
www.allitebooks.com

http://www.allitebooks.org

Excel® Power
Pivot & Power

Query

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Excel® Power
Pivot & Power

Query

by Michael Alexander

www.allitebooks.com

http://www.allitebooks.org

Excel® Power Pivot & Power Query For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission
of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Excel is a registered trademark of Microsoft Corporation. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any prod-
uct or vendor mentioned in this book.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand. If
this book refers to media such as a CD or DVD that is not included in the version you purchased, you may
download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2016933854

ISBN 978‐1‐119‐21064‐1 (pbk); ISBN 978‐1‐119‐21066‐5 (ebk); ISBN 978‐1‐119‐21065‐8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY
BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

Contents at a Glance
Introduction... 1

Part I: Supercharged Reporting with Power Pivot............ 7
Chapter 1: Thinking Like a Database.. 9
Chapter 2: Introducing Power Pivot... 19
Chapter 3: The Pivotal Pivot Table... 33
Chapter 4: Using External Data with Power Pivot.. 67
Chapter 5: Working Directly with the Internal Data Model... 93
Chapter 6: Adding Formulas to Power Pivot... 107
Chapter 7: Publishing Power Pivot to SharePoint.. 125

Part II: Wrangling Data with Power Query................. 135
Chapter 8: Introducing Power Query... 137
Chapter 9: Power Query Connection Types.. 155
Chapter 10: Transforming Your Way to Better Data.. 171
Chapter 11: Making Queries Work Together... 201
Chapter 12: Extending Power Query with Custom Functions................................... 215

Part III: The Part of Tens... 233
Chapter 13: Ten Ways to Improve Power Pivot Performance.................................. 235
Chapter 14: Ten Tips for Working with Power Query.. 243

Index... 255

Excel® Power Pivot & Power Query For Dummies®

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Introduction.. 1

About This Book... 2
Foolish Assumptions.. 3
How This Book Is Organized... 3

Part I: Supercharged Reporting with Power Pivot.............................. 3
Part II: Wrangling Data with Power Query... 4
Part III: The Part of Tens.. 4

Icons Used In This Book.. 4
Beyond the Book.. 5
Where to Go from Here.. 5

Part I: Supercharged Reporting with Power Pivot............. 7

Chapter 1: Thinking Like a Database . 9
Exploring the Limits of Excel and How Databases Help.............................. 9

Scalability... 9
Transparency of analytical processes... 11
Separation of data and presentation.. 12

Getting to Know Database Terminology.. 13
Databases... 13
Tables... 14
Records, fields, and values.. 14
Queries... 15

Understanding Relationships.. 15

Chapter 2: Introducing Power Pivot . 19
Understanding the Power Pivot Internal Data Model................................ 20
Activating the Power Pivot Add‐In... 22
Linking Excel Tables to Power Pivot.. 24

Preparing Excel tables.. 25
Adding Excel Tables to the data model... 26
Creating relationships between Power Pivot tables........................ 27
Managing existing relationships... 29
Using the Power Pivot data model in reporting................................ 31

www.allitebooks.com

http://www.allitebooks.org

viii Excel Power Pivot & Power Query For Dummies �

Chapter 3: The Pivotal Pivot Table . 33
Introducing the Pivot Table.. 33
Defining the Four Areas of a Pivot Table... 34

Values area.. 34
Row area.. 35
Column area.. 36
Filter area... 36

Creating Your First Pivot Table.. 37
Changing and rearranging a pivot table... 40
Adding a report filter.. 41
Keeping the pivot table fresh.. 43

Customizing Pivot Table Reports... 44
Changing the pivot table layout.. 44
Customizing field names.. 46
Applying numeric formats to data fields... 47
Changing summary calculations... 48
Suppressing subtotals.. 49
Showing and hiding data items... 52
Hiding or showing items without data... 53
Sorting the pivot table.. 56

Understanding Slicers.. 57
Creating a Standard Slicer... 59
Getting Fancy with Slicer Customizations... 61

Size and placement... 61
Data item columns.. 62
Miscellaneous slicer settings.. 63

Controlling Multiple Pivot Tables with One Slicer..................................... 63
Creating a Timeline Slicer.. 64

Chapter 4: Using External Data with Power Pivot 67
Loading Data from Relational Databases... 67

Loading data from SQL Server.. 68
Loading data from Microsoft Access databases............................... 74
Loading data from other relational database systems.................... 76

Loading Data from Flat Files.. 79
Loading data from external Excel files... 79
Loading data from text files... 82
Loading data from the Clipboard.. 84

Loading Data from Other Data Sources... 85
Refreshing and Managing External Data Connections............................... 86

Manually refreshing Power Pivot data... 87
Setting up automatic refreshing.. 87
Preventing Refresh All.. 88
Editing the data connection.. 89

www.allitebooks.com

http://www.allitebooks.org

ix� Table of Contents

Chapter 5: Working Directly with the Internal Data Model 93
Directly Feeding the Internal Data Model.. 93
Adding a New Table to the Internal Data Model... 99
Removing a Table from the Internal Data Model...................................... 101
Creating a New Pivot Table Using the Internal Data Model.................... 102
Filling the Internal Data Model with Multiple

External Data Tables.. 104

Chapter 6: Adding Formulas to Power Pivot . . 107
Enhancing Power Pivot Data with Calculated Columns.......................... 107

Creating your first calculated column.. 108
Formatting calculated columns.. 109
Referencing calculated columns in other calculations.................. 110
Hiding calculated columns from end users..................................... 111

Utilizing DAX to Create Calculated Columns.. 112
Identifying DAX functions that are safe for

calculated columns... 112
Building DAX‐driven calculated columns.. 114
Referencing fields from other tables.. 117

Understanding Calculated Measures... 119
Creating a calculated measure.. 120
Editing and deleting calculated measures....................................... 122

Free Your Data With Cube Functions... 123

Chapter 7: Publishing Power Pivot to SharePoint 125
Understanding SharePoint.. 125
Understanding Excel Services for SharePoint.. 127
Publishing an Excel Workbook to SharePoint.. 128
Publishing to a Power Pivot Gallery... 131

Exploring the Power Pivot Gallery.. 131
Refreshing data connections in published Power

Pivot workbooks.. 132

Part II: Wrangling Data with Power Query.................. 135

Chapter 8: Introducing Power Query . 137
Installing and Activating a Power Query Add‐In....................................... 138
Power Query Basics... 139

Starting the query... 140
Understanding query steps... 146
Refreshing Power Query data... 148
Managing existing queries... 149

Understanding Column‐Level Actions... 151
Understanding Table Actions... 153

www.allitebooks.com

http://www.allitebooks.org

x Excel Power Pivot & Power Query For Dummies �

Chapter 9: Power Query Connection Types . 155
Importing Data from Files.. 156

Getting data from Excel workbooks... 156
Getting data from CSV and text files... 158
Getting data from XML files... 160
Getting data from folders... 162

Importing Data from Database Systems.. 163
A connection for every database type... 163
Getting data from other data systems... 165
Walk‐through: Getting data from a database.................................. 166

Managing Data Source Settings... 168

Chapter 10: Transforming Your Way to Better Data 171
Completing Common Transformation Tasks.. 172

Removing duplicate records... 172
Filling in blank fields... 174
Concatenating columns... 176
Changing case... 178
Finding and replacing specific text... 179
Trimming and cleaning text... 180
Extracting the left, right, and middle values................................... 181
Splitting columns using character markers.................................... 184
Pivoting and unpivoting fields.. 186

Creating Custom Columns... 190
Concatenating with a custom column.. 192
Understanding data type conversions... 193
Spicing up custom columns with functions.................................... 194
Adding conditional logic to custom columns................................. 196

Grouping and Aggregating Data.. 198

Chapter 11: Making Queries Work Together . 201
Reusing Query Steps.. 201
Understanding the Append Feature... 205

Creating the needed base queries.. 205
Appending the data.. 207

Understanding the Merge Feature.. 209
Understanding Power Query joins... 209
Merging queries.. 210

Chapter 12: Extending Power Query with Custom Functions 215
Creating and Using a Basic Custom Function... 215
Creating a Function to Merge Data from Multiple Excel Files................. 219
Creating Parameter Queries.. 225

Preparing for a parameter query.. 226
Creating the base query... 227
Creating the parameter query... 229

xi� Table of Contents

Part III: The Part of Tens.. 233

Chapter 13: Ten Ways to Improve Power Pivot Performance 235
Limit the Number of Rows and Columns in Your Data

Model Tables... 236
Use Views Instead of Tables.. 236
Avoid Multi‐Level Relationships... 236
Let the Back‐End Database Servers Do the Crunching............................ 237
Beware of Columns with Non‐Distinct Values.. 238
Limit the Number of Slicers in a Report.. 238
Create Slicers Only on Dimension Fields... 239
Disable the Cross‐Filter Behavior for Certain Slicers.............................. 240
Use Calculated Measures Instead of Calculated Columns...................... 240
Upgrade to 64‐Bit Excel.. 241

Chapter 14: Ten Tips for Working with Power Query 243
Getting Quick Information from the Workbook Queries Pane................ 243
Organizing Queries in Groups... 244
Selecting Columns in Queries Faster... 245
Renaming Query Steps... 246
Quickly Creating Reference Tables.. 247
Copying Queries to Save Time.. 248
Setting a Default Load Behavior... 249
Preventing Automatic Data Type Changes.. 250
Disabling Privacy Settings to Improve Performance............................... 251
Disabling Relationship Detection... 252

Index.. 255

Introduction

O
ver the past few years, the concept of self‐service business intelligence
(BI) has taken over the corporate world. Self‐service BI is a form of

business intelligence in which end users can independently generate their
own reports, run their own queries, and conduct their own analyses, without
the need to engage the IT department.

The demand for self‐service BI is a direct result of several factors:

✓✓ More power users: Organizations are realizing that no single enter-
prise reporting system or BI tool can accommodate all of their users.
Predefined reports and high‐level dashboards may be sufficient for
casual users, but a large portion of today’s users are savvy enough to
be considered power users. Power users have a greater understand-
ing of data analysis and prefer to perform their own analysis, often
within Excel.

✓✓ Changing analytical needs: In the past, business intelligence primar-
ily consisted of IT‐managed dashboards showing historic data on an
agreed‐upon set of key performance metrics. Managers now demand
more dynamic predictive analysis, the ability to perform data discovery
iteratively, and the freedom to take the hard left and right turns on data
presentation. These managers often turn to Excel to provide the needed
analytics and visualization tools.

✓✓ Speed of BI: Users are increasingly dissatisfied with the inability of IT
to quickly deliver new reporting and metrics. Most traditional BI imple-
mentations fail specifically because the need for changes and answers
to new questions overwhelmingly outpaces the IT department’s ability
to deliver them. As a result, users often find ways to work around the
perceived IT bottleneck and ultimately build their own shadow BI (under
the radar) solutions in Excel.

Recognizing the importance of the self‐service BI revolution and the role
Excel plays in it, Microsoft has made substantial investments in making
Excel the cornerstone of its self‐service BI offering. These investments
have appeared starting with Excel 2007. Here are a few of note: the ability
to handle over a million rows, tighter integration to SQL Server, pivot table
slicers, and not least of all, the introduction of the Power Pivot and Power
Query add‐ins.

2 Excel Power Pivot & Power Query For Dummies �

With the release of Excel 2016, Microsoft has aggressively moved to make
Excel a player in the self‐service BI arena by embedding both Power Pivot
and Power Query directly into Excel.

For the first time, Excel is an integral part of the Microsoft BI stack. You can
integrate multiple data sources, define relationships between data sources,
process analysis services cubes, and develop interactive dashboards that
can be shared on the web. Indeed, the new Microsoft BI tools blur the line
between Excel analysis and what is traditionally IT enterprise‐level data
management and reporting capabilities.

With these new tools in the Excel wheelhouse, it’s becoming important for
business analysts to expand their skill sets to new territory, including data-
base management, query design, data integration, multidimensional report-
ing, and a host of other skills. Excel analysts have to expand their skill set
knowledge base from the one‐dimensional spreadsheets to relational data-
bases, data integration, and multidimensional reporting,

That’s where this book comes in. Here, you’re introduced to the mysterious
world of Power Pivot and Power Query. You find out how to leverage the rich
set of tools and reporting capabilities to save time, automate data clean‐up,
and substantially enhance your data analysis and reporting capabilities.

About This Book
The goal of this book is to give you a solid overview of the self‐service BI
functionality offered by Power Pivot and Power Query. Each chapter guides
you through practical techniques that enable you to

✓✓ Extract data from databases and external files for use in Excel reporting

✓✓ Scrape and import data from the web

✓✓ Build automated processes to clean and transform data

✓✓ Easily slice data into various views on the fly, gaining visibility from dif-
ferent perspectives

✓✓ Analyze large amounts of data and report them in a meaningful way

✓✓ Create powerful, interactive reporting mechanisms and dashboards

3� Introduction

Foolish Assumptions
Over the past few years, Microsoft has adopted an agile release cycle, allow-
ing the company to release updates to Microsoft Office and the power BI
tools practically monthly. This is great news for those who love seeing new
features added to Power Pivot and Power Query. (It’s not‐so‐great news if
you’re trying to document the features of these tools in a book.)

My assumption is that Microsoft will continue to add new bells and whistles
to Power Pivot and Power Query at a rapid pace after publication of this
book. So you may encounter new functionality not covered here.

The good news is that both Power Pivot and Power Query have stabilized
and already have a broad feature set. So I’m also assuming that although
changes will be made to these tools, they won’t be so drastic as to turn this
book into a doorstop. The core functionality covered in these chapters will
remain relevant — even if the mechanics change a bit.

How This Book Is Organized
The chapters in this book are organized into three parts. Part I focuses on
Power Pivot. Part II explores Power Query. Part III wraps up the book with
the classic Part of Tens.

Part I: Supercharged Reporting
with Power Pivot
Part I is all about getting you started with Power Pivot. Chapters 1 and 2 start
you off with basic Power Query functionality and the fundamentals of data
management. Chapter 3 provides an overview of pivot tables — the corner-
stone of Microsoft BI analysis and presentation. In Chapters 4 and 5, you dis-
cover how to develop powerful reporting with external data and the Power
Pivot data model. Chapter 6 focuses on creating and managing calculations
and formulas in Power Pivot. Chapter 7 rounds out Part I with a look at pub-
lishing your Power Pivot reports.

4 Excel Power Pivot & Power Query For Dummies �

Part II: Wrangling Data with Power Query
In Part II, you take an in‐depth look at the functionality found in Power Query.
Chapters 8 and 9 present the fundamentals of creating queries and connect-
ing to various data sources, respectively. Chapter 10 shows you how you
can leverage Power Query to automate and simply the steps for cleaning and
transforming data. In Chapter 11, you see some options for making queries
work together. Chapter 12 wraps up this look at Power Query with an explo-
ration of custom functions and a description of how to leverage recorded
steps to create your own amazing functions.

Part III: The Part of Tens
Part III is the classic Part of Tens section found in titles in the For Dummies
series. The chapters in this part present ten or more pearls of wisdom,
delivered in bite‐size pieces. In Chapter 13, I share with you ten ways to
improve the performance of your Power Pivot reports. Chapter 14 offers a
rundown of ten tips for getting the most out of Power Query.

Icons Used In This Book
As you look in various places in this book, you see icons in the margins that
indicate material of interest (or not, as the case may be). This section briefly
describes each icon in this book.

Tips are beneficial because they help you save time or perform a task with-
out having to do a lot of extra work. The tips in this book are time‐saving
techniques or pointers to resources that you should check out to get the
maximum benefit from Excel.

Try to avoid doing anything marked with a Warning icon, which (as you
might expect) represents a danger of one sort or another.

Whenever you see this icon, think advanced tip or technique. You might find
these tidbits of useful information just too boring for words, or they could
contain the solution you need to get a program running. Skip these bits of
information whenever you like.

5� Introduction

If you get nothing else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process
or a bit of information you ought to remember.

Paragraphs marked with this icon reference the sample files for the book.
If you want to follow along with the examples, you can download the sample
files at www.dummies.com/go/powerpivotpowerqueryfd. The files are
organized by chapter.

Beyond the Book
A lot of extra content that you won’t find in this book is available at
www.dummies.com. Go online to find the following:

✓✓ Excel files used in the examples in this book can be found at

www.dummies.com/go/excelpowerpivotpowerqueryfd

✓✓ Online articles covering additional topics are at

www.dummies.com/extras/excelpowerpivotpowerquery

On this page, you can see how to integrate Power Pivot and Power
Query to create a dynamic reporting duo. You can also uncover a list of
resources to aid you in your Power BI journey.

✓✓ The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/excelpowerpivotpowerquery

On this page, you find a list of useful Power Query functions that can be
used to enhance the data clean‐up and transformation process.

✓✓ Updates to this book, if we have any, are also available at

www.dummies.com/extras/excelpowerpivotpowerquery

Where to Go from Here
It’s time to start your self‐service BI adventure! If you’re primarily interested
in Power Pivot, start with Chapter 1. If you want to dive right into Power
Query, jump to Part II, which begins at Chapter 8.

http:/www.dummies.com/go/powerpivotpowerqueryfd
http://www.dummies.com

Go to www.dummies.com for great Dummies content online.

Part I
Supercharged Reporting

with Power Pivot

http://www.dummies.com

In this part . . .
✓✓ Discover how to think about data like a relational database.

✓✓ Get a solid understanding of the fundamentals of Power Pivot
and pivot table reporting.

✓✓ Uncover the best practices for creating calculated columns
and fields using Power Pivot formulas.

✓✓ Explore a few options for publishing your Power Pivot report.

Chapter 1

Thinking Like a Database
In This Chapter

▶▶ Examining traditional Excel limitations

▶▶ Keeping up with database terminology

▶▶ Looking into relationships

W
ith the introduction of business intelligence (BI) tools such as Power
Pivot and Power Query, it’s becoming increasingly important for

Excel analysts to understand core database principles. Unlike traditional
Excel concepts, where the approach to developing solutions is relatively
intuitive, you need to have a basic understanding of database terminology
and architecture in order to get the most benefit from Power Pivot and Power
Query. This chapter introduces you to a handful of fundamental concepts
that you should know before taking on the rest of this book.

Exploring the Limits of Excel
and How Databases Help

Years of consulting experience have brought this humble author face to face
with managers, accountants, and analysts who all have had to accept this
simple fact: Their analytical needs had outgrown Excel. They all faced funda-
mental challenges that stemmed from one or more of Excel’s three problem
areas: scalability, transparency of analytical processes, and separation of
data and presentation.

Scalability
Scalability is the ability of an application to develop flexibly to meet growth
and complexity requirements. In the context of this chapter, scalability

10 Part I: Supercharged Reporting with Power Pivot �

refers to Excel’s ability to handle ever‐increasing volumes of data. Most
Excel aficionados are quick to point out that as of Excel 2007, you can place
1,048,576 rows of data into a single Excel worksheet — an overwhelming
increase from the limitation of 65,536 rows imposed by previous versions of
Excel. However, this increase in capacity does not solve all the scalability
issues that inundate Excel.

Imagine that you’re working in a small company and using Excel to analyze
its daily transactions. As time goes on, you build a robust process complete
with all the formulas, pivot tables, and macros you need in order to analyze
the data that is stored in your neatly maintained worksheet.

As the amount of data grows, you will first notice performance issues. The
spreadsheet will become slow to load and then slow to calculate. Why does
this happen? It has to do with the way Excel handles memory. When an Excel
file is loaded, the entire file is loaded into RAM. Excel does this to allow for
quick data processing and access. The drawback to this behavior is that
every time the data in your spreadsheet changes, Excel has to reload the
entire document into RAM. The net result in a large spreadsheet is that it
takes a great deal of RAM to process even the smallest change. Eventually,
every action you take in the gigantic worksheet is preceded by an excruci-
ating wait.

Your pivot tables will require bigger pivot caches, almost doubling the Excel
workbook’s file size. Eventually, the workbook will become too big to distrib-
ute easily. You may even consider breaking down the workbook into smaller
workbooks (possibly one for each region). This causes you to duplicate
your work.

In time, you may eventually reach the 1,048,576‐row limit of the worksheet.
What happens then? Do you start a new worksheet? How do you analyze two
datasets on two different worksheets as one entity? Are your formulas still
good? Will you have to write new macros?

These are all issues that need to be addressed.

Of course, you will also encounter the Excel power customers, who will find
various clever ways to work around these limitations. In the end, though,
these methods will always be simply workarounds. Eventually, even these
power‐customers will begin to think less about the most effective way to
perform and present analysis of their data and more about how to make
data “fit” into Excel without breaking their formulas and functions. Excel is
flexible enough that a proficient customer can make most things fit just fine.
However, when customers think only in terms of Excel, they’re undoubtedly
limiting themselves, albeit in an incredibly functional way.

11� Chapter 1: Thinking Like a Database

In addition, these capacity limitations often force Excel customers to have
the data prepared for them. That is, someone else extracts large chunks of
data from a large database and then aggregates and shapes the data for use
in Excel. Should the serious analyst always be dependent on someone else
for her data needs? What if an analyst could be given the tools to access vast
quantities of data without being reliant on others to provide data? Could that
analyst be more valuable to the organization? Could that analyst focus on the
accuracy of the analysis and the quality of the presentation instead of routing
Excel data maintenance?

A relational database system (such as Access or SQL Server) is a logical
next step for the analyst who faces an ever‐increasing data pool. Database
systems don’t usually have performance implications with large amounts of
stored data, and are built to address large volumes of data. An analyst can
then handle larger datasets without requiring the data to be summarized or
prepared to fit into Excel. Also, if a process ever becomes more crucial to the
organization and needs to be tracked in a more enterprise‐acceptable envi-
ronment, it will be easier to upgrade and scale up if that process is already in
a relational database system.

Transparency of analytical processes
One of Excel’s most attractive features is its flexibility. Each individual cell
can contain text, a number, a formula, or practically anything else the cus-
tomer defines. Indeed, this is one of the fundamental reasons that Excel is an
effective tool for data analysis. Customers can use named ranges, formulas,
and macros to create an intricate system of interlocking calculations, linked
cells, and formatted summaries that work together to create a final analysis.

So what is the problem? The problem is that there is no transparency of ana-
lytical processes. It is extremely difficult to determine what is actually going
on in a spreadsheet. Anyone who has had to work with a spreadsheet created
by someone else knows all too well the frustration that comes with decipher-
ing the various gyrations of calculations and links being used to perform
analysis. Small spreadsheets that are performing modest analysis are painful
to decipher, and large, elaborate, multi‐worksheet workbooks are virtually
impossible to decode, often leaving you to start from scratch.

Compared to Excel, database systems might seem rigid, strict, and unwaver-
ing in their rules. However, all this rigidity comes with a benefit.

Because only certain actions are allowable, you can more easily come to
understand what is being done within structured database objects such
as queries or stored procedures. If a dataset is being edited, a number is
being calculated, or any portion of the dataset is being affected as part of an

12 Part I: Supercharged Reporting with Power Pivot �

analytical process, you can readily see that action by reviewing the query
syntax or the stored procedure code. Indeed, in a relational database system,
you never encounter hidden formulas, hidden cells, or dead named ranges.

Separation of data and presentation
Data should be separate from presentation; you don’t want the data to
become too tied into any particular way of presenting it. For example, when
you receive an invoice from a company, you don’t assume that the financial
data on that invoice is the true source of your data. It is a presentation of your
data. It can be presented to you in other manners and styles on charts or on
websites, but such representations are never the actual source of the data.

What exactly does this concept have to do with Excel? People who perform
data analysis with Excel tend, more often than not, to fuse the data, the analy-
sis, and the presentation. For example, you often see an Excel workbook that
has 12 worksheets, each representing a month. On each worksheet, data for
that month is listed along with formulas, pivot tables, and summaries. What
happens when you’re asked to provide a summary by quarter? Do you add
more formulas and worksheets to consolidate the data on each of the month
worksheets? The fundamental problem in this scenario is that the work-
sheets actually represent data values that are fused into the presentation of
the analysis.

The point being made here is that data should not be tied to a particular
presentation, no matter how apparently logical or useful it may be. However,
in Excel, it happens all the time.

In addition, as discussed earlier in this chapter, because all manners and
phases of analysis can be done directly within a spreadsheet, Excel cannot
effectively provide adequate transparency to the analysis. Each cell has the
potential to hold formulas, be hidden, and contain links to other cells. In
Excel, this blurs the line between analysis and data, which makes it difficult
to determine exactly what is going on in a spreadsheet. Moreover, it takes a
great deal of effort in the way of manual maintenance to ensure that edits and
unforeseen changes don’t affect previous analyses.

Relational database systems inherently separate analytical components into
tables, queries, and reports. By separating these elements, databases make
data less sensitive to changes and create a data analysis environment in
which you can easily respond to new requests for analysis without destroy-
ing previous analyses.

13� Chapter 1: Thinking Like a Database

You may find that you manipulate Excel’s functionalities to approximate this
database behavior. If so, you must consider that if you’re using Excel’s func-
tionality to make it behave like a database application, perhaps the real thing
just might have something to offer. Utilizing databases for data storage and
analytical needs would enhance overall data analysis and would allow Excel
power‐customers to focus on the presentation in their spreadsheets.

In these days of big data, customers demand more, not less, complex data
analysis. Excel analysts will need to add tools to their repertoires to avoid
being simply “spreadsheet mechanics.” Excel can be stretched to do just
about anything, but maintaining such creative solutions can be a tedious
manual task. You can be sure that the sexy aspect of data analysis does not
lie in the routine data management within Excel; rather, it lies in leveraging BI
Tools such as providing clients with the best solution for any situation.

Getting to Know Database Terminology
The terms database, table, record, field, and value indicate a hierarchy from
largest to smallest. These same terms are used with virtually all database
systems, so you should learn them well.

Databases
Generally, the word database is a computer term for a collection of informa-
tion concerning a certain topic or business application. A database helps
you organize this related information in a logical fashion for easy access and
retrieval. Certain older database systems used the term database to describe
individual tables. The current use of database applies to all elements of a
database system.

Databases aren’t only for computers. Manual databases are sometimes
referred to as manual filing systems or manual database systems. These filing
systems usually consist of people, papers, folders, and filing cabinets — paper
is the key to a manual database system. In a real‐life manual database system,
you probably have in‐baskets and out‐baskets and some type of formal filing
method. You access information manually by opening a file cabinet, removing
a file folder, and finding the correct piece of paper. Customers fill out paper
forms for input, perhaps by using a keyboard to input information that is
printed on forms. You find information by manually sorting the papers or by
copying information from many papers to another piece of paper (or even
into an Excel spreadsheet). You may use a spreadsheet or calculator to ana-
lyze the data or display it in new and interesting ways.

14 Part I: Supercharged Reporting with Power Pivot �

Tables
A database stores information in a carefully defined structure known as a
table. A table is just a container for raw information (called data), similar to
a folder in a manual filing system. Each table in a database contains infor-
mation about a single entity, such as a person or product, and the data in
the table is organized into rows and columns. A relational database system
stores data in related tables. For example, a table containing employee data
(names and addresses) may be related to a table containing payroll informa-
tion (pay date, pay amount, and check number).

To use database wording, a table is an object. As you design and work with
databases, it’s important to see each table as a unique entity and to see how
each table relates to the other objects in the database.

In most database systems, you can view the contents of a table in a
spreadsheet‐like form called a datasheet, composed of rows and columns
(known as records and fields, respectively — see the following section).
Although a datasheet and a spreadsheet are superficially similar, a datasheet
is quite a different type of object. You typically cannot make changes or add
calculations directly within a table. Your interaction with tables will primarily
come in the form of queries or views — see the later section “Queries”).

Records, fields, and values
A database table is divided into rows (called records) and columns (called
fields), with the first row (the heading on top of each column) containing the
names of the fields in the database.

Each row is a single record containing fields that are related to that record.
In a manual system, the rows are individual forms (sheets of paper), and the
fields are equivalent to the blank areas on a printed form that you fill in.

Each column is a field that includes many properties specifying the type
of data contained within the field and how the database should handle the
field’s data. These properties include the name of the field (Company) and
the type of data in the field (Text). A field may include other properties as
well. For example, the Address field’s Size property tells the database the
maximum number of characters allowed for the address.

At the intersection of a record and a field is a value — the actual data ele-
ment. For example, in a field named Company, a company name entered into
that field would represent one data value.

15� Chapter 1: Thinking Like a Database

When working with Microsoft Access, the term field is used to refer to an
attribute stored in a record. In many other database systems, including SQL
Server, column is the expression you hear most often in place of field — field
and column mean the same thing. The exact terminology that’s used relies
somewhat on the context of the database system underlying the table con-
taining the record.

Queries
Most relational database systems allow the creation of queries (sometimes
called views). A query extracts information from the tables in the database;
a query selects and defines a group of records that fulfill a certain condition.
Most database outputs are based on queries that combine, filter, or sort data
before it’s displayed. Queries are often called from other database objects,
such as stored procedures, macros, or code modules. In addition to extract-
ing data from tables, queries can be used to change, add, or delete data-
base records.

An example of a query is when a person at the sales office tells the database,
“Show me all customers, in alphabetical order by name, who are located
in Massachusetts and who made a purchase over the past six months.” Or
“Show me all customers who bought Chevrolet car models within the past six
months, and display them sorted by customer name and then by sale date.”

Rather than ask the question using English words, a person uses a special
syntax, such as Structured Query Language (or SQL), to communicate to the
database what the query will need to do.

Understanding Relationships
After you understand the basic terminology of databases, it’s time to focus
on one of their more useful features: A relationship is the mechanism by
which separate tables are related to each other. You can think of a relation-
ship as a VLOOKUP, in which you relate the data in one data range to the
data in another data range using an index or a unique identifier. In databases,
relationships do the same thing, but without the hassle of writing formulas.

Relationships are important because most of the data you work with fits into
a multidimensional hierarchy of sorts. For example, you may have a table
showing customers who buy products. These customers require invoices
that have invoice numbers. Those invoices have multiple lines of transac-
tions listing what they bought. A hierarchy exists there.

16 Part I: Supercharged Reporting with Power Pivot �

Now, in the one‐dimensional spreadsheet world, this data typically would be
stored in a flat table, like the one shown in Figure 1‐1.

Because customers have more than one invoice, the customer information
(in this example, CustomerID and CustomerName) has to be repeated. This
causes a problem when that data needs to be updated.

For example, imagine that the name of the company Aaron Fitz Electrical
changes to Fitz and Sons Electrical. Looking at Figure 1‐1, you see that mul-
tiple rows contain the old name. You would have to ensure that every row
containing the old company name is updated to reflect the change. Any rows
you miss will not correctly map back to the right customer.

Wouldn’t it be more logical and efficient to record the name and information
of the customer only one time? Then, rather than have to write the same cus-
tomer information repeatedly, you could simply have some form of customer
reference number.

This is the idea behind relationships. You can separate customers from
invoices, placing each in their own tables. Then you can use a unique identi-
fier (such as CustomerID) to relate them together.

Figure 1‐2 illustrates how this data would look in a relational database. The
data would be split into three separate tables: Customers, InvoiceHeader,
and InvoiceDetails. Each table would then be related using unique identifiers
(CustomerID and InvoiceNumber, in this case).

Figure 1-1:
Data is

stored in an
Excel

spreadsheet
using a flat‐

table format.

17� Chapter 1: Thinking Like a Database

The Customers table would contain a unique record for each customer. That
way, if you need to change a customer’s name, you would need to make the
change in only that record. Of course, in real life, the Customers table would
include other attributes, such as customer address, customer phone number,
and customer start date. Any of these other attributes could also be easily
stored and managed in the Customers table.

The most common relationship type is a one‐to‐many relationship. That is,
for each record in one table, one record can be matched to many records in
a separate table. For example, an invoice header table is related to an invoice
detail table. The invoice header table has a unique identifier: Invoice Number.
The invoice detail will use the Invoice Number for every record representing
a detail of that particular invoice.

Another kind of relationship type is the one‐to‐one relationship: For each
record in one table, one and only one matching record is in a different table.
Data from different tables in a one‐to‐one relationship can technically be
combined into a single table.

Finally, in a many‐to‐many relationship, records in both tables can have any
number of matching records in the other table. For instance, a database at a
bank may have a table of the various types of loans (home loan, car loan, and
so on) and a table of customers. A customer can have many types of loans.
Meanwhile, each type of loan can be granted to many customers.

If your head is spinning from all this database talk, don’t worry. You don’t
need to be an expert database modeler to use Power Pivot. But it’s important
to understand these concepts. The better you understand how data is stored
and managed in databases, the more effectively you’ll leverage Power Pivot
for reporting.

Figure 1-2:
Databases

use relation-
ships to

store data in
unique

tables and
simply

relate these
tables to

each other.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

Introducing Power Pivot
In This Chapter

▶▶ Getting to know the Internal Data Model

▶▶ Activating the Power Pivot add‐in

▶▶ Linking to Excel data

▶▶ Managing relationships

O
ver the past decade or so, corporate managers, eager to turn impos-
sible amounts of data into useful information, drove the business

intelligence (BI) industry to innovate new ways of synthesizing data into
meaningful insights. During this period, organizations spent lots of time and
money implementing big enterprise reporting systems to help keep up with
the hunger for data analytics and dashboards.

Recognizing the importance of the BI revolution and the place that Excel
holds within it, Microsoft proceeded to make substantial investments in
improving Excel’s BI capabilities. It specifically focused on Excel’s self‐service
BI capabilities and its ability to better manage and analyze information from
the increasing number of available data sources.

The key product of that endeavor was essentially Power Pivot (introduced in
Excel 2010 as an add‐In). With Power Pivot came the ability to set up relation-
ships between large, disparate data sources. For the first time, Excel analysts
were able to add a relational view to their reporting without the use of prob-
lematic functions such as VLOOKUPS. The ability to merge data sources with
hundreds of thousands of rows into one analytical engine within Excel was
groundbreaking.

With the release of Excel 2016, Microsoft incorporated Power Pivot directly
into Excel. The powerful capabilities of Power Pivot are available out
of the box!

In this chapter, you get an overview of those capabilities by exploring the key
features, benefits, and capabilities of Power Pivot.

20 Part I: Supercharged Reporting with Power Pivot �

Understanding the Power Pivot
Internal Data Model

At its core, Power Pivot is essentially a SQL Server Analysis Services engine
made available by way of an in‐memory process that runs directly within
Excel. Its technical name is the xVelocity analytics engine. However, in Excel,
it’s referred to as the Internal Data Model.

Every Excel workbook contains an Internal Data Model, a single instance of
the Power Pivot in‐memory engine. The most effective way to interact with
the Internal Data Model is to use the Power Pivot Ribbon interface, which
becomes available when you activate the Power Pivot Add‐In.

The Power Pivot Ribbon interface exposes the full set of functionality you
don’t get with the standard Excel Data tab. Here are a few examples of func-
tionality available with the Power Pivot interface:

✓✓ You can browse, edit, filter, and apply custom sorting to data.

✓✓ You can create custom calculated columns that apply to all rows in the
data import.

✓✓ You can define a default number format to use when the field appears in
a pivot table.

✓✓ You can easily configure relationships via the handy Graphical
Diagram view.

✓✓ You can choose to prevent certain fields from appearing in the Pivot
Table Field List.

As with everything else in Excel, the Internal Data Model does have limita-
tions. Most Excel users will not likely hit these limitations, because Power
Pivot’s compression algorithm is typically able to shrink imported data to
about one‐tenth its original size. For example, a 100MB text file would take up
only approximately 10MB in the Internal Data Model.

Nevertheless, it’s important to understand the maximum and configurable
limits for Power Pivot Data Models. Table 2‐1 highlights them.

21� Chapter 2: Introducing Power Pivot

Table 2-1	 Limitations of the Internal Data Model
Object Specification
Data model size In 32‐bit environments, Excel workbooks are sub­

ject to a 2GB limit. This includes the in‐memory
space shared by Excel, the Internal Data Model,
and add‐ins that run in the same process.
In 64‐bit environments, there are no hard limits
on file size. Workbook size is limited only by
available memory and system resources.

Number of tables in the data
model

No hard limits exist on the count of tables.
However, all tables in the data model cannot
exceed 2,147,483,647 bytes.

Number of rows in each table
in the data model

1,999,999,997

Number of columns and calcu­
lated columns in each table in
the data model

The number cannot exceed 2,147,483,647 bytes.

Number of distinct values in a
column

1,999,999,997

Characters in a column name 100 characters

String length in each field It’s limited to 536,870,912 bytes (512MB),
equivalent to 268,435,456 Unicode characters
(256 mega‐characters).

Data model size In 32‐bit environments, Excel workbooks are sub­
ject to a 2GB limit. This includes the in‐memory
space shared by Excel, the Internal Data Model,
and add‐ins that run in the same process. In
64‐bit environments, no hard limits on file size
exist. Workbook size is limited only by available
memory and system resources.

Number of tables in the data
model

No hard limits exist on the count of tables.
However, all tables in the data model cannot
exceed 2,147,483,647 bytes.

Number of rows in each table
in the data model

1,999,999,997

Number of columns and calcu­
lated columns in each table in
the data model

The number cannot exceed 2,147,483,647 bytes.

Number of distinct values in a
column

1,999,999,997

(continued)

22 Part I: Supercharged Reporting with Power Pivot �

Activating the Power Pivot Add‐In
As mentioned earlier in this chapter, the Power Pivot Ribbon interface is
available only when you activate the Power Pivot Add‐In. The Power Pivot
Add‐In does not install with every edition of Office. For example, if you have
Office Home Edition, you cannot see or activate the Power Pivot Add‐In and
therefore cannot have access to the Power Pivot Ribbon interface.

As of this writing, the Power Pivot Add‐In is available to you only if you have
one of these editions of Office or Excel:

✓✓ Office 2013 or 2016 Professional Plus: Available only through
volume licensing

✓✓ Office 365 Pro Plus: Available with an ongoing subscription to
Office365.com

✓✓ Excel 2013 or Excel 2016 Stand‐alone Edition: Available for purchase
via any retailer

If you have any of these editions, you can activate the Power Pivot add‐in by
following these steps:

1.	Open Excel and look for the Power Pivot tab on the Ribbon.

If you see the tab, the Power Pivot add‐in is already activated. You can
skip the remaining steps.

2.	Go to the Excel Ribbon and choose File ➪ Options.

3.	Choose the Add‐Ins option on the left, and then look at the bottom
of the dialog box for the Manage drop‐down list. Select COM Add‐Ins
from that list, and then click Go.

Table 2-1 (continued)
Object Specification

Characters in a column name 100 characters

String length in each field It’s limited to 536,870,912 bytes (512MB),
equivalent to 268,435,456 Unicode characters
(256 mega‐characters).

Data model size In 32‐bit environments, Excel workbooks are sub­
ject to a 2GB limit. This includes the in‐memory
space shared by Excel, the Internal Data Model,
and add‐ins that run in the same process.

23� Chapter 2: Introducing Power Pivot

4.	Look for Microsoft Office Power Pivot for Excel in the list of available
COM add‐ins, and select the check box next to this option. Click OK.

5.	If the Power Pivot tab does not appear in the Ribbon, close Excel
and restart.

After installing the add‐in, you should see the Power Pivot tab on the Excel
Ribbon, as shown in Figure 2‐1.

Figure 2-1:
When the

add‐in has
been acti­
vated, you
see a new

Power Pivot
tab on the

Ribbon.

A word on compatibility
Since Excel 2010 was released, Microsoft has
made several versions of the Power Pivot add‐
in available for download. Starting with Excel
2013, the add‐in has been included out of the
box with Excel. The bottom line is that differ­
ent versions of Power Pivot are now being
used, each designed to work with different ver­
sions of Excel. This situation obviously leads to
some compatibility considerations you should
be aware of.

You have to be careful when sharing Power
Pivot workbooks in environments where some
members of your audience are using earlier
versions of Excel (Excel 2010, for example)

and others are using later versions of Excel.
Opening and refreshing a workbook that con­
tains a Power Pivot model created with an
older version of the Power Pivot add‐in triggers
an automatic upgrade of the underlying model.
After this happens, users with older versions of
the add‐in can no longer use the workbook.

As a general rule, Power Pivot workbooks cre­
ated in a version of Excel that is equal to or less
than your version should give you no problems.
However, you cannot use Power Pivot work­
books created in a version of Excel greater than
your version.

24 Part I: Supercharged Reporting with Power Pivot �

Linking Excel Tables to Power Pivot
The first step in using Power Pivot is to fill it with data. You can either import
data from external data sources or link to Excel tables in your current work-
book. I cover importing data from external data sources in Chapter 3. For
now, let me start this walkthrough by showing you how to link three Excel
tables to Power Pivot.

You can find the sample file for this chapter on this book’s companion web-
site at www.dummies.com/go/excelpowerpivotpowerqueryfd in the
workbook named Chapter 2 Samples.xlsx.

In this scenario, you have three data sets in three different worksheets:
Customers, InvoiceHeader, and InvoiceDetails (see Figure 2‐2).

The Customers data set contains basic information, such as CustomerID,
Customer Name, and Address. The InvoiceHeader data set contains data that
points specific invoices to specific customers. The InvoiceDetails data set
contains the specifics of each invoice.

To analyze revenue by customer and month, it’s clear that you first need to
somehow join these three tables together. In the past, you would have to go
through a series of gyrations involving VLOOKUP or other clever formulas.
But with Power Pivot, you can build these relationships in just a few clicks.

Figure 2-2:
You want to
use Power

Pivot to
analyze the
data in the

Customers,
Invoice­

Header, and
Invoice­

Details
worksheets.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd

25� Chapter 2: Introducing Power Pivot

Preparing Excel tables
When linking Excel data to Power Pivot, best practice is to first convert the
Excel data to explicitly named tables. Although not technically necessary,
giving tables friendly names helps track and manage your data in the Power
Pivot data model. If you don’t convert your data to tables first, Excel does it
for you and gives your tables useless names like Table1, Table2, and so on.

Follow these steps to convert each data set into an Excel table:

1.	Go to the Customers tab and click anywhere inside the data range.

2.	Press Ctrl+T on the keyboard.

This step opens the Create Table dialog box, shown in Figure 2‐3.

3.	In the Create Table dialog box, ensure that the range for the table
is correct and that the My Table Has Headers check box is selected.
Click the OK button.

You should now see the Table Tools Design tab on the Ribbon.

4.	Click the Table Tools Design tab, and use the Table Name input to give
your table a friendly name, as shown in Figure 2‐4.

This step ensures that you can recognize the table when adding it to the
Internal Data Model.

5.	Repeat Steps 1 through 4 for the Invoice Header and Invoice Details
data sets.

Figure 2-3:
Convert the
data range

into an
Excel table.

Figure 2-4:
Give your

newly cre­
ated Excel

table a
friendly

name.

26 Part I: Supercharged Reporting with Power Pivot �

Adding Excel Tables to the data model
After you convert your data to Excel tables, you’re ready to add them to the
Power Pivot data model. Follow these steps to add the newly created Excel
tables to the data model using the Power Pivot tab:

1.	Place the cursor anywhere inside the Customers Excel table.

2.	Go to the Power Pivot tab on the Ribbon and click the Add to Data
Model command.

Power Pivot creates a copy of the table and opens the Power Pivot window,
shown in Figure 2‐5.

Although the Power Pivot window looks like Excel, it’s a separate program
altogether. Notice that the grid for the Customers table has no row or column
references. Also notice that you cannot edit the data within the table. This
data is simply a snapshot of the Excel table you imported.

Additionally, if you look at the Windows taskbar at the bottom of the screen,
you can see that Power Pivot has a separate window from Excel. You can
switch between Excel and the Power Pivot window by clicking each respec-
tive program on the taskbar.

Repeat Steps 1 and 2 in the preceding list for your other Excel tables: Invoice
Header, Invoice Details. After you’ve imported all your Excel tables into the
data model, the Power Pivot window will show each dataset on its own tab,
as shown in Figure 2‐6.

Figure 2-5:
The Power

Pivot
window

shows all
the data that

exists in
your data

model.

27� Chapter 2: Introducing Power Pivot

The tabs in the Power Pivot window shown in Figure 2‐6 have a Hyperlink
icon next to the tab names, indicating that the data contained in the tab is a
linked Excel table. Even though the data is a snapshot of the data at the time
you added it, the data automatically updates whenever you edit the source
table in Excel.

Creating relationships between
Power Pivot tables
At this point, Power Pivot knows that you have three tables in the data model
but has no idea how the tables relate to one another. You connect these
tables by defining relationships between the Customers, Invoice Details, and
Invoice Header tables. You can do so directly within the Power Pivot window.

If you’ve inadvertently closed the Power Pivot window, you can easily reopen
it by clicking the Manage command button on the Power Pivot Ribbon tab.

Follow these steps to create relationships between your tables:

1.	Activate the Power Pivot window and click the Diagram View com-
mand button on the Home tab.

The Power Pivot screen you see shows a visual representation of all
tables in the data model, as shown in Figure 2‐7.

You can move the tables in Diagram view by simply clicking and
dragging them.

Figure 2-6:
Each table
you add to

the data
model is

placed on
its own tab

in Power
Pivot.

28 Part I: Supercharged Reporting with Power Pivot �

The idea is to identify the primary index keys in each table and connect
them. In this scenario, the Customers table and the Invoice Header table
can be connected using the CustomerID field. The Invoice Header and
Invoice Details tables can be connected using the InvoiceNumber field.

2.	Click and drag a line from the CustomerID field in the Customers table
to the CustomerID field in the Invoice Header table, as demonstrated
in Figure 2‐8.

3.	Click and drag a line from the InvoiceNumber field in the Invoice
Header table to the InvoiceNumber field in the Invoice Details table.

Figure 2-7:
Diagram

view allows
you to see

all tables in
the data

model.

Figure 2-8:
To create a

relationship,
you simply

click and
drag a line

between the
fields in

your tables.

29� Chapter 2: Introducing Power Pivot

At this point, your diagram will look similar to Figure 2‐9. Notice that
Power Pivot shows a line between the tables you just connected. In database
terms, these are referred to as joins.

The joins in Power Pivot are always one‐to‐many joins. This means that when
a table is joined to another, one of the tables has unique records with unique
index numbers, while the other can have many records where index numbers
are duplicated.

A common example, illustrated in Figure 2‐9, is the relationship between
the Customers table and the Invoice Header table. In the Customers table,
you have a unique list of customers, each with its own, unique identifier. No
CustomerID in that table is duplicated. The Invoice header table has many
rows for each CustomerID; each customer can have many invoices.

Notice that the join lines have arrows pointing from a table to another table.
The arrow in these join lines always points to the table that has the dupli-
cated unique index.

To close the diagram and return to seeing the data tables, click the Data View
command in the Power Pivot window.

Managing existing relationships
If you need to edit or delete a relationship between two tables in your data
model, you can do so by following these steps:

1.	Open the Power Pivot window, select the Design tab, and then select
the Manage Relationships command.

Figure 2-9:
When you

create rela­
tionships,

the Power
Pivot

diagram
shows

join lines
between

tables.

30 Part I: Supercharged Reporting with Power Pivot �

2.	In the Manage Relationships dialog box, shown in Figure 2‐10, click
the relationship you want to work with and click Edit or Delete.

3.	If you clicked Edit, the Edit Relationship dialog box appears, as
shown in Figure 2‐11. Use the drop‐down and list box controls on this
form to select the appropriate table and field names to redefine the
relationship.

In Figure 2‐11, you see a graphic of an arrow between the list boxes. The
graphic has an asterisk next to the list box on the left, and a number 1 next to
the list box on the right. The number 1 basically indicates that the model will
use the table listed on the right as the source for a unique primary key.

Figure 2-10:
Use the

Manage
Relation­

ships dialog
box to edit

or delete
existing

relation­
ships.

Figure 2-11:
Use the Edit
Relationship

dialog box
to adjust the

tables and
field names
that define

the selected
relationship.

31� Chapter 2: Introducing Power Pivot

Every relationship must have a field that you designate as the primary key.
Primary key fields are necessary in the data model to prevent aggregation
errors and duplications. In that light, the Excel data model must impose some
strict rules around the primary key.

You cannot have any duplicates or null values in a field being used as the pri-
mary key. So the Customers table (refer to Figure 2‐11) must have all unique
values in the CustomerID field, with no blanks or null values. This is the only
way that Excel can ensure data integrity when joining multiple tables.

At least one of your tables must contain a field that serves as a primary
key — that is, a field that contains only unique values and no blanks.

Using the Power Pivot data
model in reporting
After you define the relationships in your Power Pivot data model, it’s essen-
tially ready for action. In terms of Power Pivot, action means analysis with a
pivot table. In fact, all Power Pivot data is presented through the framework
of pivot tables.

In Chapter 3, you dive deep into the workings of pivot tables. For now, dip
just a toe in and create a simple pivot table from your new Power Pivot
data model:

1.	Activate the Power Pivot window, select the Home tab, and then click
the Pivot Table command button.

2.	Specify whether you want the pivot table placed on a new worksheet
or an existing sheet.

3.	Build out the needed analysis just as you would build out any other
standard pivot table, using the Pivot Field List.

The pivot table shown in Figure 2‐12 contains all tables in the Power Pivot
data model. In this configuration, you essentially have a powerful cross‐table
analytical engine in the form of a familiar pivot table. Here, you can see that
you’re calculating the average unit price by customer.

32 Part I: Supercharged Reporting with Power Pivot �

In the days before Power Pivot, this analysis would have been a bear
to create. You would have had to build VLOOKUP formulas to get from
Customer Number to Invoice Number, and then another set of VLOOKUP
formulas to get from Invoice Numbers to Invoice Details. And after all that
formula building, you still would have had to find a way to aggregate the data
to the average unit price per customer.

Figure 2-12:
You now

have a
Power

Pivot‐driven
pivot table

that
aggregates
across mul­
tiple tables.

Chapter 3

The Pivotal Pivot Table
In This Chapter

▶▶ Getting to know pivot tables

▶▶ Laying out the geography of a pivot table

▶▶ Building your first pivot table

▶▶ Creating top and bottom reports

▶▶ Understanding, creating, and formatting slicers

▶▶ Sprucing up slicers with customization

▶▶ Controlling multiple pivot tables with slicers

▶▶ Using timeline slicers

W
hen creating Power Pivot data models, you will have to use some
form of pivot table structure to expose the data in those models

available to your audience.

Pivot tables have a reputation for being complicated, but if you’re new to
pivot tables, rest easy. This chapter gives you the fundamental understand­
ing you need in order to analyze and report on the data in your Power Pivot
data model. After completing this introduction, you’ll be pleasantly surprised
at how easy it is to create and use pivot tables.

You can find the sample files for this chapter on this book’s companion website
at www.dummies.com/go/excelpowerpivotpowerqueryfd in the work­
books named Chapter 3 Samples.xlsx and Chapter 3 Slicers.xlsx.

Introducing the Pivot Table
A pivot table is a robust tool that allows you to create an interactive view
of your dataset, commonly referred to as a pivot table report. With a pivot
table report, you can quickly and easily categorize your data into groups,

http://www.dummies.com/go/excelpowerpivotpowerqueryfd

34 Part I: Supercharged Reporting with Power Pivot �

summarize large amounts of data into meaningful analyses, and interactively
perform a wide variety of calculations.

Pivot tables get their name from the way they allow you to drag and drop
fields within the pivot table report to dynamically change (or pivot) perspec­
tive and give you an entirely new analysis using the same data source.

Think of a pivot table as an object you can point at your dataset. When you
look at your dataset through a pivot table, you can see your data from differ­
ent perspectives. The dataset itself doesn’t change, and it’s not connected to
the pivot table. The pivot table is simply a tool you’re using to dynamically
change analyses, apply varying calculations, and interactively drill down to
the detail records.

The reason a pivot table is so well suited for reporting is that you can refresh
the analyses shown through the pivot table by simply updating the dataset
that it points to. You can set up the analysis and presentation layers only
one time; then, to refresh the reporting mechanism, all you have to do is
click a button.

Let’s start this exploration of pivot tables with a lesson on the anatomy of a
pivot table.

Defining the Four Areas
of a Pivot Table

A pivot table is composed of four areas. The data you place in these areas
defines both the utility and appearance of the pivot table. Take a moment to
understand the function of each of these four areas.

Values area
The values area, as shown in Figure 3‐1, is the large, rectangular area below
and to the right of the column and row headings. In the example in Figure 3‐1,
the values area contains a sum of the values in the Sales Amount field.

The values area calculates and counts data. The data fields that you drag and
drop there are typically those that you want to measure — fields, such as
Sum of Revenue, Count of Units, or Average of Price.

35� Chapter 3: The Pivotal Pivot Table

Row area
The row area is shown in Figure 3‐2. Placing a data field into the row area
displays the unique values from that field down the rows of the left side of
the pivot table. The row area typically has at least one field, although it’s pos­
sible to have no fields.

The types of data fields that you would drop here include those that you
want to group and categorize, such as Products, Names, and Locations.

Values area

Figure 3-1:
The values

area of a
pivot table
calculates

and counts
data.

Row area

Figure 3-2:
The row

area of a
pivot table
gives you

a row‐
oriented

perspective.

36 Part I: Supercharged Reporting with Power Pivot �

Column area
The column area is composed of headings that stretch across the top of
columns in the pivot table.

As you can see in Figure 3‐3, the column area stretches across the top of the
columns. In this example, it contains the unique list of business segments.

Placing a data field into the column area displays the unique values from that
field in a column‐oriented perspective. The column area is ideal for creating a
data matrix or showing trends over time.

Filter area
The filter area is an optional set of one or more drop‐down lists at the top of
the pivot table. In Figure 3‐4, the filter area contains the Region field, and the
pivot table is set to show all regions.

Placing data fields into the filter area allows you to filter the entire pivot table
based on your selections. The types of data fields that you might drop here
include those that you want to isolate and focus on; for example, Region, Line
of Business, and Employees.

Column area

Figure 3-3:
The column

area of a
pivot table

gives you a
column‐
oriented

perspective.

37� Chapter 3: The Pivotal Pivot Table

Creating Your First Pivot Table
Now that you have a good understanding of the basic structure of a pivot
table, it’s time to try your hand at creating your first pivot table.

You can find the sample file for this chapter on this book’s companion website.

Follow these steps:

1.	Click any single cell inside the data source; it’s the table you use to
feed the pivot table.

If you’re following along, the data source would be the table found on
the Sample Data tab.

2.	Select the Insert tab on the Ribbon. Here, find the PivotTable icon,
as shown in Figure 3‐5. Choose PivotTable from the drop‐down list
beneath the icon.

Filter area

Figure 3-4:
The filter

area allows
you to easily
apply filters
to the pivot

table report.

Figure 3-5:
Start a pivot
table via the

Insert tab.

www.allitebooks.com

http://www.allitebooks.org

38 Part I: Supercharged Reporting with Power Pivot �

This step opens the Create PivotTable dialog box, as shown in Figure 3‐6.
As you can see, this dialog box asks you to specify the location of the
source data and the place where you want to put the pivot table.

Notice that in the Create PivotTable dialog box, Excel makes an attempt
to fill in the range of your data for you. In most cases, Excel gets this
right. However, always make sure that the correct range is selected.

Also note in Figure 3‐6 that the default location for a new pivot table is
New Worksheet. This means your pivot table is placed in a new work­
sheet within the current workbook. You can change this by selecting the
Existing Worksheet option and specifying the worksheet where you want
the pivot table placed.

3.	Click OK.

At this point, you have an empty pivot table report on a new worksheet.
Next to the empty pivot table, you see the PivotTable Fields dialog box,
shown in Figure 3‐7.

The idea here is to add the fields you need into the pivot table by
using the four drop zones found in the PivotTable Field List: Filters,
Columns, Rows, and Values. Pleasantly enough, these drop zones cor­
respond to the four areas of the pivot table described at the beginning of
this chapter.

If clicking the pivot table doesn’t open the PivotTable Fields dialog box,
you can manually open it by right‐clicking anywhere inside the pivot
table and selecting Show Field List.

Now, before you go wild and start dropping fields into the various drop
zones, you should ask yourself two questions: “What am I measuring?”
and “How do I want to see it?” The answers to these questions give you
some guidance when determining which fields go where.

Figure 3-6:
The Create
PivotTable
dialog box.

39� Chapter 3: The Pivotal Pivot Table

For your first pivot table report, measure the dollar sales by market.
This automatically tells you that you need to work with the Sales
Amount field and the Market field.

How do you want to see that? You want markets to be listed down the
left side of the report and the sales amount to be calculated next to each
market. Remembering the four areas of the pivot table, you need to add
the Market field to the Rows drop zone and add the Sales Amount field
to the Values drop zone.

4.	Select the Market check box in the list, as shown in Figure 3‐8.

Now that you have regions in the pivot table, it’s time to add the
dollar sales.

5.	Select the Sales Amount check box in the list, as shown in Figure 3‐9.

Selecting a check box that is non‐numeric (text or date) automatically
places that field into the row area of the pivot table. Selecting a check
box that is numeric automatically places that field in the values area of
the pivot table.

What happens if you need fields in the other areas of the pivot table?
Well, rather than select the field’s check box, you can drag any field
directly to the different drop zones.

One more thing: When you add fields to the drop zones, you may find
it difficult to see all the fields in each drop zone. You can expand the
PivotTable Fields dialog box by clicking and dragging the borders of the
dialog box.

Figure 3-7:
The Pivot­

Table Fields
dialog box.

40 Part I: Supercharged Reporting with Power Pivot �

As you can see, you have just analyzed the sales for each market in just five
steps! That’s an amazing feat, considering that you start with more than
60,000 rows of data. With a little formatting, this modest pivot table can
become the starting point for a management report.

Changing and rearranging a pivot table
Now, here’s the wonderful thing about pivot tables: You can add as many
layers of analysis as made possible by the fields in the source data table.

Figure 3-8:
Select the

Market
check box.

Figure 3-9:
Add the

Sales
Amount field
by selecting

its check
box.

41� Chapter 3: The Pivotal Pivot Table

Say that you want to show the dollar sales that each market earned by busi­
ness segment. Because the pivot table already contains the Market and Sales
Amount fields, all you have to add is the Business Segment field.

So, simply click anywhere on the pivot table to reopen the PivotTable Fields
dialog box, and then select the Business Segment check box. Figure 3‐10 illus­
trates what the pivot table should look like now.

If clicking the pivot table doesn’t open the PivotTable Fields dialog box, you
can manually open it by right‐clicking anywhere inside the pivot table and
selecting Show Field List.

Imagine that your manager says that this layout doesn’t work for him. He
wants to see business segments displayed across the top of the pivot table
report. No problem: Simply drag the Business Segment field from the Rows
drop zone to the Columns drop zone. As you can see in Figure 3‐11, this
instantly restructures the pivot table to his specifications.

Adding a report filter
Often, you’re asked to produce reports for one particular region, market, or
product. Rather than work hours and hours building separate reports for
every possible analysis scenario, you can leverage pivot tables to help create
multiple views of the same data. For example, you can do so by creating a
region filter in the pivot table.

Figure 3-10:
Adding a

layer of
analysis is
as easy as
bringing in

another
field.

42 Part I: Supercharged Reporting with Power Pivot �

Click anywhere on the pivot table to reopen the PivotTable Fields dialog box,
and then drag the Region field to the Filters drop zone. This adds a drop‐
down selector to the pivot table, shown in Figure 3‐12. You can then use this
selector to analyze one particular region at a time.

Figure 3-11:
Your

business
segments

are now
column

oriented.

Figure 3-12:
Using pivot

tables to
analyze
regions.

43� Chapter 3: The Pivotal Pivot Table

Keeping the pivot table fresh
In Hollywood, it’s important to stay fresh and relevant. As boring as the pivot
tables may seem, they’ll eventually become the stars of your reports. So it’s
just as important to keep your pivot tables fresh and relevant.

As time goes by, your data may change and grow with newly added rows
and columns. The action of updating your pivot table with these changes is
refreshing your data.

The pivot table report can be refreshed by simply right‐clicking inside the
pivot table report and selecting Refresh, as shown in Figure 3‐13.

Sometimes, you’re the data source that feeds your pivot table changes in
structure. For example, you may have added or deleted rows or columns
from the data table. These types of changes affect the range of the data
source, not just a few data items in the table.

In these cases, performing a simple Refresh of the pivot table won’t do. You
have to update the range being captured by the pivot table. Here’s how:

1.	Click anywhere inside the pivot table to select the PivotTable Tools
context tab on the Ribbon.

2.	Select the Analyze tab on the Ribbon.

3.	Click Change Data Source, as shown in Figure 3‐14.

The Change PivotTable Data Source dialog box appears.

4.	Change the range selection to include any new rows or columns (see
Figure 3‐15).

5.	Click OK to apply the change.

Figure 3-13:
Refreshing

the pivot
table

captures
changes
made to

your data.

44 Part I: Supercharged Reporting with Power Pivot �

Customizing Pivot Table Reports
The pivot tables you create often need to be tweaked to get the look and feel
you’re looking for. In this section, I cover some of the options you can adjust
to customize your pivot tables to suit your reporting needs.

Changing the pivot table layout
Excel gives you a choice in the layout of the data in a pivot table. The three
layouts, shown side by side in Figure 3‐16, are the Compact Form, Outline
Form, and Tabular Form. Although no layout stands out as better than
the others, I prefer using the Tabular Form layout because it seems easi­
est to read and it’s the layout that most people who have seen pivot tables
are used to.

The layout you choose affects not only the look and feel of your reporting
mechanisms but also, possibly, the way you build and interact with any
reporting models based on your pivot tables.

Figure 3-15:
Select the

new range
that feeds

the pivot
table.

Figure 3-14:
Changing
the range
that feeds

the pivot
table.

45� Chapter 3: The Pivotal Pivot Table

Changing the layout of a pivot table is easy. Follow these steps:

1.	Click anywhere inside the pivot table to select the PivotTable Tools
context tab on the Ribbon.

2.	Select the Design tab on the Ribbon.

3.	Click the Report Layout icon and choose the layout you like. See
Figure 3‐17.

Figure 3-16:
The three

layouts for a
pivot table

report.

Figure 3-17:
Changing

the layout of
the pivot

table.

46 Part I: Supercharged Reporting with Power Pivot �

Customizing field names
Notice that every field in the pivot table has a name. The fields in the row,
column, and filter areas inherit their names from the data labels in the
source table. The fields in the values area are given a name, such as Sum of
Sales Amount.

Sometimes you might prefer the name Total Sales instead of the unattractive
default name, such as Sum of Sales Amount. In these situations, the ability to
change your field names is handy. To change a field name, follow these steps:

1.	Right‐click any value within the target field.

For example, if you want to change the name of the field Sum of Sales
Amount, right‐click any value under that field.

2.	Select Value Field Settings, as shown in Figure 3‐18.

The Value Field Settings dialog box appears.

Note that if you were changing the name of a field in the row area or
column area, this selection is Field Settings.

3.	Enter the new name in the Custom Name input box, shown in
Figure 3‐19.

4.	Click OK to apply the change.

If you use the name of the data label used in the source table, you receive
an error. For example, if you rename Sum of Sales Amount as Sales Amount,
you see an error message because there’s already a Sales Amount field in
the source data table. Well, this is kind of lame, especially if Sales Amount is
exactly what you want to name the field in your pivot table.

Figure 3-18:
Right‐click

any value in
the target

field to
select the

Value Field
Settings

option.

47 Chapter 3: The Pivotal Pivot Table

To get around this, you can name the field and add a space to the end of the
name. Excel considers Sales Amount (followed by a space) to be different
from Sales Amount. This way, you can use the name you want and no one will
notice that it’s any different.

Applying numeric formats to data fields
Numbers in pivot tables can be formatted to fit your needs; that is, formatted
as currency, percentage, or number. You can easily control the numeric for­
matting of a field using the Value Field Settings dialog box. Here’s how:

1. Right‐click any value within the target field.

For example, if you want to change the format of the values in the Sales
Amount field, right‐click any value under that field.

2. Select Value Field Settings.

The Value Field Settings dialog box appears.

3. Click the Number Format button.

The Format Cells dialog box opens.

4. Apply the number format you desire, just as you typically would on
your spreadsheet.

5. Click OK to apply the changes.

After you set the formatting for a field, the applied formatting persists,
even if you refresh or rearrange the pivot table.

Figure 3-19:
Use the
Custom

Name input
box to

change the
name of
the field.

48 Part I: Supercharged Reporting with Power Pivot �

Changing summary calculations
When creating the pivot table report, Excel, by default, summarizes your data
by either counting or summing the items. Rather than choose Sum or Count,
you might want to choose functions, such as Average, Min, Max, for exam­
ple. In all, 11 options are available, including

✓✓ Sum: Adds all numeric data.

✓✓ Count: Counts all data items within a given field, including numeric‐,
text‐, and date‐formatted cells.

✓✓ Average: Calculates an average for the target data items.

✓✓ Max: Displays the largest value in the target data items.

✓✓ Min: Displays the smallest value in the target data items.

✓✓ Product: Multiplies all target data items together.

✓✓ Count Nums: Counts only the numeric cells in the target data items.

✓✓ StdDevP and StdDev: Calculates the standard deviation for the target
data items. Use StdDevP if your dataset contains the complete popula­
tion. Use StdDev if your dataset contains a sample of the population.

✓✓ VarP and Var: Calculates the statistical variance for the target data
items. Use VarP if your data contains a complete population. If your
data contains only a sampling of the complete population, use Var to
estimate the variance.

You can easily change the summary calculation for any given field by taking
the following actions:

1.	Right‐click any value within the target field.

2.	Select Value Field Settings.

The Value Field Settings dialog box appears.

3.	Choose the type of calculation you want to use from the list of calcula-
tions. See Figure 3‐20.

4.	Click OK to apply the changes.

Did you know that a single blank cell causes Excel to count instead of sum?
That’s right: If all cells in a column contain numeric data, Excel chooses Sum.
If only one cell is either blank or contains text, Excel chooses Count.

49� Chapter 3: The Pivotal Pivot Table

Be sure to pay attention to the fields that you place into the values area of
the pivot table. If the field name starts with Count Of, Excel is counting the
items in the field instead of summing the values.

Suppressing subtotals
Notice that every time you add a field to the pivot table, Excel adds a sub­
total for that field. At times, however, the inclusion of subtotals either
doesn’t make sense or simply hinders a clear view of the pivot table report.
For example, Figure 3‐21 shows a pivot table in which the subtotals inundate
the report with totals that hide the real data you’re trying to report.

Figure 3-20:
Changing

the type of
summary

calculation
used in
a field.

Figure 3-21:
Subtotals

sometimes
muddle the
data you’re

trying
to show.

50 Part I: Supercharged Reporting with Power Pivot �

Removing all subtotals at one time
You can remove all subtotals at one time by taking these actions:

1.	Click anywhere inside the pivot table to select the PivotTable Tools
context tab on the Ribbon.

2.	Select the Design tab on the Ribbon.

3.	Click the Subtotals icon and select Do Not Show Subtotals, as shown in
Figure 3‐22.

As you can see in Figure 3‐23, the same report without subtotals is much
more pleasant to review.

Figure 3-22:
Use the Do
Not Show
Subtotals
option to

remove all
subtotals at

one time.

Figure 3-23:
The report

shown in
Figure 3‐21,

without
subtotals.

51� Chapter 3: The Pivotal Pivot Table

Removing the subtotals for only one field
Maybe you want to remove the subtotals for only one field? In such a case,
you can take the following actions:

1.	Right‐click any value within the target field.

2.	Select Field Settings.

The Field Settings dialog box appears.

3.	Choose the None option under Subtotals, as shown in Figure 3‐24.

4.	Click OK to apply the changes.

Removing grand totals
In certain instances, you may want to remove the grand totals from the pivot
table. Follow these steps:

1.	Right‐click anywhere on the pivot table.

2.	Select PivotTable Options.

The PivotTable Options dialog box appears.

3.	Click the Totals & Filters tab.

4.	Click the Show Grand Totals for Rows check box to deselect it.

5.	Click the Show Grand Totals for Columns check box to deselect it.

Figure 3-24:
Choose the

None option
to remove

subtotals for
one field.

52 Part I: Supercharged Reporting with Power Pivot �

Showing and hiding data items
A pivot table summarizes and displays all records in a source data table.
In certain situations, however, you may want to inhibit certain data items
from being included in the pivot table summary. In these situations, you can
choose to hide a data item.

In terms of pivot tables, hiding doesn’t mean simply preventing the data item
from being shown on the report. Hiding a data item also prevents it from
being factored into the summary calculations.

In the pivot table illustrated in Figure 3‐25, I show sales amounts for all
business segments by market. In this example, I want to show totals with­
out taking sales from the Bikes segment into consideration. In other words,
I want to hide the Bikes segment.

You can hide the Bikes Business Segment by clicking the Business Segment
drop‐down arrow and deselecting the Bikes check box, as shown in
Figure 3‐26.

After you click OK to close the selection box, the pivot table instantly recal­
culates, leaving out the Bikes segment. As you can see in Figure 3‐27, the
Market total sales now reflect the sales without Bikes.

You can just as quickly reinstate all hidden data items for the field. You
simply click the Business Segment drop‐down arrow and click the Select All
check box, as shown in Figure 3‐28.

Figure 3-25:
To remove

Bikes
from this

analysis . . .

53� Chapter 3: The Pivotal Pivot Table

Hiding or showing items without data
By default, the pivot table shows only data items that have data. This inher­
ent behavior may cause unintended problems for your data analysis.

Look at Figure 3‐29, which shows a pivot table with the SalesPeriod field in
the row area and the Region field in the filter area. Note that the Region field
is set to (All) and that every sales period appears in the report.

Figure 3-27:
The analysis

from
Figure 3‐25,

without
the Bikes
segment.

Figure 3-26:
. . . deselect

the Bikes
check box.

54 Part I: Supercharged Reporting with Power Pivot �

If you choose Europe in the filter area, only a portion of all the sales periods
is shown (see Figure 3‐30). The pivot table shows only those sales periods
that apply to the Europe region.

From a reporting perspective, it isn’t ideal if half the year’s data disappears
every time customers select Europe.

Here’s how you can prevent Excel from hiding pivot items without data:

1.	Right‐click any value within the target field.

In this example, the target field is the SalesPeriod field.

Figure 3-29:
All sales

periods are
showing.

Figure 3-28:
Clicking the

Select All
check box
forces all

data items
in that field
to become
unhidden.

55� Chapter 3: The Pivotal Pivot Table

2.	Select Field Settings.

The Field Settings dialog box appears.

3.	Select the Layout & Print tab in the Field Settings dialog box.

4.	Select the Show Items with No Data option, as shown in Figure 3‐31.

5.	Click OK to apply the change.

Figure 3-31:
Click the

Show Items
with No

Data option
to force
Excel to

display all
data items.

Figure 3-30:
Filtering for
the Europe

region
causes cer­

tain sales
periods to

disappear.

56 Part I: Supercharged Reporting with Power Pivot �

As you can see in Figure 3‐32, after you choose the Show Items with No Data
option, all sales periods appear whether the selected region had sales that
period or not.

Now that you’re confident that the structure of the pivot table is locked, you
can use it to feed charts and other components on your report.

Sorting the pivot table
By default, items in each pivot field are sorted in ascending sequence based
on the item name. Excel gives you the freedom to change the sort order of
the items in the pivot table.

Like many actions you can perform in Excel, you have lots of different ways
to sort data within a pivot table. The easiest way is to apply the sort directly
in the pivot table. Here’s how:

1.	Right‐click any value within the target field — the field you need
to sort.

In the example shown in Figure 3‐33, you want to sort by Sales Amount.

2.	Select Sort and then select the sort direction.

The changes take effect immediately and persist while you work with the
pivot table.

Figure 3-32:
All sales

periods are
now dis­

played, even
if there is no

data to be
shown.

57� Chapter 3: The Pivotal Pivot Table

Understanding Slicers
Slicers allow you to filter your pivot table in a way that’s similar to the way Filter
fields filter a pivot table. The difference is that slicers offer a user‐friendly inter­
face, enabling you to better manage the filter state of your pivot table reports.

As useful as Filter fields are, they have always had a couple of drawbacks.

First of all, Filter fields are not cascading filters — the filters don’t work
together to limit selections when needed. For example, in Figure 3‐34, you
can see that the Region filter is set to the North region. However, the Market
filter still allows you to select markets that are clearly not in the North region
(California, for example). Because the Market filter is not in any way limited
based on the Region Filter field, you have the annoying possibility of select­
ing a market that could yield no data because it’s not in the North region.

Figure 3-34:
Default pivot

table Filter
fields do not

work
together to

limit filter
selections.

Figure 3-33:
Applying a

sort to a
pivot table

field.

58 Part I: Supercharged Reporting with Power Pivot �

Another drawback is that Filter fields don’t provide an easy way to tell what
exactly is being filtered when you select multiple items. In Figure 3‐35, you
can see an example. The Region filter has been limited to three regions:
Midwest, North, and Northeast. However, notice that the Region filter value
shows (Multiple Items). By default, Filter fields show (Multiple Items) when
you select more than one item. The only way to tell what has been selected
is to click the drop‐down menu. You can imagine the confusion on a printed
version of this report, in which you can’t click down to see which data items
make up the numbers on the page.

By contrast, slicers don’t have these issues. Slicers respond to one another.
As you can see in Figure 3‐36, the Market slicer visibly highlights the rel­
evant markets when the North region is selected. The rest of the markets are
muted, signaling that they are not part of the North region.

Figure 3-36:
Slicers work

together to
show you

relevant
data items

based on
your

selection.

Figure 3-35:
Filter fields

show the
phrase

(Multiple
Items)

whenever
multiple

selections
are made.

59� Chapter 3: The Pivotal Pivot Table

When selecting multiple items in a slicer, you can easily see that multiple
items have been chosen. In Figure 3‐37, you can see that the pivot table
is being filtered by the Midwest, North, and Northeast regions. No more
(Multiple Items).

Creating a Standard Slicer
Enough talk. It’s time to create your first slicer. Just follow these steps:

1.	Place the cursor anywhere inside the pivot table, and then go up to
the Ribbon and click the Analyze tab. There, click the Insert Slicer
icon, shown in Figure 3‐38.

This step opens the Insert Slicers dialog box, shown in Figure 3‐39.
Select the dimensions you want to filter. In this example, the Region and
Market slicers are created.

2.	After the slicers are created, simply click the filter values to filter the
pivot table.

As you can see in Figure 3‐40, clicking Midwest in the Region slicer not
only filters the pivot table, but the Market slicer also responds by high­
lighting the markets that belong to the Midwest region.

Figure 3-38:
Inserting a

slicer.

Figure 3-37:
Slicers do a
better job at

displaying
multiple

item
selections.

60 Part I: Supercharged Reporting with Power Pivot �

You can also select multiple values by holding down the Ctrl key on the
keyboard while selecting the needed filters. In Figure 3‐41, I held down
the Ctrl key while selecting Baltimore, California, Charlotte, and Chicago.
This highlights not only the selected markets in the Market slicer but
also their associated regions in the Region slicer.

To clear the filtering on a slicer, simply click the Clear Filter icon on the
target slicer, as shown in Figure 3‐42.

Figure 3-40:
Select the

dimensions
you want fil­
tered using

slicers.

Figure 3-39:
Select the

dimensions
for which
you want

slicers
created.

61� Chapter 3: The Pivotal Pivot Table

Getting Fancy with Slicer Customizations
The following sections cover a few formatting adjustments you can make to
your slicers.

Size and placement
A slicer behaves like a standard Excel shape object in that you can move it
around and adjust its size by clicking it and dragging its position points; see
Figure 3‐43.

You can also right‐click the slicer and select Size and Properties. This brings
up the Format Slicer pane (see Figure 3‐44), allowing you to adjust the size of
the slicer, how the slicer should behave when cells are shifted, and whether
the slicer should appear on a printed copy of your report.

Figure 3-42:
Clearing the

filters on a
slicer.

Figure 3-41:
The fact that
you can see
the current
filter state

gives slicers
a unique

advantage
over Filter

fields.

62 Part I: Supercharged Reporting with Power Pivot �

Data item columns
By default, all slicers are created with one column of data items. You can
change this number by right‐clicking the slicer and selecting Size and
Properties. This opens the Format Slicer pane. Under the Position and Layout
section, you can specify the number of columns in the slicer. Adjusting the
number to 2, as shown in Figure 3‐45, forces the data items to be displayed in
two columns, adjusting the number to 3 forces the data items to be displayed
in three columns, and so on.

Figure 3-44:
The Format
Slicer pane
offers more
control over

how the
slicer

behaves in
relation to
the work­

sheet it’s on.

Figure 3-43:
Adjust the
slicer size

and place­
ment by

dragging its
position

points.

63� Chapter 3: The Pivotal Pivot Table

Miscellaneous slicer settings
Right‐clicking the slicer and selecting Slicer Settings opens the Slicer Settings
dialog box, shown in Figure 3‐46. Using this dialog box, you can control the
look of the slicer’s header, how the slicer is sorted, and how filtered items
are handled.

Controlling Multiple Pivot Tables
with One Slicer

Another advantage you gain with slicers is that each slicer can be tied to
more than one pivot table; that is to say, any filter you apply to your slicer
can be applied to multiple pivot tables.

To connect the slicer to more than one pivot table, simply right‐click the
slicer and select Report Connections. This opens the Report Connections

Figure 3-46:
The Slicer

Settings
dialog box.

Figure 3-45:
Adjust the
Number of

Columns
property to
display the
slicer data

items in
more than

one column.

64 Part I: Supercharged Reporting with Power Pivot �

dialog box, shown in Figure 3‐47. Place a check mark next to any pivot table
that you want to filter using the current slicer.

At this point, any filter you apply to the slicer is applied to all connected
pivot tables. Controlling the filter state of multiple pivot tables is a powerful
feature, especially in reports that run on multiple pivot tables.

Creating a Timeline Slicer
The Timeline slicer works in the same way a standard slicer does, in that it
lets you filter a pivot table using a visual selection mechanism rather than
the old Filter fields. The difference is that the Timeline slicer is designed to
work exclusively with date fields, providing an excellent visual method to
filter and group the dates in the pivot table.

To create a Timeline slicer, the pivot table must contain a field where all data
is formatted as a date. It’s not enough to have a column of data that contains
a few dates. All values in the date field must be a valid date and format­
ted as such.

To create a Timeline slicer, follow these steps:

1.	Place the cursor anywhere inside the pivot table, and then click the
Analyze tab on the Ribbon. There, click the Insert Timeline command,
shown in Figure 3‐48.

Figure 3-48:
Inserting a

Timeline
slicer.

Figure 3-47:
Choose the
pivot tables

to be filtered
by this
slicer.

65� Chapter 3: The Pivotal Pivot Table

The Insert Timelines dialog box, shown in Figure 3‐49, appears, showing
you all available date fields in the chosen pivot table.

2.	In the Insert Timelines dialog box, select the date fields for which you
want to create the timeline.

After the Timeline slicer is created, you can filter the data in the pivot table
and pivot chart, using this dynamic data‐selection mechanism. Figure 3‐50
demonstrates how selecting Mar, Apr, and May in the Timeline slicer auto­
matically filters the pivot chart.

Figure 3-49:
Select the
date fields
for which
you want

slicers
created.

Figure 3-50:
Click a date
selection to

filter the
pivot table

or pivot
chart.

66 Part I: Supercharged Reporting with Power Pivot �

Figure 3‐51 illustrates how you can expand the slicer range with the mouse to
include a wider range of dates in your filtered numbers.

Want to quickly filter the pivot table by quarters? Well, that’s easy with a Timeline
slicer. Simply click the time period drop‐down menu and select Quarters. As you
can see in Figure 3‐52, you can also switch to Years or Days, if needed.

Timeline slicers are not backward compatible; they are usable only in Excel
2013 and Excel 2016. If you open a workbook with Timeline slicers in Excel
2010 or previous versions, the Timeline slicers are disabled.

Figure 3-52:
Quickly
switch
among

Quarters,
Years,

Months, and
Days.

Figure 3-51:
You can

expand the
range on the

Timeline
slicer to
include

more data in
the filtered

numbers.

Chapter 4

Using External Data
with Power Pivot

In This Chapter
▶▶ Importing from relational databases

▶▶ Importing from flat files

▶▶ Importing data from other data sources

▶▶ Refreshing and managing external data connections

I
n Chapter 2, I start an exploration of Power Pivot by showing you how to
load the data already contained within the workbook you’re working on.

But as you discover in this chapter, you’re not limited to using only the data
that already exists in your Excel workbook.

Power Pivot has the ability to reach outside the workbook and import data
found in external data sources. Indeed, what makes Power Pivot powerful is
its ability to consolidate data from disparate data sources and build relation-
ships between them. You can theoretically create a Power Pivot data model
that contains some data from a SQL Server table, some data from a Microsoft
Access database, and even data from a one‐off text file.

In this chapter, I help you continue your journey by taking a closer look at
the mechanics of importing external data into your Power Pivot data models.

This chapter has no associated sample file. But don’t worry: You can easily
translate the information found here to your own data sources.

Loading Data from Relational Databases
One of the more common data sources used by Excel analysts is the relational
database. It’s not difficult to find an analyst who frequently uses data from
Microsoft Access, SQL Server, or Oracle databases. In this section, I walk you
through the steps for loading data from external database systems.

68 Part I: Supercharged Reporting with Power Pivot �

Loading data from SQL Server
SQL Server databases are some of the most commonly used for the stor-
ing of enterprise‐level data. Most SQL Server databases are managed and
maintained by the IT department. To connect to a SQL Server database, you
have to work with your IT department to obtain Read access to the database
you’re trying to pull from.

After you have access to the database, open the Power Pivot window and
click the From Other Sources command button on the Home tab. This opens
the Table Import Wizard dialog box, shown in Figure 4‐1. There, select the
Microsoft SQL Server option and then click the Next button.

The Table Import Wizard now asks for all the information it needs to connect
to your database (see Figure 4‐2). On this screen, you need to provide the
information for the options described in this list:

✓✓ Friendly Connection Name: The Friendly Name field allows you to spec-
ify your own name for the external source. You typically enter a name
that is descriptive and easy to read.

✓✓ Server Name: This is the name of the server that contains the database
you’re trying to connect to. You get this from your IT department when
you gain access. (Your server name will be different from the one shown
in Figure 4‐2.)

Figure 4-1:
Open the

Table Import
Wizard and

select
Microsoft

SQL Server.

69� Chapter 4: Using External Data with Power Pivot

✓✓ Log On to the Server: These are your login credentials. Depending on
how your IT department gives you access, you select either Windows
Authentication or SQL Server Authentication. Windows Authentication
essentially means that the server recognizes you by your windows
login. SQL Server Authentication means that the IT department created
a distinct username and password for you. If you’re using SQL Server
Authentication, you need to provide a username and password.

✓✓ Save My Password: You can select the check box next to Save My
Password if you want your username and password to be stored in the
workbook. Your connections can then remain refreshable when being
used by other people. This option obviously has security consider-
ations, because anyone can view the connection properties and see
your username and password. You should use this option only if your IT
department has set you up with an application account (an account cre-
ated specifically to be used by multiple people).

✓✓ Database Name: Every SQL Server can contain multiple databases. Enter
the name of the database you’re connecting to. You can get it from your
IT department whenever someone gives you access.

After you enter all the pertinent information, click the Next button to see the
next screen, shown in Figure 4‐3. You have the choice of selecting from a list
of tables and views or writing your own custom query using SQL syntax. In
most cases, you choose the option to select from a list of tables.

Figure 4-2:
Provide the

basic
information

needed to
connect to
the target
database.

70 Part I: Supercharged Reporting with Power Pivot �

The Table Import Wizard reads the database and shows you a list of all avail-
able tables and views (see Figure 4‐4). Tables have an icon that looks like a
grid, and views have an icon that looks like a box on top of another box.

The idea is to place a check mark next to the tables and views you want to
import. In Figure 4‐4, note the check mark next to the FactInternetSales table.
The Friendly Name column allows you to enter a new name that will be used
to reference the table in Power Pivot.

Figure 4-3:
Choose to

select from
a list of

tables and
views.

Figure 4-4:
The Table

Import
Wizard

offers up a
list of tables

and views.

71� Chapter 4: Using External Data with Power Pivot

In Figure 4‐4, you see the Select Related Tables button. After you select one
or more tables, you can click this button to tell Power Pivot to scan for,
and automatically select, any other tables that have a relationship with the
table(s) you’ve already selected. This feature is handy to have when sourcing
large databases with dozens of tables.

Importing a table imports all columns and records for that table. This can
have an impact on the size and performance of your Power Pivot data model.
You will often find that you need only a handful of the columns from the
tables you import. In these cases, you can use the Preview & Filter button.

Importing tables versus importing views
You may recall from reading Chapter 1 that
views are query objects that are built to extract
subsets of data from database tables based on
certain predefined conditions. (That’s a mouth-
ful!) Views are typically created by someone
familiar with the database as a kind of canned
reporting mechanism that outputs a ready‐to‐
use data set.

There are pros and cons to importing tables
versus views.

Tables come with the benefit of defined rela-
tionships. When you import tables, Power Pivot
can recognize the relationships between the
tables and automatically duplicate the relation-
ships in the data model. Tables are also more
transparent, allowing you to see all the raw
unfiltered data. However, when you import
tables, you have to have some level of under-
standing of the database schema and how the
values within the tables are utilized in context
of the organization’s business rules. In addi-
tion, importing a table imports all the columns
and records; whether you need them or not. To
keep the size of your Power Pivot data model
manageable, this often forces you to take the
extra step of explicitly filtering out the columns
you don’t need.

Views are often cleaner data sets because they
are already optimized to include only the col-
umns and data that are necessary. In addition,
you don’t need to have an intimate knowledge of
the database schema. Someone with that knowl-
edge has already done the work for you — joined
the correct tables, applied the appropriate busi-
ness rules, and optimized output, for example.
What you lose with views, however, is the abil-
ity for Power Pivot to automatically recognize
and build relationships within the data model.
Also, if you don’t have the rights to open the
views in Design mode, you lose transparency
because you cannot see exactly what the view
is doing to come up with its final output.

In terms of which is better to use — tables or
views — it’s generally considered a best prac-
tice to use views whenever possible. They
not only provide you with cleaner, more user‐
friendly data but can also help streamline your
Power Pivot data model by limiting the amount
of data you import. Regardless, using tables is
by no means frowned upon and is often the only
option because of the lack of database rights or
availability of predefined views. You will even
find yourself importing both tables and views
from the same database.

72 Part I: Supercharged Reporting with Power Pivot �

Click the table name to highlight it in blue (refer to Figure 4‐4), and then click
the Preview & Filter button. The Table Import Wizard opens the Preview
Selected Table screen, shown in Figure 4‐5. You can see all columns available
in the table, with a sampling of rows.

Each column header has a check box next to it, indicating that the column
will be imported with the table. Removing the check mark tells Power Pivot
to not include that column in the data model.

You also have the option to filter out certain records. Figure 4‐6 demon-
strates that clicking on the drop‐down arrow for any of the columns opens
a Filter menu that allows you to specify criterion to filter out unwanted
records. This works just like the standard filtering in Excel. You can select
and deselect the data items in the filtered list, or, if there are too many
choices, you can apply a broader criteria by clicking Date Filters above the
list. (If you’re filtering a textual column, it’s Text Filters.)

After you finish selecting your data and applying any needed filters, you can
click the Finish button on the Table Import Wizard to start the import pro-
cess. The import log, shown in Figure 4‐7, shows the progress of the import
and summarizes the import actions taken after completion.

The final step in loading data from SQL Server is to review and create any
needed relationships. Open the Power Pivot window and click the Diagram
View command button on the Home tab. Power Pivot opens the diagram
screen (see Figure 4‐8), where you can view and edit relationships as needed.

Figure 4-5:
The Preview

& Filter
screen

allows you
to filter out

columns you
don’t need.

73� Chapter 4: Using External Data with Power Pivot

Don’t panic if you feel like you’ve botched the column‐and‐record filtering on
your imported Power Pivot table. Simply select the worrisome table in the
Power Pivot window and open the Edit Table Properties dialog box (choose
Design ➪ Table Properties). Note that this dialog box is basically the same
Preview & Filter screen you encounter in the Import Table Wizard (refer to
Figure 4‐5). From here, you can select columns you originally filtered out, edit
record filters, clear filters, or even use a different table/view.

Chapter 2 tells you more about relationships.

Figure 4-6:
Use the

drop‐down
arrows in

each
column to

filter out
unneeded

records.

Figure 4-7:
The last

screen of
the Table

Import
Wizard

shows you
the progress

of your
import

actions.

74 Part I: Supercharged Reporting with Power Pivot �

Loading data from Microsoft
Access databases
Because Microsoft Access has traditionally been made available with the
Microsoft Office suite of applications, Access databases have long been used
by organizations to store and manage mission‐critical departmental data.
Walk into any organization, and you will likely find several Access databases
that contain useful data.

Unlike SQL Server databases, Microsoft Access databases are typically found
on local desktops and directories. This means you can typically import data
from Access without the help of your IT department.

Open the Power Pivot window and click the From Other Sources command
button on the Home tab. This opens the Table Import Wizard dialog box,
shown in Figure 4‐9. Select the Microsoft Access option, and then click the
Next button.

The Table Import Wizard asks for all the information it needs to connect to
your database (see Figure 4‐10).

On this screen, you need to provide the information for these options:

✓✓ Friendly Connection Name: The Friendly Name field allows you to spec-
ify your own name for the external source. You typically enter a name
that is descriptive and easy to read.

✓✓ Database Name: Enter the full path of your target Access database. You
can use the Browse button to search for and select the database you
want to pull from.

Figure 4-8:
Be sure to

review and
create any

needed
relation-

ships.

75� Chapter 4: Using External Data with Power Pivot

✓✓ Log On to the Database: Most Access databases aren’t password pro-
tected. But if you’re connecting one that does require a username and
password, enter your login credentials.

✓✓ Save My Password: You can select the check box next to Save My
Password if you want your username and password to be stored in the
workbook. Then your connections can remain “refreshable” when being
used by other people. Keep in mind that anyone can view the connec-
tion properties and see your username and password.

Figure 4-9:
Open the

Table Import
Wizard and

select
Microsoft

Access.

Figure 4-10:
Provide the

basic
information

needed to
connect to
the target
database.

76 Part I: Supercharged Reporting with Power Pivot �

Because Access databases are essentially desktop files (.mdb or
.accdb), they’re susceptible to being moved, renamed, or deleted. Be
aware that the connections in your workbook are hard coded, so if you
do move, rename, or delete your Access database, you can no longer
connect it.

At this point, you can click the Next button to continue with the Table Import
Wizard. From here on out, the process is virtually identical to importing SQL
Server data, covered in the last section (starting at Figure 4‐3).

Loading data from other relational
database systems
Whether your data lives in Oracle, Dbase, or MySQL, you can load data from
virtually any relational database system. As long as you have the appropri-
ate database drivers installed, you have a way to connect Power Pivot to
your data.

Open the Power Pivot window and click the From Other Sources command
button on the Home tab. This opens the Table Import Wizard dialog box,
shown in Figure 4‐11. The idea is to select the appropriate relational database
system. If you need to import data from Oracle, select Oracle. If you need to
import data from Sybase, select Sybase.

Figure 4-11:
Open the

Table Import
Wizard and
select your

target
relational
database

system.

77� Chapter 4: Using External Data with Power Pivot

Connecting to any of these relational systems takes you through roughly the
same steps as importing SQL Server data, earlier in this chapter. You may
see some alternative dialog boxes based on the needs of the database system
you select.

Understandably, Microsoft cannot possibly create a named connection
option for every database system out there. So you may not find your data-
base system listed. In this case, simply select the Others option (OLEDB/
ODBC). Selecting this option opens the Table Import Wizard, starting with a
screen asking you to enter or paste the connection string for your database
system (see Figure 4‐12).

You may be able to get this connection string from your IT department. If
you’re having trouble finding the correct syntax for your connection string,
you can use the Build button to create the string via a set of dialog boxes.
Pressing the Build button opens the Data Link Properties dialog box, shown
in Figure 4‐13.

Start with the Provider tab, selecting the appropriate driver for your data-
base system. The list you see on your computer will be different from the list
shown in Figure 4‐13. Your list will reflect the drivers you have installed on
your own machine.

Figure 4-12:
Enter the

connection
string

for your
database

system.

78 Part I: Supercharged Reporting with Power Pivot �

After selecting a driver, move through each tab on the Data Link Properties
dialog box and enter the necessary information. When it’s complete, click OK
to return to the Table Import Wizard, where you see the connection string
input box populated with the connection string needed to connect to your
database system (see Figure 4‐14).

Figure 4-13:
Use the

Data Link
Properties
dialog box

to configure
a custom

connection
string

to your
relational
database

system.

Figure 4-14:
The Table

Import
Wizard

displays the
final syntax

for your
connection

string.

79� Chapter 4: Using External Data with Power Pivot

Again, from here on out, the process is virtually identical to importing SQL
Server data, as covered earlier in this chapter (starting at Figure 4‐3).

To connect to any database system, you must have that system’s drivers
installed on your PC. Because SQL Server and Access are Microsoft products,
their drivers are virtually guaranteed to be installed on any PC with Windows
installed. The drivers for other database systems, however, need to be explic-
itly installed — typically, by the IT department either at the time the machine
is loaded with corporate software or upon demand. If you don’t see the
needed drivers for your database system, contact your IT department.

Loading Data from Flat Files
The term flat file refers to a file that contains some form of tabular data with-
out any sort of structural hierarchy or relationship between records. The
most common types of flat files are Excel files and text files. Whether anyone
likes to admit it or not, a ton of important data is maintained in flat files.
In this section, I tell you how to import these flat file data sources into the
Power Pivot data model.

Loading data from external Excel files
In Chapter 2, I show you how to create linked tables by loading Power Pivot
with the data contained within the same workbook. Linked tables have a dis-
tinct advantage over other types of imported data in that they immediately
respond to changes in the source data within the workbook. If you change
the data in one of the tables in the workbook, the linked table within the
Power Pivot data model automatically changes. The real‐time interactiv-
ity you get with linked tables is especially helpful if you’re making frequent
changes to your data.

The drawback to linked tables is that the source data must be stored in the
same workbook as the Power Pivot data model. This isn’t always possible.
You’ll encounter plenty of scenarios where you need to incorporate Excel
data into your analysis, but that data lives in another workbook. In these
cases, you can use Power Pivot’s Table Import Wizard to connect to external
Excel files.

Open the Power Pivot window and click the From Other Sources com-
mand button on the Home tab. This opens the Table Import Wizard dialog
box, shown in Figure 4‐15. Select the Excel File option and then click the
Next button.

80 Part I: Supercharged Reporting with Power Pivot �

The Table Import Wizard asks for all the information it needs to connect to
your target workbook (see Figure 4‐16).

On this screen, you need to provide the following information:

✓✓ Friendly Connection Name: In the Friendly Connection Name field, you
specify your own name for the external source. You typically enter a
name that is descriptive and easy to read.

Figure 4-15:
Open the

Table Import
Wizard and

select
Excel File.

Figure 4-16:
Provide the

basic
information

needed to
connect to
the target

workbook.

81� Chapter 4: Using External Data with Power Pivot

✓✓ Excel File Path: Enter the full path of your target Excel workbook. You
can use the Browse button to search for and select the workbook you
want to pull from.

✓✓ Use First Row as Column Headers: In most cases, your Excel data will
have column headers. Select the check box next to Use First Row As
Column Headers to ensure that your column headers are recognized as
headers when imported.

After you enter all the pertinent information, click the Next button to see
the next screen, shown in Figure 4‐17. You see a list of all worksheets in the
chosen Excel workbook. In this case, you have only one worksheet. Place a
check mark next to the worksheets you want to import. The Friendly Name
column allows you to enter a new name that will be used to reference the
table in Power Pivot.

When reading from external Excel files, Power Pivot cannot identify indi-
vidual table objects. As a result, you can select only entire worksheets in the
Table Import Wizard (shown in Figure 4‐17). Keeping this in mind, make sure
to import worksheets that contain a single range of data.

As discussed earlier in this chapter, in the section “Loading Data from
Relational Databases,” you can use the Preview & Filter button to filter out
unwanted columns and records, if needed. Otherwise, continue with the
Table Import Wizard to complete the import process.

Figure 4-17:
Select the

worksheets
to import.

82 Part I: Supercharged Reporting with Power Pivot �

As always, be sure to review and create relationships to any other tables
you’ve loaded into the Power Pivot data model.

Loading external Excel data doesn’t give you the same interactivity you get
with linked tables. As with importing database tables, the data you bring
from an external Excel file is simply a snapshot. You need to refresh the data
connection to see any new data that may have been added to the external
Excel file (see “Refreshing and Managing External Data Connections,” later in
this chapter).

Loading data from text files
The text file is another type of flat file used to distribute data. This type of
file is commonly output from legacy systems and websites. Excel has always
been able to consume text files. With Power Pivot, you can go further and
integrate them with other data sources.

Open the Power Pivot window and click the From Other Sources com-
mand button on the Home tab. This opens the Table Import Wizard dialog
box shown in Figure 4‐18. Select the Text File option and then click the
Next button.

Figure 4-18:
Open the

Table Import
Wizard and

select
Excel File.

83� Chapter 4: Using External Data with Power Pivot

The Table Import Wizard asks for all the information it needs to connect to
the target text file (see Figure 4‐19).

On this screen, you provide the following information:

✓✓ Friendly Connection Name: The Friendly Connection Name field allows
you to specify your own name for the external source. You typically
enter a name that is descriptive and easy to read.

✓✓ File Path: Enter the full path of your target text file. You can use the
Browse button to search for and select the file you want to pull from.

✓✓ Column Separator: Select the character used to separate the columns
in the text file. Before you can do this, you need to know how the col-
umns in your text file are delimited. For instance, a comma‐delimited file
will have commas separating its columns. A tab‐delimited file will have
tabs separating the columns. The drop‐down list in the Table Import
Wizard includes choices for the more common delimiters: Tab, Comma,
Semicolon, Space, Colon, and Vertical bar.

✓✓ Use First Row as Column Headers: If your text file contains header
rows, be sure to select the check box next to Use First Row as a Column
Headers. This ensures that the column headers are recognized as head-
ers when imported.

Figure 4-19:
Provide the

basic
information

needed to
connect to
the target

text file.

84 Part I: Supercharged Reporting with Power Pivot �

Notice that you see an immediate preview of the data in the text file. Here,
you can filter out any unwanted columns by simply removing the check mark
next to the column names. You can also use the drop‐down arrows next to
each column to apply any record filters.

Clicking the Finish button immediately starts the import process. Upon
completion, the data from your text file will be part of the Power Pivot data
model. As always, be sure to review and create relationships to any other
tables you’ve loaded into Power Pivot.

Anyone who’s worked with text files in Excel knows that they’re notorious
for importing numbers that look like numbers, but are really coded as text.
In standard Excel, you use Text to Columns to fix these kinds of issues. Well,
this can be a problem in Power Pivot, too.

When importing text files, take the extra step of verifying that all columns
have been imported with the correct data formatting. You can use the for-
matting tools found on the Power Pivot window’s Home tab to format any
column in the data model.

Loading data from the Clipboard
Power Pivot includes an interesting option for loading data straight from
the Clipboard — that is to say, pasting data you’ve copied from some other
place. This option is meant to be used as a one‐off technique to quickly get
useful information into the Power Pivot data model.

As you consider this option, keep in mind that there is no real data source.
It’s just you manually copying and pasting. You have no way to refresh the
data, and you have no way to trace back to where you copied the data from.

Imagine that you’ve received the Word document shown in Figure 4‐20. You
like the nifty table of holidays within the document, and you believe it would
be useful in your Power Pivot data model.

Figure 4-20:
You can

copy data
straight out

of Microsoft
Word.

85� Chapter 4: Using External Data with Power Pivot

You can copy the table and then go to the Power Pivot window and click the
Paste command on the Home tab. This opens the Past Preview dialog box,
shown in Figure 4‐21, where you can review what exactly will be pasted. You
won’t see many options here. You can specify the name that will be used to
reference the table in Power Pivot, and you can specify whether the first row
is a header.

Clicking the OK button imports the pasted data into Power Pivot without a
lot of fanfare. At this point, you can adjust the data formatting and create the
needed relationships.

Loading Data from Other Data Sources
At this point, I’ve covered the data sources that are most important to a
majority of Excel analysts. Still, there are a few more data sources that Power
Pivot is able to connect to and load data from. I touch on some of these data
sources later in this book, though others remain out of scope.

Although these data sources are not likely to be used by your average ana-
lyst, it’s worth dedicating a few lines to each one, if only to know that they
exist and are available if ever you should need them:

✓✓ Microsoft SQL Azure: SQL Azure is a cloud‐based relational database
service that some companies use as an inexpensive way to gain the ben-
efits of SQL Server without taking on the full cost of hardware, software,
and IT staff. Power Pivot can load data from SQL Azure in much the
same way as the other relational databases I talk about in this chapter.

Figure 4-21:
The Paste

Preview
dialog box

gives you a
chance to
see what

you’re
pasting.

86 Part I: Supercharged Reporting with Power Pivot �

✓✓ Microsoft SQL Parallel Data Warehouse: SQL Parallel Data Warehouse
(SQL PDW) is an appliance that partitions very large data tables into
separate servers and manages query processing between them. SQL
PDW is used to provide scalability and performance for big data analyt-
ics. From a Power Pivot perspective, it’s no different than connecting to
any other relational database.

✓✓ Microsoft Analysis Services: Analysis Services is Microsoft’s OLAP
(Online Analytical Processing) product. The data in Analysis Services is
traditionally stored in a multidimensional cube.

✓✓ Report: The curiously named Report data source refers to SQL Server
Reporting Services reports. In a very basic sense, Reporting Services is a
business intelligence tool used to create stylized PDF‐style reports from
SQL Server data. In the context of Power Pivot, a Reporting Services
Report can be used as a data‐feed service, providing a refreshable con-
nection to the underlying SQL Server data.

✓✓ From Windows Azure Marketplace: Windows Azure Marketplace is an
OData (Open Data Protocol) service that provides both free and paid
data sources. Register for a free Azure Marketplace account and you get
instant access to governmental data, industrial market data, consumer
data, and much more. You can enhance your Power Pivot analyses by
loading the data from the Azure marketplace using this connection type.

✓✓ Suggested Related Data: This data source reviews the content of the
Power Pivot data model and, based on its findings, suggests Azure
Marketplace data that you may be interested in.

✓✓ Other Feeds: The Other Feeds data source allows you to import data
from OData web services into Power Pivot. OData connections are facili-
tated by XML Atom files. Point the OData connection to the URL of the
.atomsvcs file and you essentially have a connection to the published
web service.

Refreshing and Managing External
Data Connections

When you load data from an external data source into Power Pivot, you
essentially create a static snapshot of that data source at the time of cre-
ation. Power Pivot uses that static snapshot in its Internal Data Model.

As time goes by, the external data source may change and grow with newly
added records. However, Power Pivot is still using its snapshot,

87� Chapter 4: Using External Data with Power Pivot

so it can’t incorporate any of the changes in your data source until you take
another snapshot.

The action of updating the Power Pivot data model by taking another snap-
shot of your data source is called refreshing the data. You can refresh manu-
ally, or you can set up an automatic refresh.

Manually refreshing Power Pivot data
On the home tab of the Power Pivot window, you see the Refresh command.
Click the drop‐down arrow below it to see two options shown in Figure 4‐22:
Refresh and Refresh All.

Use the Refresh option to refresh the Power Pivot table that’s active. That
is to say, if you’re on the Dim_Products tab in Power Pivot, clicking Refresh
reaches out to the external SQL Server and requests an update for only the
Dim_Products table. This works nicely when you need to strategically refresh
only certain data sources.

Use the Refresh All option to refresh all tables in the Power Pivot data model.

Setting up automatic refreshing
You can configure your data sources to automatically pull the latest data and
refresh Power Pivot.

Go to the Data tab on the Excel Ribbon, and select the Connections com-
mand. The Workbook Connections dialog box, shown in Figure 4‐23, opens.
Select the data connection you want to work with and then click the
Properties button.

Figure 4-22:
Power Pivot

allows you
to refresh

one table or
all tables.

www.allitebooks.com

http://www.allitebooks.org

88 Part I: Supercharged Reporting with Power Pivot �

With the Properties dialog box open, select the Usage tab. Here, you’ll find
an option to refresh the chosen data connection every X minutes and an
option to refresh the data connection when the Excel work is opened (see
Figure 4‐24):

✓✓ Refresh Every X Minutes: Placing a check next to this option tells Excel
to automatically refresh the chosen data connection a specified number
of minutes. This refreshes all tables associated with that connection.

✓✓ Refresh Data When Opening the File: Placing a check mark next to this
option tells Excel to automatically refresh the chosen data connection
after opening of the workbook. This refreshes all tables associated with
that connection as soon as the workbook is opened.

Preventing Refresh All
Earlier in this section, you see that you can refresh all connections that feed
Power Pivot, by using the Refresh All command (refer to Figure 4‐22). Well,
there are actually two more places where you can click Refresh All in Excel:
on the Data tab in the Excel Ribbon and on the Analyze tab you see when
working in a pivot table.

In Excel 2010, these two buttons refreshed only standard pivot tables and
workbook data connections, and the Power Pivot refresh buttons affected
only Power Pivot. They now all trigger the same operation. So clicking any
Refresh All button anywhere in Excel essentially completely reloads Power
Pivot, refreshes all pivot tables, and updates all workbook data connections.
If your Power Pivot data model imports millions of lines of data from an exter-
nal data source, you may well want to avoid using the Refresh All feature.

Figure 4-23:
Select a

connection
and click

the Proper-
ties button.

89� Chapter 4: Using External Data with Power Pivot

Luckily, you have a way to prevent certain data connections from refresh-
ing when Refresh All is selected. Go to the Data tab on the Excel Ribbon and
select the Connections command. This opens the Workbook Connections
dialog box, where you select the data connection you want to configure, and
then click the Properties button.

When the Properties dialog box has opened, select the Usage tab and then
remove the check mark next to the Refresh This Connection on Refresh All
(as shown in Figure 4‐25).

Editing the data connection
In certain instances, you may need to edit the source data connection after
you’ve already created it. Unlike refreshing, where you simply take another
snapshot of the same data source, editing the source data connection allows

Figure 4-24:
The Proper-

ties dialog
box lets you

configure
the chosen

data
connection

to refresh
automati-

cally.

90 Part I: Supercharged Reporting with Power Pivot �

you to go back and reconfigure the connection itself. Here are a few reasons
you may need to edit the data connection:

✓✓ The location or server or data source file has changed.

✓✓ The name of the server or data source file has changed.

✓✓ You need to edit your login credentials or authentication mode.

✓✓ You need to add tables you left out during initial import.

In the Power Pivot window, go to the Home tab and click the Existing
Connections command button. The Existing Connections dialog box, shown
in Figure 4‐26, opens. Your Power Pivot connections are under the Power
Pivot Data Connections subheading. Choose the data connection that
needs editing.

Figure 4-25:
The Proper-

ties dialog
box lets you

configure
the chosen

data
connection

to ignore the
Refresh All
command.

91� Chapter 4: Using External Data with Power Pivot

After your target data connection is selected, look to the Edit and Open but-
tons. The button you click depends on what you need to change:

✓✓ Edit button: Lets you reconfigure the server address, file path, and
authentication settings.

✓✓ Open button: Lets you import a new table from the existing connection,
which is handy when you’ve inadvertently missed a table during the
initial loading of data.

Figure 4-26:
Use the
Existing

Connections
dialog
box to

reconfigure
your Power

Pivot
source data

connections.

Chapter 5

Working Directly with the
Internal Data Model

In This Chapter
▶▶ Interacting with the Internal Data Model directly

▶▶ Adding tables to the Internal Data Model

▶▶ Removing tables from the Internal Data Model

▶▶ Using multiple tables with the Internal Data Model

I
n the preceding chapters, you use the Power Pivot add‐in to work with the
Internal Data Model. But as you’ll see in this chapter, you can use a combi-

nation of pivot tables and Excel data connections to directly interact with the
Internal Data Model, without the Power Pivot add‐in.

This is useful if you’re using versions of Excel that don’t come supplied with
the Power Pivot add‐in, such as when you’re using Microsoft Office, either
Home or Small Business edition. Every Excel 2013 and 2016 workbook comes
with an Internal Data Model.

You can find the sample files for this chapter on this book’s companion
website at www.dummies.com/go/excelpowerpivotpowerqueryfd.
These include the Chapter 5 Sample File.xlsx Excel workbook and the
Facility Services.accdb Access database.

Directly Feeding the Internal Data Model
Imagine that you have the Transactions table you see in Figure 5‐1, and
on another worksheet you have an Employees table (see Figure 5‐2) that
contains information about the employees.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd

94 Part I: Supercharged Reporting with Power Pivot �

You need to create an analysis that shows sales by job title. This would nor-
mally be difficult given the fact that sales and job title are in two separate
tables. But with the Internal Data Model, you can follow these simple steps:

1.	Click inside the Transactions data table and start a new pivot table by
choosing Insert ➪ Pivot Table from the Ribbon.

2.	In the Create PivotTable dialog box, select the Add This Data to the
Data Model option (see Figure 5‐3).

3.	Click inside the Employees data table and start a new pivot table.

Again, be sure to select the Add This Data to the Data Model option,
as shown in Figure 5‐4.

Notice that in Figures 5‐3 and 5‐4, the Create PivotTable dialog boxes are
referencing named ranges. That is to say, each table was given a specific
name. When you’re adding data to the Internal Data Model, it’s a best
practice to name the data tables. This way, you can easily recognize
your tables in the Internal Data Model.

If you don’t name your tables, the Internal Data Model shows them as
Range1, Range2, and so on.

Figure 5-1:
This table

shows
transactions
by employee

number.

Figure 5-2:
This table
provides

information
on employ-

ees: first
name, last
name, and

job title.

95� Chapter 5: Working Directly with the Internal Data Model

4.	To give the data table a name, simply highlight all data in the table,
and then select Formulas ➪ Define Name command from the Ribbon.
In the dialog box, enter a name for the table.

Repeat for all other tables.

5.	After both tables have been added to the Internal Data Model, open
the PivotTable Fields list and choose the ALL selector, as shown in
Figure 5‐5.

This step shows both ranges in the field list.

6.	Build out the pivot table as normal. In this case, Job_Title is placed in
the Row area, and Sales_Amount goes to the Values area.

Figure 5-3:
When you

create a
new pivot
table from
the Trans-

actions
table, be

sure to
select Add

This Data to
the Data

Model.

Figure 5-4:
Create a

new pivot
table from

the Employ-
ees table,

and select
Add This

Data to the
Data Model.

96 Part I: Supercharged Reporting with Power Pivot �

As you can see in Figure 5‐6, Excel immediately recognizes that you’re
using two tables from the Internal Data Model and prompts you to create
a relationship between them. You have the option to let Excel autode-
tect the relationships between your tables or to click the Create button.
Always create the relationships yourself, to avoid any possibility of
Excel getting it wrong.

Figure 5-5:
Select ALL

in the
PivotTable

Fields list to
see both

tables in the
Internal

Data Model.

Figure 5-6:
When Excel

prompts you,
choose to
create the

relationship
between the

two tables.

97� Chapter 5: Working Directly with the Internal Data Model

7.	Click the Create button.

Excel opens the Create Relationship dialog box, shown in Figure 5‐7.
There, you select the tables and fields that define the relationship. In
Figure 5‐7, you can see that the Transactions table has a Sales_Rep field.
It’s related to the Employees table via the Employee_Number field.

After you create the relationship, you have a single pivot table that effec-
tively uses data from both tables to create the analysis you need. Figure 5‐8
illustrates that, by using the Excel Internal Data Model, you’ve achieved the
goal of showing sales by job title.

Figure 5-7:
Build the

appropriate
relationship

using the
Table and

Column
drop‐down

lists.

Figure 5-8:
You’ve

achieved
your goal of

showing
sales by
job title.

98 Part I: Supercharged Reporting with Power Pivot �

In Figure 5‐7, you see that the lower‐right drop‐down is named Related
Column (Primary). The term primary means that the Internal Data Model uses
this field from the associated table as the primary key.

A primary key is a field that contains only unique non‐null values (no dupli-
cates or blanks). Primary key fields are necessary in the data model to pre-
vent aggregation errors and duplications. Every relationship you create must
have a field designated as the primary key.

The Employees table (in the scenario in Figure 5‐7) must have all unique
values in the Employee_Number field, with no blanks or null values. This is
the only way that Excel can ensure data integrity when joining multiple tables.

After you assign tables to the Internal Data Model, you might need to adjust
the relationships between the tables. To make changes to the relationships
in an Internal Data Model, click the Data tab on the Ribbon and select the
Relationships command. The Manage Relationships dialog box, shown in
Figure 5‐9, opens.

The limitations of Power Pivot‐driven pivot tables
Pivot tables built on top of Power Pivot or the
Internal Data Model come with limitations that
could be showstoppers in terms of your report-
ing needs. Here’s a quick rundown of the limi-
tations you should consider before deciding to
base your pivot table reporting on Power Pivot
or the Internal Data Model:

✓✓ The Group feature is disabled for Power
Pivot–driven pivot tables. You can’t roll
dates into months, quarters, or years, for
example.

✓✓ In a standard pivot table, you can double‐
click a cell in the pivot to drill into to the
rows that make up the figure in that cell. In
Power Pivot–driven pivot tables, however,
you see only the first 1,000 rows.

✓✓ Power Pivot–driven pivot tables don’t allow
you to create the traditional Calculated
Fields and Calculated Items found in stan-
dard Excel pivot tables.

✓✓ Workbooks that use the Power Pivot data
model can’t be refreshed or configured if
opened in a version of Excel earlier than
Excel 2013.

✓✓ You can’t use custom lists to automatically
sort the data in your Power Pivot–driven
pivot tables.

✓✓ Neither the Product nor Count Numbers
summary calculations are available in
Power Pivot–driven pivot tables.

99� Chapter 5: Working Directly with the Internal Data Model

Here, you’ll find the following commands:

✓✓ New: Create a new relationship between two tables in the Internal
Data Model.

✓✓ Edit: Alter the selected relationship.

✓✓ Activate: Enforce the selected relationship, telling Excel to consider the
relationship when aggregating and analyzing the data in the Internal
Data Model.

✓✓ Deactivate: Turn off the selected relationship, telling Excel to ignore
the relationship when aggregating and analyzing the data in the Internal
Data Model.

✓✓ Delete: Remove the selected relationship.

Adding a New Table to the
Internal Data Model

You can add a new table to the Internal Data Model in one of two ways, as
described in this section.

The easiest way is to create a pivot table from the new table and then
choose the Add This Data to the Internal Data Model option. Excel adds
the table to the Internal Data Model and produces a pivot table. After the
table has been added, you can open the Manage Relationships dialog box
and create the needed relationship.

Figure 5-9:
The Manage

Relation-
ships dialog
box enables
you to make
changes to

the relation-
ships in the

Internal
Data Model.

100 Part I: Supercharged Reporting with Power Pivot �

The second, and more flexible, method is to define the table manually and
add it to the Internal Data Model. Here’s how:

1.	Place the cursor inside the data table and select Insert Table.

The Create Table dialog box, shown in Figure 5‐10, opens.

2.	Specify the range for your data and click the OK button.

Excel turns that range into a defined table that the Internal Data Model
can recognize.

3.	On the Table Tools Design tab, change the Table Name field (in the
Properties group), as shown in Figure 5‐11.

Pick a name that’s appropriate and easy to remember.

4.	From the Data tab on the Ribbon, select Connections.

The Workbook Connections dialog box opens, as shown in Figure 5‐12.

5.	Click the drop‐down list next to Add and choose the Add to the
Data Model option.

The Existing Connections dialog box opens.

Figure 5-10:
Converting

the range
into a

defined
table.

Figure 5-11:
Give the

newly
created
table a

friendly
name.

101� Chapter 5: Working Directly with the Internal Data Model

6.	On the Tables tab, find and select the newly created table, as shown in
Figure 5‐13. Click the Open button to add it to the Internal Data Model.

At this point, all pivot tables built on the Internal Data Model are updated
to reflect the new table. Be sure to open the Manage Relationships dialog
box and create the needed relationship.

Removing a Table from the
Internal Data Model

You might find that you want to remove a table or data source altogether
from the Internal Data Model. To do so, click the Data tab on the Ribbon and
then click the Connections command. The Workbook Connections dialog
box, shown in Figure 5‐14, opens.

Figure 5-12:
Open the

Workbook
Connections

dialog box
and select
Add to the

Data Model.

Figure 5-13:
Select the

newly
created

table and
click the

Open
button.

102 Part I: Supercharged Reporting with Power Pivot �

Click the table you want to remove from the Internal Data Model (Employees,
in this case) and then click the Remove button.

Creating a New Pivot Table Using
the Internal Data Model

In certain instances, you may want to create a pivot table from scratch
using the existing Internal Data Model as the source data. Here are the
steps to do so:

1.	Choose Insert ➪ PivotTable from the Ribbon.

The Create PivotTable dialog box opens.

2.	Select the Use an External Data Source option, as shown in
Figure 5‐15, and then click the Choose Connection button.

Figure 5-14:
Use the

Workbook
Connections

dialog box
to remove
any table

from
the Internal

Data Model.

Figure 5-15:
Open the

Create
PivotTable
dialog box

and choose
the external
data‐source

option.

103� Chapter 5: Working Directly with the Internal Data Model

You see the Existing Connections dialog box, as shown in Figure 5‐16.

3.	On the Tables tab, select Tables in Workbook Data Model, and then
click the Open button.

You return to the Create PivotTable dialog box.

4.	Click the OK button to create the pivot table.

If all goes well, you see the PivotTable Fields dialog box with all tables
that are included in the Internal Data Model, as shown in Figure 5‐17.

Figure 5-16:
Use the
Existing

Connections
dialog box

to select the
Data Model
as the data
source for
your pivot

table.

Figure 5-17:
The newly

created
pivot table
shows all

tables in the
Internal

Data Model.

104 Part I: Supercharged Reporting with Power Pivot �

Filling the Internal Data Model with
Multiple External Data Tables

Suppose you have an Access database that contains a normalized set of
tables. You want to analyze the data in that database in Excel, so you decide
to use the new Excel Internal Data Model to expose the data you need
through a pivot table.

To accomplish this task, follow these steps:

1.	Click the Data tab on the Ribbon and click the From Access command,
as shown in Figure 5‐18.

2.	Browse to your target Access database and open it.

The Select Table dialog box opens.

3.	Place a check mark next to the Enable Selection of Multiple Tables
option (see Figure 5‐19).

Figure 5-18:
Click the

From
Access

button to get
data from

your Access
database.

Figure 5-19:
Enable the

selection of
multiple

tables.

105� Chapter 5: Working Directly with the Internal Data Model

4.	Place a check mark next to each table that you want to import into the
Internal Data Model, as shown in Figure 5‐20. Then click OK.

The Import Data dialog box opens.

5.	Click the drop‐down arrow next to Properties, and remove the check
mark next to the Import Relationships Between Tables option, as
shown in Figure 5‐21.

This step ensures that Excel doesn’t introduce a potential error by
misinterpreting how the tables are related. In other words, you’ll want
to create relationships yourself.

6.	Still in the Import Data dialog box, choose the PivotTable Report
option and click OK to create the base pivot.

7.	Click the Data tab on the Ribbon and choose the Relationships
command.

This step opens the Manage Relationships dialog box.

Figure 5-20:
Select the
tables you

want import
into the
Internal

Data Model,
and then
click OK.

Figure 5-21:
Click to

deselect the
Import Rela-

tionships
Between

Tables
option.

106 Part I: Supercharged Reporting with Power Pivot �

8.	Create the needed relationships, as shown in Figure 5‐22, and then
click Close.

You now have a pivot table based on external data imported into the
Internal Data Model (see Figure 5‐23). At this point, you can use the
Pivot Table Field list to build the pivot table.

In just a few a few clicks, you have created a powerful platform to build and
maintain pivot table analysis based on data in an Access database!

Figure 5-22:
Create the

needed
relation-

ships for the
tables you

just
imported.

Figure 5-23:
You’re ready

to build the
pivot table

analysis
based on

multiple
external

data tables.

Chapter 6

Adding Formulas to Power Pivot
In This Chapter

▶▶ Creating, formatting, and hiding your own calculated columns

▶▶ Creating calculated columns by using DAX

▶▶ Creating calculated measures

▶▶ Breaking out of pivot tables with cube functions

W
hen analyzing data with Power Pivot, you often find the need to
expand your analysis to include data based on calculations that are

not in the original dataset. Power Pivot has a robust set of functions (called
DAX functions) that allow you to perform mathematical operations, recursive
calculations, data lookups, and much more.

This chapter introduces you to DAX functions and provides the ground rules
for building your own calculations in Power Pivot data models.

Enhancing Power Pivot Data with
Calculated Columns

Calculated columns are columns you create to enhance a Power Pivot table
with your own formulas. When you enter calculated columns directly in the
Power Pivot window, they become part of the source data you use to feed
your pivot table. Calculated columns work at the row level. That is to say,
the formulas you create in a calculated column perform their operations
based on the data in each individual row. For example, if you have a Revenue
column and a Cost column in your Power Pivot table, you could create a new
column that calculates [Revenue] minus [Cost]. This simple calculation is
valid for each row in the data set.

Calculated measures are used to perform more complex calculations that
work on an aggregation of data. These calculations are applied directly to
a pivot table, creating a sort of virtual column that can’t be seen in the
Power Pivot window. Calculated measures are needed whenever you need to

108 Part I: Supercharged Reporting with Power Pivot �

calculate based on an aggregated grouping of rows — for example, the sum of
[Year2] minus the sum of [Year1].

Creating your first calculated column
Creating a calculated column works much like building formulas in an Excel
table. Follow these steps to create a calculated column:

1.	Activate the Power Pivot window (click the Manage command button
on the Power Pivot Ribbon tab), and then select the Invoice Details tab.

In the table, you see an empty column on the far right, labeled Add Column.

2.	Click on the first blank cell in that column.

3.	On the Formula bar, enter the following formula (as shown in
Figure 6‐1):

=[UnitPrice]*[Quantity]

4.	Press Enter.

The formula populates the entire column, and Power Pivot automatically
renames the column to Calculated Column 1.

5.	Double‐click on the column label and rename the column Total
Revenue.

You can rename any column in the Power Pivot window by double‐clicking
the column name and entering a new name. Alternatively, you can right‐
click any column and choose the Rename option.

You can build calculated columns by clicking instead of typing. For exam-
ple, rather than manually enter =[UnitPrice]*[Quantity], you can
enter the equal sign (=), click the UnitPrice column, type the asterisk (*),
and then click the Quantity column. You can also enter your own static
data. For example, you can enter a formula to calculate a 10‐percent tax rate
by entering =[UnitPrice]*1.10.

Figure 6-1:
Start the

calculated
column by

entering an
operation

on the
Formula bar.

109� Chapter 6: Adding Formulas to Power Pivot

Each calculated column you create is automatically available in any pivot
table connected to the Power Pivot Data Model. You don’t have to take any
action to get your calculated columns into the pivot table. Figure 6‐2 shows
the Total Revenue calculated column in the PivotTable Fields List. These
calculated columns can be used just as you would use any other field in the
pivot table.

If you need to edit the formula in a calculated column, find the calculated
column in the Power Pivot window, click the column, and then make changes
directly on the Formula bar.

See Chapter 2 for a refresher on how to create a pivot table from Power Pivot.

Formatting calculated columns
You often need to change the formatting of Power Pivot columns to appropri-
ately match the data within them. For example, you may want to show num-
bers as currency, remove decimal places, or display dates in a certain way.

You’re by no means limited to formatting only calculated columns. The
following steps can be used to format any column you see in the Power
Pivot window:

1.	In the Power Pivot window, click on the column you want to format.

2.	Go to the Home tab of the Power Pivot window and find the
Formatting group (see Figure 6‐3).

3.	Use the option to alter the formatting of the column as you see fit.

Figure 6-2:
Calculated

columns
automati-

cally show
up in the

PivotTable
Fields List.

110 Part I: Supercharged Reporting with Power Pivot �

Veteran Excel pivot table users know that changing pivot table number
formats one data field at a time is a pain. One fantastic feature of Power
Pivot formatting is that any format you apply to the columns in the Power
Pivot window is automatically applied to all pivot tables connected to the
Data Model.

Referencing calculated columns
in other calculations
As with all calculations in Excel, Power Pivot allows you to reference a calcu-
lated column as a variable in another calculated column. Figure 6‐4 illustrates
this concept with a new calculated column named Gross Margin. Notice that
on the Formula bar, the calculation is using the [Total Revenue] calculated
column that you create earlier in this chapter.

Figure 6-3:
You can use
the format-

ting tools
found on the
Power Pivot

window’s
Home tab to

format any
column in

the Data
Model.

Figure 6-4:
The

new Gross
Margin

calculation
is using the

previously
created

[Total Reve-
nue] and

calculated
column.

111� Chapter 6: Adding Formulas to Power Pivot

Hiding calculated columns from end users
Because calculated columns can reference each other, you can imagine
creating columns simply as helper columns for other calculations. You may
not want your end users to see these columns in your client tools. (In this
context, client tools refers to pivot tables, Power View dashboards, and
Power Map.)

Similar to hiding columns on an Excel worksheet, Power Pivot allows you to
hide any column. (It doesn’t have to be a calculated column.) To hide col-
umns, select the columns you want hidden, right‐click the selection, and then
choose the Hide from Client Tools option (as shown in Figure 6‐5).

When a column is hidden, it doesn’t show as an available selection in the
PivotTable Fields List. However, if the column you’re hiding is already part
of the pivot report (meaning you’ve already dragged it onto the pivot table),
hiding the column doesn’t automatically remove it from the report. Hiding
merely affects the ability to see the column in the PivotTable Fields List.

Note in Figure 6‐6 that Power Pivot recolors columns based on their attri-
butes. Hidden columns are subdued and grayed‐out, whereas calculated
columns that are not hidden have a darker (black) header.

To unhide columns, select the hidden columns in the Power Pivot window,
right‐click on the selection, and then choose the Unhide from Client
Tools option.

Figure 6-5:
Right‐click
and select
Hide from

Client Tools.

112 Part I: Supercharged Reporting with Power Pivot �

Utilizing DAX to Create
Calculated Columns

Data Analysis Expressions, or DAX, is essentially the formula language that
Power Pivot uses to perform calculations within its own construct of tables
and columns. The DAX formula language comes supplied with its own set
of functions. Some of these functions can be used in calculated columns for
row‐level calculations, and others are designed to be used in calculated
measures to aggregate operations.

In this section, I touch on some of the DAX functions that you can leverage in
calculated columns.

DAX has more than 150 different functions. The examples of DAX that I dem-
onstrate in this chapter are meant to give you a sense of how calculated
columns and calculated measures work. A full overview of DAX is beyond the
scope of this book. If, after reading this chapter, you want to read more about
DAX, however, pick up The Definitive Guide to DAX, by Alberto Ferrari and
Marco Russo. Ferrari and Russo provide an excellent overview of DAX that is
comprehensive but easy to understand.

Identifying DAX functions that are
safe for calculated columns
Earlier in this chapter, you use the Formula bar within the Power Pivot
window to enter calculations. Next to the Formula bar, you may have noticed
the Insert Function button: the button labeled fx. It’s similar to the Insert
Function button in Excel. Clicking this button opens the Insert Function
dialog box, shown in Figure 6‐7. Using this dialog box, you can browse, search
for, and insert the available DAX functions.

Figure 6-6:
Hidden

columns are
grayed‐out,

and
calculated

columns
have darker

headings.

113� Chapter 6: Adding Formulas to Power Pivot

As you look through the list of DAX functions, notice that many of them look
like the common Excel functions that most people are familiar with. But make
no mistake: They aren’t Excel functions. Whereas Excel functions work with
cells and ranges, these DAX functions are designed to work at the table and
column levels.

To understand what I mean, start a new calculated column on the Invoice
Details tab. Click on the Formula bar and type a good old SUM function:
SUM([Gross Margin]). The result is shown in Figure 6‐8.

As you can see, the SUM function sums the entire column. This is because
Power Pivot and DAX are designed to work with tables and columns. Power
Pivot has no construct for cells and ranges. It doesn’t even have column let-
ters and row numbers on its grid. Though you would normally reference a
range (as in an Excel SUM function), DAX basically takes the entire column.

The bottom line is that not all DAX functions can be used with calculated col-
umns. Because a calculated column evaluates at the row level, only DAX func-
tions that evaluate single data points can be used in a calculated column.

Here’s a good rule of thumb: If the function requires an array or a range of
cells as an argument, it isn’t viable in a calculated column.

Figure 6-8:
The DAX

SUM func-
tion can

only sum the
column as a

whole.

Figure 6-7:
The Insert

Function
dialog box
shows you

all available
DAX

functions.

114 Part I: Supercharged Reporting with Power Pivot �

So, functions such as SUM, MIN, MAX, AVERAGE, and COUNT don’t work in
calculated columns. Functions that require only single data‐point arguments
work quite well in calculated columns: functions such as YEAR, MONTH, MID,
LEFT, RIGHT, IF, and IFERROR.

Building DAX‐driven calculated columns
To demonstrate the usefulness of employing a DAX function to enhance cal-
culated columns, let’s return to the walk‐through example. Go to the Power
Pivot window and select the InvoiceHeader tab on the Ribbon. If you’ve
accidentally closed the Power Pivot window, you can open it by clicking the
Manage command button on the Power Pivot Ribbon tab.

The InvoiceHeader tab, shown in Figure 6‐9, contains an InvoiceDate column.
Although this column is valuable in the raw table, the individual dates aren’t
convenient when analyzing the data with a pivot table. It would be benefi-
cial to have a column for Month and a column for Year. This way, you could
aggregate and analyze the data by month and year.

For this endeavor, you use the DAX functions YEAR(  ), MONTH(  ), and
FORMAT(  ) to add some time dimensions to the Data Model. Follow
these steps:

1.	In the InvoiceHeader table, click on the first blank cell in the empty
column labeled Add Column, on the far right.

2.	On the Formula bar, type =YEAR([InvoiceDate]) and then press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

3.	Double‐click on the column label and rename the column Year.

4.	Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

Figure 6-9:
DAX func-

tions can
help

enhance the
invoice

header data
with Year

and Month
time

dimensions.

115� Chapter 6: Adding Formulas to Power Pivot

5.	On the Formula bar, type =MONTH([InvoiceDate]), and then press
Enter.

Power Pivot automatically renames the column to Calculated Column 1.

6.	Double‐click on the column label and rename the column Month.

7.	Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

8.	On the Formula bar, type =FORMAT([InvoiceDate],”mmm”) and then
press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

9.	Double‐click on the column label and rename the column Month
Name.

After completing these steps, you should have three new calculated columns
similar to the ones shown in Figure 6‐10.

As I mention earlier in this chapter, creating calculated columns auto-
matically makes them available through the PivotTable Fields List (see
Figure 6‐11).

One of the more annoying aspects of Power Pivot is that it doesn’t inherently
know how to sort months. Unlike standard Excel, Power Pivot doesn’t use
the built‐in custom lists that define the order of month names. Whenever
you create a calculated column such as [Month Name] and place it into your
pivot table, Power Pivot puts those months in alphabetical order, as shown
in Figure 6‐12.

The fix for this problem is fairly easy. Open the Power Pivot window and
select the Home tab. There, click the Sort by Column command button.
The Sort by Column dialog box the opens, as shown in Figure 6‐13.

Figure 6-10:
Using DAX

functions to
supplement
a table with

Year,
Month, and

Month
Name

columns.

116 Part I: Supercharged Reporting with Power Pivot �

Figure 6-12:
Month

names in
Power

Pivot‐driven
pivot tables
don’t auto-

matically
sort in
month
order.

Figure 6-13:
The Sort by

Column
dialog box

lets you
define how

columns are
sorted.

Figure 6-11:
DAX calcu-
lations are

immediately
available

in any
connected
pivot table.

117� Chapter 6: Adding Formulas to Power Pivot

The idea is to select the column you want sorted and then select the column
you want to sort by. In this scenario, you want to sort Month Name by month.

After you confirm the change, it initially appears as though nothing has hap-
pened. The reason is that the sort order you defined isn’t for the Power Pivot
window. The sort order is applied to the pivot table. You can switch over to
Excel to see the result in the pivot table (see Figure 6‐14).

Referencing fields from other tables
Sometimes, the operation you’re trying to perform with a calculated column
requires you to utilize fields from other tables within the Power Pivot Data
Model. For example, you may need to account for a customer‐specific dis-
count amount from the Customers table (see Figure 6‐15) when creating a
calculated column in the InvoiceDetails table.

Figure 6-14:
The month

names now
show in the

correct
month
order.

Figure 6-15:
The dis-

count
amount in

the Custom-
ers table

can be
used in a

calculated
column in

another
table.

118 Part I: Supercharged Reporting with Power Pivot �

To accomplish this, you can use a DAX function named RELATED. Similar to
VLOOKUP in standard Excel, the RELATED function allows you to look up
values from one table in order to use them in another.

Follow these steps to create a new calculated column that displays a dis-
counted amount for each transaction in the InvoiceDetails table:

1.	In the InvoiceDetails table, click on the first blank cell in the empty
column labeled Add Column, on the far right.

2.	On the Formula bar, type =RELATED(.

As soon as you enter the open parenthesis, a menu of available fields
(shown in Figure 6‐16) is displayed. Note that the items in the list repre-
sent the table name followed by the field name in brackets. In this case,
you’re interested in the Customers[Discount Amount] field.

The RELATED function leverages the relationships you defined when
creating the Data Model in order to perform the lookup. So this list of
choices contains only the fields that are available based on the relation-
ships you defined.

3.	Double‐click the Customers[Discount Amount] field and then press
Enter.

Power Pivot automatically renames the column to Calculated Column 1.

4.	Double‐click on the column label and rename the column Discount%.

5.	Starting in the next column, click on the first blank cell in the empty
column labeled Add Column, on the far right.

6.	On the Formula bar, type =[UnitPrice]*[Quantity]*(1‐[Discount%]) and
then press Enter.

Power Pivot automatically renames the column to Calculated Column 1.

7.	Double‐click on the column label and rename the column Discounted
Revenue.

Figure 6-16:
Use the

RELATED
function to

look up a
field from

another
table.

119� Chapter 6: Adding Formulas to Power Pivot

The reward for your efforts is a new column that uses the discount percent
from the Customers table to calculate discounted revenue for each transac-
tion. Figure 6‐17 illustrates the new calculated column.

In the example from the preceding section, you first create a Discount%
column using the RELATED function, and then you use that column in
another calculated column to calculate the discount amount.

You don’t necessarily have to create multiple calculated columns to accom-
plish a task like this one. You could instead nest the RELATED function into
the discount amount calculation. The following line shows the syntax for the
nested calculation:

=[UnitPrice]*[Quantity]*

(1-RELATED(Customers[Discount Amount]))

As you can see, nesting simply means to embed functions within a calculation.
In this case, rather than use the RELATED function in a separate Discount%
field, you can embed it directly into the discounted revenue calculation.

Nesting functions can definitely save time and even improve performance in
larger data models. On the other hand, complicated nested functions can be
harder to read and understand.

Understanding Calculated Measures
You can enhance the functionality of your Power Pivot reports by using a
kind of calculation called a calculated measure. Calculated measures are not
applied to the Power Pivot window like calculated columns. Instead, they’re

Figure 6-17:
The final dis-

count
amount

calculated
column

using the
Discount%

column from
the Custom-

ers table.

120 Part I: Supercharged Reporting with Power Pivot �

Figure 6-18:
Creating a

new
calculated

measure.

applied directly to the pivot table, creating a sort of virtual column that isn’t
visible in the Power Pivot window. You use calculated measures when you
need to calculate based on an aggregated grouping of rows.

Creating a calculated measure
Imagine that you want to show the difference in unit costs between the years
2007 and 2006 for each of your customers. Think about what technically has
to be done to achieve this calculation: You have to figure out the sum of unit
costs for 2007, determine the sum of unit costs for 2006, and then subtract
the sum of 2007 from the sum of 2006. This calculation simply can’t be com-
pleted using calculated columns. Using calculated measures is the only way
to calculate the cost variance between 2007 and 2006.

Follow these steps to create a calculated measure:

1.	Start with a pivot table created from a Power Pivot Data Model.

The Chapter 6 Sample File.xlsx workbook contains the
Calculated Measures tab with a pivot table already created.

2.	Click the Power Pivot tab on the Excel Ribbon, and choose
Measures ➪ New Measure.

This step opens the Measure dialog box, shown in Figure 6‐18.

121� Chapter 6: Adding Formulas to Power Pivot

3.	In the Measure dialog box, set the following inputs:

•	Table name: Choose the table you want to contain the calculated
measure when looking at the PivotTable Fields List. Don’t sweat this
decision too much. The table you select has no bearing on how the
calculation works. It’s simply a preference on where you want to see
the new calculation within the PivotTable Fields List.

•	Measure name: Give the calculated measure a descriptive name.

•	Description: Enter a friendly description to document what the calcula-
tion does.

•	Formula: Enter the DAX formula that will calculate the results of the
new field.

In this example, you use the following DAX formula:

=CALCULATE(
 SUM(InvoiceDetails[UnitCost]),
 YEAR(InvoiceHeader[InvoiceDate])=2007
)

This formula uses the CALCULATE function to sum the Total Revenue
column from the InvoiceDetails table, where the Year column in the
InvoiceHeader is equal to 2007.

•	Formatting Options: Specify the formatting for the calculated measure
results.

4.	Click the Check Formula button to ensure that there are no syntax
errors.

If your formula is well formed, you see the message No errors in
formula. If the formula has errors, you see a full description.

5.	Click the OK button to confirm the changes and close the dialog box.

You see your newly created calculated measure in the pivot table.

6.	Repeat Steps 2–5 for any other calculated measure you need to create.

In this example, you need a measure to show the 2006 cost:

=CALCULATE(
 SUM(InvoiceDetails[UnitCost]),
 YEAR(InvoiceHeader[InvoiceDate])=2006
)

You also need a measure to calculate the variance:

=[2007 Revenue]-[2006 Revenue]

Figure 6‐19 illustrates the newly created calculated measures. The calculated
measures are applied to each customer, displaying the variance between
their 2007 and 2006 costs. As you can see, each calculated measure is avail-
able for selection in the PivotTable Fields List.

122 Part I: Supercharged Reporting with Power Pivot �

Always attempt to achieve readability by using carriage returns and spaces.
In Figure 6‐18, the DAX calculation is entered with carriage returns and
spaces. This is purely for readability purposes. DAX ignores white spaces
and isn’t case sensitive, so it’s quite forgiving on how you structure the
calculation.

Editing and deleting calculated measures
You may find that you need to either edit or delete a calculated measure.
You can do so by following these steps:

1.	Click anywhere inside the pivot table, click the Power Pivot tab on the
Excel Ribbon, and choose Measures ➪ Manage Measures.

This step opens the Manage Measures dialog box, shown in Figure 6‐20.

2.	Select the target calculated measure, and click one of these two
buttons:

Figure 6-20:
The Manage

Measures
dialog box

lets you edit
or delete

your
calculated
measures.

Figure 6-19:
Calculated
measures

can be seen
in the

PivotTable
Fields List.

123� Chapter 6: Adding Formulas to Power Pivot

•	Edit: Opens the Measure dialog box, where you can make changes
to the calculation setting.

•	Delete: Opens a message box asking you to confirm that you want
to remove the measure. After you confirm, the calculated measure
is removed.

Free Your Data With Cube Functions
Cube functions are Excel functions that can be used to access the data in a
Power Pivot Data Model outside the constraints of a pivot table. Although
cube functions aren’t technically used to create calculations themselves,
they can be used to free PowerPivot data so that it can be used with formulas
you may have in other parts of your Excel spreadsheet.

One of the easiest ways to start exploring cube functions is to allow Excel to
convert your Power Pivot pivot table into cube functions. The idea is to tell
Excel to replace all cells in the pivot table with a formula that connects back
to the Power Pivot Data Model.

Follow these steps to create your first set of cube functions:

1.	Start with a pivot table created from a Power Pivot model.

The Chapter 6 Sample File.xlsx workbook contains a Cube
Functions tab with a pivot table already created.

2.	Place the cursor anywhere inside the pivot table, and then select
Analyze ➪ Convert to Formulas, as shown in Figure 6‐21.

3.	In the Measure dialog box, set the following inputs: Table Name,
Measure Name, Formula, and Formatting Options.

Figure 6-21:
Select the
Convert to
Formulas
option to

convert the
pivot table

to cube
formulas.

124 Part I: Supercharged Reporting with Power Pivot �

After a second or two, the cells that formerly housed a pivot table are
now homes for cube formulas. The Formula bar, shown in Figure 6‐22,
illustrates the cube functions.

If the pivot table contains a report filter field, the dialog box shown in
Figure 6‐23 opens. This dialog box gives you the option to convert the
filter drop‐down selectors to cube formulas. If you select this option, the
drop‐down selectors are removed, leaving a static formula.

If you need to have the filter drop‐down selectors intact so you can inter-
actively change the selections in the filter field, leave the Convert Report
Filters option deselected.

Why is this capability useful? Well, now that the values you see are no longer
part of a pivot table object, you can insert rows and columns, add your own
calculations, or combine the data with other formulas in your spreadsheet.

The bottom line is that cube functions give you the flexibility to free your
Power Pivot data from the confines of a pivot table and then use it in all sorts
of ways by simply moving formulas around.

Figure 6-23:
Excel gives

you the
option to

convert your
report filter

fields.

Figure 6-22:
These cells

are now a
series of

cube
functions!

Chapter 7

Publishing Power Pivot
to SharePoint

In This Chapter
▶▶ Understanding SharePoint and Excel Services

▶▶ Publishing an Excel workbook to SharePoint

▶▶ Using the Power Pivot Gallery

▶▶ Refreshing Power Pivot data connections

B
y publishing your Excel reports and dashboards to SharePoint, you can
make them available to others in your organization via a browser and

prevent multiple users from having separate versions of your workbooks on
their computers. You can also make your Power Pivot reports easier to find,
share, and use.

In this chapter, you first discover how SharePoint helps organizations
share and collaborate on data. You will then explore the options for publish-
ing your Power Pivot reports to SharePoint.

Understanding SharePoint
SharePoint is Microsoft’s premier collaborative server environment, provid-
ing tools for sharing documents and data across various organizations within
a company’s network.

Typically deployed on a company’s network as a series of intranet sites,
SharePoint lets various departments control their own security, workgroups,
documents, and data. As with any other website, a SharePoint site — or an
individual page within the site — is accessible by way of a URL that the user
can access using a standard web browser.

126 Part I: Supercharged Reporting with Power Pivot �

SharePoint is most often used for the storing of version‐controlled documents,
such as Word documents and Excel worksheets. In many environments, email
is used for passing documents back and forth between users. The potential
for mixing up different versions of the same document is considerable. Also,
storing multiple copies of the same document takes up a lot of disk space.
Because SharePoint provides a single source for storing, viewing, and updat-
ing documents, many of these issues are eliminated.

And because SharePoint easily handles virtually any type of document, it is
frequently used to consolidate and store various types of documentation
(project drawings, videos, schematics, photographs, and workbooks, for
example) that are required for large projects where multiple teams must
collaborate.

Microsoft chose SharePoint as the platform for Excel publishing because of
the significant features built into SharePoint, including these:

✓✓ Security: SharePoint supports users and groups of users. Users and
groups may be granted or denied access to various parts of a SharePoint
website, and designated users may be granted permission to add, delete,
or modify the site.

✓✓ Versioning: SharePoint automatically maintains a version history of
objects and data. Changes can be rolled back to an earlier state at virtu-
ally any time. The ability to roll back changes can be granted to individ-
ual users, and DBA support is not required.

✓✓ Recycle bin: Deleted data and objects are held in a “recycle bin” so
that they can be recovered, if necessary. SharePoint supports an Undo
feature for its data.

✓✓ Alerts: Users and groups can be alerted by email message whenever a
specific document in SharePoint is added, deleted, or changed. When
granted the proper permissions, users can manage their own alerts.

✓✓ End‐user maintenance: SharePoint sites are meant to be maintained
by their users, without the intervention of IT departments. Although
SharePoint pages are not as flexible as typical web pages, a SharePoint
developer can add or remove features from pages; change fonts, head-
ings, colors, and other attributes of pages; create subsites and lists; and
perform many other maintenance and enhancement tasks.

✓✓ Other features: Every SharePoint site includes a number of features,
such as a calendar, a task list, and announcements that users may turn
off or remove.

Most IT organizations have already implemented a SharePoint environment,
so your organization likely already has SharePoint running on its network. No
lone user can simply start up a SharePoint site. If you’re interested in using
SharePoint, contact your IT department to inquire about getting access to a
SharePoint site.

127� Chapter 7: Publishing Power Pivot to SharePoint

Understanding Excel Services
for SharePoint

The mechanism that allows for the publishing of Excel documents to
SharePoint as interactive web pages is Excel Services.

Excel Services is a broader term to describe these three components:

✓✓ Excel Calculation Services: Serves as the primary engine of Excel
services. This component loads Excel documents, runs calculations on
the Excel sheet, and runs the refresh process for any embedded data
connection.

✓✓ Excel Web Access: Allows users to interact with Excel through a
web browser.

✓✓ Excel Web Services: Hosted in SharePoint Services, it provides develop-
ers with an application programming interface (API) to build custom
applications based on the Excel workbook.

SharePoint requirements and Office 365
The Excel Services SharePoint implementation
is available only with SharePoint 2010 or 2013,
so you should ensure that your SharePoint site
has one of those two versions.

Most Excel analysts work in companies that
already have a SharePoint 2010 or 2013 environ-
ment. However, if you don’t have access to an
already existing SharePoint environment, you
can check out hundreds of service providers
that offer subscription‐based SharePoint ser-
vices. Many of these providers provide volume‐
based pricing on a subscription model.

In fact, the Microsoft offering, Office 365,
is a cloud‐based environment that offers

subscribers a line of collaborative, Microsoft
Office–like tools that can be accessed on
the web. Similar to Google Docs or Google
Spreadsheets, Microsoft offers Word, Excel,
and PowerPoint in Office 365, so you can use
Office 365 to publish and host your Excel reports.

Subscribing to a commercial SharePoint ser-
vice provider may be the fastest and most
affordable way to host Microsoft Excel solu-
tions on SharePoint. Again, the only caveat
is that the commercial service provider you
choose must have SharePoint 2010 or 2013 with
Excel Services implemented.

128 Part I: Supercharged Reporting with Power Pivot �

When you publish a workbook to Excel Services, your audience can interact
with your Excel file in several ways:

✓✓ View workbooks that contain a data model and Power View reports.

✓✓ Navigate between worksheets.

✓✓ Sort and filter data.

✓✓ Work with pivot tables.

✓✓ Use slicers and pivot table report filters.

✓✓ Refresh data for embedded data connections.

Publishing an Excel Workbook
to SharePoint

To take advantage of the functionality afforded by Excel Services, you must
have the proper permissions to publish to a SharePoint site that is running
Excel Services. To obtain access, speak with your IT department.

After you have access to publish to SharePoint, follow these steps:

1.	Click the File tab on the Excel Ribbon, choose Save As ➪ Other Web
Locations, and then click the Browse button.

This step opens the Save As dialog box.

2.	Enter the URL of your SharePoint site in the File Name input box
(see Figure 7‐1).

Figure 7-1:
Enter your

SharePoint
URL in the

input box of
the Save As

dialog box.

129� Chapter 7: Publishing Power Pivot to SharePoint

3.	Click the Browser View Options button.

The Browser View Options dialog box opens.

4.	Select which parts of the workbook will be available on the web, as
shown in Figure 7‐2, and then click the OK button.

You can choose to show the entire workbook, only certain sheets, or
only specific objects (charts, and pivot tables, for example). You can
also define parameters to allow certain named ranges to be editable in
the web browser.

5.	Click the Save button to connect to the SharePoint site and see
your document library, as shown in Figure 7‐3.

Figure 7-2:
Select

which parts
of your

workbook
will be

available on
the web.

Figure 7-3:
Double‐click

the library
where you

want to
save the file,

and click
the Save

button.

130 Part I: Supercharged Reporting with Power Pivot �

You can think of a document library as a directory on the
SharePoint site.

6.	Enter a filename in the File Name input box, double‐click the library
where you want the file saved, and then click the Save button.

After you’ve published the workbook, you can view it on the web by finding
the document in the appropriate library on your SharePoint site. When you
open the workbook, it shows up in the browser, with several menu options
(see Figure 7‐4), as described in the following list:

✓✓ Edit Workbook: Either download the workbook or edit the workbook in
the browser.

✓✓ Share: Email a link to your newly published workbook.

✓✓ Data: Refresh any external data connections that are in your workbook.

Workbooks on the web are running in an environment that is quite different
from the Excel client application you have on your PC. Excel Services has
limitations on the features it can render in the web browser. Some limita-
tions exist because of security issues, and others exist simply because Excel
Services hasn’t yet evolved to include the broad set of features that come
supplied with standard Excel.

In any case, the following list describes some limitations on Excel Services:

✓✓ Data validation does not work on the web. This feature is simply
ignored when you publish your workbook to the web.

✓✓ No form of VBA, including a macro, runs in the Excel Web App. Your
VBA procedures simply don’t transfer with the workbook.

Figure 7-4:
A workbook,

as shown
in Excel

Services.

131� Chapter 7: Publishing Power Pivot to SharePoint

✓✓ Worksheet protection doesn’t work on the web. Instead, you need
to plan for, and use, the Browser View Options dialog box (refer to
Figure 7‐2).

✓✓ Links to external workbooks no longer work after publishing to the
web. Any links or references to other workbooks will no longer work
after you publish your file to SharePoint.

✓✓ You can use any pivot tables with full fidelity on the web, but you
cannot create any new pivot tables while your workbook is on the
web. Create any pivot tables in the Excel client on your PC before
publishing on the web.

✓✓ OfficeArt doesn’t render on the web. This includes Shape objects,
WordArt, SmartArt, diagrams, signature lines, and ink annotations.

Publishing to a Power Pivot Gallery
A Power Pivot Gallery is a type of document library that showcases Power
Pivot reports and allows for scheduled refresh cycles.

Exploring the Power Pivot Gallery
For your end users, the Power Pivot Gallery provides an attractive portal
that serves as a one‐stop shop for all the reports and dashboards you pub-
lish. For you, the Power Pivot Gallery enables better management of your
Power Pivot reports by allowing you to schedule nightly refreshes of the
data within them.

Speak with your SharePoint administrator about your organization’s
SharePoint instance, and ask that person to consider adding a Power Pivot
Gallery to the site. After you have access to a Power Pivot Gallery, you can
upload your Power Pivot workbooks by following the same steps for publish-
ing a standard workbook to SharePoint (see “Publishing an Excel Workbook
to SharePoint” in this chapter).

Figure 7‐5 illustrates a typical Power Pivot Gallery. Note that each workbook
is shown as a thumbnail, providing users with a snapshot of each report.
Clicking a thumbnail opens the report as a web page.

If you have an Office 365 SharePoint subscription, you have no option, unfor-
tunately, for a Power Pivot Gallery, because Office 365 doesn’t support it.
This situation may change as Microsoft continues to add improvements to
Office 365.

132 Part I: Supercharged Reporting with Power Pivot �

Refreshing data connections in published
Power Pivot workbooks
You can manually refresh the data connections within your published Power
Pivot report by opening the workbook and selecting the Data drop‐down
menu. As you can see in Figure 7‐6, you have the option of refreshing a single
connection or all connections in the workbook.

Alternatively, you can use the Power Pivot Gallery to schedule an automatic
refresh based on a schedule you define. Simply click the Manage Data icon in
the upper‐right corner of the target report’s shadow box (see Figure 7‐7).

SharePoint opens the Manage Data Refresh screen, shown in Figure 7‐8. The
idea is to configure each setting to set up the schedule you want.

Figure 7-5:
A sample

Power Pivot
Gallery.

Figure 7-6:
You can use

the Data
drop‐down

menu to
manually

refresh data
connections.

133� Chapter 7: Publishing Power Pivot to SharePoint

This list describes each settings section:

✓✓ Data Refresh: The Data Refresh section holds the On‐Off switch for your
schedule. Place a check in the Enable Schedule check box to make the
schedule active. Remove the check to stop automatic refreshes.

✓✓ Schedule Details: In the Schedule Details section, you can specify the
frequency and intervals of the schedule. In addition to selecting the time
intervals, you can refresh as soon as possible. Placing a check mark next
to the Also Refresh as Soon as Possible option starts a refresh within a
minute. This option is helpful when you want to test the refresh process.

Manage Data

Figure 7-7:
Select the

Manage
Data icon.

Figure 7-8:
Set up your

schedule.

134 Part I: Supercharged Reporting with Power Pivot �

✓✓ Earliest Start Time: The Earliest Start Time section lets you specify the
time of day to run the refresh process.

✓✓ E‐mail Notifications: The E‐mail Notifications section lets you specify
who should receive an email from SharePoint every time the scheduled
refresh is run. Individuals who are specified receive an email regardless
of whether the process ran successfully.

✓✓ Credentials: Most data sources require authentication in order to connect
to them (username, password, and so on). The Credentials section lets
you specify how authentication is passed to external data sources. This
section has these three options:

•	Use the Data Refresh Account Configured by the Administrator:
Authenticates the SharePoint system account to the data source.
You typically have to work with your SharePoint administrator to
set up this authentication method and ensure that the data source
can use SharePoint’s system account.

•	Connect Using the Following Windows User Credentials: Lets you
explicitly enter a username and password for authentication. Avoid
using your personal username and password here. Instead, use
this option with an application account, which is a “dummy” user
created by your database administrators.

•	Connect Using the Credentials Saved in Secure Store Service (SSS) to
Log On to the Data Source: This authentication option allows data
connections to be refreshed without requiring a password. In order
to use this option, you need a Secure Store ID from your SharePoint
administrator.

✓✓ Data Sources: This setting lets you define whether all data connections
are refreshed, or only specific connections. Deselecting the All Data
Sources check box enables the selection of individual connections in
your workbook.

Part II

Discover how to integrate Power Pivot and Power Query to create dynamic reporting from
a web service at www.dummies.com/extras/excelpowerpivotpowerquery.

Wrangling Data with
Power Query

http://www.dummies.com/extras/excelpowerpivotpowerquery

In this part . . .
✓✓ Discover the fundamentals of using Power Query to import and

process data from various data sources.

✓✓ Explore Power Query tools and formulas that can automate and
simply your data-transformation processes.

✓✓ Uncover methods of merging and appending multiple queries to
go beyond simple data imports.

✓✓ Get the skinny on creating your own custom functions to extend
the functionality of Power Query.

Chapter 8

Introducing Power Query
In This Chapter

▶▶ Installing and activating Power Query

▶▶ Spelling out the Power Query basics

▶▶ Understanding Query steps

▶▶ Managing existing queries

▶▶ Overviewing query actions

I
n information management, the term ETL (Extract, Transform, Load)
refers to the three separate functions typically required to integrate dispa-

rate data sources: extract, transform, and load. The extraction function refers
to the reading of data from a specified source and extracting a desired subset
of data. The transformation function refers to the cleaning, shaping, and
aggregating of data to convert it to the desired structure. The loading func-
tion refers to the actual importing or writing of the resulting data to a target
location.

Excel analysts have been manually performing ETL processes for years —
although they rarely call it ETL. Every day, millions of Excel users manually
pull data from a source location, manipulate that data, and integrate it into
their reporting. This process requires lots of manual effort.

Power Query enhances the ETL experience by offering an intuitive mecha-
nism to extract data from a wide variety of sources, perform complex
transformations on that data, and then load the data into a workbook or the
Internal Data Model.

In this chapter, you explore the basics of the Power Query Add‐in. You
also get a glimpse of how it can help you save time and automate the steps
needed to ensure that clean data is imported into your reporting models.

138 Part II: Wrangling Data with Power Query �

Installing and Activating
a Power Query Add‐In

In Excel 2016, Power Query isn’t an add‐in — it’s a native feature of Excel, just
like charts and pivot tables are native features. If you’re working with Excel
2016, you don’t have to install any additional components. You’ll find Power
Query in Excel 2016 hidden on the Data tab, in the Get & Transform group
(see Figure 8‐1).

If you’re working with Excel 2010 or Excel 2013, you need to explicitly
download and install the Power Query add‐in. As of this writing, the Power
Query add‐in is available to you only if you have one of these editions of
Office or Excel:

✓✓ Office 2010 Professional Plus: Available for purchase through
any retailer

✓✓ Office 2013 Professional Plus: Available through volume licensing only

✓✓ Office 365 Pro Plus: Available with an ongoing subscription to
Office365.com

✓✓ Excel 2013 Stand‐alone Edition: Available for purchase through any
retailer

If you have any of these editions, you can install and activate the Power
Query add‐in. Simply enter the search term Excel Power Query add‐in into
your favorite search engine to find the free installation package.

Figure 8-1:
In Excel

2016, the
Power
Query

commands
are found in

the Get &
Transform

group on the
Data tab.

139� Chapter 8: Introducing Power Query

Note that Microsoft offers Power Query for both Excel 2010 and Excel 2013 in
both 32‐ and 64‐bit platforms. Be sure to download the version that matches
your version of Excel as well as the platform on which your PC is running.

After the add‐in is installed, activate it by following these steps:

1.	Open Excel and look for the Power Query command on the Insert tab
(see Figure 8‐2).

If you see it, the Power Query add‐in is already activated. You can skip
the remaining steps.

2.	From the Excel Ribbon, choose File ➪ Options.

3.	Choose the Add‐Ins option on the left, and then look for the Manage
drop‐down list at the bottom of the dialog box. Select COM Add‐Ins
and then click Go.

4.	Look for Power Query for Excel in the list of available COM add‐ins.
Select the check box next to each one of these options and click OK.

5.	Close and restart Excel.

A successful install results in a new Power Query tab on the Excel Ribbon.

Power Query Basics
In this section, I walk you through a simple example of using Power Query.
Imagine that you need to import Microsoft Corporation stock prices from the
past 30 days by using Yahoo! Finance. For this scenario, you need to perform
a web query to pull the data you need from Yahoo! Finance.

Figure 8-2:
In Excel

2010 and
2013, the

Power
Query

add‐in is
exposed via
its own tab

on the
Ribbon.

140 Part II: Wrangling Data with Power Query �

Starting the query
To start the query, follow these steps:

1.	If you have Excel 2016, select the New Query command on the Data
tab, and then select From Other Sources ➪ From Web (see Figure 8‐3).

If you’re working with Excel 2010 or Excel 2013, click the Power Query
tab and select the From Web command.

2.	In the dialog box that appears, enter the URL for the data you need, as
shown in Figure 8‐4.

In this example, you type http://finance.yahoo.com/q/hp?s=MSFT.

Figure 8-3:
Starting a

Power
Query web

query.

Figure 8-4:
Enter the

target URL
containing

the data you
need.

http://finance.yahoo.com/q/hp?s=MSFT

141� Chapter 8: Introducing Power Query

After a bit of gyrating, the Navigator pane shown in Figure 8‐5 appears.
You can select the data source that you want to extract. Click on each
table to see a preview of the data.

3.	In this case, Table 4 holds the historical stock data you need, so click
Table 4 in the list box on the left and then click the Edit button.

You may have noticed that the Navigator pane, shown in Figure 8‐5,
offers a Load button (next to the Edit button). You can use this button to
skip any editing and import your targeted data as is. If you’re sure that
you won’t need to transform or shape your data in any way, click the
Load button to import the data directly into the data model or a spread-
sheet in your workbook.

Excel has another From Web command button, on the Data tab in the Get
External Data group. This unfortunate duplicate command is the legacy
web‐scraping capability found in all Excel versions since Excel 2000.

The Power Query version of the From Web command (choose New
Query ➪ From Other Sources ➪ From Web) goes beyond simple web
scraping. Power Query can pull data from advanced web pages and then
manipulate it. Make sure you’re using the correct feature when pulling
data from the web.

When you click the Edit button, Power Query activates a new Query
Editor window, which contains its own Ribbon and a preview pane that
shows a preview of the data (see Figure 8‐6). You can apply certain
actions to shape, clean, and transform the data before importing.

The idea is to work with each column shown in the Query Editor, apply-
ing the necessary actions that will give you the data and structure you
need. You can dive deeper into column actions later in this chapter. For
now, continue toward the goal of getting the last 30 days of stock prices
for Microsoft Corporation.

Figure 8-5:
Select the

correct data
source and

then click
the Edit
button.

142 Part II: Wrangling Data with Power Query �

4.	Right‐click the Date column to see the available column actions, as
shown in Figure 8‐7. Select Change Type and then Date to ensure that
the Date field is formatted as a proper date.

Formula bar Query Settings

Preview pane

Figure 8-6:
The Query
Editor win-

dow allows
you to

shape,
clean, and
transform

data.

Figure 8-7:
Right‐click

the Date
column and

choose to
change the
data type to

a date
format.

143� Chapter 8: Introducing Power Query

5.	Remove all unnecessary columns by right‐clicking each one and
selecting Remove.

(Besides the Date field, the only other columns you need are the High,
Low, and Close fields.)

Alternatively, you can hold down the Ctrl key on the keyboard, select
the columns you want to keep, right‐click any selected column, and then
choose Remove Other Columns (see Figure 8‐8).

6.	To ensure that the High, Low, and Close fields are formatted as proper
numbers, hold down the Ctrl key on the keyboard, select the three
columns, and right‐click and choose Change Type ➪ Decimal Number.

After you do this, you may notice that some of the rows show the
word Error. These are rows that contain text values that could not be
converted.

7.	Remove the error rows by selecting Remove Errors from the Table
Actions list (next to the Date field), as shown in Figure 8‐9.

8.	After all errors are removed, add a Week Of field that displays which
week each date in the table belongs to.

Here’s how to do this:

1.	Right‐click the Date field and select the Duplicate Column option.

A new column is added to the preview.

2.	Right‐click the newly added column, select the Rename option,
and then rename the column Week Of.

Figure 8-8:
Select

unneeded
columns,
and then

select
Remove

Other
Columns to

get rid of
them.

144 Part II: Wrangling Data with Power Query �

9.	Select the Transform tab on the Power Query Ribbon, look to the
right to find the Date & Time Column group, and then choose
Date ➪ Week ➪ Start of the Week, as shown in Figure 8‐10.

Excel transforms the date to display the start of the week for a
given date.

Figure 8-9:
You can
click the

Table
Actions icon

to select
actions

(such as
Remove

Errors) that
you want

applied to
the entire

data table.

Figure 8-10:
The Power

Query
Ribbon can
be used to

apply trans-
formation

actions
such as

displaying
the start of

the week
for a given

date.

145� Chapter 8: Introducing Power Query

10.	When you’ve finished configuring your Power Query feed, save and
output the results.

To do this, click the Close & Load drop‐down menu on the Home tab of
the Power Query Ribbon to reveal the two options shown in Figure 8‐11:

•	Close & Load: Saves your query and outputs the results as an Excel
table to a new worksheet in your workbook.

•	Close & Load To: Opens the Load To dialog box, where you can
choose to output the results to a specific worksheet or to the Data
Model. Alternatively, you can choose to save the query only as
a query connection, and then you can use the query in various
in‐memory processes without needing to output the results.

At this point, you have a table similar to the one shown in Figure 8‐12, which
can be used to produce the pivot table you need.

Take a moment to appreciate what Power Query allowed you to do just now.
With a few clicks, you searched the Internet, found some base data, shaped
the data to keep only the columns you needed, and even manipulated that
data to add an extra Week Of dimension to the base data. This is what Power
Query is about: enabling you to easily extract, filter, and reshape data with-
out the need for any programmatic coding skills.

Figure 8-11:
The Load To

dialog box
gives

you more
control over

how the
results of

queries are
used.

146 Part II: Wrangling Data with Power Query �

Understanding query steps
Power Query uses its own formula language (known as the “M” language) to
codify your queries. As with macro recording, each action you take when
working with Power Query results in a line of code being written into a
query step. Query steps are embedded M code that allow your actions to be
repeated each time you refresh your Power Query data.

You can see the query steps for your queries by activating the Query Settings
pane. While in the Query Editor window, you choose View ➪ Query Settings.
You can also place a check mark in the Formula Bar option to enhance your
analysis of each step with a formula bar that displays the syntax for the
given step.

The Query Settings pane appears to the right of the preview pane, as shown
in Figure 8‐13. The formula bar is located directly above the preview pane.

Each query step represents an action you took to get to a data table. You can
click on any step to see the underlying M code in the Power Query formula
bar. For example, clicking the step called Removed Errors reveals the code
for that step in the formula bar.

When you click on a query step, the data shown in the preview pane shows
you what the data looked like up to and including the step you clicked. For
example, in Figure 8‐13, clicking the step before the Removed Other Columns
step lets you see what the data looked like before you removed the non‐
essential columns.

Figure 8-12:
Your final

query pulled
from the
Internet:

trans-
formed, put

into an
Excel table,

and ready to
use in a

pivot table.

147� Chapter 8: Introducing Power Query

You can right‐click on any step to see a menu of options for managing your
query steps. Figure 8‐14 illustrates the following options:

✓✓ Edit Settings: Edit the arguments or parameters that defines the
selected step.

✓✓ Rename: Give the selected step a meaningful name.

✓✓ Delete: Remove the selected step. Be aware that removing a step can
cause errors if subsequent steps depend on the deleted step.

Figure 8-13:
You can

view and
manage

query steps
in the

Applied
Steps sec-
tion of the

Query Set-
tings pane.

Figure 8-14:
Right‐click

on any
query step

to edit,
rename,

delete, or
move the

step.

148 Part II: Wrangling Data with Power Query �

✓✓ Delete Until End: Remove the selected step and all following steps.

✓✓ Move Up: Move the selected step up in the order of steps.

✓✓ Move Down: Move the selected step down in the order of steps.

✓✓ Extract Previous: Create a new query using the steps prior to the
selected step. This feature is covered in Chapter 11.

Refreshing Power Query data
Power Query data is in no way connected to the source data used to extract
it. A Power Query data table is merely a snapshot. In other words, as the
source data changes, Power Query doesn’t automatically keep up with the
changes; you need to intentionally refresh your query.

If you chose to load your Power Query results to an Excel table in the existing
workbook, you can manually refresh by right‐clicking on the table and select-
ing the Refresh option.

If you chose to load your Power Query data to the Internal Data Model,
you need to open the Power Pivot window, select your Power Query
data, and then click the Refresh command on the Home tab of the Power
Query window.

To get a bit more automated with the refreshing of queries, you can configure
your data sources to automatically refresh the Power Query data. To do so,
follow these steps:

1.	From the Data tab on the Excel Ribbon, select the Connections
command.

The Workbook Connections dialog box appears.

Viewing the Advanced Query Editor
Power Query gives you the option to view and
edit a query’s embedded M code directly.
While in the Query Editor window, click the
View tab on the Ribbon and select Advanced
Editor. The Advanced Editor dialog box is
little more than a space for you to type your

own M code. Advanced users can use the M
language to extend the capabilities of Power
Query by directly coding their own steps in the
Advanced Editor. We touch on the M language
in Chapter 12 of this book.

149� Chapter 8: Introducing Power Query

2.	Select the Power Query data connection you want to refresh and then
click the Properties button.

The Properties dialog box opens.

3.	Select the Usage tab.

4.	Set the options to refresh the chosen data connection:

•	Refresh Every X Minutes: Tells Excel to automatically refresh the
chosen data every specified number of minutes. Excel refreshes all
tables associated with that connection.

•	Refresh Data When Opening the File: Tells Excel to automatically
refresh the chosen data connection after opening the workbook.
Excel refreshes all tables associated with that connection as soon
as the workbook is opened.

These refresh options are useful when you want to ensure that your custom-
ers are working with the latest data. Of course, setting these options does
not preclude the ability the manually refresh the data using the Refresh
command on the Home tab.

Managing existing queries
As you add various queries to a workbook, you need a way to manage them.
Excel accommodates this need by offering the Workbook Queries pane,
which enables you to edit, duplicate, refresh, and generally manage all exist-
ing queries in the workbook. Open the Workbook Queries pane by selecting
the Show Queries command on the Data tab of the Excel ribbon.

You need to find the query you want to work with and then right‐click it to
take any one of the actions described in the following list (see Figure 8‐15):

✓✓ Edit: Open the Query Editor, where you can modify the query steps.

✓✓ Delete: Delete the selected query.

✓✓ Refresh: Refresh the data in the selected query.

✓✓ Load To: Activate the Load To dialog box, where you can redefine where
the selected query’s results are used.

✓✓ Duplicate: Create a copy of the query.

✓✓ Reference: Create a new query that references the output of the
original query.

✓✓ Merge: Merge the selected query with another query in the workbook
by matching specified columns.

150 Part II: Wrangling Data with Power Query �

✓✓ Append: Append the results of another query in the workbook to the
selected query.

✓✓ Send to Data Catalog: Publish and share the selected query via a
Microsoft Power BI server that your IT department sets up and manages.

✓✓ Move to Group: Move the selected query into a logical group that you
create for better organization.

✓✓ Move Up: Move the selected query up in the Workbook Queries pane.

✓✓ Move Down: Move the selected query down in the Workbook
Queries pane.

✓✓ Show the Peek: Show a preview of the query results for the
selected query.

✓✓ Properties: Rename the query and add a friendly description.

The Workbook Queries pane is especially useful when your workbook con-
tains several queries. Think of it as a kind of table of contents that allows you
to easily find and interact with the queries in your workbook.

Figure 8-15:
Right‐click
any query

in the
Workbook

Queries
pane to
see the

available
manage-

ment
options.

151� Chapter 8: Introducing Power Query

Understanding Column‐Level Actions
Right‐clicking a column in the Query Editor opens a context menu that shows
a full list of the actions you can take. You can also apply certain actions to
multiple columns at one time by selecting two or more columns before right‐
clicking. Figure 8‐16 shows the available column‐level actions, and Table 8‐1
describes their purpose, as well as a few other actions that are available only
on the Query Editor Ribbon.

All column‐level actions available in Power Query are also available on the
Query Editor Ribbon, so you can either choose the convenience of right‐
clicking to quickly select an action or use the more visual Ribbon menu. A
few useful column‐level actions are found only on the Ribbon, as described
in Table 8‐1.

Figure 8-16:
Right‐click

any column
to see the

column‐
level actions
you can use
to transform

the data.

Table 8-1	 Column‐Level Actions
Action Purpose Available

with Multiple
Columns?

Remove Remove the selected column from the Power
Query data.

Yes

Remove Other
Columns

Remove all non‐selected columns from the Power
Query data.

Yes

(continued)

152 Part II: Wrangling Data with Power Query �

Action Purpose Available
with Multiple
Columns?

Duplicate
Column

Create a duplicate of the selected column as a
new column placed on the far right end of the
table. The name given to the new column is Copy
of X, where X is the name of the original column.

No

Remove
Duplicates

Remove all rows from the selected column where
the values duplicate earlier values. The row with
the first occurrence of a value isn’t removed.

Yes

Remove
Errors

Remove rows containing errors in the selected
column.

Yes

Change Type Change the data type of the selected column to
any of these types: Binary, Date, Date/Time, Date/
Time/Timezone, Duration, Logical, Number, Text,
Time, or Using Locale (which localizes data types
to the country you specify).

Yes

Transform Change the way values in the column are ren-
dered. You can choose from the following options:
Lowercase, Uppercase, Capitalize Each Word,
Trim, Clean, Length, JSON, and XML. If the values
in the column are date/time values, the options
are Date, Time, Day, Month, Year, or Day of Week.
If the values in the column are number values,
the options are Round, Absolute Value, Factorial,
Base‐10 Logarithm, Natural Logarithm, Power,
and Square Root.

Yes

Replace
Values

Replace one value in the selected column with
another specified value.

Yes

Replace
Errors

Replace unsightly error values with your own,
friendlier text.

Yes

Group By Aggregate data by row values. For example, you
can group by state and either count the number
of cities in each state or sum the population of
each state.

Yes

Fill Fill empty cells in the column with the value of the
first non‐empty cell. You have the option to fill up
or fill down.

Yes

Unpivot
Columns

Transpose the selected columns from column‐
oriented to row‐oriented or vice versa.

Yes

Rename Rename the selected column to a name you
specify.

No

Table 8-1 (continued)

153� Chapter 8: Introducing Power Query

Figure 8-17:
Click the

Table
Actions icon
in the upper‐

left corner
of the Query

Editor
Preview

pane to see
the table‐

level actions
you can use
to transform

the data.

Action Purpose Available
with Multiple
Columns?

Move Move the selected column to a different location
in the table. You have these choices for moving
the column: Left, Right, To Beginning, and To End.

Yes

Drill Down Navigate to the contents of the column. This
option is used with tables that contain metadata
representing embedded information.

No

Add as New
Query

Create a new query with the content of the
column, by referencing the original query in the
new one. The name of the new query is the same
as the column header of the selected column.

No

Split Column
(Ribbon only)

Split the value of a single column into two or more
columns, based on a number of characters or a
given delimiter, such as a comma, semicolon,
or tab.

No

Merge
Column
(Ribbon only)

Merge the values of two or more columns into a
single column that contains a specified delimiter,
such as a comma, semicolon, or tab.

Yes

Understanding Table Actions
While you’re in the Query Editor, Power Query lets you apply certain actions
to an entire data table. You can see the available table‐level actions by click-
ing the Table Actions icon, shown in Figure 8‐17.

154 Part II: Wrangling Data with Power Query �

Table 8‐2 lists the table‐level actions and describes the primary purpose
of each one.

Table 8-2	 Table‐Level Actions
Action Purpose
Use First Row
as Headers

Replace each table header name with the values in the first row of
each column.

Add Custom
Column

Insert a new column after the last column of the table. The values in
the new column are determined by the value or formula you define.

Add Index
Column

Insert a new column containing a sequential list of numbers starting
from 1, 0, or another specified value you define.

Choose
Columns

Choose the columns you want to keep in the query results.

Remove
Duplicates

Remove all rows where the values in the selected columns
duplicate earlier values. The row with the first occurrence of a
value set isn’t removed.

Keep Top
Rows

Remove all but the top N number of rows. You specify the number
threshold.

Keep Bottom
Rows

Remove all but the bottom N number of rows. You specify the
number threshold.

Keep Range
of Rows

Remove all rows except the ones that fall within a range you
specify.

Remove Top
Rows

Remove the top N rows from the table.

Remove
Bottom Rows

Remove the bottom N rows from the table.

Remove
Alternate
Rows

Remove alternate rows from the table, starting at the first row
to remove and specifying the number of rows to remove and the
number of rows to keep.

Remove
Errors

Remove rows containing errors in the selected columns.

Merge
Queries

Create a new query that merges the current table with another
query in the workbook by matching specified columns.

Append
Queries

Create a new query that appends the results of another query in the
workbook to the current table.

All table‐level actions available in Power Query are also available on the
Query Editor Ribbon, so you can either choose the convenience of right‐
clicking to quickly select an action or use the more visual Ribbon menu.

Chapter 9

Power Query Connection Types
In This Chapter

▶▶ Extracting data from files

▶▶ Getting data from external databases

▶▶ Importing from other nonstandard data systems

▶▶ Changing data source settings

M
icrosoft has invested a great deal of time and resources in ensuring
that Power Query has the ability to connect to a wide array of data

sources. Whether you need to pull data from an external website, a text file,
a database system, Facebook, or a web service, Power Query can accommo-
date most, if not all, of your source data needs.

You can see all available connection types by clicking on the New Query
drop‐down arrow on the Data tab. As Figure 9‐1 illustrates, Power Query
offers the ability to pull from a wide array of data sources, as described in
this list:

✓✓ From File: Pulls data from specified Excel files, text files, CSV files, XML
files, or folders

✓✓ From Database: Pulls data from a database such as Microsoft Access,
SQL Server, or SQL Server Analysis Services

✓✓ From Azure: Pulls data from Microsoft’s Azure Cloud service

✓✓ From Other Sources: Pulls data from a wide array of Internet, cloud, and
other ODBC data sources

In this chapter, I help you explore the various connection types that can be
leveraged to import external data.

156 Part II: Wrangling Data with Power Query �

Importing Data from Files
Organizational data is often stored in files such as text files, CSV files, and
even other Excel workbooks. It’s not uncommon to use these kinds of files as
data sources for data analysis. Power Query offers several connection types
that enable the importing of data from external files.

The files you import don’t necessarily have to be on your own PC. You can
import files on network drives as well as in cloud repositories such as Google
Drive and Microsoft OneDrive.

Getting data from Excel workbooks
You can import data from other Excel workbooks by selecting Data ➪ 
New Query ➪ From File ➪ From Workbook from the Excel Ribbon.

Excel opens the Import Data dialog box, shown in Figure 9‐2. Use this dialog
box to browse for the Excel file you want to work with. Note that you can
import any kind of Excel file, including macro‐enabled workbooks and
template workbooks.

Power Query won’t bring in charts, pivot tables, shapes, VBA code, or any
other objects that may exist within a workbook. Power Query simply imports
the data found in the used cell ranges of the workbook.

After you’ve selected a file, the Navigator pane activates (see Figure 9‐3),
showing you all the data sources available in the workbook.

Figure 9-1:
Power

Query has
the ability to
connect to a

wide array
of text,

database,
and Internet

data
sources.

157� Chapter 9: Power Query Connection Types

The idea here is to select the data source you want and then either load or
edit the data using the buttons at the bottom of the Navigator pane. Click the
Load button to skip any editing and import your targeted data as is. Click the
Edit button if you want to transform or shape before completing the import.

In terms of Excel workbooks, a data source is either a worksheet or a defined
named range. The icons next to each data source let you distinguish which
sources are worksheets and which are named ranges. In Figure 9‐3, the
source named MyNamedRange is a defined named range, and the source
named National Parks is a worksheet.

Figure 9-2:
Browse for

the Excel
file that

contains the
data you

want
imported.

Figure 9-3:
Select the

data
sources you

want to
work with,

and then
click the

Load button.

158 Part II: Wrangling Data with Power Query �

You can import multiple sources at a time by selecting the Select Multiple
Items check box and then placing a check mark next to each worksheet and
named range that you want imported.

Getting data from CSV and text files
Text files are commonly used to store and distribute data because of their
inherent ability to hold many thousands of bytes of data without having an
inflated file size. Text files can do this by foregoing all the fancy formatting,
leaving only the text.

A comma‐separated value (CSV) file is a kind of text file that contains commas
to delimit (separate) values into columns of data.

Text files
To import a text file, select Data ➪ New Query ➪ From File ➪ From Text on the
Excel Ribbon. Excel opens the Import Data dialog box, where you can browse
for, and select, a text file.

Excel has another From Text command button on the Data tab, under the Get
External Data group. This duplicate command is actually the legacy import
capability found in all Excel versions. The Power Query version is much more
powerful, allowing you to shape and transform text data before importing. Be
sure to use the correct Power Query version of the From Text feature.

Power Query opens the Query Editor to show you the contents of the text file
you just imported. As you can see in Figure 9‐4, text files are imported as a
table with one column containing a row for each line in the text file.

The idea here is to apply any changes you want to make to the data and then
click the Close & Load command on the Home tab to complete the import.

Some text files are structured as tab‐delimited files. Similar to comma‐
separated (CSV) files, tab‐delimited text files contain tab characters
that separate text values into columns of data. Power Query recognizes
tab‐delimited text files and imports these files into a table that contains a
separate column for each tab delimiter.

CSV files
To import a CSV file, go to the Excel Ribbon and select Data ➪ New Query ➪ 
From File ➪ From CSV. Excel opens the Import Data dialog box, where you
can browse for and select your target CSV file.

159� Chapter 9: Power Query Connection Types

Power Query opens the Query Editor to show you the contents of the CSV file
you just imported. Power Query excels at recognizing the correct delimiters
in CSV files and typically does a good job of importing the data correctly.

For example, Row 5 in the sample CSV file illustrated in Figure 9‐5 contains
the value Johnson, Kimberly. Power Query contains the intelligence to know
that the comma in that value is not an actual delimiter. So all the columns are
separated correctly.

Figure 9-4:
Text files

are brought
into the

Query Editor,
where you
can apply
your edits
and then
click the
Close &

Load
command to

complete
the import.

Figure 9-5:
CSV files

are brought
into the

Query Editor,
where you
can apply
your edits
and then
click the
Close &

Load
command to

complete
the import.

160 Part II: Wrangling Data with Power Query �

You can use the Query Editor to apply any edits you may need and then click
the Close & Load command on the Home tab to import the CSV data.

Getting data from XML files
XML files are a family of text files that contain data wrapped in markup (tags
that denote structure and meaning). These tags essentially make XML files
machine‐readable, which essentially means that any application or web‐based
solution designed to read XML files can discern the structure and content of
the data within.

The markup tags found in XML files are quite robust and make importing
XML files a bit tricky. Without getting too geeky, some XML files are attribute‐
based: They contain simple markup defining a table of columns and rows.
Other XML files are element‐based: They contain a wide array of complex
markup defining intricate hierarchical tables with many levels of data.

Power Query has the built‐in intelligence to handle any kinds of XML file just
fine, but you often need to dig for the data you want imported.

Depending on the markup within, Power Query starts you off with either the
Navigator pane or the Query Editor. Although this can be a bit jarring at first,
you can quickly get the gist of drilling into the data you need.

You can start importing an XML file by going to the Excel Ribbon and select-
ing Data ➪ New Query ➪ From File ➪ From XML. Excel opens the Import Data
dialog box, where you can browse for, and select, the target XML file.

You can import an XML file from the web by simply entering the URL of the
file into the Import Data dialog box. For example, you can enter the following
line to get to the FinalXMLOutput file found on datapigtechnologies.com:

www.datapigtechnologies.com/FinalXMLOutput.xml

Attribute‐based XML files
If the XML file you’ve pointed to is attribute‐based, Power Query opens the
Query Editor and shows the highest‐level content it finds. You often see a
single row of high‐level attributes, similar to Figure 9‐6.

You can get to the data within the XML file in one of two ways:

✓✓ Click on the Table hyperlink to drill into the next level of data.

✓✓ Click on the Expand icon to view select the fields found in the next level
of data (see Figure 9‐7). Simply select the fields you want to see, and
then click the OK button.

http://www.datapigtechnologies.com/FinalXMLOutput.xml

161� Chapter 9: Power Query Connection Types

Every XML file is different, so don’t anticipate drilling down (expanding to the
next level of data, as shown in Figure 9‐7) any specific number of times. For
some files, you may have to drill down only one level. Other files may require
you to drill into several layers before getting to the data you need.

After you drill into the data you need, you can click the Close & Load
command on the Home tab to complete the import.

Element‐based XML files
If the XML file you’ve pointed to is element‐based, Power Query opens the
Navigator pane. As you can see in Figure 9‐8, you need to drill into a vary-
ing number of elements to get to the element that contains the data you’re
looking for.

Figure 9-6:
Attribute‐

based XML
files often
start with

one line of
high‐level

values.

Figure 9-7:
Click the

Expand icon
to view and
drill into the

next layer
of data.

162 Part II: Wrangling Data with Power Query �

After you find the correct data layer, you can select the data source you want
and then use the buttons at the bottom of the Navigator pane to either load
or edit the data.

Getting data from folders
Power Query has the ability to use the Windows file system as a data source,
enabling you to import a list of folder contents for a specified directory.
This comes in handy when you need to create a list of all the files in a
particular folder.

From the Excel Ribbon, select Data ➪ New Query ➪ From File ➪ From Folder.
The dialog box shown in Figure 9‐9 opens, asking you to enter or browse for
the folder (directory) you want to use.

Figure 9-8:
Element‐

based XML
files are
initially

displayed
in the

Navigator
pane.

Figure 9-9:
Browse for

the target
folder.

163� Chapter 9: Power Query Connection Types

Power Query opens the Query Editor with a new table containing the con-
tents of the specified folder. As Figure 9‐10 illustrates, this new table details
the key attributes for each file, such as filename, file extension, date created,
and date modified. You can even click the Expand icon in the Attributes field
and choose to display some of the more advanced attributes for each file.

After you have all the attributes you need, you can click the Close & Load
command on the Home tab to complete the import.

The files that are listed include all files contained in subfolders inside the
folder you specified. Unfortunately, the resulting output is not hyperlinked
back to the actual folder contents. In other words, you can’t open the
individual files from the query table.

Importing Data from Database Systems
In smart organizations, the task of data management is not performed by
Excel; rather, it’s performed primarily by database systems such as Microsoft
Access and SQL Server. Databases like these not only store millions of rows
of data, but also ensure data integrity and allow for the rapid search and
retrieval of data by way of queries and views.

A connection for every database type
Power Query offers options to connect to a wide array of database types.
Microsoft has been keen to add connection types for as many commonly
used databases as it can.

Figure 9-10:
Power
Query

creates a
useful list

of files.

164 Part II: Wrangling Data with Power Query �

Relational and OLAP databases
Choose Data ➪ New Query ➪ From Database and you see the list of databases
shown in Figure 9‐11. Power Query has the ability to connect to virtually
any database commonly used today: SQL Server, Microsoft Access, Oracle,
MySQL, etc.

Azure databases
If your organization has a Microsoft Azure cloud database or a subscription
to Microsoft Azure Marketplace, an entire set of connection types is designed
to import data from Azure databases (see Figure 9‐12). You can get to these
connection types by choosing Data ➪ New Query ➪ From Azure.

ODBC connections to nonstandard databases
If you’re using a unique, nonstandard database system that isn’t listed under
From Database (refer to Figure 9‐11) or From Azure (refer to Figure 9‐12), not
to worry: As long as your database system can be connected to via an ODBC
connection string, Power Query can connect to it.

Choose Data ➪ New Query ➪ From Other Data Sources to see a list of other
connection types. Click the From ODBC option shown in Figure 9‐13 to start a
connection to your unique database via an ODBC connection string.

Figure 9-11:
Power

Query offers
connection

types for
many of the

popular
database
systems

now in use.

165� Chapter 9: Power Query Connection Types

Getting data from other data systems
In addition to ODBC, Figure 9‐13 illustrates other kinds of data systems that
can be leveraged by Power Query.

Figure 9-12:
Tools for

connection
to Microsoft
Azure cloud

database
services.

Figure 9-13:
Starting

an ODBC
connection.

166 Part II: Wrangling Data with Power Query �

Some of these data systems (SharePoint, Dynamics CRM, Salesforce, and
Microsoft Exchange) are popular systems that are used in many organiza-
tions to store data, track sales opportunities, and manage emails. Other sys-
tems, such as OData Feeds and Hadoop, are less‐common services used to
work with very large volumes of data. These are often mentioned in conversa-
tions about big data. And of course, the From Web option (demonstrated in
Chapter 8) is an integral connection type for any analyst who leverages data
from the internet.

Clicking any of these connections opens a set of dialog boxes customized for
the selected connection. These dialog boxes ask for the basic parameters
that Power Query needs in order to connect to the specified data source;
parameters such as file path, URL, server name, and credentials.

Each connection type requires its own, unique set of parameters, so each of
their dialog boxes is different. Luckily, Power Query rarely needs more than
a handful of parameters to connect to any single data source, so the dialog
boxes are relatively intuitive and hassle‐free.

Walk‐through: Getting data
from a database
It would be redundant to walk through the process of connection to every
type of database available. However, it would be useful to walk through the
basic steps of connecting a database.

Here are the steps for connecting to one of the more ubiquitous database
systems — Microsoft Access:

1.	Choose Data ➪ New Query ➪ From Database ➪ From Microsoft Access
Database.

2.	Browse for your target database. You can use the Facility Services.
accdb database, found in the sample files for this book.

After Power Query connects to the database, the Navigator pane, shown
in Figure 9‐14, activates. There, you see all database objects available to
you, including tables and views (or queries, in Access lingo).

3.	Click the Sales_By_Employee view.

The Navigator pane displays a preview of the Sales_By_Employee data.
If you want to transform or shape this data, click the Edit button. In this
case, the data looks fine as is.

 Chapter 9: Power Query Connection Types 167

4. Click the Load button to complete the import.

After a bit of processing, Power Query loads the data to a new Excel
worksheet and adds the new query to the Workbook Queries pane,
as shown in Figure 9‐15.

You can select multiple tables and views by selecting the Select Multiple
Items check box and then placing a check mark next to each database object
you want imported.

The icon next to each database object distinguishes whether that object is
a table or a view. Views have an icon that looks like two overlapping grids.
See the icon for the Sales_By_Employee view, shown in Figure 9‐14, to
get the idea.

It’s a best practice to use views whenever possible. Views are often cleaner
data sets because they’re already optimized to include only the columns and
data that are necessary. (This improves query performance and helps mini-
mize the workbook’s file size.) In addition, you don’t need to have an intimate

Figure 9-14:
Select the

view you
want

imported,
and then
click the

Load button.

Figure 9-15:
The final
imported
database

data.

168 Part II: Wrangling Data with Power Query �

knowledge of the database architecture. Someone with that knowledge has
already done the work for you — joined the correct tables, applied the appro-
priate business rules, and optimized output, for example.

Managing Data Source Settings
Every time you connect to any web‐based data source or data source that
requires some level of credentials, Power Query caches (stores) the settings
for that data source.

Suppose that you connect to a SQL Server database, enter all your creden-
tials, and import the data you need. At the moment of successful connection,
Power Query caches information about that connection in a file located on
your local PC. It includes the connection string, username, password, and pri-
vacy settings, for example.

The purpose of all this caching is so that you don’t have to reenter creden-
tials every time you need to refresh your queries. That’s nifty, but what hap-
pens when your credentials are changed? Well, the short answer is those
queries will fail until the data source settings are updated.

You can edit data source settings by activating the Data Source Settings
dialog box. To do so, choose Data ➪ New Query ➪ Data Source Settings,
as demonstrated in Figure 9‐16.

Figure 9-16:
Activating

the Data
Source

Settings
dialog box.

169� Chapter 9: Power Query Connection Types

The Data Source Settings dialog box, shown in Figure 9‐17, contains a list of
all credentials‐based data sources previously used in queries. Select the data
source you need to change, and then click the Edit button.

Another dialog box opens — this time, specific to the data source you
selected (see Figure 9‐18). This dialog box enables you to edit credentials as
well as other data privacy settings.

Figure 9-17:
Edit a data
source by

selecting it
and clicking

the Edit
button.

Figure 9-18:
The creden-
tials editing

screen
for your

selected
data source.

170 Part II: Wrangling Data with Power Query �

Click the Edit button to make changes to the credentials for the data source.
The credentials editing screen will differ based on the data source you’re
working with, but again, the input dialog boxes are relatively intuitive and
easy to update.

Power Query caches data source settings in a file located on your local PC.
Even though you may have deleted a particular query, the data source set-
ting is retained for possible future use. This can lead to a cluttered list of old
and current data sources. You can clean out old items by selecting the data
source in the Data Source Settings dialog box and clicking the Delete button.

Chapter 10

Transforming Your Way
to Better Data

In This Chapter
▶▶ Performing common transformations

▶▶ Creating your own custom columns

▶▶ Understanding data types

▶▶ Understanding Power Query formulas

▶▶ Applying conditional logic

▶▶ Grouping and Aggregating Data

W
ouldn’t it be great if all the data sources you work with were clean
and ready to use? Unfortunately, that’s not the case — you often

receive data that is unpolished, or raw. That is to say, the data may have
duplicates or blank fields or inconsistent text, for example.

Data transformation generally entails certain actions that are meant to
“clean” your data — actions such as establishing a table structure, removing
duplicates, cleaning text, removing blanks, and even adding your own
calculations.

In this chapter, I introduce you to some of the tools and techniques in Power
Query that make it easy for you to clean and massage your data.

You can follow along with the examples in this chapter by downloading the
LeadList.txt sample file from www.dummies.com/go/excelpowerpivot
powerqueryfd. After you download it, you can import the sample file
into Power Query: Select Data ➪ New Query ➪ From File ➪ From Text and then
point to LeadList.txt.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd
http://www.dummies.com/go/excelpowerpivotpowerqueryfd

172 Part II: Wrangling Data with Power Query �

Completing Common Transformation
Tasks

Many of the unpolished datasets that come to you will require other types of
transformation actions. This section covers some of the more common trans-
formation tasks you will have to perform, such as removing duplicates, find-
ing and replacing text, filling empty cells, and splitting or joining text values.

Removing duplicate records
Duplicate records are absolute analysis killers. The effect that duplicate
records have on your analysis can be far‐reaching, corrupting almost every
metric, summary, and analytical assessment you produce. It is for this reason
that finding and removing duplicate records should be your first priority
when you receive a new dataset.

Before you begin examining the dataset to find and remove duplicate records,
consider how you define a duplicate record. Look at the table shown in
Figure 10‐1, where you see 11 records. Of the 11 records, how many are
duplicates?

If you were to define a duplicate record in Figure 10‐1 as a duplication of only
the SicCode, you would find 10 duplicate records. That is, of the 11 records
shown, 1 record has a unique SicCode, and the other 10 are duplications.
Now, if you were to expand your definition of a duplicate record to a duplica-
tion of both SicCode and PostalCode, you would find only two duplicates:
the duplication of postal codes 77032 and 77040. Finally, if you were to
define a duplicate record as a duplication of the unique value of SicCode,
PostalCode, and CompanyNumber, you would find no duplicates.

This example shows that having two records with the same value in a column
doesn’t necessarily mean that you have a duplicate record. It’s up to you to

Figure 10-1:
Does this

table have
duplicate

records? It
depends on

how you
define them.

173� Chapter 10: Transforming Your Way to Better Data

determine which field or combination of fields best defines a unique record
in the dataset.

After you have a clear idea of which field or fields best make up a unique
record in the table, you can remove duplicates easily by using the Remove
Duplicates command.

Figure 10‐2 illustrates the removal of duplicate rows based on three columns.
Note the importance of selecting the columns that define a duplicate. In this
case, the combination of Address, CompanyNumber, and CompanyName
defines a duplicate record. You select these columns before clicking the
Remove Duplicates command on the Home tab of the Power Query ribbon.

The Remove Duplicates command essentially looks for distinct values in
the columns you selected and then removes all records necessary to end
up with a unique list of values. If you select only one column before giving
the Remove Duplicates command, Power Query uses only one column you
selected to determine the unique list of values, which undoubtedly removes
too many records — records that aren’t truly duplicates. For this reason, be
sure to select all columns that define a duplicate.

If you make a mistake and remove duplicates based on the wrong set of
columns, don’t worry: You can always use the Query Settings pane to delete
that step. Right‐click on the Removed Duplicates step and select Delete
(see Figure 10‐3). Alternatively, you can click the X next to the Remove
Duplicates step.

Figure 10-2:
Removing
duplicate
records.

174 Part II: Wrangling Data with Power Query �

If you don’t see the Query Settings pane, select View ➪ Query Settings to
activate the Query Settings pane.

Filling in blank fields
There are two kinds of blank values: null and empty string. A null is essen-
tially a numerical value of nothing, whereas an empty string is equivalent to
entering two quotation marks (“”) in a cell.

Blank fields aren’t necessarily a bad thing, but having an excessive number of
blanks in your data can lead to unexpected problems when analyzing it.

Your job is to decide whether to leave the blanks in the dataset or fill them
with actual values. Consider the following best practices:

✓✓ Use blanks sparingly: Working with a dataset is a much less daunting
task when you don’t have to test continually for blank values.

✓✓ Use alternatives whenever possible: Represent missing values with
some logical missing‐value code whenever possible.

✓✓ Never use null values in number fields: Use zero instead of null in a
currency or a number field that will be used in calculations.

Replacing null values
Power Query shows the word null for any null value in your data. Replacing
the null values is as simple as selecting the column or columns you want to
fix and then selecting the Replace Values command, as shown in Figure 10‐4.

Figure 10-3:
Undo the

removal of
records by

deleting the
Removed

Duplicates
step.

175� Chapter 10: Transforming Your Way to Better Data

The Replace Values dialog box, shown in Figure 10‐5, opens. After you enter
the word null as the value to find, you can then enter the value you want to
use instead. In this case, enter 0 as the Replace With value.

Filling in empty strings
To follow best practices, represent missing values in a field with some logical
value code whenever possible. For example, in Figure 10‐6, I want to tag with
the word Undefined any record with a missing title in the ContactTitle field.

Figure 10-4:
Activating

the Replace
Values

dialog box.

Figure 10-5:
Replacing

null with 0.

176 Part II: Wrangling Data with Power Query �

You can do so by clicking on ContactTitle, selecting the Replace Values com-
mand, and then entering the word Undefined in the Replace Values dialog
box. As you can see in Figure 10‐6, because you’re replacing an empty string,
there’s no need to enter anything in the Value to Find input box.

If you need to adjust or correct the step where you replace values, you can
reopen the Replace Values dialog box by clicking the Gear icon next to the
name for that step. This is true for any action that requires a dialog box
to complete. Clicking on the Gear icon next to any step name opens the
appropriate dialog box for that step.

Concatenating columns
You can easily concatenate (join) the values in two or more columns. In
Power Query, you do this by using the Merge Columns command. The
Merge Columns command concatenates the values in two or more fields and
outputs the newly merged values into a new column.

First choose the columns you want to concatenate, and then select the
Transform tab and then the Merge Columns command, as shown in
Figure 10‐7.

The Merge Columns dialog box opens, as shown in Figure 10‐8. You have
the option of choosing from a list of the most commonly used delimiters
(comma, space, tab, etc.). You can also select the Custom option to enter
your own delimiter. In Figure 10‐8, a hyphen (‐) is used.

As you can see, you can also name the new column that will be created.

Figure 10-6:
Replacing

empty
strings with

the word
Undefined.

177� Chapter 10: Transforming Your Way to Better Data

The reward for your efforts is a new field containing the concatenated values
from the original column (see Figure 10‐9). The resulting column will be
named Merged. You can rename the column by right‐clicking it and selecting
the Rename option.

Figure 10-7:
Merging the

Type and
Code fields.

Figure 10-8:
The Merge

Columns
dialog box.

Figure 10-9:
The original

columns are
removed

and
replaced

with a new,
merged
column.

178 Part II: Wrangling Data with Power Query �

This feature is nifty, but notice that Power Query removes the original Type
and Code columns. In some instances, you’ll definitely want to concatenate
values but retain the source columns. In those instances, the answer is to
create your own, custom column. Later in this chapter, I describe how to use
custom columns to solve this and other transformation problems.

Changing case
Making sure that the text in your data has the correct capitalization may
sound trivial, but it’s important. Imagine that you receive a customer table
that has an address field where all addresses are lowercase. How will that
look on labels, form letters, or invoices? Fortunately, Power Query has a few
built‐in functions that make changing the case of your text a snap.

For example, the ContactName field (see Figure 10‐10) contains names that
are formatted in all uppercase letters. To change these names to the more
appropriate proper case, you can use the Format command found on the
Transform tab. The Format command has options for lowercase, uppercase
and proper case (capitalize each word).

Selecting the Capitalize Each Word option reformats all values in the selected
column to proper case.

Figure 10-10:
Reformatting
the Contact­

Name field
to proper

case.

179� Chapter 10: Transforming Your Way to Better Data

Finding and replacing specific text
Imagine that you work in a company named BLVD, Inc. One day, the president
of your company informs you that the abbreviation blvd on all addresses
is now deemed an infringement of your company’s trademarked name and
must be changed to Boulevard as soon as possible. How would you go about
meeting this new requirement?

The Replace Values function is ideal in a situation like this. Select the Address
field, and then click the Replace Values command on the Home tab.

In the Replace Values dialog box (shown in Figure 10‐11), simply fill the Value
to Find input box with the value you want to find, and then fill the Replace
With input box with the value you want to use as a replacement.

Note that clicking on Advanced Options reveals two optional settings, which
are described in this list:

✓✓ Match entire cell contents: Selecting this option tells Power Query to
replace values that contain only the text entered into the Value to Find
field. This option comes in handy when you want to replace zeros (0)
with n/a but not affect any zeros that are part of a number — only those
that are alone in a cell.

✓✓ Replace Using Special Characters: Selecting this option allows you to
use special invisible characters such as line feed, carriage return, or tab
as replacement text. This option is useful when you want to force an
indent or reposition the text so that it shows up on two lines.

Figure 10-11:
Replacing

text values.

180 Part II: Wrangling Data with Power Query �

Trimming and cleaning text
When you receive a dataset from a mainframe system, a data warehouse, or
even a text file, it isn’t uncommon to have field values that contain leading
and trailing spaces. These spaces can cause some abnormal results, espe-
cially when you’re appending values with leading and trailing spaces to other
values that are clean. To demonstrate this concept, look at the dataset in
Figure 10‐12.

This view is intended to be an aggregate view that displays the sum of the
dollar potential for California, New York, and Texas. However, the leading
spaces are forcing each state into two sets, preventing you from discerning
the accurate totals.

You can easily remove leading and trailing spaces by using the Trim function
in Power Query. Figure 10‐13 demonstrates how you would update a field to
remove the leading and trailing spaces by using the Trim command found
on the Transformation tab.

Figure 10-12:
Leading

spaces can
cause

issues in
analysis.

Figure 10-13:
The Trim

command.

181� Chapter 10: Transforming Your Way to Better Data

Again, the Trim command is applied to any column or columns you select.
So, you can fix multiple columns at a time by simply selecting them before
selecting the Trim command.

Figure 10‐13 also shows the Clean command (beneath Trim). Whereas Trim
removes leading and trailing spaces, the Clean command removes any invis-
ible characters, such as carriage returns and other nonprintable characters
that may slip in from external source systems. These characters are typically
rendered in Excel as question marks or square boxes. But in Power Query,
they show up as spaces.

If the source system that supplies your data has a nasty habit of including
strange characters and leading spaces, you can apply the Trim and Clean
functions to sanitize the dataset.

You may already know that the TRIM function in Excel removes the lead-
ing spaces, trailing spaces, and excess spaces within the given text. Power
Query’s Trim function removes leading and trailing spaces, but doesn’t touch
the excess spaces in the text. If excess spaces are a problem in your data,
you can deal with them by using the Replace Values function to replace a
given number of spaces with only one space.

Extracting the left, right,
and middle values
In Excel, the RIGHT function, the LEFT function, and the MID function allow
you to extract portions of a string starting from different positions:

✓✓ Left: Returns a specified number of characters, starting from the left-
most character of the string. The required arguments for the Left func-
tion are the text you’re evaluating and the number of characters you
want returned. For example, Left(“70056‐3504”, 5) would return five
characters starting from the leftmost character (“70056”).

✓✓ Right: Returns a specified number of characters starting from the
rightmost character of the string. The required arguments for the Right
function are the text you’re evaluating and the number of characters
you want returned. For example, Right(“Microsoft”, 4) would return four
characters starting from the rightmost character (“soft”).

✓✓ Mid: Returns a specified number of characters starting from a specified
character position. The required arguments for the Mid function are the
text you’re evaluating, the starting position, and the number of charac-
ters you want returned. For example, Mid(“Lonely”, 2, 3) would return
either three characters starting from the second character or character
number 2 in the string (“one”).

182 Part II: Wrangling Data with Power Query �

Power Query has equivalent functions exposed through the Extract com-
mand, found on the Transformation tab (see Figure 10‐14). The Extract
command allows you to get specified characters from a value.

The options under the Extract command are described in this list:

✓✓ Length: Transforms a given column into numbers that represent the
number of characters in each row (similar to Excel’s LEN function).

✓✓ First Characters: Transforms a given column to show a specified number
of characters from the beginning of text in each row (similar to Excel’s
LEFT function).

✓✓ Last Characters: Transforms a given column to show a specified number
of characters from the end of text in each row (similar to Excel’s RIGHT
function).

✓✓ Range: Transforms a given column to show a specified number of char-
acters starting from a specified character position (similar to Excel’s
MID function).

Applying the Extract command to a column effectively replaces the original
text with the results of the operation you choose to apply. That is to say, the
original text isn’t visible in the table after you apply the Extract command.
For this reason, you may want to first copy the column and perform the
extraction on the duplicate column.

You can create a copy of a column by right‐clicking on the column and select-
ing Duplicate Column. When the duplicate column is created, it’s the last
(rightmost) column of the table.

Extracting first and last characters
To extract the first N characters of text, highlight the column, select
Extract ➪ First Characters, and then use the dialog box shown in Figure 10‐15
to specify the number of characters you want to extract. In this case, the first
three characters of the Phone field are extracted.

Figure 10-14:
The Extract

command
allows you
to pull out

parts of the
text found in

a column.

183� Chapter 10: Transforming Your Way to Better Data

To extract the last N characters of text, highlight the column, select Extract ➪ 
Last Characters, and then use the dialog box to specify the number of charac-
ters you want extracted.

Extracting middle characters
To extract the middle N characters of text, highlight the column and select
Extract ➪ Range. The dialog box shown in Figure 10‐16 opens.

The idea here is to tell Power Query to extract a specific number of char-
acters starting from a certain position in the text. For example, the SicCode
field is a 4‐digit field. If you want to extract the two middle numbers of the
SicCode, you would tell Power Query to start at the second character and
extract two characters from there.

Figure 10-15:
Extracting

the first
three

characters
of the Phone

field.

Figure 10-16:
Extracting

the two
middle

characters
of the

SicCode.

184 Part II: Wrangling Data with Power Query �

As you can see in Figure 10‐16, the starting index is set to 2 (starting at the
second character) and the number of characters is set to 2 (extract two
characters from the starting index).

Splitting columns using character markers
Have you ever gotten a dataset where two or more distinct pieces of data
were jammed into one field and separated by commas? For example, a field
labeled Address may have a single text value that represents address, city,
state, and postal code. In a proper dataset, this text would be split into
four fields.

In Figure 10‐17, you can see that the values in the ContactName field are
strings that represent Last name, First name, and Middle initial. Imagine that
you need to split this column string into three separate fields.

Although this isn’t a straightforward undertaking in Excel, it can be done fairly
easily with the Split Column command (found on the Transformation tab).

Selecting the Split Column command reveals two options; this list describes
what you can do with them:

✓✓ By Delimiter: Split a column based on specific characters such as
commas, semicolons, or spaces. This option is useful for parsing names
or addresses or any field that contains multiple data points separated by
delimiting characters.

Figure 10-17:
The Split

Column
command
can easily

split the
Contact­

Name Field
into three
separate
columns.

185� Chapter 10: Transforming Your Way to Better Data

✓✓ By Number of Characters: Split a column based on a specified number
of characters — useful for parsing uniform text at a defined character
position.

In the example (refer to Figure 10‐17), the contact names are made up of last
names, first names, and middle initials, all separated (delimited) by commas.
So the By Delimiter option is the one I show you how to use.

You can highlight the ContactName field and select Split Column ➪ By Delimiter
to open the Split by Column Delimiter dialog box, shown in Figure 10‐18.

This list describes the inputs:

✓✓ Select or Enter Delimiter: Use the drop‐down menu to choose the delim-
iter that will define where the values should be split. If the delimiter
isn’t listed as a choice on the drop‐down list, you can select the Custom
option and define your own.

✓✓ Split: Select how you want Power Query to use the specified delimiter.
Power Query can split the column only on the first occurrence of the
delimiter (the leftmost delimiter) — effectively creating two columns.
Alternatively, you can tell Power Query to split the column only on
the last occurrence of the delimiter (the rightmost delimiter) — again,
creating two columns. The third option is to tell Power Query to split the
column at each occurrence of the delimiter.

✓✓ Advanced Options: By default, selecting the option to split the column
at each occurrence of the delimiter creates as many columns as there
are delimiters. You can use the advanced options to override the default
and limit the number of columns to create.

Figure 10-18:
Splitting the

Contact­
Name

column at
every

occurrence
of a comma.

186 Part II: Wrangling Data with Power Query �

Figure 10‐19 shows the new columns created after the ContactName column
is split at each comma. As you can see, three new fields are created. You
can rename a field by right‐clicking the field name and selecting the Rename
option.

Pivoting and unpivoting fields
You often encounter data sets like the one shown in Figure 10‐20, where
important headings (like Month) are spread across the top of the table, pull-
ing double duty as column labels and actual data values. This matrix layout
is easy to look at in a spreadsheet, but it causes problems when attempting
to perform any kind of data analysis that requires aggregation or grouping,
for example.

Power Pivot offers an easy way to unpivot and pivot columns, allowing you to
quickly convert matrix‐style tables to tabular datasets (and vice versa).

Figure 10-19:
The Contact­

Name field
has been
split suc­
cessfully

into three
columns.

Figure 10-20:
Matrix

layouts are
problematic

for data
analysis.

187� Chapter 10: Transforming Your Way to Better Data

Unpivot Columns command
The Unpivot Columns command lets you select a set of columns and convert
those columns into two columns: one column consisting of the old column
labels and another containing the old column data.

For instance, in Figure 10‐21, the month columns can be unpivoted by select-
ing the months and then clicking the Unpivot Columns command.

The resulting table is shown in Figure 10‐22. Note that the month labels are
now entries in a new column named Attribute. The month values are now
in a new column named Value. You can, of course rename these columns to
Month and Revenue, for example.

Figure 10-21:
Unpivoting a
matrix‐style

Month report.

Figure 10-22:
All months
are now in

a tabular
format.

188 Part II: Wrangling Data with Power Query �

Unpivot Other Columns command
As helpful as the Unpivot Columns command is, it has a flaw: You have to
explicitly select the months that you want unpivoted. But what if the number
of columns is ever growing? What if you unpivot January through June, but
next month a new dataset will arrive with July and then August and then
September? Because the Unpivot Columns command forces you to essentially
hard‐code the columns you want unpivoted, you have to redo the unpivot
each and every month.

Fortunately, you can avoid this problem with the Unpivot Other Columns
command. This nifty command allows you to unpivot by selecting the
columns that you want to remain static and telling Power Query to unpivot
all other columns.

For instance, Figure 10‐23 demonstrates that rather than select the month col-
umns, you can select the Market and Product_Description columns and then
select Unpivot Other Columns from the Unpivot Columns drop‐down menu.

Now, it doesn’t matter how many new month columns are added or removed
each month. Your query always unpivots the correct columns.

Always use the Unpivot Other Columns option. Even if you don’t anticipate
new matrix columns, it’s always a good bet to use the option that offers more
flexibility for those unexpected changes in data.

Figure 10-23:
Use Unpivot

Other Col­
umns when
the number

of matrix
columns is

variable.

189� Chapter 10: Transforming Your Way to Better Data

Pivot Columns command
If you find that you need to transform your data from a tabular layout to a
matrix‐style layout, you can use the Pivot Columns command.

Simply select the columns that will make up the header labels and values for
the new matrix columns, and then select the Pivot Column command, shown
in Figure 10‐24.

Before finalizing the pivot operation, Power Query opens a dialog box (shown
in Figure 10‐25) to confirm the value column and the aggregation method. By
default, Power Query uses the Sum operation to aggregate the data into the
matrix format. You can override this default setting by selecting a different
operation (count, average, or median, for example). You can even specify that
you don’t want aggregation performed. Clicking the OK button finalizes the
pivot operation.

Figure 10-24:
Pivoting

the Month
and Value
columns.

Figure 10-25:
Confirm the

aggregation
operation to

finalize the
pivot trans­

formation.

190 Part II: Wrangling Data with Power Query �

Creating Custom Columns
When transforming your data, you sometimes have to add your own columns
to extract key data points, create new dimensions, or even create your own
calculations.

You start a new custom column by going to the Add Column tab and clicking
the Add Custom Column command (see Figure 10‐26). This opens the Add
Custom Column dialog box.

The Add Custom Column dialog box (shown in Figure 10‐27) is your work-
bench for adding your own functionality to the query by using Power Query
formulas. That’s right: When you add a new custom column, it doesn’t do
anything until you provide a formula that gives it some utility.

As for the Add Custom Column dialog box, there’s not much to it. The inputs
are described in this list:

Figure 10-27:
The Add
Custom
Column

dialog box.

Figure 10-26:
Adding a

custom
column.

191� Chapter 10: Transforming Your Way to Better Data

✓✓ New column name: An input box where you enter a name for the
column you’re creating.

✓✓ Available columns: A list box that contains the names of all columns in
the query. Double‐click any column name in this list box to automatically
place it in the formula area.

✓✓ Custom column formula: The area where you type the formula.

As in Excel, a formula can be as simple as =1 or as complicated as an if
statement that applies some conditional logic. Over the next few sections,
I walk you through a few examples of creating custom columns to go beyond
the functionality provided via the user interface.

But before diving into building Power Query formulas, you should under-
stand how Power Query formulas differ from those in Excel. Here are some
high‐level differences to be aware of:

✓✓ No cell references. You can’t reach outside the Add Custom Column
dialog box to select a range of cells. Power Query formulas work by
referencing columns, not cells.

✓✓ Excel functions don’t work. The Excel functions you’re used to don’t
work in Power Query. Power Query has many of the same kinds of func-
tions as Excel, but it has its own formula language.

✓✓ Everything is case sensitive. In Excel, you can type in all lowercase
or all uppercase letters and your formulas will work. Not so in Power
Query. To Power Query, sum, Sum, and SUM are three different items,
and only one of them is acceptable.

✓✓ Data types matter. Some fields are text fields, other fields are number
fields, and still others are date fields. Excel does a good job of handling
formulas that mix fields of differing data types. The Power Query for-
mula language, which is extremely sensitive to data types, doesn’t have
the built‐in intelligence to gracefully handle data type mismatches. Data
type issues are resolved with conversion functions, as covered later in
this chapter.

✓✓ No tool tips or intelligence help. Excel is quick to throw up a tool tip
or a menu of options when you start entering a new formula. Power
Query has none of that. As of this writing, Power Query offers only a
Learn About Power Query Formulas link to a Microsoft site dedicated to
Power Query.

Don’t panic. Power Query formulas are not as gloomy as they sound. Let’s
start with a simple custom column.

192 Part II: Wrangling Data with Power Query �

Concatenating with a custom column
Earlier in this chapter, I tell you how to concatenate values from two or more
columns by using the Merge Columns command. Although this command is
easy to use, it results in the original source columns being removed. You will
likely want to concatenate values but still retain the source columns.

In these instances, you can create your own custom column. Follow these
steps to create a new column that merges the Type and Code columns:

1.	While in the Query Editor, choose Add Column ➪ Add Custom
Column.

2.	Place the cursor in the Custom Column Formula area (after the equal
sign).

3.	Find the Type column in the Available Columns list and double‐click
on it.

You see [Type] pop into the formula area.

4.	After [Type], enter the following text: & “‐” &.

This step ensures that the values in the two columns are separated
by a hyphen.

5.	Enter Number.ToText().

Number.ToText() is a Power Query function that converts a number to
text format on the fly so that it can be used with other text. In this case,
because the Code field is formatted as a number, you need convert it on
the fly to join it to the Type field. I tell you more about data type conver-
sions later in this chapter.

6.	Place the cursor between the parentheses for the Number.ToText
function. Then find the Code column in the Available Columns list
and double‐click on it.

You see [Code] pop into the formula area.

7.	In the New Column Name input, enter MyFirstColumn.

At this point, the dialog box should look similar to the one shown
in Figure 10‐28. Note the message at the bottom of the dialog box:
No syntax errors have been detected. This message refers
to the syntax you entered. Every time you create or adjust a formula,
you’ll want to ensure that this message states that no errors have
been detected.

8.	Click OK to add the custom column.

If all goes well, you have a new custom column that concatenates two fields.
In this basic example, you see the basic foundation of how Power Query
formulas work.

193� Chapter 10: Transforming Your Way to Better Data

Understanding data type conversions
When working with formulas in Power Query, you inevitably need to perform
some action on fields that have differing data types, as in the exercise in the
previous section, where I show you how to merge the Type column (a text
field) with the Code column (a numeric field). In that example, you use a con-
version function to change the data type of the Code field so that it can be
temporarily treated as a text field.

A conversion function does exactly what it sounds like: It converts data from
one data type to another.

Table 10‐1 lists common conversion functions. As demonstrated in the previ-
ous section, you simply wrap these functions around the columns that need
converting.

Figure 10-28:
A formula to

merge the
Type and

Code
columns.

Table 10-1	 Common Conversion Functions
Convert From To Function
Date Text Date.ToText()

Time Text Time.ToText()

Number Text Number.ToText()

Text Number Number.FromText()

Text Dates Date Date.FromText()

Numeric Dates Date Date.From()

194 Part II: Wrangling Data with Power Query �

To find and change the data type for a field, place the cursor in the field
and then select the Data Type drop‐down menu on the Transform tab (see
Figure 10‐29). The data type at the top is the type of field the cursor is in.
You can edit the data type for the field by selecting a new type from the
drop‐down list.

Spicing up custom columns with functions
With a few basic fundamentals and a little knowledge of Power Query func-
tions, you can create transformations that go beyond what you can do by
using the Query Editor. In this example, I show you how to use a custom
column to pad numbers with zeros.

You may encounter a situation where key fields are required to have a certain
number of characters to make the data able to interface with peripheral plat-
forms such as ADP or SAP. Suppose that the CompanyNumber field must be
10 characters long. Those company numbers that aren’t ten characters long
must be padded with enough leading zeros to create a 10‐character string.

The secret to this supplying the proper number of character is to add ten
zeros to every company number, regardless of the current length, and then
pass them through a function similar to the RIGHT function, which extracts
only the rightmost ten characters.

For example, you would first convert company number 29875764 to
000000000029875764; then you would use the RIGHT function to extract only
the rightmost ten characters, leaving you with 0029875764.

Figure 10-29:
Use the

Data Type
drop‐down

menu to
discover

and select
the data
type of a

given field.

195� Chapter 10: Transforming Your Way to Better Data

Although you follow essentially two steps, you can accomplish the same
result with only one custom column. Here’s how:

1.	While in the Query Editor, choose Add Column ➪ Add Custom
Column.

2.	Place the cursor in the Custom Column Formula area (after the equal
sign).

3.	Enter ten zeros in quotes (as in “00000000000”) followed by an
ampersand (&).

4.	Enter Number.ToText().

5.	Place the cursor between the parentheses for the Number.ToText
function. Then find the CompanyNumber column in the Available
Columns list and double‐click on it.

You see [CompanyNumber] pop into the formula area.

At this point, the formula area should contain this syntax:

"0000000000"&Number.ToText([CompanyNumber])

This formula results in nothing more than a concatenation of ten zeros
and the CompanyNumber. The goal is to go further and extract only the
rightmost ten characters. Unfortunately, the RIGHT function is an Excel
function that doesn’t work in Power Query. However, Power Query does
have an equivalent function named Text.End( ). Like the RIGHT function,
the Text.End function requires a couple of parameters: the text expres-
sion and the number of characters to extract:

Text.End([MyText], 10)

In this example, the text expression is the formula, and the number of
characters to extract is 10.

6.	Enter Text.End before your existing formula, and then follow the
formula with ,10.

Here’s the final syntax:

Text.End("0000000000"&Number.ToText([Company
Number]), 10)

7.	In the New Column Name input, enter TenDigitCustNumber.

At this point, the dialog box should look similar to the one shown in
Figure 10‐30. Again, note the message at the bottom of the dialog box.
This message will tell you if you have a syntax error in your formula
Make sure that the message at the bottom of the dialog box reads No
syntax errors have been detected.

8.	Click OK to apply the custom column.

196 Part II: Wrangling Data with Power Query �

Table 10‐2 lists other Power Query functions that are useful in extending the
capabilities of custom columns. Take a moment to examine the list of func-
tions and note how they differ from their Excel equivalents. Remember that
Power Query functions are case sensitive.

Adding conditional logic
to custom columns
As you might notice in Table 10‐2, Power Query has a built‐in if function.
The if function is designed to test for conditions and provide different out-
comes based on the results of those tests. In this section, you’ll see how you
can control the output of your custom columns by utilizing Power Query’s
if function.

Figure 10-30:
A formula to

create a
consistent

10‐digit
padded

Company­
Number.

Table 10-2	 Useful Transformation Functions
Excel Function Power Query Function
LEFT([Text], [Number]) Text.Start([Text], [Number])

RIGHT([Text], [Number]) Text.End([Text], [Number])

MID([Text], [StartPosition], [Number]) Text.Range([Text], [StartPosition], [Number])

FIND([Find], [Within]) Text.PositionOf([Within], [Find])+1

IF([Expression], [Result1], [Result2]) if [Expression] then [Result1] else [Result2]

IFERROR([Procedure], [FailResult]) try [Procedure] otherwise [FailResult]

197� Chapter 10: Transforming Your Way to Better Data

As in Excel, Power Query’s if function evaluates a specific condition and
returns a result based on a true or false determination:

if [Expression] then [Result1] else [Result2]

In Excel, you think of commas in an if function as Then and Else statements.
The formula if(Babies = 2 , “Twins”, “Not Twins”) would translate to this: If
Babies equals 2, then Twins, else Not Twins In Power Query, you don’t use
commas. You spell out the entire expression.

You can also use the if function to save steps in your analytical processes
and, ultimately, save time. For example, you may need to tag customers as
either large customers or small customers, based on their dollar potential.
You decide to add a custom column that contains either “LARGE” or “SMALL”
based on the revenue potential of the customer.

With the help of the if function, you can tag all customers with one custom
column that uses this formula:

if [2016 Potential Revenue]>=10000 then "LARGE" else
"SMALL"

This function tells Power Query to evaluate the [2016 Potential Revenue] field
for each record. If the potential record is greater than or equal to 10,000, use
the word LARGE; if not, use the word SMALL.

Figure 10‐31 demonstrates this if statement as it is applied in the Add
Custom Column dialog box.

Figure 10-31:
Applying

an If
statement

in a custom
column.

198 Part II: Wrangling Data with Power Query �

Power Query pays no attention to white space, so you can add as many
spaces and carriage returns as you want. As long as the correct case and
spelling are used, Power Query doesn’t complain.

Figure 10‐31 illustrates how separating formulas into separate lines can make
them much easier to read.

Grouping and Aggregating Data
In some cases, you may need to transform your data set into compact groups
in order to get it into a manageable size of unique values. You may even need
to summarize numerical values into an aggregate view. An aggregate view is a
grouped snapshot of your data that shows sums, averages, counts, and more.

Power Query offers a Group By feature that enables you quickly group data
and create aggregate views. Follow these steps to use the Group By feature:

1.	While in the Query Editor, select the Group By command on the
Transform tab.

The Group By dialog box opens.

2.	From the Group By drop‐down menu, select the field you want to
group by. Click the plus sign (+) above the Group By drop‐down list to
add additional fields to grouping.

Figure 10‐32 shows grouping by State and City.

3.	Use the New Column Name input box to give the new aggregate
column a name (for example, 2016 Total Potential).

4.	From the Operation drop‐down list, select the kind of aggregation you
want to apply (Sum, Count, Avg, Min, Max, and so on).

Figure 10-32:
Using the
Group By

dialog box
to create a

view of
2016 Total
Potential
by State
and City.

199� Chapter 10: Transforming Your Way to Better Data

5.	Use the Column drop‐down list to choose the column that will be
aggregated (for example, 2016 Potential Revenue).

6.	Click the OK button to confirm and apply your changes.

Figure 10‐33 illustrates the resulting output.

When you apply the Group By feature, Power Query removes all columns that
were not used when configuring the Group By dialog box. This leaves you
with a clean view of just your grouped data.

Figure 10-33:
The resulting

aggregate
view by

State and
City.

Chapter 11

Making Queries Work Together
In This Chapter

▶▶ Reusing query steps

▶▶ Consolidating data with the Append feature

▶▶ Understanding join types

▶▶ Using the Merge feature

D
ata is frequently analyzed in layers, with each layer of analysis using or
building on the previous layer. You may not know it, but you already

build layers all the time. For instance, when you build a pivot table using the
results of a Power Query output, you’re layering your analysis. When you
build a query based on a table created by a SQL Server view, you’re also cre-
ating a layered analysis.

Sure, you would probably love to be able to analyze a single data source
and call it a day. But that’s not how data analysis works. You often find the
need to build queries on top of other queries to get the results you’re looking
for. That’s what this chapter is all about. In this chapter, I help you exam-
ine a few ways you can advance your data analysis by making your queries
work together.

Reusing Query Steps
Data analysts commonly rely on the same main data tables for all kinds of
analysis. Even the simple table shown in Figure 11‐1 can be used to create
different views: sales by employee, sales by business segment, or sales by
region, for example.

Of course, you can build separate queries, each performing different group-
ing and aggregation steps, but that would mean repeating all the data clean‐
up steps you needed before performing any kind of analysis.

202 Part II: Wrangling Data with Power Query �

To get a better understanding of how query steps can help save time, take a
moment to follow these steps:

1.	Open the Sales By Employee.xlsx workbook, found in the sample files
for this book.

2.	Place the cursor anywhere inside the table, and then choose
Data ➪ From Table.

Power Query opens the Query Editor.

3.	While in the Query Editor, click the Filter drop‐down list for the
Market field and filter out the Canada market. (Remove the check
mark next to Canada.)

4.	Select the Last_Name and First_Name fields, and then choose
Transform ➪ Merge Columns.

The Merge Columns dialog box appears.

5.	Create a new Employee field, joining Last_Name and First_Name and
separating them by a comma, as shown in Figure 11‐2.

Figure 11-1:
This data

can be used
as the

source for
various

levels of
aggregated

analysis.

Figure 11-2:
Merge the

Last_Name
and First_

Name
columns to

create a
new

Employee
field.

203� Chapter 11: Making Queries Work Together

6.	Click the Group By command on the Transformation tab.

The Group By dialog box opens, as shown in Figure 11‐3.

7.	The goal is to Group By the Employee field to get the Sum of Sales
Amount, as shown in Figure 11‐3. Name the new aggregated column
Revenue.

At this point, you’ve successfully created a view that shows total rev-
enue by employee. As you can see in Figure 11‐4, the query steps include
all the preparation work you did before grouping.

What happens if you want to create another analysis using the same
data? For instance, what if you want another view that shows Employee
sales by business segment?

Figure 11-3:
Group the
Employee

field and
Sum Sales
Amount to

create a
new Reve-

nue column.

Figure 11-4:
All the query
steps before

Grouped
Rows are

needed
in order to

prepare the
data for

grouping.

204 Part II: Wrangling Data with Power Query �

You could always start from Step 1 and import another copy of the
source data, but you’d have to repeat the preparation steps (the steps
for Filtered Rows and Merged Columns, in this case).

A better way is to reuse the steps you’ve already created by extracting
them into a new query. The idea is to first decide what steps you want to
reuse and then right‐click the step immediately below it. In this scenario
(refer to Figure 11‐4), you keep all query steps until Grouped Rows.

8.	Right‐click the Grouped Rows step and select Extract Previous.

The Extract Steps dialog box opens.

9.	Name the new query SalesByBusiness, as shown in Figure 11‐5. Click
the OK button confirm.

After you click OK, Power Query does two things:

✓✓ Moves all extracted steps to the newly created query

✓✓ Ties the original query to the new query

That is to say, both queries are sharing the extracted steps. You can see the
new SalesByBusiness query in the pane on the left, as shown in Figure 11‐6.

Figure 11-5:
Naming the
new query

SalesBy-
Business.

Figure 11-6:
The two
queries

are now
sharing the

extracted
steps.

205� Chapter 11: Making Queries Work Together

You now can click on the SalesByBusiness query and start applying any
needed transformations. In Figure 11‐6, a Group By step has been added to
create a view of sales by employee and by business segment.

This concept of extracting steps can be a bit confusing. The bottom line is
that instead of starting from square one with a brand‐new query, you’re tell-
ing Power Query you want to create a new query that uses the steps you’ve
already created.

When two or more queries share extracted steps, the query that contains the
extracted steps serves as the data source for the other queries. Because of
this link, the query that contains the extracted steps cannot be deleted. You
have to first delete all dependent queries before deleting the query that holds
the extracted steps.

Understanding the Append Feature
Power Query’s Append feature allows you to add the rows generated from
one query to the results of another query. In other words, you copy records
from one query and add them to the end of another.

The Append feature comes in handy when you need to consolidate multiple
identical tables into one table. For example, if you have tables from the
North, South, Midwest, and West regions, you can consolidate the data from
each region into one table using the Append feature.

To help you better understand the Append feature, I’ll walk you through an
exercise that consolidates data from four different regions into one table. In
this walk‐through, I use the region data found on four different tabs in the
Appending_Data.xlsx sample file, shown in Figure 11‐7.

You can find the Appending_Data.xlsx workbook in the sample files for
this book.

Creating the needed base queries
The Append feature works on only existing queries. That is to say, no matter
what kind of data sources you have, you need to import them into Power
Query before you can append them together. In this case, it means importing
all the region tables into queries.

206 Part II: Wrangling Data with Power Query �

Follow these steps to import the needed base queries:

1.	Go to the North Data worksheet, place the cursor anywhere inside the
table, and then choose Data ➪ From Table.

The Query Editor activates, showing you the contents of the table you
just imported.

To finalize the creation of the query, you need to close and load the
query. Now, because you’re creating this query simply for the purpose
of appending it to other queries, you don’t need to close and load to
the workbook. You can choose instead to close and load the data as
connection‐only.

2.	On the Home tab of the Query Editor, click the drop‐down arrow
under the Close & Load command and select Close & Load To.

3.	In the Load To dialog box, choose the option Only Create Connection,
and then click the Load button.

4.	Repeat Steps 1 through 3 for the other worksheets in the workbook.

After you’ve created queries for each region, open the Workbook Queries
pane (choose Data ➪ Show Queries) to see all queries. As you can see in
Figure 11‐8, each query is a connection‐only query.

Now that your data is in queries, you can start appending.

Figure 11-7:
The data
found on

each region
tab needs to

be consoli-
dated into
one table.

207� Chapter 11: Making Queries Work Together

Appending the data
In a perfect world, this section is where you would read about the nifty
button that appends all your queries at one time. Unfortunately, Power Query
doesn’t have a nifty button that lets you append many tables all in one shot.
You can append only one table at a time.

To append data, follow these steps:

1.	In the Workbook Queries pane, right‐click on the NorthData query
and select Edit to open the Query Editor.

2.	On the Home tab of the Query Editor, click the Append Queries
command.

The Append dialog box opens.

3.	The drop‐down menu contains a list of all queries in the current work-
book, as shown in Figure 11‐9. The idea is to select the query you want
to append to the query you’re editing. Select one of the region que-
ries, and then click the OK button.

Figure 11-8:
Create a

connection‐
only query

for each
region.

Figure 11-9:
Select the
query that
you want

appended to
the query

you’re
editing.

208 Part II: Wrangling Data with Power Query �

4.	Repeat Steps 2 and 3 until you’ve appended the SouthData,
MidwestData, and WestData queries.

5.	After all queries have been appended, click the Close & Load com-
mand to save the data and exit the Query Editor.

At this point, the NorthData query contains the data for all regions. To
see the full consolidated table, you need to change the load destination
of the NorthData query to the workbook instead of the connection only.

6.	In the Workbook Queries pane, right‐click the NorthData query and
select Load To.

The Load To dialog box opens.

7.	Select the option for Table, and then click OK.

Figure 11‐10 illustrates the final output. You’ve successfully created a consoli-
dated table of region data.

Note in Figure 11‐9 the option for NorthData (Current). You see the term
(Current) next to the NorthData query because you’re editing that query.
Be careful not to select any query with (Current) next to it. Otherwise,
you’ll append the query to itself, effectively duplicating all records within
the query. Unless you have some strange requirement where creating
exact copies of records is beneficial, avoid appending the current query
to itself.

As you append each query, you may be tempted to scroll down to the
bottom of the data to see the newly added records. Unfortunately, the data
preview in the Query Editor shows only a truncated sample set of records.
Even if you scroll to the bottom of the preview, you’re unlikely to see the
appended data.

Figure 11-10:
The final
consoli-

dated table
of all region

data.

209� Chapter 11: Making Queries Work Together

Understanding the Merge Feature
In your data adventures, you often find the need to build queries that join
the data between two tables. For example, you may want to join an employee
table to a transaction table to create a view that contains both transaction
details and information on the employees who logged those transactions.

In this section, I describe how you can leverage the Merge feature in Power
Query to join data from multiple queries.

Understanding Power Query joins
Similar to VLOOKUP in Excel, the Merge feature joins the records from one
query to the records in another by matching on a unique identifier. An exam-
ple of a unique identifier is Customer ID or Invoice Number.

You can join two datasets in one of several ways. The kind of join you
apply is important because it determines which records are returned from
each dataset.

Beware of mismatched column labels
When you append one query to another, Power
Query first scans the column labels for both
queries to capture all column names. It then
outputs all distinct column names and consoli-
dates the data from both queries into the appro-
priate columns. It uses the column labels as a
guide to knowing which data should be placed
in which column.

If the column labels in your queries don’t match,
Power Query consolidates data for any match
column, leaving null values in any columns that
don’t match.

Imagine that you have one query with the
column labels Region and Revenue, and
another query with the column labels Region

and SalesAmount. Appending these two
records yields a final table with all three col-
umns: Region, Revenue, and SalesAmount. The
records from the first query are entered into the
Region and Revenue fields. The records from
the second query are entered into the Region
and SalesAmount fields, essentially leaving
gaps in the Revenue and SalesAmount fields.

The bottom line is to make sure the column
labels in your queries are identical before
appending. As long as the column labels in each
query are identical, Power Query can append
the data correctly. Even if the columns in each
query are positioned in a different sequence,
Power Query can use the column labels to get
all the data into the correct columns.

210 Part II: Wrangling Data with Power Query �

Power Query supports six kinds of joins, as described in the following list and
shown in Figure 11‐11:

✓✓ Left Outer: Tells Power Query to return all records from the first query,
regardless of matching, and only those records from the second query
that have matching values in the joined field.

✓✓ Right Outer: Tells Power Query to return all records from the second
query, regardless of matching, and only those records from the first
query that have matching values in the joined field.

✓✓ Full Outer: Tells Power Query to return all records from both queries,
regardless of matching.

✓✓ Inner: Tells Power Query to return only those records from both queries
that have matching values.

✓✓ Left Anti: Tells Power Query to return only those records from the first
query that don’t match any of the records from the second query.

✓✓ Right Anti: Tells Power Query to return only those records from the first
query that don’t match any of the records from the second query.

Merging queries
To better understand the Merge feature, I’ll walk you through an exercise
that merges interview questions and answers. In this walk‐through, I use
the predefined queries found in the Merging_Data.xlsx sample file available
online at www.dummies.com/go/excelpowerpivotpowerqueryfd.

As you can see in Figure 11‐12, two existing queries are in the Workbook
Queries pane: Questions and Answers. These queries represent the questions
and answers from the interview. The goal is to merge these two queries to
create a new table showing questions and answers side‐by‐side.

Figure 11-11:
The kinds of

joins sup-
ported by

Power
Query.

http://www.dummies.com/go/excelpowerpivotpowerqueryfd

211� Chapter 11: Making Queries Work Together

The Merge feature can be used only with existing queries. That is to say, no
matter what kind of data sources you have, you need to import them into
Power Query before you can use them in a merge.

Follow these steps to perform the merge:

1.	Choose Data ➪ New Query ➪ Combine Queries ➪ Merge (see
Figure 11‐13).

This step opens the Merge dialog box.

In this dialog box, you use the drop‐down boxes to select the queries
you want to merge and then choose the columns that defined the unique
identifier for each record. In this case, the InterviewID and QuestionID/
AnswerID fields make up the unique identifier for each record.

Figure 11-12:
You need to

merge the
Questions

and
Answers

queries into
one table.

Figure 11-13:
Activating
the Merge
dialog box.

212 Part II: Wrangling Data with Power Query �

2.	Select the Questions query in the top drop‐down box.

3.	Hold down the Ctrl key on the keyboard, and then click InterviewID
and QuestionID — in that order.

4.	Select the Answers query in the lower drop‐down box.

5.	Hold down the Ctrl key on the keyboard, and then click InterviewID
and AnswerID — in that order.

6.	Use the Join Kind drop‐down box to select the kind of join you want
Power Query to use. In this case, the default, Left Outer, works.

7.	Click the OK button to finalize and open the Query Editor.

In Figure 11‐14, note the small numbers 1 and 2 in the InterviewID and
QuestionID fields. These small numbers are assigned based on the order
in which you selected them (refer to Steps 3 and 5).

The order in which you selected the unique identifiers in each query
matters. The two columns tagged with the small number 1 will be joined
regardless of column labels. The two columns tagged with the small
number 2 will also be joined.

Figure 11-14:
The Merge
dialog box.

213� Chapter 11: Making Queries Work Together

At the bottom of the Merge dialog box, Power Query shows you how
many records from the lower query match the top query, based on
the unique identifiers you selected. In this case, about 17,600 answer
records match the 26,910 question records.

You don’t need a 100 percent match for the merge to be valid. There
might be a good reason that the records in the two queries don’t all
match up. In this case, not all questions were answered in all interviews,
so the Answers query has fewer records.

8.	With the new merged query open in the Query Editor, click the
Expand icon in the NewColumn field and choose the fields you want
included in the final output (as shown in Figure 11‐15). In this case,
just choose the Answer field.

At this point, you can apply more transformations, if needed.

9.	When you’re happy with the way things look, click the Close & Load
command to output the results to the workbook.

Figure 11‐16 shows the final merged query.

Figure 11-15:
Expand the

NewColumn
field and

choose the
merged

fields you
want to
output.

Figure 11-16:
The final

table with
merged

questions
and

answers.

214 Part II: Wrangling Data with Power Query �

If you need to adjust or correct a merged query, right‐click the query in the
Workbook Queries pane and select Edit. In the Query Editor, click the Gear
icon next to the Source query step, as shown in Figure 11‐17. This action
opens the Merge dialog box, where the necessary changes can be applied.

Figure 11-17:
Click the

Gear icon
next to the

Source
query step
to reopen

the Merge
dialog box.

Chapter 12

Extending Power Query
with Custom Functions

In This Chapter
▶▶ Making a custom function

▶▶ Using custom functions in other queries

▶▶ Creating a parameter query

I
n Chapter 8, you see that Power Query records all actions using its own
formula language (known as the M language). When you connect to a data

source and apply transformations to that data, Power Query diligently saves
your actions as M code behind the scenes in query steps. The transformation
steps can then be repeated when you refresh the data in your query.

That backstage coding is relatively transparent, and can, for the most part,
be ignored for most data processing activities. In this chapter, I show you
how to leverage the M language to extend the capabilities of Power Query to
create your own custom functions and perform truly heroic data processing.

Creating and Using a Basic
Custom Function

When building a custom function for Power Query, you’re essentially doing
nothing more than creating a query and manipulating its M code to return a
desired result. That result can be an array, a data table, or a single value.

To help you gain a sense of the general steps taken to create a custom
function, I show you now how to build a basic mathematical function that
calculates profit. This function should be able to take a revenue amount and

216 Part II: Wrangling Data with Power Query �

a cost amount and output a profit amount using this basic mathematical
operation:

Revenue – Cost = Profit

For basic functions such as this one, you can start with a blank query and
simply enter the needed M code from scratch. Follow these steps:

1.	Click the Data tab in Excel and select New Query ➪ From Other Data
Sources ➪ Blank Query.

This step activates the Query Editor window.

2.	On the Query Editor Ribbon, click on the View tab and select the
Advanced Editor command.

3.	When the Advanced Editor window opens, delete the starter syntax
you see in the code input box.

4.	Enter the following code into the code input box:

let Profit = (Revenue, Cost)=>
Revenue-Cost
in Profit

•	Line 1 of the code tells Power Query that this is a function called Profit,
requiring two parameters. For clarity, the two parameters are named
Revenue and Cost, though Power Query doesn’t care what you name
them as long as the names start with a letter and have no spaces.

•	Line 2 in the code essentially tells Power Query to subtract the Cost
parameter from the Revenue parameter.

•	Line 3 of the code tells Power Query to return the result.

Figure 12‐1 illustrates what the code looks like in the Advanced
Editor window.

Figure 12-1:
Enter your

custom
code in the
Advanced

Editor
window.

217� Chapter 12: Extending Power Query with Custom Functions

5.	Click the Done button to close the Advanced Editor window.

6.	In the Query Settings pane, change the name of the query in the Name
input box. The goal here is to give your function a reasonably descrip-
tive name, as opposed to Query1. In this case, enter FunctionProfit in
the Name input box.

7.	At this point, you can select the Home tab of the Query Editor and
click the Close & Load button.

As you can see in Figure 12‐2, Power Query adds the query to the
Workbook Queries pane as a connection‐only query. Queries recognized
as functions are automatically saved as connection‐only.

You can now use this function in other queries that contain revenue and
cost fields. For example, Figure 12‐3 illustrates the contents of the Chapter 12
Sample text file, which you can find in the download files for this book.

This text file contains a table of invoices with the fields Qty, UnitCost, and
UnitPrice. Your newly created function can be used to calculate profit using
these fields.

Figure 12-2:
Your func-

tion is ready
to use.

Figure 12-3:
A text file

containing
Invoice
details.

218 Part II: Wrangling Data with Power Query �

To create a new query from this text file, follow these steps:

1.	Click the Data tab in Excel and select New Query ➪ From File ➪ From
Text.

This step opens the Import Data dialog box.

2.	Browse for, and select, the Chapter_12 Sample text file.

Power Query opens the text file and opens the Query Editor.

3.	While in the Query Editor, click the Add Column tab and then click
the Add Custom Column button, as shown in Figure 12‐4.

The Add Custom Column dialog box opens, and you can call the custom
function and pass it the needed parameters.

4.	In this case, enter the following line:

= FunctionProfit([UnitPrice], [UnitCost])*[Quantity]

This syntax calls the FunctionProfit custom function and passes the
UnitPrice and UnitCost fields as the required parameters. The results are
then multiplied by the Quantity field. The Add Custom Column dialog
box should look similar to the one shown in Figure 12‐5.

5.	Click the OK button to apply the custom column.

When you confirm the changes, Power Query triggers the function for
each row in the data table.

Figure 12-4:
Add a

custom
column.

219� Chapter 12: Extending Power Query with Custom Functions

Although this example is quite basic, it demonstrates that you can define a
function that requires parameters and then use the function in other queries.
This simple technique is the foundation for creating more useful functions.

Power Query functions are stored in the workbook in which they reside.
Unfortunately, there’s no easy way to share functions between workbooks.
If you start a new workbook, you need to re‐create your functions in that
new workbook.

Creating a Function to Merge Data
from Multiple Excel Files

When building a basic function, such as the profit function you create in the
earlier section “Creating and Using a Basic Custom Function,” it’s no big deal
to start from a blank query and enter all the code from scratch. But for more
complex functions, it’s generally smarter to build a starter query via Query
Editor and then manipulate the M code to accomplish what you need.

Imagine that you have a set of Excel files in a folder (see Figure 12‐6). These
files all contain a worksheet named MySheet that holds a table of data. The
tables in each file have the same structure, but need to be combined into one
file. This is a common task/nightmare that most Excel analysts have faced at
one time or another. If you don’t have a solid knowledge of Excel VBA pro-
gramming, this task typically entails opening each file, copying the data on
the MySheet tab, and then pasting the data into a single workbook.

Figure 12-5:
Use the Add

Custom
Column

action to
invoke your

function.

220 Part II: Wrangling Data with Power Query �

Power Query has the ability to make short work of this task, but it requires
a bit of direction via a custom function. Now, it would be difficult for most
anyone to start from a blank query and type out the M code for the relatively
complex function needed for this endeavor. Instead, you could build a starter
query via Query Editor and then wrap the query in a function.

To help you understand this concept, I present the following steps:

1.	On the Excel Data tab, select New Query ➪ From File ➪ From
Workbook.

2.	Browse to the folder that contains all the Excel files, and choose only
one of them.

3.	In the Navigator pane (shown in Figure 12‐7), choose the sheet that
holds the data that needs to be consolidated, and then click the Edit
button to open the Query Editor.

Figure 12-6:
You need to
merge into

one table
the data in

all the Excel
files in this

folder.

Figure 12-7:
Connect to
one of the

Excel files in
the target

folder, and
navigate to

the sheet
holding the

data that
needs to be

consolidated.

221� Chapter 12: Extending Power Query with Custom Functions

4.	Use the Query Editor to apply some basic transformation actions.

For example, in the Applied Steps shown in Figure 12‐8, you see that
First Row step was promoted to column headers and a few unneeded
columns were removed.

5.	When all the needed transformations are complete, open the
Advanced Editor window by clicking the View tab and selecting
the Advanced Editor command.

Figure 12‐9 demonstrates that as you build out the starter template,
Power Query diligently creates the bulk of the code for your function.
Note in the portion of the code that’s highlighted in gray (for illustra-
tion), Power Query has hard‐coded the file path and filename of the
Excel file that was originally selected. The idea is to wrap this starter
code in a function that passes a dynamic file path and filename.

Figure 12-8:
Use the

Query Editor
to apply any

necessary
transforma-
tion actions.

Figure 12-9:
Open the

Advanced
Editor to see

the starter
code.

222 Part II: Wrangling Data with Power Query �

6.	Wrap the entire block of code with function tags, specifying that
this function requires two parameters: FilePath and FileName. Also
replace the hard‐coded file path and filename with each respective
parameter.

Here’s the syntax shown in Figure 12‐10:

let GetMyFiles=(FilePath, FileName) =>

let
 Source =

Excel.Workbook(File.Contents(FilePath&FileName)),
 MySheet1 = Source{[Name="MySheet"]}[Data],
 #"Promoted Headers" =

Table.PromoteHeaders(MySheet1),
 #"Removed Columns" =
Table.RemoveColumns(#"Promoted

Headers",{"Branch_Number", "Effective_Date"})
in
 #"Removed Columns"

in GetMyFiles"

7.	Close the Advanced Editor.

8.	In the Query Settings pane, change the name of the query in the Name
input box. Give the function a reasonably descriptive name, such as
(in this scenario) fnGetMyFiles.

9.	Click the Home tab of the Query Editor and click the Close & Load
button.

At this point, the custom function is ready to be used on all files in the
target folder.

Figure 12-10:
Wrapping
the starter
code with

function
tags and

replacing
the hard‐

coded
names with

your
dynamic

parameters.

223� Chapter 12: Extending Power Query with Custom Functions

10.	Click the Data tab in Excel and select New Query ➪ From File ➪ From
Folder to start a connection to the folder that contains all the Excel
files.

11.	In the From Folder dialog box, provide Power Query with the file path
of the target folder.

The Query Editor window activates to show you a table similar to the
one shown in Figure 12‐11. This table contains a record for each file in
the chosen folder. The columns you’re interested in are Folder Path
and Name, which provide the function with the needed FilePath and
FileName parameters.

12.	Click the Add Column tab, and then click the Add Custom Column
command.

The Add Custom Column dialog box opens.

13.	Invoke the function and pass the Folder Path and Name fields as
parameters separated by commas (see Figure 12‐12).

When you confirm your changes, Power Query triggers the function
for each row in the data table. The function itself grabs the data from
each file and returns a table array. Figure 12‐13 shows the newly created
custom column with a returned table array for each file (specified by a
green Table hyperlink).

Figure 12-11:
Create a

new query
using the

From Folder
connection

type to
retrieve a

table of all
files in the

target
folder.

224 Part II: Wrangling Data with Power Query �

14.	Click the Expand icon for your new custom column.

You see a list of fields included in each table array, as shown in
Figure 12‐14.

15.	Choose which fields in the table array to show, click the Expand radio
button, and then click the OK button.

With each table array expanded, Power Query exposes the columns
pulled from each Excel file and adds the detailed records to the data
preview. Figure 12‐15 illustrates the data preview for the final com-
bined table.

16.	At this point, you can remove unneeded columns and then click the
Close & Load command to output the combined table.

As you look at the final combined view, don’t lose track of the fact that this
relatively complex task was facilitated by a simple custom function. For all
the steps required to accomplish this task, you expend very little effort on
creating the code for the function. Power Query writes the code for the core
functionality, and you simply wrap that code into a function.

Figure 12-13:
Power

Query trig-
gers the

function and
returns a

table array
for each file
in the folder.

Figure 12-12:
Use the Add
Custom Col-
umn action

to invoke
the function.

225� Chapter 12: Extending Power Query with Custom Functions

The takeaway here is that you don’t have to be an expert on Power Query’s
M language to pull together effective and useful custom functions. You
can leverage the Query Editor to create some base code and then adjust
from there.

Creating Parameter Queries
A parameter query is a kind of query that relies on one or more parameters
to run. Although that sounds suspiciously like the custom functions covered
earlier in this chapter (after all, they ran on parameters), there is a subtle
difference.

Figure 12-14:
Click the

Custom col-
umn header

to expand
the table

arrays.

Figure 12-15:
Power
Query

exposes the
columns

pulled from
each Excel

file and
adds the
detailed

records to
create the
final com-

bined view.

226 Part II: Wrangling Data with Power Query �

A parameter query is one where you provide the parameters. So rather than
have the parameters come from a predefined query, you enter the parameters.
This comes in handy when creating interactive reporting for others to consume.

In this section, I walk you through creating your first parameter query.

Preparing for a parameter query
To create a proper parameter query, you first have to understand the param-
eters necessary to make your reporting interactive. The best way to gain this
understanding is to explore the target data source.

In this scenario, I’ll tell you how to build an interactive view of the top‐grossing
films for any given year and month. To accomplish this task, leverage the Box
Office Mojo website. Box Office Mojo provides an array of box office reporting
tools, including a monthly index of top‐grossing films.

The URL for the monthly index includes a yr parameter and a month param-
eter. Enter this URL into any browser and you see a list of the top‐grossing
films of December 2015:

www.boxofficemojo.com/monthly/?yr=2015&month=12

A look at the website (shown in Figure 12‐16) confirms that the URL opens
a web page that contains the table you would expect to see: an index of
movies for December 2015 box office. The parameters in the URL are working
as expected.

Figure 12-16:
Confirming

that the
parameters

in the URL
actually

work.

http://www.boxofficemojo.com/monthly/?yr=2015&month=12

 Chapter 12: Extending Power Query with Custom Functions 227
Now that you know the year and month number are the parameters, you can
get started.

Creating the base query
The best place to start is to create the base query. The base query is essen-
tially the one that will pull the data you’re working toward. In this scenario,
you create a query that pulls the table shown in Figure 12‐16 from the Box
Office Mojo website.

Follow these steps:

1. Open a new Excel workbook, and then select Data ➪ New Query ➪
From Other Sources ➪ From Web.

2. Enter a starting URL and then click OK. You can use the following URL:

www.boxofficemojo.com/monthly/?yr=2015&month=12

3. Use the Navigator pane to select the correct web table, and then click
the Edit button to open the Query Editor.

4. Use the Query Editor to rename columns and apply any transforma-
tions that are needed to clean the web data.

Figure 12‐17 illustrates a clean table that makes up the base query.

5. After all needed transformations are complete, open the Advanced
Editor window by clicking the View tab and selecting the Advanced
Editor command.

Figure 12-17:
The clean

base query.

http://www.boxofficemojo.com/monthly/?yr=2015&month=12

228 Part II: Wrangling Data with Power Query �

6.	Wrap the entire block of code with function tags, specifying that this
function requires two parameters: YearNum and MonthNum. Also
replace the hard‐coded year and month in the URL with each respec-
tive parameter.

Here’s the final syntax shown in Figure 12‐18:

let TopMovies=(YearNum, MonthNum) =>
let
 Source = Web.Page(Web.Contents(
 "http://www.boxofficemojo.com/monthly/?yr=" &

Number.ToText(YearNum) & "&month=" &
Number.ToText(MonthNum))),

 Data0 = Source{0}[Data],

#"Renamed Columns" =

 Table.RenameColumns(Data0,{
 {"Movie Title (click to view)", "Movie Title"},
 {"Total Gross /Theaters", "Total Gross"},
 {"Total Gross /Theaters2", "Theaters"}}),

#"Removed Columns" =
 Table.RemoveColumns(#"Renamed Columns",
 {"Opening /Theaters",
 "Opening /Theaters2", "Open", "Close"})
in
 #"Removed Columns"
in
 TopMovies

Figure 12-18:
Wrapping
the starter
code with

function
tags and

specifying a
YearNum

parameter
and a

MonthNum
parameter.

229� Chapter 12: Extending Power Query with Custom Functions

7.	Close the Advanced Editor.

8.	In the Query Settings pane, change the name of the query in the Name
input box. In this scenario, it’s fnGetTopMovies.

9.	Click the Home tab of the Query Editor and click the Close &
Load button.

You now have a fnGetTopMovies function, which can be used to pull web
data from a custom function, and it’s ready to be used on all files in the
target folder.

Creating the parameter query
The final step is to create the parameter query. To do so, you need a simple
table that will serve as the feeder for your dynamic parameters.

Staying in the same workbook where you created fnGetTopMovies, create a
table similar to the one shown in Figure 12‐19.

From here, follow these steps:

1.	Place the cursor in the parameter table, and then select Data ➪ New
Query ➪ From Table.

The Create Table dialog box opens.

2.	Click OK to continue.

The Query Editor opens with the parameter table.

3.	Click the Add Column tab, and then click the Add Custom Column
command.

4.	In the Add Custom Column dialog box, invoke the fnGetTopMovies
function, passing the year and month fields as parameters (see
Figure 12‐20).

Figure 12-19:
Create a

simple
parameter

table.

230 Part II: Wrangling Data with Power Query �

Because you’re mixing data from the web with data from Excel (though
the parameter table can hardly be considered data), Power Query initi-
ates a few data‐privacy precautionary measures.

5.	Click Continue.

The Privacy Levels dialog box opens, as shown in Figure 12‐21.

6.	Select Public for both the Current Workbook option and the website.
Click the Save button to confirm and save the privacy levels.

Power Query, at this point, imports data from the website based on the
year and month in the parameter table.

Figure 12-20:
Use the Add
Custom Col-
umn action

to invoke
the function.

Figure 12-21:
The combin-
ing of Excel

and Web
data trig-

gers Power
Query to ask

about data
privacy.

231� Chapter 12: Extending Power Query with Custom Functions

7.	The data imports as a table array, so click the green Table hyperlink.

Alternatively, you can click the Expand icon.

Now that you’re basically done, it’s time to think about where the query
should be loaded. If you simply click the Close & Load button, Power
Query outputs the final parameter query in its own worksheet. However,
it would be more practical to have the parameter table and query results
on the same worksheet. This way, you can edit the parameters and see
the results without having to flip between worksheets.

8.	Rather than click the Close & Load command button, click the drop‐
down arrow beneath the button (as shown in Figure 12‐22) and select
the Close & Load To option.

9.	In the Load To dialog box, choose the Existing Worksheet option,
ensuring that you select a cell beneath the parameter table. (See
Figure 12‐23.)

10.	Click the Load button to finalize the query (see Figure 12‐23).

Figure 12-22:
Selecting

the Close &
Load To
option.

Figure 12-23:
Choose to

load the
final query

results
under the

parameters
table.

232 Part II: Wrangling Data with Power Query �

Figure 12‐24 illustrates the final parameter query. Take a moment to think
about what’s happening here. With this parameter query, you enter a year
and a month and click Refresh (or press Ctrl+Alt+F5). Power Query then
dynamically imports data back from the Internet based on the parameters
you entered — all without your having to enter more than three lines of M
language syntax. Truly amazing.

Figure 12-24:
The final

parameter
query

provides an
interactive

mechanism
to flexibly
pull data

based on
dynamic

parameters,
all with

virtually no
coding.

Find ten resources to continue your journey into Power Pivot and Power Query at
www.dummies.com/extras/excelpowerpivotpowerquery.

Part III
The Part of Tens

http://www.dummies.com/extras/excelpowerpivotpowerquery

In this part . . .
✓✓ Explore some best practices that can help you avoid Power

Pivot performance issues.

✓✓ Examine a few tips and tricks that can save you time when
working with Power Query.

✓✓ Uncover Power Query options that disable annoying default
settings and improve performance.

Chapter 13

Ten Ways to Improve Power
Pivot Performance

In This Chapter
▶▶ Improving Power Pivot performance

▶▶ Best practices for avoiding lag

▶▶ Managing slicer performance

▶▶ Using views versus tables

W
hen you publish Power Pivot reports to the web, you intend to give
your audience the best experience possible. A large part of that expe-

rience is ensuring that performance is good.

The word performance (as it relates to applications and reporting) is typically
synonymous with speed — or how quickly an application performs certain
actions such as opening within the browser, running queries, or filtering.

Because Power Pivot inherently paves the way for large amounts of data
with fairly liberal restrictions, it isn’t uncommon to produce reporting solu-
tions that work but are unbearably slow. And nothing will turn your intended
audience away from your slick new reports faster than painfully sluggish
performance.

This chapter offers ten actions you can take to optimize the performance of
your Power Pivot reports.

236 Part III: The Part of Tens �

Limit the Number of Rows and Columns
in Your Data Model Tables

One huge influence on Power Pivot performance is the number of columns
you bring, or import, into the data model. Every column you import is one
more dimension that Power Pivot has to process when loading a workbook.
Don’t import extra columns “just in case” — if you’re not certain you will use
certain columns, just don’t bring them in. These columns are easy enough to
add later if you find that you need them.

More rows mean more data to load, more data to filter, and more data to
calculate. Avoid selecting an entire table if you don’t have to. Use a query or
a view at the source database to filter for only the rows you need to import.
After all, why import 400,000 rows of data when you can use a simple WHERE
clause and import only 100,000?

Use Views Instead of Tables
Speaking of views, for best practice, use views whenever possible.

Though tables are more transparent than views — allowing you to see all the
raw, unfiltered data — they come supplied with all available columns and
rows, whether you need them or not. To keep your Power Pivot data model
to a manageable size, you’re often forced to take the extra step of explicitly
filtering out the columns you don’t need.

Views can not only provide cleaner, more user‐friendly data but also help
streamline your Power Pivot data model by limiting the amount of data
you import.

Avoid Multi‐Level Relationships
Both the number of relationships and the number of relationship layers have
an impact on the performance of your Power Pivot reports. When building
your model, follow best practice and have a single fact table containing pri-
marily quantitative numerical data (facts) and dimension tables that relate to
the facts directly. In the database world, this configuration is a star schema,
as shown in Figure 13‐1.

237� Chapter 13: Ten Ways to Improve Power Pivot Performance

Avoid building models where dimension tables relate to other dimension
tables. Figure 13‐2 illustrates this configuration, also known as a snowflake
schema. This configuration forces Power Pivot to perform relationship look-
ups across several dimension levels, which can be particularly inefficient,
depending on the volume of data in the model.

Let the Back‐End Database Servers
Do the Crunching

Most Excel analysts who are new to Power Pivot tend to pull raw data
directly from the tables on their external database servers. After the raw
data is in Power Pivot, they build calculated columns and measures to trans-
form and aggregate the data as needed. For example, users commonly pull

Figure 13-1:
A star

schema is
the most
efficient

data model,
with a

single fact
table and

dimensions
relating

directly to it.

Figure 13-2:
Snowflake

schemas
are less

efficient,
causing

Power Pivot
to perform

chain
lookups.

238 Part III: The Part of Tens �

revenue and cost data and then create a calculated column in Power Pivot to
compute profit.

So why make Power Pivot do this calculation when the back‐end server could
have handled it? The reality is that back‐end database systems such as SQL
Server have the ability to shape, aggregate, clean, and transform data much
more efficiently than Power Pivot. Why not utilize their powerful capabilities
to massage and shape data before importing it into Power Pivot?

Rather than pull raw table data, consider leveraging queries, views, and
stored procedures to perform as much of the data aggregation and crunching
work as possible. This leveraging reduces the amount of processing that
Power Pivot will have to do and naturally improves performance.

Beware of Columns with
Non‐Distinct Values

Columns that have a high number of unique values are particularly hard on
Power Pivot performance. Columns such as Transaction ID, Order ID, and
Invoice Number are often unnecessary in high‐level Power Pivot reports and
dashboards. So unless they are needed to establish relationships to other
tables, leave them out of your model.

Limit the Number of Slicers in a Report
The slicer is one of the best new business intelligence (BI) features of Excel
in recent years. Using slicers, you can provide your audience with an intui-
tive interface that allows for interactive filtering of your Excel reports and
dashboards.

One of the more useful benefits of the slicer is that it responds to other slic-
ers, providing a cascading filter effect. For example, Figure 13‐3 illustrates not
only that clicking on Midwest in the Region slicer filters the pivot table but
that the Market slicer also responds, by highlighting the markets that belong
to the Midwest region. Microsoft calls this behavior cross‐filtering.

As useful as the slicer is, it is, unfortunately, extremely bad for Power Pivot
performance. Every time a slicer is changed, Power Pivot must recalculate all
values and measures in the pivot table. To do that, Power Pivot must evalu-
ate every tile in the selected slicer and process the appropriate calculations
based on the selection.

239� Chapter 13: Ten Ways to Improve Power Pivot Performance

Take this process a step further and imagine adding a second slicer: Because
slicers cross‐filter, each time you click one slicer, the other one changes also,
so it’s almost as though you clicked both of them. Power Pivot must now
respond to both slicers, evaluating every tile in both slicers for each calcu-
lated measure in the pivot. Adding a second slicer effectively doubles the
processing time. Add a third slicer, and you triple the processing time.

In short, a slicer is generally bad for Power Pivot performance. However, as
mentioned at the beginning of this section, the functionality that the slicer
brings to Excel BI solutions is too good to give up completely.

You can help to mitigate performance issues by limiting the number of slicers
in your Power Pivot reports. Remove slicers one at a time, testing the perfor-
mance of the Power Pivot report after each removal. You‘ll find that remov-
ing a single slicer is often enough to correct performance issues.

Remove slicers that have low click rates. Some slicers hold filter values
that, frankly, may never be utilized by your audience. For example, if a slicer
allows your audience to filter by the current year or by last year, and the last
year view is not often called up, consider removing the slicer or using the
Pivot Table Filter drop‐down list instead.

Create Slicers Only on Dimension Fields
Slicers tied to columns that contain lots of unique values will often cause a
larger performance hit than columns containing only a handful of values. If
a slicer contains a large number of tiles, consider using a Pivot Table Filter
drop‐down list instead.

Figure 13-3:
Slicers work

together to
show rele-

vant data
items

based on a
selection.

240 Part III: The Part of Tens �

On a similar note, be sure to right‐size column data types. A column with few
distinct values is lighter than a column with a high number of distinct values.
If you’re storing the results of a calculation from a source database, reduce
the number of digits (after the decimal) to be imported. This reduces the size
of the dictionary and, possibly, the number of distinct values.

Disable the Cross‐Filter Behavior
for Certain Slicers

Disabling the cross‐filter behavior of a slicer essentially prevents that slicer
from changing selections when other slicers are clicked. This prevents the
need for Power Pivot to evaluate the titles in the disabled slicer, thus reduc-
ing processing cycles. To disable the cross‐filter behavior of a slicer, select
Slicer Settings to open the Slicer Settings dialog box, shown in Figure 13‐4.
Then simply deselect the Visually Indicate Items with No Data option.

Use Calculated Measures Instead
of Calculated Columns

Use calculated measures instead of calculated columns, if possible.
Calculated columns are stored as imported columns. Because calculated
columns inherently interact with other columns in the model, they calcu-
late every time the pivot table updates, whether they are being used or not.
Calculated measures, on the other hand, calculate only at query time.

Figure 13-4:
Deselecting
the Visually

Indicate
Items

option with
No Data

disables the
slicer’s

cross‐filter
behavior.

241� Chapter 13: Ten Ways to Improve Power Pivot Performance

Calculated columns resemble regular columns in that they both take up
space in the model. In contrast, calculated measures are calculated on the fly
and do not take space.

Upgrade to 64‐Bit Excel
The suggestion in this section is somewhat obvious. If you continue to run
into performance issues with your Power Pivot reports, you can always
buy a better PC — in this case, by upgrading to a 64‐bit PC with 64‐bit Excel
installed.

Power Pivot loads the entire data model into RAM whenever you work with
it. The more RAM your computer has, the fewer performance issues you see.
The 64‐bit version of Excel can access more of your PC’s RAM, ensuring that
it has the system resources needed to crunch through bigger data models.
In fact, Microsoft recommends 64‐bit Excel for anyone working with models
made up of millions of rows.

But before you hurriedly start installing 64‐bit Excel, you need to answer
these questions:

✓✓ Do you already have 64‐bit Excel installed? In Excel 2016 and 2013,
choose File ➪ Account ➪ About Excel. A dialog box opens, specifying
either 32‐bit or 64‐bit at the top. In Excel 2010, choose File ➪ Help
instead. The text About Excel pops up on the right side of the screen
along with the version number and the 32‐bit or 64‐bit designation.

✓✓ Are your data models large enough? Unless you’re working with large
data models, the move to 64‐bit may not produce a noticeable difference
in your work. How large is large? A Power Pivot workbook with a file size
upward of 40 megabytes is considered large. If your workbook is 50 or
more megabytes, you would definitely benefit from an upgrade.

✓✓ Do you have a 64‐bit operating system installed on your PC? The 64‐bit
version of Excel will not install on a 32‐bit operating system. You can
find out whether you’re running a 64‐bit operating system by searching
for the text My PC 64‐bit or 32‐bit at your favorite search engine. You’ll
see loads of sites that can walk you through the steps to determine
your version.

✓✓ Will your other add‐ins stop working? If you’re using other add‐ins, be
aware that some of them may not be compatible with 64‐bit Excel. You
wouldn’t want to install 64‐bit Excel just to find that your trusted add‐ins
no longer work. Contact your add‐in providers to ensure that they are
64‐bit compatible. By the way, this advice includes add‐ins for all Office
products — not just Excel. When you upgrade Excel to 64‐bit, you also
have to upgrade the entire Office suite.

Chapter 14

Ten Tips for Working
with Power Query

In This Chapter
▶▶ Getting information from the Workbook Queries pane

▶▶ Organizing queries

▶▶ Referencing and duplicating queries

▶▶ Configuring Power Query options

▶▶ Boosting performance

O
ver the past few years, Microsoft has added countless features to
Power Query. It has truly become a rich tool set with multiple ways to

perform virtually any action you can think of. This growth in functionality has
paved the way to a good number of tips and tricks that can help you work
more efficiently with your Power Query models.

This chapter presents ten of the more useful tips and tricks you can leverage
to get the most out of Power Query.

Getting Quick Information from
the Workbook Queries Pane

All the Power Query queries that live in a particular workbook can be views
in the Workbook Queries pane. Choose Data ➪ Show Queries to activate the
Workbook Queries pane.

244 Part III: The Part of Tens �

In this pane, you can see some quick information about a query by simply
hovering the cursor over it. You can see the data source for the query, the
last time the query was refreshed, and a sneak peek of the data within the
query. You can even click on column hyperlinks to peek at a particular
column (see Figure 14‐1).

Organizing Queries in Groups
As you add queries to your workbook, your Workbook Queries pane may
start to feel cluttered and disorganized. Do yourself a favor and organize your
queries into groups.

Figure 14‐2 illustrates the kinds of groups you can create. You can create a
group only for custom functions or a group for queries sourced from external
databases. You could even create a group where you store small reference
tables. Each group is collapsible, so you can neatly pack away queries that
you aren’t working with.

You can create a group by right‐clicking a query in the Workbook Queries
pane and selecting Move To Group ➪ New Group. As you can see in
Figure 14‐3, if you’ve already created a few groups, you also have the option
of moving the selected query to an existing group.

Figure 14-1:
Hover the

cursor over
a query to
get quick

information,
including

sneak peeks
of column
contents.

245� Chapter 14: Ten Tips for Working with Power Query

Selecting Columns in Queries Faster
When dealing with a large table with dozens of columns in the Query Editor,
it can be a pain to find and select the right columns to work with. You can
avoid all that scrolling back and forth by choosing the Choose Columns
command on the Home tab.

The dialog box shown in Figure 14‐4 opens, showing you all available col-
umns (including custom columns you may have added). You can easily find
and select the columns you need.

Figure 14-2:
Queries can

be orga-
nized into

groups.

Figure 14-3:
Creating a

new group.

246 Part III: The Part of Tens �

Renaming Query Steps
Every time you apply an action in the Query Editor, a new entry is made in
the Query Settings pane, as shown in Figure 14‐5. Query steps serve as a kind
of audit trail for all the actions you’ve taken on the data.

Why not make sure that your query steps have names that aren’t generic
names, like Uppercased Text or Merged Columns. Sure, you know what each
step does now, but what about in six months? Why not take the time to add
some clarity on what each step is doing?

You can rename your steps by right‐clicking each step and selecting Rename.

Figure 14‐6 shows the same steps renamed, to provide a bit more insight
about the purpose of each one.

Figure 14-4:
Use the
Choose

Columns
command to

find and
select col-

umns faster.

247� Chapter 14: Ten Tips for Working with Power Query

Quickly Creating Reference Tables
A handful of columns in a dataset always make for fantastic reference tables.
For instance, if your dataset contains a column with a list of product catego-
ries, it would be useful to create a reference table of all the unique values in
that column.

Figure 14-5:
Right‐click

query steps
to rename

them.

Figure 14-6:
Add clarity
by adding

friendly
names to

query steps.

248 Part III: The Part of Tens �

Reference tables are often used to map data, feed menu selectors, serve as
lookup values, and much more.

While in the Query Editor, you can right‐click the column from which you
want to create a reference table and then select Add as New Query, as shown
in Figure 14‐7.

A new query is created, using the table you just pulled from as the source.
The Query Editor jumps into action, showing only the column you selected.
From here, you can use the Query Editor to clean up duplicates or remove
blanks, for example.

Copying Queries to Save Time
It’s always smart to reuse work wherever you can. Why reinvent the
wheel when your Workbook Queries pane is full of wheels you’ve
already created?

Figure 14-7:
Create a

new query
from an
existing
column.

249� Chapter 14: Ten Tips for Working with Power Query

Save time by duplicating the queries in your workbook. To do so, activate the
Workbook Queries pane, right‐click on the query you want to copy, and then
select Duplicate. As you can see in Figure 14‐8, you can also duplicate custom
functions.

Setting a Default Load Behavior
If you’re working heavily with Power Pivot and with Power Query, chances
are good that you load your Power Query queries to the Internal Data Model
a majority of the time.

If you’re one of those analysts who always loads to the Data Model, you can
tweak the Power Query options to automatically load to the Data Model.

Choose Data ➪ New Query ➪ Query Options to open the dialog box shown
in Figure 14‐9. Select Data Load in the Global section, and then choose to
specify a custom default load setting. This enables the options to load to the
worksheet or Data Model by default.

Figure 14-8:
Duplicating

a query.

250 Part III: The Part of Tens �

Preventing Automatic
Data Type Changes

One of the more recent additions to Power Query is the ability to automati-
cally detect data types and to proactively change data types. This type
detection is most often applied when new data is introduced to the query.

For instance, Figure 14‐10 shows the query steps after importing a text file.
Note the Changed Type step, which was automatically performed by Power
Query as part of its type detection feature.

Figure 14-9:
Use the

Global Data
Load

options
to set a

default load
behavior.

Figure 14-10:
Power

Query auto-
matically

adds a step
to change
data types
when data

is imported.

251� Chapter 14: Ten Tips for Working with Power Query

Although Power Query does a decent job at guessing what data types should
be used, applied data type changes can sometimes cause unexpected issues.

Some veterans of Power Query, frankly, find the type detection feature annoy-
ing. If data types need to be changed, they want to be the ones to make that
determination.

If you’d rather handle data type changes without help from Power Query’s
type detection feature, you can turn it off.

Choose Data ➪ New Query ➪ Query Options to open the dialog box shown
in Figure 14‐11. Select Data Load in the Current Workbook section, and then
deselect the option to automatically detect column types and headers for
unstructured sources.

Disabling Privacy Settings
to Improve Performance

The privacy‐level settings in Power Pivot (explored in Chapter 11) are
designed to protect organizational data as it gets combined with other
sources. When you create a query that uses an external data source with an
internal data source, Power Query stops the show to ask how you want to
categorize the data privacy levels of each data source.

Figure 14-11:
Disabling

the type
detection

feature.

252 Part III: The Part of Tens �

For a majority of analysts, who deal solely with organizational data, the
privacy‐level settings do little more than slow down queries and cause
confusion.

Fortunately, you have the option to ignore privacy levels.

Choose Data ➪ New Query ➪ Query Options to open the dialog box shown
in Figure 14‐12. Select Privacy in the Current Workbook section, and then
choose the option to ignore privacy levels.

Disabling Relationship Detection
When you’re building a query and choosing Load to Data Model as the
output, Power Query, by default, attempts to detect relationships between
queries and creates those relationships within the Internal Data Model. The
relationships between queries are primarily driven by the defined query
steps. For instance, if you were to merge two queries and then load the result
into the Data Model, a relationship would be automatically created.

In larger data models with a dozen or so tables, Power Query’s relationship
detection can affect performance and increase the time it takes to load the
Data Model.

Figure 14-12:
Disabling

the privacy‐
level

settings.

253� Chapter 14: Ten Tips for Working with Power Query

You can avoid this hassle and even gain a performance boost by disabling
relationship detection.

Choose Data ➪ New Query ➪ Query Options to open the dialog box shown
in Figure 14‐13. Select Data Load in the Current Workbook section, and
then deselect the option to create relationships when adding loading to the
Data Model.

Figure 14-13:
Disabling

relationship
detection.

Index

• Symbols and Numerics •
"" (quotation marks), 174
64‐bit Excel, upgrading to, 241

• A •
actions

column‐level, 151–153
table, 153–154

Activate command, 99
activating

Power Pivot Add‐In, 22–23
Power Query Add‐In, 138–139

Add as New Query action (Query Editor
Ribbon), 153

Add Custom Column action, 154
Add Custom Column dialog box, 190–191,

197, 218, 223, 229–230
Add Index Column action, 154
adding

conditional logic to custom
columns, 196–198

Excel tables to data model, 26–27
formulas to Power Pivot, 107–124
report filters, 41–42
tables to Internal Data Model, 99–101

add‐ins
Power Pivot, 22–23
Power Query, 138–139

adjusting
case, 178
pivot table layouts, 44–45
pivot tables, 40–41
summary calculations, 48–49

Advanced Editor, 148
aggregating data, 198–199
alerts, SharePoint and, 126
analytical processes,

transparency of, 11–12

Append dialog box, 207–208
Append feature (Power Query)

about, 205
appending data, 207–208
creating base queries, 205–207

Append Queries action, 154
appending

data, 207–208
queries, 150

applying numeric formats to data fields, 47
attribute‐based XML files, 160–161
automatic refreshing Power Pivot

data, 87–88
AVERAGE function, 48, 114
avoiding multi‐level relationships, 236–237
Azure databases, importing data from, 164

• B •
back‐end database servers, 237–238
backward compatible, 66
base queries, creating, 227–229
blank fields, filling, 174–176
Browser View Options dialog box, 129
building

base queries, 205–207, 227–229
calculated columns, 108–109
calculated measures, 120–122
custom columns, 190–191
custom functions, 215–219
DAX‐driven calculated columns, 114–117
functions to merge data from multiple

Excel files, 219–225
parameter queries, 225–232
pivot tables, 37–44, 102–103
reference tables, 247–248
relationships between Power Pivot

tables, 27–29
slicers on dimension fields, 239–240
standard slicers, 59–61
Timeline slicers, 64–66

• C •
calculated columns

building DAX‐driven, 114–117
compared with calculated

measures, 240–241
creating, 108–109
enhancing Power Pivot data with, 107–112
formatting, 109–110
hiding from end users, 111–112
identifying DAX functions safe

for, 112–114
referencing in other calculations, 110
utilizing DAX to create, 112–119

calculated measures
about, 119–120
compared with calculated

columns, 240–241
creating, 120–122
deleting, 122–123
editing, 122–123

case, changing, 178
Change Type action (Query Editor

Ribbon), 152
changing

case, 178
pivot table layouts, 44–45
pivot tables, 40–41
summary calculations, 48–49

character markers, splitting columns
using, 184–186

characters, extracting, 182–184
Cheat Sheet (website), 5
Choose Columns action, 154
cleaning text, 180–181
client tools, 111
Clipboard, loading data from, 84–85
Column area, 36
Column Separator option, 83
column‐level actions, 151–153
columns

concatenating, 176–178, 192–193
concatenating with custom, 192–193
creating custom, 190–191
defined, 15
enhancing Power Pivot data with

calculated, 107–112

limiting, 236
mismatched labels for, 209
non‐distinct values and, 238
renaming, 108
selecting in queries, 245–246
splitting using character

markers, 184–186
unhiding, 111

columns, calculated
building DAX‐driven, 114–117
compared with calculated

measures, 240–241
creating, 108–109
enhancing Power Pivot data with, 107–112
formatting, 109–110
hiding from end users, 111–112
identifying DAX functions safe

for, 112–114
referencing in other calculations, 110
utilizing DAX to create, 112–119

columns, custom
adding conditional logic to, 196–198
functions and, 194–196

commands
Activate, 99
Deactivate, 99
Delete, 99
Edit, 99
Merge Columns, 192–193
New, 99
Pivot Columns, 189
Split Column, 184–185
Unpivot Columns, 187
Unpivot Other Columns, 188

comma‐separated value (CSV) files,
importing data from, 158–160

compatibility, 23
concatenating

columns, 176–178
with custom columns, 192–193

conditional logic, adding to custom
columns, 196–198

connections, data
editing, 89–91
refreshing and managing external, 86–91
refreshing in published Power Pivot

workbooks, 132–134

256 Excel Power Pivot & Power Query For Dummies �

controlling
data source settings, 168–170
external data connections, 86–91
multiple pivot tables with slicers, 63–64
queries, 149–150
relationships, 29–31

conversions, of data type, 193–194
copying queries, 248–249
COUNT function, 48, 114
Count Nums function, 48
Create Pivot Table dialog box, 38,

94, 102–103
Create Relationship dialog box, 97
Create Table dialog box, 100, 229
creating

base queries, 205–207, 227–229
calculated columns, 108–109
calculated measures, 120–122
custom columns, 190–191
custom functions, 215–219
DAX‐driven calculated columns,

114–117
functions to merge data from multiple

Excel files, 219–225
parameter queries, 225–232
pivot tables, 37–44, 102–103
pivot tables using Internal Data

Model, 102–103
reference tables, 247–248
relationships between Power Pivot

tables, 27–29
slicers on dimension fields, 239–240
standard slicers, 59–61
Timeline slicers, 64–66

Credentials section, 134
cross‐filter behavior, disabling for

slicers, 240
cube functions, 123–124
custom columns

adding conditional logic to, 196–198
functions and, 194–196

custom functions
creating, 215–219
extending Power Query with, 215–232

customizing
field names, 46–47
Pivot Table reports, 44–57
slicers, 61–63

• D •
data

aggregating, 198–199
appending, 207–208
defined, 14
external, 67–91
getting from Excel workbooks, 156–158
grouping, 198–199
hiding items, 52–53
hiding items without, 53–56
importing from CSV files, 158–160
importing from database systems, 163–

168, 166–168
importing from files, 156–163
importing from folders, 162–163
importing from other data

systems, 165–166
importing from text files, 158–160
importing from XML files, 160–162
loading from Clipboard, 84–85
loading from external Excel files, 79–82
loading from flat files, 79–85
loading from Microsoft Access

databases, 74–76
loading from other relational database

systems, 76–79
loading from other sources, 85–86
loading from relational databases, 67–79
loading from SQL Server, 68–74
loading from text files, 82–84
refreshing Power Query, 148–149
separation of presentation and, 12–13
showing items, 52–53
showing items without, 53–56

Data Analysis Expressions (DAX)
building DAX‐driven calculated

columns, 114–117
identifying safe functions for calculated

columns, 112–114
utilizing to create calculated

columns, 112–119
Data Catalog, sending queries to, 150
data connections

editing, 89–91
refreshing and managing external, 86–91
refreshing in published Power Pivot

workbooks, 132–134

257� Index

data item columns, 62–63
Data Link Properties dialog box, 78
data model

adding Excel tables, 26–27
limiting rows/columns in tables, 236
using in reporting, 31–32

Data Refresh section, 133
Data Source Settings dialog box, 169
data sources, managing settings

for, 168–170
Data Sources section, 134
data tables, filling Internal Data Model with

multiple external, 104–106
data transformation

about, 171
aggregating data, 198–199
changing case, 178
concatenating columns, 176–178
creating custom columns, 190–198
extracting left, right, and middle

values, 181–184
filling in blank fields, 174–176
finding and replacing text, 179
grouping data, 198–199
pivoting and unpivoting fields, 186–189
removing duplicate records, 172–174
splitting columns using character

markers, 184–186
trimming and cleaning text, 180–181

data types
conversions of, 193–194
preventing automatic changes to, 250–251

Database Name option, 69, 74
database servers, back‐end, 237–238
database systems, importing data from,

163–168, 166–168
databases

about, 9, 13
relationships and, 15–17
scalability and, 9–11
separation of data and

presentation, 12–13
terminology for, 13–15
transparency of analytical processes

and, 11–12

datasheet, 14
Date.From( ) function, 193
Date.FromText( ) function, 193
Date.ToText( ) function, 193
DAX (Data Analysis Expressions)

building DAX‐driven calculated
columns, 114–117

identifying safe functions for calculated
columns, 112–114

utilizing to create calculated
columns, 112–119

Deactivate command, 99
The Definitive Guide to DAX (Ferrari and

Russo), 112
Delete command, 99
Delete option (Power Query), 147
Delete Until End option (Power Query), 148
deleting

calculated measures, 122–123
duplicate records, 172–174
grand totals, 51
queries, 149
subtotals, 50–51
tables from Internal Data Model, 101–102

delimiters, 184
dialog boxes

Add Custom Column, 190–191, 197, 218,
223, 229–230

Append, 207–208
Browser View Options, 129
Create Pivot Table, 38, 94, 102–103
Create Relationship, 97
Create Table, 100, 229
Data Link Properties, 78
Data Source Settings, 169
Edit Table Properties, 73
Existing Connections, 90–91, 100–101
Extract Steps, 204
Field Settings, 55
Group By, 198–199, 203
Import Data, 105, 218
Insert Function, 112–113
Insert Timeline, 65
Load To, 208, 231
Manage Measures, 122

258 Excel Power Pivot & Power Query For Dummies �

Manage Relationships, 99, 101, 105–106
Measure, 120–121
Merge, 211–212
Merge Columns, 176–177, 202
Past Preview, 85
PivotTable Fields, 39–40, 42
Privacy Levels, 230
Properties, 88
Replace Values, 175, 176, 179
Report Connections, 63–64
Save As, 128
Select Table, 104
Slicer Settings, 240
Sort by Column, 115
Table Import Wizard, 76–77, 79–80, 82–83
Value Field Settings, 46–47
Workbook Connections, 87–88, 89, 100,

101–102, 148–149
dimension fields, creating slicers

on, 239–240
disabling

cross‐filter behavior for slicers, 240
privacy settings, 251–252
relationship detection, 252–253

displaying
data items, 52–53
items without data, 53–56
previews of queries, 150

Drill Down action (Query Editor
Ribbon), 153

Dummies (website), 5
Duplicate Column action (Query Editor

Ribbon), 152
duplicate records, removing, 172–174
duplicating queries, 149

• E •
Earliest Start Time section, 134
Edit button (Existing Connections

dialog box), 91
Edit command, 99
Edit Settings option (Power Query), 147
Edit Table Properties dialog box, 73
editing

calculated measures, 122–123
data connections, 89–91

formulas, 109
queries, 149

element‐based, 160
element‐based XML files, 161–162
E‐mail Notifications section, 134
empty strings, filling, 175–176
enabling

Power Pivot Add‐In, 22–23
Power Query Add‐In, 138–139

end users, hiding calculated columns
from, 111–112

end‐user maintenance, SharePoint and, 126
enhancing Power Pivot data with

calculated columns, 107–112
Excel

adding tables to data model, 26–27
creating functions to merge data from

multiple files, 219–225
importing data from workbooks, 156–158
limitations of, 9–13
loading data from external files, 79–82
preparing tables, 25
publishing workbooks to

SharePoint, 128–131
services, for SharePoint, 127–128

Excel 2013, 22
Excel 2013 Stand‐alone Edition, 138
Excel 2016 Stand‐alone Edition, 22
Excel Calculation Services, 127
Excel File Path option, 81
Excel Web Access, 127
Excel Web Services, 127
Existing Connections dialog box,

90–91, 100–101
extending Power Query with custom

functions, 215–232
external data, using with Power

Pivot, 67–91
external data connections, refreshing and

managing, 86–91
Extract command, 181–182
Extract Previous option (Power

Query), 148
Extract Steps dialog box, 204
extracting

characters, 182–184
left, right, and middle values, 181–184

259� Index

• F •
Ferrari, Alberto (author)

The Definitive Guide to DAX, 112
Field Settings dialog box, 55
fields

about, 14–15
applying numeric formats to, 47
customizing names, 46–47
defined, 14
pivoting, 186–189
referencing from other tables,

117–119
unpivoting, 186–189

File Path option, 83
files

attribute‐based XML, 160–161
comma‐separated value (CSV),

158–160
element‐based XML, 161–162
flat, 79–85
text, 82–84, 158–160
XML, 160–162

files, importing data from, 156–163
Fill action (Query Editor Ribbon), 152
filling

blank fields, 174–176
empty strings, 175–176
Internal Data Model with multiple

external data tables, 104–106
Filter area, 36–37
Filter fields, 57–58
FIND function, 196
finding and replacing text, 179
flat files, loading data from, 79–85
folders, importing data from, 162–163
FORMAT function, 114
formatting calculated columns,

109–110
formulas

adding to Power Pivot, 107–124
editing, 109

Friendly Connection Name option, 68,
74, 80, 83

From Windows Azure Marketplace data
source, 86

Full Outer join, 210

functions
AVERAGE, 48, 114
COUNT, 48, 114
Count Nums, 48
creating to merge data from multiple

Excel files, 219–225
cube, 123–124
custom columns and, 194–196
extending Power Query with

custom, 215–232
FIND, 196
FORMAT, 114
IF, 114, 196
IFERROR, 114, 196
if. . .then. . .else, 196
LEFT, 114, 196
MAX, 48, 114
MID, 114, 196
MIN, 48, 114
MONTH, 114
Number.FromText( ), 193
Number.ToText( ), 193
Product, 48
RELATED, 118–119
RIGHT, 114, 194–196
StDevP, 48
SUM, 48, 113–114
Text.End( ), 196
Text.PositionOf( ), 196
Text.Range( ), 196
Text.Start( ), 196
Time.ToText( ), 193
TRIM, 181
try. . .otherwise, 196
Var, 48
VarP, 48
YEAR, 114

• G •
Group By action (Query Editor

Ribbon), 152
Group By dialog box, 198–199, 203
grouping data, 198–199
groups

moving queries to, 150
organizing queries in, 244–245

260 Excel Power Pivot & Power Query For Dummies �

• H •
hiding

calculated columns from end
users, 111–112

data items, 52–53
items without data, 53–56

Hyperlink icon, 27

• I •
icons

explained, 4–5
Hyperlink, 27
Remember, 5
Technical Stuff, 4
Tip, 4
Warning!, 4
On The Web, 5

identifying safe DAX functions for
calculated columns, 112–114

IF function, 114, 196
IFERROR function, 114, 196
if. . .then. . .else function, 196
Import Data dialog box, 105, 218
importing

data from CSV files, 158–160
data from database systems, 163–

168, 166–168
data from files, 156–163
data from folders, 162–163
data from other data systems, 165–166
data from text files, 158–160
data from XML files, 160–162
tables, 71
views, 71

improving performance of Power
Pivot, 235–241

Inner join, 210
Insert Function dialog box, 112–113
Insert Timeline dialog box, 65
installing Power Query add‐in, 138–139

Internal Data Model
about, 20, 93
adding tables to, 99–101
creating pivot tables using, 102–103
directly feeding, 93–99
filling with multiple external data

tables, 104–106
limitations of, 21–22
removing tables from, 101–102

Internet resources
book updates, 5
Cheat Sheet, 5
Dummies, 5
online articles, 5

• J •
joins (Power Query), 209–210

• K •
Keep Bottom Rows action, 154
Keep Range of Rows action, 154
Keep Top Rows action, 154

• L •
launching

Power Pivot Add‐In, 22–23
Power Query Add‐In, 138–139

layouts, changing for pivot tables, 44–45
Left Anti join, 210
LEFT function, 114, 196
Left Outer join, 210
left values, extracting, 181–184
limitations, of Internal Data Model, 21–22
limiting

columns, 236
number of slicers in reports, 238–239
rows, 236

linking Excel tables to Power Pivot, 24–32
load behavior, setting default, 249–250

261� Index

Load To dialog box, 208, 231
loading

data from Clipboard, 84–85
data from external Excel files, 79–82
data from flat files, 79–85
data from Microsoft Access

databases, 74–76
data from other relational database

systems, 76–79
data from other sources, 85–86
data from relational databases, 67–79
data from SQL Server, 68–74
data from text files, 82–84
queries, 149

Log On to the Server option, 69, 75

• M •
machine‐readable, 160
maintaining

data source settings, 168–170
external data connections, 86–91
multiple pivot tables with slicers, 63–64
queries, 149–150
relationships, 29–31

Manage Command button, 27
Manage Measures dialog box, 122
Manage Relationships dialog box, 99,

101, 105–106
managing

data source settings, 168–170
external data connections, 86–91
multiple pivot tables with slicers, 63–64
queries, 149–150
relationships, 29–31

manually refreshing Power Pivot
data, 87–88

many‐to‐many relationship, 17
MAX function, 48, 114
Measure dialog box, 120–121
measures, calculated

about, 119–120
compared with calculated

columns, 240–241
creating, 120–122
deleting, 122–123
editing, 122–123

Merge Column action (Query Editor
Ribbon), 153

Merge Columns command, 192–193
Merge Columns dialog box, 176–177, 202
Merge dialog box, 211–212
Merge feature (Power Query)

about, 209
joins, 209–210
merging queries, 210–214

Merge Queries action, 154
merging queries, 149, 210–214
Microsoft Access databases, loading data

from, 74–76
Microsoft Analysis Services data source, 86
Microsoft Excel

adding tables to data model, 26–27
creating functions to merge data from

multiple files, 219–225
importing data from workbooks, 156–158
limitations of, 9–13
loading data from external files, 79–82
preparing tables, 25
publishing workbooks to

SharePoint, 128–131
services, for SharePoint, 127–128

Microsoft Excel 2013, 22
Microsoft Excel 2013 Stand‐alone

Edition, 138
Microsoft Excel 2016 Stand‐alone

Edition, 22
Microsoft Excel Calculation Services, 127
Microsoft Excel File Path option, 81
Microsoft Excel Web Access, 127
Microsoft Excel Web Services, 127
Microsoft Office 365/Office 365 Pro Plus,

22, 127, 138
Microsoft Office 2010 Professional Plus, 138
Microsoft Office 2013 Professional

Plus, 22, 138
Microsoft Office 2016 Professional Plus, 22
Microsoft Power Pivot

about, 19, 67
activating Power Pivot Add‐In, 22–23
adding formulas to, 107–124
enhancing data with calculated

columns, 107–112
improving performance of, 235–241

262 Excel Power Pivot & Power Query For Dummies �

Internal Data Model, 20–22
linking Excel tables to, 24–32
loading data from flat files, 79–85
loading data from other data

sources, 85–86
loading data from relational

databases, 67–79
publishing to SharePoint, 125–134
refreshing and managing external data

connections, 86–91
refreshing data connections in

workbooks, 132–134
using external data with, 67–91

Microsoft Power Pivot Gallery, publishing
to, 131–134

Microsoft Power Pivot Ribbon tab, 27
Microsoft Power Query

about, 137
activating add‐in, 138–139
Advanced Editor, 148
Append feature, 205–208
column‐level actions, 151–153
connection types, 155–170
extending with custom functions, 215–232
installing add‐in, 138–139
managing queries, 149–150
Merge feature, 209–214
query steps, 146–148
refreshing data, 148–149
reusing query steps, 201–205
starting queries, 140–146
table actions, 153–154
tips for, 243–253

Microsoft SharePoint
about, 125–126
Excel services for, 127–128
Office 365 and, 127
publishing Excel workbooks to, 128–131
publishing Power Pivot to, 125–134

Microsoft SQL Azure data source, 85
Microsoft SQL Parallel Data Warehouse

data source, 86
Microsoft SQL Server, loading data

from, 68–74
MID function, 114, 196
middle values, extracting, 181–184
MIN function, 48, 114
miscellaneous slicer settings, 63

modifying
case, 178
pivot table layouts, 44–45
pivot tables, 40–41
summary calculations, 48–49

MONTH function, 114
Move action (Query Editor Ribbon), 153
Move Down option (Power Query), 148
Move Up option (Power Query), 148
moving queries, 150
multi‐level relationships, avoiding, 236–237

• N •
Navigator pane, 156–157
New command, 99
non‐distinct values, columns and, 238
null values, replacing, 174–175
Number.FromText( ) function, 193
Number.ToText( ) function, 193
numeric formats, applying to data fields, 47

• O •
ODBC connections to nonstandard

databases, 164–165
Office 365/Office 365 Pro Plus, 22,

127, 138
Office 2010 Professional Plus, 138
Office 2013 Professional Plus, 22, 138
Office 2016 Professional Plus, 22
On The Web icon, 5
one‐to‐many relationship, 17
one‐to‐one relationship, 17
online articles (website), 5
Open button (Existing Connections

dialog box), 91
organizing queries in groups, 244–245
Other Feeds data source, 86

• P •
parameter queries, creating, 225–232
Past Preview dialog box, 85
performance, improving for Power

Pivot, 235–241
Pivot Columns command, 189

263� Index

pivot tables
about, 33–34
applying numeric formats to fields, 47
areas of, 34–37
changing, 40–41
changing layouts, 44–45
changing summary calculations, 48–49
controlling multiples with one

slicer, 63–64
creating multiples with slicers, 63–64
creating standard slicers, 59–61
creating Timeline slicers, 64–66
creating using Internal Data

Model, 102–103
creating your first, 37–44
customizing reports, 44–57
customizing slicers, 61–63
hiding data items, 52–53
hiding items without data, 53–56
limitations of Power Pivot–driven, 98
rearranging, 40–41
refreshing, 43–44
showing data items, 52–53
showing items without, 53–56
slicers, 57–59
sorting, 56–57
suppressing subtotals, 49–51

pivoting fields, 186–189
PivotTable Fields dialog box, 39–40, 42
placing slicers, 61–62
Power Pivot

about, 19, 67
activating Power Pivot Add‐In, 22–23
adding formulas to, 107–124
enhancing data with calculated

columns, 107–112
improving performance of, 235–241
Internal Data Model, 20–22
linking Excel tables to, 24–32
loading data from flat files, 79–85
loading data from other data

sources, 85–86
loading data from relational

databases, 67–79
publishing to SharePoint, 125–134

refreshing and managing external data
connections, 86–91

refreshing data connections in
workbooks, 132–134

using external data with, 67–91
Power Pivot Gallery, publishing to,

131–134
Power Pivot Ribbon tab, 27
Power Query

about, 137
activating add‐in, 138–139
Advanced Editor, 148
Append feature, 205–208
column‐level actions, 151–153
connection types, 155–170
extending with custom functions,

215–232
installing add‐in, 138–139
managing queries, 149–150
Merge feature, 209–214
query steps, 146–148
refreshing data, 148–149
reusing query steps, 201–205
starting queries, 140–146
table actions, 153–154
tips for, 243–253

preparing
Excel tables, 25
for parameter queries, 226–227

presentation, separation of data and, 12–13
preventing

automatic data type changes, 250–251
Refresh All, 88–89

Preview & Filter button, 72
previews, showing for queries, 150
primary key, 98
Privacy Levels dialog box, 230
privacy settings, disabling, 251–252
Product function, 48
properties, of queries, 150
Properties dialog box, 88
publishing

Excel workbooks to SharePoint, 128–131
to Power Pivot Gallery, 131–134
Power Pivot to SharePoint, 125–134

264 Excel Power Pivot & Power Query For Dummies �

• Q •
queries

about, 15
copying, 248–249
creating base, 205–207
managing, 149–150
merging, 210–214
organizing in groups, 244–245
renaming steps, 246–247
reusing steps, 201–205
selecting columns in, 245–246
starting, 140–146
steps to, 146–148

Query Editor Ribbon, 151–153
Query Settings pane, 146–148
quotation marks (""), 174

• R •
rearranging pivot tables, 40–41
records

about, 14–15
defined, 14
duplicate, 172–174

Recycle bin (SharePoint), 126
reference tables, creating, 247–248
referencing

calculated columns in other
calculations, 110

fields from other tables, 117–119
queries, 149

Refresh All, preventing, 88–89
Refresh Data When Operating the File

option, 88
Refresh Every X Minutes option, 88
refreshing

data connections in published Power
Pivot workbooks, 132–134

external data connections, 86–91
pivot tables, 43–44
Power Query data, 148–149
queries, 149

RELATED function, 118–119
relational databases

about, 12
importing data from, 164
loading data from, 67–79

relationship detection, disabling, 252–253
relationships

about, 15–17
creating between Power Pivot

tables, 27–29
managing, 29–31

Remember icon, 5
Remove action (Query Editor Ribbon), 151
Remove Alternate Rows action, 154
Remove Bottom Rows action, 154
Remove Duplicates action, 152, 154
Remove Errors action, 152, 154
Remove Other Columns action (Query

Editor Ribbon), 151
Remove Top Rows action, 154
removing

calculated measures, 122–123
duplicate records, 172–174
grand totals, 51
queries, 149
subtotals, 50–51
tables from Internal Data Model,

101–102
Rename action (Query Editor Ribbon), 152
Rename option (Power Query), 147
renaming

columns, 108
query steps, 246–247

Replace Errors action (Query Editor
Ribbon), 152

Replace Values action (Query Editor
Ribbon), 152

Replace Values dialog box, 175, 176, 179
replacing, finding and, text, 179
replacing null values, 174–175
Report Connections dialog box, 63–64
Report data source, 86
report filters, adding, 41–42
reports

customizing Pivot Table, 44–57
limiting number of slicers in, 238–239
using Power Pivot data model in, 31–32

265� Index

resources, Internet
book updates, 5
Cheat Sheet, 5
Dummies, 5
online articles, 5

reusing query steps, 201–205
Right Anti join, 210
RIGHT function, 114, 194–196
Right Outer join, 210
right values, extracting, 181–184
Row area, 35
rows, limiting, 236
Russo, Marco (author)

The Definitive Guide to DAX, 112

• S •
Save As dialog box, 128
Save My Password option, 69, 75–76
scalability, databases and, 9–11
Schedule Details section, 133
security, SharePoint and, 126
Select Table dialog box, 104
selecting columns in queries, 245–246
sending queries to Data Catalog, 150
Server Name option, 68
setting(s)

data source, 168–170
default load behavior, 249–250
privacy, 251–252

SharePoint
about, 125–126
Excel services for, 127–128
Office 365 and, 127
publishing Excel workbooks to, 128–131
publishing Power Pivot to, 125–134

showing
data items, 52–53
items without data, 53–56
previews of queries, 150

64‐bit Excel, upgrading to, 241
sizing slicers, 61–62
Slicer Settings dialog box, 240
slicers

about, 57–59
creating on dimension fields, 239–240

creating standard, 59–61
customizing, 61–63
disabling cross‐filter behavior for, 240
limiting number of in reports, 238–239
miscellaneous settings, 63
placing, 61–62
sizing, 61–62
Timeline, 64–66

snowflake schema, 237
sorting pivot tables, 56–57
Sort by Column dialog box, 115
Split Column action (Query Editor

Ribbon), 153
Split Column command, 184–185
splitting columns using character

markers, 184–186
SQL Server, loading data from, 68–74
standard slicers, creating, 59–61
star schema, 236–237
starting queries, 140–146
StDevP function, 48
subtotals, suppressing, 49–51
Suggested Related Data data source, 86
SUM function, 48, 113–114
summary calculations, changing, 48–49
suppressing subtotals, 49–51

• T •
table actions, 153–154
Table Import Wizard, 70, 74
Table Import Wizard dialog box, 76–77,

79–80, 82–83
tables

about, 14
adding to Internal Data Model, 99–101
compared with views, 236
creating relationships between Power

Pivot, 27–29
importing, 71
linking to Power Pivot, 24–32
reference, 247–248
referencing fields from other,

117–119
removing from Internal Data

Model, 101–102

266 Excel Power Pivot & Power Query For Dummies �

tables, pivot
about, 33–34
applying numeric formats to fields, 47
areas of, 34–37
changing, 40–41
changing layouts, 44–45
changing summary calculations, 48–49
controlling multiples with one

slicer, 63–64
creating multiples with slicers, 63–64
creating standard slicers, 59–61
creating Timeline slicers, 64–66
creating using Internal Data

Model, 102–103
creating your first, 37–44
customizing reports, 44–57
customizing slicers, 61–63
hiding data items, 52–53
hiding items without data, 53–56
limitations of Power Pivot–driven, 98
rearranging, 40–41
refreshing, 43–44
showing data items, 52–53
showing items without, 53–56
slicers, 57–59
sorting, 56–57
suppressing subtotals, 49–51

Technical Stuff icon, 4
terminology, database, 13–15
text

cleaning, 180–181
finding, 179
replacing, 179
trimming, 180–181

text files
importing data from, 158–160
loading data from, 82–84

Text.End( ) function, 196
Text.PositionOf( ) function, 196
Text.Range( ) function, 196
Text.Start( ) function, 196
Timeline slicers, creating, 64–66
Time.ToText( ) function, 193
Tip icon, 4
Transform action (Query Editor

Ribbon), 152

transforming data
about, 171
aggregating data, 198–199
changing case, 178
concatenating columns, 176–178
creating custom columns, 190–198
extracting left, right, and middle

values, 181–184
filling in blank fields, 174–176
finding and replacing text, 179
grouping data, 198–199
pivoting and unpivoting fields, 186–189
removing duplicate records, 172–174
splitting columns using character

markers, 184–186
trimming and cleaning text, 180–181

transparency, of analytical
processes, 11–12

TRIM function, 181
trimming text, 180–181
try. . .otherwise function, 196

• U •
unhiding columns, 111
Unpivot Columns action (Query Editor

Ribbon), 152
Unpivot Columns command, 187
Unpivot Other Columns command, 188
unpivoting fields, 186–189
updates, book, 5
upgrading, to 64‐bit Excel, 241
Use First Row as Column Headers

option, 81, 83
User First Row as Headers action, 154
utilizing DAX to create calculated

columns, 112–119

• V •
Value Field Settings dialog box, 46–47
values, 14–15
Values area, 34–35
Var function, 48
VarP function, 48

267� Index

versioning, SharePoint and, 126
views

compared with tables, 236
importing, 71

• W •
Warning! icon, 4
websites

book updates, 5
Cheat Sheet, 5
Dummies, 5
online articles, 5

Workbook Connections dialog box, 87–88,
89, 100, 101–102, 148–149

Workbook Queries pane, 150, 243–244
workbooks (Power Pivot), refreshing data

connections in, 132–134

• X •
XML files, importing data from, 160–162

• Y •
YEAR function, 114

268 Excel Power Pivot & Power Query For Dummies �

About the Author
Michael Alexander is a Microsoft Certified Application Developer (MCAD)
with over 15 years experience in consulting and developing office solutions.
He is the author of over a dozen books on business analysis using Microsoft
Excel and Access. He has been named Microsoft Excel MVP for his contribu-
tions to the Excel community. Visit Michael at DataPigTechnologies.com,
where he offers free Excel and Access training.

Dedication
To my family.

Author’s Acknowledgments
My deepest thanks go to the professionals at John Wiley & Sons for all the
hours of work put into bringing this book to life. Thanks also to Mike Talley
for suggesting numerous improvements to the examples and text in this
book. Finally, a special thank‐you goes out to Mary, for putting up with all the
time I spent locked away on this project.

http://www.DataPigTechnologies.com

Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr

Project Editor: Kim Darosett

Technical Editor: Mike Talley

Editorial Assistant: Matt Lowe

Sr. Editorial Assistant: Cherie Case

Production Editor: Antony Sami

Front Cover Image: ©hywards/Shutterstock

