
Expert Apache
Cassandra
Administration

Install, configure, optimize, and
secure Apache Cassandra databases
—
Sam R. Alapati

www.allitebooks.com

http://www.allitebooks.org

Expert Apache Cassandra
Administration

Sam R. Alapati

www.allitebooks.com

http://www.allitebooks.org

Expert Apache Cassandra Administration

ISBN-13 (pbk): 978-1-4842-3125-8 ISBN-13 (electronic): 978-1-4842-3126-5
https://doi.org/10.1007/978-1-4842-3126-5

Library of Congress Control Number: 2017962948

Copyright © 2018 by Sam R. Alapati

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Carlos Rolo
Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484231258. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sam R. Alapati
Flower Mound, Texas, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3126-5
http://www.allitebooks.org

I dedicate this book to the memory of Ibrahim Khan, a great cricketer
and a greater human being.

The lessons I learned from “Khan Sahib” a long time ago still guide me.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Part I: Introduction, Installation, and Configuration 1

Chapter 1: Apache Cassandra: An Introduction .. 3

What Is Cassandra? �� 3

Open Source Database �� 4

Fault Tolerance �� 4

High Performance �� 5

Distributed Configuration and High Resiliency �� 5

Flexibility ��� 5

Use of Commodity Servers �� 6

Ease of Management ��� 6

Highly Scalable �� 6

It’s Good Old SQL! �� 7

Problems Posed by Relational Databases ��� 7

RDMSs and Big Data�� 7

The Rise of NoSQL Databases ��� 10

Key-Value Databases ��� 10

Document Databases �� 10

Column Family Databases ��� 11

Graph Databases ��� 11

Special Capabilities of Cassandra ��� 12

Distributed and Decentralized Database ��� 12

Log-Structured Storage Engine ��� 13

About the Author ..xix

About the Technical Reviewer ..xxi

Acknowledgments ..xxiii

www.allitebooks.com

http://www.allitebooks.org

vi

Locally Managed Storage �� 13

Ability to Handle Multiple Types of Data �� 13

Row-Oriented �� 14

Consistency, ACID Requirements, the CAP Theorem, and BASE �� 14

The ACID Requirements ��� 14

The CAP Theorem �� 15

Cassandra’s Drawbacks �� 18

Problems with Querying Data �� 18

Problems with Writing Data ��� 19

Who Should Use Cassandra? ��� 19

Cassandra Optimizations �� 20

Data Caches �� 20

Compression �� 20

Bloom Filters ��� 21

Compaction ��� 21

Is Cassandra Appropriate for You? �� 21

Cassandra Data Modeling Essentials �� 22

Structure Your Data by the Queries ��� 23

Avoid Updates and Deletes �� 23

Evenly Distribute Your Data ��� 23

Avoid Querying Across Partitions��� 23

What a Cassandra Administrator Ought to Know �� 23

Cassandra Tools ��� 24

Acquiring Parallel Remote Tools �� 24

Understanding Failure Scenarios in a Cassandra Database �� 25

Monitoring and Alerting ��� 25

Tuning the Java Virtual Machine �� 25

A Quick Introduction to the Architecture of Cassandra ��� 26

Understanding Cassandra-Specific Concepts ��� 26

How Cassandra Stores Its Data ��� 31

An Overview of Cassandra’s Data Model ��� 31

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

vii

DataStax and Cassandra ��� 32

DataStax Enterprise ��� 32

DataStax Development Tools ��� 33

Summary��� 34

Chapter 2: Installing Cassandra and Getting Started with CQL Shell 35

Installing Apache Cassandra ��� 35

Planning the Installation �� 35

Prerequisites for Installing Cassandra ��� 36

Installing Cassandra �� 38

Configuring Cassandra �� 42

Location of the cassandra�yaml File �� 43

Minimal Configuration Properties You Must Set �� 43

Configuring the Firewall �� 45

Exploring the CQL Shell ��� 45

Starting the CQL Shell ��� 46

Time Zones in cqlsh ��� 46

Getting Help in the CQL Shell ��� 46

Command Line CQL Shell Options ��� 48

Cassandra Installation Directories �� 52

The bin Directory ��� 53

The tools Directory �� 54

The lib Directory �� 54

The conf Directory ��� 54

The Javadoc Directory ��� 55

Starting and Stopping Cassandra ��� 55

Starting Cassandra �� 55

Checking Cassandra’s Status �� 57

Starting and Stopping with the service Command �� 61

Clearing Cassandra Data ��� 62

Verifying the Cassandra Version �� 63

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

viii

Configuring cqlsh �� 63

Configuring Through the cqlshrc Config File ��� 63

Configuring by Specifying Options at the Command Line ��� 64

Finding the Versions �� 64

Cqlsh Options �� 64

Putting Cassandra Through Its Paces ��� 65

Connecting to the CQL Shell �� 65

Creating a Keyspace �� 66

Creating a Table ��� 66

Inserting Test Data ��� 67

Querying the Table ��� 67

Getting the History of Your Commands �� 67

Summary��� 68

Chapter 3: Deploying a Cassandra Cluster ... 69

Planning a Cluster Deployment ��� 69

Using cassandra-stress for Planning a Production Deployment ��� 69

Choosing Memory �� 70

Choosing CPUs �� 70

Network Considerations �� 70

Choosing Storage �� 70

Choosing Production Settings for a Linux Server �� 73

Installing PDSH �� 77

Initializing a Cassandra Multi-Node Cluster (Single and Multiple Datacenters) �������������������������� 78

Prerequisites ��� 79

Configuring the Cluster �� 81

Initializing the Cluster with Multiple Datacenters �� 84

Starting and Stopping the Multi-Node Cluster ��� 84

The Startup Process of the Nodes in a Cluster �� 86

Common Errors When Starting Out �� 87

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

ix

Running Cassandra on Amazon EC2 ��� 90

Using Trusted AMIs �� 90

Setting Up the AWS Instances for Cassandra �� 91

Installing Cassandra �� 93

Configuring the Cassandra Cluster �� 95

Summary��� 96

Part II: The Data Model, Cluster Architecture, and the Cassandra
Query Language .. 97

Chapter 4: Cassandra Data Modeling, and the Reading and Writing of Data 99

Cassandra and Relational Databases: Major Differences ��� 100

Data-Driven vs� Query-Driven Data Modeling �� 100

Table Linkages and Referential Integrity ��� 101

Sort Differences ��� 101

Duplicating Data �� 101

What Is Data Modeling? �� 102

Analyzing Your Requirements �� 102

Conceptual Modeling: Identifying the Entities and the Relationships Among Them ������������ 103

Reviewing the Queries You Want to Use �� 103

Logical Modeling ��� 105

Physical Data Modeling ��� 105

Cassandra Data Modeling Rules ��� 105

The Two Basic Rules �� 106

Modeling Around Queries and Not Around Relations ��� 107

Performance Limitations of Cassandra ��� 108

Write Limitations ��� 108

Read Limitations �� 109

The Concept of Eventual Consistency ��� 110

Consistency Conflict Resolution ��� 111

Repairing Data ��� 111

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

x

How Cassandra Writes Data �� 112

Writing to the Commit Log to Protect the Changes ��� 112

Writing to the Memtable for Durability �� 114

Writing to the SSTables for Durable Storage ��� 117

The Write Request Flow ��� 119

Reading Data ��� 125

The Cassandra Read Path�� 127

How Write Patterns Affect Reads ��� 128

Cassandra Transactions and the ACID Properties �� 129

Atomicity ��� 129

Isolation ��� 130

Durability ��� 130

Handling Consistency �� 130

Write Consistency �� 131

Calculating the Quorum ��� 135

Read Consistency �� 136

Configuring the Consistency Level �� 139

Three Types of Read Requests �� 140

Testing the Performance of Consistency Levels �� 142

Ensuring Atomicity with Batch Operations �� 143

Configuring Batch Operations �� 144

Batch Operations in Single and Multiple Partitions ��� 144

When Batch Operations Are Good �� 145

Lightweight Transactions �� 146

Performing Lightweight Transactions �� 146

How Lightweight Transactions Work ��� 147

Caution When Using Lightweight Transactions �� 147

Summary��� 148

Chapter 5: Cassandra Architecture... 149

Basic Cluster Terminology ��� 149

Replica Placement Strategy �� 152

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

xi

How Cassandra Stores Data ��� 152

Gossip and How It Helps Nodes Communicate ��� 154

Configuring Gossip Settings �� 155

Seed Nodes and Gossip ��� 156

Failure Detection and Recovery ��� 157

Repairing a Node �� 158

Hinted Handoff ��� 158

Read Repair ��� 162

Rapid Read Protection ��� 163

Anti-Entropy Repair ��� 166

Performing a Manual (Anti-Entropy) Repair ��� 167

Data Distribution and Replication ��� 172

Virtual Nodes and Data Ownership �� 173

How Data Is Distributed Across a Cluster �� 174

How to Distribute Token Ranges �� 177

Choosing a Replication Strategy �� 179

Partitioners and Partitioning Strategies �� 182

Snitches ��� 184

Summary��� 188

Chapter 6: Introduction to the Cassandra Query Language 189

Working with Keyspaces ��� 189

Managing Keyspaces��� 190

Creating a Keyspace ��� 190

Creating a Keyspace in a Cluster with Multiple Datacenters��� 193

The Need for Running the nodetool repair Command ��� 195

Preventing a Keyspace from Sending Replicas to Some Data Centers ������������������������������� 196

Repairing a Keyspace �� 197

Using the Keyspace Qualifier ��� 197

Removing a Keyspace ��� 198

System Keyspaces �� 198

Table of ConTenTs

xii

Creating a Table �� 200

Column_definition ��� 202

Primary Keys, Partition Keys, and Clustering Columns�� 202

The Partition Key ��� 203

Creating a Table with a Simple Primary Key ��� 205

Viewing a Table’s Configured Options ��� 213

Dropping and Truncating Tables �� 214

Deleting Rows and Columns from a Table ��� 216

Indexing in a Cassandra Database �� 221

When to Use an Index �� 222

When Not to Use a Secondary Index ��� 222

Creating a Secondary Index��� 224

Materialized Views in Cassandra �� 225

Creating a Materialized View ��� 225

Dropping a Materialized View �� 226

Denormalizing with Materialized Views �� 226

Updating Materialized Views ��� 227

Querying Data with the SELECT Statement ��� 227

The Selection Clause ��� 228

The WHERE Clause �� 229

Creating a Secondary Index��� 230

Drawbacks of Secondary Indexes ��� 230

SASI: New Implementation of Secondary Indexes ��� 231

Writing a Conditional Statement �� 231

Inserting Data with the INSERT Statement ��� 237

Modifying Data with the UPDATE Statement ��� 238

Working with Advanced Data Types �� 240

Collections ��� 240

Tuples �� 243

User-Defined Types �� 244

User-Defined Functions and User-Defined Aggregates ��� 245

Table of ConTenTs

xiii

User-Defined Aggregate Functions �� 247

Built-in Functions and Aggregates �� 247

Summary��� 247

Chapter 7: Cassandra on Docker, Apache Spark, and the Cassandra Cluster
Manager .. 249

Cassandra and Docker �� 250

Docker: A Quick Introduction ��� 250

Running a Cassandra Cluster on Docker ��� 254

Setting Cassandra Environment Variables for Docker ��� 257

Creating a Cassandra Cluster Using Docker-Compose and
Behavior-Driven Development ��� 259

Using the Cassandra Cluster Manager to Spin Up Clusters �� 266

Installing CCM �� 267

Creating a Cassandra Cluster with CCM �� 268

Working with CCM ��� 270

Running Apache Spark with Cassandra �� 271

Installing the Prerequisites �� 271

Installing Apache Spark ��� 272

Configuring the Spark Cluster ��� 273

Starting Up the Spark Cluster �� 273

Connecting to Cassandra from a Spark Cluster ��� 275

Working with Cassandra from Spark ��� 277

Cassandra and the SMACK Stack: A Growing Trend �� 279

Summary��� 281

Chapter 8: Backup, Recovery, and Moving Data ... 283

Backing Up Data�� 283

Managing Snapshots ��� 285

Performing Incremental Backups �� 287

Restoring Data with Various Restore Methods�� 288

Restoring Data from a Snapshot ��� 288

Using sstableloader to Restore Snapshots �� 293

Table of ConTenTs

xiv

The Node Restart Method Procedure �� 293

Commitlog Archiving and Point-in-Time Recovery �� 295

Loading Bulk Data into Cassandra �� 296

Using the COPY Command to Import and Export Data ��� 296

Copying Data from a Cassandra Table ��� 297

Copying Data to a Cassandra Table ��� 297

Running sstableloader to Perform Bulk Loading ��� 298

Summary��� 300

Part III: Maintaining, Monitoring, Tuning, and Securing
Apache Cassandra ... 301

Chapter 9: Maintaining Cassandra ... 303

Common Cluster Maintenance Tasks �� 303

Repairing Data (nodetool repair) ��� 303

Rebuilding Indexes �� 307

Refreshing Size Estimates of Tables ��� 307

Key Nodetool Maintenance Commands �� 307

Decommissioning Nodes (nodetool decommission) �� 307

Assassinating a Node (nodetool assassinate) ��� 312

Node Management �� 314

Keeping a Node from Joining the Cluster �� 314

Adding a Node to a Data Center �� 316

Replacing a Running Node �� 317

Removing a Node from a Cluster ��� 318

Replacing a Dead Node ��� 319

Moving a Node to a Different Rack �� 320

Decommissioning an Entire Datacenter �� 320

Switching Snitches ��� 321

No Topology Change �� 322

With Topology Changes ��� 323

Table of ConTenTs

xv

Managing Gossip �� 323

Getting Information About Gossip �� 324

Flushing and Draining Data: The Differences �� 326

Draining a Node ��� 326

Flushing Data from Memtables ��� 327

Maintaining Datacenters ��� 327

Adding a Datacenter to a Cluster ��� 327

Decommissioning a Datacenter ��� 330

Handling Data Corruption �� 331

Checking for Data Corruption �� 331

Fixing Corrupted Data �� 332

Managing Handoff and Hints��� 333

Purging the Gossip State on a Node ��� 334

Summary��� 335

Chapter 10: Monitoring, Logging, and Metrics ... 337

The nodetool proxyhistograms Command �� 337

Getting Table-Level Statistics �� 338

Getting Network Information from the Host �� 340

The nodetool tablehistograms Command �� 340

Checking the Cluster Health�� 341

The nodetool status Command �� 342

The nodetool info Command �� 342

Using Thread Pools Statistics (nodetool tpstats) ��� 343

Using JMX Clients �� 346

JConsole �� 347

Logging ��� 351

Setting the Logging Locations ��� 352

Configuring Logging Through Logback �� 353

The Logback Logging Framework ��� 353

Using Nodetool to Set the Logging Level for a Service �� 359

Table of ConTenTs

xvi

Monitoring Cassandra with Nagios ��� 361

Installing the LAMP Stack and Addressing Other Prerequisites �� 361

Installing Nagios �� 363

Installing the Nagios Plugins ��� 364

Installing NRPE �� 365

Configuring Nagios and Apache �� 366

Configuring Apache ��� 366

Adding the Cassandra Cluster Hosts for Monitoring �� 367

Summary��� 370

Chapter 11: Tuning Cassandra Performance .. 371

Using Tracing to Analyze Performance �� 371

Managing Tracing �� 374

How to Trace Write and Read Requests ��� 376

Tuning Bloom Filters ��� 379

Configuring Bloom Filters �� 379

Regenerating Bloom Filters ��� 379

Caching Data ��� 380

Types of Data Caches �� 381

Where Cassandra Stores the Cached Data �� 382

Configuring Caching �� 382

Global Caching Parameters ��� 383

Using the Counter Cache ��� 385

Monitoring Caching ��� 386

Tracing Database Operations to Optimize Caching �� 387

Stress Testing Cassandra with cassandra-stress �� 388

Running cassandra-stress ��� 388

A cassandra-stress Example ��� 390

Setting the Replication, Compaction, and Compression Options ��� 394

Running cassandra-stress with a YAML-Based Profile ��� 395

Table of ConTenTs

xvii

Configuring Compaction Strategies �� 397

Compaction Strategies �� 398

Enabling and Disabling Compaction �� 404

Configuring Global Compaction Properties �� 405

Setting the Compaction Strategy ��� 407

Logging the Compaction Activity ��� 408

Testing the Efficacy of a Compaction Strategy �� 409

Compressing Data to Save Storage Space �� 411

Configuring Compression �� 411

When Cassandra Compresses Data ��� 414

Modifying the Compression Algorithm �� 414

Testing the Efficacy of Compression ��� 415

Turning Off Compression ��� 415

Improving Write Performance with Memtable Thresholds �� 416

Tuning the JVM ��� 417

Java Garbage Collection �� 418

Selecting the Right Garbage Collector ��� 418

Using the nodetool proxyhistograms and the tablehistograms Commands ������������������������ 422

Summary��� 422

Chapter 12: Securing Cassandra .. 423

Configuring Authentication�� 423

Creating Roles ��� 424

Configuring Authentication �� 425

Creating Roles ��� 427

Handling the Superuser Account ��� 430

Configuring Authorization: Granting Privileges on Resources ��� 430

Cassandra’s Access Control Matrix ��� 433

Configuring Role-Backed Access Control �� 434

Creating Roles for Login Accounts ��� 434

Granting Permissions to Roles �� 435

Table of ConTenTs

xviii

Object Permissions in Cassandra �� 436

Granting Permissions on Objects to Roles ��� 436

Configuring Firewall Ports for Access ��� 439

Encrypting Cassandra with SSL �� 439

Installing the Java Cryptography Extension Files �� 440

Preparing the Server Certificates �� 441

Enabling Inter-Node Encryption ��� 448

Enabling Client Encryption��� 449

JMX Authentication and Authorization �� 451

Enabling JMX Authentication and Authorization �� 451

Using cqlsh with Authentication �� 453

Summary��� 454

Index ... 455

Table of ConTenTs

xix

About the Author

Sam R. Alapati is a Data Administrator at Solera Holdings,

in Westlake, Texas, just outside Dallas. Before that, he was

the Principal Big Data Administrator at Sabre, in Southlake,

Texas. He has been working in the big data area for the

past few years, after a long stint as an Oracle database

administrator. Sam works with Apache Hadoop and Apache

Spark, and now with Cassandra as part of his efforts to learn

the role of NoSQL and other modern databases in the big

data world. He has published several books on various

areas of Oracle database administration, as well as a comprehensive handbook on

administering Apache Hadoop.

xxi

About the Technical Reviewer

Carlos Rolo is a Datastax Certified Cassandra Architect,

Cassandra MVP, and has deep expertise with distributed

architecture technologies. He has become known and

trusted by his peers for his ability to understand complex

problems and for working well under pressure. He prides

himself on being a tenacious problem solver while

remaining a calm and positive presence on any team. In his

spare time, he can be found playing water polo, enjoying his

local community, or playing with his family and dog.

xxiii

Acknowledgments
I wish to thank my good friend and longtime editor for many of my books, Jonathan

Gennick. Jonathan encouraged me to keep going and supported my work when the going

got tough during the writing of this book. Thank you, Jonathan, for your trust in me!

Carlos Rolo has been magnificent in many ways as the Technical Editor of this

book. Carlos is well known for his mastery of the Cassandra database. I’ve benefited

significantly from his painstaking technical reviews, as well as from his suggestions to

clarify or improve several tricky technical concepts.

Jill Balzano, the Coordinating Editor, has been instrumental in ensuring that I stayed

on target, with her usual combination of grace and efficiency. Jill’s enormous patience

and kindness helped make the writing and editing process a pleasurable one.

Amrita Stanley, Senior Executive Project Manager at SPi Content Solutions – SPi Global,

was extremely helpful in making sure that things stayed on track. Thank you, Amrita,

for being so very attentive to everything and helping me out with my requests.

Everything I do scholastically is due to my father’s encouragement and nurturing.

I thank my dear dad, the late Dr. Appa Rao, for his love and affection. I wish to thank

my mom, Swarna Kumari, and my brothers, Hari Hara Prasad and Siva Sankara Prasad.

I owe a round of thanks to all of my in-laws and the children of my brothers: Aruna,

Vanaja, Teja, Ashwin, Aparna, and Soumya. I appreciate and thank my wife’s indirect

contribution to this book. I also am grateful for the support and encouragement of my

twins, Nina and Nicholas, who brighten my life every single day!

—Sam R. Alapati

Introduction, Installation,
and Configuration

PART I

3
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_1

CHAPTER 1

Apache Cassandra:
An Introduction
Apache Cassandra is quite different from a typical relational database management

system (RDBMS) such as MySQL or the Oracle database. This chapter sets the stage for

the need for NoSQL databases in general, and for Cassandra.

In addition, this chapter explains the distinctive features of a Cassandra database

and introduces several key concepts and terms that are unique to Cassandra.

You will learn about the key concepts that make Cassandra special. The chapter also

introduces Cassandra’s data modeling and explains key Cassandra terminology.

This book is about how to administer Cassandra, so I also explain the salient features

of Cassandra administration, the tools that you’ll use to manage Cassandra clusters, and

the essentials of Cassandra database administration.

 What Is Cassandra?
Apache Cassandra is a distributed NoSQL database system based on Amazon’s Dynamo

and Google’s Bigtable. Cassandra is a fast, distributed database that’s highly fault tolerant

as well as scalable. It provides high availability and linear scalability, twin goals that

traditional relational databases cannot satisfy when handling very large data sets.

Cloud applications require highly scalable back-end databases that are capable of

distributed, massive workloads across clusters of servers. These applications require very

fast access to data to satisfy interactive usage of the data stores by various applications,

as well as ad-hoc queries. Cassandra is expressly designed for high-volume, low-latency

cloud applications.

4

Facebook developed Cassandra for searching inboxes, and the project was open

sourced in July 2008. The project was accepted into the Apache Incubator in March 2009,

and it was made an Apache top-level project in February 2010. The name Cassandra

derives from the ancient Greet prophet Cassandra.

In the following sections, I briefly describe the key features of Cassandra, which are

• Open source nature

• Fault tolerance

• High performance

• Distributed database architecture

• High scalability

• Elastic nature

• Ability to handle multiple types of data

 Open Source Database
Cassandra isn’t a commercial offering. It’s a purely open source product, which means

you not only don’t pay for it, but you can also customize it for your needs. However,

if you’re working with production Cassandra clusters, it’s important for you to be

aware of DataStax, the “Cassandra company.” DataStax is a company run by the main

creators of the Cassandra database. DataStax offers commercial products such as the

Cassandra DevCenter and Cassandra Enterprise to make it easy for you to set up and run

Cassandra clusters. DataStax also offers several free courses in Cassandra data modeling,

development, and operations, and is the leading evangelist for Cassandra through its

documentation, courses, and conferences.

 Fault Tolerance
Cassandra automatically replicates data to multiple nodes. This is in stark contrast

to traditional relational databases, which require you to set up complex replication

architectures to propagate data to multiple nodes for fault tolerance. For each update,

you can choose either synchronous or asynchronous replication.

Chapter 1 apaChe Cassandra: an IntroduCtIon

5

Since the database runs on a bunch of nodes that are similar, there’s no single point

of failure in a Cassandra cluster. Cassandra-based applications will survive the loss of

even an entire Casandra datacenter (defined differently from the traditional data center

of an organization), as you’ll learn later in this book.

 High Performance
Cassandra is a high performing database, and benchmarks have shown that its

performance outstrips that of other NoSQL databases. In a major comprehensive NoSQL

benchmark performed in 2012, Cassandra achieved the highest throughput for the

maximum number of nodes in multiple experiments.

Cassandra provides a very high throughput, especially during writes. Predictable

high performance means that you can meet strict business SLAs that require low latency.

Cassandra continues to deliver high performance despite an increase in the

workload, or the addition of a large number of nodes to a cluster, due to the linear

scalability of the database.

 Distributed Configuration and High Resiliency
Cassandra installations use multiple nodes and there’s no single point of failure. There is no

master-slave relationship among the nodes; all nodes in a Cassandra cluster are identical.

Cassandra automatically replicates data to multiple nodes. You can locate the nodes

in multiple racks, or different availability zones if you’re using a cloud setup like Amazon

Web Services. Spreading your data across multiple geographical regions will ensure that

the data is always available.

Cassandra uses the concept of a datacenter, which is a set of nodes. A datacenter can

be logical or physical, so you could have datacenters spread across the world. This feature,

along with the replication of data, provides a very high degree of availability, as Cassandra

can survive the loss of not only one or more nodes, but also that of an entire data center.

 Flexibility
Cassandra uses an extremely flexible data model. A table can have a varying number

of columns among its rows. Users can also change the schema at runtime. Cassandra’s

tunable consistency feature allows you to tune consistency at the read or write operation

level. You can tune replication and read/write consistency guarantees based on whether

your primary goal is reliability or speed.

Chapter 1 apaChe Cassandra: an IntroduCtIon

6

 Use of Commodity Servers
Unlike relational databases, most of which require highly robust and expensive

hardware, Cassandra can run on commodity hardware. Commodity hardware is far

cheaper than the high-grade servers that host databases such as Oracle. Although more

prone to failures, the commodity servers work very well since Cassandra’s architecture

doesn’t involve a single point of failure.

 Ease of Management
Cassandra is easy to manage due to its simple architecture and the lack of too many

moving parts. Oracle and other relational databases have many features, which leads to

database bloat, which could contribute to the instability of the database.

Administering a Cassandra database, especially through a framework such as

DataStax, is simple compared to managing a complex database such as an Oracle

database. Backing up and recovering the database, tuning SQL queries, and managing

replication are all complex tasks in an Oracle database. Cassandra, by keeping things

simple, makes it easy for you to get up to speed.

A key thing to remember when you scale a Cassandra cluster by adding more nodes

is that you don’t need to add more members to the team that manages Cassandra. The

same team that manages a 20-node cluster can handle a 1,000-node cluster. Therefore,

the cost of management goes down as you scale a Cassandra database.

 Highly Scalable
Cassandra is highly scalable. To analyze more data, you just add more nodes to your

deployment. Cassandra offers linear scalability, which means that if you need to handle

a threefold increase in writes, you increase your node count by three.

You can scale Cassandra easily, without any downtime or interruption of ongoing

work.

Large Cassandra production deployments include Netflix, with over 2,500 nodes and

420TB of data, and Apple, with over 75,000 nodes and over 100PB of data.

One of the keys to Cassandra’s high performance is that it is horizontally scalable.

Unlike vertical scaling strategies that depend on hiking a server’s processing, storage,

and memory capabilities, horizontal scaling adds more nodes to a cluster.

Chapter 1 apaChe Cassandra: an IntroduCtIon

7

As you add new machines to a Cassandra cluster, both read and write throughput

increase linearly; that is, you can double your throughput, for example, by doubling

the number of machines in the cluster. In addition, you don’t pay the cost of service

interruptions because the database remains available and your applications continue to

run unimpeded during the expansion of the cluster’s size.

 It’s Good Old SQL!
Finally, the Cassandra Query Language (CQL) is similar to the SQL language

constructs most of us are already familiar with, making it quite easy for developers and

administrators to get up to par with CQL.

The easiest way to interact with a Cassandra database is through the CQL shell,

invoked by the utility cqlsh. CQL uses a syntax similar to regular SQL. You can perform

data manipulation (DML) and data definition language (DDL) tasks through cqlsh.

 Problems Posed by Relational Databases
You run into various problems with relational databases when you attempt to scale

to very large data volumes. The notion of high availability that’s offered by relational

databases is also questionable at times.

When you are analyzing data using Linux utilities like sed and awk or simple Python

scripts, most of the time you don’t even need a database. More often, you’ll be dealing

with medium data where you use a database such as Mysql, Oracle, PostgreSQL, or SQL

Server. These databases offer the well-known ACID guarantees.

As your data sizes grow, you can vertically grow these relational databases by adding

CPUs that are more powerful and more RAM, but there’s a finite limit to scalability with

these relational databases, and the expense gets out of hand because the databases

aren’t distributed.

 RDMSs and Big Data
Relational databases often employ replication in a master-slave format to solve the

problem of read-heavy workloads. When you add replication to a relational database

such as MySQL, the ACID guarantees become hard to obtain. When you replicate data in

MYSQL, for example, there is usually a replication lag between the master and the slave.

If a client reads from the slave before the slave is replicated with the data, the guarantee

of consistency (the C in ACID) is lost.

Chapter 1 apaChe Cassandra: an IntroduCtIon

8

 Performance Problems Due to the Third Normal Form

In relational databases, it’s common to place data in the well-known third normal form.

The third normal form has several consequences for query performance, making it hard

for you to scale. Queries are increasingly complex, with numerous joins and resource-

hungry grouping operations such as ORDER BY and UNION.

The queries are adhoc and users want immediate results. If your datasets are larger

than the memory you allocate to the database, results are going to be slow due to the

heavy amount of disk seeks.

One way out of this performance predicament is to create multiple denormalized

tables at read time, so the reads don’t involve too many expensive joins. However,

this means you’re going to end up with duplicate sets of data, which violates the third

normal form.

 Problems Due to Sharding

Sharding is where, instead of having one database, you split up the data among multiple

databases.

Sharding means you denormalize everything and that you can’t do any more

aggregations or joins. Your data is spread over numerous machines, and aggregations

require you to touch every shard. Adding the shards requires you to move the data.

Since sharding inhibits performance, you’re forced to denormalize, meaning you keep

multiple copies of key data that you query often, such as one copy based on Customer Id

and the other by State.

Schema changes are hard when you have multiple shards, since you must propagate

the changes to all the shards. In addition, if you want to double or triple the size of your

database, you’ll need to re-shard all the data.

 The Myth of High Availability

High availability is a major benefit that users of replicated databases often seek. High

availability isn’t simple, however. High availability involves numerous moving parts

and imposes a heavy overhead. Despite all the costs, high availability is very hard to

achieve because master-slave environments do suffer frequent downtimes caused by

configuration changes, drive and power supply failures, and so on.

Chapter 1 apaChe Cassandra: an IntroduCtIon

9

In addition to the unplanned downtime, you should also deal with planned

downtimes due to OS patches and upgrades. Failover processes, whether they’re

automatic or manual, aren’t error free, and often involve a delay in bringing up the slave

or standby database, resulting in downtime.

Managing relational databases such as MySQL running over multiple data

centers isn’t easy; it requires constant attention from a team of highly skilled database

professionals and Linux engineers.

Cassandra simplifies your database architecture by offering the following features:

• Peer-to-Peer Architecture: Cassandra uses a peer-to-peer architecture,

with no concept of master and slave instances. Doing away with the

master/slave concept means that there are fewer moving parts. This

strategy leads to a simple architecture where all nodes are equal.

• No Failovers: The peer-to-peer architecture means that there’s no

concept of a failover. The database doesn’t have to deal with complex

state maintenance operations such as the election of a leader.

• Reliability: The database fully expects failure, and failure of individual

components in the architecture is never going to be a showstopper.

Your users are completely oblivious to the fact that one or more

nodes, or even an entire data center, have crashed or are unavailable

for other reasons.

• Data Locality: Instead of gathering data that’s scattered over a large

number of nodes, Cassandra aims for data locality.

• Lower Cost: Cassandra reduces the cost of scaling (scaling with a

traditional relational database can be expensive). Since Cassandra

runs on commodity servers, your cost is much lower than scaling up

a relational database with powerful servers. Instead of purchasing a

few servers that cost hundreds of thousands of dollars, you acquire

hundreds of servers that cost a few thousand bucks each.

Cassandra is a leading member of the NoSQL database constellation, so it’s a good

idea to review the need for NOSQL databases, the various types of NoSQL databases, and

the types of problems they solve.

Chapter 1 apaChe Cassandra: an IntroduCtIon

10

 The Rise of NoSQL Databases
Just as relational databases arose to overcome the problems of data anomalies and the

difficulty of reusing the same database for new applications, NoSQL databases have

reasons for their emergence as a major player in the big data world. The failure of the

relational model to scale so they can meet the growing demands for huge volumes of

read and write operations led to the emergence of the NoSQL databases.

NoSQL databases can run on a single server or on multiple servers; they are referred

to as distributed databases when they run on multiple servers. Most NoSQL databases

handle large data sets and thus are distributed databases.

Unlike in a relational database design, where the model is everything and the

structure of the entities and the relationships among them drive the design of the

database, performance is the mantra in a NoSQL database. You’ll still have entities

and relationships, but preservation of the relationships isn’t sacrosanct; the goal is

performance.

There are several types of NoSQL databases, each geared to solving a different type of

problem. The following sections briefly describe the main types of NoSQL databases.

 Key-Value Databases
Key-value databases employ a simple data model based on sets of keys and values. The

keys are the identifiers with which you look up data, and the values are the data that is

associated with the keys.

The simple model employed by key-value databases means that there are no tables

and related entities such as columns and constraints. These databases don’t support the

use of SQL to query the database.

Amazon’s DynamoDB, Riak, Oracle BerkeleyDB, as well as well as caching databases

such as Redis and MemcacheD are all key-value databases.

 Document Databases
Document databases store documents, which are collections of data items that you store

in a flexible structure. A document is simply a data structure that the database stores

as strings or a binary representation of strings. Documents in this context are semi-

structured entities in a standard format such as JavaScript Object Notation (JSON) or

Extensible Markup Language (XML).

Chapter 1 apaChe Cassandra: an IntroduCtIon

www.allitebooks.com

http://www.allitebooks.org

11

Document databases can store multiple attributes in a single document instead of

storing each attribute of an entity with a separate key, as in a key-value database.

As with key-value databases, document databases use identifiers, but their values,

which the database stores as documents, are normally more complex than the simple

keys in a key-value database.

You don’t need to define a schema before you add data to a document database.

Adding a document will create the necessary data structures to support the document.

Since there’s no fixed schema, developers have more flexibility with these databases as

compared to relational databases.

Popular document databases include MongoDB, CouchDB, and CouchBase.

 Column Family Databases
Column family databases borrow some of the characteristics of relational databases by

organizing data into collections of columns. However, they trade off some of the essential

features of relational databases, such as the ability to join tables, for the sake of enhanced

performance.

The rows in a column family database can have different columns. When you’re

dealing with a large number of columns, you can group columns into sets of related

columns. These collections of related columns are called column families. It isn’t

unusual for a column family database to contain millions of columns.

As with a document database, a column family database doesn’t require you to have

a predefined, fixed schema.

Typically, a column family database is denormalized, and you find all information

about an object in a single, wide row. A row in Cassandra can have as many as two billion

columns. The query languages you use to work with column family databases are similar

to SQL, and they use SQL-like statements such as SELECT, UPDATE, and INSERT.

Apache Cassandra and Apache Hbase (usually bundled with Hadoop distributions)

are two well-known column family databases.

 Graph Databases
A graph database is a specialized NoSQL database that uses structures called nodes

and relationships (called vertices and edges in formal terms) instead of modeling data

with columns and rows. Graph databases are designed for modeling objects and the

relationships among the objects.

Chapter 1 apaChe Cassandra: an IntroduCtIon

12

Graph databases have nothing to do with the visualization aids you normally

refer to as a graph (or chart). They derive their name from graph theory, a branch of

mathematics that studies objects by representing them as vertices and the relationships

among them as edges.

Graph databases model the adjacency between objects. A node in the graph

database contains pointers to objects that are adjacent to it. The pointers enable fast

operations that require passing through the paths in a graph.

A node in a graph database is an object with an identifier and a set of attributes. A

relationship between two nodes is a link that contains attributes about that relationship.

In models that involve multiple paths between nodes, graph databases enable

you to query data efficiently. Querying this type of data is much harder using a tabular

representation of data since those formats require recursive SQL constructs such as

Oracle’s CONNECT BY clause to find the paths.

Graph databases can represent a wide range of entities in the real world. For

example, a city can be a node, and the information about the distance between

the cities and the travel times between the cities can be stored in the relationships

between the cities.

Neo4j is a popular graph database.

 Special Capabilities of Cassandra
In the following sections, I highlight some of the special capabilities of Cassandra, which

set it apart from other NoSQL databases. By no means are these capabilities exclusive to

Cassandra, as some of the alternatives do offer some of these capabilities, but no other

database comes close in terms of offering all of these features.

 Distributed and Decentralized Database
Cassandra is fully distributed. Each machine in a Cassandra cluster takes care of an

equal amount of activity in terms of data processing. In a big data framework such as

Hadoop, things are quite different. There’s a master node called the NameNode, which

manages the reading and writing of all data. Similarly, MongoDB has its mongos, which

require special treatment when compared to regular nodes, since they could potentially

be a bottleneck.

Chapter 1 apaChe Cassandra: an IntroduCtIon

13

Installation and troubleshooting are much easier in a Cassandra cluster when

compared with other clusters, since all nodes are identical in terms of their functions.

Cassandra’s peer-to-peer strategy means that adding capacity is a trivial exercise.

You can scale a database such as MySQL by setting up some nodes as master nodes

and the other nodes as slaves. Cassandra is designed as a decentralized database,

meaning that all nodes are the same; there’s no concept of master/slave nodes. This also

means that there is no single point of failure since there are no special hosts, and the

cluster continues operations regardless of node failures.

 Log-Structured Storage Engine
Cassandra uses an efficient log–structured engine that turns updates into sequential I/O.

Cassandra’s storage engine doesn’t ever require or read existing data. It only appends

updated data, thus making updates very fast.

 Locally Managed Storage
Cassandra manages all its storage locally. This may seem trivial at first, but when

compared to NoSQL databases such as Hbase, which rely on an underlying storage

system such as HDFS (Hadoop Distributed File System) for replication, Cassandra offers

many more capabilities.

You can use the locally managed storage strategy to place Cassandra’s commitlog on

a separate disk. You can also mix SSDs and HDDs in the same cluster.

You can reduce the I/O based on access patterns to reduce the cost of using

extremely fast storage. DataStax offers DES tiered storage, which allows you to convert

the reduced I/O into cost savings on the storage side.

DSE can transparently move aged data from the fast SSD tier to a slower storage tier.

Both time series data and social interaction data are good examples of the types of data

that can benefit from DSE tiered storage.

 Ability to Handle Multiple Types of Data
Cassandra handles various types of data, such as structured, semi-structured, and

unstructured data.

Chapter 1 apaChe Cassandra: an IntroduCtIon

14

 Row-Oriented
Although Cassandra falls under the column-oriented database type, which stores its data

storage in columns, it actually is a partitioned data store, with “partitioned” referring

to the fact that the database uses unique keys for each row to distribute the rows across

multiple nodes. It stores data in sparse hash tables, with “sparse” alluding to the fact that

all rows may not have the same columns.

One of the most interesting and notable features of Cassandra is tunable consistency,

and I dedicate an entire section to a discussion of database consistency since it’s critical

that you understand this topic well.

 Consistency, ACID Requirements, the CAP Theorem,
and BASE
Consistency is a database property that ensures that a read always retrieves the most

up- to- date value. All nodes that have the same data should have a consistent state of a write.

Unlike relational databases, which offer strict consistency to ensure transactions are

always correct, NoSQL databases offer something called eventual consistency.

In NOSQL databases, there’s a tradeoff between consistency and availability.

Cassandra trades some consistency to provide high availability. To be more accurate,

one should say that Cassandra offers tunable consistency, which means you can

choose the level of consistency that’s best for you and compromise accordingly on the

availability front.

To understand tunable consistency, a key feature of Cassandra, it’s useful to delve

into the basics of the traditional ACID requirements for relational databases, Brewer’s

CAP theorem, and the BASE properties.

 The ACID Requirements
As with other document databases and other databases that fall under the broad

umbrella of NoSQL databases, Cassandra doesn’t support the well-known ACID

properties offered by relational databases. ACID properties are the hallmark of all

modern transactional databases (such as MySQL and Oracle) and refer to the following

set of principles:

Chapter 1 apaChe Cassandra: an IntroduCtIon

15

• Atomicity: This is the all-or-none principle that requires that if even

one element of a transaction fails, the entire transaction will fail. The

transaction succeeds only if the database successfully performs all its tasks.

• Consistency: This property ensures that the database fully completes

all transactions, by requiring that the database must be in a

consistent state both at the beginning and at the end of a transaction.

• Isolation: Each transaction should be independent of the other

transactions. No transaction must have has access to any other

transaction that is in an unfinished state.

• Durability: Once a transaction completes, it’s “permanent.” That is, the

database records the transaction in persistent storage, ensuring that the

transaction survives a system breakdown such as a power or disk failure.

While the ACID requirements served traditional relational databases just fine for

many years, the popularity of non-relational data such as unstructured data, non-

relational data, and the proliferation of distributed computing systems led to new views

about the required transaction properties that databases must satisfy.

 The CAP Theorem
The Consistency, Availability, and Partition Tolerance (CAP) theorem sought to refine

the requirements that you need to meet for implementing applications in modern

distributed computing systems. The CAP theorem stands for the following principles:

• Consistency: This is the same as the ACID consistency property.

Satisfying this requirement means that all clients of a data store get

responses that “make sense.” If Client A writes 1 followed by 2 to node

X, a different client, Client B, can’t read 2 first and then 1.

• Availability: The system must be available when requested. All

operations on the data store must eventually return successfully.

• Partition Tolerance: If the network fails to transmit messages between

two sets of nodes, the system must continue to work correctly. The

failure of a single node in a distributed system must not lead to the

failure of the entire system. The system must be available even if

there’s some data loss or a partial system failure.

Chapter 1 apaChe Cassandra: an IntroduCtIon

16

The problem is, at any given time, a distributed system can usually support only two

out of the three requirements listed here. This means that tradeoffs are usually inevitable

when using distributed data stores such as NoSQL databases. That is why we have the

famous statement “Consistency, availability, partition tolerance. Pick two.”

Most modern distributed data stores such as Cassandra offer availability and

partition tolerance, sacrificing consistency. The idea here is that short periods

of application misbehavior are preferable to short periods where the database is

unavailable.

If two nodes can’t communicate, and you require strict consistency, the system

will appear to be down. A database such as Casandra chooses to be highly available

during network partition (when the network drops messages between nodes), instead of

satisfying the consistency principle.

Strict consistency, especially when you have data centers that are distributed across

the world, is something you may never be able to satisfy, due to the unavoidable latency

among the data centers. Availability is a more practical principle that a distributed

database can try to satisfy.

For reliability purposes, meeting the availability and partition tolerance

requirements is essential, of course. That means that the consistency requirement is

often at risk. However, leading NoSQL databases such as Cassandra and Amazon’s

DynamoDB deal with the loss of consistency just fine. How so? This is possible due the

adoption by these databases of something called the BASE system, which is a modified

set of ACID requirements to fit modern NoSQL and related non-relational databases.

Here’s what BASE stands for:

• Basically Available: The system guarantees the availability of data

in the sense that it’ll respond to any request. However, the response

could be a “failure” to obtain the request data set, or the data set

returned may be in an inconsistent or changing state.

• Soft: The state of the system is always “soft” in the sense that the

“eventual consistency” (the final requirement) may be causing

changes in the system state at any given time.

• Eventually Consistent: The system will eventually become consistent

once it stops receiving new data inputs. As long as the system

is receiving inputs, it doesn’t check for the consistency of each

transaction before it moves to the next transaction.

Chapter 1 apaChe Cassandra: an IntroduCtIon

17

Amazon’s DynamoDB, which lies behind Amazon’s shopping cart technology,

stresses high availability, meaning it can afford to go easy on the consistency angle.

These types of databases eschew the complex queries necessary to support consistency

in the traditional sense, settling instead for the eventual consistency goal.

Eventual consistency in this context means that in a distributed system, not all nodes

see the same version of the data; at any given time the state may diverge between nodes.

That is, it’s possible for some nodes to serve stale data. However, given sufficient time,

the state will come to be the same across the system.

MongoDB, a popular NoSQL database, on the other hand, favors consistency and

partition tolerance over high availability.

The discussion on CAP and BASE shows that while NoSQL databases such as

Cassandra have their advantages, particularly in the way they support horizontal scaling

and the efficient processing of non-relational data, they do come with unique drawbacks

and involve crucial sacrifices in terms of simultaneous support for traditional principles

such as data consistency and availability.

Consistency, while it’s a laudable objective, has a negative impact on cost-effective

horizontal scaling. If the database needs to check the consistency of every transaction

continuously, a database with billions of transactions will incur a significant cost to

perform all the checks. The idea of consistency is not practical in a large distributed

database.

It’s the principle of eventual consistency that has allowed Google, Twitter and

Amazon, among others, to interact with millions of their global customers, keeping their

systems available by supporting partition tolerance. Without the principle of eventual

consistency, there wouldn’t exist all these systems today that deal successfully with the

exponential rise of data volumes due to cloud computing, social networking, and related

modern trends.

Note Cassandra lets you set a consistency level that clients must specify on all
operations. this way, you can determine how many nodes in the Cassandra cluster
must acknowledge a write operation for the database to consider the write successful.

Let’s say you set the replication factor is 3 for some data, meaning that the
databases must propagate all data to three different nodes. By setting your
consistency level to 2, for example, you tell Cassandra to deem an update or a
write as successful even if some nodes are down.

Chapter 1 apaChe Cassandra: an IntroduCtIon

18

 Cassandra’s Drawbacks
Although Cassandra offers numerous benefits, you ought to recognize that there are

some strong drawbacks as well to the database, especially when you’re coming from a

relational database background.

In the following sections, I review Cassandra’s drawbacks from two viewpoints:

querying and writing data.

 Problems with Querying Data
The chief drawbacks of Cassandra when querying data are the fact that it’s an eventually

consistent database and that it doesn’t offer support for standard database joins.

 Eventual Consistency

Cassandra automatically replicates data across the nodes of a cluster. There’s no master

node, the data propagation does involve some latency, and therefore, you’ll have

eventual consistency.

As explained earlier, eventual consistency means that in a distributed setup, to

achieve high availability there’s an informal guarantee that if no new updates are

made to data items, eventually all accesses to that data item will return an identical

(last updated) value. You can mitigate the side effects of eventual consistency by using

quorum reads and writes.

 No Joins

Cassandra doesn’t use table joins, which are a key feature of relational database queries.

You therefore also don’t have any foreign keys.

You get around the lack of transactions by denormalizing your data, and use

duplicated data and a query-oriented storage format. Another strategy is to use powerful

data analysis tools such as Apache Spark together with Cassandra.

 No Indexes

Relational databases employ both a primary key that uniquely identifies rows, as well as

multiple other indexes called secondary indexes to speed up retrieval. Cassandra tables

do use a primary key, but the database has limited support for secondary indexes.

Chapter 1 apaChe Cassandra: an IntroduCtIon

19

In Cassandra, you’ll find few cases that call for the creation of a secondary index.

Indiscriminate use of secondary indexes hurts performance.

 Problems with Writing Data
Cassandra also suffers from some drawbacks when writing data due to its lack of support

for traditional transactions and the overhead due to immutable tables and mutation.

 Lack of Support for Transactions

Transactions are a huge part of traditional relational databases, but Cassandra, which

doesn’t support transaction-related concepts such as rollbacks or locking mechanisms

that are so critical when dealing with relational databases, doesn’t support them.

Cassandra does support lightweight transactions, but they are expensive. Cassandra

uses the Paxos protocol to implement lightweight transactions to handle concurrent

operations that read and write data items in a sequential order. The Paxos protocol

is implemented by a serial consistency with real-time constraints, ending up with

a transaction isolation that’s similar to that offered by a serialized isolation level in

a database such as Oracle. Chapter 7 discuss the Paxos algorithm and linearizable

consistency in detail.

 Overhead Due to Immutable Tables and Mutation

Cassandra stores its data in immutable structures called SSTables. When you update

data, Cassandra spreads the data across multiple SSTables. When you delete data, it

creates markers called tombstones to ensure that the database correctly deletes data

across all nodes of the cluster.

Since a read operation must gather data from multiple tables, there is inherent

overhead for reads. As you will learn in Chapter 11, cleaning up SSTables by compacting

them ameliorates this overhead.

 Who Should Use Cassandra?
I have explained the key drawbacks of Cassandra. The drawbacks should not deter you

from using Cassandra; far from it! The drawbacks should serve to tell you if you ought to

use Cassandra for your use cases.

Chapter 1 apaChe Cassandra: an IntroduCtIon

20

Cassandra is an excellent choice when you’re dealing with data that doesn’t change

(immutable data), and where updates and deletes are rare. This means that Cassandra

is great for handling huge volumes of immutable data from personalization, fraud

detection, time series, and sensor data.

Cassandra is also an appropriate choice if you’re primarily looking for a database

that performs fast writes.

 Cassandra Optimizations
While relational databases widely use strategies such as query optimization and

compression, Cassandra uses various optimizations, some of which you usually won’t

find in relational databases. The following sections describe key Cassandra performance

optimizations.

 Data Caches
Cassandra offers integrated caching and distributes the cached data across the cluster.

When a node becomes unavailable, the client reads the data from another cached copy

(replica) of the data. There’s no separate database caching tier. Cassandra offers two

types of data caching: a partition key cache and row caching.

• The partition key cache caches the partition index for a Cassandra

table to reduce seek times.

• Row caching will cache an entire row. When the number of reads

is much larger (about 95%) than the number of writes, Cassandra

recommends that you use row caching.

 Compression
Cassandra allows you to compress data to reduce the volume of data stored on disk, as

well as lower the disk I/O. Compression is usually expensive in a relational database,

due to the additional CPU cycles and disk I/O for compressing and decompressing

data. Since Cassandra tables are immutable (once they are flushed to disk, they aren’t

ever modified), the database doesn’t need a recompression cycle to process writes. This

means that Cassandra compresses the SSTables just once, when it initially writes the

tables to disk from the memtables.

Chapter 1 apaChe Cassandra: an IntroduCtIon

21

In addition to SSTables, it’s also possible to compress Cassandra’s commit log to

improve write performance.

Cassandra offers multiple compaction strategies, and I discuss them in Chapter 11.

 Bloom Filters
Cassandra uses bloom filters to determine if a table (SSTable) has data for a specific

partition. The idea is to eliminate the reading of whole SSTables when searching for

specific bits of data. Cassandra uses bloom filters for index scans, but not for range scans.

 Compaction
SSTables are immutable, meaning Cassandra doesn’t overwrite existing data with inserts

or updates. Instead, Cassandra writes a time-stamped version of the inserted or updated

data in a new SSTable. As a result, over time, Cassandra ends up with multiple versions

of a row in different SSTables.

Cassandra also doesn’t perform deletes by immediately removing the data you

delete. It simply marks the data with a tombstone, indicating that the data is deleted data.

Cassandra periodically merges the SSTables to discard old data, a process called

compaction. Compactions results in the assembling of a single complete row using the

latest version of each of that row’s columns.

There are various compaction strategies you can use, the choice depending on

whether your workload is write- or read-intensive.

 Is Cassandra Appropriate for You?
Cassandra is not a general-purpose database! The following are the common use cases

for which Cassandra will be ideal.

• Large Environments: Cassandra is a database for high-volume

transactions. A good RDBMS can handle a large number of

transactions and can do so while running on just a single server or a

couple of them. Your use case must involve super-heavy throughout

requirements and high traffic, and a requirement for low-latency

work, for you to consider using Cassandra.

Chapter 1 apaChe Cassandra: an IntroduCtIon

22

• Write-Heavy Workloads: Cassandra is well suited for use cases

that involve heavy writes, since it offers high throughput for write

operations. Cassandra is an excellent choice if you have numerous

clients and high write volumes.

• Distributed Data: Since Cassandra works well with geographically

distributed clusters, a global application that benefits by storing data

near the user can potentially use Cassandra.

Cassandra isn’t the best fit for all use cases. However, the reasons described earlier

in this chapter, such as fast performance and support for a large number of complex data

types, make it an outstanding excellent tool for highly scalable storage.

You can continue to use MySQL or Oracle for most of your storage needs. If a

business unit sees a need for storing very large volumes of data, that’s where you

want to use Cassandra. It makes sense to use Cassandra in these cases rather than

trying to stretch the capacities of the relational databases to manage and analyze

huge troves of data.

 Cassandra Data Modeling Essentials
Chapter 4 focuses on Cassandra data modeling and several other chapters throughout

this book elaborate on the key Cassandra data modeling concepts. In this introductory

chapter, I would like to mention the key principles or rules for successful data modeling

in a Cassandra database.

You need a new way of thinking to write applications that scale on a distributed

database. The first thing to remember is that Cassandra isn’t a drop-in replacement for

a relational database. This means that you can’t expect to drop your data and queries

from a relational database into Cassandra and expect it all to work fine. To get the most

out of Cassandra, you should design your application using Cassandra’s data modeling

principles and rules.

Cassandra uses a data model based on the expected queries that you’ll run against

the database, and not on modeling the entities and the relationships among them.

It’s common for users transitioning to a distributed database such as Cassandra to try

to use materialized views, indexes, and user-defined functions to scale their applications.

When you use these traditional strategies in a Cassandra-based application, you’ll be in

for quite a surprise.

Chapter 1 apaChe Cassandra: an IntroduCtIon

23

With this background, let’s review the key principles behind Cassandra data

modeling.

 Structure Your Data by the Queries
Since Cassandra is very efficient in writing data, you incur minimal overhead for

denormalizing data and duplicating it. Duplicating data is going to make your reads

faster. Ideally, a read should be able to get all its data from a single partition.

 Avoid Updates and Deletes
By its design, Cassandra works well with an append-only, immutable set of data. You’ll

pay a stiff overhead for clearing mutations and deletes from the “ring.”

 Evenly Distribute Your Data
You must ensure that you spread your data evenly across a Cassandra ring, so a single

node isn’t stuck with processing a disproportionately large amount of data. Appropriate

selection of the partition keys is critical to ensuring an even data distribution.

 Avoid Querying Across Partitions
It takes longer for a read to process and aggregate data from multiple nodes. Partitioning

strategy and location is critical here because querying across partitions may result in a

heavy overhead.

 What a Cassandra Administrator Ought to Know
This book is primarily about administering Cassandra, although it’ll be of significant use

to Cassandra architects and developers as well.

As with any database, Cassandra requires the tuning of various configuration

parameters, selection of the right data model, and other strategies to produce peak

performance. While several of the skills that you’ve acquired in managing a relational

database are readily applicable to the Cassandra database, you’ll need to learn

additional things to be a successful Cassandra database administrator.

Chapter 1 apaChe Cassandra: an IntroduCtIon

24

Traditional skills such as optimizing the operating system through configuring

the kernel, monitoring the operating system through various tools, and SQL query

optimization techniques are all going to be helpful to you when administering a

Cassandra database. In addition to these skills, you’ll need to focus on the tools and skills

I describe in the following sections.

 Cassandra Tools
Cassandra offers several useful administration tools to monitor and manage your

clusters. The following is a brief description of the key tools you’ll often use.

• The cassandra Utility: The cassandra utility enables you to start a

Cassandra instance. In addition, the utility enables you to perform

other tasks, such as replacing a dead node.

• The SSTable Utilities: Cassandra offers about a dozen useful utilities

that enable you to perform SSTable tasks such as dumping the

contents of a table, printing a table’s metadata, splitting a table into

multiple tables, and listing the SSTable files for a table.

• The nodetool utility: The nodetool utility is a command line tool to

monitor and manage a cluster. You’ll start using nodetool in Chapter 2,

and by the time you reach the end of the book, you’ll have learned

every single nodetool command option.

• The cassandra-stress tool: This is a stress testing utility you can use to

benchmark and load test your clusters. The tool is especially useful in

understanding the scalability of your database and optimizing your

data models.

 Acquiring Parallel Remote Tools
Cassandra is a distributed database, and a cluster can often use dozens and even

thousands of nodes. For those of you coming from a single-node-database relational

database world, this will probably come as a major surprise.

It’s a good idea for you to learn to use a distributed shell tool. There are several

distributed SSH tools, such as parallel SSH and Cluster SSH, that enable SSH access to

multiple nodes.

Chapter 1 apaChe Cassandra: an IntroduCtIon

25

You will also benefit from using a tool such as pdsh (parallel distributed shell) to

simultaneously move files and run commands on multiple nodes.

If you’re dealing with more than a handful of nodes (say more than 8 or 10), it’s a

good idea to use a tool such as Chef or Ansible to perform many operations.

 Understanding Failure Scenarios in a Cassandra Database
Losing a disk is somewhat of a rare event when managing traditional databases, since

most of them run on enterprise-grade hardware. Cassandra, as all big data, runs on

commodity hardware. Experiencing a disk or even a node failure isn’t a rare event in the

big data world.

A Cassandra administrator needs to know how to handle node failures and how to

expand the node capacity by adding nodes on demand.

When operations fail due to updates and writes not being synchronized correctly

across the cluster, administrators run a “repair” operation, an operation that’s unique to

Cassandra.

Everything in Cassandra is Java-based, so knowing how to read Java error stacks and

trace files is critical. Learning about common Java exceptions, such as out-of-memory

(OOM) errors and null pointer errors, helps.

 Monitoring and Alerting
You can monitor and manage Cassandra, which is based on the Java language, through

the Java Management Extensions (JMX).

It’s more common to manage and monitor a Cassandra cluster through the nodetool

utility offered by Cassandra. Nodetool is JMX-compliant, and you can use it to get various

Cassandra metrics and to perform common tasks such as adding and decommissioning

nodes. You can also use other JMX tools such as JConsole to perform various tasks.

 Tuning the Java Virtual Machine
Cassandra is written in Java, and everything in Cassandra runs inside a Java Virtual

Machine (JVM). Traditional database administration really doesn’t require a knowledge

of a JVM. However, that knowledge is critical when dealing with Cassandra databases.

Chapter 11 introduces the concepts underlying JVM tuning and how to manage garbage

collection (the most important area of tuning a JVM).

Chapter 1 apaChe Cassandra: an IntroduCtIon

26

In the following section, I introduce the architecture of Cassandra plus several

interesting concepts and key terms that you’ll encounter during the rest of the book.

 A Quick Introduction to the Architecture
of Cassandra
Cassandra is a distributed database system. It distributes data among multiple nodes

organized as a cluster to ensure that data is accessible even when there are system and

hardware failures.

The nodes in a Cassandra cluster use a peer-to-peer communication protocol to

exchange their state information.

Cassandra table rows are stored in tables, each with a mandatory primary key.

A keyspace is a logical entity to group a set of tables, usually belonging to a single

application. You access the data stored in the tables via the CQL language constructs,

which use a similar syntax to that of SQL. You can access CQL through cqlsh and via

drivers for application languages.

Cassandra writes all data first to a log to ensure that the data is durable in the event

of failures. It then writes the data to in-memory structures that act as a cache, and when

the cache gets full, flushes the data to disk into data files.

Cassandra automatically partitions all data and replicates it however many times you

need. It uses various repair processes to ensure that the data across the nodes becomes

consistent over time.

Periodically, Cassandra compacts the tables stored in the data files on disk,

discarding any obsolete data it finds.

Cassandra randomly assigns client read and write requests to the cluster’s nodes,

with the initial node to which the client connects serving as the coordinator for that

operation.

 Understanding Cassandra-Specific Concepts
To master Cassandra administration, you should learn several Cassandra-specific

structures and concepts, such as nodes and rings, commit logs, memtables, SSTables,

keyspaces, index files, and bloom filters.

Chapter 1 apaChe Cassandra: an IntroduCtIon

27

It’s a good idea to start with a quick description of the essential high-level Cassandra

structures.

• Node: A node is a server where a Cassandra instance runs. This is

where Cassandra stores your data. You can run Cassandra on just

a single node when starting out with the database, but all real-life

Cassandra environments have a bunch of nodes, since Cassandra is

designed for big data processing.

• Datacenter: The datacenter is a somewhat of a misleading term, as it

has nothing to do with the term data center as you use it in everyday

parlance, which refers to a physical or virtual data center of an

organization.

A Cassandra datacenter is a set of nodes that you configure as a

group for replication proposes. Thus, you can view a datacenter as

a synonym for a replication group. You use a datacenter to group a

set of nodes that have the same replication level. A datacenter can

be physical or logical. Typically, clients write to a local datacenter,

which asynchronously replicates the data to other datacenters.

• Cluster: A Cassandra cluster is a set of one or more datacenters, and it

can span physical locations.

Inside a Cassandra database, you need to understand the following key structures.

• Commit Log: Cassandra writes the data in memory to a commit

log for durability. Since the database writes every write first to the

commit log, it serves as a secure recovery mechanism and ensures

that no writes are lost due to server or other failures.

• Memtables: After writing new data to the commit log, Cassandra

writes that data to the memtables, which are data structures that live

only in memory.

• SSTable: A sorted string table (SSTable) is an immutable data file to

which Cassandra writes a memtable. Cassandra flushes all the data in the

memtables to the SSTables once the memtables reach a threshold value.

• CQL Table: A CQL table is a set of ordered columns fetched by table row.

Each table consists of a set of columns and a primary key, and it’s the

CQL tables that you query to retrieve data from a Cassandra database.

Chapter 1 apaChe Cassandra: an IntroduCtIon

28

Tip It is not a good idea to use too many keyspaces or tables. Both entities have
a JVM memory overhead. each table uses approximately 1MB of memory, and an
useful rule of thumb is to use no more than 1,000 tables per cluster, ideally just 500.

Cassandra uses several unique concepts and associated terminology. I think it’s a

good idea to get an overview of the concepts and the terminology before you plunge into

the internals of the database in the following chapters.

Many of the terms and concepts I explain in the following sections are related to

the management of a distributed database; there are various entities and strategies that

Cassandra uses to manage and distribute data among multiple nodes, and how the

nodes maintain awareness of the other nodes in the cluster.

 Peers and Coordinators

All nodes in a Cassandra cluster are peers. A client’s request can go randomly to any of

the nodes in a cluster. When a client connects to one of the nodes in a cluster and issues

a read or write request, that node will act as the coordinator for that operation.

The coordinator is a proxy between the client and the nodes (replicas) that own

the data that the client’s application requests. The coordinator node for a read or write

operation determines to which node it should assign the request. It considers the

partitioner you’ve configured and the replica’s placement strategy.

 Keyspaces

A keyspace is a collection of related tables and is analogous to the logical concept of a

schema in an Oracle database, or a database when you‘re using MySQL, or the SQL Server

database. The recommended practice is to use a single keyspace for each application.

 Replication and the Replica Placement Strategy

Cassandra stores data on multiple nodes for reliability and fault tolerance. A replica is a

copy of a chunk of data, and you set the replica placement strategy per keyspace when

you create the keyspace.

Cassandra offers several replica placement strategies, such as the

NetworkTopologyStrategy, which is ideal when you deploy your cluster across multiple

data centers.

Chapter 1 apaChe Cassandra: an IntroduCtIon

29

The number of replicas in each datacenter depends on the need to reduce cross-

datacenter latency by promoting local reads and the need to provide protection against

node failures.

If a node is down, the data that Cassandra failed to write to that node is replayed

later, via the use of what are called hinted handoffs, which are hints that enable the

writing of the missed data to the failed node when it comes back.

 Tunable Consistency

As explained earlier in this chapter, Cassandra chooses availability over consistency.

However, the degree of consistency is tunable by you. You can select the degree of

consistency on a per-query basis when you’re reading or writing data.

Tunable consistency means you pick how many replicas a read or write query

should hear back from before Cassandra deems that read/write request as

successful. When a client issues a read request, the consistency level determines

how many replicas Cassandra must hear from before it returns the data to the client.

As for a write request, it is the number of replicas that must confirm that they have

successfully written the data to disk before Cassandra informs the client that the

write was successful.

Obviously, a higher consistency level means slower reads and writes since Cassandra

needs to wait for acknowledgement from more nodes. A higher level of consistency

could also mean lower availability because you need more nodes to be available to

satisfy the higher degree of consistency.

 Gossip

Gossip refers to a communication protocol that a cluster’s nodes use to discover other

nodes and inform them of their own location and state, as well as that of other nodes in

the cluster. The purpose of gossip is to let all nodes quickly get up-to-date information

about the state of the rest of the nodes in the cluster.

It is from gossip data (state and history) that a node learns about other nodes that are

down or have come back up after a failure.

 Partitioner

Cassandra uses a function called a partitioner to determine which nodes receive the first

copy of a chunk of data and how it should distribute the rest of the replicas across the

other nodes.

Chapter 1 apaChe Cassandra: an IntroduCtIon

30

The partitioner uses token values that it derives from the primary key of a row to

make its determination of which nodes get the replicas of a specific row. Cassandra

offers various partitioners, with the default partitioner being the Murmur3Partitioner.

 Snitch

To place the replicas of data on the nodes, Cassandra uses a topology. A snitch defines

the topology; that is, it groups machines into datacenters and racks.

Cassandra offers multiple snitches. The default SimpleSnitch is for simple

installations that don’t use a complex topology that uses datacenters and

racks. For production deployments, Cassandra recommends that you use the

GossipingPropertyFileSnitch. This snitch defines datacenters and racks.

 Compaction

Compaction is how Cassandra periodically consolidates data stored in tables in data files

on disk. During the compaction process, Cassandra collects all the versions of a row, and

from them assembles the most up-to-date versions of that row. It then writes the new

row versions to a new SSTable and leaves the old versions along with other rows that are

ready for deletion in the old SSTables. As soon as all pending reads are completed, the

database deletes the old versions, using markers called tombstones, which indicate that

the data is deleted data.

 Bloom Filters

Bloom filters are algorithms for testing whether an element is a member of a set.

Cassandra employs bloom filters to quickly determine whether a table (SSTable) has the

data for a row. It uses the clusters for index scans but not for range scans.

 Node Repairs

Since Cassandra is a distributed database, over time data in a replica can become

inconsistent with other replicas stored in other nodes.

Node repair is a regular maintenance task that corrects the inconsistencies among

the replicas and works towards establishing eventual consistency; that is, it ensures that

over time all nodes have the same, most recently updated data.

Chapter 1 apaChe Cassandra: an IntroduCtIon

www.allitebooks.com

http://www.allitebooks.org

31

There are several types of repair processes, such as a hinted handoff, where

Cassandra preserves the data to be written to a node as a set of hints, when that node

can’t receive any writes. When the node comes back up, the database uses the stored set

of hints to perform a repair so that the node can add the writes that it missed while it was

unavailable.

 How Cassandra Stores Its Data
At a high level, Cassandra stores its data in the form of a hash ring, with each node in the

cluster owning a range of hashes. Cassandra partitions the data around the ring, and the

location of data on the hash ring is based on the partition key.

All nodes are equal (no master) and continuously communicate with each other,

exchanging their state. All nodes participate in all reads and writes.

Data is replicated to multiple nodes, and you can configure the number of copies,

with the default being three replicas.

 An Overview of Cassandra’s Data Model
Cassandra’s data model sharply differs from that of a traditional relational database.

Table 1-1 shows the key differences between the two data models.

Table 1-1. How Cassandra’s Data Model Differs From That of an RDBMS

rdBMs Cassandra

structured data unstructured data

Fixed schema Flexible schema

a row is a single record. a row is a unit of replication.

Columns represent a relation’s

attributes.

Columns are a unit of storage.

uses foreign keys and joins uses collections to represent relationships

a table is an array of arrays. a table is a list of nested (rows by columns) key-value pairs.

the database is the outermost

data container.

the keyspace is the outermost container for data.

Chapter 1 apaChe Cassandra: an IntroduCtIon

32

 DataStax and Cassandra
DataStax, Inc. is a company that offers a commercial version of the Apache Cassandra

database called DataStax Enterprise (DSE). DataStax 1.0 was released in late 2011.

DataStax is the leading evangelizer for the Cassandra database, with several employees

contributing to the open-source Cassandra project.

Besides the commercial DSE, DataStax also offers a free distribution of Apache

Cassandra called the Community Edition.

In the following sections, I briefly review DSE and the DataStax OpsCenter, a

management tool for configuring and managing Cassandra.

 DataStax Enterprise
DataStax Enterprise provides a comprehensive and simple data management layer

with an always-on architecture built on top of Apache Cassandra. DSE offers advanced

functionality to create sophisticated cloud applications.

DSE integrates several powerful features such as indexing, search, analytics, and

graph functionality with the open source Apache Cassandra database. Here is a brief

description of the features that DSE offers on top of the underlying Cassandra database.

• Advanced Indexing and Search: DSE Search contains an advanced

indexing engine that contains powerful search capabilities (DSE

integrates Apache Solr, a well–known search tool) to help find data by

running complex queries. The indexing engine supports fast, real-

time aggregations, filtering, faceting, as well as sub-string, and fuzzy

and full text search.

• Powerful Integrated Analytics: DSE Analytic integrates the powerful

Apache Spark large-scale data processing engine to enable

developers to build pipelines that interact with data flowing through

both streaming and batch workloads.

• Graph Database: DSE Graph is a scalable, real-time graph database

that supports deep analytical queries. Graph databases are designed

for analyzing large data sets with many complex relationships by

helping you discover and make sense of those relationships.

Chapter 1 apaChe Cassandra: an IntroduCtIon

33

Organizations trying to derive the most value from their data have different

requirements, each solved by a different solution, such as advanced analytics, real- time

indexing, search, etc. DSE offers all the capabilities required by modern cloud

applications in an integrated fashion, through one tool. Integration of search, analytics,

and graph database capabilities means that these components derive all the benefits

of the Apache Cassandra database, such as high availability, linear scalability, and

predictable, low-latency response times.

The DataStax Enterprise OpsCenter is a web-based management and monitoring

component of DSE. OpsCenter makes it easy to monitor, tune, backup, and recover the

Cassandra database. You can perform most of your database management tasks, such

as access and authorization, through OpsCenter. OpsCenter provides a centralized

dashboard to monitor Cassandra clusters and helps proactively identify issues before

they affect your production workloads. You can easily integrate OpsCenter into

management tools such as Graphite.

 DataStax Development Tools
DataStax offers several tools to help you create Cassandra-based, large-scale

distributed applications. The following is a brief description of the three key

development tools offered by DataStax: the DataStax DevCenter, the DataStax Studio,

and database drivers.

• DataStax Enterprise OpsCenter: Web-based visual management and

monitoring solution for DataStax Enterprise (DSE). This tool helps

you manage database schemas, develop queries, and tune Cassandra

performance.

• DataStax Studio: The DataStax Studio is an interactive tool that uses

DSE Graph to explore and visualize large data sets.

• Database Drivers: DataStax offers database drivers that support

languages such as C#, Java, Node.js, ODBC, Python, PHP, and Ruby.

Chapter 1 apaChe Cassandra: an IntroduCtIon

34

 Summary
Cassandra is a powerful NoSQL database that significantly differs from a relational

database. This chapter explained the ways in which Cassandra differs from a relational

database, and how it solves problems that relational databases don’t handle well.

Cassandra is designed for specific use cases, and if your needs are different, it may be

an inappropriate solution for you.

Understanding the ACID requirements and the CAP theorem helps you realize the

significance of Cassandra’s eventual consistency principle.

Although Cassandra shares some optimization strategies with relational databases,

it also makes use of unique strategies such as bloom filters to optimize database

performance.

The chapter reviewed the essentials of what a Cassandra database administrator

ought to know.

Understanding Cassandra specific concepts, such a snitches, gossip, and replication

strategies, is critical to your success as a Cassandra administrator.

Chapter 1 apaChe Cassandra: an IntroduCtIon

35
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_2

CHAPTER 2

Installing Cassandra
and Getting Started
with CQL Shell
In this chapter, you’ll learn how to install Cassandra and create a single-node Cassandra

“cluster.” Once you get your feet wet, it’s an easy transition to creating and configuring a

multi-node Cassandra cluster, which is the topic I discuss in Chapter 3.

Once you create a Cassandra cluster, you learn how to work with cqlsh, the

command line interface to the CQL shell. By the time you complete this chapter, you’ll

know how to start and stop your cluster, how to create keyspaces and tables, and how to

insert and query data.

 Installing Apache Cassandra
Cassandra is easy to set up and get going with. In this section, I show how to install

Cassandra on Linux, specifically on an Ubuntu 16.04 LTS server.

Once you learn how to install Cassandra, I show how to create a simple one-node

Cassandra cluster on a single machine. In Chapter 3, I show how to create a Cassandra

cluster with multiple nodes.

 Planning the Installation
I use an Ubuntu 16.04 LTS server running on VMware to show the installations. The

server has 4GB of RAM and 20GB of storage.

36

Before you start with the installation of Cassandra, you need to create a user and

group that will manage Cassandra on your server. Name the user cassandra and the

group cassandra as well. Here are the steps to create the user and the group:

$ sudo groupadd –r cassandra

$ sudo useradd –r –m cassandra –g cassandra –G users

 Prerequisites for Installing Cassandra
There are two basic prerequisites that you need before you can install Cassandra: you

must install the correct version of Java, and you need the latest version of Python.

The following two sections show how to install Java and Python, should it be

necessary to do so.

 Java

You need the latest 64-bit version of Java 8, and either the Oracle Java Standard Edition

or OpenJDK 8 will do (I use the Oracle JRE). You can check the version of the installed

Java software thus:

$ java -version

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

$

If the output doesn’t show something similar to “java version "1.8.0_101” on the first

line (there are three lines in the output), you need to install Java. Follow these steps to

install the Oracle JDK.

 1. Download the Oracle JDK installer from Oracle Java SE

Downloads, after accepting a license agreement. You can

download the JDK by going here:

www.oracle.com/technetwork/java/javase/downloads/

jdk8- downloads- 2133151.html

 2. Make a directory for the JDK.

$ sudo mkdir –p /usr/lib/jvm

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

37

 3. Install the JDK after unpacking the tarball.

$ sudo tar zxf jdk-8u65-linux-x64.tr.gz –C /usr/lib/jvm

You can find the JDK files in the directory named /usr/lbi/jvm/

jdk- 8u- version.

 4. You need to let the OS know about the new Java versions with the

alternatives command.

$ sudo update-alternatives –install "/usr/bin/java" "java"

"/usr/lib/jvm/jdk1.8.0_101/bin/java"

 5. Run the alternatives command again, this time to make the new

JDK the default Java release.

$ sudo update-alternatives –config java

This command makes sure that if you have multiple Java installations,

the default version is switched to the release you just installed.

 6. Confirm that the install was correct.

$ java -version

java version "1.8.0_101"

Java(TM) SE Runtime Environment (build 1.8.0_101-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13,

mixed mode)

$

 Python

While you need Java for running Cassandra itself, you need Python for running cqlsh, the

command line interface to the Cassandra database. To be specific, you need the latest

version of Python 2.7.

You can check the current release of Python thus:

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

38

In my case, the Ubuntu server came with Python. If you need to install Python, you

can do so by following these steps.

 1. Install the required packages.

$ sudo apt-get install build-essential checkinstall

$ sudo apt-get install libreadline-gplv2-dev libncursesw5-

dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev

libbz2-dev

 2. Download the Python binaries.

$ cd /usr/src

$ wget https://www.python.org/ftp/python/2.7.12/

Python-2.7.12.tgz

 3. Extract the packages.

$ tar xzf Python-2.7.12.tgz

 4. Compile the Python source.

$ cd Python-2.7.12

$ sudo ./configure

$ sudo make altinstall

 5. Check the Python version.

$ python2.7 -V

Python 2.7.13

$

 Installing Cassandra
You can install Cassandra from a source binary tarball that you download, install, and

run, or use yum or apt-get to install the Cassandra package as a service (Linux only). In

this section, I show both ways of installing Cassandra. You can also install using a less

common third method, which is to download the source code and compile it.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

39

 Building from Source

You can build Cassandra from the source by using Apache Ant. When you build from

source, you need to use a Java 8 JDK instead of just the JRE. Here are the steps to build

from source.

 1. Download Ant if you don’t have it already, from

http://ant.apache.org

 2. Get a read-only trunk version of the Cassandra source.

$ git clone git://git.apache.org/cassandra.git

 3. Move to the root directory of the source download and run ant.

$ ant

Ant looks for a build.xml file fin the current directory and executes the default build

target. Ant builds the source files and executes tests, and if everything goes well, you’ll

see a BUILD SUCCESSFUL message.

 Installing from Debian Packages

Installing from Debian packages is just as simple as installing from a source binary

tarball, as explained in the following steps.

 1. Add Cassandra’s Apache repository to /etc/apt/sources.

list.d/cassandra.sources.list, as shown here:

$ echo "deb http://www.apache.org/dist/cassandra/

debian 311x main" | sudo tee -a /etc/apt/sources.list.d/

cassandra.sources.list

 2. Add the Apache Cassandra repository keys.

$ curl https://www.apache.org/dist/cassandra/KEYS |

sudo apt-key add –

$ sudo apt-key adv --keyserver pool.sks-keyservers.net

--recv-key A278B781FE4B2BDA

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

http://ant.apache.org/

40

 3. Update the package index.

$ sudo apt-get update

 4. Now you’re ready to install Cassandra.

$ sudo apt-get install cassandra

 5. You can start, stop, and check the status of the Apache Cassandra

service on this server by running the following command:

$ systemctl start cassandra.service$

$ sudo systemctl stop cassandra.service

$ sudo systemctl status cassandra.service

[sudo] password for samalapati:

● cassandra.service - LSB: distributed storage system for structured data
 Loaded: loaded (/etc/init.d/cassandra; bad; vendor preset: enabled)

 Active: active (running) since Fri 2017-09-29 08:07:57 PDT; 42min ago

 Docs: man:systemd-sysv-generator(8)

 Tasks: 57

 Memory: 2.2G

 CPU: 40.810s

 CGroup: /system.slice/cassandra.service

 └─�5432 java -Xloggc:/var/log/cassandra/gc.log
-ea -XX:+UseThreadPrior

Sep 29 08:07:57 ubuntu systemd[1]: Starting LSB: distributed storage

system for

Sep 29 08:07:57 ubuntu systemd[1]: Started LSB: distributed storage

system for s

Sep 29 08:08:11 ubuntu systemd[1]: Started LSB: distributed storage

system for s

 6. You can enable the Cassandra service on system boot by doing the

following:

$ sudo systemctl enable cassandra.service

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

41

 7. Since the Debian packages start up the Cassandra service

automatically after the installation, you must stop the service and

clear the data if you’re planning a real-life cluster rather than a test

service. By doing this, you remove the default cluster name (Test

Cluster) from Cassandra’s system table. Here’s how to clear the data:

$ sudo systemctl service cassandra.service stop

$ sudo rm –rf /var/lib/cassandra/data/system/*

 Building from the Source Binary Tarball

The easiest way to get going with installing Cassandra is to download and install the

binary tarball from Cassandra’s website:

http://cassandra.apache.org/download/

You can also download the latest tarball by using a command such as curl:

$ curl –OL http://www.apache.org/dist/cassandra/3.9.0/apache-cassandra-

3.9.0-bin.tar.gz

Follow these steps to download and install Cassandra from binary tarball files.

 1. Download the latest Cassandra release, which is 3.9

(release 2016-09-29).

 2. Extract the installation files from the tarball.

$ sudo tar –xzvf apache-cassandra-3.9-bin.tar.gz

The tar command will extract the files into the

apache-cassadnra-3.9 directory.

 3. Move the extracted directory to the /usr/share library.

$ sudo mv apache-cassandra-3.9 /usr/share

 4. Create a symbolic link to the directory as shown here:

$ sudo ln –s /usr/share/apache-cassandra-3.9 /usr/share/

cassandra

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

http://cassandra.apache.org/download/

42

Creating the symbolic link is a good idea for down the road. The symbolic link allows

you to keep multiple versions of Cassandra in the same installation. All you have to do to

switch between the versions is to simply change the location the link points to.

That’s it; you’re done! Unlike installing a relational database and configuring it, it’s

easy to install Cassandra and get going with it. With no configuration at all, it’s possible

to start working with Cassandra out of the box. Of course, you’ll need to configure and

tune Cassandra to get the most out of it, but it’s quite easy for a novice to get started with

the database.

In the next section, I show how to configure Cassandra by entering and modifying

the configuration properties in cassandra.yaml, the main Cassandra configuration file.

Later, I show you how to start and stop Cassandra.

 Creating the Necessary Directories

You need to create a basic set of three directories so Cassandra knows where to store the

table and other data. Create the following three data directories as the user cassandra:

$ mkdir /usr/share/cassandra/commitlog

$ mkdir /usr/share/cassandra/data

$ mkdir /usr/share/cassandra/saved_caches

Cassandra will create these three directories regardless of whether you create them;

the reason you want to do this yourself is so the directories are located in a location of

your choice, instead of in the default directories.

 Configuring Cassandra
The cassandra.yaml file is the key configuration file for setting the configuration

properties for a Cassandra cluster, such as the following:

• Tuning and resource utilization parameters

• Caching parameters

• Client connections

• Backups

• Security

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

43

Cassandra offers a cassandra.yaml template, located in the $CASSANDRA_HOME/

conf directory. When starting out with Cassandra, you can just edit a handful of

the configuration properties to get going. Later, once you understand Cassandra’s

architecture and the key concepts well, it’ll be time to tinker with the configuration

properties that affect performance and many other aspects of Cassandra, which I explain

in the relevant chapters in this book.

 Location of the cassandra.yaml File
By default, the cassandra.yaml file is located in the following locations:

• /etc/cassandra /* for Cassandra package

installations

• <install_location>/conf /* for Cassandra tarball

installations

 Minimal Configuration Properties You Must Set
Although you can configure hundreds of initialization parameters in the cassandra.

yaml file, to start with you need to configure just a handful of properties:

• cluster_name

• listen_adresss

• listen_interface

I explain these minimal properties in the following sections. You can save the default

cassandra.yaml with a different name and create a new cassandra.yaml file with just

these properties to start your first single-node Cassandra cluster. You specify each

configuration property by placing a colon after the property.

 The cluster_name Parameter

The cluster_name parameter lets you name the Cassandra cluster. The default value is

Test Cluster. Obviously, you must specify the same cluster_name value for all the nodes

in a multi-node cluster.

The main purpose of the cluster_name parameter is to prevent nodes belonging to

one logical cluster from joining other clusters.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

44

 The listen_adresss Property

The listen_address property determines the IP address (or hostname) that Cassandra

binds to when connecting to other nodes. The default value is localhost. If you are

running a single-node cluster, you can just use the default setting for this parameter.

Caution don’t set the value of 0.0.0.0 for the listen_address parameter.

 The listen_interface Parameter

The listen_interface parameter specifies the interface that Cassandra binds to when

connecting to other nodes and must correspond to a single address.

If you set the listen_address property, you can omit the listen_interface

parameter and vice versa.

 Setting the Data File Directory Locations

You specify the directories for storing the Cassandra data files as well its cache

directories in the cassandra.yaml file.

There are two main directories you must configure to specify where Cassandra stores

its data; the first location is for storing the SSTables, and the second location is for storing

the commit log. In addition, there’s a third directory for storing cache data, called the

saved_caches directory.

Although Cassandra will create these directories for you in their default locations,

you can also set a custom location for the following three Cassandra directories, as

shown here:

• data_file_directories: /usr/share/cassandra/data

• commitlog_directory: /usr/share/cassandra/commitlog

• saved_caches_directory: /usr/share/cassandra/saved_caches

By default, Cassandra stores its data in the following locations:

• /var/lib/cassandra /* for Package

installations

• <install_location>/data/data /* for Tarball

installations

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

45

If you don’t set this parameter, the default directory is $CASSANDRA_HOME/data/data.

 Location for Storing the Cache Directory

Cassandra needs a directory to store its key and row caches. The default location

for this is

• /var/lib/cassandra/saved_caches /* for Package

installations

• <install_location>/data/saved_caches /* for Tarball

installations

 Setting the Location for Storing the Commit Log

You should assign a different directory, ideally on a different spindle, for storing the

commit log.

By default, Cassandra stores the commit log in the /var/lib/cassandra/commitlog

directory. If you don’t set it, the default directory will be the following:

$CASSANDRA_HOME/data/commitlog

 Configuring the Firewall
Before you start up the Cassandra instance, make sure you can access the Cassandra

services from outside the server on which Cassandra is running, by opening these ports:

• 7000

• 7199

• 9042

• 9160

 Exploring the CQL Shell
The Cassandra Query Language (CQL) is the primary means of communication with the

Cassandra database. The simplest way to interact with Cassandra is to use the CQL shell,

cqlsh.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

46

You create keyspaces, tables, and read and write data via cqlsh. In the following

sections, I show you how to get started with cqlsh.

 Starting the CQL Shell
You start the CQL shell with the cqlsh command, as shown here:

$ cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.7 | CQL spec 3.4.2 | Native protocol v4]

Use HELP for help.

cqlsh>

You terminate the CQL shell by typing exit at the cqlsh prompt:

cqlsh:mykeyspace1> exit;

$

 Time Zones in cqlsh
Cassandra displays timestamps with an UTC timezone by default. You must install the

pytz library to display timestamps with a different timezone.

 Getting Help in the CQL Shell
The HELP facility in the CQL shell is cool. When you type HELP at the cqlsh command

line, you see all the options for HELP, as is the case with any other command line utility.

cqlsh> help

Documented shell commands:

===========================

CAPTURE CLS COPY DESCRIBE EXPAND LOGIN SERIAL SOURCE UNICODE

CLEAR CONSISTENCY DESC EXIT HELP PAGING SHOW TRACING

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

47

CQL help topics:

================

AGGREGATES CREATE_KEYSPACE DROP_TRIGGER TEXT

ALTER_KEYSPACE CREATE_MATERIALIZED_VIEW DROP_TYPE TIME

ALTER_MATERIALIZED_VIEW CREATE_ROLE DROP_USER TIMESTAMP

ALTER_TABLE CREATE_

TABLE FUNCTIONS TRUNCATE

ALTER_TYPE CREATE_TRIGGER GRANT TYPES

ALTER_USER CREATE_TYPE INSERT UPDATE

APPLY CREATE_USER INSERT_JSON USE

ASCII DATE INT UUID

BATCH DELETE JSON

BEGIN DROP_AGGREGATE KEYWORDS

BLOB DROP_COLUMNFAMILY LIST_PERMISSIONS

BOOLEAN DROP_FUNCTION LIST_ROLES

COUNTER DROP_INDEX LIST_USERS

CREATE_AGGREGATE DROP_KEYSPACE PERMISSIONS

CREATE_COLUMNFAMILY DROP_MATERIALIZED_VIEW REVOKE

CREATE_FUNCTION DROP_ROLE SELECT

CREATE_INDEX DROP_TABLE SELECT_JSON

cqlsh>

In addition, when you pass an option with the HELP command, such as HELP

CREATE_TABLE, Cassandra brings up a nice screen showing the syntax for the command,

as shown in Figure 2-1.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

48

Note cqlsh is guaranteed to work well (that is, be fully compatible with) just
the Cassandra release cqlsh is belongs to. It might work well with both older and
newer releases of Cassandra, but don’t count on it!

 Command Line CQL Shell Options
You’ll be using cqlsh to perform many tasks, so you should get a good grip on the basic

CQL shell command line options. The cqlsh utility comes with several useful command

line options, also called documented shell commands. I’ll show how to use the most

useful CQL shell options here.

 The capture Command

The CAPTURE command will capture the output of a command and add it to a text file, as

shown in the following example:

cqlsh> capture '/home/test/Cassandra/output/testfile'

Once you issue the CAPTURE command, the shell will capture the output of all

subsequent CQL commands that you issue in that session, until you turn off the output

capturing with the capture off command:

cqlsh> capture off;

Figure 2-1. The HELP command for the CREATE TABLE statement

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

49

 The copy Command

The COPY command is great for capturing the data from a Cassandra table to a text file.

The following is an example that shows how to capture the contents of a table named

employees to the file myfile:

cqlsh> copy employee (emp_id, emp_cicty, emp_name, emp_sal) to 'myfile';

 The describe Command

The DESCRIBE command will describe various entities in a Cassandra cluster. In the

following example, the describe cluster command describes the Cassandra cluster

and its top-level objects:

cqlsh> describe cluster;

Cluster: Test Cluster

Partitioner: Murmur3Partitioner

cqlsh>

You can get a description of several other entities with the DESCRIBE command:

• Describe types: Lists all user-defined data types

• Describe type: Describes a user-defined data type

• Describe tables: Lists all the tables in a keyspace

• Describe table: Describes a table

• Describe keyspaces: Lists all keyspaces in a cluster

Note the DESC command works the same as the DESCRIBE command.

Here’s an example showing how to run the DESCRIBE KEYSPACES command:

cqlsh> describe keyspaces;

test1 system_auth system_distributed testdata

system_schema system system_traces

cqlsh>

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

50

Let’s say I have a table named quarters. When I run the describe table

quarters command, I get a bunch of output, although I only used a couple of lines to

create the table.

cqlsh> use testdata;

cqlsh:testdata> describe table quarters;

CREATE TABLE testdata.quarters (

 id int PRIMARY KEY,

 name text

) WITH bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class': 'org.apache.cassandra.db.compaction.

SizeTieredCompactionStrategy', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class': 'org.apache.

cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

cqlsh:testdata>

If you are coming from a relational database such as Oracle, you can recognize just

one of these table options, PRIMARY KEY, which you must specify when you create a

table. The rest are all default values. This is what makes Cassandra so much fun, since

there is a lot of new and interesting stuff to learn and use. You’ll learn about all these

table options in the appropriate chapters.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

51

 The expand Command

The expand command shows the contents of a table’s rows vertically, making it

convenient to read long rows of data. Instead of scrolling to the right, as in the case of the

default horizontal format, you scroll down to view more of a row.

Let’s say your query results in the following output:

cqlsh:mykeyspace1> select * from employee;

 emp_id | emp_city | emp_name | emp_phone | emp_sal

--------+-------------+----------+-------------+---------

 1 | San Antonio | juan | 39874622562 | 90000

 2 | Houston | jim | 87209887521 | 100000

 3 | Austin | sam | 87361598012 | 50000

(3 rows)

cqlsh:mykeyspace1>

Now you would like to get a more detailed output. You can do this by first issuing the

expand on command in the cqlsh session, and following it up with your original command.

cqlsh:mykeyspace1>

expand on;

Now Expanded output is enabled

cqlsh:mykeyspace1> select * from employee;

@ Row 1

-----------+-------------

 emp_id | 1

 emp_city | San Antonio

 emp_name | juan

 emp_phone | 39874622562

 emp_sal | 90000

@ Row 2

-----------+-------------

 emp_id | 2

 emp_city | Houston

 emp_name | jim

 emp_phone | 87209887521

 emp_sal | 100000

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

52

@ Row 3

-----------+-------------

 emp_id | 3

 emp_city | Austin

 emp_name | sam

 emp_phone | 87361598012

 emp_sal | 50000

(3 rows)

cqlsh:mykeyspace1>

Be sure to turn expanded output off once you’re done with it:

cqlsh:mykeyspace1> expand off;

Disabled Expanded output.

cqlsh:mykeyspace1>

 The tracing Command

The tracing command lets you enable and disable tracing of transactions running in the

database. You use tracing to diagnose performance issues. The system_traces keyspace

captures the information about the Cassandra internal operations. The table named

session in this keyspace captures the query results and high-level details. Cassandra

captures the detailed information for all operations it performs in the system_traces.

events table. I explain tracing in detail in Chapter 11.

 Cassandra Installation Directories
When you install Cassandra, the installer creates a bunch of directories and it’s a good

idea to learn what those directories are and what’s in them.

The location of the directories depends on whether you install Cassandra through a

tarball or a package. In general, a tarball installation creates all the directories under the

installation directory, and a package install will store its directories under the /etc and /

var directories.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

53

In my case, I installed Cassandra using a tarball, so I’ll show the directory structure

in my installation, which is as follows:

$ cd $CASSANDRA_HOME

$ ls

bin conf interface lib NEWS.txt pylib

CHANGES.txt doc javadoc LICENSE.txt NOTICE.txt tools

$

The following sections describe the key Cassandra directories and the important files

under those directories.

 The bin Directory
The bin directory contains various utilities and start scripts, as shown here:

$ ls

cassandra cqlsh.py sstableloader sstableutil.bat

cassandra.bat debug-cql sstableloader.bat sstableverify

cassandra.in.bat debug-cql.bat sstablescrub sstableverify.bat

cassandra.in.sh nano.save sstablescrub.bat stop-server

cassandra.ps1 nodetool sstableupgrade stop-server.bat

cqlsh nodetool.bat sstableupgrade.bat stop-server.ps1

cqlsh.bat source-conf.ps1 sstableutil

$

The bin directory is where you’ll find the following key utilities:

• cassandra: This utility helps you start a Cassandra instance,

as I explain in the next section.

• cqlsh: The cqlsh utility starts up the CQL shell that enables you to

write CQL queries to talk to Cassandra.

• nodetool: The nodetool utility is a Cassandra administrator’s best

buddy. It lets you perform numerous administrative tasks such

as checking the status of the cluster, decommissioning nodes,

adding nodes, etc. Throughout this book, I use nodetool to perform

numerous administrative tasks.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

54

• sstableloader: This tool enables you to load data into SSTables, as I

explain in Chapter 9.

 The tools Directory
The tools directory contains useful Cassandra tools for tasks such as stress testing and

for managing SSTables, as shown here:

• cassandra-stress: Cassandra’s load testing tool

• sstabledump: Utility that dumps the contents of an SSTable in JSON

format

• sstablesplit: Tool to split SSTables into multiple tables

• sstablemetadata: Prints metadata about an SSTable.

 The lib Directory
The lib directory contains all the external libraries that Cassandra may need during its

execution, such as JSON serialization libraries and the Apache commons libraries.

 The conf Directory
The conf directory contains everything you need to configure a Cassandra cluster.

It contains the configuration files that enable you to set the runtime properties for

Cassandra nodes as well as for the cluster racks. This directory also contains the files

where you set the environment for the database. Here’s a quick description of the key

files in this directory:

• cassandra.yaml: This is the main Cassandra configuration file.

• cassandra-env.sh: This is the file where you configure the Linux

settings for Java, the JVM, and the JMX.

• cassandra-rackdc.properties: This file defines the default

datacenter and rack used by various snitches such as

GossipingPropertyFileSnitch, Ec2Snitch, Ec2MultiRegionSnitch, and

GoogleCloudSnitch.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

55

• Cassandra-topology.properties: This file defines the default

datacenter and rack for the PropertyFileSnitch.

• jvm.options: Allows you to set the options that Cassandra will use to

start the JVM.

• commitlog_archiving.properties: Enables the configuration of the

commit log.

• metrics-reporter-config-sample.yaml: An example file that shows

how to configure Cassandra metrics.

• logback.xml: Logback configuration file that helps you configure

Cassandra’s logging settings.

 The Javadoc Directory
The javadoc directory contains a documentation website that was generated using the

JavaDoc tool. This is not a complete documentation, but rather the comments that are

stored in the Java code. To read the JavaDoc, open the javadoc/index.html file in your

browser.

 Starting and Stopping Cassandra
You start and stop Cassandra by issuing the cassandra command. The cassandra utility,

along with other key Cassandra administrative tools, is located in the $CASSANDRA_HOME/bin

directory.

 Starting Cassandra
You can start up Cassandra with the cassandra command. You can optionally add the

following flags:

• -f starts Cassandra in the foreground (by default, the cassandra

command starts the database in the background). Running in the

foreground means the server will print all logs to the standard output

and you can see them in your terminal window.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

56

• Cassandra always writes the server logs to the system.log file,

regardless of whether you run Cassandra in the background or in the

foreground.

• -R starts Cassandra as the root user.

Here’s an example of how to start a Cassandra instance (in the foreground, as the

user root):

$ cassandra -f -R

...

INFO 20:33:47 Configuration location: file:/cassandra/apache-

cassandra- 3.9/conf/cassandra.yaml

data_file_directories=[Ljava.lang.String;@175c2241; disk_access_mode=auto;

disk_failure_policy=stop; dynamic_snitch=true; dynamic_snitch_badness_

threshold=0.1; dynamic_snitch_reset_interval_in_ms=600000;

...

INFO 20:33:57 Initializing system_schema.keyspaces

INFO 20:33:59 Cassandra version: 3.9

INFO 20:34:00 Loading persisted ring state

INFO 20:34:00 Starting up server gossip

INFO 20:34:00 Updating topology for localhost/127.0.0.1

INFO 20:34:01 Node localhost/127.0.0.1 state jump to NORMAL

INFO 20:34:01 Starting listening for CQL clients on

localhost/127.0.0.1:9042 (unencrypted)...

I ran the cassandra command with the –f option, thus choosing to run the instance

in the foreground. Therefore, Cassandra will keep printing all logging information in the

terminal. If you start Cassandra in the default background mode, you can get the Linux

command prompt back after starting the Cassandra instance by pressing Enter.

Let’s review the abbreviated output I’ve presented here, as it teaches us a few

valuable things:

• Loading persisted ring state: Loads the ring state.

• Staring up server gossip: Statements pertaining to gossip indicate that

the server is initiating communications with the rest of the cluster’s

nodes.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

57

• Updating topology: Updates the cluster topology by adding any new

nodes that you’ve added to the cluster.

• Node … state jump to NORMAL: This means that Cassandra has

started up fine and is waiting for you to work with it through cqlsh or

by other means.

Once the server starts, Cassandra continually keeps writing to the system.log

file, updating it with information pertaining to internal database activities such as the

flushing of memtables and the compaction of SSTables.

 Checking Cassandra’s Status
You can check the status of an instance with the nodetool status command. The

nodetool utility works only when the Cassandra instance is running on a node. Nodetool

is an immensely useful Cassandra tool, and it’s a good idea to familiarize yourself with it.

Type nodetool –help to view all nodetool’s commands that you can execute:

$ nodetool -help

usage: nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]

 [(-pwf <passwordFilePath> | --password-file <passwordFilePath>)]

 [(-u <username> | --username <username>)]

 [(-pw <password> | --password <password>)] <command> [<args>]

The most commonly used nodetool commands are:

 assassinate Forcefully remove a dead node without

re- replicating any data. Use as a last

resort if you cannot removenode

 bootstrap Monitor/manage node's bootstrap process

 cleanup Triggers the immediate cleanup of keys no

longer belonging to a node. By default,

clean all keyspaces

 clearsnapshot Remove the snapshot with the given

name from the given keyspaces. If no

snapshotName is specified we will remove

all snapshots

 compact Force a (major) compaction on one or more

tables or user-defined compaction on given

SSTables

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

58

 compactionhistory Print history of compaction

 compactionstats Print statistics on compactions

 decommission Decommission the *node I am connecting to*

 describecluster Print the name, snitch, partitioner and

schema version of a cluster

...

If you run nodetool when there’s no Cassandra instance running, you’ll get an error:

$ nodetool status

nodetool: Failed to connect to '127.0.0.1:7199' - ConnectException:

'Connection refused'.

$

 The nodetool status Command

The nodetool status command lets you learn about the status of a Cassandra cluster.

Since I have the Cassandra instance running now, I can use nodetool to check on it:

$ nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID

 Rack

UN 192.168.177.132 203.5 KiB 256 100.0% b0ade950-

937a- 457c-95eb-d3032897eeb1 rack1

$

Each node in the output is represented by its IP address. The very first column in

nodetool’s status report shows the status and the state of the Cassandra instance.

Status can take two values: Up or Down.

State can take one of the following four values:

• Normal

• Leaving

• Joining

• Moving

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

59

In my case, I see a UN, which means Up/Normal. The Owns columns shows the

percentage of data owned by the node per data center times the replication factor of the

data. If for example, a node owns 33% of the data, the Owns column shows 67%, if the

replication factor is 2. Since right now there’s just a single node in my cluster, it owns

all (100%) of the data in the cluster. A bad data model will affect the distribution of data

among the nodes of a cluster, and checking the percentage of data owned by each node

is a good way to get to check if the data model is good.

 Testing the Server with the nodetool info Command

The nodetool info command, which shows information such as uptime and load, helps

you verify that the Cassandra instance is running properly, as shown here:

$ sudo nodetool info

ID : 99c43633-c691-4dee-b7af-35bc6e74dd67

Gossip active : true

Thrift active : false

Native Transport active: true

Load : 296.85 KiB

Generation No : 1489357081

Uptime (seconds) : 1714

Heap Memory (MB) : 120.53 / 1014.00

Off Heap Memory (MB) : 0.00

Data Center : datacenter1

Rack : rack1

Exceptions : 21

Key Cache : entries 32, size 2.56 KiB, capacity 50 MiB, 1344

hits, 1395 requests, 0.963 recent hit rate, 14400

save period in seconds

Row Cache : entries 0, size 0 bytes, capacity 0 bytes, 0 hits,

0 requests, NaN recent hit rate, 0 save period in

seconds

Counter Cache : entries 0, size 0 bytes, capacity 25 MiB, 0 hits,

0 requests, NaN recent hit rate, 7200 save period

in seconds

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

60

Chunk Cache : entries 30, size 1.88 MiB, capacity 221 MiB, 128

misses, 2738 requests, 0.953 recent hit rate,

866.987 microseconds miss latency

Token : (invoke with -T/--tokens to see all 256 tokens)

If this command nodetool hangs for over a minute or so, it means there’s something

wrong with your server’s network configuration.

 Stopping Cassandra

There’s no Cassandra command to stop a running instance. If you started Cassandra

in the foreground, press Control-C to stop Cassandra. If you started Cassandra in the

background, you can stop the instance by using the Linux kill command. First, find the

PID (Linux process ID) with the pgrep –f CassandraDaemon command and then kill it

with the Linux kill command:

$ sudo pgrep -f CassandraDaemon

2284

Alternatively, you can simply run the ps command to get Cassandra’s PID:

$ sudo ps auwx | grep cassandra

2284

Once you get the PID for Cassandra using one of the two methods I showed, you can

kill the instance thus:

$ sudo kill 2284

Alternatively, you can kill the instance in a single step by running the following

command:

$ sudo pkill –f CassandraDaemon

You’ll notice that there’s a script named stop-server in the $CASSANDRA_HOME/bin

directory. However, the script doesn’t stop anything! If you run it, it will suggest that you

read the script before using it.

echo "please read the stop-server script before use"

if you are using the cassandra start script with -p, this

is the best way to stop:

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

61

kill 'cat <pidfile>'

otherwise, you can run something like this, but

this is a shotgun approach and will kill other processes

with cassandra in their name or arguments too:

user='whoami'

pgrep -u $user -f cassandra | xargs kill -9

You can create a simple shell script such as the following to shutdown Cassandra:

#!/bin/bash

CASS_PI

FID='ps –ef |grep CasandraDaemon |grep –v grep |awk '{ print $2 }"

if [["$CASSPID" == '']]

then

 echo Cassandra is NOT running

 else

 kill $CASS_PID

 fi

 Starting and Stopping with the service Command
You can also start Cassandra as a service (Java server process) for a packaged

installation. You’ll find the startup scripts in the /etc/init.d directory. The service runs

under the Cassandra user.

On a Debian system, the Cassandra service will automatically start following the

installation of the software. You can check the service’s status, stop, and restart it with

following commands:

$ sudo service cassandra status

$ sudo service cassandra stop

$ sudo service cassandra start

When you run the start service command in a cluster with multiple nodes, on

initial startup you must start each node one at a time, beginning with the seed nodes.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

62

If you try to run the service cassandra command in a tarball installation, you’ll

receive an error:

service cassandra status

● cassandra.service
 Loaded: not-found (Reason: No such file or directory)

 Active: inactive (dead)

#

 Clearing Cassandra Data
Sometimes you may need to clear Cassandra data. You may need to remove just the

data in the data directory, or from all default directories. I explain the procedures for

removing the directories in this section.

The procedure to clear Cassandra data is similar in both package installations and

standalone installations, differing only in the location of the default directories.

To clear the data from all default directories in a package installation, do the

following:

$ cd install_location

$ rm –rf data/*

This will remove data from the default directories, including the commit log and the

saved-caches directories.

To remove just the data directory, do the following:

$ sudo rm -rf data/data/*

You can remove all data in a package installation (from the default directories) by

doing this:

$ sudo stop service cassandra

$ sudo rm –rf /var/lib/cassandra/*

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

63

 Verifying the Cassandra Version
The output of the cassandra command tells you the Cassandra version. You can also

find the version by running the cassandra command with the –v option:

$./cassandra -v

3.9

$

The –v option simply prints the Cassandra version and quits. You can also execute

the show version command to get version info:

cqlsh> show version;

[cqlsh 5.0.1 | Cassandra 3.7 | CQL spec 3.4.2 | Native protocol v4]

cqlsh>

The nodetool version command also shows the Cassandra version:

$ nodetool version

ReleaseVersion: 3.11.0

$

 Configuring cqlsh
The cqlsh utility is highly configurable, and you can configure it via a dedicated

configuration file or by choosing from several options at the command line. Let’s review

both ways of configuring cqlsh.

 Configuring Through the cqlshrc Config File
You can configure various properties in the cqlshrc file. Cassandra provides a cqlshrc.

sample file for you, and you can rename it to cqlshrc. The cqlshrc.sample file is located

in the $CASSANDRA_HOME/conf directory. Here’s a partial listing of the cqlshrc.sample file:

cql]

;; A version of CQL to use (this should almost never be set)

; version = 3.2.1

[connection]

;; The host to connect to

hostname = 127.0.0.1

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

64

;; The port to connect to (9042 is the native protocol default)

port = 9042

;; Always connect using SSL - false by default

; ssl = true

;; A timeout in seconds for opening new connections

; timeout = 10

;; A timeout in seconds for executing queries

; request_timeout = 10

...

 Configuring by Specifying Options at the Command Line
You can specify several options for cqlsh at the command line. To take a simple example,

you can specify a non-default location for the cqlsh config file, cqlshrc, with the –

cqlshrc option:

$ cqlsh –cqlshrc $CASSANDRA_HOME/newconf

 Finding the Versions
You can find the versions of not only Cassandra, but also cqlsh, CQL, and the native

protocol, with the same VERSION command:

cqlsh> show version

[cqlsh 5.0.1 | Cassandra 3.9 | CQL spec 3.4.2 | Native protocol v4]

cqlsh>

 Cqlsh Options
Cqlsh comes with numerous options to facilitate your work, and I describe the most

useful options in the following sections.

 Clearing the Screen

You can clear the screen by typing either clear or CLS at the cqlsh command line.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

65

 Running Commands from a File

Often, you’ll want to run a set of commands one after the other. At times like this, you

can simply store all the commands in a text file using a text editor such as vi or nano. For

example, the following two lines are in a file named myfile:

use mykeyspace1

select * from employees

Once you create the text file with the cqlsh commands, you can invoke the

commands with the source command, as shown here:

cqlsh> source '/cassandra/test/myfile';

 Putting Cassandra Through Its Paces
Now that you’ve installed, configured, started, and stopped the Cassandra instance,

you’ve gotten over a major hurdle. To see how Cassandra functions, it’s a good idea to

create some test data at this point.

In this section, I’ll connect to CQL shell and create a keyspace and a table and then

I’ll query from that table. Just follow along for now, and I explain the syntax and other

interesting stuff in Chapters 4 and 5.

 Connecting to the CQL Shell
You can connect to the CQL shell by typing cqlsh at the command prompt, as shown

here:

$./cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.9 | CQL spec 3.4.2 | Native protocol v4]

Use HELP for help.

cqlsh>

Note that the cluster to which cqlsh connects is the Cassandra cluster named Test

Cluster, which happens to be the default name for a Cassandra cluster.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

66

In this case, I didn’t specify a Cassandra node that cqlsh ought to connect to, so it

connects to the Cassandra instance running on localhost. If you’re running the cqlsh

command in a multi-node cluster, you can connect to a specific node in a cluster. To do

this, you specify the hostname and port on the command line:

$ cqlsh 192.168.177.140 9160

 Creating a Keyspace
As you’ll learn shortly, to store data in a Cassandra table, you must first create a

keyspace. Once you create this keyspace, you can create tables inside it for storing data.

Here’s how you create a keyspace named testdata:

cqlsh> create keyspace testdata with replication = {'class' :

'SimpleStrategy', 'replication_factor' : 2};

cqlsh>

This example creates a keyspace named testdata with a replication level of 2. Never

mind the syntax of the command; you’ll learn all that in Chapter 4.

 Creating a Table
Now that you have your keyspace ready, it’s time to create your first Cassandra table!

Before you issue the create table command, run the use testdata command so

Cassandra can create the table in the testdata keyspace.

cqlsh> use testdata;

cqlsh:testdata>

cqlsh:testdata> create table quarters (id int PRIMARY KEY, name text);

You can verify that Cassandra created your new table by running the describe

tables command:

cqlsh:testdata> describe tables;

quarters

cqlsh:testdata>

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

67

 Inserting Test Data
Let’s insert some test data into the quarters table.

cqlsh:testdata> insert into quarters (id,name) VALUES(1, 'Spring');

cqlsh:testdata> insert into quarters (id,name) VALUES(2, 'Summer');

cqlsh:testdata> insert into quarters (id,name) VALUES(3, 'Fall');

cqlsh:testdata> insert into quarters (id,name) VALUES(4, 'Winter');

cqlsh:testdata>

 Querying the Table
Let’s query the quarters table.

cqlsh:testdata> select * from quarters;

 id | name

----+--------

 1 | Spring

 2 | Summer

 4 | Winter

 3 | Fall

(4 rows)

cqlsh:testdata>

 Getting the History of Your Commands
You can get a history of all your CQLSH as well as Nodetool commands by going to the

directory named .cassandra under the /home directory of the user as which you run

these commands.

ubuntu2:/home/samalapati/.cassandra$ ls -altr

total 16

-rw------- 1 samalapati samalapati 5 Mar 5 17:22 cqlsh_history

-rw-rw-r-- 1 samalapati samalapati 3156 Mar 11 11:44 nodetool.history

...

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

68

Inside the hidden directory .cassandra you’ll find two files: cqlsh_history and

nodetool.history, which store the history of all the cqlsh and nodetool commands

that you have run, respectively.

You now have a spanking new Cassandra single-node cluster. It’s time to move on to

a multi-node cluster in the next chapter.

 Summary
You can install Cassandra in several ways: through the source, a binary package, or from

a through a binary tar ball.

When dealing with Casandra for the first time, you can start with just a handful of

configuration parameters, and learn to configure the rest of the properties as you learn

more about Cassandra.

Learning how to run the CQL shell commands will help enhance your productivity.

Go through the various Cassandra directories, such as bin, conf, tools, and logs, so

you can familiarize yourself with the entire toolkit that Cassandra offers. This tour of the

directories also helps you learn where Cassandra stores various things such as data, logs,

snapshots, and various other artifacts.

It’s a good idea to create start and stop scripts for your clusters.

Chapter 2 InstallIng Cassandra and gettIng started wIth CQl shell

69
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_3

CHAPTER 3

Deploying a Cassandra
Cluster
In Chapter 2, you learned how to install and configure a single-node Cassandra

cluster. The idea behind starting with a simple one-node cluster was to get novices

comfortable with the Cassandra terminology and learn the basics of starting and

stopping Cassandra nodes.

The real strength of Cassandra, however, lies in its distributed architecture, so in this

chapter, I show how to create and configure a multi-node cluster.

You’ll learn how to create, start, and stop a multi-node cluster, both with a single data

center and multiple data centers. The chapter also shows you how to create a multi-node

Cassandra cluster in the cloud, in an Amazon Web Services environment.

 Planning a Cluster Deployment
When you are planning the deployment of a Cassandra cluster, you must figure out both

the number of nodes you want to start out with and the configuration of those nodes.

For small development clusters, the configuration of the nodes isn’t critical. However,

choosing the right configuration for memory, CPUs, disk, and network is critical for a

production deployment.

 Using cassandra-stress for Planning a Production
Deployment
Cassandra offers a great tool for stress testing a cluster before you start production

operations on that cluster. The tool is named cassandra-stress, and I explain it in detail in

Chapter 11, which deals with tuning Cassandra performance.

70

 Choosing Memory
Regardless of whether you use virtual or dedicated hardware, you need to ensure that

you have enough memory for your production Cassandra environments. Although

Cassandra needs only a minimum of 8GB of RAM, the server should have at least 64GB

to 512GB of RAM.

There is no “ideal” amount of RAM for a Cassandra node. The amount of memory

depends on the amount of data that the node will process. Remember that data writes

first go to tables in memory (memtables) and from there to the SSTables that live on disk.

If a Cassandra node has too little memory, it’ll end up with smaller memtables,

meaning that the database must flush a larger number of SSTables to disk. This means

that queries will need to perform the more expensive disk I/O to read a large number of

files on disk. The bottom line is that the more RAM you can purchase, the better.

 Choosing CPUs
Cassandra is optimized for writing, so the CPU is the limiting factor for performance.

Workloads that insert data are CPU-bound before they become memory-bound.

DataStax recommends that you use dedicated hardware, with an ideal CPU count of

16 processors.

 Network Considerations
Cassandra is a distributed database, and therefore the network needs to transmit

vast chunks of data for both the read and write activity and for data replication. The

recommended bandwidth for the network is 1GB or higher.

 Choosing Storage
Optimal storage choices include the type of storage, such as SAN and other storage types,

as well as the size of the storage capacity. Understanding how Cassandra uses storage

also helps in making optimal storage choices.

Cassandra can make smart use of the high IOPs offered by SSD. Let’s say you

have a set of tables whose data you only read rarely. You can use SSDs for frequently

used column families to increase the I/O speed and use normal storage drives for the

infrequently accessed data.

Chapter 3 Deploying a CassanDra Cluster

71

 NFS, SAN, and NAS Not Advisable

DataStax recommends that you not use SAN, NDFS, or NAS storage for Cassandra

environments. DataStax also recommends that you not use SAN or NAS storage for an

on-premise Cassandra cluster.

SAN isn’t advisable due to the following reasons:

• SAN’s return on investment isn’t attractive in a Cassandra

environment, as you keep scaling the cluster.

• Since Cassandra’s I/O is often higher than the ability of the array

controller, SAN becomes a bottleneck, or even worse, becomes a

single point of failure.

• Despite SSD and high-speed networks, SAN adds latency to

Cassandra’s operations.

• SAN transport, occurring simultaneously with Cassandra traffic, can

saturate your network, causing problems to all network users.

If you must use SAN, you need expertise in investigating issues such as SAN fiber

saturation.

Network-attached storage (NAS) devices are not recommended because they

cause network bottlenecks due to high I/O wait times for reads and writes. The

bottlenecks may stem from router latency as well as issues with the network interface

cards (NICs).

Finally, DataStax does not recommend Network File System (NFS) storage due to its

inconsistent behavior during the deletion and moving of files.

 How Cassandra Uses Disk Storage

The key to understanding Cassandra’s storage requirements is to understand how and

when Cassandra writes data to disk. Cassandra writes data to disk under the following

scenarios:

• When it writes to the commit log

• When it flushes memtables to SSTable data files

• When it periodically compacts the SSTables (compaction temporarily

increases disk usage)

Chapter 3 Deploying a CassanDra Cluster

72

 Compaction and Storage Requirements

Compaction requires enough free space on disk to complete the compaction work. The

storage requirements for compaction depend on the size of all your SSTables, as well as

the compaction strategy you adopt.

In the worst case, when you use the compaction strategy called

SizeTieredCompactionStrategy, you need free storage space that is 50 percent of the sum

of all the SSTables that the database is compacting.

I’ll explain the storage requirements for compaction in Chapter 11.

 Estimating Usable Disk Capacity

Cassandra uses disk storage mostly for storing the commit log and the data directories,

the latter of which stores the SSTable data. In addition to this, it requires some free

storage to perform compaction work. Ideally, you should store the commit log on a

different storage drive from where you store the data directories.

You can use the following method to calculate the total usable storage capacity of

your cluster.

 1. Calculate the total raw capacity of the physical disks.

raw-capacity – size of disk * number of disks per server

Example: 12 disks * 7.2 TB = 86.4 TB

 2. Calculate the usable disk space by deducting 10% for formatting

overhead.

formatted disk space – raw capacity * 0.9

Example: 86.4 * 0.9 = 76.76 TB

 3. Since Cassandra requires disk storage for compaction and repair

operations, you can’t use all of a disk’s formatted disk space for

the commit log and the data directories. DataStax recommends

that you allocate only 50-80 percent of a storage drive’s capacity

for storing data and leave the rest for compaction activity.

In this case, I have about 77TB of formatted disk space, so I

can use anywhere between 38.5TB to 62TB of it for storing data

(SSTables + commit log).

Chapter 3 Deploying a CassanDra Cluster

73

 Choosing Production Settings for a Linux Server
As mentioned earlier, this book uses Linux servers for running a Cassandra cluster. You

can run Cassandra on most Linux versions. I use an Ubuntu 16.04 LTS server for all the

work in this book.

 Java Version

You must use the latest version of Java, and you can use either the Oracle Java Platform

or OpenJDK. I use the Oracle Java Platform, Standard Edition 8 JDK.

 Linux Server and Kernel Settings

To optimize an Apache Cassandra installation, follow DataStax’s recommendations,

which I explain in the following sections.

 Synchronize the Clock and Enable NTP

Cassandra overwrites a column only if there’s a newer version with a more recent

timestamp. Synchronizing the clocks on all the nodes of a cluster is thus critical. You can

use NTP (Network Time Protocol) or another method for synchronizing the clocks.

You must set up one of the cluster’s servers as an NTP server if your cluster doesn’t

have access to the Internet. Synchronize the network time on all the cluster’s nodes by

enabling the NTP daemon through editing the /etc/sysconfig/ntpd file.

 Disable the zone_reclaim_mode on NUMA Systems

To avoid potential performance problems, you must disable the zone_reclaim_mode.

You can check if the mode is enabled by doing this:

$ cat /proc/sys/vm/zone_reclaim_mode

0

$

If the output is not a zero, disable the mode with the following command:

$ echo 0 > /proc/sys/vm/zone_reclaim_mode

Chapter 3 Deploying a CassanDra Cluster

74

 TCP Settings

You need to bump up the default TCP settings, which are adequate only for a small

setup. For a busy production environment, with hundreds or thousands of concurrent

connections, you need to set the following values for the TCP parameters by editing the

/etc/sysctl.conf file:

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

net.core.rmem_default = 16777216

net.core.wmem_default = 16777216

net.core.optmem_max = 40960

net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

You must reboot the Linux server for the new TCP settings to go into effect. If you

want to change the settings without restarting the server, you can issue the following

command:

$ sudo sysctl –p /etc/sysctl.conf

 User Resource Limits

You must set the following limits on various user resources, in the /etc/security/

limits.conf file:

<cassandra_user> - memlock unlimited

<cassandra_user> - nofile 100000

<cassandra_user> - nproc 32768

<cassandra_user> - as unlimited

In addition, you also need to include the following setting:

vm.max_map_count = 1048575

If you are using a Red Hat-based Linux server, you must also set the following nproc

limit in the /etc/security/limits.d/90-nproc.conf file:

cassandra_user - nproc 32768

Chapter 3 Deploying a CassanDra Cluster

75

 PAM Security Settings

For many Linux versions, you must enable the pam_limits.so module. You do this by

uncommenting the following line in the /etc/pam.d/su file:

session required pam_limits.so

 Setting the Java Heap Size

Tuning Java garbage collection (GC) is the single biggest thing you can do to tune a

Java application. Cassandra runs in a JVM, so setting the right heap size is critical for

performance.

There are several Java garbage collection algorithms. The most common is the

Concurrent-Mark Sweep (CMS) garbage collector. However, in newer releases of Java,

the G1 (Garbage First) garbage collector is frequently the recommended garbage

collection algorithm.

Here’s what you need to know about choosing the Java garbage collector:

• CMS involves more time and effort to tune it, whereas G1 is easy to

configure and mostly tunes itself.

• CMS is more appropriate for fixed workloads and G1 for workloads

that are frequently changing, with the cluster running different

processes.

• For smaller environments that use a heap size that’s less than 14GB

and where latency is a major concern, the recommended collector

is CMS.

• For environments that use a heap size of between 14GB-64GB, G1

is better than CMS. Unlike CMS, which stops all application threads

during garbage collection, the G1 garbage collector’s threads scan the

heap’s regions and the collector performs the heap compaction while

the application threads are running.

• You must set the heap size to something between 0.25 and 0.5 of the

total RAM on the server running the Cassandra instances.

Chapter 11 explains Java garbage collection in detail and shows how to review GC

logs to configure the optimum heap size for Cassandra.

Chapter 3 Deploying a CassanDra Cluster

76

 Disabling Swap

To avoid a high latency due to swapping under low free-memory conditions, you should

disable swap entirely. Here is how you do it:

$ sudo swapoff –all

For this change to survive a reboot, you must also remove the swap file related

entries from the /etc/fstab file.

By default, most Linux operating systems come with a default swappiness setting

of 60. If you set swappiness to zero, Linux will avoid using the disk unless it runs out

of memory, whereas setting it to 100 means that the OS will instantly swap programs

to disk. As you can tell, a setting of 60 means that the OS will use the swap file on disk

often, starting from the time when the memory usage reaches around half the OS RAM

allocation. If you turn swappiness down to 10, for example, the OS will use the swap file

on disk only when the RAM usage is around 90 percent.

The Linux administrator can change the system swappiness value by adding the

following to the /etc/sysctl.conf file:

vm.swappiness=10

The administrator must reboot the server for the new swappiness setting to take

effect. There is no fixed rule on how low you must set the swappiness level; many experts

recommend setting it to 1.

 Setting the Limits

Limit the cluster resources that users can utilize by setting shell limits. You can do this

by editing the /etc/security/limits.conf file, which dictates the limits on how users

can use resources. You use the limits.conf file to configure “soft” and “hard” limits on

important operating system properties such as file sizes, the stack size, and the priority

levels (niceness) of processes.

Add the following lines to your /etc/security/limits.conf file:

soft nofile 32768

hard nofile 32768

hard nproc 32768

soft nproc 32768

Chapter 3 Deploying a CassanDra Cluster

77

The nofile attribute limits the number of open descriptors per user process and

nproc specifies the maximum number of processes. The soft limit settings connote

warnings and the hard limit settings are the actual resource limits.

 The Java Hugepages Setting

By default, in most new Linux distributions, the transparent hugepages feature is

enabled, meaning that when handling transparent hugepages, the kernel allocates

memory in chunks sized 2MB each, rather than 4K. Sometimes, when dealing with

applications that allocate memory in 4K-sized pages, the server performance takes a

hit when the kernel needs to defragment the large 2MB pages, which are fragmented by

many tiny 4K pages.

You can avoid the performance hit due to the defragmentation by disabling defrag

for hugepages, as shown here:

$ echo never | sudo tee /sys/kernel/mm/transparent_hugepage/defrag

 Installing PDSH
Since you’ll be managing multi-node clusters, it’s a good idea to acquire a tool that

can help you simultaneously run commands or send files to multiple nodes. You can

make cluster administration easy by using a tool such as pdsh to simultaneously run

commands on your entire cluster. I show you how to download, install, and use this tool.

The pdsh utility is a variant of the rsh command and is a high-performance parallel

shell utility. Whereas rsh lets you run commands on a single remote host, pdsh lets you

simultaneously run commands on multiple remote servers.

When you need to issue the same command across all the node of a Cassandra

nodes, simply issue the command from a single server using pdsh, and that’ll executes

the command across the cluster.

You can issue several types of Linux commands across the cluster using pdsh,

including commands that view the contents of a file.

You can use pdsh by issuing commands at the command line, or by running the tool

interactively. When run interactively, pdsh prompts you for commands and executes

them when a carriage return occurs. You can also specify your commands in a file.

The pdsh distribution also includes a parallel remote copy utility named pdcp, which

copies files from a local host to a group of remote hosts in parallel.

Chapter 3 Deploying a CassanDra Cluster

78

You can install pdsh in the following manner:

rpm –Uvh http://download.fedoraproject.org/pub/epel/6/i386/

epel- release- 6-8.noarch.rpm

yum install pdsh

Using pdsh to perform remote operations is straightforward. Here’s an example that

shows how to check the date on all nodes in a cluster, by running a single command

from any node in the cluster:

pdsh –w "all_nodes" date

The parameter all_nodes points to a file that lists all the nodes in the cluster. You

can also exclude some servers if you wish by specifying the appropriate option when

issuing a pdsh command.

 Initializing a Cassandra Multi-Node Cluster
(Single and Multiple Datacenters)
In Chapter 2, you learned how to configure a single-node Cassandra cluster. In this

chapter, you’ll learn how to configure a multi-node Casandra cluster, first with a single

datacenter and later with multiple datacenters.

In a multiple-node cluster, Cassandra automatically discovers nodes, so to set up

a Cassandra cluster, you simply install Cassandra on all the nodes, as I show in the

following section. Once you install Cassandra, you start the Cassandra instances, and

they automatically form a cluster. All you need to do is to let each node know the IP

addresses of the rest of the nodes; that’s it!

As you can recall from Chapter 1, a datacenter is nothing but a grouping of nodes

and represents a set of nodes that have the same replication properties. A datacenter can

be logical or physical.

In the discussion that follows, I create a Cassandra cluster from scratch. If you are

instead turning a single-node cluster into a multi-node cluster, you must first stop the

Cassandra server and clear the data, as explained in Chapter 2.

The steps I show here will enable to you to install, configure, and run a multi-node

cluster using a single datacenter. In order to set up a multi-node cluster with multiple

datacenters, you follow the same steps but configure multiple datacenters in the

cassandra-rackdc.properties file, as I explain later in this section.

Chapter 3 Deploying a CassanDra Cluster

79

 Prerequisites
Before you can get your multi-node cluster going, you must take care of some

prerequisites, as explained in the following sections.

 Configuring Firewall Port Access

When you have a single-node cluster, the firewall access ports aren’t a big deal. In a

multi-node cluster, you must ensure that if a firewall is running on the nodes hosting

the Cassandra cluster, you must open several ports, including some Cassandra ports, to

enable the ports to communicate among themselves.

If you forget to open the ports after starting Cassandra on one of these nodes, the

node won’t join the cluster and will act as a standalone Cassandra instance.

There are three sets of ports you must open: public ports, Cassandra inter-node

ports, and Cassandra client ports.

Public Ports

Port Number 22, which serves as the SSH port

Cassandra Inter-Node Ports

Port 7000: For Cassandra inter-node cluster communication

Port 7001: For Cassandra SSL inter-node cluster communication

Port 7199: For Cassandra JMX monitoring

Cassandra Client Ports

Port 9042: Cassandra native client port

Port 9160: Cassandra client port (Thrift)

 Selecting a Name for the Datacenter

Before you create the multi-node cluster, select a naming convention for each datacenter

and rack in the cluster. The datacenter name is a required parameter and serves to

ensure that nodes that don’t belong to this datacenter don’t attempt to join it.

Tip once you assign a name for a datacenter, you can’t change it later.

Chapter 3 Deploying a CassanDra Cluster

80

In this case, I select datacenter1 as the name of the datacenter.

 Gathering the IP Addresses for All of the Nodes

You need to get the IP addresses for all the nodes in the cluster. In this case, I have six

nodes and their IP addresses are

node0 192.168.177.132

node1 192.168.177.133

node2 192.168.177.134

node3 192.168.177.135

node4 192.168.177.136

node5 192.168.177.137

The six-node cluster will span two racks and there’s one datacenter.

 Selecting the Nodes to Serve as Seed Nodes

A seed provider is one of the nodes in the cluster that helps Cassandra nodes to find each

other and learn the topology of the ring. This is a required parameter for a multi-node

cluster.

You specify the seed nodes(s) for a cluster by configuring the seed_provider

parameter in the cassandra.yaml file.

You configure the seed_provider parameter by setting the value for the seeds

attribute of this parameter, as shown here:

seed_provider:

 - class_name: org.apache.cassandra.locator.SimpleSeedProvider

 parameters:

 - seeds: "192.168.177.132,192.168.177.135"

You provide the list of seed nodes as a comma-delimited set of IP addresses

(“<ip1>, <ip2>, <ip3>”).

You can make do with a single seed node per datacenter, but the best practice is

to have more than one seed node. In this case, I chose to have two seeds, so my seeds

attribute has the value

"192.168.177.132,192.168.177.135"

Chapter 3 Deploying a CassanDra Cluster

www.allitebooks.com

http://www.allitebooks.org

81

 Configuring the Cluster
You configure the cluster properties in the all-important cassandra.yaml file, which you

can find in the $CASSANDRA_HOME/conf directory.

As I mentioned in Chapter 2, there are hundreds of parameters you can configure

in this file, but listing a bunch of them here doesn’t do you a whole lot of good. I

therefore list a minimal set of properties to start the new cluster, meaning that the rest

of the parameters will be using their default values. As you move through the rest of the

chapters, you’ll find explanations for all the configuration parameters you can specify in

the cassandra.yaml file.

Set the following properties in the cassandra.yaml file for each node of the cluster.

Alternatively, you can set the properties in one node and copy the file over to the nodes

using the pdsh tool described earlier.

 The num_tokens Property

The num_tokens property defines the number of tokens Cassandra assigns to a specific

node. The higher the number of tokens relative to the rest of the nodes, the greater the

amount of data this node will store. Since ideally all nodes are of equal size, you want all

nodes to have the same number of tokens.

Note the initial_token property is a legacy parameter that you must leave
alone. if you specify the initial_token property, it’ll override the num_tokens
property.

The num_tokens property helps create virtual nodes or vnodes, which help break up

the token range into many small ranges. Each Cassandra node is then assigned a set of

the vnodes. Cassandra calculates the token ranges for each cluster node based on that

node’s num_tokens value.

Vnodes are especially useful when dealing with clusters that have machines with

different configuration and capacities. You can assign more vnodes to machines that

have more computing resources available by specifying a higher value for the num_

tokens property for these nodes when compared to the rest of the nodes.

Since vnodes help break up the token ring into multiple smaller ranges, they help

load cluster operations more evenly across the nodes, and thus speed up several

operations such as bootstrapping new nodes.

Chapter 3 Deploying a CassanDra Cluster

82

The default as well as the recommended value for the num_tokens property is 256.

 The –seeds Property

I’ve already explained the –seeds property, which requires you to specify the internal IP

address for the node(s) you’ve selected as the seed node(s0).

 The listen_address Parameter

The listen_address parameter refers to the IP address of the node. This is the network

address to bind to and tell other Cassandra nodes to connect to. You can set this or leave

it alone. If you don’t set this property, Cassandra gets the local address from the host,

but sometimes it’s unable to get the correct address, in which case you must provide the

listen_address in the cassandra.yaml file.

You must not set the value 0.0.0.0 for the listen_address property.

 The rpc_address and broadcast_rpc_address Properties

The rpc_address property specifies the address to bind the Thrift RPC service and native

transport server. You can leave the rpc_address property blank, in which case Cassandra

picks it up based on the hostname you’ve configured for the node.

Unlike in the case of the listen_address property, you can specify the value 0.0.0.0

for the rpc_address property, in which case you must also set the value for the property

broadcast_rpc_address:

broadcast_rpc_address: 192.168.177.135

 The endpoint_snitch Option

In a Cassandra cluster, a snitch serves two functions:

 1. It tells Cassandra about the network topology so it can efficiently

route its requests.

 2. It enables Cassandra to spread the data copies (replicas) around the

cluster, thus avoiding correlated failures. Cassandra uses datacenters

and racks to logically group a cluster’s nodes. It tries its best not to

store multiple replicas of the same piece of data on a single rack.

Chapter 3 Deploying a CassanDra Cluster

83

Cassandra offers a half dozen snitches, but for production environments, the go-to

option is the GossipingPropertyFileSnitch.

When you select the GossipingPropertyFileSnitch option, you specify the

datacenter and the rack in the cassandra-rackdc.properties file on that node.

Cassandra then propagates this information to the other nodes via gossip.

 The auto_bootstrap Property

The default value for the auto_bootstrap property is true, and the parameter is not

present in the cassandra.yaml file. This parameter makes new non-seed nodes migrate

the data to themselves. When you’re initializing a new cluster with no data, add the

following property:

auto_bootstrap=false

With the minimal set of configuration properties I’ve listed here, my cassandra.yaml

file looks as follows:

cluster_name: "MyCluster'

num_tokens: 256

 seed_provider:

 - class_name: org.apache.cassandra.locator.SimpleSeedProvider

 parameters:

 - seeds: "192.168.177.132,192.168.177.135"

listen_address:

endpoint_snitch: GossipingPropertyFileSnitch

 Configuring the Datacenter and Rack Names

In my cluster, I have a single datacenter and a single rack. I must specify the datacenter

and rack names in the cassandra-rackdc.properties file.

indicate the rack and dc for this node

dc=DC1

rack=RACK1

I need to do this on all six nodes of the cluster.

Chapter 3 Deploying a CassanDra Cluster

84

At this point, the installation and configuration of Cassandra is complete. I’ll show you

how to start up this cluster in the section “Starting and Stopping the Multi-Node Cluster.”

 Initializing the Cluster with Multiple Datacenters
The previous discussion shows how to set up a Cassandra cluster that uses a single

datacenter and a single rack. Configuring a cluster that uses multiple datacenters and

racks is just as easy! You follow the same steps, except that you configure multiple

datacenters and racks in the cassandra-rackdc.properties file.

In the single datacenter case, I specified the following properties in the

cassandra- rackdc.properties file:

dc=DC1

rack=RACK1

I want to set up two datacenters, each with three of my six Cassandra nodes. In order

to do this, I configure the cassandra-rackdc.properties file in the following way.

In the cassandra-rackdc.properties file for the first three nodes, 192.168.177.32, 192,

168,177.33, and 192.168.177.34, I specify the following values for the datacenter and rack:

dc=dc1

rack=rack1

For the other three nodes of my six-node cluster, I specify the following values:

dc=dc2

rack=rack2

That’s all you need to do to create a cluster with multiple datacenters (I changed the

rack to rack2, but I really didn’t need to do this).

 Starting and Stopping the Multi-Node Cluster
You have your cluster all configured and ready to go, except that you need to start it up.

To start the cluster, first start the two seed nodes, one after the other. Once you do this,

start the other four nodes one after the other. Since this is a tarball installation, I start the

nodes with the following command:

$ $CASSANDRA_HOME/bin/cassandra

Chapter 3 Deploying a CassanDra Cluster

85

You can now check that the ring is running by doing this:

CASSANDRA_HOME/bin/nodetool status

To be ready for usage, all six nodes should be showing the status UN (Up Normal).

You can use the following set of scripts to start and stop your multi-node cluster.

 Script for Starting the Cluster

You can’t manage a cluster without scripts. You can write scripts that are more

sophisticated than what I offer here, but this one does the job in helping start a cluster.

In this example I have three nodes in the Cassandra cluster.

#!/bin/bash

SERVERS="

192.168.177.131

192.168.177.132

192.168.177.133"

for SERVERNAME in $SERVERS; do

sleep 30

 echo Starting node $SERVERNAME...

 sudo –u cassandra ssh $SERVERNAME "usr/share/cassandra/bin/cassandra"

done

The sleep command is there to provide a short gap before starting each server. In a

production cluster, running this script without the sleep command may cause issues.

 Scripts for Stopping the Cluster

You know that you can use the cassandra command to start a cluster but not to stop

it. You must kill the PID of the running Cassandra instance to stop the instance. To

automate the stopping of the Cassandra instance for a set of nodes, you can use the

following strategy:

• Use the first script to iterate through the list of servers and run your

stop script.

• Use a second script that stops the cassandra service by killing the PID

of the Cassandra instance.

Chapter 3 Deploying a CassanDra Cluster

86

Here are the two scripts.

Script 1

Use this script to call the cassandra-kill.sh script.

#!/bin/bash

SERVERS="

192.168.177.131

192.168.177.132

192.168.177.133"

for SERVERNAME in $SERVERS; do

 echo Starting node $SERVERNAME...

 sudo –u cassandra ssj $SERVERNAME "/usr/share/cassandra/bin/cassandra"

done

Script 2 (cassandra-kill.sh)

You can create a simple shell script such as the following to shut down a Cassandra

node:

#!/bin/bash

CASS_PID='ps –ef |grep CasandraDaemon |grep –v grep |awk '{ print $2 }"

if [["$CASSPID" == '']]

then

 echo Cassandra is NOT running

 else

 kill $CASS_PID

 fi

 The Startup Process of the Nodes in a Cluster
In Chapter 2, I showed the startup process for a single node. In this chapter, I show how

to create a cluster with multiple nodes. Note how when you start the first node, it shows

that it’s ready for work and shows the other nodes joining the cluster. In this case, I am

reviewing the startup messages for the node 192.168.177.132.

INFO 14:12:49 Node /192.168.177.132 state jump to NORMAL

INFO 14:12:49 Waiting for gossip to settle before accepting client

requests...

INFO 14:12:57 No gossip backlog; proceeding

Chapter 3 Deploying a CassanDra Cluster

87

INFO 14:12:58 Starting listening for CQL clients on /0.0.0.0:9042

(unencrypted)...

INFO 14:12:58 Binding thrift service to /0.0.0.0:9160

INFO 14:12:58 Listening for thrift clients...

INFO 14:12:59 Handshaking version with /192.168.177.135

INFO 14:12:59 Scheduling approximate time-check task with a precision of

10 milliseconds

INFO 14:12:59 Handshaking version with /192.168.177.135

INFO 14:13:01 Node /192.168.177.135 has restarted, now UP

INFO 14:13:01 Updating topology for /192.168.177.135

INFO 14:13:01 Updating topology for /192.168.177.135

INFO 14:13:01 InetAddress /192.168.177.135 is now UP

INFO 14:13:01 Handshaking version with /192.168.177.135

INFO 14:13:01 Node /192.168.177.135 state jump to NORMAL

Similarly, when you bring down the second node (or it crashes), the messages from

the first node show that information:

INFO 14:13:42 Handshaking version with /192.168.177.135

INFO 14:19:14 InetAddress /192.168.177.135 is now DOWN

 Common Errors When Starting Out
You could run into numerous errors when running a distributed database such a

Cassandra. I want to note a pair of common issues and how to overcome them.

 Change in a Node’s IP Address

When you’re running Cassandra on a virtual machine, sometimes the node’s IP address

can change. When this happens, the rest of the nodes of course can’t connect to this

node and it’ll show up as a down node.

The fix for the change in an IP address is simple. You just need to edit the

cassandra.yaml file for this node and change the old IP address to the new IP address

everywhere you’ve set the IP address of the node, such as the listen_address

configuration property.

Chapter 3 Deploying a CassanDra Cluster

88

 A Schema Version Mismatch

Sometimes you’ll run into an error when creating a keyspace or a table, such as the

following, where Cassandra complains about a version mismatch:

cqlsh> create keyspace mykeyspace2

 ... with replication = {'class': 'NetworkTopologyStrategy',

'datacenter1' :2}

 ... and durable_writes = false;

Warning: schema version mismatch detected, which might be caused by DOWN

nodes; if this is not the case, check the schema versions of your nodes in

system.local and system.peers.

OperationTimedOut: errors={'192.168.177.135': 'Request timed out while

waiting for schema agreement. See Session.execute[_async](timeout) and

Cluster.max_schema_agreement_wait.'}, last_host=192.168.177.135

cqlsh>

Cassandra will create the keyspace or table despite this message. When a schema

disagreement occurs, follow these steps.

 1. Run the nodetool describecluster command.

$ sudo nodetool describecluster

Cluster Information:

 Name: Test Cluster

 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch

 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner

 Schema versions:

 UNREACHABLE:27a8739d-28ac-34b7-b738-1b84859866cf:

[192.168.177.135]

 282bdefc-9643-3fa5-b03a-4b9894cabb29: [192.168.177.132]

$

 2. Restart the unreachable node(s).

 3. Run the nodetoool describecluster command again, and

ensure that all nodes have the same version number. The output of

the command must show a single schema version for all nodes in

the cluster.

Chapter 3 Deploying a CassanDra Cluster

89

Note if you have several mismatched schemas (three or more), you need to stop
the nodes of a given schema and let the other settle, and then restart the nodes
one by one. this type of a situation occurs occasionally in multiple DC clusters.

 Keyspaces with Different Settings

If the keyspaces of the nodes have different settings, you’ll notice the following:

$ sudo nodetool status

Datacenter: datacenter1

=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns Host ID Rack
DN 192.168.177.128 114.06 MiB 256 ? 99c43633-c691-4dee-
b7af-35bc6e74dd67 rack1
UN 192.168.177.132 123.84 MiB 256 ? b0ade950-937a-457c-
95eb-d3032897eeb1 rack1
Note: Non-system keyspaces don't have the same replication settings,
effective ownership information is meaningless
$

 Node Is Down

If one of the nodes is down, you will see the following:

$ sudo nodetool describecluster

Cluster Information:

 Name: Test Cluster

 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch

 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner

 Schema versions:

 44ed2562-e330-3030-af87-89cde4aa8992: [192.168.177.135]

 UNREACHABLE: [192.168.177.132]

#

Chapter 3 Deploying a CassanDra Cluster

90

Run the nodetool status command to check the status of the two nodes in your cluster:

$ sudo nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack

UN 192.168.177.132 276 KiB 256 52.2% b0ade950-

937a-457c-95eb-d3032897eeb1 rack1

UN 192.168.177.135 296.85 KiB 256 47.8% 99c43633-

c691-4dee-b7af-35bc6e74dd67 rack1

#

 Running Cassandra on Amazon EC2
Many organizations and individuals run Cassandra clusters in the public cloud. You can

run Cassandra on Microsoft Azure, Google Cloud, and Amazon Web Services (AWS). In

this section, I walk you through the creation of a Cassandra cluster on AWS.

When you install Cassandra on Amazon EC2, you create the instances using an API

for a supported platform such as Ubuntu 16.04 LTS and ensure that you get the AMI

(Amazon Machine Image) from a trusted source. Once you download the AMI and get

the server running, the Cassandra installation process is similar to that in Chapter 2.

 Using Trusted AMIs
An AMI is a virtual appliance that you use to create a virtual machine within the Amazon

Elastic Compute Cloud (“EC2”). An AMI is a machine template using which you can

create new servers in an AWS cloud.

You must use only AMIs from a trusted source, such as the following:

• Ubuntu Amazon EC2 AMI locator

• Debian AmazonEC2image

• CentOS-6 images on Amazon’s EC2 Cloud

Chapter 3 Deploying a CassanDra Cluster

91

Using untrusted sources for your AMIs will create a security risk; they will also

perform slower due to the way they configure the EC2 installation.

 Setting Up the AWS Instances for Cassandra
Before you do anything on AWS, you must have an account. Therefore, if you don’t have

one, create one now.

Once you’ve got your AWS account squared away, follow the steps shown in the next

few sections to create the Cassandra cluster that runs on AWS EC2 virtual machines,

called EC2 instances.

 Starting the EC2 Instance Creation

In the AWS dashboard, click the EC2 logo, under the Compute section.

 Selecting the AWS Region

Select an appropriate region for launching your instances. For example, if you’re in the

US, you may want to select the North Virginia region.

 Creating the EC2 Instances

Under the Create Instance section, you’ll see a “Launch Instance” button. Click it to start

the Launch Instance wizard.

This is the crucial step where you create the EC2 virtual machines. You can select an

OS for the machines via different methods, such as downloading an Amazon Machine

Image (AMI). You can even provide your own “gold image” if you have one. To keep

things simple here, let’s run a cluster on Ubuntu servers, so select the Quick Start menu.

The Quick Start menu has six steps that you need to go through to create your EC2

instances.

 1. Choose an Amazon Machine Image (AMI): Select the Ubuntu

server (Ubuntu 14.04 LTS).

 2. Choose Instance Type: Use local SSDs and not EBS storage. This is a

test cluster, so choose the m3 size. The m3 size is not from the free-tier,

so it costs a little bit. The free tier instances are too tiny for learning

much about Cassandra. Your instance type choice is m3.large, a

machine with 2 cores, 7.5GB RAM, and a 32GB SSD storage.

Chapter 3 Deploying a CassanDra Cluster

92

 3. Configure Instance Details: This step is where you specify the

number of EC2 instances. Configure a three-node cluster, so put

down 3 as the value for the Number of instances property and

leave the rest of the properties (shutdown behavior, etc.) at the

default settings.

 4. Add Storage: You don’t need any additional storage at this point so

just move on to the next step.

 5. Tag Instance: Tagging instances with a key-value pair helps you

in sorting and finding instances easily, but you can skip this step

because you have just three EC2 nodes.

 6. Configure Security Group: This step lets you configure a security

group, which is a set of firewall rules to control traffic to the

instances. In this step, do the following:

• Select the Create a new Security Group option.

• Name the security group as MySecurityGroup and add four

inbound rules, as shown here:

Type Protocol Port Range Source

SSH TCP 22 0.0.0.0/0 (allow from anywhere)

Custom TCP Rule TCP 7000-7001 0.0.0.0/0

Custom TCP Rule TCP 7199 0.0.0.0/0

Custom TCP Rule TCP 9042 0.0.0.0/0

Custom TCP Rule TCP 9160 0.0.0.0/0

These ports are the same ports described in the “Configuring

Ports” section earlier in this chapter.

 7. In the last step of instance creation, Review Instance Launch,

review your instance selections and press the Launch button so

AWS can create the instances for you.

 8. Once AWS starts the instances, it asks you to select the key pair

that you’ll be entering when logging into the new instances:

Select an existing key pair or create a new key pair

Chapter 3 Deploying a CassanDra Cluster

93

The key pair is a combination of a public key that AWS stores and

a private key file that you store. You use the key pair to securely log

into your instances. On the new Ubuntu servers, your private key

file enables you to securely SSH into your instances.

Tip store your private key file (.pem file) securely, since losing it means that you
need to terminate all the instances and start again from the beginning.

Create a new key pair by providing the key pair name mykeypair

and click “Download key pair” to download the private key file.

At this point, all the EC2 instances are running, and billing for

all usage starts right now. It is a good idea to shut down your

instances when you’re done working with Cassandra so you don’t

incur additional charges when you aren’t utilizing your test cluster!

You can view the instances now by clicking the Instances tab in the EC2 Dashboard.

All three instances will show the “running” status under the Instance State column. By

selecting any of the three instances, you can get the instance description, including the

public IP address for that instance. You can then launch a Putty session using the IP

address for the instance.

 Installing Cassandra
Now that you have your AWS EC2 instances running, it’s time to install Cassandra.

Follow these steps to install, configure, and start Cassandra on the AWS EC2 instances.

You learned in Chapter 2 that you can install Cassandra as a service or install it from

a binary tar ball. Since you have already learned how to install from the tarball, it’s a

good idea to learn how to install Cassandra as a service. Here are the steps you must

follow to install Cassandra as a service.

 1. You can get the Cassandra Debian package from Apache itself or from

DataStax. Use the DataStax repository here, by doing the following:

$ echo "deb http://debian.datastax.com/community stable

main"| sudo tee –a /etc/apt/sources.list.d/cassandra.

sources.list

Chapter 3 Deploying a CassanDra Cluster

94

 2. Run the apt-get update command.

$ sudo apt-get update

 3. If you receive any errors about not having the public key for the

DataStax repository, you need to add the DataStax public repo key

as shown here, and rerun the apt-get update command.

$ curl –L http://debian.datastax.com/debian/repo_key |

sudo apt-key add-

$ sudo apt-get update

 4. Install the Cassandra binaries.

$ sudo apt-get install cassandra

Unlike in the binary tarball installation method shown in

Chapter 2 (for a single instance), installing Cassandra as a service

automatically starts the Cassandra instance. If you now issue

the command sudo service cassandra status, it’ll show that

cassandra is running on this node.

 5. The next step is to repeat the previous three steps on the rest of

the EC2 instances. Once you do this, you can run the nodetool

status command to check the status of the Cassandra instances.

$ sudo nodetool status

 Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns Host ID Rack

UN 192.168.177.132 123.84 MiB 256 ?

b0ade950-937a-457c- 95eb-d3032897eeb1 rack1

Note: Non-system keyspaces don't have the same replication

settings, effective ownership information is meaningless

$

None of the three Cassandra nodes are communicating among themselves yet. Let’s

enable the inter-node communications next.

Chapter 3 Deploying a CassanDra Cluster

95

 Configuring the Cassandra Cluster
On all three EC2 instances, edit the cassandra.yaml file and add the following

properties:

cluster_name: 'My AWS Cluster'

seeds: "192.168.177.132"

broadcast_address: 192.168.177.132

listen_address:

These are the same properties that I explained earlier when creating the six-node

Cassandra cluster. As in the case of that cluster, I decided not to specify a value for

the listen_address property and therefore I must specify a value for the broadcast_

address property.

Note users often see the eC2 snitch and use it, since it’s designed
for use in an aWs cluster. however, the recommended snitch to use is
GossipingPropertyFileSnitch.

Once you edit the cassandra.yaml file, restart the Cassandra service on all three

nodes, making sure to remove all the system data:

$ sudo service cassandra stop

$ sudo rm –rf /var/lib/Casandra/data/system/*

$ sudo service cassandra start

Running the nodetool status command shows that all three nodes are running

now, and that the new three-node AWS EC2-based Cassandra cluster is ready for use.

INFO 22:20:27 Handshaking version with /192.168.177.135

INFO 22:20:27 Node /192.168.177.135 has restarted, now UP

INFO 22:20:27 InetAddress /192.168.177.135 is now UP

INFO 22:20:27 Node /192.168.177.135 state jump to NORMAL

INFO 22:20:27 Node /192.168.177.132 state jump to NORMAL

INFO 22:20:27 Updating topology for /192.168.177.135

INFO 22:20:27 Updating topology for /192.168.177.135

Chapter 3 Deploying a CassanDra Cluster

96

INFO 22:20:27 Waiting for gossip to settle before accepting client

requests...

WARN 22:20:27 Not marking nodes down due to local pause of 11051514701 >

5000000000

INFO 22:20:35 No gossip backlog; proceeding

Once the cluster is up and running, everything works the same as in a non-AWS

Cassandra cluster.

 Summary
A successful cluster installation depends on satisfying prerequisites. Regardless of

whether you create a local cluster or one in the cloud, you can start a cluster with a

minimal set of configuration properties. As with the single-node installation from the

previous chapter, once you learn how to start and stop the cluster, you can configure

additional configuration properties as you learn about them in the following chapters.

Cassandra comes with a large number of configuration knobs and each of the following

chapters will introduce a few more configuration properties.

Chapter 3 Deploying a CassanDra Cluster

The Data Model, Cluster
Architecture, and the
Cassandra Query
Language

PART II

99
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_4

CHAPTER 4

Cassandra Data Modeling,
and the Reading and
Writing of Data
Data modeling in Cassandra is different from traditional data modeling in a relational

database in many ways. This chapter introduces you to the key aspects of Cassandra data

modeling, wherein the queries you anticipate running in the database have a lot to do

with how you structure your data inside tables.

Data modeling involves identifying the types of data (entities) you want to store in a

Cassandra database and the relationships among those data entities.

The key to modeling data in a Cassandra database is to focus on the following two

things:

• Identifying the data access patterns

• The queries you’re going to use

These two ideas will determine how you organize your data, as well as how you

design and create your database tables.

Two things, queries and schema, determine the data organization. Queries are

how you retrieve data from a database, and schema is how you arrange the data in the

database tables. Cassandra’s query-driven approach means that specific queries that

you plan to use are the foundation of how you organize data. You gain efficiency for

reads and writes when you group data together on the nodes by partition. The fewer the

partitions a query must read, the faster the response of the database to the query.

100

This chapter explains in detail how Cassandra reads and writes data. Configurable

consistency is a key Cassandra feature, and you’ll learn all about read and write

consistency, and how to configure various levels of consistency. Cassandra is a

partitioned row store with tunable consistency. Tunable consistency means that the

client applications determine the consistency of the data they request from the database.

Finally, this chapter explains the concepts of linearizable consistency and lightweight

transactions, as well as how to ensure the atomicity of key operations with batch

operations.

 Cassandra and Relational Databases: Major
Differences
Chapter 1 outlined the major differences between relational databases and Cassandra.

Here, let’s review in some detail the differences between how Cassandra and relational

databases approach data modeling.

 Data-Driven vs. Query-Driven Data Modeling
Data modeling in a relational database is driven entirely by data. You can also say that

relational data modeling is table-driven. Normalization theory rules the roost, and this

theory requires that you not duplicate data.

Once you normalize the data based on the tables and relationships among those

tables, you write queries based on those tables and relationships. Typically, one table

can serve multiple queries.

Cassandra organizes its data quite differently from how a relational database does

it. Queries and not data drive Cassandra’s data modeling methodology. This means that

you organize your data based on the queries you expect that data to serve. You design

your queries first and create your tables to satisfy those queries. You consider data

duplication as quite normal, as a side effect of nesting data.

Cassandra precomputes queries at write time, thus optimizing writes, which means

you get optimized reads as a free by-product. Relational databases compute queries

when reading data. They use expensive operations such as JOIN and ORDER BY. There

are no such operations in a Cassandra database.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

101

 Table Linkages and Referential Integrity
In a relational database, you combine data from multiple relations to answer a query.

Referential integrity is important. In Cassandra, you must nest all the data required to

answer a query within the same table. Referential integrity is not an issue at all.

 Sort Differences
By default, a relational database returns rows of data in the order in which it wrote them

to disk. You can use an ORDER BY clause to change the default sort order.

In Cassandra, you explicitly specify the sort order when you choose the clustering

columns during the creation of a table.

 Duplicating Data
As you’ll learn shortly, the traditional relational database strategy of denormalizing

data to avoid duplication isn’t applicable to Cassandra. In a Cassandra database, you

duplicate data where necessary to achieve more efficient reads. Cassandra capitalizes on

the fact that storage costs are cheaper when compared to the cost of other components

of the computational stack, such as CPU, memory, and network.

You can store the same data multiple times in Cassandra. Unlike in relational

databases, data duplication is treated as a blessing and not a curse. Relational databases

try to put a lot of information into their tables since the databases use the same tables for

many types of searches. However, in Cassandra, having many tables with similar data is a

good thing.

Remember that Cassandra is optimized for writes; it writes very fast to the storage

system. Therefore, if you need to write the same data six times to disk, let it be so;

multiple writes aren’t going to hurt you. Following a strategy of duplicating data (which

involves more writes) to enhance the performance of the read queries is an inherently

sound strategy in Cassandra.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

102

 What Is Data Modeling?
Data modeling is both a science and an art. Data modeling is a structured process that

involves the following:

• Collecting and analyzing the data requirements of an information

system

• Identifying the entities that are part of the system and the

relationships among them

• Identifying the data access patterns

• Organizing and structuring data in a specific way

• Designing and specifying a database schema

• Optimizing the schema using techniques such as indexing the data

When you’re performing a data modeling exercise, you normally follow a process

that consists of the following five key steps or stages:

• Analyze your requirements.

• Identify entities and relationships–the conceptual data model.

• Identify common queries–the application workflow.

• Specify the schema–the logical data model (design the tables).

• Optimize the schema–the physical data model (use CQL to

implement the design). Optimizations include keys, partition sizes,

and ordering.

In the following sections, I explain each of the five broad components of Cassandra

data modeling.

 Analyzing Your Requirements
The requirement part of Cassandra data modeling is simple. In most cases, you want to

use Cassandra to solve the following problems:

• Scalability: Your data inflows are large and they’re constantly growing.

• Reliability: You want an always available, highly reliable data store.

• Ease of use: You want a database that’s easy to set up and manage.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

103

 Conceptual Modeling: Identifying the Entities
and the Relationships Among Them
Ideally you must design your queries so they access a single table. You include all the

attributes pertaining to an entity in a single table. This is different from a relational table

design, where you store data about an entity in multiple tables and link the tables with

foreign keys. Cassandra’s one-table per query approach leads to faster performance.

As mentioned earlier, in a relational database, you start with a logical relationship

model and then build out your physical tables based on those relationships. Cassandra

follows a similar strategy, but places a heavy emphasis on considering the queries that

you’re planning to run against the tables in the database. Unlike in a relational mode,

there are no joins and no referential integrity constraints in a Cassandra database.

Finally, there’s a heavy emphasis on denormalization, which is the opposite of

what you do in a relational database, where the focus is all on normalizing the data.

Conceptual modeling uses the well-known entity-relationship model (ERM) to establish

the entities and the relationships among them.

You denormalize data in Cassandra by designing and creating multiple tables. In

recent releases, Cassandra has offered materialized views, which also enable you to

create multiple views all based on the same underlying SSTables.

 Reviewing the Queries You Want to Use
In this section, I use several examples to show you how to design your tables based on

the queries that you anticipate.

Let’s use DataStax’s well-known Pro Cycling statistics for the table designs.

Note Cassandra denormalizes data by repeating data among multiple tables.
this is completely opposite to a relational database, which strives to minimize the
duplication of data by normalizing it.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

104

Example 1

Let’s say you want to run a query to list each cyclist by their first and last names. Your

logical model will look like the following:

cyclist_name

id

lastname

firstname

In this model,

• Partition key: id

• Clustering column: None

This table has the mandatory primary key, which is the column id. In this case, the

id consists of just the partition key.

Example 2

The previous example was quite rudimentary. You could query just by ID, but you

couldn’t tell the types of races the cyclists participate in. Let’s say you want to look for

cyclists within specific race types. You’ll want to create a different table with some of the

same columns from example 1, but also add some new columns.

cyclist_race_type

race_type

id

points

lastname

In this model,

• Partition key: race_type

• Clustering column: id

This table helps you group all the cyclists by the type of race. The column id, which

served as the partition key in the first example, now acts as the clustering column since

you want to group the cyclists by ID within each partition.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

105

 Logical Modeling
The previous section on conceptual modeling showed how to design your tables based

on expected queries. The next step in data modeling is to create a logical model, which

contains the tables for satisfying each of your key queries, making sure that the tables

include the entities and the relationships you’ve identified in your conceptual model.

It’s during the logical modeling phase that you determine the primary keys for the

tables, as well as the clustering columns to support the sort ordering your queries may

require. Cassandra organizes its rows into tables. There’s a mandatory primary key for

each table. The primary key has multiple components, and the first component is the

partition key. You can index other columns as well besides the primary key, and those

other indexes are called secondary indexes.

 Physical Data Modeling
During the physical modeling phase, you get down to the actual creation of the

database objects such as tables and indexes. You nail down the data types, including any

user- defined types you many need. You also determine the keyspaces you need and the

partitioning and replication strategies.

In addition to secondary indexes, you must also think about any materialized views

that you may need during the physical data modeling phase.

It’s during this stage that you perform sizing calculations to figure out the space

requirements for storing the data.

You perform several optimizations in the physical data modeling stage, including the

specifying of partition sizes and ordering.

Once you have reviewed and refined the physical model, you implement the

database schema in CQL by executing DDL commands such as CREATE KEYSPACE,

CREATE TYPE, and CREATE TABLE.

 Cassandra Data Modeling Rules
It’s natural for developers and architects moving over to Cassandra from a relational

database background to bring their traditional data modeling thinking with them. Big

mistake! Many of the well-known relational database modeling principles or rules

don’t apply to Cassandra, and there are several new rules you ought to learn to truly

benefit from using a Cassandra database. While CQL is indeed similar to SQL, avoid the

temptation to create traditional data models that you’re likely to be comfortable with.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

106

To get maximum performance from a Cassandra database, you’ll do well to follow

certain well-established data modeling rules. Following these simple rules lets you start

out with superior performance and enables you to maintain the high performance as

you scale up by adding more and more nodes to your cluster.

 The Two Basic Rules
There aren’t many rules to Cassandra data modeling. You need to keep in mind just two

rules: spreading your data across the cluster, and minimizing the number of partitions

that Cassandra needs to read.

I’ll elaborate on these two key rules in the following sections.

 Spreading Data Evenly Across the Cluster

At an intuitive level, it makes sense that you should seek to distribute data evenly across

the nodes in a Cassandra cluster. However, this isn’t automatic, since Cassandra doesn’t

automatically move data around to balance it.

Cassandra distributes data across a cluster’s nodes based on a hash of the partition

key. The partition key is the first component of the primary key of a table. Thus, you need

to pick a good primary key to ensure that data is balanced evenly across all nodes.

 Minimizing the Number of Partitions to Be Read

In a Cassandra table, a set of rows that share a partition key is called a partition. Ideally,

you must store the data by grouping it together by partitions on the nodes. The fewer

partitions a query needs to get it data, the faster you will get the results back.

Each of a table’s partitions can live on a separate node. When you issue a query,

the query coordinator may issue separate commands to multiple nodes, where each

of the partitions may be located. This of course means more overhead and introduces

additional latency to the execution of queries. You should seek to read a query’s data

from as few partitions as possible.

Even if multiple partitions are stored on the same node, because of the way

Cassandra stores rows in a table, it’s cheaper to read the data from a single partition than

from multiple partitions.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

107

 Modeling Around Queries and Not Around Relations
The way to satisfy the two basic rules, especially the minimizing of the number of

partitions, is by modeling your database around your queries. Unlike in a relational

database, where you model around the relations among entities, you model based on the

queries you expect your database to support.

When designing a data model, always start with the queries. You need to think in

terms of how the users are going to want to view the data and how they’ll search through

the data.

What the users are going to search for should be the primary key of the table, and the

information they want to view should be your columns. That’s all there’s to it. You don’t

need to worry about all the normal forms and relationships among the data, etc.

To model around your queries, you need to do two things:

• Find out the queries the database must support.

• Create appropriate tables.

 Determining the Queries

There’s no single data model that serves all query cases. If you change the query

requirements ever so slightly, you’ll need to modify your data model. When determining

the queries you want a Cassandra database to support, think of the following types of

requirements in a query:

• A query that requires unique values only in the result set

• A query that wants to filter the results based on specific criteria

• A query that wants to order the results

• A query that seeks to group the results

 Creating Appropriate Tables

In relational databases, the tables in most cases are just a repository for specific data

such as customer data or sales data. You create the tables based on relations among the

entities. A table you create in this manner services several types of queries that seek the

data stored in that table. Not so in Cassandra, where your goal when creating a table is to

satisfy a query by reading a single partition.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

108

The strategy of satisfying a query by reading a single partition means that each of

your queries uses a table for itself. If you have multiple queries that you need to support,

you must create multiple tables, since it’s unlikely for a single table to efficiently service

many distinct types of queries, as is the case in a relational database.

The key to understanding the strategy here is to realize that your goal in creating a

table isn’t merely so it can serve as a repository for data about specific attributes of an

entity. Rather, the table is a prebuilt source of answers to a common query that you must

support. To optimize reads, you must create custom tables that answer that query fast.

 Performance Limitations of Cassandra
As good and powerful Cassandra is, it does suffer from some well-known limitations

during writes as well as during reads. I summarize the main performance drawbacks in

this section.

 Write Limitations
Cassandra offers a very fast write throughput, but there are a couple of key compromises

that enable it to do so, as explained in the following sections.

 No Support for Traditional Transactions

Unlike in a relational database, there aren’t any rollback mechanisms in Cassandra.

Nor do you have the traditional locking mechanisms that are the backbone of relational

database transactions. Cassandra does support lightweight transactions as explained in

Chapter 5, but these transactions are expensive.

 Overhead for Mutations and Deletes

As you know by now, Cassandra stores its data in SSTables on disk. SSTables are

immutable data structures. When you update data, Cassandra spreads the data across

several SSTables. When you delete data, Cassandra creates tombstones (markers to

denote data that’s to be deleted) to ensure that it deletes the data correctly across the

cluster. A tombstone will suppress older data until the database can run a compaction,

which will remove the data for good.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

109

Both the spreading of data across the SSTables during updates and the creation of

tombstones during deletes means a higher overhead during read operations. This leads

to pressure to compact the SSTables by cleaning them up.

 Read Limitations
Cassandra suffers from a few known performance limitations during read operations, as

I explain in the following sections.

 No Support for Joins

As mentioned in Chapter 1, you can’t join data from multiple tables into a single query

in Cassandra. There are no foreign keys to facilitate table joins, as is true of relational

databases.

Instead of joining tables, you de-normalize your data, thus duplicating it based on

the expected queries. Alternatively, you can use another reporting technology such as

Apache Spark to perform the joins.

 Indexes Work Differently

Cassandra performs its searches via the primary key of a table, which is unique and

helps identify a row very fast. Secondary indexes, employed by relational databases to

speed up queries, however, are a different story altogether, and can negatively impact

performance if you don’t use them for the limited use-cases where they are fine.

 Only Eventual Consistency

The key principle behind Cassandra’s data model is tunable consistency, where the

client applications determine the consistency of the data they require.

Even though Cassandra automatically replicates data across the cluster, there’s an

inherent latency in replicating the data, and you’re bound by the principle of eventual

consistency. Eventual consistency, also called optimistic replication, achieves high

availability in distributed computing architectures, and informally guarantees that in the

absence of newer updates to a data item, eventually accessing that data item will return

its last updated value.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

110

As explained in Chapter 1, eventually consistent services support the BASE (Basically

Available, Soft, Eventual Consistency) semantics, as opposed to the ACID (Atomicity,

Consistency, Isolation, and Durability) guarantees offered by relational databases.

However, you can use quorum reads and writes if necessary to minimize any adverse

effects of eventual consistency. I explain consistency and quorum read/writes in detail

later in this chapter in the “Handling Consistency” section.

 The Concept of Eventual Consistency
Consistency is the requirement that a read always return the latest written data. All

clients will read the same value for an element of data even when the database is

simultaneously updating data.

A database such as Cassandra must make tradeoffs among data consistency,

availability, and partition tolerance, which are three tenets of the CAP theorem

enunciated by Brewer. Availability refers to the fact that all clients are able to access the

data so they can read and write data. Partition tolerance is where a database can be split

into multiple machines and be able keep functioning even during network segmentation

breaks. Since network issues make temporary partitions unavoidable, you really need to

choose between availability and consistency in real life.

In the real world, instead of a single concept of consistency, there are several degrees

of consistency. The most stringent consistency model is strict consistency, which

requires that every read must return the last written value. In a distributed system,

strict consistency is hard to enforce. For example, the database will need to perform

all update (insert/delete/update) operations in a synchronous fashion, using locks to

prevent access to the replicas that haven’t been modified yet. This of course blocks users,

and if there’s a failure of any kind, such as network or server failures before the update

operation completes, the data will become unavailable.

Strict consistency simply won’t allow you to peek at the data until the database is

sure that you’re looking at the most recently updated values. The database would rather

become unavailable than show you inconsistent values.

Eventual consistency requires that all updates must be present on all the copies

(replicas) of data in a distributed database, but allows for the fact that the process can

take a bit of time. That is, although replicas may differ in value immediately following a

change, over a period of time (eventually) all replicas will become consistent.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

111

Cassandra implements tuneable consistency, where you balance the consistency

level against the replication factor. The higher the replication factor, the worse the

performance, but you’ll gain consistency. The consistency level you choose tells the

database how many replicas must acknowledge a successful write or respond to a read

query for that write or read to be deemed successful.

You can specify consistency levels for both reads and writes. Higher consistency

levels require more nodes to respond to a read or write operation, which means that the

data is more reliable, since multiple replicas are showing identical values.

Fast writes are the goal here: although you can set the consistency level the same as

the replication factor, the stronger consistency you achieve is at the cost of performance.

The consistency level is usually set to a value lower than the replica factor, so updates

are deemed successful even if some of the nodes are unavailable. Cassandra will keep

updating data even during these partial failures.

 Consistency Conflict Resolution
Since eventual consistency only guarantees that reads will eventually return the same

value and doesn’t make any safety guarantees, it can return a value before it converges.

To ensure replica convergence, an eventually consistency system must reconcile the

differences among multiple versions of the same data items, by following this two-step

procedure:

• Anti-entropy, which involves exchanging versions of data between

the nodes

• Reconciliation, which involves choosing an appropriate final state of

the data when concurrent updates change that data

There are several approaches to reconciling concurrent writes, such as the “last

writer wins” strategy, user-specified conflict handlers, and so on. The database normally

uses timestamps to detect the concurrency among the updates.

 Repairing Data
Reconciliation of disparate concurrent writes must happen sometime before the next

read occurs, and the database can schedule it at different points, such as the following:

• Read repair: The reconciliation or correction happens when a read

finds an inconsistency. Obviously, this will affect the speed of the

read operations.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

112

• Write repair: The reconciliation or correction occurs during write

operations. Any inconsistencies found during writes will slow down

the write operations.

• Asynchronous repair: The corrections aren’t part of a read or write

operation.

When data is read, a read repair can resolve any data inconsistencies. When data

isn’t read, you need to use either the hinted handoff or anti-entropy mechanism to

resolve any data inconsistences. Chapter 5 explains the various types of repairs.

 How Cassandra Writes Data
Cassandra uses a multi-stage write path, which has the following stages:

• First, it logs the writes in the commit log.

• Next, it writes the data to the memtable in memory.

• Finally, it flushes the data from the memtable to permanent storage

on disk in SSTables.

In the following sections, I elaborate on the three main stages of the write path.

 Writing to the Commit Log to Protect the Changes
The first thing Cassandra does when writing data is to append the writes to the commit

log on disk. The idea here is to protect the writes from things such as a power failure

on the nodes. Thus, the commit log is a crucial component of Cassandra’s durability

guarantee.

The database considers a write to be successful only after it writes the data to the commit

log. If a database crashes right after the database writes to the commit log, no problem.

Once the database comes up, the first thing it does is replay the commit log to recover all

transactions that are in there but weren’t written to the SSTables. A commit log serves just

one purpose: to hold committed data until it’s permanently written to disk in the SSTables.

By default, the database stores the commit log in the /var/lib/cassandra/

commitlog directory, but you can specify a custom location by setting the commitlog_

directory property. Ideally, you must store the commit log on a physical device that’s

separate from the devices where you store the data file directories.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

113

The database flushes memtables to disk when the space configured for the commit

log reaches its limit. The database flushes the oldest commit log segments first and

removes the log segments from the commit log.

When you start up the database, it replays the commit log. You can reduce the replay

time by making sure the commit log isn’t too big. Of course, if you configure too small a

commit log, the database will be flushing data to disk quite often for active tables.

You manage the commit log by setting the following properties in the cassandra.

yaml file:

• commitlog_total_space_in_mb: Configures the total space for the

commit log. The default value is 8192MB for 64-bit JVMs.

• commitlog_compression: By default, the database doesn’t compress

the commit log, but you can make it compress the commit log by

setting either LZ4, Snappy, or Deflate as the value for this parameter.

The database archives the commit log at the following times:

• When the node starts up

• When it writes a commit log to disk

• At a point in time that you specify

You configure commit log archiving in the commitlog_archiving.properties file,

which is located in

• /etc/cassandra/commitlog_archiving.properties (package

installations)

• install_location/conf/commitlog_archiving.properties (tarball

installations)

You can archive a commit log segment with the archive_command command:

$ archive_command=/bin/ln %path /backup/%name

In this example, path refers to the path of the commit log you want to archive and

name refers to the name of the commit log.

To restore an archived commit log, execute the restore_command command:

$ restore_command-cp -f %from %to

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

114

The from parameter specifies the path of the archived commit log segment in the

restore directories. The parameter to refers to the name of the current commit log

 directory.

You can set the location of the restore directory by specifying the path as follows in

the cassandra.yaml file:

restore_directories=<restore_directory_location>

 Writing to the Memtable for Durability
Cassandra is designed to consume a large amount of data as fast as it can. To achieve this

goal, Cassandra writes all new data first to a commit log on disk to ensure its safety, as

explained earlier. Writes to the commit log are durable and survive incidents such as a

power failure.

Once the database writes the change to the commit log, it writes that data also to the

memtable, which lives only in memory. To provide durability, Cassandra considers the

write successful once it completes writing the new data to both the commit log and a

memtable.

It’s important to understand that a commit log serves only to support the durability

of data in case of an unexpected incident that may otherwise cause you to lose data.

The memtables, on the other hand, are the mechanism that the database employs to

permanently write data to the SSTables on disk.

 Configuring the Flushing of Data from the Memtable

Each memtable is dedicated to storing data for a specific table, and there may be

multiple memtables per table. One of these is the memtable the database currently

writes data to, and the rest, memtables that are full and are waiting for the database

to flush them to disk. Once a memtable reaches its memory limit (that is, once the

memtable is full), Cassandra writes all the memtable’s data to disk in an SSTable, which

is a file. Following this, it creates a new memtable.

Cassandra flushes the memtables to disk when either the commit log space

threshold or the memtable cleanup threshold is reached.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

115

 Configuring the Commit Log Space Threshold

You configure the total space used for commit logs with the commitlog_total_space_

in_mb property. You configure the commit log on a per node basis. When the total space

occupied by all commit logs in the database crosses the value you set for this property,

the database flushes memtables to disk for the oldest commitlog segments.

The default value of the commitlog_total_space_in_mb property is 8192MB. Setting

a limit for the total space that the commit log can occupy will prevent tables that you

rarely update from holding onto the commit log segments forever.

If you set too low a value for the commitlog_total_space_in_mb property, all tables

will experience more frequent flushing activity.

Note You configure a commit log on a per-node basis, and all the tables in the
database share this log. the database maintains the memtables and sstables on a
per-table basis.

 Configuring the Memtable Cleanup Threshold

You can also configure the memtable_cleanup_threshold property to set the total

amount of memory that all memtables together can use before the database flushes the

largest memtable.

The memtable_cleanup_threshold property is now deprecated, so I won’t discuss

this property further.

Both the size of the data in your database and the nature of the write load will

determine how you set the memtable thresholds. If there are many writes, or if the writes

include a high volume of updates of small chunks of data, increasing the memtable

thresholds is in order.

 Manually Flushing the Memtables

You can manually flush the memtables. A recent flush of the memtables means that the

database will need to replay a lower amount of commit logs, should the node restart for

any reason.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

116

Tip datastax recommends that you flush the memtable before stopping a node
and starting it up again.

When a node restarts, all data in the memtable is gone. You can replay the commit

log to restore the writes that were in the memtable when the node was stopped. This is

so because the commit log rebuilds the memtables when you replay the log.

You can perform a manual flush of a memtable with either the nodetool flush or

the nodetool drain command.

The nodetool flush command enables you to flush one or more tables from the

memtables in memory to SSTables on disk. The command has the following syntax:

$ nodetool <options> flush -- <keyspace> (<table> ...)

You must specify the name of the keyspace and one or more tables, separated by a

space.

The nodetool drain command drains the entire node; that is, it flushes all

memtables on this node to SSTables.

$ nodetool <options> drain

When you run this command, the database stops listening for any connections,

including those from other nodes. You must restart the node after running this

command.

Note Use the nodetool flush command to flush memtables to disk. run the
nodetool drain command only for special occasions, such as when you’re
upgrading a node to an updated version of Cassandra.

The commit log is comprised of segments. When the database flushes all the data

in a segment to disk, it purges the segment. Alternatively, when the commit log hits the

max size that you’ve configured with the commitlog_totalspace_in_mb property, the

database purges the oldest segments from the commit log, flushing the segments to

disk first.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

117

 Writing to the SSTables for Durable Storage
The database flushes memtables to disk, to an SSTable. An SSTable (Sorted String Table)

is immutable, meaning that once it’s written, the database can’t write to it ever again.

If you modify the data in an SSTable, that data is written as an UPSERT (UPDATE +

INSERT), and Cassandra automatically removes the previous data.

Because SSTables are immutable, and Cassandra writes to them in batches when

the corresponding memtables get full, so the database doesn’t have to perform random

seeks. Instead, it performs only sequential I/O in large batches, which ensures a high

write throughput.

In a traditional B-tree based database, the database must perform a read during a

write operation to check the indexes to see where the current data is. Cassandra doesn’t

have to do these reads, thus keeping insert performance very high.

When Cassandra reads data, it reads both the SSTables and the memtables

associated with that table since the memtables may not be flushed to disk yet and thus

may contain data that’s not present in the SSTables.

 Format of an SSTable Data File

An SSTable consists of files on disk, and a partition usually occupies multiple SSTable

files. Here’s the structure of an OS-level data file that belongs to an SSTable:

/data/ks1/cf1-5be396077b811e3a3ab9dc4b9ac088d/la-1-big-Data.db

In this example,

• ks1 represents the keyspace that this SSTable belongs to.

• The hexadecimal string 5be396077b811e3a3ab9dc4b9ac088d

represents a unique table ID.

• la-1-big-Data.db is the name of the data file.

 Structures Inside an SSTable

When Cassandra writes an SSTable to disk by flushing data from the memtables, it

creates a file for the data in the SSTable. Additionally, it creates several data structures

along with the datafiles. These data structures are each represented by a separate file in

the same directory where the database stores the data files.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

118

The files relating to an SSTable are located in the $CASSANDRA_HOME/data/data

directory. In this main directory, there’ll be a directory for each keyspace, under which

you’ll find a subdirectory for each table. For example, for the cyclist_name table in the

cycling keyspace, the following is where you’ll find the files for the cycling.cyclist_

name table (the directory for the table consists of the table name along with an UUID,

which helps distinguish between multiple schema versions since a table’s schema can go

through modifications over time):

$ubuntu:/cassandra/apache-cassandra-3.10/data/data/cycling/cyclist_name-

43138460591411e7b1387bff0507f153# ls -altr

total 48

drwxr-xr-x 2 cassandra cassandra 4096 Jun 24 12:35 backups

drwxr-xr-x 5 cassandra cassandra 4096 Jun 24 12:36 ..

-rw-r--r-- 1 cassandra cassandra 16 Jun 25 08:39 mc-1-big-Filter.db

-rw-r--r-- 1 cassandra cassandra 20 Jun 25 08:39 mc-1-big-Index.db

-rw-r--r-- 1 cassandra cassandra 92 Jun 25 08:39 mc-1-big-Summary.db

-rw-r--r-- 1 cassandra cassandra 57 Jun 25 08:39 mc-1-big-Data.db

-rw-r--r-- 1 cassandra cassandra 10 Jun 25 08:39 mc-1-big-Digest.crc32

-rw-r--r-- 1 cassandra cassandra 43 Jun 25 08:39 mc-1-big-

CompressionInfo.db

-rw-r--r-- 1 cassandra cassandra 4660 Jun 25 08:39 mc-1-big-Statistics.db

-rw-r--r-- 1 cassandra cassandra 92 Jun 25 08:39 mc-1-big-TOC.txt

drwxr-xr-x 3 cassandra cassandra 4096 Jun 25 08:39 .

ubuntu:/cassandra/apache-cassandra-3.10/data/data/cycling/cyclist_name-

43138460591411e7b1387bff0507f153#

I summarize the main data structures here:

• Data (Data.db): This is the main SSTable data file, and the only file

stored by Cassandra’s backups.

• Primary Index (Index.db): An index of the row keys with pointers to

the key locations on the data file.

• Statistics (Statistics.db): Contains the statistical metadata about

the SSTable’s data.

• Compression Information (Compressioninfo.db): A file that contains

information regarding the compression of the SSTable.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

119

• Secondary Index (SI_.*.db): The built-in secondary index. There

may be more than one of these per SSTable.

• SSTable Index Summary (Summary.db): A sample of the partition

index that the database stores in memory.

• Bloom Filter (Filter.db): This file contains the Bloom filter for this

table. The Bloom filter is a memory structure that helps the database

quickly check if row data is in the memtable, before accessing the

SSTables. Bloom filters for an SSTable enhance read performance.

You can compress SSTables to save storage. I explain SSTable compression in

Chapter 11.

 Caching SSTable Data

Cassandra provides three types of caching for SSTable data:

• A key cache stores a map of partition keys to row index entries, which

allows fast access to SSTables. In simpler terms, the key cache stores

partition indexes for tables.

• A row cache caches frequently accessed rows to speed up access to

those rows.

• A counter cache improves performance for the counters that you’ll

need to access frequently.

Key and counter caches are enabled by default. Cassandra stores cached data to disk

so it can quickly pull it into memory when you restart the database. I explain caching in

detail in Chapter 11.

 The Write Request Flow
Cassandra processes data in multiple stages on the write path, which starts with the

initialization of the write request by a client and ends with the database storing the data

on disk. It immediately logs a write, and at the end of the process, writes the data to disk.

Here are the stages of a write:

• Log data in the commit log.

• Write the data to the memtable.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

120

• Flush the data from the memtable.

• Store the data in SSTables on disk.

Figure 4-1 shows the Cassandra write request flow. The figure shows a Cassandra

cluster with twelve nodes. There’s three-way replication (that is, the replication level is 3),

and the clients use the QUORUM consistency level.

Note Cassandra writes sequentially and it doesn’t need any reads or seeks to
write values since all writes are just appends. therefore, Cassandra can write data
very fast.

Under the QUORUM consistency level, Cassandra deems a write operation a success if

two of three nodes acknowledge success of the write operation. The replica nodes send

the acknowledgements to the coordinator node, which is the node to which the clients

connect.

1
R1

R2

R3

2

3

4

5

6
7

8

9

10Client

11

12

Figure 4-1. The Cassandra write request flow

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

121

The following is a step-by-step explanation of the Cassandra write request flow

shown in Figure 4-1.

 1. A Cassandra client sends a write request to store a specific key.

The first thing to understand is that a node can play the role of a

replica, a coordinator, or both. If the node is the right partition to

store the key, and if the node maps to the data, the node acts as

the replica. If the node happens to be the node the client connects

to, then it acts as the coordinator. If both things are true, the node

plays both roles: coordinator and replica.

 2. The coordinator figures out the right replica nodes that should

store the key and forwards the client’s request to all those nodes.

The number of replicas depends on the replication factor. If all

nodes are not up, the nodes that are down will have inconsistent

data after the writes. The down nodes, once they come back, will

use one of Cassandra’s data repair mechanisms, such as hinted

handoff, read repair, or anti- entropy repair, to become consistent.

 3. The nodes that receive the keys sequentially write the data,

along with the metadata for creating the data, in the commit log

(locally).

Tip a hint counts as a successful write only under the consistency level ANY.

 4. The nodes then write the keys and their data locally to the

memtable, which lives in memory. At this point, the nodes

consider the writes a success.

 5. Once the write succeeds (or fails), the replica nodes send the

operation’s success/failure status to the coordinator node.

 6. In this case, we’re assuming a consistency level of QUORUM and

a replication factor of 3. The coordinator will therefore respond

with a success message to the client once two of the three nodes

respond with a success message.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

122

Note You’ll often come across the term coordinator node. the coordinator node is
the node where you initiate a cqlsh session. the coordinator node can be a remote
host if you connect to one.

There are several important Cassandra internal operations that occur around this

time, such as the following:

• How Cassandra uses hints during the write operations

• How Cassandra determines when it should flush memtables to disk

• How Cassandra uses the commit log

• The role that Bloom filters play

• The role of index files

The following sections explain these behind-the-scenes internal operations or

processes.

 The Role of Hints During the Write Process

If one or more of the nodes fails to send an acknowledgement of success or failure, the

coordinator stores a hint locally, so it can resend the write operation to the node(s) when

they come back up again.

You can control how Cassandra manages hints with the help of the following two

configuration properties (in the cassandra.yaml file):

• gc_grace_seconds: Configures the time-to-live (TTL) period for a

hint so that the database won’t replay the hint after this duration.

Setting this parameter to 0 disables hints.

• max_hint_window_in_ms: This property determines the period for

which hints will be recorded. The default value is three hours.

 Memtables and How They’re Flushed to Disk

During client write operations, a background thread monitors all the memtables in

the database. Once any of the following conditions is satisfied, the background thread

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

123

replaces the current memtable with a new memtable, and marks the older memtable for

flushing to disk (to an SSTable):

• The node hits its global memory threshold.

• The commit log is full.

• The table level interval is reached.

A different background thread (or a set of threads) flushes the memtables that the

first background thread has marked for flushing.

 The Commit Log

Once Cassandra flushes a memtable to disk, all the entries stored in the commit log

for the keys in that memtable become useless. Cassandra marks all the commit log

segments belonging to the flushed memtable so that it can use them again for storing

data from other memtables.

The database stores the commit logs in the file system as binary files in the

$CASSANDRA_HOME/data/commitlog directory. Here’s an example:

$ ls -altr

total 9332

drwxr-xr-x 6 cassandra cassandra 4096 Apr 3 10:56 ..

-rw-r--r-- 1 cassandra cassandra 33554432 Jun 24 12:35

CommitLog-6-1498331957174.log

drwxr-xr-x 2 cassandra cassandra 4096 Jun 24 12:35 .

-rw-r--r-- 1 cassandra cassandra 33554432 Jun 25 09:55

CommitLog-6-1498331957173.log

$

The number 6 in the commit log name shows the number version of the commit log

format. For the Cassandra 3.0 release, the version number is 6.

 Bloom Filters and Index Files

Once Cassandra flushes a memtable to disk, it creates two additional data structures: a

Bloom filter and an index file.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

124

Bloom Filters

A Bloom filter is a probabilistic data structure for testing set membership that you can

tune for false positives. It never produces a false negative. A Bloom filter is an off-heap

structure. It uses a fast algorithm to test whether an element is a member of a set.

The database stores the Bloom filters in memory and uses them to reduce disk

accesses when looking up keys. When you perform a query, the database first checks the

Bloom filter before accessing data on disk. If the Bloom filter shows that the element is

in the set, the database accesses the disk to ascertain it. Since memory access is much

faster than disk access, you can view a Bloom filter as a type of cache to speed up access.

When a Bloom filter reports that a key isn’t present in an SSTable, then the key isn’t

present. However, if the filter reasons that the key is present, it may be wrong at times;

the key might or might not be actually present.

Bloom filters serve to enhance the scalability of read requests. They do this by

keeping the database from performing the additional disk reads for reading the SSTable

by indicating if a key isn’t present in a SSTable.

You can reduce the number of false positives by increasing the size of the Bloom

filters. You’ll use additional memory but you’ll be making the filters more accurate. You

can configure the chance of a false positive at the table level, either when creating the

table or later. You configure the bloom_filter_fp_chance property at the table level to

specify the percentage of false positives a Bloom filter reports.

Index Files

An index file stores the offset of keys into the main data file, which is the SSTable. By

default, the database stores a part of the index file in memory. The index file stores the

offset for every 128th key in the SSTable, and you can configure this value.

As with Bloom filters, index files enhance read scalability. They do this by providing

the random position from an SSTable where you can sequentially scan to get the data.

Otherwise, you’ll be forced to scan the entire SSTable to retrieve the data.

 Compacting SSTable Data

Over time, the database can end up with multiple versions of a row in different SSTables,

since SSTables are immutable and the database doesn’t overwrite existing data. Instead,

inserts and updates result in new SSTables.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

125

To keep the multiple versions of the SSTables from overwhelming it, the database

merges SSTables on a regular basis to get rid of the older versions of the data. This

process is called compaction. By default, the database automatically performs minor

compactions.

During a compaction operation, Cassandra merges the data in SSTables, including

the keys and columns. It also gets rid of all the expired tombstones and creates a new

index. The outcome of the compaction is a single new SSTable. Compaction may result

in a temporary rise in I/O usage and the size of data on disk, but it ends up saving you

space since it merges several large datafiles that store the SSTable data.

You can configure a compaction strategy to tell the database which algorithm it must

use when it merges multiple SSTables during a compaction. For example, the default

compaction strategy, size-tiered compaction, merges similar sized SSTables to create

one large SSTable.

Once the database creates the new SSTable by merging multiple SSTables, it marks

the older tables for deletion. This means you’ll see a higher space usage during a

compaction operation. The database gets rid of the tables it marks for deletion during a

restart, or by using a reference counting mechanism.

After a compaction, the database will remove the original SSTables and thus gets

rid of the outdated rows. However, compaction is on a per-node basis, so although one

node performs a compaction, outdated versions of rows may still exist on other nodes.

To avoid returning the outdated rows, the database gets multiple versions of a row

in response to a read request from a client. It then returns the version with the latest

timestamp to the client, a process called “last-write-wins.”

Cassandra offers multiple compaction algorithms, and different strategies are best for

write heavy and read heavy tables. I discuss compaction strategies in detail in Chapter 11.

 Reading Data
I want to explain the read request flow in a Cassandra database, but before I do that, let

me explain the basic architecture of a Cassandra database.

Since there’s no primary or master node in a Casandra cluster, any node that

contains the rows that can satisfy queries about that row can do so. Remember that

Cassandra replicates each row in a table across multiple nodes, with the number of

replicas depending on the replication factor.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

126

The gossip protocol that Cassandra uses lets the nodes exchange information about

the network topology. Using Gossip, each of the nodes learns about the cluster topology

and determines where it should direct a request for a specific row.

Cassandra deems a read operation successful if enough nodes acknowledge success.

How many nodes are enough depends on the replication factor and the consistency level

you choose.

Figure 4-2 shows a case where there are twelve nodes in the cluster and the

replication factor is 3. The QUORUM consistency level is employed during client reads.

Using the QUORUM consistency level, a read operation is successful when two of the three

nodes acknowledge success.

Note since Cassandra uses the gossip protocol and since it’s a distributed database
that requires it to talk to multiple nodes during each read and write operation, the
network performs a heavy amount of data transfers. You’re advised to set up at least a
1gbps network bandwidth to accommodate gossip traffic as well as replication traffic.

1

2

3

4

5

7

8

9

10

11

Coordinator node

Single datacenter cluster with 3 replica
nodes and consistency set to QUORUM

Chosen node

Read response

Read repair

12

Client

R2

R1

6
R3

Figure 4-2. How the gossip protocol helps nodes exchange information among
themselves

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

127

 The Cassandra Read Path
Cassandra follows a specific sequence of events before it can successfully complete a

read request. The following sequence of events shows how the database serves a read

request.

 1. The first event is when a client sends a read request to the cluster

to get data for a specific key, named K. A node can act as a

coordinator, a replica, or both. If the node has the replica, it can

act as the replication node. If the key isn’t mapped to this node, it

acts as a coordinator.

 2. If the node is acting as the coordinator, it forwards the request

to the nodes that might contain the key K. The coordinator uses

a snitch to find which of the replica nodes is closest to itself and

sends a request for full data to that node. It also sends a request to

the other nodes for the digest generated with the hash of the data.

 3. Cassandra forwards the request from the coordinator to the

internal services of the target node(s).

 4. The coordinator requests data from memtables and SSTables.

Although the database can return the data faster from the

memtables since they live in memory, it also checks one or more

SSTables for the data. When one of the Bloom filters confirms that it

has the key, Cassandra will then check the sample index in memory.

 5. The database first performs a binary search on the sample index

to find the starting offset into the index file. Using this offset, the

database offsets into the index file and performs a sequential read

to get the offset into the SSTable for the actual key.

 6. Using the offset for the actual key, the database offsets into the

SSTable file and returns the actual data from the SSTable by

performing a lookup of the SSTable.

 7. The filter command consolidates the multiple versions of the key

data it received from the SSTable lookup and from the memtable.

It consolidates the key data and returns the consolidated version

to the internal services.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

128

 8. The internal services repeat this process on other nodes and

return the results to the coordinator node.

 9. The coordinator node compares all the digests it received from all

the nodes, and if there’s a conflict, reconciles the data and returns

the reconciled version to the client. If necessary, the database also

initiates a read repair to make the data consistent.

 How Write Patterns Affect Reads
The way in which Cassandra writes its data has a bearing on the read operations. You

can affect read performance by how you configure Cassandra’s compaction processes.

The data in the SSTables that Cassandra writes to disk is immutable. Cassandra doesn’t

update data. It writes new data as well as updated data to new SSTables, each with a

different timestamp. The number of the SSTables may grow to be quite large over time.

When responding to a query, the database may have to access many SSTables to retrieve

a single row since each of the versions of a row with a unique set of columns may be

stored in a different SSTable.

Cassandra periodically compacts a collection of SSTables by merging multiple SSTables

and removing old data. It compacts multiple SSTables so it can make a single complete row

from all the versions of each row, with the latest version of each of the columns in the row.

THE CASSANDRA STORAGE ENGINE

Cassandra uses a log-structured storage engine that avoids overwrites and employs

sequential i/o to update data.

Most relational databases use a B-tree, a data structure that keeps data sorted and permits

you to search, insert, delete, and sequentially access data in logarithmic time. the B-tree data

structure is optimized for reading and writing large blocks of data. Cassandra uses a different

data structure called the log-structured Merge-tree (lsM tree) that works well for providing

indexed access to files with high insert volumes. data stores such as hBase, MongodB, and

influxdB also use the same lsM tree data structure.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

129

in a large distributed database, read-before-write can lead to latencies in reads. Cassandra

avoids using read-before-write for most writes. instead, Cassandra’s storage engine groups

inserts and updates in memory and writes data periodically and sequentially to disk. once

Cassandra writes the data to disk, the data remains immutable; you can’t overwrite it.

Write amplification (Wa) is a phenomenon associated with flash memory and solid-state drives

(ssds) wherein the data physically written to the storage media is a multiple of the logical

amount of data. By sequentially writing data to immutable files on disk, Cassandra avoids the

write amplification phenomenon. thus, write amplification, which is a problem on ssds when

using many other types of databases, ceases to be a problem with Cassandra.

 Cassandra Transactions and the ACID Properties
Unlike traditional RDBMS transactions that support all the well-known ACID

transactions, Cassandra supports the atomicity, isolation, and durability properties, but

not the consistency property. Cassandra doesn’t use a typical database’s rollback and

locking mechanisms. It offers eventual or tunable consistency wherein you determine

the transaction consistency level, which involves an inherent tradeoff between the

availability and the accuracy of data.

In the following sections, let’s briefly review the support for the standard ACID

properties in a Cassandra database.

 Atomicity
Cassandra performs both writes (inserts and updates) and delete operations atomically at

the partition level. Dealing with operations at the partition level means that Cassandra treats

inserts, updates, and deletes of multiple rows from the same partition as a single operation.

If more than one client updates the same column simultaneously, the latest

timestamp determines which is the most up-to-date update to that column.

Cassandra doesn’t automatically roll back writes that are successful only on

some nodes. Let’s say you are using a write consistency level of QUORUM, with a

replication factor of 3. This means that the coordinator nodes will need to wait for

acknowledgement from two nodes. If the write succeeds on one node but fails on the

other, Cassandra doesn’t roll back the successful write.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

130

 Isolation
Cassandra writes and updates are fully isolated at the row level, meaning that a client

that writes to a row in a partition is the only one that can see the write, until it completes

the write operation.

Any updates that belong to the same partition in a batch operation are performed with

full row-level isolation as well, unless that operation involves changes to multiple partitions.

 Durability
Cassandra provides strong durability for writes. It provides local durability by recording

all writes to both memory and to the commit log on disk before it acknowledges a

successful write. If there’s a server failure before the database can flush the memtable to

disk, it replays the commit log to retrieve the lost writes.

The fact that Cassandra replicates data to multiple nodes bolsters the durability

provided by writing to the commit log.

Specify the commitlog_sync property (in the cassandra.yaml file) to set durability to

fit your need for consistency. The commitlog_sync property determines the method that

Cassandra uses to acknowledge writes. Here are the ways in which you can configure this

property:

• Periodic (Default value is 10000 milliseconds, which is 10 seconds):

If you choose periodic, set the commit_sync_period_in_ms property

to control how often Cassandra synchronizes the commit log to disk.

Cassandra acknowledges periodic syncs immediately.

• Batch (Default: disabled): When you enable the batch method,

Cassandra waits to acknowledge writes until they’re synced to

disk. The property commitlog_sync_batch_window_in_ms lets you

specify the time for which Cassandra waits for other writes before

performing a sync. The default value is 2 ms.

 Handling Consistency
Cassandra enables you to configure consistency levels to balance the availability of data

with the accuracy of that data. You configure consistency at a session level or for a single

read or write operation. The level of consistency you choose determines the number of

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

131

replicas that the database must acknowledge to the application to indicate that a read or

write operation was successful.

Consistency levels determine how many nodes must respond to the coordinator

node to successfully process transactions. Cassandra uses the consistency levels for

handling regular (non-lightweight) transactions.

Consistency shows how synchronized all copies of a row of data are. While regular

repair operations can keep the variability of data among the replicas low, the constant

flow of traffic through the database can potentially lead to some replicas being out of

order with the others. That is, some replicas may be inconsistent or stale.

While Cassandra does satisfy the acid, isolation, and durability properties, it’s the

way it satisfies the consistency property that sets it apart from a typical RDBMS.

Of the three tenets of the CAP theorem (consistency, availability, and partition

tolerance), Cassandra provides the availability and partition tolerance features, and you can

also configure the database so it provides the consistency and partition tolerance capabilities.

For both reads and writes, Cassandra offers tunable consistency, which is an

extension of the principle of eventual consistency. You can configure the consistency for

specific read and write operations so the data is consistent and satisfies the application

requirements. This adjustability allows Cassandra to be either a consistency and

partition tolerant system or a highly available and partition tolerant system. That is, it

allows you to configure Cassandra to satisfy any two of the three CAP requirements.

By adjusting consistency, you’re indirectly adjusting performance, since there’s an

indirect relationship between consistency and latency; the higher the consistency you

configure, the lower the latency, and vice versa.

Note Consistency levels determine the tradeoff between the availability of data
(no latency) and the accuracy of data.

Cassandra offers both read and write consistency levels that you can configure to suit

your requirements, as I explain in the following sections.

 Write Consistency
You can configure a write consistency level to specify how many replicas must

acknowledge a write request before the database considers the write a success. Once the

number of replicas you specify report a successful write, the coordinator node that sends

out the write requests informs the application that the write is completed.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

132

How does a write operation handle a downed or unavailable node? This is where

Cassandra utilizes its hinted handoff feature to make sure that it writes the missing data

to an unavailable node once it comes back up. The database stores the missed writes as

hints on the coordinator node (in the system.hints table) and writes the missed data to

the nodes later on when they become responsive again.

You can check the default consistency level by issuing the CONSISTENCY command:

cqlsh> consistency;

Current consistency level is ONE.

cqlsh>

Client code can override the default consistency level by specifying the required

consistency level in an individual statement:

statement = ...

statement.setConsistencyLevelConsistencyLevel.LOCAL_ONE);

You can configure various write consistency levels. In the following sections, I

describe the write consistency levels from the strongest (ALL) to the weakest (ANY).

 ALL (Strong Consistency)

The ALL consistency level provides the highest level of consistency, but the tradeoff is

that it also offers the lowest availability compared to the other consistency levels. Under

the ALL consistency level, for a write to a partition to be successful, the database must

perform the write to the commit log and the memtable on all the replica nodes in the

cluster. This means that the number of nodes that must reply should be the same as the

replication factor you configure. The database marks the write operation a failure if even

one of the replicas doesn’t respond.

 Quorum-Related Levels (Strong Consistency)

Cassandra offers several levels that are quorum-based, all of which offer a strong level of

consistency. The following are the different quorum-based consistency levels:

• EACH_QUORUM: Provides strong consistency by requiring a write to be

written to the commit log and the memtable on a quorum of the replica

nodes in each of a cluster’s datacenters. You specify the EACH_QUORUM

level of consistency in a multiple datacenter cluster when you want to

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

133

ensure there’s strict consistency at the same level in all datacenters.

Setting this consistency level means that a read will fail if a datacenter

is down, making it impossible to reach the quorum in that data center.

• QUORUM: Provides strong consistency. Under this consistency

level, Cassandra deems a write successful if it’s written to both the

commit log and the memtable on a quorum of nodes. Unlike in the

EACH_QUORUM consistency level, the nodes can range across multiple

datacenters in the cluster. You can specify this consistency level

either in a single or a multiple datacenter cluster. This level helps you

maintain strong consistency by considering the entire cluster as a

unit instead of a datacenter.

• LOCAL_QUORUM: Provides strong consistency. This consistency level

requires the database to complete the write to both the commit

log/memtable on a quorum of local nodes, that is, nodes that belong

to the same datacenter as the coordinator.

You can use LOCAL_QUORUM consistency only in a multiple

datacenter cluster with a replica placement strategy such as

NetworkTopologyStrategy and an appropriately configured snitch.

Note When you perform a write operation with the QUORUM consistency level,
you’ll always get the correct data, even when one of the replicas dies.

 One, Two, Three, and LOCAL_ONE Consistency Levels
(Weak Consistency)

The ONE consistency level isn’t strict. It requires that the database perform a write to the

commit log and memtable of at least one replica node. The TWO and THREE consistency

levels are similar but stricter since they require the write to be made to two and three

replica nodes, respectively.

When you have multiple datacenters in your cluster, a consistency level of ONE is fine

and is desirable as well. However, when a datacenter is offline, connections are made

automatically to other online nodes in other datacenters.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

134

The lowest level of consistency to achieve high performance and durability is

consistency level ONE. Even if the single node goes down, since it already wrote the data

to the commit log, it can replay the commit log when it comes back up again.

The LOCAL_ONE consistency level prevents cross-datacenter traffic by requiring a

write to be acknowledged by at least one node in the local datacenter.

Note the following:

• If your consistency level is ONE and a replica crashes soon after a

write, the data is lost.

• If your consistency level is ONE and the write operation times out, a

subsequent read operation can return either the old or the new value.

You just won’t know if the data is correct.

• If your consistency level is ONE, a down node will be showing you

stale data when it’s revived, until the node gets the correct data or the

database completes a read repair operation.

 ANY

The ANY consistency level offers the highest availability, but at the cost of consistency,

since this level offers the lowest consistency. This level guarantees that a write will never

fail, but you pay for this guarantee with slower writes. Here’s how this consistency level

works:

• The database must perform the write on at least one node in the

cluster.

• If none of the nodes for a partition key are available, the write

succeeds only after one of the nodes comes back up, and, using the

hinted handoff feature, catches up with the lost writes. This level of

consistency therefore allows a hint to count towards a successful

write.

The consistency level ANY is meant for applications that want the database to accept

writes even when all of the replica nodes are down, that is, even when the database can’t

satisfy the consistency level ONE. The consistency level ANY guarantees that a write is

durable and will be readable by a database once the target replica becomes available and

it receives the replayed hints.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

135

 Calculating the Quorum
The concept of a quorum plays a significant role in configuring several write and read

consistency levels. A quorum refers to the number of nodes that need to respond for

Cassandra to consider a write or read operation successful.

When computing the quorum in a single datacenter cluster, you need to consider

the replication factor for just one datacenter. In a cluster with multiple datacenters,

you consider the replication factor in all datacenters, which need not be the same. The

more datacenters in a cluster, the higher the quorum, since more replica nodes need to

respond for Cassandra to consider a read/write operation successful.

Quorum-based consistency levels require the writing of data to at least the number

of nodes that constitute a quorum.

You can calculate the quorum with the help of the following formula:

quorum = (sum_of_replication_factors/2) + 1,

where the value of the sum_of_replication_factors is the sum of all the

replication_factor settings for all datacenters within the cluster.

For example, of the replication factor is 3, in a single datacenter cluster, the quorum

is 3/2 plus 1 which gives you 2.5, but you round it down to a whole number, which

makes it 2.

A quorum of 2 means that the cluster with a single datacenter can tolerate one

replica being down. If the quorum is 4, the cluster can tolerate two nodes down in a

six- node cluster.

It’s important to understand that LOCAL_QUORUM, which is similar to QUORUM, considers

the replication factor of the datacenter that contains the coordinator node. Cassandra

will consider only local replica nodes and ignores other datacenters while computing the

quorum.

 How Consistency Works in Practice

The replication factor and the read and write consistency levels that you configure will

together determine how reliable your read and write operations are.

For example, if you satisfy the following, the database can guarantee eventual

consistency:

R + W <=N

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

136

where

• R is the consistency level of read operations.

• W is the consistency level of write operations.

• N is the replication factor.

Let’s say you set the replication level to 3. A read operation that uses the QUORUM

consistency level and a write operation using the ONE consistency level will then ensure

eventual consistency. This is so because the QUORUM consistency level needs to read two

replicas and the ONE consistency level for writes needs to write to one replica, making the

total three replicas, the same number as the replication factor.

If you need a stronger consistency, you can guarantee it by making sure that the

consistency levels for reads and writes together are at least four when your replication

level is 3. This means that a read operation can use two replicas to verify data and

the write operations will use two replicas as well to verify the writes, yielding a strong

consistency. In other words, you can guarantee strong consistency by making sure the

following condition is true:

R + W > N

If speed is of the essence, you can achieve it while still providing strong consistency by

lowering the write consistency level to 1 but raising the read consistency level to 3. You’re

going to write data faster but your read operations will have additional latency as a result.

 Read Consistency
As with write consistency, there are multiple read consistency levels you can configure.

And, as in the case of write consistency, you face a tradeoff between consistency and

availability when choosing from various consistency levels. For a read operation, the

consistency level you configure determines how many replica nodes must respond

successfully to a read request before the database returns the results. Eventual

consistency means other work keeps going on in the background while the database is

waiting on the information from the nodes.

Since Cassandra is a distributed database, the most recent value of data that you

query isn’t necessarily present on every node of the cluster at any given time. Client

applications configure consistency levels for their requests to manage the tradeoff

between response time and data accuracy.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

137

A higher consistency level requires more nodes to respond to a query, thus providing

more of an assurance that the data in each replica are identical. If two replicas return

data with different timestamps, Cassandra returns the data with the more recent

timestamp to the client. It then initiates a read repair to update the values on the

replica with the outdated values so it has the latest value as well, thus ensuring that it’s

consistent.

Briefly, you can configure the following read consistency levels, each with a different

number of replicas that participate in satisfying read requests:

• ONE: Returns data from the nearest replica

• QUORUM: Returns the most up-to-date data from a majority of the

replicas

• ALL: Returns the most up-to-date data from all the replicas in a cluster

The following sections summarize the availability and consistency tradeoffs for each

of the read consistency levels.

Note Be sure to understand the differences and the relationship between
the replication factor and the consistency levels. You set the replication factor
at the keyspace level and the clients specify the consistency levels per query.
the consistency level is based on the replication factor, since the replication
factor determines the number of replicas that store data during a write. and the
consistency level determines the number of nodes that should respond to indicate
the success of a read or write operation.

 ALL (Strict Consistency)

The ALL consistency level provides the highest consistency at the expense of availability.

When you set this level, the database returns your query results only after it has heard

from all of the replicas. If any of the replicas don’t respond, the query fails. As with many

of the consistency levels, the database performs a read repair if necessary.

When you specify the ALL consistency level, the read operation fails if any node

on the cluster with that data is unresponsive at that time or fails to respond within the

timeout. You configure this timeout with the rpc_timeout_in_ms property. The default

timeout is 10 seconds.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

138

 Quorum-Related Read Consistency Levels (Strong Consistency)

There are two quorum-based consistency levels:

• QUORUM: Provides strong consistency by returning query results only

after a quorum of replicas from all datacenters respond. After a majority

of the replicas respond, the database returns the value with the latest

timestamp to the client. If the database finds that some nodes have stale

data, it performs a read repair on the replicas with the outdated data.

• LOCAL_QUORUM: Provides strong consistency by returning query results

only after a quorum of nodes in the local (current) datacenter has

replied. You can use this level only in a multiple datacenter cluster

with the NetworkTopologyStrategy replica placement strategy in

place and an appropriately configured snitch.

Note a QUORUM read consistency level means that you’ll always retrieve the
correct data, even when one of the replicas dies.

 The ONE, TWO, THREE, and LOCAL_ONE Consistency Levels
(Weak Consistency)

The ONE consistency level offers the highest availability at the cost of consistency.

Cassandra returns the query results immediately from the nearest replica. The tradeoff

is that you have a high probability of reading stale data. The database checks this data

against data in the other replicas as well, and if any of the replicas are out of date, the

database initiates a read repair to make the other replicas consistent.

Note Under the ONE consistency level, the replicas that serve the reads may not
have the latest version of the data.

The TWO, THREE, and LOCAL_ONE levels of consistency are similar to the ONE setting:

• Level TWO returns the latest data from two of the nearest replicas.

• Level THREE returns the latest data from three of the nearest replicas.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

139

• The LOCAL_ONE consistency level is similar to the consistency level ONE

and returns the data from the nearest replica in the local datacenter.

 The Serial Consistency Settings

There are two SERIAL consistency levels you can configure. The first one, SERIAL, enables

you to read the latest value of a column involved in an in-flight lightweight transaction

by a user. The SERIAL consistency level allows the reading of the most up-to-date data,

including potentially uncommitted data.

The LOCAL_SERIAL consistency level is like the SERIAL level of consistency but is

limited to the datacenter. You use this to gain linearizable consistency for lightweight

transactions.

Note You configure consistency levels to trade off availability vs. the accuracy of data.

 Configuring the Consistency Level
You can configure the consistency levels at a session level or per each read or write

operation.

If you’re using cqlsh, specify the keyword CONSISTENCY to set the consistency level for

all queries you run within your current session. Client applications set the consistency

level via their drivers.

The default consistency level is ONE for a read or write operation. The following

example illustrates this:

cqlsh> CONSISTENCY;

Current consistency level is ONE.

cqlsh>

Earlier, you learned about the various consistency levels you can set. Here are some

examples that show how to set various consistency levels.

• Set the QUORUM level of consistency to force a majority of the nodes

in a cluster to respond before the database considers the operation

successful.

cqlsh> CONSISTENCY QUORUM;

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

140

• For lightweight transactions, set the SERIAL consistency level.

cqlsh> CONSISTENCY SERIAL;

 Three Types of Read Requests
A coordinator node can send out three types of read requests to a replica node:

• Direct Read Requests: The coordinator node contains a single

replica node.

• Digest Request: The coordinator first contacts a replica node,

following which it sends a request to the number of nodes you specify

with the consistency level property. The request sent by the

coordinator checks the data on the replica nodes to ensure it’s up to

date. If the coordinator discovers that some nodes have stale data, it

sends out a read repair request.

• A Background Read Repair Request: Cassandra performs read repair

in the background to ensure that all the rows that a coordinator

requests during a digest request are consistent across all the replicas

that are part of the read request.

 Rapid Read Protection with Speculative Retrying

Normally, during a read request, Cassandra sends out data requests to enough replicas

to satisfy the consistency level. You can configure a table with the speculative_retry

property to take advantage of Cassandra’s ability to retry a read request with a different

replica node when the original replica node is unavailable or is very slow in responding

to a read request. When you configure this, Cassandra sends extra read requests to

replicas, although the consistency level has been already satisfied.

Note rapid read protection assures that if a replica node fails or is unduly slow,
the coordinator node automatically sends the read request to other nodes after a
timeout interval.

When you configure speculative retrying, the coordinator node automatically retries

requests with a different node after a set time elapses. Recovering from replica node

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

141

 failures in this manner using speculative retrying of read queries is called rapid read

protection.

You can configure rapid read protection by setting the speculative_retry property.

This property determines exactly when the coordinator node fires the extra read

requests. Here are all the ways in which you can configure this property:

• NONE: This is the default value and it specifies that the coordinator

not send any extra read requests except for the original read request,

regardless of the latency.

• ALWAYS: After every read of a table, the coordinator sends extra read

requests to all other replica nodes in the cluster.

• Xpercentile This tells the coordinator node to send out redundant

read requests if it doesn’t receive any responses from the replica

node within a certain percentage of the value you set for the

Xpercentile property. For example, the typical latency for a table

is 60 milliseconds, and say you set the Xpercentile property to

80 percentile. If the replica node doesn’t respond within 48 ms

(80% of 60ms), Cassandra sends out redundant read requests to other

replicas.

• Nms: Under this strategy, the coordinator node sends extra read

requests if it doesn’t receive any responses from a replica within N

milliseconds.

Here are some examples of how to set the speculative_retry property for a table:

cqlsh> ALTER TABLE users WITH speculative_retry = '5ms";

cqlsh> ALTER TABLE users WITH speculative_retry = '95percentaile';

 Read Requests with Various Read Consistency Levels: Some
Examples

In this section, I present several examples of read requests with varying consistency

levels in a single datacenter as well as in a cluster with two datacenters. The replication

factor is 3 in all cases. I first show the scenarios for a single datacenter and then for a

cluster with two datacenters.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

142

Single Datacenter

With a QUORUM read consistency level, two of the three replicas must respond before the

read request is successful. If there are multiple versions of a row, the replica with most

recent version will satisfy the read request. In addition, the database will initiate a read

repair on the third replica if necessary (if the third replica is stale).

A read consistency level of ONE means that that database will reach out for the

nearest replica for the rows it needs to satisfy the read request. Depending on whether

the data diverges among the three replicas, the database may also start a read repair for

the other two replicas. This depends on how you configured the read_repair_chance

property for the table.

A Cluster with Two Datacenters

If you set read consistency to QUORUM and a replication factor of 3, four replicas of

data must respond for a read request to succeed, with the replicas belonging to either

datacenter. The database checks the other replicas for consistency, and if any replicas

are out of date, starts a read repair to bring them up to date.

If you’ve configured the LOCAL_QUORUM level of read consistency instead, two replicas

from the same datacenter as the coordinator node must respond to the read request.

For a read consistency of ONE, the database relies on the nearest replica,

irrespective of the datacenter. It may also initiate a read repair based on the read_

repair_chance setting you’ve configured for the table. For a read consistency level

of LOCAL_ONE, the database contacts the closest replica in the same datacenter as the

coordinator node.

 Testing the Performance of Consistency Levels
As you just learned, there are many consistency levels for both read and write

operations. Selecting a consistency level has a significant bearing on query and write

latency, as well as on availability.

DataStax recommends that you test the performance of various consistency levels by

using CQL’s TRACING command. Since the TRACING command’s output shows the elapsed

time for each read and write operation, you can compare the performance of various

consistency levels before settling on one of them.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

143

To trace queries that use large data sets, it’s a good idea to configure probabilistic

tracing. Use the nodetool settraceprobability command to configure probabilistic

tracing. Once you do this, you can query the system_traces keyspace, as shown here:

cqlsh> SELECT * FROM system_traces.events;

Just a disclaimer here regarding the performance hit of probabilistic tracing.

Experience shows that the tracing could significantly affect database performance.

Therefore, use this feature with caution.

When you turn tracing on, if you have a replication factor of 3, here’s what the three

consistency levels would mean:

• ONE: Processes responses from one of the three replicas.

• TWO: Processes requests from a majority of the three replicas (that is,

two replicas).

• ALL: Processes responses from all three of the replicas.

To trace the queries, all you need to do is to run the query you want to use for testing

the differences among the consistency levels, after turning tracing on:

cqlsh> TRACING on;

cqlsh> CONSISTENCY QUORUM;

cqlsh> SELECT * FROM cycling_alt.tester where id = 0;

Similarly, you can trace the impact of the ONE and ALL consistency levels.

Performance with the ALL consistency setting is worse than that with the QUORUM

setting when you’re dealing with large data sets or when one node is slower than the rest

of the nodes in the cluster.

 Ensuring Atomicity with Batch Operations
At times, you may want to process a set of operations (inserts/updates/deletes) as a

single all-or-nothing operation. Performing a set of operations so that either all of them

succeed, or no operation succeeds, is called an atomic operation.

Cassandra allows you to perform batch operations in an atomic fashion. For a single

partition, Cassandra performs the batch operations without you having to do anything.

For batch operations spanning multiple partitions, Cassandra uses a batchlog, which

means you must configure some additional things.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

144

You can combine multiple INSERT, DELETE, and UDPATE statements into a single

operation. Batch operations save on client-server communications, as well as the

messaging between the coordinator and the replica nodes.

A batch operation is atomic since if any statement in the batch succeeds, all the

statements will succeed, and if one of them fails, all of them will fail. Other transactions

in the database can read and write the data that was affected by a partially executed

batch operation.

 Configuring Batch Operations
You can have Cassandra process batch operations as an all-or-nothing deal. When you

use batch operations, you can configure the number of operations in the batch with the

max_mutation_size_in_kb property. This property determines the maximum size of a

single batch mutation (batch operation).

By default, the max_mutation_size_in_kb property is set to half of the value you’ve

set for the commitlog_segment_size_in_mb property, which sets the size of an individual

commit log file segment. The default value of the commitlog_segment_size_in_mb

property is 32MB. If you decide to set a custom value for the max_mutation_size_in_kb

property, you must ensure that the value of the commitlog_segment_size_in_mb

property is at least twice the value of max_mutation_size_in_kb/1024.

Note if the size of the batched operation is greater than the value you’ve
configured for the max_mutation_size_in_kb property, the answer isn’t to just
keep raising the commit log segment size. the problem may lie in an inefficient
query access to the data or a wrong data model.

 Batch Operations in Single and Multiple Partitions
DataStax points out that multiple partition batch operations suffer from performance

issues. You must resort to batch operations for multiple operations only if you have a

dire need to ensure atomicity. In a multiple partition batch operation, the coordinator

node can turn out to be a bottleneck during a batch operation. The higher the number of

partitions in a batch operation, the higher the latency due to batching.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

145

Batch operations that involve writing to multiple partitions also require Cassandra to

visit all of those nodes, thus increasing latency of the write operation. As the number of

partitions grows, so will the latency of the writes.

The following is an example that shows a batch operation that performs three INSERT

operations in one atomic operation. You want all three INSERT statements to work, or

none. You start the batch operation with the BEGIN BATCH clause and end it with the

APPLY BATCH clause.

cqlsh:cycling> begin batch

 ... INSERT INTO cycling.cyclist_expenses (cyclist_name, balance)

VALUES ('Vera ADRIAN', 0) IF NOT EXISTS;

 ... INSERT INTO cycling.cyclist_expenses (cyclist_name,

expense_id, amount, description, paid) VALUES ('Vera

ADRIAN', 1, 7.95, 'Breakfast', false);

 ... iNSERT INTO cycling.cyclist_expenses (cyclist_name, balance)

VALUES ('Vera ADRIAN',7.95);

 ... apply batch;

 [applied]

 True

cqlsh:cycling>

If a batch operation is successful, you’ll see an acknowledgment saying True. If it

fails, you’ll see an acknowledgment that says the following instead:

[applied]

 False

Since all the INSERT statements write to the same partition, this batched write

operation is efficient.

 When Batch Operations Are Good
Consider batching only if you must ensure atomicity for a set of operations that

perform insert/update/deletes. Write operations that use only a single partition are fine

performance-wise.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

146

Even in cases with multiple partitions, if the operations involve only small inserts or

updates, you’ll be fine with batching those operations to ensure consistency.

 Lightweight Transactions
Sometimes you may want to read and write data in a sequential order, such as when you

are handling banking transactions, where one should carefully handle the credits and

debits. Cassandra offers lightweight transactions to manage concurrent operations in a

transaction. It uses the Paxos consensus protocol to implement lightweight transactions.

The Paxos protocol is an algorithm that allows the nodes in a cluster to agree on

proposals without requiring a master node to coordinate the transactions. Paxos is

an alternative to the traditional two-phase commit used to coordinate distributed

transactions.

Relational databases use several types of isolation, including the serializable level

of isolation. Cassandra implements the Paxos protocol with linearizable consistency.

Linearizable consistency yields results similar to those offered by the traditional

serializable level offered by relational databases.

Cassandra uses a transaction operation called compare and set (CAS) to implement

linearizable consistency. Cassandra compares replica data and sets any out-of-date data

to the most consistent value in the database.

 Performing Lightweight Transactions
An appropriate use case for using a lightweight transaction is when you must insert

unique data such as a user’s identification number.

Cassandra enables you to issue INSERT and UPDATE statement using the IF clause to

support lightweight transactions. For example, you can insert a new cyclist with an ID

number, as shown here:

cqlsh> INSERT INTO cycling.cyclist_name (id, lastname, firstname)

 VALUES (4647f6d3-7bd2-4085-8d6c-1229351b5498, 'KNETEMANN',

'Roxxane')

 IF NOT EXISTS;

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

147

The following statement shows how to perform a lightweight CAS operation against

data that exists in the database by adding the IF clause at the end of the operation:

cqlsh> UPDATE cycling.cyclist_name

 SET firstname = 'Roxane'

 WHERE id = 4647f6d3-7bd2-4085-8d6c-1229351b5498

 IF firstname = 'Roxxane';

 How Lightweight Transactions Work
Cassandra intermingles the Paxos protocol and the normal read and write operations.

A lightweight transaction doesn’t block normal read and operations but it‘ll block other

lightweight transactions.

Since mixing lightweight transactions and normal read and write operations

can result in an error, you must use lightweight transactions for both read and write

operations. For example, the following set of operations will fail:

DELETE ...

INSERT ... IF NOT EXISTS

SELECT ...

On the other hand, the following set of operations will work fine:

DELETE ... IF EXISTS

INSERT ... IF NOT EXISTS

SELECT ...

 Caution When Using Lightweight Transactions
Since implementing the Paxos protocol involves a series of actions that occur between

proposers and acceptors, there will be multiple round trips between the node that proposes

a lightweight transaction and other replicas that are part of the transaction. This obviously

has an adverse impact on performance, so you should be careful to use lightweight

transactions only when consistency among the operations of a transaction is critical.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

148

 Summary
The key takeaway regarding Cassandra data modeling is how queries are the heart of

everything. You design your database structures such as tables and indexes based on the

queries you expect the database to service.

Understanding the principle of eventual consistency and the various read and write

levels and their implications helps you make the best choices to satisfy the requirements

of your applications.

Chapter 4 Cassandra data Modeling, and the reading and Writing of data

149
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_5

CHAPTER 5

Cassandra Architecture
Cassandra has several interesting architectural features that set it apart from a relational

database. This chapter introduces the Cassandra architecture. You’ll also learn about the

Cassandra storage engine and how the database stores its data.

The chapter explains the gossip protocol, which the nodes use to communicate among

themselves. Read and write repairs are part of how Cassandra provides consistency. You’ll

learn about failure detection and recovery. You’ll learn about hinted handoff, a feature that

ensures that a failed node receives all the modifications that occurred while it was down.

You’ll also learn about read repair and manual anti-entropy repair.

The chapter explains virtual nodes, which are a significant improvement over

traditional ways of distributing data across the nodes of a cluster. You’ll learn

about various partitioning and replication strategies, such as SimpleStrategy and

NetworkTopologyStrategy, and how to change the replication strategies. You’ll learn

how to choose among the available data partitioning strategies to help Cassandra

distribute data across a cluster’s nodes.

Cassandras uses the cluster’s topology to decide where it should store the data,

as well as how best to respond to queries. To this end, it attempts to store replicas in

multiple datacenters to ensure availability. It also sends queries to the local datacenter to

minimize latency.

Snitches determine the datacenter and racks that Cassandra writes to and reads

from, and are critical for read activity. You’ll learn about the several types of snitches

offered by Cassandra, such as the GossipingPropertySnitch and the Ec2Snitch.

 Basic Cluster Terminology
Cassandra uses a peer-to-peer system where data is distributed over multiple nodes in a

cluster. Nodes in a cluster periodically exchange information among themselves using a

gossip protocol. One of the cluster’s nodes acts as a coordinator or proxy for every client

operation and determines which nodes should process the client requests.

150

Cassandra partitions and replicates data. It uses commit logs to ensure data

durability and writes the data from the commit log structures called memtables and from

there to disk in SSTable data files.

Periodically, the database compacts data by discarding obsolete data. To ensure

consistency of data, Cassandra employs several types of repair mechanisms.

It’s a good idea to refresh your understanding of some of the key terms you’ll come

across often in this and the rest of the chapters when dealing with the architecture of

Cassandra.

• A datacenter is a group of related nodes that you configure together

within a cluster for replication purposes. You can have virtual or

physical datacenters. A datacenter can’t span physical locations. The

purpose in having multiple datacenters is to prevent other data nodes

from adversely impacting transactions in a data node and to lower

latency. You can create datacenters to contain specific node types,

such as transactional, analytics, search, and graph.

• A rack is a logical set of nodes located close to each other, usually in

the same physical rack of physical machines. A datacenter is a logical

grouping of racks, connected by a network.

Note Cassandra comes with a default rack named RAC1 and a default single
data center named DC1.

• A cluster is the largest unit of deployment for a Cassandra database

and consists of a set of nodes in one or more locations. In AWS, the

locations are multiple availability zones. A cluster can consist of just

a single node, a single datacenter, or multiple datacenters. A cluster

is sometimes referred to as a ring since Cassandra stores data in the

cluster by arranging the data in a ring.

• A Cassandra node is a part of an individual location (a server) on

a Cassandra cluster that stores data. To be specific, it stores data

partitioned according to a partitioning algorithm that you specify.

ChApteR 5 CAssAnDRA ARChiteCtuRe

151

• A commit log is a write-ahead transaction log that Cassandra stores

on every node of the cluster. Cassandra writes data first to the

append-only commit log, which it then flushes to disk in batches

or periodically. Commit logs perform a critical role during a data

recovery. Once the database flushes its data to disk, the database can

archive, delete, or reuse the commit log.

• A memtable is an in-memory structure that’s a cache of data rows that

can be looked up by a key. Each memtable stores data for a specific

table and the database flushes the memtable contents to disk when the

commit log gets full or after a specific interval (set at the table level).

• An SSTable (sorted strings table) is a logical entity that is

comprised of several files on disk. An SSTable is immutable and is an

append- only structure. Cassandra creates an SSTable when it flushes

a memtable to disk. Cassandra sorts the memtables by key and

writes them out sequentially to create an SSTable. This is the reason

Cassandra’s writes are very fast; they involve only the appending of a

commit log and a sequential write operation for flushing the data.

• A keyspace is a logical container that contains one or more tables

and is analogous to a schema in a relational database. You store data

inside tables that are part of a specific keyspace. All data objects such

as tables must belong to a keyspace.

• A keyspace defines how Cassandra replicates data on the nodes

of a cluster. A keyspace has several storage attributes. The

keyspace also determines the RF (replication factor) for data that

you store in a keyspace. You define the data replication strategy at

the keyspace level, either when you create it or later.

• It’s a good idea to have a separate keyspace per application.

• A CQL table (aka column family) is a logical entity that resides in

a keyspace. A table consists of ordered columns that the database

fetches by row. You must define a primary key when you create a

table.

ChApteR 5 CAssAnDRA ARChiteCtuRe

152

 Replica Placement Strategy
Cassandra allows you to replicate data by storing multiple copies of data across the

nodes of a cluster. There are two strategies you can adopt to let Cassandra know how it

ought to replicate data:

• The SimpleStrategy is for prototyping.

• The NetworkTopologyStrategy is for production environments.

 How Cassandra Stores Data
Since Cassandra is a key-value store, it organizes its data into rows that consist of several

columns that represent the values. A row belongs to a single node, and Cassandra

replicates that row to the other nodes in the cluster.

Cassandra hashes each row’s key to determine in which node in the ring it should

store that data. It organizes the cluster itself as a ring of nodes, with each node storing an

equal number of hash values.

Let’s say you are running a four-node Cassandra cluster. You have a single keyspace

and you choose a replication factor of 3. Let’s say you create a table in the keyspace and

insert data into it. Each time Cassandra inserts data, it hashes the value of that row’s key

to find out which node is responsible for storing that row.

For simplicity’s sake, let’s assume the hash values range over 1-100, although in

reality the hashes use 128-bit or larger values. Since you have four nodes in the cluster,

here’s how the nodes divide the hash values among themselves:

• Node 1: Hash values 1-25

• Node 2: Hash values 26-50

• Node 3: Hash values 51-75

• Node 4: Hash values 76-100

ChApteR 5 CAssAnDRA ARChiteCtuRe

153

Figure 5-1 shows how Cassandra distributes the hash values among the four nodes.

Figure 5-1. How nodes are responsible for various hash values

Let’s say that the first row you insert gets hashed by Cassandra and the hash has

a value of 65. As the diagram shows, the row belongs to Node 3, and Cassandra will

also replicate the data to Node1 and Node 2. Why nodes 1 and 2? The reason is that

replication is always done on a clockwise basis in a ring.

Let’s say that the next row you insert has the value 48. It goes to Node 2, and

Cassandra replicates the row to Node 3 and Node 4.

This is the essence of how Cassandra stores data among the nodes in a cluster.

Ideally, all nodes in a cluster have an equal share of the hash values and thus the

data set. That’s why it’s very important to ensure that the primary key you select for a

table has a high cardinality (many values). This way, the rows are spread among all the

nodes in the cluster instead of being stored in a skewed fashion, with some of the nodes

having the responsibility for a higher portion of the data set than others. This results in

hot spots on the storage drives, as fewer nodes are doing most of the work during read

operations.

ChApteR 5 CAssAnDRA ARChiteCtuRe

154

 Gossip and How It Helps Nodes Communicate
Cassandra uses gossip, a protocol in which nodes exchange state information

about themselves and other nodes they’re aware of in order to discover location

and state information about all nodes in a cluster. Gossip protocols that assume a

less-than- perfectly-functioning network are common in distributed network systems

and are used for data replication in distributed databases.

As with human gossip, the peers (nodes) in a cluster choose which nodes they want

to exchange information with. The Gossiper class maintains a list of nodes that are alive,

thus enabling gossip to help with failure detection.

The gossip process runs frequently (every second) and exchanges state messages

of one node with those of up to three other nodes. When a node starts, it registers with

the gossiper to receive endpoint state information from other nodes in the cluster,

as shown here:

INFO [main] 2017-06-24 12:19:21,997 MessagingService.java:733 - Starting

Messaging Service on ubuntu/192.168.159.130:7000 (ens33)

INFO [HANDSHAKE-/192.168.159.129] 2017-06-24 12:19:22,199

OutboundTcpConnection.java:510 - Handshaking version with /192.168.159.129

INFO [GossipStage:1] 2017-06-24 12:19:22,326 Gossiper.java:1056 - Node

/192.168.159.129 is now part of the cluster

INFO [RequestResponseStage-1] 2017-06-24 12:19:22,380 Gossiper.java:1020 -

InetAddress /192.168.159.129 is now UP

INFO [main] 2017-06-24 12:19:23,202 StorageService.java:705 - Loading

persisted ring state

INFO [main] 2017-06-24 12:19:23,218 StorageService.java:818 - Starting up

server gossip

INFO [GossipStage:1] 2017-06-24 12:19:24,596 Gossiper.java:1056 - Node

/192.168.159.129 is now part of the cluster

INFO [RequestResponseStage-1] 2017-06-24 12:19:24,601 Gossiper.java:1020 -

InetAddress /192.168.159.129 is now UP

INFO [main] 2017-06-24 12:19:31,610 CassandraDaemon.java:725 - No gossip

backlog; proceeding

ChApteR 5 CAssAnDRA ARChiteCtuRe

155

And when a node can’t get the gossip information, it lets you know about that too, by

throwing an exception:

INFO [main] 2017-06-24 12:06:00,302 MessagingService.java:733 - Starting

Messaging Service on

ERROR [main] 2017-06-24 12:06:31,476 CassandraDaemon.java:752 - Exception

encountered during startup

java.lang.RuntimeException: Unable to gossip with any seeds

WARN [StorageServiceShutdownHook] 2017-06-24 12:06:31,564 Gossiper.

java:1514 - No local state, state is in silent shutdown, or node hasn't

joined, not announcing shutdown

The gossip process can be both direct (other nodes gossip to a node) and indirect

(nodes get information from other nodes, which might get it from still other nodes).

Since each node not only exchanges information about its own state but also about the

state of the other nodes they communicated with, all nodes will be aware of the state of

all the other nodes in the cluster very fast.

When nodes exchange gossip among themselves, the latest state of a node overwrites

older state information.

When the gossiper finds that an endpoint isn’t responding, it marks that endpoint as

dead on its list and logs the information.

Cassandra uses a sophisticated algorithm called Phi Accrual Failure Detection for

detecting node failures. Instead of using simple heartbeats from the nodes to indicate

that they are alive, the algorithm uses a suspicion level to determine node availability.

Whereas a heartbeat offers a simple yes/no criterion to determine if a node is

alive, the failure detection uses a continuum of data to make that determination. For

example, if a node can’t accept a connection occasionally due to blips in the network,

that node isn’t immediately put on the list of dead nodes. Thus, the algorithm matches

real-life network conditions and realistically portrays the health of the nodes. Using this

algorithm, the database detects node failures within 10 seconds after they occur.

 Configuring Gossip Settings
You really don’t need to do anything to set up gossip because all the necessary properties

are set when you start up the Cassandra nodes in a cluster. When you start up a node,

you configure the following properties, all of which help the node know which nodes

it should contact for gossip about other nodes. These properties also set the ports and

ChApteR 5 CAssAnDRA ARChiteCtuRe

156

other relevant IP addresses or hostnames to enable Cassandra to connect the nodes to

one another.

• cluster_name: Name of the cluster the node is a part of.

• listen_address: The IP address/hostname that Cassandra must bind

to so it can connect this node to the rest of the nodes in the cluster.

Alternatively, you can specify the listen_interface property instead

of listen_address.

Tip specify multiple seed nodes per datacenter so gossip doesn’t have to
communicate with nodes from a different datacenter when bootstrapping nodes.

• seed_provider: This property enables you to specify a list of hosts

(IP addresses) that gossip relies on to learn the ring’s topology. You

don’t need to specify all nodes as seed nodes since it reduces gossip

performance.

• DataStax recommends that you use a small number of seeds, such as

three nodes per datacenter. You should specify the same list of nodes

for all nodes in a cluster. If your cluster has multiple datacenters,

include at least one node from each datacenter as seed providers.

• storage_port: This is the inter-node communication port and it must

be identical across all nodes in the cluster.

 Seed Nodes and Gossip
In Chapter 3, you learned about the seed nodes that you specify in the cassandra.yaml

file. Seed nodes aren’t really a big deal, in the sense that their failure doesn’t constitute

a single point of failure for the cluster. The only role they play is in bootstrapping the

gossip process for a new node that’s joining the cluster.

You must ensure that you specify an identical set of seed nodes for all of a cluster’s

nodes. This point is quite important when you first start up a node.

It’s not advisable to make every node a seed node; this will only adversely impact

gossip performance. Ideally, your seed list should be small, with about three nodes

per datacenter. If you have multiple datacenters, include at least one node from each

datacenter in the seed list.

ChApteR 5 CAssAnDRA ARChiteCtuRe

157

If you include two or three nodes per datacenter gossip, as against specifying a

single seed node, it protects you against the failure of the single node. Otherwise, when

the single seed node fails, gossip will need to communicate with a different datacenter

during the bootstrapping of the nodes.

 Failure Detection and Recovery
Cassandra determines the status of a node (up/down) from the gossip state and does its

best to avoid sending client requests to nodes that are unreachable.

Cassandra uses an accrual detection mechanism to determine the threshold for

marking a node as failed. This threshold considers network performance, workload, and

historical data to help calculate the critical threshold for node unavailability.

All nodes use a failure detection mechanism to detect the failure of the rest of the

nodes in the cluster. Nodes use the latency of the gossip messages by using a sliding

window on the arrival times of gossip messages from other nodes.

You can configure the failure detection mechanism by adjusting the

phi_convict_threshold property in the cassandra.yaml file. The default value for this

property is 8. If you set this property’s value at a high number, it’s possible the cluster will

miss transient failures. A lower value, on the other hand, increases the odds of marking

an unresponsive node as a down node.

Amazon EC2 experiences frequent network congestion issues. In this and other

environments where you may experience unusable networks, you can raise the value of

the phi_convict_threshold property to 10 or 12 to avoid misleading failure detection.

In general, according to DataStax, a range of values between 5 and 12 is good enough in

most cases.

Intermittent node failures such as those caused by network outages are transient

and don’t result in the removal of the node from the ring. The rest of the nodes will

periodically try to contact the unreachable node.

When an unreachable node comes back online, Cassandra uses repair mechanisms

such as hinted handoffs and manual repair to ensure that the node catches up with the

missed writes for the replica data it maintains.

ChApteR 5 CAssAnDRA ARChiteCtuRe

158

 Repairing a Node
Cassandra is a distributed database and over time the data in one of the replicas

can diverge from that of the other replicas. Node repair is a process that corrects the

inconsistencies among the replicas so eventually all nodes will have identical data. As an

administrator, node repair is one of your key responsibilities and is something that you’ll

perform on a regular basis.

Cassandra offers three types of repairs, some of which involve your manual

intervention:

• Hinted handoff

• Read repair

• Anti-entropy repair

The following sections briefly explain the various types of repair.

 Hinted Handoff
Hinted handoff is a process where a node that’s acting as the coordinator for a write that

it was unable to perform on a different node saves the data as a set of hints. When the

unreachable node becomes available later, the coordinator node hands off the stored

hints to help the other node catch up with the missed writes.

A hint contains data about the write request that was sent to the node that was

unavailable at that time. A hint is like a wrapper around the change operation that tells

the database that it needs to replay the data to the node that was unavailable at the time

of the write.

The database creates a separate hint for each partition to which it must write data.

Once the coordinator node finds from gossip that the failed node is back up again, it

hands off the hint to the revived node to write the missed data. Hints thus help the time it

takes for a failed node to become consistent when it comes back up.

The idea behind hinted tradeoff is to enable a cluster to operate normally by

enabling it to perform its normal amount of writes even when one or more nodes

are unavailable. Thus, this feature directly contributes to Cassandra’s vaunted high

availability. Hints allow Cassandra to offer full write availability when consistency isn’t a

requirement. They also enhance response consistency after temporary outages such as a

network failure.

ChApteR 5 CAssAnDRA ARChiteCtuRe

159

Tip You can disable hinted handoff to avoid a situation where a node may be
down for long. this will keep the database from having to send a flood of hints to
the failed node when it comes back online.

A hint doesn’t count towards a write when satisfying the consistency level. However,

the consistency level ANY accepts a hint as a something that satisfies the requirements

for a read operation. Even if the database were to write just a hint, the write would be

successful.

 What a Hint Is

Cassandra stresses all hints on the local hints directory on each node. Besides the data itself,

each hint consists of a few identifying attributes for the hint. Here’s what a hint consists of:

• The ID of the down or unavailable node

• A hint ID, which is a time UUID for the data

• A message ID with the Cassandra version

• The data in the form of a blob

The database flushes all hints to disk every 10 seconds to keep the hints fresh. Once

the down node comes back up, Cassandra writes all data to the node and deletes the hint

file after that.

When Cassandra attempts to write to a replica node that it knows is down or is not

responding to a write request, the coordinator node stores a hint on the node where it’s

running, in the system.hints table. When the gossip mechanism lets the coordinator

node know that the failed node is back, the coordinator node sends the data rows

corresponding to each of the hints to the revived node.

For brief outages, the coordinator node checks every ten minutes for any writes that

may have been missed due to an intermittent failure and that weren’t caught by failure

detector via gossip.

 How Hinted Handoff Works

For hinted handoff to work, first you must enable it. Since the default value for the

hinted_handoff_enabled property in the cassandra.yaml file is true, you don’t need to

do anything, unless you disabled this feature earlier for some reason.

ChApteR 5 CAssAnDRA ARChiteCtuRe

160

You can also enable hinted handoff on a per datacenter basis by passing the list of

datacenters, as shown here:

hinted_handoff_enabled: DC1, DC3

You can specify a list of datacenters that won’t perform hinted handoff; that is,

disable the feature in some of the datacenters in a cluster by passing the list of the

blacked-out datacenters as values to the hinted_handoff_disabled_datacenters

property, as shown here:

hinted_handoff_disabled_datacenters: - DC1 - DC2

 Managing a Hinted Handoff

By default, the database stores the hints in a directory named hints in the following

location:

$CASSANDRA_HOME/data/hints

You can set a different location for the hints directory by setting the

hints_directory property.

You can configure the maximum size of a single hints file (in megabytes) by setting

the max_hints_file_size_in_mb property (default is 128MB). You can have the database

compress the hints file by setting the hints_compression parameter, which defaults

to LZ4Compressor. Besides LZ, the database also supports the Snappy and Deflate

compression algorithms as compressors for a hints file.

 Checking the Status of a Hinted Handoff

You can find out the status of hinted handoff by issuing the nodetool statushandoff

command:

$ nodetool <options> statushandoff

The options included the hostname, port number, and password. Here’s an example:

$ nodetool statushandoff

Hinted handoff is running

$

ChApteR 5 CAssAnDRA ARChiteCtuRe

161

 Removing All Hints

You can remove all hints on the local node, or for one or more endpoints, by using the

nodetool truncatehints command:

$ nodetool <options> truncatehints -- <endpoints> ...

The endpoints options enable you to specify one or more IP addresses or host

names where you want to delete the hints.

 Disabling and Enabling Hints for a Datacenter

You can enable hints for a datacenter with the nodetool enablehintsfordc command,

which has the following syntax:

$ nodetool [options] enablehintsfordc [--] <datacenter>

The datacenter option is how you specify the datacenter for which you want to

enable hints. Here’s an example of how you invoke this command:

$ nodetool -u username -pw password enablehintsfordc DC1

Earlier, I explained how you can configure the hinted_handoff_disabled_

datacenters property to blacklist one or more datacenters when you start up a cluster.

You can run the nodetool enablehintsfordc command to enable hints for the

datacenters you’ve backlisted at startup.

As you might guess, you can disable hints for a datacenter by running the nodetool

disablehintsfordc command, as shown in the following example:

$ nodetool -u username -pw password disablehintsfordc DC1

You usually disable hints for a specific datacenter when the datacenter is down but

the rest of the cluster is working fine. You can also do this when failing a datacenter over.

 Tuning Hinted Handoff

You can control the rate at which the surviving nodes send hints to a recovered node.

You do this by setting the sethintedhandoffthrottlekb property (in KB/second). The

property doesn’t set the rate of transmission of the hints from the good nodes to the

recovering node. Rather, it sets the maximum sleep interval per delivery thread after it

delivers a hint.

ChApteR 5 CAssAnDRA ARChiteCtuRe

162

You set the sethintedhandoffthrottlekb property in the following way:

$ nodetool sethintedhandoffthrottlekb 4096

This example shows how to set the hinted handoff throttle to 4096 KB/second per

delivery thread.

The more nodes you have in your cluster, the smaller the sleep interval between

hints because all the delivery threads from the various nodes share the maximum

interval. The more nodes there are, the more the simultaneous delivery of hints, hence

the lower the real sleep interval between the transmissions of the hints.

You can speed up hint handoffs in a multiple datacenter deployment by configuring

the max_hints_delivery_threads property, whose default value is 2. By raising this

value, you enable the database to use a higher number of threads to deliver hints during

a cross-datacenter handoff of hints.

 Stopping the Writing of New Hints

When a node is down for a long time, the coordinator node won’t write anymore new

hints. You can configure this period with the max_hint_window_in_ms attribute in the

cassandra.yaml file. By default, this period is set to 3 hours.

The reason Cassandra imposes a time interval for the period for which the database

generates hints is to ensure that a large volume of stored hints won’t cause a resource

crunch when the database tries to write all the data to the node that was brought up after

a prolonged period of time.

The write_request_timeout_in_ms property specifies the time (in milliseconds)

that the coordinator will wait for write operations to complete, before it times out the

operation. The default is 2000 milliseconds.

 Read Repair
Cassandra performs a read repair when it repairs nodes that are queried during a

read operation. The extent of the read repair depends on the replication factor you’ve

configured for a database. If you’ve configured a CONSISTENCY level of ONE or ANY,

there’s only a single replica node that’s queried by the coordinator node. However, if

you’ve set the CONSISTENCY level to greater than ONE, there are multiple replica nodes

that the coordinator will get in touch with for every read request.

ChApteR 5 CAssAnDRA ARChiteCtuRe

163

During a read, the coordinator sends out requests to one of the nodes that has a

replica (replica node). Simultaneously, it also sends digest requests to all the other

replica nodes where you’ve configured a CONSISTENCY level greater than ONE.

The coordinator node returns the requested data to the client if all of the nodes

return the same (consistent) data. However, if some of the replica nodes don’t have the

same data, the coordinator writes the latest version of the data to the replica nodes with

the outdated replicas.

 Random Read Repairs

Cassandra can choose to randomly perform a read repair on its own of all the replicas of

a table. The replication factor has no bearing on this type of random read repair.

The read_repair_chance property that you set for a table determines how frequently

the database performs random read repairs. This property sets the probability that a

successful read operation will trigger a read repair. The default value for this property is

zero, and you must set it to a value between zero and one.

Whereas the read_repair_chance property determines the probability of a read

repair across the cluster, a related table level property, dclocal_read_repair_chance,

determines the probability of a read repair of replicas in the same datacenter as the

coordinator.

The recommended value for the read_repair_chance property is a value of 0.2 for

all compaction strategies except the deprecated DataTieredCompcationStrategy, which

you set to zero. However, your mileage may vary so proceed with caution when setting a

value for this property.

 Rapid Read Protection
Cassandra’s rapid read protection feature allows it to tolerate a node failure without

losing even a single request. If a node is lost, the dead node can’t service any client

requests until failure detection occurs. However, if you enable rapid read protection,

there’s only a brief dip in the read traffic.

ChApteR 5 CAssAnDRA ARChiteCtuRe

164

 Why Rapid Read Protection Helps

Cassandra employs snitches to send requests to the replicas with the least load (replicas

that are likely to respond the fastest to a read request). Cassandra sends normal read

requests to just enough nodes to satisfy the consistency level.

Cassandra performs a different number of read requests in each case, with the number

of requests dependent on the consistency level you configure. For example, the following

are the number of read requests Cassandra performs for various consistency levels:

• Consistency level ONE: One read request

• Consistency level QUORUM: Two read requests

Figure 5-2 shows how the coordinator sends read requests to the nodes.

Figure 5-2. How the coordinator sends read requests to the “best” node in a cluster

Note the speculative_retry property enables you to configure a trigger
for firing extra read requests when the requests aren’t being satisfied in the
expected time.

ChApteR 5 CAssAnDRA ARChiteCtuRe

165

Rapid read protection enables the coordinator to send redundant requests to other

replicas when the target replica is slower than expected, by monitoring the outstanding

read requests. That is, the database sends out extra read requests to other replica nodes

even after it meets the consistency level requirements. Rapid read protection helps

during node failures, or other events that slow a node’s throughput, or a throughput

that’s adversely affected by a cluster-wide, full, un-throttled compaction.

 Configuring Rapid Read Protection

You configure rapid read protection by setting the speculative_retry property at the

table level, either when you create it or later. The speculative_retry property overrides

the normal read timeout (when you set the read_repair_chance property to a value

other than 1.0) and sends out another read request.

The speculative_retry property can take the following values:

• ALWAYS: The coordinator node always sends extra read requests to all

replicas after every read of this table.

• NONE: The coordinator node never sends extra read requests after a

read of this table.

• Xpercentile: The coordinator node sends extra read requests if the

table’s latency is higher than normal. That is, extra reads are triggered

after a percent of the normal read latency of a table elapses. For

example, the coordinator sends out extra read requests after waiting

for 48ms (80 percent of 60ms) if a table’s latency is 60 seconds on

average.

• Nms: The coordinator node sends out extra read requests if it doesn’t

receive any results from the target node in N milliseconds.

The default value of the speculative_retry property is 99percentile. You can set

the speculative_retry property when creating a table as shown here where you use 3ms

as the criterion for triggering additional read requests:

speculative_retry = '3ms'

You can also configure rapid read protection after creating a table:

cqlsh> ALTER TABLE users WITH speculative_retry = '10ms';

cqlsh> ALTER TABLE users WITH speculative_retry = '90percentile';

ChApteR 5 CAssAnDRA ARChiteCtuRe

166

Since a consistency level of ALL requires responses from all replicas, you can’t use

rapid read protection.

In general, the more nodes in your cluster, the smaller the impact of rapid read

protection on the nodes. This is a good benefit of spreading replication throughout the

cluster with the use of virtual nodes.

 Anti-Entropy Repair
Data can become inconsistent over time due to frequent data deletions and node

crashes. In these situations, you need to maintain the nodes by performing anti-entropy

repair. You perform this repair manually with the nodetool repair command. Anti-

entropy repair is a regular maintenance task for administrators.

 How Anti-Entropy Repair Works

During anti-entropy repair, Cassandra compares all replicas and updates those replicas

to the latest version of the data. Cassandra uses Merkle trees (binary hash trees) so it can

check data independently without the coordinator node having to download the entire

data set.

When the initiating node detects differences in the Merkel trees from participating

peer nodes, it exchanges data for the configuring ranges and Cassandra writes the new

data to the SSTables.

You can run the nodetool repair command on a single node or on all the nodes of a

cluster. The node that initiates the anti-entropy repair serves as the coordinator node for

the repair operation.

Although you can have Cassandra perform a full repair of a node’s data by

comparing all SSTables of a node and make the repairs, by default the database performs

incremental repair. Incremental repair relies on metadata that shows the SSTable’s rows

as repaired or unrepaired. It persists already repaired data and builds Merkle trees only

for those SSTables that it hasn’t repaired yet.

ChApteR 5 CAssAnDRA ARChiteCtuRe

167

 Performing a Manual (Anti-Entropy) Repair
You must perform an anti_entropy node repair regularly, especially when there are frequent

deletes in the database. The purpose of the anti-entropy repair command is twofold:

• Ensure data consistency on all of the cluster’s nodes.

• Repair data inconsistency on a node that was down.

Use the nodetool repair command to repair one or more tables. When you run

a full repair, Cassandra marks the SSTables as repaired. Run the nodetool repair

command to perform routine maintenance and not to repair a node that was down.

Caution You shouldn’t run the nodetool repair command after making any
topography changes in your cluster.

The nodetool repair command has several parameters, as you can see here:

$ nodetool [(-h <host> | --host <host>)] [(-p <port> | --port <port>)]

 [(-pw password | --password password)]

 [(-pwf passwordFilePath | --password-file passwordFilePath)]

 [(-u username | --username username)] repair

 [(-dc specific_dc | --in-dc specific_dc)...] [(-pl | --pull)]

 [(-dcpar | --dc-parallel)] [(-et end_token | --end-token end_token)]

 [(-full | --full)]

 [(-hosts specific_host | --in-hosts specific_host)...]

 [(-j job_threads | --job-threads job_threads)]

 [(-local | --in-local-dc)] [(-pr | --partitioner-range)]

 [(-seq | --sequential)]

 [(-st start_token | --start-token start_token)] [(-tr | --trace)]

 [--] [keyspace tables...]

In the following sections, I show how to configure the most important parameters

when running the nodetool repair command.

ChApteR 5 CAssAnDRA ARChiteCtuRe

168

 Full vs. Incremental Repair

You can configure nodetool repair with options that let you perform the repair in a full

or an incremental fashion.

The default mode for repair is incremental and it performs better than a full repair,

since the database needs to worry about calculating the Merkle tree only for those

SSTables that it didn’t repair earlier. That is, the database skips the SSTables marked as

repaired. By performing frequent incremental repairs you can keep the repair process

short and efficient.

You can perform a full repair by specifying the -full option. The -hosts option lets

you specify the good nodes to use for repairing any bad nodes, which you specify with

the -h option.

A full repair prevents anti-compaction, which is the process of splitting an SSTable into

two tables, with one table containing the repaired data and the other the original data.

 Sequential vs. Parallel Repair

If you want to complete a repair quickly and you’ve sufficient resources for the work, you

can choose to perform a parallel repair, which means that the database repairs all data

centers in parallel.

Specify the -dcpar option if you want to do a parallel repair; you may not actually

have to do this because parallel repair is the default. The following command performs a

parallel repair:

$ nodetool repair

The alternative to a parallel repair is sequential repair. The following nodetool

repair command performs a sequential repair of all keyspaces on this node:

$ nodetool repair -seq

 Partitioner Range Repair

Since Cassandra replicates data, you may end up making the database repair the

same data range more than once by performing the repair one node at a time. You can

conserve resources by having the nodetool repair command repair a specific range of

data just once.

ChApteR 5 CAssAnDRA ARChiteCtuRe

169

You can perform a partitioner range repair by specifying the -pr option. While this

option is a good one, you can’t combine it with an incremental repair, which is the default

mode. The following example shows how to perform a partitioner range repair of a bad

partition on this node by using the good partitions on either node 10.2.2.30 or node 10.2.2.31:

$ nodetool repair -pr hosts 10.2.2.30 10.2.2.31

Tip Datastax recommends that you use the parallel and partitioner range options
during a repair wherever it’s possible to do so.

 Restricting the Repair to the Local Datacenter
(vs. a Cluster-Wide Repair)

By default, the nodetool repair command runs the repair process cluster wide, that

is, on every node that contains replicas regardless of the datacenters. If you have three

datacenters and a replication factor of 3, you’re asking the repair process to build nine

Merkel tables, causing your network and other resource usage to spike.

You can limit repairs to specific datacenters or just the local node where you run

the repair command. Specify the -dc or –in—dc options to limit repairs to specific

datacenters. The following example shows how to restrict the node repair just to the local

datacenter DC1 by specifying the -dc option:

$ nodetool repair -dc DC1

 Endpoint Range vs. Subrange Repair

By default, Cassandra repairs all partition ranges on a node or endpoint range. You can

alternatively run a subrange repair by specifying the -st (or -start-token) and the -et

(or -end-token) options.

A subrange repair enables you to target partition ranges precisely to fix errors but it

requires generated token ranges.

ChApteR 5 CAssAnDRA ARChiteCtuRe

170

 When and How Often to Perform an Anti-Entropy Repair

There are several situations that call for a node repair, as I summarize here.

• Run it as a regular maintenance operation, especially when there are

frequent deletes in the database.

• Repair the nodes where you have data that’s rarely read, since they

don’t undergo read repair.

• Run repairs on a node that you’ve recovered after a failure.

• You must also run repair to recover missing data or when an SSTable

is corrupted.

Ideally, you should run incremental repairs every day and a full repair less

frequently, like every month, unless you believe you need to do it more often. A full

repair is useful even when you don’t have any deletions of data since it helps maintain

data integrity.

The table property gc_grace_seconds has a lot to with how frequently you repair a

node. The gc_grace_seconds table option specifies the length of time after the database

marks data with a deletion marker (called a tombstone) before making it eligible for

deletion. By default, the interval is 24 hours (864,000 seconds), which allows the

database time to maximize consistency before it deletes the data for good.

The reason Cassandra delays the garbage collection (through configuring the value

for garbage collection grace seconds by setting the gc_grace_seconds property) is to let

an unavailable node have sufficient time to recover. If the node doesn’t come up within

this period, the database will consider it a failed node.

Since the default value of the gc_grace_seconds property is 24 hours, it’s a good

idea to run the repair daily so as to properly handle all deleted data. You can set a longer

interval for the gc_grace_seconds property for data that’s rarely deleted or modified. In

this case, you can perform the repair less frequently for these tables.

 Migrating to Incremental Repair

Although incremental repair is much more efficient than a full repair, the process

could take a long time the very first time because Cassandra needs to recompact all

the SSTables. DataStax recommends that you migrate your cluster one node a time to

incremental repair. The following steps show how to do the migration.

ChApteR 5 CAssAnDRA ARChiteCtuRe

171

 1. Disable autocompaction.

$ nodetool disableautocompaction

 2. List the node’s SSTables in a text file, such as SSTable-names.

txt. You’ll find the SSTables under the /var/lib/cassandra/data

directory. In the data directory, there’s a directory for each keyspace

and it contains a list of files for each SSTable in that keyspace.

You need to list all the files with the SSTable data. These files have

the following format:

<version_code>-<generation>-<format>-Data.db

The following command helps you list all the Data.db files in a

keyspace:

$ find '/homeuser/Datastax-ddc-3.2.0/data/keyspace1'

-iname "*Data.db*"

The SSTable file list (.db files) you generate will look like the

following:

 /data/cycling/cyclist_by_country-82246fc065ff11e5a4c58b49

6c707234/ma-1- big-Data.db

/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b49

6c707234/ma-1- big-Data.db

/data/cycling/cyclist_by_birthday-8248246065ff11e5a4c58b49

6c707234/ma-2- big-Data.db

Gathering the SSTables list in a text file helps you perform a batch

process to mark all SSTables in Step 5 as repaired.

 3. Run a full repair on just this node.

$ nodetool repair

By default, the repair is full and sequential (not parallel).

 4. Shut down the node.

ChApteR 5 CAssAnDRA ARChiteCtuRe

172

 5. Set the repairedAt flag on all SSTables to –is-repaired using the

sstablerepairedset command. Before you can run incremental

repair, it is mandatory that you set the repaired status of the SSTable.

$ sudo sstablerepairedset –really-set –is-repaired -f SSTble-names.txt

The sstablerepairedset tool sets the repairedAt status of one or

more SSTables by marking the tables as repaired or unrepaired. In

this case, you used a file with a list of SSTable files, but you could

also specify an individual SSTable to mark the repair status of a

single table.

 6. Once the repair is complete, restart the node.

Once you migrate all the nodes in your cluster, you can perform incremental repairs

(with the nodetool repair –inc command) on each of the nodes.

 Data Distribution and Replication
A replica is a copy of a table row. When Cassandra first writes data to a table, it refers to it

as a replica as well.

Data distribution and replication are key topics that affect Cassandra performance.

To understand how Cassandra distributes data and replicates copies of that data across

the cluster, you need to understand the following topics:

• Virtual nodes

• Replication strategies

• Partitioners and partitioning strategies

• Snitches

In the following sections, I explain each of these crucial elements of Cassandra data

distribution and replication.

ChApteR 5 CAssAnDRA ARChiteCtuRe

173

 Virtual Nodes and Data Ownership
You can use either a single-token architecture or virtual nodes to determine how

Cassandra distributes data across the nodes in a cluster.

The database represents the data in a cluster as a ring, with each node responsible

for a chunk of the ring of data. Cassandra assigns each node one or more ranges of data,

described by a token. A token is a 64-bit integer ID that helps identify the partitions in

the ring. The tokens can range from -2 to the power of 63 to 2 to the power of 63 -1. The

tokens determine the position of the nodes in the ring.

Each node in the ring owns a range of values that is greater than the token of the

preceding node and less than or equal to its token. This way the token ranges are spread

across the nodes that live in different racks.

Virtual nodes, simply called vnodes, help you distribute data at a more granular level

than by calculating tokens. Vnodes automatically calculate and assign tokens to each of

the nodes in a cluster. This eliminates the need for you to determine the partition ranges

by calculating and assigning tokens.

In a non-vnode environment, there’s just one token per node, and most of the time a

node owns just one contiguous range in the ringspace, and there’s often one range

per node. Vnodes allow multiple tokens or ranges that are randomly selected and are

non- contiguous, thus giving you many small token ranges that belong to each node.

Each of the virtual nodes owns a portion of the token space. Cassandra randomly

distributes the virtual nodes among the physical nodes; a physical node doesn’t own a

contiguous range of virtual nodes. Cassandra recommends 256 virtual nodes in a cluster,

so if you have 16 nodes in your cluster, each of the physical nodes will be assigned 16

virtual nodes on a random basis, with each virtual node responsible for a different

token range.

Since you always replicate data in a Cassandra database, it means that the database

stores each of the virtual nodes on multiple nodes.

Vnodes make it easy to rebalance data across the cluster when you add or remove

nodes. New nodes automatically assume responsibility for an even amount of data from

the rest of the nodes. Similarly, when a node goes out of the cluster, the rest of the nodes

divide its data amongst themselves. A dead node is rebuilt quickly since all nodes in the

cluster help distribute its data across themselves.

Vnodes help you employ heterogeneous hardware because they allow you to vary the

proportion of vnodes assigned to each node based on the physical capacity of the node.

ChApteR 5 CAssAnDRA ARChiteCtuRe

174

You can use different token architectures across a cluster, with different datacenters

employing different architectures. That is, some data centers may use vnodes, and other

data centers, no vnodes. However, all nodes in a single datacenter must either be either

vnode-enabled or use a single-token architecture.

 How Data Is Distributed Across a Cluster
When you create a datacenter, the database evenly distributes the workload among

the nodes. Over time, as you add and/or remove nodes, the topology of the datacenter

changes and the workload could become unbalanced.

A token assigns a range of data to a specific node that’s a part of a Cassandra cluster.

The token or tokens of a node determine the node’s range of data. Each of the nodes is

responsible for the ring’s region between itself and its predecessor.

Let’s say the range of tokens is 0 to 100, and you have four nodes in the cluster. The

tokens for the nodes will be 0, 25, 50, and 75 in this case, assuring that each node is

responsible for an equal range of the data.

In earlier releases (prior to Cassandra 1.2), you had to calculate and assign a single

token to each node. Figure 5-3 shows this architecture.

Figure 5-3. A single-token architecture

ChApteR 5 CAssAnDRA ARChiteCtuRe

175

As Figure 5-3 shows, each of the six nodes, Node1–Node6, is assigned a single token,

A, B, C, D, E, and F. The single token represents a location within the ring. Each node will

have the data that is determined by mapping the partition key to a token value within the

range of data assigned to each node.

Tip nothing prevents you from setting a replication factor greater than the
number of nodes in a cluster. normally it isn’t a smart idea to do this because it
really doesn’t offer enhanced reliability. however, in some circumstances, you can
do this in anticipation of adding more nodes later on.

Assuming a replication factor greater than one, in addition to the range assigned to

it, each node will also store copies of rows from the other nodes. For example, assuming

a replication factor of four, Figure 5-4 shows how each node stores data from ranges

other than the single range assigned to it. In addition, each of the nodes occupies a

contiguous partition range in the ring space.

Figure 5-4. A ring with virtual nodes

ChApteR 5 CAssAnDRA ARChiteCtuRe

176

Virtual nodes allow each node to own multiple smaller partition ranges distributed

in the cluster instead of a single token. As with single tokens, Vnodes use consistent

hashing to distribute data across the cluster without generating and assigning tokens.

Figure 5-4 shows a ring with virtual nodes.

As Figure 5-4 shows, virtual nodes are non-contiguous and are randomly assigned to

the nodes. Cassandra determines to which partition range it must assign a table row by

the hash of the partition key.

 Consistent Hashing

Cassandra uses constant hashing to partition data according to the partition key. This

enables the cluster to distribute data across the nodes with a minimal reorganization

when you add or remove nodes.

Let’s say you have a four-node cluster with the following data in a table:

Name Age Car Gender

Jim 36 Camaro M

Carol 37 BMW F

Johnny 12 Ferrari M

suzy 10 Ford F

Each of the four nodes is responsible for a range of data based on the hash values.

Assuming you’re using the default Murmur3 partitioning strategy, Cassandra assigns the

following hash values to each partition key:

Partition Key Murmur3 Hash Value

Jim -2245462676723223822

Carol 7723358927203680754

Johnny -6723372854036780875

suzy 1168604627387940318

Cassandra determines the nodes on which it ought to store the four values according

to the value of the partition key. As you can see, the partition key is hashed to a specific

ChApteR 5 CAssAnDRA ARChiteCtuRe

177

range and each node is assigned a range. In this example, Cassandra stores the four rows

in the four nodes as shown here:

Node Start Range End Range Partition
Key

Hash Value

A -9223372036854775808 -4611686018427387904 Johnny -6723372854036780875

B -4611686018427387903 -1 Jim -245462676723223822

C 0 4611686018427387903 suzy 1168604627387940318

D 4611686018427387904 9223372036854775807 Carol 7723358927203680754

Note You must use the same token architecture for all nodes in a datacenter,
whether it be a single-token or a vnode-based architecture.

 How to Distribute Token Ranges
When you enable vnodes, there are two ways to distribute token ranges in a datacenter:

the allocation algorithm and the random selection algorithm. I explain these algorithms

in this section.

 The Allocation Algorithm

The allocation algorithm, which is supported only for the two partitioners

Murmur3Partitioner and RandomPartitioner, strives to balance workload using few

tokens. You can use a large number of tokens to spread the workload around, but it

means you must also manage all those tokens.

The allocation algorithm uses the num_tokens property setting to distribute the token

ranges proportionally. For a given replication factor, this algorithm tries to choose tokens

so it optimizes the replicated load across the cluster’s nodes. It assigns each node a load

proportional to the number of nodes.

ChApteR 5 CAssAnDRA ARChiteCtuRe

178

Tip the recommended practice is to use 8 vnodes (tokens) to provide an ideal
balance between efficient distribution of the workload and performance. the
allocation algorithm optimally distributes token ranges among the nodes and
racks by using the keyspace replication factor of the datacenter. if you’re using
Cassandra version 3.4 or lower, you need to use either 256 nodes or create and
destroy the vnodes until you arrive at a satisfactory distribution of data.

To set the allocation algorithm, configure the allocate_tokens_for_local_

replication_factor property to the replication factor of the keyspaces in a datacenter.

 The Random Selection Algorithm

The random selection algorithm will randomly distribute token ranges across a

datacenter’s nodes. To use this algorithm, you must configure the num_tokens property.

The database distributes the token ranges to a node based on the number of tokens

it assigned to the nodes in a datacenter. For example, you can set the number of vnodes

(tokens) to 128 for a transaction-heavy datacenter.

 Enabling Vnodes

Unless the hardware is different on the nodes of a cluster, you should configure the same

number of vnodes on each node. If the hardware capacities differ among the nodes,

you can assign a different number of vnodes to nodes, such as 128 vnodes for smaller

machines and 256 vnodes for machines that are much more powerful. While this is

technically possible, it’s not a recommended practice because you’re likely to end up

with unbalanced datasets.

Cassandra uses vnodes by default. You set the number of the tokens on a node with

the num_tokens parameter. The default value for this parameter is 256. If you decide not

to use vnodes and configure traditional token ranges instead, you must disable vnodes

by setting the num_tokens property to 1 or by commuting the property. You must then set

the initial_token property in each node to specify the token ranges that’ll be owned by

that node.

When you configure vnodes with the num_tokens parameter, don’t set the

initial_token parameter; this parameter is if you want to specify a single token, as

explained earlier.

ChApteR 5 CAssAnDRA ARChiteCtuRe

179

Tip the initial_token parameter is only for legacy clusters. All new clusters
should use the num_tokens parameter to configure vnodes. the initial_token
parameter allows you to specify tokens manually.

 Disabling Vnodes

If you decide not to use vnodes, you must ensure that each node is assigned

approximately the same amount of data. You can do this by assigning an initial token

value for each node and then calculating the tokens for each datacenter.

To disable vnodes, configure the cassandra.yaml file as follows:

 1. Comment both the num_tokens and the allocate_tokens_for_

local_replication_factor properties.

 2. Set the initial_token property to 1.

 Choosing a Replication Strategy
Replication is how Cassandra stores copies of data on multiple nodes for high availability

and fault tolerance. The replication factor determines how many replicas Cassandra will

store for each row in a table. A replication factor of 1 means Cassandra will keep a single

copy of each row, and a replication factor of 2 means that the database will store two

copies of each row, with the two copies stored on two different nodes.

Cassandra stores replicas on multiple nodes for reliable and fault tolerant

operations. The term replication strategy refers to how Casandra determines precisely on

how many nodes it ought to store the replicas. If your cluster has several nodes, you can

set a replication factor higher than 1 to ensure that the table data is available even if one

or more nodes in the cluster are unavailable.

The database will store the first replica of data on the node that owns the range in

which the token falls. It uses the replication strategy you configure to determine on

which nodes it should place the rest of the replicas.

Obviously, specifying a replication factor of 1 means that if the node with a replica

crashes, you can’t access that row. Also, the higher the replication factor, the more

storage you need to store the rows.

ChApteR 5 CAssAnDRA ARChiteCtuRe

180

A replication group determines how many replicas you store in a single datacenter.

You don’t need to store the same number of replicas in all datacenters in a cluster. For

example, you can store three replicas in a datacenter to service real-time applications

and a single replica in a different datacenter to serve analytical queries.

There are two basic replication strategies:

• SimpleStrategy

• NetworkTopologyStrategy

The following sections explain the two basic replication strategies.

 SimpleStrategy

Under SimpleStrategy, Cassandra stores the first replica on a node that the partitioner

determines and places the rest of the replicas on the remaining nodes clockwise in the

ring. This strategy ignores the cluster topology, which refers to the location of the racks

and datacenters.

Tip For most deployments, NetworkTopologyStrategy is highly
recommended because it makes it easier to expand to multiple datacenters in the
future.

The SimpleStrategy replication strategy is good only if you have a single datacenter

and rack. You must use the NetworkTopologyStrategy if you’re planning to use more

than one datacenter.

 NetworkTopologyStrategy

Under NetworkTopologyStrategy, you specify how many replicas you want to have in

each datacenter. So obviously, this strategy is designed for multiple datacenter clusters.

NetworkTopologyStrategy tries to place replicas on multiple racks since all nodes in

a rack tend to fail at the same time. When using this strategy, your main concern should

be the tradeoff between local reads to reduce latency and the possibility of potential

failures.

ChApteR 5 CAssAnDRA ARChiteCtuRe

181

Most common configurations when dealing with multiple datacenters are the

following:

• Two Replicas per Datacenter: This strategy will let you survive the

failure of a single node in each replication group while enabling local

reads (consistency level of ONE).

• Three Replicas per Datacenter: This strategy will let you survive the

failure of multiple nodes in each datacenter with a consistency

level of ONE. It also helps you tolerate the failure of a single node per

replication group while using the LOCAL_QUORUM consistency level,

 Dynamic Ring Participation

You can start and stop nodes in a Cassandra cluster without any effect on the rest of the

nodes. In the following example, you shut down one of the two nodes in the test cluster.

You then check the log of the second node.

INFO [GossipTasks:1] 2017-06-25 08:35:01,697 Gossiper.java:1035 -

InetAddress /192.168.159.129 is now DOWN

You then start up the node you brought down earlier. You again check the logs of the

good node.

INFO [HANDSHAKE-/192.168.159.129] 2017-06-25 08:39:05,030

OutboundTcpConnection.java:510 - Handshaking version with /192.168.159.129

INFO [GossipStage:1] 2017-06-25 08:39:06,134 Gossiper.java:1054 - Node

/192.168.159.129 has restarted, now UP

INFO [GossipStage:1] 2017-06-25 08:39:06,139 StorageService.java:2248 -

Node /192.168.159.129 state jump to NORMAL

INFO [GossipStage:1] 2017-06-25 08:39:06,170 TokenMetadata.java:479 -

Updating topology for /192.168.159.129

INFO [RequestResponseStage-1] 2017-06-25 08:39:06,352 Gossiper.java:1020 -

InetAddress /192.168.159.129 is now UP

As you can see, Cassandra automatically detects the failure and the restart of nodes.

You don’t need do a thing.

ChApteR 5 CAssAnDRA ARChiteCtuRe

182

 Changing the Replication Strategy

You set the replication factor and the replication strategy at the keyspace level. The

following example shows how to switch a keyspace from the default SimpleStrategy to

NetworkTopologyStrategy:

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :

'NetworkTopologyStrategy', 'DC1' : 3};

In this example, you switch the keyspace replication strategy for a single datacenter

named DC1.

In the following example, you restrict the replication of a keyspace to selected

datacenters and set the replication factor of the excluded datacenters to 0:

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION = {'class' :

'NetworkTopologyStrategy', 'DC1' : 0, 'DC2' : 3, 'DC3' : 0 };

 Partitioners and Partitioning Strategies
Cassandra uses partitioners to help it distribute data across the nodes in a cluster.

A partitioner load balances the data by distributing it evenly across all nodes in a cluster.

A partitioner is a function that Cassandra uses for deriving tokens that represent a row

by hashing the primary keys. Cassandra then distributes the data across the nodes based

on the token values it derives through the partitioner.

 Types of Partitioners

Cassandra offers three types of partitioners, although it recommends that you not

use the ByteOrderedPartitioner due to various drawbacks and includes it only for

backward compatibility purposes.

The other two partitioners that you can choose from are the Murmur3Partitioner,

which is the default partitioner, and the RandomPartitioner. Both use tokens to assign

equal amounts of data on all nodes and evenly distribute table data across the ring or

keyspace.

Since each part of the hash range contains an equal number of rows (on average),

read and write requests are evenly distributed.

Both of the partitioners distribute data across the cluster based on the hash values

for each of the row keys. The difference between the two partitioners is in how each of

ChApteR 5 CAssAnDRA ARChiteCtuRe

183

them generates the token hash values. The Murmur3Partitioner provides faster hashing

using the Murmurhash function, which creates a 64-bit hash value of the partition key.

The RandomPartitioner distributes data across the cluster by generating token hash

values using a cryptographic hash. Generation of the token hash values takes longer with

the RandomPartitioner due to its use of a cryptographic hash. Since Cassandra doesn't

need a cryptographic hash, using the alternative, Murmur3Partitioner, will yield a 3-5

times performance gain.

Tip the Murmur3Partitioner is 3-5 times faster in performance than the
RandomPartitioner.

The Murmur3Partitioner, which is the default partitioning strategy, is good in most

cases. Just be aware that once you partition data with one partitioner, it’s difficult to

convert it to the other partitioner.

 Generating Tokens

If you’re using virtual nodes (vnodes), there’s no need to calculate tokens.

Otherwise, you must calculate tokens for the cluster. You assign these tokens with the

initial_token parameter when configuring the cluster (cassandra.yaml file).

If you have just one datacenter, you calculate the tokens by dividing the hash range

by the number of nodes. If you have multiple datacenters, you must calculate tokens for

each datacenter by dividing the hash range by the number of nodes in each datacenter.

How you calculate tokens depends on your partitioning strategy. Assuming you’re

using the default Murmur3Partitioner, you generate tokens in the following way:

python -c "print [str(((2**64 / number_of_tokens) * i) - 2**63) for i in

range(number_of_tokens)]"

If you have six nodes in a cluster, this is the Python command you run:

python -c "print [str(((2**64 / 6) * i) - 2**63) for i in range(6)]"

The command will display tokens for each of the six nodes in the cluster, which you

can then specify as the value of the initial_token parameter in the cassandra.yaml file.

['-9223372036854775808', '-6148914691236517206', '-3074457345618258604',

'-2', '3074457345618258600', '6148914691236517202']

ChApteR 5 CAssAnDRA ARChiteCtuRe

184

 Setting the initial_tokens and num_tokens Properties

By default, the initial_token property is disabled for a single-node-per-token

architecture. Where a node owns one contiguous range in the ring space, you must set

the initial_token property. When you set this, it’ll override the num_token property.

Always set the initial_token value when initiating a production cluster for the first

time or when adding nodes, if any of the following is true:

• You’re not using vnodes.

• You‘ve set the node’s num_tokens property to 1.

You set the num_tokens property for a virtual node architecture to determine the

number of token ranges to assign to a vnode. The default value for this property is 1

disabled, which means vnodes are disabled. You can specify a number between 1 and

256 for this property.

If all nodes in the cluster are physically identical, you must specify the same value for

the num_values property on all the nodes.

 Snitches
A snitch’s job is to determine where each node is, relative to the rest of the nodes in

a cluster. Snitches help the database identify the fastest way to respond to queries.

Snitches help Cassandra figure out which datacenters and racks it should use to read

data from and write data to. Snitches determine how Cassandra distributes replicas.

Snitches make Cassandra aware of the network topology so the database can route

requests efficiently by grouping nodes into datacenters and racks.

The snitch calculates the distance between the nodes and finds out which nodes lie

close to each other. It uses this information to help the database route requests to the

best nodes. The best node here is the replica that will return the data the fastest.

A snitch is a critical component of Cassandra’s architecture and helps determine the

datacenter and rack to which a node belongs. A snitch maps the IP addresses of nodes in a

cluster to racks and datacenters. A rack is a physical entity and a data center is a virtual entity.

Snitches are quite critical to read activity. When reading data, Cassandra asks only

one node for the data and, subject to the consistency level and the read repair chance

you’ve configured, requests only checksums from the other replicas.

When there are multiple replicas from which the coordinator node can make a

request for the actual data, Cassandra needs to make a choice as to which replica it

ChApteR 5 CAssAnDRA ARChiteCtuRe

185

should ask to send in the full data (not just checksums). The snitch monitors the read

performance of the various replicas and chooses the best replica based on the historical

performance data of the replicas.

Note the choice of a snitch affects where Cassandra places replicas. the
purpose of a snitch is to route requests efficiently and to distribute replicas evenly.

A key goal of Cassandra is to avoid storing multiple replicas of data on the same rack.

The replication strategy you adopt uses the information provided by the new snitch to

place the replicas.

All snitches are dynamic by default, which enables Cassandra to move requests away

from nodes that are currently having performance issues. You can configure dynamic

snitch thresholds for a node in the cassandra.yaml file. As the performance of a “bad”

node improves, it can get back to a preferred status.

 Types of Snitches

Cassandra offers several types of snitches, as explained in the following sections.

• SimpleSnitch: This is the default snitch, but it is good only for

development environments. This snitch is unaware of datacenters or

racks and thus is unusable for multi-datacenter environments.

• GossipingPropertyFileSnitch: This snitch relays the rack and

datacenter information you configure in the cassandra-rackdc.

properties file to the rest of the nodes using gossip.

You can configure the GossipingPropertyFileSnitch for a node by editing its

cassandra-rackdc.properties file as shown here:

dc=DC1

rack=RACK1

prefer_local=true

Tip Datastax recommends GossipingPropertyFileSnitch for production
usage.

ChApteR 5 CAssAnDRA ARChiteCtuRe

186

Here, dc refers to datacenter and rack specifies the rack information. The

prefer_local option specifies that Cassandra must use the local IP address when it’s

not communicating across multiple datacenters in order to limit the network

bandwidth usage.

• Ec2Snitch: This is a simple snitch for Amazon EC2 deployments

where all nodes are in a single region. The region name is analogous

to the datacenter name, and the availability zones are analogous to

racks within the datacenter.

• Ec2MultiRegionSnitch: You use this snitch for Amazon EC2-based

clusters where the clusters span multiple regions.

• GoogleCloudSnitch: This is the snitch for a Cassandra deployment

on the Google Cloud Platform across a single or multiple regions.

• RackInferringSnitch: This snitch figures out the node location

by rack and datacenter. In a node IP address, which has four

octets (110.100.200.105, for example), the third and fourth octets

correspond to the rack and datacenter. This snitch is useful for writing

custom snitch classes.

• PropertyFileSnitch: Determines the closeness of the nodes based

on the rack and datacenter they belong to by using the network

definitions from the cassandra-topology.properties file. You must

define all nodes in the cassandra-topology.properties file, and the

file must be identical on all nodes of a cluster.

• CloudstackSnitch: This is a snitch for an Apache Cloudstack-based

cluster.

Note snitches inform Cassandra about the network topology so the database can
efficiently route the requests and evenly distribute replicas.

ChApteR 5 CAssAnDRA ARChiteCtuRe

187

 Understanding the cassandra-topology.properties
and the cassandra-rackdc.properties Files

The cassandra-topology.properties and the cassandra-rackdc.properties files play

an important role in configuring snitches, so I briefly explain these two files here.

The cassandra-topology.properties file contains the cluster topology for the

entire cluster. The following are the contents of an example cassandra-topology.

properties file:

datacenter One

175.56.12.105=DC1:RAC1

175.50.13.200=DC1:RAC1

175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2

120.55.16.200=DC1:RAC2

120.57.102.103=DC1:RAC2

datacenter Two

110.56.12.120=DC2:RAC1

110.50.13.201=DC2:RAC1

110.54.35.184=DC2:RAC1

50.33.23.120=DC2:RAC2

50.45.14.220=DC2:RAC2

50.17.10.203=DC2:RAC2

This example shows a file with two physical datacenters, each with two racks. The

PropertyFileSnitch uses the cassandra-topologies.properties file. If you don’t

identify any of a cluster’s nodes in the cassandra-topologies.properties file, the

database assumes that they are in the default datacenter (datacenter) and rack (rack1).

You must update this file as you add and delete nodes to your cluster in order to

make Cassandra aware of the rack and datacenter the nodes belong to. While Cassandra

can figure these things out on its own, from a performance viewpoint it’s better for you to

feed that information to Cassandra.

ChApteR 5 CAssAnDRA ARChiteCtuRe

188

Here are the contents of a typical cassandra-rackdc.properties file:

indicates the rack and dc for this node

dc=DC1

rack=RAC1

When you configure the GossipingPropertyFileSnitch, it always loads the

cassandra-rackdc.properties file, should there be one.

The following three snitches will look up the cassandra-rackdc.properties file to

figure out to which datacenter and racks the nodes in the cluster belong:

• GossipingPropertyFileSnitch

• Ec2Snitch

• Ec2MultiRegionSnitch

 Summary
Understanding how Cassandra stores data and how it performs read and write

operations is critical to tuning database performance.

Repairing Cassandra nodes to correct data inconsistency is an essential task, and it’s

good to master the various types of manual repair that Cassandra offers.

Understanding how to configure the cassandra-topology.properties and

cassandra-rackdc.properties files helps configure data centers and clusters.

ChApteR 5 CAssAnDRA ARChiteCtuRe

189
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_6

CHAPTER 6

Introduction
to the Cassandra Query
Language
This chapter provides a quick summary of the Cassandra Query Language (CQL).

Understanding how to perform various types of DML (data manipulation language)

operations such as selecting, inserting, and updating data is critical, and you’ll learn

the intricacies of Cassandra’s DML operations. Understanding DDL operations such as

creating and removing objects is important, and this chapter explains how to perform

various types of DDL operations.

The chapter shows you how to create structures such as keyspaces and tables. You’ll

learn how to create primary keys and you’ll examine the role of secondary indexes in

Cassandra. Materialized views are a better alternative to secondary indexes and you’ll

learn how to work with them.

I review the various CQL data types including advanced data types such as

collections, types, and user-defined types (UDTs).

The chapter also explains user-defined functions (UDFs) and user-defined

aggregates (UDAs).

 Working with Keyspaces
Cassandra uses keyspaces, which are logical entities, to group tables. A keyspace is

somewhat like a named database that you use in a relational database system. However,

the real purpose of a keyspace is to act as a namespace that specifies how Cassandra

replicates data. This means that if you have different sets of data that differ in their

replication requirements, you can use different keyspaces to store the data.

190

A keyspace is a logical structure where Cassandra stores not only table data, but also

all other entities that you create for an application, such as materialized views, functions,

aggregates, and UDTs.

Note You control Cassandra’s data replication on a per-keyspace basis.

In the following sections, I show how to manage keyspaces.

 Managing Keyspaces
Cassandra stores its data in tables and it groups the tables into keyspaces. A keyspace

is a logical container, and it lets you define options that apply to all the tables in that

keyspace.

Note Cassandra recommends that you use a single keyspace for each
application.

When you refer to a table, you must fully qualify it by providing the keyspace in

which that table lives. You don’t need to provide the keyspace name if the table belongs

to the current keyspace. As you’ll learn shortly, you specify the current tablespace by

executing the USE statement.

 Creating a Keyspace
Before creating a keyspace, you must log into cqlsh. Once you do so, run the describe

cluster command to view details about your cluster.

$ cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

cqlsh> describe cluster;

Cluster: Test Cluster

Partitioner: Murmur3Partitioner

cqlsh>

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

191

You create a keyspace with the CREATE KEYSPACE SQL statement. Here’s the syntax of

the statement:

CREATE KEYSPACE [IF NOT EXISTS] keyspace_name

 WITH REPLICATION = {replication_map}

 [AND DURABLE_WRITES = true|false] ;

You can specify two options when creating a keyspace: the first is replication and

the second is durable_writes. Here’s what the two options mean:

• replication: This is a mandatory option that specifies the

replica placement strategy and the number of replicas. The

replication_map attribute allows you to specify then number of

copies of the data in a datacenter.

The replication option must contain the sub-option 'class',

which specifies the replication strategy. A replication strategy tells

Cassandra where it should store copies of the data in this keyspace

across the cluster’s datacenters and racks. There are two possible

replication strategies:

• SimpleStrategy: As its name indicates, this uses a simple

replication strategy by setting the same replication factor cluster-

wide for all data centers within the cluster. Here’s an example:

{'class': 'SimpleStrategy', 'replication_factor' : 3};

If you are running a test cluster with just a single node, your

replication factor must be 1. SimpleStrategy is only good

for development and proof-of-concept uses. For production

purposes, you must use NetworkTopologyStrategy.

Tip never use a replication factor of 1 for storing data that you can’t afford to lose!

• NetworkTopologyStrategy: Lets you specify a more complex

replication strategy by allowing you to set the replication factor

separately for each data center. Example:

{'class': 'NetworkTopologyStrategy', 'DC1' : 1, 'DC2' : 3}

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

192

You must specify a datacenter name in the snitch properties

file or use a single datacenter named datacenter1 to use

NetworkTopologyStrategy.

The second part of the replication option allows you to set the

number of copies of data in this keyspace by configuring a value

for the replication_factor attribute.

• durable_writes: Tells Cassandra whether it ought to use the commit

log for any updates in the current keyspace. The default value is true

and you should use this value in production databases.

You can bypass the writing of changes to the commit log first by

specifying false as the value for durable_writes. This will speed

up the writes to the tables in this keyspace, but should the node go

down before the database flushes the memtables to the SSTables,

you risk losing the data.

Caution don’t disable durable-writes when you configure
SimpleStrategy for replication.

Here’s an example that shows how to create a keyspace named cycling:

cqlsh> CREATE KEYSPACE IF NOT EXISTS cycling

 WITH REPLICATION = { 'class' : 'NetworkTopologyStrategy',

 'datacenter1' : 3 };

cqlsh>

If there are no errors, you can be sure that the database created the keyspace you

want. You can run the describe keyspaces command to ascertain that the database did

indeed create the keyspace.

cqlsh> describe keyspaces;

cycling system_schema system_auth system system_distributed system_

traces

cqlsh>

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

193

As you can tell, the IF NOT EXISTS part of the CREATE KEYSPACE statement is

optional and helps avoid an error should the keyspace cycling already exist.

Note a keyspace is the defining container for replication.

You can see the new keyspace cycling in the list of keyspaces shown by the database.

Next, you can execute the describe cycling command to view details about this

keyspace.

cqlsh> describe cycling;

CREATE KEYSPACE cycling WITH replication = {'class':

'NetworkTopologyStrategy', 'datacenter1': '3'} AND durable_writes = true;

cqlsh>

Cassandra stores the history of all your nodetool and cqlsh commands in separate

files in the $CASSANDRA_USER/.cassandra directory, with the user being the one that

started the cluster.

$ ls -altr

drwx------ 6 root root 4096 May 26 07:25 ..

-rw-r--r-- 1 root root 127 Jun 23 10:13 nodetool.history

-rw------- 1 root root 1308 Jun 24 07:24 cqlsh_history

drwxr-xr-x 2 root root 4096 Jun 24 07:24 .

$

 Creating a Keyspace in a Cluster with Multiple Datacenters
You can create a keyspace with a different replication factor for each of the datacenters,

as shown in the following example:

cqlsh> CREATE KEYSPACE "Cycling"

 WITH REPLICATION = {

 'class' : 'NetworkTopologyStrategy',

 'datacenter1' : 3 ,

 'datacenter2 ', 2 ,

 'datacenter3' :, 1 ,

};

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

194

Note objects such as tables, functions, and udts are bound to a specific
keyspace. to work with the objects, you must either specify the keyspace name
each time you access an object or make that keyspace your current keyspace.

 Altering a Keyspace

Occasionally you may want to alter a keyspace, meaning you want to change one of the

two properties that you can set when creating a keyspace. These two properties, which

I described in the “Creating a Keyspace” section, are replication and durable_writes.

 Changing the Replication Factor

If you want to change the replication factor of a keyspace, you can do it by executing the

ALTER KEYSPACE command, which has the following syntax:

ALTER KEYSPACE "KeySpace Name"

WITH replication = {'class': 'Strategy name', 'replication_factor' : 'No.Of

replicas'};

Note You set the replication strategy at the keyspace level when creating the
keyspace or later by modifying the keyspace.

Here’s an example that shows how to change the replication from 1 to 3, by altering a

keyspace named cycling:

cqlsh> ALTER KEYSPACE cycling

 WITH replication = {'class':'SimpleStrategy',

 'replication_factor': 3};

Note You can’t alter the name of a keyspace.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

195

If you’ve configured NetworkTopologyStrategy, you need to do more. Since the

change in the replication factor affects all the nodes that the keyspace will replicate

to, or not replicate to, you must also prepare the affected nodes for the change in the

replication factor. Here are the procedures for changing the replication factor in this

situation:

 1. Change the replication level in all datacenters.

cqlsh> ALTER KEYSPACE cycling WITH REPLICATION =

 {'class' : 'NetworkTopologyStrategy', 'dc1' : 3,

'dc2' :2};

 2. Run the nodetool repair command as shown here to perform a

full repair of the keyspace:

$ nodetool repair -full

Once the repair completes on a node, start the repair on the next node.

 The Need for Running the nodetool repair Command
When you raise the replication factor, the change doesn’t automatically take effect on

all nodes. After you raise the replication factor for a cluster, you must run the nodetool

repair command on all the nodes in that cluster. Similarly, you must run the nodetool

repair command on all nodes in a data center when you raise the replication factor for a

data center.

Running the nodetool repair command tells Cassandra to create the additional

replicas it needs to satisfy the replication factor you configure.

Tip the write throughput of the cluster is inversely related to the replication
factor.

If you lower the replication factor, you must run the nodetool cleanup command

afterwards, whether the change is in a datacenter or in the cluster. This will enable

Cassandra to free up space occupied by the replicas it doesn’t need any longer.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

196

 Preventing a Keyspace from Sending Replicas to Some
Data Centers
Sometimes you may want to prevent a keyspace from writing replicas only in some

datacenters, or allow a keyspace to write to just one specific datacenter. By setting the

replication factor to zero (0), you can keep a keyspace from sending replicas to a specific

datacenter. The following is an example:

cqlsh> ALTER KEYSPACE cycling

 WITH REPLICATION = {'class' : 'NetworkTopologyStrategy', 'dc1' :3,,

 'dc2': 0, 'dc3': 3 };

This command excludes the datacenter DC2 (by setting the replication factor to 0).

 Altering the Durable Writes Property

The ALTER KEYSPACE command also lets you change the durable_writes property. The

following is an example that shows how to change the durable_writes property of a

keyspace:

cqlsh> ALTER KEYSPACE cycling

 WITH REPLICATION = {'class' : 'NetworkTopologyStrategy',

'datacenter1'

 : 3}

 AND DURABLE_WRITES = true;

You can confirm that the changes you’ve made have stuck by running the following

command.

cqlsh> SELECT * FROM system.schema_keyspaces;

keyspace_name | durable_writes | strategy_class | strategy_options

----------------+----------------+--

cycling | True | org.apache.cassandra.locator.NetworkTopologyStrategy |

{"datacenter1":"3"}

mykeyspace | True | org.apache.cassandra.locator.SimpleStrategy |

"replication_factor":"4"}

...

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

197

 Repairing a Keyspace
When you add a datacenter, be sure to run the following nodetool repair command to

perform a full repair of the keyspace:

$ nodetool repair –full cycling;

 Specifying the Keyspace You Want to Use

Often, you’re working within a certain keyspace and you want to move to a different

keyspace and make the new keyspace your current or working keyspace. You must

specify the keyword USE (what else?) to make a keyspace your current default keyspace.

In the following example, you want a keyspace named myKeyspace to be the default

keyspace:

cqlsh> USE myKeySpace;

cqlsh:myKeySpace>

 Using the Keyspace Qualifier
When your code deals with multiple keyspaces, it becomes cumbersome to issue the USE

<KEYSPACE> command. In these situations, you can simply specify the keyspace qualifier

instead of having to execute the USE <KEYSPACE> command. Cassandra allows you to

specify the keyspace qualifier when executing the following statements:

• ALTER TABLE

• CREATE TABLE

• DELETE

• INSERT

• SELECT

• TRUNCATE

• UPDATE

To specify a table in a keyspace, specify the name of the keyspace followed by a

period and then the table name. The following example shows how to insert data into a

table named race_winners, which is in the cycling tablespace.

cqlsh> INSERT INTO cycling.race_winners (race_name, race_position,

cyclist_name) VALUES (...);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

198

 Removing a Keyspace
Removing a keyspace is easy. Execute the DROP KEYSPACE statement to remove a

keyspace, as shown here:

cqlsh> DROP KEYSPACE cycling;

cqlsh>

As you can see, when you issue the DROP KEYSPACE statement, Cassandra doesn’t

say anything; it does drop the keyspace, and you can verify that the keyspace is gone by

running the DESCRIBE KEYSPACES command.

cqlsh> DESCRIBE KEYSPACES;

system_traces system_schema system_auth system system_distributed

cqlsh>

When you remove a keyspace, the database removes all its constituent entities

such as tables, aggregates, types, and UDFs. Cassandra can automatically back up the

keyspace if you‘ve set the auto_snapshot property in the cassandra.yaml file.

By default, the auto_snapshot property has the value true, which means that when

you drop a tablespace (or a table), the database automatically takes a snapshot of the

keyspace (or table). You also have the option of manually backing up a keyspace before

dropping it, as explained in Chapter 9.

Note datastax strongly recommends that you leave the default value of true
intact for the auto_snapshot property.

 System Keyspaces
Cassandra uses a set of system keyspaces to store details about the configuration of the

cluster and the objects that are stored in that keyspace.

The DESCRIBE KEYSPACES command shows all the system keyspaces in a cluster.

cqlsh> DESCRIBE KEYSPACES;

system_traces system_schema system_auth system system_distributed

cqlsh>

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

https://www.safaribooksonline.com/library/view/cassandra-the-definitive/9781491933657/ch06.html#idm140182371033296

199

Tip By default, the replication factor for the system-auth keyspace is set to 1.
datastax recommends that you set the replication factor for the system-auth
tablespace to the number of nodes in each of the datacenters. however, you
can set the replication factor for this keyspace to 5 or 7, which offers plenty of
redundancy.

The following is a selective description of data stored in various system keyspaces:

• system: This keyspace contains tables that contain information

pertaining to materialized views, hints, indexes, peers, information

on partitions, and prepared statements used by drivers.

• system_schema: This keyspace contains information about table

columns and indexes, UDFs, triggers, user-defined types, and

materialized views.

• system_distributed: This keyspace has a single table named

repair_history, which stores information about keyspace

repair activity.

 Getting Cluster Topology from the System Tables

You can get the cluster topology information such as the IP address of peer nodes, the

names of the datacenter and racks, and token values by querying the system table PEERS,

as shown here:

cqlsh> SELECT * FROM system.peers;

 peer | data_center | host_id | preferred_ip

| rack | release_version | rpc_address | schema_version

 | tokens

192.168.159.129 | dc1 | 632fe5cd-26fa-4b8b-9842-182be2f954e5

| null | rack1 | 3.10 | 192.168.159.129 | 86afa796-d883

'-1470738432828591905', '-1533929660503050360', '-1588268933422992241',

'-1790127126337716384', '-1795704774997895089', '-1933674708843479324',

'-2001904010895819169', '-2137322678046758761', '-2315125955255423142',

'-2349800311170714405', '-239001164349178402', '-2439785688421178687', '-

...

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

200

 Getting Information About Functions, Aggregates, and User Types

Later on in this chapter, you’ll learn about Cassandra’s user-defined entities such as

UDFs, aggregates, and types. Once you create the user-defined entities, you can use the

system tables to retrieve information about these entities.

To retrieve information about UDFs, query the system table SCHEMA_FUNCTIONS.

cqlsh> SELECT * FROM system.schema_functions;

You can get details about the user-defined aggregates by querying the SCHEMA_

AGGREGATES table.

cqlsh> SELECT * FROM system.schema_aggregates;

Finally, you can query the SCHEMA_USERTYPES table to view all user-defined types in

the database.

cqlsh> SELECT * FROM system.schema_usertypes;

Now that you know how to work with keyspaces, it’s time to go ahead and use them

for what they’re meant for: to act as logical repositories for tables and other entities by

creating a table.

 Creating a Table
A Cassandra CQL table stores rows and it has a name. When you create a table, you

define the columns for the rows, a mandatory primary key to identify each row, and any

additional options you may choose.

You must execute the CREATE TABLE statement to create a new table. The core syntax

for the CREATE TABLE statement is as follows:

create_table_statement ::= CREATE TABLE [IF NOT EXISTS] table_name

 '('

 column_definition

 (',' column_definition)*

 [',' PRIMARY KEY '(' primary_key ')']

 ')' [WITH table_options]

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

201

The following is a typical table creation statement:

cqlsh> use cycling;

cqlsh:cycling> CREATE TABLE loads (

 ... machine inet,

 ... cpu int,

 ... mtime timeuuid,

 ... load float,

 ... PRIMARY KEY ((machine, cpu), mtime)

 ...) WITH CLUSTERING ORDER BY (mtime DESC);

cqlsh:cycling>

Before you create the table loads, you run the command use cycling so the

database will know to create the new table in this keyspace. Alternatively, you could have

specified CREATE TABLE cycling.loads. This will also let the database know in which

keyspace you want it to place your new table.

In the table creation statement, the following are the main things you need to

focus on:

• Column definitions

• Primary and partition keys

• Clustering columns

• Table options (compact storage and clustering order)

In the following sections, I briefly review the key entities that are part of a table

creation statement.

Note a primary key consists of two things: the first column or columns is the
mandatory partition key, followed by one or more clustering columns.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

202

 Column_definition
A column_definition clause consists of the name of the column and its type, as well as

two modifiers.

• Static: Declares the column as a static column. A static column has the

same value for all rows that share the same partition key (explained in

a little bit). Of course, only non-primary keys can be static.

• Primary key: A primary key uniquely identifies a row, and all tables

must define a primary key. I explain primary keys and partition keys

in the following section.

 Primary Keys, Partition Keys, and Clustering Columns
Cassandra’s concept of a primary key is quite different from that of a normalized

relational database. The primary key of a table specifies the location and the order of

data stored in that table.

When you define a primary key, it can have two parts: a partition key and a clustering

key. At a minimum, it must have a partition key. Here’s what the two parts mean:

• Cassandra uses the first part of the definition of a primary key, the

partition key, to distribute the data in the table across the cluster’s

nodes. The partition key determines which node will store a specific

row of the table. A compound partition key can split the data to store

related data on separate partitions.

• The database uses the second part of the key definition, called the

clustering key or clustering column (or columns), to order or sort the

data within the partition.

You can specify multiple columns when defining the partition key and clustering

key of a primary key. The resulting key is a composite primary key. The idea behind this

type of a design is to distribute table data easily throughout the nodes of a cluster. It also

allows for higher performance and facilitates failover.

Tip once you create a table, you can’t change its primary key. You must create a
new table and insert data into the new table instead.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

203

Choosing the right primary keys, partition keys, and clustering columns is a key

aspect of Cassandra data modeling, with the choice significantly affecting query

performance.

A primary key is mandatory for a table. You can specify a primary key with one

or more columns of a table, and the order of the columns matters. A primary key on

a Cassandra key is unique in the sense that it contains more elements than a typical

primary key in a relational database.

As mentioned, a primary key consists of two parts: the partition key and the

clustering columns. You’ll learn more about these two components of a primary key in

the following sections.

Note a partition key groups rows in the same replica set. the clustering columns
dictate how rows are stored in the replica.

 The Partition Key
The partition key is the first and mandatory component of a primary key. It can include

one or more columns. Here’s an example:

CREATE TABLE t (k text PRIMARY KEY)

Here, column k is the partition key, and there are no clustering columns.

A table partition is a set of rows that have the same value for their partition key. A

partition key can have one or more columns, and if it’s a multi-column key, the values for

all the partition key columns must be identical for the rows in a partition.

Here’s an example that illustrates the concept of the partition key:

CREATE TABLE t (

 a int,

 b int,

 c int,

 d int,

 PRIMARY KEY ((a, b), c, d)

);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

204

Let’s say you execute the following simple query on this table:

SELECT * FROM t;

 a | b | c | d

 ---+---+---+---

 0 | 0 | 0 | 0 // row 1

 0 | 0 | 1 | 1 // row 2

 0 | 1 | 2 | 2 // row 3

 0 | 1 | 3 | 3 // row 4

 1 | 1 | 4 | 4 // row 5

In this case, note the following:

• Row 1 and row 2 share the same partition.

• Row 3 and row 4 share the same partition.

• Row 5 is in a different partition.

Note a primary key is the same as the partition key when there are no clustering
columns.

Here are the key properties of a partition:

• Cassandra guarantees that all rows from a partition are stored in the

same set of replica nodes. You should therefore choose the partition

key carefully, so you can place rows that you often query together in

the same partition. This means that the database must do less work

in searching for the data on multiple nodes.

Tip If a partition key contains too much data, it can lead to the creation of a
“hot spot.”

• Cassandra performs all updates in a single partition atomically and in

isolation.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

205

 Creating a Table with a Simple Primary Key
You specify a single column name as the partition key when you define a table with a

simple primary key. Thus, the primary key and the partition key are the same. If you have

a column with numerous values, it is easy to insert and query the data since Cassandra

distributes the partitions across multiple nodes.

If your application requires a simple lookup table with a single identifier, then a simple

primary key is the way to go. In the following example, you specify id as the primary key,

which makes it easy to get the names of cyclists by providing their ID numbers;

cqlsh> USE cycling;

cqlsh> CREATE TABLE cyclist_name (id UUID PRIMARY KEY, lastname text,

firstname text);

The column id is in the UUID format. UUID (universally unique identifier) is a

128- bit value and the bits conform to various types. In CQL, the uuid type is a Type 4

UUID, based on random numbers. An UUID is usually represented by a sequence of hex

digits separated by dashes.

It’s common to use the uuid type as a surrogate key, either by itself or by combining it

with other values. You can generate a Type 4 UUID value and use that value in an INSERT

or UPDATE statement, as shown here:

cqlsh:cycling> insert into cyclist_name (id, firstname, lastname)

 ... values

 ... (uuid(), 'sam', 'alapati');

cqlsh:cycling> select * from cyclist_name;

 id | firstname | lastname

--------------------------------------+-----------+----------

 3c4acfde-dc65-4c9f-b2ec-9047d677641a | sam | alapati

(1 rows)

cqlsh:cycling>

Tip another way to generate a uuId is to use the built-in CQL function NOW. For
example, you can do the following to generate the uuId from the current time:

cql> INSERT INTO "users" ("username, id, 'address" VALUES ('alapati',

NOW(), '12345, Main St, Anytown');

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

206

using the NOW function lets you generate a unique uuId for each row you insert
into the users table, without having to explicitly specify a uuId constant.

You can also specify the primary key at the end of the table definition, as shown here:

cqlsh> USE cycling;

cqlsh> CREATE TABLE cyclist_name (id UUID, lastname text, firstname text,

PRIMARY KEY (id));

In both cases shown here, you specify the keyspace first (USE cycling) to set the

current keyspace. You can also use the following notation to identify the keyspace

instead of executing the USE statement first:

cqlsh> CREATE TABLE cycling.cyclist_name (id UUID, lastname text,

firstname text, PRIMARY KEY (id));

 Defining a Composite Partition Key

Cassandra stores entire rows of data on a node by the partition key. You can distribute

data over multiple partitions (multiple nodes) by using a composite partition key. If a

column has a lot of data, then the data is too large to store in a single partition.

You can specify multiple columns for the partition key to segment the data into

multiple buckets. A composite partition key consists of two or more columns. Instead

of grouping all the data into a single partition, you group the data into a set of smaller

partitions.

Note You specify the entire primary key when searching for a specific row and
just the partition key when selecting multiple rows from the same partition.

A composite partition key is helpful when you encounter slowdowns in writing data

to a node due to heavy writing to a partition. For example, if your app is writing lots

of data, you can break up the data into chunks by year/month/day/hour using a four-

column partition key.

If you’re not using secondary indexes, you must provide all columns of a composite

key when querying the table.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

207

The following example shows how to specify two columns of a table in the primary

key as a composite partition key:

cqlsh> CREATE TABLE cycling.rank_by_year_and_name (

 race_year int,

 race_name text,

 cyclist_name text,

 rank int,

 PRIMARY KEY ((race_year, race_name), rank)

);

The primary key here consists of both a partition key and a clustering column.

The partition key is composite, as you use double parentheses around the two columns

of the partition key (race_year, race_name). The primary key also has a clustering

column, rank.

You must specify all columns of the partition key to retrieve data from this table

because you haven’t created a secondary index on the table. To get the ranks of cyclists

that completed in various races, you must supply values for both the year and race name,

as shown here:

cqlsh:cycling> SELECT * FROM cycling.rank_by_year_and_name WHERE race_

year=2015 AND race_name='Tour of Japan - Stage 4 - Minami > Shinshu';

 race_year | race_name |rank| cyclist_name

-----------+--+----+----------------

 2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 1 | Benjamin PRADES

 2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 2 | Adam PHELAN

 2015 | Tour of Japan - Stage 4 - Minami > Shinshu | 3 | Thomas LEBAS

(3 rows)

cqlsh:cycling>

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

208

If you specify only part of the partition key, as shown in the following example,

Cassandra complains:

cqlsh:cycling> SELECT * FROM cycling.rank_by_year_and_name WHERE race_

year=2016;

InvalidRequest: Error from server: code=2200 [Invalid query]

message="Cannot execute this query as it might involve data filtering and

thus may have unpredictable performance. If you want to execute this query

despite the performance unpredictability, use ALLOW FILTERING"

The error is because you used only part of the partition key (race_year) and have

omitted the race_name column, which is the second column in the partition key.

You can get pass this error by doing what Cassandra is asking you, by adding the

clause ALLOW FILTERING to your query that is using only part of the partition key.

cqlsh:cycling> SELECT * FROM cycling.rank_by_year_and_name WHERE race_

year=2015 ALLOW FILTERING;

 race_year | race_name | rank | cyclist_name

-----------+---+---+------------

 2015 | Giro d'Italia - Stage 11 - Forli > Imola | 1 | Ilnur ZAKARIN

 2015 | Giro d'Italia - Stage 11 - Forli > Imola | 2 | Carlos BETANCUR

...

 (5 rows)

There may be a performance penalty when you add the ALLOW FILTERING clause to

a query. The impact depends on how many rows are in a partition, and if the rows are

spread over many SSTable files. However, Cassandra guarantees that the query will be

limited to a single node.

 Compound Keys and Clustering Columns

When creating a primary key, the clustering column(s) is optional and follows the

mandatory partition key of a table. The order of the clustering columns defines the

clustering order for a partition in the table. For each partition, Cassandra physically

orders the rows based on the clustering order that you specify.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

209

Clustering is how Cassandra sorts data within each partition based on how you

define the clustering column(s). By default, Cassandra sorts a column in the ascending

order.

A primary key with both a partition key and a clustering column(s) is called a

compound primary key. The partition key may be simple or composite.

Here’s an example that shows how the clustering columns define the clustering order

for a partition:

CREATE TABLE t (

 a int,

 b int,

 c int,

 PRIMARY KEY (a, b)

);

Insert some rows and run the following SELECT statement:

SELECT * FROM t;

 a | b | c

 ---+---+---

 0 | 0 | 4 // row 1

 0 | 1 | 9 // row 2

 0 | 2 | 2 // row 3

 0 | 3 | 3 // row 4

In this case, the primary key definition specifies (a, b), meaning that column a is the

partition key and the column b is the clustering column. In addition, you can see that

Cassandra internally stores the rows belonging to the same partition (column a=0) in the

order of the values of the clustering column, b.

Clustering a column in the way shown here means that queries that seek a range of

rows from a partition can return very quickly. An example is a query such as SELECT *

FROM t where a=0 and b>1 and b<=3.

Note When you specify a compound primary key, Cassandra stores an entire row
on a node by its partition key and orders the data with the clustering column(s).

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

210

If your application is retrieving data from a large partition, it must normally read the

entire partition to get at a small amount of data. If you sort the partition key’s data by

specifying a clustering column, the database can retrieve data far more efficiently since it

won’t be reading the entire partition.

Grouping data by specifying a clustering column is similar to how you join tables in a

relational database, only better.

In the following table, the column category acts as the partition key and the column

points as the clustering column. When you query this table, for each category the

database orders the points column in the descending order.

CREATE TABLE cycling.cyclist_category (

category text, points int, id UUID, lastname text,

PRIMARY KEY (category, points))

WITH CLUSTERING

ORDER BY (points DESC);

 Static Columns

You can declare a non-clustering column as static when creating a table. A static column

is static within a specific partition only.

The following is an example that shows how to declare a static column:

CREATE TABLE t (

 k text,

 s text STATIC,

 i int,

 PRIMARY KEY (k, i)

);

INSERT INTO t (k, s, i) VALUES ('k', 'I''m shared', 0);

INSERT INTO t (k, s, i) VALUES ('k', 'I''m still shared', 1);

SELECT * FROM t;

Output is:

 k | s | i

k | "I'm still shared" | 0

k | "I'm still shared" | 1

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

211

Things to remember about a static column:

• You can’t declare a column acting as the primary key as static.

• A table that doesn’t have any clustering columns can’t have a static

column.

 Table Options

You can set two key table options, COMPACT STORAGE and CLUSTERING ORDER, by using the

WITH keyword.

Compact Tables

You can define a compact table with the COMPACT STORAGE option. This option exists only

for backward compatibility purposes, for dealing with table definitions created before

CQL Version 3. You must not specify this option for new tables, so I won’t discuss this

option in detail.

Clustering Order

The CLUSTERING ORDER option lets you change the clustering order to use the reverse

natural order of the columns. By default, the ordering implies ASC (ascendant order). You

can specify either the ASC (the default order) or the DESC (descendent order) order.

Other Options

In addition to the two options I described here, a table supports other options such as

those that allow you to write comments, specify read repair options, and the time to wait

for garbage collecting tombstones, which are deletion markers. Here’s a brief description

of the table options:

• comment: A comment about the table.

• read_repair_chance: The probability with which to query more

nodes than those required by the consistency level for performing

read repairs. Default value is 0.1

• dclocal_read_repair_chance: The probability with which to query

more nodes than those required by the consistency level belonging to

the same data center for performing read repairs. Default value is 0.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

212

• gc_grace_seconds: Time to wait before the garbage collection of the

tombstones. Default value is 864000 seconds.

• bloom_filter_fp_chance: The target probability of the false positives

of the SSTable Bloom filters.

• default_expiration_time: The time-to-live (TTL) for a table in

seconds.

There are three very important performance-influencing table options that relate

to compaction, compression, and caching. I’ll explain all three of them in detail in

Chapter 11, which discusses Cassandra performance tuning. You can read ahead if

you wish.

 Using a Counter Column to Track Values

You can use a special column called a counter to keep a tally of a value that’s

incremented. For example, you may want to create a counter column to trace the

number of online game players who joined a game or the number of page views or log

messages.

You must specify the counter data type for a counter column. However, you can’t

denote a column in any table as a counter column; you must create a dedicated table to

hold a counter column. The dedicated table must include only a primary key (could be

composite) and the counter column. You can’t use the counter column as a primary key;

all columns other than the primary key column must be counter columns.

Note You can’t index a counter column. You also can’t delete it.

You can’t use the INSERT statement to load data into a counter column; instead, you

must use the UPDATE statement to both insert and modify a counter column’s values.

The following example shows how to create a counter column:

CREATE TABLE popular_count (

 id UUID PRIMARY KEY,

 popularity counter

);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

213

 Altering a Table

You can modify a table structure or its options by executing an ALTER TABLE statement.

The ALTER TABLE statement allows you to do the following.

• You can change the type of a column, as shown here:

ALTER TABLE customers ALTER lastKnownAddress TYPE UUID;

• You can add a new column to the table.

ALTER TABLE customers ADD address varchar;

• You can also change some of the table options, by adding the WITH

instruction.

ALTER TABLE customers

 WITH comment = "complete customer records table'

 AND read_repair_chance = 0.4;

Note You can’t change the COMPACT STORAGE and CLUSTERING ORDER
options once you create a table.

You can convert some CQL data types only as allowed. Please refer to the CQL

documentation for the CQL type compatibility. For example, you can convert an existing

ASCII or text type to only the varchar type.

 Viewing a Table’s Configured Options
As I showed earlier, you can specify many options when creating a table. You can also

modify several options by altering a table. How do you know which options a table has at

any given time? Run the describe table command to view all properties of a table.

In the following example, you create the table cyclist_name and then run the

command describe cyclist_name to view the table’s properties:

cqlsh> use cycling;

cqlsh:cycling> CREATE TABLE cyclist_name (id UUID, lastname text,

firstname text, PRIMARY KEY (id));

cqlsh:cycling> describe cyclist_name;

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

214

CREATE TABLE cycling.cyclist_name (

 id uuid PRIMARY KEY,

 firstname text,

 lastname text

) WITH bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class': 'org.apache.cassandra.db.compaction.

SizeTieredCompactionStrategy', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class': 'org.apache.

cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

cqlsh:cycling>

Of the many properties of this table, you’ve set only a few. The listing is long,

however, since the dataset uses default values for all the table options that you didn’t

specify.

 Dropping and Truncating Tables
As with any relational database, you can drop and truncate Cassandra tables.

 Dropping a Table

You can drop a table with the DROP TABLE statement.

cqlsh> DROP TABLE cycling.cyclist_name;

cqlsh> DROP TABLE cycling.cyclist_name IF EXISTS;

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

215

Before you drop a table, you must first drop any materialized views that are based on

the table.

 Truncating a Table

Truncating a table with the TRUNCATE statement leaves the table in place but removes all

the data in the table, including the data from any materialized view based on the table.

cqlsh> TRUNCATE TABLE customers;

cqlsh> TRUNCATE customers;

Both of these commands work the same way. The keyword TABLE is optional since a

table is the only object you can truncate.

Before you truncate a table, you need to do the following:

 1. Set the consistency level to ALL with the CONSISTENCY command.

cqlsh> CONSISTENCY ALL;

Consistency level set to ALL.

cqlsh>

 2. Run the nodetool status command to ensure that all nodes are

up and available.

cqlsh> nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack

UN 127.0.0.1 159.91 KiB 256 100.0% c51011d6-06da-47b8- bd55-

70ac2e51716d rack1

$

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

216

 Deleting Rows and Columns from a Table
You can remove rows from a table with the DELETE statement.

cqlsh:mydb> DELETE FROM cyclists where pk = 'salapati';

You can remove rows from a table by issuing the DELETE statement in the

following way:

cqlsh:mydb> DELETE session-token FROM users where pk = 'salapati';

This statement will remove the column session_token from just one row where the

value of pk is 'salapati'. The WHERE clause specifies which row/rows to delete from a

table.

 Deleting Multiple Rows

You can delete multiple rows by specifying the keyword IN and supplying a comma

separated list of values in parentheses.

cqlsh> DELETE FROM cycling.cyclist_name WHERE firstname IN ('Sam', 'James');

If you wish to remove an entire column from a table, you can do so by leaving out the

WHERE clause.

cqlsh:mydb> DELETE session_token FROM users;

 Deleting from a Collection Set, List, or Map

To remove an element from a map that you stored as a single column, you need to

specify the column’s name along with the element’s key in square brackets.

cqlsh> DELETE sponsorship ['sponser_name'] FROM cycling.races WHERE

race_name = 'Criterium du Dauphine';

To delete data from a list, specify the name of the column along with the list index

positon.

cqlsh> DELETE categories[3] FROM cycling.cycling.history WHERE lastname =

'TIRALONGO';

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

217

To remove all elements from a set, just specify the name of the column.

cqlsh> DELETE sponsorship FROM cycling.races WHERE race_name = 'Criterium

De Dauphine';

 Deleting Old Data by Using a TIMESTAMP

You can specify columns for deletion using a timestamp to identify the column.

cqlsh> DELETE firstname, lastname

 FROM cycling.cyclist_name

 USING TIMESTAMP 1318452291034

 WHERE lastname = 'ALAPATI';

 Removing the Deleted Data from the Database

Cassandra doesn’t immediately remove the rows and columns from the table once you

issue your DELETE statements. Rather, it removes the values completely during the first

compaction following your delete operation. This is to improve performance.

How Cassandra Uses Tombstones to Mark Deleted Data

Cassandra marks the data you delete with a tombstone and removes it completely after

a grace period. Cassandra treats all deletes as either an insert or an upsert (update or

insert, depending on the case).

When you delete data, Cassandra adds a deletion marker to the partition that’s part

of the DELETE command. This deletion marker is called a tombstone, and the database

writes these markers to an SSTable on one or more nodes. Each tombstone has an

expiration period, after which the database deletes the tombstone as part of its routine

SSTable compaction process.

Specifying a Time-to-Live Value

Alternatively, you can specify a TTL value for a record (row or a column) or a table to

set an optional expiration period for data in a column (other than counter data). Doing

so will make Cassandra delete the data in the column or the table after a certain period

has elapsed. At the end of the time-to-live period, the database marks the record with a

tombstone and takes care of it as explained earlier, during a compaction process.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

218

Expiring data by setting a TTL doesn’t come free of cost. It involves an additional

overhead of 8 bytes in memory and on disk to record the TTL and expiration time.

Note specifying a ttL is a way of implicitly deleting data. You can do this by
either setting the ttL on columns in a table or by specifying the default_time_
to_live property for a table.

You can specify the expiration time (TTL) with an INSERT or an UPDATE statement.

The following example shows how to specify the password column in the users table

to expire after 1 day (86,400 seconds) by adding the USING TTL option to the INSERT

command):

cqlsh:mydb> INSERT INTO users

 user_name, password)

 VALUES ('cbrown', 'ch@ngem4a') USING ttl 86400;

Following this, you can increase the period to 2 days by running the following UPDATE

statement:

cqlsh:mydb> UPDATE users USING TTL 172800 SET password = 'ch@ngem4a'

 WHERE user_name = 'cbrown';

You can set a default TTL on an entire table with the default_time_to_live

property, which is one of the CQL table properties you can specify when creating a table.

The default value of this property is 0, meaning that data you write to a table will never

expire. You set the value in number of seconds. Once you set it, Cassandra applies a TTL

value to each column in a table. Cassandra will then tombstone the entire table once the

table’s TTL is exceeded.

Note By setting the default_time_to_live table property to zero, you are in
effect removing any column ttLs that you’ve specified in that table.

You can apply the default TTL to a table when creating a table with the CREATE TABLE

statement or when modifying it later with an ALTER TABLE statement.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

219

Once the number of seconds since the creation of a column crosses the TTL value

you’ve configured, Cassandra considers the data as expired, although it reports it in the

query results. Cassandra marks the expired data with a tombstone, which is a deletion

marker, on the next read but retains the data for a maximum of gc_grace_seconds.

Once the time specified by the gc_grace_seconds property passes, Cassandra

automatically removes the data that it has marked with a tombstone during its regular

compaction processes.

 How Garbage Collection Works

You set the gc_grace_seconds property when creating a table. This property specifies

the number of seconds after Cassandra marks data with a tombstone before the data

becomes eligible for garbage collection.

The default value for the gc_grace_seconds property is long (864,000 seconds, which

is 10 days), so you can leave this property alone when creating your tables. The reason

the default value is so long is to enable Cassandra to have plenty of time to maximize

consistency of data before permanently getting rid of it.

Although the default value of the gc_grace_seconds property is 10 days, you can

reduce it for tables whose data your users won’t be explicitly deleting, such as tables that

contain just data with their TTL configured, or a table for which you’ve configured the

default_time_to_live property.

Tip You can configure each table with a different grace period for a tombstone.

Before you lower the value of the gc_grace_seconds property from its default setting

of 10 days, remember the following:

• Cassandra doesn’t replay hints, which are instructions to replay

missed write operations, that are older than the gc_grace_seconds

setting. This means that reducing the gc_grace_seconds property

value may result in a recently revived node missing some writes.

• Cassandra also performs batch operations, which involve

sequentially replaying changes in the database. Cassandra will wait

to replay a batched change until gc_grace_seconds elapse after

the batched change was created. If you decrease the value of the

gc_grace_seconds property, you run the risk that a batched write will

restore some deleted data.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

220

 Zombie Records and the Need for Node Repair

When you delete data, the node that processes the delete request will create a tombstone

for the record and pass the tombstone to the other nodes that are storing a replica of the

deleted record. If one of the replicas happens to be down, it won’t be able to receive the

tombstone and will continue to store the pre-deleted version of the data.

The database considers the (deleted) record on the node that has recovered as fresh

data, if the database deleted the tombstoned record while the node was down. The

database will then send this “fresh” data around to the other nodes. This deleted row(s)

that reappears in a table after deletion is called a zombie.

The reason for the presence of zombie data is that a node came back up after being

down for a long period, before the database could run a repair. If the node isn’t repaired

before it is back online, the database will see the non-tombstoned data and copy it to the

other nodes as new data. This is the reason you must run a repair on a node that you’ve

restored (with the nodetool repair command) before allowing it to join the cluster.

Note the database doesn’t replay a mutation (insert or update) for a tombstoned
record that is within its grace period.

The table property gc_grace_seconds sets the grace period for a tombstone. This

grace period helps keep the zombie records from popping up, by letting a recovering

node time to process tombstones in the normal fashion. When you recover the down

node, the database replays all the mutations (inserts and updates) that this node missed

while it was down, via its hinted handoffs feature. The database won’t replay the changes

for a record marked for deletion with a tombstone until its grace period is over. If the

node fails to come back up by the end of the grace period, it’ll miss the deletions.

Once the grace period for a tombstone ends, the database deletes the tombstone

during its normal compaction operations.

You can prevent zombie records by

• Running the nodetool repair command on the node once it

recovers

• Running the nodetool repair command on each table every

gc_grace_seconds

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

221

Note a DROP KEYSPACE or a DROP TABLE command will immediately
delete data.

Note the following:

• If you choose to specify a TTL for all records in a table, they’ll expire

naturally and you don’t need to run the nodetool repair command

for that table.

• You can immediately delete all tombstones by initiating a compaction

process (when you use the SizeTieredCompactionStrategy to

compact data).

• When you set the default_time_to_live property at the table level,

when a record exceeds the table’s TTL, Cassandra removes the

record without creating a tombstone or waiting for the compaction

process to run.

 Indexing in a Cassandra Database
A primary index is mandatory for a table, and you’ve already learned how to create and

work with a primary index.

A secondary index is not mandatory when creating a table. A secondary index

enables you to query a table on a column that you won’t be able to query otherwise.

A secondary index helps filter a table’s data in a non-primary key column. Cassandra

doesn’t allow you to run a query that matches a non-primary key column because it may

not result in retrieving a continuous chunk of data from the table.

Cassandra spreads a table’s data across multiple partitions stored on various nodes

since a non-primary key isn’t involved in ordering the data. This means that if you query

a specific value of a non-primary key column, you many end up reading all partitions of

table; therefore Cassandra doesn’t permit this type of access.

You can build a secondary index on a column, but there are some limitations as

to how you can make use of such an index. If your query includes a partition key in

addition to a secondary index column, it’ll work since the database can satisfy this

query by reading data from a single node partition. However, if you don’t restrict the

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

222

secondary index in a query to a specific partition key, the query will need to read data

from all the nodes and the database won’t allow it. You’ll see the following error when

you try the query:

InvalidRequest: Error from server: code=2200 [Invalid query]

message="Cannot execute this query as it might involve data filtering and

thus may have unpredictable performance. If you want to execute this query

despite the performance unpredictability, use ALLOW FILTERING"

For this type of query to work, you must add the option ALLOW FILTERING to the query.

 When to Use an Index
Use an index when a table has many rows with the indexed value. If a table has too

many unique values for a column, you incur more of an overhead for querying and

maintaining the index on that column.

Let’s say you have a table named races, and there are hundreds of millions of entries

for cyclists that participate in various bicycling races over several years. Your goal is to

find the cyclists by rank. Since many of the cyclists have participated during the same

years, their ranks will share the same column value for the race year. In this case, the

race_year column in the table races is ideal as an index on that table.

Note the sstable attached secondary Indexes (saso) index are a new
implementation of secondary index that offer a performance improvement. however,
sasI indexes are still experimental as of the writing of this book (october 2017).

 When Not to Use a Secondary Index
An index isn’t always a boon. It can easily turn out to be a curse if you indiscriminately

create indexes on all tables. You’re advised not to create indexes when dealing with

• High and low cardinality columns

• Columns that are frequently updated or deleted

• Tables that include a counter column

• When searching for a row in a large partition

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

223

In the following sections, I elaborate the reasons for the inadvisability of indexes in

the situations listed here.

 High and Low Cardinality Columns

Neither a high cardinality column nor a very low cardinality column is a suitable

candidate for an index. High cardinality means that the column has many distinct

values, and low cardinality means there are few distinct values.

It’s inefficient to create and use an index for a column with numerous distinct values.

You’re better off maintaining the table as a form of an index rather than creating a built-

in Cassandra index.

If your table is large but the queries are rare on the table, you may opt to create an

index on a high cardinality column. Just don’t do it on a highly used, large table.

As for very low cardinality columns, take the extreme case of a column with Boolean

values. In this case, each value of the index is a single row in the index, and the rows are

extremely large since there are only two possible values for each indexed column.

 Frequently Updated or Deleted Columns

As mentioned, Cassandra uses tombstones to mark deleted data. Cassandra stores the

tombstone in the index until it hits a limit of 10,000 cells. Once Cassandra exceeds the

tombstone limit, any query that refers to the indexed column will fail.

 Using an Index for Searching for Rows in Large Partitions

If you query an indexed column in a large table, it usually requires gathering the

responses from several partitions. As you add more nodes to your cluster, the query

response gets slower and slower.

The way to avoid the situation described here is to narrow the search when querying

the indexed column.

In addition to all the potential issues described here, since the database stores the

index table on each node of the cluster, if a query accesses multiple nodes, a query can

turn out to be a performance problem.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

224

 Creating a Secondary Index
You can create a secondary index on a table by executing the CREATE INDEX statement.

Let’s say you have the following table, with a primary key that consists of a composite

partition key (race_year, race_name) and a clustering column (rank):

cqlsh> CREATE TABLE cycling.rank_by_year_and_name (

 race_year int,

 race_name text,

 cyclist_name text,

 rank int,

 PRIMARY KEY ((race_year, race_name), rank)

);

You can’t query this table on the column race_year since that column is only a

part of the composite partition key. You can create a secondary index on the race_

year column, which enables you to query the table on this column. Here’s how you

create the index:

cqlsh> CREATE INDEX ON cycling.rank_by_year_and_name (race_year);

You can now issue the following query that makes use of your new secondary index:

cqlsh SELECT * FROM cycling.rank_by_year_and_name WHERE race_year=2015;

In the CREATE INDEX statement, you didn’t specify a name for your new index.

Naming an index is optional, and if you don’t specify one, the database will assign a

system generated name for the index. You can alternatively specify your own index

name thus:

cqlsh> CREATE INDEX my_index1 ON cycling.rank_by_year_and_name (race_year);

You can specify any of the table’s columns for a secondary index, including a

clustering column. You can create multiple secondary indexes on a table.

You can create an index on a table that already contains data, as well as a new table

with no data.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

225

 Dropping an Index

Unlike in the case of a primary index, you can drop a secondary index. Issue the DROP

INDEX statement to drop an index:

cqlsh> DROP INDEX myIndex1;

This statement drops an existing secondary index. If you wish to avoid errors since

the index doesn’t exist, you can use the following statement instead:

 cqlsh> DROP INDEX myIndex1 IF EXISTS;

 Materialized Views in Cassandra
As mentioned, secondary indexes aren’t good when dealing with high cardinality data

since queries on these indexes make the database access all the nodes in the cluster.

Materialized views are an appropriate alternative for handling high cardinality data.

A materialized view is a table that you build from an existing table using a new

primary key. You can include rows with null values in the primary key column.

Tip Materialized views hinder performance when you use them for querying low
cardinality data. however, please proceed with caution because materialized views
still require work to be fully useful. It is not unheard of for MVs to cause cluster
downtime when dealing with heavy updates.

MVs should be much more usable by the time Cassandra 3.11 or 4.x rolls around.

 Creating a Materialized View
The following is an example that shows how you create a materialized view using a

regular table as its basis or source:

cqlsh> CREATE MATERIALIZED VIEW cycling.cyclist_by_age

 AS SELECT age, name, country

 FROM cycling.cyclist

 WHERE age IS NOT NULL AND cid IS NOT NULL

 PRIMARY KEY (age, cid);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

226

In this example,

• The AS SELECT clause specifies the columns that you want to copy

from the base or target table to the new materialized view. Here they

are age, name, and country.

• The FROM clause points to the original or source table from which the

materialized view draws its data.

• The WHERE clause ensures that the primary key columns are non-null

since that’s a requirement for creating a materialized view.

• The PRIMARY KEY clause specifies the primary key columns, which

are age and cid in this example. The column age also happens to be

the primary key column for the source table, and you must include all

such primary key columns from the source table in the primary key of

the materialized view as well.

 Dropping a Materialized View
You can drop a materialized view by issuing the DROP MATERIALIZED VIEW command:

cql> DROP MATERIALIZED VIEW cycling.cyclist_by_age;

You can alternatively drop a materialized view or views by truncating the source

table, which removes all materialized views based on that table. When you drop a table,

you must first drop all materialized views that use that table as their source table.

 Denormalizing with Materialized Views
In the example of a materialized view, you partitioned the materialized view by age so

you could run queries on it based on the age of the cyclists. Materialized views help

denormalize your data by creating multiple tables with the same data but organized

differently based on different primary keys.

You can create multiple materialized views on the same table. Thus, you can create

view with different primary keys such as birthday or country. This helps you organize the

data by these primary keys and lets you query those materialized views by birthday and

country.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

227

 Updating Materialized Views
When you update the source table, the database automatically updates any materialized

views you’ve created based on that table, and the same goes with deletion of data from

the source table. However, the updates are asynchronous so the materialized view is

updated after a delay, after the update of the parent table.

Cassandra needs to perform an additional read before it can update the materialized

views. This read involves a data consistency check of all the replicas, which means that

writes to a materialized view are slower than normal table writes.

Deletes pose a problem as well. Since the database may not store identical rows from

the parent table contiguously in the materialized views, deleting rows from the source

table may often require the database to create multiple tombstones in the corresponding

materialized views.

Data manipulation language (DML) is the set of CQL statements that enable you to

query, insert, update, and delete data. In the following sections, I’ll review the essentials

of the Cassandra DML statements.

 Querying Data with the SELECT Statement
Querying data is the most common DML operation that you’ll perform in a Cassandra

database. Therefore, it’s a good idea to thoroughly understand how to use the SELECT

statement in CQL.

The SELECT statement returns results that match a request. Each of the rows contains

the values for the selections that are part of the SELECT statement.

The following is the basic syntax of a SELECT statement in CQL:

SELECT selectors | DISTINCT partition

FROM [keyspace_name.] table_name

[WHERE partition_conditions [AND solr_query = 'search_expression' [LIMIT n] |

 [solr_query = 'search_expression' [LIMIT n]]

 [AND clustering_conditions

 [AND regular_column_conditions]]]

[GROUP BY column_name]

[ORDER BY PK_column_name ASC|DESC]

[LIMIT N | PER PARTITION LIMIT N]

[ALLOW FILTERING

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

228

A SELECT statement contains the following key clauses:

• The selection clause

• The where clause

• The group by clause

• The ordering clause

The following sections describe the key clauses of the SELECT statement.

 The Selection Clause
The selection clause determines which columns the query returns, as well as any

transformation the database must apply to the result set before returning the results.

The SELECT statement must use either a wildcard selector (*) or one or more selectors to

define the columns.

A selector can be

• A column name

• A term

• A function call

• The special call COUNT(*) to the COUNT function

Here are some typical SELECT statements:

cql> SELECT COUNT (*) FROM users;

cql> SELECT name, occupation FROM users;

cql> SELECT name, occupation FROM users where userid in (1111,1112,111130);

cql> SELECT JSON name, occupation FROM users WHERE userid = 999;

You can alias a top-level selector by specifying the AS clause in a SELECT statement,

as shown here:

cql> SELECT name AS customer_name FROM customers;

Cutomer_name

Alapati

....

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

229

 The WHERE Clause
The WHERE clause in a CQL SELECT statement has some surprises for those of us that

come from a relational database background. As is the case with the other databases, the

WHERE clause specifies the rows that the database must query. However, the following

rules apply:

• The WHERE cause can only consist of relations on columns that are

part of a PRIMARY key or you must define a SECONDARY INDEX on the

columns.

• For any partition key, the relations on the clustering columns are

restricted to just those relations that seek a contiguous set of rows.

Let’s say you’ve created the following table and then inserted some data into it:

cqlsh> create table users (id UUID PRIMARY KEY, lastname text, firstname

text);

cqlsh> insert into users (id, firstname, lastname)

 ... values

 ... (uuid(), 'sam', 'alapati');

The following query will work for sure since you specify the primary key, the id

column:

cqlsh> select * from users where id=5361a682-9aea-46df-91b0-40572cfa9c97;

 id | firstname | lastname

--------------------------------------+-----------+----------

 5361a682-9aea-46df-91b0-40572cfa9c97 | sam | alapati

(1 rows)

cqlsh>

However, the following query won’t work:

cqlsh > select * from users where lastname='alapati';

InvalidRequest: Error from server: code=2200 [Invalid query]

message="Cannot execute this query as it might involve data filtering and

thus may have unpredictable performance. If you want to execute this query

despite the performance unpredictability, use ALLOW FILTERING"

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

230

The reason this query won’t work is that there’s no secondary index on the lastname

column, and the column doesn’t select a contiguous set of rows. You need a secondary

index on the lastname column if you wish to query on that column.

 Creating a Secondary Index
You can make this query work by creating a secondary index on the lastname column. A

secondary index is an index on any column in a table other than the keys that are part of

the primary key.

Once you create the secondary index on the column lastname, the previous query

works fine:

cqlsh:cycling> create index on users(lastname);

cqlsh:cycling> select * from users where lastname='alapati';

 id | firstname | lastname

--------------------------------------+-----------+----------

 5361a682-9aea-46df-91b0-40572cfa9c97 | sam | alapati

(1 rows)

Cqlsh:cycling>

In addition to creating secondary indexes on simple columns, such as shown here,

you can also create indexes on collection-based columns such as the map-, set-, and list-

based collections.

 Drawbacks of Secondary Indexes
Secondary indexes are somewhat of a mixed blessing due to several reasons. For

example, all nodes must maintain a local copy of the secondary index based on the data

that’s in the partitions on that node. Since the query on a secondary index often needs to

traverse multiple nodes, it’s not cheap to perform the query.

Secondary indexes are not suitable for columns with too high or too low cardinality.

Cardinality is the number of distinctive values for a column. The indexes are also not

good for handling data that you frequently modify or delete, the reason being that the

database must deal with all the tombstones generated by the updates and deletes before

the compaction process can take care of all them.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

231

Ideally, you should create multiple tables to cater to the different queries that you

want to execute on a chunk of data. Unlike in the case of relational databases where

secondary indexes are an essential part of querying, Cassandra’s secondary indexes

are at best a backup strategy, and you’re better off creating materialized views, which

follow the recommended pattern of denormalization. I discuss materialized views in the

“Working with Materialized Views” section.

 SASI: New Implementation of Secondary Indexes
Cassandra 3.4 introduced a newer implementation for secondary indexes called the

SSTable Attached Secondary Index. Unlike the traditional secondary indexes which are

stored in “hidden” tables, the database stores the SSI indexes as part of an SSTable file.

You can create an SASI index with the CREATE CUSTOM INDEX command:

cqlsh> CREATE CUSTOM INDEX on users (lastname)

 USING 'org.apache.cassandra.index.sasi.SASIIndex';

cqlsh>

You can use both traditional and SASI indexes together. The newer secondary

indexes allow you perform inequality searches and use the LIKE keyword to perform text

searches, both of which you can’t do with traditional indexes.

You can group CLUSTERING COLUMNS together in a relation by employing the tuple

notation, as I explain later in this chapter.

 Writing a Conditional Statement
A query can scan a table’s partitions to retrieve a segment of data. For this type of query

to work, you must store the segment sequentially so that you can use the clustering

columns to define the segment of data you need.

Let’s use a simple example to show how to write a conditional statement. The table

race_times shows the race times of cyclists for various races:

cqlsh> CREATE TABLE cycling.race_times (race_name test, cyclist_name text,

 race_time text,

 PRIMARY KEY (race_name, race_time);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

232

Here race_name is the primary key and race_time is the clustering column. You can

now specify a conditional operator to find a segment of data. You can do this using the

race_time column, as shown here:

cqlsh> SELECT * FROM cycling.race_times

 WHERE RACE_NAME = '17th Santos Tour Down Under'

 AND race_time >='19:15:19"'

 AND race_time <= '19;15:39');

 How to Group a Query’s Results with the GROUP BY Clause

Specify the GROUP_BY clause to gather into a single row all rows that share the same

values for a column (or a set of columns).

When you specify an aggregate function such as AVG along with a GROUP_BY clause,

Cassandra generates a separate value for each group. Otherwise, specifying an aggregate

function results in a single value for all rows.

Here’s an example showing how to specify the GROUP_BY clause:

cqlsh> SELECT weatherstation_id, date, MAX(temperature)

 FROM temperature_by_day

 GROUP BY weatherstation_id, date;

In this example, the table‘s partition key includes two columns, weatherstation_id

and date, and the clustering key is event_time. The GROUP BY uses the partition key

(weatherstation_id, date).

If I want to, I can use the GROUP BY with both the partition key and the clustering key,

as shown here:

cqlsh> SELECT weatherstation_id, date, MAX(temperature)

 FROM temperature_by_day

 GROUP BY weatherstation_id, date, event_time;

 Ordering a Query’s Results with the ORDER BY Clause

You can fine-tune the order in which Cassandra displays the results of a SELECT

statement. Specify the ORDER BY clause to order the results of a query. You can only

choose the columns that you define on the table with the clustering order column.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

233

You must define the partition key in the WHERE clause and define the clustering

column for ordering results by specifying the ORDER BY clause.

The following is an example that shows how to use the ORDER BY clause.

First, create the following table:

cqlsh> CREATE TABLE cycling.cyclist_cat_pts

 (CATEGORY text, points int, id UUID, lastname text,

 PRIMARY KEY (category, points));

Now run the SELECT statement with the ORDER BY clause.

cqlsh> SELECT * FROM cycling.cyclist_cat_pts WHERE category = 'GC'

 ORDER BY points;

Using the ORDER_BY clause in cqlsh requires you to turn off paging with the PAGING

OFF command.

cqlsh> PAGING OFF

 Limiting Your Results

You can limit the number of rows output by a SELECT statement by specifying the LIMIT

N option with a SELECT statement, as shown here:

cqlsh> SELECT * FROM cycling.cyclist_name LIMIT 3;

You can also specify a PER PARTITION LIMIT N option to limit the number of rows

returned for a specific partition. First, create a table that’ll sort the data into multiple

partitions and insert data into that table. In the example here, you use the race_year and

race_name columns as the composite partition key and rank as the clustering column:

cqlsh> CREATE TABLE cycling.rank_by_year_and_name (

 race_year int

 race_name text.

 cyclist_name text,

 rank int,

 PRIMARY key ((race_year, race_name), rank);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

234

With this table in place, you can execute the following SELECT statement. The PER

PARTITION LIMIT N clause retrieves the top five races for each combination of the two

columns in the partition key, race_year and race_name.

cqlsh> SELECT * FROM cycling.rank_by_year_and_name PER PARTITION LIMIT 5;

 Filtering the Results

Cassandra doesn’t allow queries that require filtering. It only allows queries that don’t

require filtering, where it returns all the records read in the result set. The reason for this

is so queries have predictable performance. A query will always execute in a time that’s

proportional to the amount of data the query returns.

Let’s say you have the following table:

CREATE TABLE emails (

 emailId int,

 time int,

 from text,

 content text,

 PRIMARY KEY(emailId, time));

You can retrieve all data from the table by issuing the following query:

SELECT * from emails;

However, if you issue the following query, Cassandra complains:

SELECT * FROM emails WHERE time1 = 1418306451235;

Bad Request: Cannot execute this query as it might involve data filtering

and thus may have unpredictable performance. If you want to execute this

query despite the performance unpredictability, use ALLOW FILTERING.

The reason for the error is that Cassandra doesn’t run a query when it’s unable to

guarantee that it won’t be scanning a large amount of data even when there are only a

handful of values for the querying. Cassandra is looking out for you, trying to conserve

your computing resources.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

235

To execute the query, the database needs to retrieve all rows from the table EMAILs

and then filter out the rows that don’t have the requested value for the TIME column.

However, if you know that over 90% of the rows in the table have the requested value

for the time column, your query is going to efficient, and you must specify the ALLOW

FILTERING clause in your query.

If the table contains a million rows and only five rows contain the requested value

for the time column, your query will waste resources, since Cassandra will be reading all

million rows to retrieve five rows. In this case, you should think of adding a secondary

index. So, you can add an index on the FROM column and run the following query:

SELECT * FROM emails WHERE from = 'Sam Alapati';

Cassandra will retrieve all emails sent by Sam Alapati and won’t ask you to use the

ALLOW FILTERING clause, since it uses the secondary index on the from column to find

the matching rows, without having to filter the results.

You know your data better. You can override the default behavior by specifying the

ALLOW FILTERING clause and make the same query run successfully.

 Specifying Built-In Functions for Aggregating Results

Cassandra 3.1 provides built-in standard aggregate functions such as min, max, avg,

sum, and count to aggregate results. I provide examples for specifying two aggregate

functions: sum and count.

In the table cycling.cyclist_points, the PRIMARY KEY is (id, race_points). You

can find the sum of race points for a specific cyclist with the help of the sum function.

cqlsh> SELECT sum(race_points)

 FROM cycling.cyclist_points

 WHERE id=e3b19ec4-774a-4d1c-9e5a-decec1e30aac;

In the table cycling.country_flag, the PRIMARY KEY is (country, cyclist_name).

You can employ the count function to find the number of cyclists from Belgium.

cqlsh> SELECT count(cyclist_name) FROM cycling.country_flag WHERE

country='Belgium';

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

236

You can apply any custom user-defined function as part of a query, as shown here,

where fLog is an UDF created to retrieve data from this table:

cqlsh> SELECT id, lastname, fLog(race_points) FROM cycling.cyclist_points;

 Formatting the Query Results as JSON

You can retrieve a table’s data in the JSON format. To get the entire result of a query in

the JSON format, just insert the keyword json right after the SELECT statement.

cqlsh> SELECT json name, checkin_id, timestamp from checkin;

If you wish to retrieve only some column(s) in the JSON format, you can do so by

enclosing the column’s name in toJson().

cqlsh> select name, checkin_id, toJson(timestamp) from checkin;

 Selecting Data from a Collection Column

You query a collection column the same as any other column. The following example

shows how you retrieve data for a specific cyclist ID. Here, the column teams is a set:

cqlsh> SELECT lastname, teams

 FROM cycling.cyclist_career_teams

 WHERE id = 5b6962dd-3f90-4c93-8f61-eabfa4a803e2;

Cassandra will return the complete collection when you query a table with a

collection. The results will be in the order based on the element types. For example,

text elements will be in alphabetical order. If the key is an integer type, the order will be

based on the key values. If you need the database to return the results in the order the

data was inserted, use a list instead of a set.

 Doing a Multi-Get of CQL Rows with the IN Keyword

You can specify the IN keyword to define a set of clustering columns you want to retrieve

together, making it get multiple rows.

As with the ORDER_BY clause, you must turn off paging in cqlsh with the PAGING OFF

command when you specify the IN keyword. Here are some same queries that show how

to specify the IN keyword.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

237

The following query retrieves and sorts the results based on the clustering column

category_id:

cqlsh> select * from cycling.cyclist_cat_pts

 WHERE cataegory_id IN (Time-tral', 'Sprint')

 ORDER BY id DESC;

The following example shows how to specify multiple clustering columns. Here

the race_id column is the partition key, and the race_start_date and race_end_date

columns are the clustering columns:

cqlsh> SELECT * FROM cycling.calendar WHERE race_id =101

 AND (race_start_date, race_end_date)

 IN (('2015-05-09', '2015-05-31'), ('2015-05-06', '2015-05-31');

 Inserting Data with the INSERT Statement
You execute the INSERT statement to write one or more columns for a row in a table. You

must specify at least the column on which you’ve defined the primary key, as otherwise

you won’t be able to identify the row.

Here’s the generic syntax of the INSERT statement:

INSERT INTO [keyspace_name.] table_name (column_list)

VALUES (column_values)

[IF NOT EXISTS]

[USING TTL seconds | TIMESTAMP epoch_in_microseconds]

Here’s an example showing how to perform an insert with the help of the VALUES clause:

cqlsh> INSERT INTO cycling.cyclist_name (id, lastname, firstname)

 VALUES (5b6962dd-3f90-4c93-8f61-eabfa4a803e2, 'VOS','Marianne');

When you use the JSON syntax, specifying the VALUES clause is optional, but make

sure you specify the keyword JSON after the table name.

cqlsh> INSERT INTO cycling.cyclist_category JSON '{

 "category" : "GC",

 "points" : 780,

 "id" : "829aa84a-4bba-411f-a4fb-38167a987cda",

 "lastname" : "SUTHERLAND" }';

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

238

Tip If a row doesn’t exist, Cassandra creates the row, and if the row exists
already, it updates that row. You really can’t tell which one of the two operations–
creation or update–took place. You can specify the IF NOT EXISTS condition to
insert data only if it doesn’t exist, but this has a discernible performance penalty so
you shouldn’t use it routinely.

The clause UPDATE_PARAMETER in an INSERT statement also occurs in the UPDATE,

and DELETE statements, so it’s worth understanding this parameter well. The

UPDATE_PARAMETER clause supports the following parameters:

• TIMESTAMP: Sets the timestamp for the operation. By default, the

coordinator uses the current time at the start of the statement

execution as the timestamp.

• TTL: This parameter specifies a time-to-live (in seconds) for the

values you insert. This is an optional parameter, and by default values

don’t expire. Setting the TTL to the value 0 is the same as specifying

no TTL.

 Modifying Data with the UPDATE Statement
Cassandra’s UPDATE capability is really an UPSERT. When you update a row, Cassandra

will create the row if didn’t exist before, and update it otherwise. The UPDATE statement

will thus end up writing one or more column values of a row or rows.

If you insert a row with the same primary key as a current row, the database replaces

the row. If you update a row and the primary key doesn’t exist, Cassandra creates the

row. Because Cassandra employs an append model, both insert and update operations

work the same way; there’s no essential difference between the two operations.

You can specify the TTL seconds or Timestamp microseconds as options on all

columns except counter columns.

You can update a column in multiple rows, as in the following example:

cqlsh> UPDATE users

 SET state = 'TX'

 WHERE user_id IN (12345, 23456, 34567);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

239

You can update one or more columns at once. The following command shows how

to update multiple columns in the same row:

cqlsh> UPDATE users

 SET name = 'Sam Alapati',

 email='samalapati@gmail.com'

 WHERE user_id = 23456;

You can update data in a collection set, map, or list.

You can also perform conditional updates, as shown here:

cqlsh> UPDATE users SET id = 12345

 WHERE lastname = 'ALAPATI' and firstname = 'Sam'

 IF age =50;

Conditional updates are lightweight transactions and impose a performance penalty

and therefore you must use them judiciously.

CHANGE DATA CAPTURE (CDC) LOGGING

Cassandra offers change data capture (CdC) logging to track data that has changed. You

configure CdC logging on a per-table basis.

When you decide to use CdC logging, you must also specify a limit on the amount of disk

space the CdC logs can use. When the database flushes the memtable data to disk, the

database moves the commit log segments that contain data relating the tables for which

you’ve enabled CdC logging to the CdC directory.

You can configure CdC logging when creating a table or alter an existing table to add the

relevant table property.

the cdc_raw_directory property in the cassandra.yaml file enables you to specify

the directory where the database stores the CdC logs. the default locations for this directory

are as follows:

package installations: /var/lib/Cassandra/cdc_raw

tarball installations: install_location/data/cdc_raw

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

240

 Working with Advanced Data Types
You can create several advanced types of data such as the following:

• Collections: Enable you to group and store data together in a column.

• Tuples: Enable you to store multiple values together in a column.

• User-Defined Types (UDTs): Enable you to attach multiple data fields

to a column.

Note an udt is only for a single keyspace. to use an udt in a different keyspace,
you must create the udt again.

I explain the three advanced data types in the following sections.

 Collections
The collection data type allows you to group data together in a column. For example, if a

user has multiple addresses or email addresses, you can store all the addresses together

in a collection column.

Remember that a collection is only for data with a limit on the number of values.

That is, there’s a maximum size of an item in collection. A collection isn’t the way to go

when storing data that grows without limit, such as events that the database captures

and stores every second.

CQL enables you to create three collection types:

• Set: A group of elements with unique values. The database doesn’t

store the values in an ordered fashion, but cqlsh returns the elements

in a sorted manner, such as in an alphabetical order for text values.

• List: A list groups multiple values, but the values need not be unique.

In addition, a list stores elements in a specific order and you can use

an index value to insert and query a list’s values.

• Map: A map establishes a relationship between two items with the

help of a key-value pair. For each key, there’s a single value, and you

can’t have duplicates.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

241

Tip Cassandra reads a whole collection, thus adversely affecting performance.
Keep the collections way smaller than the maximum limit for each collection type.

You declare a collection column by specifying the collection type (set, list, or map),

followed by a type such as int or text, in angle brackets. Here are a couple of examples:

list<text>

list<int>

You can create an index on all three types of collection columns.

In the following sections, I show how to create the three collection types.

 Creating the Set Type

You use the set type when you have data in a column that has a many-to-one

relationship with data in another column. The set type helps in cases like this since you

don’t join tables in Cassandra.

For example, in the following example, an individual cyclist, represented by the id

column, can be a member of multiple teams over time:

cqlsh> CREATE TABLE cycling.cyclist_career_teams

 (id UUID PRIMARY KEY, lastname text, teams set<text);

You can query the teams that are part of the set in the following way:

cqlsh:cycling> SELECT lastname,teams

 ... FROM cycling.cyclist_career_teams;

 lastname | teams

-----------------+---

 ARMITSTEAD | {'AA Drink - Leontien.nl',

'Boels- Dolmans Cycling Team', 'Team Garmin - Cervelo'}

 VOS | {'Nederland bloeit', 'Rabobank Women Team',

'Rabobank- Liv Giant', 'Rabobank-Liv Woman Cycling Team'}

 BRAND | {'AA Drink - Leontien.nl', 'Leontien.nl',

'Rabobank- Liv Giant', 'Rabobank-Liv Woman Cycling Team'}

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

242

 VAN DER BREGGEN | {'Rabobank-Liv Woman Cycling Team',

'Sengers Ladies Cycling Team', 'Team

Flexpoint'}

(4 rows)

cqlsh:cycling>

The maximum size of an item in the set collection type is 65,535 bytes.

Note You can expire each element of a collection by specifying individual ttL
properties.

 Creating the List Type

Use the list data type when handling columns that have a many-to-many relationship

with another column. In the following example, the column events is a list that stores all

races during each month:

cqlsh> CREATE TABLE cycling.upcoming_calendar (year int,

 month int, events list<text>,

 PRIMARY KEY (year, month));

You can query the table for a list of events in a month and year.

cqlsh:cycling> SELECT * FROM cycling.upcoming_calendar WHERE year=2015 AND

month=06;

 year | month | events

------+-------+---

 2015 | 6 | ['Criterium du Dauphine', 'Tour de Suisse']

(1 rows)

cqlsh:cycling>

The maximum size of an item in a list collection type is 2GB.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

243

 Creating the Map Type

The following example shows how to create a table with a map type. The column teams

has the map type, with each team showing the year and the name of the team a cyclist

belonged to during that year.

cqlsh> CREATE TABLE cycling.cyclist_teams (id UUID PRIMARY KEY,

lastname text,

 firstname text, teams map<int,text>);

You can query the table as shown here:

cqlsh> SELECT lastname, firstname, teams

 FROM cycling.cyclist_teams;

This query shows you all the teams associated with a cyclist for a specific year.

 Specifying Frozen Values in Collections

You can denote a type as frozen to serialize multiple components into a single value. You

can’t update individual fields in a frozen type (Cassandra considers the values together

as a blob).

Here’s an example:

cqlsh> CREATE TABLE mykeyspace.users (

 id uuid PRIMARY KEY,

 name frozen <fullname>,

 direct_reports set<frozen <fullname>>, // a collection set

 addresses map<text, frozen <address>> // a collection map

 score set<frozen <set<int>>> // a set with a nested

frozen set

);

 Tuples
You can use the tuple data type to store multiple values together in a column. Here’s an

example that shows how to create a table with the tuple data type for one of the columns:

cqlsh> CREATE TABLE cycling.nation_rank (nation text PRIMARY KEY, info

 tuple<int,text,int>);

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

244

The following query retrieves data from the nation_rank table:

cqlsh> SELECT * FROM cycling.nation_rank;

 User-Defined Types
You can attach multiple named and typed data fields to the same column by defining

your own data types, called user-defined types. You can specify any valid data type,

including collections or even other UDTs, as fields for an UDT.

The following example shows how to create a simple UDT named cyclist.

fullname:

cqlsh> CREATE TYPE cycling.fullname (firstname text, lastname text);

You can then create the following table that uses the new type cycling.fullname:

cqlsh> CREATE TABLE cycling.race_winners

 (race_name text, race_position int, cyclist_name FROZEN<fullname>,

 PRIMARY KEY (race_name, race_position));

After inserting data into the table, you can run the following query:

cqlsh:cycling> SELECT * FROM cycling.race_winners

 WHERE race_name = 'National Championships South Africa WJ-

ITT (CN)';

 race_name | race_position

| cyclist_name

---+---------------+---------

 National Championships South Africa WJ-ITT (CN) | 1

| {firstname: 'Frances', lastname: 'DU TOUT'}

 National Championships South Africa WJ-ITT (CN) | 2

| {firstname: 'Lynette', lastname: 'BENSON'}

...

 (5 rows)

cqlsh:cycling>

Notice how the query makes use of the type full_name that you defined to show the

values of the firstname and the lastname columns for a cyclist.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

245

 User-Defined Functions and User-Defined Aggregates
When dealing with large data sets and clusters with hundreds of nodes, there’s a

dramatic difference between applying aggregations on the client side and pushing

huge computations to the server side. By letting the server handle the computations,

you’ll save network bandwidth, simplify the code on the client side, and reap additional

benefits.

In the following sections, I explain the essentials of user-defined functions (UDFs)

and user-defined aggregates (UDAs).

 User-Defined Functions

The first thing you need to know about an UDF is that its scope isn’t database-wide, as is

the case with functions and procedures in a database such as Oracle or MySQL. A user-

defined function has only a keyspace-wide scope.

 Things to Remember About UDFs

The following are the key things you need to know about UDFs.

• You can use a language such as Java, JavaScript, Groovy, and Scala to

code your UDF.

• You can treat null input in two ways:

• You can specify the CALLED ON NULL INPUT clause, which means

that Cassandra will always call the UDF.

• If you specify the RETURNS NULL ON NULL INPUT clause,

Cassandra skips execution of the UDF and returns a null instead

if any of the arguments are null.

• As with the input parameters, you must specify a valid type for the

return type, such as a primitive, collection, tuples, or CDT.

 Syntax of an UDF

The syntax for creating an UDF is as follows:

CREATE [OR REPLACE] FUNCTION [IF NOT EXISTS]

[keyspace.]functionName (param1 type1, param2 type2, ...)

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

246

CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT

RETURN returnType

LANGUAGE language

AS '

 // your source code

';

The OR REPLACE clause and the IF NOT EXISTS clause are mutually exclusive.

 An Example UDF

The following is an example that shows how to create and use an UDF. The UDF is

named maxof (currentvalue int, testvalue int). This function allows you to get

the maximum of two integers that you pass to it.

By default, UDFs are disabled. You must therefore first set enable_user_defined_

functions: true to enable in the cassandra.yaml file before trying the following:

cqlsh> CREATE FUNCTION maxof(currentvalue int, testvalue int)

 RETURNS NULL ON NULL INPUT

 RETURNS int

 LANGUAGE java

 AS 'return Math.max(currentvalue,testvalue);';

You can then create a test table and insert some data into it, following which you

can execute a query with your new UDF maxOf to get the maximum value between two

values, val1 and val2. Some input values are purposely specified as null. Here is the

example:

cqlsh> SELECT id,val1,val2,maxOf(val1,val2) FROM test WHERE id IN(1,2,3);

 id | val1 | val2 | udf.maxof(val1, val2)

-----+------+------+-----------------------

 1 | 100 | 200 | 200

 2 | 100 | null | null

 3 | null | 200 | null

Since the UDF specifies the RETURNS NULL ON NULL INPUT clause, Cassandra returns

a null whenever the input argument is null.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

247

 User-Defined Aggregate Functions
Cassandra enables you to create user-defined aggregate functions that you can apply to

data as part of a query result.

You create the aggregate function first and your query can include only the aggregate

function by itself, without any columns.

 Built-in Functions and Aggregates
Cassandra offers several handy built-in functions and aggregates you can use. Here’s a

listing:

• COUNT: The COUNT function gets you a count of the number of rows.

• SUM: The SUM function enables you to add all values for a specific

column.

• MIN/MAX: The MIN/MAX functions help you compute the minimum/

maximum values for a column.

• AVG: The AVG function computes the average of all values in a given

column.

 Summary
Understanding the proper uses of indexing in a Cassandra is tricky since it’s so different

from the way you use indexing in traditional relational databases.

Cassandra collections such as sets, maps, lists, and UDFs are highly useful and it’s

good to know how they work.

Chapter 6 IntroduCtIon to the Cassandra QuerY Language

249
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_7

CHAPTER 7

Cassandra on Docker,
Apache Spark,
and the Cassandra
Cluster Manager
Chapters 2 and 3 showed how to create a generic Cassandra cluster on multiple nodes.

Now that you know quite a bit about the architecture of Cassandra, as well as how to

configure a cluster, it’s time to learn about orchestrating a Cassandra cluster in various

environments.

Containers are all the rage now. This chapter first shows you how to create a

Cassandra cluster using Docker containers. I quickly explain what Docker containers are

and how to work with them. I then show you how to install and configure Cassandra on

Docker.

Following the Cassandra on Docker discussion, I show how to create a Cassandra

database using Docker-Compose and BDD (behavior-driven development).

The Cassandra Cluster Manager, contrary to what its name might indicate, is not

an internal Cassandra tool to manage a cluster. Rather, it’s a handy tool for setting up

a multi-node Cassandra cluster on a single server. While CCM is for development and

testing, it’s nice to know how to set up clusters with this tool.

Finally, I wrap up this chapter with a very brief introduction to the emerging

technology stack named SMACK (Apache Spark, Apache Mesos, Akka, Cassandra, and

Apache Kafka), a set of popular open source tools that is increasingly being used to

create distributed enterprise applications.

250

 Cassandra and Docker
In this section, I show how to run a Cassandra cluster on Docker containers. A container

is a lightweight, stand-alone, executable package of software that includes everything

necessary to run the software, such as the code, runtime, system tools, system libraries,

and configurations settings.

 Docker: A Quick Introduction
Docker is an application that makes it easy for you run applications within a container. A

container is like a virtual machine (VM) but is much more portable. Unlike a VM, which

runs in a hypervisor, it runs directly on the host operating system.

 Installing Docker

In this section, I show how to install Docker on an Ubuntu 16.04 server.

 1. Docker is available as part of the Ubuntu 16.04 installation.

However, since this may not be the latest version, download it

from the source, shown here:

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg

| sudo apt-key add -

OK

$

 2. Add the Docker repository to the APT source by doing the

following:

$ sudo add-apt-repository "deb [arch=amd64] https://

download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

$

 3. Update the package database with the new Docker packages you

just added.

$ sudo apt-get update

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

251

 4. Do the following to make sure that you’re installing Docker CE

(Community Edition) from the Docker repo, instead of the default

Ubuntu Repo:

$ apt-cache policy docker-ce

docker-ce:

 Installed: (none)

 Candidate: 17.06.0~ce-0~ubuntu

 Version table:

 17.06.0~ce-0~ubuntu 500

 500 https://download.docker.com/linux/ubuntu xenial/stable

amd64 Packages

...

$

The output verifies that the available Docker install files are for

Ubuntu- Xenial (16.04), so you’re good to go. Your version number

for docker-ce may be different from mine.

 5. At this point, you’re ready to install Docker.

$ sudo apt-get install -y docker-ce

Reading package lists... Done

Building dependency tree

Reading state information... Done

...

Processing triggers for ureadahead (0.100.0-19) ...

$

 Managing Docker

You can next check that Docker is running via the systemctl status docker command.

$ sudo systemctl status docker

● docker.service - Docker Application Container Engine
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor

preset: e

 Active: active (running) since Thu 2017-06-29 10:50:24 EDT; 5s ago

 Docs: https://docs.docker.com

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

252

 Main PID: 6598 (dockerd)

 CGroup: /system.slice/docker.service

 ├─6598 /usr/bin/dockerd -H fd://

 └─ 6603 docker-containerd -l unix:///var/run/docker/
libcontainerd/dock

...

$

The output indicates that the Docker service is running.

 Using the Docker Command Line Utility

You manager a Docker instance with the docker command line utility. Just type docker at

the command line to view all the available options, which are quite a few.

For example, you can view system-wide information about Docker by doing this:

$ sudo docker info

Containers: 6

 Running: 0

 Paused: 0

 Stopped: 6

...

Operating System: Ubuntu 16.04.2 LTS

OSType: linux

Architecture: x86_64

CPUs: 1

Total Memory: 7.796GiB

Name: ubuntu1

...

$

 Understanding Docker Images

All Dockers containers run from a docker image. By default, Docker pulls its images

from Docker Hub, a public Docker Registry maintained by the Docker company. Others,

including Linux distributions, also host their images on the Docker Hub.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

253

You can check if your Docker installation can access and download images from

Docker Hub by running the following command:

$ sudo docker run hello-world

Hello from Docker!

This message shows that your installation appears to be working correctly.

$

You can search for images on the Docker Hub with the docker search command. If

you want to look for all available Ubuntu images, type this:

$ sudo docker search ubuntu

You can then download the image you want by specifying the name of the image

with the docker pull command.

$ sudo docker pull ubuntu

You can view all the images you’ve downloaded to your server by doing this:

$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest 1815c82652c0 2 weeks ago 1.84kB

ubuntu latest d355ed3537e9 12 days ago 119MB

...

$

And finally, you can run a container using the images you’ve downloaded with the

docker run command.

$ sudo docker run -it ubuntu

samalapati@bd78ccf18941:/#

This will start a container running the Ubuntu OS. The i option stands for interactive

and the t option offers shell access into the container. Note that the command prompt

changes since you’re now inside the new Ubuntu container. The container id is

bd78ccf18941.

Now that you have the basics of Docker under your belt, it’s time to learn about how

you can run Cassandra containers on Docker.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

254

 Running a Cassandra Cluster on Docker
Let’s create a three-node Cassandra cluster on Docker. Start the first Cassandra instance

by having Docker pull the Cassandra 3.04 image from Docker Hub.

$ sudo docker run --name cassandra1 -m 4g -d cassandra:3.0.4

34842881b8d4b42a9cc6627405f6dd63a21cace23276091e869e8b708fb6ce4b

$

In this command,

• The name option enables you to specify the name for this instance.

• The -m option lets you specify the memory for this instance.

• The cassandra:3.0.4 clause tells Docker the version it should

download for the Cassandra image.

You next run the docker ps command to check if the Cassandra container instance

cassandra1 is running.

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

34842881b8d4 cassandra:3.0.4 "/docker-entrypoin..." 8 seconds

ago Up 7 seconds 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/

tcp cassandra1

#

You run the familiar nodetool status command to check the status of the

Cassandra node cassandra1.

$ nodetool status

nodetool: command not found

samalapati@ubuntu1:/tmp# sudo docker exec -i -t cassandra1 sh -c 'nodetool

status'

Datacenter: datacenter1

=======================

Status=Up/Down

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

255

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack

UN 172.17.0.2 102.52 KB 256 100.0% f217c613-3eb9- 445a-884a-

183e8d177927 rack1

root@ubuntu1:/tmp#

Now that the first Cassandra node is running, it’s time to create a cluster by creating

a second node, using the first node as the seed node. The second node and any other

nodes you create will gossip to this node and register themselves. To do this, you need

the IP of your first Cassandra node, cassandra1. You can get it by doing this:

$ sudo docker inspect -f{{.NetworkSettings.IPAddress}}' cassandra1

172.17.0.3

$

The command reveals that the IP address of the first node is 172.17.0.3. Now

you have everything you need to create the second Casandra node, which you name

cassandra2.

docker run --name cassandra2 -m 2g -d -e CASSANDRA_SEEDS="172.17.0.3"

cassandra:3.0.4

30ed76a87b3c0f2f63075559817a2f125fc250731c75416639e446aa9f0b7774

#

You finally add the third node to the Cassandra cluster, named cassandra3.

docker run --name cassandra3 -m 2g -d -e CASSANDRA_SEEDS="172.17.0.3"

cassandra:3.0.4

7528dc5679b02a59bb13f30ce0dc8c7617f0c268fd52256d8e2d9ea5faf0586a

#

The CASSANDRA_SEEDS environment variable is a comma-separated list of IP

addresses that the gossip protocol uses to bootstrap the new Cassandra nodes you create

when they join the cluster.

Check the Docker processes to ensure that all three Cassandra containers are running.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

256

sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

7528dc5679b0 cassandra:3.0.4 "/docker-entrypoin..." 5 seconds

ago Up 4 seconds 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/tcp cass3

30ed76a87b3c cassandra:3.0.4 "/docker-entrypoin..." 5 minutes ago

Up 5 minutes 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/tcp cass2

34842881b8d4 cassandra:3.0.4 "/docker-entrypoin..." 8 minutes ago

Up 8 minutes 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/tcp cassandra1

#

A final nodetool status command shows that all three nodes of the Cassandra

cluster are running.

sudo docker exec -i -t cassandra1 sh -c 'nodetool status'

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective) Host ID Rack

UN 172.17.0.3 101.89 KB 256 67.3% 968690b8-8dc4-

4242-943f-b62d37e44084 rack1

UN 172.17.0.2 107.45 KB 256 68.7% f217c613-3eb9-

445a-884a-183e8d177927 rack1

UN 172.17.0.4 15.42 KB 256 64.0% 820f24f7-d931-

4a9f-87e3-8abd72d8a9bb rack1

Note that you can’t run the Cassandra utilities nodetool, cqlsh, or any other such

commands in the main Linux server. Since Cassandra is running inside the Docker

container, you can run these commands only in Docker. You must use the docker exec

command to run commands inside a Docker container.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

257

 Running cqlsh in the Docker-Based Cluster

To run cqlsh from one of the three nodes in the Docker-based cluster, you need to “bash”

into one of the nodes, say the node cassandra1, as shown here:

$ sudo docker exec -it cassandra1 /bin/bash

samalapati@34842881b8d4:/# cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.0.4 | CQL spec 3.4.0 | Native protocol v4]

Use HELP for help.

cqlsh>

The docker exec command enables you to run commands inside a Docker

container. The previous command provides you a bash shell within the container

cassandra1.

Once you log into the node through the bash shell, run the cqlsh command as usual

to get to the cqlsh prompt.

Alternatively, you can specify the Docker link option to connect to a Docker

instance and log into cqlsh with the help of the exec cqlsh <IPAddress> option.

docker run -it --link cassandra1 --rm cassandra:3.0.4 \

> sh -c 'exec cqlsh 172.17.0.2'

Connected to Test Cluster at 172.17.0.2:9042.

[cqlsh 5.0.1 | Cassandra 3.0.4 | CQL spec 3.4.0 | Native protocol v4]

Use HELP for help.

cqlsh>

 Setting Cassandra Environment Variables for Docker
You can pass one of several environment variables that are available to you when you

start a Cassandra image on Docker. More specifically, you pass these environment

variables on the command line when you issue the docker run command. Each of these

environment variables that you pass at the command line sets the value of a related

variable in the cassandra.yaml file of the node.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

258

You learned how to specify the CASSANDRA_SEEDS environment variable in the

previous section. In addition to that variable, there are several others. Here are the most

 useful:

• CASSANDRA_LISTEN_ADDRESS: Determines the IP address to listen for

from incoming connections. If you choose the default value of auto,

it sets the listen_address option in the cassandra.yaml file to the IP

address of the container.

• CASSANDRA_BROADCAST_ADDRESS: This variable specifies the IP address

the node advertises to the rest of the nodes in the cluster. This will set

the value of the broadcast_address and the broadcast_rpc_address

properties in the cassandra.yaml file.

• CASSANDRA_ENDPOINT_SNITCH: This property enables you to set the

snitch implementation via setting the endpoint_snitch property in

the cassandra.yaml file.

• CASSANDRA_NUM_TOKENS: This variable sets the number of tokens for

this node by setting the num_tokens property.

• CASSANDRA_DC: Sets the name of the datacenter for this node by

setting the value of the dc property. If you omit this variable, the

name of the data center defaults to datacenter1.

• CASSANDRA_RACK: This variable sets the name of the rack by setting the

value of the rack property. If you omit it, as I did here, the variable

defaults to rack1.

 Storing Cassandra Data on Docker

There’s more than one way to store data used by Cassandra that runs in a Docker

container. Two of the options are the following:

• Using Docker volumes: By default, Docker manages the data storage

by writing the Cassandra data files to the host’s file system using

internal volume management. While the containers can easily view

and access this data, the same isn’t true for tools and applications

that run on Docker, but directly on the host server. They may not be

able to easily locate Cassandra’s data files. Also, when you shut down

the container, or it dies, or if the Docker host dies, the data is lost.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

259

• Creating a data directory on the host server: You can also mount a

host directory as a data volume. You mount the data directory on the

host to a directory visible from inside a container. This way, tools and

applications can easily access the files in the host system. You just

need to make sure to correctly set up the directory permissions and

any ACLs (access control lists, which control access to directories),

etc. on the host system so users can access those directories.

Here's an example that shows how to mount a volume with the Docker host’s file

system:

$ docker run –name my_container -v /host/dir://container/dir cassandra

When you do this, everything that the container process writes to the /container/

dir directory is written directly to the /host/dir directory on the host file system.

Note CassandraCloud is a tool from Cloudurable that simplifies the configuration
of Cassandra for various environments, including, eC2, docker, and VirtualBox.
For details, please go to https://cloudurable.github.io/cassandra-
cloud/.

 Creating a Cassandra Cluster Using Docker-Compose
and Behavior-Driven Development
You can quickly set development and test environments for Cassandra by using

behavior-driven development. BDD is in many ways similar to test-driven development

(TDD), but whereas the latter focuses on unit testing and integration testing, TDD

focuses on the interaction between a system and its users.

When you use BDD, you describe what should happen in various scenarios. For

example, for a web site, you describe the workflow in the form of user clicks and user

entry of data into forms. For a system administrator, the workflow is comprised of the

commands entered by the system administrator when he or she interacts with systems

and programs.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

https://cloudurable.github.io/cassandra-cloud/
https://cloudurable.github.io/cassandra-cloud/

260

In this section, I show how to use BDD and a tool called Cucumber along with

Docker Compose to develop new Docker containers running Cassandra. Here’s how

BDD and Docker Compose help you:

• BDD helps develop the new Docker containers in a test-driven

fashion.

• Docker Compose helps you orchestrate Docker containers.

Together, BDD (plus Cucumber) and Docker-Compose make for an exciting way to

spin up new clusters. Although you can do similar things with Vagrant, a tool that makes

it easy to spin up virtual machines for development, the method I describe here is far

easier and more fun.

 Getting the Prerequisites Out of the Way

The three things you need to have to set up a Cassandra cluster using BDD are the

following:

• Docker: As explained, Docker is a container platform that helps you

create and manage containers.

• Docker Compose: This is a tool that helps you define and run multi-

container Docker applications. You use a Compose file to configure

the services your application requires. Following this you can create

and start all the services with a single command, as shown here:

$ docker-compose up -d

• Cucumber: Cucumber is a testing tool that helps test other software

by running automated acceptance tests written in a BDD style.

Installing Docker

You need Docker, and I assume you already have it, if you’ve followed my earlier

discussion on running Docker-based Cassandra clusters. If not, you can download and

install Docker.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

261

Installing Docker-Compose

You can install Docker-Compose by doing the following (on an Ubuntu system):

curl -L https://github.com/docker/compose/releases/download/1.14.0/

docker-compose-'uname -s'-'uname -m' > /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose

Test the installation by invoking docker-compose.

docker-compose

Define and run multi-container applications with Docker.

Usage:

 docker-compose [-f <arg>...] [options] [COMMAND] [ARGS...]

 docker-compose -h|--help

#

Installing Cucumber

I’m using an Ubuntu system, so I install Cucumber by doing the following:

$ gem install cucumber

Fetching: gherkin-4.1.3.gem (100%)

...

Done installing documentation for gherkin, cucumber-core, cucumber-wire,

cucumber after 4 seconds

4 gems installed

$

It’s a good idea to install an additional tool called bundler. Bundler offers a consistent

environment for Ruby-based projects (such as Cucumber, which we’re going to use). It

does this by tracing and installing all the gems that you need with the correct versions. In

other words, bundler offers a way out of dependency hell.

$ gem install bundler

Successfully installed bundler-1.15.1

1 gem installed

#

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

262

Now that you have Docker, Docker-Compose, and Cucumber installed, you’re ready

to spin up a Cassandra cluster using the BDD approach. But first, a bit about user stories

and BDD.

 User Stories

BDD uses stories to express what you want to accomplish. It uses plain language-based

Gherkin syntax, which is quite similar to the way we naturally speak to describe what you

want to do.

You describe your main goals as features, as shown here, where you want to deploy a

new Cassandra cluster:

Feature: Cassandra Cluster

 As a Big Data Administrator

 I want to deploy a Cassandra cluster

 So I can store and process massive quantities of data

Once you describe your high-level goals, you describe specific scenarios that make

the goal happen. In this case, you want to spin up a Cassandra database and test its

version.

Scenario: Launch a CQL Shell

 Given the services are running

 And I run "cqlsh -e 'show version'" on "cassandra"

 Then I should see "CQL spec 3.4.2"

 And I should see "Cassandra 3.7"

 Getting Ready to Run the BDD Tests

At this point, instead of doing everything from scratch, you can download the tests

and the steps for your work from GitHub. On GitHub, coshxlabs (www.coshx.com) has

a repository (https://github.com/coshx/docker-bdd) that demonstrates how to

use BDD and Cucumber to orchestrate Docker containers to help you quickly spin up

development environments.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

http://www.coshx.com/
https://github.com/coshx/docker-bdd

263

 1. You can check out Coshxlabs’s code from GitHub.

$ git clone https://github.com/coshx/docker-bdd

$ git reset --hard e9f807c

 2. Move to the directory you cloned from GitHub, which is named

docker- bdd. This directory contains all the artifacts that you need

to generate the Docker containers that’ll run Cassandra.

cd docker-bdd

ls

circle.yml docker-compose.yml example Gemfile

README.md

deploy.sh dockerfiles features Gemfile.lock

#

 3. Go to the features directory.

cd features

ls

android_app.feature app.feature db.feature step_

definitions support web.feature

 4. Create a file named cassandra.feature and add the Cassandra-

related feature and scenario described in the previous section.

Save the file. Here’s what the contents of cassandra.feature file

should look like:

cat cassandnra.feature

Feature: Cassandra Cluster

 As a Big Data Administrator

 I want to deploy a cassandra cluster

 So I can store and query lots of data

Scenario: Launch a CQL Shell

 Given the services are running

 And I run "cqlsh cassandra -e 'show version'" on

"cassandra-dev"

 Then I should see "CQL spec"

 And I should see "Cassandra 3.7"

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

264

 5. Change the working directory to the docker-bdd directory, and

edit the docker-compose.yml file so it contains the following

lines (the docker-compose.yml file contains the names of the

images that Docker should download and install).

cassandra:

 image: cassandra

cassandra-dev:

 image: cassandra

 links:

 - cassandra

This snippet of code creates two separate Docker containers,

both using the same Docker image (“cassandra”). You need

two containers: one for running the Cassandra instance in the

background and the other for running cqlsh. Remember that your

scenario includes the following:

"cqlsh -e 'show version'" on "cassandra"

 Running the BDD Tests

You’re all set now to run the BDD tests with Cucumber. Here’s how you do this:

cucumber features/cassandra.feature

Feature: Cassandra Cluster

 As a Big Data Administrator

 I want to deploy a cassandra cluster

 So I can store and query lots of data

cassandra uses an image, skipping

cassandra-dev uses an image, skipping

Pulling cassandra (cassandra:latest)...

latest: Pulling from library/cassandra

ockerbdd_cassandra_1 is up-to-date

dockerbdd_cassandra-dev_1 is up-to-date

 Scenario: Launch a CQL Shell

features/cassandra.feature:6

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

265

 Given the services are running

features/step_definitions/docker_compose_steps.rb:3

 Running: docker-compose build && (docker-compose up -d || true)

 Process exited successfully

 [cqlsh 5.0.1 | Cassandra 3.11.0 | CQL spec 3.4.4 | Native protocol v4]

 And I run "cqlsh cassandra -e 'show version'" on "cassandra-dev"

features/step_definitions/docker_compose_steps.rb:14

 Running: docker-compose run cassandra-dev bash -i -c "sleep 1;

cqlsh cassandra -e 'show version'"

 Process exited successfully

 Then I should see "CQL spec"

features/cassandra.feature:9

 And I should see "Cassandra 3.7"

features/cassandra.feature:10

1 scenario (1 undefined)

4 steps (2 undefined, 2 passed)

0m8.169s

#

Docker-Compose creates the single-node Cassandra cluster for you and BDD runs

the tests you specified on this cluster.

The first time you run the Cucumber command shown here, based on the scenario

that you specified ("Given the services are running") Docker-Compose builds all

the Docker images that you’ve specified in the docker-compose.yml file. On subsequent

runs, docker-compose is aware that both the cassandra and the cassandra-dev instances

use an available image, so it doesn’t build the images. Instead, it just starts up the two

Cassandra instances.

You can verify that the two Docker containers are running with the docker ps command.

$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

b005b61706ca cassandra "/docker-entrypoint.s" 44 minutes ago Up 40

minutes 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/tcpdockerbdd_cassandra-dev_1

ed526bd724c7 cassandra "/docker-entrypoint.s" 44 minutes

ago Up 40 minutes 7000-7001/tcp, 7199/tcp, 9042/tcp, 9160/tcp

dockerbdd_cassandra_1

$

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

266

And you can bash into a container (dockerbdd_cassandra_dev1) as shown here:

$ sudo docker exec -it b005b61706ca bash

/# hostname

b005b61706ca

/#

And finally, you can use the CQL shell in the new Docker container as shown here:

$ cqlsh

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.11.0 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

cqlsh>

You can get more details about BDD-driven Cassandra clusters, including details

about creating a multi-node Cassandra cluster, from an article written by Coshxlab’s Ben

Taitelbaum, available at the following location:

www.coshx.com/blog/2016/08/01/cassandra-cluster-in-docker-using-bdd/

 Using the Cassandra Cluster Manager to Spin
Up Clusters
The Cassandra Cluster Manager (CCM) is a script library that helps you create and run a

Cassandra cluster on a local server. CCM isn’t for production usage or for stress testing a

cluster; it’s a way to test and learn how to run a Cassandra cluster. CCM is an alternative

to both Docker and Vagrant as a way to quickly spin up a Cassandra cluster.

You use CCM in the following situations:

• When you want to run Cassandra without bothering to install it

• To test failure scenarios

• When developing with multiple versions without worrying about the

hardware, since you can run everything on the local node

• For integration testing

• For testing upgrades

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

www.coshx.com/blog/2016/08/01/cassandra-cluster-in-docker-using-bdd/

267

What’s amazing about CCM is how quickly it enables you to get a new cluster up and

running. You can spin up a multi-node (local) cluster in under a minute.

 Installing CCM
Installing CCM is easy: just make sure you have Python (at least the 2.7 version) and ant

installed before you commence the installation of CCM.

 1. To install CCM, you need to get the goodies from GitHub by

running the following command:

root@ubuntu2:/home/samalapati# git clone https://github.

com/pcmanus/ccm.git

Cloning into 'ccm'...

remote: Counting objects: 4372, done.

remote: Compressing objects: 100% (15/15), done.

remote: Total 4372 (delta 8), reused 14 (delta 6),

pack-reused 4351

Receiving objects: 100% (4372/4372), 1.80 MiB | 0 bytes/s,

done.

Resolving deltas: 100% (3040/3040), done.

Checking connectivity... done.

root@ubuntu2:/home/samalapati# ls

 2. Once you download the scripts and other files from GitHub, run

the CCM installation script.

$ sudo ./setup.py install

The installation files are under the ccm directory.

$ ls

ccm Documents examples.desktop Pictures Templates

Desktop Downloads Music Public Videos

$ cc ccm

$ ls

ccm ccmlib license.txt MANIFEST.in misc README.md

setup.py ssl tests

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

268

$ sudo ./setup.py install

running install

running build

running build_py

creating build

...

creating build/scripts-2.7

...

running install_egg_info

$

You can check out the various things you can do with CCM by typing ccm, ccm -help,

or ccm <command> -h. Of course, the first and most important thing you can do is to

create a cluster, so I turn to that task next.

 Creating a Cassandra Cluster with CCM
After you install CCM as shown in the previous section, it’s time to create a Cassandra

cluster. Let’s create a three-node cluster with the Cassandra 3.1 release. By default, CCM

creates single-token nodes, so tell it to use vnodes.

CCM downloads all the source files it needs and compiles them for you.

$ sudo ccm create -n 3 -v 3.1 testcluster --vnodes

18:55:53,875 ccm INFO Downloading http://archive.apache.org/dist/

cassandra/3.1/apache-cassandra-3.1-bin.tar.gz to /tmp/ccm-tlSojg.tar.gz

(29.376MB)

 306318:55:59,731 ccm INFO Extracting /tmp/ccm-tlSojg.tar.gz as

version 3.1 ...

 30802666 [100.00%]Current cluster is now: testclusster

$

The command ccm list shows all the Cassandra clusters on this node that are

managed by CCM.

$ sudo ccm list

 *testcluster

$

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

269

 Checking the Status of the Cluster

You can check the status of the new three-node cluster thus (note that you can’t use the

nodetool commands in a CCM environment!):

$ sudo ccm status

Cluster: 'testcluster'

node1: DOWN (Not initialized)

node3: DOWN (Not initialized)

node2: DOWN (Not initialized)

$

All three nodes in the new cluster are DOWN since you created the cluster but

haven’t started it up.

 Starting the Cluster

You execute the ccm start command to start a CCM cluster. In this example, I start the

cluster up and check its status with the ccm status command.

$ sudo ccm start

$ sudo ccm status

Cluster: 'testcluster'

node1: UP

node3: UP

node2: UP

$

The command ccm node1 status provides even more details about the status of the

cluster.

$ sudo node1 status

Datacenter: datacenter1

=======================

Status=Up/Down

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

270

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns Host ID Rack

UN 127.0.0.1 86.51 KB 256 ? 659b06e0-a4d9-49f5-b923-

0bab9833daa3 rack1

UN 127.0.0.2 86.47 KB 256 ? 4035e764-a152-40e6-ac9e-

f9ddf1e603b4 rack1

UN 127.0.0.3 92.34 KB 256 ? 40182f69-a81f-4a23-90ae-

e9e1f0929c5e rack1

Note: Non-system keyspaces don't have the same replication settings,

effective ownership information is meaningless

$

You can stop the cluster nodes by running the command ccm stop.

 Working with CCM
In this section, I offer a glimpse into CCM by showing how to run a few important

commands, the first of which allows you access to the CQL shell.

 Using cqlsh with CCM

To work with CQL, run the ccm command with the cqlsh option, making sure you specify

a node.

$ sudo ccm node1 cqlsh

Connected to testcluster2 at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.11.0 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

cqlsh> cqlsh

 Get SSTable Information

The ccm node1 getsstables command shows all SSTables on this node.

$ sudo ccm node1 getsstables

/samalapati/.ccm/testcluster/node1/data0/system_schema/triggers- 4df70b666b0

5325195a132b54005fd48/ma-1-big-Data.db

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

271

/samalapati/.ccm/testcluster/node1/data0/system_schema/types- 5a8b1ca866023f

77a0459273d308917a/ma-1-big-Data.db

...

$

 Running Apache Spark with Cassandra
Apache Spark is an immensely popular, fast general engine for large-scale data processing.

Spark runs on Apache Hadoop, Apache Mesos, in the cloud, or standalone. Spark can access

data sources such as Hadoop’s HDFS, Hbase, AWS’s S3, and of course, Apache Cassandra.

In this section, I show how to install Apache Spark and work with a Cassandra

database from a Spark cluster through DataStax’s Spark-Casandra connector.

 Installing the Prerequisites
To install Apache Spark, there are a couple of prerequisites, which I review in this

section. Make sure that you either already have the following on the server where you’re

going to run the Spark cluster or install them if they’re missing.

 1. Make sure you have at least Java 1.8.x installed.

java -version

java version "1.8.0_131"

Java(TM) SE Runtime Environment (build 1.8.0_131-b11)

Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11,

mixed mode)

#

 2. You’ll also need Scala.

scala -version

Scala code runner version 2.11.7 -- Copyright 2002-2013,

LAMP/EPFL

#

You can install Scala by doing the following:

wget www.scala-lang.org/files/archive/scala-2.11.8.deb

sudo dpkg -i scala-2.11.8.deb

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

272

 3. Finally, you need SBT (Simple Build Tool) to compile the Scala

programs.

echo "deb https://dl.bintray.com/sbt/debian /" | sudo

tee -a /etc/apt/sources.list.d/sbt.list

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.

com:80 --recv 2EE0EA64E40A89B84B2DF73499E82A75642AC823

sudo apt-get update

sudo apt-get install sbt

Check the version of SBT:

sbt sbt-version

...

 [info] 0.13.15

#

It’s very important that you have the correct SBT version; incompatible versions are

the source of a lot of headaches when working with Spark and Cassandra.

Now you’re ready to install Apache Spark.

 Installing Apache Spark
Installing and getting going with Apache Spark for your purpose here, which is to learn

how to connect to a Cassandra cluster from a Spark cluster, is very straightforward.

Follow these steps to install Spark.

 1. $ wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-

bin-hadoop2.7.tgz

 2. $ tar zxf spark-2.0.2-bin-hadoop2.7.tgz

 3. $ sudo mv spark-2.0.2-bin-hadoop2.7/usr/local/spark/

 4. Once you’ve installed the Spark binaries, set a home directory for

Spark.

export $SPARK_HOME= /usr/local/spark

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz
http://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.7.tgz

273

 5. Export the PATH variable.

export PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/

bin:/sbin:/bin:/usr/games:/usr/local/games:$SPARK_HOME/bin"

 Configuring the Spark Cluster
You can run a Spark cluster by managing it with the YARN cluster manager (Hadoop),

Apache Mesos, or a Spark standalone cluster. Let’s try the last alternative so you can run

Spark alongside the Cassandra cluster.

Spark consists of a single master node and multiple worker nodes. For simplicity,

let’s run both the master and worker services on the same node, but it’s easy to configure

the workers to run on different nodes.

The main configuration file is the spark-env file, located in the /etc/spark/conf

directory. In this file, you specify the options for the daemons used in the standalone

deployment mode for Spark. That is, you specify the options for the master and the

worker nodes.

You can leave all the configuration attributes such as SPARK_WORKER_CORES and

SPARK_WORKER_MEMORY at their default values. Just make sure that you specify the details

for the node where the Spark master instance will run.

export SPARK_MASTER_HOST=192.168.159.129

This way, the master will run on the server with the IP 192.168.159.129. You must add this

property to the /etc/spark/conf/spark-env file on each of the nodes in the cluster. Since

you’re running both the master and the worker instances on the same node, you’re good.

In a production cluster, you can configure Spark to run as a service, but here I’m

concerned only with demonstrating how to connect to Cassandra from Spark, so we won’t

bother with creating a Spark service. Instead, let’s manually start and stop the Spark cluster.

 Starting Up the Spark Cluster
Since the Spark cluster has just one worker instance running along with the master

instance on the same node, here’s what you need to do to start up the Spark cluster.

 1. Move to the sbin directory of Spark, which has the start/stop

scripts for the cluster.

cd /usr/local/spark/spark-2.0.2-bin-hadoop2.7/sbin

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

274

 2. Start the Spark master instance.

./start-master.sh

starting org.apache.spark.deploy.master.Master, logging

to /usr/local/spark/spark-2.0.2-bin-hadoop2.7/logs/spark-

root-org.apache.spark.deploy.master.Master-1-ubuntu.out

#

 3. Start the single worker instance.

./start-slave.sh spark://ubuntu:7077

starting org.apache.spark.deploy.worker.Worker, logging to /usr/

local/spark/spark-2.0.2-bin-hadoop2.7/logs/spark-root-org.apache.

spark.deploy.worker.Worker-1-ubuntu.out

#

 4. Make sure that the master and worker instances are up and

running.

ps -ef|grep spark

root 14941 2008 0 10:37 pts/1 00:00:04 /usr/

lib/jvm/java-8-oracle/jre/bin/java -cp /usr/local/spark/

spark-2.0.2-bin-hadoop2.7/conf/:/usr/local/spark/spark-

2.0.2-bin-hadoop2.7/jars/* -Xmx1g org.apache.spark.

deploy.master.Master --host ubuntu --port 7077 --webui-

port 8080

root 15073 2008 1 10:39 pts/1 00:00:04 /

usr/lib/jvm/java-8-oracle/jre/bin/java -cp /usr/local/

spark/spark-2.0.2-bin-hadoop2.7/conf/:/usr/local/spark/

spark-2.0.2-bin-hadoop2.7/jars/* -Xmx1g org.apache.

spark.deploy.worker.Worker --webui-port 8081 spark://

ubuntu:7077

#

Everything looks right thus far, and the Spark cluster is up and running. In the next

section, I show how to connect to a Cassandra database from the Spark cluster.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

275

 Connecting to Cassandra from a Spark Cluster
One way to access your Cassandra tables in Spark is to transform them into Spark RDDs

(Resilient Distributed Dataset). You can view a Cassandra’s table data as a Spark RDD,

and you can write a Spark RDD to a Cassandra table.

You can access Cassandra from Spark in several ways. The following projects provide

the libraries to enable you to read and write to Cassandra tables from a Spark program:

• https://github.com/datastax/spark-cassandra-connector

• http://tuplejump.github.io/calliope/pyspark.html

• https://github.com/TargetHolding/pyspark-cassandra

Let’s use the first of these projects, which is the spark-cassandra-connector.

The spark-cassandra-connector (DataStax Cassandra connector), a Scala library

offered by DataStax, makes it possible to work with Spark and Cassandra together. You

can get the latest version of this connector from https://github.com/datastax/spark-

cassandra- connector.

When you write code to access Cassandra from Spark, your code, along with the

spark-Cassandra-connector and all the necessary dependencies, are packaged and sent

to the Spark cluster’s nodes.

You submit jobs to a Spark cluster through the spark-submit interface. When you

do this, you can include a fat jar at the command line to include the spark-cassandra

connector.

The example here will show how to perform ad hoc work from a Spark cluster. So use

spark-shell instead of spark-submit to interact with Spark (and Cassandra).

In the following example, you start spark-shell and invoke the spark-cassandra-

connector so you can communicate with Cassandra from the Spark cluster. The

– packages option enables you to specify the spark-cassandra-connector. This option

downloads the connector and its dependencies from the Spark packages.

Note that you need to run the spark-shell command from the $SPARK_HOME/bin

directory and not from the $SPARK_HOME/sbin directory, from where you start the Spark

instances.

bin# ./spark-shell --conf spark.cassandra.connection.host=192.168.159.129

--packages datastax:spark-cassandra-connector:2.0.0-M2-s_2.11

...

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

https://github.com/datastax/spark-cassandra-connector
http://tuplejump.github.io/calliope/pyspark.html
https://github.com/TargetHolding/pyspark-cassandra
https://github.com/datastax/spark-cassandra-connector
https://github.com/datastax/spark-cassandra-connector

276

 org.scala-lang#scala-reflect;2.11.8 from central in [default]

 | | modules || artifacts |

 | conf | number| search|dwnlded|evicted|| number|dwnlded|

 | default | 7 | 1 | 1 | 0 || 7 | 0 |

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties

Setting default log level to "WARN".Spark context Web UI available at

http://192.168.159.129:4040

Spark context available as 'sc' (master = local[*], app id =

local- 1499634822206).

Spark session available as 'spark'.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ '/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 2.0.2

 /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java

1.8.0_131)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

You can use either Scala or Python (or Java) to write Spark code. In this case, you

chose Scala by executing the spark-shell command. To code in Python, run the

pyspark command instead, as shown here:

root@ubuntu:/usr/local/spark/spark-2.0.2-bin-hadoop2.7/bin# ./pyspark \

> --master spark://ubuntu:7077 \

> --packages datastax:spark-cassandra-connector:2.0.0-M2-s_2.11 \

> --conf spark.cassandra.connection.host=ubuntu

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

...

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

277

Welcome to

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ '/ __/ '_/

 /__ / .__/_,_/_/ /_/_\ version 2.0.2

 /_/

Using Python version 2.7.12 (default, Nov 19 2016 06:48:10)

SparkSession available as 'spark'.

>>> posts = spark.read.format("org.apache.spark.sql.cassandra").

options(table="posts", keyspace="posts_db").load()

 Working with Cassandra from Spark
Before you can run commands to access a Cassandra database, you must first import the

Spark connector namespace, as shown here:

scala> import com.datastax.spark.connector._

import com.datastax.spark.connector._

scala>

Let’s work with the cyclist_name table from the cyclist keyspace. The first thing to do

is to create a Spark RDD for this table’s data.

scala> val rdd1 = sc.cassandraTable("cycling", "cyclist_name")

rdd: com.datastax.spark.connector.rdd.CassandraTableScanRDD[com.datastax.

spark.connector.CassandraRow] = CassandraTableScanRDD[2] at RDD at

CassandraRDD.scala:18

scala>

In the command, sc stands for Spark Context. Spark automatically creates a Spark

Context named sc when you invoke spark-shell. Spark Context is the main entry point

for all of Spark’s functionality, and you must use it in the way I showed you here.

Spark Context enables you to connect to a spark cluster, and you can use it create

Spark RDDs and dataframes, datasets, etc. in a Spark cluster. In a way, Spark Context

is the Spark cluster’s coordinator (the driver program). The SparkContext object

coordinates the independent sets of processes in a cluster that constitute a Spark

application. Spark Context connects to the cluster manager, which could be Mesos,

YARN, or a standalone cluster manager (as mentioned earlier, I’m using the Spark

standalone cluster).

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

278

Next, let’s test the Spark-cluster-to-Cassandra-database connection by running

the following code, which uses the function first to get the first row in the table

CYCLIST_NAME:

scala> println(rdd.first)

CassandraRow{id: e7ae5cf3-d358-4d99-b900-85902fda9bb0, firstname: Alex,

lastname: FRAME}

scala>

The following command uses the foreach construct to print all rows in the table

CYCLIST_NAME:

scala> rdd.foreach(println)

CassandraRow{id: e7ae5cf3-d358-4d99-b900-85902fda9bb0, firstname: Alex,

lastname: FRAME}

CassandraRow{id: 5b6962dd-3f90-4c93-8f61-eabfa4a803e2, firstname: Marianne,

lastname: VOS}

CassandraRow{id: e7cd5752-bc0d-4157-a80f-7523add8dbcd, firstname: Anna,

lastname: VAN DER BREGGEN}

scala>

Now that you’ve successfully tested that you can retrieve data from a Cassandra

table, let’s insert some data into a Cassandra table from Spark. You first create an RDD

named collection.

scala> val collection = sc.parallelize(Seq(("cat", 30), ("fox", 40)))

collection: org.apache.spark.rdd.RDD[(String, Int)] =

ParallelCollectionRDD[4] at parallelize at <console>:27

scala>

Following this, you execute Spark’s saveToCassandra function to insert two new rows

into the table kv2 in the keyspace test.

scala> collection.saveToCassandra("test", "kv", SomeColumns("key", "value"))

scala>

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

279

You confirm that the two rows have been inserted into the table test.kv by querying

that table.

cqlsh> select * from test.kv;

 key | value

--------+-------

 cat | 30

 fox | 40

...

cqlsh>

Voila! Thanks to the spark-cassandra-connector, you can now work with Cassandra

table data from within a Spark cluster.

You can do a lot with the Cassandra Spark integration. You can combine the

computing power of Spark with the storage processing capabilities of Cassandra to do

cool things. However, all that is the domain of a different book, so we move on.

 Cassandra and the SMACK Stack: A Growing Trend
While big data projects initially started off with a heavy orientation towards batch

processing, current trends are towards agile systems that process streaming data to

support analytic systems. Organizations are increasingly focusing on real-time or near

real-time use cases such as recommendation engines and fraud detection.

SMACK (a system that uses the open source technologies Apache Spark, Apache

Mesos, Akka, Apache Cassandra, and Apache Kafka), or variations of such open

source technologies, are increasingly becoming crucial players in the analysis and

mining of streaming data. Technologies such as SMACK are becoming the platform for

constructing applications that make use of “live”, streaming data so an organization can

effectively extract meaningful information from streaming data sets.

This book is dedicated to an exposition of the concepts and techniques for a

Cassandra administrator, and as such, I can’t go into the details of all the components

of the SMACK stack. However, I’d like to introduce you to this crucial set of technologies

since you’ll likely to make its acquaintance eventually if you’re working with Cassandra.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

280

Here’s what the five components of a SMACK stack do:

• Apache Spark (the processing component): Spark is a processing

engine for distributed, large-scale data sets and is especially suitable

for machine learning algorithms. You use the same interface for SQL

queries, machine learning, and stream data processing.

• Apache Mesos (the container component): Mesos is a cluster resource

management system that offers resource isolation and sharing

to distributed applications. Mesos uses a twin-level scheduling

mechanism wherein it offers resources to frameworks, which are

applications that run on top of Mesos. While Mesos determines the

resources that each framework gets, the frameworks determine the

resources they accept and which applications they execute on the

resources allocated to them.

• Akka (provides the model): Akka is a toolkit and runtime for building

highly concurrent and resilient message-driven applications. An

“actor” is a universal primitive of concurrent computation that

responds to messages it receives. In response to messages, actors can

make local decisions, create other actors, send more messages, and

so on.

• Apache Cassandra: By now, you should know what Cassandra is and

what it’s good for!

• Apache Kafka (the broker): Kafka is a popular high-volume, low-

latency messaging system for handling real-time data feeds. Kafka

partitions the data streams and spreads them over a cluster, which

also allows for multiple coordinated “consumers” to consume the

data, which is generated by “producers.”

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

281

 Summary
This chapter is about showing some interesting ways in which you can set up either test

or production environments using different techniques. Docker containers are popular

and you can run production Cassandra clusters on Docker. When running a production

cluster on Docker, you need to deal with storage and networking strategies, which I

haven’t discussed here. Docker’s documentation is quite good, and you may want to use

it to learn more about these and other Docker container topics.

Apache Spark is becoming increasingly popular as a fast processing framework,

and I showed how to connect to a Cassandra database from Spark and perform DML

operations. Of course, this is only a beginning, and if you wish to delve deeper into

Apache Spark, the source documentation is pretty good.

CCM is a cool tool because it helps you spin up clusters in just a few short minutes,

without having to learn anything about Cassandra installation procedures and without

spending time setting up any prerequisites for running a simple test cluster for

exploratory purposes.

Chapter 7 Cassandra on doCker, apaChe spark, and the Cassandra Cluster Manager

283
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_8

CHAPTER 8

Backup, Recovery,
and Moving Data
Backing up and restoring data are key functions of a Cassandra administrator. This

chapter shows you how to back up your data by taking periodic snapshots of data.

Cassandra also enables you to take incremental backups and back up the commit log

segments. All these backups come in handy when you need to perform a full restore of

the database.

Bulk loading and copying of data is also a common task, and I explain how to load

data with the COPY command, as well as with the sstableloader utility.

 Backing Up Data
Backing up a Cassandra database involves the backing up of all the SSTable files in the

data directory of the database. You can take the backups while the database is running.

You can back up the entire database, or just a keyspace, or even a single table.

The backup you make (snapshots) may not be consistent, but that’s not a problem

at all. The purpose in taking a backup is so you can restore the database if you happen

to lose part or all of the data for any reason. When you restore a snapshot, Cassandra

utilizes the consistency mechanisms you learned about in earlier chapters to make the

data consistent across all nodes in the cluster.

The nodetool snapshot command enables you to back up Cassandra’s data. The

tool backs up both the schema information and the data in the SSTables. When you need

to restore tables from the snapshot, you’ll need the data as well as the schema. This way,

when you need to recreate some or all of a node’s SSTables, you’ll have both the data and

metadata to create the table(s).

284

Taking a snapshot means an increase in disk usage since you’re storing the same

data in two places on the nodes. The nodetool snapshot command works only at a

single-node level. You can use a parallel shell utility such as pdsh to run a cluster-wide

snapshot by running the nodetool snapshot command.

You can back up all the keyspaces on a node with the following command:

$ nodetool snapshot

Requested creating snapshot(s) for [all keyspaces] with snapshot name

[1499019048455] and options {skipFlush=false}

Snapshot directory: 1499019048455

$

Cassandra takes the snapshot, which contains the data and the schemas for all tables

on this node, and stores the data for each table in a directory corresponding to that table.

$ CASSANDRA_HOME/data/data/keyspace_name/table_UID/snapshot_name

In this case, it’s the following directory:

data/data/cycling/cyclist_name-351e8df05f4011e7b2672fabda59ff45/

snapshots/1499019048455

You’ll find all the files pertaining to the table cyclist_name in this directory:

ls -altr

total 52

-rw-r--r-- 4 root root 92 Jul 2 11:03 mc-3-big-Summary.db

-rw-r--r-- 4 root root 60 Jul 2 11:03 mc-3-big-Index.db

-rw-r--r-- 4 root root 16 Jul 2 11:03 mc-3-big-Filter.db

-rw-r--r-- 4 root root 9 Jul 2 11:03 mc-3-big-Digest.crc32

-rw-r--r-- 4 root root 144 Jul 2 11:03 mc-3-big-Data.db

-rw-r--r-- 4 root root 43 Jul 2 11:03 mc-3-big-CompressionInfo.db

-rw-r--r-- 4 root root 92 Jul 2 11:03 mc-3-big-TOC.txt

-rw-r--r-- 4 root root 4668 Jul 2 11:03 mc-3-big-Statistics.db

-rw-r--r-- 1 root root 856 Jul 2 11:03 schema.cql

-rw-r--r-- 1 root root 31 Jul 2 11:03 manifest.json

drwxr-xr-x 2 root root 4096 Jul 2 11:03 .

drwxr-xr-x 7 root root 4096 Jul 2 11:10 ..

$

Chapter 8 BaCkup, reCovery, and Moving data

285

All files in this directory have a .db extension, denoting that they’re all part of the

SSTable named CYCLIST_NAME. The schema.cql file contains the complete CQL code to

create this table.

You can also back up a single keyspace with the nodetool snapshot command by

specifying the keyspace name.

$ nodetool snapshot cycling

Requested creating snapshot(s) for [cycling] with snapshot name

[1499020818525] and options {skipFlush=false}

Snapshot directory: 1499020818525

$

 Managing Snapshots
You can list all snapshots on a node, along with their name and size details, by executing

the nodetool listsnapshots command.

$ nodetool listsnapshots

Snapshot Details:

Snapshot name Keyspace name Column family name

True size Size on disk

1499021840269 system_distributed parent_repair_history

23.69 KiB 23.72 KiB

1499021840269 system_distributed repair_history

5.69 KiB 5.72 KiB

1499021840269 system_distributed view_build_status

0 bytes 13 bytes

1499021840269 cycling cyclist_name

5 KiB 5.87 KiB

1499021840269 test5 kv

4.78 KiB 5.62 KiB

1499021840269 test my_table

0 bytes 842 bytes

1499021840269 cycling2 cyclist_name

0 bytes 870 bytes

Chapter 8 BaCkup, reCovery, and Moving data

286

1499021840269 system_auth roles

4.95 KiB 4.98 KiB

1499021840269 system_auth role_members

0 bytes 13 bytes

1499021840269 system_auth resource_role_permissons_index

0 bytes 13 bytes

1499021840269 system_auth role_permissions

0 bytes 13 bytes

1499021840269 system_traces sessions

0 bytes 13 bytes

1499021840269 system_traces events

0 bytes 13 bytes

Total TrueDiskSpaceUsed: 44.11 KiB

$

Snapshots occupy space. They also get dated. This means that you must often clear

old snapshot files that you no longer need. You do this by removing the entire snapshot

directory. You can script your backups such that you delete the old snapshots before

taking a fresh snapshot.

The nodetool clearsnapshot command lets you delete snapshots you’ve made for

one or more keyspaces.

You can delete a single snapshot by running the nodetool clearsnapshot command

and specifying the snapshot directory name.

$./nodetool clearsnapshot 1499020818525

Requested clearing snapshot(s) for [1499020818525]

$

You can remove all the snapshot directories on a node by issuing the nodetool

clearsnapshot command without a snapshot name.

$./nodetool clearsnapshot

Requested clearing snapshot(s) for [all keyspaces]

$

Chapter 8 BaCkup, reCovery, and Moving data

287

Here are some important options you can specify for the nodetool clearsnapshot

command:

• -t: Enables you to specify a snapshot name.

• keyspace: Delete snapshots from the keyspace you specify. You can

specify multiple keyspaces, each separated by a space.

• snapshot: The name of the snapshot you want to delete.

In a production setting, to make a database backup, you take a snapshot, and zip up

the files (tar) and store the zip files in network backup locations.

 Taking an Automatic Snapshot Before Compacting Data

You can enable the database to take an automatic snapshot before performing a

compaction of SSTables (I explain the compaction feature in detail in Chapter 11). You

do this by setting the snapshot_before_compaction property to true in the cassandra.

yaml file. The default value is false.

Remember that since the database doesn’t automatically remove older snapshots,

you must be aware of the space consequences of the automatic snapshots.

 Performing Incremental Backups
Once you create a system-wide snapshot, you can employ Cassandra’s incremental

backups feature to back up data that has been updated since the full snapshot was made.

Incremental backups are disabled by default, and you can enable them with the

following command:

$ nodetool enable backup

Alternatively, you can enable incremental backups on a long-term basis by changing

the value of the incremental-backups property to true in the cassandra.yaml file. You

can disable incremental backups with the following command:

$ nodetool disable backup

Incremental backups are automatic. Cassandra creates a hard link to each SSTable

that was flushed to disk in the backups subdirectory of the data folder of the keyspace

to which the table belongs. Cassandra doesn’t remove the hard links, however, so the

administrator must tend to these.

Chapter 8 BaCkup, reCovery, and Moving data

288

Note run the nodetool statusbackup command to get the status of a
backup.

 Restoring Data with Various Restore Methods
To fully restore data, you must, of course, have a complete backup, which consists of the

following:

• A snapshot at a point in time

• All incremental backups from the time you took the snapshot

• All commitlog segments since the time you took the last incremental

backup

 Restoring Data from a Snapshot
To restore a table from a snapshot, make sure you have all the snapshot files for the table,

including any incremental backups made after you took the initial snapshot. There are a

couple of ways to restore with snapshots, and I explain them here.

In both restore methods, the table schema must be present in the database; the

recovery process doesn’t recreate the schemas automatically. You can, however, run the

createschema.sql script found in the snapshot directory to create the schema, should

you need it.

 Copying Data from the Snapshots Directory

 1. Truncate the table you are going to restore. You need to remove

the existing data in most cases, since it’s possible that accidentally

lost data may have older tombstones than the snapshot’s data. In

situations where you happen to lose a disk and start the database

before a restore, the node will have more up-to-date data than the

snapshot, and therefore you don’t truncate the table.

Chapter 8 BaCkup, reCovery, and Moving data

289

In this example, the keyspace is cycling, and the table name

is cyclist_name. Before you truncate the table, go to the data

directory for the cyclist keyspace, and you’ll see that the data

folder for the table cyclist_name has all the normal db files.

$CASSANDRA_HOME/data/data/cycling# cd c*

samalapati@ubuntu:/cassandra/apache-cassandra-3.10/data/data/

cycling/cyclist_name-39cd6de060de11e7805be14006afbdda# ls

backups mc-1-big-Data.db

mc-1-big-Filter.db mc- 1- big-Statistics.db mc-1-big-TOC.txt

mc-1-big-CompressionInfo.db mc-1-big-Digest.crc32

mc-1-big-Index.db mc- 1- big-Summary.db snapshots

$

Note that the snapshots directory for an SSTable will be empty by

default until you create a snapshot

 2. You next truncate the table cyclist_name.

cqlsh:cycling> truncate cyclist_name;

cqlsh:cycling>

Note Make sure all nodes are up before issuing the truncate command.
otherwise you may see an error such as the following:

TruncateError: Error during truncate: Cannot achieve
consistency level ONE

 3. You can verify that there’s no longer any data in the cyclist_name

table.

cqlsh:cycling> select * from cyclist_name;

 id | firstname | lastname

----+-----------+----------

(0 rows)

cqlsh:cycling>

Chapter 8 BaCkup, reCovery, and Moving data

290

 4. Check the data directory for the cycling.cyclist_name table

now; all the .db files disappeared from this directory when you

truncated the table. Only the empty shell of the table remains, but

the database has wiped out all its contents from disk for good.

You took a snapshot of the cycling keyspace before you truncated

the cyclist_name table. You therefore expect to have the snapshot

for the cycling_name table in the appropriate directory, which in

general is:

data_directory/keyspace_name/table_name-UUID/snapshost/

snapshot_name

In my case, it’s the following directory, and it has all the files I

need under the snapshot directory for the table cyclist_name:

data/data/cycling/cyclist_name-39cd6de060de11e7805be14006a

fbdda/snapshots/1499189424022# ls -altr

total 52

-rw-r--r-- 2 root root 16 Jul 4 10:30 mc-1-big-Filter.db

-rw-r--r-- 2 root root 92 Jul 4 10:30 mc-1-big-TOC.txt

-rw-r--r-- 2 root root 92 Jul 4 10:30 mc-1-big-Summary.db

-rw-r--r-- 2 root root 4668 Jul 4 10:30 mc-1-big-

Statistics.db

-rw-r--r-- 2 root root 60 Jul 4 10:30 mc-1-big-Index.db

-rw-r--r-- 2 root root 10 Jul 4 10:30 mc-1-big-Digest.

crc32

-rw-r--r-- 2 root root 155 Jul 4 10:30 mc-1-big-Data.db

-rw-r--r-- 2 root root 43 Jul 4 10:30 mc-1-big-

CompressionInfo.db

-rw-r--r-- 1 root root 856 Jul 4 10:30 schema.cql

-rw-r--r-- 1 root root 31 Jul 4 10:30 manifest.json

drwxr-xr-x 3 root root 4096 Jul 4 10:30 ..

drwxr-xr-x 2 root root 4096 Jul 4 10:30 .

/data/data/cycling/cyc

Chapter 8 BaCkup, reCovery, and Moving data

291

 5. Copy all the files under the snapshot directory to the data

directory of the table cyclist_name.

root@ubuntu:/cassandra/apache-cassandra-3.10/data/

data/cycling/cyclist_name- 39cd6de060de11e7805be14006a

fbdda# cp /cassandra/apache-cassandra-3.10/data/data/

cycling/cyclist_name-39cd6de060de11e7805be14006afbdda/

snapshots/1499189424022/* .

root@ubuntu:/cassandra/apache-cassandra-3.10/data/data/

cycling/cyclist_name- 39cd6de060de11e7805be14006afbdda# ls

1499189424022 manifest.json mc-1-big-Data.db

mc-1- big-Filter.db mc-1-big-Statistics.db mc-1-big-TOC.txt

 snapshots

backups mc-1-big-CompressionInfo.db mc-1-big-

Digest.crc32 mc-1- big-Index.db mc-1-big-Summary.db

schema.cql

root@ubuntu:/cassandra/apache-cassandra-3.10/data/data/

cycling/cyclist_name- 39cd6de060de11e7805be14006afbdda#

Run the nodetool refresh command so Cassandra knows that

the data files are restored now.

$ nodetool refresh cycling cyclist_name

$

The Cassandra log file will show how many SSTables were

refreshed, thus offering a safe way to check the refresh process.

 6. Query the table cyclist_name to verify that the restore was

successful.

cqlsh:cycling> select * from cyclist_name;

 id | firstname | lastname

--------------------------------------+-----------+-----------

 fb372533-eb95-4bb4-8685-6ef61e994caa | Michael | MATTHEWS

 220844bf-4860-49d6-9a4b-6b5d3a79cbfb | Paolo | TIRALONGO

 6ab09bec-e68e-48d9-a5f8-97e6fb4c9b47 | Steven | KRUIKSWIJK

(3 rows)

cqlsh:cycling>

Chapter 8 BaCkup, reCovery, and Moving data

292

Note you can set the auto_snapshot property to automatically back up
(have a snapshot taken) whenever you truncate or drop a table. By default, the
auto_snapshot property is enabled.

Hey, what happened? There were six rows originally in this table, but after the

restore, there are just three rows! Well, there are two nodes in the cluster, and each node

owns roughly half the data. The nodetool snapshot command did create a separate

snapshot directory in both nodes. The snapshot on any one node won’t have all the data.

If, for example, your replication factor is 3 and you have four nodes in your cluster, each

node will have approximately 0.75 of each replica.

In this example, there are two nodes in the test cluster. However, you performed a

restore on only one node. You must therefore restore the .db files on the second node, as

you did earlier.

cp /cassandra/apache-cassandra-3.10/data/data/cycling/cyclist_name- 39cd6de

060de11e7805be14006afbdda/snapshots/truncated-1499189595147-cyclist_name/* .

./nodetool refresh cycling cyclist_name

Once you do this, query the cyclist_name table again:

cqlsh:cycling> select * from cyclist_name;

 id | firstname | lastname

--------------------------------------+-----------+-----------------

 e7ae5cf3-d358-4d99-b900-85902fda9bb0 | Alex | FRAME

 fb372533-eb95-4bb4-8685-6ef61e994caa | Michael | MATTHEWS

 5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS

 220844bf-4860-49d6-9a4b-6b5d3a79cbfb | Paolo | TIRALONGO

 6ab09bec-e68e-48d9-a5f8-97e6fb4c9b47 | Steven | KRUIKSWIJK

 e7cd5752-bc0d-4157-a80f-7523add8dbcd | Anna | VAN DER BREGGEN

(6 rows)

cqlsh:cycling>

Chapter 8 BaCkup, reCovery, and Moving data

293

Tip if a table doesn’t exist before performing a restore, create the table with the
help of the creatschema.cql file in the snapshot directory for the table.

 Running a Repair After Restoring from a Snapshot

Cassandra’s repair mechanism ensures that all nodes in a cluster have the most recent

data. If you haven’t taken the snapshots for different nodes at the same time, you can

read stale data (if using the consistency level ONE),

This is the reason why you should run the nodetool repair command after

restoring from snapshots. The repair makes sure that all replicas in the cluster have the

latest data. The repair could run for several hours, since it’s a heavy resource user and

requires both RAM and CPU resources to do its job. As part of its work, the repair job

generates Merkel trees for the data and compares them with the Merkel trees from the

other nodes. It also streams missing and/or outdated data. While the repair is running,

you may sometimes read stale data if all the snapshots don’t contain the same data.

 Using sstableloader to Restore Snapshots
Let’s say you have a bunch of tables you want to restore from snapshots. You can use the

sstableloader utility to restore the snapshots.

 The Node Restart Method Procedure
The node restart method of restoring data from snapshots involves shutting down all the

nodes and then starting them back up after you restore the snapshot data. You can use

this method for all nodes in a cluster at once or just for a single node.

The following are the steps in restoring data from snapshots that involves a restart of

the nodes.

 1. Shut down all the nodes of the cluster.

 2. Run the nodetool drain command to make sure you’re not

risking a data loss.

 3. Remove all files from the commitlog directory.

Chapter 8 BaCkup, reCovery, and Moving data

294

samalapati@ubuntu:/cassandra/apache-cassandra-3.10/data/

commitlog# ls

CommitLog-6-1499187293466.log CommitLog-6-1499187293467.log

samalapati@ubuntu:/cassandra/apache-cassandra-3.10/data/

commitlog# rm *

Remove all the .db files under each table’s directory. You must

do this for all keyspaces you’re restoring. Make sure you leave the

snapshots and backups directories alone!

When you’re done, there should be no .db files in this directory.

$ ls

backups snapshots

$

 4. Copy all the files in the latest snapshot directory into this

directory:

$ cp /cassandra/apache-cassandra-3.10/data/data/

cycling/cyclist_name- 4d1743b060ef11e7805be14006afbdda/

snapshots/1499196752095/* .

$

 5. At this point, Cassandra restores the table data across the cluster.

To be sure that the data is consistent, run the nodetool repair

command.

$ sudo odetool repair

[2017-07-04 13:19:20,492] Replication factor is 1. No

repair is needed for keyspace 'cycling'

 [2017-07-04 13:19:26,018] Repair completed successfully

[2017-07-04 13:19:26,064] Repair command #1 finished in

5 seconds

Chapter 8 BaCkup, reCovery, and Moving data

295

 Commitlog Archiving and Point-in-Time Recovery
Cassandra enables you to configure commit log archiving and point-in-time recovery.

Cassandra archives the commit log under the following conditions:

• When a node starts up

• When the database writes the commit log to disk

• Any specified point in time

You can configure the archiving of the commit log through the commitlog_

archiving.properties configuration file. You can set several properties pertaining

to the archiving and restoring of commit log segments in this file, as I explain in the

following sections.

 Manually Archiving the Commit Log

You can archive a commit log segment with the archive_command command. Here’s the

syntax of the archive_command command:

archive_command=/bin/ln %path /backup/%name

In this command, the two key parameters are

• path: Fully qualified path to the commit log segment you wish to

archive

• name: The name of the commit log

 Restoring a Commit Log

The archives you make of the commit log segments enable you to recover the database

to a point in time. You can restore an archived commit log with the command restore_

command. Here’s the syntax of the command:

restore_command=cp -f %from %to

In this command, the key parameters are

• From: The path to the archived commitlog segment

• To: Name of the commit log directory

Chapter 8 BaCkup, reCovery, and Moving data

296

 Setting the Restore Directory Location

You can configure the restore_directories parameter to set the location of the

directory where you want to store the archived commit log. When you run the restore_

command command, the database looks here for the archived commitlog segments it

needs to restore.

 Setting the Restore Timestamp

You can tell the database how far it should restore the commit log segments, by

specifying a timestamp with the restore_point_in_time parameter. Here’s an example:

restore_point_in_time=2013:12:11 17:00:00

Cassandra will restore the commit log segments that it created prior to and up to the

timestamp you specify.

 Loading Bulk Data into Cassandra
There are two basic tools for moving bulk data to and from a Cassandra cluster: the CQL

COPY command and the sstableloader tool.

• The COPY command can read CSV data to a Cassandra table and write

CSV data from Cassandra to a file system. The COPY command works

very similarly to the tools used by relational databases for exporting

and importing data.

• The sstableloader utility helps you bulk load external data into a

Cassandra cluster.

 Using the COPY Command to Import and Export Data
The COPY command enables you to copy data to and from a Cassandra database. The

source and target files are CSV (comma-separated values) or delimited text files. In

the following sections, I review how you can use the COPY command to import and

export data.

Chapter 8 BaCkup, reCovery, and Moving data

297

 Copying Data from a Cassandra Table
Use the COPY TO command to copy data from a Cassandra table into a CSV file. The

following is the syntax of the COPY TO command:

COPY table_name [(column_list)]

TO 'file_name'[, 'file2_name', ...] | STDOUT

[WITH option = 'value' [AND ...]]

The COPY TO command separates the fields in the CSV file with a delimiter that you

can specify. By default, this command exports all fields, and you can specify a column

list to export only part of a table’s rows.

Here’s an example that shows how to export data from the table CYCLNG.CYCLIST_NAME:

cqlsh> COPY cycling.cyclist_name TO 'cyclist.csv' WITH HEADER = TRUE;Using

1 child processes

Starting copy of cycling.cyclist_name with columns [id, firstname,

lastname].

Processed: 6 rows; Rate: 8 rows/s; Avg. rate: 7 rows/s

6 rows exported to 1 files in 0.849 seconds.

cqlsh>

Cassandra places the CSV file one directory above the directory from where you

executed the COPY TO command. If you open the CSV file, you can see that it has a

comma- delimited list of all the rows in the source table.

cat cyclist_lastname.csv

id,lastname

fb372533-eb95-4bb4-8685-6ef61e994caa,MATTHEWS

220844bf-4860-49d6-9a4b-6b5d3a79cbfb,TIRALONGO

e7cd5752-bc0d-4157-a80f-7523add8dbcd,VAN DER BREGGEN

6ab09bec-e68e-48d9-a5f8-97e6fb4c9b47,KRUIKSWIJK

e7ae5cf3-d358-4d99-b900-85902fda9bb0,FRAME

5b6962dd-3f90-4c93-8f61-eabfa4a803e2,VOS

 Copying Data to a Cassandra Table
The COPY command helps move small data sets (a data set that containing less than 2

million rows) into a Cassandra table. You must use the Cassandra bulk loader to move

larger data sets.

Chapter 8 BaCkup, reCovery, and Moving data

298

Specify COPY FROM to copy data from a CSV file into a Cassandra table. The following

is the general syntax for the COPY FROM command:

COPY table_name [(column_list)]

FROM 'file_name'[, 'file2_name', ...] | STDIN

[WITH option = 'value' [AND ...]]

The COPY FROM command updates existing records and verifies the primary key.

The following are the key things you need to remember when running the COPY FROM

command:

• Each row in the CSV file must contain the same fields.

• The CSV file can have fewer fields (columns) than the Cassandra

table.

• The CSV file can’t have more fields than the Cassandra table.

• Each row must have a value for the primary key value.

• The database sets all missing or empty fields to null.

For an example of the COPY FROM command, use the same table, CYCLIST_NAME, that

you used for the COPY TO command example. Since the COPY FROM command expects

you to have the table present, truncate the data from the table, thus making it ready to

import the data from the CSV file that you generated earlier.

cqlsh> COPY cycling.cyclist_name FROM 'cyclist.csv' WITH HEADER = TRUE;

Using 1 child processes

Starting copy of cycling.cyclist_name with columns [id, firstname,

lastname].

Processed: 6 rows; Rate: 11 rows/s; Avg. rate: 15 rows/s

6 rows imported from 1 files in 0.389 seconds (0 skipped).

cqlsh>

 Running sstableloader to Perform Bulk Loading
Cassandra’s bulk loader tool, named sstableloader, lets you load large amounts of

data into Cassandra tables. You can also use this tool to load data from an SSTable to a

different cluster. Finally, you can use this tool to restore snapshots, which I explained

earlier in this chapter.

Chapter 8 BaCkup, reCovery, and Moving data

299

Unlike in the case of the COPY command, the target table can have data.

 Loading External Data with sstableloader

The sstableloader utility enables you to load external data into your cluster. Before you

can load external data with the sstableloader utility, you must first generate the SSTables,

into which you put the external data.

To generate the SSTables, you must use the SSTableWriter API. SSTableWriter creates

raw Cassandra data files that you can bulk load into a cluster.

Note you can run more than one instance of the sstableloader utility to parallelly
load external data into your cluster.

Since the sstableloader utility is resource intensive, you should run it from servers

that aren’t acting as a Cassandra node.

The following is a summary of the steps you must follow to load data through the

sstableloader utility.

 1. Create the raw Cassandra data files that you’ll be using to bulk

load the data into the cluster. This involves writing some Java code

that uses the SSTableWriter API.

 2. SSTableWriter generates SSTables in the directory you specify.

Go to the location where the code has stored the SSTables, as

shown here:

$ cd /var/lib/cassanddra/data/Keyspace1/Standrad2

 3. You can view the keyspace’s contents by executing the ls

command.

$ ls

Keyspace1-Standard1-jb-60-CRC.db

Keyspace1-Standard1-jb-60-Data.db

...

Keyspace1-Standard1-jb-60-TOC.txt

Chapter 8 BaCkup, reCovery, and Moving data

300

 4. Bulk load the files by specifying a path to Keyspace1/Standard1/

in the cluster where you wish to load the SSTables.

$ sstableloader -d 192.168.159.129 /var/lib/Cassandra/

data/Keyspace1/Standard1/

 Loading SSTable Data to a Different Cluster

You can run the sstableloader utility to import existing SSTables from a different cluster.

Before you perform the import, run the nodetool flush command in each of the source

cluster’s nodes to ensure that the database flushes the memtables to the SSTables that

you’re about to import to your cluster.

To run the sstableloader command to import the data to a target cluster, follow the

steps I described in the previous section. Everything works the same way, except that

you don’t need to generate the SSTables since the source table already has them. You

are importing from an SSTable to another SSTable in a different cluster, so no raw data is

involved in this import.

Note you can use apache Sqoop to migrate external data to Cassandra if you’re
using dataStax enterprise, which comes loaded with everything you need to run Sqoop.

 Summary
Since you need snapshots when you need to perform a recovery, it’s important to

carefully manage snapshots. Cassandra doesn’t manage snapshots for you and therefore

you must develop an effective way to store snapshots and remove older snapshots so

they don’t occupy a lot of storage space.

Incremental backups are turned on by default, and you must ensure that they remain

in effect since they reduce the need to take full snapshots of SSTables.

You’ll need all snapshots, incremental backups, and backups of the commit log

segments during a recovery. Therefore, it’s important to know that you can access all of

these readily so you can minimize the recovery time. To be sure that you can perform

a recovery correctly, it’s important to perform dry runs of a recovery session. You don’t

want to learn database recovery when you’re actually performing one!

Chapter 8 BaCkup, reCovery, and Moving data

Maintaining, Monitoring,
Tuning, and Securing
Apache Cassandra

PART III

303
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_9

CHAPTER 9

Maintaining Cassandra
This chapter is about common Cassandra management tasks and node management.

Common cluster management tasks include repairing and cleaning data, rebuilding

indexes, handling data corruption, and flushing and draining data.

Node management includes adding and removing nodes, replacing and moving

nodes, removing dead nodes, and assassinating nodes. Since nodetool commands

are key to performing all node management tasks, I first review the key nodetool node

management-related commands.

The chapter shows how to perform management tasks such as adding and

decommissioning datacenters.

The chapter also shows you how to switch snitches and how to monitor and manage

gossip.

 Common Cluster Maintenance Tasks
As an administrator, you’ll perform various tasks to help Cassandra perform well. In the

following sections, I describe some of the most common database maintenance tasks,

such as repairing data, rebuilding indexes, and cleaning up data.

 Repairing Data (nodetool repair)
I explained Cassandra’s repair mechanisms at length in Chapter 5. Over time, a node

may become out of sync with other nodes due to Cassandra’s tuneable consistency

philosophy. If a node remains down for a while, it may miss changes performed on the

other nodes, especially if it stays down longer than the time for which the other nodes

store the hints.

304

In addition, specifying a write consistency level below the ALL level means that the

database declares a write as successful even if one of more nodes don’t acknowledge the

writes. The principle of tunable consistency could result in nodes with different versions

of the same data. While the database automatically performs some types of repair such

as read repair, one of the key operations an administrator performs is anti-entropy repair,

which involves manually repairing data with the nodetool repair command.

Tip Run the nodetool stats command while performing a repair to monitor
the progress of the repair.

 When to Perform a Repair

The frequency of repairs has a lot to do with the read and write consistency levels that

you configure. If you chose a consistency level that’s slow to provide consistency, then

you should schedule repairs more frequently.

Frequent repairs have a cost in terms of overhead, so use a subrange repair wherever

you can, and schedule the repairs for different keyspaces (or tables) for separate times.

 When Repairs Are Unavoidable

Although the repairs you perform with the nodetool repair command are optional,

there are several operations that require that you perform a full repair after completing

the operations. These operations include changing a cluster’s snitch and changing the

replication level of keyspaces.

 Running the nodetool repair Command

You can run the nodetool repair command for the entire database or for a specific

keyspace or table, as shown in the following examples:

$ nodetool repair

$ nodetool repair cycling

$ nodetool repair cycling cycle

ChapteR 9 Maintaining CassandRa

305

You can also run the nodetool repair command just for the local datacenter with

the -local (or –in-local-dc) option. You can also specify a datacenter with the -dc (or

–in-dc) option.

Cassandra performs a full repair when you specify the -full option when you run

the nodetool repair command. Since a full repair can be time consuming and resource

intensive, you can ask it to perform an incremental repair, wherein the database only

repairs previously unrepaired data. The default is incremental repair in Cassandra 3.x.

Here’s an excerpt from the log file that shows how the repair command works:

INFO [Thread-8] 2017-07-16 09:22:23,564 RepairRunnable.java:136 - Starting

repair command #1 (f30498c0-6a42-11e7-9731-6f6038c9cb1c), repairing

keyspace system_traces with repair options (parallelism: parallel, primary

range: false, incremental: true, job threads: 1, ColumnFamilies: [],

dataCenters: [], hosts: [], # of ranges: 512, pull repair: false)

...

INFO [Repair#1:1] 2017-07-16 09:22:27,833 RepairJob.java:172 - [repair

#f35db540-6a42-11e7-9731-6f6038c9cb1c] Requesting merkle trees for sessions

(to [/192.168.159.129, ubuntu/192.168.159.130])

...

INFO [CompactionExecutor:9] 2017-07-16 09:22:28,547 CompactionManager.

java:694 - [repair #f30498c0-6a42-11e7-9731-6f6038c9cb1c] Completed

anticompaction successfully

INFO [CompactionExecutor:10] 2017-07-16 09:22:28,759 RepairRunnable.

java:340 - Repair command #1 finished in 5 seconds

$

 Rebuilding Data by Getting It from Other Nodes (nodetool rebuild)

You run the nodetool rebuild command to rebuild a token range. The command

rebuilds streams from a single source replica but operates simultaneously on multiple

nodes.

The nodetool rebuild command is useful when you’re adding a datacenter to your

cluster. You can rebuild a single keyspace at a time or specify multiple keyspaces, each

separated by a comma. Here’s an example:

$ nodetool rebuild –keyspace cyclists, motorists

ChapteR 9 Maintaining CassandRa

306

Remember:

• By default, this command choses an arbitrary datacenter in your

cluster. You can specify a datacenter from which the database should

select the sources for the data it needs to stream through the source-

dc- name option. If you don’t provide the name of any datacenter, the

command may seem to work, but it won’t do anything.

• You can optionally specify the parameter tokens to provide a list of

single tokens or a range of tokens (start_token, end_token).

 Cleaning Up Unnecessary Keyspaces and Partition Keys
(nodetool cleanup)

When you add a new node to a cluster, some nodes may lose part of their partition range

to the new node. However, Cassandra doesn’t remove the unnecessary keyspaces and

partition keys from the current nodes when this happens.

Similarly, if you decrease the replication factor for a datacenter, some nodes will end

up storing data that isn’t being used by the database as replicas.

In both cases, when you add nodes or when you reduce the replication factor,

Cassandra’s compaction processes will eventually get rid of the discarded and

unnecessary data. You don’t have to manually clean up after every such change in a

cluster. However, if for any reason you wish to reclaim disk space faster, you can run the

nodetool cleanup command.

Note if the node uses a counter column in some tables, once you run the
nodetool cleanup command, the database assigns new counter ids to that node.

Here’s an example that shows how to run the nodetool cleanup command:

$ nodetool cleanup

Since you didn’t specify a keyspace, this command will clean up all keyspaces that

are no longer part of this node. Optionally, you can specify a keyspace, as well as a list of

tables for cleaning up. You run the nodetool cleanup command as follows to clean up a

specific keyspace:

$ nodetool cleanup cycling

ChapteR 9 Maintaining CassandRa

307

 Rebuilding Indexes
You can rebuild secondary indexes by running the nodetool rebuild_index command

for a table. In the command, you must specify the names of the keyspace, table, and one

or more index names separated by a space.

The nodetool rebuild_index command performs a full rebuild of the index for a

table. This command requires three arguments: keyspace, cf (column family, which is a

synonym for a table), and the name of the index. Here’s an example:

$ nodetool rebuild_index cycling cycle test_idx;

 Refreshing Size Estimates of Tables
When you insert large amounts of data into a table or when you truncate a table’s data,

the table’s size estimates become stale. Run the nodetool refreshsizeestimates

command to freshen the table size estimates. The command refreshes the system.size_

estimates table.

 Key Nodetool Maintenance Commands
In this chapter, among other things, I show you how to add, move, and remove nodes

in your cluster. When performing most of the tasks pertaining to the adding, moving,

and removing of nodes and datacenters in your cluster, you’ll be running a set of

key nodetool commands. For example, you’ll be running nodetool commands after

decommissioning nodes. I explain the common node maintenance-related nodetool

commands in this section.

 Decommissioning Nodes (nodetool decommission)
You run the nodetool decommission command to make a node send all its data to the

next node in the ring. Decommissioning a node is the opposite of bootstrapping a node.

Here’s an example showing how to decommission a node.

 1. First, check the status of the nodes to make sure that all (two in

this case) the nodes are up.

ChapteR 9 Maintaining CassandRa

308

$ /nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 338.19 KiB 256 49.0%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

UN 192.168.159.130 339.49 KiB 256 51.0%

a1085901- 738c- 4bbd-b050-007f62da893d rack1

$

 2. Then run the nodetool decommission command on the node

with the IP 192.168.159.129.

$ nodetool decommission

 3. Check the status of the cluster and notice that the

decommissioned node now shows its status as UL (UP LEAVING),

indicating that it’s transitioning out of the cluster.

UN 192.168.159.129 338.19 KiB 256 49.0%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

UL 192.168.159.130 339.49 KiB 256 51.0%

a1085901- 738c- 4bbd-b050-007f62da893d rack1

$

The system.log file shows the following output after the running

of the nodetool decommission command:

CP Connection(4)-127.0.0.1] 2017-07-13 10:48:38,266

StorageService.java:1435 - LEAVING: sleeping 30000 ms for

batch processing and pending range setup

INFO [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:08,776 StorageService.java:1435 - LEAVING: replaying

batch log and streaming data to other nodes

ChapteR 9 Maintaining CassandRa

309

INFO [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:08,902 StreamResultFuture.java:90 - [Stream

#9254bbf0-67f3-11e7-9d74-6bc8e6fb7ba6] Executing streaming

plan for Unbootstrap

INFO [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:08,904 StorageService.java:1435 - LEAVING: streaming

hints to other nodes

INFO [HintsDispatcher:2] 2017-07-13 10:49:08,963

HintsDispatchExecutor.java:152 - Transferring all hints to

0dbb9e0e-867e-4179-b6b6-631d38dd68f9

...

INFO [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:09,413 StorageService.java:3938 - Announcing that I

have left the ring for 30000ms

INFO [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:39,428 Server.java:176 - Stop listening for CQL

clients

WARN [RMI TCP Connection(4)-127.0.0.1] 2017-07-13

10:49:39,429 Gossiper.java:1514 - No local state, state is

in silent shutdown, or node hasn't joined, not announcing

shutdown

...

$

 4. Check the status of the cluster. Sure enough, the decommissioned

node has left the cluster.

$ /nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 328.53 KiB 256 100.0%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

$

ChapteR 9 Maintaining CassandRa

310

 5. Next, if you try to add the decommissioned node back to the

cluster by starting it back up, the attempt fails, as the following

output from the cassandra command shows:

$ cassandra ...

, 9079045138376597795, 9105248878993821997,

9166471019946737685, 9167277031713212107,

9167870256226113023]

...

This node was decommissioned and will not rejoin the

ring unless cassandra.override_decommission=true has

been set, or all existing data is removed and the node

is bootstrapped again

Fatal configuration error; unable to start server. See

log for stacktrace.

ERROR [main] 2017-07-13 10:58:29,816 CassandraDaemon.

java:752 - Fatal configuration error

...

$

The node that you recommissioned is unable to join the ring when you restart the node.

As you can see, Cassandra helpfully offers two ways to enable this node to rejoin the ring:

• Remove all data from the decommissioned node and bootstrap it again.

• Set the cassandra.override_decommission=true option.

In the following sections, I show how to use both methods to rejoin the

decommissioned node to a cluster.

 Remove All Data and Restart the Node

The straightforward way to add a decommissioned node back to a cluster is to simply

remove all the old data from the node, which is stored under the following directories

under /data:

• commitlog

• data

• saved_caches

ChapteR 9 Maintaining CassandRa

311

When you decommission the node, Cassandra redistributes the tokens. Once you

remove all the data from the decommissioned node, Cassandra allows the node to rejoin

the node and allocates the node its share of the tokens again.

Once you remove all the data, restart the decommissioned node.

$ cassandra

...

INFO [main] 2017-07-13 11:13:47,122 ColumnFamilyStore.java:406 -

Initializing system.hints

INFO [main] 2017-07-13 11:13:47,156 ColumnFamilyStore.java:406 -

Initializing system.batchlog

INFO [GossipStage:1] 2017-07-13 11:13:50,736 Gossiper.java:1056 - Node

/192.168.159.129 is now part of the cluster

INFO [main] 2017-07-13 11:13:51,939 StorageService.java:1435 - JOINING:

waiting for ring information

INFO [InternalResponseStage:1] 2017-07-13 11:13:52,829 ColumnFamilyStore.

java:406 - Initializing cycling.cycle

INFO [main] 2017-07-13 11:14:24,036 StorageService.java:1435 - JOINING:

Starting to bootstrap...

INFO [main] 2017-07-13 11:14:25,128 StorageService.java:1435 - JOINING:

Finish joining ring

...

INFO [main] 2017-07-13 11:14:25,193 SecondaryIndexManager.java:508 -

Executing pre-join post-bootstrap tasks for: CFS(Keyspace='cycling',

ColumnFamily='cycle')

INFO [main] 2017-07-13 11:14:33,359 CassandraDaemon.java:725 - No gossip

backlog; proceeding

...

The decommissioned node joins the ring now. Cassandra has already distributed

the data in the cluster. You confirm that the node is back in the cluster by running the

nodetool status command.

$ nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

ChapteR 9 Maintaining CassandRa

312

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 350.33 KiB 256 48.5%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

UN 192.168.159.130 158.45 KiB 256 51.5%

9ee09b72- a6db- 4de4-9aed-de32c5e7c344 rack1

$

 Setting the cassandra.override_decommission=true Option

Alternatively, you can just set the following option in the cassandra-env.sh file of the

node you’ve decommissioned and restart the node. Once the node restarts, it’ll join the

cluster.

JVM_OPTS="$JVM_OPTS -D cassandra.override_decommission=true

 Assassinating a Node (nodetool assassinate)
Let’s say you have three nodes in your cluster and you want to remove one of the nodes.

You decommission the node, but when you run the nodetool describe cluster

command, you see the node in an UNREACHABLE state, as shown here:

$ nodetool describecluster

Cluster Information:

 Name: Test Cluster

 Snitch: org.apache.cassandra.locator.DynamicEndpointSnitch

 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner

 Schema versions:

 57af9326-0783-3ea2-93ec-7706e8cad5e7: [192.168.159.129]

 UNREACHABLE: [192.168.159.130]

$

The nodetool status command shows the unreachable node with a DN status,

indicating that the node is down.

$ nodetool status

Datacenter: DC1

ChapteR 9 Maintaining CassandRa

313

===============

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

DN 192.168.159.130 ? 256 49.7%

7d9e3ac3- ffdc- 4cee-be82-4b0c6e614aa1 r1

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 383.92 KiB 256 50.3%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

$

In cases such as this, where you’re unable to take a node out of a cluster with the

nodetool decommission command, run the nodetool assassinate command to get rid

of the node.

$ nodetool assassinate

Check the cluster status with the nodetool status command to ensure that the

node you’ve assassinated (192.168.159.130) is gone from the cluster.

$ nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 359.04 KiB 256 100.0%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

$

ChapteR 9 Maintaining CassandRa

314

Run the nodetool assassinate command whenever you fail to remove a node with

the nodetool removenode command. The nodetool assassinate command removes a

dead node without replicating the data.

The nodetool assassinate command removes the node where you run the

command. You can specify a remote node with the -h option.

$ nodetool assassinate -h 192.168.159.129

 Node Management
Node management is an integral part of a Cassandra administrator’s task list. Managing

nodes involves adding, moving, and replacing nodes. It also involves managing slow or

failed nodes and cleaning up data after range movements.

In the following sections, I explain how to perform key node management tasks.

 Keeping a Node from Joining the Cluster
At times, you don’t want a node to join the cluster. That is, you want the node to be

up and running, but without being part of the ring. You can do this by utilizing the

Cassandra command line utility’s -D option. The -D option enables you to specify startup

parameters in the cassandra-env.sh file and at the command line. In this case, add the

-Dcassandra.join.ring=false option to the cassandra-env.sh file.

The following are the steps you must follow to keep a node from joining a cluster.

 1. Stop the node you wish to take out of the ring.

 2. Edit the cassandra-env.sh file and add the following line:

JVM_OPTS="$JVM_OPTS -Dcassandra.join_ring=false"

 3. Start up the node.

$ cassandra -R

...

INFO [main] 2017-07-15 12:31:36,878 CassandraDaemon.

java:489 - JVM Arguments: [-...

Djava.library.path=./../lib/sigar-bin,

-Dcassandra.join_ring=false, -

ChapteR 9 Maintaining CassandRa

315

...

INFO [GossipStage:1] 2017-07-15 12:31:44,587 Gossiper

.java:1056 - Node /192.168.159.129 is now part of the

cluster

INFO [GossipStage:1] 2017-07-15 12:31:44,589 Gossiper.

java:1056 - Node /192.168.159.130 is now part of the

cluster

INFO [main] 2017-07-15 12:31:45,757 StorageService.

java:695 - Not joining ring as requested. Use JMX

(StorageService->joinRing()) to initiate ring joining

INFO [main] 2017-07-15 12:31:45,758 CassandraDaemon.

java:694 - Waiting for gossip to settle before accepting

client requests...

INFO [GossipStage:1] 2017-07-15 12:31:46,429

StorageService.java:2248 - Node /192.168.159.129 state

jump to NORMAL

INFO [main] 2017-07-15 12:31:53,763 CassandraDaemon.

java:725 - No gossip backlog; proceeding

$

As you can see from the Cassandra utility’s output, the node (192.168.159.130) has

started up fine and is part of the cluster. However, since you asked Cassandra not to

join this node to the cluster, it remains up but out of the cluster. You can confirm this by

running the nodetool status command.

$ nodetool status

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns (effective)

Host ID Rack

UN 192.168.159.129 296.03 KiB 256 50.3%

0dbb9e0e- 867e- 4179-b6b6-631d38dd68f9 rack1

DN 192.168.159.130 316.55 KiB 256 49.7%

7d9e3ac3- ffdc- 4cee-be82-4b0c6e614aa1 rack1

$

ChapteR 9 Maintaining CassandRa

316

The node 192.168.159.130 is showing a status of DN (DOWN NORMAL). The node is

up but is no longer a part of this cluster.

Subsequently, you can run the nodetool join command to add this node back to

the ring, as shown here:

$ nodetool join

 Adding a Node to a Data Center
Adding a new node involves installing and starting up the new node, and cleaning up the

existing nodes to remove keys that no longer belong to those nodes. Follow these steps to

add a node to a running cluster.

 1. Install the Cassandra binaries on the new node.

 2. Configure the following properties in the cassandra.yaml file:

• cluster_name: The cluster name.

• endpoint_snitch: GossipingPropertyFileSnitch (or any other

snitch you wish to use).

• num_tokens: 256 (this sets the number of vnodes, and you can set

it to the same number as the tokens you configured for the rest of

the nodes)

• allocate_tokens_for_local_replication_factor: Enables you

to specify the replication factor of the keyspaces.

• seed_provider: Specify one of the existing seed nodes in the

cluster.

 3. Ensure that you add any non-default settings you configured

in the cassandra.yaml, cassandra-rackdc.properties, and

cassandra-topology.properties files. All these configuration

files on the new node should use the same non-default settings as

the rest of the nodes.

 4. Start the new node.

ChapteR 9 Maintaining CassandRa

317

 5. Verify the status of the nodes with the nodetool status command

and ensure that all nodes show an UN (Up Normal) status.

 6. Run the nodetool cleanup command on all the existing nodes.

You must wait until the command completes on one node before

proceeding to the other nodes.

This scenario is for adding a new node to a cluster. If you’re replacing an existing

node that died for some reason, you need to let Cassandra know that the new node

you’re adding will be replacing the dead node. You do this by specifying the

replace_address option.

Stop the node you wish to replace, before performing one of the following steps.

• For package installations, add the replace_address option to the

cassandra-env.sh file before starting the new node (see Step 4).

JVM_OPTS = "$JVM_OPTS -Dcassandra.replace_

address=192.168.159.130

• For a tarball installation, as in my case, start the database with the

cassandra.replace_address option.

You can specify the listen_address or the broadcast_address of the dead node as

the value for the cassandra.replace_address option. You must ensure that the node

you’re replacing the other node with is either brand now or that you’ve removed all data

under the /data directory if it’s an existing node.

 Replacing a Running Node
Occasionally you may need to replace a good node for maintenance purposes. You can

replace a node in two ways:

• Add the new node and decommission the node you want to replace.

• Directly replace a node.

I explain both methods in the following sections.

ChapteR 9 Maintaining CassandRa

318

 Adding the New Node and Decommissioning the Old Node
Afterwards

Replacing a node by adding a new node first is straightforward. Here are the high-level

steps for doing this.

 1. You add a node as explained in the “Adding a New Node” section.

 2. Once you add the new node, decommission the old node as

explained in the “Decommissioning a Node” section by running

the nodetool decommission command.

 3. Run the nodetool cleanup command on all nodes that are part of

the same datacenter.

 Directly Replacing a Node

The method I explained in the previous section involves streaming data twice or

running the nodetool cleanup command. You can simply start the new node with the

-Dcassandra.replace_address option to accomplish the same task.

To use this technique, you must ensure that you’re not using the consistency level

ONE for any keyspace. This means that this node may have the only copy of a row, and

thus you risk losing that data.

Here are the steps to directly replace a node.

• First, stop Cassandra on the node you’re replacing.

• Follow the steps in the “Replacing a Dead Node” section to replace

the node with another node.

If the node you’re replacing happens to be a seed node, you must remove the dead

node’s IP address from the -seeds list in the cassandra.yaml file. You must do this, of

course, for all nodes in the cluster. If you need the new node (or a different existing node)

to replace the dead seed node, add that node’s IP address to the –seeds list.

 Removing a Node from a Cluster
If the node you want to remove is healthy and running, just run the nodetool

decommission command to remove the node from your cluster. However, if the node

is down, you can’t decommission it, of course, and that’s when you need to run the

nodetool removenode command to get rid of the node.

ChapteR 9 Maintaining CassandRa

319

You remove a node with the nodetool removenode command by specifying the host

ID of the node you wish to remove.

$ nodetool removenode 192.168.159.130

You can confirm the node removal by running the nodetool removenode status

command.

$ nodetool removenode status

 Replacing a Dead Node
Nodes can die for many a reason, such as hardware failure. You can tell when a node

dies by checking the status of the nodes by running the nodetool status command.

If you see a status of DN and you don’t see any configuration-related errors in the logs,

hardware failure or some other issue has crashed the node or is keeping it from starting.

In these situations, you must replace the dead node.

Follow these steps to replace a dead node.

 1. Add a replacement node to your network.

 2. If the dead node happens to be a seed node, replace the IP

address of the dead node with that of the new node in the -seeds

list under the seed_provider property.

 3. Restart the new node.

 4. Install Cassandra on the new node.

 5. Configure the cassandra.yaml file with the cluster_name and the

-seeds list properties.

 6. On the new node, add the rack and datacenter configuration.

Assuming you’re using the GossipPropertyFileSnitch or the

Ec2MultiRegionSnitch, add the rack and datacenter information

to the cassandra-rackdc.properties file. In addition, remove the

cassandra-topology.properties file.

 7. Start the replacement node with the replace_address option, as

explained in the “Adding a New Node to a Datacenter” section by

either adding the replace_address option to the cassandra-env.

sh file or by starting Cassandra with the replace_address option.

ChapteR 9 Maintaining CassandRa

320

 Moving a Node to a Different Rack
If you find that you’ve placed a node in the wrong rack, you can fix the error by moving

the node to the correct rack and datacenter. In this case, Cassandra needs to move the

data out of the node first, and, after changing the rack the node belongs to, load new data

into the node.

The method that DataStax recommends for moving a node is to decommission the

node you wish to move to a different rack. Once you decommission it, as explained in the

“Decommissioning a Node” section, you can add the node to the rack and datacenter

you wish.

 Decommissioning an Entire Datacenter
When you decommission a datacenter, you want to first ensure that you don’t lose any

data by keeping clients from writing to the nodes in this datacenter. Next, implement the

following steps to decommission the datacenter.

 1. To ensure that all data is propagated to the other datacenters, run

the nodetool repair command.

$ nodetool repair -full

[2017-07-15 11:50:07,969] Replication factor is 1. No

repair is needed for keyspace 'cycling'

...

[2017-07-15 11:50:08,104] Starting repair command #1

(6c43e1b0-698e-11e7- 849e-0920617bbdc2), repairing keyspace

system_traces with repair options (parallelism: parallel,

primary range: false, incremental: false, job threads: 1,

ColumnFamilies: [], dataCenters: [], hosts: [], # of

ranges: 512, pull repair: false)

 [2017-07-15 11:50:12,699] Repair completed successfully

[2017-07-15 11:50:12,710] Repair command #1 finished in 4

seconds

$

ChapteR 9 Maintaining CassandRa

321

 2. The next step is to delete all references to the datacenter you

want to remove. You do this by modifying all the keyspaces in

the cluster with the ALTER KEYSPACE command so they don’t

point to the removed datacenter. The ALTER KEYSPACE command

enables you to modify a keyspace’s replication strategy, as well

as the number of replicas that the database must create in each

datacenter.

As explained in Chapter 4, the SimpleStrategy assigns the same

replication factor to the entire cluster and therefore is suitable

only for development and testing environments. You must use the

NetworkTopologyStrategy option for a production environment.

This strategy enables you to specify the replication factor per

datacenter.

For example, if you removed datacenter1, you must ensure that

you’re configuring a different datacenter for all keyspaces in the

cluster, as shown here:

ALTER KEYSPACE cycling

WITH REPLICATION = {

 'class' : 'NetworkTopologyStrategy',

 'datacenter2' : 3 }

AND DURABLE_WRITES = true ;

 3. Finally, run the nodetool decommission command on each of the

nodes of the datacenter you wish to remove from the cluster.

 Switching Snitches
A key point concerning switching of snitches is whether the topology of your cluster

will change following a change in the snitch. The replication strategy places replicas on

the basis of the information provided by the snitches, since the function of a snitch is to

tell Cassandra how to distribute the replicas. When the new snitch you are configuring

places replicas in different places, there are topology changes (that is, a change in either

the datacenter or rack, or both, where Cassandra places the nodes).

ChapteR 9 Maintaining CassandRa

322

Sometimes there’s a change in the network topology and sometimes, not. I address

both cases in the following sections.

 No Topology Change
If there’s no data yet in the cluster, there’s no need to change the network topology. You

just set the new snitch, and that’s that.

For example, you could go from five nodes using a single datacenter using the

SimpleSnitch to the same number of nodes in the same data single datacenter using a

network snitch (for example, GossipingPropertyFileSnitch).

Here are the steps for switching snitches when there’s no topology change.

 1. Create the appropriate properties file for denoting the datacenter

and rack information depending on the snitch you select, and

place the file in the Cassandra configuration directory on all nodes

of the cluster. Note that the new snitch isn’t enabled yet since

the database is running with the snitch previously configured in

the cassandra.yaml file. The properties file could be one of the

following:

• cassandra-rackdc.properties file for the

GossipingPropertyFileSnitch, Ec2Snitch,and

Ec2MultiRegionSnitch snitch types.

• cassandra-topology.properties file for all the other types of

network snitches.

 2. Update the value of the endpoint_snitch property in the

cassandra.yaml file on each node of the cluster. In this

example, it’s

endpoint_snitch: GossipingPropertyFileSnitch

 3. Start the nodes one a time, so the changes you’ve made in the

cassandra.yaml file regarding the new network snitch type can

come into effect.

ChapteR 9 Maintaining CassandRa

http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archsnitchGossipPF.html#Automatically updates all nodes using gossip when adding new nodes and is recommended for production.
http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archSnitchEC2.html#Use the Ec2Snitch with Amazon EC2 in a single region.
http://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archSnitchEC2MultiRegion.html#Use the Ec2MultiRegionSnitch for deployments on Amazon EC2 where the cluster spans multiple regions.

323

 With Topology Changes
If there’s data in the cluster already, a topology change occurs. When the topology

changes, new datacenters may be added to the cluster.

Let’s consider the case where there’s no splitting of datacenters into multiple

datacenters (by creating new datacenters). You originally have five nodes in a single

cluster, all using the SimpleSnitch. You now change to a new setup with a topology

change by going to five nodes in the same single datacenter, but with two racks, using the

RackInferrringSnitch.

In this case, the topology changes (from one rack to two racks) but you’re not adding

any new datacenters. To switch the snitches, first perform the three steps from the

previous section. Following this, on each node of the cluster, run the nodetool repair

(sequential) and the nodetool cleanup commands.

If the topology has changes and a new datacenter needs to be added, follow these

steps:

 1. Create a new datacenter with the new nodes and racks, using the

steps in the “Creating a New Datacenter” section.

 2. Replicate data into the new datacenter.

 3. Remove the nodes from the old datacenters and racks.

 4. Run the nodetool repair (sequential) and the nodetool cleanup

commands on each of the cluster’s nodes.

Note if you merely alter the type of snitch and replication, and move some nodes
to a new datacenter, you will be replicating data incorrectly.

 Managing Gossip
You can monitor and manage gossip with various nodetool gossip-related commands.

ChapteR 9 Maintaining CassandRa

324

 Getting Information About Gossip
You can get gossip information from the cluster by running the nodetool gossipinfo

command, as shown here:

$ nodetool gossipinfo

ubuntu/192.168.159.129

 generation:1500142702

 heartbeat:7498

 STATUS:16:NORMAL,-1270071350005996462

 LOAD:7455:342204.0

 SCHEMA:12:0c912807-68bb-3cf6-91c3-ee14aba78ca6

 DC:8:datacenter1

 RACK:10:rack1

 RELEASE_VERSION:4:3.10

 INTERNAL_IP:6:192.168.159.129

 RPC_ADDRESS:3:192.168.159.129

 NET_VERSION:1:10

 HOST_ID:2:0dbb9e0e-867e-4179-b6b6-631d38dd68f9

 RPC_READY:28:true

 TOKENS:15:<hidden>

/192.168.159.130

 ...

$

 Disabling and Enabling Gossip

You can effectively take a running node out of the cluster, without stopping the instance,

by disabling the gossip protocol on that node.

Execute the nodetool disablegossip command to disable the gossip protocol on a

node, as shown here:

$ nodetool disablegossip

ChapteR 9 Maintaining CassandRa

325

You can review the system.log file to see that Cassandra has marked the node as

down, after honoring your request to stop gossip on this node:

WARN [RMI TCP Connection(2)-127.0.0.1] 2017-07-15 13:31:47,640

StorageService.java:318 - Stopping gossip by operator request

INFO [RMI TCP Connection(2)-127.0.0.1] 2017-07-15 13:31:47,648 Gossiper.

java:1506 - Announcing shutdown

INFO [RMI TCP Connection(2)-127.0.0.1] 2017-07-15 13:31:47,658

StorageService.java:2248 - Node ubuntu/192.168.159.130 state jump to shutdown

If you run the nodetool status command, it shows UN (UP NORMAL) as the node’s

mode. However, since you turned off gossip, the node isn’t in touch with the rest of the

cluster.

You can reenable gossip by running the nodetool enablegossip command:

$ nodetool enablegossip

The log shows that Cassandra has started the gossip process.

WARN [RMI TCP Connection(6)-127.0.0.1] 2017-07-15 13:42:28,187

StorageService.java:331 - Starting gossip by operator request

INFO [RMI TCP Connection(6)-127.0.0.1] 2017-07-15 13:42:28,197

StorageService.java:2248 - Node ubuntu/192.168.159.130 state jump to NORMAL

WARN [GossipTasks:1] 2017-07-15 13:42:29,272 FailureDetector.java:288 -

Not marking nodes down due to local pause of 640151266291 > 5000000000

 Checking the State of Gossip

You can check whether gossip is running by executing the nodetool statusgossip

command, as shown here:

$ nodetool statusgossip

Running

$

$ nodetool disablegossip

$

$ nodetool statusgossip

not running

$

ChapteR 9 Maintaining CassandRa

326

 Flushing and Draining Data: The Differences
Both the nodetool flush and the nodetool drain commands enable you to move data from

memtables to disk, into SSTables. However, there are differences between the two tools.

 Draining a Node
In situations such as when you’re getting ready to upgrade Cassandra, you want to

ensure that you flush all memtables to disk, into the SSTables. You run the nodetool

drain command to flush memtables to SSTables on disk.

You execute the nodetool drain command as shown here:

$ nodetool drain

The log file shows the following:

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:54:58,272

StorageService.java:1435 - DRAINING: starting drain process

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:54:58,274

HintsService.java:221 - Paused hints dispatch

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:54:58,279 Server.

java:176 - Stop listening for CQL clients

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:54:58,280 Gossiper.

java:1506 - Announcing shutdown

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:54:58,311

StorageService.java:2248 - Node ubuntu/192.168.159.130 state jump to shutdown

INFO [RMI TCP Connection(30)-127.0.0.1] 2017-07-15 13:55:00,714

StorageService.java:1435 - DRAINED

The nodetool drain command is interesting. When you run this command,

Cassandra does other things beyond just flushing the memtables to disk. It also stops

listening for any client requests for connections or connection requests from other

nodes. You can see this from Cassandra’s output when you first drain the node and then

try to enable gossip on it.

$ nodetool enablegossip

nodetool: Unable to start gossip because the node was drained.

See 'nodetool help' or 'nodetool help <command>'.

$

ChapteR 9 Maintaining CassandRa

327

 Flushing Data from Memtables
You can also flush memtables to SSTables on disk by running the nodetool flush

command. You can flush an entire node, or a keyspace, or specific tables. It’s a good

strategy to flush the memtables to disk prior to taking a snapshot of the database, or one

or more keyspaces.

Here’s the syntax of the nodetool flush command:

$ nodetool <options> flush -- <keypsace> (<table> ...)

You can flush all memtables to disk with the following command:

$ nodetool flush

You can also flush just one or more keyspaces or tables. Here’s how you flush the

memtables that belong to the cycling keyspace:

$ nodetool flush cycling

Unlike the nodetool drain command, the nodetool flush command just flushes

memtables to disk and nothing else. Thus, you’re better off using this command instead

of the nodetool drain command if all you need to do is to flush data to the SSTables.

So, should you flush or drain? The drain command, as I explained, stops Cassandra

from listening to client requests and requests from the other nodes. You drain the

memtables when you want to shut down a node during maintenance and you want the

node to start up quicker. Since you flushed the memtables before the restart of the node,

the node doesn’t need to replay the commitlog following a restart.

 Maintaining Datacenters
Common datacenter-related maintenance tasks include adding a datacenter to a cluster,

migrating and renaming a cluster without a service interruption, and decommissioning

a datacenter.

 Adding a Datacenter to a Cluster
Sometimes you many need to add a datacenter to an existing cluster. I show you the

steps to do this in this section. When you’re done with the process, the old and new

datacenters will be replicating to each other.

ChapteR 9 Maintaining CassandRa

328

At the very end, you run the nodetool rebuild command, which operates on

multiple nodes and streams data from a single source replica to rebuild the token range.

This command helps you add the new datacenter to an existing cluster.

Here are the steps for adding a datacenter to a cluster:

 1. Ensure that all the current datacenters use

NetworkTopologyStrategy as their replication strategy. If they

aren’t, run the ALTER KEYSPACE command to fix things.

Tip When adding a datacenter to a cluster, don’t forget to update the keyspace
replication strategies for all keyspaces so they include the new datacenter.

 2. Install Cassandra software on all nodes of the new datacenter, but

don’t start the Cassandra service yet.

 3. You must next configure some properties in the cassandra.yaml

file on all the nodes that belong to the new datacenter you’re

adding. Make sure that important configuration properties such

as -seeds and endpoint_snitch are the same on the new and

current nodes.

In addition, you must also configure the allocation of the vnode

tokens to the new nodes. The configuration settings depend on

the vnode selection algorithm.

• Random Selection Algorithm: Set the num_tokens property

(recommended value is 256).

• Allocation Algorithm: Set the num_tokens property (recommended

value is 8), as well as the allocate_tokens_for_local_replication_

factor property on all the nodes. The recommended value for the

latter property is one of the following:

• Highest replication factor for a keyspace in this datacenter

• Replication factor of the keyspace with the heaviest operations

 4. Make the following changes on each of the nodes that belong to

the new datacenter.

ChapteR 9 Maintaining CassandRa

329

 5. Specify the type of snitch in the appropriate properties file. You

can’t use the SimpleSnitch because that’s meant only for a single

datacenter, due to its inability to recognize datacenter (or rack)

information. Depending on which snitch you choose, you must

make changes in the appropriate properties file:

• PropertyFileSnitch: cassandra-topology.properties file

• GossipingPropertyFileSnitch: cassandra-rackdc.properties file

 6. In the old datacenters, make the following configuration changes:

• On some of the existing nodes, add a seed node from the new

datacenter. You must restart the nodes on which you make this

change since you’ve modified the cassandra.yaml file.

• In the appropriate properties file (depends on the type of snitch),

specify the new datacenter definition.

 7. Start Cassandra on each of the racks, and keep going until you

bring up all the nodes.

 8. Once all nodes are up, alter the keyspaces as follows:

ALTER KEYSPACE "my_ks" WITH REPLICATION =

 {'class': 'NetworkTopologyStrategy', 'ExistingDC':3,

'NewDC':3};

 9. Finally, run the nodetool rebuild command on each node in the

new datacenter you just added.

You can specify several optional parameters when rebuilding

nodes, such as keyspace_name, token_spec, and source_dc_

name.

The nodetool rebuild command rebuilds one or a set of

keyspaces at a time by streaming data from other nodes. You must

specify the name of the keyspace to rebuild via the keyspace_name

property, as well as token_spec, a property that enables you to

specify a single token, a list of single tokens, or a range of tokens

(start_token, end_token).

ChapteR 9 Maintaining CassandRa

330

You can specify the source-dc-name with the nodetool rebuild

command. This attribute refers to the name of the datacenter

that Cassandra uses as the source for streaming. Cassandra can

build from any datacenter, and if you omit the name of the source

datacenter, it randomly chooses a datacenter.

If the rebuild fails for any reason, you can restart it, at which time

the process resumes from where it had stopped. You can also do a

selective rebuild by specifying the -ts or –token options to specify

either a list of tokens or a token range (or ranges).

The simplest invocation of the nodetool rebuild command is

$ nodetool rebuild

 Decommissioning a Datacenter
Decommissioning a datacenter is the same as removing a datacenter. You can

decommission a datacenter without losing any data by following these steps.

 1. Before you start decommissioning the datacenter, ensure that

clients aren’t writing to any nodes in the datacenter. You can

confirm that there are no pending write requests in any node by

running the following command:

$ nodetool tpstats

 2. Propagate the data from the datacenter you’re planning to

decommission by running a full repair with the following

command:

$ nodetool repair -full

 3. Alter all keyspaces in the database to make sure that none of them

references the datacenter you’re decommissioning.

Let’s say you’ve three datacenters: DC1, DC2, and DC3. You’re

removing datacenter DC3 from your cluster. You must therefore

remove datacenter DC3 from all keyspace configurations. If you’ve

ChapteR 9 Maintaining CassandRa

331

set a replication factor for DC3 for any keyspace, run the ALTER

KEYSPACE command, as shown here, to remove the datacenter

DC3 from that keyspace’s configuration:

cqlsh> alter keyspace cycling WITH replication = {'class':

 'NetworkTopologyStrategy', 'DC1':1,'DC2':2};

 4. Run the nodetool decommission command on all nodes of the

datacenter you’re decommissioning.

$ nodetool decommission

 5. Once the decommissioning is completed, shut the node down.

You can confirm that all nodes in the datacenter were removed by

running the nodetool status command.

 Handling Data Corruption
Cassandra offers tools to check for corrupted data and to fix the data corruption by

rebuilding the table with the corrupted data.

The following sections show you how to detect data corruption and to rebuild

corrupted tables.

 Checking for Data Corruption
Run the sstableverify command to check a specific SSTable for errors or corrupted

data. The following is an example where cycling is the name of the keyspace and cycle is

the name of the table you want to check out:

$ sstableverify --verbose cycling cycle

Verifying BigTableReader(path='/cassandra/apache-cassandra-3.10/data/

data/cycling/cycle-2276fb7064e911e7b186d794a4e00229/mc-2-big-Data.db')

(0.029KiB)

...

Checking computed hash of BigTableReader(path='/cassandra/apache-

cassandra- 3.10/data/data/cycling/cycle-2276fb7064e911e7b186d794a4e00229/

mc-3-big-Data.db')

$

ChapteR 9 Maintaining CassandRa

332

 Fixing Corrupted Data
You can fix corrupted data by rebuilding the SSTables. Rebuilding the SSTable will

remove the corrupted data, leaving the useful data intact. There are two tools that help

you rebuild tables: the nodetool scrub command and the sstablescrub utility. These two

tools are quite similar. Your first option is the nodetool scrub command.

 Removing Corrupt Data by Rebuilding the Table

You can remove corrupted data with the help of the nodetool scrub command. This

command rebuilds the SSTables for one or more tables.

The following is the syntax for the nodetool scrub command:

$ nodetool <options> scrub <keyspace>

-- -ns | --no-snapshot

-s | --skip-corrupted <table> ...

Here’s an example where you scrub the tables in the cycling tablespace:

INFO [CompactionExecutor:50] 2017-07-16 11:47:14,560 OutputHandler.

java:42 - Scrubbing BigTableReader(path='/cassandra/apache-cassandra-3.10/

data/data/cycling/cyclist_name-4d1743b060ef11e7805be14006afbdda/mc-1-big-

Data.db') (0.206KiB)

INFO [CompactionExecutor:50] 2017-07-16 11:47:14,604 OutputHandler.

java:42 - Scrub of BigTableReader(path='/cassandra/apache-cassandra-3.10/

data/data/cycling/cyclist_name-4d1743b060ef11e7805be14006afbdda/mc-1-big-

Data.db') complete; looks like all 0 rows were tombstoned

...

The nodetool scrub command rebuilds SSTables and when it does so, it discards

data that may be corrupt. To safeguard the data, the command also snapshots the data

files of the SSTable before rebuilding the table.

The following are the key options for the nodetool scrub command:

• --no-snapshot: This option will disable the default snapshot

creation for the SSTables that Cassandra will rebuild. Specifying this

option saves storage space and means you don’t have to remove the

snapshots later.

ChapteR 9 Maintaining CassandRa

333

• --skip-corrupted: This option will let the rebuild operation skip

corrupted partitions where the operation can’t validate a column’s

values against that column’s data type.

 Offline Rebuilding of a Table

The sstablescrub utility helps you rebuild a table when the node is offline. It works the

same as the nodetool scrub command. If the nodetool scrub command fails to rebuild

the table with the corrupted data, then your next option should be to run the sstablescrub

utility.

Since sstablescrub is an offline utility, you must first shut down the node. Following

this, run the following command to scrub the table:

$ sstablescrub cycling cycle

 Managing Handoff and Hints
You can use the nodetool utility to manage several aspects of the handoff process

and the hints mechanism. By running the nodetool commands, you can enable and

disable handoff, pause and resume handoff, and disable and enable hints for a specific

datacenter. Here’s a listing of the handoff- and hints-related nodetool commands:

• nodetool disablehandoff: Disables the storing of hints on a node

• nodetool enablehandoff: Enables the storing of hints on a node

• nodetool pausehandoff: Pauses the dispatch of hints

• nodetool resumehandoff: Resumes the dispatch of hints

The nodetool enablehintsfordc command enables you to turn on hints for a

datacenter. You do this when you’ve blacklisted a datacenter with the hnted_handoff_

disabled_datacenters property in the cassandra.yaml file, or when you’ve disabled

hints for a datacenter with the disablehintsfordc command for a datacenter.

Here’s how you toggle hints on and off for a datacenter:

$ nodetool enablehintsfordc DC2

$ nodetool disablehintsfordc DC2

ChapteR 9 Maintaining CassandRa

334

You disable hints for a datacenter if a datacenter is down, or when you’re failing a

datacenter over. The database will continue to send the hints to the other datacenters.

 Purging the Gossip State on a Node
Cassandra stores the gossip information on each node so the nodes can use it when

restarting. If the nodes need to retrieve the gossip data from elsewhere in the cluster,

node startups will be slower. Occasionally, you may need to manually fix problems with

gossip when a node doesn’t have the correct state of gossip.

Follow these steps to fix problems regarding an incorrect gossip state.

 1. Shut down the node experiencing the gossip problems.

$ nodetool assassinate

 2. Stop the client applications from writing to the Cassandra cluster.

 3. Take all nodes offline, first draining each of the nodes.

$ nodetool drain

$ sudo service cassandra stop

 4. Remove all directories in the peers-UUID directory.

$ sudo rm -r /var/lib/cassandra/data/system/peers-UUID/8

 5. After removing the data from the peers directory, run the

following SQL statement on each of the nodes to ensure that the

nodes can see each other:

cqlsh> select * from system.peers;

 6. Set the cassandra.load_ring_state=false property on each

node to clear the gossip state when you restart the nodes in the

next step. You can set this property from the command line, or by

adding the property in the cassandra-env.sh file, as explained

(for a different parameter) in the “Decommissioning Nodes”

section in this chapter.

 7. Restart all nodes in the cluster. Make sure you undo any changes

to the cassandra- env.sh file that you might have made in Step 6.

ChapteR 9 Maintaining CassandRa

335

 Summary
I explained several important cluster administration tasks in this chapter. The nodetool

utility helps enormously when removing nodes, replacing dead nodes, moving

nodes, assassinating nodes, and removing nodes from a ring. You also learned how to

decommission and add datacenters.

The best way to gain confidence in performing the cluster management tasks is

to practice those tasks in a test cluster. You’re likely to run into minor issues when

performing some of the changes, and practicing tasks such as decommissioning nodes

and datacenters teaches you how to fix those issues quickly, thus saving time during

changes in a production setting.

ChapteR 9 Maintaining CassandRa

337
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_10

CHAPTER 10

Monitoring, Logging,
and Metrics
Monitoring Cassandra is in many ways similar to how you manage a traditional

relational database. The complexity lies in the fact that Cassandra is a distributed

database, so you’ll be concerning yourself also with the distribution of data and the

balancing of the workload among the nodes of a cluster.

The nodetool utility offers many commands that help you monitor your cluster, and

you learned many of these commands in the earlier chapters.

JConsole is a powerful monitoring tool that you can use both from the command line

and as a GUI tool.

Cassandra offers numerous metrics that help you evaluate and monitor a cluster’s

performance and health. These metrics include table and keyspace metrics, as well as

cache and client request metrics, for example. This chapter reviews important Cassandra

metrics.

In the final section of this chapter, I show how to set up and configure Nagios, which

is a popular tool that helps monitor Cassandra clusters.

 The nodetool proxyhistograms Command
The nodetool proxyhistograms command shows the network statistics in a cluster.

$ nodetool proxyhistograms

proxy histograms

Percentile Read Latency Write Latency Range Latency

CAS Read Latency CAS Write Latency View Write Latency

 (micros) (micros) (micros)

(micros) (micros) (micros)

338

50% 943.13 0.00 4866.32

 0.00 0.00 0.00

75% 4055.27 0.00 14530.76

 0.00 0.00 0.00

95% 4055.27 0.00 20924.30

 0.00 0.00 0.00

98% 4055.27 0.00 20924.30

 0.00 0.00 0.00

99% 4055.27 0.00 20924.30

 0.00 0.00 0.00

Min 785.94 0.00 1358.10

 0.00 0.00 0.00

Max 4055.27 0.00 20924.30

 0.00 0.00 0.00

$

 Getting Table-Level Statistics
Run the nodetool tablestats (formerly nodetool cfstats) command to get statistics

about one or more tables. Be sure to specify the keyspace and the table name, as I show

in the following example. By default, Cassandra will spit out statistics about all tables!

Cassandra updates the table statistics when you flush data or when the database

changes the SSTables by compacting them.

You can have Cassandra ignore some tables by specifying the table names with the

-I flag. The following example shows how to get stats for a table:

$ nodetool tablestats test.kv2

Total number of tables: 40

Keyspace : test

 Read Count: 0

 Read Latency: NaN ms.

 Write Count: 0

 Write Latency: NaN ms.

 Pending Flushes: 0

 Table: kv2

Chapter 10 Monitoring, Logging, and MetriCs

339

 SSTable count: 1

 Space used (live): 5012

 Space used (total): 5012

 Space used by snapshots (total): 0

 Off heap memory used (total): 194

 SSTable Compression Ratio: 1.2

 Number of keys (estimate): 1

 Memtable cell count: 0

 Memtable data size: 0

 Memtable off heap memory used: 0

 Memtable switch count: 0

 Local read count: 0

 Local read latency: NaN ms

 Local write count: 0

 Local write latency: NaN ms

 Pending flushes: 0

 Percent repaired: 0.0

 Bloom filter false positives: 0

 Bloom filter false ratio: 0.00000

 Bloom filter space used: 176

 Bloom filter off heap memory used: 168

 Index summary off heap memory used: 18

 Compression metadata off heap memory used: 8

 Compacted partition minimum bytes: 30

 Compacted partition maximum bytes: 35

 Compacted partition mean bytes: 35

 Average live cells per slice (last five minutes): NaN

 Maximum live cells per slice (last five minutes): 0

 Average tombstones per slice (last five minutes): NaN

 Maximum tombstones per slice (last five minutes): 0

 Dropped Mutations: 0

$

As you can see, the nodetool tablestats command produces exhaustive statistics

about a table. Besides space usage statistics, the command also reveals read and write

latency statistics and Bloom filter-related statistics.

Chapter 10 Monitoring, Logging, and MetriCs

340

 Getting Network Information from the Host
You can get network information about a node by running the nodetool netstats

command. The output of this command shows information such as the operational

mode of the node (NORMAL, DECOMMISSIONED, LEAVING, etc.), read repair

statistics, and the number of inactive, pending, and completed commands plus their

responses.

Here’s an example:

$ nodetool netstats -H

Mode: NORMAL

Not sending any streams.

Read Repair Statistics:

Attempted: 0

Mismatch (Blocking): 0

Mismatch (Background): 0

Pool Name Active Pending Completed Dropped

Large messages n/a 1 0 0

Small messages n/a 0 1058 0

Gossip messages n/a 0 18589 0

$

By default, Cassandra will show the results for the node from which you issue this

command, but it allows you to specify a remote node with the -h option.

 The nodetool tablehistograms Command
The nodetool tablehistograms (formerly nodetool cfhistograms) command provides

statistics about tables that you can use to plot a frequency function.

This command is not cumulative; it monitors only the operations since you last ran

the command in the current session.

The following is an example showing how to run the nodetool tablehistograms

command. In this command, cycling refers to the keyspace and cycle to the table.

$ nodetool tablehistograms cycling cycle

cycling/cycle histograms

Chapter 10 Monitoring, Logging, and MetriCs

341

Percentile SSTables Write Latency Read Latency Partition

Size Cell Count

 (micros) (micros) (bytes)

50% 0.00 0.00 0.00 35 1

75% 0.00 0.00 0.00 35 1

95% 0.00 0.00 0.00 35 1

98% 0.00 0.00 0.00 35 1

99% 0.00 0.00 0.00 35 1

Min 0.00 0.00 0.00 30 0

Max 0.00 0.00 0.00 35 1

$

Here’s a description of the key columns in the output of the command:

• Percentile: The percentile rank

• SSTables: The number of SSTables accessed per read during a recent

read

• Write Latency: The write latency in microseconds for recent writes

• Read Latency: The read latency in microseconds for recent reads

• Partition Size: The partition size in bytes

 Checking the Cluster Health
The nodetool utility is your best friend when it comes to monitoring a cluster and

performing routine maintenance tasks.

Key nodetool commands that you’ll often use for checking a cluster’s health are the

following:

• nodetool status

• nodetool info

• nodetool tpstats

In the following sections, I review these key nodetool cluster health monitoring tools.

Chapter 10 Monitoring, Logging, and MetriCs

342

 The nodetool status Command
You’ve seen the nodetool status command in action numerous times in this book. This

command enables you to check the health of a cluster’s nodes. In addition, it also lets

you know about the distribution of data among the nodes. Monitor the cluster with this

command, and if it shows an unbalanced cluster due to too many nodes in a rack, move

some of the nodes around using the techniques explained in the previous chapter.

 The nodetool info Command
Run the nodetool info command to get node information, such as disk load, uptime,

and heap memory usage. The command also provides valuable information about how

the database is utilizing all three of its caches: the key cache, the row cache, and the

counter cache.

The nodetool info command provides valuable information pertaining to the

nodes, such as the following:

• Disk storage (load) information

• Times started (generation)

• Uptime

• Heap memory usage

• Key, row, counter, and chunk cache information

• Status of gossip (active or not)

• Percent repaired

• Token information (optionally)

Here’s an example:

$ nodetool info

ID : 7d9e3ac3-ffdc-4cee-be82-4b0c6e614aa1

Gossip active : true

Thrift active : false

Native Transport active: true

Load : 394.92 KiB

Generation No : 1500219460

Chapter 10 Monitoring, Logging, and MetriCs

343

Uptime (seconds) : 8441

Heap Memory (MB) : 95.36 / 1014.00

Off Heap Memory (MB) : 0.00

Data Center : datacenter1

Rack : rack1

Exceptions : 0

Key Cache : entries 32, size 2.7 KiB, capacity 50 MiB, 159

hits, 200 requests, 0.795 recent hit rate, 14400

save period in seconds

Row Cache : entries 0, size 0 bytes, capacity 0 bytes, 0 hits,

0 requests, NaN recent hit rate, 0 save period in

seconds

Counter Cache : entries 0, size 0 bytes, capacity 25 MiB, 0 hits,

0 requests, NaN recent hit rate, 7200 save period

in seconds

Chunk Cache : entries 17, size 1.06 MiB, capacity 221 MiB, 58

misses, 291 requests, 0.801 recent hit rate,

497.940 microseconds miss latency

Percent Repaired : 100.0%

Token : (invoke with -T/--tokens to see all 256 tokens)

$

 Using Thread Pools Statistics (nodetool tpstats)
The nodetool tpstats command shows the usage statistics of thread pools. Cassandra

breaks tasks into stages, with each stage using a separate queue and a thread pool. A

messaging service connects the various stages.

The nodetool tpstats command provides information about each stage of an

operation by thread pool. It shows the following things:

• Number of active threads

• Number of requests waiting to be executed by a thread pool

• Number of tasks a thread pool has completed

• Number of blocked requests due to the thread pool in the next step

being full

Chapter 10 Monitoring, Logging, and MetriCs

344

• Number of total blocked requests in this thread pool up until this

point in time

The database refreshes the information that the nodetool tpstats command

provides when you flush memtables or when the database compacts any SSTables.

Here’s an example showing how to run the nodetool tpstats command:

$ nodetool tpstats

Pool Name Active Pending Completed Blocked All time

blocked

ReadStage 0 0 0 0 0

MiscStage 0 0 0 0 0

CompactionExecutor 0 0 5532 0 0

MutationStage 0 0 1028 0 0

MemtableReclaimMemory 0 0 29 0 0

endingRangeCalculator 0 0 2 0 0

GossipStage 0 0 26038 0 0

SecondaryIndexManagement 0 0 0 0 0

HintsDispatcher 0 0 0 0 0

RequestResponseStage 0 0 1031 0 0

Native-Transport-Requests 0 0 0 0 0

ReadRepairStage 0 0 0 0 0

CounterMutationStage 0 0 0 0 0

MigrationStage 0 0 0 0 0

MemtablePostFlush 0 0 73 0 0

PerDiskMemtableFlushWriter_ 0 0 0 29 0

ValidationExecutor 0 0 2 0 0

Sampler 0 0 0 0 0

MemtableFlushWriter 0 0 29 0 0

InternalResponseStage 0 0 2 0 0

ViewMutationStage 0 0 0 0 0

AntiEntropyStage 0 0 8 0 0

CacheCleanupExecutor 0 0 0 0 0

Message type Dropped

READ 0

RANGE_SLICE 0

Chapter 10 Monitoring, Logging, and MetriCs

345

_TRACE 0

HINT 0

MUTATION 0

COUNTER_MUTATION 0

BATCH_STORE 0

BATCH_REMOVE 0

REQUEST_RESPONSE 0

PAGED_RANGE 0

READ_REPAIR 0

$

The output of the nodetool tpstats command shows statistics pertaining to

specific thread pools associated with tasks in the database. All this detailed information

is quite useful to you when you’re troubleshooting issues or tuning the database. You can

determine strategies to fix performance issues based on the activity in the pools. High

numbers in a pool point to symptoms of problems in the database.

The following is a brief list of the thread pools, the tasks associated with those pools,

and the actions you can perform to improve things.

• AntiEntropyStage: This pool processes repair messages. You can use

the nodetool repair command to perform repairs.

• GossipStage: Distributes the node information. You may see issues in

this pool due to some schemas being out of sync with each other. Use

the nodetool resetlocalschema command to sync the schemas.

• HintedHandoff: Sends missed changes such as updates and deletes

to other nodes. Sometimes you’ll see issues with the handoff process

due to various reasons. You can use the nodetool disablehandoff

and the nodetool repair commands to fix handoff related issues.

• MutationStage: This stage performs inserts and updates on the local

node and replays the commitlog. Hints in progress are also part of

this stage. If you see a high number of pending write requests, it may

indicate that the node is overloaded. You can add nodes or rewrite

code to reduce the mutations.

Chapter 10 Monitoring, Logging, and MetriCs

346

• ReadRepairStage: This stage shows the waits for performing read repairs.

If the Pending numbers are high, you can lower the read_repair _chance

value for tables that are read often, to value such as 0.11. The read_

repair_chance attribute for a table is the probability that a successful read

operation will trigger a read repair (the default value is 0.0).

You can monitor the thread pool statistics closely, and if you see a consistent

increase in the Pending tasks column values, you know it’s time to add additional

capacity to the cluster.

At the bottom of the output for the nodetool tpstats command is a section for

dropped messages for this node, meaning that the node received more messages than it

could handle. If you see a significant number of blocked tasks and/or dropped messages,

it means the database is having trouble keeping up with the current workloads.

 Using JMX Clients
Cassandra exposes numerous metrics and management operation commands over Java

Management Extensions (JMX). JMX provides tools for monitoring and managing Java

applications and services. It can monitor any statistics and manage any operations that

Java applications expose as MBeans (management beans).

JMX also enables you to remotely connect to a cluster’s instances so you

can monitor Cassandra performance (memory, threads, CPU usage, etc.) and

manage Cassandra by helping you modify certain runtime properties. MBeans are

special JavaBeans that enable you to access resources inside the JVM externally.

Through JMX, you can programmatically review settings for various entries such as

memory, threads, CPU, Gossip, and other Cassandra-related components that are

instrumented in JMX.

Under the covers, nodetool commands that you execute access JMX metrics to do

their work. Nodetool supports key JMX metrics and operations, as well as additional

Cassandra administration-related commands (such as the proxyhistograms

command). However, nodetool can’t access some metrics, and in those cases, you

can use a general purpose JMX client such as JConsole or jmxsh, as I explain in the

following sections.

Chapter 10 Monitoring, Logging, and MetriCs

347

 JConsole
JConsole is a JMX client that captures JMX metrics and operations exposed by Cassandra

and displays them in a graphical format. JConsole is a standard tool for managing

MBeans. JConsole is at times hard to use with remote servers because you must have

ports open in the firewall for its connections. This tool is thus not ideal for a production

environment, although it’s great for development and test servers.

Tip since JConsole consumes a lot of resources, datastax recommends that you
run the tool on a node that doesn’t host a Cassandra instance.

JConsole provides information about memory and thread usage, Java class loading,

and other information about the Java Virtual machine (JVM), and MBeans. You can use

the Memory tab to perform a Java garbage collection.

A key metric offered by the JConsole is compaction metrics. By monitoring

compaction metrics, you can figure out when to add capacity to a cluster.

You can connect to a Cassandra instance through JConsole. To do this, first start up

JConsole.

/usr/lib/jvm/java-8-oracle/bin/jconsole

You’ll see the jconsole:New Connection page appear, as shown in Figure 10-1. Select

the Remote process button and enter the address of the Cassandra node and the port

(in my case, 102.168.19.129:7199).

Chapter 10 Monitoring, Logging, and MetriCs

348

Once you log in, you’ll see the following tabs: Overview, Memory, Threads, Classes,

VM Summary, and MBeans. Figure 10-2 shows the Overview tab. Each of the tables

presents a set of graphs that offer a snapshot of various resources in the Cassandra node.

Figure 10-1. The JConsole New Connection login page

Chapter 10 Monitoring, Logging, and MetriCs

349

The following is a description of the various JConsole tabs:

• Overview: Presents a set of four graphs for tracking CPU, memory,

threads, and classes.

• Memory: Shows the current state of the Java heap usage. You can

also view garbage collection metrics from this tab and manually start

garbage collection from here.

• Threads: Shows the current and peak usage pattern of various thread

stages, such as compaction and garbage collection.

Figure 10-2. The JConsole Overview tab

Chapter 10 Monitoring, Logging, and MetriCs

350

• Classes: Presents a graph showing how many classes are loaded in the

JVM currently or during a specific time range.

• VM Summary: Presents a very useful summary of garbage collection,

classes, and memory-related statistics.

• MBeans: Enables access to MBeans that monitor the Cassandra node.

Jmxsh is a command-line interface to JMX-enabled Java processes. The tool allows

you to invoke methods in running Java processes from outside the process. You can

run commands; there’s also a menu-driven interface to browse MBeans, operations,

and attributes. You can download jmxsh from http://code.google.com/p/jmxsh/

downloads/list. You can read the documentation at http://code.google.com/p/

jmxsh/wiki/Summary.

Once you download jmxsh (jmxsh-R5.jar in my case), connect jmxsh to Cassandra

by running the following command, using the default JMX port:

$ java -jar jmxsh-R5.jar -h ubuntu -p 7199

jmxsh v1.0, Tue Jan 22 08:23:12 PST 2008

Type 'help' for help. Give the option '-?' to any command

for usage help.

Starting up in shell mode.

%

You’re now connected to Cassandra. You can take a heap dump by running the

following jmxsh command:

% jmx_invoke -m com.sun.management:type=HotSpotDiagnostic dumpHeap /tmp/

heapdump.hprof false

You can bulk load Cassandra tables by running the following command:

% jmx_invoke -m org.apache.cassandra.db:type=StorageService bulkLoad /path/

to/SSTables

Chapter 10 Monitoring, Logging, and MetriCs

http://code.google.com/p/jmxsh/downloads/list
http://code.google.com/p/jmxsh/downloads/list
http://code.google.com/p/jmxsh/wiki/Summary
http://code.google.com/p/jmxsh/wiki/Summary

351

jmxsh also offers a browser mode. You enter the browser mode by pressing enter at

the jmxsh prompt:

Entering browse mode.

==

 Available Domains:

 1. java.util.logging

 2. org.apache.cassandra.service

 3. org.apache.cassandra.db

 4. org.apache.cassandra.metrics

 5. java.nio

 6. org.apache.cassandra.hints

 7. JMImplementation

 8. java.lang

 9. com.sun.management

 10. ch.qos.logback.classic

 11. org.apache.cassandra.internal

 12. org.apache.cassandra.request

 13. org.apache.cassandra.net

 SERVER: service:jmx:rmi:///jndi/rmi://ubuntu:7199/jmxrmi

==

Select a domain:

With this introduction to JMX clients under your belt, let’s turn to how you can

manage Cassandra’s logging capabilities.

 Logging
There are two main Cassandra logs: system.log and debug.log. The system.log file

logs all activity in the database, including the startup and shutdown activity, as well as

all node-related tasks activity. It also logs all changes you make to the database schemas

such as modifications to keyspaces and tables.

Chapter 10 Monitoring, Logging, and MetriCs

352

Logging in Cassandra uses the Simple Logging façade for Java (SLF4J) with a logback

backend. You can configure logging programmatically or manually. In this chapter, I

focus on the manual configuration of logging, which you can do through one of the

following ways.

• By configuring the logback.xml file. By default, logback looks for

the logback-test.xml and the logback.xml files, in that order, for

logging configuration details.

• You can configure the logging levels by running the nodetool

setlogginglevel command.

• You can also configure logging through a JMX client such as the

JConsole tool.

The following sections explain how to configure logging using all three methods. But

first, let me explain how to set the logging locations where Cassandra stores the various

logging files.

 Setting the Logging Locations
The installation method for Cassandra determines the default logging location. You

may have the default log location as /var/log/cassandra or as the $CASSANDRA_HOME/

logs directory, depending on whether you used a package or tarball-based installation

method. It’s in the subdirectory named logs that you’ll find the two important

Cassandra log files: system.log and debug.log.

You can change the default logging location by adding the following line to the

cassandra-env.sh file:

export CASSANDRA_LOG_DIR=/new/log/location

Setting the CASSANDRA_LOG_DIR parameter in the cassandra-env.sh file will make

Cassandra store all of its log files in this location. If you want to specify a different

 directory for the system.log and debug.log files, for example, you can do so by

specifying the locations in the logback.xml file, through configuring the ${cassandra.

logdir} attribute for the two log files.

Note You can also configure logging through JMX with the JConsole tool.

Chapter 10 Monitoring, Logging, and MetriCs

353

You can also modify the location of the log directory by editing the following entry in

the logback.xml file and specifying a different filename:

<file>${cassandra.logdir}/system.log</file>

 Configuring Logging Through Logback
Cassandra’s logging capabilities are supported by SLF4J with a logback backend. You can

manually configure logging by configuring the logback.xml (or the logback-test.xml)

file that’s automatically installed with Cassandra.

Since logback is a critical part of Cassandra logging, I review the essentials of the

logback framework in the following section.

 The Logback Logging Framework
Logback is a successor to the well-known log4j logging framework. Logback was created

by the same person who created log4j and it builds on the previous work on log4j, which

has been highly successful as a logging framework. As the creator of Logback says: “If

you like log4j, you’ll love Logback.”

The Logback framework offers many benefits over log4j, such as

• An extensive battery of tests, leading to a highly dependable logging

framework

• Automatic reloading of configuration files after you modify them

• Automatic compression of archived log files during rollover

• Automatic removal of old log archives

• Conditional processing of configuration files using if-then constructs,

so a single configuration file can serve multiple environments

• The SiftingAppender is highly versatile, and you can use it to separate

logging according to various runtime attributes, such as user

sessions.

In the following section, I briefly describe how the Logback logging framework

works.

Chapter 10 Monitoring, Logging, and MetriCs

354

 Main Components of the Logback Framework: Logger,
Appenders, and Layouts

Logback uses three main components that work together to log messages according to

message types and level, and control the formatting of the messages and where it reports

the log messages. These three main classes are the following:

• Logger

• Appender

• Layout

Logger

The logger class determines what Logback will log. It allows Logback to selectively

enable or disable logging requests based on their logger. The root logger is at the top

of the hierarchy and is part of every hierarchy. Loggers may be assigned levels such as

TRACE, DEBUG, ERROR, etc. A logger will inherit its log level from its ancestor if you

don’t assign it one. The root logger always has an assigned level, which is DEBUG by

default. This ensures that all child loggers of the root logger will inherit a level.

Logback orders its logging levels as follows:

TRACE < DEBUG < INFO < WARN < ERROR

If you set the log level of the root logger to Level.OFF, the highest log level, you’ll be

completely turning off logging.

Appender

An appender is responsible for writing a logging event to components, and it points to

one or more output destinations where Logback allows logging requests to print. For

example, a logging request can be printed to the console (appender name=‘CONSOLE”),

files (<appender name="FILE" class="ch.qos.logback.core.FileAppender">), and

databases such as MYSQL and Oracle, as well as remote Linux Syslog daemons.

You can configure more than one appender to a logger. Appenders inherit additively

from the logger hierarchy, meaning that if you add a console appender to the root logger,

then all logging requests will show up on the console.

Chapter 10 Monitoring, Logging, and MetriCs

355

The special appender RollingFileAppender has the capability to roll over log files.

This appender can, for example, log to file named mylog.txt, and after it satisfies some

conditions that you set, change its logging target over to a different file.

You can add filters to an appender to filter events by criteria such as the contents of

the log message or the time of the day.

Layout

Whereas an appender helps you customize the output destination, the layout class

customizes the output format. You do this by associating a layout with an appender.

A layout configures the formatting of the logging request, and the appender is

responsible for sending the formatted output to the destinations you configure.

 The logback.xml File

The following is a sample logback.xml file showing various types of appenders:

<configuration scan="true">

 <jmxConfigurator />

 <!-- No shutdown hook; we run it ourselves in StorageService after

shutdown -->

 <!-- SYSTEMLOG rolling file appender to system.log (INFO level) -->

 <appender name="SYSTEMLOG" class="ch.qos.logback.core.rolling.Rolling

FileAppender">

 <filter class="ch.qos.logback.classic.filter.ThresholdFilter">

 <level>INFO</level>

 </filter>

 <file>${cassandra.logdir}/system.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindow

RollingPolicy">

 <fileNamePattern>${cassandra.logdir}/system.log.%i.zip</fileName

Pattern>

 <minIndex>1</minIndex>

 <maxIndex>20</maxIndex>

 </rollingPolicy>

 <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBased

TriggeringPolicy">

Chapter 10 Monitoring, Logging, and MetriCs

356

 <maxFileSize>20MB</maxFileSize>

 </triggeringPolicy>

 <encoder>

 <pattern>%-5level [%thread] %date{ISO8601} %F:%L - %msg%n</pattern>

 </encoder>

 </appender>

 <!-- DEBUGLOG rolling file appender to debug.log (all levels) -->

 <appender name="DEBUGLOG" class="ch.qos.logback.core.rolling.Rolling

FileAppender">

 <file>${cassandra.logdir}/debug.log</file>

 <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindow

RollingPolicy">

 <fileNamePattern>${cassandra.logdir}/debug.log.%i.zip</

fileNamePattern>

 <minIndex>1</minIndex>

 <maxIndex>20</maxIndex>

 </rollingPolicy>

 <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBased

TriggeringPolicy">

 <maxFileSize>20MB</maxFileSize>

 </triggeringPolicy>

 <encoder>

 <pattern>%-5level [%thread] %date{ISO8601} %F:%L - %msg%n</pattern>

 </encoder>

 </appender>

 <!-- ASYNCLOG assynchronous appender to debug.log (all levels) -->

 <appender name="ASYNCDEBUGLOG" class="ch.qos.logback.classic.

AsyncAppender">

 <queueSize>1024</queueSize>

 <discardingThreshold>0</discardingThreshold>

 <includeCallerData>true</includeCallerData>

 <appender-ref ref="DEBUGLOG" />

 </appender>

 <!-- STDOUT console appender to stdout (INFO level) -->

 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

Chapter 10 Monitoring, Logging, and MetriCs

357

 <filter class="ch.qos.logback.classic.filter.ThresholdFilter">

 <level>INFO</level>

 </filter>

 <encoder>

 <pattern>%-5level [%thread] %date{ISO8601} %F:%L - %msg%n</pattern>

 </encoder>

 </appender>

 <!-- Uncomment bellow and corresponding appender-ref to activate logback

metrics

 <appender name="LogbackMetrics" class="com.codahale.metrics.logback.

InstrumentedAppender" />

 -->

 <root level="INFO">

 <appender-ref ref="SYSTEMLOG" />

 <appender-ref ref="STDOUT" />

 <appender-ref ref="ASYNCDEBUGLOG" /> <!-- Comment this line to disable

debug.log -->

 <!--

 <appender-ref ref="LogbackMetrics" />

 -->

 </root>

 <logger name="org.apache.cassandra" level="DEBUG"/>

 <logger name="com.thinkaurelius.thrift" level="ERROR"/>

</configuration>

Note You can use either .xml or .groovy as the file extension for the Logback
configuration file. in our case, i use .xml.

When you need to dig deep into the internals of Cassandra, one of the best things to

do is to modify the logging level to a more “liberal” level, meaning one that shows more

details about the operations Cassandra is performing (or failing to perform!).

Chapter 10 Monitoring, Logging, and MetriCs

358

The default logging level of INFO doesn’t generate many details about operations,

simply providing the status of operations, as shown here:

WARN [main] 2017-04-03 13:06:55,973 DatabaseDescriptor.java:493 - Small

cdc volume detected at ./../data/cdc_raw; setting cdc_total_space_in_mb to

2377. You can override this in cassandra.yaml

INFO [main] 2017-04-03 13:06:56,882 CassandraDaemon.java:472 - Hostname:

ubuntu

INFO [main] 2017-04-03 13:06:56,887 CassandraDaemon.java:479 - JVM vendor/

version: Java HotSpot(TM) 64-Bit Server VM/1.8.0_121

INFO [main] 2017-04-03 13:06:56,897 CassandraDaemon.java:480 - Heap size:

476.000MiB/476.000MiB

INFO [main] 2017-04-03 13:06:56,911 CassandraDaemon.java:485 - Par

Eden Space Heap memory: init = 83886080(81920K) used = 77260784(75449K)

committed = 83886080(81920K) max = 83886080(81920K)

You can change the default logging level to DEBUG by modifying the logback.xml

file as follows:

<root level="DEBUG">

 <appender-ref ref="FILE" />

 <appender-ref ref="STDOUT" />

</root>

You don’t have to restart Cassandra after modifying the logback.xml file because the

database scans the logback.xml file every minute looking for changes, provided you’ve

added the following line to the file:

<configuration scan="true">

Tip in production environments, make sure you set the logging level to a sparser
level such as Warn or error because voluminous logging output will hurt
performance.

Chapter 10 Monitoring, Logging, and MetriCs

359

Configuring Automatic Loading of Configuration Files

You configure Logback to scan for changes in the configuration file and automatically

reconfigure itself when you make any logging-related configuration changes. You do this

by setting the scan attribute of the <configuration> element to true:

<configuration scan="true">

 ...

</configuration>

Configuring Appenders

You configure appenders with the <appender> element. This element takes two

mandatory attributes: name and class. The name attribute names the appender, and the

class attribute points to the name of the appender class.

The <appender> element may additionally contain <layout>, <encoder>, and

<filter> elements.

 Setting Up Log Rotation

By default, Cassandra rolls the system.log file once it reaches 20MB in size. It also

compresses the older archived log files in zip format and names them as system.

log.1.zip, system.log.2.zip, and so on.

You can configure the following rolling policies in Logback:

• Location and name of the log file

• Location and name of the archive file

• Maximum log file size to trigger rolling to a new log file

• The log levels

The default logging level is INFO. You can set ALL, TRACE, DEBUG, WARN, and

ERROR as the logging level. You can turn off all logging by setting the OFF logging level.

 Using Nodetool to Set the Logging Level for a Service
Instead of editing the logback.xml file, you can run the nodetool setlogginglevel

command to set the logging level from the command line.

Chapter 10 Monitoring, Logging, and MetriCs

360

 Setting the Log Level

The following is the syntax for setting the log level of a service from the command line

with the nodetool setlogginglevel command:

$ nodetool <options> setlogginglevel -- < class_qualifier > < level >

In this command,

• class_qualifier is the logger class qualifier, for example, org.

apache.cassandra.service.StorageProxy.

• level is the logging level.

You can set the following values for the class_qualifier option:

• org.apache.cassandra

• org.apache.cassandra.db

• org.apache.cassandra.service.StorageProxy

You can choose the log level from among ALL, TRACE, DEBUG, INFO, WARN, and

ERROR. You can set the level attribute to OFF to turn off all logging.

You can see more details about the operations the database is performing by setting

the logging level to DEBUG. The following example shows how to set the StorageProxy

service to the DEBUG level:

 $ nodetool setlogginglevel org.apache.cassandra.service.StorageProxy DEBUG

 Checking the Current Log Level

You can check the current log level with the nodetool getlogginglevels command, as

shown here:

$ nodetool getlogginglevels

Logger Name Log Level

ROOT INFO

com.thinkaurelius.thrift ERROR

org.apache.cassandra DEBUG

org.apache.cassandra.service.StorageProxy INFO

$

Chapter 10 Monitoring, Logging, and MetriCs

361

 Monitoring Cassandra with Nagios
In a production environment, it’s good to use a powerful enterprise-wide monitoring

tool to check on your Casandra cluster. Nagios is a popular open source monitoring

system, and it offers numerous capabilities to monitor Cassandra clusters.

Nagios uses the Nagios Remote Plugin Executor (NRPE) to monitor remote hosts on

which Cassandra instances are running.

You need to install and configure the NRPE agents on the remote hosts. NRPE

requires Nagios plugins, so you need to install the plugins as agents to monitor the local

resources on the remote hosts.

In the following sections, I show how to install Nagios 4 on an Ubuntu server. I then

show how to install NRPE and configure it. I start with the prerequisites you need to work

with Nagios.

 Installing the LAMP Stack and Addressing Other
Prerequisites
A LAMP stack is a set of open source software that enables servers to host dynamic

websites and web applications. The LAMP acronym stands for the following four

components:

• The Linux operating system

• The Apache web server

• The MySQL database

• PHP

In the following sections I explain how to install LAMP. You likely already have the

Linux OS, so you need to install the Apache web server, the MySQL database, and PHP.

 1. Install and start the Apache web server.

$ sudo apt-get install apache2

$ sudo systemctl restart apache2

 2. Install the MySQL database.

$ sudo apt-get install mysql-server

Chapter 10 Monitoring, Logging, and MetriCs

362

You can run the MySQL security script at this point to remove

insecure default configurations and lock down database access.

$ mysql-secure_installation

 3. Install PHP. The following command will install PHP 5:

$ sudo apt-get install php libapache2-mod-php php-mcrypt

php-mysql

 4. By default, when a server requests a directory, Apache will first

look for a file named index.html. You want to make Apache

look first for an index.php file instead. To do this, edit the /etc/

apache2/mode-enabled/dir.conf file, which looks as follows:

<IfModule mod_dir.c>

 DirectoryIndex index.html index.cgi index.pl index.php

index.xhtml index.htm

</IfModule>

Just move the index.php file to the head of the line, right before

the DirectoryIndex file. Close and save the file.

 5. Restart the Apache server so the changes you made in Step 4 go

into effect.

$ sudo systemctl restart apache2

 6. Check that the MySQL and PHP are running O.K. You can

confirm the status of the Apache server by running the following

command:

$ sudo systemctl status apache2

 7. And you can confirm that you’ve properly configured PHP by

running a basic PHP script named info.php (/var/www/html/

info.php).

<?php

pPhpinfo();

?>

Chapter 10 Monitoring, Logging, and MetriCs

363

Once you do this, visit the following address in a browser:

http://<your -server_IP_address>/info.php

You should see a nice web page showing details about the PHP installation. You’re

good to go as far as the LAMP stack is concerned. Before you can install Nagios, however,

you must complete several prerequisites, which I explain next.

 Creating the Nagios User and Group

You need a user to run the Nagios server. Create a user named nagios that belongs to a

group named nagcmd.

$ sudo useradd nagios

$ sudo groupadd nagcmd

$ sudo usermod -a -G nagcmd nagios

 Installing the Build Dependencies

You’re installing Nagios Core (the free version) from source, so you’ll need to install

additional binaries to complete the build. You’ll also need apache2-utils to set up your

Nagios web interface. You can install all the requisite packages thus:

$ sudo apt-get install build-essential libgd2-xpm-dev openssl libssl-dev

xinetd apache2-utils

Finally, with all the prerequisites completed, you’re ready to install Nagios itself.

 Installing Nagios
To install Nagios, you must download the source, configure it, and compile (build) it.

 Downloading Nagios

Download the source for the latest stable Nagios version and extract the archive, as

shown here:

$ cd ~

$ curl -L -O https://assets.nagios.com/downloads/nagioscore/releases/

nagios- 4.1.1.tar.gz

$ tar xvzf nagios-*.tar.gz

$ cd nagios-*

Chapter 10 Monitoring, Logging, and MetriCs

364

 Configuring Nagios

Before you can build Nagios Core, you must install the packages.

$./configure --with-nagios-group=nagios --with-command-group=nagcmd

 Compiling and Installing Nagios

Compile Nagios and run additional commands to install Nagios.

$ sudo make

$ sudo make install

$ sudo make install-commandmode

$ sudo make install-init

$ sudo make install-config

$ sudo /usr/bin/install -c -m 644 sample-config/httpd.conf /etc/apache2/

sites-available/nagios.conf

Finally, add the web server user www-data to the nagcmd group, so you can issue

external commands to Nagios via the web interface.

$ sudo usermod -G nagcmd www-data

 Installing the Nagios Plugins
The next big step is to install the Nagios plugins. You follow similar steps as you did with

the Nagios server installation in the previous section. I summarize the steps here.

$ cd ~

$ curl -L -O http://nagios-plugins.org/download/nagios-plugins-2.1.1.tar.gz

$ tar xvf nagios-plugins-*.tar.gz

$ cd nagios-plugins-*

$./configure --with-nagios-user=nagios --with-nagios-group=nagios --with-

openssl

$ make

$ sudo make install

Chapter 10 Monitoring, Logging, and MetriCs

365

You can verify the configuration thus:

$ sudo /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

...

Running pre-flight check on configuration data...

...

$

Note You can easily create custom plugins for nagios. the only requirements are
that the plugin be executable through the command prompt, and that it return one
of these exit values: o.K., Warning, Critical, or Unknown state.

 Installing NRPE
The downloading, configuring, and building of NRPE follows the same steps as that of

Nagios and the Nagios plugins. The following are the steps:

$ cd ~

$ curl -L -O http://downloads.sourceforge.net/project/nagios/nrpe-2.x/

nrpe- 2.15/nrpe-2.15.tar.gz

$ tar xvf nrpe-*.tar.gz

$ cd nrpe-*

$./configure --enable-command-args --with-nagios-user=nagios --with-

nagios- group=nagios --with-ssl=/usr/bin/openssl --with-ssl-lib=/usr/lib/

x86_64-linux-gnu

$ make all

$ sudo make install

$ sudo make install-xinetd

$ sudo make install-daemon-config

Add the private IP address of the Nagios server at the end of the only_from line in the

xinetd startup script, /etc/xinetd.d/nrpe.

only_from = 127.0.0.1 192.168.159.129

Chapter 10 Monitoring, Logging, and MetriCs

366

Restart the xinetd service to start NRPE.

$ sudo service xinetd restart

 Configuring Nagios and Apache
Although you installed and built Nagios earlier, you still have some more configuring left

to do for both the Nagios server and the Apache web server.

 Configuring Nagios

Edit the main Nagios configuration file (/usr/local/Nagios/etc/nagios/cfg) as

follows:

cfg_dir=/usr/local/nagios/etc/servers

Each of the hosts in your Cassandra cluster will have a configuration file that’s stored

in this directory. You must create the directory.

$ sudo mkdir /usr/local/nagios/etc/servers

It’s also a good idea to edit the contacts configuration file (/usr/local/nagios/etc/

objects/contacts.cfg), and replace the value for email with your own email address.

You also need a new command at the end of the Nagios configuration file, /usr/

local/nagios/etc/objects/commands.cfg.

define command{

 command_name check_nrpe

 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$

}

 Configuring Apache
You must next configure the Apache web server, as explained in the following steps.

 1. Enable the Apache rewrite and cgi modules, as shown here:

$ sudo a2enmod rewrite

$ sudo a2enmod cgi

Chapter 10 Monitoring, Logging, and MetriCs

367

 2. Create an admin user named nagiosadmin using the htpasswd

utility, which will help you access the Nagios web interface.

$ sudo htpasswd -c /usr/local/nagios/etc/htpasswd.users

nagiosadmin

New password:

Re-type new password:

Adding password for user nagiosadmin

 3. Start the Nagios and Apache servers.

$ sudo service nagios start

$ sudo service apache2 restart

 Adding the Cassandra Cluster Hosts for Monitoring
There are three things you need to do to enable the monitoring of your Cassandra hosts

via Nagios:

• Install and configure NRPE on the cluster’s hosts (nodes).

• Add the hosts to the Nagios server configuration.

• Add the services you want to monitor on the hosts.

 Installing and Configuring NRPE on the Hosts

On each of the hosts that you’d like to monitor, do the following.

 1. Update apt-get.

$ sudo apt-get update

 2. Install the Nagios plugins and the Nagios remote plugin executor

(NRPE).

$ sudo apt-get install nagios-plugins nagios-nrpe-server

 3. Update the NRPE configuration file (/etc/nagios/nrpe.cf)

and add the IP address of the Nagios server as a value for the

allowed_hosts property.

allowed_hosts=127.0.0.1,172.31.22.133

Chapter 10 Monitoring, Logging, and MetriCs

368

 4. Restart NRPE.

$ sudo service nagios-nrpe-server restart

 Adding Hosts to the Nagios Server Configuration

Create a separate configuration file on the Nagios server for each of the Cassandra hosts

you want to monitor. For example, for a server named host1, you must create the file

host1.cfg (/usr/local/nagios/etc/servers/host1.cfg).

In the host1.cfg file, add the host definition, as shown here:

define host {

 use linux-server

 host_name host1

 alias Nagios Agent 1

 address 192.168.159.130

 max_check_attempts 5

 check_period 24x7

 notification_interval 30

 notification_period 24x7

}

$ sudo service nagios start

At this time, Nagios can monitor just two basic things: it can tell you if the host is up

or down. You need to configure the services you want Nagios to monitor by adding the

services, as shown in the next section.

 Adding Cassandra-Specific Plugins

The next step is to show you how to download and test a Cassandra-specific plugin.

This plugin is named Check Cassandra Status and Heap Memory and it can report on

a node’s status (UP/DOWN) as well as memory heap utilization WARNING/CRITICAL

notifications.

Chapter 10 Monitoring, Logging, and MetriCs

369

Follow these steps to work with the plugin.

 1. Change the working directory to the /user/local/nagios/

libexec directory.

$ cd /usr/local/nagios/libexec

 2. Download the plugin (cassandra.pl) and change permissions

to it.

$ wget "https://exchange.nagios.org/components/com_mtree/

attachment.php?link_id=3819&cf_id=24"

-O cassandra.pl

$ chmod +x cassandra.pl

$ chown nagios:nagios cassandra.pl

 3. Test to make sure the plugin works.

$./cassandra.pl

CASSANDRA OK - | heap_mem=5.59

$

The output of the test shows that the plugin works fine. If you

see an error message instead, edit the cassandra.pl file and

make sure that the $nodetool_path variable points to the correct

location for the nodetool binary.

 4. Configure NREP so Nagios can execute the plugin. Edit the /usr/

local/nagios/etc/nrpe.cfg file in the Cassandra server and add

the following line at the end of the file:

. command[cassandra]=/usr/local/nagios/libexec/cassandra.

pl $ARG1$

 5. Restart the xinetd service on the Cassandra server.

$ sudo service xinetd restart

 6. Open a session with the server on which Nagios is running, and

execute the following command:

Chapter 10 Monitoring, Logging, and MetriCs

370

$ sudo /usr/local/nagios/libexec/check_nrpe -H

192.168.159.130 -c cassandra

CASSANDRA OK - | heap_mem=10.32

$

The output shows you’ve correctly configured NRPE on the Cassandra server. You

can then add this configuration to the Nagios server.

 Summary
Nodetool commands such as nodetool tablestats and nodetool tablehistograms

help you learn key facts about the SSTables. Other nodetool commands such as

nodetool status and nodetool info help monitor the cluster status.

I discussed logging at some length. Logging isn’t a mere incidental byproduct of

activity in a database. Logging is a valuable source of information for both what went

right and what went wrong in a cluster. Cassandra allows you to configure logging in

multiple ways, and customizing logging to suit your needs is a good strategy that helps

you to effectively troubleshoot and monitor your databases.

JConsole is simple to set up and is helpful in tuning the performance of a database.

I discussed Nagios at length, but there’s a lot more to it, so I barely scratched the surface

here. I used the free version of Nagios in my examples; the paid version offers more

capabilities plus support! Whether it be Nagios or some other tool, a powerful graphical

tool is essential to cluster management.

Chapter 10 Monitoring, Logging, and MetriCs

371
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_11

CHAPTER 11

Tuning Cassandra
Performance
Cassandra has numerous configuration knobs, and nowhere is this truer than in the

area of performance tuning, where the database administrator can control several

aspects of performance. Out of the box, Cassandra runs with default settings for many

performance-related configuration properties. As an administrator, you should know

these defaults and modify them to suit your environment.

This chapter focuses on the following areas of Cassandra performance:

• Tracing queries to analyze database performance

• Caching data

• Compaction strategies

• Compression

• Tuning Bloom filters

• Tuning the JVM and garbage collection strategies

• Stress testing with the cassandra-stress tool

 Using Tracing to Analyze Performance
When you’re tuning database performance, you can turn on tracing in a database to get

detailed transaction information about the internal operations Cassandra performs.

Tracing is valuable in tracking the time Cassandra spends during various stages of query

372

processing, such as the parsing and executing of a query. Tracing provides detailed

timing information pertaining to actions such as the following:

• Preparing a SQL statement

• Read repair related activity

• Memtable and SSTable data lookups

• Key cache searches

• Interactions among a cluster’s nodes

Tracing data is highly useful in evaluating query efficacy. For example, inappropriate

or superfluous secondary indexes show up in a high inter-node activity among the nodes

when you trace a query that involves those indexes.

Note Turning tracing on will help trace two broad types of activity in a cluster:
queries and repair operations.

By default, Cassandra disables tracing. Once you enable tracing, Cassandra captures

the transaction details in the system_traces keyspace. Two tables in this keyspace hold

the trace data:

• system_traces.session: Stores high-level details of transactions,

such the length of the transaction and the session ID.

• system_traces.events: Stores detailed information about all

operations the database performs.

 ■ Note Cassandra can only store the tracing data for a limited period. So, if
you wish to hold on to tracing data for a longer period, you must configure the
following properties:

tracetype_query_ttl: Sets the TTL for different trace types used during
logging of the query process. Default value is 86,400 seconds (1 day).

tracetype_repair_ttl: Sets the TTL for different trace types used during
logging of the repair process. Default value is 604,800 seconds (about a week).

ChapTer 11 Tuning CaSSanDra performanCe

373

The types of database activity that the system_traces.events table captures reveal

the operations that Cassandra performs when you issue a query.

cqlsh> select activity from system_traces.events;

 activity

----------- Parsing select id from cycling.cyclist_name;

Preparing statement

Computing ranges to query

 Submitting range requests on 513 ranges with a concurrency of 112 (0.9

rows per range expected)

 Executing seq scan across 0 sstables for (min(-9223372036854775808),

max(-9196210656004250337)]

 Read 0 live and 0 tombstone cells

 Enqueuing request to /192.168.159.129

 Sending RANGE_SLICE message to /192.168.159.129

RANGE_SLICE message received from /192.168.159.130

Enueuing request to /192.168.159.129

Enqueuing response to /192.168.159.130

Sending RANGE_SLICE message to /192.168.159.129

Processing response from /192.168.159.129

RANGE_SLICE message received from /192.168.159.130

Executing seq scan across 0 sstables for (max(-8175039996930460291),

max(-8066091505323311933)]

 Read 0 live and 0 tombstone cells

...

cqlsh>

ChapTer 11 Tuning CaSSanDra performanCe

374

 Managing Tracing
You can check the status of tracing thus:

cqlsh> tracing

Tracing is currently disabled. Use TRACING ON to enable.

cqlsh>

It’s simple to turn on tracing in the database; just run the tracing on command.

cqlsh> tracing on;

Now Tracing is enabled

cqlsh> tracing;

Tracing is currently enabled. Use TRACING OFF to disable

cqlsh>

To turn off all tracing, run the tracing off command.

cqlsh> tracing off;

Disabled Tracing.

cqlsh>

 Managing Probabilistic Tracing

Cassandra uses a probabilistic tracing strategy wherein you can configure the probability

of the percentage of statements that the database will trace. The probability is on a per-

node basis. A probability of 1.0 means that the database will trace all SQL statements,

and a setting of 0.5 means it’s likely to trace about 50 percent of all requests.

The default probability is 0.0, which means tracing is disabled. Higher probability

settings involve a higher number of writes, and sometimes this can adversely affect

cluster performance, so you must exercise caution when setting the tracing probability.

Cassandra recommends that you start with a small probability setting such as 0.001

and raise it gradually based on what’s happening in the database. Even a low setting such

as this can have a significant impact on database performance, so be sure to look out for

a performance hit.

ChapTer 11 Tuning CaSSanDra performanCe

375

The nodetool gettraceprobability command shows the current trace probability.

$ nodetool gettraceprobability

Current trace probability: 0.0

$

You can set the trace probability by running the nodetool settraceprobability

command for tracing a read or write request, as shown here:

$ nodetool settraceprobability 0.1

$ nodetool gettraceprobability

Current trace probability: 0.1

$

The system_traces.sessions table shows valuable information about the traces.

cqlsh> select * from system_traces.sessions;

session_id | client | command | coordinator | duration |

parameters | request | started_at

----------------+ ---------+---------+--------------+-----------+

----------------d7103660- 81e4- 11e7-a4ad-89801d899afb

| 127.0.0.1 | QUERY | 192.168.159.130 | 506051 |

{'consistency_level': 'ONE', 'page_size': '100', 'query': 'select * from

cycling.cyclist_name;', 'serial_consistency_level': 'SERIAL'} | Execute

CQL3 query | 2017-08-15 18:09:11.878000+0000

 189ff700-81e5-11e7-a4ad-89801d899afb | 127.0.0.1 | QUERY |

192.168.159.130 | 6848 | {'consistency_level': 'ONE', 'page_size':

'5000', 'query': 'SELECT * FROM system_traces.sessions WHERE session_id

= 185a6280-81e5-11e7-a4ad-89801d899afb', 'serial_consistency_level':

'SERIAL'} | Execute CQL3 query | 2017-08-15 18:11:01.872000+0000

185a6280-81e5-11e7-a4ad-89801d899afb | 127.0.0.1 | QUERY |

192.168.159.130 | 177343 | {'consistency_level':

'ONE', 'page_size': '100', 'query': 'select * from cycling.cycle;',

'serial_consistency_level': 'SERIAL'} | Execute CQL3 query | 2017-08-15

18:11:01.416000+0000

...

(11 rows)

cqlsh>

ChapTer 11 Tuning CaSSanDra performanCe

376

 How to Trace Write and Read Requests
Tracing is resource intensive and it can consume vast amounts of storage. Tracing

selectively is the right strategy, instead of enabling tracing for the entire database. In this

section, I show how to trace specific read and write requests.

 Tracing a Write Request

Here’s a simple example that shows how to get trace information for a write request

(insert statement). You first turn on tracing and then insert a row in the cyclist_name

table (output shows partial data).

cqlsh> tracing on;

Now Tracing is enabled

cqlsh> insert into cycling.cyclist_name (id, lastname, firstname) values

(uuid(), 'FRAME', 'Nina');

Tracing session: bdfdf410-8116-11e7-81bd-63c57c069fd1

 activity |

timestamp | source | source_elapsed | client

Execute CQL3 query | 2017-08-14 10:33:53.489000 | 192.168.159.130 |

 0 | 127.0.0.1

Determining replicas for mutation [Native-Transport-Requests-1] | 2017-08-

14 10:33:53.522000 | 192.168.159.130 | 32844 | 127.0.0.1

MUTATION message received from /192.168.159.130 [MessagingService-

Incoming-/192.168.159.130] | 2017-08-14 10:33:53.530000 | 192.168.159.129 |

 843 | 127.0.0.1

Sending MUTATION message to /192.168.159.129 [MessagingService-Outgoing-/

192.168.159.129-Small] | 2017-08-14 10:33:53.532000 | 192.168.159.130

| 42754 | 127.0.0.1

Appending to commitlog [MutationStage-1] | 2017-08-14 10:33:53.532000 |

192.168.159.129 | 2668 | 127.0.0.1

Adding to cyclist_name memtable [MutationStage-1] | 2017-08-14

10:33:53.532000 | 192.168.159.129 | 3181 | 127.0.0.1

Processing response from /192.168.159.129 [RequestResponseStage-3] |

2017-08-14 10:33:53.545000 | 192.168.159.130 | 56321 | 127.0.0.1

ChapTer 11 Tuning CaSSanDra performanCe

377

 Request complete | 2017-08-14 10:33:53.546583 |

192.168.159.130 | 57583 | 127.0.0.1

The trace data shows the following bits of information:

• The target nodes where Cassandra replicates the row you’ve inserted

• How Cassandra appends the new data to the commitlog

• How the database adds the new data to the memtable

• How the database confirms (“Request complete”) that the request to

insert the data was successfully completed

 Tracing a Read Request

Tracing a read request produces a lot more data than tracing a write request, so be

careful when you trace these requests. Part of the reason for the dense trace data is

because Cassandra spreads rows across multiple SSTables, and so it must read multiple

SSTables to retrieve data. The trace shows all requests that the database makes to fulfill

the read request.

Here’s a partial output for a simple select statement:

cqlsh> select * from cycling.cyclist_name;

 id | firstname | lastname

--------------------------------------+-----------+-----------------

 69f1cb04-687d-4be7-a91f-72ef037c5514 | Sammy | FRAME

 e7ae5cf3-d358-4d99-b900-85902fda9bb0 | Alex | FRAME

 d378af39-1a28-474c-836b-aa960fed6f2b | Nina | FRAME

 fb372533-eb95-4bb4-8685-6ef61e994caa | Michael | MATTHEWS

 5b6962dd-3f90-4c93-8f61-eabfa4a803e2 | Marianne | VOS

 220844bf-4860-49d6-9a4b-6b5d3a79cbfb | Paolo | TIRALONGO

 6ab09bec-e68e-48d9-a5f8-97e6fb4c9b47 | Steven | KRUIKSWIJK

 e7cd5752-bc0d-4157-a80f-7523add8dbcd | Anna | VAN DER BREGGEN

(8 rows)

ChapTer 11 Tuning CaSSanDra performanCe

378

Tracing session: b2b0eda0-8117-11e7-81bd-63c57c069fd1

 activity |

timestamp | source | source_elapsed | client

Execute CQL3 query | 2017- 08- 14 10:40:44.026000 | 192.168.159.130

| 0 | 127.0.0.1

Parsing select * from cycling.cyclist_name; [Native-Transport-Requests-1] |

2017- 08- 14 10:40:44.027000 | 192.168.159.130 | 364 | 127.0.0.1

Preparing statement [Native-Transport-Requests-1] | 2017- 08- 14

10:40:44.027000 | 192.168.159.130 | 503 | 127.0.0.1

RANGE_SLICE message received from /192.168.159.130 [MessagingService-

Incoming-/192.168.159.130] | 2017- 08- 14 10:40:44.073000 | 192.168.159.129

| 22 | 127.0.0.1

Sending REQUEST_RESPONSE message to /192.168.159.130 [MessagingService-

Outgoing-/192.168.159.130-Small] | 2017-08-14 10:40:44.086000 |

192.168.159.129 | 13202 | 127.0.0.1

RANGE_SLICE message received from /192.168.159.130 [MessagingService-

Incoming-/192.168.159.130] | 2017- 08- 14 10:40:44.095000 | 192.168.159.129

| 18 | 127.0.0.1

REQUEST_RESPONSE message received from /192.168.159.129 [MessagingService-

Incoming

... Processing response from /192.168.159.129

[RequestResponseStage-5] | 2017-08-14 10:40:44.557001 | 192.168.159.130

| 531160 | 127.0.0.1

Request complete | 2017-08-14 10:40:44.562582 | 192.168.159.130

| 536582 | 127.0.0.1

cqlsh>

The output shows how Cassandra parses the CQL statement and prepares it

before sending a request message, to which the receiving node responds with a

response message. Finally, the Request Complete comment shows that the request was

successfully processed by the node(s).

ChapTer 11 Tuning CaSSanDra performanCe

379

 Tuning Bloom Filters
As I explained in Chapter 5, Bloom filters are a performance aid for Cassandra. They help

the database during an index scan by letting it know if an SSTable has data for a specific

partition. When clients request data, the Bloom filter checks if the row exists before the

database performs disk I/O.

Configuring Bloom filters involves a tradeoff between memory usage and the

probability of finding the data quickly, using less I/O than otherwise.

 Configuring Bloom Filters
You can set the bloom_filter_fp_chance attribute for a table to a value between 0 and 1.

As you go from 0 to 1, you use less memory. A value of 0 means you set the largest value

for the Bloom filter and use the highest amount of memory. Setting it to 1 means that

you’ve disabled Bloom filters.

The default value for the bloom_filter_fp_chance attribute depends on the

compaction strategy in place. The following are the values for this attribute under

Cassandra’s three main compaction strategies:

• For the LeveledCompactionStrategy: 0.1

• For the SizeTieredCompactionStrategy,

DataTieredCompactionStrategy, and

TimeWindowCompactionStrategy: 0.01.

The recommended value for the bloom_filter_fp_chance attribute is 0.1. Higher

values aren’t necessarily helpful since raising the value produces diminishing returns.

This is because higher values consume more memory but yield a disproportionately

smaller performance benefit. You can set the property at the time you create a table,

or later.

 Regenerating Bloom Filters
Whenever you change the value of the bloom_filter_fp_chance attribute for a table,

you must regenerate the Bloom filters. You can regenerate the Bloom filters in two ways:

you can run a manual compaction of the table or upgrade the SSTables.

ChapTer 11 Tuning CaSSanDra performanCe

380

To manually compact a table, run the nodetool compact command. The nodetool

compact command has the following syntax:

nodetool [options] compact [(-et <end_token> | --end-token <end_token>)]

[(-s | --split-output)] [(-st <start_token> | --start-token <start_token>)]

[--] [<keyspace> [<tables>...]]

[--user-defined] <SSTable file>...

You must specify the compaction strategy by selecting from the STCS, TWCS, and

the LCS compaction strategies. By default, the command runs major compaction on all

keyspaces and tables in the database, but you can limit the compaction to one or more

tables.

Manually compacting SSTables to regenerate Bloom filters is almost never a

good strategy. You can instead upgrade an SSTable when you change the value of the

bloom_filter_fp_chance property for that table. You do this by running the nodetool

upgradetsstables command. The command has the following syntax:

$ nodetool <options> upgradesstables

 (-a | --include-all-sstables)

 -- <keyspace> <table> ...

 Caching Data
To optimize Cassandra’s use of cache memory, you can configure the caching property

for a table. Caching helps Cassandra perform a warm restart of a node, wherein the

database periodically stores the cache to disk and reads it back into cache when you

restart the node. Not having the cache means the node will take longer to restart.

Caching is useful for very busy clusters. Caching data is not advisable for data

that’s not in high demand. Therefore, it’s a good idea to separate heavily read data into

separate tables so you can cache the data in those tables. It also isn’t a good idea to cache

data when dealing with tables that contain extremely long partitions.

ChapTer 11 Tuning CaSSanDra performanCe

381

 Types of Data Caches
There are two main types of data caches: the key cache and the row cache. (In addition,

you can also require Cassandra to cache counters, as I explain later.)

• Key cache: The key cache, also called the partition key cache, caches

the partition index for an SSTable. The database requires less disk reads

to fetch data from the key cache instead of getting the data either from

disk or from the OS page cache. Since the key cache offers more bang

for the buck in the sense that it increases the possibility of cache reads

without requiring too much memory, Cassandra enables it by default.

• Row cache: You can ask Cassandra to cache a specific number

of rows in a partition. You set the number of rows to cache with

the rows_per_partition table option. Since a row cache stores

entire rows instead of just the keys, it could lead to performance

deterioration when dealing with large data sets, which the database

may have to read from disk since memory may not be sufficient to

store all the data. Configure the row cache carefully since it may

sometimes hurt performance rather than help it.

Here are the key principles you ought to remember regarding the use of caching in a

Cassandra database:

• You don’t want to set both types of caching for a table. Pick either

partition key caching or row caching for a table.

• Row caching is more space intensive than key caching since it stores

entire rows. Therefore, it’s a good idea to use row caching selectively,

using it to cache only those rows that are frequently accessed by users

and clients.

• As to which tables you must cache, read-heavy tables are a good

target for caching. When the reads overwhelmingly outweigh writes

for a table, caching is something you want to consider.

Note Your users won’t be reading archived tables often so you can disable
caching for those tables.

ChapTer 11 Tuning CaSSanDra performanCe

382

 Where Cassandra Stores the Cached Data
Cassandra stores the row and key caches in a directory you can specify with the

configuration property saved_caches_directory. The default location of the saved_

caches_directory property is determined as follows:

• /var/lib/cassandra/saved_caches /* for package

installations

• install_location/data/saved_caches /* for tarball

installations

 Configuring Caching
You can set two attributes that determine caching behavior:

• keys: This property can take the values ALL or NONE. The value ALL

means all primary keys or rows. The value NONE means no primary

keys or rows. The default value is ALL.

• rows_per_partition: This property helps you set the number of

rows the database must cache in a partition. This attribute has three

values: ALL, NONE, and N. The values ALL and NONE have the same

meaning as for the keys attribute. The value N specifies the number of

rows per partition. The default value is NONE.

You set the table caching property to configure the partition key cache and the row

cache, either when creating a table or later. The following is the syntax for the caching

table property:

caching = {

 'keys' = 'ALL | NONE',

 'rows_per_partition' = 'ALL' | 'NONE' |N}

By default, this is what Cassandra uses for caching data:

{ 'keys' : 'ALL', 'rows_per_partition' : 'NONE' }

ChapTer 11 Tuning CaSSanDra performanCe

383

The following are a few examples that show how to configure caching properties. The

first example shows how to configure caching for a table. You specified NONE as the value

for the keys attribute so no primary keys or rows are cached. The database will cache 120

rows per partition.

CREATE TABLE test (

 userid text PRIMARY KEY,

 first_name text,

 last_name text,

)

WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : '120' };

You can cache materialized views in addition to SSTables. The following example

shows how to specify caching when creating a materialized view:

CREATE MATERIALIZED VIEW cycling.cyclist_by_age

AS SELECT age, name, country

FROM cycling.cyclist_mv

WHERE age IS NOT NULL AND cid IS NOT NULL

PRIMARY KEY (age, cid)

WITH caching = { 'keys' : 'ALL', 'rows_per_partition' : '100' }

;

The following example shows how to run the ALTER TABLE statement to cache all

cyclists in every age partition:

ALTER MATERIALIZED VIEW cycling.cyclist_by_age

WITH caching = {

 'keys' : 'ALL',

 'rows_per_partition' : 'ALL' } ;

 Global Caching Parameters
In the previous section, I explained how you can configure caching by setting caching

properties for a table. Cassandra also offers several global caching properties, which you

can configure in the cassandra.yaml file. I explain the global caching parameters in the

following sections.

ChapTer 11 Tuning CaSSanDra performanCe

384

 Configuring the Size of the Row Cache

When you configure row caching, you must set the number of rows per partition. There’s

no fixed rule stating that X percentage of rows is the right amount of rows to cache.

Instead, you size the row cache based on the workload patterns in your database.

Note By default, row caching is disabled and key caching is enabled.

You configure the size of the row cache at the database level by setting a value for the

row_cache_size_in_mb property in the cassandra.yaml file. This parameter determines

the maximum amount of memory Cassandra can allocate to store rows from the most

frequently read table partitions of a table. By default, the database doesn’t cache rows so

the parameter’s default value is 0.

A row cache potentially saves more time than the key cache, but it requires more

space since it caches the entire row. Therefore, you must use the row cache just

for rows in heavy demand or for rows that don’t change. Too low a value for the

row_cache_size_in_mb property may result in Cassandra not loading some of the hot

keys when the database starts up.

 Configuring the Size of the Key Cache

The key_cache_size_in_mb parameter allows you to set the maximum size of the key

cache for all tables in a database. The value of this parameter isn’t set by default, and

Cassandra sets the key cache to 5% of the heap size or 100MB, whichever is smaller. You

can disable key caching by setting the key_cache_size_in_mb parameter to 0.

 Configuring the Frequency of Caching

You can configure how frequently the database caches rows caches and partition key

caches to disk.

• The row_cache_save_period property determines how long (in

seconds) the database retains the rows in the cache before saving

them to the directory specified by the saved_caches_directory

property. Row caching is disabled by default, meaning the default

value of the row_cache_save_period parameter is 0.

ChapTer 11 Tuning CaSSanDra performanCe

385

• The key_cache_save_period parameter determines how long the

database keeps keys in the cache before saving them to the directory

specified by the saved_caches_directory property. The default value

is 4 hours (14,400 seconds).

 Specifying the Number of Keys to Save

By default, the database saves all keys from the row cache. You can configure the

row_cache_keys_to_save parameter to specify the number of keys to save. The default

value for this parameter is disabled, which means that all keys are saved.

Since by default the database doesn’t enable the row cache, the default value for the

row_cache_class_name parameter is disabled. You can specify one of the following two

values as the class name for the row cache provider to use:

• OHCProvider: Fully off-heap

• SerializingCacheProvider: Partially off-heap

The OHCProvider is newer, and benchmarking tests show that it offers roughly

15 percent better performance than the older, partially off-heap row cache provider.

 Using the Counter Cache
Besides the row and key caches, Cassandra also lets you configure a counter cache. The

counter cache stores counters that are in high demand, thus reducing the contention for the

counter cells. When the database finds a counter in the cache (cache hit), it needs to hold

the counter locks for a shorter period, speeding up the updating of the hot counter cells.

Cassandra enables the counter cache by default. The size of the counter cache

depends on the value you configure for the counter_cache_size_in_mb parameter. By

default this parameter isn’t set, and Cassandra uses the smaller of two values: 2.5% of the

heap or 50MB.

As with the row and key caches, Cassandra saves the counter cache (just the keys)

to disk in the directory you specify with the saved_caches_directory parameter. By

default, this parameter has the value 2 hours (7,200 seconds).

The other configuration property for managing the counter cache is the

counter_cache_keys_to_save parameter. You configure this property to tell the

database how many keys from the counter cache it must save. By default this property is

disabled, meaning Cassandra saves all keys.

ChapTer 11 Tuning CaSSanDra performanCe

386

If you perform counter deletes and use a low gc_grace_seconds setting,

you should disable the counter cache, which you can do by setting the value of the

counter_cache_size_in_mb parameter to zero.

 Monitoring Caching
The nodetool info command helps you monitor caching performance, thus helping

you adjust the row cache and key cache configuration based on current cache behavior.

Here’s an example:

$ nodetool info

ID : 0dbb9e0e-867e-4179-b6b6-631d38dd68f9

Gossip active : true

Thrift active : false

Native Transport active: true

Load : 12.46 MiB

Generation No : 1503673044

Uptime (seconds) : 91

Heap Memory (MB) : 117.82 / 1492.00

Off Heap Memory (MB) : 0.07

Data Center : datacenter1

Rack : rack1

Exceptions : 0

Key Cache : entries 47, size 3.94 KiB, capacity 74 MiB, 69

hits, 120 requests, 0.575 recent hit rate, 14400 save period in seconds

Row Cache : entries 0, size 0 bytes, capacity 0 bytes, 0 hits,

0 requests, NaN recent hit rate, 0 save period in seconds

Counter Cache : entries 0, size 0 bytes, capacity 37 MiB, 0 hits,

0 requests, NaN recent hit rate, 7200 save period in seconds

Chunk Cache : entries 30, size 1.88 MiB, capacity 341 MiB, 44

misses, 182 requests, 0.758 recent hit rate, 1072.447 microseconds miss

latency

Percent Repaired : 100.0%

Token : (invoke with -T/--tokens to see

$

ChapTer 11 Tuning CaSSanDra performanCe

387

The nodetool info command shows the following caching-related information for

all three of Cassandra’s caches (row, key, and counter):

• Number of entries in the cache

• Size of the cache in bytes

• Capacity of the cache

• Number of requests for cached data

• Number of cache hits

• The cache hit ratio (rate)

• The save period in seconds

 Tracing Database Operations to Optimize Caching
You can trace database reads to check if the read operations are getting data from the

cache or straight from the SSTables stored on disk. When you trace a query that refers to

a cached table, initially the trace shows that there was a row cache miss. When you rerun

the query, the trace reveals the “row cache hit” line, as shown here:

row cache miss [ReadStage:23]

row cache hit [ReadStage:35]

A row cache miss means that the database has read the data from disk. A row cache

hit, on the other hand, means that the database has found the data in the cache, saving

itself the trouble of going to disk to read the data. Remember that a cache read is always

many times faster than a read from disk.

The reason you see the “cache miss” early on is because it takes some time for the

database to cache data, especially if the table is large. Once the database puts the data in

the cache, subsequent queries will use the cached data instead of going to disk, meaning

the query is going to return the results quite fast. You’ll therefore see the “cache hit”

message in the traces.

Once data gets in the cache, it stays there and the database uses it for all queries that

refer to the data. However, if you update the data, it invalidates the cache. Cassandra

ignores the cached data under conditions such as the following:

ChapTer 11 Tuning CaSSanDra performanCe

388

• If the query requires data from the cache as well as from disk (that is,

cached+uncached data).

• When the query requests large amounts of data, which leads to the

exceeding of the global cache size limit.

• The query requests data that’s not at the beginning of the partition.

If any of these situations occur, you’ll see the following line from the trace of a query

that tries to use the cached data:

Ignoring row cache as cached value could not satisfy query [ReadStage:89]

In all of these cases, the cache proves to be insufficient to handle the query, forcing

Cassandra to perform expensive (high resource cost) disk reads instead of using the

more efficient cache reads. When you notice that the database is ignoring the row cache,

depending on the cause, you can do one of the following to make the database use the

cached data:

• Increase the cache size.

• Create a new table and place frequently accessed rows at the

beginning of the partition.

• Limit the output size for a query (with the LIMIT N option in a SELECT

statement) to keep the retrieved rows from exceeding the configured

cache size.

 Stress Testing Cassandra with cassandra-stress
Cassandra offers the cassandra-stress utility for benchmarking and load testing

your clusters. The tool is also useful in testing changes to key aspects of database

configuration, such as selecting a different compaction strategy. You can test read, write,

and mixed workloads.

Cassandra-stress is useful for optimizing your data model, testing how well the

database scales, and determining production capacity.

 Running cassandra-stress
You can find the cassandra-stress tool in the $CASSANDRA_HOME/tools/bin directory.

ChapTer 11 Tuning CaSSanDra performanCe

389

Issue the command cassandra-stress to get a quick idea about the tool’s

capabilities, as shown here:

$CASSANDRA_HOME/tools/bin$ cassandra-stress

No command specified

Usage: cassandra-stress <command> [options]

Help usage: cassandra-stress help <command>

---Commands---

read : Multiple concurrent reads - the cluster must first

be populated by a write test

write : Multiple concurrent writes against the cluster

mixed : Interleaving of any basic commands, with

configurable ratio and distribution - the cluster must first be populated

by a write test

counter_write : Multiple concurrent updates of counters.

counter_read : Multiple concurrent reads of counters. The cluster

must first be populated by a counterwrite test.

user : Interleaving of user provided queries, with

configurable ratio and distribution

help : Print help for a command or option

print : Inspect the output of a distribution definition

legacy : Legacy support mode

version : Print the version of cassandra stress

---Options---

-pop : Population distribution and intra-partition visit order

-insert : Insert specific options relating to various methods

for batching and splitting partition updates

-col : Column details such as size and count distribution,

data generator, names, comparator and if super columns should be used

-rate : Thread count, rate limit or automatic mode (default

is auto)

-mode : Thrift or CQL with options

-errors : How to handle errors when encountered during stress

-schema : Replication settings, compression, compaction, etc.

-node : Nodes to connect to

ChapTer 11 Tuning CaSSanDra performanCe

390

-log : Where to log progress to, and the interval at which

to do it

-transport : Custom transport factories

-port : The port to connect to cassandra nodes on

-sendto : Specify a stress server to send this command to

-graph : Graph recorded metrics

-tokenrange : Token range settings

$CASSANDRA_HOME/tools//bin$

At a high level, here are the key options you must be aware of:

• read: Multiple concurrent reads (you must first run a write test to

populate the test tables with data)

• write: Multiple concurrent writes

• counter_write: Multiple concurrent counter updates

• counter_reads: Multiple concurrent counter reads (you must first

populate the test tables with a counter_write test)

 A cassandra-stress Example
When you run the cassandra-stress tool for the first time, it creates a keyspace named

keyspace1, and within that keyspace, a table named either standard1 or counter1,

depending on the type of tests you run. Cassandra reuses the keyspace and table it

creates for all subsequent runs.

 Running a Write Test

Here’s an example that shows how to run a write test (remember that you must run a

write test first before you can run a read test):

$ cassandra-stress write

n=100000

cl=one

******************** Stress Settings ********************

Command:

 Type: write

 Count: 100,000

ChapTer 11 Tuning CaSSanDra performanCe

391

 Consistency Level: ONE

...

Insert:

 Revisits: Uniform: min=1,max=1000000

 Visits: Fixed: key=1

Columns:

 Max Columns Per Key: 5

 Column Names: [C0, C1, C2, C3, C4]

 Comparator: AsciiType

 Timestamp: null

 Variable Column Count: false

 Slice: false

 Size Distribution: Fixed: key=34

 Count Distribution: Fixed: key=5

Errors:

 Ignore: false

 Tries: 10

...

Schema:

 Keyspace: keyspace1

 Replication Strategy: org.apache.cassandra.locator.SimpleStrategy

 Replication Strategy Pptions: {replication_factor=1}

 Table Compression: null

 Table Compaction Strategy: null

 Table Compaction Strategy Options: {}

...

Connected to cluster: Test Cluster, max pending requests per connection

128, max connections per host 8

Datatacenter: datacenter1; Host: localhost/127.0.0.1; Rack: rack1

Created keyspaces. Sleeping 1s for propagation.

Running WRITE with 200 threads for 100000 iteration

type total ops, op/s, pk/s, row/s, mean, med, .95,

.99, .999, max, time, stderr, errors, gc: #, max ms, sum

ms, sdv ms, mb

...

ChapTer 11 Tuning CaSSanDra performanCe

392

Results:

Op rate : 3,011 op/s [WRITE: 3,011 op/s]

Partition rate : 3,011 pk/s [WRITE: 3,011 pk/s]

Row rate : 3,011 row/s [WRITE: 3,011 row/s]

Latency mean : 64.9 ms [WRITE: 64.9 ms]

Latency median : 39.1 ms [WRITE: 39.1 ms]

Latency 95th percentile : 190.2 ms [WRITE: 190.2 ms]

Latency 99th percentile : 537.4 ms [WRITE: 537.4 ms]

Latency 99.9th percentile : 1155.5 ms [WRITE: 1,155.5 ms]

Latency max : 1632.6 ms [WRITE: 1,632.6 ms]

Total partitions : 100,000 [WRITE: 100,000]

Total errors : 0 [WRITE: 0]

...

Total operation time : 00:00:33

END

$

In this command, you specify the write option to denote that you want to insert

rows into the table that cassandra-stress creates for the stress test. Cassandra-stress

inserts one million rows (n=10000000). The option c1 sets the consistency level to ONE.

The default consistency level is LOCAL ONE, and you can set any of the other standard

Cassandra consistency levels.

The previous example didn’t use authentication. To use authentication when

running the cassandra-stress tool, specify the -mode command (with the option

native) to specify a username and password, as shown in this example:

$ cassandra-stress

-mode native cql3

user=cassandra password=cassandra

cl=QUORUM

The data you insert with the write option of the cassandra-stress tool is by default

never truncated. You can truncate the table that the cassandra-stress tool creates by

running the cassandra-stress command with the -truncate option:

$ cassandra-stress write n=100000000 cl=QUORUM truncate=always -schema

keyspace=keyspace-rate threads=200 -log file=write_$NOW.log

ChapTer 11 Tuning CaSSanDra performanCe

393

If you’re specifying the mode command, make sure that you specify the truncate option

before the mode option, as otherwise the cassandra-stress tool ignores the truncate option.

 Running a Read Test

Once you populate the database tables created by the cassandra-stress tool as shown

in the write test example, you have data that the tool can read. Now you can run the read

test, as shown here:

$ cassandra-stress read n=10000000 -rate threads=50 duration=5

In this example, the options stand for the following:

• -read: Performs multiple concurrent reads of the data that you

populated earlier. The suboption n=10000000 specifies the number of

rows to read.

• -rate: Helps you specify the thread count, rate limit, or the

automatic mode, which is the default. In this case, you specify the

suboption thread count for the stress test by specifying threads=50.

• duration: Specifies that the test must read rows for a specific number

of minutes (5 in this example).

 Running a Mixed Workload

The cassandra-stress command option mixed helps you run commands with

configuration ratio and distribution. Before running this command, you must populate

the cluster with a write test.

Here’s an example that shows how to run a mixed workload:

$ cassandra-stress mixed

ratio\(write=1,read=3\)

n=100000

cl=ONE

-pop dist=UNIFORM\(1..1000000\)

-schema keyspace="keyspace1"

-mode native cql3

-rate threads\>=16 threads\<=256

-log file=~/mixed_autorate_50r50w_1M.log

ChapTer 11 Tuning CaSSanDra performanCe

394

Note the following:

• The ratio option sets the ratio of writes to reads.

• The -pop command option sets the population distribution and intra-

partition visit order. In this example, you specify pop dist=UNIFORM\

(1..1000000\), which means that of the 100,000 operations

(n=100000), the test must select the keys uniformly distributed

between 1 and 1,000,000. You specify the -pop option when you

specify more data per node than can fit in the RAM of that node.

 Setting the Replication, Compaction, and Compression
Options
Run the -schema command option to view the options you can set for replication,

compaction, and compression. It also enables you to specify the keyspace to use for

the stress test.

$ cassandra-stress help -schema

Usage: -schema [replication(?)] [keyspace=?] [compaction(?)] [compression=?]

 replication([strategy=?][factor=?][<option 1..N>=?]): Define the

replication strategy and any parameters

 strategy=? (default=org.apache.cassandra.locator.SimpleStrategy)

The replication strategy to use

 factor=? (default=1) The number of replicas

 keyspace=? (default=keyspace1) The keyspace name to use

 compaction([strategy=?][<option 1..N>=?]): Define the compaction strategy

and any parameters

 strategy=? The compaction strategy to use

 compression=? Specify the compression to use for

sstable, default:no compression

$

ChapTer 11 Tuning CaSSanDra performanCe

395

The following example shows how to change the replication strategy to

NetworkTopologyStrategy for a node named cass1:

$ cassandra-stress write n=500000 no-warmup -node cass1 -schema "replication

(strategy=NetworkTopologyStrategy, cass1=2)"

 Running a Stress Test on Multiple Nodes

All of the earlier examples ran on a single node. Sometimes a single node can’t handle the

workload for a stress test. You can specify multiple nodes with the $NODES variable that

you specify with the -node command option. You specify the nodes in a comma-delimited

list of IP addresses with the $NODES variable.

The following example shows how to run a stress test on two nodes named cass1

and cass2:

$ cassandra-stress write n=1000000 cl=one -mode native cql3 -schema

keyspace="keyspace1" -pop seq=1..1000000 -log file=~/node1_load.log

–node $NODES

 Running cassandra-stress with a YAML-Based Profile
You can use a YAML-based profile file when running the cassandra-stress tool. The

profile helps you define various compaction strategies and the cache settings that the

database will use during the stress tests. You can find the sample YAML files provided by

Cassandra in the following locations:

• /usr/share/docs/cassandra/examples /* Package installations

• $CASSANDRA_HOME/tools/ /* Tarball installations

A Cassandra-provided YAML file, such as the cqlstress-example.yaml file, contains

various configurations for the stress tests under separate sections. These configuration

properties include keyspace and table definitions, as well as the query definition. You

can add secondary indexes and materialized views under the extra-definitions section.

You can modify the sample profile files or create your own profile files.

ChapTer 11 Tuning CaSSanDra performanCe

396

You can specify the YAML file as the value for the profile option when you run the

cassandra-stress command. The profile option points to the location of the YAML file

that you use.

The following example shows how to run a stress test with the help of the cqlstress-

example.yaml file:

$ cassandra-stress user profile=$CASSANDRA_HOME/tools/cqlstress-example.

yaml n=1000000 ops\(insert=3,read1=1\) no-warmup cl=QUORUM

You can specify the -graph option to create a graph for the stress tests you run. You

can view the graphs with a web browser after the test completes. Here’s an example:

$ cassandra-stress

user profile=tools/cqlstress-example.yaml

ops\(insert=1\)

-graph file=test.html

title=test

revision=test1

You can view a graph of the stress test by viewing the file test1.html in a web

browser. You must provide the name for the HTML file that captures the output of the

stress test for viewing via a browser. The title and revision options aren’t required, but

if you’re running multiple stress tests using the same data, you must use the revision

parameter.

Figure 11-2 shows the graph of the stress test with the previous cassandra-stress

command.

ChapTer 11 Tuning CaSSanDra performanCe

397

Figure 11-2. A graph of a cassandra-stress tool stress test, generated with the
-graph option

 Configuring Compaction Strategies
Compacting data helps consolidate SSTables, merge keys, combine columns, and evict

tombstones.

As you learned in Chapter 6, Cassandra’s SSTables are immutable, meaning that the

database never overwrites data. Instead, it writes new versions of the data that it inserts

or updates into new SSTables. There’s never an in-place revision of data (which requires

random I/O). Instead, the database simply writes the latest version of the data (updates

or inserts) in new SSTables. This is a key factor in Cassandra’s high performance.

Note The database turns all updates to data into new SSTables that it writes
sequentially to disk.

As the database updates data over time, it may end up with multiple versions of the

same row, each in a different SSTable. Unique timestamps distinguish the versions.

Over time, Cassandra needs to access numerous SSTables to retrieve a complete row,

as no single SSTable is likely to be storing the most up-to-date versions of all columns

in that row. To improve performance, Casandra performs periodic compactions of

the SSTables by merging the tables and getting rid of old, outdated versions of data.

Compaction keeps the read speed from deteriorating as users update data over time.

ChapTer 11 Tuning CaSSanDra performanCe

398

During the compaction process, Cassandra does the following;

• Consolidates the SSTables

• Evicts all tombstones

• Merges keys

• Combines columns

• Creates a new index in the new SSTable (not a secondary index)

The compaction process creates a single complete row with the latest version of all

columns in that row. The database writes the latest versions of each row to a new SSTable

and deletes the old versions from the old SSTables once it satisfies all pending requests.

Here are the practical consequences of the compaction process:

• An improvement in read performance due to the newly compacted

SSTables

• A temporary rise in disk I/O and space usage since the database

needs to temporarily maintain both the old and new SSTables

You can manually compact tables with the nodetool compact command. Better still

is to set the compaction strategy for a table, either via a CREATE TABLE or an ALTER TABLE

command.

 Compaction Strategies
A compaction strategy determines how Cassandra selects SSTables for compaction and

how it stores compacted rows in the new SSTables that it creates during compaction for

holding up-to-date data. You can choose from the following three compaction strategies:

• SizeTieredCompactionStrategy (STCS)

• LeveledCompactionStrategy (LCS)

• TimeWindowCompactionStrategy (TWCS)

Note There’s also a DataTieredCompactionStrategy (DTCS), which is an alternative
strategy for time series data, but it’s deprecated in Cassandra 3.0 and later.

ChapTer 11 Tuning CaSSanDra performanCe

399

TWCS is the best strategy for compacting time series data. For non-time series

data, you need to choose either STCS or LCS. The following sections explain the three

compaction strategies you can choose from.

 SizeTieredCompactionStrategy

Under STCS, the size of the SSTables acts as the trigger for a table compaction. STCS

groups SSTables into unique buckets. The database compacts the SSTables once there

are a predetermined number of same-sized tables. Cassandra compares each SSTable’s

size to the average of the SSTable size on a node.

By default, the compaction configuration property enabled for STCS is true,

meaning that the database performs background compaction. The SSTable

configuration property min_threshold sets the minimum number of SSTables that’ll

trigger a compaction. Once a table meets the min_threshold value, it’s eligible for

compaction. By default, the database performs a compaction operation when there are

four similar-sized tables (160MB by default). Cassandra merges the same-sized tables

into a single, large SSTable. As the database acquires several of the larger SSTables, it

merges a set number of them into an even larger SSTable.

Note STCS is the default compaction strategy.

The following is an example showing how to change a table’s compaction property to

SizeTieredCompactionStrategy:

cqlsh> ALTER TABLE users

 WITH compaction =

 'class' : 'SizeTieredCompactionStrategy', 'min_threshold' : 6 }

The min_threshhold table property enables you to set the minimum number

of SSTables before the database performs a minor compaction. In this example, the

min_threshold property specifies that at a minimum, the database should look for six

SSTables of the same size before it triggers a compaction.

Note a minor compaction involves specific tables in a keyspace.

ChapTer 11 Tuning CaSSanDra performanCe

400

Configuring STCS

In addition to the enabled and the min_threshold properties, you can configure the

following properties for STCS:

• bucket_high and bucket_low: This pair of properties provides the

sizing formula that helps the database determine the size of a table

for it to be considered for compaction. The database merges SSTables

whose size falls within the following range:

[average table size X bucket_low] and [average table

size X bucket_high]

The default value of the bucket_high property is 1.5, and the

bucket_low property has a default value of 0.5.

• log_all: Enables you to set up advanced logging for the cluster, and

its default value is false.

• min_threshold and max_threshold: This set of properties determines

the minimum (default value is 4) and the maximum (default value is 32)

number of SSTables in a minor compaction.

• min_sstable_size: By default, the database groups SSTables into

buckets by including in each bucket SSTables that vary in size by less

than 50%. In cases where you have smallish SSTables, you can set

the min_sstable_size property to define a size threshold (in bytes)

for SSTables that are assigned to a bucket. The default value for this

parameter is 50MB.

• Tombstone-Related Compression Properties: There are several

tombstone-related compression properties.

• only_purge_repaired_tombstones: The default value of this

parameter is false, meaning that the database will allow purging

tombstones from all SSTables, repaired as well as unrepaired. By

setting this property to the value true, you require the database

to purge tombstones only from repaired SSTables.

ChapTer 11 Tuning CaSSanDra performanCe

401

• tombstone_threshold: Sets the ratio of the tombstones that

the database can garbage collect, compared to all contained

columns. The default value for this parameter is 0.2. Once an

SSTable exceeds this ratio (20%), it’s eligible for tombstone

compaction. Once the number of tombstones that the database

can garbage collect exceeds 20%, Cassandra will compact just

that table to purge the tombstones.

• tombstone_compaction_interval: The length of time after you

create an SSTable before the database considers the table for

tombstone compaction. The default value is 86,400 seconds

(1 day).

• unchecked_tombstone_compaction: By default, this property is

set to false, meaning that Cassandra will check for the eligibility

of the table for tombstone compaction before running the

compaction operation. By setting the property to true, you allow

Cassandra to compact the tombstones without the prechecks.

When to Use (or Not to Use) STCS

STCS is ideal for write-intensive workloads. Since the merge process doesn’t group data

by rows, it’s possible that versions of rows are spread over multiple tables, which slows

down read speeds.

However, STCS doesn’t evict stale and deleted data quickly since the compaction

trigger is the size of the SSTables, which may grow too slowly over time, thus keeping old

data in place. Over time, as SSTables get larger, since the database needs to store both

the old and new SSTables during compaction, the database will require more storage.

Although LCS keeps related data in a small set of tables, if your data doesn’t undergo

too many modifications or inserts, STCS can also give you the same type of data sets

without paying the write penalty that you incur with LCS.

STCS is more efficient than LCS when dealing with batched read and write

operations. On the negative side, however, it requires a lot more disk space than LCS.

ChapTer 11 Tuning CaSSanDra performanCe

402

 LeveledCompactionStrategy

LCS groups SSTables into levels where each level (L1, L2, L3 …) is 10 times larger than

the preceding level. The database compacts SSTables in each level into progressively

larger levels. To begin with, the database flushes the data in memtables to SSTables in

the lowest level (L0). The database doesn’t compact the tables in the L0 level; it merges

these smallest sized SSTables with larger SSTables at the next higher level (L1).

The database compacts the SSTables in levels L2, L3, and so on into SSTables that are

at least as large as the value you set for the LCS property sstable_size_in_mb (default is

160MB).

LCS improves read performance since Cassandra can determine the SSTables in

each level it should check for the existence of row key data.

Configuring LCS

You can set the following properties for LCS, and all these properties have the same

meaning as they do for STCS, as I described in the previous section.

• enabled

• log_all

• tombstone_compaction_interval

• tombstone_threshold

• unchecked_tombstone_compaction

In addition to these properties, you can also configure the sstable_size_in_mb

property, which is unique to LCS. The sstable_size_in_mb property specifies the target

size for tables when compacting with LCS. The database will try to keep the SSTable size

(after compaction) the same or less than the value you specify for the sstable_size_in_mb

parameter. However, if a partition is very large, the compaction will result in a larger

SSTable than the value you specified with the sstable_size_in_mb parameter. As mentioned

earlier, the default value for the sstable_size_in_mb property is 160MB.

ChapTer 11 Tuning CaSSanDra performanCe

403

Here’s an example showing how to update a table to set the database compaction

strategy to LeveledCompactionStrategy:

cqlsh> ALTER TABLE users WITH

 compaction = { 'class' : 'LeveledCompactionStrategy'};

When to Use (or Not to Use) LCS

LCS involves a tradeoff between read and write performance. LCS works well for read-

intensive workloads (especially workloads that involve random reads) since it enables

the database to retrieve the required data for queries from just one SSTable 90 percent of

the time. The other times, it’ll need to read just two SSTables.

LCS is ideal when there’s a lot of data fragmentation. LCS evicts stale data more often

than STCS, which means that deleted data eats up a lesser part of the SSTables. However,

more frequent compaction operations mean there’s more I/O pressure. Thus, LCS isn’t

generally a promising idea for write-intensive workloads due to the performance hit

stemming from the higher amount of I/O operations. LCS’s write penalty means that a

high volume of writes could overwhelm the compaction operations.

LCS requires less space than STCS.

If it’s critical for you to maintain a high read rate, you can use LCS. To overcome the

resulting performance hit on the write side, you can add more nodes to your cluster.

 TimeWindowCompactionStrategy

TWCS is the recommended compaction strategy for time series data and expiring

TTL workloads. TWCS compacts SSTables according to a series of time windows.

The database creates continuous time windows and during each active (most recent)

time window, it compacts all uncompacted SSTables into larger SSTables using STCS

compaction.

At the end of the time window, the database compacts (major compaction, since

SSTables from more than one keyspace are involved) all the SSTables that fall in that time

window into a single SSTable, using the SSTable maximum timestamp as a criterion. The

database repeats the same compaction procedures with all the SSTables that it writes

during the subsequent time windows.

ChapTer 11 Tuning CaSSanDra performanCe

404

Configuring TWCS

You can set the following compaction properties for configuring TWCS:

• compaction_window_unit: This property enables you to define

the time unit for defining the bucket size. The default time unit is

milliseconds, and you can set a value such as seconds or hours if you

wish. Here’s an example:

compaction_window_unit = 'minutes',compaction_window_size = 120

• compaction_window_size: The number of units per time window

(1, 2, 3 …).

• log_all: Enables you to activate advanced logging for the entire

cluster by setting the value true. The default value is false.

When to Use TWCS

TWCS is ideal for time series data stored in tables with a default TTL (time-to-live). This

compaction strategy isn’t good if you need to query time series data out of sequence.

 Enabling and Disabling Compaction
By default, Cassandra enables background compaction. You can disable the background

compaction by setting the enabled property to false through an ALTER TABLE statement,

as shown here:

cqlsh> ALTER TABLE mytable

 WITH COMPACTION = {

 'class': 'SizeTieredCompactionStrategy',

 'enabled': 'false' }

The best practice regarding compaction is to use the default setting of enabled

(true) and let the database compact data.

ChapTer 11 Tuning CaSSanDra performanCe

405

 Configuring Global Compaction Properties
You can configure the following three global compaction parameters:

• snapshot_before_compaction

• concurrent_compactors

• compaction_throughput_mb_per_sec

I explain these properties in the following sections.

 The snapshot_before_compaction Property

The snapshot_before_compaction property determines whether the database takes a

snapshot of data before performing a compaction operation. As with all of Cassandra’s

snapshots, you’re responsible for deleting older snapshots so they don’t consume too

much space.

By default, the snapshot_before_compaction property is set to false.

 The concurrent_compactors Property

During a long-running compaction, a large number of small SSTables can accumulate,

which will adversely impact read performance. To avoid this deterioration in the read

performance, you can configure the concurrent_compactors parameter to set the

number of concurrent compaction processes that can run at any time. This number

doesn’t include any validation compactions for anti-entropy repair.

By default, the concurrent_compactors property is set to the lower of the

number of disks or the number of cores, with a minimum of two and maximum of eight

per CPU core.

Since performing simultaneous compactions increases the use of disk space,

make sure that you have sufficient free disk space before raising the value of the

concurrent_compactors parameter.

Note Before you adjust the concurrent_compactors property, throttle the
speed of the compaction by configuring the compaction_throughput_mb_per_
sec property.

ChapTer 11 Tuning CaSSanDra performanCe

406

 The sstable_preemptive_open_interval_in_mb Property

The database can preemptively open the SSTables it is compacting before it completes

its writes to the SSTables. The goal is to smoothly transfer reads between the before and

after compaction versions of the SSTables by minimizing the movement of data into and

out of the cache, as well as keep the hot rows in place. The default value is 50MB.

 Throttling the Compaction Speed

Sometimes you may realize that a compaction is running too fast (or too slow). You can

configure the compaction_throughput_mb_per_sec property to throttle compaction

to a specific rate (measured in MB) per second. This compaction property controls the

speed with the database inserts data. The faster the rate of data insertion, the higher the

speed with which the database must perform the compaction so it can keep the SSTable

count low.

The default value for the compaction_throughput__mb_per_sec parameter is 16,

meaning that the rate of compaction is 16 times the write throughput, which is measured

in MB/second.

You can disable compaction throttling by setting the compaction_throughput__

mb_per_sec property to 0. The recommended value is 16-32. The compaction speed is

divided among all compactors. If you have eight concurrent compactors and 16 as the

value for compaction throughput, you only get 2MB/s per compactor. On spinning disks

it is advisable to have a really low number of concurrent compactors (ex: 2); on SSD, you

can raise the number of compactors to a level your disks can keep up with.

Note You can have the database issue a warning when compacting a partition
that’s larger than the value you set by configuring the compaction_large_
partition_warning_threshold_mb property. The default value for this
parameter is 100.

ChapTer 11 Tuning CaSSanDra performanCe

407

 Setting the Compaction Strategy
You set the compaction strategy at the table level. You can set the compaction properties

either when you create a table or by altering the table. You specify the compaction class

with the compaction option inside a CREATE TABLE or an ALTER TABLE statement, as

shown here:

compaction = {

 'class' : 'compaction_strategy_name'

 [, 'subproperty_name' : 'value',...]

}

Although you can disable compaction, it’s never a good idea to do so because it may

lead to the propagation of zombies. A zombie, if you recall from Chapter 5, is a deleted

but persistent record. Sometimes a tombstoned record will have been deleted from other

nodes of the cluster except for an unresponsive node, which doesn’t immediately receive

the tombstones since it’s down. If the database deletes the tombstoned records from

the rest of the cluster before the unresponsive node comes back up, Casandra treats the

(supposed to be deleted) record on this node as new data and sends it to the other nodes.

As mentioned, a grace period for the unresponsive nodes to recover helps prevent

the reappearance of the zombie records. The table property gc_grace_seconds sets the

grace period for a tombstone, and its default value is ten days (864,000 seconds). Once

the tombstone’s grace period ends, the database deletes the tombstones during the

compaction process.

 Getting and Setting the Compaction Thresholds

Run the nodetool getcompactionthreshold command to find the minimum and

maximum compaction thresholds for a table. You must specify the keyspace and the

table name when you run this command.

$ sudo nodetool getcompactionthreshold cycling cyclist_name

Current compaction thresholds for cycling/cyclist_name:

 min = 4, max = 32

$

ChapTer 11 Tuning CaSSanDra performanCe

408

Note a major compaction involves all tables in a keyspace. a minor compaction
involves only some of the tables in a keyspace.

You can set the compaction thresholds with the nodetool’s setcompactionthreshold

command, which enables you to set the min/max compaction thresholds for a table.

The term “threshold” refers to the number of similar-sized SSTables that should be in the

database before the database schedules a minor compaction.

The setcompactionthreshold command has the following options:

• keyspace: Keyspace name

• table: Table name

• minthreshold: Minimum number of SSTables to trigger a minor

compaction (when using STCS or DTCS).

• maxthreshold: The maximum number of SSTables in a minor

compaction (when using STCS or DTCS).

Here’s an example showing how to set the compaction threshold for a table:

$ nodetool setcompactionthreshold cycling cyclists 4 16

In this example, cycling refers to the keyspace and cyclists, the table.

As explained earlier, both STCS and DTCS allow you to configure a minimum and

maximum number of SSTables that should be compacted during a minor compaction

through the configuration if the min_threshold and max_threshold properties.

 Logging the Compaction Activity
You can set up extended logging of the compaction activity in a database by setting

the log_all subproperty to true. The log_all subproperty is under the compaction

property when you create or alter a table. The log_all property for a table activates

advanced logging for the entire cluster. While you do this at the table level, once you

configure extended logging for a single table, the database automatically collects

detailed information for compacting all the tables on all nodes in the cluster.

Once you set up extended logging of compaction activity, the database creates an

additional compaction-related file named compaction-%d under the $CASSANDRA_HOME/

logs directory, with %d acting as a sequential number.

ChapTer 11 Tuning CaSSanDra performanCe

409

Following the setting up of extended compaction logging, the database collects

information about the following compaction events:

Enable: Lists all the SSTables that the database has flushed.

{"type":"enable","keyspace":es":

...

}

Flush: Logs flush events from memtables to SSTables.

{"type":"flush","keyspace":"test","table":"t","time":1470083335639,"tables":

...

}

Type: compaction: Logs compaction events

{"type":"compaction","keyspace":"test","table":"t","time":1470083660267,

"start":"1

...

}

Pending: Lists the number of pending tasks for compaction.

{"type":"pending","keyspace":"test","table":"t","time":1470083447967,

"strategyId":"1","pending":100}

 Testing the Efficacy of a Compaction Strategy
When you’re planning to change your compaction strategy, you can first test the impact

of the new strategy on a node that’s not officially part of the cluster. You start up a new

node in the write survey mode, which adds the node to the cluster but doesn’t formally

make it a part of the ring.

You can, if you wish, take one of the nodes out of the cluster and bring it back

in the write survey mode to test the impact of the changes on the read performance.

Once you start the node in the write survey mode, you can benchmark the read

operations on that node.

ChapTer 11 Tuning CaSSanDra performanCe

410

To start a node in the write survey mode, set the write_survey option to true by

using either of the following two methods:

JVM_OPTS="$JVM_OPTS -Dcassandra.write_survey=true /* for package

installations, add this line to the cassandra-env.sh file.

$ cassandra -Dcassandra.write_survey=true /* for tarball

installations, start the new node in this mode.

You can also start a node in the write survey mode by setting the property in the

$CASSANDRA_HOME/conf/jvm.options file, as shown here (by default, the -Dcassandra.

write_survey property is commented. You need to remove the comment). Here’s the

relevant portion of the jvm.options file:

For testing new compaction and compression strategies. It allows you to

experiment with different

strategies and benchmark write performance differences without affecting

the production workload.

-Dcassandra.write_survey=true

 Enabling and Disabling Autocompaction

You can enable and disable auto compaction for one or more tables with the following

commands:

$ nodetool enableautocompaction cycling cyclist_name;

$ nodetool disableautocompaction cycling cyclist_name;

 Viewing the History of All Compactions

You can view the history of all compaction activity in the database with the nodetool

compactionhistory command:

$ nodetool compactionhistory

Compaction History:

id keyspace_name columnfamily_

name compacted_at bytes_in bytes_out rows_merged

f6227aa0-81e8-11e7-a4ad-89801d899afb cycling cycle

2017-08-15T11:38:41.994 111 55 {1:1, 2:1}

ChapTer 11 Tuning CaSSanDra performanCe

411

ef3d57a0-81e8-11e7-a4ad-89801d899afb cycling cyclist_name

2017-08-15T11:38:30.426 243 243 {1:5}

...

There are seven columns in the output of this command. The bytes_in and the

bytes_out columns help you figure out the efficacy of compaction by comparing the size

of the SSTables before and after compaction.

The notations in the output such as {1:5} refer to how Cassandra chose the rows for

compaction and stands for {tables:rows}. For example, {1,5} means that the database

took one row from five SSTables to create a new compacted SSTable. Similarly, {1:3,3:1}

means that the database took three rows from an SSTable and combined with a single

row from three tables to create a compacted SSTable.

The nodetool compactionstats command shows the status of all pending

and ongoing compaction operations. You can check the percentage of compaction

operations completed thus far by looking under the PROGRESS column.

 Compressing Data to Save Storage Space
You can save storage space by having Cassandra compress SSTables on disk. In addition

to providing gains on the storage front, compression offers a slight improvement in

performance. DataStax estimates that, depending on the type of data, compressing could

lead to a 25-33% drop in storage, a 25-35% improvement in read performance, and a

slight (5-10%) increase in write performance.

When Cassandra needs to read compressed data, it locates the rows in the SSTable

index and decompresses the necessary row chunks.

The best candidates for compression are tables with similar sets of columns, where

the rows contain the same number of columns. The more similar the data is in various

rows, the more space you can save from compressing the data, since the compression

factor will be higher.

 Configuring Compression
Cassandra enables compression by default, and you can configure various compression

options, including the compression algorithm the database must use during

compression. You can do this either when you create the table, or later, by altering the

ChapTer 11 Tuning CaSSanDra performanCe

412

table. The following syntax statement shows the four compression properties you can

configure:

compression = {

 ['class' : 'compression_algorithm_name',

 'chunk_length_kb' : 'value',

 'crc_check_chance' : 'value',]

 | 'sstable_compression' : '']

}

The most important compression property is the compression class, which specifies

the compression algorithm the database must be use during compression. You can

choose from the following compression classes:

• LZ4Compressor

• SnappyCompressor

• DeflateCompressor

Note in addition to the LZ4, Snappy, and Deflate compression
classes, you can also implement your own compression class with the
org.apache.cassandra.io.compress.ICompressor interface.

When you choose a compression algorithm, you’re choosing between the conflicting

goals of conserving storage space and the database’s read performance. Commonly, the

savings in storage space you gain by compresssing data is inversely related to the speed

with which the database can uncompress the data while reading it.

Both Snappy and Deflate offer a higher compression ratio, meaning you save more

in storage space when using these algorithms, compared to using the LZ4 algorithm.

However, LZ4 offers the fastest decompression speed, which means a higher read

performance when querying compressed data.

ChapTer 11 Tuning CaSSanDra performanCe

413

The default compression algorithm is the LZ4Compressor. To specify a compression

algorithm for compressing a table, you specify the compression algorithm class for that

compression algorithm, as shown here:

CREATE TABLE customers (

...

 PRIMARY KEY (id)

)

 WITH compression = { 'class' : 'SnappyCompressor' };

In addition to specifying the compression algorithm, you can also configure the

following compression-related properties when creating or altering a table:

• chunk_length_kb: By default, the value of this property is set to

64KB. This is the size of the compressed blocks when Cassandra

compresses an SSTable. By specifying a higher value for this

parameter, you can increase the compression ratio, but the database

must then read more data from a disk for every read operation. The

default value is fine for most use cases, but if the database is reading a

large amount of data from disk at once, you can raise the value of this

parameter.

• crc_check_chance: This property determines the probability that the

database will check the checksums of compressed data blocks during

a read operation. Checksums help detect corruption and prevent the

database from propagating corrupted replicas of data to other nodes.

The default value of the crc_check_chance property is 1, meaning

the database will always check the checksums of data during reads

(a probability of 1 means that an event will always happen). You

can disable checksum checking entirely by setting this parameter

to 0. The lower the value of the parameter, the less likely it is that

Cassandra will perform a checksum of the data during reads.

ChapTer 11 Tuning CaSSanDra performanCe

414

 When Cassandra Compresses Data
When you configure compression for an existing table with the ALTER TABLE statement,

Cassandra will start compressing all new SSTables for that table. However, Cassandra

doesn’t immediately compress all existing SSTables. Cassandra will compress the

existing SSTables when it performs the next compaction of data in the database.

You can modify this default behavior of Cassandra for compacting data by forcing it

to rewrite the existing SSTables, compressing the tables in the process. You can do this by

executing either the nodetool upgradesstables or the nodetool scrub commands.

The nodetool upgradetsstables command has the following syntax:

$ nodetool <options> upgradesstables

 (-a | --include-all-sstables)

 -- <keyspace> <table> ...

The nodetool upgradetsstables command rewrites SSTables and during that process

also compresses them. You can run this command if you want the database to immediately

start compressing data following your configuring of compression for an SSTable. You can

also run this command when you wish to modify the compression algorithm for a table.

You can make Cassandra compress a table for which you’ve configured compression

by running the nodetool scrub command. This command will also rebuild the SSTables

in a node, just as the nodetool upgradesstables command, but it needs to create

a snapshot before the table rebuild. The nodetool upgradesstables command is a

better choice than nodetool scrub since you don’t need to create a snapshot before the

database compresses the SSTables.

 Modifying the Compression Algorithm
The default compression algorithm is LZ4Compressor. You can change the compression

algorithm when creating a table, as shown here, by configuring the compression

parameter class to a different compression class (DeflateCompressor in this example):

CREATE TABLE MyTable (

 ...

 PRIMARY KEY (user_id)

)

 WITH compression = { 'class' : DeflateCompressor };

ChapTer 11 Tuning CaSSanDra performanCe

415

You can modify any compression property after creating a table, including the

compression class property. The following example shows how to modify the

compression algorithm class attribute (to DeflateCompressor):

ALTER TABLE customers

WITH compression = { 'class' : 'DeflateCompressor', 'chunk_length_in_kb' : 6

 Testing the Efficacy of Compression
During your initial forays into compression, you may want to figure out the impact

of alternative compression strategies without impacting the production database

performance. Cassandra allows you to test your compression strategies by letting you

start the database in the write survey mode.

The “Testing the Efficacy of a Compaction Strategy” section in this chapter describes

how to use Cassandra’s write survey mode to test out your compression plans.

Starting a new node in the write survey mode helps test new compression strategies

and benchmark the write performance. To check the impact of compression strategies

on read performance, you can take out a node from the cluster and benchmark (using

the cassandra-stress tool, which I explain in this chapter) the performance of its read

operations, using that node as a standalone server.

 Turning Off Compression
By default, Cassandra compresses data. You can disable compression when creating

a table by specifying the compression parameter enabled to the value false, as

shown here:

CREATE TABLE MyTable (

 ...

 PRIMARY KEY (user_id)

)

 WITH compression = { 'enabled' : false };

ChapTer 11 Tuning CaSSanDra performanCe

416

You can disable compression for an existing table by specifying the

sstable_compression option and giving it the value (‘ ‘), as shown here:

cqlsh> ALTER TABLE cycling.cyclist_name

 WITH COMPRESSION = {'sstable_compression': ' ');

 Improving Write Performance with Memtable
Thresholds
As you’re aware, Cassandra flushes memtables to disk (to SSTables) when it exceeds

either the commit log threshold or the memtable cleanup threshold. There’s no fixed

rule regarding setting the commit log and memtable thresholds.

You can raise the memtable threshold if your write loads include high updates on

a small set of data or if there’s a continuous steam of writes. If you keep the memtable

threshold low when there are numerous writes, it will result in inefficient compaction.

Cassandra uses the setting of the memtable_cleanup_threshold parameter (in

cassandra.yaml) to determine when it should flush memtables. The default value

for this parameter is 1/(memtable_flush_writers + 1). However, this parameter only

signifies the ratio Cassandra uses for computing the space amount for an automatic

memtable flush. Cassandra determines when to flush a memtable to disk in the

following way:

• The memtable_heap_space_in_mb parameter determines the amount

of on-heap memory allocated for memtables. The default value for

this parameter is 0.25 times the heap size. The memtable_offheap_

space_in_mb parameter determines the amount of off-heap memory

allocated for memtables and its default value is also 0.25 times

the heap size. Add the value of the memtable_heap_space_in_mb

parameter to the value of memtable_offheap_space_in_mb parameter.

• Multiply the total from the preceding line by the value of the

memtable_cleanup_threshold parameter. This will give you the

threshold value in MB.

• When the combined memory used by all memtables on a node

exceeds the threshold value, the database flushes the largest

memtable on this node to disk.

ChapTer 11 Tuning CaSSanDra performanCe

417

The memtable_flush_writers parameter denotes the number of memtable flush

writer threads. The default value for this parameter, which the database uses for

computing the value of the memtable_cleanup_threshold parameter, is determined in

the following manner:

The number of disks or the number of cores on a node, with the minimum value

being 2 and the maximum being 8.

The following is an example that shows how the database determines when to flush a

memtable to disk.

 1. Assume that you have set the node’s memtable_flush_writers

parameter to 8.

 2. The default value of the memtable_cleanup_threshold parameter

is 1/memtable_flush_writers +1, so in this case, it works out to

1/(8+1) = 0.11.

 3. Assume that you’ve set both the memtable_heap_space_in_mb and

the memtable_offheap_space_in_mb parameters to 2000.

 4. The memtable_cleanup_threshold parameter’s value is 0.11,

from Step 2. The sum of the memtable_heap_space_in_mb and the

memtable_offheap_space_in_mb parameters is 2000+2000=4000.

The space threshold for memtable cleanup then is 4000 -

4000*0.11=3636MB.

 5. When the combined amount of space used by the memtables

on this node exceeds 3636MB, Cassandra flushes the largest

memtable to disk.

The larger the value of the memtable_cleanup_threshold parameter, the less

frequently the database will flush the memtables to disk. This also means fewer SSTables,

which in turn means a smaller level of compaction activity.

 Tuning the JVM
Everything runs inside a JVM in Cassandra. Cassandra uses the JVM heap to optimize

read performance. To do this, it keeps components such as Bloom filters, the partition

key cache, the SSTable index summary, and the partition summary inside the heap.

ChapTer 11 Tuning CaSSanDra performanCe

418

In addition to the Java heap memory, Cassandra uses memory for supporting the

page cache, the Bloom filters, and cached rows.

It’s important to learn how to tune the JVM. The key things to know in this regard are

• How Java garbage collection works

• The ideal garbage collector to use

• Allocating the Java heap size

Configuring garbage collection and allocation of the correct amount of memory to

the JVM (heap) are critical to high performance. Let’s learn about both in the following

sections.

 Java Garbage Collection
Garbage collection is how the JVM removes older objects from memory. You have a

choice of different garbage collectors. There are several types of regions inside a Java

memory heap, such as young and old regions, and within each memory region there

are smaller subregions as well. When the JVM needs to clear up a memory region that’s

full, it pauses the running operations. Your goal when tuning Java garbage collection is

to keep the pauses to a minimum. You should not only seek to minimize the garbage

collection-induced pauses to a minimum, but also to reduce the number of pauses.

 Selecting the Right Garbage Collector
The two available Java garbage collectors are the Concurrent Mark Sweep (CMS) and the

G1 (Garbage First) garbage collector. Here’s how you decide between the two garbage

collectors:

• If you’re working with heap sizes smaller than 14GB and you’re

dealing with the same workloads all the time, CMS is better.

Note With the next release of Java (Java 9), CmS will be officially obsolete.

• If you’re dealing with heap sizes larger than 14GB and the database is

processing diverse types of workloads, use the G1 garbage collector.

ChapTer 11 Tuning CaSSanDra performanCe

419

You configure the Java garbage collector by editing settings in the $CASSANDRA_HOME/

conf/jvm.options file. The jvm.options file, which I first explained in Chapter 2,

helps set several properties such as the startup parameters, general JVM settings, heap

settings, and garbage collection-related settings.

The default garbage collector is CMS, and you can view the settings for this collector

in the java.options file under the GC SETTINGS section, as shown here:

GC SETTINGS

#################

CMS Settings

-XX:+UseParNewGC

-XX:+UseConcMarkSweepGC

-XX:+CMSParallelRemarkEnabled

-XX:SurvivorRatio=8

-XX:MaxTenuringThreshold=1

-XX:CMSInitiatingOccupancyFraction=75

-XX:+UseCMSInitiatingOccupancyOnly

-XX:CMSWaitDuration=10000

-XX:+CMSParallelInitialMarkEnabled

-XX:+CMSEdenChunksRecordAlways

some JVMs will fill up their heap when accessed via JMX, see

CASSANDRA-6541

-XX:+CMSClassUnloadingEnabled

If you want to switch the garbage collector from the default CMS collector to the

newer G1 collection, first you must comment everything under the CMS Settings section.

Following this, edit the G1 settings and uncomment the -XX:+UseG1GC property, as

shown here:

G1 Settings (experimental, comment previous section and uncomment

section below to enable)

Use the Hotspot garbage-first collector.

-XX:+UseG1GC => By default, this property is

commented

#

ChapTer 11 Tuning CaSSanDra performanCe

420

Here are the G1 settings you can configure:

• XX:MaxGCPauseMillis: This is the key GI garbage collector tunable

property. The lower the pause target, the lower the throughput. The

lowest setting for the MaxGCPauseMillis property is 200 ms, which

also happens to be the default value for this property. By raising the

value from 200 ms to 1000 ms, you can increase the throughput. You

must try to keep this parameter’s value smaller than the timeouts in

the cassandra.yaml file.

Have the JVM do less remembered set work during STW, instead

preferring concurrent GC. Reduces p99.9 latency.

-XX:G1RSetUpdatingPauseTimePercent=5

#

• -XX:InitiatingHeapOccupancyPercent: Setting this parameter saves

the CPU time in Java heaps that are large (greater than 16GB). The

JVM does this by holding off the scanning of the memory regions to

see if they’re full, until the heap gets to a set percentage full. If, for

example, you set the heap occupancy percent to 70%, it means that

when the heap gets 70% full, the JVM starts scanning the memory

regions. The default value for this parameter is 40%.

I don’t show any configuration properties for the CMS collector since it’s on its way out.

 Setting the Heap Size

You can configure the Java heap size by setting the properties listed under the HEAP

SETTINGS section in the jvm.options file. When you are using G1 garbage collector,

you need to configure the MAX_HEAP_SIZE property with the -Xmx property. You set the

minimum heap size with the -Xms property and the maximum heap size with the -Xmx

property.

By default, the -Xms and -Xmx properties are commented, and Cassandra

automatically figures the value of the MAX_HEAP_SIZE property with the following simple

heuristic:

max(min(1/2 ram, 1024MB), min(1/4 ram, 8GB))

ChapTer 11 Tuning CaSSanDra performanCe

421

That is, it estimates half the RAM and caps it at 1024MB. It also calculates the quarter

value of the RAM and caps it at 8MB. It then picks the higher (max) of the two values.

In a production database, it’s a best practice to set custom values for the -Xmx and the

-Xms properties. When setting the maximum value of the heap, the recommended value

for the MAX_HEAP_SIZE property is to set it as high as possible, up to a value of 64GB.

Another (probably essential) best practice is to set the min and max heap sizes to the

same value, as shown here:

-Xms16G

-Xmx16G

Setting the minimum and maximum heap sizes to the same value helps the database

avoid long garbage collection pauses (also called stop-the-world pauses) when the JVM

clears up space in the heap regions by removing stale objects. Instead, the JVM locks the

memory you specify for the heap when the server starts up to keep parts of it from being

swapped to disk.

 Configuring Garbage Collection Logging

It’s a best practice to enable GC logging and by default it is enabled. You can check the

GC logs to see the size of the heap usage by a node, which helps you adjust it as you go

along. Here’s the relevant portion from the java.options file:

GC logging options -- uncomment to enable

-XX:+PrintGCDetails

-XX:+PrintGCDateStamps

-XX:+PrintHeapAtGC

-XX:+PrintTenuringDistribution

-XX:+PrintGCApplicationStoppedTime

-XX:+PrintPromotionFailure

#-XX:PrintFLSStatistics=1

#-Xloggc:/var/log/cassandra/gc.log

-XX:+UseGCLogFileRotation

-XX:NumberOfGCLogFiles=10

-XX:GCLogFileSize=10M

ChapTer 11 Tuning CaSSanDra performanCe

422

As you can tell, the properties shown here help you configure various aspects of

garbage collection logging, such as the location of the log, log file rotation, the size of the

log files, and the number of log files to store.

 Using the nodetool proxyhistograms and the tablehisto-
grams Commands
There are two good nodetool commands that help you identify performance issues in a

cluster: nodetool proxyhistograms and nodetool tablehistograms. Both commands

present performance statistics captured by the database in the form of histograms, hence

the command names.

The nodetool proxyhistograms command is helpful in identifying performance

issues. The output of this command shows read, write, and range request latencies in

a cluster, for which a node acted as the coordinator. This command helps you identify

general performance issues in a cluster.

The nodetool tablehistograms command lets you focus on the performance of a

specific table. You can view the write and read latency and the partition size of tables

with this command.

 Summary
This chapter presented several key Cassandra performance tuning strategies such

as compaction and compression. Performance tuning often involves tradeoffs; you

can conserve storage through compression, but you must pay for it with higher I/O

requirements. Similarly, increasing the Java heap size will decrease query latencies, but

reduces the amount of memory available for other uses in the system.

The cassandra-stress tool is simple to use and is highly useful in testing the impact

of potential configuration changes such as a compaction strategies, compression,

etc. Stress testing helps you evaluate the ability of a cluster to handle diverse types of

workloads and helps you figure out if you need to add more nodes to your cluster.

ChapTer 11 Tuning CaSSanDra performanCe

423
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5_12

CHAPTER 12

Securing Cassandra
Securing a Cassandra cluster involves a varied set of tasks including authentication,

authorization, and encryption. This chapter describes how you manage the following

security-related tasks:

• Authentication: How you allow applications and users to log into the

cluster.

• Authorization: Deals with the granting of permissions to access a

database or database objects such as tables and materialized views.

• Encryption: Refers to the use of the Secure Socket Layer (SSL) to

secure communications between clients and Cassandra databases,

and among a cluster’s nodes.

• Firewalls: Managing firewall port access involves knowing which

ports you must keep open.

 Configuring Authentication
In most databases, it’s typical to use the terms users and roles to refer to different entities.

Users are login accounts and roles encapsulate sets of privileges on various objects that

you assign to users.

Cassandra bases all authentication and authorization on roles. You execute the

CREATE ROLE command to create database roles.

424

Note All authorization and authentication is through database roles. Although
Cassandra continues to offer the CREATE USER, ALTER USER, DROP USER,
and LIST USERS commands, you mustn’t use them because they’re deprecated
in the current release. Use the CREATE ROLE, ALTER ROLE, DROP ROLE,
LIST ROLES, and LIST_PERMISSIONS commands instead.

Cassandra still offers the CREATE USER command to create new database user

accounts, but this command is deprecated and is there just for backwards compatibility

purposes.

Cassandra doesn’t formally use the term users to refer to login accounts any longer.

Therefore, a (login) role is a synonym for a user.

By default, Cassandra doesn’t require authentication for someone to log into a

cluster. That is, you can simply type in cqlsh without any credentials and gain access to

the cluster.

 Creating Roles
Cassandra comes with a built-in role named cassandra and the password is cassandra

as well. This default role cassandra has administrator privileges. You can also create

additional login roles and grant them the administrator privilege. The best practice is to

create alternative administrator roles, change the default password of the default role

cassandra, and never use this role for anything again.

You can create roles only by logging in as a role (could be the default role cassandra

or any other role you’ve created) with administrative privileges.

When you first log in as the default role cassandra and attempt to create a role, you

may receive the following error;

$ cqlsh 192.168.159.129 -u cassandra -p cassandra

Connected to Test Cluster at 192.168.159.129:9042.

[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

cassandra@cqlsh> create role newrole with password 'newrole123';

SyntaxException: line 1:20 mismatched input 'withpassword' expecting EOF

(create user newuser [withpassword]...)

ChApter 12 SeCUring CASSAndrA

425

cassandra@cqlsh> create role newrole with password 'newrole123';

InvalidRequest: Error from server: code=2200 [Invalid query] message="org.

apache.cassandra.auth.CassandraRoleManager doesn't support PASSWORD"

cassandra@cqlsh> list users;

Unauthorized: Error from server: code=2100 [Unauthorized] message="You have

to be logged in and not anonymous to perform this request"

cassandra@cqlsh>

The reason you see this error is that you haven’t yet configured authentication in this

database. By default, the authentication option in the cassandra.yaml file is set to

authenticator: AllowAllAuthenticator

AllowAuthenticator is the default authentication backend. If you set

AllowAuthenticator as the value for the authenticator property, you disable

authentication in the database. Cassandra won’t perform any checks and will allow

anyone to log in without a challenge.

The alternative to AllowAuthenticator as the authentication backend is

PasswordAuthenticator. This backend will authenticate users with credentials that the

database stores in the system_auth.credentials table.

Therefore, even when you log into the database as the default role cassandra (which

has the administrator rights), the database tells you that “you have to be logged in

and not (be) anonymous to perform this request” when you try to create a role. The

authenticator: AllowAllAuthenticator option allows all users and doesn’t check if

you have logged in. The solution here is to configure authentication for the database, as I

explain in the following section.

 Configuring Authentication
To enable you to log in as an administrator and create roles or perform other role-related

tasks, configure authentication by executing the following steps.

 1. Change the authentication option in the cassandra.yaml file to

PasswordAuthenticator, as shown here:

authenticator: PasswordAuthenticator

The change you make here forces Cassandra to require a role

name and password when a client connects to the cluster.

ChApter 12 SeCUring CASSAndrA

426

 2. Restart the database.

 3. Login to cqlsh using the credentials for the default superuser

cassandra.

$ cqlsh -u cassandra -p cassandra

 4. The system keyspace system_auth stores the role credentials. If

you’ve only the default single replica for this keyspace, you can

lose access to the cluster if that replica becomes unavailable.

Therefore, to enhance availability, increase the replication factor

for the system_auth tablespace to a higher value such as 3 or 5 per

datacenter, as shown here:

cqlsh> ALTER KEYSPACE "system_auth"

 WITH REPLICATION = {'class' :

'NetworkTopologyStrategy', 'dc1' : 5,

 'dc2' : 3};

 5. To ensure that the replication factor changes are enforced

throughout the cluster, run the nodetool repair command for the

system_auth keyspace.

$ nodetool repair system_auth

 6. Restart the database.

At this point, you’ve configured authentication for the database

and you can now login as cassandra/cassandra to perform role-

and privilege-related administrative tasks.

Once you’ve configured authentication as shown here, you must

always specify the credentials for a superuser. If you try to log in as

before without the credentials, you’ll receive an error.

$ cqlsh 192.168.159.129

Connection error: ('Unable to connect to any servers',

{'192.168.159.129': AuthenticationFailed('Remote end

requires authentication.',)})

$

ChApter 12 SeCUring CASSAndrA

427

 Speeding Up the Credentials Authentication Process

You can speed up the credentials authentication process in a busy database by

configuring the following two options in the cassandra.yaml file:

• credentials_validity_in_ms

• credentials_update_interval_in_ms

The default value for both parameters is 2000 ms. You can raise the value of one

or both parameters to decrease the overhead of frequent requests for authenticating

credentials.

 Creating Roles
Once you configure authentication, you’re ready to create roles with the superuser

account. Here you use the default superuser account cassandra to create the users.

You run the CREATE ROLE command to create a role. Here’s the general syntax of the

CREATE ROLE command:

(CREATE | ALTER | DROP) role_name

 [WITH (LOGIN = true | SUPERUSER = true | password = 'password')];

The following is a brief explanation of the key role properties. By default, the

database sets the SUPERUSER and LOGIN properties to false, and the password property

defaults to null.

• SUPERUSER: Can execute all CQL commands. If you set this property

to true, the rule is granted the AUTHORIZE, CREATE, and DROP

privileges on all roles.

• LOGIN: If set, the database allows this role to log in with a password to

run CQL statements. You set this property to create login accounts for

the passwordAuthenticator backend or for internal authentication.

• PASSWORD: Represents the password that you set. Cassandra’s internal

authentication requires a password. You must enclose the password

in single quotes.

ChApter 12 SeCUring CASSAndrA

428

You can create roles to define a set of permissions that you can then assign to other

roles and map to external users. Roles also enable you to create login accounts for

internal authentication. The best practice when using internal authentication is to create

separate roles for assigning permissions and for the login accounts.

Here are the steps to create a role.

 1. Log in to cqlsh as the superuser cassandra.

$ cqlsh 192.168.159.129 -u cassandra -p cassandra

Connected to Test Cluster at 192.168.159.129:9042.

[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native

protocol v4]

Use HELP for help.

 2. Execute the CREATE ROLE <rolename> WITH PASSWORD

<password> command, as shown here:

cassandra@cqlsh> create user 'test' with password

'test123';

The list roles command shows all roles in the database. It also

shows which of the roles have the super user privilege. Here’s an

example:

cassandra@cqlsh> list roles;

 name | super

-----------+-------

 cassandra | True

 test | False

(2 rows)

cassandra@cqlsh>

In this case, the default role cassandra has the superuser column value set to True,

and the new role test has its the superuser column set to False. Therefore, everything is

as it should be.

By default, the LOGIN property in the CREATE ROLE statement has the value False.

When you’re creating a login role, you must set this property to True.

ChApter 12 SeCUring CASSAndrA

429

You can view the roles in a database by querying the system_auth.roles table,

shown here:

cassandra@cqlsh> select * from system_auth.roles;

 role | can_login | is_superuser | member_of |

salted_hash

---------------+-----------+--------------+-------------------+

 cassadnra1 | True | True | null |

$2a$10$.b52eNZqZdouserevzYgpuecaxpdmc/QRdIoUIeG73a6UDEsBIdae

 manager | True | False | {'cycling_admin'} |

$2a$10$vkujDzBblNqLUSGLdhW26OIW/ias9Vh6JA3sU4pq9uXES30cK735.

 test | True | False | null |

$2a$10$ukMpmnzdHn8xy/7krucrdeYtblF8XHmVTvv1qKldVrGLxvLTWBxaC

 test1 | True | False | null |

$2a$10$3CQTIi09zOOT5v2SaCxH9ekE8ZTaAGZSG6owkziZIT3ylzMDMCrhW

 cassandra | True | True | null |

$2a$10$nRxFfMOAqxVQYkFQmEMIZ.B1.9.opcND/8.LtwyqZLgJY91eiS3Zm

 cycling_admin | False | False | null |

 null

(6 rows)

cassandra@cqlsh>

The system_auth.roles table stores role-related information such as the role

names, whether the role is a superuser, and whether you can use the role for logging into

the database. In addition to this table, Cassandra stores role-related information in the

following tables:

• system_auth.role_members: Stores roles and role members.

• system_auth.role_permissions: Stores the role, the resource, and

the permissions that the role has to access the resource

• system_auth.resource_role_permissons_index: Stores the roles

and the permissions granted to the roles

 Changing a Password

You can modify the password for a role with the ALTER ROLE command:

cassandra@cqlsh> alter role 'newsuper' with password 'newsuper2';

ChApter 12 SeCUring CASSAndrA

430

 Dropping a Role

You can drop a role with the DROP ROLE command:

cassandra@cqlsh> drop role test;

 Handling the Superuser Account
Besides the default superuser account cassandra, you can create additional superuser

accounts by specifying the superuser option when you create the user, as shown here:

cassandra@cqlsh> create role 'newsuper' with password 'newsuper1'

 ... superuser;

cassandra@cqlsh> list roles;

 name | super

-----------+-------

 cassandra | True

 newsuper | True

 test | False

(3 rows)

cassandra@cqlsh>

The best practice concerning handling of the default superuser account cassandra is

to create a custom administrator account and not use the default cassandra account after

that. Create a user with with the superuser option. Since a superuser can only manage

roles by default, grant access to all keyspaces to that user with the following command:

cqlsh> grant all permissions on all keyspaces to newsuper;

 Configuring Authorization: Granting Privileges
on Resources
Configuring authentication will limit access to the cluster. Configuring authorization is

how you control access to various database objects such as keyspaces and tables. You

can execute the GRANT command to grant a role privileges on a database resource such as

a keyspace, table, or a function.

ChApter 12 SeCUring CASSAndrA

431

Let’s learn how to grant privileges to login roles, starting with the granting of specific

privileges on objects such as keyspaces and tables. Later, I show how to grant the

privileges to roles, which enables you to implement a role-backed access control (RBAC)

system.

Note By default, Cassandra doesn’t enforce any restrictions on a user’s ability to
perform operations in the database.

In the following example, you first try to grant the SELECT permission on a keyspace

to a role:

cassandra@cqlsh> grant select permission on keyspace "cycling" to 'test';

ServerError: java.lang.UnsupportedOperationException: GRANT operation is

not supported by AllowAllAuthorizer

cassandra@cqlsh>

This GRANT command fails because the default authorizer, which happens to be

AllowAllAuthorizer, doesn’t support the GRANT operation. In the cassandra.yaml file,

you see the following:

authorizer: AllowAllAuthorizer

AllowAuthorizer is Cassandra’s default authorization backend and it controls

access and provides permissions. Using this default authorization backend will disable

authorization, meaning Cassandra allows any user to perform any action in the

database.

CassandraAuthorizer is the alternative authorization backend. This one stores all

permissions in the system_auth.permissions table. To configure authorization, edit the

cassandra.yaml file and specify CassandraAuthorizer as the authorizer, as shown here:

-authorizer: org.apache.cassandra.auth.CassandraAuthorizer

The setting of the authorizer as shown here enforces authorization in the database.

The database will now restrict access based on which role logs into the database. Once

you configure the authorizer property correctly, you can successfully issue the GRANT

command.

cassandra@cqlsh> grant select permission on keyspace "cycling" to 'test';

ChApter 12 SeCUring CASSAndrA

432

Since the loss of access to the system_auth.permissions table will deny all access

to the cluster, ensure that you have several replicas of the system keyspace. If you have

multiple datacenters, set the replication class to NetworkTopologyStrategy.

You can grant the following broad types of privileges to a role:

• SELECT: Allows a role to read data with the CQL command SELECT.

• MODIFY: Allows a role to add, modify, and remove data with the CQL

commands INSERT, UPDATE, DELETE, and TRUNCATE.

• CREATE: Grants the ability to create keyspaces and tables with the

commands CREATE KEYSPACE, and CREATE TABLE.

• ALTER: Grants the ability to modify keyspaces and tables with the

following commands:

• ALTER KEYSPACE

• ALTER TABLE

• DESCRIBE: Provides information about objects.

• DROP: Enables you to remove objects from the database.

• EXECUTE: SELECT, INSERT, and UPDATE privileges using any

function, and in any function in a CREATE AGGREGATE statement.

• AUTHORIZE: Enables the granting and revoking of permissions on

keyspaces, tables, functions, and roles.

• ALL PERMISSIONS: Enables all types of queries on a table.

The following are examples of how you can issue the GRANT command to assign

various privileges directly to a role.

You can grant the role sam privileges to perform SELECT operation on all tables in all

keyspaces as follows:

cqlsh> grant select on all keyspaces to 'sam';

You can grant the role sam privileges to perform modifications (INSERT, UPDATE,

TRUNCATE, and DELETE) on all tables in the CYCLING keyspace as follows:

cqlsh> grant modify on keyspace cycling to 'sam';

ChApter 12 SeCUring CASSAndrA

433

You can grant the role sam the ALTER KEYSPACE privilege, as shown here:

cqlsh> grant alter keyspace on cycling to 'sam';

The ALTER KEYSPACE privilege enables the role sam to perform the following

operations on the CYCLING keyspace and its tables and indexes:

• ALTER KEYSPACE

• ALTER TABLE

• CREATE INDEX

• DROP INDEX

The ALL PERMISSIONS privilege enables a user to run all types of queries on a table:

Cqlsh> grant all permissions on cycling.cyclists to sam;

 Cassandra’s Access Control Matrix
Cassandra employs a hierarchical inheritance system for access control, where the

privileges you grant to a resource that’s higher in the hierarchy automatically cascade to

resources lower in the hierarchy.

For example,

• If you grant a privilege on ALL KEYSPACES, it cascades to all tables in

those keyspaces.

• If you grant a privilege on ALL FUNCTIONS, it cascades to all user-

defined functions and aggregates.

cassandra@cqlsh> use system_auth;

cassandra@cqlsh:system_auth> select * from role_permissions;

 role | resource | permissions

-----------+--------------+--------------------------------

 test | data | {'SELECT'}

 test | data/cycling | {'ALTER', 'MODIFY', 'SELECT'}

 cassandra | roles/test | {'ALTER', 'AUTHORIZE', 'DROP'}

 cassandra | roles/test1 | {'ALTER', 'AUTHORIZE', 'DROP'}

(4 rows)

cassandra@cqlsh:system_auth>

ChApter 12 SeCUring CASSAndrA

434

 Configuring Role-Backed Access Control
A database role is a resource to which you grant privileges to access other database

resources. Role-based access control is where you assign roles to users, rather than

directly assigning privileges to access various database resources.

Typically, in other databases, to use roles to manage access to the database objects,

you must do the following, in this order:

• Create a user.

• Create a role.

• Grant privileges on various database resources to the new role.

• Grant the role to the new user.

You follow the same strategy to implement RBAC in a Cassandra database, with the

difference that instead of granting roles to users, you grant them to (login) roles (which,

as I explained earlier, stand in for users in Cassandra).

In the following sections, I show how to configure RBAC.

 Creating Roles for Login Accounts
When you want to grant access to a user or application, you create a role. The following

example shows how to create the login role named manager:

cqlsh> create role manager

 ... with PASSWORD = 'Password123'

 ... and LOGIN = true;

By default, the LOGIN property’s value is false, meaning that the role won’t be able

to log into the database. In this case, you want the manager role to be able to log into the

database and serve as a login role. You therefore set the LOGIN property to true.

ChApter 12 SeCUring CASSAndrA

435

The list roles command shows that the new role was created successfully.

cqlsh> list roles;

 role | super | login | options

-----------+-------+-------+---------

 cassandra | True | True | {}

 manager | False | True | {}

 test | False | True | {}

 test1 | False | True | {}

(4 rows)

cqlsh>

You can test the ability of the new account to log in.

$ cqlsh 192.168.159.129 -u cassandra -p cassandra

Connected to Test Cluster at 192.168.159.129:9042.

[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

cassandra@cqlsh> login manager

Password:

manager@cqlsh>

The cqlsh prompt (manager@cqlsh) shows the name of the role, which is manager in

this example.

You can change the password for a login-enabled role by running the ALTER ROLE

command, as shown here:

cqlsh>ALTER ROLE manager WITH PASSWORD = 'manager';

cqlsh>

 Granting Permissions to Roles
You can also create a role and grant various permissions on one or more database

objects to that role. You can then assign this role to a login role.

ChApter 12 SeCUring CASSAndrA

436

 Object Permissions in Cassandra
You can authorize object permissions to authenticated roles on the following database

objects:

• Keyspace

• Table

• Function

• Aggregate

• Roles

• MBeans

The following are the types of permissions you can configure on database objects:

• CREATE

• ALTER

• DROP

• SELECT

• MODIFY

• DESCRIBE

 Granting Permissions on Objects to Roles
The following example shows how to create a role that you aren’t going to use for a login;

instead, you’ll use the role for granting permissions on database objects. You first create

the role cycling_admin, and you grant privileges on the keyspace cycling to that role.

Following this, you grant the role cycling_admin to the login role manager.

 1. Create the role with the CREATE ROLE command.

cqlsh> create role cycling_admin;

Since this role is for assigning object privileges and not for a login

account, you didn’t set the SUPERUSER or the LOGIN properties,

both of which are False by default.

ChApter 12 SeCUring CASSAndrA

437

cassandra@cqlsh> list roles;

 role | super | login | options

--------------+-------+-------+---------

cassandra | True | True | {}

cycling_admin | False | False | {}

 manager | False | True | {}

 test | False | True | {}

 test1 | False | True | {}

(5 rows)

cassandra@cqlsh>

 2. Once you create the new role, grant privileges on a tablespace

(cycling) to that role.

cqlsh> grant all permissions on keyspace cycling to cycling_admin;

 3. Grant the new role cycling_admin to the login role manager,

which you created in the previous section.

cqlsh> grant cycling_admin to manager;

 Listing Permissions

You can list all permissions granted to roles with the list all permissions command.

cassandra@cqlsh> list all permissions;

 role | username | resource | permission

---------------+---------------+----------------------+------------

 cassandra | cassandra | <role cycling_admin> | ALTER

 cassandra | cassandra | <role cycling_admin> | DROP

 cassandra | cassandra | <role cycling_admin> | AUTHORIZE

 cassandra | cassandra | <role manager> | ALTER

 cassandra | cassandra | <role manager> | DROP

 cassandra | cassandra | <role manager> | AUTHORIZE

 cassandra | cassandra | <role test> | ALTER

 cassandra | cassandra | <role test> | DROP

 cassandra | cassandra | <role test> | AUTHORIZE

ChApter 12 SeCUring CASSAndrA

438

 cassandra | cassandra | <role test1> | ALTER

 cassandra | cassandra | <role test1> | DROP

 cassandra | cassandra | <role test1> | AUTHORIZE

 cycling_admin | cycling_admin | <keyspace cycling> | CREATE

 cycling_admin | cycling_admin | <keyspace cycling> | ALTER

 cycling_admin | cycling_admin | <keyspace cycling> | DROP

 cycling_admin | cycling_admin | <keyspace cycling> | SELECT

 cycling_admin | cycling_admin | <keyspace cycling> | MODIFY

 cycling_admin | cycling_admin | <keyspace cycling> | AUTHORIZE

 test | test | <all keyspaces> | SELECT

 test | test | <keyspace cycling> | ALTER

 test | test | <keyspace cycling> | SELECT

 test | test | <keyspace cycling> | MODIFY

(22 rows)

cassandra@cqlsh>

Check out the Resource column in the query output to see how Cassandra assigns

different permissions to the three roles in the database: the default superuser role

cassandra, the login role test, and the new role you created, cycling_admin.

 Viewing Permissions Granted to Roles

To view the permissions granted to a specific role, run the list all permissions of

<role_name> command:

cassandra@cqlsh> list all permissions of manager;

 role | username | resource | permission

---------------+---------------+--------------------+------------

 cycling_admin | cycling_admin | <keyspace cycling> | CREATE

 cycling_admin | cycling_admin | <keyspace cycling> | ALTER

 cycling_admin | cycling_admin | <keyspace cycling> | DROP

 cycling_admin | cycling_admin | <keyspace cycling> | SELECT

 cycling_admin | cycling_admin | <keyspace cycling> | MODIFY

 cycling_admin | cycling_admin | <keyspace cycling> | AUTHORIZE

(6 rows)

cassandra@cqlsh>

ChApter 12 SeCUring CASSAndrA

439

 Configuring Firewall Ports for Access
Cassandra nodes require several firewall ports to be open so they can communicate.

Some of the nodes that should be open are public and others are inter-node or

Cassandra-specific ports.

Ensure that the following ports are open:

Type of Port Port Number Port Function

public 22 SSh port

Cassandra (inter- node) 7000 For inter-node cluster communications

Cassandra (inter- node) 70001 For SSL inter-node communications

Cassandra (inter- node) 7199 JMX monitoring port

Cassandra (client) 9042 Client port

Cassandra (client) 9142 default for native transport protocol (when you need

encrypted and nonencrypted communications)

 Encrypting Cassandra with SSL
SSL is a security protocol that encrypts data during communications between Cassandra

clients and the nodes, as well as among the nodes. Each entity that participates in

communications must have a private key that the entity stores and a public key that it

exchanges with other entities. The server sends clients that want to connect securely to a

Cassandra cluster a certificate with the public key of the server.

Note encrypting data has minimal performance impact, except in the case of a
high number of connections.

SSL encryption can secure intra-node communications by encrypting the data

flowing between nodes. You can also set up client-node SSL encryption to protect data

passed between client programs such as cqlsh or nodetool and a cluster’s nodes.

ChApter 12 SeCUring CASSAndrA

440

The client validates the security certificate by having the server validate it with its

private key. A keystore stores private keys and certificates, and a truststore stores the

public keys. A system can use a Certificate Authority (CA), in which case the truststore

also stores the CA’s signed certificates. The password for a keystore is called the keypass,

and the password for the truststore is called a storepass.

 Installing the Java Cryptography Extension Files
The default cassandra.yaml file refers to several cipher suites, some of which are

available only if you install the Java Cryptography Extension (JCE) Unlimited Strength

Jurisdiction Policy Files when using Oracle Java with SSL. Installing the JCE files ensures

support for all encryption algorithms when you’re using Oracle Java. You must install the

files on all nodes of the cluster.

Note installing the JCe files is a best practice when using Oracle Java with SSL.

Follow these steps to install the JCE files. The steps here show how to install JCE on a

Red Hat Linux system.

 1. Install the EPEL directory.

$ sudo yum install epel-release

 2. Download the JCE files from the Oracle Java SE Download page

(www.oracle.com/technetwork/java/javase/downloads/index.

html).

 3. Unzip the JCE files you’ve downloaded, and copy the local_

policy.jar and the US_export_policy.jar files to the $JAVA_

HOME/jre/lib/security directory.

Installing the JCE is even simpler on a Debian based system.

$ sudo apt-get install oracle-java8-unlimited-jce-policy

Reading package lists... Done

Building dependency tree

...

Unlimited JCE Policy for Oracle Java 8 installed

$

ChApter 12 SeCUring CASSAndrA

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

441

Before you can learn how to work with inter-node and client-node encryption

through SSL, you must first set up SSL encryption by preparing SSL server certificates.

 Preparing the Server Certificates
For both inter-node and client-node encryption, you must first generate SSL certificates

and validate the certificates. Here’s what you need to do to get going with SSL certificates.

• Use the openssl and keytool utilities to generate SSL certificates.

• Generate a self-signed CA to validate the SSL certificates, as I show

shortly. You can also have the certificates signed by a trusted public

certificate authority such as Verisign.

Note nate McCall shows how to set up SSL inter-node encryption using a
ccm-based Cassandra cluster. the article is at http://thelastpickle.com/
blog/2015/09/30/hardening-cassandra-step-by-step-part-1-
server- to-server.html.

In this section, I show you how to prepare SSL certificates for a production

environment.

 Create a Certificate Authority

The first step in encrypting the database with SSL is to create your own CA that you

can use to sign all the server-specific certificates. This will help create a trust chain that

makes it easy to manage the certificates. Follow these steps to create the CA.

 1. The first step is to create the root CA certificate and key. Execute

the openssl req command and pass this command the certificate

configuration file. This requires that you first create a certificate

configuration file, which you’ll name my_rootCa_cert.conf file.

Open a vi or nano editor and enter the following information in

the my_rootCa_cert.conf file:

$ vi my_rootCa_cert.conf

my_rootCa_cert.conf

[req]

ChApter 12 SeCUring CASSAndrA

http://thelastpickle.com/blog/2015/09/30/hardening-cassandra-step-by-step-part-1-server-to-server.html
http://thelastpickle.com/blog/2015/09/30/hardening-cassandra-step-by-step-part-1-server-to-server.html
http://thelastpickle.com/blog/2015/09/30/hardening-cassandra-step-by-step-part-1-server-to-server.html

442

distinguished_name = req_distinguished_name

prompt = no

output_password = myPass

default_bits = 2048

[req_distinguished_name]

C = US

O = MyCompany

OU = TestCluster

CN = rootCa

$

 2. Once you create the certificate configuration file (my_rootCa_

cert.conf), run the openssl req command as shown here,

making sure that you pass the configuration file name via the

config attribute.

$ sudo openssl req -config my_rootCa_cert.conf -new -x509

-nodes -subj /CN=rootCa/OU=TestCluster/O=YourCompany/C=US/

-keyout rootCa.key -out rootCa.crt -days 365

Generating a 2048 bit RSA private key

...................................+++

...

.....+++

writing new private key to 'rootCa.key'

$

This command will create the files rootCa.key and rootCa.crt,

which you’ll use later. The rootCa.key file is the file to which you’ll

write the key and the rootCa.cert file is the file to which you’ll

write the certificate.

 3. Verify the rootCa certificate (the rootCa.crt file) with the openssl

x509 command.

$ sudo openssl x509 -in rootCa.crt -text -noout

Certificate:

 Data:

ChApter 12 SeCUring CASSAndrA

443

 Version: 1 (0x0)

 Serial Number: 12633404970202873071

(0xaf52dee2c098bcef)

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: C=US, O=YourCompany, OU=TestCluster,

CN=rootCa

 Validity

 Not Before: Aug 25 19:00:47 2017 GMT

 Not After : Aug 25 19:00:47 2018 GMT

...

$

 Creating Certificates for All Nodes

The next step is to generate the public and private key pairs using the keytool utility. You

must do this on all nodes. You can generate the certificates on one node and copy them

over to all the nodes later.

$ sudo keytool -genkeypair

-keyalg RSA -alias 192.168.159.129

-keystore 192.168.159.129.jks

-storepass myKeyPass

-keypass myKeyPass

-validity 365

-keysize 2048

-dname "CN=192.168.1159.129, OU=TestCluster, O=YourCompany, C=US"

$

In this example, you have two nodes in the test cluster, so you need to run this

command on both. The keytool command shown here is for the node with the IP

address 192.169.159.129. For the second node in the cluster, which has an IP address

of 192.168.159.130, you run the same command, but you replace the IP address

192.168.159.129 with the IP address 192.168.159.130.

In this command,

• -genkeypair generates a public/private key pair.

• -keystore species the keystore filename (you use the IP address so as

to map the files to the Cassandra nodes).

ChApter 12 SeCUring CASSAndrA

444

• -storepass specifies the keystore password.

• -keypass specifies the private key password (must be the same as the

value for the -storepass attribute).

• -dname specifies the Distinguished Name (DN) to be associated with

the value of alias. The CN value is set to the node’s IP address or

FQDN.

Check the certificates you’ve generated to ensure that the key store is accessible and

that it contains the correct key pair.

$sudo keytool -list -keystore 192.168.159.129.jks -storepass myKeyPass

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

192.168.159.129, Aug 25, 2017, PrivateKeyEntry,

Certificate fingerprint (SHA1): C2:C1:6C:F5:DF:F7:EC:D6:09:66:BB:67:17:38:5

8:87:38:E1:AE:DD

$

 Exporting the Certificate Signing Requests

Once you generate the node certificate and the key, you must export a certificate signing

request (CSR) for each node. The CSR is signed with the rootCa certificate to verify that

the certificate is trusted.

$ sudo keytool -certreq

-keystore 192.168.159.129.jks

-alias 192.168.159.129

-file 192.168.159.129.csr

-keypass myKeyPass -storepass myKeyPass

-dname "CN=192.168.1159.129, OU=TestCluster, O=YourCompany, C=US"

$

The keytool -certreq command exports a certificate for signing by a CA.

You must repeat this command for each node in the cluster by replacing the IP

address shown here (192.168.159.129) with the IP address of the other nodes.

ChApter 12 SeCUring CASSAndrA

445

 Signing the Certificates with the CA’s Public Key

Next, sign the node certificate with the rootCa for each node in the Cassandra cluster,

through OpenSSL.

$ sudo openssl x509

-req

-CA rootCa.crt

-CAkey rootCa.key

-in 192.168.159.129.csr

-out 192.168.159.129.crt_signed

-days 365

-CAcreateserial -passin pass:myPass

Signature ok

subject=/C=US/O=YourCompany/OU=TestCluster/CN=192.168.1159.129

Getting CA Private Key

$

Once again, you must run the openssl command shown here for each of your

cluster’s nodes.

In this command,

• -CA identifies the rootCa certificate.

• -Cakey identifies the rootCa key.

• -in specifies the filename from which to read the certificate.

• -out specifies the output filename for the signed certificate.

Use the rootCa certificate and the signed certificate to verify the signed certificate.

$ openssl verify -CAfile rootCa.crt 192.168.159.129.crt_signed

192.168.159.129.crt_signed: OK

$

ChApter 12 SeCUring CASSAndrA

446

 Adding the CA to the Keystore

Import the rootCa certificate to each node’s keystore.

$ sudo keytool -importcert

 -keystore 192.168.159.129.jks

 -alias rootCa

 -file rootCa.crt

 -noprompt

 -keypass myKeyPass

 -storepass myKeyPass

Certificate was added to keystore

$

The keystore file will now have entries for both the rootCa certificate and the node

certificate.

 Importing the Signed Certificates into the Keystore

Each of the key stores on the nodes now contains the CA. The next step is to do the same

thing as the previous step, but this time import the node’s signed certificate into the node

keystore for each node.

$ sudo keytool -importcert

-keystore 192.168.159.129.jks

-alias 192.168.159.129

-file 192.168.159.129.crt_signed

-noprompt

-keypass myKeyPass

-storepass myKeyPass

Certificate reply was installed in keystore

$

The node certificate you created earlier is replaced with the signed node certificate.

ChApter 12 SeCUring CASSAndrA

447

 Building the Trust Store

You must next create a server truststore that will establish a chain of trust between the

cluster’s nodes by verifying connection requests from other nodes. You run the keytool

-importcert command to build the key store.

$ keytool -importcert

 -keystore generic-server-truststore.jks

 -alias rootCa

 -file rootCa.crt

 -noprompt

 -keypass myPass

 -storepass truststorePass

Certificate was added to keystore

$

Once you create the trust store, you can share it across your cluster. The trust store

says that it’ll trust connections from all nodes whose client certificates were signed by

this CA.

You can verify the truststore file thus:

$ sudo keytool -list -keystore generic-server-truststore.jks -storepass

truststorePass

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

rootca, Aug 28, 2017, trustedCertEntry,

Certificate fingerprint (SHA1): BB:BF:D7:8F:15:4E:41:91:37:70:EB:4C:67:AB:2

C:25:37:A4:18:B0

$

 Configuring the Cluster with the Keystores

Earlier, I showed how to create both the node-specific key stores and a generic trust

store. Now you must move them to where Cassandra can find them. Cassandra looks for

the key stores and trust stores in the $CASSANDRA_HOME/conf directory by default.

ChApter 12 SeCUring CASSAndrA

448

First, you copy over the node-specific key stores for each of the two nodes in the cluster.

cp 192.168.192.159.129.jks $CASSANDRA_HOME/conf/server-keystore.jks

cp 192.168.192.159.130.jks $CASSANDRA_HOME/conf/server-keystore.jks

Next, you copy over the generic trust store to both nodes.

cp generic-server-truststore.jks $CASSANDRA_HOME/conf/server-truststore.jks

cp generic-server-truststore.jks $CASSANDRA_HOME/conf/server-truststore.jks

At this point, the configuration of SSL certificates is complete. You must now enable

encryption.

 Enabling Inter-Node Encryption
The last step to encrypt inter-node communications is to enable encryption by

modifying the cassandra.yaml file. In the cassandra.yaml file, modify the server_

encryption_options section as follows:

server_encryption_options:

 internode_encryption: all /default value: none

 keystore: /cassandra/conf/server-keystore.jks

 keystore_password: cassandra

 truststore: /cassandra/conf/server-truststore.jks

 truststore_password: cassandra

 protocol: TLS

 algorithm: SunX509

 store_type: JKS

 # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_

CBC_SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_

SHA,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_

SHA]

 require_client_auth: true

 require_endpoint_verification: false

Earlier, I showed how to install strong encryption policy files in in the JDK (JCE

Policy Files). This supports the use of strong cyphers such as 256bit AES, as shown by the

cipher_suites property in the cassandra.yaml file.

ChApter 12 SeCUring CASSAndrA

449

You’re finally all set for encryption. Restart the cluster.

$ kill -9 cassandra-pid

$ $CASSANDRA_HOME/bin/cassandra

INFO [main] 2017-08-28 12:33:50,572 MessagingService.java:687 - Starting

Encrypted Messaging Service on SSL port 7001

The message “Starting Encrypted Messaging Service on SSL port 7001” shows

that SSL encryption is in place for inter-node communications.

 Enabling Client Encryption
In the previous section, I showed how to configure node-to-node encryption. However,

communications between clients such as cqlsh and the cluster will still be unencrypted.

In this section, I show how to configure client-node encryption. You use the same SSL

certificates that you created for inter-node communications. You just need to enable

client encryption and add the CA certificates to the cqlshrc file.

To enable client encryption, here’s how you modify the cassandra.yaml file:

enable or disable client/server encryption.

client_encryption_options:

 enabled: true

 # If enabled and optional is set to true encrypted and unencrypted

connections are handled.

 optional: false

 keystore: /cassandra/apache-cassandra-3.10/conf/server-keystore.jks

 keystore_password: myKeyPass

 require_client_auth: true

 # Set trustore and truststore_password if require_client_auth is true

 truststore: /cassandra/apache-cassandra-3.10/conf/server-truststore.jks

 truststore_password: truststorePass

 # More advanced defaults below:

 protocol: TLS

 algorithm: SunX509

 store_type: JKS

 cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_

SHA,TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,TLS_

ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA]

ChApter 12 SeCUring CASSAndrA

450

You must restart the cluster at this point.

In the logs generated during the node startup, you’ll see the following message,

indicating that SSL encryption is now enabled between clients and the database server:

INFO [main] 2017-09-05 14:17:10,681 Server.java:145 - Enabling encrypted

CQL connections between client and server

Once the cluster comes back up, since SSL validation is enabled now, you must

specify the --ssl option to connect to Cassandra:

$ cqlsh --ssl

Validation is enabled; SSL transport factory requires a valid certfile

to be specified. Please provide path to the certfile in [ssl] section as

'certfile' option in /home/cassandra/.cassandra/cqlshrc (or use [certfiles]

section) or set SSL_CERTFILE environment variable.

$

The reason you see this error is because you have enabled SSL for client

communications and hence cqlsh, which is a client, doesn’t trust the cassandra node

now. For it to trust the node, it should see the CA certificate that you generated earlier

(rootCa.crt). This ensures that Cassandra is using a certificate that was signed by the

CA. You point to the CA certificate by listing it under the [ssl] section of the cqlshrc file

(/home/cassandra/.cassandra/cqlshrc), as shown here:

[connection]

hostname=192.168.159.130

port=9042

factory = cqlshlib.ssl.ssl_transport_factory

[ssl]

certfile = /cassandra/apache-cassandra-3.10/conf/rootCa.crt

validate = true

Now you’ll be able to connect to Cassandra through cqlsh using SSL.

$ cqlsh –ssh

You now have a secure connection to the Cassandra node through the cqlsh client.

ChApter 12 SeCUring CASSAndrA

451

 JMX Authentication and Authorization
JMX authentication and authorization allows you to control user access to JMX-based

tools such as nodetool and JConsole. You can configure JMX connections to use

Cassandra’s internal authentication and authorization mechanisms, just as the CQL

clients do.

If you’ve configured usernames and passwords in the database through the

authentication and authorization mechanism described earlier in this chapter, you must

execute JMS tools as well with the authentication and authorization you’ve configured.

Before you can use nodetool or JConsole with authentication, you must enable JMX

authentication and authorization.

 Enabling JMX Authentication and Authorization
By default, JMX security isn’t configured, meaning that you can access JMS tools such as

nodetool and JConsole only from the localhost. You can configure JMX authentication

and authorization using local password and access files for configuring the credentials

for users and access permission. However, in Cassandra 3.6 onwards, you can also

configure JMX security by piggybacking on Cassandra’s internal authentication and

authorization.

In this section, I show how to configure JMX authentication and authorization using

local files.

Here are the steps to configure JMX security using local files.

 1. Edit the cassandra-env file (in the $CASSANDRA_HOME/conf

directory), and change the two settings in the chunk shown here:

if ["$LOCAL_JMX" = "yes"]; then

 JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.local.port=$JMX_

PORT"

 JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.

authenticate=false"

else

In the first line, change the “yes” to “no”. In the third line, change

“false” to “true”.

ChApter 12 SeCUring CASSAndrA

452

 2. Create the password file /etc/cassandra/jmxremote.password

(the default location) and add the following line to the file:

cassandra cassandra

I’m using the default superuser account here, but this isn’t safe in

a production system, and you must replace this set of credentials

with one or more credentials for all users that you’d like to be able

to access JMX-compliant utilities such as nodetool.

 3. Create the access file (by default) /etc/cassandra/jmxxremote.

access and add the following information to the access file:

cassandra readwrite

create javax.management.monitor.,javax.management.timer.

\unregister

The readwrite privilege you gave to the role cassandra enables

this JMX client to work with MBeans. More specifically, it

allows this client to set attributes, invoke operations, receive

notifications, and so on.

 4. Restart the database.

 5. Try running the nodetool status command. Since you configured

JMX authorization and authentication, you shouldn’t be able

to run this command as usual. If you’ve configured everything

correctly, you should instead see the following error:

$ nodetool status

nodetool: Failed to connect to '127.0.0.1:7199' -

SecurityException: 'Authentication failed! Credentials required'.

 6. Run the nodetool status command by providing the credentials

for the role cassandra.

$ nodetool -u cassandra -pw cassandra status

Datacenter: datacenter1

=======================

Status=Up/Down

ChApter 12 SeCUring CASSAndrA

453

|/ State=Normal/Leaving/Joining/Moving

-- Address Load Tokens Owns

(effective) Host ID Rack

UN 192.168.159.129 24.21 MiB 256 49.9%

0dbb9e0e-867e- 4179-b6b6-631d38dd68f9 rack1

UN 192.168.159.130 24.25 MiB 256 50.1%

001399d4-49fc- 467c-b188-e93629a0f118

The database is now configured for JMX authentication and authorization. As with

the nodetool utility, you’ll now be required to provide a username and password when

you use JConsole to remotely connect to a Cassandra cluster.

 Using cqlsh with Authentication
You can configure authentication so that logging into cqlsh requires a password. You do

this by creating or modifying the cqlshrc file. The following are the steps to configure

this authentication.

 1. Edit the cqlshrc file, or if you don’t have one, create one in the

following location:

/etc/cassandra/cqlshrc.sample

/* package installation

install_location/conf/cqlshrc.sample

/* tarball installation

 2. Enter the following lines in the cqlshrc file:

[authentication]

username = sam

password = !!bang!!$

 3. Secure the file by setting the following permissions:

$ sudo chmod 400 home/.cassandra/cqlshrc

ChApter 12 SeCUring CASSAndrA

454

 Summary
Securing Cassandra is a multi-faceted affair. To secure your data comprehensively,

besides configuring authentication, authorization, and SSL encryption of inter-cluster

and client-cluster communications, you may also want to encrypt data at rest.

Several good third-party encrypting solutions exist. By using one or more them you

can complete the circle and reduce the chances of a security breach. I didn’t discuss

these products in this chapter, but a quick search on the Internet for “encryption at rest”

should show you the available choices.

ChApter 12 SeCUring CASSAndrA

455
© Sam R. Alapati 2018
S. R. Alapati, Expert Apache Cassandra Administration, https://doi.org/10.1007/978-1-4842-3126-5

Index

A
Accrual detection mechanism, 157
Administration tools

cassandra-stress tool, 24
cassandra utility, 24
nodetool utility, 24
SSTable utilities, 24

Akka, 280
Allocation algorithm, 177–178
ALTER KEYSPACE privilege, 433
Amazon EC2, 157

AMIs, 90
AWS, 91
configuring Cassandra

cluster, 95–96
create instance, 91

add storage, 92
AMI, 91
choose type, 91
configure details, 92
configure security group, 92
key pair, 93
review launch, 92
tag, 92

install Cassandra, 93–94
Amazon Machine Image (AMI), 91
Amazon’s DynamoDB, 17
Amazon Web Services (AWS), 91
Anti-entropy repair

definition, 166
Merkel trees, 166
nodetool repair command, 167

ANY consistency level, 134
Apache Cassandra, 20

bloom filters, 21
build from source, 39
cassandra.yaml file, 42
check status, 57–58
clearing cassandra data, 62
cluster, 27
compaction, 21
compression, 20
definition, 3
distributed data, 22
drawbacks

immutable tables and mutation, 19
lack of support for transactions, 19
no indexes, 18
no joins, 18
querying data, 18

eventual consistency, 18
flags, 55–56
highly scalable, 6
high performing database, 5
large environments, 21
node, 27
prerequisites

Java, 36–37
Python, 37–38

https://doi.org/10.1007/978-1-4842-3126-5

456

service command, 61–62
stopping, 60–61
table rows, 26
user and group, 36
verify version, 63
write-heavy workloads, 22
writes, 26

Apache configuration
Cassandra-specific plugins, 368–369
installing and configuring

NRPE, 367
Nagios server configuration, 368

Apache Kafka, 280
Apache Mesos, 280
Apache Spark, 109, 271

Cassandra database, 277–279
configuration, 273
install, 272–273
prerequisites, 271–272
pyspark command, 276–277
RDD, 275
spark-Cassandra-connector, 275
spark-shell command, 275–276
start up cluster, 273–274

Apache Sqoop, 300
Atomic operation, 143
Atomicity, Consistency, Isolation, and

Durability (ACID)
atomicity, 129
batch method, 130
durability, 130
isolation, 130
periodic, 130
requirements, 14

Authentication, 423–424
auto_bootstrap property, 83

B
Backing up data

automatic snapshots, 287

incremental, 287

snapshot, 283–286

SSTables, 283, 285

Basically available eventually consistent

(BASE) system, 16

Batchlog, 143

Batch method, 130

Batch operations, single and multiple

partition

configuration, 144

INSERT statements, 145

single and multiple partitions, 144–145

Behavior-driven development

(BDD), 259

Coshxlabs code, 263

Gherkin syntax, 262

installing Cucumber, 261

installing Docker, 260

installing Docker-compose, 261

run with Cucumber, 264–265

Big data, 7, 12

Bin directory, 53

Binary tarball, 41–42

Bloom filters, 21, 30, 124, 379

B-tree, 117, 128

Bulk data

COPY command

cassandra table, 297–298

import and export data, 296

sstableloader

import, 300

load external data, 299

Bundler, 261

Apache Cassandra (cont.)

Index

457

C
Cache directory, 45
Cardinality, 230
Cassandra, node, 150
CassandraAuthorizer, 431
Cassandra Cluster Manager (CCM)

Apache Spark (see Apache Spark)
BDD

Coshxlabs code, 263
Gherkin syntax, 262
installing Cucumber, 261
installing Docker, 260
installing Docker-compose, 261
run with Cucumber, 264–265

Cassandra cluster, 268
definition, 266
install, 267
SSTable, 270
status, 269
using cqlsh, 270

Cassandra data modeling
avoid querying across partitions, 23
avoid updates and deletes, 23
duplicating data, 23
even data distribution, 23
vs. RDBMS, 31

Cassandra query language (CQL), 7
altering a table, 213
bin directory, 53
capture command, 48
cluster topology, 199
collection data types

frozen values, 243
list type, 242
map type, 243
multiple/email addresses, 240
set type, 241–242

collection set, list/map, 216–217
column_definition, 202
command line options, 48
composite partition key, 206–208
compound keys and clustering

columns, 208–210
conditional statement, 231–232
connect, 65
copy command, 49
cqlshrc config file, 63–64
create keyspace, 66
create table, 66
counter column to track values, 212
deleting rows and columns, table, 216
describe command, 49–50
dropping a table, 214
expand command, 51–52
find versions, 64
functions, aggregates and

user types, 200
garbage collection, 219
getting help, 46–48
indexing, Cassandra database

dropping an index, 225
high and low cardinality

columns, 223
partitions, 223
primary index, 221
secondary index, 221, 224
updated/deleted columns, 223
usage, 222

INSERT statement, 237–238
insert test data, 67
keyspace

altering, 194
creation, 190–193
durable writes property, 196

Index

458

management, 190
multiple datacenters, 193
nodetool repair command, 195
qualifier, 197
relational database system, 189
removing, 198–199
repairing, 197
replicas, data centers, 196
replication factor, 194–195

materialized view
creation, 225–226
denormalization, 226
dropping, 226
updation, 227

options, 64
partition key, 203–204
primary key, 202–203, 205–206
query quarters table, 67
secondary index

creation, 230
drawbacks, 230–231
SASI, 231

SELECT statement
built-in functions, 235–236
collection column, 236
filtering, 234–235
GROUP BY clause, 232
IN keyword, 236–237
JSON format, 236
LIMIT N option, 233–234
ORDER BY clause, 232–233
selection clause, 228
syntax, 227
WHERE clause, 229–230

start, 46
static columns, 210–211
structures, 189

table creation, 200–201
table options

clustering order, 211
compact tables, 211
tombstones, 211–212

table configuration, 213–214
TIMESTAMP, 217
tombstones, deletion marker, 217
truncating a table, 215
TTL value, 217–219
tuples, 243
UDFs, 245–246
UPDATE statement, 238–239
user-defined types, 244
zombie records and node repair, 220–221
time zones, 46
tracing command, 52

Cassandra’s access control matrix, 433
Cassandra-stress tool

command, 389–390
replication, compaction and

compression options, 394–395
running

mixed workload, 393
multiple nodes, 395
read test, 393
write test, 390–392
YAML-based profile, 395, 397

cassandra.yaml file, 43
Change data capture (CDC) logging, 239
Clearing cassandra data, 62
Clear the screen (CLS), 64
Cloud applications, 3
Cluster, 27, 150

Linux server (see Linux server)
Cluster deployment

Cassandra-stress, 69
choose CPUs, 70

Cassandra query language (CQL) (cont.)

Index

459

choose storage, 70
compaction, 72
disk storage, 71
install PDSH, 77–78
network considerations, 70
NFS, SAN and NAS, 71
RAM, 70
storage requirements, 72
usable disk capacity, 72

Cluster health check
JConsole, 347–351
JMX clients, 346
nodetool info command, 342, 343
nodetool status command, 342
thread pools statistics, 343–346

Clustering key/column, 202
Cluster maintenance tasks

flushing and draining data, 326–327
handling data corruption, 331–333
rebuilding indexes, 307
repairing data (nodetool repair), 303–306
system.size_estimates table, 307

cluster_name parameter, 43
Column family databases, 11
Column-oriented database, 14
Commit log, 27, 45, 151
Commodity servers, 6
Compactions, 21, 30, 72, 125
Compaction strategies

enabling and disabling, 404
global compaction parameters,

configuration
compaction_throughput__mb_

per_sec parameter, 406
concurrent_compactors

Property, 405
snapshot_before_compaction

property, 405

sstable_preemptive_open_
interval_in_mb Property, 406

LCS, 402–403
logging, 408
setting, 407
STCS, 399–401
testing, 409–411
TWCS, 403–404

Compare and set (CAS), 146
Compound primary key, 209
Conceptual modeling, 103
Concurrent-Mark Sweep (CMS), 75
conf directory, 54
Consistency, availability, and

partition tolerance (CAP)
theorem, 131

BASE system, 16
consistency, 17
principles

availability, 15
consistency, 15
partition tolerance, 15

Container, 250
Coordinators, 28, 122
Counter cache, 119, 385–386
Counter data type, 212
Cucumber, 260–261, 264–265

D
Data caches, 20
Datacenter, 5, 27, 150
Datacenter-related maintenance

tasks, 327–331
Data corruption

checking, 331
fixing, 332–333

Data file directory, 44–45

Index

460

Data manipulation language
(DML), 189, 227

Data modeling
cluster nodes, 106
data-driven vs. query-driven data, 100
ease of use, 102
partition, 106
physical, 105
Pro Cycling statistics, 103
queries, 107
read limitations, 109
reliability, 102
scalability, 102
sort order, 101
structured process, 102
write limitations, 108

DataStax, 13
courses, 4
development tools, 33
DSE, 32–33

DataStax Enterprise (DSE), 13, 32–33
DataStax, Inc., 32
Debian packages, 39, 41
Decentralized database, 13
Decommissioning datacenter, 330–331
Disk storage, 71–72
Distributed database system, 10, 16, 26
Docker

broadcast_address, 258
Cassandra cluster, 254–256
command line utility, 252
container, 250
dc property, 258
endpoint_snitch, 258
environment variables for, 257–258
host server, 259
images, 252–253
listen_address, 258

num_tokens, 258
rack property, 258
run cqlsh, 257
systemctl status command, 251
Ubuntu 16.04 server

installation, 250–251
using volumes, 258

Document databases, 10
Dynamic ring participation, 181

E
Endpoint range vs. subrange repair, 169
Eventual consistency, 14, 18

anti-entropy, 111
consistency levels, 111
reconciliation, 111
repairing data, 111–112
requirements, 110

F
Facebook, 4
Failure detection mechanism, 157
Fault tolerance, 4
Firewall, 45

port access, 79
ports configuration, 439

Flexible data model, 5
Full vs. incremental repair, 168

G
Garbage collection, 219
Gossip management, 29, 323, 325
Gossip protocols, 126, 149

accrual detection mechanism, 157
cluster_name, 156

Index

461

failure detection mechanism, 157
listen_address, 156
process, 154–155
seed nodes and, 156
seed_provider, 156
storage_port, 156

Graph databases, node, 12

H
Handling consistency, 130–131
Handoff process, 333–334
Hash ring, 31
Hinted handoff, 29, 31

consists of, 159
for datacenter, 160, 161
definition, 158
enable cluster, 158
max_hint_window_in_ms attribute, 162
sethintedhandoffthrottlekb

property, 162
statushandoff command, 160
stores in directory, 160
truncatehints command, 161
write_request_timeout_in_ms

property, 162

I
Incremental repairs, 167, 170, 172
Index files, 124

J
Javadoc directory, 55
Java garbage collection (GC), 75, 418–421
Java heap size, 75
Java hugepages setting, 77

Java Management Extensions (JMX), 25, 346
Java Virtual Machine (JVM), 25
JConsole, 347

connection login page, 348
jmxsh, 350
Overview tab, 349

JMX authentication and
authorization, 451–453

K
Kafka, Apache, 280
Key cache, 119, 381
Key nodetool maintenance commands

decommissioning nodes
cassandra.override_

decommission=true Option, 312
command, 307–309
data remove and restart, 310–311

nodetool assassinate, 312, 314
Keyspaces, 28, 151
Key-value databases, 10

L
LeveledCompactionStrategy (LCS), 402–403
lib directory, 54
Lightweight transactions, 108

cautions, 147
insert cyclist with ID number, 146–147
set of operations, 147

Linearizable consistency, 146
Linux server

disable swap, 76
disable zone_reclaim_mode, 73
Java heap size, 75
Java hugepages setting, 77
Java version, 73

Index

462

and Kernel settings, 73
NUMA systems, 73
PAM security settings, 75
setting shell limits, 76
synchronize clock and enable NTP, 73
TCP settings, 74
user resource limits, 74

listen_address property, 44
listen_address parameter, 82
listen_interface parameter, 44
Logback, 353
Logging

configuration, 352
locations setting, 352
logback configure, 353
logback logging framework

appender, 354–355
benefits, 353
layout, 355
logback.xml file, 355–359
logger class, 354
setting up log rotation, 359

nodetool setlogginglevel
command, 359–360

Logical modeling, 105
Log-structured merge-tree (LSM tree), 128
Log-structured storage engine, 13

M
Medium data, 7
Memtable, 27, 114

definition, 151
threshold, 416

memtable_cleanup_threshold
parameter, 416

memtable_flush_writers parameter, 417

Merkle trees, 166
Mesos, Apache, 280
Minimal configuration properties, 43
MongoDB, 12, 17
Monitoring Cassandra

LAMP stack installation, 361–362
Nagios

configuration file, 366
installation, 363–364
plugins installation, 364

NRPE installation, 365–366
Multi-node Casandra cluster

auto_bootstrap property, 83
broadcast_rpc_address property, 82
change node IP address, 87
client ports, 79
configuration, 81
datacenter configuration, 83–84
endpoint_snitch option, 82–83
firewall port access configuration, 79
initialize cluster with multiple

datacenters, 84
inter-node ports, 79
IP addresses, 80
keyspaces, 89
listen_address parameter, 82
node is down, 89–90
num_tokens property, 81
ports, 79
rack names, 83–84
rpc_address property, 82
seed nodes, 80
seeds property, 82
select name for datacenter, 79–80
startup process, 85–87
stopping, 85
version mismatch, 88–89

Murmur3 partitioning strategy, 176

Linux server (cont.)

Index

463

N
Nagios

build dependencies, 363
Cassandra cluster hosts,

monitoring, 367
configuration, 366
installation, 363–364
NRPE, 361
plugins, 361, 364
user and group, 363

Nagios Remote Plugin Executor (NRPE), 361
Network-attached storage (NAS), 71
Network information, 340
Network interface cards (NICs), 71
Network Time Protocol (NTP), 73
NetworkTopologyStrategy, 28
Node management

adding, data center, 316–317
cluster joining, 314–315
dead node replacement, 319
decommission datacenter, 320–321
moving, 320
removing node, 318
running node replacement, 317–318

Node repair, 30–31
definition, 158
hinted handoff (see Hinted handoff)

Node restart method, 293, 295
Nodetool drain command, 326
nodetool proxyhistograms

command, 337, 338
nodetool tablehistograms

command, 340–341
nodetool upgradetsstables command, 414
Nodetool utility, 24, 53

nodetool info command, 59–60
nodetool status command, 58

Normalization theory, 100

NoSQL databases
column family, 11
document, 10
graph, 11–12
key-value, 10

num_tokens property, 81

O
ONE consistency level, 133
Open source database, 4
OpsCenter, 33
Optimal storage, 70
Optimistic replication, 109
Oracle JDK, 6, 36–37

P
PAM security settings, 75
Parallel distributed shell (PDSH), 77–78
Parallel repair, 168
Partitioner function, 29
Partitioner range repair, 168
Partitioners

Murmur3Partioner, 183
and partitioning strategies, 182
RandomPartitioner, 182

Partition key cache, 20
Paxos protocol, 19, 146–147
Peer-to-peer architecture, 9
Peer-to-peer system, 149
Performance, Cassandra

compression data
ALTER TABLE statement, 414
configuration, 411–413
efficacy testing, 415
modifying, compression

algorithm, 414
turning off, 415

Index

464

data caching
Cassandra stores, 382
configuration, 382–383
counter cache, 385–386
global caching parameters, 383–385
monitoring, 386–387
tracing database operations, 387–388
types, 381

JVM and garbage collection
strategies, 422

stress testing cassandra (see
Cassandra-stress tool)

tracing to analyze performance
managing tracing, 374
read request, 377–378
write request, 376–377

tuning bloom filters, 379
Phi Accrual Failure Detection, 155
Physical data modeling, 105
Probabilistic tracing strategy, 374–375
Python, 37–38

Q
Query-driven data modeling, 100
Querying data, see Cassandra query

language (CQL), SELECT
statement

Quorum
calculate, 135
datacenter cluster, 135
EACH_QUORUM, 132
LOCAL_QUORUM, 133, 138
read consistency levels, 138
replication factor, 135–136
write consistency levels, 133

Quorum reads and writes, 110

R
Rack, 150
Random selection algorithm, 178
Rapid read protection, 141

consistency levels, 164
speculative_retry property, 165
supports, 165

Read consistency levels
ALL, 137
cluster with two datacenters, 142
requests, 137
single datacenter, 142

Reading data
coordinator, 127
filter command, 127
gossip protocol, 126
request, 127
write data affects, 128

Read repair
definition, 162
read_repair_chance property, 163

Read requests
direct, 140
repair request, 140
replica node, 140

Referential integrity, 101
Relational database management system

(RDBMS), 7, 31
Relational databases

data locality, 9
lower cost, 9
no failover, 9
peer-to-peer architecture, 9
RDMSs and big data, 7
reliability, 9
sharding, 8
third normal form, 8

Performance, Cassandra (cont.)

Index

465

Repairing data, 111–112
Replica placement strategy, 28, 152
Replication strategy

definition, 179
group, 180
NetworkTopologyStrategy, 180
SimpleStrategy, 180
switch keyspace, 182

Resilient Distributed Dataset
(RDDs), 275

Restoring data
commit log

manual archive, 295
point-in-time recovery, 295
restore, 295

cycling keyspace, 289, 291, 293
node restart method, 293, 295
run repair, 293
set location, 296
set timestamp, 296
from snapshot, 288
using sstableloader, 293

Role-backed access control
cycling_admin, 436
granting permissions, 435
login accounts, 434–435
object permissions, 436
permissions command, 437, 438
view, permissions granted, 438

Row caching, 20, 119, 381

S
SAN, 71
Secondary indexes, 18, 109
Security

configuring authentication, 430–432
firewall ports configuration, 439

JMX authentication and
authorization, 451, 453

roles creation
administrator privileges, 424
AllowAuthenticator, 425
assigning permissions, login

accounts, 428–429
configure authentication, 425–427
logging, 424
password changing, 429
properties, 427
superuser account, 430

SSL encryption (see SSL encryption)
Seed nodes, 80, 156
Secondary indexes, 105
Sequential vs. parallel repair, 168
Serial consistency settings, 139
Sharding, 8
Simple Build Tool (SBT), 272
Single-token architecture, 174
SizeTieredCompactionStrategy, 399–401
SMACK stack, 279–280
Snapshot

before compacting data, 287
copy data, 289, 291, 293
list node, 285–286
restoring data, 288

run repair, 293
using sstableloader, 293

schema, 283–284
Snitches, 30

cassandra-rackdc.properties, 187–188
cassandra-topology.properties, 187
CloudstackSnitch, 186
dynamic by default, 185
Ec2MultiRegionSnitch, 186
Ec2Snitch, 186
GoogleCloudSnitch, 186

Index

466

GossipingPropertyFileSnitch, 185
PropertyFileSnitch, 186
RackInferringSnitch, 186
SimpleSnitch, 185

Snitch serves, 82–83
Solid-state drives (SSDs), 70, 129
Sorted string table (SSTable), 27
Speculative retrying, 140–141
Sqoop, Apache, 300
SSH tools, 24
SSL encryption

client encryption, enabling, 449–450
inter-node encryption, enabling, 448
java cryptography extension files

installation, 440
server certificates

CA to Keystore, 446
certificate authority,

creation, 441–442
cluster configuration, keystores, 447
creation, nodes, 443–444
server truststore, 447
signed certificates, keystore, 446
signing, CA’s public key, 445
signing requests, 444

SSTable Attached Secondary
Index (SASI), 222, 231

SSTables, 19, 21, 151
caching data, 119
compaction operation, 124–125
data file, 117
data structures, 117–118
for durable storage, 117

Stores data
four-node, 152
hash values, 152–153

Strict consistency, 110

Subrange repair, 169
Switching snitches, 321, 323
Symbolic link, 42

T
Table statistics, 338–339
TCP settings, 74
Test-driven development (TDD), 259
Third normal form, 8
Time-to-live (TTL), 212, 217–219
TimeWindowCompactionStrategy

(TWCS), 403–404
Tokens, 183–184
Tombstones, 19, 21, 108, 217
Tools directory, 54
Tracing data, 372
Tunable consistency, 14, 29, 100, 109,

111, 131

U
Ubuntu 16.04 server, 250–251
Universally unique identifier (UUID), 205
User-defined aggregates (UDAs), 189, 247
User-defined functions (UDFs), 189, 245–246
User-defined types (UDTs), 189, 244

V
Vagrant tool, 260
Virtual machine (VM), 250
Virtual nodes (vnodes), 81

disable, 179
num_tokens parameter, 178
rebalance data, 173
ring with, 176
tokens, 173

Snitches (cont.)

Index

467

W, X
Write amplification (WA), 129
Write consistency

ALL consistency level, 132
ANY consistency level, 134
default, 132
hinted handoff, 132
LOCAL_ONE consistency level, 134,

138
ONE consistency level, 133, 138
quorum-related levels, 132–133, 138
serial consistency settings, 139
TWO and THREE consistency levels,

133, 138
Writes data

bloom filters, 124
commit log

binary files, 123
to protect changes, 112–113
space threshold, 115

index file, 124
internal operations, 122
memtable

configure cleanup threshold, 115
configure flushing data, 114
database flushes, 113
durability, 114
flushing to disk, 123
nodetool drain command, 116
nodetool flush command, 116

request flow, 119, 121
role of hints, 122
SSTables (see SSTables)

Y
YAML-based profile file, 395

Z
Zombie, 220

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Introduction, Installation, and Configuration
	Chapter 1: Apache Cassandra: An Introduction
	 What Is Cassandra?
	 Open Source Database
	 Fault Tolerance
	 High Performance
	 Distributed Configuration and High Resiliency
	 Flexibility
	 Use of Commodity Servers
	 Ease of Management
	 Highly Scalable
	 It’s Good Old SQL!

	 Problems Posed by Relational Databases
	 RDMSs and Big Data
	 Performance Problems Due to the Third Normal Form
	 Problems Due to Sharding
	 The Myth of High Availability

	 The Rise of NoSQL Databases
	 Key-Value Databases
	 Document Databases
	 Column Family Databases
	 Graph Databases

	 Special Capabilities of Cassandra
	 Distributed and Decentralized Database
	 Log-Structured Storage Engine
	 Locally Managed Storage
	 Ability to Handle Multiple Types of Data
	 Row-Oriented

	 Consistency, ACID Requirements, the CAP Theorem, and BASE
	 The ACID Requirements
	 The CAP Theorem

	 Cassandra’s Drawbacks
	 Problems with Querying Data
	 Eventual Consistency
	 No Joins
	 No Indexes

	 Problems with Writing Data
	 Lack of Support for Transactions
	 Overhead Due to Immutable Tables and Mutation

	 Who Should Use Cassandra?

	 Cassandra Optimizations
	 Data Caches
	 Compression
	 Bloom Filters
	 Compaction

	 Is Cassandra Appropriate for You?
	 Cassandra Data Modeling Essentials
	 Structure Your Data by the Queries
	 Avoid Updates and Deletes
	 Evenly Distribute Your Data
	 Avoid Querying Across Partitions

	 What a Cassandra Administrator Ought to Know
	 Cassandra Tools
	 Acquiring Parallel Remote Tools
	 Understanding Failure Scenarios in a Cassandra Database
	 Monitoring and Alerting
	 Tuning the Java Virtual Machine

	 A Quick Introduction to the Architecture of Cassandra
	 Understanding Cassandra-Specific Concepts
	 Peers and Coordinators
	 Keyspaces
	 Replication and the Replica Placement Strategy
	 Tunable Consistency
	 Gossip
	 Partitioner
	 Snitch
	 Compaction
	 Bloom Filters
	 Node Repairs

	 How Cassandra Stores Its Data
	 An Overview of Cassandra’s Data Model

	 DataStax and Cassandra
	 DataStax Enterprise
	 DataStax Development Tools

	 Summary

	Chapter 2: Installing Cassandra and Getting Started with CQL Shell
	 Installing Apache Cassandra
	 Planning the Installation
	 Prerequisites for Installing Cassandra
	 Java
	 Python

	 Installing Cassandra
	 Building from Source
	 Installing from Debian Packages
	 Building from the Source Binary Tarball
	 Creating the Necessary Directories

	 Configuring Cassandra
	 Location of the cassandra.yaml File
	 Minimal Configuration Properties You Must Set
	 The cluster_name Parameter
	 The listen_adresss Property
	 The listen_interface Parameter
	 Setting the Data File Directory Locations
	 Location for Storing the Cache Directory
	 Setting the Location for Storing the Commit Log

	 Configuring the Firewall

	 Exploring the CQL Shell
	 Starting the CQL Shell
	 Time Zones in cqlsh
	 Getting Help in the CQL Shell
	 Command Line CQL Shell Options
	 The capture Command
	 The copy Command
	 The describe Command
	 The expand Command
	 The tracing Command

	 Cassandra Installation Directories
	 The bin Directory
	 The tools Directory
	 The lib Directory
	 The conf Directory
	 The Javadoc Directory

	 Starting and Stopping Cassandra
	 Starting Cassandra
	 Checking Cassandra’s Status
	 The nodetool status Command
	 Testing the Server with the nodetool info Command
	 Stopping Cassandra

	 Starting and Stopping with the service Command
	 Clearing Cassandra Data
	 Verifying the Cassandra Version

	 Configuring cqlsh
	 Configuring Through the cqlshrc Config File
	 Configuring by Specifying Options at the Command Line
	 Finding the Versions
	 Cqlsh Options
	 Clearing the Screen
	 Running Commands from a File

	 Putting Cassandra Through Its Paces
	 Connecting to the CQL Shell
	 Creating a Keyspace
	 Creating a Table
	 Inserting Test Data
	 Querying the Table
	 Getting the History of Your Commands

	 Summary

	Chapter 3: Deploying a Cassandra Cluster
	 Planning a Cluster Deployment
	 Using cassandra-stress for Planning a Production Deployment
	 Choosing Memory
	 Choosing CPUs
	 Network Considerations
	 Choosing Storage
	 NFS, SAN, and NAS Not Advisable
	 How Cassandra Uses Disk Storage
	 Compaction and Storage Requirements
	 Estimating Usable Disk Capacity

	 Choosing Production Settings for a Linux Server
	 Java Version
	 Linux Server and Kernel Settings
	 Synchronize the Clock and Enable NTP
	 Disable the zone_reclaim_mode on NUMA Systems
	 TCP Settings
	 User Resource Limits
	 PAM Security Settings
	 Setting the Java Heap Size
	 Disabling Swap
	 Setting the Limits
	 The Java Hugepages Setting

	 Installing PDSH

	 Initializing a Cassandra Multi-Node Cluster (Single and Multiple Datacenters)
	 Prerequisites
	 Configuring Firewall Port Access
	Public Ports
	Cassandra Inter-Node Ports
	Cassandra Client Ports

	 Selecting a Name for the Datacenter
	 Gathering the IP Addresses for All of the Nodes
	 Selecting the Nodes to Serve as Seed Nodes

	 Configuring the Cluster
	 The num_tokens Property
	 The –seeds Property
	 The listen_address Parameter
	 The rpc_address and broadcast_rpc_address Properties
	 The endpoint_snitch Option
	 The auto_bootstrap Property
	 Configuring the Datacenter and Rack Names

	 Initializing the Cluster with Multiple Datacenters
	 Starting and Stopping the Multi-Node Cluster
	 Script for Starting the Cluster
	 Scripts for Stopping the Cluster

	 The Startup Process of the Nodes in a Cluster
	 Common Errors When Starting Out
	 Change in a Node’s IP Address
	 A Schema Version Mismatch
	 Keyspaces with Different Settings
	 Node Is Down

	 Running Cassandra on Amazon EC2
	 Using Trusted AMIs
	 Setting Up the AWS Instances for Cassandra
	 Starting the EC2 Instance Creation
	 Selecting the AWS Region
	 Creating the EC2 Instances

	 Installing Cassandra
	 Configuring the Cassandra Cluster

	 Summary

	Part II: The Data Model, Cluster Architecture, and the Cassandra Query Language
	Chapter 4: Cassandra Data Modeling, and the Reading and Writing of Data
	 Cassandra and Relational Databases: Major Differences
	 Data-Driven vs. Query-Driven Data Modeling
	 Table Linkages and Referential Integrity
	 Sort Differences
	 Duplicating Data

	 What Is Data Modeling?
	 Analyzing Your Requirements
	 Conceptual Modeling: Identifying the Entities and the Relationships Among Them
	 Reviewing the Queries You Want to Use
	 Logical Modeling
	 Physical Data Modeling

	 Cassandra Data Modeling Rules
	 The Two Basic Rules
	 Spreading Data Evenly Across the Cluster
	 Minimizing the Number of Partitions to Be Read

	 Modeling Around Queries and Not Around Relations
	 Determining the Queries
	 Creating Appropriate Tables

	 Performance Limitations of Cassandra
	 Write Limitations
	 No Support for Traditional Transactions
	 Overhead for Mutations and Deletes

	 Read Limitations
	 No Support for Joins
	 Indexes Work Differently
	 Only Eventual Consistency

	 The Concept of Eventual Consistency
	 Consistency Conflict Resolution
	 Repairing Data

	 How Cassandra Writes Data
	 Writing to the Commit Log to Protect the Changes
	 Writing to the Memtable for Durability
	 Configuring the Flushing of Data from the Memtable
	 Configuring the Commit Log Space Threshold
	 Configuring the Memtable Cleanup Threshold
	 Manually Flushing the Memtables

	 Writing to the SSTables for Durable Storage
	 Format of an SSTable Data File
	 Structures Inside an SSTable
	 Caching SSTable Data

	 The Write Request Flow
	 The Role of Hints During the Write Process
	 Memtables and How They’re Flushed to Disk
	 The Commit Log
	 Bloom Filters and Index Files
	Bloom Filters
	Index Files

	 Compacting SSTable Data

	 Reading Data
	 The Cassandra Read Path
	 How Write Patterns Affect Reads

	 Cassandra Transactions and the ACID Properties
	 Atomicity
	 Isolation
	 Durability

	 Handling Consistency
	 Write Consistency
	 ALL (Strong Consistency)
	 Quorum-Related Levels (Strong Consistency)
	 One, Two, Three, and LOCAL_ONE Consistency Levels (Weak Consistency)
	 ANY

	 Calculating the Quorum
	 How Consistency Works in Practice

	 Read Consistency
	 ALL (Strict Consistency)
	 Quorum-Related Read Consistency Levels (Strong Consistency)
	 The ONE, TWO, THREE, and LOCAL_ONE Consistency Levels (Weak Consistency)
	 The Serial Consistency Settings

	 Configuring the Consistency Level
	 Three Types of Read Requests
	 Rapid Read Protection with Speculative Retrying
	 Read Requests with Various Read Consistency Levels: Some Examples
	Single Datacenter
	A Cluster with Two Datacenters

	 Testing the Performance of Consistency Levels

	 Ensuring Atomicity with Batch Operations
	 Configuring Batch Operations
	 Batch Operations in Single and Multiple Partitions
	 When Batch Operations Are Good

	 Lightweight Transactions
	 Performing Lightweight Transactions
	 How Lightweight Transactions Work
	 Caution When Using Lightweight Transactions

	 Summary

	Chapter 5: Cassandra Architecture
	 Basic Cluster Terminology
	 Replica Placement Strategy

	 How Cassandra Stores Data
	 Gossip and How It Helps Nodes Communicate
	 Configuring Gossip Settings
	 Seed Nodes and Gossip
	 Failure Detection and Recovery

	 Repairing a Node
	 Hinted Handoff
	 What a Hint Is
	 How Hinted Handoff Works
	 Managing a Hinted Handoff
	 Checking the Status of a Hinted Handoff
	 Removing All Hints
	 Disabling and Enabling Hints for a Datacenter
	 Tuning Hinted Handoff
	 Stopping the Writing of New Hints

	 Read Repair
	 Random Read Repairs

	 Rapid Read Protection
	 Why Rapid Read Protection Helps
	 Configuring Rapid Read Protection

	 Anti-Entropy Repair
	 How Anti-Entropy Repair Works

	 Performing a Manual (Anti-Entropy) Repair
	 Full vs. Incremental Repair
	 Sequential vs. Parallel Repair
	 Partitioner Range Repair
	 Restricting the Repair to the Local Datacenter (vs. a Cluster-Wide Repair)
	 Endpoint Range vs. Subrange Repair
	 When and How Often to Perform an Anti-Entropy Repair
	 Migrating to Incremental Repair

	 Data Distribution and Replication
	 Virtual Nodes and Data Ownership
	 How Data Is Distributed Across a Cluster
	 Consistent Hashing

	 How to Distribute Token Ranges
	 The Allocation Algorithm
	 The Random Selection Algorithm
	 Enabling Vnodes
	 Disabling Vnodes

	 Choosing a Replication Strategy
	 SimpleStrategy
	 NetworkTopologyStrategy
	 Dynamic Ring Participation
	 Changing the Replication Strategy

	 Partitioners and Partitioning Strategies
	 Types of Partitioners
	 Generating Tokens
	 Setting the initial_tokens and num_tokens Properties

	 Snitches
	 Types of Snitches
	 Understanding the cassandra-topology.properties and the cassandra-rackdc.properties Files

	 Summary

	Chapter 6: Introduction to the Cassandra Query Language
	 Working with Keyspaces
	 Managing Keyspaces

	 Creating a Keyspace
	 Creating a Keyspace in a Cluster with Multiple Datacenters
	 Altering a Keyspace
	 Changing the Replication Factor

	 The Need for Running the nodetool repair Command
	 Preventing a Keyspace from Sending Replicas to Some Data Centers
	 Altering the Durable Writes Property

	 Repairing a Keyspace
	 Specifying the Keyspace You Want to Use

	 Using the Keyspace Qualifier

	 Removing a Keyspace
	 System Keyspaces
	 Getting Cluster Topology from the System Tables
	 Getting Information About Functions, Aggregates, and User Types

	 Creating a Table
	 Column_definition
	 Primary Keys, Partition Keys, and Clustering Columns
	 The Partition Key
	 Creating a Table with a Simple Primary Key
	 Defining a Composite Partition Key
	 Compound Keys and Clustering Columns
	 Static Columns
	 Table Options
	Compact Tables
	Clustering Order
	Other Options

	 Using a Counter Column to Track Values
	 Altering a Table

	 Viewing a Table’s Configured Options
	 Dropping and Truncating Tables
	 Dropping a Table
	 Truncating a Table

	 Deleting Rows and Columns from a Table
	 Deleting Multiple Rows
	 Deleting from a Collection Set, List, or Map
	 Deleting Old Data by Using a TIMESTAMP
	 Removing the Deleted Data from the Database
	How Cassandra Uses Tombstones to Mark Deleted Data
	Specifying a Time-to-Live Value

	 How Garbage Collection Works
	 Zombie Records and the Need for Node Repair

	 Indexing in a Cassandra Database
	 When to Use an Index
	 When Not to Use a Secondary Index
	 High and Low Cardinality Columns
	 Frequently Updated or Deleted Columns
	 Using an Index for Searching for Rows in Large Partitions

	 Creating a Secondary Index
	 Dropping an Index

	 Materialized Views in Cassandra
	 Creating a Materialized View
	 Dropping a Materialized View
	 Denormalizing with Materialized Views
	 Updating Materialized Views

	 Querying Data with the SELECT Statement
	 The Selection Clause
	 The WHERE Clause
	 Creating a Secondary Index
	 Drawbacks of Secondary Indexes
	 SASI: New Implementation of Secondary Indexes
	 Writing a Conditional Statement
	 How to Group a Query’s Results with the GROUP BY Clause
	 Ordering a Query’s Results with the ORDER BY Clause
	 Limiting Your Results
	 Filtering the Results
	 Specifying Built-In Functions for Aggregating Results
	 Formatting the Query Results as JSON
	 Selecting Data from a Collection Column
	 Doing a Multi-Get of CQL Rows with the IN Keyword

	 Inserting Data with the INSERT Statement
	 Modifying Data with the UPDATE Statement
	 Working with Advanced Data Types
	 Collections
	 Creating the Set Type
	 Creating the List Type
	 Creating the Map Type
	 Specifying Frozen Values in Collections

	 Tuples
	 User-Defined Types
	 User-Defined Functions and User-Defined Aggregates
	 User-Defined Functions
	 Things to Remember About UDFs
	 Syntax of an UDF
	 An Example UDF

	 User-Defined Aggregate Functions
	 Built-in Functions and Aggregates

	 Summary

	Chapter 7: Cassandra on Docker, Apache Spark, and the Cassandra Cluster Manager
	 Cassandra and Docker
	 Docker: A Quick Introduction
	 Installing Docker
	 Managing Docker
	 Using the Docker Command Line Utility
	 Understanding Docker Images

	 Running a Cassandra Cluster on Docker
	 Running cqlsh in the Docker-Based Cluster

	 Setting Cassandra Environment Variables for Docker
	 Storing Cassandra Data on Docker

	 Creating a Cassandra Cluster Using Docker-Compose and Behavior-Driven Development
	 Getting the Prerequisites Out of the Way
	Installing Docker
	Installing Docker-Compose
	Installing Cucumber

	 User Stories
	 Getting Ready to Run the BDD Tests
	 Running the BDD Tests

	 Using the Cassandra Cluster Manager to Spin Up Clusters
	 Installing CCM
	 Creating a Cassandra Cluster with CCM
	 Checking the Status of the Cluster
	 Starting the Cluster

	 Working with CCM
	 Using cqlsh with CCM
	 Get SSTable Information

	 Running Apache Spark with Cassandra
	 Installing the Prerequisites
	 Installing Apache Spark
	 Configuring the Spark Cluster
	 Starting Up the Spark Cluster
	 Connecting to Cassandra from a Spark Cluster
	 Working with Cassandra from Spark

	 Cassandra and the SMACK Stack: A Growing Trend
	 Summary

	Chapter 8: Backup, Recovery, and Moving Data
	 Backing Up Data
	 Managing Snapshots
	 Taking an Automatic Snapshot Before Compacting Data

	 Performing Incremental Backups

	 Restoring Data with Various Restore Methods
	 Restoring Data from a Snapshot
	 Copying Data from the Snapshots Directory
	 Running a Repair After Restoring from a Snapshot

	 Using sstableloader to Restore Snapshots
	 The Node Restart Method Procedure
	 Commitlog Archiving and Point-in-Time Recovery
	 Manually Archiving the Commit Log
	 Restoring a Commit Log
	 Setting the Restore Directory Location
	 Setting the Restore Timestamp

	 Loading Bulk Data into Cassandra
	 Using the COPY Command to Import and Export Data
	 Copying Data from a Cassandra Table
	 Copying Data to a Cassandra Table
	 Running sstableloader to Perform Bulk Loading
	 Loading External Data with sstableloader
	 Loading SSTable Data to a Different Cluster

	 Summary

	Part III: Maintaining, Monitoring, Tuning, and Securing Apache Cassandra
	Chapter 9: Maintaining Cassandra
	 Common Cluster Maintenance Tasks
	 Repairing Data (nodetool repair)
	 When to Perform a Repair
	 When Repairs Are Unavoidable
	 Running the nodetool repair Command
	 Rebuilding Data by Getting It from Other Nodes (nodetool rebuild)
	 Cleaning Up Unnecessary Keyspaces and Partition Keys (nodetool cleanup)

	 Rebuilding Indexes
	 Refreshing Size Estimates of Tables

	 Key Nodetool Maintenance Commands
	 Decommissioning Nodes (nodetool decommission)
	 Remove All Data and Restart the Node
	 Setting the cassandra.override_decommission=true Option

	 Assassinating a Node (nodetool assassinate)

	 Node Management
	 Keeping a Node from Joining the Cluster
	 Adding a Node to a Data Center
	 Replacing a Running Node
	 Adding the New Node and Decommissioning the Old Node Afterwards
	 Directly Replacing a Node

	 Removing a Node from a Cluster
	 Replacing a Dead Node
	 Moving a Node to a Different Rack
	 Decommissioning an Entire Datacenter

	 Switching Snitches
	 No Topology Change
	 With Topology Changes

	 Managing Gossip
	 Getting Information About Gossip
	 Disabling and Enabling Gossip
	 Checking the State of Gossip

	 Flushing and Draining Data: The Differences
	 Draining a Node
	 Flushing Data from Memtables

	 Maintaining Datacenters
	 Adding a Datacenter to a Cluster
	 Decommissioning a Datacenter

	 Handling Data Corruption
	 Checking for Data Corruption
	 Fixing Corrupted Data
	 Removing Corrupt Data by Rebuilding the Table
	 Offline Rebuilding of a Table

	 Managing Handoff and Hints
	 Purging the Gossip State on a Node

	 Summary

	Chapter 10: Monitoring, Logging, and Metrics
	 The nodetool proxyhistograms Command
	 Getting Table-Level Statistics

	 Getting Network Information from the Host
	 The nodetool tablehistograms Command

	 Checking the Cluster Health
	 The nodetool status Command
	 The nodetool info Command
	 Using Thread Pools Statistics (nodetool tpstats)
	 Using JMX Clients
	 JConsole

	 Logging
	 Setting the Logging Locations
	 Configuring Logging Through Logback
	 The Logback Logging Framework
	 Main Components of the Logback Framework: Logger, Appenders, and Layouts
	Logger
	Appender
	Layout

	 The logback.xml File
	Configuring Automatic Loading of Configuration Files
	Configuring Appenders

	 Setting Up Log Rotation

	 Using Nodetool to Set the Logging Level for a Service
	 Setting the Log Level
	 Checking the Current Log Level

	 Monitoring Cassandra with Nagios
	 Installing the LAMP Stack and Addressing Other Prerequisites
	 Creating the Nagios User and Group
	 Installing the Build Dependencies

	 Installing Nagios
	 Downloading Nagios
	 Configuring Nagios
	 Compiling and Installing Nagios

	 Installing the Nagios Plugins
	 Installing NRPE
	 Configuring Nagios and Apache
	 Configuring Nagios

	 Configuring Apache
	 Adding the Cassandra Cluster Hosts for Monitoring
	 Installing and Configuring NRPE on the Hosts
	 Adding Hosts to the Nagios Server Configuration
	 Adding Cassandra-Specific Plugins

	 Summary

	Chapter 11: Tuning Cassandra Performance
	 Using Tracing to Analyze Performance
	 Managing Tracing
	 Managing Probabilistic Tracing

	 How to Trace Write and Read Requests
	 Tracing a Write Request
	 Tracing a Read Request

	 Tuning Bloom Filters
	 Configuring Bloom Filters
	 Regenerating Bloom Filters

	 Caching Data
	 Types of Data Caches
	 Where Cassandra Stores the Cached Data
	 Configuring Caching
	 Global Caching Parameters
	 Configuring the Size of the Row Cache
	 Configuring the Size of the Key Cache
	 Configuring the Frequency of Caching
	 Specifying the Number of Keys to Save

	 Using the Counter Cache
	 Monitoring Caching
	 Tracing Database Operations to Optimize Caching

	 Stress Testing Cassandra with cassandra-stress
	 Running cassandra-stress
	 A cassandra-stress Example
	 Running a Write Test
	 Running a Read Test
	 Running a Mixed Workload

	 Setting the Replication, Compaction, and Compression Options
	 Running a Stress Test on Multiple Nodes

	 Running cassandra-stress with a YAML-Based Profile

	 Configuring Compaction Strategies
	 Compaction Strategies
	 SizeTieredCompactionStrategy
	Configuring STCS
	When to Use (or Not to Use) STCS

	 LeveledCompactionStrategy
	Configuring LCS
	When to Use (or Not to Use) LCS

	 TimeWindowCompactionStrategy
	Configuring TWCS
	When to Use TWCS

	 Enabling and Disabling Compaction
	 Configuring Global Compaction Properties
	 The snapshot_before_compaction Property
	 The concurrent_compactors Property
	 The sstable_preemptive_open_interval_in_mb Property
	 Throttling the Compaction Speed

	 Setting the Compaction Strategy
	 Getting and Setting the Compaction Thresholds

	 Logging the Compaction Activity
	 Testing the Efficacy of a Compaction Strategy
	 Enabling and Disabling Autocompaction
	 Viewing the History of All Compactions

	 Compressing Data to Save Storage Space
	 Configuring Compression
	 When Cassandra Compresses Data
	 Modifying the Compression Algorithm
	 Testing the Efficacy of Compression
	 Turning Off Compression

	 Improving Write Performance with Memtable Thresholds
	 Tuning the JVM
	 Java Garbage Collection
	 Selecting the Right Garbage Collector
	 Setting the Heap Size
	 Configuring Garbage Collection Logging

	 Using the nodetool proxyhistograms and the tablehistograms Commands

	 Summary

	Chapter 12: Securing Cassandra
	 Configuring Authentication
	 Creating Roles
	 Configuring Authentication
	 Speeding Up the Credentials Authentication Process

	 Creating Roles
	 Changing a Password
	 Dropping a Role

	 Handling the Superuser Account

	 Configuring Authorization: Granting Privileges on Resources
	 Cassandra’s Access Control Matrix

	 Configuring Role-Backed Access Control
	 Creating Roles for Login Accounts
	 Granting Permissions to Roles
	 Object Permissions in Cassandra
	 Granting Permissions on Objects to Roles
	 Listing Permissions
	 Viewing Permissions Granted to Roles

	 Configuring Firewall Ports for Access
	 Encrypting Cassandra with SSL
	 Installing the Java Cryptography Extension Files
	 Preparing the Server Certificates
	 Create a Certificate Authority
	 Creating Certificates for All Nodes
	 Exporting the Certificate Signing Requests
	 Signing the Certificates with the CA’s Public Key
	 Adding the CA to the Keystore
	 Importing the Signed Certificates into the Keystore
	 Building the Trust Store
	 Configuring the Cluster with the Keystores

	 Enabling Inter-Node Encryption
	 Enabling Client Encryption

	 JMX Authentication and Authorization
	 Enabling JMX Authentication and Authorization
	 Using cqlsh with Authentication

	 Summary

	Index

