
Essential
Angular for
ASP.NET Core MVC

—
Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Essential Angular for
ASP.NET Core MVC

Adam Freeman

www.allitebooks.com

http://www.allitebooks.org

Essential Angular for ASP.NET Core MVC

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-2915-6 ISBN-13 (electronic): 978-1-4842-2916-3
DOI 10.1007/978-1-4842-2916-3

Library of Congress Control Number: 2017949481

Copyright © 2017 by Adam Freeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Gwenan Spearing
Development Editor: Laura Berendson
Technical Reviewer: Fabio Claudio Ferracchiati
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484229156. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.springeronline.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484229156
http://www.apress.com/source-code
http://www.allitebooks.org

Dedicated to my lovely wife, Jacqui Griffyth.
(And also to Peanut.)

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ���xv

About the Technical Reviewer ���xvii

 ■Chapter 1: Understanding Angular and ASP�NET Core MVC ����������������������������������� 1

 ■Chapter 2: Getting Ready ��� 5

 ■Chapter 3: Creating the Project ��� 21

 ■Chapter 4: Creating the Data Model �� 43

 ■Chapter 5: Creating a Web Service �� 69

 ■Chapter 6: Completing the Web Service �� 103

 ■Chapter 7: Structuring an Angular Application ��� 135

 ■Chapter 8: Creating the Store �� 159

 ■Chapter 9: Completing the Angular Store �� 187

 ■Chapter 10: Creating Administration Features �� 227

 ■Chapter 11: Securing the Application �� 251

 ■Chapter 12: Preparing for Deployment �� 279

Index ��� 295

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ���xv

About the Technical Reviewer ���xvii

 ■Chapter 1: Understanding Angular and ASP�NET Core MVC ����������������������������������� 1

Who Is This Book For? �� 1

What Does This Book Cover? �� 1

What Doesn’t This Book Cover? ��� 1

What Do You Need to Know? �� 2

Are There Lots of Examples? �� 2

Where Can You Get the Example Code? ��� 4

Where Can You Get Corrections for This Book? �� 4

Contacting the Author ��� 4

Summary �� 4

 ■Chapter 2: Getting Ready ��� 5

Getting Ready on Windows ��� 5

Installing �NET Core �� 6

Installing Node�js �� 6

Installing Git �� 8

Installing Docker ��� 8

Installing Visual Studio 2017 �� 10

Installing Visual Studio Code �� 11

Getting Ready on Linux �� 12

Installing �NET Core �� 12

Installing Node�js �� 13

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

viii

Installing Git �� 13

Installing Docker ��� 14

Installing Visual Studio Code �� 15

Getting Ready on macOS �� 15

Installing �NET Core �� 16

Installing Node�js �� 16

Installing Git �� 17

Installing Docker ��� 17

Installing Visual Studio Code �� 19

Summary �� 19

 ■Chapter 3: Creating the Project ��� 21

Preparing to Create a Project ��� 21

Creating the Project �� 22

Creating the Angular Part of the Project ��� 22

Creating the ASP�NET Core MVC Part of the Project �� 24

Configuring the Project ��� 25

Removing Files ��� 30

Updating the Controller, Layout, and View �� 30

Running the Project �� 32

Understanding the Combined Project and Tools ��� 34

Understanding the Structure of the Project �� 34

Understanding the Tool Integration ��� 35

Detecting TypeScript Errors �� 38

Summary �� 41

 ■Chapter 4: Creating the Data Model �� 43

Preparing for This Chapter ��� 43

Starting the Data Model ��� 44

Preparing the Database Server��� 44

Creating the ASP�NET Core MVC Data Model �� 46

Starting the Angular Data Model �� 54

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Understanding the TypeScript Data Model Classes �� 56

Integrating the Angular Data Model �� 60

Displaying the Data��� 63

Reviewing the Application Structure �� 66

Reviewing the ASP�NET Core MVC Application Structure �� 67

Reviewing the Angular Application Structure ��� 67

Summary �� 68

 ■Chapter 5: Creating a Web Service �� 69

Preparing for This Chapter ��� 70

Introducing a Web Service ��� 71

Understanding RESTful Web Services �� 71

Creating the Web Service ��� 72

Using the Web Service in the Angular Application �� 74

Loading Related Data ��� 81

Implementing the GET Method for Multiple Objects ��� 90

Implementing the Web Service Action Method ��� 90

Querying Multiple Objects in the Angular Application �� 92

Filtering the Data �� 96

Understanding the Structure of the Web Service ��� 100

Summary �� 101

 ■Chapter 6: Completing the Web Service �� 103

Preparing for This Chapter ��� 103

Implementing the POST Method ��� 104

Understanding the API Enhancements ��� 104

Creating the Data Binding Classes ��� 105

Implementing the Web Service Action Methods ��� 107

Creating Data Objects in the Angular Application ��� 110

Implementing the PUT Method ��� 115

Implementing the Web Service Action Methods ��� 115

Replacing Products in the Angular Application ��� 117

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

x

Implementing the PATCH Method ��� 120

Understanding JSON Patch��� 121

Enhancing the Product Binding Target ��� 122

Implementing the Web Service Action Method ��� 123

Updating Objects in the Angular Application �� 124

Implementing the DELETE Method ��� 127

Configuring the Database ��� 128

Implementing the Web Service Action Method ��� 130

Deleting Objects in the Angular Application�� 131

Summary �� 134

 ■Chapter 7: Structuring an Angular Application ��� 135

Preparing for This Chapter ��� 136

Using the Data Model for Component Cooperation �� 137

Creating the Display Component �� 137

Creating the Filter Component �� 140

Applying the New Components �� 141

Understanding the Application Structure �� 143

Adding Another Component �� 143

Understanding Angular Routing ��� 147

Creating the Routing Configuration �� 147

Applying the Routing Configuration �� 149

Navigating Using Routes��� 150

Improving Navigation �� 153

Understanding the Application Structure �� 158

Summary �� 158

 ■Chapter 8: Creating the Store �� 159

Preparing for This Chapter ��� 160

Starting the Product Selection Feature �� 161

Blocking Out the Feature Components ��� 161

Configuring the Angular URL Routes �� 167

Removing the Layout Header�� 167

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xi

Displaying the Product List��� 168

Understanding the Product List Template Features �� 169

Creating the Category Filter ��� 171

Enhancing the ASP�NET Core MVC Application �� 172

Receiving Category Data in the Angular Data Repository ��� 173

Updating the Filter Component and Template �� 174

Creating the Pagination Controls �� 176

Creating and Registering a Pagination Service �� 176

Updating the Pagination Button Component ��� 178

Paging the Product Data ��� 180

Displaying Ratings �� 181

Adding the Font Awesome Package ��� 181

Updating the Rating Component and Template �� 182

Applying the Rating Component ��� 184

Summary �� 186

 ■Chapter 9: Completing the Angular Store �� 187

Preparing for This Chapter ��� 187

Creating the Shopping Cart �� 188

Extending the Angular Data Model ��� 188

Registering the Cart as a Service ��� 190

Wiring Up the Buttons ��� 191

Creating the Cart Summary Component ��� 191

Displaying the Cart Detail ��� 193

Storing Carts �� 197

Extending the ASP�NET Core MVC Data Model �� 198

Creating the Cart Storage Web Service �� 199

Storing and Retrieving Cart Data �� 203

Creating the Checkout Process �� 206

Extending the ASP�NET Core MVC Data Model �� 206

Creating the ASP�NET Core MVC Web Service ��� 208

Creating the Angular Checkout Process ��� 210

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xii

Creating the Checkout Components ��� 213

Registering the Components and Creating the Routes ��� 220

Storing Checkout Details as Session Data �� 223

Summary �� 226

 ■Chapter 10: Creating Administration Features �� 227

Preparing for This Chapter ��� 227

Adding Administration Features ��� 229

Creating the Administration Components ��� 230

Administering Products �� 235

Creating the Editor Component��� 236

Creating the Product Table ��� 238

Administering Orders ��� 242

Dealing with Request Errors ��� 244

Creating the Error Handling and Distribution Service ��� 244

Displaying Errors �� 246

Reporting Validation Errors ��� 247

Summary �� 249

 ■Chapter 11: Securing the Application �� 251

Preparing for This Chapter ��� 251

Restricting Access to Action Methods �� 253

Restricting Access to Suppliers �� 253

Restricting Access to Orders �� 253

Restricting Access to Products ��� 254

Testing the Restrictions �� 257

Installing and Configuring ASP�NET Core Identity ��� 258

Installing the ASP�NET Core Identity NuGet Package �� 258

Creating the Identity Context Class and Seed Data �� 258

Adding Identity to the Application Configuration �� 260

Creating the Database Migration �� 263

 ■ Contents

xiii

Creating the Authentication Controller and View �� 263

Understanding the Conventional Authentication Flow �� 265

Authenticating Directly in Angular �� 267

Testing the Client Authentication Process �� 278

Summary �� 278

 ■Chapter 12: Preparing for Deployment �� 279

Preparing for This Chapter ��� 279

Preventing Cross-Site Request Forgery Attacks �� 280

Enabling Anti-CSRF Tokens ��� 281

Sending and Receiving Anti-CSRF Tokens �� 283

Creating the Database Migration Command �� 286

Disabling Logging Messages �� 289

Disabling Automatic Angular Builds and Hot Modules ��� 290

Preparing the Angular Startup Sequence ��� 291

Performing the Production Dry Run ��� 292

Preparing the Database �� 292

Building the Angular Application ��� 292

Starting the ASP�NET Core MVC Application �� 293

Summary �� 294

Index ��� 295

xv

About the Author

Adam Freeman is an experienced IT professional who has held senior
positions in a range of companies, most recently serving as chief
technology officer and chief operating officer of a global bank. Now retired,
he spends his time writing and long-distance running.

xvii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

1© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_1

CHAPTER 1

Understanding Angular
and ASP.NET Core MVC

This book is about using Angular and ASP.NET Core MVC together to build rich applications. Individually,
each of these frameworks is powerful and feature-rich, but using them together combines the dynamic
flexibility of Angular with the solid infrastructure of ASP.NET Core MVC.

Who Is This Book For?
This book is for ASP.NET Core MVC developers who want to add Angular to their projects but don’t know
where to start. Angular is a complex framework that can be overwhelming to learn, and this book provides
a solid foundation by using ASP.NET Core MVC to support an Angular application. By the end of this book,
you will understand how ASP.NET Core MVC and Angular can work together and will have gained a basic
understanding of how Angular development works.

What Does This Book Cover?
This book explains how to use Angular in an ASP.NET Core MVC project. I demonstrate how to create a
Visual Studio or Visual Studio Code project that contains Angular and ASP.NET Core MVC and show you
how to get them working together. I show you how to use Entity Framework Core to store the application
data and ASP.NET Core Identity to authenticate and authorize users. Each ASP.NET Core package adds its
complexities, and I show you how these can be managed to deliver functionality to Angular.

This book also introduces Angular development, focusing on just those features that are required by
most applications. I explain how Angular applications work, how to structure an Angular application, and
how individual building blocks can collaborate to create complex features.

The examples are based around SportsStore, which will be familiar if you have read any of my other
books. SportsStore is a fictional online store that contains the features that most projects need. The
SportsStore examples in this book have been adapted so that I can highlight problems between Angular
and ASP.NET Core MVC and explain how to solve them.

What Doesn’t This Book Cover?
This book is not a deep-dive into Angular or ASP.NET Core MVC. I assume you are already familiar with C#
and ASP.NET Core MVC development, and I describe only the essential Angular features.

Chapter 1 ■ Understanding angUlar and asp.net Core MVC

2

I have written other books that provide the deep-dive for each framework. If you are unfamiliar with
ASP.NET Core MVC development, then you should read Pro ASP.NET Core MVC before this book. Once
you have mastered the basics of Angular development, then Pro Angular provides a comprehensive tour of
Angular features.

What Do You Need to Know?
Before reading this book, you should have a working knowledge of ASP.NET Core MVC development and
have a good understanding of JavaScript, HTML, and CSS.

Are There Lots of Examples?
There are loads of examples. The best way to learn is by example, and I have packed as many of them as
I can into this book. To maximize the number of examples in this book, I have adopted a simple convention
to avoid listing the same code over and over again.

To help you navigate the project, the caption for each listing includes the name of the file and the folder
in which it can be found, like in Listing 1-1.

Listing 1-1. The Contents of the CheckoutState.cs File in the Models/BindingTargets Folder

namespace SportsStore.Models.BindingTargets {

 public class CheckoutState {

 public string name { get; set; }
 public string address { get; set; }
 public string cardNumber { get; set; }
 public string cardExpiry { get; set; }
 public string cardSecurityCode { get; set; }
 }
}

This is a listing from Chapter 9, and the caption tells you that it refers to a file called CheckoutState.cs,
which can be found in the Models/BindingTargets folder. A project that combines Angular and ASP.NET
Core MVC can have a lot of files, and it is important to change the right one. (Don’t worry about the code in
this listing or the folder structure for the moment.)

When I make changes to a file, I show the altered statements in bold, like in Listing 1-2.

Listing 1-2. Adding Methods in the SessionValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;

namespace SportsStore.Controllers {

 [Route("/api/session")]
 public class SessionValuesController : Controller {

http://dx.doi.org/10.1007/978-1-4842-2916-3_9

Chapter 1 ■ Understanding angUlar and asp.net Core MVC

3

 [HttpGet("cart")]
 public IActionResult GetCart() {
 return Ok(HttpContext.Session.GetString("cart"));
 }

 [HttpPost("cart")]
 public void StoreCart([FromBody] ProductSelection[] products) {
 var jsonData = JsonConvert.SerializeObject(products);
 HttpContext.Session.SetString("cart", jsonData);
 }

 [HttpGet("checkout")]
 public IActionResult GetCheckout() {
 return Ok(HttpContext.Session.GetString("checkout"));
 }

 [HttpPost("checkout")]
 public void StoreCheckout([FromBody] CheckoutState data) {
 HttpContext.Session.SetString("checkout",
 JsonConvert.SerializeObject(data));
 }
 }
}

This is another listing from Chapter 9, and the bold statements indicate the changes that you should
make if you are following the example.

I use two different conventions to avoid repeating code in long files. For long class files, I omit methods
and properties, like in Listing 1-3.

Listing 1-3. Restricting Access in the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 [Authorize(Roles = "Administrator")]
 public class SupplierValuesController : Controller {
 private DataContext context;

 // ...methods omitted for brevity...
 }
}

This listing from Chapter 11 shows you that a new attribute must be applied to the
SupplierValuesController class but doesn’t list the constructor or other methods, which remain
unchanged.

http://dx.doi.org/10.1007/978-1-4842-2916-3_9
http://dx.doi.org/10.1007/978-1-4842-2916-3_11

Chapter 1 ■ Understanding angUlar and asp.net Core MVC

4

This is the convention that I follow to highlight changes to a region within a file, such as when new
statements are required in a single method in a long file, like in Listing 1-4.

Listing 1-4. Configuring the JSON Serializer in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));

 services.AddMvc().AddJsonOptions(opts => {
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize;
 opts.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;
 });
}
...

This is a listing from Chapter 5 that requires a new statement in the ConfigureServices method of the
Startup class, which is defined in the Startup.cs file in the SportsStore folder, while the rest of the file
remains unchanged.

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/apress/
esntl-angular-for-asp.net-core-mvc. The download is available without charge and includes all the
supporting resources that are required to re-create the examples without having to type them in. You don’t
have to download the code, but it is the easiest way of experimenting with the examples and makes it easy
to copy and paste code into your own projects.

Where Can You Get Corrections for This Book?
You can find corrections for this book in the Errata file in the GitHub repository for this book
(https://github.com/apress/esntl-angular-for-asp.net-core-mvc).

Contacting the Author
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for this
book at https://github.com/apress/esntl-angular-for-asp.net-core-mvc to see if it contains a solution
to your problem before contacting me.

Summary
In this chapter, I described the purpose and content of this book, explained how you can download the
project used for each chapter of the book, and described the conventions I use in the code listings.
In the next chapter, I show you how to set up your development environment in preparation for creating a
combined Angular and ASP.NET Core MVC project in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-2916-3_5
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
http://dx.doi.org/10.1007/978-1-4842-2916-3_3

5© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_2

CHAPTER 2

Getting Ready

In this chapter, I explain how to set up the tools and packages required for Angular and ASP.NET Core MVC
development. There are instructions for Windows, Linux, and macOS, which are the three operating systems
that can be used for .NET Core projects. For quick reference, Table 2-1 lists the packages and explains their
purpose. Follow the instructions for your preferred operating system to install the tools that are required for
the rest of this book.

Getting Ready on Windows
The following sections describe the setup required for Windows. All the tools used are available for free,
although some are offered in commercial versions with additional features (but these are not needed for the
examples in this book). If you are using Windows, you can use Visual Studio, which is the traditional IDE for
.NET projects, or Visual Studio Code, which offers a lighter-weight alternative.

Table 2-1. The Software Packages Used in This Book

Name Description

Visual Studio Visual Studio is the Windows-only IDE that provides the full-featured development
experience for .NET.

Visual Studio Code Visual Studio Code is a lightweight IDE that can be used on Windows, macOS,
and Linux. It doesn’t provide the full range of features of the Windows-only Visual
Studio product but is well-suited to Angular and ASP.NET Core MVC development.

.NET SDK The .NET Core Software Development Kit includes the .NET runtime for
executing .NET applications and the development tools required to build and test
applications.

Node.js Node.js is used for many client-side development tools, delivered through its
package manager, NPM. It is used to prepare the Angular code for the browser.

Git Git is a revision control system. It is used by some of the NPM packages commonly
used for client-side development.

Docker The Docker package includes the tools required to run applications in containers.
The databases in this book are run inside Docker containers, which makes them
easy to install and manage.

Chapter 2 ■ GettinG ready

6

Installing .NET Core
The .NET Core Software Development Kit (SDK) includes the runtime and development tools needed to
start the development project and perform database operations. To install the .NET Core SDK on Windows,
download the installer from https://download.microsoft.com/download/B/9/F/B9F1AF57-C14A-4670-
9973-CDF47209B5BF/dotnet-dev-win-x64.1.0.4.exe. This URL is for the 64-bit .NET Core SDK, which is
the version that I use throughout this book and which you should install to ensure that you get the expected
results from the examples. Rather than type in a complex URL, you can to go to https://www.microsoft.
com/net/download/core and select the 64-bit installer for the .NET Core SDK. (Microsoft also publishes a
runtime-only installer, but this does not contain the tools that are required for this book.)

Run the installer. Once the install process is complete, open a new PowerShell command prompt and
run the command shown in Listing 2-1 to check that .NET Core is working.

Listing 2-1. Testing .NET Core

dotnet --version

The output from this command will display the latest version of the .NET Core runtime that is installed.
If you have installed only the version specified, this will be 1.0.4.

Installing Node.js
 Node.js is a runtime for server-side JavaScript applications and has become a popular platform for
development tools. In this book, Node.js is used by the Angular build tools to compile and prepare the code
that ASP.NET Core MVC will send to the browser.

It is important that you download the same version of Node.js that I use throughout this book. Although
Node.js is relatively stable, there are still breaking API changes from time to time, and they may stop the
examples from working. To install Node.js, download and run the installer from https://nodejs.org/dist/
v6.10.3/node-v6.10.3-x64.msi. This is the installer for version 6.10.3. You may prefer more recent releases
for your projects, but you should stick with the 6.10.3 release for the rest of this book. Run the installer and
ensure that the npm package manager and Add to PATH options are selected, as shown in Figure 2-1.

https://download.microsoft.com/download/B/9/F/B9F1AF57-C14A-4670-9973-CDF47209B5BF/dotnet-dev-win-x64.1.0.4.exe
https://download.microsoft.com/download/B/9/F/B9F1AF57-C14A-4670-9973-CDF47209B5BF/dotnet-dev-win-x64.1.0.4.exe
https://www.microsoft.com/net/download/core
https://www.microsoft.com/net/download/core
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi
https://nodejs.org/dist/v6.10.3/node-v6.10.3-x64.msi

Chapter 2 ■ GettinG ready

7

The NPM package manager is used to download and install Node packages. Adding Node.js to the PATH
ensures that you can use the Node.js runtime at the command prompt just by typing node. Once you have
completed the installation, open a new command prompt and run the command shown in Listing 2-2.

Listing 2-2. Checking That Node.js Is Installed Correctly

node -v

You should see the following version number displayed: v6.9.2. If the installation has been successful,
then proceed to the “Installing NPM Packages” section.

Installing Bower
Once you have installed Node, run the command shown in Listing 2-3 to install the Bower package, which
is used to manage client-side packages.

Listing 2-3. Installing the Bower Package

npm install -g bower@1.8.0

Figure 2-1. Installing Node.js on Windows

Chapter 2 ■ GettinG ready

8

Installing Git
The Git revision control tool is required to download the client-side packages used by the Bower package
installed in the previous section. Download and run the installer from https://git-scm.com/downloads.
When the installation is complete, open a new command prompt and run the command in Listing 2-4 to
check that Git is installed and working properly.

Listing 2-4. Checking the Git Install

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows is 2.13.0.

Installing Docker
Docker is available in Community and Enterprise editions, the difference being the support and
certifications offered for the Enterprise edition. Both editions provide the same set of core features, and I use
the free Docker Community edition throughout this book.

Go to https://store.docker.com/editions/community/docker-ce-desktop-windows, click the
Get Docker CE for Windows (stable) link, and run the installer that is downloaded. Docker will start
automatically when the installation is complete. You may be prompted to enable Hyper-V, as shown in
Figure 2-2. Click the Ok button.

Once the installation has completed, right-click the Docker icon in the taskbar and select Settings from
the pop-up menu. Navigate to the Advanced section and increase the memory allocated to Docker so that
it is at least 3500MB, which is the minimum required to run SQL Server, as shown in Figure 2-3. Click the
Apply button to save the configuration change and restart Docker with the new configuration.

Figure 2-2. Enabling Hyper-V

https://git-scm.com/downloads
https://store.docker.com/editions/community/docker-ce-desktop-windows

Chapter 2 ■ GettinG ready

9

Once Docker has restarted, open a new PowerShell command prompt and run the command shown in
Listing 2-5 to check that the installation was successful.

Listing 2-5. Checking That Docker Is Working

docker run --rm hello-world

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Figure 2-3. Assigning memory to Docker

Chapter 2 ■ GettinG ready

10

Installing Visual Studio 2017
Visual Studio is the traditional development environment for ASP.NET Core and Entity Framework Core
projects. It offers a full-featured development experience, but it can be resource hungry. Consider using
Visual Studio Code if you want a lighter-weight development experience, which I describe in the next
section.

Download the installer from https://www.visualstudio.com/vs. There are different editions of
Visual Studio 2017 available, but the free Community edition is sufficient for the examples in this book. Run
the installer and ensure that the .NET Core Cross-Platform Development workload is selected, as shown in
Figure 2-4.

Click the Install button to begin the process of downloading and installing the Visual Studio features.

Adding the Visual Studio Extensions
Two Visual Studio extensions are essential for working on ASP.NET Core MVC projects. The first is called
Razor Language Service, and it provides IntelliSense support for tag helpers when editing Razor views. The
second is called Project File Tools, and it provides automatic completion for editing .csproj files, which
simplifies the process of adding NuGet packages to projects.

Select Extensions and Updates from the Visual Studio Tools menu, select the Online section, and use
the search box to locate the extensions. Click the Download button, as shown in Figure 2-5, to download the
extension files.

Figure 2-4. Selecting the Visual Studio packages

https://www.visualstudio.com/vs

Chapter 2 ■ GettinG ready

11

Click the Close button to dismiss the list of extensions and then close Visual Studio, which will trigger
the installation process for the extensions you downloaded. You will be prompted to accept the changes that
will be made and the license terms, as shown in Figure 2-6. Click the Modify button to install the extensions.
Once the process has completed, you can start Visual Studio and begin development.

Installing Visual Studio Code
Visual Studio Code is a lightweight editor that doesn’t have all the features of the full Visual Studio product
but works across platforms and is perfectly capable of handling ASP.NET Core MVC and Entity Framework
Core projects.

Figure 2-5. Downloading Visual Studio extensions

Figure 2-6. Installing Visual Studio extensions

Chapter 2 ■ GettinG ready

12

I find myself increasingly using Visual Studio Code, in part because it means I can use the same IDE on
different platforms and in part because it is more responsive and less resource hungry than Visual Studio 2017.

To install Visual Studio code, visit http://code.visualstudio.com and click the download link for
Windows. Run the installer and then start Visual Studio Code.

Once the installation is complete, start Visual Studio Code, click the Extensions button in the sidebar,
and locate and install the C# package, which provides support for working with C# code files.

Getting Ready on Linux
The following sections describe the setup required for Linux. Microsoft has taken Linux support for .NET
Core seriously because of its popularity as a deployment platform, which makes it a good platform for
development, too. .NET Core supports a range of Linux distributions, and I have used Ubuntu 16.04 for this
book, which is the current Long-Term Support (LTS) release at the time of writing.

Installing .NET Core
The .NET Core Software Development Kit (SDK) includes the runtime and development tools needed to
start the development project and perform database operations. The easiest way to install .NET Core on
Linux is to visit https://www.microsoft.com/net/core, select your distribution from the list, and copy and
paste the commands into a command prompt to ensure you don’t mistype any configuration arguments.

To install .NET Core SDK on Ubuntu 16.04, open a command prompt and enter the commands in
Listing 2-6 to configure package management so that Microsoft packages can be installed.

Listing 2-6. Preparing Package Management for .NET Core

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
xenial main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update

Run the command shown in Listing 2-7 to download and install the .NET Core SDK package. It is
important that you use the version number shown in the listing so that you get the expected results from the
examples in this book.

Listing 2-7. Installing the .NET Core Package

sudo apt-get install dotnet-dev-1.0.4

Once the package has been downloaded and installed, run the command shown in Listing 2-8 to check
that .NET Core is installed and working.

Listing 2-8. Testing the .NET Core Package

dotnet --version

The output from this command will display the latest version of the .NET Core runtime that is installed.
If you have installed only the version specified, this will be 1.0.4.

http://code.visualstudio.com/
https://www.microsoft.com/net/core

Chapter 2 ■ GettinG ready

13

Installing Node.js
N The easiest way to install Node.js is through a package manager, using the procedures described at
https://nodejs.org/en/download/package-manager. For Ubuntu, I ran the commands shown in
Listing 2-9 to download and install Node.js.

Listing 2-9. Installing Node.js on Ubuntu

curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install nodejs

Once you have installed Node.js, run the command shown in Listing 2-10 to check that the installation
was successful and that you have the right version.

Listing 2-10. Checking That Node.js Is Installed Correctly

node -v

You should see that version 6.x.x is installed. Version 6.10.3 is the latest at the time of writing, but there
may be updates pushed into the package manager feed for version 6.x by the time you read this.

Installing Bower
Once you have installed Node, run the command shown in Listing 2-11 to install the Bower package, which
is used to manage client-side packages.

Listing 2-11. Installing the Bower Package

sudo npm install -g bower@1.8.0

Installing Git
Git is already installed on most Linux distributions. If you want to install the latest version, then consult the
installation instructions for your distribution at https://git-scm.com/download/linux. For Ubuntu, I used
the command in Listing 2-12.

Listing 2-12. Installing Git

sudo apt-get install git

Once you have completed the installation, open a new command prompt and run the command in
Listing 2-13 to check that Git is installed and available.

Listing 2-13. Checking the Git Install

git --version

https://nodejs.org/en/download/package-manager
https://git-scm.com/download/linux

Chapter 2 ■ GettinG ready

14

This command prints out the version of the Git package that was installed. At the time of writing, the
latest version of Git for Linux is 2.7.4.

Installing Docker
To install Docker on Linux, visit https://www.docker.com/community-edition, select the distribution that
you are using from the list, and follow the installation instructions, copying and pasting the commands to
avoid typos.

For Ubuntu 16.04, open a new command prompt and enter the commands in Listing 2-14 to configure
the package manager and install the prerequisite packages that Docker relies on.

Listing 2-14. Preparing the Package Manger and Installing Prerequisite Packages

sudo apt-get -y install apt-transport-https ca-certificates curl
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) stable"
sudo apt-get update

To install Docker, run the command shown in Listing 2-15.

Listing 2-15. Installing Docker

sudo apt-get -y install docker-ce

Once Docker is installed, run the commands shown in Listing 2-16 so that you can use Docker without
sudo.

Listing 2-16. Configuring Docker So That Root Access Is Not Required

sudo groupadd docker
sudo usermod -aG docker $USER

Log out of your current session and log back in again for the commands in Listing 2-16 to take effect.
Once you have logged back in, run the command shown in Listing 2-17 to check that the installation has
been successful.

Listing 2-17. Checking That Docker Is Working

docker run --rm hello-world

https://www.docker.com/community-edition

Chapter 2 ■ GettinG ready

15

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Once you have confirmed that Docker is installed and working properly, then run the command shown
in Listing 2-18 to install Docker Compose, which is required for the examples in this book.

Listing 2-18. Installing Docker Compose

sudo curl -L https://github.com/docker/compose/releases/download/1.13.0/docker-compose-
`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
sudo chmod +x /usr/local/bin/docker-compose

Once the installation is complete, run the command shown in Listing 2-19 to check that Docker
Compose works as expected.

Listing 2-19. Checking Docker Compose

docker-compose --version

If the installation has been successful, you will see this response: docker-compose version 1.13.0,
build 1719ceb.

Installing Visual Studio Code
To install Visual Studio code, visit http://code.visualstudio.com and click the download link for your
platform. Run the installer and then start Visual Studio Code, which will present a standard integrated
development environment.

Once the installation is complete, start Visual Studio Code, click the Extensions button in the sidebar,
and locate and install the C# package, which provides support for working with C# code files.

Getting Ready on macOS
The following sections describe the setup required for macOS, which provides a good platform .NET
development through Visual Studio Code. Although my main development machine runs Windows, my
laptop runs macOS, and I use it for development when traveling.

http://code.visualstudio.com/

Chapter 2 ■ GettinG ready

16

Installing .NET Core
Before installing .NET Core, open a new command prompt and run the command in Listing 2-20 to install
the HomeBrew package manager.

Listing 2-20. Installing the Package Manager

/usr/bin/ruby -e \
 "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once installation is complete, run the commands shown in Listing 2-21 to install the OpenSSL library,
which is a prerequisite for some .NET Core features.

Listing 2-21. Installing the OpenSSL Package

brew install openssl
mkdir -p /usr/local/lib
ln -s /usr/local/opt/openssl/lib/libcrypto.1.0.0.dylib /usr/local/lib/
ln -s /usr/local/opt/openssl/lib/libssl.1.0.0.dylib /usr/local/lib/

To install .NET Core on macOS, download the SDK installer from https://go.microsoft.com/
fwlink/?linkid=848823. This URL is for the .NET Core SDK version I use throughout this book and that you
should install to ensure you get the expected results from the examples.

Run the installer. Once the process is complete, open a Terminal window and run the command shown
in Listing 2-22 at the prompt to check that .NET Core is working.

Listing 2-22. Testing .NET Core

dotnet --version

The output from this command will display the latest version of the .NET Core runtime that is installed.
If you have installed only the version specified, this will be 1.0.4.

Installing Node.js
To install Node.js on macOS, download and run the installer available from https://nodejs.org/dist/
v6.10.3/node-v6.10.3.pkg. Once the installation is complete, open a new Terminal window and run the
command shown in Listing 2-23 at the command prompt once the installer has completed.

Listing 2-23. Checking That Node.js Is Installed Correctly

node -v

You should will see the following version number displayed: v6.10.3.

www.allitebooks.com

https://go.microsoft.com/fwlink/?linkid=848823
https://go.microsoft.com/fwlink/?linkid=848823
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
https://nodejs.org/dist/v6.10.3/node-v6.10.3.pkg
http://www.allitebooks.org

Chapter 2 ■ GettinG ready

17

Installing Bower
Once you have installed Node, run the command shown in Listing 2-24 to install the Bower package, which
is used to manage client-side packages.

Listing 2-24. Installing the Bower Package

sudo npm install -g bower@1.8.0

Installing Git
The Git revision control tool is required to download the client-side packages used by the Bower package
installed in the previous section. Download and run the installer from https://git-scm.com/downloads.
When the installation is complete, open a new command prompt and run the command in Listing 2-25 to
check that Git is installed and working properly.

Listing 2-25. Checking the Git Install

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for macOS is 2.13.0.

Installing Docker
Go to https://store.docker.com/editions/community/docker-ce-desktop-mac, click the Get Docker for
CE Mac (stable) link, and run the installer that is downloaded. Drag the whale to the Applications folder, as
shown in Figure 2-7.

Figure 2-7. Installing Docker

https://git-scm.com/downloads
https://store.docker.com/editions/community/docker-ce-desktop-mac

Chapter 2 ■ GettinG ready

18

Open Launchpad and click the Docker icon to perform the setup process. Once Docker has started,
click the Docker menu bar icon and select Preferences from the pop-up menu.

Navigate to the Advanced section and increase the memory allocated to Docker so that it is at least
3500MB, which is the minimum required to run SQL Server, as shown in Figure 2-8. Click the Apply button
to save the configuration change and restart Docker with the new configuration.

Click Apply & Restart to change the memory and restart the Docker process. When Docker is running
again, dismiss the Preferences window, open a new Terminal window, and run the command shown in
Listing 2-26 to check that the installation was successful.

Listing 2-26. Checking That Docker Is Working

docker run --rm hello-world

Figure 2-8. Assigning memory to Docker

Chapter 2 ■ GettinG ready

19

Docker will download the files it needs to run a simple Hello World application. Docker will write out
messages like these, indicating that everything is working as expected (the command produces more output
than is shown here, but this is the important part):

...
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

c04b14da8d14: Pull complete
Digest: sha256:0256e8a36e2070f7bf2d0b0763dbabdd67798512411de4cdcf9431a1feb60fd9
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

Installing Visual Studio Code
Developing for .NET on macOS is done using Visual Studio Code. To install Visual Studio Code, visit
http://code.visualstudio.com, click the download link, run the installer, and then start Visual Studio Code.

Once the installation is complete, start Visual Studio Code, click the Extensions button in the sidebar,
and locate and install the C# package, which provides support for working with C# code files.

Summary
In this chapter, I explained how to install the tools and packages that are required to use Angular and ASP.
NET Core MVC, and in the next chapter, I show you how to create a project that combines them.

http://code.visualstudio.com/

21© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_3

CHAPTER 3

Creating the Project

In this chapter, I show you how to create a project that contains ASP.NET Core MVC and Angular
applications, which means both parts of the project can be developed using Visual Studio or Visual Studio
Code. This project forms the foundation for the rest of this book, as I explain how to use Angular and
ASP.NET Core MVC to create a rich web application. Table 3-1 puts the combined project in context.

Table 3-1. Putting a Combined Project in Context

Question Answer

What is it? A combined project includes Angular and ASP.NET Core MVC in a single
folder structure.

Why is it useful? A combined project makes it easy to develop both parts of an application
using a single IDE, such as Visual Studio, as well as simplifying the process
of using an ASP.NET Core MVC web service to provide data to Angular.

How is it used? The Angular application is created first, followed by ASP.NET Core MVC.
Additional NuGet packages are used to allow both parts of the project to
work together at runtime.

Are there any pitfalls or
limitations?

A combined project makes managing the development process easier, but
you still need a good working knowledge of both Angular and ASP.NET Core
MVC to create an effective application.

Are there any alternatives? You can develop the Angular and ASP.NET Core MVC parts of the
application separately, although this tends to complicate the development
process.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Preparing to Create a Project
There are several different ways to create a project that combines Angular and ASP.NET Core MVC. The
approach that I use in this book relies on the @angular/cli package, used in conjunction with the .NET tools
for creating a new MVC project.

https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 3 ■ CreaTing The projeCT

22

USING THE DOTNET NEW ANGULAR COMMAND

Microsoft provides a template that can be used to create a similar project structure (which you can
use by running dotnet new angular at the command line). The process i use in this chapter is more
manual, but it means you will understand how the different building blocks fit together and have a
better idea of where to look when you don’t get the results you expect. once you are familiar with how
angular and aSp.neT Core MVC can work together, using this template is perfectly reasonable, with the
caveat that you are unable to specify the versions of aSp.neT Core MVC and angular that are used in
the project.

The @angular/cli package provides a command-line interface that simplifies the process of creating
and working with a new Angular project. During development, the Angular code is compiled, packaged, and
delivered to the browser using webpack, a popular tool for creating JavaScript bundles that contain only the
code required to run a project.

To create a project that combines Angular and ASP.NET Core MVC, I start with @angular/cli and access
he underlying webpack configuration, which can then be used to integrate the Angular tools and libraries
into the ASP.NET Core project.

To start this process, open a new command prompt and run the command in Listing 3-1 to install the
@angular/cli package. If you are using Linux or macOS, you may need to use sudo to run this command.

Listing 3-1. Installing the @angular/cli Package

npm install --global @angular/cli@1.0.2

This command takes a while to run because the package has a lot of dependencies, all of which have to
be downloaded and installed.

Creating the Project
The process for creating a combined Angular and ASP.NET Core MVC project requires careful attention:
both development platforms have their tools and conventions, and getting them to work together requires
a specific set of steps to be performed in order. In the sections that follow, I walk through the process and
explain each step.

 ■ Tip You must follow each step exactly as shown, without missing a step or changing the order. if you get
stuck, then you can download a ready-made project from the source code repository, which is linked from the
apress.com page for this book.

Creating the Angular Part of the Project
The first step is to create a new Angular project, which is done using the @angular/cli package installed
in Listing 3-1. Open a new command prompt, navigate to the folder where you keep your development
projects, and run the command shown in Listing 3-2.

ChapTer 3 ■ CreaTing The projeCT

23

Listing 3-2. Creating an Angular Project

ng new SportsStore --skip-git --skip-commit --skip-tests --source-dir ClientApp

The ng command is provided by the @angular/cli package, and ng new creates a new Angular project.
The arguments that start with --skip tell @angular/cli not to perform some of the standard setup steps that
are usually included in projects, and the --source-dir argument specifies the name of the folder that will
contain the source code for the Angular application. The Angular code lives in a folder called ClientApp in
projects that combine Angular and ASP.NET Core MVC.

The command in Listing 3-2 creates a folder called SportsStore that contains the tools and
configuration files for an Angular project, along with some placeholder code so that the tools and project
structure can be tested. The ng new command downloads a large number of packages, which can take a long
time to complete.

The rest of the setup is performed inside the project folder, so run the command shown in Listing 3-3 to
change the working directory.

Listing 3-3. Changing the Working Directory

cd SportsStore

Getting the Angular tools to work with the .NET tools requires additional NPM packages. Run the
command shown in Listing 3-4 to install these packages.

Listing 3-4. Adding NPM Packages to the Project

npm install --save-dev webpack@2.3.2 aspnet-prerendering@2.0.3 aspnet-webpack@1.0.28
webpack-hot-middleware@2.17.1

Microsoft provides some of these NPM packages, and they are used to set up and run the Angular
development tools inside the ASP.NET Core runtime. These packages work directly with webpack, which is
usually hidden when working with projects created using @angular/cli. Run the command shown in
Listing 3-5 in the SportsStore folder to create a webpack configuration file that can be used to build and
run the project, a process known as ejecting the project from @angular/cli.

Listing 3-5. Ejecting the Project

ng eject

The ejection process updates the package.json file, which NPM uses to keep track of the packages used
by the project. In some cases, the ejection process will add additional NPM packages to the project.json file,
so run the command shown in Listing 3-6 to ensure that any new packages are downloaded and installed.

Listing 3-6. Updating the NPM Packages

npm install

ChapTer 3 ■ CreaTing The projeCT

24

Creating the ASP.NET Core MVC Part of the Project
Once the Angular project has been set up, the next step is to create an MVC project in the same SportsStore
folder. Run the command shown in Listing 3-7 in the SportsStore folder to create a basic MVC project.

Listing 3-7. Creating the ASP.NET Core MVC Project

dotnet new mvc --language C# --auth None --framework netcoreapp1.1

Run the command shown in Listing 3-8 in the SportsStore folder to add a Microsoft package to the
project. This NuGet package is the .NET counterpart to the NPM packages installed earlier and is used to
integrate the Angular tools into Visual Studio.

Listing 3-8. Adding a NuGet Package to the Project

dotnet add package Microsoft.AspNetCore.SpaServices --version 1.1.0

The application will be stored using Microsoft SQL Server and accessed using Entity Framework Core.
Run the commands shown in Listing 3-9 in the SportsStore folder to add the NuGet packages required to
add these features to the application.

Listing 3-9. Adding the Data NuGet Packages to the Project

dotnet add package Microsoft.EntityFrameworkCore --version 1.1.1
dotnet add package Microsoft.EntityFrameworkCore.Design --version 1.1.1
dotnet add package Microsoft.EntityFrameworkCore.SqlServer --version 1.1.1

Not all the required packages can be added using the command-line tools. Open the project using
Visual Studio or Visual Studio Code. If you are using Visual Studio, then select File ➤ Open ➤ Project/Solution,
navigate to the SportsStore folder, and select the SportsStore.csproj file. To edit the NuGet packages,
right-click the SportsStore project item in the Solution Explorer, select Edit SportsStore.csproj from the pop-
up menu, and make the changes shown in Listing 3-10.

If you are using Visual Studio Code, open the SportsStore project, click SportsStore.csproj in the file
list to open the file for editing, and make the changes shown in Listing 3-10.

Listing 3-10. Adding NuGet Packages in the SportsStore.csproj File in the SportsStore Folder

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.SpaServices" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="1.1.1" />

ChapTer 3 ■ CreaTing The projeCT

25

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.1" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"
 Version="1.1.0" />

 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="1.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="1.0.0" />
 </ItemGroup>
</Project>

If you are using Visual Studio, the new packages will be downloaded when you save the SportsStore.
csproj file. If you are using Visual Studio Code, use a command prompt to run the command shown in
Listing 3-11 in the SportsStore folder.

Listing 3-11. Restoring Packages

dotnet restore

Configuring the Project
Now that the project foundation is in place, it is time to configure the different parts of the application to
work together.

Preparing the Project (Visual Studio)
If you are using Visual Studio, select File ➤ Open Project/Solution, navigate to the SportsStore folder, and
select the SportsStore.csproj file. Select File ➤ Save All and save the SportsStore.sln file, which you can
use to open the project in the future.

Select Project ➤ SportsStore Properties, navigate to the Debug section of the options window, and
ensure that IIS Express is selected for the Launch field, as shown in Figure 3-1.

ChapTer 3 ■ CreaTing The projeCT

26

Ensure that the Launch URL button is selected and enter http://localhost:5000 in the App URL field,
as shown in Figure 3-1. Finally, click the Add button to create an environment variable called ASPNETCORE_
ENVIRONMENT, if it doesn’t already exist, with a value of Development. Save the changes and close the
properties window.

Creating and Editing the Configuration Files
Regardless of the IDE you are using, add a TypeScript file called boot.ts to the SportsStore/ClientApp
folder, with the code shown in Listing 3-12.

Listing 3-12. The Contents of the boot.ts File in the ClientApp Folder

import { enableProdMode } from "@angular/core";
import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";
import { AppModule } from "./app/app.module";

const bootApplication = () => {
 platformBrowserDynamic().bootstrapModule(AppModule);
};

Figure 3-1. Configuring the application

ChapTer 3 ■ CreaTing The projeCT

27

if (module["hot"]) {
 module["hot"].accept();
 module["hot"].dispose(() => {
 const oldRootElem = document.querySelector("app-root");
 const newRootElem = document.createElement("app-root");
 oldRootElem.parentNode.insertBefore(newRootElem, oldRootElem);
 platformBrowserDynamic().destroy();
 });
}

if (document.readyState === "complete") {
 bootApplication();
} else {
 document.addEventListener("DOMContentLoaded", bootApplication);
}

This file is responsible for loading the Angular application and responding to changes to the client-side
code. Next, edit the Startup.cs file to change the code in the Configure method, as shown in Listing 3-13.
The additions enable the integration between the ASP.NET Core and Angular development tools.

Listing 3-13. Enabling Middleware in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

ChapTer 3 ■ CreaTing The projeCT

28

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

 //if (env.IsDevelopment()) {
 // app.UseDeveloperExceptionPage();
 // app.UseBrowserLink();
 //} else {
 // app.UseExceptionHandler("/Home/Error");
 //}

 app.UseStaticFiles();

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Open the webpack.config.js file in the SportsStore folder, locate the module.exports statement
shown in Listing 3-14, and make the changes in bold. This file contains a lot of configuration statements,
but the ones you are looking for are close to the top of the file.

Listing 3-14. Setting the Public Path in the webpack.config.js File in the SportsStore Folder

...
module.exports = {
 "devtool": "source-map",
 "resolve": {
 "extensions": [".ts",".js"],
 "modules": ["./node_modules"]
 },
 "resolveLoader": {"modules": ["./node_modules"]},
 "entry": {
 "main": [
 "./ClientApp\\boot.ts"
],
 "polyfills": [
 "./ClientApp\\polyfills.ts"
],
 "styles": [
 "./ClientApp\\styles.css"
]
 },
 "output": {
 "path": path.join(process.cwd(), "wwwroot/dist"),

ChapTer 3 ■ CreaTing The projeCT

29

 "filename": "[name].bundle.js",
 "chunkFilename": "[id].chunk.js",
 "publicPath": "/app/"
 },
"module": {
 "rules": [{
 "enforce": "pre", "test": /\.js$/, "loader": "source-map-loader",
...

Enabling Logging Messages
During development, it can be useful to see details of the build process for the Angular application and
details of the queries sent to the database by Entity Framework Core. To enable logging messages, add the
configuration statements shown in Listing 3-15 to the appsettings.json file.

Listing 3-15. Enabling Logging in the appsettings.json File in the SportsStore Folder

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.EntityFrameworkCore": "Information",
 "Microsoft.AspNetCore.NodeServices": "Information",
 "Default": "Warning"
 }
 }
}

Updating the Bootstrap Package
Throughout this book, I use the Bootstrap CSS package to style the HTML elements displayed by the
browser. To update the version used in the project, edit the bower.json file in the SportsStore folder
and make the change shown in Listing 3-16.

USING THE BOOTSTRAP PRERELEASE

Throughout this book, i use a prerelease version of the Bootstrap CSS framework. as i write this, the
Bootstrap team is in the process of developing Bootstrap version 4 and has made several early releases.
These releases are labeled as “alpha,” but the quality is high, and they are stable enough for use in the
examples in this book.

given the choice of writing this book using the soon-to-be-obsolete Bootstrap 3 and a prerelease
version of Bootstrap 4, i decided to use the new version even though some of the class names that
are used to style hTML elements are likely to change before the final release. You must use the same
version of Bootstrap to get the expected results from the examples, just like the rest of the packages
used in this book.

ChapTer 3 ■ CreaTing The projeCT

30

Listing 3-16. Updating Bootstrap in the bower.json File in the SportsStore Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Save the change. If you are using Visual Studio Code, use a command prompt to run the command
shown in Listing 3-17 to download the Bootstrap package. (This is done automatically by Visual Studio.)

Listing 3-17. Updating the Client-Side Packages

bower install

Removing Files
Some files in the project can be removed. Table 3-2 describes the files that are not required in this book.
You don’t have to remove these files, but it will help simplify the project structure and, in the case of the
.editorconfig file, avoid confusion when your code editor doesn’t respect your normal preferences.

Updating the Controller, Layout, and View
The final step in setting up the project is to update the controller and the Razor layout and view to replace
the placeholder content and incorporate the Angular application. Edit the Home controller and replace the
contents with the code shown in Listing 3-18.

Table 3-2. Files That Can Be Removed

Name Description

.editorconfig This file contains project-specific editor configuration settings, and it is used
by Visual Studio to override the preferences specified by the Tools ➤ Options
menu, including setting the tab size to two spaces.

e2e This folder contains tests for Protractor, which does end-to-end testing for
Angular applications. See www.protractortest.org for details.

protractor.conf.js This file contains configuration settings for Protractor.

README.md This file contains welcome text containing an overview of the @angular/cli tools.

http://www.protractortest.org/

ChapTer 3 ■ CreaTing The projeCT

31

Listing 3-18. Replacing Content in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace SportsStore.Controllers {
 public class HomeController : Controller {

 public IActionResult Index() {
 return View();
 }
 }
}

Edit the _Layout.cshtml file in the Views/Shared folder and replace the content with the elements
shown in Listing 3-19.

Listing 3-19. Replacing Content in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>SportsStore @ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 @RenderBody()
 @RenderSection("Scripts", required: false)
</body>
</html>

Edit the Index.cshtml file in the Views/Home folder and replace the contents with those shown in
Listing 3-20.

Listing 3-20. Replacing Content in the Index.cshtml File in the Views/Home Folder

@section scripts {
 <script src="~/dist/inline.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/polyfills.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/vendor.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/main.bundle.js" asp-append-version="true"></script>
}

<div class="navbar bg-inverse">
 @(ViewBag.Message ?? "SPORTS STORE")
</div>
<div class="p-1">
 <app-root></app-root>
</div>

ChapTer 3 ■ CreaTing The projeCT

32

The script elements in this view include bundles of JavaScript files that contain the Angular framework
and the client-side application code. These bundles will be created automatically by webpack when the files
in the Angular part of the project change.

The app-root element will be replaced with dynamic content produced by the Angular application, as
you will see in the next section. The other elements are standard HTML that has been styled with Bootstrap.

Running the Project
If you are using Visual Studio, then start the application by selecting Start Without Debugging from the
Debug menu. A new browser window will open and request http://localhost:5000, which was the URL
you used to configure the project earlier in the chapter, showing the content in Figure 3-2.

If you are using Visual Studio Code, then use a command window to run the command shown in
Listing 3-21 in the SportsStore folder, which will build the project and start the ASP.NET Core HTTP server.

Listing 3-21. Starting the Project

dotnet run

Open a new browser window and navigate to http://localhost:5000. If you have followed all of the
configuration steps, you will see the content shown in Figure 3-2.

Figure 3-2. Testing the application

 ■ Tip it can take a moment for the application to deliver the content to the client for the first hTTp request.
reload the browser page if you just see the SportsStore header but not the “app works!” message.

This may not seem like an impressive result, but the Angular development tools and ASP.NET Core are
now working together. Edit the app.component.ts file in the SportsStore/ClientApp/app folder and
make the change highlighted in Listing 3-22. (You will have to expand the app.component.html file to see
the app.component.ts file in the Solution Explorer if you are using Visual Studio, which nests related files
together.)

ChapTer 3 ■ CreaTing The projeCT

33

Listing 3-22. Making a Change in the app.component.ts File in the SportsStore/ClientApp/app Folder

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'Angular & ASP.NET Core MVC';
}

As soon as you save the file, you will see the following messages produced by the ASP.NET Core MVC
application:

...
info: Microsoft.AspNetCore.NodeServices[0]
 webpack built 7db0492261faa4be5ca2 in 13727ms
info: Microsoft.AspNetCore.NodeServices[0]
 webpack building...
info: Microsoft.AspNetCore.NodeServices[0]
 webpack built 13d818ceaf0329cf3f6e in 353ms
...

There will also be corresponding messages displayed in the browser’s JavaScript console, similar to these:

..
[HMR] bundle rebuilding
[HMR] bundle rebuilt in 503ms
[HMR] Checking for updates on the server...
[HMR] Updated modules:
[HMR] - ./ClientApp/app/app.component.ts
[HMR] - ./ClientApp/app/app.module.ts
[HMR] - ./ClientApp/boot.ts
[HMR] App is up to date.
...

The file change has triggered the Angular development tools to compile the TypeScript files and
generate new JavaScript files that will be loaded and executed by the browser. The changed files are sent to
the browser, and the running application is updated on the fly, producing the output shown in Figure 3-3.

ChapTer 3 ■ CreaTing The projeCT

34

 ■ Caution The automatic refresh feature is generally reliable, but you may have to reload the browser
window to see the effect of some changes or after you restart the aSp.neT Core server.

Understanding the Combined Project and Tools
It is worth taking the time to understand how Angular and ASP.NET Core MVC have been integrated into the
project, especially since they rely on different platforms.

Understanding the Structure of the Project
Combining Angular and ASP.NET Core MVC in a single project produces a complex folder structure.
When working with a combined project, it is important to remember that you are developing two distinct
applications whose files happen to be collocated. Table 3-3 describes the most important parts of a
combined project.

Figure 3-3. Updating the application

Table 3-3. The Key Files and Folders in a Combined Project

Name Description

ClientApp This folder contains the Angular application and its configuration files.

ClientApp/app This folder contains the source code for the Angular application, including
templates and stylesheets used by Angular components.

Controllers This folder contains the ASP.NET Core MVC controller classes.

Views This folder contains the Razor views that are rendered by the MVC controllers.

wwwroot This folder contains the static content files that the project requires.

wwwroot/dist This folder contains the JavaScript files produced by compiling the Angular project.

webpack.config.js This file contains the configuration used to build the Angular application.

ChapTer 3 ■ CreaTing The projeCT

35

You can find the source code for the Angular application in the ClientApp/app folder, which is where
you will create your TypeScript files, along with any related HTML templates and CSS stylesheets. Only
the source code lives this folder; when the code is compiled, the files that are produced are placed into the
wwwroot/dist folder so they can be included in the responses to HTTP requests.

You can find the source code for the ASP.NET Core MVC application in the Controllers and Views
folders and in the Models folder, which you will create in Chapter 4 These folders contain C# and Razor files,
which are used to receive HTTP requests from the client and generate responses. The rest of the files in the
project are either configuration files that can be ignored for the moment or packages required to support the
integration of the Angular and ASP.NET Core tools.

Understanding the Tool Integration
The key to getting Angular and ASP.NET Core to work together is the Microsoft.AspNetCore.SpaServices
package that was added to the project earlier in the chapter. This NuGet package, which is provided by Microsoft,
provides services that are useful when working with single-page application frameworks, such as Angular.

For this chapter, the most important service is the ability to run Node.js packages from inside an ASP.
NET Core project, which allows the development tools used by Angular, such as webpack, to be integrated
into the ASP.NET Core HTTP request pipeline.

When the first HTTP request is received by the ASP.NET Core part of the application, the middleware
added to the request pipeline starts a new Node.js runtime and uses it to run webpack. Webpack compiles the
TypeScript files in the ClientApp/app folder and creates a set of JavaScript bundles in the wwwroot/dist folder.

The HTTP request is handled in the usual way by the MVC framework, which directs the request to the
Index action on the Home controller, which tells Razor to render the Index.cshtml file in the Views/Home
folder and send the output back to the client. The HTML produced by the Razor view contains script
elements that load the JavaScript bundles created by webpack, which load the Angular application and
display the message in the browser, as illustrated in Figure 3-4.

From the perspective of the MVC part of the application, the difference from a regular project is that
the SpaServices middleware is using webpack to generate some static JavaScript files that are loaded from
script elements included in a Razor view. From the Angular perspective, the difference from a regular
project is that the HTTP requests from the browser are being handled by ASP.NET Core using Razor views,
rather than through a static HTML file.

Figure 3-4. Integrating Angular and ASP.NET Core MVC

http://dx.doi.org/10.1007/978-1-4842-2916-3_4

ChapTer 3 ■ CreaTing The projeCT

36

Understanding the Project Change Systems
One source of confusion is that there are three different ways in which changes to files in the projects are
displayed in the browser. I describe each of these update mechanisms in the sections that follow.

Updating Angular Files

The SpaServices middleware is configured to support the webpack hot module replacement feature (known
as the HMR feature), which recompiles TypeScript files and updates the running application automatically
when there is a change to the code files in the Angular part of the project.

The JavaScript files created by webpack include code that opens a connection back to the server and
waits for a change notification. When a file in the ClientApp/app folder changes, the files are recompiled,
and the module files are updated. A signal is sent to the browser, which requests the modified module and
uses it to update the code running in the browser without requiring a reload.

The update process was demonstrated in the “Running the Project” section, and it applies not just to
TypeScript files but also to HTML and CSS files. Edit the app.component.html file to change the template
used by the component in the Angular part of the project, as shown in Listing 3-23.

Listing 3-23. Editing the Template in the app.component.html File in the ClientApp/app Folder

<h1>
 Title: {{title}}
</h1>

As soon as you save the change, the Angular build process will start, and new modules will be created
and used by the browser to update the client-side application without needing to reload the browser
window, as illustrated by Figure 3-5.

Figure 3-5. An update to an HTML template

 ■ Tip The update process can take a while when the application is first started and can, on occasion, get
bogged down even when everything has been running for a while. i like to keep the browser’s javaScript
console open so that i can see the hMr messages that are displayed during the update. if an update takes too
long, then reloading the browser will reload the javaScript files and give the angular application a fresh start.

ChapTer 3 ■ CreaTing The projeCT

37

Updating Razor Files

Razor view files are not updated as part of the HMR feature. When you make a change to a Razor view file, you
must reload the browser window. The reload will send an HTTP request that will be received by ASP.NET Core,
passed to the MVC framework, and used by a controller to select a view and render a new response.

Edit the Index.cshtml file in the Views/Home folder to apply the class shown in Listing 3-24.

Listing 3-24. Changing an Element Class in the Index.cshtml File in the Views/Home Folder

@section scripts {
 <script src="~/dist/inline.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/polyfills.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/vendor.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/main.bundle.js" asp-append-version="true"></script>
}

<div class="navbar bg-inverse">
 @(ViewBag.Message ?? "SPORTS STORE")
</div>
<div class="p-1 bg-info">
 <app-root></app-root>
</div>

Adding the div element to the bg-info class applies a Bootstrap CSS style that changes the background
color. Nothing will happen when you save the change, but the updated view will be used if you reload the
page using the browser, as shown in Figure 3-6.

Updating C# Classes

The effect of changes to C# classes depends on which IDE you are using. To see how changes are handled,
edit the Home controller to change the view selected by the Index action, as shown in Listing 3-25.

Figure 3-6. An update to a Razor view

www.allitebooks.com

http://www.allitebooks.org

ChapTer 3 ■ CreaTing The projeCT

38

Listing 3-25. Selecting a Different View in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace SportsStore.Controllers {
 public class HomeController : Controller {

 public IActionResult Index() {
 ViewBag.Message = "Sports Store App";
 return View();
 }
 }
}

The view bag property added to the listing will override the text displayed at the top of the view. If you
are using Visual Studio and you started the application using IIS Express by selecting Debug ➤ Start Without
Debugging, then you can trigger an update by reloading the web page in the browser. This will trigger an
automatic project build and restart the application, as shown in Figure 3-7.

If you are using Visual Studio Code, the dotnet run command used to start the application doesn’t
respond to changes. That means you must stop the application with Control+C and then start the
application again using dotnet run. Once the application has started, reload the browser window to see the
effect of the changes.

 ■ Tip Microsoft provides a nuget package called Dotnet Watcher, which can be used to watch the project
folder for changes and trigger a rebuild and restart when a change is detected. See https://github.com/
aspnet/DotNetTools for details.

Detecting TypeScript Errors
The hot module replacement feature will display any errors reported by the TypeScript compiler in the
browser. To see an error message, add the statement shown in Listing 3-26 to the app.component.ts file in
the ClientApp/app folder.

Figure 3-7. An update to an MVC controller in Visual Studio

https://github.com/aspnet/DotNetTools
https://github.com/aspnet/DotNetTools

ChapTer 3 ■ CreaTing The projeCT

39

Listing 3-26. Forcing an Error in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'Angular & ASP.NET Core MVC';

 title = no_such_object;
}

The statement added to the TypeScript component class creates two errors by assigning a nonexistent
value to a property that has already been defined. As soon as you save the file, the Angular development
tools will compile the class, regenerate the JavaScript modules, and try to do a hot replacement. But since
the code can’t be executed, you will see the error illustrated by Figure 3-8.

The lines of text displayed by an error don’t wrap onto multiple lines, so you will either need to work
with a wide browser window or scroll to see the details.

For errors like the one introduced in Listing 3-26, you will also see a warning displayed by IntelliSense
in Visual Studio or Visual Studio Code, as shown in Figure 3-9. (This shows Visual Studio Code but with the
color scheme changed to Light to make the text easier to see on the page.)

Figure 3-8. A code error displayed in the browser

ChapTer 3 ■ CreaTing The projeCT

40

Visual Studio and Visual Studio Code both compile TypeScript files automatically to detect and report
errors in the code editor. This won’t always display errors that are not simple code mistakes, so you must get
used to handling errors displayed in the browser window, too.

If you are using Visual Studio, you can also select Build ➤ Build Solution, which will compile all of the
files in the project, including TypeScript files, and problems are reported in the Error List window, as shown
in Figure 3-10.

To restore the application to its working statement, comment out the problem statement, as shown in
Listing 3-27.

Listing 3-27. Commenting Out a Statement in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})

Figure 3-9. A code error detected by the code editor

Figure 3-10. Build errors reported by Visual Studio

ChapTer 3 ■ CreaTing The projeCT

41

export class AppComponent {
 title = 'Angular & ASP.NET Core MVC';

 //title = no_such_object;
}

As soon as you save the change, the TypeScript file will be recompiled and used to create a module that
will be used by the code running the browser to update the application, as shown in Figure 3-11.

Visual Studio doesn’t always manage to recover from errors automatically if you have selected
Build ➤ Build Solution. Select Debug ➤ Start Without Debugging to restart the .NET Core runtime.

Summary
In this chapter, I showed you how to create a project that combines Angular and ASP.NET Core MVC. The
process is a little complicated, but the result is a solid foundation that simplifies the development process
and makes it easier to get the Angular and MVC parts of an application to work together. In the next chapter,
I start work on the data model, which will underpin both the ASP.NET Core MVC and Angular parts of the
SportsStore project.

Figure 3-11. Correcting an error

43© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_4

CHAPTER 4

Creating the Data Model

In this chapter, I start adding functionality to the ASP.NET Core MVC and Angular parts of the project
to create a data model. I’ll set up a SQL Server database to store the application data, and I’ll define the
model classes that Entity Framework Core will use to represent the data. On the Angular side, I’ll define
the TypeScript classes that will represent the data and define a repository that will make the data available
throughout the application. Table 4-1 puts creating the data model into context.

Preparing for This Chapter
This chapter depends on the SportsStore project that I created in Chapter 3. No changes are required
to prepare for this chapter. If you are using Visual Studio, then run the example application by selecting
Debug ➤ Start Without Debugging. If you are using Visual Studio Code, then open a new command
prompt and run the command shown in Listing 4-1 in the SportsStore folder.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/
esntl-angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Table 4-1. Putting the Data Model in Context

Question Answer

What is it? The data model describes the data in both parts of the application.

Why is it useful? A consistent data model allows data to be consistently represented
in Angular and ASP.NET Core MVC and to flow easily from one to
the other.

How is it used? The data model is defined as pairs of TypeScript and C# classes, with
a repository in the Angular application and data context classes in
the ASP.NET Core MVC application that allows the data to be stored
using Entity Framework Core.

Are there any pitfalls or limitations? The data model classes should be as simple as possible to ensure
they can be represented consistently in TypeScript and C# and, for
most applications, ensure they can be serialized as JSON.

Are there any alternatives? No, if an application requires both Angular and ASP.NET Core MVC,
then it almost certainly requires a data model.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 4 ■ CreaTing The DaTa MoDel

44

Listing 4-1. Starting the Example Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the result shown in Figure 4-1.

 ■ Tip You can download the complete project for every chapter without charge from the source code
repository. See the apress.com page for this book for a link.

Starting the Data Model
Just as with a stand-alone ASP.NET Core MVC project, the best place to start is with the data model. The
biggest difference is that you need to describe data in both the Angular and MVC parts of the application.

Preparing the Database Server
I use Docker to run SQL Server throughout this book. Putting the database inside a container makes it easy
to reset the examples between chapters and allows SQL Server to run on all the platforms that are supported
by .NET Core without going through a complex configuration process. Add a file called docker-compose.yml
to the SportsStore project and add the content shown in Listing 4-2.

 ■ Note This is an example of a Docker compose file, which simplifies the process of managing a Docker
container. Docker compose files are written in the YaMl format, which is sensitive to spaces and does not allow tab
characters. it is important to copy the contents of this file exactly as shown. if you have problems, you can download
the file from the source repository, https://github.com/apress/esntl-angular-for-asp.net-core-mvc.

Figure 4-1. Running the example application

https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 4 ■ CreaTing The DaTa MoDel

45

Listing 4-2. The Contents of the docker-compose.yml File in the SportsStore Folder

version: "3"

services:
 database:
 image: "microsoft/mssql-server-linux:ctp2-0"
 ports:
 - 5100:1433
 environment:
 - ACCEPT_EULA=Y
 - SA_PASSWORD=mySecret123

This file configures SQL Server so that it will receive queries on port 5100, with the username SA and the
password mySecret123.

USING THE PRERELEASE SQL SERVER VERSION

The image configuration property in listing 4-2 specifies a prerelease of the linux version of SQl
Server, which can be used on all the platforms supported by .neT Core. This isn’t ready for production,
but it is stable and is acceptable for using the examples in the book. i’ll provide an update in the github
repository for this book (https://github.com/apress/esntl-angular-for-asp.net-core-mvc) if
there are any changes required when the final version is released.

Defining the Connection String
To provide Entity Framework Core with details of how to connect to the database, open the appsettings.json
file and add the statements shown in Listing 4-3, taking care to enter the connection string on a single line.

 ■ Tip The appsettings files can be used to create environment-specific configurations, such that the
settings in the appsettings.Development.json file override those in the main appsettings.json file when
the application runs in the Development environment. i do not use this feature for the examples in this book, as
explained in Chapter 12.

Listing 4-3. Adding a Connection String in the appsettings.json File in the SportsStore Folder

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.EntityFrameworkCore": "Information",
 "Microsoft.AspNetCore.NodeServices": "Information",
 "Default": "Warning"
 }
 },

https://github.com/apress/esntl-angular-for-asp.net-core-mvc
http://dx.doi.org/10.1007/978-1-4842-2916-3_12

ChapTer 4 ■ CreaTing The DaTa MoDel

46

 "Data": {
 "Products": {
 "ConnectionString": "Server=localhost,5100;Database=SportsStore;User Id=sa;Password=my
Secret123;MultipleActiveResultSets=true"
 }
 }
}

Creating the ASP.NET Core MVC Data Model
The process of creating the data model for the MVC part of the application will be familiar to most MVC
developers: a series of C# model classes is used to create a database schema, which is used to prepare a
database to store the application’s data.

An important difference from conventional ASP.NET Core development is that I do not create a
repository interface and implementation class in the MVC part of the project. Instead, I create the repository
in the Angular application, which is where the data is consumed. The structure of both applications will
become clear as the application takes shape.

Defining the Model Data Types
Data types in a project that combines Angular and ASP.NET Core MVC should be as simple as possible so
they can be described as C# and TypeScript classes. Simple classes can be readily represented as JSON data,
allowing them to be sent between Angular and ASP.NET Core MVC using HTTP requests.

To get the data model started for the SportsStore application, I am going to define three classes,
representing the products, the suppliers of those products, and customer feedback. Create a SportsStore/
Models folder, add a C# class file called Product.cs, and add the code shown in Listing 4-4.

Listing 4-4. The Contents of the Product.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {
 public class Product {

 public long ProductId { get; set; }

 public string Name { get; set; }
 public string Category { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }

 public Supplier Supplier { get; set; }
 public List<Rating> Ratings { get; set; }
 }
}

The ProductId property will be used as the primary key when storing Product objects in the database.
The Name, Category, Description, and Price properties are regular properties that store simple data values.

ChapTer 4 ■ CreaTing The DaTa MoDel

47

The Supplier and Ratings properties are navigation properties that Entity Framework Core uses to
associate a Product object with other data in the database. The objects accessed through a navigation
property are referred to as related data. In this case, each Product object may be related to one Supplier
object and multiple Rating objects.

 ■ Tip This is a more complex data model than i used in the SportsStore examples in the Pro ASP.NET Core
MVC and Pro Angular books because there are some common problems with related data when angular and
aSp.neT Core MVC are used together, which i describe in later chapters.

Add a C# class file called Supplier.cs to the Models folder and add the code shown in Listing 4-5.

Listing 4-5. The Contents of the Supplier.cs File in the Models Folder

using System.Collections.Generic;

namespace SportsStore.Models {
 public class Supplier {

 public long SupplierId { get; set; }

 public string Name { get; set; }
 public string City { get; set; }
 public string State { get; set; }

 public IEnumerable<Product> Products { get; set; }
 }
}

The SupplierId property is used for the primary key when data is stored in the database, and the Name,
City, and State properties are regular properties used to store simple data values. The Products property is
a navigation property used to move through the related data in the database.

To complete the initial set of data model class files, add a C# class file called Rating.cs to the Models
folder and add the statements shown in Listing 4-6.

Listing 4-6. The Contents of the Rating.cs File in the Models Folder

namespace SportsStore.Models {
 public class Rating {

 public long RatingId { get; set; }

 public int Stars { get; set; }

 public Product Product { get; set; }

 }
}

The RatingId property is used as the primary key when storing Rating objects in the database. The
Stars property is a regular property used to store a rating from a customer. The Product property is a
navigation property used to relate a Rating object to a Product object.

ChapTer 4 ■ CreaTing The DaTa MoDel

48

Creating the Database Context Class and the Seed Data
The next step is to create the database context class that provides access to the data through Entity
Framework Core. Add a C# class file called DataContext.cs to the Models folder and add the statements
shown in Listing 4-7.

Listing 4-7. The Contents of the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts)
 : base(opts) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }
 public DbSet<Rating> Ratings { get; set; }
 }
}

The context class follows the standard pattern for Entity Framework Core and defines a constructor that
accepts a DbContextOptions<T> object and that is configured during the ASP.NET Core startup sequence.
The three DbSet properties provide access to the data in the database, allowing independent queries for each
model type. You do not need to add DbSet properties for every model class, especially for related data types,
but I find it convenient to do so.

The database is reset for every chapter to ensure you get the expected results from the examples in this
book. This means it is useful to automatically populate the database with seed data so that the application
always has data with which to work. Add a class file called SeedData.cs to the Models folder and add the
statements shown in Listing 4-8.

Listing 4-8. The Contents of the SeedData.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;

namespace SportsStore {

 public class SeedData {

 public static void SeedDatabase(DataContext context) {
 context.Database.Migrate();
 if (context.Products.Count() == 0) {
 var s1 = new Supplier { Name = "Splash Dudes",
 City = "San Jose", State = "CA"};
 var s2 = new Supplier { Name = "Soccer Town",
 City = "Chicago", State = "IL"};
 var s3 = new Supplier { Name = "Chess Co",
 City = "New York", State = "NY"};

ChapTer 4 ■ CreaTing The DaTa MoDel

49

 context.Products.AddRange(
 new Product { Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports", Price = 275, Supplier = s1,
 Ratings = new List<Rating> {
 new Rating { Stars = 4 }, new Rating { Stars = 3 }}},
 new Product { Name = "Lifejacket",
 Description = "Protective and fashionable",
 Category = "Watersports", Price = 48.95m, Supplier = s1,
 Ratings = new List<Rating> {
 new Rating { Stars = 2 }, new Rating { Stars = 5 }}},
 new Product {
 Name = "Soccer Ball",
 Description = "FIFA-approved size and weight",
 Category = "Soccer", Price = 19.50m, Supplier = s2,
 Ratings = new List<Rating> {
 new Rating { Stars = 1 }, new Rating { Stars = 3 }}},
 new Product {
 Name = "Corner Flags",
 Description = "Give your pitch a professional touch",
 Category = "Soccer", Price = 34.95m, Supplier = s2,
 Ratings = new List<Rating> { new Rating { Stars = 3 }}},
 new Product {
 Name = "Stadium",
 Description = "Flat-packed 35,000-seat stadium",
 Category = "Soccer", Price = 79500, Supplier = s2,
 Ratings = new List<Rating> { new Rating { Stars = 1 },
 new Rating { Stars = 4 }, new Rating { Stars = 3 }}},
 new Product {
 Name = "Thinking Cap",
 Description = "Improve brain efficiency by 75%",
 Category = "Chess", Price = 16, Supplier = s3,
 Ratings = new List<Rating> { new Rating { Stars = 5 },
 new Rating { Stars = 4 }}},
 new Product {
 Name = "Unsteady Chair",
 Description = "Secretly give your opponent a disadvantage",
 Category = "Chess", Price = 29.95m, Supplier = s3,
 Ratings = new List<Rating> { new Rating { Stars = 3 }}},
 new Product {
 Name = "Human Chess Board",
 Description = "A fun game for the family",
 Category = "Chess", Price = 75, Supplier = s3 },
 new Product {
 Name = "Bling-Bling King",
 Description = "Gold-plated, diamond-studded King",
 Category = "Chess", Price = 1200, Supplier = s3 });
 context.SaveChanges();
 }
 }
 }
}

ChapTer 4 ■ CreaTing The DaTa MoDel

50

The SeedDatabase method starts by calling the DataContext.Database.Migrate method, which
ensures that the schema in the database is up-to-date before the seed data is applied. Automatic migration
is something that should be done with care in production applications because schema changes can result
in data loss. The rest of the method creates a series of model objects, associates them with one another, and
then saves them to the database using the DataContext.SaveChanges method.

To register the context class with Entity Framework Core and to ensure that the seed data is applied
when ASP.NET Core starts, add the statements shown in Listing 4-9 to the Startup class.

Listing 4-9. Registering the Context Class in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

ChapTer 4 ■ CreaTing The DaTa MoDel

51

 app.UseStaticFiles();

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 }
 }
}

A database migration is required to create the database schema that will allow the database to store the
application data. Use a command prompt to run the command shown in Listing 4-10 in the SportsStore folder.

 ■ Tip if you are a long-term user of entity Framework Core and Visual Studio, you may be accustomed to
running the Add-Migration command in the package Manager Console window, but i use the new dotnet ef
commands throughout this book because they provide more useful error messages and work across platforms.

Listing 4-10. Creating the Database Migration

dotnet ef migrations add Initial

The result of running this command is that a Migrations folder is added to the project, containing C# class
files that include statements that generate the database schema when the migration is applied to the database.

The files created for a migration start with a timestamp. If you examine the statements in the
<timestamp>_Initial.cs file in the Migrations folder, you will see how Entity Framework Core is going to
store the application’s data. The database will contain three tables, called Products, Suppliers, and Ratings,
corresponding to each of the three data model types. Each table has columns that correspond to the properties
defined by the equivalent data model class, while the navigation properties are translated into foreign key
relationships between the tables. Figure 4-2 shows a simplified representation of the database created by the
migration and the seed data. (This is not a book about Entity Framework Core, but it helps to understand how
the data is stored when it comes to querying the database to provide the application with its data.)

ChapTer 4 ■ CreaTing The DaTa MoDel

52

The Products table is used to store Product objects and includes a SupplierId column that is used
to capture the relationship to a Supplier object by storing the value of a SupplierId property from the
Suppliers table. The Ratings table is used to store Rating objects and has a ProductId column that
captures the relationship with the related Product object.

Testing the ASP.NET Core MVC Data Model
Before going further, it is worth taking a moment to make sure that Entity Framework Core can connect
to the database and that the seed data is correctly applied. The simplest way to check the data model is to
include some data in a view. Edit the Index action of the Home controller so that it receives a DataContext
object through its constructor and passes on data to its view, as shown in Listing 4-11.

Listing 4-11. Working with Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {
 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

 public IActionResult Index() {
 ViewBag.Message = "Sports Store App";
 return View(context.Products.First());
 }
 }
}

Figure 4-2. The basic database structure

ChapTer 4 ■ CreaTing The DaTa MoDel

53

The data passed to the view is the first Product object stored in the database. To display the data, edit
the Index.cshtml view to add the content shown in Listing 4-12.

Listing 4-12. Displaying Data in the Index.cshtml File in the Views/Home Folder

@section scripts {
 <script src="~/dist/inline.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/polyfills.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/vendor.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/main.bundle.js" asp-append-version="true"></script>
}

<div class="navbar bg-inverse">
 @(ViewBag.Message ?? "SPORTS STORE")
</div>

<div id="data" class="p-1 bg-warning">
 @Json.Serialize(Model)
</div>

<div class="p-1 bg-info">
 <app-root></app-root>
</div>

The @Json.Serialize method generates a JSON representation of the view model data provided by the
action method. Save the changes to the controller and view and then start the database container by running
the command shown in Listing 4-13 in the SportsStore folder.

Listing 4-13. Starting the Database Container

docker-compose up

When you first run this command, Docker downloads all the files it needs to create a container for
SQL Server, which can take a while. Once the files are downloaded, Docker starts a new container, and the
command prompt displays the output messages from the SQL Server startup.

 ■ Tip if you see a message warning you that Docker does not have enough memory to start the container,
then you may not have followed all of the setup instructions in Chapter 3. return to that chapter for details of
how to increase the amount of memory allocated to Docker.

Start the example application once the database has started. For Visual Studio users, this means
selecting Debug ➤ Start Without Debugging. For Visual Studio Code users, this means opening a second
command prompt, navigating to the SportsStore folder, and running the command shown in Listing 4-14.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3

ChapTer 4 ■ CreaTing The DaTa MoDel

54

Listing 4-14. Starting the Example Application

dotnet run

It can take a moment before you see any output from the dotnet run command. Be patient, and you will
see details of the SQL statements sent to the database to apply the schema and from the Angular build tools.

Once the ASP.NET Core MVC part of the application is ready, open a new browser window and
navigate to http://localhost:5000. The content shown by the browser contains a block of JSON data, as
shown in Figure 4-3.

Figure 4-3. Including JSON data in a view

Here is the JSON data added to the HTML sent to the browser:

{
 "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":null,"ratings":null
}

The supplier and ratings properties are set to null because I did not tell Entity Framework Core to
follow the navigation properties defined by the Product class to load the related Supplier and Rating data. I
show you how to work with related data in Chapter 5.

 ■ Caution Do not continue until you see the JSon data in the view, as shown in Figure 4-3. go back and
make sure you have followed all the steps to prepare and populate the database. if you need to reset the
database, then run docker-compose down in the SportsStore folder using a new command prompt, and finally
run docker-compose up to create a fresh container and database.

Starting the Angular Data Model
Creating a data model in the Angular part of the project makes it easier to work with the data received from
the MVC part. Create a ClientApp/app/models folder and add to it a TypeScript file called product.model.
ts, with the code shown in Listing 4-15.

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

ChapTer 4 ■ CreaTing The DaTa MoDel

55

 ■ Tip The convention for angular files is to include terms such as model and component in the file name
to make the purpose of the file obvious. The name product.model.ts, for example, indicates that this is a
TypeScript file that contains a model class called Product.

Listing 4-15. The Contents of the product.model.ts File in the ClientApp/app/models Folder

import { Supplier } from "./supplier.model";
import { Rating } from "./rating.model";

export class Product {
 constructor(
 public productId?: number,
 public name?: string,
 public category?: string,
 public description?: string,
 public price?: number,
 public supplier?: Supplier,
 public ratings?: Rating[]) { }
}

Next, create a file called supplier.model.ts in the ClientApp/app/models folder and add the
statements shown in Listing 4-16.

Listing 4-16. The Contents of the supplier.model.ts File in the ClientApp/app/models Folder

export class Supplier {

 constructor(
 public supplierId?: number,
 public name?: string,
 public city?: string,
 public state?: string) { }
}

Finally, create a file called rating.model.ts in the ClientApp/app/models folder and add the
statements shown in Listing 4-17.

Listing 4-17. The Contents of the rating.model.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";

export class Rating {

 constructor(
 public ratingId?: number,
 public stars?: number,
 public product?: Product) { }

}

ChapTer 4 ■ CreaTing The DaTa MoDel

56

Understanding the TypeScript Data Model Classes
Since these are the first TypeScript classes that I create in this book, I am going to dig into some of the details
and explain what they do and how they work.

TypeScript is a superset of JavaScript that adds a strong type system similar to the one you are already
familiar with in C#. But TypeScript is not C#, and working on a project that combines Angular and ASP.NET
Core MVC means writing code in two different languages, with two different sets of rules and features. There
is a good deal of commonality between TypeScript and C#, as you might expect from two languages created
by Microsoft, but there are some important differences, too.

If you are new to TypeScript, you might find some of this confusing, but don’t worry, TypeScript starts
to make sense as you get experience using it. Don’t get bogged down in the detail if you get lost; just carry on
reading and try to follow along as much as you can, even if not everything makes sense right away.

As you read through the sections that follow, bear in mind that the purpose of the Angular data model
classes is to mirror the C# classes from the MVC part of the project so that data sent from the server can be
represented in the client and displayed to the user.

JAVASCRIPT, ECMASCRIPT, AND TYPESCRIPT

JavaScript is a broad term that describes the language and runtime used to execute code in the browser.
all modern browsers support JavaScript, which makes it possible to create angular applications.

The name of the technology standard that describes the JavaScript language is ECMAScript, also known
as eS. each version of the standard is given a version number so that version 6 of eCMaScript is known
as eS6, version 7 is known as eS7, and so on. To confuse matters, eS6 and eS7 are also known as
eCMaScript 2015 and eCMaScript 2016.

each new version of the language specification adds features, but it takes time for browsers to support
them. it also takes time for browsers that don’t support new features to fall out of use, which means you
cannot rely on browsers to support a specific feature.

TypeScript is a language created and maintained by Microsoft. You do not have to use TypeScript to
write angular applications, but the alternative is more painful than learning TypeScript, requiring tortured
JavaScript code that is difficult to read and maintain or learning languages that are much less like
working with C#.

The good news is that TypeScript provides two useful features that help navigate through the mess of
JavaScript standards and implementations. The first is that TypeScript provides a type system similar
to the one used by C#, which makes it easier to detect common problems when compiling TypeScript
code. (The TypeScript type system is applied only when your TypeScript code files are compiled and not
at runtime. The TypeScript compiler has to remove details of the C#-style types and use the JavaScript
type system to generate backward-compatible JavaScript code.)

The second feature is that TypeScript allows you to use the latest JavaScript language features in your
project without having to worry about whether your users have browsers that support them. When the
TypeScript compiler processes a TypeScript file, it generates backward-compatible JavaScript that runs
in browsers that don’t support eS6 or eS7. The version of JavaScript that is targeted by the TypeScript
compiler is configured in the tsconfig.json file and defaults to eS5, which is the term used to refer
to JavaScript support that predates the eS6 specification. (Don’t worry if these terms do not make
sense because the default settings used in the example application target the widest possible range of
browsers and are suitable for most projects.)

ChapTer 4 ■ CreaTing The DaTa MoDel

57

Examining the Product Constructor
The best place to start is with the Product class. This class contains only a constructor, which is typical for a
TypeScript data model class. Here is the Product class with the constructor highlighted:

import { Supplier } from "./supplier.model";
import { Rating } from "./rating.model";

export class Product {
 constructor(
 public productId?: number,
 public name?: string,
 public category?: string,
 public description?: string,
 public price?: number,
 public supplier?: Supplier,
 public ratings?: Rating[]) { }
}

TypeScript constructors are denoted by the constructor keyword, rather than the name of the class,
but they perform the same purpose as in C#, and each parameter receives a value that can be used to
configure a new instance of the class.

Using the Right Name Capitalization Convention

JavaScript uses the camel case convention for its property names, which means that the first letter is
lowercase and the first letter of each subsequent concatenated word is uppercase. This means that the C#
property ProductId in the ASP.NET Core MVC part of the project becomes productId in Angular.

 ■ Caution You might be tempted to pick one convention and use it in both parts of the application, but
that will only cause problems later because the serialization process that creates JSon data automatically
transforms names between the capitalization conventions.

Making the Parameters Optional

The question mark that follows a parameter name indicates that the parameter is optional.

...
public productId?: number,
...

Optional parameters are useful for model classes because you will not always have values for all the
fields available when you create a new object. This can be because you are getting data from the user
gradually through multiple HTML forms or because the data is built up over multiple HTTP requests to the
server. Making all the constructor parameters optional gives you extra flexibility, allowing you to create new
objects with all, some, or even no data values.

ChapTer 4 ■ CreaTing The DaTa MoDel

58

Unpacking the Properties

The reason that the Product class contains only a constructor is that TypeScript has a useful feature for
avoiding a common coding pattern that is especially prevalent in model classes.

When you include an access modifier on a constructor parameter, such as public, TypeScript creates
a property with the same name and access level as the parameter and assigns it the value received by the
constructor. Table 4-2 shows the original Product class and a revised version that doesn’t take advantage
of this feature. It is easy to make a mistake when defining properties and copying values to them manually,
either forgetting to assign a value to a property or assigning the wrong value. The TypeScript feature that
automates this process produces identical results but in a more concise and less error-prone way.

Table 4-2. The Effect of Constructor Parameter Unpacking

Using Parameter Unpacking Not Using Parameter Unpacking

import { Supplier } from "./supplier.model";
import { Rating } from "./rating.model";

export class Product {
 constructor(
 public productId?: number,
 public name?: string,
 public category?: string,
 public description?: string,
 public price?: number,
 public supplier?: Supplier,
 public ratings?: Rating[]) { }
}

import { Supplier } from "./supplier.model";
import { Rating } from "./rating.model";

export class Product {

 constructor(
 productId?: number,
 name?: string,
 category?: string,
 description?: string,
 price?: number,
 supplier?: Supplier,
 ratings?: Rating[]) {

 this.productId = productId;
 this.name = name;
 this.category = category;
 this.description = description;
 this.price = price;
 this.supplier = supplier;
 this.ratings = ratings;
}

productId: number;
name: string;
category: string;
 description: string;
 price: number;
 supplier: Supplier
 ratings: Rating[];
}

Understanding the Parameter Types

The type of each parameter is specified after its name, using one of the built-in JavaScript types or another
TypeScript class defined in the project. The constructor parameters for the Product class rely on the built-in
string and number types, which are used to represent character data and numbers, respectively. Table 4-3
lists the basic set of types supported by TypeScript.

ChapTer 4 ■ CreaTing The DaTa MoDel

59

Most of the properties defined by the Product class use types described in the table, but TypeScript also
supports custom types. The supplier and rating properties are defined using the Supplier and Rating classes.

Understanding JavaScript Modules
The most confusing term when you are new to Angular development is module, which is used to describe
different parts of an application that are only loosely related. One use of this term is to describe a JavaScript
module, which is a reusable piece of code that contains features that can be used elsewhere in the application.

JavaScript modules allow dependencies between the code in a JavaScript application to be determined,
allowing the browser to load all the files it requires before executing the application. The webpack build
process hides the details, but behind the scenes JavaScript modules are used to figure out which code files
are required to run the application.

Each TypeScript file contains a separate JavaScript module, and the convention in an Angular
application is to define each class in a separate file. The export keyword is used to make the class available
outside of its file, like this:

...
export class Product {
...

Without the export keyword, the Product class would not be accessible outside of the file in which
it is defined. The counterpart is the import keyword, which declares a dependency on classes exported
from another JavaScript module. There are two import statements in the product.module.ts file, and they
declare dependencies on two other classes, like this:

...
import { Supplier } from "./supplier.model";
import { Rating } from "./rating.model";
...

A TypeScript import statement specifies the type that is required and its location. These statements import
Supplier from the supplier.model JavaScript module and Rating from the rating.model JavaScript module.

There are two ways to specify the location of a JavaScript module. The import statements in the
product.model.ts file are relative imports, which means they specify a file path relative to the current file.
This type of location begins with a period and includes the path to the target file but omits the file extension
so that the .ts of the TypeScript file or the .js of the JavaScript file that it is compiled into is not included.

Table 4-3. The Types Supported by TypeScript

Type Description

boolean The boolean type can be assigned true or false and is equivalent to the C# bool type.

number Unlike C#, there are no specific types for different types of numeric value. The number type can
be used to represent integer or fractional numbers.

string The string type is assigned text and is the counterpart to the C# string type.

array TypeScript supports strongly typed arrays, which I demonstrate in later examples.

tuple TypeScript tuples are similar to those in C# and are used to gather together a fixed-length
collection of objects or values, whose types need not be the same.

enum A TypeScript enum is similar to its C# counterpart and is used to assign friendly names to
numeric values.

any The any type is used as a placeholder when any type is acceptable.

ChapTer 4 ■ CreaTing The DaTa MoDel

60

The other type of import omits the period from the target location and declares a dependency on an
NPM package, such as the JavaScript modules that provide the Angular functionality. As an example, here
is an import statement from the app.component.ts file from the ClientApp/app folder that declares a
dependency on the @angular/core module:

...
import { Component } from '@angular/core';
...

This statement declares a dependency on the Component class defined in a package called @angular/
core. (The @ character is part of the JavaScript module name used by Google for Angular modules.) The
TypeScript compiler and the webpack tools resolve this kind of dependency by searching in the node_
modules folder in the project.

Understanding TypeScript Access Control
TypeScript supports three levels of access control: public, private, and protected. The default access level is
public, which means a method or property can be accessed from anywhere in the application. The private
keyword means that a method or property can be accessed only within its defining class. The protected
keyword means that a method or property can be accessed only within its defining class or a derived class.

For most Angular development, you can ignore the access control keywords. The exception is when you
want to take care of the constructor parameter unpacking feature, which works only when an access control
keyword is applied to a parameter. It is for this reason that all the constructor parameters in the Product
class are decorated with the public keyword, and the result is that TypeScript automatically generates
public properties that are accessible elsewhere in the application.

Integrating the Angular Data Model
It is not enough to simply define the classes that represent the data in the application. To complete the data
model, I need to integrate those classes into the rest of the application, which I do in the sections that follow.

Defining the Repository
The repository pattern isolates the code that manages the data from the rest of the application and makes it easy
to provide access to data to any part of the application that requires it. To create a repository, add a new TypeScript
file called repository.ts in the ClientApp/app/models folder and add the code shown in Listing 4-18.

WHY ANGULAR REPOSITORIES ARE JUST CLASSES

if you have implemented the repository pattern in an aSp.neT Core MVC application, you may be
surprised by how basic the angular equivalent is. in .neT, the repository typically consists of a C#
interface and one or more implementation classes. The mapping between the interface and the
implementation class that provides the detail is configured using the aSp.neT Core dependency injection
system and hidden away from data-consuming classes, which declare their dependency on the interface.

TypeScript does support interfaces, but the angular dependency injection system does not support
them, which means that the repository is defined as a simple class, undermining some of the benefits of
the repository pattern.

ChapTer 4 ■ CreaTing The DaTa MoDel

61

Listing 4-18. The Contents of the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";

export class Repository {

 constructor() {
 this.product = JSON.parse(document.getElementById("data").textContent);
 }

 product: Product;
}

The Repository class defines one property, called product, which returns a Product object. I add more
features to the Angular repository later, but this is enough to get started.

The constructor for the Repository class sets the value of the product property by doing something
that is helpful for a book example but that should be considered carefully in a real project, which is to
interact directly with the Document Object Model (DOM) API. The DOM API is a set of JavaScript objects
and functions provided by the browser that allows the HTML document to be managed programmatically.
It is this API that lets frameworks such as Angular present content to the user and to respond to interactions.
The Repository constructor uses the DOM API to locate the element that contains the JSON data and get
its content. This content is then converted from a JSON string to a JavaScript object using the JSON.parse
method and assigned to the product property.

...
this.product = JSON.parse(document.getElementById("data").textContent);
...

Using the DOM allows me to access the data included in the Razor view, but it is not how data is usually
provided to an Angular application. I replace the DOM code in Chapter 5 when I introduce an HTTP web service.

 ■ Note Working directly with the DoM api means that your application can run only in browsers and may not
work properly on other platforms that don’t implement the DoM api. This may not be an issue for your projects,
but it is important to understand the effect.

Defining the Angular Feature Module
I mentioned earlier that the term module has multiple meanings in an Angular application and explained
that each TypeScript file contains a JavaScript module, managed using the import and export keywords.

The next type of module is the Angular feature module, which is used to group related functionality
together, such as the data repository classes in the data model. Using feature modules makes Angular
applications easier to manage and maintain, although the real benefits are available when working with
Angular building blocks such as components, which I start working with in detail in Chapter 7.

For this chapter, I am going to create a feature module so that the data model can be easily integrated
into the rest of the Angular application. Add a file called model.module.ts in the ClientApp/app/models
folder and add the statements shown in Listing 4-19.

http://dx.doi.org/10.1007/978-1-4842-2916-3_5
http://dx.doi.org/10.1007/978-1-4842-2916-3_7

ChapTer 4 ■ CreaTing The DaTa MoDel

62

Listing 4-19. The Contents of the model.module.ts File in the ClientApp/app/models Folder

import { NgModule } from "@angular/core";
import { Repository } from "./repository";

@NgModule({
 providers: [Repository]
})
export class ModelModule { }

The code in the listing defines a TypeScript class called ModelModule. The class has no properties or
methods and is just a vehicle for the decorator, which is used to provide Angular with metadata about a
building block, performing a role loosely similar to a C# attribute. This is the decorator:

...
@NgModule({
 providers: [Repository]
})
...

The decorator begins with the @ character followed by the decorator type. The type of this decorator
is NgModule, which tells Angular that the ModelModule class is an Angular module. The decorator type
is followed by the (and { characters and one or more configuration properties, followed by the } and)
characters. There is only one configuration property in this decorator, called providers, which is used to
register classes for dependency injection.

Just like ASP.NET Core MVC, Angular allows application building blocks to specify the services they
need using their class constructors. These dependencies are resolved via dependency injection, using
the classes that are registered in Angular module’s providers properties. In this case, other parts of the
application will be able to receive a Repository object using dependency injection.

...
@NgModule({
 providers: [Repository]
})
...

Decorators must be imported like any other TypeScript type, which is why the listing includes this
statement:

...
import { NgModule } from "@angular/core";
...

The @angular/core JavaScript module includes the types that provide the most important Angular
features, including decorators.

Configuring the Angular Root Module
The root module is a special Angular module that configures the entire application. One of its roles is to
give Angular details of the feature modules that the application requires. To edit the root module, open the
app.module.ts file in the ClientApp/app folder and make the changes shown in Listing 4-20.

ChapTer 4 ■ CreaTing The DaTa MoDel

63

Listing 4-20. Configuring the Root Module in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The root module is defined by applying the @NgModule decorator to a class, called AppModule by convention,
and provides the configuration of the application using four properties, which are described in Table 4-4.

Displaying the Data
The basic plumbing for the Angular data model is complete. There is a repository that has been configured
for use with the Angular dependency injection feature. The repository obtains its data from an element in
the HTML sent to the browser, which is represented using TypeScript classes that correspond to the server-
side ones defined using C#.

The next step is to use the repository to get the data and display it to the user. In an Angular application,
the key building block is a component, which provides the logic and data required to display HTML content
to the user. In loose terms, an Angular component is equivalent to an ASP.NET Core MVC controller,
while an Angular component’s template is equivalent to a Razor view. The key difference is that the MVC
controllers and views are used to generate a response to an HTTP request, after which they have finished

Table 4-4. The Angular Module Configuration Properties

Name Description

imports This property is used to specify the Angular modules that the application requires.
The BrowserModule, FormsModule, and HttpModule modules provide core Angular
functionality. The ModelModule is the custom feature module that contains the data model
for the example application.

providers This property is used to specify services for the dependency injection feature. This
property is empty in the root module because the only service currently in the Angular
application is defined in the model feature module.

declarations This property is used to provide Angular with a list of the building blocks used in the
application. For the root module, this property specifies AppComponent, which is the only
building block in the application at the moment.

bootstrap This property specifies the root component for the application, which will be used to start
the application. For the example application, this property is set to AppComponent, which is
the only component in the Angular application currently.

ChapTer 4 ■ CreaTing The DaTa MoDel

64

their job, but an Angular component and its template have an ongoing responsibility to manage the HTML
displayed to the user and respond to user interaction and changes to the data model.

You will learn more about how components work in later examples. For the moment all I am going to
do is update the existing component in the application, which was created during the project setup so that it
declares a dependency on the Repository class and provides its template with the data it contains. Edit the
app.component.ts file and make the changes shown in Listing 4-21.

 ■ Tip Visual Studio users will have to expand the app.component.html item in the Solution explorer to
reveal the app.component.ts file.

Listing 4-21. Working with the Repository Class in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

 get product(): Product {
 return this.repo.product;
 }
}

The app.component.ts file defines a class called AppComponent. You can tell that this is a component
because it has been decorated with the @Component decorator, which provides Angular with the
configuration settings that are required to make the component work, as described in Table 4-5.

Table 4-5. The Component Configuration Properties in Listing 4-21

Name Description

selector This property is used to specify the HTML element that the component will be
responsible for managing. For this component, the selector property tells Angular
that the component will manage the app-root element that can be found in the HTML
generated by the Index.cshtml Razor view.

templateUrl This property is used to specify the component’s template, which is the HTML content
that will be displayed to the user.

styleUrls This property is used to specify one or more CSS stylesheets that will be applied to the
component’s template content. I do not use this feature in this book and rely on the
Bootstrap CSS framework for styling all the content in the examples.

ChapTer 4 ■ CreaTing The DaTa MoDel

65

The goal is to provide the component’s template with access to the data in the repository so that it can
be displayed to the user, which is achieved by making two additions to the AppComponent class.

The first addition is a constructor. The constructor has a Repository parameter called repo, which
is how dependencies are declared in an Angular application. The parameter tells Angular that the
AppComponent class needs a Repository object and provides it when a new AppComponent object is created.
The private keyword has been applied to the repo parameter, which means that a property with the same
name will be defined and assigned the value of the constructor parameter and that can be accessed only
within the AppComponent class.

 ■ Tip You must register classes as services using the providers property of an angular module before they
can be used for dependency injection. The Repository class was registered as a service in listing 4-19.

The second addition in Listing 4-21 is a read-only property called product that returns the value of the
Repository object’s product property. Notice that the this keyword is used to access the repo property, like this:

...
return this.repo.product;
...

The this keyword must be used to access TypeScript instance methods and properties. If you forget to
use this, which is easy to do if you are used to the way that C# works, then you will see an error telling you
that the compiler “cannot find name <name>.”

To display the data to the user, edit the app.component.html file and replace the contents with those
shown in Listing 4-22.

Listing 4-22. The Contents of the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr><th>Name</th><td>{{product?.name}}</td></tr>
 <tr><th>Category</th><td>{{product?.category}}</td></tr>
 <tr><th>Description</th><td>{{product?.description}}</td></tr>
 <tr><th>Price</th><td>{{product?.price}}</td></tr>
</table>

This fragment of HTML relies on an important Angular feature: the data binding. Data bindings
incorporate data provided by a controller into a template and, in this case, display the value of properties
defined by the Product object returned by the component’s product property.

I have used the most basic type of data binding in this example, which is denoted by the double brace
characters ({{ and }}). I demonstrate more complex bindings in later chapters, but this type of binding
evaluates its contents to produce a value that is inserted into an element. This binding, for example, displays
the value of the name property of the Product object provided by the component:

...
<tr><th>Name</th><td>{{product?.name}}</td></tr>
...

The question mark is the TypeScript safe navigation operator, and it has the same purpose as the C#
equivalent, preventing the name property from being read when the product property has not been initialized.

ChapTer 4 ■ CreaTing The DaTa MoDel

66

Save the changes to the TypeScript files, and the browser will display the static JSON data and the table
that has been generated dynamically using that data, as shown in Figure 4-4.

Reviewing the Application Structure
The example application is taking shape. There is a data model in both the MVC and Angular parts of the
project, and data is passed between them, albeit through the awkward mechanism of including JSON in
a Razor view. I remove the static JSON data in the next chapter and replace it with an HTTP web service,
but using Razor to pass data from the server to the client is a useful technique for getting the data model
working in both parts of the project. Before moving on, it is worth taking a moment to consider the emerging
structure of the SportsStore application and understand how the different features on the server and client
sides have started to mesh together.

Reviewing the ASP.NET Core MVC Application Structure
When you use the browser to navigate to http://localhost:5000, the HTTP request is passed to the MVC
framework, which routes it to the Index action method defined by the Home controller. This action method
uses Entity Framework Core to read the Product data from the SQL Server database using Entity Framework
Core and uses it as the view model data for the Index.cshtml view.

Razor processes the Index.cshtml view and generates an HTML response for the browser that includes
a JSON representation of the Product data from the database, script elements that load the JavaScript files
required by the Angular application, and an app-root element to which the Angular application will be
applied. The browser follows the URLs in the script element to load the JavaScript files, which are provided
by the static files feature of the ASP.NET Core runtime from the wwwroot folder. The JavaScript files are
generated automatically from the TypeScript files using webpack, which has been integrated into the ASP.
NET Core request pipeline (and is the reason that it takes the application a while to start up). Figure 4-5
shows the structure of the ASP.NET Core MVC part of the application.

Figure 4-4. Generating content dynamically using Angular

ChapTer 4 ■ CreaTing The DaTa MoDel

67

The ASP.NET Core MVC part of the application is made up of familiar building blocks. A controller,
action method, and Razor view work together with Entity Framework Core to generate responses for HTTP
requests. The responses sent to the client contain HTML elements that provide everything the browser
needs to run the Angular application, but the ASP.NET Core components do not have any knowledge of the
Angular application.

Reviewing the Angular Application Structure
The Angular part of the application is rudimentary, but there is enough functionality to generate a table that
displays data to the user. The HTML document received by the browser contains the app-root element into
which the dynamic content produced by the Angular application is inserted, and it also contains the script
elements for JavaScript files that contain the Angular framework and the custom application and data
model classes. The HTML document also contains the JSON data used to populate the data table, although
I replace this in Chapter 5 with a web service, which is a more conventional method for delivering data to an
Angular application. Figure 4-6 shows the structure of the Angular part of the application.

Figure 4-5. The structure of the ASP.NET Core MVC part of the application

Figure 4-6. The structure of the Angular part of the application

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

ChapTer 4 ■ CreaTing The DaTa MoDel

68

The Angular part of the application has no insights into ASP.NET Core MVC. It does not know
(or care) how the data is stored or represented by ASP.NET Core and Entity Framework Core. The two parts
of the application work together to deliver the application and the data to the user, but they exist and run
independently.

Summary
In this chapter, I started to add functionality to both the ASP.NET Core MVC and Angular parts of the
application, focusing on the data model. I created a SQL Server database, populated it with seed data, and
created C# data model classes so that the default MVC controller and view were able to send JSON data to
the application. On the client side, I defined the TypeScript classes that represent the application data, along
with a repository that is available to the rest of the Angular application through the dependency injection
feature. I finished this chapter by updating the default component and template to generate tables in a
row based on the JSON data. In the next chapter, I start the process of creating an HTTP web service and
integrating it into the application.

69© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_5

CHAPTER 5

Creating a Web Service

In this chapter, I start the process of creating an HTTP web service that the Angular application can use to
request data from ASP.NET Core MVC. This process is not as simple as it might be because of the way that
different features interact, both in the MVC and Angular parts of the application, but the result is a solid
foundation for accessing data that I build on in Chapter 6 to support a complete set of data operations.

My focus on this chapter is starting the web service and checking that each new addition works as
expected. This means I request and display data in the Angular part of the project without building the final
features that will present the data to the user. I start building the Angular features in earnest in Chapter 8.
But for this chapter, I write just enough code to get the data and display it in the browser. Table 5-1 puts the
chapter in context.

Table 5-1. Putting the Web Service in Context

Question Answer

What is it? An HTTP web service provides Angular with access to the data
managed by ASP.NET Core MVC and Entity Framework Core.

Why is it useful? The web service exposes the data in a format that is easily requested
and consumed by the Angular application.

How is it used? The Angular application sends HTTP requests to the ASP.NET
Core MVC application and receives data responses in return. The
responses typically represent data using the JSON data format,
which is easy to create in ASP.NET Core MVC and easy to consume
in Angular.

Are there any pitfalls or limitations? Getting Entity Framework Core, ASP.NET Core MVC, and Angular to
work together requires careful development and lots of testing to get
the right results. There are many pitfalls for the unwary, especially
when handling GET requests.

Are there any alternatives? You don’t have to use a web service, but doing so makes it difficult to
send data between the Angular and ASP.NET Core MVC parts of the
project.

 ■ Note The web service features in this chapter and Chapter 6 are unsecured, which means that any client
can access the data and make changes. I show you how to add authentication and authorization to the web
service in Chapter 11 and how to protect your application from cross-site request forgery (CSRF) attacks.

http://dx.doi.org/10.1007/978-1-4842-2916-3_6
http://dx.doi.org/10.1007/978-1-4842-2916-3_8
http://dx.doi.org/10.1007/978-1-4842-2916-3_6
http://dx.doi.org/10.1007/978-1-4842-2916-3_11

ChapTeR 5 ■ CReaTIng a Web SeRvICe

70

Preparing for This Chapter
This chapter uses the SportsStore project that I created in Chapter 3 and modified in Chapter 4. To ensure
that the contents of the database are reset, open a command prompt, navigate to the SportsStore folder, and
run the commands shown in Listing 5-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Listing 5-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container.

Start the application to apply the database schema and add the seed data. If you are using Visual Studio,
you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio Code or just
prefer working with the command line, then open a command prompt, navigate to the SportsStore folder,
and run the command shown in Listing 5-2.

Listing 5-2. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000, and you will see the content shown in Figure 5-1.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
http://dx.doi.org/10.1007/978-1-4842-2916-3_4
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTeR 5 ■ CReaTIng a Web SeRvICe

71

Introducing a Web Service
The Angular part of the project is getting data from the MVC framework through the HTML response sent
by the Home controller. This was helpful when putting the plumbing for the data model into place because it
let me focus on the database, model classes, and repository, but including JSON data in HTML documents
has some shortcomings. The first, and most obvious, is that users don’t typically expect to have to see the
application data alongside the regular content. The second shortcoming is that getting that data into Angular
required using the browser’s DOM API, which restricts the application to running in browsers, even though
Angular has the potential to work on a range of different platforms.

To improve the application, I am going to introduce an HTTP web service. In this arrangement, the
Angular application will start without any data and immediately make an HTTP request back to the ASP.NET
Core MVC application. The HTTP request will be made asynchronously and is known as an Ajax request,
which used to stand for Asynchronous JavaScript and XML but has become a term in its own right, not least
because XML is rarely used and has been largely replaced by JSON as the standard data format for HTTP
data requests. In the sections that follow, I show you how to plan and create a web service using ASP.NET
Core MVC and integrate it into Angular.

Understanding RESTful Web Services
There are no hard-and-fast rules for how web services should work, but the most common approach is to
adopt the Representational State Transfer (REST) pattern. There is no authoritative specification for REST,
and there is no consensus about what constitutes a RESTful web service, but there are some common
themes that are widely used for web services.

The lack of a detailed specification leads to endless disagreement about what REST means and how
RESTful web service should be created, all of which can be safely ignored just as long as the web services you
create work for your projects.

The core premise of REST—and the only aspect for which there is broad agreement—is that a web
service defines an API through a combination of the URLs and HTTP methods such as GET and POST, which
are also known as the HTTP verbs. The verb specifies the type of operation, while the URL specifies the data
object or objects that the operation applies to.

Figure 5-1. Running the example application

ChapTeR 5 ■ CReaTIng a Web SeRvICe

72

As an example, here is a URL that might identify a Product object in the example application:

/api/products/1

This URL may identify the Product object that has a value of 1 for its ProductId property. The URL
identifies the Product, but it is the HTTP method that specifies what should be done with it. Table 5-2
lists the HTTP methods that are commonly used in web services and the operations they conventionally
represent.

It is a good idea to give some thought to the API you are going to present through your web service
before starting development. It is worth paying special attention to the operations that can be performed
with the GET method because they can be more complicated than you might expect.

Creating the Web Service
Once you become experienced in designing and implementing web services, you will reach the point where
you can write all the C# code first and only then add the code to the Angular application to consume the
services you have created. For this book, I am going to take a more iterative approach, integrating each new
feature in both parts of the application to emphasize how the different parts of the application work together
and to check that everything functions as expected. In the sections that follow, I set up a web service and
integrate it into the Angular application.

Creating the Web Service Controller
ASP.NET Core MVC makes it easy to add web services to an application using standard controller features.
Create a C# class file called ProductValuesController.cs in the Controllers folder and add the code
shown in Listing 5-3.

Listing 5-3. The Contents of the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

Table 5-2. HTTP Methods and Operations

HTTP Method Description

GET This method is used to retrieve one or more data objects.

POST This method is used to create a new object.

PUT This method is used to update an existing object.

PATCH This method is used to update part of an existing object.

DELETE This method is used to delete an object.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

73

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {
 return context.Products.Find(id);
 }
 }
}

This is a regular ASP.NET Core MVC controller, derived from the Controller class in the Microsoft.
AspNetCore.Mvc namespace, just like the existing Home controller that has been rendering Razor views for
the examples so far. The name of this new controller class is ProductValuesController, which follows the
convention of including the word Values in the name to indicate that the controller will return data to its
clients rather than HTML.

Another convention for web service controllers is to create a separate part of the routing schema
dedicated to handling requests for data. The most common way to do this is to create URLs for web services
that start with /api, followed by the plural form of the name of the data type that the web service handles.
For a web service handling Product objects, this means that HTTP requests should be sent to the
/api/products URL, which I have configured using the Route attribute, like this:

...
[Route("api/products")]
...

The only action defined by the controller is the GetProduct method, which returns a single Product
object based on its primary key, which is the value assigned to its ProductId property. The action method is
decorated with the HttpGet method, which will allow ASP.NET Core MVC to use this action to handle HTTP
GET requests:

...
[HttpGet("{id}")]
public Product GetProduct(long id) {
...

The attribute’s argument extends the URL schema defined by the Route attribute so that the GetProduct
method can be reached by a URL in the form /api/products/{id}.

Action methods for web services can return .NET objects, which are automatically serialized and sent to
the client. In the case of the GetProduct method, the result is a Product object.

Testing the Web Service
To test the new web service, restart the ASP.NET Core MVC application, open a web browser, and request the
URL shown in Listing 5-4.

Listing 5-4. Testing the Web Service

http://localhost:5000/api/products/1

ChapTeR 5 ■ CReaTIng a Web SeRvICe

74

The HTTP request from the browser is received by ASP.NET Core, which passes it on to the MVC
framework. The combination of the Route and HttpGet attributes indicates that the GetProduct method in
the ProductValues controller can handle the request. The GetProduct method uses the Find method defined
by the database context’s DbSet property to retrieve a Product object from the database and return it as the
result. The Product object is serialized and returned to the browser, which will display the data it receives.

{
 "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":null,"ratings":null
}

The Product object is serialized into JSON, which is the standard data format used for web services.
Each property is automatically converted from the C# capitalization convention (ProductId) to the
JavaScript convention (productId).

Notice that the navigation properties for the related Supplier and Rating objects have been included
in the JSON data but set to null. This is because Entity Framework Core doesn’t load related data unless
specifically asked to, so no objects were assigned to the Supplier and Ratings products of the Product
objects that Entity Framework Core created when it read the data from the database. I show you how to work
with related data later in this chapter.

Using the Web Service in the Angular Application
The web service doesn’t do much at the moment, but it is enough to get started with, and there is just enough
functionality to integrate it into the Angular application, which I demonstrate in the sections that follow.

Removing the Static Data from the Razor View
The first step is to remove the static data from the Razor view, which is no longer required now that the web
service will provide data directly to the Angular application. Comment out the statements that generated the
JSON data in the Index.cshtml view, as shown in Listing 5-5. (I have also taken the opportunity to remove a
Bootstrap class from the div element, which I added in Chapter 4 to highlight the Angular application content.)

Listing 5-5. Removing the Static Data from the Index.cshtml File in the Views/Home Folder

@section scripts {
 <script src="~/dist/inline.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/polyfills.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/vendor.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/main.bundle.js" asp-append-version="true"></script>
}

<div class="navbar bg-inverse">
 @(ViewBag.Message ?? "SPORTS STORE")
</div>

@*<div id="data" class="p-1 bg-warning">*@
@* @Json.Serialize(Model)*@
@*</div>*@

http://dx.doi.org/10.1007/978-1-4842-2916-3_4

ChapTeR 5 ■ CReaTIng a Web SeRvICe

75

<div class="p-1">
 <app-root></app-root>
</div>

Consuming the Web Service Data in the Repository
The final step is to update the Angular Repository class so that it gets its data from the web service, as shown
in Listing 5-6.

Listing 5-6. Getting Web Service Data in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http } from "@angular/http";

@Injectable()
export class Repository {

 constructor(private http: Http) {
 this.getProduct(1);
 }

 getProduct(id: number) {
 this.http.get("/api/products/" + id)
 .subscribe(response => this.product = response.json());
 }

 product: Product;
}

Understanding the Http Class

Support for making HTTP requests in Angular applications is provided by the Http class, which is defined
in the @angular/http module. The new constructor for the Repository class declares a dependency on the
Http class like this:

...
constructor(private http: Http) {}
...

Angular will provide an Http object as the constructor argument when a new Repository object is
created, which will be assigned to a private instance variable called http. The Http class provides methods
for making HTTP requests, including the get method, which sends an HTTP GET request and which the
getProduct method uses, like this:

...
getProduct(id: number) {
 this.http.get("/api/products/" + id)
 .subscribe(response => this.product = response.json());
}
...

ChapTeR 5 ■ CReaTIng a Web SeRvICe

76

The get method accepts a URL as its argument. The URL specified in the listing is a relative URL, which
will be requested from the same location that the application was loaded from. This means the request will
be sent to http://localhost:5000/api/products/1, which is the same URL used to test the web service in
Listing 5-4.

Understanding Observables

The result of the Http.get method is an Observable<Response> object, which is an example of an
observable. Observables are part of a library called Reactive Extensions, produced by Microsoft, which is
used by Angular to connect different parts of the application. For the most part, you don’t work directly with
observables in an Angular application because they are used behind the scenes, but one exception is when
you need to introduce data into the application, such as from a web service.

An observable represents an item of work that will be performed asynchronously and produce a result
at some point in the future, loosely equivalent to a .NET Task. The Observable<Response> result returned by
the Http.get method, for example, represents an asynchronous activity that will produce a Response object
when it is complete. The Response class is defined in the @angular/http module and is used by Angular to
represent a response from an HTTP server.

The subscribe method is used to invoke a function when the work represented by the Observable
has completed. The function receives the Observable result, which is a Response object in this case, and I
use the Response.json method to parse the JSON data sent by the web service and assign it to the product
property, like this:

...
getProduct(id: number) {
 this.http.get("/api/products/" + id)
 .subscribe(response => this.product = response.json());
}
...

The overall effect is that when a new instance of the Repository class is created, the constructor calls
the getProduct method, which sends an HTTP request to the web service and uses the JSON data received
in response to set the product property, which can be accessed by the rest of the application.

 ■ Tip You only need to understand enough about how observables work to get data into the angular
application, but if you want to know more about the features that are available, then you can consult the
Reactive extensions project web site at https://github.com/Reactive-Extensions/RxJS.

Understanding the @Injectable Decorator

You must apply the @Injectable decorator if you are defining a class that will be instantiated using the
Angular dependency injection feature and that class’s constructor has its own dependencies. I didn’t need
to apply this decorator to the Repository class in Chapter 4 because there was no constructor, but now that
there is a dependency on an Http object, the @Injector decorator must be applied.

...
@Injectable()
export class Repository {
...

https://github.com/Reactive-Extensions/RxJS
http://dx.doi.org/10.1007/978-1-4842-2916-3_4

ChapTeR 5 ■ CReaTIng a Web SeRvICe

77

As Angular resolves the dependencies to create a new object, the @Injectable decorator indicates
that it needs to resolve the constructor parameters. If you forget to apply the @Injectable decorator, the
application will compile but won’t run, and you will see an error like this in the browser’s JavaScript console:

Error: Can't resolve all parameters for MyClass

When you save the changes to the file and navigate to http://localhost:5000, the Angular application
will display the data, as shown in Figure 5-2.

Understanding Live Data and Asynchronous Responses
The way that the Repository class handles its data may seem odd: the constructor calls the getProduct
method, and the data that is received is assigned to a property.

You might be tempted to simplify the structure of the Repository class so that the HTTP request is
sent when the value of the product property is read, but if you do, you will end up sending repeated HTTP
requests to the web service, all of which ask for the same data. To understand why this is the case, add the
statements shown in Listing 5-7 to the Repository class.

Listing 5-7. Adding Logging Statements in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http } from "@angular/http";

@Injectable()
export class Repository {
 private productData: Product;

 constructor(private http: Http) {
 this.getProduct(1);
 }

Figure 5-2. Getting the data from the web service

ChapTeR 5 ■ CReaTIng a Web SeRvICe

78

 getProduct(id: number) {
 this.http.get("/api/products/" + id)
 .subscribe(response => {
 this.productData = response.json();
 console.log("Product Data Received");
 });
 }

 get product(): Product {
 console.log("Product Data Requested");
 return this.productData;
 }
}

The console.log statements write messages to the browser’s JavaScript console, indicating when the
HTTP request delivers data to the application and when Angular reads the value of the product property to
get the data it needs to display in the application’s data bindings.

When you save the changes, the browser will reload, and you will see a sequence of messages like this
displayed in the browser JavaScript console:

...
Product Data Requested
Product Data Requested
Product Data Received
Product Data Requested
Product Data Requested
...

The data model in an Angular application is live, meaning that changes to the data model are
automatically reflected in the content displayed to the user. This is a powerful feature, as you will see as
features are added to the example in later chapters, but the process by which Angular deals with changes
means that data bindings are evaluated repeatedly, which is why there are so many Product Data
Requested messages shown in the JavaScript console.

If I had placed the code that leads to the HTTP request in the getter of the product property, then a new
HTTP request would have been sent to the web service each time that Angular evaluated its data bindings,
each of which would request the same data.

Notice also that some of the Product Data Requested messages appear before the Product Data
Received message, showing that Angular starts evaluating its data bindings before the HTTP response from
the web service is received and processed.

Consolidating the HTTP Request Code
Although the Http class provides methods to create different types of HTTP request (the get method for
HTTP GET requests, the post method for HTTP post requests, and so on), it generally makes sense to use
the Http.request method, which allows the HTTP method to be specified as an argument. This will allow
all the methods that are defined by the Repository class to be consolidated, which will make it easier to deal
with common tasks such as processing the data in a response without repeating code. In preparation for the
features that are to follow, revise the Repository class as shown in Listing 5-8.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

79

Listing 5-8. Using Common Request Code in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";

const productsUrl = "/api/products";

@Injectable()
export class Repository {
 private productData: Product;

 constructor(private http: Http) {
 this.getProduct(1);
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => { this.productData = response; });
 }

 private sendRequest(verb: RequestMethod, url: string,
 data?: any): Observable<any> {

 return this.http.request(new Request({
 method: verb, url: url, body: data
 })).map(response => response.json());
 }

 get product(): Product {
 console.log("Product Data Requested");
 return this.productData;
 }
}

The request method defined by the Http class accepts a Request object that describes the request,
which is configured using method, url, and body properties. The method property specifies the HTTP method
for the request using a RequestMethod value. The result of the request method is an Observable<Response>
that will produce a Response object when the request is complete. The map method is provided by the
Reactive Extensions library and allows an observable to be transformed, in this case by parsing the JSON
from the HTTP response. The code in Listing 5-8 works in the same way as the previous example but will
allow all the HTTP requests to be originated in a single method.

 ■ Tip notice that an import statement is required to access the map method. each operator that Reactive
extensions provides for working with observables is defined in its own file that must be imported before it can
be used.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

80

Adding Placeholder Content
A consequence of using asynchronous requests to get data is that there is a period where there is no data
to display to the user. You may not have noticed this interval because the response from the web service
is immediate when the browser and the ASP.NET Core runtime are on the same machine. But once an
application is deployed and clients connect to the server over public networks, the effect can be obvious to
the user. To simulate a substantial delay, add the statement shown in Listing 5-9 to the web service controller
to introduce a five-second delay to handling data requests.

Listing 5-9. Introducing a Delay in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {
 System.Threading.Thread.Sleep(5000);
 return context.Products.Find(id);
 }
 }
}

Restart the application and use the browser to navigate to http://localhost:5000. The Angular
application will load and, as part of that process, an HTTP request will be sent to the web service to get
the data that will be displayed to the user. You will see that the table is displayed without content for a few
seconds and then populated, as shown in Figure 5-3.

Figure 5-3. The effect of a delay in receiving the web service data

ChapTeR 5 ■ CReaTIng a Web SeRvICe

81

Introducing a delay emphasizes the dynamic nature of data in Angular. When the HTTP request
completed and the data was introduced into the application, Angular automatically updates the content it
displays to the user, reflecting the change without needing any explicit instruction. But a delay in receiving
the data leaves the user looking at an empty table, and it is good practice to introduce some placeholder
content to display to the user while waiting for data to load.

To make it obvious to the user that the application is waiting for data, make the changes to the HTML
template shown in Listing 5-10.

Listing 5-10. Displaying Placeholder Content in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr><th>Name</th><td>{{product?.name || 'Loading Data...'}}</td></tr>
 <tr><th>Category</th><td>{{product?.category || 'Loading Data...'}}</td></tr>
 <tr><th>Description</th>
 <td>{{product?.description || 'Loading Data...'}}</td>
 </tr>
 <tr><th>Price</th><td>{{product?.price || 'Loading Data...'}}</td></tr>
</table>

The expressions in data bindings, which appears between the {{ and }} characters, are not just
references for data values. Instead, they are fragments of JavaScript code that are evaluated to produce the
content that will be presented to the user. This listing uses the JavaScript logical OR operator (||) in a way
that is loosely equivalent to the C# null coalescing operator, like this:

...
<td>{{product?.name || 'Loading Data...'}}</td>
...

This effect is to display the value of the name property if the product property has been assigned and the
Loading Data message when it hasn’t. The product property is assigned only when the HTTP request has
completed, which has the effect of displaying the loading message until the data is available, as shown in
Figure 5-4.

Loading Related Data
To avoid loading data that may not be needed, Entity Framework Core doesn’t load related data unless
specifically instructed to do so. To include the Supplier and Rating objects that are associated with a
Product object, change the query performed by the web service controller, as shown in Listing 5-11.

Figure 5-4. Displaying a loading message

ChapTeR 5 ■ CReaTIng a Web SeRvICe

82

Listing 5-11. Including Related Data in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {
 //System.Threading.Thread.Sleep(5000);
 return context.Products
 .Include(p => p.Supplier)
 .Include(p => p.Ratings)
 .FirstOrDefault(p => p.ProductId == id);
 }
 }
}

The Include method tells Entity Framework Core to follow a navigation property and load the related
data. In the listing, the Include method is used to select the Product.Supplier and Product.Ratings
properties and load the related Supplier and Rating objects.

The Include method is called on the IQueryable<T> interface, which is implemented by the
DbSet properties defined by the database context class. The IQueryable<T> interface is derived from
IEnumerable<T> but represents a database query that will be evaluated by the Entity Framework Core
database provider to minimize the amount of data that will be read from the database. The Include
method can be chained together to select multiple navigation properties but cannot be used with the Find
method. As a consequence, selecting the Product object with the specified key must be done with the
FirstOrDefault method, which selects the first object that matches the query and returns null if there are
no matches in the database.

Understanding the Circular Reference Problem
The code in Listing 5-11 contains a problem that causes so much confusion that it is worth exploring in
detail. To see the problem, restart the ASP.NET Core MVC application and use a browser to request the URL
http://localhost:5000/api/products/1. The application will report the following exception:

...
Newtonsoft.Json.JsonSerializationException: Self referencing loop detected with
type 'SportsStore.Models.Product'. Path 'supplier.products'.
...

ChapTeR 5 ■ CReaTIng a Web SeRvICe

83

The Newtonsoft.Json namespace contains the excellent Json.NET package that Microsoft uses for JSON
serialization in ASP.NET Core. Json.NET keeps track of the objects it serializes to avoid circular references
that would lead to the same data being endlessly serialized. For example, in a situation where object A has a
reference object B and object B has a reference to object A, there is a risk that the serializer will get stuck in a
loop endlessly following the references between the objects. To avoid this situation, the serializer throws an
exception when it follows a reference to an object that it has already serialized.

Looking at the code in Listing 5-11, you might struggle to see why using the Include method has
created a circular reference. The problem is caused by a well-intentioned Entity Framework Core feature that
attempts to minimize the amount of data read from the database but that causes problems in ASP.NET Core
MVC applications. To see what is happening, change the configuration of the JSON serializer in the Startup
class so that it doesn’t report an exception when it detects a circular reference, as shown in Listing 5-12.

Listing 5-12. Configuring the JSON Serializer in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));
 services.AddMvc().AddJsonOptions(opts =>
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize);
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

ChapTeR 5 ■ CReaTIng a Web SeRvICe

84

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

 app.UseStaticFiles();

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 }
 }
}

This doesn’t fix the problem, but it does reveal what is causing it, albeit by allowing a circular reference
to create a terminal stack overflow. Restart the ASP.NET Core MVC application and use a browser to request
the http://localhost:5000/api/products/1 URL. Instead of the exception shown earlier, the application
will terminate with this error:

...
Process is terminated due to StackOverflowException
...

This is the situation that the JSON serializer tries to avoid. You can see what caused the problem by
examining the JSON content that was displayed by the browser before the application stopped, which is
easier to understand if you format the data like this:

...
{ "productId":1, "name":"Kayak", "category":"Watersports",
 "description":"A boat for one person", "price":275.00,
 "supplier":{
 "supplierId":1, "name":"Splash Dudes", "city":"San Jose",
 "state":"CA",
 "products":[
 { "productId":1, "name":"Kayak", "category":"Watersports",
 "description":"A boat for one person", "price":275.00,
 "supplier":{
 "supplierId":1,"name":"Splash Dudes", "city":"San Jose",
 "state":"CA",
 "products":[
 { "productId":1, "name":"Kayak", "category":"Watersports",
...

When Entity Framework Core creates objects, it tries to populate navigation properties with objects
that have already been created by the same database context. This can be a useful feature in some kinds of
application, such as desktop apps, where a database context object has a long life and is used to make many
requests over time. It isn’t useful for ASP.NET Core MVC applications where a new context object is created

ChapTeR 5 ■ CReaTIng a Web SeRvICe

85

for each HTTP request. In the example application, the only objects that Entity Framework Core creates are
the ones for the current query, which starts with a Product object and includes the related Supplier and
Rating objects.

When Entity Framework Core creates the Supplier object, it looks at the objects it has already created
to see whether any of them can be used to populate the Products navigation property. There is one such
object, which is the Product object that has already been created, so Entity Framework Core adds this to the
collection assigned to the Supplier.Products property. This creates the circular reference, which isn’t a
problem when the references are between objects in the .NET Core runtime but cause problems when they
are serialized to JSON, which doesn’t have any way to represent references between objects.

The application terminates with a StackOverflowException because the JSON serializer follows these
the references and writes out each object it encounters. The Product object has a reference to the Supplier
object through its Supplier property, which has a reference to the Product object through its Products
property, which has a reference to the Supplier object, and so on.

Breaking the Circular References
There is no way to stop Entity Framework Core from using existing objects for navigation properties.
Preventing the problem means breaking the references between objects after they have been created by
Entity Framework Core and before they are processed by the JSON serializer, as shown in Listing 5-13.

Listing 5-13. Breaking References in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {
 Product result = context.Products
 .Include(p => p.Supplier)
 .Include(p => p.Ratings)
 .First(p => p.ProductId == id);

 if (result != null) {
 if (result.Supplier != null) {
 result.Supplier.Products = null;
 }

 if (result.Ratings != null) {
 foreach (Rating r in result.Ratings) {
 r.Product = null;

ChapTeR 5 ■ CReaTIng a Web SeRvICe

86

 }
 }
 }
 return result;
 }
 }
}

To break the relationships, the listing sets the Supplier.Products property to null. There is also a
circular reference between the Product and Rating objects, so the listing enumerates the Rating objects
returned by the Product object’s Ratings property to set their Product property to null. To see the result,
restart the ASP.NET Core MVC application and use a browser to request the http://localhost:5000/api/
products/1 URL, which will produce the following data:

{
 "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":{
 "supplierId":1,"name":"Splash Dudes","city":"San Jose",
 "state":"CA","products":null},
 "ratings":[{"ratingId":1,"stars":4,"product":null},
 {"ratingId":2,"stars":3,"product":null}]
}

AVOIDING PROBLEMATIC SOLUTIONS

There are two other ways to prevent the JSOn serializer from throwing exceptions about circular
references, both of which will show up if you search online for the error text, but neither of which really
solves the problem.

The most common advice is to change the configuration of the serializer so that it simply ignores any
object that it has already serialized, using a configuration statement like this in the Startup class:

...
services.AddMvc().AddJsonOptions(opts =>
 opts.SerializerSettings.ReferenceLoopHandling = ReferenceLoopHandling.Ignore);
...

The Ignore setting prevents exceptions, but it doesn’t stop extraneous data from being returned by the
web service, which can be a problem when you are handling requests for multiple objects. each object
retrieved from the database gives entity Framework Core more scope to populate navigation properties,
adding to the data sent to the client.

The other approach is to add the JsonIgnore attribute to navigation properties in the model classes to
stop the serializer following them when creating JSOn data. This solves the problem in the short term
but prevents you from being able to create useful web services that deal with the model classes directly,
rather than as related data.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

87

Breaking Circular References in Additional Related Data
One of the odd effects of the way that Entity Framework Core populates navigation properties is that the
related data is often incomplete. In the previous example, the only Product object that Entity Framework
Core had to work with was the one that was being queried, which meant that all the other Product objects
associated with that Supplier were simply not available and so were not included in the result.

If you want to include additional related data, you can load it using the ThenInclude method, which
will ensure that all the data in the database will be used and not just whatever has been loaded so far. For
example, to include all the Product objects associated with a Supplier, add the ThenInclude method to the
web service query, as shown in Listing 5-14.

Listing 5-14. Including Additional Data in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {
 Product result = context.Products
 .Include(p => p.Supplier).ThenInclude(s => s.Products)
 .Include(p => p.Ratings)
 .First(p => p.ProductId == id);

 if (result != null) {
 if (result.Supplier != null) {
 result.Supplier.Products = result.Supplier.Products.Select(p =>
 new Product {
 ProductId = p.ProductId,
 Name = p.Name,
 Category = p.Category,
 Description = p.Description,
 Price = p.Price,
 });
 }

 if (result.Ratings != null) {
 foreach (Rating r in result.Ratings) {
 r.Product = null;
 }
 }
 }

ChapTeR 5 ■ CReaTIng a Web SeRvICe

88

 return result;
 }
 }
}

This example requires a different technique for dealing with circular references. Rather than set a
property to null, new Product objects without the circular reference to the Supplier are created using the
LINQ Select method.

To understand why this is important, restart the ASP.NET Core MVC application and use a browser to
navigate to the http://localhost:5000/api/products/1 URL. The JSON data returned by the web service
includes the Product object, the Product object’s related Supplier, and the Supplier object’s related
Product objects (and the Rating objects, but they are not important for this example).

{
 "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":{"supplierId":1,"name":"Splash Dudes","city":"San Jose",
 "state":"CA",
 "products":[
 { "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person", "price":275.00,
 "supplier":null,"ratings":null},
 { "productId":2,"name":"Lifejacket","category":"Watersports",
 "description":"Protective and fashionable","price":48.95,
 "supplier":null,"ratings":null}]},
 "ratings":[{"ratingId":1,"stars":4,"product":null},
 {"ratingId":2,"stars":3,"product":null}]
}

The highlighting shows that the same Product objects appear twice in the JSON data, which is typical
when the Include and ThenInclude methods are used to get data on both ends of a navigation property.

Entity Framework Core creates only one Product object for the Kayak product, and this means that
setting its Supplier property to null wouldn’t just break the relationship for the nested related data; it would
also break the relationship between the main Product object that has been queried and its Supplier, which
would exclude all of the related data.

Omitting Null Properties
A consequence of using navigation properties, whether they are followed or not, is that the JSON data sent
to the client contains properties whose values are null. This doesn’t often cause problems, but it does
consume bandwidth, and it is good practice to omit them. Add the configuration statement shown in
Listing 5-15 to the Startup class to tell the JSON serializer to omit properties that are null.

Listing 5-15. Configuring the JSON Serializer in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));

www.allitebooks.com

http://www.allitebooks.org

ChapTeR 5 ■ CReaTIng a Web SeRvICe

89

 services.AddMvc().AddJsonOptions(opts => {
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize;
 opts.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;
 });
}
...

Restart the ASP.NET Core MVC application and use a browser to request http://localhost:5000/api/
products/1 and you see that the null properties are no longer included in the JSON returned by the web
service, like this:

{
 "productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":{
 "supplierId":1,"name":"Splash Dudes","city":"San Jose","state":"CA",
 "products":[{"productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00},
 {"productId":2,"name":"Lifejacket","category":"Watersports",
 "description":"Protective and fashionable","price":48.95}]},
 "ratings":[{"ratingId":1,"stars":4},{"ratingId":2,"stars":3}]
}

Displaying Related Data
No special steps are required to display the related data in the Angular part of the project, which is handled
automatically when the JSON data is processed. To display the related data, add the elements shown in
Listing 5-16 to the Angular component’s template.

Listing 5-16. Displaying Related Data in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr><th colspan="2" class="bg-info">Product</th></tr>
 <tr><th>Name</th><td>{{product?.name || 'Loading Data...'}}</td></tr>
 <tr><th>Category</th><td>{{product?.category || 'Loading Data...'}}</td></tr>
 <tr>
 <th>Description</th>
 <td>{{product?.description || 'Loading Data...'}}</td>
 </tr>
 <tr><th>Price</th><td>{{product?.price || 'Loading Data...'}}</td></tr>
 <tr><th colspan="2" class="bg-info">Supplier</th></tr>
 <tr><th>Name</th><td>{{product?.supplier?.name}}</td></tr>
 <tr><th>City</th><td>{{product?.supplier?.city}}</td></tr>
 <tr><th>State</th><td>{{product?.supplier?.state}}</td></tr>
 <tr><th>Products</th><td>{{product?.supplier?.products?.length}}</td></tr>
</table>

The new elements use data bindings with expressions that use the safe navigation operator to select
properties from the related Supplier object. When you save the change to the template and navigate to
http://localhost:5000, the browser will display the content shown in Figure 5-5.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

90

Implementing the GET Method for Multiple Objects
In a RESTful web service, the HTTP GET method typically does double duty and is used to denote queries
for one object and queries for multiple objects, with the request URL being used to specify the purpose of
the query. In this section, I demonstrate how to support queries for multiple objects and how to display the
data in an Angular application. The result will be to expand the API provided by the web service, as shown in
Table 5-3.

Implementing the Web Service Action Method
It took a long time to explain how to implement the GET method for single objects because of the
complexities of serializing related data. But once you understand how to deal with circular references, the
process for dealing with multiple objects is simpler. To add support for querying for multiple objects, add the
action method shown in Listing 5-17 to the ProductValues controller.

Figure 5-5. Displaying related data in the Angular application

Table 5-3. The Web Service API with GET for Multiple Objects

Method URL Description

GET /api/products/<id> Retrieves a single Product object

GET /api/products Retrieves multiple Product objects

ChapTeR 5 ■ CReaTIng a Web SeRvICe

91

Listing 5-17. Adding an Action in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 public Product GetProduct(long id) {

 // ...statements omitted for brevity...

 }

 [HttpGet]
 public IEnumerable<Product> GetProducts(bool related = false) {
 IQueryable<Product> query = context.Products;
 if (related) {
 query = query.Include(p => p.Supplier).Include(p => p.Ratings);
 List<Product> data = query.ToList();
 data.ForEach(p => {
 if (p.Supplier != null) {
 p.Supplier.Products = null;
 }
 if (p.Ratings != null) {
 p.Ratings.ForEach(r => r.Product = null);
 }
 });
 return data;
 } else {
 return query;
 }
 }
 }
}

The GetProducts method is decorated with the HttpGet attribute, which tells the MVC framework
that it can be used to handle GET requests. The action method defines a related parameter that is used to
indicate whether related data should be included in the response, which defaults to false.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

92

Within the action method, if the related data is not required, then the result is the IQueryable<Product>
object obtained by reading the database context object’s Product property. If related data is required, then
I use the ToList method to force execution of the query and create a List<Product> on which I can use the
ForEach method to break the circular references before the data is serialized.

To test the new action, restart the ASP.NET Core MVC application and use a browser to request http://
localhost:5000/api/products. This URL requests the products without related data and will produce a
result with data like this (I have shown just two Product objects for brevity):

...
[{"productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00},
 {"productId":2,"name":"Lifejacket","category":"Watersports",
 "description":"Protective and fashionable","price":48.95},
...

To include related data in the request, use a browser to request http://localhost:5000/api/
products?related=true, which will produce data like this:

...
[{"productId":1,"name":"Kayak","category":"Watersports",
 "description":"A boat for one person","price":275.00,
 "supplier":{"supplierId":1,"name":"Splash Dudes",
 "city":"San Jose","state":"CA"},
 "ratings":[{"ratingId":1,"stars":4},{"ratingId":2,"stars":3}]},
{"productId":2,"name":"Lifejacket","category":"Watersports",
 "description":"Protective and fashionable","price":48.95,
 "supplier":{"supplierId":1,"name":"Splash Dudes",
 "city":"San Jose","state":"CA"},
 "ratings":[{"ratingId":3,"stars":2},{"ratingId":4,"stars":5}]},
...

 ■ Tip You can extend the aSp.neT Core MvC routing configuration so that you don’t have to use query
parameters in your URLs. I have not done so because I add some additional features to this action method that
would make for a complicated routing configuration. In my projects, especially if the angular application is the
only client of the web service, then I tend to use query parameters for simplicity.

Querying Multiple Objects in the Angular Application
The process of sending a request from the Angular application to get multiple objects follows the same basic
pattern as for a single object. The first step is to define a new method in the Repository class to send the request
and process the response, as shown in Listing 5-18. (I have also taken the opportunity to remove the console.
log statements that I used to demonstrate the odd design of the Repository class in the previous section.)

ChapTeR 5 ■ CReaTIng a Web SeRvICe

93

Listing 5-18. Adding a Method in the repository.ts File in the ClientApp/app/model Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";

const productsUrl = "/api/products";

@Injectable()
export class Repository {

 constructor(private http: Http) {
 this.getProducts(true);
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => {
 this.product = response.json();
 });
 }

 getProducts(related = false) {
 this.sendRequest(RequestMethod.Get, productsUrl + "?related=" + related)
 .subscribe(response => this.products = response);
 }

 private sendRequest(verb: RequestMethod, url: string, data?: any)
 : Observable<any> {

 return this.http.request(new Request({
 method: verb, url: url, body: data
 })).map(response => response.json());
 }

 product: Product;
 products: Product[];
}

The getProducts method sends an HTTP request to the /api/products URL, which gets all the Product
data that is available. The method defines an optional parameter that is used to set the related query string
parameter in the request URL to specify whether the response should include related data.

Updating the Component
The next step is to update the component so that it defines a property that the template can use to access the
product data, as shown in Listing 5-19. Templates can only access data through their component, which is
why these mapping properties are required.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

94

Listing 5-19. Defining a Property in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

 get product(): Product {
 return this.repo.product;
 }

 get products(): Product[] {
 return this.repo.products;
 }
}

Updating the Component’s Template
To display the data obtained from the web service, replace the contents of the app.component.html file with
those shown in Listing 5-20.

Listing 5-20. Displaying Data in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr>
 <th>Name</th><th>Category</th><th>Price</th>
 <th>Supplier</th><th>Ratings</th>
 </tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>{{product.supplier?.name || 'None'}}</td>
 <td>{{product.ratings?.length || 0}}</td>
 </tr>
</table>

The important part of the template is an Angular directive, which is used to change the HTML that is
presented to the user based on the data in the model. Here is the element that this directive has been applied
to, with the directive itself shown in bold:

...
<tr *ngFor="let product of products">
...

ChapTeR 5 ■ CReaTIng a Web SeRvICe

95

This is an example of a structural directive, which alters the structure or content of an HTML element.
In this case, the directive, which is called ngFor, is responsible for repeating the HTML element it is applied
to for each object in an array. The directive’s expression specifies the array and tells Angular to assign, in
turn, each object in the collection returned by the component’s products property to a variable called
product that can be used in data bindings in the element’s content, like this:

...
<td>{{product.name}}</td>
...

The effect is similar to a Razor @foreach expression, but the ngFor expression is applied as an attribute
of the HTML element that will be duplicated.

Some of the data binding expressions in Listing 5-20 use the || operator, which produces useful results
even when there is no data available to display. This does loosely the same thing as the C# ?? operator but
has some wrinkles, as explained in the “Understanding JavaScript Truth” sidebar.

UNDERSTANDING JAVASCRIPT TRUTH

JavaScript has an unusual approach to evaluating expressions as true or false, which you need to
understand to create effective angular data binding expressions. all expressions can be truthy or falsy, which
means they will evaluate as either true or false. This can lead to some unexpected results. The following
expressions are always falsy and will always evaluate to false in an angular data binding expression:

• The false (boolean) value

• The 0 (number) value

• The empty string ("")

• null

• undefined

• NaN (a special number value)

all other values are truthy and will evaluate to true, which can be confusing. For example, "false"
(a string whose content is the word false) is truthy.

In Listing 5-20, one of the data binding expressions relies on the fact that the product.supplier.name
property may be null, which will be falsy, in which case placeholder content should be shown.

...
<td>{{product.supplier?.name || 'None'}}</td>
...

The || operator performs an OR comparison to coalesce null values. If the value of the product.
supplier.name value isn’t falsy, then it will be used as the result of the data binding expression. If it is
falsy, typically because it is null, then the None string literal value will be used as the expression result.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

96

The result is that a tr element is created, along with the td elements it contains, for each of the objects
obtained from the web service, which you can see by navigating to http://localhost:5000, as shown in
Figure 5-6.

Filtering the Data
The web service responds to GET requests sent to the /api/products URL by sending all the Product objects
that have been stored in the database. That’s fine for an example application that has nine items, but most
real applications store enough data that it doesn’t make sense to send it all to the client for every request.

To finish this chapter, I am going to add support for allowing the client to provide the web service with
instructions for filtering the data it receives. I am going to define three different ways for the client to select
Product objects: filtering by category, searching by name, or searching by description. The client will be able
to specify a category by adding a query string to the base URL, like this:

/api/products?category=soccer

This URL will return only those Product objects whose Category property equals soccer.
For the second filter, the client will be able to perform a search by adding a search term to the query

string, like this:

/api/products?category=soccer&search=stadium

This URL will return only those Product objects that are in the soccer category and whose Name or
Description properties contain stadium.

Figure 5-6. Displaying multiple objects

ChapTeR 5 ■ CReaTIng a Web SeRvICe

97

Applying Filtering in the Web Service
Not all the filters will be applied to every request, which means that the web service must carefully build
up the query for Entity Framework Core to execute. To add support for the three data filters, add the code
shown in Listing 5-21 to the GetProducts method in the ProductValues controller.

Listing 5-21. Filtering Data in the ProductValuesController.cs File in the Controllers Folder

...
[HttpGet]
public IEnumerable<Product> GetProducts(string category, string search,
 bool related = false) {
 IQueryable<Product> query = context.Products;

 if (!string.IsNullOrWhiteSpace(category)) {
 string catLower = category.ToLower();
 query = query.Where(p => p.Category.ToLower().Contains(catLower));
 }
 if (!string.IsNullOrWhiteSpace(search)) {
 string searchLower = search.ToLower();
 query = query.Where(p => p.Name.ToLower().Contains(searchLower)
 || p.Description.ToLower().Contains(searchLower));
 }

 if (related) {
 query = query.Include(p => p.Supplier).Include(p => p.Ratings);
 List<Product> data = query.ToList();
 data.ForEach(p => {
 if (p.Supplier != null) {
 p.Supplier.Products = null;
 }
 if (p.Ratings != null) {
 p.Ratings.ForEach(r => r.Product = null);
 }
 });
 return data;
 } else {
 return query;
 }
}
...

The IQueryable<T> interface is especially useful for filtering data because it allows the query to be
constructed step by step and will be executed only when the results are enumerated. In the listing, I inspect
the parameter values and use them to build up the query using LINQ.

To test the ability to filter data, restart the ASP.NET Core MVC application and use a browser to request
http://localhost:5000/api/products?category=soccer. This URL requests the Product objects in the
Soccer category and will produce the following result:

 [{"productId":3,"name":"Soccer Ball","category":"Soccer",
 "description":"FIFA-approved size and weight","price":19.50},
{ "productId":4,"name":"Corner Flags","category":"Soccer",

ChapTeR 5 ■ CReaTIng a Web SeRvICe

98

 "description":"Give your pitch a professional touch","price":34.95},
{ "productId":5,"name":"Stadium","category":"Soccer",
 "description":"Flat-packed 35,000-seat stadium","price":79500.00}]

Applying Filtering in the Angular Application
A corresponding set of changes are required in the Angular repository to support data filtering. First, add
a TypeScript file called configClasses.repository.ts to the models folder and use it to define the class
shown in Listing 5-22.

Listing 5-22. The Content of the configClasses.repository.ts File in the ClientApp/app/models Folder

export class Filter {
 category?: string;
 search?: string;
 related: boolean = false;

 reset() {
 this.category = this.search = null;
 this.related = false;
 }
}

This class will be used to specify the filtering that will be applied to product data. To update the
repository to use this class and implement the filtering, make the changes shown in Listing 5-23.

Listing 5-23. Filtering Data in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter } from "./configClasses.repository";

const productsUrl = "/api/products";

@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 this.filter.category = "soccer";
 this.filter.related = true;
 this.getProducts();
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => this.product = response);
 }

ChapTeR 5 ■ CReaTIng a Web SeRvICe

99

 getProducts() {
 let url = productsUrl + "?related=" + this.filter.related;

 if (this.filter.category) {
 url += "&category=" + this.filter.category;
 }
 if (this.filter.search) {
 url += "&search=" + this.filter.search;
 }

 this.sendRequest(RequestMethod.Get, url)
 .subscribe(response => this.products = response);
 }

 private sendRequest(verb: RequestMethod, url: string, data?: any)
 : Observable<any> {

 return this.http.request(new Request({
 method: verb, url: url, body: data
 })).map(response => response.json());
 }

 product: Product;
 products: Product[];

 get filter(): Filter {
 return this.filterObject;
 }
}

The listing defines a TypeScript class called Filter that has properties that correspond to the query
string parameters that the web service supports. The Repository class defines a filter property that provides
read-only access to a Filter object that is used in the getProducts method to compose the URL for the HTTP
request. For testing, the constructor has also been updated to use the filter so that the web service will be asked
to select the Product objects that are in the Soccer category. When you save the changes to the TypeScript file
and navigate to http://localhost:5000, the browser will show the filtered data, as illustrated in Figure 5-7.

ChapTeR 5 ■ CReaTIng a Web SeRvICe

100

Understanding the Structure of the Web Service
The web service isn’t complete, but its basic structure has been defined, allowing the client to send a request
for single and multiple product objects. The structure of the MVC part of the application will be familiar to
most ASP.NET Core MVC developers because it follows the same basic approach that it used for round-trip
applications, except that the action methods return data that is serialized into JSON, as shown in Figure 5-8.

The Angular application is more complex than the ASP.NET Core MVC application. In particular, the
way that Angular responds immediately to changes in the data that is displayed through its data bindings
means that there is a separation between the methods by which data is requested and the properties that are
used to make that data available to the rest of the application, as shown in Figure 5-9.

Figure 5-7. Filtering data in the Angular application

Figure 5-8. The structure of the ASP.NET Core MVC web service

Figure 5-9. The structure of the repository in the Angular application

ChapTeR 5 ■ CReaTIng a Web SeRvICe

101

This indirection will start to make sense in Chapter 7, where I explain how the structure of an Angular
application allows features to cooperate with one another and how the data model becomes the heart of the
application.

Summary
In this chapter, I replaced the static JSON data in the Razor view with an HTTP web service that follows
the basic principles of REST. I created a new MVC controller for handling data requests and explained the
interactions between related data and the JSON serializer. I created a repository in the Angular application,
used it to demonstrate how Angular provides support for making asynchronous HTTP requests, and
explained how the responses are represented using observables. In the next chapter, I continue to work on
the web service providing the features that are required to create, modify, and delete data objects.

http://dx.doi.org/10.1007/978-1-4842-2916-3_7

103© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_6

CHAPTER 6

Completing the Web Service

In Chapter 5, I created the web service and added support for handling HTTP GET requests. In this chapter,
I complete the implementation by adding support for the POST, PUT, PATCH, and DELETE methods, which
allows the client to create, update, and delete data.

 ■ Note The web service features in this chapter and Chapter 5 are unsecured, which means that any client
can access the data and make changes. I show you how to add authentication and authorization to the web
service in Chapters 11 and 12.

Preparing for This Chapter
This chapter uses the SportsStore project that I created in Chapter 3 and modified in the chapters since. To
ensure that the contents of the database are reset, open a command prompt, navigate to the SportsStore
folder, and run the commands shown in Listing 6-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Listing 6-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container.

Start the application to apply the database schema and add the seed data. If you are using Visual Studio,
you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio Code or just
prefer working with the command line, then open a command prompt, navigate to the SportsStore folder,
and run the command shown in Listing 6-2.

http://dx.doi.org/10.1007/978-1-4842-2916-3_5
http://dx.doi.org/10.1007/978-1-4842-2916-3_5
http://dx.doi.org/10.1007/978-1-4842-2916-3_11
http://dx.doi.org/10.1007/978-1-4842-2916-3_12
http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 6 ■ CompleTIng The Web ServICe

104

Listing 6-2. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000, and you will see the content shown in Figure 6-1.

Implementing the POST Method
The HTTP POST method is used to store new data objects in the database. As noted in Chapter 5, getting
Angular, ASP.NET Core MVC, and Entity Framework Core to work together requires some care, especially
when it comes to related data, and implementing POST requests has its share of pitfalls. In the sections that
follow, I show you how to add support for creating data while avoiding the most common problems.

Understanding the API Enhancements
Adding support for the POST method will expand the API provided by the web service, as shown in Table 6-1.

The additions to Table 6-1 provide URLs for both the Product and Supplier classes in the data model.
It can be tempting to allow clients to supply new related data in a request so that a Product object is received
along with a new Supplier object and both are stored in the database. This is an approach that works well at

Figure 6-1. Running the example application

Table 6-1. The Web Service API with POST Support for Storing New Objects

Method URL Description

GET /api/products/<id> Retrieves a single Product object

GET /api/products Retrieves multiple Product objects

POST /api/products Stores a new Product object

POST /api/suppliers Stores a new Supplier object

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

ChapTer 6 ■ CompleTIng The Web ServICe

105

first but quickly becomes complex; ultimately it produces a client that requires deep knowledge of how the
web service works internally and produces a web service that requires constant tinkering and that responds
badly to changes elsewhere in the application.

A more robust approach is to handle the creation of each type of data separately. This requires more
work initially but produces a better result that more easily responds to changes.

AVOIDING KEY VALUES IN URLS

notice that the poST Urls in Table 6-1 do not include an ID, such as /api/products/100, for example,
to tell the web service to create a new Product object with a ProductId value of 100, mirroring the Url
format for querying single objects with the geT method.

Storing application data in a relational database creates restrictions on the values that can be used for
a Product object’s ProductId property because the value is used as a primary key in the database.
ProductId values must be numeric, and they must not exceed the maximum value of the SQl data type
that has been assigned to store ProductId values in the database table. most critically, values must
be unique. The client must know about all of these restrictions and be updated if they change, and the
activity of clients must be coordinated in some way to avoid selecting duplicate values. all of this is
possible, but it is much simpler to leave the database server to generate the values automatically when
it stores data, which is how entity Framework Core configures the database by default. This ensures
that only valid values will be used and avoids any need to deal with multiple clients trying to store data
using the same key at the same time.

Creating the Data Binding Classes
I am going to define a separate class that will be used by the MVC model binder to get details for the Product
object that should be created from a POST request. Create a Models/BindingTargets folder and add to it a
C# class file called ProductData.cs with the code shown in Listing 6-3.

Listing 6-3. The Contents of the ProductData.cs File in the Models/BindingTargets Folder

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models.BindingTargets {

 public class ProductData {

 [Required]
 public string Name { get; set; }

 [Required]
 public string Category { get; set; }

 [Required]
 public string Description { get; set; }

 [Range(1, int.MaxValue, ErrorMessage = "Price must be at least 1")]

ChapTer 6 ■ CompleTIng The Web ServICe

106

 public decimal Price { get; set; }

 public long Supplier { get; set; }

 public Product Product => new Product {
 Name = Name, Category = Category,
 Description = Description, Price = Price,
 Supplier = Supplier == 0 ? null : new Supplier { SupplierId = Supplier }
 };
 }
}

In the next section, I will use the ProductData class as the parameter for the action method that will
receive POST requests. This will allow me to receive JSON data from the client that looks like this:

{ "name": "X-Ray Scuba Mask", "category": "Watersports",
 "description": "See what the fish are hiding", "price": 49.99,
 "supplier": 1 }

The Product property defined by the ProductData class creates a Product object and a Supplier object
that I will use to perform the database operation, as shown in the next section.

USING DATA BINDING CLASSES

You don’t have to use a separate class like the one in listing 6-3, but there comes a point where using
the original data model class, which is Product in this case, becomes too complex to manage.

I could get the data I required using the Product class, but it would be complicated trying to get the
right result from the mvC model binder while avoiding problems with entity Framework Core and the
JSon serializer.

To start, I don’t want the client to provide a ProductId value or to include a Supplier object as related
data, preferring instead to receive details of the Supplier that a Product should be associated with
by specifying its key. To allow the client to send the data as I want, I would have to add a property to
the Product class. but this isn’t straightforward; I can’t add a property called Supplier, for example,
because it is already used as a navigation property. I could add a property called SupplierId, but that
would be detected by entity Framework Core and used to update the database schema to prevent
Product objects from being stored without a relationship with a Supplier. and the value of this
property would be set by entity Framework Core when it reads data and then included in the responses
for geT requests by the JSon serializer. If I add use a different property name, entity Framework Core
will add a new column to the Products table in the database.

The validation attributes used by the mvC model binder, which includes the Required and Range attributes
used in listing 6-3, are also used by entity Framework Core to apply constraints to the database schema.
applying these attributes to the Product class will change the schema the next time that a database
migration is created and applied, causing unexpected effects and even data loss in some cases.

all of these problems can be solved using attributes. The JSon serializer supports an attribute that
tells it to ignore a property. entity Framework Core supports an attribute that tells it not to create a
new column in the database table. The mvC framework supports attributes that prevent the model

ChapTer 6 ■ CompleTIng The Web ServICe

107

binder from populating a property from the request data and for specifying a buddy class to provide the
validation metadata so that it isn’t detected by entity Framework Core.

but the result is that the Product class festooned in attributes that are trying to manage the interactions
of the serializer, the model binder, and the data layer. as the application gets more complex, managing
the model classes and their behavior gets difficult. adding a class specifically for data binding lets me
partition up the functionality so that I can get the data I want from the client in a reasonable format
without worrying about causing unexpected side effects.

A similar class is required to handle data when creating Supplier objects. Add a C# class file called
SupplierData.cs to the Models/BindingTargets folder with the statements shown in Listing 6-4.

Listing 6-4. The Contents of the SupplierData.cs File in the Models/BindingTargets Folder

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models.BindingTargets {

 public class SupplierData {

 [Required]
 public string Name { get; set; }

 [Required]
 public string City { get; set; }

 [Required]
 [StringLength(2, MinimumLength = 2)]
 public string State { get; set; }

 public Supplier Supplier => new Supplier {
 Name = Name, City = City, State = State
 };
 }
}

Implementing the Web Service Action Methods
The implementation of the action method to handle POST requests is simpler than the GET actions from
Chapter 5. To add support for creating objects, add the method shown in Listing 6-5 to the ProductValues
controller.

Listing 6-5. Adding an Action Method in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

ChapTer 6 ■ CompleTIng The Web ServICe

108

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ..other action methods omitted for brevity...

 [HttpPost]
 public IActionResult CreateProduct([FromBody] ProductData pdata) {
 if (ModelState.IsValid) {
 Product p = pdata.Product;
 if (p.Supplier != null && p.Supplier.SupplierId != 0) {
 context.Attach(p.Supplier);
 }
 context.Add(p);
 context.SaveChanges();
 return Ok(p.ProductId);
 } else {
 return BadRequest(ModelState);
 }
 }
 }
}

The CreateProduct method has a ProductData parameter, which will be populated by the MVC model
binder with the data sent by the client. This parameter is decorated with the FromBody attribute, which tells
the model binder to get data values from the request body (and without which the JSON data sent by the
client will be ignored).

The result of the CreateProduct method is an IActionResult method, which provides flexibility for
returning an error if the data sent by the client doesn’t pass the validation checks applied using the Required
and Range attributes from Listing 6-4. If the data doesn’t perform validation, then a 400 Bad Request
response is sent to the client, along with JSON data containing a list of the validation errors.

...
return BadRequest(ModelState);
...

If the data does pass validation, then I get the Product object by calling the ProductData.Product
property. To work out whether the Product will be related to a Supplier, I check the value of the Product.
Suppler.SupplierId property, and if it is defined and isn’t zero, I call the database context object’s Attach
method, like this:

...
if (p.Supplier != null && p.Supplier.SupplierId != 0) {
 context.Attach(p.Supplier);
}
...

ChapTer 6 ■ CompleTIng The Web ServICe

109

By default, Entity Framework Core will create related objects automatically, which means it will try
to create a new Supplier object as well as a new Product object. This is because Entity Framework Core
doesn’t know anything about the Product and Supplier objects and just assumes that both are new and
must be stored in the database. This presents a problem because the database won’t allow Supplier objects
to be created when the SupplierId value is specified and because there should already be a Supplier with
that SupplierId value. The Attach method makes Entity Framework Core aware of an object and tells it that
only subsequent changes to it should be written to the database.

 ■ Tip notice that the Supplier object has only a SupplierId value. Since the purpose of the poST
operation is to create a Product object, only the data required for the new row in the Products table is
required. This means that entity Framework Core only needs to know the value of the SupplierId property so
that it can create the foreign key relationship and will ignore the rest of the Supplier properties, which means
that there is no need for the client to send values for them to the web service.

The database context’s Add method tells Entity Framework Core that the Product object should be
stored in the database and the operation is performed when the SaveChanges method is called.

...
context.Add(p);
context.SaveChanges();
...

When the data is stored, the database will generate a value for the ProductId property and will
automatically update the Product object with that value. To provide the client with the value, I pass it to the
Ok method so that it can be included in the 200 OK response.

...
return Ok(p.ProductId);
...

Creating the Web Service Controller for Supplier Objects
The MVC framework is flexible enough to support multiple data types and URLs in a single web service
controller, but defining one controller for each data type produces code that is easier to understand and
manage. Add a new C# class file called SupplierValuesController.cs to the Controllers folder and add
the code shown in Listing 6-6.

Listing 6-6. The Contents of the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 public class SupplierValuesController : Controller {
 private DataContext context;

ChapTer 6 ■ CompleTIng The Web ServICe

110

 public SupplierValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet]
 public IEnumerable<Supplier> GetSuppliers() {
 return context.Suppliers;
 }

 [HttpPost]
 public IActionResult CreateSupplier([FromBody]SupplierData sdata) {
 if (ModelState.IsValid) {
 Supplier s = sdata.Supplier;
 context.Add(s);
 context.SaveChanges();
 return Ok(s.SupplierId);
 } else {
 return BadRequest(ModelState);
 }
 }
 }
}

This controller uses the Route attribute so that it can handle requests sent to the /api/suppliers URL.
There are action methods for GET and POST requests, following the same pattern for querying and creating
Supplier objects.

Creating Data Objects in the Angular Application
To add support for creating new Product and Supplier objects in the Angular application, add the method
shown in Listing 6-7 to the Repository class so that it can send POST requests to the web service.

Listing 6-7. Sending POST Requests in the repository.ts File in the ClientApp/app Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter } from "./configClasses.repository";
import { Supplier } from "./supplier.model";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 //this.filter.category = "soccer";
 this.filter.related = true;

ChapTer 6 ■ CompleTIng The Web ServICe

111

 this.getProducts();
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => this.product = response);
 }

 getProducts() {
 let url = productsUrl + "?related=" + this.filter.related;

 if (this.filter.category) {
 url += "&category=" + this.filter.category;
 }
 if (this.filter.search) {
 url += "&search=" + this.filter.search;
 }

 this.sendRequest(RequestMethod.Get, url)
 .subscribe(response => this.products = response);
 }

 getSuppliers() {
 this.sendRequest(RequestMethod.Get, suppliersUrl)
 .subscribe(response => this.suppliers = response);
 }

 createProduct(prod: Product) {
 let data = {
 name: prod.name, category: prod.category,
 description: prod.description, price: prod.price,
 supplier: prod.supplier ? prod.supplier.supplierId : 0
 };

 this.sendRequest(RequestMethod.Post, productsUrl, data)
 .subscribe(response => {
 prod.productId = response;
 this.products.push(prod);
 });
 }

 createProductAndSupplier(prod: Product, supp: Supplier) {
 let data = {
 name: supp.name, city: supp.city, state: supp.state
 };

 this.sendRequest(RequestMethod.Post, suppliersUrl, data)
 .subscribe(response => {
 supp.supplierId = response;
 prod.supplier = supp;
 this.suppliers.push(supp);
 if (prod != null) {

ChapTer 6 ■ CompleTIng The Web ServICe

112

 this.createProduct(prod);
 }
 });
 }

 private sendRequest(verb: RequestMethod, url: string, data?: any)
 : Observable<any> {

 return this.http.request(new Request({
 method: verb, url: url, body: data
 })).map(response => response.json());
 }

 product: Product;
 products: Product[];
 suppliers: Supplier[] = [];

 get filter(): Filter {
 return this.filterObject;
 }
}

The createProduct method accepts a Product object, uses it to create an object in the format that the
web service requires, and sends it using a POST request. The subscribe method is used on the Observable
to receive the response, which is parsed to get the value for the productId property. The Product object
received through the parameter is updated and added to the end of the products array using the JavaScript
push method. The createProductAndSupplier method builds on the createProduct method to create a
Supplier and then create a related Product.

Adding Support for Creating an Object in the Component
The next step is to define methods in the Angular component that can be called when the user wants to
create a new product or supplier, as shown in Listing 6-8.

Listing 6-8. Adding Methods in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";
import { Supplier } from "./models/supplier.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

 get product(): Product {
 return this.repo.product;
 }

ChapTer 6 ■ CompleTIng The Web ServICe

113

 get products(): Product[] {
 return this.repo.products;
 }

 createProduct() {
 this.repo.createProduct(new Product(0, "X-Ray Scuba Mask", "Watersports",
 "See what the fish are hiding", 49.99, this.repo.products[0].supplier));
 }

 createProductAndSupplier() {
 let s = new Supplier(0, "Rocket Shoe Corp", "Boston", "MA");
 let p = new Product(0, "Rocket-Powered Shoes", "Running",
 "Set a new record", 100, s);
 this.repo.createProductAndSupplier(p, s);
 }
}

The createProduct method creates a new Product object and asks the repository to send it to the web
service. The Supplier that will be associated with the Product is taken from the first element in the products
array, just so that the web service can be tested. The createProductAndSupplier creates both Product and
Supplier objects and passes them to the corresponding repository method.

Updating the Component Template
The final step is to add a new element to the HTML template in the Angular application that will allow the
user to trigger the creation of a new object by calling the createProduct in the component, as shown in
Listing 6-9.

Listing 6-9. Adding Elements in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr>
 <th>Name</th><th>Category</th><th>Price</th>
 <th>Supplier</th><th>Ratings</th>
 </tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>{{product.supplier?.name || 'None'}}</td>
 <td>{{product.ratings?.length || 0}}</td>
 </tr>
</table>
<button class="btn btn-primary m-1" (click)="createProduct()">
 Create Product
</button>
<button class="btn btn-primary m-1" (click)="createProductAndSupplier()">
 Create Product and Supplier
</button>

ChapTer 6 ■ CompleTIng The Web ServICe

114

The button elements have been configured using the Angular event binding feature, which responds to
events generated by an HTML element by evaluating an expression. The highlighted part of this element is
the event binding.

...
<button class="btn btn-primary m-1" (click)="createProduct()">
...

The parentheses (the (and) characters) denote an event binding and surround the name of the
event, which is click. The click event is triggered when the user clicks the button, at which point Angular
evaluates the expression and invokes the component’s createProduct method, defined in Listing 6-8. Event
binding expressions can only access methods and properties defined by the component. The result is that
clicking the buttons will create new products.

Restart the ASP.NET Core MVC application, reload the browser, and click the Create Product button.
A new item will appear in the table, associated with the existing Splash Dudes supplier. Click the Create
Product And Supplier button, and a new item will appear, associated with a new Rocker Shoe Corp supplier.
Figure 6-2 shows the effect of both buttons.

Figure 6-2. Creating new products

 ■ Note The structure of the angular application separates the process of creating the new objects from
displaying them. The object that is returned by the web service is added to the data model and automatically
displayed by angular through the ngFor directive, which adds a new row to the table. You may find this
approach convoluted, but it simplifies the process of creating application features because any change to the
data model is displayed to the user.

ChapTer 6 ■ CompleTIng The Web ServICe

115

 ■ Tip If you click the buttons repeatedly, multiple objects will be created, but each will have different
ProductId or SupplierId property value, which will be assigned by the database server.

Implementing the PUT Method
The HTTP PUT method is used to replace an existing data object with a new one and requires an approach
similar to the one required by the POST method in the previous section. Supporting the PUT method leads
to the expansion of the web service API, as described in Table 6-2. For all the new URLs, the object that is
being updated will be identified using the id segment of the request URL.

 ■ Tip When using the pUT method, the client must provide values for all the new object’s properties. If you
want to perform more selective updates, then see the section called “Implementing the paTCh method.”

Implementing the Web Service Action Methods
To add support for updating Product data, add the action method shown in Listing 6-10 to the
ProductValues controller.

Listing 6-10. Adding an Action Method in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

Table 6-2. The Web Service API with PUT Support for Updating Objects

Method URL Description

GET /api/products/<id> Retrieves a single Product object

GET /api/products Retrieves multiple Product objects

POST /api/products Stores a new Product object

POST /api/suppliers Stores a new Supplier object

PUT /api/products/<id> Replaces an existing Product object

PUT /api/suppliers/<id> Replaces an existing Supplier object

ChapTer 6 ■ CompleTIng The Web ServICe

116

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...other methods omitted for brevity...

 [HttpPut("{id}")]
 public IActionResult ReplaceProduct(long id, [FromBody] ProductData pdata) {
 if (ModelState.IsValid) {
 Product p = pdata.Product;
 p.ProductId = id;
 if (p.Supplier != null && p.Supplier.SupplierId != 0) {
 context.Attach(p.Supplier);
 }
 context.Update(p);
 context.SaveChanges();
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
 }
 }
}

The MVC model binder will create the ProductData object from the request data, which is then used
to create a Product, whose ProductId property is set from the id parameter so that Entity Framework Core
knows which existing object is to be updated.

The data context object’s Attach method is used to prevent Entity Framework Core from trying to
store a new Supplier object, while the Update method is used to register the Product object with Entity
Framework Core so that it will replace the existing data.

The database is updated by calling the SaveChanges method, and the Ok method is used to return a 200
OK response to the client. If the request data doesn’t pass validation, a 400 Bad Request response will be
sent, and no update will be performed.

Similar code is required to replace Supplier objects. Add the action method shown in Listing 6-11 to
the SupplierValues controller.

Listing 6-11. Adding an Action Method in the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 public class SupplierValuesController : Controller {
 private DataContext context;

 public SupplierValuesController(DataContext ctx) {
 context = ctx;
 }

ChapTer 6 ■ CompleTIng The Web ServICe

117

 // ...other methods omitted for brevity...

 [HttpPut("{id}")]
 public IActionResult ReplaceSupplier(long id,
 [FromBody] SupplierData sdata) {
 if (ModelState.IsValid) {
 Supplier s = sdata.Supplier;
 s.SupplierId = id;
 context.Update(s);
 context.SaveChanges();
 return Ok();
 } else {
 return BadRequest(ModelState);
 }
 }
 }
}

No special measures are required to replace Supplier objects, and the context object’s Update method is
used to tell Entity Framework Core to replace a Supplier that is obtained from the SupplierData parameter.

Replacing Products in the Angular Application
By now the process of taking advantage of new web service features will be familiar, even if not all of the
details about how Angular works are clear. First, add new methods to the Angular Repository class that will
accept Product or Supplier objects and send a PUT request to the web service, as shown in Listing 6-12.

Listing 6-12. Adding Methods in the repository.ts File in the ClientApp/app Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter } from "./configClasses.repository";
import { Supplier } from "./supplier.model";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 //this.filter.category = "soccer";
 this.filter.related = true;
 this.getProducts();
 }

ChapTer 6 ■ CompleTIng The Web ServICe

118

 // ...other methods omitted for brevity...

 replaceProduct(prod: Product) {
 let data = {
 name: prod.name, category: prod.category,
 description: prod.description, price: prod.price,
 supplier: prod.supplier ? prod.supplier.supplierId : 0
 };
 this.sendRequest(RequestMethod.Put, productsUrl + "/" + prod.productId, data)
 .subscribe(response => this.getProducts());
 }

 replaceSupplier(supp: Supplier) {
 let data = {
 name: supp.name, city: supp.city, state: supp.state
 };
 this.sendRequest(RequestMethod.Put,
 suppliersUrl + "/" + supp.supplierId, data)
 .subscribe(response => this.getProducts());
 }

 private sendRequest(verb: RequestMethod, url: string, data?: any)
 : Observable<any> {

 return this.http.request(new Request({
 method: verb, url: url, body: data
 })).map(response => {
 return response.headers.get("Content-Length") != "0"
 ? response.json() : null;
 });
 }

 product: Product;
 products: Product[];
 suppliers: Supplier[] = [];

 get filter(): Filter {
 return this.filterObject;
 }
}

I send the HTTP PUT request and then use the subscribe method to refresh the Product data. This is
an inefficient approach, but it demonstrates that you can handle the response from one HTTP request by
starting another.

Notice that the sendRequest method has changed in this listing. The web service will now return
responses that contain no JSON data to parse, so the code in the map method checks the response’s
Content-Length header to determine whether to call the json method.

ChapTer 6 ■ CompleTIng The Web ServICe

119

Adding Support for Replacing Objects in the Component
The next step is to add methods to the Angular component that can be invoked using event bindings in the
component’s template, as shown in Listing 6-13.

Listing 6-13. Adding Methods in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";
import { Supplier } from "./models/supplier.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

 // ...other methods omitted for brevity...

 replaceProduct() {
 let p = this.repo.products[0];
 p.name = "Modified Product";
 p.category = "Modified Category";
 this.repo.replaceProduct(p);
 }

 replaceSupplier() {
 let s = new Supplier(3, "Modified Supplier", "New York", "NY");
 this.repo.replaceSupplier(s);
 }
}

The new methods, replaceProduct and replaceSupplier, create replacement objects and use the
repository to send them to the web service. Add the elements shown in Listing 6-14 to the component’s
template so that the new component methods can be invoked.

Listing 6-14. Adding Elements in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr>
 <th>Name</th><th>Category</th><th>Price</th>
 <th>Supplier</th><th>Ratings</th>
 </tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>{{product.supplier?.name || 'None'}}</td>

ChapTer 6 ■ CompleTIng The Web ServICe

120

 <td>{{product.ratings?.length || 0}}</td>
 </tr>
</table>
<button class="btn btn-primary m-1" (click)="createProduct()">
 Create Product
</button>
<button class="btn btn-primary m-1" (click)="createProductAndSupplier()">
 Create Product and Supplier
</button>
<button class="btn btn-primary m-1" (click)="replaceProduct()">
 Replace Product
</button>
<button class="btn btn-primary m-1" (click)="replaceSupplier()">
 Replace Supplier
</button>

The new button elements use the click event binding with expressions that invoke the component
methods. Restart the application, use a browser to navigate to http://localhost:5000, and click the
Replace Product and Replace Supplier buttons, the effect of which are shown in Figure 6-3.

When you click the Replace Product button, the first Product in the table is replaced. When you click
the Replace Supplier button, the Supplier related to the Chess products is replaced.

Implementing the PATCH Method
For simple data types, edit operations can be handled by replacing the existing object using the PUT
method. Even if you need to change only a single property value in the Product class, for example, it isn’t too
much trouble to use a PUT method and include the values for all the other Product properties, too.

Figure 6-3. Replacing objects

ChapTer 6 ■ CompleTIng The Web ServICe

121

But not all data types are as easy to work with, either because they define many more properties or
because the client doesn’t have access to all of them for security reasons. The solution is to use a PATCH
request, which sends just the changes to the web service rather than a complete replacement object.
Supporting the PATCH method leads to the expansion of the web service API, as described in Table 6-3.

 ■ Tip You can be selective about the data types for which you implement the paTCh method. For the
SportsStore application, I am going to provide support only for Product objects, which means that changes to
Supplier objects can be performed only using pUT requests.

Understanding JSON Patch
ASP.NET Core MVC has support for working with the JSON Patch standard, which allows changes to be
specified in a uniform way. The JSON Patch standard allows for a complex set of changes to be described,
but for the SportsStore application, I need to deal with only two kinds of change for the Product object:
altering the value of a property and removing a property. Changing property values will allow the client
to selectively edit existing data, while removing a property will allow the client to break the relationship
between a Product and its Supplier.

I am not going to go into the details of the JSON Patch standard, which you can read at https://tools.
ietf.org/html/rfc6902, but the client is going to send the web service JSON data like this in its HTTP
PATCH requests:

[
 { "op": "replace", "path": "name", "value": "Green Kayak"},
 { "op": "replace", "path": "price", "value": 200},
 { "op": "replace", "path": "supplier", "value": null}
]

A JSON Patch document is expressed as an array of operations. Each operation has an op property, which
specifies the type of operation, and a path property, which specifies where the operation will be applied.

For the SportsStore application (and, in fact, for most applications) only the replace operation is
required, which is used to change the value of a property. This JSON Patch document sets new values for the
name, price, and supplier properties. (The effect of setting the supplier property to null will be to break
the relationship with a supplier.) The properties defined by the Product class not included in the JSON Patch
document will not be modified.

Table 6-3. The Web Service API with PUT Support for Updating Objects

Method URL Description

GET /api/products/<id> Retrieves a single Product object

GET /api/products Retrieves multiple Product objects

POST /api/products Stores a new Product object

POST /api/suppliers Stores a new Supplier object

PUT /api/products/<id> Replaces an existing Product object

PUT /api/suppliers/<id> Replaces an existing Supplier object

PATCH /api/products/<id> Updates a Product object

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6902

ChapTer 6 ■ CompleTIng The Web ServICe

122

Enhancing the Product Binding Target
I need to enhance the model binding target for Product objects to get JSON Patch documents working
seamlessly with ASP.NET Core MVC and Entity Framework Core to ensure that only the values affected by a
PATCH request will be modified. To that end, make the changes shown in Listing 6-15 to the ProductData class.

Listing 6-15. Adding a Product Object in the ProductData.cs File in the Models/BindingTargets Folder

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models.BindingTargets {

 public class ProductData {

 [Required]
 public string Name {
 get => Product.Name; set => Product.Name = value;
 }

 [Required]
 public string Category {
 get => Product.Category; set => Product.Category = value;
 }

 [Required]
 public string Description {
 get => Product.Description; set => Product.Description = value;
 }

 [Range(1, int.MaxValue, ErrorMessage = "Price must be at least 1")]
 public decimal Price {
 get => Product.Price; set => Product.Price = value;
 }

 public long? Supplier {
 get => Product.Supplier?.SupplierId ?? null;
 set {
 if (!value.HasValue) {
 Product.Supplier = null;
 } else {
 if (Product.Supplier == null) {
 Product.Supplier = new Supplier();
 }
 Product.Supplier.SupplierId = value.Value;
 }
 }
 }

 public Product Product { get; set; } = new Product();
 }
}

ChapTer 6 ■ CompleTIng The Web ServICe

123

These changes map the properties defined by the ProductData class onto a Product object. This allows me
to take advantage of the Entity Framework Core change-tracking feature on the Product object, which ensures
that only values that are changed by the operations in the JSON Patch document are updated in the database.

Implementing the Web Service Action Method
To add support for handling PATCH requests for Product objects, add the action method shown in Listing
6-16 to the ProductValues controller.

Listing 6-16. Adding an Action Method in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;
using Microsoft.AspNetCore.JsonPatch;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...other methods omitted for brevity...

 [HttpPatch("{id}")]
 public IActionResult UpdateProduct(long id,
 [FromBody]JsonPatchDocument<ProductData> patch) {

 Product product = context.Products
 .Include(p => p.Supplier)
 .First(p => p.ProductId == id);
 ProductData pdata = new ProductData { Product = product };
 patch.ApplyTo(pdata, ModelState);

 if (ModelState.IsValid && TryValidateModel(pdata)) {

 if (product.Supplier != null && product.Supplier.SupplierId != 0) {
 context.Attach(product.Supplier);
 }
 context.SaveChanges();
 return Ok();
 } else {
 return BadRequest(ModelState);
 }

ChapTer 6 ■ CompleTIng The Web ServICe

124

 }
 }
}

The UpdateProduct method is decorated with the HttpPatch attribute and defines a long parameter
that will identify the Product that is being modified and a JsonPatchDocument<ProductData> parameter that
represents the JSON Patch document (this parameter must be decorated with the FromBody attribute).

To get the current data, I retrieve the Product object identified by the id parameter and use it to create a
ProductData object.

...
Product product = context.Products
 .Include(p => p.Supplier)
 .First(p => p.ProductId == id);
ProductData pdata = new ProductData { Product = product };
...

Entity Framework Core performs change tracking on the objects it creates, which means that only
modifications to the Product objects will be written to the database. The next step is to apply the operations in
the JSON Patch document to the ProductData object, which will pass on those changes to the Product object.

...
patch.ApplyTo(pdata, ModelState);
...

The ApplyTo method updates the controller’s model state to record any errors in the JSON Patch
document, such as an operation on a property that isn’t defined by the ProductData class. Before storing the
changes in the database, I check the ModelState.IsValid property and explicitly validate the ProductData
object to make sure that the changes have not created an invalid outcome.

...
if (ModelState.IsValid && TryValidateModel(pdata)) {
...

If there are no validation errors, the changes are written to the database by calling the context object’s
SaveChanges method, and the modified Product object is returned to the client.

Updating Objects in the Angular Application
To add support for sending PATCH requests to the web service, add the method shown in Listing 6-17 to the
Repository class in the Angular application.

Listing 6-17. Adding a Method in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter } from "./configClasses.repository";
import { Supplier } from "./supplier.model";

ChapTer 6 ■ CompleTIng The Web ServICe

125

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 //this.filter.category = "soccer";
 this.filter.related = true;
 this.getProducts();
 }

 // ...other methods omitted for brevity...

 updateProduct(id: number, changes: Map<string, any>) {
 let patch = [];
 changes.forEach((value, key) =>
 patch.push({ op: "replace", path: key, value: value }));

 this.sendRequest(RequestMethod.Patch, productsUrl + "/" + id, patch)
 .subscribe(response => this.getProducts());
 }
}

The updateProduct method receives a number parameter that identifies the Product to be modified and
a Map object whose keys are the names of the properties that have changed. A simple JSON Patch document
is created using the replace operation for each of the entries in the Map, which is then sent to the web service
using an HTTP PATCH request. The subscribe method is used to reload the data from the web service.

Adding Support for Updating Objects in the Component
The next step is to add a method to the Angular component that can be invoked using event bindings in the
component’s template, which will respond by calling the new method in the repository, as shown in Listing 6-18.

Listing 6-18. Adding a Method in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";
import { Supplier } from "./models/supplier.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

ChapTer 6 ■ CompleTIng The Web ServICe

126

 // ...other methods omitted for brevity...

 updateProduct() {
 let changes = new Map<string, any>();
 changes.set("name", "Green Kayak");
 changes.set("supplier", null);
 this.repo.updateProduct(1, changes);
 }
}

The new method, updateproduct, changes the name property and sets the supplier property to null.
Add the elements shown in Listing 6-19 to the component’s template so that the new component method
can be invoked.

Listing 6-19. Adding an Element in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr>
 <th>Name</th><th>Category</th><th>Price</th>
 <th>Supplier</th><th>Ratings</th>
 </tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>{{product.supplier?.name || 'None'}}</td>
 <td>{{product.ratings?.length || 0}}</td>
 </tr>
</table>

<button class="btn btn-primary m-1" (click)="createProduct()">
 Create Product
</button>
<button class="btn btn-primary m-1" (click)="createProductAndSupplier()">
 Create Product and Supplier
</button>
<button class="btn btn-primary m-1" (click)="replaceProduct()">
 Replace Product
</button>
<button class="btn btn-primary m-1" (click)="replaceSupplier()">
 Replace Supplier
</button>
<button class="btn btn-primary m-1" (click)="updateProduct()">
 Update Product
</button>

The new button element uses the click event binding with an expression that invokes the component’s
updateProduct method. Restart the application, use a browser to navigate to http://localhost:5000, and
click the Update Product button, the effect of which is shown in Figure 6-4.

ChapTer 6 ■ CompleTIng The Web ServICe

127

 ■ Tip The code for the update operation is just to check that the feature is working. If you want to repeat the
update, then run the commands in listing 6-1 to reset the database, restart the aSp.neT Core mvC part of the
application, and then reload the web browser to see the original, unmodified data.

Implementing the DELETE Method
The last HTTP method that the web service must support is DELETE, which is used to remove data.
Supporting the DELETE method leads to the expansion of the web service API as described in Table 6-4. The
object to delete will be identified by the last segment in the request URL.

Figure 6-4. Updating objects

ChapTer 6 ■ CompleTIng The Web ServICe

128

Configuring the Database
Databases won’t allow data to be deleted if doing so creates an inconsistency. For the SportsStore
application, an inconsistency would be to delete a Product but leave its related Rating objects in the
database, resulting in table rows that have a foreign key relationship to nonexistent data. Avoiding
inconsistencies means either removing related data or updating it so that it refers to another object.

The easiest way to avoid inconsistencies is to have the database handle related data for you
automatically. To change the configuration of the database, add the method shown in Listing 6-20 to the
database context class.

Listing 6-20. Configuring Delete Operations in the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace SportsStore.Models {

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts)
 : base(opts) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }
 public DbSet<Rating> Ratings { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {
 modelBuilder.Entity<Product>().HasMany<Rating>(p => p.Ratings)
 .WithOne(r => r.Product).OnDelete(DeleteBehavior.Cascade);
 modelBuilder.Entity<Product>().HasOne<Supplier>(p => p.Supplier)
 .WithMany(s => s.Products).OnDelete(DeleteBehavior.SetNull);
 }
 }
}

Table 6-4. The Web Service API with PUT Support for Updating Objects

Method URL Description

GET /api/products/<id> Retrieves a single Product object

GET /api/products Retrieves multiple Product objects

POST /api/products Stores a new Product object

POST /api/suppliers Stores a new Supplier object

PUT /api/products/<id> Replaces an existing Product object

PUT /api/suppliers/<id> Replaces an existing Supplier object

PATCH /api/products/<id> Updates a Product object

DELETE /api/products/<id> Deletes a Product object

DELETE /api/suppliers/<id> Deletes a Supplier object

ChapTer 6 ■ CompleTIng The Web ServICe

129

When you create a database migration, Entity Framework Core builds up the schema that will be
applied to the database by looking at the data model classes and following a set of conventions for deciding
how to store instances of those classes and how to represent relationships between them. For the most part,
this process is invisible to the ASP.NET Core developer, who just uses the context class to store and retrieve
data as .NET objects.

The DbContext class, from which context classes are derived, provides the OnModelCreating method,
which can be used to override the conventions used to create the database schema. The OnModelCreating
method receives a ModelBuilder object, which is used to configure the schema using a feature known as the
Entity Framework Core fluent API, through which it is possible to describe the schema programmatically.

In Listing 6-20, I used the fluent API to describe the relationship between the Product and Rating
classes, like this:

...
modelBuilder.Entity<Product>().HasMany<Rating>(p => p.Ratings)
 .WithOne(r => r.Product).OnDelete(DeleteBehavior.Cascade);
...

The Entity method tells Entity Framework Core which data model class I want to configure, and the
HasMany and WithOne methods are used to describe both sides of the one-to-many relationship between the
Product and Rating classes. These three methods simply describe the relationship that Entity Framework
Core had already determined by following its usual conventions, and it is only the OnDelete method that
introduces a new change. This method is used to specify how the database should act when an object is
deleted using one of the three values of the DeleteBehavior enumeration described in Table 6-5.

The Restrict value is the one that Entity Framework Core used by default when I created the database
migration in Chapter 4. In Listing 6-20, I specified the Cascade behavior for the relationship between
Product and Rating objects and specified the SetNull behavior for the relationship between the Product
and Supplier objects. This means deleting Product data will automatically delete the related Rating
data, while deleting a Supplier will leave the related Product data in the database but cause the Supplier
property for those objects to be set to NULL.

To create a migration that will apply the new behaviors to the database schema, open a new command
prompt and run the command shown in Listing 6-21 in the SportsStore folder. This migration will change
the delete behavior in the database and will be applied automatically when the application is started.

Listing 6-21. Creating a New Database Migration

dotnet ef migrations add ChangeDeleteBehavior

Table 6-5. The Values Defined by the DeleteBehavior Enumeration

Name Description

Restrict This value prevents an object from being deleted unless there is no related data.

Cascade This value automatically deletes related data when an object is deleted.

SetNull This value sets the foreign key column in the related data to NULL when an object is deleted.

http://dx.doi.org/10.1007/978-1-4842-2916-3_4

ChapTer 6 ■ CompleTIng The Web ServICe

130

Implementing the Web Service Action Method
Performing the delete operation is simple once the database configuration has been changed. To add
support for deleting Product objects, add the method shown in Listing 6-22 to the ProductValues controller.

Listing 6-22. Adding a Method in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;
using Microsoft.AspNetCore.JsonPatch;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...other methods omitted for brevity...

 [HttpDelete("{id}")]
 public void DeleteProduct(long id) {
 context.Products.Remove(new Product { ProductId = id });
 context.SaveChanges();
 }
 }

The DeleteProduct method creates a new Product object that has the ID value provided by the
client and passes it to the database context’s Remove method. This gives Entity Framework Core enough
information to perform the delete operation when the SaveChanges method is called.

The same technique can be used to delete Supplier objects, even though the behavior of the database
will be different. To add support for removing Supplier data from the database, add the action shown in
Listing 6-23 to the SupplierValues controller.

Listing 6-23. Deleting Data in the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 public class SupplierValuesController : Controller {
 private DataContext context;

ChapTer 6 ■ CompleTIng The Web ServICe

131

 public SupplierValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...other methods omitted for brevity...

 [HttpDelete("{id}")]
 public void DeleteSupplier(long id) {
 context.Remove(new Supplier { SupplierId = id });
 context.SaveChanges();
 }
 }
}

Deleting Objects in the Angular Application
To add support for sending DELETE requests to the web service, add the methods shown in Listing 6-24 to
the Repository class in the Angular application.

Listing 6-24. Adding a Method in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter } from "./configClasses.repository";
import { Supplier } from "./supplier.model";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 //this.filter.category = "soccer";
 this.filter.related = true;
 this.getProducts();
 }

 // ...other methods omitted for brevity...

 deleteProduct(id: number) {
 this.sendRequest(RequestMethod.Delete, productsUrl + "/" + id)
 .subscribe(response => this.getProducts());
 }

 deleteSupplier(id: number) {
 this.sendRequest(RequestMethod.Delete, suppliersUrl + "/" + id)
 .subscribe(response => {

ChapTer 6 ■ CompleTIng The Web ServICe

132

 this.getProducts();
 this.getSuppliers();
 });
 }
}

The HTTP requests are sent using the Http class, and both methods refresh the application’s data when
the request completes.

Adding Support for Deleting Objects in the Component
The next step is to add methods to the component that will act as a bridge between the buttons that the user
will click and the repository, as shown in Listing 6-25.

Listing 6-25. Adding Methods in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { Repository } from "./models/repository";
import { Product } from "./models/product.model";
import { Supplier } from "./models/supplier.model";

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {

 constructor(private repo: Repository) { }

 // ...other methods omitted for brevity...

 deleteProduct() {
 this.repo.deleteProduct(1);
 }

 deleteSupplier() {
 this.repo.deleteSupplier(2);
 }
}

To use these methods, add the elements shown in Listing 6-26 to the component’s template. These
button elements use the Angular event binding to invoke the deleteProduct or deleteSupplier method
when they are clicked.

ChapTer 6 ■ CompleTIng The Web ServICe

133

Listing 6-26. Adding Elements in the app.component.html File in the ClientApp/app Folder

<table class="table table-sm table-striped">
 <tr>
 <th>Name</th><th>Category</th><th>Price</th>
 <th>Supplier</th><th>Ratings</th>
 </tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>{{product.supplier?.name || 'None'}}</td>
 <td>{{product.ratings?.length || 0}}</td>
 </tr>
</table>

<button class="btn btn-primary m-1" (click)="createProduct()">
 Create Product
</button>
<button class="btn btn-primary m-1" (click)="createProductAndSupplier()">
 Create Product and Supplier
</button>
<button class="btn btn-primary m-1" (click)="replaceProduct()">
 Replace Product
</button>
<button class="btn btn-primary m-1" (click)="replaceSupplier()">
 Replace Supplier
</button>
<button class="btn btn-primary m-1" (click)="updateProduct()">
 Update Product
</button>
<button class="btn btn-primary m-1" (click)="deleteProduct()">
 Delete Product
</button>
<button class="btn btn-primary m-1" (click)="deleteSupplier()">
 Delete Supplier
</button>

Restart the ASP.NET Core MVC application and use a browser to navigate to http://localhost:5000.
Clicking the Delete Product button will delete the Product object whose ProductId value is 1 (the Kayak
product), and clicking the Delete Supplier button will delete the Supplier object whose SupplierId value is
2 (the Soccer Town supplier), as shown in Figure 6-5.

ChapTer 6 ■ CompleTIng The Web ServICe

134

 ■ Tip The code for the delete operation is just to check that the feature is working. If you want to repeat the
deletions, then run the commands in listing 6-1 to reset the database, restart the aSp.neT Core mvC part of the
application, and then reload the web browser to see the original, unmodified data.

Summary
In this chapter, I showed you how to add support to the web service for the HTTP methods that allow the
client to modify the application data. I showed you how to use the POST method to store new objects, how to
use the PUT and PATCH methods to replace or modify existing data, and how to use the DELETE method to
remove data. In the next chapter, I show you how to structure an Angular application, building functionality
around the data model and the HTTP web service.

Figure 6-5. Deleting products and suppliers

135© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_7

CHAPTER 7

Structuring an Angular Application

One of the biggest causes of confusion is the way that an Angular application is structured. The building
blocks of an Angular application seem, at first glance, to be direct counterparts to those in an ASP.NET Core
MVC application. But if you treat the Angular building blocks in the same way as their ASP.NET counterparts,
you will end up with a client-side application that doesn’t work or becomes impossible to modify.

In this chapter, I explain the two key features that shape the structure of an Angular application and
demonstrate how they are used to allow features to work together. The first Angular feature is the live data
model, which is the beating heart of an Angular application and reflects data changes in the content that
is displayed to the user. The second feature is URL routing, which is used to decide which content the user
sees. The ASP.NET Core MVC part of the application also uses a data model and URL routing, but, as you will
see, there are some important differences both in how they work and in how they are used. Table 7-1 puts
these features in context.

Table 7-1. Putting Angular Application Structure in Context

Question Answer

What is it? Angular applications are built using small features. The structure
of the application lets these features work together to deliver
complex functionality to the user.

Why is it useful? Features work together make it easier to write and maintain
Angular applications.

How is it used? Features can cooperate using the data model or using the
Angular URL routing system.

Are there any pitfalls or limitations? The idea of collaborating using the data model can be confusing
if you are new to Angular development and can require a lot of
iterative development until you get everything working the way
you want.

Are there any alternatives? You can build monolithic Angular applications. These don’t
require as much planning or structural development but are
harder to enhance and maintain.

Chapter 7 ■ StruCturing an angular appliCation

136

Preparing for This Chapter
This chapter uses the SportsStore project I created in Chapter 3 and modified in the chapters since. To
ensure that the contents of the database are reset, open a command prompt, navigate to the SportsStore
folder, and run the commands shown in Listing 7-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. this is where you will also find updates and corrections for this book.

Listing 7-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container.

Start the application to apply the database schema and add the seed data. If you are using Visual Studio,
you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio Code or just
prefer working with the command line, then open a command prompt, navigate to the SportsStore folder,
and run the command shown in Listing 7-2.

Listing 7-2. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 7-1.

Figure 7-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

Chapter 7 ■ StruCturing an angular appliCation

137

Using the Data Model for Component Cooperation
Components are the building blocks for an Angular application. Each component is a TypeScript class
that provides the methods and properties required to support an HTML template that contains directives
and data bindings. Every feature in an Angular application usually has its own component, which can be
combined to create more functionality. The key to getting components to work together is the application’s
data model.

In Chapters 5 and 6, the Angular Repository class that provides access to the application data had
an unusual design, which is split into two parts. In the first part of the Repository, the application data is
available through three properties: the product property provides access to a single Product object, the
products property provides access to a collection of Product objects, and the suppliers property provides
access to a collection of Supplier objects. The second part of the Repository is the set of methods that
send HTTP requests to the web service and use the results to update the product, products, and suppliers
properties.

This two-part design makes it easier for components to cooperate without being tightly coupled,
producing a flexible way to build applications. This isn’t the only way that components can cooperate,
but it is the simplest and most effective because it takes advantage of the way that Angular automatically
responds to data changes. In the sections that follow, I create some new Angular components and use them
to demonstrate how they can cooperate through the data model.

Creating the Display Component
To keep this example simple, the first component will only display data from the data model, which it will
obtain through the products property defined by the Repository class.

Creating the Component Class
Create a folder called structure and add to it a TypeScript file called productTable.component.ts. The
convention is to use descriptive file names in Angular projects, and this name tells you that this is the
TypeScript class for a component called productTable, which gives you a hint of what the component is for.
Once you have created the file, add the code shown in Listing 7-3.

Listing 7-3. The Contents of the productTable.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";

@Component({
 selector: "product-table",
 templateUrl: "./productTable.component.html"
})
export class ProductTableComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 return this.repo.products;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2916-3_5
http://dx.doi.org/10.1007/978-1-4842-2916-3_6

Chapter 7 ■ StruCturing an angular appliCation

138

Most components start like the one shown in the listing and grow as features are added to the
application. Since this is the first new component that I have added to the SportsStore project, I will go
through each statement and explain its purpose.

Understanding the Import Statements

The first three statements use the import keyword to declare dependencies on the types that the component
relies on.

...
import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
...

In any component, the import statements will be a mix of Angular classes, which are found in modules
whose name starts with @angular, and custom classes that are specific to the application, which are
specified using a relative file path. In this case, the component depends on Component in the @angular/core
module, which is used to tell Angular when a class is a component, and the Repository and Product files,
which are defined in the models folder.

 ■ Tip the paths used in import statements never include file extensions. that means if you want to declare
a dependency on the Product class, for example, you use the path "../models/product.model" and not
"../models/product.model.ts" or "../models.product.model.js".

Understanding the Class

Components are TypeScript classes that provide the methods and properties required to support a template.
The convention is to include the term Component in the class name, which is why the class in Listing 7-3
is called ProductTableComponent. You don’t have to follow this convention, but it helps keep the files in a
project organized.

...
export class ProductTableComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 return this.repo.products;
 }
}
...

The constructor is used to declare a dependency on the Repository class, which will be resolved using
the dependency injection feature when a new instance of the component is created. (The Repository class
was configured for dependency injection in Chapter 4).

http://dx.doi.org/10.1007/978-1-4842-2916-3_4

Chapter 7 ■ StruCturing an angular appliCation

139

The other feature in the component class is a read-only property called products, which returns the
value of the products property defined by the Repository class. The directives and bindings in an HTML
template can only access the methods and properties defined by its component. This means that most
components start out just providing access to the data in the model and start defining more complex logic as
the application develops.

Understanding the Decorator

The @Component decorator is what brings the component to life and provides Angular with the information it
needs to apply the component in the application.

...
@Component({
 selector: "product-table",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {
...

The configuration properties of the @Component decorator tell Angular how the component should
be used. The selector property tells Angular that it should apply the component when it encounters
a product-table element in an HTML template. (You will see how I create this element shortly). The
templateUrl property specifies the component’s HTML template file, which provides the content that will
be displayed by the component.

Creating the HTML Template
A component’s template provides the HTML content that will be displayed to the user, as well as the
directives and data bindings that will bring that content to life. Create an HTML file called productTable.
component.html in the ClientApp/app/structure folder and add the content shown in Listing 7-4. (It is
important that the name of the template file exactly matches the value of the templateUrl property in the
component’s decorator).

Listing 7-4. The Contents of the productTable.component.html File in the ClientApp/app/structure Folder

<table class="table table-striped">
 <tr><th>Name</th><th>Category</th><th>Price</th></tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 </tr>
</table>

This template uses features shown in earlier chapters. The ngFor directive is used to read the value of
the component’s products property and generate a tr element for each Product in the array that returns.
Each object is assigned to a temporary variable called product, which is then used in data bindings to set the
content of td elements. The result is a table that contains a row for each Product in the repository, showing
the value of the name, category, and price properties.

Chapter 7 ■ StruCturing an angular appliCation

140

Creating the Filter Component
The next component will present the user with a selection of buttons that will be used to filter the Product
objects in the repository. Add a TypeScript file called categoryFilter.component.ts in the ClientApp/app/
structure folder and add the code shown in Listing 7-5.

Listing 7-5. The Contents of the categoryFilter.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";

@Component({
 selector: "category-filter",
 templateUrl: "categoryFilter.component.html"
})
export class CategoryFilterComponent {
 public chessCategory = "chess";

 constructor(private repo: Repository) { }

 setCategory(category: string) {
 this.repo.filter.category = category;
 this.repo.getProducts();
 }
}

This file defines the CategoryFilterComponent class, to which the @Component decorator has been
applied. The decorator tells Angular to use this component when it encounters a category-filter HTML
element and to use a template file called categoryFilter.component.html. The component class defines
a constructor that allows it to receive a Repository object through dependency injection. The setCategory
method accepts a category, which is used to configure the Repository object’s filter and refresh the
application’s data.

Creating the HTML Template
To create the template for the filter component, add a file called categoryFilter.component.html to the
ClientApp/app/structure folder and add the markup shown in Listing 7-6.

Listing 7-6. The Contents of the categoryFilter.component.html File in the ClientApp/app/structure Folder

<div class="m-1">
 <button class="btn btn-primary" (click)="setCategory('soccer')">Soccer</button>
 <button class="btn btn-primary" (click)="setCategory(chessCategory)">
 Chess
 </button>
 <button class="btn btn-primary"
 (click)="setCategory('Water' + 'Sports')">Watersports</button>
 <button class="btn btn-primary" (click)="setCategory(null)">All</button>
</div>

Chapter 7 ■ StruCturing an angular appliCation

141

The event binding feature tells Angular to evaluate an expression when an event is triggered. The event
bindings in this template are for the click event, and the expressions invoke the component’s setCategory
method. Notice the different ways that the argument to the setCategory method is specified by the event
bindings. The first binding specifies the category in the expression.

...
<button class="btn btn-primary" (click)="setCategory('soccer')">
...

The value soccer is a literal string and must be quoted. JavaScript supports both double and single
quotes (the " and ' characters), and I have used double quotes to denote the expression and single quotes
for the literal value.

No quotes are required in the second event binding, which specifies a property defined by the
component as the argument.

...
<button class="btn btn-primary" (click)="setCategory(chessCategory)">
...

This binding will use the value of the chessCategory property as the value to the setCategory method.
The third binding shows that Angular will evaluate the expression, allowing operations to be performed in
expressions.

...
<button class="btn btn-primary" (click)="setCategory('Water' + 'Sports')">
...

When this button is clicked, Angular will evaluate the expression, which concatenates two literal string
values and passes the result to the setCategory method.

Applying the New Components
Angular must be configured to use new components, which is in contrast to the convention-over-
configuration philosophy of ASP.NET Core MVC. In most applications, a new Angular module is created
for each major area of functionality in the application, such as the model module created in Chapter 4, but
to keep things simple, register the new components in the Angular application’s root module, as shown in
Listing 7-7.

Listing 7-7. Registering Components in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { ProductTableComponent } from "./structure/productTable.component"
import { CategoryFilterComponent } from "./structure/categoryFilter.component"

http://dx.doi.org/10.1007/978-1-4842-2916-3_4

Chapter 7 ■ StruCturing an angular appliCation

142

@NgModule({
 declarations: [AppComponent, ProductTableComponent, CategoryFilterComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The component classes are registered in the declarations property of the NgModule decorator, which
makes Angular aware they exist and can be applied to HTML elements.

The next step is to add the HTML elements that are specified by the new component’s selector
properties. Replace the contents of the app.component.html file, which is the template for the component
specified by the root component’s bootstrap property in Listing 7-7, with the elements shown in Listing 7-8.

Listing 7-8. Replacing the Contents of the app.component.html File in the ClientApp/app Folder

<category-filter></category-filter>
<product-table></product-table>

These elements replace the content that was previously displayed by the user. When the application
starts, Angular will process the template, discover the category-filter and product-table elements, and
look at the list of components that have been registered to see which ones should be applied. Figure 7-2
shows the result, although you may need to reload the browser for the changes to take effect.

Figure 7-2. Adding components to the Angular application

Clicking one of the buttons changes the filter that is applied to the data. The figure shows the effect of
clicking the Watersports button, which has the effect of selecting only those products in the Watersports
category.

Chapter 7 ■ StruCturing an angular appliCation

143

Understanding the Application Structure
The two new components have no direct knowledge of one another, but the actions performed using one
component (clicking a button) are reflected in the other (filtering data). This works because the components
take advantage of the two parts of the data repository that I described at the start of this section, as illustrated
in Figure 7-3.

Figure 7-3. Understanding collaborating components

When the user clicks a button, the event binding invokes the category filter component’s setCategory
method, which updates the repository filter and reloads the data. At this point, the category filter
component’s job is done.

The repository sends the HTTP request to the ASP.NET Core MVC web service and receives the filtered
Product data, which is assigned to the products property. This is the property used in the ngFor directive’s
expression in the product table component’s template, and Angular updates the content that is displayed by
that template to reflect the change.

Adding Another Component
The two new components may leave you with the impression that some components only read data from
the model, while others only make changes. In fact, components are more flexible and can be used to create
complex sets of relationships, while still relying on the data model to aid coordination. To see how this
works, create a file called the productDetail.component.ts file in the ClientApp/app/structure folder and
add the code shown in Listing 7-9.

Listing 7-9. The Contents of the productDetail.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";

@Component({
 selector: "product-detail",
 templateUrl: "productDetail.component.html"
})
export class ProductDetailComponent {

 constructor(private repo: Repository) { }

 get product(): Product {
 return this.repo.product;
 }
}

Chapter 7 ■ StruCturing an angular appliCation

144

The ProductDetailComponent class has a constructor that receives a Repository object, which will be
provided through the dependency injection feature, and a product property that returns the value of the
property with the same name in the Repository.

The Component decorator tells Angular to apply this component when it encounters the product-detail
element and provides the location of the component’s template. To create the template, add a file called
productDetail.component.html in the ClientApp/app/structure folder and add the HTML elements
shown in Listing 7-10.

Listing 7-10. The Contents of the productDetail.component.html File in the ClientApp/app/structure Folder

<table class="table table-striped">
 <tr><th colspan="2" class="bg-info">Product</th></tr>
 <tr><th>Name</th><td>{{product?.name || 'No Data'}}</td></tr>
 <tr><th>Category</th><td>{{product?.category || 'No Data'}}</td></tr>
 <tr>
 <th>Description</th>
 <td>{{product?.description || 'No Data'}}</td>
 </tr>
 <tr><th>Price</th><td>{{product?.price || 'No Data'}}</td></tr>
 <tr><th colspan="2" class="bg-info">Supplier</th></tr>
 <tr><th>Name</th><td>{{product?.supplier?.name}}</td></tr>
 <tr><th>City</th><td>{{product?.supplier?.city}}</td></tr>
 <tr><th>State</th><td>{{product?.supplier?.state}}</td></tr>

<tr><th>Products</th><td>{{product?.supplier?.products?.length}}</td></tr>
</table>

To register the component so that it can be used by Angular, change the configuration of the root
module, as shown in Listing 7-11.

Listing 7-11. Registering a Component in the app.module.ts File in the ClientApp Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { ProductTableComponent } from "./structure/productTable.component"
import { CategoryFilterComponent } from "./structure/categoryFilter.component"
import { ProductDetailComponent } from "./structure/productDetail.component";

@NgModule({
 declarations: [AppComponent, ProductTableComponent,
 CategoryFilterComponent, ProductDetailComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Chapter 7 ■ StruCturing an angular appliCation

145

The import statement provides access to the ProductDetailComponent class, which is added to
the NgModule decorator’s declarations property. Now that the component can be used, edit the root
component’s template to add the element that will apply the new component, as shown in Listing 7-12.

Listing 7-12. Adding an Element in the app.component.html File in the ClientApp Folder

<div class="container">
 <div class="row">
 <div class="col">
 <category-filter></category-filter>
 <product-table></product-table>
 </div>
 <div class="col">
 <product-detail></product-detail>
 </div>
 </div>
</div>

The listing also adds some structure to the HTML document, using Bootstrap CSS classes to position
the new component side-by-side with the existing ones.

Selecting a Product
The new component will display the details of a single product when it is selected, which means that the
next step is to provide the user with the means to make that selection. First, add the elements shown in
Listing 7-13 to the template for the product table.

Listing 7-13. New Elements in the productTable.component.html File in the ClientApp/app/structure Folder

<table class="table table-striped">
 <tr><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>
 <td>
 <button class="btn btn-primary btn-sm"
 (click)="selectProduct(product.productId)">
 Details
 </button>
 </td>
 </tr>
</table>

The new elements add a column to the table containing a Details button for each row produced by the
ngFor directive. The click event binding will invoke a method called selectProduct when the button is
clicked, providing the ID value of the corresponding product. To define the method that the event binding
invokes, add the code shown in Listing 7-14 to the product table component.

Chapter 7 ■ StruCturing an angular appliCation

146

Listing 7-14. Adding a Method in the productTable.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";

@Component({
 selector: "product-table",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 return this.repo.products;
 }

 selectProduct(id: number) {
 this.repo.getProduct(id);
 }
}

The selectProduct method calls a repository object’s getProduct method, which will cause it to send a
request to the web service. When you save the changes, you will see the new content, and clicking one of the
Details buttons will lead to the detailed view being populated with data, as shown in Figure 7-4.

Figure 7-4. Displaying detailed data

Chapter 7 ■ StruCturing an angular appliCation

147

Understanding the Revised Application Structure
The three new components rely on the data model, either as the target for the operations they perform for
the user or as the source of the data they display. None of the components depends directly on any of the
others, and any of them can be changed without requiring corresponding changes in the other components.
And, as the addition of the third component has shown, components can be both consumers of the data in
the model and the source of changes to that data, as illustrated by Figure 7-5.

Understanding Angular Routing
Using the data model as the heart of an Angular application makes it easy to add and integrate components
that add new features. For all but the simplest applications, however, you will soon reach the point where
you want to display different components to the user at different times. For the SportsStore application, for
example, it doesn’t make sense to display the product table and the product detail components at the same
time. Instead, the application should display the table until the user clicks a Details button, at which time the
detailed view should be shown.

In an Angular application, this is done using URL routing, which provides another way for components
to cooperate. As an ASP.NET Core MVC developer, you may already be familiar with the idea of URL routing,
in which the segments of a URL are used to select a controller and action method to handle an HTTP
request. In Angular applications, the segments in the URL are used to decide which components should
be displayed to the user. This feature relies on the fact that browsers will allow small changes to the URL
without sending a new request to the server, a process that becomes clearer with an example. In the sections
that follow, I will add support for URL routing to the SportsStore application and use it to display either the
product table or the detailed view.

Creating the Routing Configuration
The first step in setting up the configuration for URL routing is to add a base element to the head section
Razor layout, as shown in Listing 7-15.

Figure 7-5. The revised structure of the Angular application

Chapter 7 ■ StruCturing an angular appliCation

148

Listing 7-15. Adding an Element in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <base href="/">
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>SportsStore @ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 @RenderBody()
 @RenderSection("Scripts", required: false)
</body>
</html>

The value of the href attribute sets the base URL against which the URL routing configuration is applied
and is set to / for most applications.

The next step is to define a list of the URL routes that the application will support and the components
that they will display. Add a TypeScript file called app.routing.ts to the ClientApp/app folder, with the
code shown in Listing 7-16. This is the conventional name of the routing configuration for an Angular
application.

Listing 7-16. The Contents of the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductTableComponent } from "./structure/productTable.component"
import { ProductDetailComponent } from "./structure/productDetail.component";

const routes: Routes = [
 { path: "table", component: ProductTableComponent },
 { path: "detail", component: ProductDetailComponent },
 { path: "", component: ProductTableComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

As with ASP.NET Core MVC, there are a lot of options available for URL routing in Angular, and this is a
simple configuration. The first step is to define the set of URL segments and the components that they will
display, which are combined with the value of the href attribute of the base element from Listing 7-16.

Just as with ASP.NET Core MVC, Angular routes are evaluated in the order in which they are defined,
which means that the most specific routes must be defined first. The segments that the route will match are
defined using the path property, and the component that will be displayed is specified by the component
property. There are three routes in the listing, and they produce the mappings described in Table 7-2.

 ■ Tip You won’t be able to navigate to the urls shown in the table by entering them into the browser
manually. i explain why and how this is resolved later in the chapter.

Chapter 7 ■ StruCturing an angular appliCation

149

The second step to setting up the routing configuration is to call the RouterModule.forRoot method and
export the result as a constant (using the const keyword) so that it can be accessed in other TypeScript files.

...
export const RoutingConfig = RouterModule.forRoot(routes);
...

The forRoot method takes the array of routes as its argument and creates an Angular module that
contains the routing configuration, which is then exported as a constant value called RoutingConfig.

Applying the Routing Configuration
Once you have created a routing configuration, it must be enabled in the application’s root module, as
shown in Listing 7-17.

Listing 7-17. Enabling the Routing Configuration in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { ProductTableComponent } from "./structure/productTable.component"
import { CategoryFilterComponent } from "./structure/categoryFilter.component"
import { ProductDetailComponent } from "./structure/productDetail.component";
import { RoutingConfig } from "./app.routing";

@NgModule({
 declarations: [AppComponent, ProductTableComponent,
 CategoryFilterComponent, ProductDetailComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule, RoutingConfig],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Table 7-2. The URL Routes and Components

URL Description

http://localhost:5000 This URL is matched by the last route in the listing and displays
the product table component.

http://localhost:5000/table This URL is matched by the route whose path is table and
displays the product table component.

http://localhost:5000/detail This URL is matched by the route whose path is detail and
displays the product detail component.

Chapter 7 ■ StruCturing an angular appliCation

150

The const value to which the routing module has been assigned is imported with an import statement
and added to the NgModule decorator’s imports property. When the Angular application starts, the routing
configuration will be processed and integrated into the application.

Angular uses a special HTML element, router-outlet, to display the components selected by the
routing configuration. This element is used in the root component’s template, replacing the existing content,
as shown in Listing 7-18.

Listing 7-18. Adding a Router Outlet in the app.component.html File in the ClientApp/app Folder

<router-outlet></router-outlet>

When all the changes to the Angular files are saved, you will see just the product table when the
application has been reloaded, as shown in Figure 7-6. This is because the route from Listing 7-16 whose
path is the empty string ("") has matched the URL displayed by the browser and the routing system has
selected the product table component to show in the router-outlet element.

Figure 7-6. A component selected by the routing system

Navigating Using Routes
Clicking the Details buttons has no visible effect at the moment because the event binding applied to the
button elements just triggers an HTTP request to the web service. To navigate to the URL that will display the
product details component, add the code shown in Listing 7-19 to the ProductTableComponent class.

Listing 7-19. Navigating in the productTable.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Router } from "@angular/router";

Chapter 7 ■ StruCturing an angular appliCation

151

@Component({
 selector: "product-table",
 templateUrl: "productTable.component.html"
})
export class ProductTableComponent {

 constructor(private repo: Repository,
 private router: Router) { }

 get products(): Product[] {
 return this.repo.products;
 }

 selectProduct(id: number) {
 this.repo.getProduct(id);
 this.router.navigateByUrl("/detail");
 }
}

The Router class, which is defined in the @angular/router module, provides support for navigating to a
URL through its navigateByUrl method. The constructor for the ProductTableComponent accepts a Router
object, which will be provided by dependency injection, and uses it in the selectProduct method to move
to the /detail URL, which will display the product detail component.

Save the change, reload the browser, and click one of the Details buttons once the application has
reloaded. The product detail component will replace the table, showing the details of the selected product.
Notice that the URL displayed by the browser changes, as shown in Figure 7-7.

Figure 7-7. Using the URL routing feature

Navigating Using a Directive
The Router.navigateByUrl method isn’t the only way to navigate using the routing system. Angular also
provides a directive that can be applied to an element, which allows a URL to be specified in a template
without needing a corresponding method in the component. To allow the user to navigate back from the
detailed component to the table, add the elements shown in Listing 7-20.

Chapter 7 ■ StruCturing an angular appliCation

152

Listing 7-20. Navigating in the productDetail.component.html File in the ClientApp/app/structure Folder

<table class="table table-striped">
 <tr><th colspan="2" class="bg-info">Product</th></tr>
 <tr><th>Name</th><td>{{product?.name || 'No Data'}}</td></tr>
 <tr><th>Category</th><td>{{product?.category || 'No Data'}}</td></tr>
 <tr>
 <th>Description</th>
 <td>{{product?.description || 'No Data'}}</td>
 </tr>
 <tr><th>Price</th><td>{{product?.price || 'No Data'}}</td></tr>
 <tr><th colspan="2" class="bg-info">Supplier</th></tr>
 <tr><th>Name</th><td>{{product?.supplier?.name}}</td></tr>
 <tr><th>City</th><td>{{product?.supplier?.city}}</td></tr>
 <tr><th>State</th><td>{{product?.supplier?.state}}</td></tr>

<tr><th>Products</th><td>{{product?.supplier?.products?.length}}</td></tr>
</table>
<div class="text-center">
 <button class="btn btn-primary" routerLink="/table">Back</button>
</div>

The routerLink attribute applies a directive that tells Angular to navigate to the /table URL when the
button is clicked, which corresponds to the route from Listing 7-16 that will show the product table. Save the
changes, use the browser to navigate to http://localhost:5000, and use the Details and Back buttons to
move navigate between the components, as shown in Figure 7-8.

Figure 7-8. Navigating using a directive

Chapter 7 ■ StruCturing an angular appliCation

153

Improving Navigation
The routing system is being used to handle navigation in the SportsStore application, but it has some rough
edges that will just confuse users. In the sections that follow, I describe the problems and explain how to
solve them.

Allowing Direct Navigation
If you try to manually navigate to one of the URLs in the routing configuration, such as http://localhost:5000/
table, by entering it into the browser’s URL bar, you will receive a 404 Not Found response. (Some browsers,
such as Google Chrome, will just display an empty window, and you will need to look at the browser’s JavaScript
console to see the HTTP status code.)

When Angular navigates to a new URL, it does so using a JavaScript API that allows the URL to be
changed without triggering an HTTP request. But when you enter a URL manually, that API isn’t used, and
the browser sends an HTTP request to the ASP.NET Core server, requesting the URL that you specified. There
is no controller set up to handle requests for the /table URL, so the 404 response is sent.

Solving this problem requires adding additional URL routes to the MVC part of the project so that
requests to the /table URL are directed to an action method that will produce a useful response. You could
set up new routing entries in the MVC application for all of the URLs supported by the Angular application,
but that’s an error-prone process, and it is easy to get out of sync. A more robust approach is to take
advantage of a feature provided by Microsoft that is included in one of the packages I used in Chapter 3 to set
up the project. Add the statements shown in Listing 7-21 to the Startup class to prevent the MVC application
from returning a 404 error when the user enters a URL directly.

Listing 7-21. Adding a Fallback Route in the Startup.cs File in the SportsStore Folder

...
public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

 app.UseStaticFiles();

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
}
...

http://dx.doi.org/10.1007/978-1-4842-2916-3_3

Chapter 7 ■ StruCturing an angular appliCation

154

The MapSpaFallbackRoute extension method is part of the Microsoft.AspNetCore.SpaServices
package, which handles integrating Angular with ASP.NET Core MVC. This method sets up a fallback route
that specifies a controller and action that will be used for HTTP requests that would otherwise produce a
404 response. The listing specifies that these requests should be handled by the Index action on the Home
controller, which will ensure that the client receives the HTML document for the Angular application.

 ■ Tip the MapSpaFallbackRoute extension method doesn’t handle requests that contain a period
(the . character) in the last segment of the url. this is to ensure that requests for static content, such as
images, are handled normally, but it also means you should avoid using periods in the urls used by the angular
application. it also means that all requests that would otherwise generate a 404 response, including those you
intended for a web service, will receive the fallback htMl content.

To see the effect of the fallback route, restart the ASP.NET Core MVC application and use a browser
to navigate directly to http://localhost:5000/table. The MVC fallback route will direct the request so
that it is handled by the Index action on the Home controller, which will render the Index.cshtml view and
provide the browser with the HTML that contains the Angular application. When Angular starts, it uses the
application’s routing configuration to determine how the browser’s current URL should be handled and
displays the product table, as shown in Figure 7-9.

Figure 7-9. Navigating directly to an Angular URL

Using a Segment Variable
Allowing the user to navigate directly to one of the Angular application’s URLs is a step forward but not
perfect. You can see the problem by requesting http://localhost:5000/detail. The Angular application
will display the detailed view component, but the placeholder data will never be replaced with real data, as
shown in Figure 7-10.

Chapter 7 ■ StruCturing an angular appliCation

155

When the user clicks a Details button, the template’s component asks the repository to get the product
data and then navigates to the URL that displays the detailed view. When the user navigates directly to a
URL, the repository is never asked to get the product data, so the component has nothing to display. Solving
this problem means extending the product detail component so it can request its own data and to include
details of the product to be displayed to be included in the URL.

The first step is to change the routing configuration to add a segment variable, which will allow the
route to match a range of URLs. Angular routing segments are similar to those in ASP.NET Core MVC,
although the syntax is different. To add a segment to the Angular route for the product details component,
add the route shown in Listing 7-22.

Listing 7-22. Adding a Route in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductTableComponent } from "./structure/productTable.component"
import { ProductDetailComponent } from "./structure/productDetail.component";

const routes: Routes = [
 { path: "table", component: ProductTableComponent },
 { path: "detail/:id", component: ProductDetailComponent },
 { path: "detail", component: ProductDetailComponent },
 { path: "", component: ProductTableComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

The segment variable is denoted using a colon (the : character), so the new route in the listing will
match a URL like /table/1, and the value of the last segment will be assigned to a routing variable called id.

To access the value of the segment variable and use it to request data from the repository, make the
changes shown in Listing 7-23.

Figure 7-10. Navigating directly to the detailed view URL

Chapter 7 ■ StruCturing an angular appliCation

156

Listing 7-23. Routing in the productDetail.component.ts File in the ClientApp/app/structure Folder

import { Component } from '@angular/core';
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Router, ActivatedRoute } from "@angular/router";

@Component({
 selector: "product-detail",
 templateUrl: "productDetail.component.html"
})
export class ProductDetailComponent {

 constructor(private repo: Repository,
 router: Router,
 activeRoute: ActivatedRoute) {

 let id = Number.parseInt(activeRoute.snapshot.params["id"]);
 if (id) {
 this.repo.getProduct(id);
 } else {
 router.navigateByUrl("/");
 }
 }

 get product(): Product {
 return this.repo.product;
 }
}

The current route is available through the ActivatedRoute class, which is defined in the @angular/
router module. In the listing, the component receives an ActivatedRoute object, which will be provided by
dependency injection, and uses its snapshot.params property to get the value of the id segment variable.
If the variable has a value and it can be parsed into an integer, then details of the product are requested
through the repository. If there is no value for the id segment or it cannot be parsed, then the Router object
is used to navigate to the / URL, which will display the product table.

The final adjustment is to change the way that the user navigates from the table to the detailed view for a
product. At the moment, clicking a Details button invokes a method that triggers the HTTP request and then
navigates to the detailed view, but that is no longer needed. To take advantage of the self-contained nature
of the product details component, change the Details button elements in the product table component’s
template, as shown in Listing 7-24.

Listing 7-24. Navigating in the productTable.component.html File in the ClientApp/app/structure Folder

<table class="table table-striped">
 <tr><th>Name</th><th>Category</th><th>Price</th><th></th></tr>
 <tr *ngFor="let product of products">
 <td>{{product.name}}</td>
 <td>{{product.category}}</td>
 <td>{{product.price}}</td>

Chapter 7 ■ StruCturing an angular appliCation

157

 <td>
 <button class="btn btn-primary btn-sm"
 [routerLink]="['/detail', product.productId]">
 Details
 </button>
 </td>
 </tr>
</table>

The routerLink directive is applied differently when you need to include a variable in the navigation
URL. The name of the attribute is enclosed in square brackets (the [and] characters), and the value is an
array of values that will be combined to create the navigation URL. The individual values can be string literal
values, such as '/detail', or variables, such as product.productId. When the user clicks the element,
Angular will evaluate each element in the array, combine the results, and navigate to the URL. In the listing,
this means that clicking a button element will navigate to a URL such as /detail/2.

Save the changes and reload the application. When you click a Details button in the product table,
the routing system is used to navigate to a URL with a segment variable that provides the product detail
component with the information it needs to request the data from the repository, shown in Figure 7-11.

Figure 7-11. Navigating using a segment variable

Chapter 7 ■ StruCturing an angular appliCation

158

Understanding the Application Structure
The URL routing feature provides an alternative way for Angular components to cooperate without being
tightly coupled together. Clicking a Details button in the SportsStore application lets the table component
tell the detail component which product should be displayed, but neither component has knowledge of
the other or depends on the code they define. Introducing URL routing has changed the structure of the
application, as illustrated in Figure 7-12.

Figure 7-12. The effect of URL routing on the application structure

Being able to choose how components coordinate allows for more flexibility during development. In
this case, using URL routing allows the user to navigate directly to a detail view and also means that other
components in the application can trigger a detailed display without needing to explicitly load the data.

Summary
In this chapter, I explained how Angular applications are structured around the data model and the
URL navigation feature. The data model provides the shared state for the application, allowing Angular
components to work consistently together. The URL feature selects the components that will be displayed
to the user, allowing features to be used without overwhelming the user with content. In the next chapter,
I use the techniques described in this chapter to start working on the end-user features for the SportsStore
application.

159© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_8

CHAPTER 8

Creating the Store

The publicly accessible part of the SportsStore application will allow customers to view the products that are
on sale, add items to a cart, go through a checkout process, and provide ratings for the products they have
purchased. All these features are standard for most online stores, but as you might expect by now, there are
some tricks and techniques required to get Angular and ASP.NET Core MVC to work together to create a
good experience. In this chapter, I create the structure of the Angular application’s store feature and start
adding features. Table 8-1 puts the store features in context.

Table 8-1. Putting End-User Features in Context

Question Answer

What are they? The end-user functionality provides the publicly accessible
features of the application.

Why are they useful? For most applications, the end-user functionality is the most
important part of the project and is the reason that development
was started. Other features, such as those required to administer
the application, tend to receive less attention and effort.

How are they used? The end user will use their browser to navigate to a URL that
presents them with the Angular application, which displays the
publicly accessible features. The HTML document that tells the
browser to load the Angular application is produced by ASP.NET
Core MVC, which is also responsible for delivering the data to the
Angular application through the web service controllers.

Are there any pitfalls or limitations? It is important to start with the structure of the application so that
you have a sense of the Angular components that are required,
how they will collaborate, and what data is required from the web
service. Without this foundation, the Angular part of the project
can become complex and difficult to manage.

Are there any alternatives? No. If you are using Angular and ASP.NET Core MVC in the same
project, there will be some type of end user.

Chapter 8 ■ Creating the Store

160

Preparing for This Chapter
This chapter uses the SportsStore project I created in Chapter 3 and modified in the chapters since. To
ensure that the contents of the database are reset, open a command prompt, navigate to the SportsStore
folder, and run the commands shown in Listing 8-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. this is where you will also find updates and corrections for this book.

Listing 8-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container. Start the application to apply the database schema and add
the seed data. If you are using Visual Studio, you can do this by selecting Debug ➤ Start Without Debugging.
If you are using Visual Studio Code or just prefer working with the command line, then open a command
prompt, navigate to the SportsStore folder, and run the command shown in Listing 8-2.

Listing 8-2. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 8-1.

Figure 8-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

Chapter 8 ■ Creating the Store

161

Starting the Product Selection Feature
The starting point for the store feature is presenting the user with details of the products that are for sale. The
earlier chapters included some of the functionality required for this feature, but there are some important
additions that will allow the user to filter the content, page through the data, and perform other common tasks.

To provide some context, Figure 8-2 shows the structure that I will be working toward. The layout
for product selection will present the user with a list of products, which can be selected to add them to a
shopping cart. The user will be able to navigate through the products by selecting a category filter and by
moving between pages of products. This is a conventional layout for presenting products and will be familiar
if you have followed the SportsStore example in my other books.

In the sections that follow, I show you how to create this layout using Angular and how to enhance the
ASP.NET Core MVC part of the application.

Blocking Out the Feature Components
When working on a new feature, I find it useful to start by creating components that display placeholder
content so that I can define the basic structure shown in Figure 8-2. Once the placeholders are done, I can
return to each component and implement the functionality that will be presented to the user.

Creating the Product List Component
Create the ClientApp/app/store folder. This is where the Angular classes and HTML templates for the
product selection feature will live. Create a TypeScript file called productList.component.ts in the store
folder and add the code shown in Listing 8-3.

Figure 8-2. The intended product selection structure

Chapter 8 ■ Creating the Store

162

Listing 8-3. The Contents of the productList.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";

@Component({
 selector: "store-product-list",
 templateUrl: "productList.component.html"
})
export class ProductListComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 return this.repo.products;
 }
}

This component will be responsible for displaying the list of products to the user. Even though I am just
blocking out the content at the moment, I know that the set of products in the repository is needed, so I have
declared a Repository dependency in the constructor and defined a get-only products property that returns
the data. To provide the component with a template, create an HTML file called productList.component.
html in the store folder and add the element shown in Listing 8-4.

Listing 8-4. The Contents of the productList.component.html File in the ClientApp/app/store Folder

<h3>Placeholder: Product List</h3>

I will replace this HTML content with more useful elements once the structure of the application has
been completed, but this is enough with which to get started.

Creating the Pagination Component
The pagination component will make long lists of products more manageable by allowing the user to
navigate through smaller pages. Add a TypeScript file called pagination.component.ts in the store folder
and add the code shown in Listing 8-5.

Listing 8-5. The Contents of the pagination.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";

@Component({
 selector: "store-pagination",
 templateUrl: "pagination.component.html"
})
export class PaginationComponent {

 constructor(private repo: Repository) { }

}

Chapter 8 ■ Creating the Store

163

This component has a constructor that declares a dependency on the Repository class, which will be
used to manage the page navigation. To provide the component with its template, create an HTML file called
pagination.component.html in the store folder and add the element shown in Listing 8-6.

Listing 8-6. The Contents of the pagination.component.html File in the ClientApp/app/store Folder

<h3>Placeholder: Page Controls</h3>

Creating the Category Filter Component
The category filter component will allow the user to select a single category to display. Add a TypeScript file
called categoryFilter.component.ts to the store folder with the code shown in Listing 8-7.

Listing 8-7. The Contents of the categoryFilter.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";

@Component({
 selector: "store-categoryfilter",
 templateUrl: "categoryFilter.component.html"
})
export class CategoryFilterComponent {

 constructor(private repo: Repository) { }

}

This component follows the pattern of defining a constructor that declares a Repository dependency,
which will be resolved using the dependency injection feature and provide access to the filter feature defined
in Chapter 5. To provide the component with its template, create an HTML file called categoryFilter.
component.html in the store folder and add the element shown in Listing 8-8.

Listing 8-8. The Contents of the categoryFilter.component.html File in the ClientApp/app/store Folder

<h3>Placeholder: Category Filter</h3>

Creating the Cart Summary Component
The cart summary component will display an overview of the user’s shopping cart. Create a TypeScript file
called cartSummary.component.ts in the store folder and add the code shown in Listing 8-9.

Listing 8-9. The Contents of the cartSummary.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";

@Component({
 selector: "store-cartsummary",
 templateUrl: "cartSummary.component.html"
})
export class CartSummaryComponent {

}

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

Chapter 8 ■ Creating the Store

164

Unlike most of the other components created in this chapter, the cart summary component won’t need
access to the data repository. To provide the component with the template specified by the templateUrl
property in the @Component decorator, create an HTML file called cartSummary.component.html in the store
folder and add the element shown in Listing 8-10.

Listing 8-10. The Contents of the cartSummary.component.html File in the ClientApp/app/store Folder

<h5>Placeholder: Cart Summary</h5>

Creating the Ratings Component
The ratings component will display the ratings for a product. Create a TypeScript file called ratings.
component.ts in the store folder and add the code shown in Listing 8-11.

Listing 8-11. The Contents of the ratings.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Product } from "../models/product.model";

@Component({
 selector: "store-ratings",
 templateUrl: "ratings.component.html"
})
export class RatingsComponent {

}

This component doesn’t need the repository to do its job, so it doesn’t define a constructor. To provide the
component with the template specified by the templateUrl property in the @Component decorator, create an
HTML file called ratings.component.html in the store folder and add the elements shown in Listing 8-12.

Listing 8-12. The Contents of the ratings.component.html File in the ClientApp/app/store Folder

<h5>Placeholder: Ratings</h5>

Creating the Structural Component
The final component required for this chapter will provide the layout for the others. Angular doesn’t have
support for creating stand-alone HTML templates, which means that a component is required even when
only the HTML structure is required. Add a TypeScript file called productSelection.component.ts to the
store folder with the code shown in Listing 8-13.

Listing 8-13. The Contents of the productSelection.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";

@Component({
 selector: "store-products",
 templateUrl: "productSelection.component.html"
})
export class ProductSelectionComponent {

}

Chapter 8 ■ Creating the Store

165

To provide the component with its template, which is what will provide the layout structure, create an
HTML file called productSelection.component.html in the store folder and add the elements shown in
Listing 8-14.

Listing 8-14. The Contents of the productSelection.component.html File in the ClientApp/app/store Folder

<div class="navbar bg-inverse ">
 <div class="row">
 <div class="col">

 SPORTS STORE

 </div>
 <div class="col text-white mr-1">
 <store-cartsummary></store-cartsummary>
 </div>
 </div>
</div>
<div class="row no-gutters">
 <div class="col-3">
 <store-categoryfilter></store-categoryfilter>
 </div>
 <div class="col">
 <store-product-list></store-product-list>
 <store-pagination></store-pagination>
 </div>
</div>

This template uses the Bootstrap classes to create a grid layout, which makes it easy to position content
without getting bogged down in the complexities of CSS. The ratings component isn’t included in the layout,
but I’ll integrate it into the application later in the chapter.

Creating and Registering the Store Feature Module
To create a feature module for the product selection feature, create a TypeScript file called store.module.ts
in the store folder and add the code shown in Listing 8-15.

Listing 8-15. The Contents of the store.module.ts File in the ClientApp/app/store Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from '@angular/platform-browser';
import { CartSummaryComponent } from "./cartSummary.component";
import { CategoryFilterComponent } from "./categoryFilter.component";
import { PaginationComponent } from "./pagination.component";
import { ProductListComponent } from "./productList.component";
import { RatingsComponent } from "./ratings.component";
import { ProductSelectionComponent } from "./productSelection.component";

Chapter 8 ■ Creating the Store

166

@NgModule({
 declarations: [CartSummaryComponent, CategoryFilterComponent,
 PaginationComponent, ProductListComponent, RatingsComponent,
 ProductSelectionComponent],
 imports: [BrowserModule],
 exports: [ProductSelectionComponent]
})
export class StoreModule { }

The declarations property of the StoreModule feature module is used to register the components
created in this section so they can be used by the Angular application. The exports property tells
Angular which components can be used outside the feature module and has been used to specify
the ProductSelectionComponent, which will be responsible for managing the others. (By default, the
classes specified by the declarations property can only be referred to in templates defined in the same
feature module.)

The imports property tells Angular which other modules this module depends on. In this case, this
is the BrowserModule, which provides the standard directives and data bindings required for an Angular
application running in a browser.

To tell Angular about the store feature module, register it with the root module, as shown in Listing 8-16.

Listing 8-16. Registering a Feature Module in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
//import { ProductTableComponent } from "./structure/productTable.component"
//import { CategoryFilterComponent } from "./structure/categoryFilter.component"
//import { ProductDetailComponent } from "./structure/productDetail.component";
import { RoutingConfig } from "./app.routing";
import { StoreModule } from "./store/store.module";
import { ProductSelectionComponent } from "./store/productSelection.component";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule,
 RoutingConfig, StoreModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Unlike ASP.NET Core MVC, Angular doesn’t discover its building blocks automatically, so every module
or component that you rely on must be registered either directly with the root module or in a feature module
(which must then be registered with the root module).

Chapter 8 ■ Creating the Store

167

Configuring the Angular URL Routes
The routing configuration for the Angular application is still set up for the components from Chapter 7.
To update the configuration for the components in this chapter, replace the routes with the ones shown in
Listing 8-17.

Listing 8-17. Configuring the Routes in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
//import { ProductTableComponent } from "./structure/productTable.component"
//import { ProductDetailComponent } from "./structure/productDetail.component";
import { ProductSelectionComponent } from "./store/productSelection.component";

const routes: Routes = [
 { path: "store", component: ProductSelectionComponent },
 { path: "", component: ProductSelectionComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

There are two routes in this configuration, which will show the ProductSelectionComponent for the
default URL and the /store URL.

Removing the Layout Header
The Index.cshtml Razor view duplicates the SportsStore header contained in the template for the product
selection component. I need to use the component’s header because it contains the cart summary
component, so comment out the duplicate, as shown in Listing 8-18.

Listing 8-18. Commenting Out a Header in the Index.cshtml File in the Views/Home Folder

@section scripts {
 <script src="~/dist/inline.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/polyfills.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/vendor.bundle.js" asp-append-version="true"></script>
 <script src="~/dist/main.bundle.js" asp-append-version="true"></script>
}

@*<div class="navbar bg-inverse">*@
@* @(ViewBag.Message ?? "SPORTS STORE")*@
@*</div>*@

<div class="p-1">
 <app-root></app-root>
</div>

The Razor view now contains only the script elements for the Angular JavaScript files and the app-root
element in which the Angular application will be displayed. Once you have saved all the changes, reload the
browser, and you will see the content shown in Figure 8-3. It doesn’t look like much, but it provides the basic
structure of the product selection feature.

http://dx.doi.org/10.1007/978-1-4842-2916-3_7

Chapter 8 ■ Creating the Store

168

Displaying the Product List
Showing a list of available products is relatively easy because this is one of the features that I used in Chapter 5
to create the web service. The product list component, created in Listing 8-3, already has a products property
that provides access to the Product objects in the repository. Edit the component’s template as shown in
Listing 8-19 to display the Product objects provided by the Repository and the component.

Listing 8-19. Displaying Data in the productList.component.html File in the ClientApp/app/store Folder

<div *ngIf="products?.length > 0; else nodata">
 <div *ngFor="let product of products" class="card card-outline-primary m-1">
 <div class="card-header">
 {{product.name}}

 {{product.price | currency:"USD":true }}

 </div>
 <div class="card-block">
 {{product.description}}
 <button class="float-right btn btn-sm btn-success"
 (click)="addToCart(product)">
 Add to Cart
 </button>
 </div>
 </div>
</div>

<ng-template #nodata>
 <h4 class="m-1">Waiting for data...</h4>
</ng-template>

Save the change to the template and reload the Angular application to see the list of products illustrated
in Figure 8-4.

Figure 8-3. Creating the structure for the product selection feature

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

Chapter 8 ■ Creating the Store

169

Understanding the Product List Template Features
This template uses some of the Angular features shown in previous chapters but introduces some new ones,
too. In the sections that follow, I describe each of the template features used in Listing 8-19.

Understanding the ngIf Directive
The first Angular feature used in the template is the ngIf directive, which comes in two parts, like this:

<div *ngIf="products?.length > 0; else nodata">
 <!-- content to be displayed if expression evaluates as true -->
</div>

<ng-template #nodata>
 <!-- content to be displayed if expression evaluates as false -->
</ng-template>

If the ngIf directive’s expression evaluates to true, then the element it has been applied to and its
content are inserted into the HTML shown to the user. If the expression is false, then the element is
removed. Like other Angular directives, ngIf reevaluates its expression when there is a data change, which
means it allows elements to be created or deleted dynamically. In this case, the expression checks to see that
there are Product objects to display, and if there are, the div element to which the ngIf directive has been
applied will be added to the HTML document.

Figure 8-4. Displaying a list of products

Chapter 8 ■ Creating the Store

170

This listing uses an optional feature of the ngIf directive. The directive’s expression is followed by
a semicolon (the ; character) and the else keyword, followed by a name. The name corresponds to the
ng-template element, which will be added to the HTML document when the ngIf directive’s expression is
false. In this case, the effect is that a “Waiting for Data” message will be displayed when there is no Product
data to display.

STRUCTURAL DIRECTIVES REQUIRE AN ASTERISK

Some angular directives are applied with an asterisk before their names, such as *ngIf and *ngFor,
and you will receive an error if you omit it. Directives that add or remove content contained in the
element they are applied to are known as structural directives, and they can be used in two ways: the
full syntax and the concise syntax.

the asterisk tells angular that you want to use the concise syntax, which is much easier to work
with and is what i use throughout this book. the full syntax is required only when you can’t apply the
directive directly to an element, which i demonstrate in Chapter 10. it can be difficult to remember
which directives require an asterisk when you first start working with angular, but it quickly becomes
second nature.

Understanding the ngFor Directive
The ngFor directive generates the same content for each object in a sequence, such as an array. The directive
assigns each object to a temporary variable, whose name is defined in the expression, and which can be
used for data bindings (and other directives) inside the directive’s element. In this case, the ngFor directive is
applied to the set of objects returned by the component’s products property and assigns each object in turn
to a variable called product, like this:

...
<div *ngFor="let product of products" class="card card-outline-primary m-1">
...

Directives and data bindings applied to elements contained within the div element that the ngFor
directive has been applied to can access the current object by using the product variable, like this:

...
{{product.name}}
...

In Listing 8-19, the ngFor directive generates content for each Product object, and the content and
data bindings that are produced provide the user with the name, price, and description of each product
that is available.

Understanding the Currency Pipe
Angular pipes are responsible for formatting data values so they can be presented to the user. Angular
includes a set of pipes that perform common formatting tasks, as described in Table 8-2.

http://dx.doi.org/10.1007/978-1-4842-2916-3_10

Chapter 8 ■ Creating the Store

171

I used the currency pipe in Listing 8-19 to format the price of a product as a currency value, like this:

...
{{product.price | currency:"USD":true }}
...

Pipes are applied to a data value using the vertical bar (the | character), followed by the name of the
pipe and its configuration settings. Each built-in pipe has its own options, and the ones used in this case
specify the U.S. dollar as the currency and select the currency symbol rather than the currency code so that $
is displayed rather than USD.

Understanding the Click Handler
The final template feature used in Listing 8-19 is the event binding, which is used to handle the click event
on the button element and allows the user to add a product to the shopping cart.

...
<button class="float-right btn btn-sm btn-success" (click)="addToCart(product)">
 Add to Cart
</button>
...

The binding tells Angular to invoke a method called addToCart, using the value of the product variable
created by the ngFor directive as an argument. The addToCart method doesn’t exist yet, but I will create it in
Chapter 9 when I create the shopping cart functionality. Until then, clicking the button element will produce
an error in the browser’s JavaScript console.

Creating the Category Filter
The key challenge in implementing the category filter is getting the complete set of categories. The requests
made by the Repository class to the web service to get Product objects may return only a subset of the
available data, which means deriving the categories from that data may return an incomplete list.

As a consequence, I need additional information that describes the complete set of data that is
available, even if not all of the data is being sent to the client. In the sections that follow, I enhance the ASP.
NET Core MVC web service to provide a description of the data available and demonstrate how to consume
that data in the Angular application.

Table 8-2. The Built-in Angular Piples

Name Description

number This pipe is used for specify the number of integer and fraction digits shown for a number value.

currency This pipe is used to format a number value as a currency amount.

percent This pipe is used to format a number value as a percentage.

uppercase This pipe is used to convert a string value to uppercase characters.

lowercase This pipe is used to convert a string value to lowercase characters.

json This pipe is used to serialize an object to JSON data.

slice This pipe is used to select elements from an array.

http://dx.doi.org/10.1007/978-1-4842-2916-3_9

Chapter 8 ■ Creating the Store

172

Enhancing the ASP.NET Core MVC Application
To provide the client with category information, add a new method to the ProductValues controller and
update the GetProducts method, as shown in Listing 8-20.

Listing 8-20. Providing Category Data in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;
using Microsoft.AspNetCore.JsonPatch;

namespace SportsStore.Controllers {

 [Route("api/products")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...other methods omitted for brevity...

 [HttpGet]
 public IActionResult GetProducts(string category, string search,
 bool related = false, bool metadata = false) {
 IQueryable<Product> query = context.Products;

 if (!string.IsNullOrWhiteSpace(category)) {
 string catLower = category.ToLower();
 query = query.Where(p => p.Category.ToLower().Contains(catLower));
 }
 if (!string.IsNullOrWhiteSpace(search)) {
 string searchLower = search.ToLower();
 query = query.Where(p => p.Name.ToLower().Contains(searchLower)
 || p.Description.ToLower().Contains(searchLower));
 }

 if (related) {
 query = query.Include(p => p.Supplier).Include(p => p.Ratings);
 List<Product> data = query.ToList();
 data.ForEach(p => {
 if (p.Supplier != null) {
 p.Supplier.Products = null;
 }
 if (p.Ratings != null) {
 p.Ratings.ForEach(r => r.Product = null);
 }
 });

Chapter 8 ■ Creating the Store

173

 return metadata ? CreateMetadata(data) : Ok(data);
 } else {
 return metadata ? CreateMetadata(query) : Ok(query);
 }
 }

 private IActionResult CreateMetadata(IEnumerable<Product> products) {
 return Ok(new {
 data = products,
 categories = context.Products.Select(p => p.Category)
 .Distinct().OrderBy(c => c)
 });
 }
 }
}

This listing adds an optional parameter called metadata to the GetProducts method. When this
parameter is true, then the CreateMetadata method is used to generate a result with data and categories
properties, which allows the product data and the category data to be combined in a single response. The
data property is set to the sequence of Product objects that the client has requested, and the categories
property is set using a LINQ query that produces an ordered set of distinct category names.

Receiving Category Data in the Angular Data Repository
To allow the Angular application to receive the category data, make the changes shown in Listing 8-21 to the
Repository class.

Listing 8-21. Receiving Category Data in the repository.ts File in the ClientApp/app/models Folder

...
@Injectable()
export class Repository {
 private filterObject = new Filter();

 constructor(private http: Http) {
 this.filter.related = true;
 this.getProducts();
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => this.product = response);
 }

 getProducts() {
 let url = productsUrl + "?related=" + this.filter.related;

 if (this.filter.category) {
 url += "&category=" + this.filter.category;
 }

Chapter 8 ■ Creating the Store

174

 if (this.filter.search) {
 url += "&search=" + this.filter.search;
 }

 url += "&metadata=true";
 this.sendRequest(RequestMethod.Get, url)
 .subscribe(response => {
 this.products = response.data;
 this.categories = response.categories;
 });
 }

 // ...other methods omitted for brevity...

 product: Product;
 products: Product[];
 suppliers: Supplier[] = [];
 categories: string[] = [];

 get filter(): Filter {
 return this.filterObject;
 }
}
...

Although it would be possible to be selective about getting the category data, I have chosen to receive
a new set of categories every time the application refreshes its product data by calling the getProducts
method, ensuring that any changes to the data stored in the database will be reflected in the client. The set
of category names returned by the web service is made available through the Repository class’s categories
property, which is initialized to an empty array until the data from the web service is assigned to it.

Updating the Filter Component and Template
All that remains is to present the user with a list of categories and use their selection to filter the list of
products. The first step is to update the component class so that it defines properties that expose the list
of categories and the currently selected category and a method that will change the category selection, as
shown in Listing 8-22.

Listing 8-22. Exposing Data in the categoryFilter.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";

@Component({
 selector: "store-categoryfilter",
 templateUrl: "categoryFilter.component.html"
})
export class CategoryFilterComponent {

 constructor(private repo: Repository) { }

Chapter 8 ■ Creating the Store

175

 get categories(): string[] {
 return this.repo.categories;
 }

 get currentCategory(): string {
 return this.repo.filter.category;
 }

 setCurrentCategory(newCategory: string) {
 this.repo.filter.category = newCategory;
 this.repo.getProducts();
 }
}

The categories and currentCategory properties provide read-only access to the data provided by the
Repository object. The current category is determined by reading the repository’s Filter object, which is
used to control the URL used to query the web service for data. The setCurrentCategory method updates
the repository’s filter.category property and then calls the getProducts method to refresh the data,
which will be filtered using the specified category.

To use the method and properties defined by the component, replace the content in its template with
the elements shown in Listing 8-23.

Listing 8-23. Categories in the categoryFilter.component.html File in the ClientApp/app/store Folder

<div class="m-1">
 <button class="btn btn-outline-primary btn-block"
 (click)="setCurrentCategory(null)">
 All Categories
 </button>
 <button *ngFor="let category of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="currentCategory == category"
 (click)="setCurrentCategory(category)">
 {{category}}
 </button>
</div>

The template has two button elements. The first button element allows the user to select all the categories
and has a click event binding that calls the setCurrentCategory method with null as the argument.

The ngFor directive has been applied to the other element, with an expression that operates on the
category names and produces a button for each of them. There is a click event binding that calls the
setCurrentCategory method to select a category. There is also a new kind of binding, known as the
class binding.

...
<button *ngFor="let category of categories"
 class="btn btn-outline-primary btn-block"
 [class.active]="currentCategory == category"
 (click)="setCurrentCategory(category)">
...

Chapter 8 ■ Creating the Store

176

The class binding is applied using square brackets (the [and] characters) containing the class
keyword, followed by a period, followed by the name of a class, such as the Bootstrap active class, which
applies a style to the element that shows it is selected. The element is added to the class when the expression
evaluates as true and is removed when it is false. The expression is reevaluated when the data model
is changed, which means that the button elements will be added and removed from the active class
automatically as the selected category changes.

Restart the application and use a browser to navigate to http://localhost:5000 to see the category
filter. Clicking the buttons filters the products so that only those in the selected category are displayed, as
shown in Figure 8-5.

Figure 8-5. Filtering categories

Creating the Pagination Controls
Most applications have too much data to display in one go or even to send to the client in one go. The most
common solution is to break the data into pages and allow the user to navigate between pages on demand.

Creating and Registering a Pagination Service
I am going to create multiple building blocks to implement the pagination controls. To help them cooperate,
I am going to create a class that represents the current pagination state and provide access to it through the
Repository class. Add the class shown in Listing 8-24 to the configClasses.repository.ts file.

Listing 8-24. Adding a Class in the configClasses.repository.ts File in the ClientApp/app/model Folder

export class Filter {
 category?: string;
 search?: string;

 related: boolean = false;

Chapter 8 ■ Creating the Store

177

 reset() {
 this.category = this.search = null;
 this.related = false;
 }
}

export class Pagination {

 productsPerPage: number = 4;
 currentPage = 1;
}

The Pagination class defines properties that specify how many products will be displayed by each page
and which page is currently selected. These are simple data values, but making them available through the
Repository class will make it easy to write the building blocks that will provide the pagination feature and
get them to work together. Make the changes shown in Listing 8-25 to the Repository class to create a shared
pagination state and to reset the selected page when the product data is refreshed by the getProducts method.

Listing 8-25. Exposing Page Data in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter, Pagination } from "./configClasses.repository";
import { Supplier } from "./supplier.model";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();
 private paginationObject = new Pagination();

 constructor(private http: Http) {
 this.filter.related = true;
 this.getProducts();
 }

 getProduct(id: number) {
 this.sendRequest(RequestMethod.Get, productsUrl + "/" + id)
 .subscribe(response => this.product = response);
 }

 getProducts() {
 let url = productsUrl + "?related=" + this.filter.related;

 if (this.filter.category) {
 url += "&category=" + this.filter.category;
 }

Chapter 8 ■ Creating the Store

178

 if (this.filter.search) {
 url += "&search=" + this.filter.search;
 }
 url += "&metadata=true";
 this.sendRequest(RequestMethod.Get, url)
 .subscribe(response => {
 this.products = response.data;
 this.categories = response.categories;
 this.pagination.currentPage = 1;
 });
 }

 // ...other methods and properties omitted for brevity...

 get filter(): Filter {
 return this.filterObject;
 }

 get pagination(): Pagination {
 return this.paginationObject;
 }
}

Updating the Pagination Button Component
Now that the repository provides access to pagination data, I can update the component so that it can
provide the support required for the page navigation buttons, as shown in Listing 8-26.

Listing 8-26. Adding Page Support in the pagination.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";

@Component({
 selector: "store-pagination",
 templateUrl: "pagination.component.html"
})
export class PaginationComponent {

 constructor(private repo: Repository) { }

 get current(): number {
 return this.repo.pagination.currentPage;
 }

 get pages(): number[] {
 if (this.repo.products != null) {
 return Array(Math.ceil(this.repo.products.length
 / this.repo.pagination.productsPerPage))
 .fill(0).map((x, i) => i + 1);
 } else {

Chapter 8 ■ Creating the Store

179

 return [];
 }
 }

 changePage(newPage: number) {
 this.repo.pagination.currentPage = newPage;
 }
}

The current property and the changePage method get and set the Pagination.currentPage property.
The pages method generates a sequence of page numbers, which will provide the ngFor directive with the
objects it needs to create and configure the buttons that will change the page. (The ngFor directive cannot be
used to create a for loop and must always be provided with a sequence of objects to work with.)

Edit the component’s template to generate the elements that will allow the user to change pages, as
shown in Listing 8-27.

Listing 8-27. Adding Page Support in the pagination.component.html File in the ClientApp/app/store Folder

<div *ngIf="pages.length > 1" class="text-right my-2">
 <button *ngFor="let page of pages"
 class="btn btn-outline-primary mx-1"
 [class.active]="current == page"
 (click)="changePage(page)">
 {{page}}
 </button>
</div>

All the features used in this template have been described in earlier examples. The ngIf directive is
used to ensure that page buttons are displayed only if there are multiple pages of products available. The
ngFor directive is used to generate button elements for each page, with the class binding showing the
active page and the click event binding allowing the user to change pages. Save the changes and reload the
browser and you will see the page buttons displayed at the end of the product list, as shown in Figure 8-6.
The buttons are displayed only when there are more than four products to display, which means they are not
shown when a category filter is applied because there are not enough products to require pagination in any
of the categories.

Figure 8-6. The page navigation buttons

Chapter 8 ■ Creating the Store

180

Paging the Product Data
The page navigation buttons are in place, but clicking them has no effect on the list of products displayed to
the user. To address this, update the product list component so that its products property takes into account
the pagination data, as shown in Listing 8-28.

Listing 8-28. Paging Data in the productList.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";

@Component({
 selector: "store-product-list",
 templateUrl: "productList.component.html"
})
export class ProductListComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 if (this.repo.products != null && this.repo.products.length > 0) {
 let pageIndex = (this.repo.pagination.currentPage - 1)
 * this.repo.pagination.productsPerPage;
 return this.repo.products.slice(pageIndex,
 pageIndex + this.repo.pagination.productsPerPage);
 }
 }
}

The implementation of the products getter uses the JavaScript array slice method to select a subset of
the Product objects available in the repository. Save the change, and you will see that the list of products is
paginated and changes when a new page is selected, as shown in Figure 8-7.

Chapter 8 ■ Creating the Store

181

Displaying Ratings
Displaying ratings requires some different techniques, since multiple instances of the ratings component
will be created, each of which will be responsible for displaying the rating of a single product. In the sections
that follow, I add a package to the project that will provide the graphics required for the rating and show you
how to create a component that handles a single data object.

Adding the Font Awesome Package
The Font Awesome package provides access to a large collection of icons that can be easily integrated into
web applications. To add Font Awesome to the SportsStore project, add details of the package to the bower.
json file, as shown in Listing 8-29.

Listing 8-29. Adding a Package in the bower.json File in the SportsStore Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "2.2.0",
 "jquery-validation": "1.14.0",
 "jquery-validation-unobtrusive": "3.2.6",
 "font-awesome": "4.7.0"
 }
}

Figure 8-7. Paginating products

Chapter 8 ■ Creating the Store

182

If you are using Visual Studio Code, run the command shown in Listing 8-30 in the SportsStore folder
to update the client-side packages. (Visual Studio will perform the update automatically).

Listing 8-30. Updating the Client-Side Packages

bower install

To ensure that the browser receives the Font Awesome files, add the elements shown in Listing 8-31 to
the _Layout.cshtml file in the Views/Shared folder.

Listing 8-31. Adding an Element in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <base href="/">
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>SportsStore @ViewData["Title"]</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 <link href="~/lib/font-awesome/css/font-awesome.min.css" rel="stylesheet" />
</head>
<body>
 @RenderBody()
 @RenderSection("Scripts", required: false)
</body>
</html>

Updating the Rating Component and Template
To display the ratings for a product, I am going to average the number of stars that have been awarded. The
component will display five star icons, which will be shown in solid color or outline to indicate the overall
rating. The component needs to provide its template with a sequence of five values that indicate whether a
star should be solid or outline, as shown in Listing 8-32.

Listing 8-32. Generating Rating Data in the ratings.component.ts File in the ClientApp/app/store Folder

import { Component, Input } from "@angular/core";
import { Product } from "../models/product.model";

@Component({
 selector: "store-ratings",
 templateUrl: "ratings.component.html"
})
export class RatingsComponent {

 @Input()
 product: Product;

Chapter 8 ■ Creating the Store

183

 get stars(): boolean[] {
 if (this.product != null && this.product.ratings != null) {
 let total = this.product.ratings.map(r => r.stars)
 .reduce((prev, curr) => prev + curr, 0);
 let count = Math.round(total / this.product.ratings.length);
 return Array(5).fill(false).map((value, index) => {
 return index < count;
 });
 } else {
 return [];
 }
 }
}

The component needs to know which Product object it is responsible for, and for this I have used an
Angular input property. Input properties are decorated with the @Input decorator, which is defined in the
@angular/core module, like this:

...
@Input()
product: Product;
...

Input properties allow components to receive data from the template in which they are applied. You’ll
see how is used in the next section, but when Angular creates this component, it will set the value of the
product property to the Product object for which rating information should be displayed.

The stars function uses the Product object to generate an array of boolean values that can be used
with the ngFor directive. If a Product has an average of three stars, for example, then the stars property
will return an array containing the values true, true, true, false, false. To display the star rating, add the
elements shown in Listing 8-33 to the component's template.

Listing 8-33. Displaying Ratings in the ratings.component.html File in the ClientApp/app/store Folder

 <i *ngFor="let s of stars"
 [class]="s ? 'fa fa-star' : 'fa fa-star-o'"
 [style.color]="s ? 'goldenrod' : 'gray'">
 </i>

The i element is how Font Awesome icons are applied, with the classes to which the element is
assigned determining which icon is shown.

The ngFor directive creates an i element for each of the five entries in the array returned by the stars
property. To configure the i element, the listing uses two data bindings, which are the attributes whose
names are in square brackets.

The class data binding evaluates an expression and uses the result to set the classes to which an
element is a member. In the listing, this binding is used to choose between two different sets of classes that
select Font Awesome icons.

...
[class]="s ? 'fa fa-star' : 'fa fa-star-o'"
...

Chapter 8 ■ Creating the Store

184

This is another example of the class data binding, except that it sets all the classes that the element is
assigned to using the result of its expression. In this case, the expression uses the JavaScript ternary operator
to examine the value of the s variable and selects the fa and fa-star classes if it is true (which creates a
solid star icon) and the fa and fa-star-o classes if it is false (which creates an outline star icon). Notice
that the classes in the expression are specified as string literals and that the fa class is required for both
outcomes, since this binding replaces all existing classes.

 ■ Tip if you don’t like including string literals for classes in templates, you can define a method in the
component that returns the classes that are required and invoke it in the class binding expression.

The color CSS property is used to set the color of the Font Awesome icons. The style data binding is
used to set style properties and has been used in this listing to set the color property.

...
[style.color]="s ? 'goldenrod' : 'gray'">
...

The expression for this data binding uses the ternary operator to inspect the s variable and chooses
goldenrod if it is true and gray if it is false.

Applying the Rating Component
The last step required to display the product ratings is to add the store-ratings element, which tells
Angular to apply the ratings component. Add the element shown in Listing 8-34 to the product list
component’s template.

Listing 8-34. Adding an Element in the productList.component.html File in the ClientApp/app/model Folder

<div *ngIf="products?.length > 0; else nodata">
 <div *ngFor="let product of products" class="card card-outline-primary m-1">
 <div class="card-header">

 {{product.name}}
 <store-ratings [product]="product"></store-ratings>

 {{product.price | currency:"USD":true }}

 </div>
 <div class="card-block">
 {{product.description}}
 <button class="float-right btn btn-sm btn-success"
 (click)="addToCart(product)">
 Add to Cart
 </button>
 </div>
 </div>
</div>

Chapter 8 ■ Creating the Store

185

<ng-template #nodata>
 <h4 class="m-1">Waiting for data...</h4>
</ng-template>

The store-ratings element has been applied inside the content generated by the ngFor directive,
which means that Angular will create an instance of the controller class for each product that is displayed to
the user. To provide the ratings component with the Product object whose ratings will be displayed, a data
binding is applied to the store-ratings element, like this:

...
<store-ratings [product]="product"></store-ratings>
...

The square brackets are used to denote the binding, enclosing the name of the input property defined
in Listing 8-32. The value for the input property is set using the binding expression, which is the value of the
product variable created by the ngFor directive.

Save the changes, and you will see that the product list has been updated so that each product includes
its rating data, as shown in Figure 8-8.

Figure 8-8. Displaying ratings

Chapter 8 ■ Creating the Store

186

Summary
In this chapter, I started work on using the Angular application to present the product selection feature to the
user. I created the components that will cooperate to provide features to the user and organized them with
placeholder content to create the overall structure. I then added support for listing the products available,
filtering the products by category, paging through products when there are too many to display, and showing
the ratings awarded to each product. In the next chapter, I complete the SportsStore store.

187© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_9

CHAPTER 9

Completing the Angular Store

In this chapter, I complete the customer-facing features for the SportsStore application, allowing the user to
add products to a shopping cart and complete an order.

Preparing for This Chapter
This chapter uses the SportsStore project created in Chapter 3 and modified in the chapters since. To ensure
that the contents of the database are reset, open a command prompt, navigate to the SportsStore folder,
and run the commands shown in Listing 9-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Listing 9-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container. Start the application to apply the database schema and add
the seed data. If you are using Visual Studio, you can do this by selecting Debug ➤ Start Without Debugging.
If you are using Visual Studio Code or just prefer working with the command line, then open a command
prompt, navigate to the SportsStore folder, and run the command shown in Listing 9-2.

Listing 9-2. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 9-1.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 9 ■ CompleTing The angular STore

188

Creating the Shopping Cart
Most online stores allow users to gather the products they require into a shopping cart, which is then used to
complete a purchase. In the sections that follow, I demonstrate how to create a shopping cart in the Angular
application and how to store the contents of carts using ASP.NET Core MVC and Entity Framework Core.

Extending the Angular Data Model
The starting point is to define a new class that will represent the cart in the Angular application. Add a new
TypeScript file called cart.model.ts in the models folder and use it to define the class shown in Listing 9-3.

Figure 9-1. Running the example application

ChapTer 9 ■ CompleTing The angular STore

189

Listing 9-3. The Contents of the cart.model.ts File in the ClientApp/app/models Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";

@Injectable()
export class Cart {
 selections: ProductSelection[] = [];
 itemCount: number = 0;
 totalPrice: number = 0;

 addProduct(product: Product) {
 let selection = this.selections
 .find(ps => ps.productId == product.productId);
 if (selection) {
 selection.quantity++;
 } else {
 this.selections.push(new ProductSelection(this,
 product.productId, product.name,
 product.price, 1));
 }
 this.update();
 }

 updateQuantity(productId: number, quantity: number) {
 if (quantity > 0) {
 let selection = this.selections.find(ps => ps.productId == productId);
 if (selection) {
 selection.quantity = quantity;
 }
 } else {
 let index = this.selections.findIndex(ps => ps.productId == productId);
 if (index != -1) {
 this.selections.splice(index, 1);
 }
 this.update();
 }
 }

 clear() {
 this.selections = [];
 this.update();
 }

 update() {
 this.itemCount = this.selections.map(ps => ps.quantity)
 .reduce((prev, curr) => prev + curr, 0);
 this.totalPrice = this.selections.map(ps => ps.price * ps.quantity)
 .reduce((prev, curr) => prev + curr, 0);
 }
}

ChapTer 9 ■ CompleTing The angular STore

190

export class ProductSelection {

 constructor(public cart: Cart,
 public productId?: number,
 public name?: string,
 public price?: number,
 private quantityValue?: number) { }

 get quantity() {
 return this.quantityValue;
 }

 set quantity(newQuantity: number) {
 this.quantityValue = newQuantity;
 this.cart.update();
 }
}

The Cart class represents the user’s shopping cart, using the ProductSelection class to represent
individual product choices. The Cart class provides methods that allow the product selections to be managed
and provides properties whose values report on the number of items in the cart and their total cost.

The update method must be called each time the product selection changes to recalculate the total cost
and number of items in the cart. Remember that Angular evaluates data binding expressions repeatedly
when there is an update, and it is a good idea to perform this kind of calculation only when required to avoid
repeatedly inspecting the products in the cart.

Registering the Cart as a Service
I am going to register the Cart class as a service, which will allow other classes, including components, to
declare a constructor dependency that will be resolved using dependency injection and will ensure that
a single Cart object is shared throughout the application. To register the service, add the Cart class to the
providers property of the model feature module, as shown in Listing 9-4.

Listing 9-4. Registering a Service in the model.module.ts File in the ClientApp/app/models Folder

import { NgModule } from "@angular/core";
import { Repository } from "./repository";
import { Cart } from "./cart.model";

@NgModule({
 providers: [Repository, Cart]
})
export class ModelModule { }

Angular will create a Cart object and use it to satisfy constructor dependencies for the components that
will provide the user-facing cart functionality.

ChapTer 9 ■ CompleTing The angular STore

191

Wiring Up the Buttons
The Add to Cart buttons that are displayed for each product in the list invoke a method in the template’s
component. This method doesn’t yet exist but is required so that the user can select the products they want
to buy. To allow the user to add products to the cart, make the changes shown in Listing 9-5 to the product
list component.

Listing 9-5. Adding Cart Items in the productList.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Cart } from "../models/cart.model";

@Component({
 selector: "store-product-list",
 templateUrl: "productList.component.html"
})
export class ProductListComponent {

 constructor(private repo: Repository, private cart: Cart) { }

 get products(): Product[] {
 if (this.repo.products != null && this.repo.products.length > 0) {
 let pageIndex = (this.repo.pagination.currentPage - 1)
 * this.repo.pagination.productsPerPage;
 return this.repo.products.slice(pageIndex,
 pageIndex + this.repo.pagination.productsPerPage);
 }
 }

 addToCart(product: Product) {
 this.cart.addProduct(product);
 }
}

The constructor receives a Cart object, whose addProduct method is called by the component’s
addToCart method.

Creating the Cart Summary Component
The first cart-related component will appear at the top of the product list and show the number of products
that the user has in the cart and their total cost. Make the changes to the cartSummary.component.ts file in
the store folder, as shown in Listing 9-6.

ChapTer 9 ■ CompleTing The angular STore

192

Listing 9-6. Adding Code in the cartSummary.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Cart } from "../models/cart.model";

@Component({
 selector: "store-cartsummary",
 templateUrl: "cartSummary.component.html"
})
export class CartSummaryComponent {

 constructor(private cart: Cart) { }

 get itemCount(): number {
 return this.cart.itemCount;
 }

 get totalPrice(): number {
 return this.cart.totalPrice;
 }
}

The new constructor declares a dependency on the Cart class, which will be resolved using the service
defined in Listing 9-5 and which is used to provide the values for the read-only itemCount and totalPrice
properties. To display a summary of the cart to the user, replace the placeholder content in the component’s
template with the elements shown in Listing 9-7.

Listing 9-7. The cartSummary.component.html File in the ClientApp/app/store Folder

<div class="text-right p-1">
 <small *ngIf="itemCount > 0; else empty">
 ({{ itemCount }} item(s) {{ totalPrice | currency:"USD":true }})
 </small>
 <button class="btn btn-sm ml-1"
 [disabled]="itemCount == 0"
 routerLink="/cart">
 <i class="fa fa-shopping-cart"></i>
 </button>
</div>

<ng-template #empty>
 <small class="text-muted">
 (cart is empty)
 </small>
</ng-template>

This template uses features shown in earlier examples to present a summary of the cart to the user.
The ngIf directive is used to change the content displayed to the user based on the number of items in the
shopping cart. If there are no items, the empty template is displayed. If the cart contains items, then the
number and total cost are shown instead.

ChapTer 9 ■ CompleTing The angular STore

193

There is a button element that uses a Font Awesome icon for a shopping cart and that is configured with
a data binding on the disable attribute like this:

...
<button class="btn btn-sm ml-1" [disabled]="itemCount == 0" routerLink="/cart">
...

This data binding disables the button when there are no items in the cart. The button element has also
been configured with the routerLink attribute so that the application will navigate to the /cart URL when
the button is clicked. This URL is not yet defined, but it will display a details list of the cart contents and
allow the user to start the checkout process.

Save the changes and reload the application in the browser to see the cart summary. The summary will
indicate that the cart is empty until you click the Add to Cart button for one or more products, after which
the number of items in the cart and their cost will be displayed, as shown in Figure 9-2.

Figure 9-2. Displaying the cart summary

Displaying the Cart Detail
The next step is to create the component that will display a detailed view of the cart, allowing the user to
make changes to the quantities of each product, to remove products from the cart, and to commence the
checkout process. Create a TypeScript file called cartDetail.component.ts in the store folder and add the
code shown in Listing 9-8.

ChapTer 9 ■ CompleTing The angular STore

194

Listing 9-8. The Contents of the cartDetail.component.ts File in the ClientApp/app/store Folder

import { Component } from "@angular/core";
import { Cart } from "../models/cart.model";

@Component({
 templateUrl: "cartDetail.component.html"
})
export class CartDetailComponent {

 constructor(public cart: Cart) { }
}

This component defines a constructor Cart parameter that is used to create a cart property that can be
accessed by the template. To create the template, create an HTML file called cartDetail.component.html in
the store folder with the content shown in Listing 9-9.

 ■ Tip notice that the decorator for this component doesn’t define a selector property. a selector is required
only when you want angular to apply the component to a specific hTml element in an hTml template and
can be omitted if the component is going to be displayed only in a router-outlet element by the url routing
system.

Listing 9-9. The Contents of the cartDetail.component.html File in the ClientApp/app/store Folder

<div class="navbar bg-inverse ">
 SPORTS STORE
</div>

<div class="m-1">
 <h2 class="text-center">Your Cart</h2>
 <table class="table table-bordered table-striped p-1">
 <thead>
 <tr>
 <th>Quantity</th><th>Product</th>
 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 <tr *ngIf="cart.selections.length == 0">
 <td colspan="4" class="text-xs-center">
 Your cart is empty
 </td>
 </tr>
 <tr *ngFor="let sel of cart.selections">
 <td>
 <input type="number" class="form-control-sm"
 style="width:5em" [(ngModel)]="sel.quantity" />
 </td>

ChapTer 9 ■ CompleTing The angular STore

195

 <td>{{sel.name}}</td>
 <td class="text-right">
 {{sel.price | currency:"USD":true:"2.2-2"}}
 </td>
 <td class="text-right">
 {{(sel.quantity * sel.price) | currency:"USD":true:"2.2-2" }}
 </td>
 <td class="text-center">
 <button class="btn btn-sm btn-danger"
 (click)="cart.updateQuantity(sel.productId, 0)">
 Remove
 </button>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 {{cart.totalPrice | currency:"USD":true:"2.2-2"}}
 </td>
 </tr>
 </tfoot>
 </table>
</div>
<div class="text-center">
 <button class="btn btn-primary" routerLink="/store">Continue Shopping</button>
 <button class="btn btn-secondary" routerLink="/checkout"
 [disabled]="cart.selections.length == 0">
 Checkout
 </button>
</div>

The HTML elements in the template list the contents of the cart, along with the subtotal for each item
and the overall total. This is done using standard data bindings (denoted by the {{ and }} characters), built-in
directives (ngFor and ngIf), and pipes (for formatting currency amounts). There is one new feature in this
template, which allows the user to change the quantity of a product in the cart by changing the value in an
input element, like this:

...
<input type="number" class="form-control-sm"
 style="width:5em" [(ngModel)]="sel.quantity" />
...

This is a two-way data binding, which means that a single binding can read a data value and modify it.
Two-way data bindings are used with form elements and are denoted by square brackets and parentheses
([(and)]), which is known as the “banana in a box,” where the parentheses are the banana and the square
brackets are the box. Two-way data bindings are most frequently used with the ngModel directive, which
knows how to set the value displayed by form elements and which events to listen to in order to detect a
change. The expression used with the ngModel binding specifies the property whose value will be displayed
by the form element and which will be updated when the user makes a change. In this case, the quantity
property of the product selection is specified.

ChapTer 9 ■ CompleTing The angular STore

196

To make the component available for use in the application, register it in the store feature module, as
shown in Listing 9-10.

Listing 9-10. Registering a Component in the store.module.ts File in the ClientApp/app/store Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from '@angular/platform-browser';
import { CartSummaryComponent } from "./cartSummary.component";
import { CategoryFilterComponent } from "./categoryFilter.component";
import { PaginationComponent } from "./pagination.component";
import { ProductListComponent } from "./productList.component";
import { RatingsComponent } from "./ratings.component";
import { ProductSelectionComponent } from "./productSelection.component";
import { CartDetailComponent } from "./cartDetail.component";
import { RouterModule } from "@angular/router";
import { FormsModule } from "@angular/forms";

@NgModule({
 declarations: [CartSummaryComponent, CategoryFilterComponent,
 PaginationComponent, ProductListComponent, RatingsComponent,
 ProductSelectionComponent, CartDetailComponent],
 imports: [BrowserModule, RouterModule, FormsModule],
 exports: [ProductSelectionComponent]
})
export class StoreModule { }

In addition to adding the CartDetailComponent class to the NgModule decorator’s declarations property,
this listing also adds two of the Angular modules to the imports property. The RouterModule is required
because there are button elements in the template in Listing 9-9 to which the routerLink directive has been
applied, but this won’t work if the RouterModule isn’t imported into the component’s feature module. The
FormsModule is required to enable the ngModel directive, which is used in the two-way data binding that
allows the user to change product quantities.

To create the URL route that will display the cart detail, add the configuration entry to the routing
configuration, as shown in Listing 9-11.

Listing 9-11. Adding a Route in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { CartDetailComponent } from "./store/cartDetail.component";

const routes: Routes = [
 { path: "cart", component: CartDetailComponent },
 { path: "store", component: ProductSelectionComponent },
 { path: "", component: ProductSelectionComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

Reload the application and click one of the Add to Cart buttons to add something to the cart. Click the
cart icon at the top of the page to navigate to the /cart URL, which shows the detailed view of the cart, as
shown in Figure 9-3.

ChapTer 9 ■ CompleTing The angular STore

197

The two-way data binding allows the user to change the quantity for a product using the input element.
If you change the value 1 in the input element to 5, for example, the subtotal and total will be updated to
reflect the change, as shown in Figure 9-4.

Figure 9-3. Displaying the cart detail

Figure 9-4. Changing a product quantity

Storing Carts
There is a hidden problem with the way that the cart works at the moment. To see the issue, add some
products to the cart and then reload the browser window. The Angular application is reloaded, which means
that the contents of the cart are lost, as shown in Figure 9-5.

ChapTer 9 ■ CompleTing The angular STore

198

In the sections that follow, I demonstrate how to store the cart data using the ASP.NET Core MVC
session data feature and explain how this can be used to prevent the problem shown in Figure 9-5.

Extending the ASP.NET Core MVC Data Model
The first step is to define a C# model class that will represent a cart. The mechanism that I will use to store
the data can be used to store any string data but using a C# class and the MVC model binding feature will
ensure only cart data can be stored, preventing this feature from being abused to store any arbitrary data that
a client sends. Add a new C# class file called CartProductSelection.cs to the Models folder and use it to
define the class shown in Listing 9-12.

Listing 9-12. The Contents of the CartProductSelection.cs File in the Models Folder

namespace SportsStore.Models {

 public class ProductSelection {
 public long productId { get; set; }
 public string name { get; set; }
 public decimal price { get; set; }
 public int quantity { get; set; }
 }
}

This class will allow the MVC model binder to process the data sent by the client and represent each
product that the user has added to the cart.

Figure 9-5. The effect of reloading the browser window

ChapTer 9 ■ CompleTing The angular STore

199

 ■ Tip notice that the property names start with lowercase letters in listing 9-12. This is to ensure that the
angular application can parse the JSon session data correctly and is required when working directly with JSon
strings rather than .neT objects.

Creating the Cart Storage Web Service
The next step is to create an HTTP web service that will allow the client to send cart data to ASP.NET Core
MVC to be stored. The web service will store the data using the ASP.NET Core MVC session data feature,
which will automatically manage the life of the data. Not all cart data will result in completed purchases, and
using session data will ensure that abandoned cart data will automatically expire and, as you will see, make
it simple to provide the client with its client data when the user reloads the browser.

Installing the NuGet Packages
Add the NuGet packages shown in Listing 9-13 to install the ASP.NET Core MVC support for session data. (If
you are using Visual Studio, right-click the SportsStore project item in the Solution Explorer and select Edit
SportsStore.csproj from the pop-up menu).

Listing 9-13. Adding Packages in the SportsStore.csproj File in the SportsStore Folder

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp1.1</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.AspNetCore.Mvc" Version="1.1.2" />
 <PackageReference Include="Microsoft.AspNetCore.SpaServices" Version="1.1.0" />
 <PackageReference Include="Microsoft.AspNetCore.StaticFiles" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Logging.Debug" Version="1.1.1" />
 <PackageReference Include="Microsoft.VisualStudio.Web.BrowserLink"
 Version="1.1.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools"
 Version="1.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="1.0.0" />
 <PackageReference Include="Microsoft.AspNetCore.Session" Version="1.1.1" />
 <PackageReference Include="Microsoft.Extensions.Caching.SqlServer"
 Version="1.1.1" />
 <DotNetCliToolReference Include="Microsoft.Extensions.Caching.SqlConfig.Tools"
 Version="1.0.1" />
 </ItemGroup>
</Project>

ChapTer 9 ■ CompleTing The angular STore

200

Save the changes to the file. If you are using Visual Studio, then the new packages will be downloaded
automatically. If you are using Visual Studio Code, run the command shown in Listing 9-14 in the
SportsStore project to download the new packages.

Listing 9-14. Installing New Packages

dotnet restore

Preparing the Database
The next step is to prepare the database so that it can be used to store session data. Run the command
shown in Listing 9-15 in the SportsStore folder.

 ■ Note aSp.neT Core mVC can store its session data in a number of ways, including using an in-memory
store. i have chosen SQl Server for this example because it simplifies the infrastructure required to deploy
the application. The in-memory option means that each aSp.neT Core mVC server has its own session data
and requires that hTTp requests from a single client are always handled by the same server. using a database
allows aSp.neT Core mVC to share session data and means that any server can handle any request.

Listing 9-15. Creating the Session Database Schema

dotnet sql-cache create "Server=localhost,5100;Database=SportsStore;User Id=sa;
Password=mySecret123;MultipleActiveResultSets=true" "dbo" "SessionData"

The dotnet sql-cache command sets up the schema and required arguments for the connection
string, the schema (a SQL Server feature that groups related database together), and the name of the table
that will be used to store session data. The connection string is the same one specified in the appsettings.
json file and must be copied exactly and entered on a single line. The schema argument is dbo (which is the
default value used by SQL Server), and the final argument is SessionData.

Configuring the ASP.NET Core MVC Application
To set up the ASP.NET Core MVC to use the session database, add the statements shown in Listing 9-16 to
the Startup class.

 ■ Note You may find that Visual Studio and Visual Studio Code highlight the additions in listing 9-16 as
errors. This problem will be resolved if you restart the iDe and open the SportsStore project again.

Listing 9-16. Configuring Session Data in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;

ChapTer 9 ■ CompleTing The angular STore

201

using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));
 services.AddMvc().AddJsonOptions(opts => {
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize;
 opts.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;
 });

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString =
 Configuration["Data:Products:ConnectionString"];
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });

 services.AddSession(options => {
 options.CookieName = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.CookieHttpOnly = false;
 });
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

ChapTer 9 ■ CompleTing The angular STore

202

 app.UseStaticFiles();
 app.UseSession();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 }
 }
}

The AddDistributedSqlServerCache extension method tells ASP.NET Core MVC to use SQL Server as
a data cache, with configuration options that correspond to the arguments used on the command line in
Listing 9-15.

The AddSession extension method sets up session state and configures the cookie that will be used to
identify sessions. The configuration options set the name of the cookie to SportsStore.Session, with an
expiry period of 48 hours. The CookieHttpOnly property must be set to false so that it will be accessible to
the Angular application.

Creating the Web Service Controller
Now that ASP.NET Core MVC has been configured to use session data, it is time to create the web service that
will allow the Angular application to store its cart data. Add a C# class file called SessionValuesController.
cs in the Controllers folder and use it to define the class shown in Listing 9-17.

Listing 9-17. The Contents of the SessionValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Route("/api/session")]
 public class SessionValuesController : Controller {

 [HttpGet("cart")]
 public IActionResult GetCart() {
 return Ok(HttpContext.Session.GetString("cart"));
 }

ChapTer 9 ■ CompleTing The angular STore

203

 [HttpPost("cart")]
 public void StoreCart([FromBody] ProductSelection[] products) {
 var jsonData = JsonConvert.SerializeObject(products);
 HttpContext.Session.SetString("cart", jsonData);
 }
 }
}

This controller defines actions that can be targeted with HTTP GET and POST requests, allowing
cart data to be retrieved and stored. Within the action methods, session data is accessed through the
HttpContext.Session property, with the GetString and SetString extension methods being used to read
and write string data.

The StoreCart action method defines a ProductSelection array parameter that has been decorated
with the FromBody attribute so that the MVC model binder will read the data from the body of the HTTP
request. The data is then converted back into JSON and then stored as session data, which will be written to
the SQL database. The process of parsing JSON data into a .NET object and then serializing back into JSON
ensures that clients can’t store arbitrary data.

Storing and Retrieving Cart Data
Now that the ASP.NET Core MVC part of the project can store cart data, I can modify the Angular application
so that it sends an HTTP POST request to the server whenever the user makes a change to the cart. Add new
methods to the Repository class so that it can get and create session data, as shown in Listing 9-18.

Listing 9-18. Handling Session Data in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Supplier } from "./supplier.model";
import { Filter, Pagination } from "./configClasses.repository";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";

@Injectable()
export class Repository {
 private filterObject = new Filter();
 private paginationObject = new Pagination();

 constructor(private http: Http) {
 this.filter.related = true;
 this.getProducts();
 }

ChapTer 9 ■ CompleTing The angular STore

204

 // ...other methods and properties omitted for brevity...

 storeSessionData(dataType: string, data: any) {
 return this.sendRequest(RequestMethod.Post, "/api/session/" + dataType, data)
 .subscribe(response => { });
 }

 getSessionData(dataType: string): Observable<any> {
 return this.sendRequest(RequestMethod.Get, "/api/session/" + dataType);
 }
}

The storeSessionData and getSessionData methods send requests that target the web service URLs
defined in Listing 9-17 to store and retrieve session data. These methods are not specific to dealing with carts
because I am going to use the same features to store other kinds of data later in this chapter.

 ■ Tip The Http class won’t send a request until the subscribe method is called. This is why the subscribe
method is called in the storeSessionData method in listing 9-18, even though the result is discarded.

To deal specifically with cart data, make the changes to the Cart class shown in Listing 9-19.

Listing 9-19. Persisting Cart Data in the cart.model.ts File in the ClientApp/app/models Folder

import { Injectable } from "@angular/core";
import { Product } from "./product.model";
import { Repository } from "./repository";

@Injectable()
export class Cart {
 selections: ProductSelection[] = [];
 itemCount: number = 0;
 totalPrice: number = 0;

 constructor(private repo: Repository) {
 repo.getSessionData("cart").subscribe(cartData => {
 if (cartData != null) {
 cartData.map(item => new ProductSelection(this, item.productId,
 item.name, item.price, item.quantity))
 .forEach(item => this.selections.push(item));
 this.update(false);
 }
 });
 }

 // ...other methods omitted for brevity...

 update(storeData: boolean = true) {
 this.itemCount = this.selections.map(ps => ps.quantity)
 .reduce((prev, curr) => prev + curr, 0);
 this.totalPrice = this.selections.map(ps => ps.price * ps.quantity)
 .reduce((prev, curr) => prev + curr, 0);

ChapTer 9 ■ CompleTing The angular STore

205

 if (storeData) {
 this.repo.storeSessionData("cart", this.selections.map(s => {
 return {
 productId: s.productId, name: s.name,
 price: s.price, quantity: s.quantity
 }
 }));
 }
 }
}

The constructor receives a Repository object through dependency injection, which is used to get any
stored cart data for the user’s session. If there is data available, it is used to populate the cart, and the update
method is called in order to update the properties that are used in data bindings and, in doing so, trigger
Angular to reevaluate those bindings to present the modified cart to the user.

The update method uses the Repository to store the cart as session data whenever there is a change.
The structure of the Cart class makes it easy to use with the ngModel directive but will create a loop reference
loop when serialized, so I use the JavaScript array map method to select the properties that should be sent to
the server and stored. The Angular application doesn’t check the result returned by the web service when
session data is stored, producing a fire-and-forget effect.

To see the effect, restart the ASP.NET Core MVC application and use a browser to request the URL
http://localhost:5000. Use the Add to Cart buttons to select some products, click the cart icon at the top
of the window, and then reload the browser window. Now that the cart data is stored using the ASP.NET Core
MVC session feature, reloading the browser doesn’t clear the cart, as shown in Figure 9-6. ASP.NET Core
MVC adds a cookie to responses, which the browser includes in subsequent HTTP requests, allowing the
Angular application to store and retrieve its cart data.

Figure 9-6. The effect of storing cart data

ChapTer 9 ■ CompleTing The angular STore

206

Creating the Checkout Process
In the sections that follow, I extend both the ASP.NET Core MVC and Angular parts of the project to
support the checkout process and allow the user to complete an order. In a real project, this would include
integration with a payment system, but for simplicity, I am going to leave a placeholder for payment in the
SportsStore application. Payment systems are country specific and typically require bank account details
and anti-money-laundering checks to be performed, all of which is beyond the scope of this book.

 ■ Caution i store payment detail in the SportsStore database in the sections that follow. This won’t always
be allowed by your payment provider or local laws. if you do store payment data, then you should pay particular
attention to security to avoid leaking sensitive data.

Extending the ASP.NET Core MVC Data Model
Most of the work for the checkout process will be done by the Angular application, but the ASP.NET Core
MVC part of the project will be responsible for validating the payment details provided by the user and
storing orders at the end of the checkout process.

Create a C# file called Order.cs in the Models folder and add the code shown in Listing 9-20 to create a
model class that will represent a user’s order.

Listing 9-20. The Contents of the Order.cs File in the Models Folder

using Microsoft.AspNetCore.Mvc.ModelBinding;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public long OrderId { get; set; }
 [Required]
 public string Name { get; set; }

 public IEnumerable<CartLine> Products { get; set; }

 [Required]
 public string Address{ get; set; }
 [Required]
 public Payment Payment { get; set; }
 [BindNever]
 public bool Shipped { get; set; } = false;
 }

ChapTer 9 ■ CompleTing The angular STore

207

 public class Payment {
 [BindNever]
 public long PaymentId { get; set; }
 [Required]
 public string CardNumber { get; set; }
 [Required]
 public string CardExpiry { get; set; }
 [Required]
 public int CardSecurityCode { get; set; }
 [BindNever]
 public decimal Total { get; set; }
 [BindNever]
 public string AuthCode { get; set; }
 }

 public class CartLine {
 [BindNever]
 public long CartLineId { get; set; }
 [Required]
 public long ProductId { get; set; }
 [Required]
 public int Quantity { get; set; }
 }
}

This is a simplified representation of an order that will let me demonstrate the process for capturing the
data without getting bogged down in the details.

 ■ Tip notice that the CartLine class doesn’t use Product objects to represent a user’s selection. This is
because entity Framework Core would try to add a column to the Products table to relate Product objects to
CartLine objects, which is not the relationship that the application requires since a single Product can be used
in multiple CartLine objects. To avoid this problem, i store just the ProductId value, which can then be used
as a key in a query for the Product data.

Creating a New Entity Framework Core Migration
Orders will be stored in the database, which means that Entity Framework Core must be configured so that it
knows about Order objects. Edit the database context class to add the property shown in Listing 9-21.

Listing 9-21. Adding a Property in the DataContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Metadata;

namespace SportsStore.Models {

ChapTer 9 ■ CompleTing The angular STore

208

 public class DataContext : DbContext {

 public DataContext(DbContextOptions<DataContext> opts)
 : base(opts) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }
 public DbSet<Rating> Ratings { get; set; }
 public DbSet<Order> Orders { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder) {
 modelBuilder.Entity<Product>().HasMany<Rating>(p => p.Ratings)
 .WithOne(r => r.Product).OnDelete(DeleteBehavior.Cascade);
 modelBuilder.Entity<Product>().HasOne<Supplier>(p => p.Supplier)
 .WithMany(s => s.Products).OnDelete(DeleteBehavior.SetNull);
 }
 }
}

Open a new command prompt and run the command shown in Listing 9-22 in the SportsStore folder
to generate the database that will allow Entity Framework Core to store Order objects in the database.

Listing 9-22. Creating a Database Migration

dotnet ef migrations add Orders

The migration that this command creates will update the database schema when the ASP.NET Core
MVC application is restarted and allow Order data to be stored.

Creating the ASP.NET Core MVC Web Service
To allow Order objects to be accessed by the Angular application, add a new C# class file called
OrderValuesController.cs in the Controllers folder and use it to define the web service controller shown
in Listing 9-23.

Listing 9-23. The Contents of the OrderValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;
using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Controllers {

 [Route("/api/orders")]
 public class OrderValuesController : Controller {
 private DataContext context;

 public OrderValuesController(DataContext ctx) {
 context = ctx;
 }

ChapTer 9 ■ CompleTing The angular STore

209

 [HttpGet]
 public IEnumerable<Order> GetOrders() {
 return context.Orders
 .Include(o => o.Products).Include(o => o.Payment);
 }

 [HttpPost("{id}")]
 public void MarkShipped(long id) {
 Order order = context.Orders.Find(id);
 if (order != null) {
 order.Shipped = true;
 context.SaveChanges();
 }
 }

 [HttpPost]
 public IActionResult CreateOrder([FromBody] Order order) {
 if (ModelState.IsValid) {

 order.OrderId = 0;
 order.Shipped = false;
 order.Payment.Total = GetPrice(order.Products);

 ProcessPayment(order.Payment);
 if (order.Payment.AuthCode != null) {
 context.Add(order);
 context.SaveChanges();
 return Ok(new {
 orderId = order.OrderId,
 authCode = order.Payment.AuthCode,
 amount = order.Payment.Total
 });
 } else {
 return BadRequest("Payment rejected");
 }
 }
 return BadRequest(ModelState);
 }

 private decimal GetPrice(IEnumerable<CartLine> lines) {
 IEnumerable<long> ids = lines.Select(l => l.ProductId);
 return context.Products
 .Where(p => ids.Contains(p.ProductId))
 .Select(p => lines
 .First(l => l.ProductId == p.ProductId).Quantity * p.Price)
 .Sum();
 }

 private void ProcessPayment(Payment payment) {
 // integrate your payment system here
 payment.AuthCode = "12345";
 }
 }
}

ChapTer 9 ■ CompleTing The angular STore

210

This controller supports HTTP POST requests to create new orders in the CreateOrder method,
relying on the MVC model binding feature to create a .NET Order object, which is checked using the model
validation process.

Notice that the CreateOrder method calls the GetPrice method, which queries the database to get the
prices for the products selected by the user to determine the total cost of the order. It is important not to trust
the client to provide critical information because it is easy for a malicious user to craft an HTTP request that
contains arbitrary data, such as specifying the cost of all products as $1.

The CreateOrder method calls the ProcessPayment method to process payment for the order. This is
where you would integrate a payment system into the project, but this method simply returns a placeholder
authorization code that is returned to the client, along with the transaction amount and the ID value used to
store the order in the database.

Creating the Angular Checkout Process
Now that the back-end services are in place, the next step is to extend the Angular application so that it can
get the data required to create an order that is submitted to the ASP.NET Core MVC part of the project. In the
sections that follow, I create a model class that will represent the order. I will also create a component that
uses HTML form elements to get the required data from the user and sends it using an HTTP POST request.

Extending the Angular Data Model
To describe the order that will be sent to the server, add a TypeScript file called order.model.ts in the
models folder and add the code shown in Listing 9-24.

Listing 9-24. The Contents of the order.model.ts File in the ClientApp/app/models Folder

import { Injectable } from "@angular/core";
import { Cart } from "./cart.model";
import { Repository } from "./repository";

@Injectable()
export class Order {

 constructor(private repo: Repository, public cart: Cart) { }

 orderId: number;
 name: string;
 address: string;
 payment: Payment = new Payment();

 submitted: boolean = false;
 shipped: boolean = false;
 orderConfirmation: OrderConfirmation;

 get products(): CartLine[] {
 return this.cart.selections
 .map(p => new CartLine(p.productId, p.quantity));
 }

ChapTer 9 ■ CompleTing The angular STore

211

 clear() {
 this.name = null;
 this.address = null;
 this.payment = new Payment();
 this.cart.clear();
 this.submitted = false;
 }

 submit() {
 this.submitted = true;
 this.repo.createOrder(this);
 }
}

export class Payment {
 cardNumber: string;
 cardExpiry: string;
 cardSecurityCode: string;
}

export class CartLine {

 constructor(private productId: number,
 private quantity: number) { }
}

export class OrderConfirmation {

 constructor(public orderId: number,
 public authCode: string,
 public amount: number) { }
}

Checkout processes can be complex, and I am going make it easier for the user by presenting them with
a series of individual steps that solicit the different pieces of information required to create the order. To
make this easier to code, the Order and Payment classes defines properties outside of its constructor, which
means that I will be able to use data bindings to build up the data gradually.

The Order class defines a submit method that will send the data to the server using a method called
createOrder defined by the Repository class, which is shown in Listing 9-25.

Listing 9-25. Creating Orders in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Supplier } from "./supplier.model";
import { Filter, Pagination } from "./configClasses.repository";
import { Order } from "./order.model";

ChapTer 9 ■ CompleTing The angular STore

212

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";
const ordersUrl = "/api/orders";

@Injectable()
export class Repository {
 private filterObject = new Filter();
 private paginationObject = new Pagination();

 constructor(private http: Http) {
 this.filter.related = true;
 this.getProducts();
 }

 // ...other methods and properties omitted for brevity...

 getOrders() {
 this.sendRequest(RequestMethod.Get, ordersUrl)
 .subscribe(data => this.orders = data);
 }

 createOrder(order: Order) {
 this.sendRequest(RequestMethod.Post, ordersUrl, {
 name: order.name,
 address: order.address,
 payment: order.payment,
 products: order.products
 }).subscribe(data => {
 order.orderConfirmation = data
 order.cart.clear();
 order.clear();
 });
 }

 shipOrder(order: Order) {
 this.sendRequest(RequestMethod.Post, ordersUrl + "/" + order.orderId)
 .subscribe(r => this.getOrders())
 }

 product: Product;
 products: Product[];
 suppliers: Supplier[] = [];
 categories: string[] = [];
 orders: Order[] = [];

 get filter(): Filter {
 return this.filterObject;
 }

 get pagination(): Pagination {
 return this.paginationObject;
 }
}

ChapTer 9 ■ CompleTing The angular STore

213

The new method sends a POST request to the /api/orders URL with a data payload that the MVC model
binder will be easily able to process. The response from the web service is assigned to the orderConfirmation
property of the Order object, which I will present to the user when the checkout process is complete.

To ensure that a single Order object is used through the checkout process, register a new service, as
shown in Listing 9-26.

Listing 9-26. Registering a Service in the model.module.ts File in the ClientApp/app/models Folder

import { NgModule } from "@angular/core";
import { Repository } from "./repository";
import { Cart } from "./cart.model";
import { Order } from "./order.model";

@NgModule({
 providers: [Repository, Cart, Order]
})
export class ModelModule { }

The addition of the Order class to the model feature module’s providers property will allow other parts
of the application to declare Order constructor parameters that will be resolved using dependency injection.

Creating the Checkout Components
To provide the user with the HTML forms that will be required to complete the checkout process, I am going
to create a series of Angular components, each of which will present a single set of form elements, and
navigate between them using the URL routing system. In the sections that follow, I create the components
and use them to build up the data required to send an order to the ASP.NET Core MVC part of the project.

Creating the Checkout Details Component
The first component will ask the user to provide their name and address. Create a store/checkout folder for
the Angular application and add to it a TypeScript file called checkoutDetails.component.ts, with the code
shown in Listing 9-27.

Listing 9-27. The checkoutDetails.component.ts File in the ClientApp/app/store/checkout Folder

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { Order } from "../../models/order.model";

@Component({
 templateUrl: "checkoutDetails.component.html"
})
export class CheckoutDetailsComponent {

 constructor(private router: Router,
 public order: Order) {
 if (order.products.length == 0) {
 this.router.navigateByUrl("/cart");
 }
 }
}

ChapTer 9 ■ CompleTing The angular STore

214

The component defines a constructor that receives an Order object through dependency injection
so that it can be accessed in the template. It also receives a Router object, which is used to navigate to the
shopping cart if the user navigates directly to the component without having selected any products.

To create the template, add a file called checkoutDetails.component.html in the store/checkout
folder, with the content shown in Listing 9-28.

Listing 9-28. The checkoutDetails.component.html File in the ClientApp/app/store/checkout Folder

<div class="navbar bg-inverse ">
 SPORTS STORE
</div>

<h2 class="text-center mt-1">Step 1: Your Details</h2>

<form novalidate #detailsForm="ngForm">
 <div class="form-group">
 <label>Name</label>
 <input #name="ngModel" name="name" class="form-control"
 [(ngModel)]="order.name" required />
 <div *ngIf="name.invalid" class="text-danger">
 Please enter your name
 </div>
 </div>
 <div class="form-group">
 <label>Address</label>
 <input #address="ngModel" name="street" class="form-control"
 [(ngModel)]="order.address" required />
 <div *ngIf="address.invalid" class="text-danger">
 Please enter your address
 </div>
 </div>
 <div class="text-center pt-2">
 <button class="btn btn-outline-primary" routerLink="/cart">Back</button>
 <button class="btn btn-danger" [disabled]="detailsForm.invalid"
 routerLink="/checkout/step2">
 Next
 </button>
 </div>
</form>

This template takes advantage of the features that Angular provides for managing HTML forms and
validating the data that users enter. Two-way data bindings, defined using the ngModel directive and the
banana-in-a-box brackets, tell Angular which data value should be associated with the input element, like this:

...
<input #name="ngModel" name="name" class="form-control"
 [(ngModel)]="order.name" required />
...

This data binding creates a two-way binding on the component’s order.name property, which will be
used to set the value of the input element and updated when the user enters a value.

ChapTer 9 ■ CompleTing The angular STore

215

To support data validation, Angular uses the standard HTML validation attributes, which are applied to
input elements like this:

...
<input #name="ngModel" name="name" class="form-control"
 [(ngModel)]="order.name" required />
...

The required attribute specifies that a value is required for this input element. To allow the validation
status of the input element to be inspected, the #name attribute is used to create a variable, called name and
assigned the value ngModel, which can be used elsewhere in the template. In this case, a validation message
is displayed alongside the element, like this:

...
<div *ngIf="name.invalid" class="text-danger">Please enter your name</div>
...

The name variable is assigned an object that defines invalid and valid properties that indicate whether
the contents of the element meet the validation constraints that have been applied to it. In this case, the
invalid property is used with an ngIf directive to display a message.

 ■ Caution Do not apply the aSp.neT Core mVC client-side validation attributes to hTml elements in an
angular application. Doing so will apply two different validation systems to the same content and cause errors
and confusion for users.

The same approach can be used to check the validation status of the entire form. A template variable is
declared on the form element like this:

...
<form novalidate #detailsForm="ngForm">
...

This attribute creates a variable called detailsForm, which is assigned ngForm to provide access to the
overall validation status of the form. The same valid and invalid properties are provided, but they reflect
the combined status of the individual elements in the form so that, for example, the invalid property will
return true if any of the input elements in the form contains an invalid value. These properties can be
accessed through the detailsForm to prevent the user from proceeding with the checkout process, like this:

...
<button class="btn btn-danger" [disabled]="detailsForm.invalid"
 routerLink="/checkout/step2">Next</button>
...

This binding sets the disabled property on the button element such that it will be disabled unless all
the input elements in the form meet the validation constraints that have been applied to them.

ChapTer 9 ■ CompleTing The angular STore

216

Creating the Checkout Payment Component
The second step in the checkout process will be to provide payment details. Add a TypeScript file called
checkoutPayment.component.ts to the store/checkout folder, with the code shown in Listing 9-29.

Listing 9-29. The checkoutPayment.component.ts File in the ClientApp/app/store/checkout Folder

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { Order } from "../../models/order.model";

@Component({
 templateUrl: "checkoutPayment.component.html"
})
export class CheckoutPaymentComponent {

 constructor(private router: Router,
 public order: Order) {
 if (order.name == null || order.address == null) {
 router.navigateByUrl("/checkout/step1");
 }
 }
}

This component follows the same pattern as the one for the previous step in the process and defines a
constructor that will provide the template with access to the Order and that uses the Router to return to the
previous step if the user has navigated directly without providing a name and address.

COMPONENTS ARE THE BASIC ANGULAR UNIT

To an mVC developer, the process of creating nearly identical classes to provide support for templates
can feel awkward since it conflicts with the aSp.neT Core mVC model of a single controller class that
can select multiple templates.

The architecture of angular makes components the basic unit of application functionality, and there is
no way to create interchangeable templates that correspond to the way that razor views work. although
it can feel odd, you should embrace the angular design philosophy and accept that each template has
its own component, even if that component only exists to provide access to a shared service and is
largely similar to other components in the same application.

To define the template, create an HTML file called checkoutPayment.component.html in the store/
checkout folder and add the elements shown in Listing 9-30.

ChapTer 9 ■ CompleTing The angular STore

217

Listing 9-30. The checkoutPayment.component.html File in the ClientApp/app/store/checkout Folder

<div class="navbar bg-inverse ">
 SPORTS STORE
</div>

<h2 class="text-center mt-1">Step 2: Payment</h2>

<form novalidate #paymentForm="ngForm">
 <div class="form-group">
 <label>Card Number</label>
 <input #cardNumber="ngModel" name="cardNumber" class="form-control"
 [(ngModel)]="order.payment.cardNumber" required />
 <div *ngIf="cardNumber.invalid" class="text-danger">
 Please enter your card number
 </div>
 </div>
 <div class="form-group">
 <label>Card Expiry</label>
 <input #cardExpiry="ngModel" name="cardExpiry" class="form-control"
 [(ngModel)]="order.payment.cardExpiry" required />
 <div *ngIf="cardExpiry.invalid" class="text-danger">
 Please enter your card expiry
 </div>
 </div>
 <div class="form-group">
 <label>Security Code</label>
 <input #cardCode="ngModel" name="cardCode" class="form-control"
 [(ngModel)]="order.payment.cardSecurityCode" required />
 <div *ngIf="cardCode.invalid" class="text-danger">
 Please enter your security code
 </div>
 </div>
 <div class="text-center pt-2">
 <button class="btn btn-outline-primary" routerLink="/checkout/step1">
 Back
 </button>
 <button class="btn btn-danger" [disabled]="paymentForm.invalid"
 routerLink="/checkout/step3">Next</button>
 </div>
</form>

This template works in the same way as the one in Listing 9-28, except that it is the Payment object whose
properties are selected by the two-way data bindings. The button elements that appear at the end of the
template allow the user to navigate to the previous stage in the checkout process or progress to the next stage.

ChapTer 9 ■ CompleTing The angular STore

218

Creating the Checkout Summary Component
The third step in the checkout process presents the user with a summary of the order that is about to be
placed. Create a TypeScript file called checkoutSummary.component.ts in the store/checkout folder and
add the code shown in Listing 9-31.

Listing 9-31. The checkoutSummary.component.ts File in the ClientApp/app/store/checkout Folder

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { Order } from "../../models/order.model";

@Component({
 templateUrl: "checkoutSummary.component.html"
})
export class CheckoutSummaryComponent {

 constructor(private router: Router,
 public order: Order) {
 if (order.payment.cardNumber == null
 || order.payment.cardExpiry == null
 || order.payment.cardSecurityCode == null) {
 router.navigateByUrl("/checkout/step2");
 }
 }

 submitOrder() {
 this.order.submit();
 this.router.navigateByUrl("/checkout/confirmation");
 }
}

This component uses its constructor to receive an Order object that will be provided by dependency
injection and is accessible to its template, as well as using the Route to navigate away from the summary
if the values required by the previous step have not been provided. It also defines a submitOrder method,
which sends the order to the web service and navigates to the final step in the process.

To create the template, add an HTML file called checkoutSummary.component.html to the store/
checkout folder, with the elements shown in Listing 9-32.

Listing 9-32. The checkoutSummary.component.html File in the ClientApp/app/store/checkout Folder

<h2 class="text-center">Summary</h2>

<div class="container">
 <table class="table m-2">
 <tr><th>Name</th><td>{{order.name}}</td></tr>
 <tr><th>Address</th><td>{{order.address}}</td></tr>
 <tr><th>Products</th><td>{{order.cart.itemCount}}</td></tr>
 <tr>
 <th>Total Price</th>
 <td>{{order.cart.totalPrice | currency:USD:true }}</td>
 </tr>
 </table>

ChapTer 9 ■ CompleTing The angular STore

219

 <div class="text-center pt-2">
 <button class="btn btn-outline-primary" routerLink="/checkout/step2">
 Back
 </button>
 <button class="btn btn-danger" (click)="submitOrder()">
 Place Order
 </button>
 </div>
</div>

The Place Order button uses a click event binding to invoke the component’s submitOrder method to
complete the checkout process.

Creating the Confirmation Component
The final component required for the checkout sequence displays a summary of the order, displaying its
ID, the payment authorization code, and the price. Create a TypeScript file called orderConfirmation.
component.ts in the store/checkout folder and add the code shown in Listing 9-33.

Listing 9-33. The orderConfirmation.component.ts File in the ClientApp/app/store/checkout Folder

import { Component } from "@angular/core";
import { Router } from "@angular/router";
import { Order } from "../../models/order.model";

@Component({
 templateUrl: "orderConfirmation.component.html"
})
export class OrderConfirmationComponent {

 constructor(private router: Router,
 public order: Order) {
 if (!order.submitted) {
 router.navigateByUrl("/checkout/step3");
 }
 }
}

This component prevents direct navigation by checking to see whether the order has been submitted
and navigating to the previous step if it has not. To provide the component with its template, add an HTML
file called orderConfirmation.component.html to the store/checkout folder with the elements shown in
Listing 9-34.

Listing 9-34. The orderConfirmation.component.html File in the ClientApp/app/store/checkout Folder

<h2 class="text-center">Order Confirmation</h2>

<div class="container">
 <table *ngIf="order.orderConfirmation; else nodata" class="table m-2">
 <tr><th>Order</th><td>{{order.orderConfirmation.orderId}}</td></tr>
 <tr><th>Price</th><td>{{order.orderConfirmation.amount}}</td></tr>
 <tr><th>Payment Code</th><td>{{order.orderConfirmation.authCode}}</td></tr>
 </table>

ChapTer 9 ■ CompleTing The angular STore

220

 <div class="text-center">
 <button class="btn btn-primary" routerLink="/">Done</button>
 </div>

 <ng-template #nodata>
 <h3 class="text-center">Submitting Order...</h3>
 </ng-template>
</div>

The template displays the confirmation data in a table, along with a Done button that navigates back to
the store.

Registering the Components and Creating the Routes
To set up the checkout process, the four new components have to be registered with the store feature
module, and the Angular application’s URL routing configuration must be updated to include the routes that
are used to navigate between them.

First, register the components so they are included in the application, as shown in Listing 9-35.

Listing 9-35. Registering Components in the store.module.ts File in the ClientApp/app/store Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from '@angular/platform-browser';
import { CartSummaryComponent } from "./cartSummary.component";
import { CategoryFilterComponent } from "./categoryFilter.component";
import { PaginationComponent } from "./pagination.component";
import { ProductListComponent } from "./productList.component";
import { RatingsComponent } from "./ratings.component";
import { ProductSelectionComponent } from "./productSelection.component";
import { CartDetailComponent } from "./cartDetail.component";
import { RouterModule } from "@angular/router";
import { FormsModule } from "@angular/forms";
import { CheckoutDetailsComponent } from "./checkout/checkoutDetails.component";
import { CheckoutPaymentComponent } from "./checkout/checkoutPayment.component";
import { CheckoutSummaryComponent } from "./checkout/checkoutSummary.component";
import { OrderConfirmationComponent } from "./checkout/orderConfirmation.component";

@NgModule({
 declarations: [CartSummaryComponent, CategoryFilterComponent,
 PaginationComponent, ProductListComponent, RatingsComponent,
 ProductSelectionComponent, CartDetailComponent,
 CheckoutDetailsComponent, CheckoutPaymentComponent,
 CheckoutSummaryComponent, OrderConfirmationComponent],
 imports: [BrowserModule, RouterModule, FormsModule],
 exports: [ProductSelectionComponent]
})
export class StoreModule { }

ChapTer 9 ■ CompleTing The angular STore

221

Finally, add the routes shown in Listing 9-36, which will allow the user to work through the
checkout process.

Listing 9-36. Creating Routes in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { CheckoutDetailsComponent }
 from "./store/checkout/checkoutDetails.component";
import { CheckoutPaymentComponent }
 from "./store/checkout/checkoutPayment.component";
import { CheckoutSummaryComponent }
 from "./store/checkout/checkoutSummary.component";
import { OrderConfirmationComponent }
 from "./store/checkout/orderConfirmation.component";

const routes: Routes = [

 { path: "checkout/step1", component: CheckoutDetailsComponent },
 { path: "checkout/step2", component: CheckoutPaymentComponent },
 { path: "checkout/step3", component: CheckoutSummaryComponent },
 { path: "checkout/confirmation", component: OrderConfirmationComponent },
 { path: "checkout", component: CheckoutDetailsComponent },
 { path: "cart", component: CartDetailComponent },
 { path: "store", component: ProductSelectionComponent },
 { path: "", component: ProductSelectionComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

Restart the ASP.NET Core MVC application, use a browser to navigate to http://localhost:5000, and
add some items to the cart. Click the cart icon and then click the Checkout button to start the process. For
each step in the process, validation messages will be displayed alongside the form elements until you enter
values, at which point they will disappear. When all of the form elements have valid values, the button that
allows you to proceed to the next step will be activated, as illustrated by Figure 9-7.

ChapTer 9 ■ CompleTing The angular STore

222

Continue through the checkout process and provide the data required to create the order. When you get
to the summary stage, click the Place Order button and the Angular application will send the data to the ASP.
NET Core MVC web service and present a confirmation, as shown in Figure 9-8.

Figure 9-7. Using Angular data validation

Figure 9-8. Sending an order to the web service

ChapTer 9 ■ CompleTing The angular STore

223

Storing Checkout Details as Session Data
The data entered by the user will be lost if they reload the browser window during the checkout process,
which can be especially confusing when a task is presented as a series of distinct steps. The problem can be
solved by storing progress through the checkout process as session data, similar to the way that the shopping
cart is stored.

Extending the Session Data Web Service
To provide the MVC model binder with a class that it can use to parse checkout data values from HTTP
requests, create a C# class file called CheckoutState.cs in the Models/BindingTargets folder and add the
code shown in Listing 9-37.

Listing 9-37. The Contents of the CheckoutState.cs File in the Models/BindingTargets Folder

namespace SportsStore.Models.BindingTargets {

 public class CheckoutState {

 public string name { get; set; }
 public string address { get; set; }
 public string cardNumber { get; set; }
 public string cardExpiry { get; set; }
 public string cardSecurityCode { get; set; }
 }
}

The names of the properties defined by the CheckoutState class follow the JavaScript capitalization
convention, which will make the data easier to handle in the Angular part of the project. To add support for
storing checkout state data, add the methods shown in Listing 9-38 to the SessionValues controller.

Listing 9-38. Adding Methods in the SessionValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;

namespace SportsStore.Controllers {

 [Route("/api/session")]
 public class SessionValuesController : Controller {

 [HttpGet("cart")]
 public IActionResult GetCart() {
 return Ok(HttpContext.Session.GetString("cart"));
 }

ChapTer 9 ■ CompleTing The angular STore

224

 [HttpPost("cart")]
 public void StoreCart([FromBody] ProductSelection[] products) {
 var jsonData = JsonConvert.SerializeObject(products);
 HttpContext.Session.SetString("cart", jsonData);
 }

 [HttpGet("checkout")]
 public IActionResult GetCheckout() {
 return Ok(HttpContext.Session.GetString("checkout"));
 }

 [HttpPost("checkout")]
 public void StoreCheckout([FromBody] CheckoutState data) {
 HttpContext.Session.SetString("checkout",
 JsonConvert.SerializeObject(data));
 }
 }
}

The StoreCheckout method receives data from the client through the MVC model binder, serializes it
as JSON, and stores it as session data. As with the cart data, this means that the data is received as JSON from
the client, parsed to create a .NET object, and then serialized into JSON again, which is a redundant process
but helps ensure that clients can’t use this web service to store arbitrary data. The GetCheckout method
retrieves the serialized data and returns it, as is, to the client.

Storing Checkout Data
The final change is to store the values that the user enters in the checkout process as session data. The two-
way data bindings used by the Angular checkout components are updated every time that the user makes a
change, which would generate too many HTTP requests if used as the trigger for HTTP requests. Instead, I
am going to store data when the application navigates to a new URL that begins with checkout, which will
indicate that a transition between checkout stages has occurred. The Router class, which I used in Chapter 7
to navigate within a component, generates events that can be observed to learn about routing changes. Add
the code shown in Listing 9-39 to the Angular Order class to register for these events and use them to send
session data to the service.

Listing 9-39. Using Session Data in the order.model.ts File in the ClientApp/app/models Folder

import { Injectable } from "@angular/core";
import { Cart } from "./cart.model";
import { Repository } from "./repository";
import { Router, NavigationStart } from "@angular/router";
import "rxjs/add/operator/filter";

@Injectable()
export class Order {

 constructor(private repo: Repository,
 public cart: Cart,
 router: Router) {

http://dx.doi.org/10.1007/978-1-4842-2916-3_7

ChapTer 9 ■ CompleTing The angular STore

225

 router.events
 .filter(event => event instanceof NavigationStart)
 .subscribe(event => {
 if (router.url.startsWith("/checkout")
 && this.name != null && this.address != null) {
 repo.storeSessionData("checkout", {
 name: this.name,
 address: this.address,
 cardNumber: this.payment.cardNumber,
 cardExpiry: this.payment.cardExpiry,
 cardSecurityCode: this.payment.cardSecurityCode
 });
 }
 });

 repo.getSessionData("checkout").subscribe(data => {
 if (data != null) {
 this.name = data.name;
 this.address = data.address;
 this.payment.cardNumber = data.cardNumber;
 this.payment.cardExpiry = data.cardExpiry;
 this.payment.cardSecurityCode = data.cardSecurityCode;
 }
 })
 }

 // ...other methods and properties omitted for brevity...
}

The Router.events property returns an observable for the routing events. I use the Reactive Extensions
filter operator to select only the NavigationStart event so that I don’t send multiple requests to the
server for the same navigation change (there are corresponding event types for the end of a navigation, for
example).

I use the subscribe method to handle events by sending session data to the server but only if there are
values assigned to the name and address properties, which ensures that I don’t try to store the data before
the user has entered something into the form elements and started the checkout process.

To retrieve previously stored session data, the constructor uses the Repository.getSessionData
method and uses the data that is received to populate the properties. Notice that I don’t have to worry about
handling the product selections, which are already stored as cart session data.

The result is that reloading the browser during the checkout process will return the user to the cart
detail component but ensure that the form elements are correctly populated when they resume the checkout
process. Restart the ASP.NET Core MVC, navigate to http://localhost:5000, and reload the browser during
the checkout process to ensure that the values you enter have been persisted, as shown in Figure 9-9.

ChapTer 9 ■ CompleTing The angular STore

226

Figure 9-9. Resuming the checkout process

Summary
In this chapter, I showed you how to use ASP.NET Core MVC session state to store cart data, which bridges
the gap between the way that Angular URL routing works and the way that the user can reload the browser
or navigate directly to a URL. I also showed you how to create a multistage checkout process, which validates
the data provided by the user and sends it to an ASP.NET Core MVC web service. In the next chapter, I add
the administration features for the SportsStore application.

227© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_10

CHAPTER 10

Creating Administration Features

In this chapter, I build on the Angular and ASP.NET Core MVC features from earlier chapters to create the
basic administration features required by the application. To keep the example application manageable,
I don’t use all of the features that allowed me to demonstrate different aspects of Angular or ASP.NET Core
MVC programming in earlier chapters, but I create enough new functionality to show that new additions can
be assembled quickly and easily once the right foundation is in place. Table 10-1 puts this chapter in context.

Table 10-1. Putting Administration Features in Context

Question Answer

What are they? The administration features allow the management of the
application and its data.

Why are they useful? Most applications require some kind of administration, either to
manage the publicly accessible data or to manage user accounts.

How are they used? Administration features can be built with the same techniques
used for the end-user features.

Are there any pitfalls or limitations? Depending on the complexity of the administration features, it
may make sense to create a completely separate administration
application. In this chapter, I have included the administration
code as part of the Angular application so that it can be accessed
using the /admin URL.

Are there any alternatives? Not all applications require administration features.

Preparing for This Chapter
This chapter uses the SportsStore project created in Chapter 3 and modified in the chapters since. To ensure
that the contents of the database are reset, open a command prompt, navigate to the SportsStore folder,
and run the commands shown in Listing 10-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

228

Listing 10-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container. Wait until SQL Server is up and running, open a second
command prompt, and run the commands shown in Listing 10-2 in the SportsStore folder.

Listing 10-2. Preparing the Database

dotnet ef database update
dotnet sql-cache create "Server=localhost,5100;Database=SportsStore;User Id=sa;
Password=mySecret123;MultipleActiveResultSets=true" "dbo" "SessionData"

These commands are required now that the application uses the ASP.NET Core MVC session state
feature. The first command applies the migrations in the project to the database, which creates the
SportsStore database. The second command creates the additional table required to store session data.

Start the application to add the seed data and begin handling HTTP requests. If you are using
Visual Studio, you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio
Code or just prefer working with the command line, then run the command shown in Listing 10-3 in the
SportsStore folder.

Listing 10-3. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 10-1.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

229

Adding Administration Features
Angular provides a number of different ways to define features that will not be used by all users, although
they all have different advantages and drawbacks. If you want to avoid sending the administration code and
content to regular users, you can create a feature module that is loaded only when the Angular application
navigates to a specific URL. This is an elegant approach, but it requires third-party packages to load the
module and depends on some complex configuration changes.

Alternatively, you can create an entirely separate application, which contains just the administration
features. You can still use the components and content defined for the main SportsStore Angular application,
but you create an entirely separate infrastructure, including root modules, routing configurations, and root
components, which complicates the development process and is prone to errors.

Figure 10-1. Running the example application

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

230

I take a simpler approach, which is to include the administration features in the application, even for
users who won’t use them. This has the drawback of sending code to clients that is unlikely to be used but
has the advantage of being easier to develop and simple to maintain. And, since the administration features
build on the existing SportsStore functionality, the additional code and content don’t add an enormous
amount of overhead to the files that the client has to download.

 ■ Tip The choice that works for the sportsstore example application may not be the one that makes sense
for your project. You should give some consideration to all of the available options, trading off the development
and configuration complexity against the additional bandwidth required to deliver code and content that is
unlikely to be used by most clients.

Creating the Administration Components
Create the ClientApp/app/admin folder and add to it a TypeScript file called admin.component.ts with the
code shown in Listing 10-4. This will be the top-level component for the administration features.

Listing 10-4. The Contents of the admin.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";

@Component({
 templateUrl: "admin.component.html"
})
export class AdminComponent {

 constructor(private repo: Repository) {
 repo.filter.reset();
 repo.filter.related = true;
 this.repo.getProducts();
 this.repo.getSuppliers();
 this.repo.getOrders();
 }
}

The constructor clears the filter used to query for product data and calls the repository’s getProducts,
getSuppliers, and getOrders methods to request the application data, ensuring that the administration
features will have all the data they require.

To create the template, add an HTML file called admin.component.html to the admin folder with the
content shown in Listing 10-5.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

231

Listing 10-5. The Contents of the admin.component.html File in the ClientApp/app/admin Folder

<div class="navbar bg-info mb-1">
 SPORTS STORE Admin
</div>
<div class="row no-gutters">
 <div class="col-3">
 <button class="btn btn-block btn-outline-info" routerLink="/admin"
 routerLinkActive="active" [routerLinkActiveOptions]="{exact: true}">
 Overview
 </button>
 <button class="btn btn-block btn-outline-info" routerLink="/admin/products"
 routerLinkActive="active">Products</button>
 <button class="btn btn-block btn-outline-info" routerLink="/admin/orders"
 routerLinkActive="active">Orders</button>
 </div>
 <div class="col p-2">
 <router-outlet></router-outlet>
 </div>
</div>

The template provides a banner to make it obvious to the user that this is the administration part of the
application. There are button elements that use the routerLink directive to navigate to URLs that will be
managed by the routing system, combined with the routerLinkActive directive, which assigns an element
to a class when the route it navigates to has been selected. In this listing, the button elements are assigned to
the active class, which applies the Bootstrap CSS styles for an activated button.

The template also includes a router-outlet element, which will display components based on the
current URL, selected by clicking the button elements and managed through the URL routing system.
Angular applications can have more than one router-outlet element, which allows for complex navigation
schemes.

Creating the Administration Feature Components
With the top-level administration component defined, it is time to create the individual components that
will be used to manage products and orders. I am going to display placeholder content so that I can focus on
the structure of the application and routing configuration, before implementing the administration features
later in the chapter.

The component that the administrator will see when navigating to the /admin URL will provide an
overview of the data and operations available. For this component, create a TypeScript file called
overview.component.ts in the admin folder, with the code shown in Listing 10-6.

Listing 10-6. The Contents of the overview.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Order } from "../models/order.model";

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

232

@Component({
 templateUrl: "overview.component.html"
})
export class OverviewComponent {

 constructor(private repo: Repository) { }

 get products(): Product[] {
 return this.repo.products;
 }

 get orders(): Order[] {
 return this.repo.orders;
 }
}

To provide the overview component with its template, create an HTML file called overview.component.html
in the admin folder and add the elements shown in Listing 10-7.

Listing 10-7. The Contents of the overview.component.html File in the ClientApp/app/admin Folder

<table class="table m-1">
 <tr>
 <td>There are {{products?.length || 0}} products for sale</td>
 <td><button class="btn btn-sm btn-info btn-block"
 routerLink="/admin/products">Manage Products</button></td>
 </tr>
 <tr>
 <td>There are {{orders?.length || 0}} orders</td>
 <td><button class="btn btn-sm btn-info btn-block"
 routerLink="/admin/orders">Manage Orders</button></td>
 </tr>
</table>

The template contains a table that displays the number of products and orders and the buttons that
navigate to the URLs for managing each of them.

For the component that will be used to manage products, create a TypeScript file called productAdmin.
component.ts in the admin folder, with the code shown in Listing 10-8.

Listing 10-8. The Contents of the productAdmin.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";

@Component({
 templateUrl: "productAdmin.component.html"
})
export class ProductAdminComponent {
}

Add an HTML file called productAdmin.component.html to the admin folder with the markup shown in
Listing 10-9. This is placeholder content that I will replace with more useful features once the structure of the
administration part of the application has been set up.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

233

Listing 10-9. The Contents of the productAdmin.component.html File in the ClientApp/app/admin Folder

<h4 class="text-center m-2">Product Admin Placeholder</h4>

To create the component for managing orders, add a TypeScript file called orderAdmin.component.ts
in the admin folder with the code shown in Listing 10-10.

Listing 10-10. The Contents of the orderAdmin.component.ts File in the ClientApp/add/admin Folder

import { Component } from "@angular/core";

@Component({
 templateUrl: "orderAdmin.component.html"
})
export class OrderAdminComponent {
}

To provide the component with a template, create an HTML file called orderAdmin.component.html in
the admin folder and add the placeholder elements shown in Listing 10-11, which I will replace later in the
chapter.

Listing 10-11. The Contents of the orderAdmin.component.html File in the ClientApp/app/admin Folder

<h4 class="text-center m-2">Order Admin Placeholder</h4>

Creating the Feature Module and Routing Configuration
To create a feature module that will incorporate the new components into the application, add a TypeScript
file called admin.module.ts in the admin folder with the code shown in Listing 10-12.

Listing 10-12. The Contents of the admin.module.ts File in the ClientApp/app/admin Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser"
import { RouterModule } from "@angular/router";
import { FormsModule } from "@angular/forms";
import { AdminComponent } from "./admin.component";
import { OverviewComponent } from "./overview.component";
import { ProductAdminComponent } from "./productAdmin.component";
import { OrderAdminComponent } from "./orderAdmin.component";

@NgModule({
 imports: [BrowserModule, RouterModule, FormsModule],
 declarations: [AdminComponent, OverviewComponent,
 ProductAdminComponent, OrderAdminComponent]
})
export class AdminModule { }

The feature module follows the pattern established in earlier chapters and uses the @NgModule
decorator to register the AdminComponent class in the declarations property, making it available for use
in the rest of the application. The RouterModule is required for the imports property to support the URL
navigation between components.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

234

To integrate the new feature module into the rest of the application, make the change shown in
Listing 10-13 to the Angular application’s root module.

Listing 10-13. Adding a Feature Module in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { RoutingConfig } from "./app.routing";
import { StoreModule } from "./store/store.module";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { AdminModule } from "./admin/admin.module";

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule,
 RoutingConfig, StoreModule, AdminModule],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The final step is to add a route to the routing configuration that will display the administration features,
as shown in Listing 10-14.

Listing 10-14. Defining a Route in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { CheckoutDetailsComponent }
 from "./store/checkout/checkoutDetails.component";
import { CheckoutPaymentComponent }
 from "./store/checkout/checkoutPayment.component";
import { CheckoutSummaryComponent }
 from "./store/checkout/checkoutSummary.component";
import { OrderConfirmationComponent }
 from "./store/checkout/orderConfirmation.component";
import { AdminComponent } from "./admin/admin.component";
import { OverviewComponent } from "./admin/overview.component";
import { ProductAdminComponent } from "./admin/productAdmin.component";
import { OrderAdminComponent } from "./admin/orderAdmin.component";

const routes: Routes = [
 {
 path: "admin", component: AdminComponent,
 children: [
 { path: "products", component: ProductAdminComponent },
 { path: "orders", component: OrderAdminComponent },

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

235

 { path: "overview", component: OverviewComponent },
 { path: "", component: OverviewComponent }
]
 },
 { path: "checkout/step1", component: CheckoutDetailsComponent },
 { path: "checkout/step2", component: CheckoutPaymentComponent },
 { path: "checkout/step3", component: CheckoutSummaryComponent },
 { path: "checkout/confirmation", component: OrderConfirmationComponent },
 { path: "checkout", component: CheckoutDetailsComponent },
 { path: "cart", component: CartDetailComponent },
 { path: "store", component: ProductSelectionComponent },
 { path: "", component: ProductSelectionComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

The new router uses the children property to specify the set of routes that will target the router-outlet
 element defined in Listing 10-5. This lets the user navigate between the overview, product, and order
components using the /admin/overview, /admin/products, and /admin/orders URLs. There is also a route
for the /admin URL, which ensures that there isn’t a URL for which there isn’t a route defined.

Save the changes and use the browser to navigate to http://localhost:5000/admin. The SPA fallback
route added to the ASP.NET Core configuration will intercept this request and direct it to the Index action on
the Home controller, which will send the client the HTML document required to load the Angular application.
When the Angular application starts, it will examine the URL, which matches the last of the children routes
from Listing 10-14 and displays the overview component. The button elements can be used to navigate
between administration components, as shown in Figure 10-2.

Figure 10-2. The structure of administration components

Administering Products
Now that the basic structure is in place, I can start to define the features that an administrator will require,
starting with the ability to manage the product available for sale. As you will see in the sections that follow,
most of the heavy-lifting has been done in earlier chapters, and the administration features can take
advantage of the data model and the repository that mediates access to the ASP.NET Core MVC web service.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

236

Creating the Editor Component
First, create a new TypeScript file called productEditor.component.ts in the admin folder and add the code
shown in Listing 10-15. This component will be used to present a set of fields to users so they can create or
edit products.

Listing 10-15. The Contents of the productEditor.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Supplier } from "../models/supplier.model";

@Component({
 selector: "admin-product-editor",
 templateUrl: "productEditor.component.html"
})
export class ProductEditorComponent {

 constructor(private repo: Repository) { }

 get product(): Product {
 return this.repo.product;
 }

 get suppliers(): Supplier[] {
 return this.repo.suppliers;
 }

 compareSuppliers(s1: Supplier, s2: Supplier) {
 return s1 && s2 && s1.name == s2.name;
 }
}

This component provides access to the currently edited Product object through its product property.
The selection of the Product object and the actions that are performed on it are left to other components.
The job of this component is only to provide access to the data so that the same set of HTML form fields can
be presented without duplication to support both editing and creating data. The suppliers property and
the compareSuppliers method support editing the relationship between a product and its supplier, which I
describe shortly.

To provide the component with its template, add an HTML file called productEditor.component.html
in the admin folder with the elements shown in Listing 10-16.

Listing 10-16. The Contents of the productEditor.component.html File in the ClientApp/app/admin Folder

<div class="form-group">
 <label>Name</label>
 <input class="form-control" [(ngModel)]="product.name" />
</div>

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

237

<div class="form-group">
 <label>Category</label>
 <input class="form-control" [(ngModel)]="product.category" />
</div>
<div class="form-group">
 <label>Supplier</label>
 <select class="form-control" [(ngModel)]="product.supplier"
 [compareWith]="compareSuppliers">
 <option *ngFor="let s of suppliers" [ngValue]="s">{{s.name}}</option>
 </select>
</div>
<div class="form-group">
 <label>Description</label>
 <textarea class="form-control" [(ngModel)]="product.description"></textarea>
</div>
<div class="form-group">
 <label>Price</label>
 <input class="form-control" [(ngModel)]="product.price" />
</div>

The template uses two-way data bindings and the ngModel directive to allow the user to edit the
properties of the Product object. Most of the properties are simple input or textarea elements, but some
extra work is required to get the select element working correctly.

The ngModel directive on the select element works with the ngValue directive on the option elements
to ensure that the appropriate option is selected by default, which is done by comparing the model value
and the option value. If the two values are the same, then the option is selected in order to display the
current value to the user.

A common problem when working with complex data obtained from an ASP.NET Core MVC web
service is that the objects that are being compared are obtained using separate HTTP requests. In this case,
the Supplier objects returned by the Product.supplier properties were created by parsing the response
to a GET request sent to the /api/products URL. However, the Supplier objects that are used to create the
option elements were created by parsing the response to a GET request sent to the /api/suppliers URL.
This means that the ngModel directive has to compare objects from two different sources, which prevents the
select element from correctly displaying the current value. To work around this problem, the compareWith
directive is used to provide Angular with a method defined by the component that can be used to determine
whether two objects are equal. In this case, the compareSuppliers method is specific, which compares
Supplier objects using the value of the name property.

Make the changes shown in Listing 10-17 to register the new component in the administration
feature module.

Listing 10-17. Registering a Component in the admin.module.ts File in the ClientApp/app/admin Folder

import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser"
import { RouterModule } from "@angular/router";
import { FormsModule } from "@angular/forms";
import { AdminComponent } from "./admin.component";
import { OverviewComponent } from "./overview.component";
import { ProductAdminComponent } from "./productAdmin.component";
import { OrderAdminComponent } from "./orderAdmin.component";
import { ProductEditorComponent } from "./productEditor.component";

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

238

@NgModule({
 imports: [BrowserModule, RouterModule, FormsModule],
 declarations: [AdminComponent, OverviewComponent,
 ProductAdminComponent, OrderAdminComponent, ProductEditorComponent]
})
export class AdminModule { }

Creating the Product Table
The next step is to complete the main product administration component so that it will present the user with
a list of products and support creating, editing, and deleting them. Add the code shown in Listing 10-18 to
the ProductAdminComponent class.

Listing 10-18. Adding Features to the productAdmin.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Product } from "../models/product.model";
import { Supplier } from "../models/supplier.model";

@Component({
 templateUrl: "productAdmin.component.html"
})
export class ProductAdminComponent {

 constructor(private repo: Repository) {}

 tableMode: boolean = true;

 get product(): Product {
 return this.repo.product;
 }

 selectProduct(id: number) {
 this.repo.getProduct(id);
 }

 saveProduct() {
 if (this.repo.product.productId == null) {
 this.repo.createProduct(this.repo.product);
 } else {
 this.repo.replaceProduct(this.repo.product);
 }
 this.clearProduct()
 this.tableMode = true;
 }

 deleteProduct(id: number) {
 this.repo.deleteProduct(id);
 }

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

239

 clearProduct() {
 this.repo.product = new Product();
 this.tableMode = true;
 }

 get products(): Product[] {
 return this.repo.products;
 }
}

The properties and methods defined by the component provide access to the product data, allow a
product to be selected for editing, and send changes to the web service. There is also a tableMode property
that will be used to display the editor fields when the user creates a new product. To present the content,
replace the elements in the component’s template with those shown in Listing 10-19.

Listing 10-19. Displaying Data in the productAdmin.component.html File in the ClientApp/app/admin Folder

<table *ngIf="tableMode; else create" class="table table-sm table-striped">
 <tr>
 <th>ID</th><th>Name</th><th>Category</th><th>Supplier</th>
 <th>Price</th><th></th>
 </tr>
 <tr *ngFor="let p of products">
 <ng-template [ngIf]="product?.productId != p.productId" [ngIfElse]="edit">
 <td>{{p.productId}}</td>
 <td>{{p.name}}</td>
 <td>{{p.category}}</td>
 <td>{{p.supplier?.name || '(None)'}}</td>
 <td>{{p.price | currency:USD:true}}</td>
 <td>
 <button class="btn btn-sm btn-primary"
 (click)="selectProduct(p.productId)">Edit</button>
 <button class="btn btn-sm btn-danger"
 (click)="deleteProduct(p.productId)">Delete</button>
 </td>
 </ng-template>
 </tr>
 <tfoot>
 <tr>
 <td colspan="6" class="text-center">
 <button class="btn btn-primary"
 (click)="clearProduct(); tableMode = false">Create</button>
 </td>
 </tr>
 </tfoot>
</table>

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

240

<ng-template #edit>
 <td colspan="6">
 <admin-product-editor></admin-product-editor>
 <div class="text-center">
 <button class="btn btn-sm btn-primary" (click)="saveProduct()">
 Save
 </button>
 <button class="btn btn-sm btn-info" (click)="clearProduct()">
 Cancel
 </button>
 </div>
 </td>
</ng-template>

<ng-template #create>
 <admin-product-editor></admin-product-editor>
 <button class="btn btn-primary" (click)="saveProduct()">
 Save
 </button>
 <button class="btn btn-info" (click)="clearProduct()">
 Cancel
 </button>
</ng-template>

The centerpiece of the template is a table that contains a row for each product, which you can see by
reloading the application and navigating to http://localhost:5000/admin/products. Each row contains
Edit and Delete buttons, as shown in Figure 10-3.

Figure 10-3. The product administration table

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

241

If you click one of the Edit buttons, the table row is replaced with an inline editor that allows the
property values to be changed, as shown in Figure 10-4, which also shows how the same editor is used when
the Create button is clicked.

Figure 10-4. Using the product editor

In most situations, the concise syntax for structural directives is more convenient because it allows the
directive can be applied directly to the element. In Listing 10-19, the concise syntax for the ngIf directive is
used to display the table of products or the editor for creating new products, like this:

...
<table *ngIf="tableMode; else create" class="table table-sm table-striped">
...

The concise syntax can’t be used when there isn’t a suitable element to apply it to. The template in
Listing 10-19 changes the contents of a table row so that different sets of td elements are used in a table row
when the user is editing a product. The ngIf directive can’t be applied to the tr element because the contents
of each row will be different for each product and there is no suitable intermediate element between the tr
and td elements that should be displayed. In this situation, the full syntax can be used, like this:

...
<ng-template [ngIf]="product?.productId != p.productId" [ngIfElse]="edit">
 <td>{{p.productId}}</td>
 <td>{{p.name}}</td>
 <td>{{p.category}}</td>
 <td>{{p.supplier?.name || '(None)'}}</td>
 <td>{{p.price | currency:USD:true}}</td>

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

242

 <td>
 <button class="btn btn-sm btn-primary"
 (click)="selectProduct(p.productId)">Edit</button>
 <button class="btn btn-sm btn-danger"
 (click)="deleteProduct(p.productId)">Delete</button>
 </td>
</ng-template>
...

The ng-template element allows the ngIf directive to be applied without changing the structure of the
table. When using the full syntax, the name of the directive is not preceded by an asterisk, and a different set
of data bindings is required to control how the directive works. In this case, the ngIf binding specifies the
condition that the directive should evaluate, and the ngIfElse binding specifies the template that should be
displayed when the expression is false.

Administering Orders
The process for dealing with orders follows the same basic pattern for products and relies on the data model
and repository created in earlier chapters. Replace the OrderAdminComponent class with the code shown in
Listing 10-20.

Listing 10-20. Adding Features in the orderAdmin.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { Order } from "../models/order.model";

@Component({
 templateUrl: "orderAdmin.component.html"
})
export class OrderAdminComponent {

 constructor(private repo: Repository) {}

 get orders(): Order[] {
 return this.repo.orders;
 }

 markShipped(order: Order) {
 this.repo.shipOrder(order);
 }
}

The component receives a Repository object through dependency injection and uses it to provide
its template with the orders data and a method that will mark an order as shipped. To use these members,
replace the contents of the component’s template with the code shown in Listing 10-21.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

243

Listing 10-21. Managing Orders in the orderAdmin.component.html File in the ClientApp/app/admin Folder

<table *ngIf="orders?.length > 0; else nodata" class="table table-striped">
 <tr>
 <th>Customer</th><th>Address</th><th>Products</th>
 <th>Total</th><th></th>
 </tr>
 <tr *ngFor="let o of orders">
 <td>{{o.name}}</td>
 <td>{{o.address}}</td>
 <td>{{o.products.length}}</td>
 <td>{{o.payment.total | currency:USD:true}}</td>
 <td *ngIf="!o.shipped; else shipped">
 <button class="btn btn-sm btn-primary"
 (click)="markShipped(o)">
 Ship
 </button>
 </td>
 </tr>
</table>

<ng-template #shipped>
 <td>Shipped</td>
</ng-template>

<ng-template #nodata>
 <h3 class="text-center">There are no orders</h3>
</ng-template>

There are no new Angular features used in this template. There a table that is displayed only when there
are orders available, managed using the ngIf directive. Within the table, rows are generated for each order
using the ngFor directive. Each row contains a button element that uses a click event binding to invoke the
component’s markShipped method, which causes the repository to send an HTTP POST request to the
ASP.NET Core MVC to update the order and then send an HTTP GET request to refresh the data.

To see the result, use the store section of the SportsStore application to create one or more orders and
then navigate to http://localhost:5000/admin/orders to manage them, as shown in Figure 10-5.

Figure 10-5. Administering orders

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

244

Dealing with Request Errors
Not all HTTP requests will produce a successful result, especially when dealing with data entered by a user,
which may not pass the ASP.NET Core MVC model validation process.

Ideally, when an application receives an error response, it will deal with it in such a way that the user is
able to understand what has gone wrong and is put in a position to correct the problem with the minimum
of effort and lost work. But this can be hard to achieve in a real project without adding a lot of complexity to
the application, which presents its own risk of errors.

For most projects, the best compromise is to try to avoid errors but simply display them to the user
when they occur and then try to return the application to a known good state. Avoiding errors is most
effectively done by using the Angular data validation features, which were used in Chapter 9 to ensure that
the user provided all of the data values required by the checkout process. The Angular validation features
can be awkward to work with, but they are effective and can be customized to handle custom validation
requirements.

Angular also makes it easy to determine when an error has occurred and display it to the user, which is
the focus of this part of the chapter. In the sections that follow, I create a component that displays errors and
integrates it into the application.

Creating the Error Handling and Distribution Service
Angular makes it easy to change the way that errors are handled by defining a new service. Add a TypeScript
file called errorHandler.service.ts in the app folder and use it to define the class shown in Listing 10-22.

Listing 10-22. The Contents of the errorHandler.service.ts File in the ClientApp/app Folder

import { Injectable } from "@angular/core";
import { Subject } from "rxjs/Subject";
import { Observable } from "rxjs/Observable";

@Injectable()
export class ErrorHandlerService {
 private subject = new Subject<string[]>();

 handleError(error: any) {
 setTimeout(() => {
 if (error instanceof ValidationError) {
 this.subject.next(error.errors);
 } else if (error instanceof Error) {
 this.subject.next([error.message]);
 } else {
 this.subject.next(["An error has occurred"]);
 }
 });
 }

 get errors(): Observable<string[]> {
 return this.subject;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2916-3_9

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

245

export class ValidationError implements Error {

 constructor(public errors: string[]) {}

 name: string;
 message: string;
}

Angular will call the handleError method when there is an exception raised in the code that isn’t
handled anywhere else in the application. This allows the try/throw/catch keywords to be used normally
while ensuring that there is a fallback for dealing with problems that were not expected or are unhandled.

In Chapter 5, I explained that Angular uses Reactive Extensions behind the scenes and that you only
have to work directly with observables when you are working at the edges of the application, typically when
introducing data into the application. The custom error handler in Listing 10-22 intercepts errors and
reintroduces them into the application so they can be displayed to the user; as a consequence, the error
handler relies on an Observable to distribute details of the errors. The Subject class is the easiest way to
create an Observable that you can feed your own data values into, using the next method. The result is that
errors are received from Angular through the handleError method and then fed back into the application
through the Subject.next method.

 ■ Note notice that i wrapped the calls to the Subject object’s next method using the setTimeout function.
This ensures that errors are distributed in a separate update within the angular application, without which
errors won’t be displayed until some other change in the application occurs, working around a wrinkle in the
way that angular handles changes.

To register the error handler class as a service, make the changes shown in Listing 10-23 to the
application’s root module.

Listing 10-23. Registering a Service in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { RoutingConfig } from "./app.routing";
import { StoreModule } from "./store/store.module";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { AdminModule } from "./admin/admin.module";
import { ErrorHandler } from "@angular/core";
import { ErrorHandlerService } from "./errorHandler.service";

const eHandler = new ErrorHandlerService();

export function handler() {
 return eHandler;
}

http://dx.doi.org/10.1007/978-1-4842-2916-3_5

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

246

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule,
 RoutingConfig, StoreModule, AdminModule],
 providers: [
 { provide: ErrorHandlerService, useFactory: handler},
 { provide: ErrorHandler, useFactory: handler}],
 bootstrap: [AppComponent]
})
export class AppModule { }

The standard way to configure Angular dependency injection is to specify a class name and let Angular
create the object that is used to resolve dependencies in the application.

That doesn’t work for the error handler because I want the same object to be used to resolve
ErrorHandler and ErrorHandlerService dependencies, which will ensure that Angular handles its errors
using the new service as well as providing access to the additional features to the rest of the application.
I create the object that I want to use and use it in the configuration entries for the providers property, where
the provide property specifies the dependency injection type and the useFactory property specifies a
function that will produce the object that will be used to resolve dependencies. The oddity of this approach
works around a limitation of the Angular development tools.

Displaying Errors
To provide access to the errors that occur in the application, add the statements shown in Listing 10-24 to the
root component. (This class contains methods and properties from an earlier chapter, which I have removed
for the sake of brevity).

Listing 10-24. Accessing Errors in the app.component.ts File in the ClientApp/app Folder

import { Component } from '@angular/core';
import { ErrorHandlerService } from "./errorHandler.service";

@Component({
 selector: "app-root",
 templateUrl: "./app.component.html"
})
export class AppComponent {
 private lastError: string[];

 constructor(errorHandler: ErrorHandlerService) {
 errorHandler.errors.subscribe(error => {
 this.lastError = error;
 });
 }

 get error(): string[] {
 return this.lastError;
 }

 clearError() {
 this.lastError = null;
 }
}

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

247

To display errors to the user, add the elements shown in Listing 10-25 to the root component’s template.

Listing 10-25. Displaying Errors in the app.component.html File in the ClientApp/app Folder

<div class="bg-danger text-white text-center p-2 m-2" *ngIf="error != null">
 <h6 *ngFor="let e of error">{{e}}</h6>
 <button class="btn btn-warning" (click)="clearError()">OK</button>
</div>
<router-outlet></router-outlet>

There is a div element that is displayed only when there is an error, containing h6 elements that are
generated for each string required to describe the error. An error will be displayed until the user clicks the
button element, which has a click event binding that calls the error handler’s clearError method.

Reporting Validation Errors
All that remains is to update the repository so that it inspects the responses received from the web services
and throws errors when there are validation problems, as shown in Listing 10-26.

Listing 10-26. Throwing Errors in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Supplier } from "./supplier.model";
import { Filter, Pagination } from "./configClasses.repository";
import { Order } from "./order.model";
import { ErrorHandlerService, ValidationError } from "../errorHandler.service";
import "rxjs/add/operator/catch";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";
const ordersUrl = "/api/orders";

@Injectable()
export class Repository {
 private filterObject = new Filter();
 private paginationObject = new Pagination();

 // ...other methods and properties omitted for brevity...

 private sendRequest(verb: RequestMethod, url: string, data?: any)
 : Observable<any> {

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

248

 return this.http.request(new Request({
 method: verb, url: url, body: data
 }))
 .map(response => {
 return response.headers.get("Content-Length") != "0"
 ? response.json() : null;
 })
 .catch((errorResponse: Response) => {
 if (errorResponse.status == 400) {
 let jsonData: string;
 try {
 jsonData = errorResponse.json();
 } catch (e) {
 throw new Error("Network Error");
 }
 let messages = Object.getOwnPropertyNames(jsonData)
 .map(p => jsonData[p]);
 throw new ValidationError(messages);
 }
 throw new Error("Network Error");
 });
 }
}

The catch operator is used on Observable objects to deal with errors. For HTTP responses, errors
include any response that doesn’t have a status code in the 200 to 299 range. The new code checks for the
400 Bad Request status code, which is the one that will be returned by the ASP.NET Core MVC web service
when there are validation errors. The 400 responses from the web service will contain JSON data in the body
that looks like this:

{
 "Name":["The Name field is required."],
 "Price":["Price must be at least 1"],
 "Category":["The Category field is required."],
 "Description":["The Description field is required."]
}

The new code in Listing 10-26 creates a JavaScript object from the JSON data, extracts the property
values, and uses them to create a ValidationError object, which is then used with the throw keyword to
create an error that will be passed by Angular to the custom error handler.

To see the result, reload the application in the browser, navigate to the http://localhost:5000/admin
URL, and click the Products button to display the list of products. Click the Create button and then click the
Save button without entering values into any of the fields. The HTTP request that is sent to the web service
fails the MVC model binding process and produces the error messages shown in Figure 10-6.

ChapTer 10 ■ CreaTing adminisTraTion FeaTures

249

Bear in mind that the asynchronous nature of the HTTP request means that the response from the
ASP.NET Core MVC web service is received after the Angular application has navigated to another URL. It is
for this reason that Angular form validation should be used to avoid this kind of error being generated and
that handling errors like this should be a last resort.

Summary
In this chapter, I created the administration features for the application, building on the features created
in earlier chapters. I also added support for displaying errors to the user, which provides a last-resort
technique for problems that cannot be handled in the application code and that could not be avoided using
features such as form validation. In the next chapter, I explain how to secure the application so that the
administration features can be used only by authorized users.

Figure 10-6. Displaying validation errors

251© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_11

CHAPTER 11

Securing the Application

In this chapter, I explain how to set up authentication and authorization so that administrative tasks, such
as modifying or deleting data, can be done only by approved users. I explain how to restrict access to web
services, how to use ASP.NET Core Identity to provide security services, and how to authenticate users using
Angular. Table 11-1 puts application security in context.

Table 11-1. Putting Application Security in Context

Question Answer

What is it? Application security prevents unauthorized users from using
sensitive web service actions.

Why is it useful? Without authorization, any user can administer the application.

How is it used? ASP.NET Core Identity is used to manage users and roles and
is combined with the built-in features of ASP.NET Core MVC to
authenticate or authorize users.

Are there any pitfalls or limitations? You must take care to protect the parts of the API that are required
for administration, while ensuring that the parts required for the
publicly accessible features are open to anonymous access.

Are there any alternatives? Not all applications require authorization and authentication,
especially if there are no administration features.

Preparing for This Chapter
This chapter uses the SportsStore project created in Chapter 3 and modified since. To ensure that the
contents of the database are reset, open a command prompt, navigate to the SportsStore folder, and run the
commands shown in Listing 11-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 11 ■ SeCuring The appliCaTion

252

Listing 11-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container. Wait until SQL Server is up and running, open a second
command prompt, and run the commands shown in Listing 11-2 in the SportsStore folder.

Listing 11-2. Preparing the Database

dotnet ef database update
dotnet sql-cache create "Server=localhost,5100;Database=SportsStore;User Id=sa;
Password=mySecret123;MultipleActiveResultSets=true" "dbo" "SessionData"

The first command applies the migrations in the project to the database, which creates the SportsStore
database. The second command creates the additional table required to store session data.

Start the application to add the seed data and begin handling HTTP requests. If you are using Visual Studio,
you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio Code or just prefer
working with the command line, then run the command shown in Listing 11-3 in the SportsStore folder.

Listing 11-3. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 11-1.

Figure 11-1. Running the example application

ChapTer 11 ■ SeCuring The appliCaTion

253

Restricting Access to Action Methods
Restricting access to the sensitive web service features requires applying the Authorize attribute, which
specifies the authorization policy for a controller or action method. For the SportsStore application, I am
going to restrict access to the administration features to authenticated users who have been assigned a role
called Administrator.

Restricting Access to Suppliers
To begin with something simple, apply the Authorize attribute to the SupplierValuesController class, as
shown in Listing 11-4, to restrict access to all the action methods used to deal with supplier data.

Listing 11-4. Restricting Access in the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 [Authorize(Roles = "Administrator")]
 public class SupplierValuesController : Controller {
 private DataContext context;

 // ...methods omitted for brevity...
 }
}

Applying the Authorize attribute to the class affects all the action methods defined by the controller.
The effect of the attribute in Listing 11-4 is to restrict all actions that operate on Supplier objects from being
accessed, except from authenticated users who have been assigned the Administrator role.

Restricting Access to Orders
Access to the action methods defined by the OrderValuesController class is a little more complex; all users
should be able to create orders, but the ability to retrieve and modify orders should be restricted. Add the
attributes shown in Listing 11-5 to set up the authorization policy on this controller.

Listing 11-5. Restricting Access in the OrderValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Authorization;

ChapTer 11 ■ SeCuring The appliCaTion

254

namespace SportsStore.Controllers {

 [Route("/api/orders")]
 [Authorize(Roles = "Administrator")]
 public class OrderValuesController : Controller {
 private DataContext context;

 // ...other methods omitted for brevity...

 [HttpPost]
 [AllowAnonymous]
 public IActionResult CreateOrder([FromBody] Order order) {
 if (ModelState.IsValid) {

 order.OrderId = 0;
 order.Shipped = false;
 order.Payment.Total = GetPrice(order.Products);

 ProcessPayment(order.Payment);
 if (order.Payment.AuthCode != null) {
 context.Add(order);
 context.SaveChanges();
 return Ok(new {
 orderId = order.OrderId,
 authCode = order.Payment.AuthCode,
 amount = order.Payment.Total
 });
 } else {
 return BadRequest("Payment rejected");
 }
 }
 return BadRequest(ModelState);
 }
 }
}

Applying the Authorize attribute restricts access to all the action methods, but this policy is overridden
by the AllowAnonymous attribute, which ensures that the CreateOrder action can be targeted by any users.

Restricting Access to Products
The final controller to secure is the ProductValuesController class, which should allow all users to view the
data but only allow administrators to make changes. Some additional work is required for this controller to
ensure that access to related data is handled consistently with the policy provided by the other controllers to
avoid providing back-door access to data that is restricted elsewhere. To implement the authorization policy,
make the changes shown in Listing 11-6.

ChapTer 11 ■ SeCuring The appliCaTion

255

Listing 11-6. Restricting Access in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;
using Microsoft.AspNetCore.JsonPatch;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("api/products")]
 [Authorize(Roles = "Administrator")]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 [HttpGet("{id}")]
 [AllowAnonymous]
 public Product GetProduct(long id) {
 IQueryable<Product> query = context.Products
 .Include(p => p.Ratings);

 if (HttpContext.User.IsInRole("Administrator")) {
 query = query.Include(p => p.Supplier)
 .ThenInclude(s => s.Products);
 }

 Product result = query.First(p => p.ProductId == id);

 if (result != null) {
 if (result.Supplier != null) {
 result.Supplier.Products = result.Supplier.Products.Select(p =>
 new Product {
 ProductId = p.ProductId,
 Name = p.Name,
 Category = p.Category,
 Description = p.Description,
 Price = p.Price,
 });
 }

ChapTer 11 ■ SeCuring The appliCaTion

256

 if (result.Ratings != null) {
 foreach (Rating r in result.Ratings) {
 r.Product = null;
 }
 }
 }
 return result;
 }

 [HttpGet]
 [AllowAnonymous]
 public IActionResult GetProducts(string category, string search,
 bool related = false, bool metadata = false) {
 IQueryable<Product> query = context.Products;

 if (!string.IsNullOrWhiteSpace(category)) {
 string catLower = category.ToLower();
 query = query.Where(p => p.Category.ToLower().Contains(catLower));
 }
 if (!string.IsNullOrWhiteSpace(search)) {
 string searchLower = search.ToLower();
 query = query.Where(p => p.Name.ToLower().Contains(searchLower)
 || p.Description.ToLower().Contains(searchLower));
 }

 if (related && HttpContext.User.IsInRole("Administrator")) {
 query = query.Include(p => p.Supplier).Include(p => p.Ratings);
 List<Product> data = query.ToList();
 data.ForEach(p => {
 if (p.Supplier != null) {
 p.Supplier.Products = null;
 }
 if (p.Ratings != null) {
 p.Ratings.ForEach(r => r.Product = null);
 }
 });
 return metadata ? CreateMetadata(data) : Ok(data);
 } else {
 return metadata ? CreateMetadata(query) : Ok(query);
 }
 }

 // ...other methods omitted for brevity...
 }
}

The Authorize attribute has been applied to the entire class but has been overridden by the
AllowAnonymous attribute so that anyone can send requests to the GetProduct or GetProducts method.
Within these methods the role membership of the user is checked to make sure that only authorized users
will receive the Supplier data that is related to a Product object.

ChapTer 11 ■ SeCuring The appliCaTion

257

Testing the Restrictions
To see the effect of the attributes applied to the controllers, start the ASP.NET Core MVC application and use
a browser to navigate to http://localhost:5000. The store part of the Angular project will work normally
because it depends on web service action methods that can be accessed anonymously.

However, if you navigate to http://localhost:5000/admin, you will see that the administration
features are a different story. Click the Products button, for example, and you will see that the list of products
is displayed but that all of them are shown with (None) in the Supplier column because access is restricted
to related data, as shown in Figure 11-2.

Figure 11-2. The effect of authorization restrictions

The Network Error message is displayed because some of the HTTP requests made by the
administration features have failed completely. When the administration features are first displayed,
requests are sent to the web service to get the product, supplier, and order data. The product request
succeeds (although without related data), but the supplier and order requests fail, which produces the error
shown in Figure 11-2.

If you look at the output from the ASP.NET Core MVC application, you will see that these requests have
produced exceptions like this:

...
System.InvalidOperationException: No authentication handler is configured
to handle the scheme: Automatic
...

The Authorize attribute tells ASP.NET Core MVC to restrict access to action methods the application
hasn’t been configured with any way to establish the identity of users or provided with a database of users
and roles. In the next section, I’ll set up ASP.NET Core Identity and configure it to provide the missing
functionality.

ChapTer 11 ■ SeCuring The appliCaTion

258

Installing and Configuring ASP.NET Core Identity
I am going to use ASP.NET Core Identity to provide ASP.NET Core MVC with the back-end support it needs
for managing authentication and authorization. In the sections that follow, I add the ASP.NET Core Identity
packages to the project and add the configuration that is required for a conventional MVC application. Once
the pieces are in place, I explain how Identity can be used to support Angular applications through a RESTful
web service.

Installing the ASP.NET Core Identity NuGet Package
To install the NuGet package for ASP.NET Core Identity, use a command prompt to run the commands
shown in Listing 11-7 in the SportsStore folder.

Listing 11-7. Installing the NuGet Package

dotnet add package Microsoft.AspNetCore.Identity.EntityFrameworkCore --version 1.1.1
dotnet restore

Creating the Identity Context Class and Seed Data
The ASP.NET Core Identity system depends on Entity Framework Core for access to its data, which means
that a database context class is required. Add a C# class file called IdentityDataContext.cs in the Models
folder, with the code shown in Listing 11-8.

 ■ Tip Close and reopen the project if your iDe cannot find the identity namespaces required for the class
shown in listing 11-8.

Listing 11-8. The Contents of the IdentityDataContext.cs File in the Models Folder

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class IdentityDataContext : IdentityDbContext<IdentityUser> {

 public IdentityDataContext(DbContextOptions<IdentityDataContext> options)
 : base(options) { }
 }
}

The IdentityDbContext base class provides the properties through which the data is accessed, and
creating a subclass allows the Identity features to be customized and extended. I am using all the default
options for this book, which are suitable for most projects; the main benefit of creating a context class is
that it is easier to create and apply the migration that sets up the database schema, which I do later in this
chapter.

When setting up Identity, it is helpful to seed the database with user account. Add a C# class file called
IdentitySeedData.cs in the Models folder and add the code shown in Listing 11-9.

ChapTer 11 ■ SeCuring The appliCaTion

259

 ■ Tip You must ensure that the seed data uses a password that meets the identity password policy, which
requires a mix of uppercase and lowercase characters, symbols, and digits. The database will not be seeded if
you do not comply with the policy.

Listing 11-9. The Contents of the IdentitySeedData.cs File in the Models Folder

using System;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore.Models {

 public static class IdentitySeedData {
 private const string adminUser = "admin";
 private const string adminPassword = "MySecret123$";
 private const string adminRole = "Administrator";

 public static async void SeedDatabase(IApplicationBuilder app) {
 (GetAppService<IdentityDataContext>(app)).Database.Migrate();

 UserManager<IdentityUser> userManager
 = GetAppService<UserManager<IdentityUser>>(app);
 RoleManager<IdentityRole> roleManager
 = GetAppService<RoleManager<IdentityRole>>(app);

 IdentityRole role = await roleManager.FindByNameAsync(adminRole);
 IdentityUser user = await userManager.FindByNameAsync(adminUser);

 if (role == null) {
 role = new IdentityRole(adminRole);
 IdentityResult result = await roleManager.CreateAsync(role);
 if (!result.Succeeded) {
 throw new Exception("Cannot create role: "
 + result.Errors.FirstOrDefault());
 }
 }

 if (user == null) {
 user = new IdentityUser(adminUser);
 IdentityResult result
 = await userManager.CreateAsync(user, adminPassword);
 if (!result.Succeeded) {
 throw new Exception("Cannot create user: "
 + result.Errors.FirstOrDefault());
 }
 }

ChapTer 11 ■ SeCuring The appliCaTion

260

 if (!await userManager.IsInRoleAsync(user, adminRole)) {
 IdentityResult result
 = await userManager.AddToRoleAsync(user, adminRole);
 if (!result.Succeeded) {
 throw new Exception("Cannot add user to role: "
 + result.Errors.FirstOrDefault());
 }
 }
 }

 private static T GetAppService<T>(IApplicationBuilder app) {
 return app.ApplicationServices.GetRequiredService<T>();
 }
 }
}

The static SeedDatabase method defined in the listing receives a parameter that defines the
IApplicationBuilder interface, which will be provided by the Startup class and which can be used to
access the services that have been defined during the application’s configuration. This is used to get a
database context object for the Identity database to ensure that the migrations have been applied and to
ensure that there is an admin user in the database that has a password of MySecret123 and that is a member
of the Administrator role.

 ■ Note When you rely on a user account seeded in the database, it is good practice to change the password
when the application has been deployed into production.

Adding Identity to the Application Configuration
To set up ASP.NET Core Identity so that it is integrated with the rest of the ASP.NET Core application, add the
configuration statements shown in Listing 11-10 to the Startup class.

Listing 11-10. Configuring Identity in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

ChapTer 11 ■ SeCuring The appliCaTion

261

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddDbContext<IdentityDataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Identity:ConnectionString"]));

 services.AddIdentity<IdentityUser, IdentityRole>()
 .AddEntityFrameworkStores<IdentityDataContext>();

 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));
 services.AddMvc().AddJsonOptions(opts => {
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize;
 opts.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;
 });

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString =
 Configuration["Data:Products:ConnectionString"];
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });

 services.AddSession(options => {
 options.CookieName = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.CookieHttpOnly = false;
 });
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

ChapTer 11 ■ SeCuring The appliCaTion

262

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

 app.UseStaticFiles();
 app.UseSession();
 app.UseIdentity();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 IdentitySeedData.SeedDatabase(app);
 }
 }
}

The AddDbContext method called in ConfigureServices registers the database context class defined
in Listing 11-8 with Entity Framework Core, while the AddIdentity method tells Identity to use the default
classes to represent users and roles and to store the data through the context class. The UseIdentity method
called in the Configure method adds Identity to the ASP.NET Core request pipeline to integrate it into the
rest of the application.

To provide the connection string that tells Entity Framework Core where to store the Identity data, add
the configuration entries shown in Listing 11-11 to the appsettings.json file (ensuring that the connection
string is on a single line).

Listing 11-11. Adding a Connection String in the appsettings.json File in the SportsStore Folder

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.EntityFrameworkCore": "Information",
 "Microsoft.AspNetCore.NodeServices": "Information",
 "Default": "Warning"
 }
 },
 "Data": {
 "Products": {
 "ConnectionString": "Server=localhost,5100;Database=SportsStore;User Id=sa;Password=my

Secret123;MultipleActiveResultSets=true"
 },

ChapTer 11 ■ SeCuring The appliCaTion

263

 "Identity": {
 "ConnectionString": "Server=localhost,5100;Database=Identity;User Id=sa;

Password=mySecret123;MultipleActiveResultSets=true"
 }
 }
}

The connection string uses the same SQL Server container that is storing the rest of the SportsStore data
but uses a database called Identity.

Creating the Database Migration
To create the database migration, use a command prompt to run the command shown in Listing 11-12 in the
SportsStore folder.

Listing 11-12. Creating a Database Migration

dotnet ef migrations add Identity --context IdentityDataContext

When the application is next started, the migration will be applied to the database before it is seeded
with the admin user, which will be assigned the Administrator role.

Creating the Authentication Controller and View
Although ASP.NET Core Identity provides all the plumbing required to support authentication and
authorization, it requires the addition of a controller to present the user with a login screen when trying to
access a restricted action method. Create a C# class file called AccountController.cs in the Controllers
folder and add the code shown in Listing 11-13.

Listing 11-13. The Contents of the AccountController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc;
using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;

namespace SportsStore.Controllers {

 public class AccountController : Controller {
 private UserManager<IdentityUser> userManager;
 private SignInManager<IdentityUser> signInManager;

 public AccountController(UserManager<IdentityUser> userMgr,
 SignInManager<IdentityUser> signInMgr) {
 userManager = userMgr;
 signInManager = signInMgr;
 }

ChapTer 11 ■ SeCuring The appliCaTion

264

 [HttpGet]
 public IActionResult Login(string returnUrl) {
 ViewBag.returnUrl = returnUrl;
 return View();
 }

 [HttpPost]
 public async Task<IActionResult> Login(LoginViewModel creds,
 string returnUrl) {

 if (ModelState.IsValid) {
 if (await DoLogin(creds)) {
 return Redirect(returnUrl ?? "/");
 } else {
 ModelState.AddModelError("", "Invalid username or password");
 }
 }
 return View(creds);
 }

 [HttpPost]
 public async Task<IActionResult> Logout(string redirectUrl) {
 await signInManager.SignOutAsync();
 return Redirect(redirectUrl ?? "/");
 }

 private async Task<bool> DoLogin(LoginViewModel creds) {
 IdentityUser user = await userManager.FindByNameAsync(creds.Name);
 if (user != null) {
 await signInManager.SignOutAsync();
 Microsoft.AspNetCore.Identity.SignInResult result =
 await signInManager.PasswordSignInAsync(user, creds.Password,
 false, false);
 return result.Succeeded;
 }
 return false;
 }
 }

 public class LoginViewModel {
 [Required]
 public string Name {get; set;}
 [Required]
 public string Password { get; set;}
 }
}

The Login action method that accepts GET requests renders a Razor view that will prompt the user
for their credentials. The POST Login action method validates the credentials and signs the user in. The
authentication is performed in the DoLogin method, which I have defined so I can use the same code
for web service authentication later in the chapter.

ChapTer 11 ■ SeCuring The appliCaTion

265

To provide the view that will prompt the user for their credentials, create a Views/Account folder and
add to it a Razor file called Login.cshtml, with the content shown in Listing 11-14.

Listing 11-14. The Contents of the Login.cshtml File in the Views/Account Folder

@model SportsStore.Controllers.LoginViewModel

<div class="m-2">
 <h3 class="bg-primary p-2">Log In</h3>
 <div class="text-danger" asp-validation-summary="All"></div>
 <form asp-action="Login" method="post">
 <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
 <div class="form-group">
 <label>Name</label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label>Password</label>
 <input type="password" asp-for="Password" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Log In</button>
 </div>
 </form>
</div>

The view contains an HTML form that uses input elements to collect the username and password and
send them to the Account controller.

Understanding the Conventional Authentication Flow
The controller and view in Listings 11-13 and 11-14 are the standard way to deal with authentication for
traditional round-trip applications. To see how the flow of requests is handled, add the action method
shown in Listing 11-15 to the Home controller so that there is a round-trip action method to target using the
browser.

Listing 11-15. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {
 public class HomeController : Controller {
 private DataContext context;

 public HomeController(DataContext ctx) {
 context = ctx;
 }

ChapTer 11 ■ SeCuring The appliCaTion

266

 public IActionResult Index() {
 ViewBag.Message = "Sports Store App";
 return View(context.Products.First());
 }

 [Authorize]
 public string Protected() {
 return "You have been authenticated";
 }
 }
}

The new action method is called Protected, and it has been decorated with the Authorize attribute,
which means that any authenticated user will be able to access the action. Restart the ASP.NET Core
MVC application and use a browser to request the URL http://localhost:5000/home/protected. When
prompted for credentials, enter admin into the Name field and MySecret123$ into the Password field and click
the Log In button to see the message produced by the protected action method, as shown in Figure 11-3.

Figure 11-3. Round-trip authentication

When ASP.NET Core MVC finds that the Authorize attribute has been applied to an action method,
the browser is redirected to the /account/login URL so that the user can enter credentials. When the user
submits their name and password, the sign-in process redirects the user back to the URL for the protected
action method. This second redirection incudes a cookie that the browser will include in subsequent HTTP
requests and that is used to identify the user without needing to prompt them for credentials again.

The use of the cookie means that the Angular application benefits for the login process, too. Navigate
to http://localhost:5000/admin/products using the same browser tab with which you authenticated
yourself, and you will see that the administration features work and that related data is displayed for each
product. This happens because the browser automatically includes the authentication cookie in the HTTP
requests sent by the Angular application, which means that authenticating using the round-trip part of the
application also has the effect of authenticating for the web service part of the application, too.

ChapTer 11 ■ SeCuring The appliCaTion

267

Authenticating Directly in Angular
As things stand, the user needs to know that they have to authenticate themselves before starting the
Angular application to use the administration features, which is far from ideal. But, with a little work, it is
possible to allow users to authenticate themselves within the Angular application so that the round-trip
authentication system isn’t required.

Creating a Web Service Authentication Method
The first step is to create an ASP.NET Core MVC action method that will allow clients to authenticate without
trying to redirect them to a URL or return an HTML response, as well as creating a corresponding action that
will end an authenticated session. Add the methods shown in Listing 11-16 to the Account controller.

Listing 11-16. Adding Action Methods in the AccountController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc;
using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;

namespace SportsStore.Controllers {

 public class AccountController : Controller {
 private UserManager<IdentityUser> userManager;
 private SignInManager<IdentityUser> signInManager;

 public AccountController(UserManager<IdentityUser> userMgr,
 SignInManager<IdentityUser> signInMgr) {
 userManager = userMgr;
 signInManager = signInMgr;
 }

 // ...other methods omitted for brevity...

 [HttpPost("/api/account/login")]
 public async Task<IActionResult> Login([FromBody] LoginViewModel creds) {
 if (ModelState.IsValid && await DoLogin(creds)) {
 return Ok();
 }
 return BadRequest();
 }

 [HttpPost("/api/account/logout")]
 public async Task<IActionResult> Logout() {
 await signInManager.SignOutAsync();
 return Ok();
 }
 }

ChapTer 11 ■ SeCuring The appliCaTion

268

 public class LoginViewModel {
 [Required]
 public string Name {get; set;}
 [Required]
 public string Password { get; set;}
 }
}

The new methods are simplified versions of the actions for round-trip clients, providing support for just
authentication, without redirection or the need to provide HTML content to get the user’s credentials.

Creating the Repository Method
The next step is to add methods to the Angular Repository class so that the client can perform
authentication, as shown in Listing 11-17.

Listing 11-17. Performing Authentication in the repository.ts File in the ClientApp/app/models Folder

import { Product } from "./product.model";
import { Injectable } from "@angular/core";
import { Http, RequestMethod, Request, Response } from "@angular/http";
import { Observable } from "rxjs/Observable";
import "rxjs/add/operator/map";
import { Filter, Pagination } from "./configClasses.repository";
import { Supplier } from "./supplier.model";
import { Order } from "./order.model";
import { ErrorHandlerService, ValidationError } from "../errorHandler.service";
import "rxjs/add/operator/catch";

const productsUrl = "/api/products";
const suppliersUrl = "/api/suppliers";
const ordersUrl = "/api/orders";

@Injectable()
export class Repository {
 private filterObject = new Filter();
 private paginationObject = new Pagination();

 constructor(private http: Http) {
 this.filter.related = true;
 this.getProducts();
 }

 // ...other methods omitted for brevity...

 login(name: string, password: string) : Observable<Response> {
 return this.http.post("/api/account/login",
 { name: name, password: password});
 }
 logout() {
 this.http.post("/api/account/logout", null).subscribe(respone => {});
 }

ChapTer 11 ■ SeCuring The appliCaTion

269

 product: Product;
 products: Product[];
 suppliers: Supplier[] = [];
 categories: string[] = [];
 orders: Order[] = [];

 get filter(): Filter {
 return this.filterObject;
 }

 get pagination(): Pagination {
 return this.paginationObject;
 }
}

The login method sends an HTTP POST request to the web service, and unlike the other methods in
the repository, it returns an Observable<Response>, which will allow the outcome of the authentication
request to be monitored. Unlike the data-related operations that the SportsStore supports, authentication
requires immediate feedback to the user. The logout method also sends an HTTP POST request to the
web service but doesn’t allow the response to be observed (but calls the subscribe method, without which
the request will not be sent).

Creating the Authentication Service
The simplest way to manage authentication in an Angular application is with a simple service, which can
provide access to the repository methods and provide a consistent view of whether the user is currently
authenticated. Create the ClientApp/app/auth folder and add to it a TypeScript file called authentication.
service.ts with the code shown in Listing 11-18.

Listing 11-18. The Contents of the authentication.service.ts File in the ClientApp/app/auth Folder

import { Injectable } from "@angular/core";
import { Repository } from "../models/repository";
import { Observable } from "rxjs/Observable";
import { Router } from "@angular/router";
import "rxjs/add/observable/of";

@Injectable()
export class AuthenticationService {

 constructor(private repo: Repository,
 private router: Router) { }

 authenticated: boolean = false;
 name: string;
 password: string;
 callbackUrl: string;

ChapTer 11 ■ SeCuring The appliCaTion

270

 login() : Observable<boolean> {
 this.authenticated = false;
 return this.repo.login(this.name, this.password)
 .map(response => {
 if (response.ok) {
 this.authenticated = true;
 this.password = null;
 this.router.navigateByUrl(this.callbackUrl || "/admin/overview");
 }
 return this.authenticated;
 })
 .catch(e => {
 this.authenticated = false;
 return Observable.of(false);
 });

 }

 logout() {
 this.authenticated = false;
 this.repo.logout();
 this.router.navigateByUrl("/login");
 }
}

The service packages up access to the repository methods and provides an authenticated property that
can be used to determine whether the user is currently authenticated. The login method uses the repository
to send an HTTP request to the web service and observes the response to generate an observable true or
false outcome.

Creating the Authentication Component
To create a component that will prompt the user for their credentials, add a TypeScript file called
authentication.component.ts to the ClientApp/app/auth folder with the code shown in Listing 11-19.

Listing 11-19. The Contents of the authentication.component.ts File in the ClientApp/app/auth Folder

import {Component } from "@angular/core";
import { AuthenticationService } from "./authentication.service";

@Component({
 templateUrl: "authentication.component.html"
})
export class AuthenticationComponent {

 constructor(public authService: AuthenticationService) {}

 showError: boolean = false;

ChapTer 11 ■ SeCuring The appliCaTion

271

 login() {
 this.showError = false;
 this.authService.login().subscribe(result => {
 this.showError = !result;
 });
 }
}

The component uses its constructor to receive an AuthenticationService object through dependency
injection so that it can be accessed from the template. It also defines a showError property that will signal
to the template when an error message will be displayed, and there is a login method that starts the login
process and uses the result to set the showError property.

To define the template, add an HTML file called authentication.component.html to the auth folder
with the elements shown in Listing 11-20.

Listing 11-20. The Contents of the authentication.component.html File in the ClientApp/app/auth Folder

<div class="navbar bg-info mb-1">
 SPORTS STORE Admin
</div>

<h4 *ngIf="showError" class="p-2 bg-danger text-white">
 Invalid username or password
</h4>

<form novalidate #authForm="ngForm">
 <div class="form-group">
 <label>Name:</label>
 <input #name="ngModel" name="name" class="form-control"
 [(ngModel)]="authService.name" required />
 <div *ngIf="name.invalid" class="text-danger">
 Please enter your user name
 </div>
 </div>
 <div class="form-group">
 <label>Password:</label>
 <input type="password" #password="ngModel" name="password"
 class="form-control" [(ngModel)]="authService.password" required />
 <div *ngIf="password.invalid" class="text-danger">
 Please enter your password
 </div>
 </div>
 <div class="text-center pt-2">
 <button class="btn btn-primary" [disabled]="authForm.invalid"
 (click)="login()">Login</button>
 </div>
</form>

The template presents form elements to the user to obtain their credentials, which Angular validation
uses to ensure that the form cannot be submitted until values are provided. The component’s showError
property is used with the ngIf directive to show an error to the user when there is an authentication
problem.

ChapTer 11 ■ SeCuring The appliCaTion

272

Creating the Authentication Route Guard
The Angular route guard feature is used to prevent navigation to a URL route until a specific condition
is met, which will be authentication in this case. To create a route guard, add a TypeScript file called
authentication.guard.ts in the auth folder and add the code shown in Listing 11-21.

Listing 11-21. The Contents of the authentication.guard.ts File in the ClientApp/app/auth Folder

import { Injectable } from "@angular/core";
import { Router, ActivatedRouteSnapshot, RouterStateSnapshot } from "@angular/router";
import { AuthenticationService } from "./authentication.service";

@Injectable()
export class AuthenticationGuard {

 constructor(private router: Router,
 private authService: AuthenticationService) {}

 canActivateChild(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): boolean {
 if (this.authService.authenticated) {
 return true;
 } else {
 this.authService.callbackUrl = "/admin/" + route.url.toString();
 this.router.navigateByUrl("/login");
 return false;
 }
 }
}

The canActivateChild method is called when the user tries to navigate to a child URL protected by the
guard. The canActivateChild method returns true if the user has been authenticated, which allows the
navigation to proceed. If the user has not been authenticated, then the application is instructed to navigate
to the /admin/login, which will allow them to authenticate. The guard uses the value of the target URL to
set the callbackUrl property defined by the authentication service, which is automatically navigated to
when authentication succeeds, reproducing the redirection scheme used for round-trip clients described
earlier in the chapter.

Creating and Registering the Authentication Feature Module
Add a TypeScript file called auth.module.ts in the auth folder and use it to define the Angular feature
module shown in Listing 11-22, which will allow the authentication service, component, and guard to be
used in the result of the application.

Listing 11-22. The Contents of the auth.module.ts File in the ClientApp/app/auth Folder

import { NgModule } from "@angular/core";
import { FormsModule } from '@angular/forms';
import { BrowserModule } from '@angular/platform-browser';
import { RouterModule } from "@angular/router";

ChapTer 11 ■ SeCuring The appliCaTion

273

import { AuthenticationService } from "./authentication.service";
import { AuthenticationComponent } from "./authentication.component";
import { AuthenticationGuard } from "./authentication.guard";

@NgModule({
 imports: [RouterModule, FormsModule, BrowserModule],
 declarations: [AuthenticationComponent],
 providers: [AuthenticationService, AuthenticationGuard],
 exports: [AuthenticationComponent]
})
export class AuthModule { }

To register the new feature module with the rest of the application, add the statements shown in
Listing 11-23 to the root module.

Listing 11-23. Registering a Feature Module in the app.module.ts File in the ClientApp/app Folder

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { ModelModule } from "./models/model.module";
import { RoutingConfig } from "./app.routing";
import { StoreModule } from "./store/store.module";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { AdminModule } from "./admin/admin.module";
import { ErrorHandler } from "@angular/core";
import { ErrorHandlerService } from "./errorHandler.service";
import { AuthModule } from "./auth/auth.module";

const eHandler = new ErrorHandlerService();

export function handler() {
 return eHandler;
}

@NgModule({
 declarations: [AppComponent],
 imports: [BrowserModule, FormsModule, HttpModule, ModelModule,
 RoutingConfig, StoreModule, AdminModule, AuthModule],
 providers: [
 { provide: ErrorHandlerService, useFactory: handler},
 { provide: ErrorHandler, useFactory: handler}],
 bootstrap: [AppComponent]
})
export class AppModule { }

ChapTer 11 ■ SeCuring The appliCaTion

274

Configuring the URL Routes
To enable authentication, change the routing configuration to add support for the authentication
components and to guard the administration components, as shown in Listing 11-24.

Listing 11-24. Configuring the URL Routes in the app.routing.ts File in the ClientApp/app Folder

import { Routes, RouterModule } from "@angular/router";
import { ProductSelectionComponent } from "./store/productSelection.component";
import { CartDetailComponent } from "./store/cartDetail.component";
import { CheckoutDetailsComponent }
 from "./store/checkout/checkoutDetails.component";
import { CheckoutPaymentComponent }
 from "./store/checkout/checkoutPayment.component";
import { CheckoutSummaryComponent }
 from "./store/checkout/checkoutSummary.component";
import { OrderConfirmationComponent }
 from "./store/checkout/orderConfirmation.component";
import { AdminComponent } from "./admin/admin.component";
import { OverviewComponent } from "./admin/overview.component";
import { ProductAdminComponent } from "./admin/productAdmin.component";
import { OrderAdminComponent } from "./admin/orderAdmin.component";

import { AuthenticationGuard } from "./auth/authentication.guard";
import { AuthenticationComponent } from "./auth/authentication.component";

const routes: Routes = [
 { path: "login", component: AuthenticationComponent },
 { path: "admin", redirectTo: "/admin/overview", pathMatch: "full"},
 {
 path: "admin", component: AdminComponent,
 canActivateChild: [AuthenticationGuard],
 children: [
 { path: "products", component: ProductAdminComponent, },
 { path: "orders", component: OrderAdminComponent },
 { path: "overview", component: OverviewComponent },
 { path: "", component: OverviewComponent }
]
 },
 { path: "checkout/step1", component: CheckoutDetailsComponent },
 { path: "checkout/step2", component: CheckoutPaymentComponent },
 { path: "checkout/step3", component: CheckoutSummaryComponent },
 { path: "checkout/confirmation", component: OrderConfirmationComponent },
 { path: "checkout", component: CheckoutDetailsComponent },
 { path: "cart", component: CartDetailComponent },
 { path: "store", component: ProductSelectionComponent },
 { path: "", component: ProductSelectionComponent }]

export const RoutingConfig = RouterModule.forRoot(routes);

ChapTer 11 ■ SeCuring The appliCaTion

275

The changes set up the /login URL for handling authentication and apply the route guard to prevent
any of the administration routes from being activated until authentication has been performed. There is
also an /admin route, which I have added so that the user can navigate to /admin without generating an error
when the service navigates after a successful authentication.

Creating the Log Out Button
It is important to allow users to terminate a session, especially when they have access to administration
functions. Add the code shown in Listing 11-25 to prepare to display a logout button to the user.

Listing 11-25. Preparing for Logout in the admin.component.ts File in the ClientApp/app/admin Folder

import { Component } from "@angular/core";
import { Repository } from "../models/repository";
import { AuthenticationService } from "../auth/authentication.service";

@Component({
 templateUrl: "admin.component.html"
})
export class AdminComponent {

 constructor(private repo: Repository,
 public authService: AuthenticationService) {
 repo.filter.reset();
 repo.filter.related = true;
 this.repo.getProducts();
 this.repo.getSuppliers();
 this.repo.getOrders();
 }
}

The changes receive the authentication service via dependency injection so that it can be accessed
through the template. To create the logout button, add the elements shown in Listing 11-26 to the
component’s template.

Listing 11-26. Adding a Log Out Button in the admin.component.html File in the ClientApp/app/admin Folder

<div class="navbar bg-info mb-1">
 <div class="row">
 <div class="col">
 SPORTS STORE Admin
 </div>
 <div class="col text-right">
 <button class="btn btn-sm btn-warning"
 (click)="authService.logout()">
 Log Out
 </button>
 </div>
 </div>
</div>

ChapTer 11 ■ SeCuring The appliCaTion

276

<div class="row no-gutters">
 <div class="col-3">
 <button class="btn btn-block btn-outline-info" routerLink="/admin"
 routerLinkActive="active" [routerLinkActiveOptions]="{exact: true}">
 Overview
 </button>
 <button class="btn btn-block btn-outline-info" routerLink="/admin/products"
 routerLinkActive="active">Products</button>
 <button class="btn btn-block btn-outline-info" routerLink="/admin/orders"
 routerLinkActive="active">Orders</button>
 </div>
 <div class="col p-2">
 <router-outlet></router-outlet>
 </div>
</div>

The new button calls the logout method provided by the authentication service, which will send an
HTTP request to the web service to end the user’s session and prevent the user from accessing any of the
administration features until they have authenticated again.

Disable Automatic Authentication Redirection for Web Services
The final step is to change the configuration so that clients are not sent redirection responses when
authentication is required for web service requests. This is an optional step, but it is important for
applications where the Angular application isn’t the only client of the web services.

Add the configuration statements shown in Listing 11-27 to the Startup class to change the behavior for
requests that target URLs that start with /api.

Listing 11-27. Configuring Authentication Redirection in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Authentication.Cookies;
using System.Threading.Tasks;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {

 // ...statements omitted for brevity...
 }

 public IConfigurationRoot Configuration { get; }

ChapTer 11 ■ SeCuring The appliCaTion

277

 public void ConfigureServices(IServiceCollection services) {

 services.AddDbContext<IdentityDataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Identity:ConnectionString"]));
 services.AddIdentity<IdentityUser, IdentityRole>()
 .AddEntityFrameworkStores<IdentityDataContext>();
 services.AddDbContext<DataContext>(options =>
 options.UseSqlServer(Configuration
 ["Data:Products:ConnectionString"]));

 services.AddMvc().AddJsonOptions(opts => {
 opts.SerializerSettings.ReferenceLoopHandling
 = ReferenceLoopHandling.Serialize;
 opts.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;
 });

 services.AddDistributedSqlServerCache(options => {
 options.ConnectionString =
 Configuration["Data:Products:ConnectionString"];
 options.SchemaName = "dbo";
 options.TableName = "SessionData";
 });

 services.AddSession(options => {
 options.CookieName = "SportsStore.Session";
 options.IdleTimeout = System.TimeSpan.FromHours(48);
 options.CookieHttpOnly = false;
 });

 services.Configure<IdentityOptions>(config => {
 config.Cookies.ApplicationCookie.Events =
 new CookieAuthenticationEvents {
 OnRedirectToLogin = context => {
 if (context.Request.Path.StartsWithSegments("/api")
 && context.Response.StatusCode == 200) {
 context.Response.StatusCode = 401;
 } else {
 context.Response.Redirect(context.RedirectUri);
 }
 return Task.FromResult<object>(null);
 }
 };
 });
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory) {

 // ...statements omitted for brevity...
 }
 }
}

ChapTer 11 ■ SeCuring The appliCaTion

278

ASP.NET Core Identity provides a series of events triggered at key states in the authentication and
authorization process. The new statements in the ConfigureServices method replace the default behavior
so that the 401 Unauthorized status code is returned for unauthorized requests to URLs that start with /api.
This allows the rest of the URLs supported by the application to use the conventional redirection approach
while excluding the web services.

Testing the Client Authentication Process
Restart the ASP.NET Core MVC application and use the browser to navigate to http://localhost:5000/
admin. The Angular application will load and display the /login URL. Enter admin into the Name field and
MySecret123$ into the Password field and click the Log In button. The Angular application will use the web
service for authentication and then navigate to the /admin URL. Click the Log Out button and you will be
returned to the login prompt, as shown in Figure 11-4.

Figure 11-4. Authenticating using the Angular application

Authenticating the user within the Angular application provides a more integrated experience for
the user but uses the same authentication system as for round-trip clients. When the Angular application
provides valid credentials to the authentication web service, ASP.NET Core Identity adds a cookie to the
response, which the browser automatically includes in future requests; this allows the identity of the user to
be established and satisfies the restrictions applied using the Authorize attribute.

Summary
In this chapter, I explained how to use ASP.NET Core MVC and ASP.NET Core Identity to secure an
application that has an Angular client. I showed you how to apply the Authorize attribute to restrict access
to action methods and how to set up ASP.NET Core Identity to manage users and their roles. In the next
chapter, I show you how to prepare the application for deployment.

279© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3_12

CHAPTER 12

Preparing for Deployment

There are lots of ways to deploy an ASP.NET Core MVC application. I don’t get into the options in this book,
but there are some changes that are required regardless of how the application is hosted.

In this chapter, I show how to secure the web service against cross-site forgery attacks, using a feature
that can be disruptive during development but that is essential for production applications. I also show you
how to disable the developer-friendly features that have ensured that the database is kept up-to-date, that
the TypeScript files are automatically compiled, and that changes in the Angular application are sent to the
browser automatically. These are all useful features for the developer, but they should not be left enabled for
production applications.

Preparing for This Chapter
This chapter uses the SportsStore project created in Chapter 3 and modified since. To reset the database and
its contents, open a command prompt, navigate to the SportsStore folder, and run the commands shown in
Listing 12-1.

 ■ Tip You can download the complete project for this chapter from https://github.com/apress/esntl-
angular-for-asp.net-core-mvc. This is also where you will find updates and corrections for this book.

Listing 12-1. Resetting the Database

docker-compose down
docker-compose up

The first command removes the Docker database container from the previous chapter. The second
command creates and starts a fresh container. Wait until SQL Server is up and running, open a second
command prompt, and run the commands shown in Listing 12-2 in the SportsStore folder.

Listing 12-2. Preparing the Database

dotnet ef database update --context DataContext
dotnet ef database update --context IdentityDataContext
dotnet sql-cache create "Server=localhost,5100;Database=SportsStore;User Id=sa;
Password=mySecret123;MultipleActiveResultSets=true" "dbo" "SessionData"

http://dx.doi.org/10.1007/978-1-4842-2916-3_3
https://github.com/apress/esntl-angular-for-asp.net-core-mvc
https://github.com/apress/esntl-angular-for-asp.net-core-mvc

ChapTer 12 ■ preparing for DeploYmenT

280

The first and second commands apply the migrations in the project to the database, which creates the
SportsStore and Identity databases. The --context argument is required for these commands because
there are two database context classes in the project and Entity Framework Core needs to know which one it
should use to update the database.

The third command creates the additional table required to store session data. This command receives
its connection string as an argument and doesn’t use the context classes to set up its database, which is why
no --context argument is required.

Start the application to add the seed data and begin handling HTTP requests. If you are using Visual
Studio, you can do this by selecting Debug ➤ Start Without Debugging. If you are using Visual Studio
Code or just prefer working with the command line, then run the command shown in Listing 12-3 in the
SportsStore folder.

Listing 12-3. Starting the Application

dotnet run

Use a browser to navigate to http://localhost:5000 and you will see the content shown in Figure 12-1.

Figure 12-1. Running the example application

Preventing Cross-Site Request Forgery Attacks
Whenever you use cookies to identify a user, you must take care to protect your application from cross-site
request forgery (CSRF) attacks. The idea of a CSRF attack is to trick the user into loading a malicious web
page and sending an HTTP request to your application. The browser will automatically include any cookies
it has received from your application in the request, which allows the attacker to perform operations while
impersonating the user, typically to grant the attacker access to the application or to change or delete the
application’s data.

Protecting against CSRF attacks requires including a random cryptographic token in HTTP responses
from the application and requiring that the client includes the same token in subsequent HTTP requests.
For round-trip applications, the token is usually included as a hidden form field, but for Angular clients, the
token is sent as a cookie. Angular detects the cookie and uses it to set the value of a header in HTTP requests,

ChapTer 12 ■ preparing for DeploYmenT

281

something that CSRF attacks cannot do, which identifies a request as coming from the Angular application
and not from an attack. ASP.NET Core MVC includes built-in support for anti-CSRF tokens but requires
some additional work to use them in a way that works with Angular, as described in the sections that follow.

Enabling Anti-CSRF Tokens
The first step to protecting against CSRF is to apply the attribute that tells ASP.NET Core MVC to accept
requests only when they contain a valid cryptographic token. The simplest way to protect the application
is to apply the ValidateAntiForgeryToken attribute to a controller that tells ASP.NET Core MVC to accept
only those requests with valid tokens. Apply the attribute as shown in Listing 12-4 to protect the product API
controller.

 ■ Tip You can apply the IgnoreAntiforgeryToken attribute to an action method if you want to exclude to it
from the anti-CSrf policy created by a class-wide ValidateAntiForgeryToken attribute.

Listing 12-4. Requiring Tokens in the ProductValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;
using System.Collections.Generic;
using SportsStore.Models.BindingTargets;
using Microsoft.AspNetCore.JsonPatch;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("api/products")]
 [Authorize(Roles = "Administrator")]
 [ValidateAntiForgeryToken]
 public class ProductValuesController : Controller {
 private DataContext context;

 public ProductValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...methods omitted for brevity...
 }
}

Apply the same attribute to the session API controller, as shown in Listing 12-5, so that session data can
be stored using only the requests that contain a valid anti-CSRF token.

ChapTer 12 ■ preparing for DeploYmenT

282

Listing 12-5. Requiring Tokens in the SessionValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Newtonsoft.Json;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;

namespace SportsStore.Controllers {

 [Route("/api/session")]
 [ValidateAntiForgeryToken]
 public class SessionValuesController : Controller {

 // ...methods omitted for brevity...
 }
}

Apply the attribute to the controller for supplier data, as shown in Listing 12-6.

Listing 12-6. Requiring Tokens in the SupplierValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.BindingTargets;
using System.Collections.Generic;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("api/suppliers")]
 [Authorize(Roles = "Administrator")]
 [ValidateAntiForgeryToken]
 public class SupplierValuesController : Controller {
 private DataContext context;

 public SupplierValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...methods omitted for brevity...
 }
}

Apply the attribute to the controller for order data, as shown in Listing 12-7.

Listing 12-7. Requiring Tokens in the OrderValuesController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.EntityFrameworkCore;
using SportsStore.Models;
using System.Collections.Generic;

ChapTer 12 ■ preparing for DeploYmenT

283

using System.Linq;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Route("/api/orders")]
 [Authorize(Roles = "Administrator")]
 [ValidateAntiForgeryToken]
 public class OrderValuesController : Controller {
 private DataContext context;

 public OrderValuesController(DataContext ctx) {
 context = ctx;
 }

 // ...methods omitted for brevity...
 }
}

As a result of these changes, all the web service action methods can be accessed only if the request
includes a token that has been provided by the application. Restart the ASP.NET Core MVC application
and navigate to http://localhost:5000; you will see that the initial HTTP request succeeds and all of the
subsequent requests fail, causing an application error, as shown in Figure 12-2.

Figure 12-2. The effect of requiring anti-CSRF tokens

Sending and Receiving Anti-CSRF Tokens
Angular looks for a cookie with the name XSRF-TOKEN in HTTP responses and will automatically use the
cookie value to set a header called X-XSRF-TOKEN in subsequent requests.

To provide the Angular client with the cookie and tell ASP.NET Core MVC about the header that Angular
uses, add the statements shown in Listing 12-8 to the Startup class.

ChapTer 12 ■ preparing for DeploYmenT

284

Listing 12-8. Using Anti-forgery Tokens in the Startup.cs.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Authentication.Cookies;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Antiforgery;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();
 }

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 // ...other statements omitted for brevity...

 services.AddAntiforgery(options => {
 options.HeaderName = "X-XSRF-TOKEN";
 });
 }

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory,
 IAntiforgery antiforgery) {

 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

ChapTer 12 ■ preparing for DeploYmenT

285

 app.UseStaticFiles();
 app.UseSession();
 app.UseIdentity();

 app.Use(nextDelegate => context => {
 if (context.Request.Path.StartsWithSegments("/api")
 || context.Request.Path.StartsWithSegments("/")) {
 context.Response.Cookies.Append("XSRF-TOKEN",
 antiforgery.GetAndStoreTokens(context).RequestToken);
 }
 return nextDelegate(context);
 });

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 IdentitySeedData.SeedDatabase(app);
 }
 }
}

The new statements in the ConfigureServices method tell ASP.NET Core MVC to look for the anti-
CSRF token in the HTTP header called X-XSRF-TOKEN. The new statements in the Configure method add a
token to requests for the / URL and the URL that starts with /api.

Save the changes, restart the ASP.NET Core MVC application, and navigate to http://localhost:5000.
Now that Angular is receiving and sending the tokens, ASP.NET Core MVC will process its requests, as
illustrated by Figure 12-3.

ChapTer 12 ■ preparing for DeploYmenT

286

Creating the Database Migration Command
Throughout this book, I relied on Entity Framework Core to apply database migrations when the ASP.NET
Core MVC application starts, which ensured that the database schema was up-to-date.

You should not automatically apply migrations when your application is in production because schema
changes can cause data loss when tables or columns are dropped and re-created. It still is useful to be able
to initialize the database, but it is important to do so explicitly, rather than every time the ASP.NET Core
MVC application starts. The way that I approach this is to add support for a configuration setting that can be
supplied as an environment variable or as a comment-line argument. When the setting is true, the database
will be initialized, and then the application will exit. When the setting is false or not supplied, then the
ASP.NET Core MVC application will start up as normal.

To add the NuGet package that provides access to variables provided via the command line, run the
commands shown in Listing 12-9 in the SportsStore folder.

Listing 12-9. Installing the Command-Line NuGet Package

dotnet add package Microsoft.Extensions.Configuration.CommandLine --version 1.1.1
dotnet restore

To add support for the configuration option, add the statements shown in Listing 12-10 to the Startup
class.

Figure 12-3. Configuring anti-CSRF tokens

ChapTer 12 ■ preparing for DeploYmenT

287

USING CONFIGURATION ENVIRONMENTS

aSp.neT Core provides support for configuration environments, where a configuration setting is used
to specify the environment in which the application runs and which can be used to load different
configuration files or to branch to different configuration code in the Startup class.

i have become wary of this feature recently. i am fortunate enough to talk to a lot of mVC developers
about their projects, and a recurring theme has been production problems caused by errors in the
configuration files for production environments. The configuration feature is fine, but few project
teams have the capability or discipline to test the effect of the production settings before deploying the
application, which leads to deployment failures and rollbacks.

The configuration environment feature won’t present a problem if you have a well-organized test and
deployment process. But for everyone else, i recommend going through an explicit preparation process
before each deployment.

Listing 12-10. Adding Explicit Database Initialization in the Startup.cs File in the SportsStore Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.AspNetCore.SpaServices.Webpack;
using SportsStore.Models;
using Microsoft.EntityFrameworkCore;
using Newtonsoft.Json;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Authentication.Cookies;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Antiforgery;
using System.Linq;

namespace SportsStore {
 public class Startup {
 public Startup(IHostingEnvironment env) {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: false, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables()
 .AddCommandLine(System.Environment.GetCommandLineArgs()
 .Skip(1).ToArray());
 Configuration = builder.Build();
 }

ChapTer 12 ■ preparing for DeploYmenT

288

 public IConfigurationRoot Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 // ...statements omitted for brevity...
 }

 public async void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory,
 IAntiforgery antiforgery) {

 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 app.UseDeveloperExceptionPage();
 app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 HotModuleReplacement = true
 });

 app.UseStaticFiles();
 app.UseSession();
 app.UseIdentity();

 app.Use(nextDelegate => context => {
 if (context.Request.Path.StartsWithSegments("/api")
 || context.Request.Path.StartsWithSegments("/")) {
 context.Response.Cookies.Append("XSRF-TOKEN",
 antiforgery.GetAndStoreTokens(context).RequestToken);
 }
 return nextDelegate(context);
 });

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 if ((Configuration["INITDB"] ?? "false") == "true") {
 System.Console.WriteLine("Preparing Database...");
 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 await IdentitySeedData.SeedDatabase(app);
 System.Console.WriteLine("Database Preparation Complete");
 System.Environment.Exit(0);
 }
 }
 }
}

ChapTer 12 ■ preparing for DeploYmenT

289

If there is a configuration setting called INITDB and it is true, then the databases will be migrated and
seeded. After the databases have been prepared, the application will exit. Notice that the listing applies
the async keyword to the Configure method and prefixes the call to the IdentitySeedData.SeedDatabase
method with await. The operations required to seed the Identity database are all asynchronous, and it is
important to wait until they complete before terminating the application. Listing 12-11 shows a change to
the result returned by the IdentitySeedData.SeedDatabase method that allows it to be used with the await
keyword.

Listing 12-11. Changing the Method Result in the IdentitySeedData.cs File in the Models Folder

using System;
using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;
using System.Threading.Tasks;

namespace SportsStore.Models {

 public static class IdentitySeedData {
 private const string adminUser = "admin";
 private const string adminPassword = "MySecret123$";
 private const string adminRole = "Administrator";

 public static async Task SeedDatabase(IApplicationBuilder app) {
 (GetAppService<IdentityDataContext>(app)).Database.Migrate();

 // ...statements omitted for brevity...
 }

 private static T GetAppService<T>(IApplicationBuilder app) {
 return app.ApplicationServices.GetRequiredService<T>();
 }
 }
}

Disabling Logging Messages
To disable the debugging messages that show the SQL queries used by Entity Framework Core and the build
messages from webpack, change the logging levels in the appsettings.json file with those shown in
Listing 12-12.

Listing 12-12. Disabling Debugging Messages in the appsettings.json File in the SportsStore Folder

{
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Microsoft.EntityFrameworkCore": "Warning",

ChapTer 12 ■ preparing for DeploYmenT

290

 "Microsoft.AspNetCore.NodeServices": "Warning",
 "Default": "Warning"
 }
 },
 "Data": {
 "Products": {
 "ConnectionString": "Server=localhost,5100;Database=SportsStore;User Id=sa;Password=my

Secret123;MultipleActiveResultSets=true"
 },
 "Identity": {
 "ConnectionString": "Server=localhost,5100;Database=Identity;User Id=sa;

Password=mySecret123;MultipleActiveResultSets=true"
 }
 }
}

Disabling Automatic Angular Builds and Hot Modules
It is useful to have the Angular code build and bundled automatically during development but not in
production. To disable this feature, comment out the statements shown in Listing 12-13 in the Configure
method in the Startup class. I have also removed the developer-friendly error pages, which are helpful
during development but provide too much information for end users.

Listing 12-13. Disabling Angular Builds in the Startup.cs File in the SportsStore Folder

...
public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory,
 IAntiforgery antiforgery) {

 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();

 //app.UseDeveloperExceptionPage();
 //app.UseWebpackDevMiddleware(new WebpackDevMiddlewareOptions {
 // HotModuleReplacement = true
 //});

 app.UseStaticFiles();
 app.UseSession();
 app.UseIdentity();

 app.Use(nextDelegate => context => {
 if (context.Request.Path.StartsWithSegments("/api")
 || context.Request.Path.StartsWithSegments("/")) {
 context.Response.Cookies.Append("XSRF-TOKEN",
 antiforgery.GetAndStoreTokens(context).RequestToken);
 }
 return nextDelegate(context);
 });

ChapTer 12 ■ preparing for DeploYmenT

291

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapSpaFallbackRoute("angular-fallback",
 new { controller = "Home", action = "Index" });
 });

 if ((Configuration["INITDB"] ?? "false") == "true") {
 System.Console.WriteLine("Preparing Database...");
 SeedData.SeedDatabase(app.ApplicationServices
 .GetRequiredService<DataContext>());
 IdentitySeedData.SeedDatabase(app);
 System.Console.WriteLine("Database Preparation Complete");
 System.Environment.Exit(0);
 }
}
...

Preparing the Angular Startup Sequence
A corresponding change is required for the Angular application to disable support for hot module
replacements. No new modules will be created when the application is in production, so there is no need
to maintain a connection to the HTTP server to receive update notifications. Comment out the statements
shown in Listing 12-14 in the boot.ts file, which controls the Angular application startup sequence.

Listing 12-14. Disabling HMR in the boot.ts File in the ClientApp Folder

import { enableProdMode } from "@angular/core";
import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";
import { AppModule } from "./app/app.module";

const bootApplication = () => {
 enableProdMode();
 platformBrowserDynamic().bootstrapModule(AppModule);
};

// if (module["hot"]) {
// module["hot"].accept();
// module["hot"].dispose(() => {
// const oldRootElem = document.querySelector("app-root");
// const newRootElem = document.createElement("app-root");
// oldRootElem.parentNode.insertBefore(newRootElem, oldRootElem);
// platformBrowserDynamic().destroy();
// });
// }

ChapTer 12 ■ preparing for DeploYmenT

292

if (document.readyState === "complete") {
 bootApplication();
} else {
 document.addEventListener("DOMContentLoaded", bootApplication);
}

This listing also adds a call to the enableProdMode function, which enables the Angular production
mode. The production mode disables some developer-friendly checks that help to avoid common errors and
that are not useful in production.

Performing the Production Dry Run
The final step is to do a dry run and ensure everything works as expected by following the instructions in the
following sections.

Preparing the Database
When you come to deploy your projects, you will need to change the database connection strings to reflect
your production environment, but I am going to continue with a Docker container running SQL Server on
the local machine. Run the commands shown in Listing 12-15 to reset the Docker container and create a
fresh SQL Server database.

Listing 12-15. Resetting the Database

docker-compose down
docker-compose up

Once SQL Server has finished its startup sequence, run the command shown in Listing 12-16 in the
SportsStore folder to apply the database migrations and create the seed data. Pay close attention to the
hyphens in this command.

Listing 12-16. Preparing the Database

dotnet run -- --INITDB=true

Next, run the command shown in Listing 12-17 in the SportsStore folder to create the schema for
storing session data.

Listing 12-17. Preparing the Database for Session Data

dotnet sql-cache create "Server=localhost,5100;Database=SportsStore;User Id=sa;
Password=mySecret123;MultipleActiveResultSets=true" "dbo" "SessionData"

Building the Angular Application
Run the command shown in Listing 12-18 in the SportsStore folder to compile the TypeScript files and
generate the JavaScript module files that will be sent to the application. This has been done automatically
during development, but it is a good idea to perform one final build before deployment.

ChapTer 12 ■ preparing for DeploYmenT

293

Listing 12-18. Building the Angular Application

npm run build

Starting the ASP.NET Core MVC Application
The final step is to start the application by running the command shown in Listing 12-19 in the SportsStore
folder.

Listing 12-19. Running the ASP.NET Core MVC Application

dotnet run

Once the application has started, use a browser to navigate to http://localhost:5000 and you
should see the list of products illustrated in Figure 12-4. Navigate to http://localhost:5000/admin
and authenticate using admin as the username and MySecret123$ as the password to make sure that the
integration with ASP.NET Core Identity is working, also shown in Figure 12-4.

Figure 12-4. Checking that the application works

If everything works, you can make any final adjustments required, such as new database connection
strings, and package the application for deployment.

ChapTer 12 ■ preparing for DeploYmenT

294

Summary
In this chapter, I showed you how to prepare the application for deployment. I demonstrated how to
add validation tokens to guard against cross-site request forgery, how to prepare the database using the
command line, and how to disable the developer features so that the TypeScript files are not monitored for
changes and hot module replacement is disabled.

That is all I have to teach you about using Angular and ASP.NET Core MVC together. I started by
creating a project containing both Angular and ASP.NET Core MVC and showed you how to get them to work
together, how to share data between them, and how to create and use web services. Along the way, I showed
you how to use the core Angular building blocks to structure a client-side application.

I wish you every success in your Angular/ASP.NET Core MVC projects, and I can only hope that you
have enjoyed reading this book as much as I enjoyed writing it.

295© Adam Freeman 2017
A. Freeman, Essential Angular for ASP.NET Core MVC, DOI 10.1007/978-1-4842-2916-3

��������� A
Add method, 109
AllowAnonymous attribute, 254
@angular/cli package, 21
@angular/core module, 138
@angular/http module, 75
@angular/router module, 148
appsettings.json file, connection string, 45, 262
ASP.NET Core Identity, 258

authenticating users, 263
authentication web service, 267
configuring, 260
seeding the database, 258

Attach method, 108
Authorize attribute, 253

��������� B
Boostrap CSS, updating, 29
boot.ts file, 26
Bower, installing, 7, 13, 17, 30

��������� C
Class binding, 176
@Component decorator, 64, 137, 139
Components, 137

HTML template, 139
Connection string, 45
Cross-site requestforgery. See CSRF
CSRF, 280

IgnoreAntiforgeryToken attribute, 281
ValidateAntiForgeryToken attribute, 281
XSRF-TOKEN cookie, 283
X-XSRF-TOKEN header, 283

CSS classes, assigning, 176
Currency pipes, 170

��������� D
Database context class, 48
Database migration, 50
Data binding classes, 106
[()] data bindings, 195
Data validation, 214
Decorators, 62
DeleteBehavior enumeration, 129
Deleting data, 128
Docker

compose command, 53
configuring, 8, 18
installing, 8, 14, 17
SQL Server container, 44

docker-compose.yml file, 44
dotnet add package, 24, 258
dotnet ef database, 279
dotnet ef migrations, 51, 129, 208, 263
dotnet new, 24
dotnet restore, 25, 258
dotnet run, 32, 43
dotnet sql-cache, 200, 279

��������� E
Event bindings, 114, 171

��������� F
Filtering data, 96
Font Awesome package, 181
Formatting data values, 170

��������� G
Git, installing, 8, 13

Index

■ INDEX

296

��������� H
Hot module replacement, 36

disabling, 290
HTML templates, 139
Http class, 75
HTTP errors, 244

��������� I
Identity. See ASP.NET Core Identity
Include method, 81
@Injectable decorator, 76
@Input decorator, 183

��������� J, K
JavaScript

compared to TypeScript, 56
truthy, 95

Json.NET package, 82
JSON Patch, 121

��������� L
Linux, preparing for

development, 12
Logging messages

disabling, 289
enabling, 29

��������� M
macOS, preparing for

development, 15
Modules

different types of, 59
feature modules, 61
root modules, 62–63

MVC values controller, 72

��������� N
.NET Core, installing, 6, 12, 16
Newtonsoft JSON parser, 82
ng eject, 23
ngFor directive, 94, 170
ngIf directive, 169
ngModel directive, 214, 237
@NgModule decorator, 62
ng new, 23
ng-template element, 242
ngValue directive, 237
Node.js, installing, 6, 13, 16

Node Package Manager (NPM), 5, 7, 23, 24, 60
npm install, 23

��������� O
Observables, 76

filtering, 225
handling errors, 245
mapping results, 269
subscribing, 76

OnModelCreating method, 129

��������� P, Q
Patching objects, 121
Pipes, 170
project.json file, 23
Projects

configuring, 26
creating

Angular, 22
ASP.NET Core MVC, 24

files
appsettings.json, 29
boot.ts, 26
change detection, 36
project.json, 23
SportsStore.csproj, 24
webpack.config.js, 28

structure, 34
tools, 35

��������� R
Reactive Extensions. See Observables
Related data

circular reference, 82
loading, 81

Remove method, 130
Representational StateTransfer. See RESTful

web services
RESTful web services, 71

MVC controller, 72
router-outlet element, 150
Routing, 147

base element, 147
child routes, 235
direct navigation, 153
events, 225
guarding routes, 272
Router class, 151
routerLink directive, 151, 193
router-outlet element, 150
segment variables, 154

■ INDEX

297

��������� S
Seed data, 48
Session data, 224

preparing the
database, 200

storing data, 203
SportsStore.csproj file, 24
Structural directives, 94

ng-template
element, 242

��������� T
Tools

Bower, 7, 13, 17
Docker, 8, 14, 17
Git, 8, 13
.NET Core, 6, 12, 16
Node.js, 6, 13, 16
NPM, 7
Visual Studio, 10
Visual Studio Code, 11, 15, 19

Two-way data
bindings, 195

TypeScript
access control, 60
constructor, 57

parameters, 57
export keyword, 59
import keyword, 59
safe navigation property, 65
types, 58

��������� U
Update method, 116
URL routing. See Routing

��������� V
Visual Studio

extensions, 10
installing, 10

Visual Studio Code, installing, 11, 15, 19

��������� W, X, Y, Z
webpack.config.js file, 28
Windows, preparing for development, 5

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Understanding Angular and ASP.NET Core MVC
	Who Is This Book For?
	What Does This Book Cover?
	What Doesn’t This Book Cover?
	What Do You Need to Know?
	Are There Lots of Examples?
	Where Can You Get the Example Code?
	Where Can You Get Corrections for This Book?
	Contacting the Author
	Summary

	Chapter 2: Getting Ready
	Getting Ready on Windows
	Installing .NET Core
	Installing Node.js
	Installing Bower

	Installing Git
	Installing Docker
	Installing Visual Studio 2017
	Adding the Visual Studio Extensions

	Installing Visual Studio Code

	Getting Ready on Linux
	Installing .NET Core
	Installing Node.js
	Installing Bower

	Installing Git
	Installing Docker
	Installing Visual Studio Code

	Getting Ready on macOS
	Installing .NET Core
	Installing Node.js
	Installing Bower

	Installing Git
	Installing Docker
	Installing Visual Studio Code

	Summary

	Chapter 3: Creating the Project
	Preparing to Create a Project
	Creating the Project
	Creating the Angular Part of the Project
	Creating the ASP.NET Core MVC Part of the Project
	Configuring the Project
	Preparing the Project (Visual Studio)
	Creating and Editing the Configuration Files
	Enabling Logging Messages
	Updating the Bootstrap Package

	Removing Files
	Updating the Controller, Layout, and View

	Running the Project
	Understanding the Combined Project and Tools
	Understanding the Structure of the Project
	Understanding the Tool Integration
	Understanding the Project Change Systems
	Updating Angular Files
	Updating Razor Files
	Updating C# Classes

	Detecting TypeScript Errors

	Summary

	Chapter 4: Creating the Data Model
	Preparing for This Chapter
	Starting the Data Model
	Preparing the Database Server
	Defining the Connection String

	Creating the ASP.NET Core MVC Data Model
	Defining the Model Data Types
	Creating the Database Context Class and the Seed Data
	Testing the ASP.NET Core MVC Data Model

	Starting the Angular Data Model
	Understanding the TypeScript Data Model Classes
	Examining the Product Constructor
	Using the Right Name Capitalization Convention
	Making the Parameters Optional
	Unpacking the Properties
	Understanding the Parameter Types

	Understanding JavaScript Modules
	Understanding TypeScript Access Control

	Integrating the Angular Data Model
	Defining the Repository
	Defining the Angular Feature Module
	Configuring the Angular Root Module

	Displaying the Data

	Reviewing the Application Structure
	Reviewing the ASP.NET Core MVC Application Structure
	Reviewing the Angular Application Structure

	Summary

	Chapter 5: Creating a Web Service
	Preparing for This Chapter
	Introducing a Web Service
	Understanding RESTful Web Services
	Creating the Web Service
	Creating the Web Service Controller
	Testing the Web Service

	Using the Web Service in the Angular Application
	Removing the Static Data from the Razor View
	Consuming the Web Service Data in the Repository
	Understanding the Http Class
	Understanding Observables
	Understanding the @Injectable Decorator

	Understanding Live Data and Asynchronous Responses
	Consolidating the HTTP Request Code
	Adding Placeholder Content

	Loading Related Data
	Understanding the Circular Reference Problem
	Breaking the Circular References
	Breaking Circular References in Additional Related Data
	Omitting Null Properties
	Displaying Related Data

	Implementing the GET Method for Multiple Objects
	Implementing the Web Service Action Method
	Querying Multiple Objects in the Angular Application
	Updating the Component
	Updating the Component’s Template

	Filtering the Data
	Applying Filtering in the Web Service
	Applying Filtering in the Angular Application

	Understanding the Structure of the Web Service
	Summary

	Chapter 6: Completing the Web Service
	Preparing for This Chapter
	Implementing the POST Method
	Understanding the API Enhancements
	Creating the Data Binding Classes
	Implementing the Web Service Action Methods
	Creating the Web Service Controller for Supplier Objects

	Creating Data Objects in the Angular Application
	Adding Support for Creating an Object in the Component
	Updating the Component Template

	Implementing the PUT Method
	Implementing the Web Service Action Methods
	Replacing Products in the Angular Application
	Adding Support for Replacing Objects in the Component

	Implementing the PATCH Method
	Understanding JSON Patch
	Enhancing the Product Binding Target
	Implementing the Web Service Action Method
	Updating Objects in the Angular Application
	Adding Support for Updating Objects in the Component

	Implementing the DELETE Method
	Configuring the Database
	Implementing the Web Service Action Method
	Deleting Objects in the Angular Application
	Adding Support for Deleting Objects in the Component

	Summary

	Chapter 7: Structuring an Angular Application
	Preparing for This Chapter
	Using the Data Model for Component Cooperation
	Creating the Display Component
	Creating the Component Class
	Understanding the Import Statements
	Understanding the Class
	Understanding the Decorator

	Creating the HTML Template

	Creating the Filter Component
	Creating the HTML Template

	Applying the New Components
	Understanding the Application Structure
	Adding Another Component
	Selecting a Product
	Understanding the Revised Application Structure

	Understanding Angular Routing
	Creating the Routing Configuration
	Applying the Routing Configuration
	Navigating Using Routes
	Navigating Using a Directive

	Improving Navigation
	Allowing Direct Navigation
	Using a Segment Variable

	Understanding the Application Structure

	Summary

	Chapter 8: Creating the Store
	Preparing for This Chapter
	Starting the Product Selection Feature
	Blocking Out the Feature Components
	Creating the Product List Component
	Creating the Pagination Component
	Creating the Category Filter Component
	Creating the Cart Summary Component
	Creating the Ratings Component
	Creating the Structural Component
	Creating and Registering the Store Feature Module

	Configuring the Angular URL Routes
	Removing the Layout Header

	Displaying the Product List
	Understanding the Product List Template Features
	Understanding the ngIf Directive
	Understanding the ngFor Directive
	Understanding the Currency Pipe
	Understanding the Click Handler

	Creating the Category Filter
	Enhancing the ASP.NET Core MVC Application
	Receiving Category Data in the Angular Data Repository
	Updating the Filter Component and Template

	Creating the Pagination Controls
	Creating and Registering a Pagination Service
	Updating the Pagination Button Component
	Paging the Product Data

	Displaying Ratings
	Adding the Font Awesome Package
	Updating the Rating Component and Template
	Applying the Rating Component

	Summary

	Chapter 9: Completing the Angular Store
	Preparing for This Chapter
	Creating the Shopping Cart
	Extending the Angular Data Model
	Registering the Cart as a Service
	Wiring Up the Buttons
	Creating the Cart Summary Component
	Displaying the Cart Detail

	Storing Carts
	Extending the ASP.NET Core MVC Data Model
	Creating the Cart Storage Web Service
	Installing the NuGet Packages
	Preparing the Database
	Configuring the ASP.NET Core MVC Application
	Creating the Web Service Controller

	Storing and Retrieving Cart Data

	Creating the Checkout Process
	Extending the ASP.NET Core MVC Data Model
	Creating a New Entity Framework Core Migration

	Creating the ASP.NET Core MVC Web Service
	Creating the Angular Checkout Process
	Extending the Angular Data Model

	Creating the Checkout Components
	Creating the Checkout Details Component
	Creating the Checkout Payment Component
	Creating the Checkout Summary Component
	Creating the Confirmation Component

	Registering the Components and Creating the Routes
	Storing Checkout Details as Session Data
	Extending the Session Data Web Service
	Storing Checkout Data

	Summary

	Chapter 10: Creating Administration Features
	Preparing for This Chapter
	Adding Administration Features
	Creating the Administration Components
	Creating the Administration Feature Components
	Creating the Feature Module and Routing Configuration

	Administering Products
	Creating the Editor Component
	Creating the Product Table

	Administering Orders
	Dealing with Request Errors
	Creating the Error Handling and Distribution Service
	Displaying Errors
	Reporting Validation Errors

	Summary

	Chapter 11: Securing the Application
	Preparing for This Chapter
	Restricting Access to Action Methods
	Restricting Access to Suppliers
	Restricting Access to Orders
	Restricting Access to Products
	Testing the Restrictions

	Installing and Configuring ASP.NET Core Identity
	Installing the ASP.NET Core Identity NuGet Package
	Creating the Identity Context Class and Seed Data
	Adding Identity to the Application Configuration
	Creating the Database Migration

	Creating the Authentication Controller and View
	Understanding the Conventional Authentication Flow
	Authenticating Directly in Angular
	Creating a Web Service Authentication Method
	Creating the Repository Method
	Creating the Authentication Service
	Creating the Authentication Component
	Creating the Authentication Route Guard
	Creating and Registering the Authentication Feature Module
	Configuring the URL Routes
	Creating the Log Out Button
	Disable Automatic Authentication Redirection for Web Services

	Testing the Client Authentication Process

	Summary

	Chapter 12: Preparing for Deployment
	Preparing for This Chapter
	Preventing Cross-Site Request Forgery Attacks
	Enabling Anti-CSRF Tokens
	Sending and Receiving Anti-CSRF Tokens

	Creating the Database Migration Command
	Disabling Logging Messages
	Disabling Automatic Angular Builds and Hot Modules
	Preparing the Angular Startup Sequence

	Performing the Production Dry Run
	Preparing the Database
	Building the Angular Application
	Starting the ASP.NET Core MVC Application

	Summary

	Index

