field you must select the prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Let’s begin by altering the Appearance tab of the button so that it will look like a
check box. You can also adjust the size further if you need to fill a certain area. Refer to the
TMC Mineral Checklist PDF file in this chapter’s file folder. Refer here to Figure 16-2.

http://dx.doi.org/10.1007/978-1-4842-2893-7_16
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

Chapter 16 ■ Multi-State CheCk BoxeS

287

Figure 16-2. The button properties in the Appearance and Options tabs

Chapter 16 ■ Multi-State CheCk BoxeS

288

The button has a border to make it look like a check box and currently has no text.
The Options tab remains at default and you do not give the button a label name; you will
let the JavaScript actions handle this.

The final step is to choose Mouse Up and the action of “Run a JavaScript” and enter
the following script. Refer to Figure 16-3.

Figure 16-3. The Mouse Up trigger and the “Run a JavaScript” action

Figure 16-4. Three button states: a check, an X, and a blank that mimics a check box

if (event.target.buttonGetCaption()=="\u2714"){
 event.target.buttonSetCaption("X");
 event.target.textColor = color.red;
}
 else if (event.target.buttonGetCaption()=="X"){
 event.target.buttonSetCaption("");
}
 else if (event.target.buttonGetCaption()==""){
 event.target.buttonSetCaption("\u2714");
 event.target.textColor = color.green;
}

When you test it with each click on the button, you see now that you have the states
shown in Figure 16-4 and it looks very much like a check box.

Chapter 16 ■ Multi-State CheCk BoxeS

289

Three conditions were used in the following if/else conditional statements:

•	 The symbol or Unicode for the check shape, \u2714

•	 The symbol for the cross or X

•	 A blank state

The reason for the blank state is that unlike other form fields, Acrobat does not allow
you to use a Reset button to reset another button’s field state and so within each button a
cleared state must be created as part of the toggle.

The code moves through a cycle of buttonGetCaption to buttonSetCaption. After
one caption appears (Get), you click to Set the next caption and so on.

 ■ Note You cannot select or deselect a button field. it doesn’t show up as a field you can
reset. refer to Figure 16-5.

Figure 16-5. No reset selection for a Button field can be found when you try to add the
action in your Actions tab of the “Reset a Form” screen

As each if/else condition is met on a click, you toggle to the next state and cycle back
to the beginning.

event.target.buttonSetCaption("X");
event.target.buttonSetCaption("");
event.target.buttonSetCaption("\u2714");

Chapter 16 ■ Multi-State CheCk BoxeS

290

You also differentiate the check from the cross by color.

event.target.textColor = color.red;
event.target.textColor = color.green;

The blank state required no color because nothing is in the field.
As a final note, let’s see what the code looks like with the level symbols.
In Forms, if you’re just using regular numbers, text fields or dropdowns are fine.

However, when using special symbols that have a precise order, this might be a better
solution for toggling to the correct choice:

if (event.target.buttonGetCaption()=="\u2776"){
 event.target.buttonSetCaption("\u2777");
 event.target.textColor = color.red;
}
else if (event.target.buttonGetCaption()=="\u2777"){
 event.target.buttonSetCaption("\u2778");
 event.target.textColor = color.blue;
}
else if (event.target.buttonGetCaption()=="\u2778"){
 event.target.buttonSetCaption("");
}
else if (event.target.buttonGetCaption()==""){
 event.target.buttonSetCaption("\u2776");
 event.target.textColor = color.green;
}

•	 ❶ uses \u2776

•	 ❷ uses \u2777

•	 ❸ uses \u2778

In the Appearance tab, adjust the font size to Auto, which will center the symbol
better if it appears to be chopped off or not centered on the button. You can also resize
the field slightly. Refer to Figure 16-6.

Chapter 16 ■ Multi-State CheCk BoxeS

291

Bonus Star Rating Idea
Maybe you want to rate an idea or a product. Figure 16-7 shows the button.

Figure 16-6. The font size is set to Auto

Rate Me

Figure 16-7. A button with a 5-star rating option

Here is what a star rating button could look like using Unicode symbols:

if (event.target.buttonGetCaption()=="\u2605 \u2606 \u2606 \u2606 \u2606") {
 event.target.buttonSetCaption("\u2605 \u2605 \u2606 \u2606 \u2606");
 event.target.textColor = color.yellow;
//1 star
}
else if (event.target.buttonGetCaption()=="\u2605 \u2605 \u2606 \u2606
\u2606") {
 event.target.buttonSetCaption("\u2605 \u2605 \u2605 \u2606 \u2606");
 event.target.textColor = color.yellow;
//2 star
}

Chapter 16 ■ Multi-State CheCk BoxeS

292

else if (event.target.buttonGetCaption()=="\u2605 \u2605 \u2605 \u2606
\u2606") {
 event.target.buttonSetCaption("\u2605 \u2605 \u2605 \u2605 \u2606");
 event.target.textColor = color.yellow;
//3 star
}
else if (event.target.buttonGetCaption()=="\u2605 \u2605 \u2605 \u2605
\u2606") {
 event.target.buttonSetCaption("\u2605 \u2605 \u2605 \u2605 \u2605");
 event.target.textColor = color.yellow;
// 4 star
}
else if (event.target.buttonGetCaption()=="\u2605 \u2605 \u2605 \u2605
\u2605") {
 event.target.buttonSetCaption("Rate Me");
// 5 back to blank
}
else if (event.target.buttonGetCaption()=="Rate Me") {
 event.target.buttonSetCaption("\u2605 \u2606 \u2606 \u2606 \u2606");
 event.target.textColor = color.yellow;
}

Always test your form before submitting it to others.
For more on Unicode symbols, see https://en.wikipedia.org/wiki/Dingbat.

Select All or Deselect All Check Boxes at Once
If you have a lot of check boxes that need to be checked in your form, wouldn’t it be great
to check them all at once? Refer to Figure 16-8 and the following text.

Figure 16-8. Select all check boxes at once with one master check box

https://en.wikipedia.org/wiki/Dingbat

Chapter 16 ■ Multi-State CheCk BoxeS

293

You may have noticed that Acrobat does not have an option to create a check box
that will select all the other check boxes in a set. You can use the code included in the
PDF file TMC Mineral Check List Select All found in the downloaded folder for this
chapter. The following is the code for the "Select All" check box in the Actions tab with a
Mouse Up trigger:

/*Check Box Select All*/
var otherCheckBoxes = ["CheckBox1", "CheckBox2", "CheckBox3"]; // etc.
if (getField("Select All").value!="Off") {
 for (var i in otherCheckBoxes) getField(otherCheckBoxes[i]).
checkThisBox(0,true);
 }
else{
 for (var i in otherCheckBoxes) getField(otherCheckBoxes[i]).
checkThisBox(0,false);
 }

The code states that when the main checkbox, Select All, is not off (which would be
on), then all the other checkboxes within its group should check.

Each of the check boxes are numbered in order (1, 2, 3); this is so that the for() loop
will find all the check boxes so they can be selected or deselected. Refer to Chapters 10
and 13 for examples of for() loops.

Make sure that your check box names match the names that are in the associative
syntax/object (square brackets, []) otherCheckBoxes . If they do not, they will not select
and deselect.

Summary
In this chapter, you looked at a way to create a type of multi-state check box using a
button field. You also discovered that a single check box field can select other check boxes
when JavaScript is added. With slight alterations to the code you can cause one type of
field to mimic another.

http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_13

295© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_17

CHAPTER 17

Importing an Image into
a Button

In this chapter, you’ll create a button that will import an icon image using a script.
This could be useful for clients who want to attach an image or photo to the form.

While you can do all the steps in this chapter with Acrobat XI, be aware that you will
not have access the new Add an Image Field icon, which is only available in the latest
version of Acrobat DC, shown in Figure 17-1.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 17 files from www.apress.com/9781484228920. The file with the label “Start” is the
file without the code and the file with the label “End” is the final result. You will also find a
folder containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF, refer to the “Forms Review” section in
Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Figure 17-1. The new Add an Image Field icon found in the Prepare Form tool

http://dx.doi.org/10.1007/978-1-4842-2893-7_17
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 17 ■ ImPoRTIng an ImagE InTo a BuTTon

296

Creating the Button
Insert either a Button icon or the Add an Image Field icon on your page. Refer here to
Figure 17-1.

Make sure the Layout field in the Options tab is set to “Icon only,” as shown in
Figure 17-2.

Figure 17-2. Select “Icon only” for the Layout field in the Options tab

Note that it will look the same for the Add an Image Field icon; both will default to
button properties. Refer to Figure 17-3. However, the Image field will have the JavaScript
already added.

ChaPTER 17 ■ ImPoRTIng an ImagE InTo a BuTTon

297

Then add the following code, if it is not already added:

// Mouse Up script for a button
event.target.buttonImportIcon();

When the user clicks on the blank button, the Select Icon box appears. Refer to
Figure 17-4.

Figure 17-3. Run a Javascript action in the Actions tab

Figure 17-4. When the button is clicked, an image or icon of your choice can be imported

ChaPTER 17 ■ ImPoRTIng an ImagE InTo a BuTTon

298

The user can then browse for the image and, depending on what file formats are
available to them, select the correct image.

Click the OK button and the image will be imported as an image within the button.

 ■ Note The button may need to be presized if you know a client will be importing a
specific sized image so that it can be seen clearly.

Summary
In this chapter, you looked at how to import an image into a button. You also discovered
the new Add an Image Field icon, which is new to Acrobat DC.

299© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_18

CHAPTER 18

Multiple Formatting

One of the most laborious tasks that I have found when creating forms in Acrobat is
formatting many fields to Numbers. Wouldn’t it be nice if Acrobat were like MS Excel,
and you could format the fields all at once? And what if you need to format them all
again? Do you want to go through them one at a time? What if you could update them
quickly?

Until the day that Acrobat comes up with a solution, there are two possible ways to
deal with this problem: do it yourself or call a professional. This chapter discusses both
options.

The Problem of Multiple Formatting
You can select each field, one at time, and perform this task, as shown in Figure 18-1.

Chapter 18 ■ Multiple ForMatting

300

However, when you select multiple text fields and choose Properties, this is the result
you get: the Format, Validate and Calculate tabs disappear. Refer here to Figure 18-2.

Figure 18-2. The Text Field Properties screen where three tabs have disappeared because
multiple fields are selected

Figure 18-3. Text Field Properties Format tab is only available through single field selection

Figure 18-1. Text field properties in the Format tab

So, you’re stuck with the task of formatting them one at a time. Refer here to Figure 18-3.

Chapter 18 ■ Multiple ForMatting

301

I can understand why the Acrobat developers might remove the Validate and
Calculate tabs, since these areas would contain custom scripts that you would not want to
overwrite in a mass conversion.

As in all cases, it is important to give your fields unique names. Refer here to
Figure 18-4 and to the Testing Form Format PDF file.

Figure 18-4. The text fields in form mode with their unique names

 ■ Note if you want to work along in this lesson or review the final result, download the
Chapter 18 files from www.apress.com/9781484228920. the file with the label “Start” is the
file without the code and the file with the label “end” is the final result. You will also find a
folder containing the original scripts if you would like to add them to your own pDF forms.

if you are creating your form from an original pDF, refer to the “Forms review” section in
Chapter 1.

remember that to view the properties of a field you must select the prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Option 1: Do It Yourself
As mentioned in previous chapters, when you want to affect something globally, you need
to create document JavaScripts. Refer here to Figure 18-5.

http://dx.doi.org/10.1007/978-1-4842-2893-7_18
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

Chapter 18 ■ Multiple ForMatting

302

In this case there are two. The first makes sure the number has a ($) price sign and
the second has no price sign.

Here are the scripts used for both.

Price Script

function PFCustom_Format() {

// array of fields to apply custom format and keystroke to
var aFormatFields = new Array("Addition2", "Subtraction2",
"Multiplication2", "Division2", "Complex_example2");

// define the varibles for the custom number formatting and keystroke
 var nDecimal = "2"; // number of decimals
 var separStyle = "0"; // separator style
 var negativeStyle = "0"; // negative display style
 var currencyStyle = "0"; // currency style
 var symCurrency = "\"$\""; // currency symbol
 var symCurrencyPrepend = "true"; // logical to prepend (add before)

currency symbol
// build the format string
var strFormat = nDecimal + ", " + separStyle + ", " + negativeStyle + ", " +
currencyStyle +", " + symCurrency + ", " + symCurrencyPrepend;

Figure 18-5. The document JavaScripts used for formatting the numbers

Chapter 18 ■ Multiple ForMatting

303

// set the custom format and keystroke for the fields
 for (i = 0; i < aFormatFields.length; i++) {
 this.getField(aFormatFields[i]).setAction("Format",

"AFNumber_Format(" + strFormat + ")");
 this.getField(aFormatFields[i]).setAction("Keystroke",

"AFNumber_Keystroke("+ strFormat + ")");
 } // end for loop
return;
} // end custom format function

No Price Script

function PFCustom_Format2() {

// array of fields to apply custom format and keystroke to
var aFormatFields2 = new Array("Addition0", "Addition1","Subtraction0",
"Subtraction1", "Multiplication0", "Multiplication1", "Division0",
"Division1","Complex_example0", "Complex_example1");

// define the varibles for the custom number formatting and keystroke
 var nDecimal = "2"; // number of decimals
 var separStyle = "0"; // separator style
 var negativeStyle = "0"; // negative display style
 var currencyStyle = "0"; // currency style
 var symCurrency = "\"\""; // currency symbol
 var symCurrencyPrepend = "false"; // logical to prepend(add before)

currency symbol, not required here.
// build the format string
var strFormat2 = nDecimal + ", " + separStyle + ", " + negativeStyle + ", "
+ currencyStyle +", " + symCurrency + ", " + symCurrencyPrepend;
// set the custom format and keystroke for the fields
 for (i = 0; i < aFormatFields2.length; i++) {
 this.getField(aFormatFields2[i]).setAction("Format",

"AFNumber_Format(" + strFormat2 + ")");
 this.getField(aFormatFields2[i]).setAction("Keystroke",

"AFNumber_Keystroke("+ strFormat2 + ")");
 } // end for loop
return;
} // end custom format function

The second script shows the areas that are different from the first script in bold.
I changed the names of some of the variables as a precaution so that the two functions
would not become conflicted.

Chapter 18 ■ Multiple ForMatting

304

The following variables are all prebuilt into the inner format scripts (AFNumber_
Format and AFNumber_Keystroke) that are controlling this Format tab:

•	 var nDecimal = "2"; // number of decimals

•	 var separStyle = "0"; // separator style

•	 var negativeStyle = "0"; // negative display style

•	 var currencyStyle = "0"; // currency style

•	 var symCurrency = "\"\""; // currency symbol

•	 var symCurrencyPrepend = "false"; // logical to prepend
(add before) append(after) currency symbol

nDecimal controls the number of decimal places. Refer here to Figure 18-6.

Figure 18-7. Format the separator style

Figure 18-6. Format the number of decimal places

separStyle is the separator style for the 000s and decimal point. Refer here to
Figure 18-7.

0 ="," Thousands and "." decimal point Example: 1,000.00
1= "." Decimals only Example: 1000.00
2 = "."Decimal point and "," Thousands Example: 1.000,00
3 = "," Thousands Only Example: 1000,00
4 =" ‘ " quote mark and decimal "." Example: 1’000.00

Chapter 18 ■ Multiple ForMatting

305

negativeStyle controls the negative style. Refer here to Figure 18-8.

Figure 18-8. Format the negative number style

Figure 18-9. Format the currency symbols

0 = "-"
1 = red text
2 = parentheses black
3 = parentheses red

currencyStyle refers to currency style set to 0 (in most cases it is unused; it is a
reserved feature).

symCurrency refers to the type of symbol used for currency. Refer here to Figure 18-9.

In this example, you use \"$\" for dollar sign and \"\" for none. If you had a foreign
currency, you might need to look up the Unicode code for how to create the symbol.
Some examples are shown here:

•	 Euro sign € \u20AC

•	 Pound £ \u00A3

•	 Yen ¥ \u00A5

•	 Won ₩ \u20A9

Chapter 18 ■ Multiple ForMatting

306

See http://en.wikipedia.org/wiki/Currency_Symbols_(Unicode_block).
Other Unicode codes you may need to look up and test if you are doing a custom

symbol.
symCurrencyPrepend is either set to true ($1.00) or false (1.00$) depending on where

you want the symbol to be placed. Refer here to Figure 18-10.

Figure 18-10. Format the prepend space

 ■ Note While this is visually correct, you may notice that the Format tab might say “after
with space” rather than “Before no space.” Do not alter this formatting here, only in the
document JavaScript, because it will unlink the global formatting to this field.

In both functions, you separate your associative syntax and object literals in the
square brackets ([]) with the fields that you want formatted into two functions, with or
without dollar signs. This avoids confusion and keeps it organized.

Next, the variable string sets the order.

var strFormat2 = nDecimal + ", " + separStyle + ", " + negativeStyle + ", "
+ currencyStyle +", " + symCurrency + ", " + symCurrencyPrepend;

The for loop of each function then runs through the arrays, distributing the
information in the correct order. Refer to the for loop in Chapters 10, 13, and 16.

for (i = 0; i < aFormatFields2.length; i++) {
this.getField(aFormatFields2[i]).setAction("Format", "AFNumber_Format(" +
strFormat2 + ")");
this.getField(aFormatFields2[i]).setAction("Keystroke", "AFNumber_
Keystroke("+ strFormat2 + ")");
}

The final word return allows the information to display properly from the associative
syntax/objects for the various fields.

If you were to test the form at this point, you might notice a bug. The fields for some
reason remain at a format of None. Refer here to Figure 18-11.

http://en.wikipedia.org/wiki/Currency_Symbols_(Unicode_block
http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_13
http://dx.doi.org/10.1007/978-1-4842-2893-7_16

Chapter 18 ■ Multiple ForMatting

307

Why is this happening?
In order to get the form working, in this case you need to “kick start” the format.

However, you only need to do it once for each function so that the other fields accessing
the associative syntax in their functions will work properly. If you make a major change
to the function, always remember that it needs a “kick start” to affect the other fields.
Choose a field that you know is part of the function PFCustom_Format. Choose Custom in
the Format tab, not the Number option. Refer here to Figure 18-12.

Figure 18-11. The format category is set to a category of None

Figure 18-12. Choose Custom in the Format tab

Click Edit. Then in the Custom Format Script area, click Enter.

PFCustom_Format();

Confirm by pressing the OK Button. The formatting will then automatically switch
over to Number. Refer here to Figure 18-13.

Chapter 18 ■ Multiple ForMatting

308

The other function you may have to apply once to an appropriate field is

PFCustom_Format2();

Once this is accomplished, all the fields that use these two functions should be set
automatically and you don’t have to go into each one.

Option 2: Call a Professional
While this example is faster to work with and eliminates errors, it would be nice if
there was an even faster way that maybe included a dialog box. Thankfully after a lot of
research, I found a JavaScript developer who has devoted a lot of time to figuring out this
very issue.

His name is Gilad Denneboom. (try67). He has created a plug-in extension for
Acrobat on his website that is called “Apply Format to Multiple Text Fields.” You can get it
at http://try67.blogspot.com/2012/06/acrobat-apply-format-to-multiple-fields.
html.

Figure 18-14 shows what it looks like.

Figure 18-13. In the Format tab, the category automatically changes to Number

http://try67.blogspot.com/2012/06/acrobat-apply-format-to-multiple-fields.html
http://try67.blogspot.com/2012/06/acrobat-apply-format-to-multiple-fields.html

Chapter 18 ■ Multiple ForMatting

309

Figure 18-14. The Mass Format Number Fields plug-in example

His formatting also allows you to mass format

•	 Percentage

•	 Date

•	 Time

•	 Special

If you think you will be doing a lot of this type of formatting, I think his $60 product is
worth it.

He also has other offers such as "Acrobat - Mass Edit Fields Actions" at
http://try67.blogspot.com/2014/11/acrobat-mass-edit-fields-actions.html.
This one allows you to even apply formatting to areas like the Validate and Calculate tabs
through his dialog boxes.

Before you buy, if you have questions about the programs like which is the best
product or how to install it, ask him first. He is very helpful; he assisted me on a few
questions that I had as I wrote this book. He also often answers questions in the Adobe
and Acrobat user forums.

http://try67.blogspot.com/2014/11/acrobat-mass-edit-fields-actions.html

Chapter 18 ■ Multiple ForMatting

310

Summary
In this chapter, you looked at ways to format multiple text fields with Number formatting.
While you could format this easily for one document, it's important to find the best option
if you must create a lot of forms with Number formatting. Your choices are do it yourself
or call a professional.

311© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_19

CHAPTER 19

Digital Signatures and
Barcodes

Throughout this book two form fields were not discussed in great detail in regards to
JavaScript: digital signatures and barcodes. Thus, this chapter focuses on them. Let’s first
look at how they and other fields relate to security.

 ■ Note If you want to work along in this lesson or review the final result, download the
Chapter 19 files from (www.apress.com/978148422892). The file with the label “Start” is the
file without the code and the file with the label “End” is the final result. You will also find a
folder containing the original scripts if you would like to add them to your own PDF forms.

If you are creating your form from an original PDF, refer to the “Forms Review” section in
Chapter 1.

Remember that to view the properties of a field you must select the Prepare Form tool; only
then can you right-click or double-click a field to review its properties.

Digital Signatures and Security
Basic security can be added to text fields. See file TMC Password Access.pdf for an
example. Refer to Figures 19-1 and 19-2.

http://dx.doi.org/10.1007/978-1-4842-2893-7_19
http://www.apress.com/978148422892
http://dx.doi.org/10.1007/978-1-4842-2893-7_1

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

312

All text fields except the password field have a setting of read-only in the General tab.

Figure 19-1. If you don’t know the password, you can’t unlock the fields and buttons that
allow you to add file location links

Figure 19-2. Entering the correct password unlocks the fields and buttons. You can also
reset all the fields back to read-only.

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

313

The Text1Password field has a setting of Password in the Options tab. Refer to
Figure 19-3. This setting will display only a series of asterisks (***); the actual text will
remain hidden.

Figure 19-3. The Options tab has a setting of Password so that the actual text is hidden

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

314

Here is the JavaScript code for the Submit button in the Actions tab ➤ Run a JavaScript:

//Submit Password Button
var b=this.getField("Text1Password");
var c=this.getField("Text2");
var file1=this.getField("SubmitFile");
var btn1=this.getField("Submitfilebtn");
var d=this.getField("Reset");
if(b.value=="password"){
 c.readonly =false;
 file1.readonly=false;
 btn1.display=display.visible;
 d.display=display.visible;
 app.alert("Fields are Unlocked",3,0);
}
else{
 app.alert("Wrong Password");
 b.value="";
}

Only if you enter the value of “password” will you be able to access the other fields
and buttons. Upon clicking the Submit button, if the value is correct, the read-only fields
will change to editable and the hidden buttons will display. You will also get an alert that
the fields are unlocked. However, if you enter the wrong value, you will get an alert that
you entered the wrong password and the field will reset itself so you must try again. Refer
to Figure 19-4.

Figure 19-4. The Password field returns to blank if the password is incorrect

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

315

The Reset button will reset the form and make the text fields read-only and hide
some of the buttons. Refer to Figure 19-5.

For the Reset button, besides resetting the form, you can add the following code:

//Reset Password Field, File Fields and Button
var b=this.getField("Text1Password");
var c=this.getField("Text2");
var file1=this.getField("SubmitFile");
var btn1=this.getField("Submitfilebtn");
var d= this.getField("Reset");

Figure 19-5. The Reset button has two actions in the Actions tab

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

316

if(b.value==""){
 c.readonly =true;
 file1.readonly =true;
 btn1.display =display.hidden;
 app.alert("Fields are Locked again",3,0);
 d.display= display.hidden;

}

Not only does this lock (read-only), hide, and reset fields, but you also get an alert
message saying that the fields are locked again.

While not part of security, you can add this code to the Submit File buttons in the
Actions tab ➤ Run a JavaScript:

Submitfilebtn.1
// Additional Script for Submit a File Button
var file1 = this.getField("SubmitFile.1");
file1.browseForFileToSubmit();

Submitfilebtn.2
var file2 = this.getField("SubmitFile.2");
file2.browseForFileToSubmit();

Submitfilebtn.3
var file3 = this.getField("SubmitFile.3");
file3.browseForFileToSubmit();

The fields that correspond to these buttons have this setting added in the Options
tab “Field is used for file selection.” When the Submit File button is clicked, a dialog box
will open, allowing you to enter a text version of the location of a specific file on your
computer’s drive. Without these action settings for the buttons and these specific text
field settings in the Options tab, the Open dialog box will not appear. Refer to Figure 19-6.

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

317

Figure 19-6. The properties in the Options tab so that this field will work with the Submit
File button

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

318

JavaScript, while it can be used for some basic security, is not always the most
secure or reliable solution when it comes to encryption because these areas can be easily
accessed if you have Acrobat Pro DC.

In regards to signatures and security, I recommend reading Adobe Acrobat DC
Classroom in a Book by Lisa Fridsma and Brie Gyncild, especially Chapter 8 on signatures
and security. I find it has the most up-to-date PDF information in regards to secure
encrypted signatures that should be used in a company that requires professional
certification and IDs. Likewise, you can also contact Adobe if you need certificates or any
similar security.

For interest sake, I’ve included a file (TMC Signature Agreement) in this chapter’s
folder that does have JavaScript applied to the digital signatures, which you may want to
explore. This file uses a combination of signature fields and buttons to

•	 Make the signature fields read-only

•	 To show or hide

•	 To reset part or the entire form

In the Digital Signature Properties screen, take a moment to look at the Signed tab,
which is only available to digital signatures. Unlike other text fields, digital signatures do
not have Format, Validate, and Calculate tabs so the only places you can add actions are
the Actions and Signed tabs. Refer to Figure 19-7.

http://dx.doi.org/10.1007/978-1-4842-2893-7_8

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

319

Figure 19-7. Digital signature properties found in the Signed tab when you either use the
option of “Mark as read-only” or “This script executes when a field is signed”

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

320

Basically, as one signature is filled by the employee, the next signature becomes
available to the next supervisor. The example is the same as show and hide using fields
and a combination of buttons. At the very least, it provides a way to make sure files
are signed off in the correct order. It also places a restriction on who can reset what
fields. This method is more precise than simply choosing “Mark as read-only.” Refer to
Figures 19-7 and 19-8.

Code examples used in signatures and buttons:

//Employee Signature Field
var a = this.getField("employee");
a.readonly = true;

//Submit to Supervisor button
var a = this.getField("supervisor");
a.display = display.visible;

//Employee Reset Button
var a = this.getField("employee");
this.resetForm(a);

//Submit to HR Button
var a = this.getField("supervisor");
var b = this.getField("employee.submitForm");
a.display = display.visible;
b.display = display.hidden;

// Supervisor Reset Button
var a = this.getField("supervisor");
this.resetForm(a);

//Reset the whole form Button
var a = this.getField("supervisor");
var b = this.getField("employee.submitForm");
var c = this.getField("employee.resetForm");
a.display = display.hidden;
b.display = display.visible;
c.display = display.visible;

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

321

Figure 19-8. A Digital Signature field in the Signature Agreement PDF file

Notice how, as in Chapter 13, you are using display hidden and visible to hide and
show certain fields. Read only (.readonly) is a Boolean that can be set to either true or
false and determines whether the field is read-only or not. This script only executes once
the field has been signed and can’t be undone by the employee.

Barcodes
Finally, in regards to barcodes, this custom JavaScript influences how the barcode is
visually displayed when it refers to the various fields in the form. When the barcode is
scanned, this information is collected by a software program and entered into a database
for later viewing. If you are planning on buying a barcode reader/scanner or fax to
use with Acrobat PDF files, contact the company first and ask what types of JavaScript
codes its reader can decipher in regards to PDF barcodes. The company may be able to
supply documentation or allow you to test the scanner before buying. Also, to refer to
Adobe’s Barcoded Paper Forms Solution you may have to contact Adobe directly. Refer to
Figure 19-9.

http://dx.doi.org/10.1007/978-1-4842-2893-7_13

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

322

Figure 19-9. Barcode field properties are found in the Prepare Form tool. When you
choose the Barcode field, you may get the alert shown here. You can add or edit JavaScript
in the Value tab in the custom calculation script field.

ChaPTER 19 ■ DIgITal SIgnaTuRES anD BaRCoDES

323

JavaScript for barcodes is entered into the Actions or Value tabs. Unlike other form
fields, the barcode fields do not possess an Appearance tab. Changes to the type of
barcode need to be made in the Options tab symbology; however, if you are considering
adding a non-form related QR or barcode code to a document or form, refer to Chapter 3
of this book.

More information on Acrobat PDF barcodes can be found at https://helpx.adobe.
com/acrobat/using/pdf-barcode-form-fields.html.

Summary
In this chapter, you looked at signature fields and barcodes. Signature fields with
JavaScript can be used for basic security; however, they are not the most secure PDF
options unless combined with other security IDs and certifications. To use barcodes
properly requires a barcode reader or scanner.

The concluding chapter is a collection of homework assignments you can use to
practice and test the knowledge that you have gained from previous chapters.

http://dx.doi.org/10.1007/978-1-4842-2893-7_3
https://helpx.adobe.com/acrobat/using/pdf-barcode-form-fields.html
https://helpx.adobe.com/acrobat/using/pdf-barcode-form-fields.html

PART 5

Putting It into Practice

327© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7_20

CHAPTER 20

Homework Assignments

To complete the assignments in this chapter, be sure to download the Chapter 20 folder at
www.apress.com/9781484228920.

Homework Assignment 1: Show and Hide
Review Chapters 1, 2, and 4.

Use file Assignment1_showhide_start_2.
This assignment will be a review of the show and hide actions. However, this time

you will use yes and no radio buttons rather than a check box and a regular button.
It’s good to try similar projects in different ways to see which solution you are more
comfortable with. Depending on the form you create, one way may be better than
another. Remember that radio buttons are always found in groups. Most of the fields have
already been created for you. All you need to do is add the correct actions to them.

 1. Go to the Prepare Form tool. Refer to Figure 20-1.

On page 1 of the document, add a button called “Go to Form”
in the blank area at the bottom of the page. This will help
the reader to jump to the page that has the form. Helpful
navigation is useful when a document contains many pages
and you want the reader to get to the exact page quickly.

Figure 20-1. Add a button to page 1

http://dx.doi.org/10.1007/978-1-4842-2893-7_20
http://www.apress.com/9781484228920
http://dx.doi.org/10.1007/978-1-4842-2893-7_1
http://dx.doi.org/10.1007/978-1-4842-2893-7_2
http://dx.doi.org/10.1007/978-1-4842-2893-7_4

Chapter 20 ■ homework assignments

328

 2. Add the following properties to the General and Options tabs.
Refer to Figure 20-2.

 3. For the Actions tab, do the following:
Select Trigger: Mouse Up
Select Action: Go to a page view
Refer to Figure 20-3.

Figure 20-2. The button properties in the General and Options tabs. You can also add
tooltip text. The label layout is “Label only” and the label is named “Go to Form”.

Chapter 20 ■ homework assignments

329

 4. Now click the Add button. Refer to Figure 20-4.

Figure 20-3. The button properties in the Actions tab

Figure 20-4. In the Action tab, click the Add button

Chapter 20 ■ homework assignments

330

 5. While these instructions are on the screen, go to page 2 of the
document. Make sure the form is at least 75% so you can see
the entire form. When you are happy with the size, press the
Set Link button. Refer to Figure 20-5.

 6. When you are done, your Actions properties should look like
Figure 20-6.

 7. Click the Close button in the properties dialog box when
done.

 8. Click the Preview button in the upper right area of the Prepare
Form tool to make sure the Go to Form button is working.
Refer to Figure 20-7.

Figure 20-5. Click the Set Link button when you have gone to page 2

Figure 20-6. The final set of actions is added to the Actions tab

Figure 20-7. The Edit and Preview buttons

Chapter 20 ■ homework assignments

331

 9. To return to editing, click the Edit button. Refer to Figure 20-7.

Now you’ll work on page 2. Refer to Figure 20-8.

 10. In the upper right area for a review, make sure the Date field
is formatted to mm/dd/yyyy. Otherwise, leave this area alone
and not apply any additional changes or actions. Refer to
Figure 20-9.

Figure 20-8. The upper half of page 2 of Assignment 1

Figure 20-9. The Format tab with a specific date setting

Chapter 20 ■ homework assignments

332

Let’s look at the next area of the form you want to work on. Refer to Figure 20-10.

What you want to do, as in Chapter 4, is when the No radio button is selected, the
fields on the right will be hidden. When the Yes radio button is selected, you want the
fields on the right to be visible. As in the button example, if you realize afterwards that the
addresses are the same, you can click the No radio button again to hide all the right-hand
fields and reset them to blank. Refer to Figure 20-11.

Figure 20-10. The lower half of page 2 Assignment 1, Shipping Info

Figure 20-11. The lower half of page 2 Assignment 1, Shipping Info with No selected

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

Chapter 20 ■ homework assignments

333

 11. Begin with the right-hand fields and make sure that their
General tab property is set to Form Field: Hidden. Refer to
Figure 20-12.

 12. Only the Country field should be checked to “Read Only.”
Refer to Figure 20-13.

You do not need to make any other adjustments to these fields.
Now focus on the radio button group, which will do the show/hide and reset. Refer to

Figure 20-14.

Figure 20-12. The text fields on the right in the shipping info are set to Hidden

Figure 20-13. The Country field on the right is set to hidden and read-only

Figure 20-14. Yes and No radio buttons in the upper right of the shipping info

Chapter 20 ■ homework assignments

334

 13. Go to the Options tab of the Yes radio button. Refer to
Figure 20-15.

 14. Now go to the Options tab of the No radio button.

Refer to Figure 20-16.

 15. For the actions for Yes and No, refer to Chapter 4 and apply
them to the Radio buttons. Refer to Figure 20-17.

Figure 20-15. The Options tab with a choice of Yes

Figure 20-16. The Options tab with a choice of No

http://dx.doi.org/10.1007/978-1-4842-2893-7_4

Chapter 20 ■ homework assignments

335

Remember that Yes radio button will show the fields.

 16. Make sure to add actions to show these fields:

•	 First Name_2

•	 Last Name_2

•	 Address_2

•	 City_2

•	 Provinces_2

•	 Country_2

•	 PostalCode_2

Refer to Figure 20-18.

Figure 20-17. The actions for the radio buttons that will effect the text fields on the right

Chapter 20 ■ homework assignments

336

 ■ Note You will need to show and add these one at a time because you cannot select
more than one at a time.

The No radio button will hide and reset the form fields.

 17. Make sure to add actions to hide these fields:

•	 First Name_2

•	 Last Name_2

•	 Address_2

•	 City_2

•	 Provinces_2

•	 Country_2

•	 PostalCode_2

 ■ Note You will need to hide and add these one at a time because you cannot select more
than one at a time.

Figure 20-18. The actions for radio buttons: show or hide. Change the toggle to show or
hide a specific field.

Chapter 20 ■ homework assignments

337

 18. Finally, you will need to select and add the action called
“Reset a Form.” Refer to Figure 20-19.

 19. You will then select the items you need to reset, which you can
do in one action. Refer to Figure 20-20.

•	 First Name_2

•	 Last Name_2

•	 Address_2

•	 City_2

•	 Provinces_2

•	 Country_2

•	 PostalCode_2

•	 Group1

Figure 20-19. The Actions tab for the No radio button with a reset added last

Chapter 20 ■ homework assignments

338

Remember to include your Group 1 Yes and No radio buttons in the reset because
they need to refresh if set back to the original settings.

When you are done, preview your results and make sure the radio buttons are
functioning correctly. Refer to Figure 20-7 if you can’t remember how to do this.

The final item is to add a button called “Print This Document” at the bottom of page 2.
Refer to Figure 20-21.

 20. Make sure to give the button a name of Print in the General
tab. And give the label in the Options tab as you see in
Figure 20-21.

 21. For the Actions tab, choose “Execute a Menu Item” and Select
File ➤ Print. Refer to Figure 20-22.

Figure 20-20. The Actions tab for the No radio button and the field choices that will be
reset

Figure 20-21. The Print This Document button

Chapter 20 ■ homework assignments

339

This will print both pages. To print just one page, you will need the JavaScript coding
from Chapter 10.

 22. Test the button. When the user clicks Print, they will go
automatically to the Print dialog box.

Save the document. You are now finished with Assignment 1.

Homework Assignment 2: Working with
JavaScript to Create Formulas
Review Chapters 5, 6, 7, and 10.

Use the file Start with file Assignment_2_Formulas_start_2.
Refer to Figure 20-23 to open your form with the Prepare Form tool.

For this assignment, you will complete five formulas using JavaScript. The actual
formulas have been given above each field. The fields have already been created for you
and formatted to Number in the Format tab. The fields on the right are also set to read-
only in the General tab so that that these fields cannot be tampered with by clients during
the calculation. Refer to Figure 20-24.

Figure 20-22. The actions for the Print button

Figure 20-23. The Prepare Form tool

http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_5
http://dx.doi.org/10.1007/978-1-4842-2893-7_6
http://dx.doi.org/10.1007/978-1-4842-2893-7_7
http://dx.doi.org/10.1007/978-1-4842-2893-7_10

Chapter 20 ■ homework assignments

340

The fields on the left side require no extra JavaScript. You will only call to them
through variables as required using the fields on the right.

The first formula must be written as

Figure 20-24. Assignment 2 has five formulas you can use to create the calculations for the
fields on the right. Note that the fields have been set to read-only.

Chapter 20 ■ homework assignments

341

Area of a Circle
A = π r 2

In the field AreaRow 1, enter the following script in the custom calculation script area in
the Calculate tab and refer to Figure 20-25:

var radius1 = this.getField("RadiusRow1");
event.value = Math.PI * Math.pow(radius1.value, 2);

The number 2 in Math.pow(radius1.value, 2); is equivalent to writing r2.
Test it to make sure that the formula is working and then proceed to the other four

calculations.
If you’re not sure where to start, here is a hint:

Field: CircumferenceRow1
Circumference of a Circle
C = 2 π r

var radius2 = this.getField("RadiusRow1_2");
event.value = 2 * _______ * radius2.value;

Figure 20-25. Assignment 2 in the Calculate tab

Chapter 20 ■ homework assignments

342

What value from the above example should go here to complete the formula?
What does the JavaScript equivalent look like?

Field: VolumeRow1
Volume of a Sphere
V = 4/3 π r3

var radius3 = this.getField("RadiusRow1_3");
event.value = (4/3)* _______ * Math.pow(radius3.value, _____);

What two values from the above example should go here to complete the formula?
What does the JavaScript equivalent look like?

Field: FahrenheitRow1
Celsius to Fahrenheit to Formula.
(°C x 9/5) + 32 = °F.

var celsius = this.getField("CelsiusRow1");
event.value = (celsius.value* 9/5)+ _______;

What value from the above example should go here to complete the formula?
What does the JavaScript equivalent look like?

Field: CelsiusRow1_2
Fahrenheit to Celsius Formula.
(°F - 32) x 5/9 = °C

var fahrenheit = this.getField("FahrenheitRow1_2");
event.value = (fahrenheit.value-_______)*(5/9);

What value from the above example should go here to complete the formula?
What does the JavaScript equivalent look like?
Once you have entered the correct formulas into the Calculation tab area, refer to

Figure 20-26.

Figure 20-26. Assignment 2 in the Calculate tab ➤ Custom Calculation Script

Chapter 20 ■ homework assignments

343

Test them to make sure they are working. Sometimes you need to save the file, close
it, and then open it again so that it takes effect.

If it is functioning correctly, continue on to the next part of the assignment.
For the next part of the assignment, you will add a JavaScript to the Validation tab of

these fields. Refer to Chapter 6 and Figure 20-27.

•	 AreaRow1

•	 CircumferenceRow1

•	 VolumeRow1

Select “Run custom validation script. ”
Enter the following code:

if (event.value == 0) event.value = "";

This is to ensure that the field remains blank if nothing is entered in the radius fields.
Click OK after entering the script.
For the fields

•	 FahrenheitRow1

•	 CelsiusRow1_2

Figure 20-27. The Validate tab with a custom validation script

http://dx.doi.org/10.1007/978-1-4842-2893-7_6

Chapter 20 ■ homework assignments

344

enter this validation script:

if (event.value > 0){
 event.target.textColor = color.black;
}
else{
 event.target.textColor = color.red;
}

If the calculation is greater than zero, the text will be black; if less than zero, the text
will be red. As mentioned in Chapter 10, without JavaScript you could not have given
these numbers a two-color option.

Save your file. You have finished Assignment 2.

Homework Assignment 3: Custom Validation and
Regular Expressions
Refer to Chapters 8, 9, 10, and 11.

Use file Assignment_3_validation_start_2.
Refer to Figure 20-28 to open your form with the Prepare Form tool.

This assignment is a review of custom validations and regular expressions. Refer to
Figure 20-29.

Date:

Employee Name What is your First and Last Name?

Example: A6BF-479X-2139

myemail@email.com

http://mywebsite.com

Example: 999-999-9999

Employee Serial Number

Email

Website URL

Telephone Number

Reset
the Fields

Figure 20-29. Assignment 3 contains regular expressions and default text in the Format tab

Figure 20-28. Prepare Form tool

http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_8
http://dx.doi.org/10.1007/978-1-4842-2893-7_9
http://dx.doi.org/10.1007/978-1-4842-2893-7_10
http://dx.doi.org/10.1007/978-1-4842-2893-7_11

Chapter 20 ■ homework assignments

345

For the Date field, leave the format to None since you will try two format options.
Refer to Figure 20-30 for the next step.

Instead, add the following validation under the Validate tab:

//Date Validation
var re6Date = /^(\d{1,2})\/(\d{1,2})\/(\d{2})$/;
var re8Date = /^(\d{1,2})\/(\d{1,2})\/(\d{4})$/;
//prevent alert if field is blank
if(event.value !=""){
 if(re6Date.test(event.value)== false && re8Date.test(event.value)==

false){
 app.alert("I’m sorry. That is not a valid format. It must be mm/dd/yy

or mm/dd/yyyy. ");
event.rc = false;
 }
}

For the Employee Name field, set the Format tab to Custom. Refer to Figure 20-31.

Figure 20-30. Run a custom validation script

Chapter 20 ■ homework assignments

346

Enter the following custom format script:

// Custom Format script
if (!event.value){ event.value = "What is your First and Last Name?";
 event.target.textColor = color.gray;
}
else{
 event.target.textColor = color.black;
}

Then select the “Run custom validation script” button in the Validate tab and enter
the following code. Refer to Figure 20-32.

Figure 20-31. Apply a custom format category

Chapter 20 ■ homework assignments

347

// Custom Validation of Name
var re = /^[A-Z][a-z]+ [A-Z][a-z]+$/
if(event.value !=""){
 if (re.test(event.value)== false){
 app.alert("That does not appear to be a valid name. I need a first and

last name.");
 event.rc = false;
 }
}

Looking at JavaScript, think about how you could modify this code for the other
fields in the Format and Validate tabs. This script is covered in Chapters 9 and 10
(the default method).

•	 Employee Serial Number

•	 Email

•	 Website URL

•	 Telephone Number

For the telephone number, alter the script in the Custom Format tab slightly for three
colors since the original only had two colors in the example.

Figure 20-32. Apply validation in the Validate tab for the Employee Name field

http://dx.doi.org/10.1007/978-1-4842-2893-7_9
http://dx.doi.org/10.1007/978-1-4842-2893-7_10

Chapter 20 ■ homework assignments

348

// Custom Format script
var rgexTele = /^[(]{0,1}[0-9]{3}[)]{0,1}[-\s\.]{0,1}[0-9]{3}[-\s\.]{0,1}
[0-9]{4}$/;
if (!event.value){
 event.value = "Example: 999-999-9999";
 event.target.textColor = color.gray;
}
else if(rgexTele.test(event.value)){
 event.target.textColor = color.black;
}
else{
 event.target.textColor = ["RGB",1,0,0]; //Change text to red
}

For the Employee Serial Number Validate tab script, refer to Chapter 11 (text field
validation with regular expressions).

For the Email Validate tab script, refer to Chapter 11.
For the Website URL Validate tab script, refer to Chapter 11.
For Telephone Number Validate tab script, refer to Chapter 11 for correct script; use

only the 10-digit example at the beginning of the chapter.
Alerts such as the one in Figure 20-33 should appear if the data is not entered

correctly.

At the end of the assignment make sure to add a reset action to all the fields with a
button.

A final thing to add to the button is to make it multi-line. Refer to Chapter 10 for an
example. Refer to Figure 20-34 for how to set up the button.

Figure 20-33. An alert from a custom validation script

http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://dx.doi.org/10.1007/978-1-4842-2893-7_10

Chapter 20 ■ homework assignments

349

Figure 20-34. Various properties in the General, Options and Actions tabs for the Reset
button. Add “Run a JavaScript” to make the button multi-line.

Chapter 20 ■ homework assignments

350

Choose “Run a JavaScript” and enter this code:

this.getField("Reset").buttonSetCaption("Reset\n the Fields");

Then reset all the form fields. Click OK and close the button properties.
When done, save your file. You have completed Assignment 3.

Homework Assignment 4: Personal Dropdown
Menu and Definitions Text Box
Review Chapters 11 and 12.

Use file Assignment_4_multiline_dropdown_start_2.
Refer to Figure 20-35 to open your form with the Prepare Form tool.

This final assignment is useful when you have a topic, but you need to see more
information on the topic such as a definition. Dropdown menus can only be single line,
and a multi-line menu is a nice option to have. Refer to Figure 20-36.

Figure 20-35. The Prepare Form tool

Figure 20-36. The final assignment is to create a dropdown that has extra information
appear in a text box

http://dx.doi.org/10.1007/978-1-4842-2893-7_11
http://dx.doi.org/10.1007/978-1-4842-2893-7_12

Chapter 20 ■ homework assignments

351

The dropdown and the text field have already been set up. Refer to Figure 20-37.

The Options tab offers these options:

•	 Diamond

•	 Ruby

•	 Emerald

•	 Sapphire

•	 Tourmaline

Leave the export value blank, so it will not mess with the JavaScript. Remember to
check “Commit selected value immediately” so the script will load right away into the
text box.

For the Option tab of the text field Text2, make sure it is set to multi-line in case the
comments become longer. As in Figure 20-38, you can uncheck “Check spelling” because
this option is not required.

Figure 20-37. The Options tab of the Dropdown Properties dialog box

Chapter 20 ■ homework assignments

352

In the General tab, give the text field a setting of read-only.
Do not alter anything else in the text field and only focus on the dropdown menu and

document JavaScript. Refer to Figure 20-39.

In the dropdown menu under the Format tab, set it to Custom and add the following
JavaScript to the custom keystroke script area:

if(event.willCommit)
{
 if(event.value == "Select a Topic")
 this.resetForm(["Text2"]);
 else
 SetFieldValues(event.value);
}

Figure 20-38. The properties in the Options tab with “Check spelling” not selected

Figure 20-39. The Dropdown Properties Format tab with a custom keystroke script

Chapter 20 ■ homework assignments

353

You don’t need to do anything else to the dropdown menu.
Now exit from the Prepare Form tool and go to Tools ➤ JavaScript. Refer to

Figures 20-40 and 20-41.

Select the Document JavaScripts tool. Refer to Figure 20-41.

Give it the script a name of SetFieldValue and click the Add button. Refer to
Figure 20-42.

Figure 20-40. From the Prepare Form tool, switch to the JavaScript tool

Figure 20-41. Select the Document JavaScripts tool to enter the dialog box

Chapter 20 ■ homework assignments

354

Figure 20-42. The Document JavaScripts dialog box with the SetField values script. The
text is entered into the JavaScript Editor.

Chapter 20 ■ homework assignments

355

Enter only this script:

//Global Document SetFieldValues Script
// Place all prepopulation data into a single data structure
var MenuData = { Diamond:{ definition: "The Diamond has a hardness of 10."},
 Ruby:{ definition: "The Ruby has a hardness of 9."},
 Emerald :{ definition: "The Emerald has a hardness on 8. "},
 Sapphire:{ definition: "The Sapphire has a hardness of 9."},
 Tourmaline:{ definition: "Tourmaline has a hardness of 7.5."}};
function SetFieldValues(cDropdown)
{
 this.getField("Text2").value = MenuData[cDropdown].definition;

}

Once entered, click OK to confirm and click Close to close the Document JavaScript
dialog box. Refer to Figure 20-42.

Exit out of the JavaScript tools and test the dropdown menu by selecting a name from
the menu.

As you let go of the selection from the dropdown menu, the definition text should
appear in the text box.

When you select the top value, it should reset itself to blank.
Make sure to test the file to confirm that all parts of the menu are functioning.
Refer to Figure 20-43.

Figure 20-43. This is what the final assignment should look like

Chapter 20 ■ homework assignments

356

Save your file. You have completed the final assignment.

Summary
To help apply what you’ve learned throughout the book, this chapter presented you with
four assignments.

357© Jennifer Harder 2017
J. Harder, Enhancing Adobe Acrobat DC Forms with JavaScript,
DOI 10.1007/978-1-4842-2893-7

��������� A
Account number validation, 210
Actions

alert boxes, 27
calculation, tab

dropdown properties, 35
dropdown rating, 34
extension, dropdown fields, 35
final outcomes, 33, 34

field properties, 27
forms value (see Forms value)
Form tool and properties, 44
print form button, 42–43
reset button, 41–42
tab, text field properties, 28
text fields

calculate tab with radio
group, 37

check box properties, 38–40
customer survey, 36
Options tab, 36
properties, 38
radio button properties, 37
surveys, 35

Action Wizard
action and command options, 283
add watermark, 281
custom commands, 283
execute JavaScript, 277
JavaScript editor, 278
JavaScript options, 282
manage actions tool, 281
name and description, add, 280
new action selections, 277
save button, 279
signature field, 282
tools, 275

Alert method
buttons, 147–148
comment, 149–151
document actions

close, 146
print, 147
tool, 145

document JavaScripts, 141–143
signature, 151–153
text fields

customer order code, 167–169
customer’s company name,

169–170
customer’s full name, 163–165
date, 165–167

time stamp, 151–152, 154
types, 140–141
version and validation, 143, 145

��������� B
Barcodes, 321, 323
Bonus star rating idea, 291–292
Button

actions, 68–70, 72
behaviors and states, 58
comb of characters, 80–82
creation

add, image field icon, 296
icon only, Options tab, 296
image importing, 297
JavaScript action, Actions

tab, 297
form navigation, 77
Newsletter Navigation, 72, 74, 76
non-form properties actions (see

Non-form actions)
options, 56

Index

■ INDEX

358

set layer visibility, 86–89
show and hide, 59, 82, 84–86
triggers, 67–68

Button slide show variation
addToTalkList, 259
code, 259
document JavaScript, 259
extra, 258–262
GetMasterExport, 260
guest speaker, 262
images, 258
list box, 258, 260–261
priority list, 258
Selection Change tab, 261
text field, 262

��������� C
Calculate tab

custom calculation script, 115–116
SFN, 113, 115, 117–118
sum value, 112–113
validation, 118–119

Color properties, 177
Customer service, 28
Custom validation, 344–348

��������� D
Date formatting, 129–133
Default text method, 160–162
Digital signatures and security

combination of signature fields, 318
JavaScript code, 314
mark as read-only, 320
password access, 312
password setting, Options tab, 313
reset button, 315
Signed tab, 318–319
Submit File button, 316, 317
Text1Password field, 313
wrong password, 314

Dropdown menus, 350–355
Document JavaScripts tool, 238
labor intensives, 237
LoadOptions, 237, 238
multiple, 237
number areas, 237
single, 237
and text boxes, 238

��������� E
Email and URL validation, 210–211

��������� F, G, H
Fields refresher

blank and inactive, 8
Forms Menu tool, 8, 9
options, 8
selection tool, 8

Format calculations
Acrobat and Excel, 123–124
number (see Number formatting)

Formatting, JavaScript
color properties, 177
complex

addition and subtraction
ratings, 183

borderStyle, 187
border width/lineWidth, 187
box appearance, 185
check box properties, 184
custom validation script, 185–186
fillColor, 187
fontFamily, 188
fontStyle, 188
fontWeight, 188
strokeColor, 187
survey, 183
text alignment, 187
textColor, 186
text field properties, 184
textFont, 186
textSize, 187

control panel area, 192
customize forms, 191
multi-line buttons

icon graphic, 178
properties, 178
resetting, comment field, 179
text spread, 177

multi-line text
category, 182
creation, text comments

field, 180
custom keystroke script, 181, 182
font size, 182
Options tab, 180
second comment text field, 180
text color, 181–182

Button (cont.)

■ INDEX

359

non-form items, 192
printing (see Silent printing)
text fields (see Text fields formation)
textFont, 191–192

Form navigation, 77–78, 80
Forms review

Adobe InDesign program, 4
area, 6
creation, 4
JavaScript, 3
links, 7
options, 8
PDF, 3–6
preparation, 5
properties, 3, 6
tools, 4, 7

Forms value
select format category, 29
survey, customer service, 28
text fields properties, 29
validate tab, 30–33

Formulas
area of a circle, 341
celsius to fahrenheit, 342
circumference of a circle, 341
fahrenheit to celsius, 342–343
volume of a sphere, 342

��������� I, J, K
i++, 176
Image Field icon, 295
Image importing, button,

295–296, 298

��������� L
List boxes

buttons (see Button slide show
variation)

check box and dropdown
coding, 248–249
document JavaScript, 251
double-check, 249
Format tab properties, 251
free newsletter, 247
ListTiles, 249
method, 252
newsletter PDF file, 248
Option tab properties, 251, 252
oArray, 249

quotes, 249
screen properties, 250
script action, 249
selection, 250
single, 247

check box and multi-dropdown
associative syntax, 258
control, 256
if/else conditional

statements, 256
Options and Actions

tabs, 254–255
properties, 257
script, 256
second free newsletter

project, 253
Selection Change tab, 255–256
variation, 252

hidden fields, 262–263
information transfer, 264
interaction, 262
number rating, 263
priority list with control buttons

Actions tab, 243
add button, 244
add button transfers, 240
addToPriority, 241
clear and delete buttons, 240
clear/reset button, 245
custom form field, 240
delete button, 244
Down button, 246
Options tab, qualityList, 242
PDF project, document

JavaScript, 241
preparation, 242
qualityList, 241
Up button, 245
variables, 242

��������� M
Money transfer

Actions tab, radio buttons, 199
amount, 196
checking, savings, 196
choosing account, 196
coding, 200
Form tool, 197
group radio buttons, 198–199
properties, 195

■ INDEX

360

radio button layout, 197
variables, 200
warnings, savings to savings

account, 196
Multiple formatting

document JavaScripts, 302
numbers

currency symbols, 305
Format tab, 307
inner format scripts, 304
mass format, 309
nDecimal controls, 304
negative number style, 305
PFCustom_Format, 307
prepend space, 306
price script, 302–303
separator style, 304

text field properties
Format tab, 300
form mode, 301

Multi-state check boxes
Appearance tab, 286, 290
blank state, 290
button properties

Appearance and Options tabs, 287
auto font size, 291

button states, 288
conditional statements, 289
if/else condition, 289
Mouse Up trigger, 288
Options tab, 288
prepare Form tool, 286
radio buttons, 285
reset selection, button field, 289
select all check boxes, 292–293

��������� N, O
Name validation

custom validation script, 209
regular expression metacharacters,

209–210
user types, 210

Newsletter Navigation
actions, 74, 76
bookmark, 76
types, 74

Non-form actions
bookmarks, 61–62
layer properties, 65–67

pages, 60–61
rich media non-form navigation, 64
web hyperlinks, 63

Number formatting, 125–126
date (see Date formatting)
percentage, 126–129
time (see Time formatting)

��������� P
Parts order form

addition, 226
add/remove elements, 228
calculateRowTotal, 228
calculation, 232–234
changes, dropdown menu, 224
code, dropdown menu, 231
connection, dropdown menus, 224
creation, associative

syntax/object, 226–227
currency symbol, 231
customer choice, 225
custom keystroke script, 229

second dropdown menu, 231
description dropdown menu, 228
divisions, associative syntax, 227
dropdown and copy, text fields, 227
dropdown properties, 229
Format tab’s, Custom field, 229
global document JavaScript, 225
information, 223
label field, 228
oArray, 229
Option and Format tabs,

dropdown fields, 230
project, 224
quantity column, 232
second dropdown menu, 230
SetDescriptionEnteries, 227
SetEachValue function, 228, 231
shift method, 228
.split(), 228
Subtotal field, 234, 235
text field properties, 232
Total field, 236
various fields, Document

JavaScripts, 226
Popup menu

app.alert, 269
app.popUpMenu, 269
button properties, 268, 270

Money transfer (cont.)

■ INDEX

361

close warning function, 267
extra lessons, 270
if/else statement, 266
JavaScript and associative

syntax, 268–269
switch expression, 269

Print form button, 42–43
Professional printing, 53
Properties refresher

barcode field, 18
button and image properties, 16
changes, 11
check box, 14
choosing, 10
Close button, 10
digital signature, 17
dropdown, 12
Edit mode, 9, 10
list box, 13
radio button, 15
reveal, 10
text field and date field, 11

��������� Q
QR code

Acrobat Pro DC, 45
Barcode Field Properties, 46
browsing, 48
creation, 53

buttons, 49
category dropdown menu, 49–50
different file formats, 48
File menu, 47
folder category, 49
generation, 47
InDesign CC 2014, 47
JPEG graphic, 49
PDF file, 47
selection, image, 48
Stamp button, 47
stamp tool menu, 48

creation, barcodes, 45
custom stamp

business cards, 46
creation, 46
online PDFs, 46
PDF document, 45
Photoshop, 49
print material, 46
smartphones, 46

Form tool, 45
open button, 49
professional printing, 53
stamp tool

comment tool, 52
dropdown menu, 50
identity, 51
management, 51
mouse cursor, 51
prints, 53
security, 50

��������� R
Radio buttons

shipping price (see Shipping price)
transfer, money (see Money transfer)

Refresher
fields (see Fields refresher)
properties (see Properties

refresher)
tabs (see Tabs refresher)

Regular expressions, 344, 348
Rollover method

document JavaScripts, 157
extra non-custom JavaScript

check box, 160
HelpExit, 158
JavaScript tool, 157
mouse enter, 159
mouse exit, 160
text field, 156

��������� S
Shipping price

ability, radio button, 204
coding, 202
courier company, 203
discount, 201–202
FedEx, 201
invoice form, 201
radio button properties, 201–204
text boxes, 201
value and simplified field

notation, 201
Show and hide

Actions tab, 329, 338
button properties

General and Options tabs, 328
print action, 339

■ INDEX

362

country field, 333
edit and preview buttons, 330
Options tab, 334
Prepare Form tool, 327
Print button, 339
radio buttons, 333–336
reset form, 337
set Link button, 330
specific date setting,

Format tab, 331
text fields, 333

Silent printing
Acrobat, 189, 190
code, 190
execute a menu item

action, 189
specific pages, 190

Simplified field notation (SFN)
fields and tabs

actions, 94
calculate, 97–98
format, 95–96
validate, 97

global document JavaScript,
103–104, 106

property
barcode, 102–103
digital signature, 100–101
list box, 99–100

regular vs. E-Sign forms,
107, 108

Skills request form
cDeptName, 221
current skill, 217
custom keystroke script

area, 223
DeptInfo, 220
document JavaScripts

tool, 218
dropdown and text fields, 221
dropdown list, 223
dropdown Options tab, 221–222
dropdown selection, 221
Format tab’s custom keystroke

script, 223
project, 218
script, 218–219
SetSelectValues, 219–221
small company, 217

��������� T, U
Tabs refresher

action, 21
appearance, 19
barcodes, 21
buttons and image

fields, 21
calculate, 22
check boxes and radio

buttons, 20
close button, 23
format, 21
general, 18
list boxes and dropdown

menus, 20
locked, 23
options, 19–20, 24
position, 19
signed, 22
text field vs. barcode, 23
validate, 22
value, 22

Text box, 350–351, 355
Text fields formation

choices, 174
code, 175
control, 176
fieldsRed, 175
font/field colors, 173
for() loop, 176
JavaScript tool, 175
lines, 176
multiple fields, 174
stroke color, 177

Text field validation
account number, 210
alert warning, telephone

number, 211–212
Email and URL, 210–211
name (see Name validation)
phone number and date, 211
telephone

coding, 206
custom number and color

formatting, 207
End PDF file, 208
good regular

expressions, 208
incorrect input, 205

Show and hide (cont.)

■ INDEX

363

JavaScript, 206
regular expression, 206
script, 204
Special Phone Number

format, 207
Time formatting, 133–136

��������� V, W, X, Y, Z
Validation

alert, 143–145
changing, shipping price (see

Shipping price)

custom format script
changes, 214
default text, 213

custom validation script
code, 213

errors, 212
money transfer (see Money

transfer)
text field (see Text field validation)

Viewer version, 143–145

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part 1: Basic Form Improvements
	Chapter 1: A Fundamental Forms Primer
	Forms Review
	Fields Refresher
	Properties Refresher
	Text Box Field Properties and New Date Field Properties
	Dropdown Properties
	List Box Properties
	Check Box Properties
	Radio Button Properties
	Button Properties and Image Properties
	Digital Signature Properties
	Barcode Properties

	Tabs Refresher
	Summary

	Chapter 2: Introduction to Actions
	Getting Started
	Rating Forms Value Averaging and Sum: Working with Text Fields
	The Validate Tab

	Page 2 of Project: The Calculate Tab for the Grand Total Using Sum
	Sum and Averaging Using Check Boxes or Radio Buttons with Text Fields
	Using Radio Buttons on Page 3 of the Project
	Using Check Boxes on Page 3 of the Project

	Basic Action Button Triggers for Reset Buttons and Printing Buttons
	Reset Button
	Print Form Button

	Summary

	Chapter 3: Creating a QR Code Custom Stamp
	Customizing Your QR Code Stamp
	QR Code Creation
	Using the Stamp Tool
	Final Thoughts: QR Code for Professional Printing
	Summary

	Chapter 4: Buttons, Navigation, Form and Non-Form Actions
	Creating a Button Icon
	Example of a Button as a Label Only

	Non-Form Properties Actions
	Pages
	Bookmarks
	Web Hyperlinks
	Rich Media Non-Form Navigation Buttons
	Layers Basic Actions

	Triggers for Actions
	Choose an Action That Requires No Code
	Newsletter Navigation with Buttons
	Form Navigation with a Button as Helpful Hint
	Adding a Comb of Characters
	Before Comb and After Comb

	More Action Triggers to Show and Hide
	Hide and Clear Fields Button

	Set Layer Visibility
	Using Bookmarks
	Using Buttons

	Summary

	Part 2: Simplified Field Notation and Basic JavaScript
	Chapter 5: Introduction to Simplified Field Notation and JavaScript
	Getting Started
	Text Field, Date, and Dropdown Menu Properties
	Action Tab
	Format Tab
	Validate Tab
	Calculate Tab
	Check Box, Radio Button, Image Field, and ButtonProperties
	List Box Properties
	Digital Signature Properties
	Barcode Properties
	Global Document JavaScript
	Web Links and References
	Regular Forms vs. E-Sign Forms

	JavaScript and Acrobat on the Document Level
	Summary

	Chapter 6: Basic and Complex Calculations
	Getting Started
	Sum Value
	Simplified Field Notation
	JavaScript Custom Calculation Script
	Final Thoughts
	The Final Line of Code
	Dropdown Alternatives

	Summary

	Chapter 7: Format Calculations
	Number Formatting
	Formatting with a Percentage
	A Workaround for the Percentage

	Date Formatting
	Time Formatting
	Final Thoughts
	Dropdown Alternatives

	Summary

	Chapter 8: Various JavaScript Alerts, Notes, and Time Stamps
	Alert Types
	Create a Document JavaScript
	Viewer Version and Validation Alert
	Document Actions
	Document Will Close
	Document Will Print

	Alerts Working with Buttons
	Adding a Comment Note, Signature, and Time Stamp
	Summary

	Chapter 9: Create Help for Clients with Rollover Text and Alerts
	The Rollover Method
	Mouse Enter
	Mouse Exit
	Extra Non-Custom JavaScript Check Box Example

	The Default Text Method
	The Alert Method
	Customer’s Full Name
	Date
	Customer Order Code
	Customer’s Company Name

	Final Thoughts
	Summary

	Chapter 10: Various Types of Formatting with JavaScript
	Adding Global Formatting to Text Fields
	Color Properties
	Multi-Line Buttons
	Multi-Line Text
	Complex Formatting Using Check Boxes and Text Fields
	Silent Printing
	Final Thoughts
	Summary

	Part 3: Working with More Complex Forms
	Chapter 11: Validation with Text Boxes, Alerts, and Radio Buttons
	Money Transfer Example
	Changing the Shipping Price Using Radio Buttons
	Text Field Validation with Regular Expressions
	Telephone Validation
	Name Validation
	Account Number Validation
	Email and URL Validation
	Another Phone and Date Example with Two Variables

	Final Thoughts
	Summary

	Chapter 12: Working with Dropdown Menus
	Current Skills Request Form
	Parts Order Form
	Final Thoughts
	Load a Lengthy Single Dropdown or List Menu

	Summary

	Chapter 13: Working with List Boxes
	List Box Priority List with Control Buttons
	The Add Button
	The Delete Button
	The Clear or Reset Button
	The Up Button
	The Down Button

	Check Box, Dropdown, and List Box Example 1
	Check Box, List Box, and Multi-Dropdown Example 2
	Button Slide Show Variation
	Extra Example Priority List Improved

	Final Thoughts
	Hidden Fields
	Using List Boxes for Number Rating

	Summary

	Chapter 14: Advanced Navigation: The Popup Menu
	The Popup Menu Example
	Final Thoughts
	Summary

	Part 4: Beyond the Basics
	Chapter 15: Action Wizard and JavaScript
	Working with Action Wizard
	Reuse JavaScript from Chapter 8

	Is It a Custom Action or a Custom Command?
	Create and Manage Custom Commands

	Summary

	Chapter 16: Multi-State Check Boxes
	The Problem of Multi-State Check Boxes
	Bonus Star Rating Idea
	Select All or Deselect All Check Boxes at Once
	Summary

	Chapter 17: Importing an Image into a Button
	Creating the Button
	Summary

	Chapter 18: Multiple Formatting
	The Problem of Multiple Formatting
	Option 1: Do It Yourself
	Price Script
	No Price Script

	Option 2: Call a Professional
	Summary

	Chapter 19: Digital Signatures and Barcodes
	Digital Signatures and Security
	Barcodes
	Summary

	Part 5: Putting It into Practice
	Chapter 20: Homework Assignments
	Homework Assignment 1: Show and Hide
	Homework Assignment 2: Working with JavaScript to Create Formulas
	Area of a Circle A = π r 2
	Field: CircumferenceRow1 Circumference of a Circle C = 2 π r
	Field: VolumeRow1 Volume of a Sphere V = 4/3 π r3
	Field: FahrenheitRow1 Celsius to Fahrenheit to Formula. (°C x 9/5) + 32 = °F.
	Field: CelsiusRow1_2 Fahrenheit to Celsius Formula. (°F - 32) x 5/9 = °C

	Homework Assignment 3: Custom Validation and Regular Expressions
	Homework Assignment 4: Personal Dropdown Menu and Definitions Text Box
	Summary

	Index

