
www.allitebooks.com

http://www.allitebooks.org

Exploring Data with RapidMiner

Explore, understand, and prepare real data
using RapidMiner's practical tips and tricks

Andrew Chisholm

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Exploring Data with RapidMiner

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-933-8

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Andrew Chisholm

Reviewer
Venkatesh Umaashankar

Ingo Mierswa

Acquisition Editor
Pramila Balan

Commissioning Editor
Poonam Jain

Technical Editors
Pragnesh Bilimoria

Arwa Manasawala

Anand Singh

Copy Editor
Alisha Aranha

Roshni Banerjee

Brandt D'Mello

Mradula Hegde

Dipti Kapadia

Kirti Pai

Project Coordinator
Suraj Bist

Proofreader
Maria Gould

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew Chisholm completed his degree in Physics from Oxford University
nearly thirty years ago. This coincided with the growth in software engineering
and it led him to a career in the IT industry. For the last decade he has been very
involved in mobile telecommunications, where he is currently a product manager
for a market-leading test and monitoring solution used by many mobile operators
worldwide.

Throughout his career, he has always maintained an active interest in all aspects
of data. In particular, he has always enjoyed finding ways to extract value from
data and presenting this in compelling ways to help others meet their objectives.
Recently, he completed a Master's in Data Mining and Business Intelligence with first
class honors. He is a certified RapidMiner expert and has been using this product
to solve real problems for several years. He maintains a blog where he shares some
miscellaneous helpful advice on how to get the best out of RapidMiner.

He approaches problems from a practical perspective and has a great deal of relevant
hands-on experience with real data. This book draws this experience together in
the context of exploring data—the first and most important step in a data mining
process.

He has published conference papers relating to unsupervised clustering and cluster
validity measures and contributed a chapter called Visualizing cluster validity
measures to an upcoming book entitled RapidMiner: Use Cases and Business Analytics
Applications, Chapman & Hall/CRC

I would like to thank my family, and in particular my wife Jennie for
putting up with me while I wrote this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Venkatesh Umaashankar is an analytics professional with a rich experience in
implementing data mining and machine learning systems. His main areas of interest
are machine learning and big data. He is also an avid learner and follower of new
developments in the field of machine learning and its practical application. He blogs
about machine learning at http://intelligencemining.blogspot.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Setting the Scene	 7

A process framework	 8
Data volume and velocity	 10
Data variety, formats, and meanings	 11
Missing data	 12
Cleaning data	 12
Visualizing data	 13
Resource constraints	 13
Terminology	 14
Accompanying material	 15
Summary	 16

Chapter 2: Loading Data	 17
Reading files	 17

Alternative delimiters	 20
Reading complete lines	 21
Reading large numbers of attributes	 21
Splitting files into smaller pieces	 23

Databases	 25
The Read Database operator	 25
Large datasets	 27

Using macros	 27
Summary	 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Visualizing Data	 29
Getting started	 29
Statistical summaries	 30
Relationships between attributes	 32

Scatter plots	 32
Scatter 3D color	 34
Parallel and deviation	 35
Quartile color	 38

Time series data	 39
Plotting series	 39
Using the survey plotter	 42

Relations between examples	 43
Using histograms	 44
Using block plots	 45

Summary	 47
Chapter 4: Parsing and Converting Attributes	 49

Generating attributes	 50
Date functions	 51
Regular expression functions	 53
Generating extracts	 54
Regular expressions	 54
XPath	 57

Renaming attributes	 59
Searching and replacing attribute values	 59
Using the Map operator	 59
Using the Replace operator	 60
Using the Replace (Dictionary) operator	 60

Summary	 62
Chapter 5: Outliers	 63

Manual inspection	 63
Increasing the data volume	 68
Rules for handling outliers	 68

Automated detection of example outliers	 69
The Detect Outlier (Distances) operator	 69
The Detect Outlier (Densities) operator	 73
The Detect Outlier (LOF) operator	 74
The Detect Outliers (COF) operator	 75

Summary	 76

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Missing Values	 77
Missing or empty?	 77
Types of missing data	 78

Missing completely at random	 78
Missing at random	 78
Not missing at random	 79

Categorizing missing data	 79
Finding MCAR data	 83
Finding MAR data	 85
Finding NMAR data	 86
A cautionary note	 87

Effect of missing data	 88
Options for handling missing data	 88

Returning to the root cause	 89
Ignoring it	 89
Manual editing	 89
Deletion of examples	 90
Deletion of attributes	 90
Imputation with single values	 90
Modeling	 91

Summary	 91
Chapter 7: Transforming Data	 93

Creating new attributes	 94
Aggregation	 98
Using pivoting	 100
Using de-pivoting	 102
Summary	 106

Chapter 8: Reducing Data Size	 107
Removing examples using sampling	 107
Removing attributes	 108

Removing useless attributes	 109
Weighting attributes	 111
Selecting attributes using models	 114

Summary	 119

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 9: Resource Constraints	 121
Measuring and estimating performance	 121

Measuring performance	 122
Adding memory	 129
Parallel processing	 130
Restructuring processes	 131
Summary	 131

Chapter 10: Debugging	 133
Breakpoints in RapidMiner Studio	 133
Logging data in RapidMiner Studio	 134
RapidMiner Studio console printing	 135
Groovy scripts	 136

Outputting macros example	 137
Console logging with Groovy	 137

Regex tools	 138
Using XPath effectively	 138
Summary	 139

Chapter 11: Taking Stock	 141
Exploring new techniques	 142

Time series	 142
Web mining	 142
Using R	 142
Java or Groovy	 142
Third-party components	 143
RapidMiner Server	 143

Where to go next	 143
Index	 145

Preface
This book is a practical guide to exploring data using RapidMiner Studio. Something
like 80 percent of a data mining or predictive analytics project is spent importing,
cleaning, visualizing, restructuring, and summarizing data in order to understand it.
This book focuses on this vital aspect and gives practical advice using RapidMiner
Studio to help with the process.

A number of techniques are illustrated and it is the nature of exploratory data
analysis that they can be re-used and modified in different places. By drawing
these techniques together into a context, the reader will get a better sense of how
RapidMiner Studio can be used in general and gain more confidence to use it.

What this book covers
Chapter 1, Setting the Scene, describes the main challenges when mining real data.
These challenges arise because data is big and, in the real world, it is unstructured,
difficult to visualize, and time consuming to bring order to.

Chapter 2, Loading Data, describes the different ways of loading data into RapidMiner
Studio and the advanced techniques sometimes needed to transform raw
unstructured data into a common format.

Chapter 3, Visualizing Data, describes the visualization techniques available in
RapidMiner Studio to help make sense of data.

Chapter 4, Parsing and Converting Attributes, explains that data is rarely in precisely
the right format and, therefore, needs to be parsed to extract specific information or
converted into a different representation.

Preface

[2]

Chapter 5, Outliers, explains that real data contains values that do not seem to fit
the rest of the data. There are many reasons for this and it is important to have a
strategy for identifying and dealing with them, otherwise model accuracy risks can
be severely compromised.

Chapter 6, Missing Values, explains that real data inevitably contains missing values.
Simple deletion of rows containing missing values can quickly lead to a significant
reduction in the performance of a data mining algorithm. Much better techniques
exist.

Chapter 7, Transforming Data, covers techniques to restructure the data into new
representations that can assist its exploration and understanding.

Chapter 8, Reducing Data Size, explains that reducing the number of rows will
generally speed up processing but will reduce accuracy. Balancing this is important
for large datasets. Reducing the number of columns of data can often improve model
accuracy and for large datasets it is doubly valuable as it can speed up processing in
general.

Chapter 9, Resource Constraints, explains that processing large amounts of data
requires a lot of physical processing power and memory, to say nothing of the
amount of time. This chapter gives some techniques to help measure process
performance. Sometimes, it is not possible to process the data using available
resources and in this situation, some techniques can be adopted to persuade the
process to complete.

Chapter 10, Debugging, explains that when something goes wrong, it can be
frustrating and time consuming to detect and resolve the problem. This chapter gives
some generic methods for making this process a bit easier.

Chapter 11, Taking Stock, explains that having reached this point, the reader will have
a greater visibility of the possibilities to process, clean, and explore data as part of
the data mining process. This will be a stepping stone to more complex data mining
techniques.

What you need for this book
You will need some basic previous exposure to RapidMiner.The latest version of
RapidMiner is now RapidMiner Studio which adds some templating features to help
analysts get going more quickly as well as some changes to the look and feel of the
GUI in general. This book uses the latest version and it is assumed that you have
installed it so that you can download and try the example processes that are worked
through in the text.

Preface

[3]

Who this book is for
This book is for data analysts with some experience of RapidMiner who wish to
use it to explore real data as part of an overall data mining or business intelligence
objective. It is very likely that the analyst may have spent some initial time on mining
data but could not get the results they wanted. This book gives some real examples
and helps to build a context in which data exploration can be done.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To identify missing attributes, the Filter Examples operator can be used."

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
featureNames attribute shows the attributes that were used to create the various
performance measurements."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of
this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output.You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/9338OS_Images.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Setting the Scene
You have data, you know it has hidden value, and you want to mine it. The problem
is you're a bit stuck.

The data you have could be anything and you have a lot of it. It is probably from
where you work, and you are probably very knowledgeable about how it is
gathered, how to interpret it, and what it means. You may also know a domain
expert to whom you can turn for additional expertise.

You also have more than a passing knowledge of data mining and you have spent
a short time becoming familiar with RapidMiner to perform data mining activities,
such as clustering, classification, and regression. You know well that mining data is
not just a case of using a spreadsheet to draw a few graphs and pie charts; there is
much more.

Given all of this, what is the problem, why are you stuck, and what is this book for?

Simply put, real data is huge, stored in a multitude of formats, contains errors and
missing values, and does not yield its secrets willingly. If, like me, your first steps in
data mining involved using simple test datasets with a few hundred rows (all with
clean data), you will quickly find that 10 million rows of data of dubious quality
stored in a database combined with some spreadsheets and sundry files presents
a whole new set of problems. In fact, estimates put the proportion of time spent
cleaning, understanding, interpreting, and exploring data at something like 80
percent. The remaining 20 percent is the time spent on mining.

The problem restated is that if you don't spend time cleaning, reformatting,
restructuring, and generally getting to know your data as part of an exploration, you
will remain stuck and will get poor results. If we agree that this is the activity to be
done, we come to a basic question: how will we do this?

Setting the Scene

[8]

The answer to this problem for this book is to use RapidMiner, a very powerful
and ultimately easy-to-use product. These features, coupled with its open source
availability, means it is very widely used. It does have a learning curve that can seem
daunting. Be assured, once you have ascended this, the product truly becomes easy
to use and lives up to its name.

This book is therefore an intermediate-level practical guide to using RapidMiner
to explore data and includes techniques to import, visualize, clean, format, and
restructure data. This overall objective gives a context in which the various
techniques can be considered together. This is helpful because it shows what is
possible and makes it easier to modify the techniques for whatever real data is
encountered. Hints and tips are provided along the way; in fact, some readers may
prefer to use these hints as a starting point.

Having set the scene, let us consider some of the aspects of data exploration
raised in this introduction. The following sections explain some of the aspects
of data exploration and give references to chapters where these aspects are
considered in detail.

A process framework
It is important to think carefully about the framework within which any data mining
investigation is done. A systematic yet simple approach will help results happen and
will ensure everyone involved knows what to do and what to expect.

The following diagram shows a simple process framework, derived in part from
CRISP-DM (ftp://ftp.software.ibm.com/software/analytics/spss/
documentation/modeler/14.2/en/CRISP_DM.pdf):

Chapter 1

[9]

Business
understanding

Deployment

Modeling

Go
clockwise

Evaluation
Data

preparation

Data
understanding

Start here

There are six main phases. The process starts with Business understanding and the
whole process proceeds in a clockwise direction, but it is quite normal to return,
at any stage, to the previous phases in an iterative way. Not all the stages are
mandatory. It is possible that the business has an objective that is not related to data
mining and modeling at all. It might be enough to summarize large volumes of data
in some sort of dashboard, so the Modeling step would be ignored in this case.

The Business understanding phase is the most important phase to get correct.
Without clear organizational objectives set by what we might loosely call the
business, as well as its continuing involvement, the whole activity is doomed. The
output from this phase is considered the criteria for determining success. For the
purpose of this book, it is assumed that this critical phase has been started and this
clear view exists.

Setting the Scene

[10]

Data understanding and Data preparation follow Business understanding, and
these phases involve activities such as importing, extracting, transforming, cleaning,
and loading data into new databases and visualizing and generally getting a
thorough understanding of what the data is. This book will be concerned with these
two phases.

The Modeling, Evaluation, and Deployment phases concern building models to
make predictions, testing these with real data, and deploying them in live use. This
is the part that most people regard as data mining but it represents 20 percent of the
effort. This book does not concern itself with these phases in any detail.

Having said that, it is important to have a view of the Modeling phase that will
eventually be undertaken because this will impact the data exploration and
understanding activity. For example, a predictive analytics project may try to predict
the likelihood of a mobile phone customer switching to a competitor based on usage
data. This has implications for how the data should be structured. Another example
is using online shopping behavior to predict customer purchases, where a market
basket analysis would be undertaken. This might require a different structure for
the data. Yet another example would be an unsupervised clustering exercise to try
and summarize different types of customers, where the aim is to find groups of
similar customers. This can sometimes change the focus of the exploration to find
relationships between all the attributes of the data.

Evaluation is also important because this is where success is estimated. An
unbalanced dataset, where there are few examples of the target to be predicted, will
have an effect on the validation to be performed. A regression modeling problem,
which estimates a numerical result, will also require a different approach to a
classification in which nominal values are being predicted.

Having set the scene for what is to be covered, the following sections will give some
more detail about what the Data understanding and Data preparation phases
contain, to give a taste of the chapters to come.

Data volume and velocity
There is no doubt that data is growing. Even a cursory glance at historical trends
and future predictions reveals graphs trending sharply upwards for data volumes,
data sources, and datatypes as well as for the speed at which data is being created.
There are also graphs showing the cost of data storage going down, linked to the
increased power and reduced cost of processing, the presence of new devices such
as smartphones, and the ability of standard communication networks such as the
Internet to make the movement of data easy.

Chapter 1

[11]

So, there is more and more data being generated by more and more devices and it is
becoming easier to move it around.

However, the ability of people to process and understand data remains constant. The
net result is a gap in understanding that is getting wider.

For evidence of this, it is interesting to use Google Trends to look for search terms
such as data visualization, data understanding, data value, and data cost. All of
these have been trending up to a greater or lesser extent since 2007. This points to the
concerns that people have which causes them to search for these terms because they
are being overwhelmed with data.

Clearly, there is a need for something to help close the understanding gap to make
the process of exploring data more efficient. As the first step, therefore, Chapter 8,
Reducing Data Size, and Chapter 9, Resource Constraints, give some practical advice
on determining how long a RapidMiner process will take to run. Some techniques
to sample or reduce the size of data are also included to allow results to be obtained
within a meaningful time span while understanding the effect on accuracy.

Data variety, formats, and meanings
For the purpose of this book, data is something that can be processed by a computer.
This means that it is probably stored in a file on a disk or in a database or it could be in
the computer's memory. Additionally, it might not physically exist until it is asked for.
In other words, it could be the response to a web service query, which mashes up data
sources to produce a result. Furthermore, some data is available in real time as a result of
some external process being asked to gather or generate results.

Having found the data, understanding its format and the fields within it represents
a challenge. With the increase of data volume comes an inevitable increase in the
formats of data, owing simply to there being more diverse sources of data. User-
generated content, mash-ups, and the possibility of defining one's own XML
datatypes means that the meaning and interpretation of a field may not be obvious
simply by looking at its name.

The obvious example is date formats. The date 1/5/2012 means January 5, 2012
to someone from the US whereas it means May 1, 2012 to someone from the UK.
Another example in the context of a measurement of time is where results are
recorded in microseconds, labeled as elapsed time, and then interpreted by a person
as being in seconds. Yet another example could be a field labeled Item with the value
Bat. Is this referring to a small flying mammal or is it something to play cricket with?

To address some aspects of data, Chapter 2, Loading Data, Chapter 4, Parsing and
Converting Attributes, and Chapter 7, Transforming Data, take the initial steps to help
close the understanding gap mentioned earlier.

Setting the Scene

[12]

Missing data
Most data has missing values. These arise for many reasons by virtue of errors
during the gathering process, deliberate withholding for legitimate or malicious
reasons, and simple bugs in the way data is processed. Having a strategy to handle
this is very important because some algorithms perform very poorly even with a
small percentage of missing data.

On the face of it, missing data is easy to detect, but there is a pitfall for the unwary
since a missing value could in fact be a completely legitimate empty value. For
example, a commuter train could start at one station and stop at all intermediate
stations before reaching a final destination. An express train would not stop at the
intermediate stations at all, and there would be no recorded arrival and departure
times for these stops. This is not missing data but if it is handled like it is, the data
would become unrepresentative and would lead to unpredictable results when used
for mining.

That's not all; there are different types of missing data. Some are completely random,
while some depend on the other data in complex ways. It is also possible for missing
data to be correlated with the data to be predicted. Any strategy for handling
missing values has therefore to consider these issues because the simple strategy of
deleting records does not only remove precious data but could also bias the results
of any data mining activity. The typical starting approach is to fill missing values
manually. This is not advisable because it is time consuming, error prone, risks bias,
is not repeatable, and does not scale.

What is needed is a systematic method of handling missing values and determining
a way to process them automatically with little or no manual intervention. Chapter 6,
Missing Values, takes the first step on this road.

Cleaning data
It is almost certain that any data encountered in the real world has data quality
issues. In simple terms, this means that values are invalid or very different from
other values. Of course, it can get more complex than this when it is not at all
obvious that a particular value is anomalous. For example, the heights of people
could be recorded and the range could be between 1 and 2 meters. If there is data for
young children in the sample, lower heights are expected, but isn't a 2-meter five-
year-old child an anomaly? It probably is, but anomalies such as these usually occur.

As with missing data, a systematic and automatic approach is required to identify it
and deal with it and Chapter 5, Outliers, gives some details.

Chapter 1

[13]

Visualizing data
A picture paints a thousand words, and this is particularly true when trying to
understand data and close the understanding gap. Faced with a million rows of
data, there is often no better way to view it to understand what quality issues there
are, how the attributes within it relate to one another, and whether there are other
systematic features that need to be understood and explained.

There are many types of visualizations that can be used and it is also important
to combine these with the use of descriptive statistics, such as the mean and
standard deviation.

Examples include 2D and 3D scatter plots, density plots, bubble charts, series,
surfaces, box plots, and histograms, and it is often important to aggregate data into
summaries for presentation because the larger the data gets, the more time it takes to
process. Indeed, it becomes mandatory to summarize data as the resource limits of
the available computers are reached.

Some initial techniques are given in Chapter 3, Visualizing Data.

Resource constraints
There is never enough time and there is never enough money. In other words,
there is never enough time to get all the investigation and processing done, both in
terms of the capacity of a person to look at the data and understand it as well as in
terms of processing power and capacity. To be valuable in the real world, it must be
possible to process all the data in a time that meets the requirements set at the outset.
Referring back to the overall process, the business objectives must consider and set
acceptance criteria for this.

This pervades all aspects of the data mining process from loading data, cleaning it,
handling missing values, transforming it for subsequent processing, and performing
the classification or clustering process itself.

When faced with huge data that is taking too long to process, there are many
techniques that can be used to speed things up and Chapter 9, Resource Constraints,
gives some details. This can start by breaking the process into steps and ensuring
that intermediate results are saved. Very often, an initial load of data from a database
can dwarf all other activities in terms of elapsed time. It may also be the case that it is
simply not possible to load the data at all, making a batch approach necessary.

Setting the Scene

[14]

It is well known that different data mining algorithms perform differently depending
on the number of rows of data and the number of attributes per row. One of the
outputs from the data preparation phase is a dataset that is capable of being mined.
This means that it must be possible for the data to be mined in a reasonable amount
of time and so it is important that attention is paid to reducing the size of the data
while bearing in mind that any reduction could affect the accuracy of the resulting
data mining activity.

Reducing the number of rows by filtering or by aggregation is one method. An
alternative method to this is to summarize data into groups. Another approach is to
focus on the attributes and remove those that have no effect on the final outcome.
It is also possible to transform attributes into their principal components for
summarization purposes.

All of this does not help you think any quicker, but by speeding up the intermediate
steps, it helps keep the train of thought going as the data is being understood.

Terminology
The following table contains some common terms that RapidMiner uses:

Term Explanation
Process A process is an executable unit containing the functionality to be

executed. The user creates the process using operators and joins them
together in whatever way is required.

Operator An operator is a single block of functionality available from the
RapidMiner Studio GUI that can be arranged in a process and connected
to other processes. Each operator has parameters that can be configured
as per the specific requirements of the process.

Macro A macro is a global variable that can be set and used by most operators
to modify operator behavior.

Repository A repository is a location where processes, data, models, and files
can be stored and read either from the RapidMiner Studio GUI or
from a process.

Example An example is a single row of data.
Example set This is a set of one or more examples.
Attribute An attribute is a column of data.
Type This is the type of an attribute. It can be real, integer, date_time,

nominal (both polynominal and binominal), or text.

Chapter 1

[15]

Term Explanation
Role An attribute's role dictates how operators will use the attribute. The

most obvious role is regular. The other standard types are known as
special attributes and these include label, id, cluster, prediction,
and outlier. It is also possible to set the role of an attribute that is
generally ignored by most operators (there are exceptions).

Label A label is the target attribute to be predicted in a data mining
classification context. This is one of the special role types for an
attribute.

ID This is a special role that indicates an identifier for an example. Some
operators use the ID as part of their operation.

This table is given here so that readers are aware of the terminology up front and to
make it easier to find later.

Accompanying material
Many RapidMiner processes have been produced for this book, and most are
available on the Internet.

Some of the processes contain additional bonus material. Note that, where files need
to be accessed, you will have to edit the processes to match the locations of your files.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Setting the Scene

[16]

Summary
So far, we have seen in detail how extracting value from data should be considered
an iterative process that consists of a number of phases. It is important to have a clear
business objective as well as continued involvement of key people throughout the
process. The important point is that the bulk of data mining is about data cleaning,
exploration, and understanding, which means it is important to make this clear at the
beginning to avoid disappointment.

Having seen some of the aspects of data cleaning, exploring, and understanding, you
recognize some of the practical issues you have faced that have prevented you from
getting value out of your data.

Without further ado, let's get straight onto the next logical step: importing data.
RapidMiner provides many ways to do this and these are covered in Chapter 2,
Loading Data.

Loading Data
There are many ways of loading data into RapidMiner. This chapter will cover the
important ones when reading from files or databases. Keeping in mind that we are
exploring data, the chapter focuses on using the features of RapidMiner to work
around the typical issues that real data can cause. Some issues can occur without
being noticed, so it is particularly important to be vigilant.

Reading files
The most used operator to import flat files is Read CSV. This is a powerful operator
that is capable of far more than importing comma-separated values. The operator
has a wizard that can be used to take some of the tedious work out of setting up the
details of the fields to import, and generally, this works well. However, there are
some points to take care of.

An example process, ReadCSVGuessing.xml, is provided with the files that
accompany this book. This process creates a CSV file and then reads it back in and
can be used in conjunction with the following sections to help understand them more
quickly. If this is run once, a CSV file will be created. The process includes a Read
CSV operator, and by choosing the wizard from the operator's configuration options,
it will be easier to follow the next sections.

Loading Data

[18]

At the most basic level, the result of running the Read CSV operator is an example set
based on the contents of the file. The following screenshot shows a subset of the CSV
file generated by the ReadCSVGuessing.xml process:

Each line consists of three entries separated by semicolons. The first line corresponds
to the names of the attributes, and the subsequent lines correspond to the values for
the rows. Notice how the fields are surrounded by double quotation marks. All in
all, this is a very well behaved file and is easy to read. Real files often have all sorts of
issues, which we will cover shortly.

After the file is read, the RapidMiner example set corresponding to this data is
displayed as shown in the following screenshot:

Chapter 2

[19]

This is the first opportunity to explore the data, and an inspection of this process
shows how the fields in the CSV file map the examples and attributes in the
example set.

As said earlier, we are exploring real data, which is always more challenging. A
good first step to deal with this is to use the wizard built into the Read CSV operator.
This wizard is started by clicking on the Import Configuration Wizard button in the
parameter view for the operator.

The wizard uses the first 100 rows that it encounters to infer the types of the
attributes (this value is configurable from the RapidMiner settings options). If these
rows contain two possible values for an attribute, RapidMiner will guess that the
type is binominal. If the 101st row contains a third possible value, the import will
generate an error. Using the ReadCSVGuessing.xml process from earlier, deselect the
checkbox to preview the first 100 rows and click on the Reload data button. Errors
should show up as shown in the following diagram:

In this case, changing the type of the last column to polynominal and reloading
the data will make the error disappear. Guessing value types will set the type to
binominal again.

www.allitebooks.com

http://www.allitebooks.org

Loading Data

[20]

If the file is large, the wizard may take some time, so it may be advisable either to
run the import and follow this process with the Filter Examples operator (for more
details, refer to Chapter 8, Reducing Data Size) to see examples with missing attributes.
Or you can split the file into smaller parts as described in the Splitting files into smaller
pieces section.

Alternative delimiters
The field delimiter used in the previous example is a semicolon. In real explorations,
many different delimiters will be encountered. It is possible to parse these using
regular expressions. For example, the default regular expression provided in step 2
of the wizard is as follows:

,\s*|;\s*

This expression means the following:

Look for a comma followed by some optional white space or look for a semicolon followed by
some optional white space.

The expression will allow a file containing a mix of commas and semicolons as
delimiters to be read although usually only one type of delimiter is used and these
are most commonly semicolons or commas.

Another example would be as follows:

:{3}

This expression will look for three consecutive colons and treat them as the delimiter.

In passing, it is worth mentioning that regular expressions are very commonly used
within RapidMiner. At various points, regular expressions will be used in this book,
and where possible, an English translation will be given. In addition, refer to Chapter
10, Debugging, to find a further summary of why these are so important, where they
are used and some tools to help.

Delimiter handling can be challenging if the delimiter is included as valid text
within some of the values for fields. This particularly affects commas because many
numbering schemes use them to delimit numbers. Vigilance is needed to spot these
in general, and sometimes the only thing to do is parse the contents outside the
wizard as described in the next section.

Chapter 2

[21]

Reading complete lines
When using the Read CSV wizard to explore real data, you will inevitably encounter
a situation where lines are too complex to parse. In such a case, reading each
complete line one by one is a sensible course of action as it allows more complex
multistep processing to be performed later. In this case, the line terminators are
treated as delimiters. To do this, use a regular expression to look for carriage returns
and line feeds as follows:

\r\n

It is generally necessary to deselect the use of quotes to make this expression work.

The number of examples will correspond to the number of lines in the file. Some
UNIX files may not have both the carriage return and line feed as line terminators. In
this case, it is necessary to use either \r or \n by itself as the regular expression.

Reading large numbers of attributes
The wizard does a good job of inferring attribute types. But by using the first 100
examples (or whatever the configuration is set to), it can sometimes get this wrong if
attributes that are beyond the first 100 have a different type. This particularly affects
binominal values, real values, and dates. An incorrect guess can lead to errors when
the whole file is read. For example, if the first 100 rows for a particular attribute
contained two possible values, the wizard would guess that the type of the attribute
is binominal. In fact, if there are more than two possible values, the attribute type
should be polynominal. When the wizard encounters the unexpected value, it will—
not unreasonably—show an error.

When the data to be read has hundreds of attributes, it can be tedious to use the GUI
to correct any incorrect guesses. In this situation, the easiest approach is to edit the
XML for the process directly.

Loading Data

[22]

For example, the following screenshot shows a small fragment of the XML for a Read
CSV operator, which can be seen by enabling the XML view from the RapidMiner
Studio GUI (this process is available as ReadCSVMetaData.xml in the files that
accompany this book):

The following screenshot shows how this XML is shown in the GUI view.
The relationship between the GUI view and the XML should be obvious from
this example:

Editing the XML is straightforward and can be done by copying and pasting it into
an external editor. When the finished XML is pasted back into the RapidMiner Studio
GUI, it can be validated by pressing F12 or by clicking on the relevant button in the
XML view.

Chapter 2

[23]

Generally, for very large imports, that is, those with many attributes, it makes sense
to set all the variable types to text or polynominal and then use various operators to
parse, validate, and set the type of the attributes. This usually avoids errors on import
and allows focus to be given to processing each attribute in a more controlled way.

Splitting files into smaller pieces
Processing a single large file that results in many attributes may exceed available
memory, which is ultimately dictated by the computer on which RapidMiner is
running. In this situation, it is sometimes possible to split a file into chunks using
the capabilities of RapidMiner.

An example process that does this is shown in the following screenshot:

Loading Data

[24]

This process reads each line of the entire CSV file to be split into chunks. No
processing is performed, thereby avoiding the overhead of having to create many
attributes. The following screenshot shows the inner operators within the Loop
Batches operator:

The Generate Macro operator increments a counter that is used to label the different
files created with the Write CSV operator. Macros are initially defined in the context
view. Macros are like global variables that are available to all operators and can be
accessed and manipulated in numerous ways. Refer to the upcoming section Using
macros for more information on macros in general.

The whole process titled chopFiles.xml is available from the code that accompanies
this book. This file can be imported directly into RapidMiner using Import Process
from the File menu. Alternatively, the XML can be pasted in its entirety into the
XML view of the GUI. Pressing F12 or selecting the Validate Process option from the
Process menu will check the validity of the process and load it.

Chapter 2

[25]

Databases
RapidMiner is able to read from databases with ease. Most databases—such as
MySQL, PostgresSQL, SQL Server, Sybase, Oracle, and Access—are supported.
A Java Database Connectivity (JDBC) driver is generally available. What this means
is that it will generally be possible to read data from virtually any database, but
it is often the case that some of the specific configuration details can become
complex. These configuration details are beyond the scope of this book, because
they stray into the specifics of databases rather than RapidMiner. But, generally
speaking, it is straightforward to deploy and configure a new driver to connect to
virtually any datasource.

The Read Database operator
The Read Database operator is the main operator used to access databases. It is
generally a good thing to have data in databases because it eases the exploration
process. Databases allow larger datasets to be stored, provide tools and a query
language to allow data to be retrieved and updated, and impose a type on attributes
that can make validation easier.

Database connections are created from the RapidMiner Studio GUI via the Tools
menu item. The dialog is straightforward to follow and the test connection button
allows a quick confirmation that the connection is working correctly.

It is possible to construct SQL queries using macros. This is vital to allow data to be
selected specifically using parameters for the task at hand. The setup of the Read
Database operator is slightly different from the norm but is straightforward once
you have it working.

To illustrate this, a simple working example is given in the following points:

1.	 First, the database table that will be queried is a simple single table
containing lines read from files. The name of the table is details and the
important columns are as follows:

°° line: This corresponds to a line within a file
°° file: This corresponds to the file containing the line
°° source: This gives the source from which the file was copied
°° length: This gives the length of the line

Loading Data

[26]

A small fragment of the data would look something like the following
screenshot, where the column headings correspond to the fields in the
database and the whole table has a name, for example, details:

2.	 To select data from this table, a SQL where clause might be as follows:
Select * from details where length > 50 and source like
'%Desktop2%'

3.	 This query will return the fourth row of the previous table.

To configure the Read Database operator to submit a query like this requires the
following steps:

4.	 First, the Build SQL Query dialog is used to enter the following query in the
SQL Query box:
Select * from details where length > ? and source like ?

The question marks correspond to the parameters.

5.	 Next, the Edit Enumeration dialog is used to create a mapping between the
question marks and some macros, shown in the following screenshot. Note
how the macro names length and source match the names within the query.

Chapter 2

[27]

6.	 The final thing to do is to create the two macros (macros are discussed in
detail in an upcoming section). This can be done using operators or can be
done in the process context. The following figure shows the macros defined
in the context view:

Note how the source macro value has percent signs around it. This ensures the
syntax comes out correctly so that the final issued query is also correct.

Macros are an important part of RapidMiner and are used everywhere. Refer to the
Using macros section in a moment to get an overview of these important entities.

Large datasets
When reading large databases using the Read Database operator, all the data is read
into memory. Clearly, this will cause problems as the data increases.

In my experience, large database imports should try to take advantage of the tools
within the database rather than get RapidMiner to perform significant processing.
Databases have many powerful tools to allow data to be transformed with views or
summary tables.

Using macros
Macros are like variables that can be passed between operators. They can be used as
operator values to control execution. They can also be modified during processing as
well as set to specific values based on attribute values or from properties of example
sets as a whole. Processes have Contexts (use the GUI view menu item to see this
view), where macros can be defined. Furthermore, macros can act as parameters
to a process when it is run under the control of an external server, for example,
RapidAnalytics.

Macros are referred to by name and are enclosed by the reserved characters %{}.
The following expression shows a macro called MyMacro being referred to:

%{MyMacro}

Loading Data

[28]

The percent sign and curly braces delimit the macro, and during the execution of
the process, the value of the macro is substituted. How the value is interpreted
depends on the context and the value itself. String values are usually interpreted as
attribute names, and during execution, the end result will be that the attribute's value
will be used. Placing double quotes around the macro reference ensures that it is
treated as a string.

Macros are used everywhere. Chapter 4, Parsing and Converting Attributes, uses them
extensively while generating attributes, and this chapter is recommended to get
more exposure to their use. This use continues in Chapter 7, Transforming Data, where
more advanced data transformation using macros is performed. Chapter 9, Resource
Constraints, uses them to measure process performance and Chapter 10, Debugging,
mentions using them for debugging.

Summary
In this chapter we learned how data in files and databases can be imported into
RapidMiner. We explored some initial techniques for dealing with real data and the
multitude of different formats that will be encountered. Armed with this information
and some examples, you should be able to import most data. Of course, no book can
ever cover every eventuality, but you should also be able to see how you could adapt
the examples to your particular needs in the confident knowledge that a RapidMiner
process can be constructed.

This leads to the next chapter, which addresses data visualization using RapidMiner.
This is an important part of data mining in general, and in the context of data import,
is a key way to determine whether what has been imported makes sense.

Visualizing Data
Large amounts of data are difficult to understand; this chapter is about techniques
that will help make sense of this data with visualizations. Visualization is vital at
every stage of the exploration and mining process, and you will use these techniques
time and again. Sometimes, the structure of the data needs to be changed to plot it
effectively. This requires the use of RapidMiner operators to generate new attributes
or pivot the data in new ways. Some of these techniques are a preview of what we
will cover in the next chapter.

Getting started
Whenever a RapidMiner process runs, the results are presented on the results
perspective. This perspective is shown by selecting the appropriate option from the
GUI menu or by pressing F9. Each result that can be viewed, such as example sets,
models, log entries, or weights are displayed as tabs.

Selecting an example set presents a number of possible detailed views, including
the Data View, Statistics View, and Charts View. The Data View gives a simple table
summary of the example set. The Statistics View gives a statistical summary of the
example set and details of the attributes and size of the data. The Charts View provides
a large number of possible plotters, and these are selected from the drop-down list
at the top left of the view. The RapidMiner Studio Charts view displays a useful
thumbnail graphic for each of the possible chart types to make it easy to select the
desired chart.

The simplest plot is the scatter plot and this appears as the first option in the drop-
down list. This plot allows attributes to be shown on a two-dimensional grid with the x
and y axes being determined by attributes from the example set. Individual points can
be colored based on an attribute. Despite its simplicity, this plot is very useful to get an
initial feel of the data. This is because it gives answers for questions such as: Are there
obvious relations between attributes? Are there any points that look like outliers? and
so on.

Visualizing Data

[30]

There are many other plotters that are available, and the RapidMiner Studio GUI
selects the one that is appropriate to display the example set depending on its
characteristics. It is always worth trying other chart types to see if these help to give
a better understanding of the data. However, the following sections give some more
detail of some specific techniques that can help.

Statistical summaries
Having promised pictures, we start, however, by never underestimating a simple
statistical summary. The Statistics View in the RapidMiner Studio GUI gives such
a summary, and this is very useful to get a sense of how big the data is and what
its range is. This view is available to show example sets when the Results view is
selected. It is always worthwhile to take a careful look at this view to check that the
attributes are of the correct type. Numerical attributes should have an average and
a standard deviation that looks sensible and nominal values should have a full set
of valid values and dates within an expected range. The Statistics View also shows
which attributes have missing values.

Sensibly, the GUI does not attempt to calculate statistics when there is too much
data. In this situation, it is possible to calculate statistics in a process by using the
Extract Macro operator. This operator is used to set a macro from some aspect of an
example set that is being processed. By selecting the macro type to be statistics,
and selecting one of the possible calculations such as average, count, sum, and so on,
a macro value for an attribute can be calculated.

For large numbers of attributes this can be laborious, but it is perfectly possible to
create a process using the Loop Attributes operator that loops over all attributes
and generates a set of macros for each type of statistical measure. Then, these
macros can be logged using Provide Macro as the Log Value operator and can
be converted to an example set using Log to Data. An example process named
logAttributeDetails.xml is provided with the files that accompany this book.
This process shows the use of these operators to provide a statistical summary of
some data that replicates the Statistics View.

To identify missing attributes, the Filter Examples operator can be used. Set the
condition class for this operator to missing_attributes and only examples with
at least one missing attribute will be shown. An example of this operator being used
is included in the logAttributeDetails.xml process.

Chapter 3

[31]

This chapter is about visualization and one useful plotter to supplement the Statistics
view is the quartile plotter, which can be a useful way to summarize numerical
attributes in particular.

For example, the following screenshot shows the Statistics for the Iris dataset:

The same data plotted using the quartile plotter is shown in the following screenshot:

Visualizing Data

[32]

This plot can be obtained by holding down the Ctrl key and selecting multiple
attributes. The plot shows the mean with the help of the dot within the colored
area and the range of the standard deviation is shown by the vertical line offset
toward the right, inside the colored area. The colored area itself represents the 25th
to 75th quartiles and the 10th and 90th quartiles are the horizontal lines above and
below (outside) the colored area. Finally, the range is represented by the dots at
the extremes. Examination of the figures will confirm that the numbers match the
screenshot. For example, the maximum for attribute a3 (the third from the left) is 6.9
and this is shown on the graph as the highest point for that attribute. Similarly, the
average for the same attribute is 3.79 and this is represented by the dot within the
shaded area.

The metadata gives information about individual attributes in isolation. Another
important aspect is to understand how attributes relate to one another. This aspect is
covered in the following section.

Relationships between attributes
The relationships between attributes are important to understand and visualization
can help in understanding these relationships. Attributes may be correlated with one
another and viewing this may help shed light on the data and new ways to perform
further processing to help understand it and make progress towards the overall
objective.

There are many ways to show how attributes relate to one another. These include
scatter plots, 3D scatter plots, parallel plots, deviation plots, and quartile plots, which
are described in the following sections.

Scatter plots
To start answering the question about the relationships between attributes and
examples, the scatter plot is a quick summary method which has already been
mentioned earlier. A good next step is the scatter matrix plotter, which summarizes
all possible pair-wise permutations for a given attribute. This is used to determine
the color for the points.

An example using the Iris dataset is shown in the next screenshot. The idea is to
spot patterns in the data and see if it is possible to explain them. A general rule
for classification is to see if groups of colored points representing labeled data can
be separated by simple lines; in effect the observer is becoming a support vector
classifier. By doing this, we can gain a better understanding of the data.

Chapter 3

[33]

For example, the upper-right corner of the screenshot shows a graph of a4 on the x
axis and a1 on the y axis. The points are colored based on the class of the example.
The graph shows that there is an approximate correlation between a1 and a4, and
that low values favor one class very clearly and higher values favor the others with
a reasonably clear threshold. Understanding this and deciding what it means for the
data mining task is an important step.

Visualizing Data

[34]

The jitter parameter allows each point to be given a random nudge. This allows
points that are very close together to be seen more easily, and this gives a sense of the
density of the points in space. The way to understand how jitter works is to imagine
that all the points that share the same x and y attribute are stacked one on top of
another and you are looking down on them from a great height so only a single point
is seen. Applying a small jitter causes the co-located points to become visible.

Of course, real data is never this easy and it can quickly become impossible to see
the detail if there are too many attributes. 20 attributes plotted this way would also
be difficult to visualize. In these situations, it may be appropriate to select groups of
attributes using the Select Attributes operator to see how the attributes within
these groups interact with one another. For example, if there are 20 attributes,
selecting the first 10 with this operator and plotting them using the scatter matrix
plotter will show how these 10 attributes relate to one another. The next 10 could
then be selected and plotted. Of course, the interactions between groups selected in
this way would not be seen, so care should be taken or else the permutations would
quickly get out of hand.

Sometimes, however, two dimensions are not enough and so RapidMiner provides
us with the scatter 3D color plotter.

Scatter 3D color
Again, using the Iris dataset, a 3D representation is shown in the
following screenshot:

Chapter 3

[35]

Large datasets can be difficult to view using this plotter because there is a lot to plot
and this can be beyond the capabilities of the computer running the GUI. Sampling
using the Sample operator is one possibility in this situation. A process named
scatterPlotAndSample.xml is included with the files that accompany this book.
This shows the Iris dataset and also a 100,000 point dataset which has been sampled.
Comparing the sampled and unsampled data on a plot gives a sense of whether the
sampled data is still representative of the unsampled data, and therefore, whether it
is useful to help understand the data or not.

An alternative is to use the parallel and deviation plotters described in the
next section.

Parallel and deviation
The parallel plotter is used to see the relationships between attributes when there
are many attributes and examples. The plotter lists each attribute on the x axis and
deviation plots, then it plots the value of each attribute for each example. One of
the attributes is chosen as the color and the line is colored based on the value of the
example within the example set.

Some data is provided along with this book to allow the following illustrations
to be recreated. The data is contained in a file called DataToVisualize.csv and it
can be imported using the Read CSV operator. Be sure to set the role for the attribute
att16 to label, the attribute id to have the role id, and the attribute date to have the
role date_time using the Set Role operator or by getting the parameters correctly
set when importing the CSV file. A sample process to read this CSV file with the
correct parameters is provided. It is called readDataToVisualize.xml. This process
is very straightforward and the resulting example set contains 3,848 examples
with 15 regular attributes called att1 to att15, one label attribute called att16, an ID
attribute, and a date attribute. The label attribute is nominal and has three values
based on an original value of att16; these are range1, range2, and range3.

Visualizing Data

[36]

An illustration of a parallel plot using this real but obfuscated data is shown in the
following screenshot:

There are 16 attributes and 3,848 examples in the example set. This means that there
are 3,848 different lines on the graphic, one for each example. att16 is chosen as the
color so that when it has a high value, the line is colored red and when it has a low
value it is colored blue. The graph has been locally normalized by checking the local
normalization check box on the plotter, so that the range of the attributes is between
zero and one. In monochrome, this may not show up very well. So, the area of focus
is the the right-hand side of the graph, where att13 and att14 are shown as having a
relatively higher value at the same time as att16 has a higher value (as indicated by
the color of the lines).

This indicates correlation between these attributes. The data can be systematically
investigated to determine relationships and as before, questions will be raised about
the data that will give a greater understanding when answered.

Chapter 3

[37]

This plotter works well with larger numbers of attributes (that is, more points on
the x axis). For large numbers of examples, however, the number of lines can make
the display look cluttered. One way to reduce this is to use the Deviation plotter.
This plots an average value for each attribute with different lines for different values
of another chosen attribute. It also includes an upper and a lower bound of one
standard deviation. One attribute is chosen as the color, but this must be a nominal
value to get multiple colors and different averages—and hence, different lines. An
example plot is shown in the following screenshot:

This is the same data that we presented earlier, and it clearly shows the relationship
between att13, att14, and att16. The removal of the clutter makes it easier now to see
for the first time that there is perhaps a negative correlation for most of the other
attributes against att16.

Visualizing Data

[38]

Quartile color
To get a sense of the range of data points for attributes as a function of another
attribute, the quartile color plot can be used. This is similar to the quartile plotter
described earlier except that the color is set by another attribute that must be a
nominal. Focusing on att13 and att16, a quartile color plot is shown in the following
screenshot (a small number of outlying points have been removed to allow the image
to display more clearly in this book):

att16 dictates the number and colors of the bars that are drawn. The left y axis shows
the range for att13. The graph shows that higher values of att16 correspond to higher
values of att13. The outliers are significant and it is possible to see many that overlap
with the middle range value of att16. This provides evidence of outliers in the data
and is worth investigating in order to determine the root cause.

Chapter 3

[39]

When exploring real data, a systematic investigation would be done with all the
attributes to get a sense of how the attributes depend on one another.

Time series data
Real data is often in the form of a time series and this makes visualization difficult
when there are many attributes over an extended time period. There are a number of
plotters as well as some summarizing techniques that can help. The following section
gives some examples. For one of the sections, it is necessary to download and install
the Series Processing extension from the RapidMiner marketplace. This is done from
the RapidMiner Studio GUI by navigating to Help | Updates and Extensions. From
here, type Series Extension in the search box and once the results are returned,
select the entry and follow the onscreen instructions.

Plotting series
The series plotter and series multiple plotter simply plot the series data. Again, using
the process readDataToVisualize.xml, the following graph shows att15 plotted as
a function of time. The graph shows that there is some structure as a function of time
but it can be difficult to interpret because there are so many data points:

www.allitebooks.com

http://www.allitebooks.org

Visualizing Data

[40]

One approach to simplify this is to use the Moving Average operator to smooth
the data out. This operator simply calculates a moving average for an attribute,
given a window size, and creates a new example in the example set. An example
of using the Moving Average operator with a window size of 200 is shown in the
following screenshot:

A process called MovingAveragePlotter.xml is provided with this book to generate
the result shown in the previous screenshot. This process generates moving averages
for all the attributes in this data and does various tidying activities to make the
names of the generated attributes easy to understand.

Chapter 3

[41]

It is possible to display both series on a single graph using the series multiple
plotter, and recalling that attributes 13 and 15 showed evidence of correlation
from previous results, the two moving average plots for these attributes is shown
in the following graph:

This graph gives the evidence that there is a time dependent variation that correlates
between the attributes, although it is not exact. This illustrates the importance of a
good visualization when trying to understand the data.

Visualizing Data

[42]

Using the survey plotter
When the number of series to plot becomes very large, it can become unwieldy to use
the series plotter. In this case, the survey plotter can be useful.

The best way to understand how this plotter works is to look at an example, like the
one shown in the following screenshot:

Chapter 3

[43]

This plot can be recreated using the MovingAveragePlotter.xml process. Note that
for reasons of space and readability, the previous plot shows a small portion of the
survey plot in this case. The plot has the first column for the plotter set to date and
the color column is set to the color attribute that is generated by the process.

Each vertical plot shows how one attribute varies as a function of another. If the
data contains date as an attribute, then sorting by date produces a time series view
of each of the other attributes. This is what is shown in the previous screenshot.
Each vertical represents a time series for a different attribute, with time increasing
downwards. The attributes in this example start with the date at the left, followed by
att1 to att15 (both inclusive). Think of this display as a 90 degree clockwise rotation
of a time series.

This view brings out the relations between attributes. It is extremely clear which
attributes correlate with one another and within the context of exploratory
data analysis, this raises questions that, once answered, will help the data to be
understood better. In the previous screenshot the following attributes appear to be
correlated: att1, att2, att3, att4, att6, att11, and att12. Furthermore, the same can be
said for att9 and att10.

By setting the color of the survey plot to be an attribute, the series are colored based
on the value of this attribute. This allows correlations between it and other attributes
to be seen.

The end result of using this plotter is a better understanding of time series as well
as more detail about how a multivariate time series behaves and the possibility of
getting an insight into how attributes relate to one another.

The relation between attributes is one aspect of understanding through
visualization. Another aspect is how examples relate to one another and this is
covered in the next section.

Relations between examples
Understanding how examples relate to each other is important. This is
because examples that are close to one another may be duplicates, so it is worth
considering and understanding how they arise and what needs to be done, if
anything, about them.

Closeness in this context is some sort of distance measure such as Euclidean distance
or cosine similarity. Many possible distances can be calculated using RapidMiner
and a brief explanation of Euclidean distance is given in the next section.

Visualizing Data

[44]

The following screenshot shows three data points in two dimensions:

The points are labeled 1, 2, and 3 and the Euclidean distances between them are
shown in the inset table. The Euclidean distance between the First and Second point
is given by the following equation:

Intuitively, we can see that the distance between points 1 and 2 is smaller than their
distance from 3. This gives the idea that these two points could be more closely related
than the third, and this information is valuable to help us understand the data.

This approach extends to higher dimensions, but it quickly becomes impossible to
visualize when there is a lot of data. There are two approaches described here that
can help us with this. The first of these involves plotting a histogram of the distances.

Using histograms
As an example, the following graph shows all the pair-wise distances for
the DataToVisualize.csv data provided with this book. Simply run the
DistancesPlotter.xml process provided. This process uses the Data to
Similarity operator to create data for this histogram view. Using this example set
in the results view, select the histogram plotter and plot the distance to create the
following screenshot:

Chapter 3

[45]

This is a large dataset containing nearly 15 million pairs and it may be the limit
of what can be realistically displayed on the RapidMiner GUI. Nonetheless,
examination of this shows that there are no outrageous outliers and the peaks at
distances of 0.2, 0.35, and the small peak at 1.0, indicate interesting things in the data.

Using block plots
An alternative way to display relations between examples is to display them in
a grid, with one set of examples represented along the x axis and the other set
along the y axis. The intersection is then colored to represent the distance between
the examples.

Calculating distances can be done with the Data to Similarity Data operator
(as done with the histogram in the preceding diagram) but a better alternative is
the Cross Distances operator. This operator provides a method for selecting the
nearest or furthest distances, which can be vital if the number of pairs of attributes is
very large because too many pairs will not be displayable in the RapidMiner GUI.

Visualizing Data

[46]

The following screenshot shows such a plot. This is the block plotter from the result
of the Cross Distances operator within the process DistancesPlotter.xml. The x
axis is set to request, the y axis is set to document, and the color is the distance.

There is considerable structure in the data. Given that this data has a time series
element, the graphic shows how examples are changing as a function of time. The
most interesting things that stand out are the diagonal lines that give evidence of a
repeating pattern (every 26 minutes, interestingly). The horizontal lines at 550, 1,300,
2,100, and 2,900 are also interesting and need to be understood.

Chapter 3

[47]

Summary
This chapter has given an overview of some of the techniques used to visualize data.
In addition, it has given some context to allow a visualization technique to be chosen.
RapidMiner Studio allows quick manipulation of data to allow it to be enhanced, so
that it can be visualized better. This chapter has given us some ideas about this.

It is particularly true that in the case of visualization, there is tremendous scope for
creative presentation and exploration, and this chapter is only a start. You will find
yourself visualizing data all the time.

The next chapter discusses parsing and converting attributes into different forms or
into new attributes. This is an important part of visualizing data since it is sometimes
necessary to do this to make visualizations more appealing. Generating new
attributes is also an important technique in general as part of extracting features from
data to help get the most value from it.

Parsing and Converting
Attributes

Having read the data, in order to understand and explore it more effectively, there
is usually a need to convert attributes into different formats, parse them to extract
additional information or features, as well as create additional attributes to help
represent the data in new ways for new insights.

For example, an extremely common task is converting date and time values into
a common format so they can be manipulated. Another example is extracting file
names from file paths or domain names from URLs. Furthermore, combining two
or more attributes with summary information from the rest of the data or from
external sources to make a new attribute may help make a predictive model
more powerful.

For real data, it is important to think about unseen data that could be
encountered, since it is important to handle this correctly in order for models
to function accurately.

Some operators automatically generate attributes with names reflecting the
operations performed. These attributes often need to be renamed in order to be
used later on because the attribute names contain characters that are interpreted
as mathematical operations. The values themselves often need global search and
replace operations on them as part of the imposition of a data dictionary across
larger projects.

RapidMiner Studio has operators that can be used individually or together to achieve
the previous objectives; they allow attributes to be created and renamed with
values derived from other attributes, and they allow values to be modified in
systematic ways.

Parsing and Converting Attributes

[50]

Generating attributes
The Generate Attributes operator is used very frequently. It allows new
attributes to be generated from other attributes, constant values, macros, and built-
in functions. The way to think of this operator is to regard it as an automatic loop
over all the examples in an example set. The newly generated attribute is added to
all the examples. If the value of the new attribute is derived from the values of other
attributes, the single value for the new attribute is taken from the values of the other
attributes of the current example. This means that if macros are to be used, they must
be defined before the generation of new attributes.

The simplest expression to create a new attribute is shown in the
following screenshot:

In the previous screenshot, a1 and a2 are the existing attributes and the new attribute
created, called newAttribute, is the sum of these for the example being processed. A
subtle point is that the type of the new attribute is worked out dynamically. If new
test data is encountered and one of the attributes is a polynominal while the other
attribute is a number, the result will be an error. If both attributes are polynominals,
the result will also be a polynominal. Data import should take care of getting the
type of data correct, but it is worth bearing in mind for unseen data.

Chapter 4

[51]

Macros can be used. For example, %{m1} + a2 will add the value of the macro m1 to
the attribute a2. If the macro is not a number, the expression %{m1} + a2 would treat
the value of the macro as an attribute name. For example, if the macro m1 has the
value a1, the previous expression would become a1 + a2, so the end result would
be the sum or concatenation of attributes a1 and a2 depending on their types. To
force the macro to be treated as a string, place it in quotes. With the macro m1 equal
to the string a1, the expression "%{m1}" + a2 would evaluate to "a1" + a2.

The following table summarizes these different situations:

A process called generateAttributeExamples.xml is available with the files that
accompany this book, which illustrates the previous example.

A large number of functions are available and there is help available from the
operator description as well as the Edit Expression dialog, which is accessed
by pressing the button to the right of the function expressions in the previous
screenshot. How these functions work is usually obvious from the name. There
are subtle points relating to some of the functions and these are described in the
following sections.

Date functions
The functions in the Date group manipulate dates and can convert strings to dates
and back. Some detailed examples are given in the next screenshot because dates can
be a source of difficulty when encountered in real data.

Parsing and Converting Attributes

[52]

The following screenshot shows some examples of date calculations within the
Generate Attributes operator. For reference, the dates.xml process is available
with the files that accompany this book.

Various calculations are performed on the date provided as the first attribute. Note
how the result of a previous step can be used in subsequent steps.

The result of running this is shown in the following screenshot, which shows the
meta-data of the created attributes:

Chapter 4

[53]

Note that the strings created using DATE_SHORT built-in formats are ambiguous
because the month and day have been swapped. This is because of locales and
country codes and life is usually too short to work out how to get round this. So,
the safest thing to do is to use the date_str_custom function which takes a format
string. The strings ADate and ADateAsStringCustom are the same as a result. The
other point to note is the use of UNIX timestamps to represent dates and times.
The UNIX time is in fact in milliseconds so it is important to remember this when
performing calculations.

Regular expression functions
Another useful function is finds(), which returns true or false if a subsequence
of an attribute is matched by the provided regular expression. For example, if an
attribute called sentence contains the string The quick brown fox jumped over
the lazy dog, and the Generate Attributes operator creates a new attribute
using the following function expression, the result will be true:

finds(sentence,"\\bThe\\W+(?:\\w+\\W+){1,6}?the\\b")

Parsing and Converting Attributes

[54]

This regular expression determines if The is between 1 and 6 words from the.
Changing the {1,6} to {1,4} changes the result to false because there are five words
between The and the. Note that two backslashes are required in the string to escape
the backslash required for the \w, \W, and \b special characters.

The use of this technique allows powerful validation processes to be created to
confirm that imported data and generated attributes are valid. Sometimes, unseen
test data contains values outside of what was seen during the test phase, and this
can be a source of subtle, hard-to-find problems. Creating a new attribute that is true
or false depending on some regular expression will allow all invalid examples to be
flagged. The Filter Examples operator allows the invalid examples to be filtered
and counted.

The other important use of this technique is to filter out data that is not required.
This is especially important in the real world, where data volumes can be large.

Generating extracts
Other operators are available to extract data from within the value of attributes.
For example, the Generate Extract operator can parse an attribute's value to
extract selected data. This operator has a number of options for querying. Most
typically, regular expressions are used for unstructured data, and XPath for
structured data.

Regular expressions
Revisiting the finds() function example, as part of Generate Attribute, an
attribute called sentence contains the value The quick brown fox jumped over
the lazy dog and the requirement is to extract text where the word The is within
six words of the word the.

Chapter 4

[55]

The parameters for Generate Extract are shown in the following screenshot:

The regular expression needed is shown in the following screenshot:

The regular expression is slightly different from that used previously. The double
backslash form is not required to escape backslashes. The whole expression is
enclosed in parentheses and quotes are not required around the expression.

The resulting attribute contains "The quick brown fox jumped over the".

The parentheses at the beginning and end implement a regular expression capturing
group, without which the operator will fail. This is because the operator uses the first
capturing group as the result to populate the result attribute.

To illustrate how this can be modified, the regular expression is changed as follows:

\bThe\W+((?:\w+\W+){1,6}?)the\b

The result is quick brown fox jumped over.

The first capturing group now captures all the words and white space between The
and the. An extremely useful feature is the regular expression editor. This can be
started by clicking on the button to the right of query expression, as shown in the
previous screenshot.

Parsing and Converting Attributes

[56]

The editor lets regular expressions be tried interactively. An example is shown in
the next screenshot. The yellow highlights show the successful matches, the result
preview shows what a replace operation would look like, and the result list outputs
the text of the matches.

Chapter 4

[57]

Regular expressions can be daunting to learn, and this book has deliberately gone
straight to a relatively complex example to show what is possible. This and other
examples in this book have been inspired by various sources on the Internet, too
numerous to mention (refer to Chapter 10, Debugging, for some suggestions).
To get the best out of RapidMiner Studio, it is well worth getting comfortable with
regular expressions.

XPath
No book on RapidMiner Studio would be complete without some discussion of
XPath. This too has a learning curve but, as with regular expressions, there are plenty
of examples available on the Internet. Again, this book has deliberately gone to a
relatively complex first example in order to show the possibilities. Refer to Chapter
10, Debugging, for some suggestions for learning resources.

XPath works on structured XML data and an example is shown in the
following code:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns2:getFolderContentsResponse xmlns:ns2="http://service.web.
rapidanalytics.de/">
 <return>
 <status>0</status>
 <entries>
 <status>0</status>
 <date>1352240369000</date>
 <latestRevision>1</latestRevision>
 <location>/home/rapidanalytics/svm</location>
 <size>15561</size>
 <type>process</type>
 <user>rapidanalytics</user>
 </entries>
 <entries>
 <status>0</status>
 <date>1352332393000</date>
 <latestRevision>1</latestRevision>
 <location>/home/rapidanalytics/t1</location>
 <size>1639</size>
 <type>process</type>
 <user>rapidanalytics</user>
 </entries>
 <location>/home/rapidanalytics</location>
 </return>
 </ns2:getFolderContentsResponse>
 </soap:Body>
</soap:Envelope>

Parsing and Converting Attributes

[58]

This is a Simple Object Access Protocol (SOAP) response from a RapidMiner Server
server showing the contents of a folder in its repository. To extract the timestamp
of the /home/rapidanalytics/svm process, the XPath shown in the following
screenshot could be used in the Generate Extract operator.

This XPath searches for the named process within all location nodes.
Having found it, the search moves up one level in the document and then
extracts the text within the date node. This example is more complex than it
needs to be and could be reduced to :
//location[text()="/home/rapidanalytics/svm"]/../date/text().

However, the original illustrates the use of namespaces. These are defined in the
namespace parameters and the next screenshot shows this. The values are taken from
the original document.

Chapter 4

[59]

It is also important to uncheck the assume HTML checkbox for this to function
correctly. The end result is the value 1352240369000, which is a UNIX time in
milliseconds for the specific process. Refer to the generateExtract.xml process in
the files that accompany this book for more information.

Renaming attributes
It is often the case that many operators generate new attributes and the names are
usually self-evident to help explain what the attribute contains. Some created names,
however, can contain characters such as ()=-. These names cannot be handled by
the Generate Attributes operator because they are interpreted as mathematical
operators or operations. In this case, it is necessary to rename the attributes to more
benign names and the Rename by Generic Names operator can be used in this case.
This operator simply renames attributes to the form of att1, att2, att3, and so on.
Once this is done, the Generate Attributes operator can be used in the normal
way using the newly generated attribute names.

Renaming can also be done using the simpler Rename and the more powerful
Rename by Replacing operators. These operators allow more control to be exerted
over renaming and this makes it easier to rename the attributes back to the original
names, which are often needed to help explain the attributes to others.

Also, of course, renaming can be used simply to make attributes' names more
meaningful and the data easier to understand.

Searching and replacing attribute values
Perhaps it is bad planning, but I often find that I have to make global searches and
replacements for attribute values. For example, if a spelling mistake is discovered
that is systematically present in all data that prevents it from being matched to data
from other sources, it is necessary to globally correct the error. Note this is different
from renaming attribute names. Search and replace is about changing values of the
attributes throughout the example set.

There are a number of operators that can help including Map, Replace, and Replace
(Dictionary). Which operator to use depends on how complex the replacement is
and how many replacements have to be made.

Using the Map operator
The Map operator is the simplest and is best used to replace whole nominal values
with alternatives. For example, if nominal attributes contain color and must be
replaced completely with colour, the Map operator is ideal.

Parsing and Converting Attributes

[60]

Using the Replace operator
The Replace operator is used to change parts of an attribute's value. For example,
if an attribute holds the color green and needs to be replaced with the colour
green, use the following regular expression to match attribute values: (.*)
color(.*)

Use $1colour$2 to dictate the replacement.

In this, $1 and $2 are numbered capturing groups that correspond to the parts of the
nominal either side of the matched item to be replaced.

More complex regular expressions are possible. There is a vast number of resources
available to assist with the art of regular expressions and some are given in Chapter
10, Debugging.

Using Replace (Dictionary)
The Replace (Dictionary) operator uses word value pairs in one example set
(the data dictionary) to replace words in another. This operator allows regular
expressions in the data dictionary, which allows a great deal of flexibility. One good
feature of this operator is that by default, all occurrences of the word to replace are
found and replaced. So for example, the nominal the color green is one of the colors
of the rainbow can be changed to the colour green is one of the colours of the
rainbow, simply by using a data dictionary mapping color to colour. All occurrences
of the target are changed.

The next screenshot shows the example set before the replace operation:

Chapter 4

[61]

The result of the replace operation is shown in the next screenshot. Each occurrence
of the word color is replaced with the British English spelling colour.

To do this, the data dictionary example set is needed, containing attributes to dictate
the from and to replacement to be applied. This is shown in the following screenshot:

Finally, the Replace (Dictionary) operator requires parameters to be set up
correctly. These are illustrated in the following screenshot:

A mappingAndReplacing.xml process is available with the files that accompany this
book. This allows the previous examples to be recreated.

Parsing and Converting Attributes

[62]

Summary
This chapter has given an overview of how to convert attributes into different
formats, extract additional information from them, as well as create new attributes.
You will do this a lot.

Of particular importance is the use of regular expressions, and this chapter has
given the first detail relating to their effective use. If there is one thing that is
worth becoming proficient at to get the best out of RapidMiner Studio, it is regular
expressions and this chapter shows that. In reality, it is not too difficult to get to an
effective level to be very productive.

Having got to this point, we have done the initial import of data and have got the
attributes we need. Now, we will start to look at the data in more detail; the next
chapter considers outliers, which are points that do not seem to fit with the rest of
the data.

Outliers
Outliers are always present in real data and this chapter gives an introduction to
help detect and deal with them. An outlier is an observation that does not fit with
others. Mathematically, an outlier can be considered numerically distant from other
points. They can arise in different ways through measurement error, or they can
be present simply because of the distribution of data. It is common that real data
contains outliers and their presence can affect the results of a data mining exercise
adversely. Having said that, some data exploration activities look for outliers; fraud
detection is one example. It is, therefore, very important to identify them, work out
why they happen, and what to do about them.

The basic, obvious approach is manual inspection. This is fine but has limits, so
it is usually necessary to employ automated and systematic approaches. Having
identified outliers, the question of where they arise must be answered and from
there a strategy is needed to deal with them. This must include unseen data and take
account of an outlier in an attribute that has not been seen before.

Manual inspection
Manual inspection is an important method. People are generally good at seeing
patterns and can detect anomalies with ease. The challenge is presenting the data
in such a way so as to allow patterns to be seen. Creativity is important and some
of the visualization techniques described in Chapter 3, Visualizing Data, will help in
this case.

Outliers

[64]

As an example, the following screenshot shows some illustrative data plotted using a
simple scatter plot:

:

This data represents the retail sales data and comes from real locations in the UK;
each point has latitude and longitude information. This means that the plot should
represent a map, and the plot indeed shows an outline view of the UK. Northern
Ireland is to the northwest, Scotland is to the north, and England to the south.

It is immediately obvious that there is something wrong with London, or, to be
precise, there are a lot of points at the zero longitude but seemingly with valid
latitudes. In this particular case, there was a bug in the import process that converted
postcodes (known as zip codes in the US) to latitude and longitude values. Once this
was corrected and the data was reprocessed, the problem data points disappeared.

Chapter 5

[65]

There is another more subtle error that is perhaps only obvious to someone with the
knowledge of the UK coastline. There are some points to the extreme east that do not
correspond to the UK mainland. A closer inspection of the data revealed that there
was another bug in the data import process that incorrectly put Birmingham in the
North Sea. Once this was corrected, all the data points were correctly placed in the
UK mainland.

Another example is shown in the following screenshot (refer to the simpleDisplay.
xml process and the data contained in simpleData.csv):

This is a simple scatter plot with time along the x axis and the value of measurement
along the y axis. As seen here, there are several data points that are nine orders of
magnitude away from the rest, and it is clear there is something here that warrants
more investigation. There are also three questionable data points that are about eight
orders of magnitude away from the rest.

Outliers

[66]

The scatter plot has a log scale checkbox, and if this is selected for the y axis, the plot
is redrawn as shown in the next screenshot. Now some lower valued data points are
seen below the main bulk of the data.

In this case, a closer inspection of the data reveals that the large value outliers were
caused by a misunderstanding relating to how to interpret and calculate derived
values in a specific edge case. The lower outliers were caused by using the wrong
units while calculating values. The values should have been multiplied by one
thousand to give values in the correct range.

Taking stock of this, it is clear that the challenge with visual inspection is that, by
definition, it requires a person to be involved. If new data containing previously
unseen outliers is processed and there is no one available, outliers would be missed.
Clearly, a good practice, therefore, is to perform simple automated range checks on
data to pick up any obvious outliers.

Chapter 5

[67]

Another challenge is to know when an outlier is real because this is very subjective.
To illustrate this point, we can refer to the following screenshot. Once all the outliers
described in the previous paragraphs have been fixed and a histogram of the
results is drawn, the output will be as seen in the screenshot. This screenshot can be
reproduced using the simpleDisplay.xml process that accompanies this book; plot
the attribute correctValue3.

Now the presence of outliers is not clear. Perhaps there are two of them with a value
above 2,000, which have been highlighted with Are these outliers?. The question is
now whether these are genuine outliers or if they represent a fundamental structure
within the data. If the data legitimately follows this distribution, resolving outliers
could adversely affect the ultimate outcome. Understanding the distribution may
dictate the modeling approach that will be taken later.

Up to now, all the data has been small and easy to display. In real life, data is larger;
so, this means different approaches are needed, which are described in the following
sections.

Outliers

[68]

Increasing the data volume
Real data gets bigger with more examples and with more attributes.

Considering the case of more examples, the previous screenshot is essentially
plotting the distribution of a single variable and an outlier is a point that is far from
the mean. Clearly, when a lot of data is being considered, it can be difficult to plot
it all, and in this case, the assessment of the statistical range of the data needs to be
done to look for outliers. However, it is still important to understand the basic shape
of the data, and random sampling using the Sample operator, described in Chapter 8,
Reducing Data Size, is one way to achieve this. Even a 1 percent sample will still give
enough information for reasonable inferences to be drawn about the overall shape of
the data.

When the data contains multiple attributes, each can have outliers, but as the number
increases, it becomes increasingly difficult to really see outlying points. In addition,
as the number of attributes increases, the number of possible examples increases.
For example, 100 attributes each with 10 possible values will theoretically give rise
to 10100 (one Googol) possible examples. If the available data had 1,000 examples, it
is arguable that there is insufficient data to draw any conclusions on whether a point
is an outlier or not. It becomes more important to consider the relationship between
attributes for a given example. This moves us to the more automated techniques
described in the following sections.

Rules for handling outliers
RapidMiner provides a number of outlier detection operators that can be used
to look for outliers. It is in the nature of these operators that to a greater or lesser
extent, they need to be tuned based on the characteristics of the data. In addition,
once set up, automation detects general outliers but does not answer the question
as to where these arise. Before going into detail about these in the next section, it is
worth considering that this inevitably means outliers may tend to be discarded. This
is unfortunate since the data is precious and discarding it cannot be taken lightly.
It is also the case that the presence of an outlier may be predictive of the class, so
the deletion of the outlier may make the predictive power of any model worse. One
of the outlier operators discussed in the following section uses the class label to
determine outliers.

Class and attribute correlation is discussed in more detail in Chapter 6, Missing
Values, in the context of missing values where some techniques are shown to allow
missing values to be correlated with other attributes and labels for the data to help
inform a decision on how to handle them.

Chapter 5

[69]

Automated detection of example outliers
Four different outlier detection techniques are described in the following sections.
They are as follows:

•	 Detect Outlier (Distances)

•	 Detect Outlier (Densities)

•	 Detect Outlier (LOF)

•	 Detect Outlier (COF)

None of these algorithms will automatically find the correct outliers for the data
being explored. Given their parameters, they will flag up candidate outlier points
to allow a person to get involved and make the final determination. This is an
important point that needs to be built into any data exploration process.

Detect Outlier (Distances)
The simplest operator is Detect Outlier (Distances). Each example is considered
in turn and the distance to the kth nearest neighbor is determined (k is provided as a
parameter). Note that distance in this context means the Euclidean distance or one of
a number of possibilities. The top n (n is provided as a parameter) examples that are
at the largest distance from their kth nearest neighbor are marked as outliers.

The algorithm is conceptually simple and requires no underlying knowledge of the
distribution of the data. It requires a value for k to be chosen and will always choose
an outlier even if the data does not actually have any.

An empirical approach must be adopted for choosing k. Choosing 1 as a value for k
will use the nearest point and not take into account the presence of any other points
nearby that could indicate membership of a cluster. This tends to mark points at the
edge of less dense clusters as outliers. Choosing a value of k that is too large will start
to include legitimate points as outliers within denser clusters and miss the genuine
outliers. This is illustrated in the following three screenshots where the images show
some artificial data arranged in clusters with a random noise overlaid. This artificial
data has 1,000 examples with two attributes, and is generated with the standard
Generate Data operator using the target function Gaussian mixture clusters. In
addition, 20 random points were added with values in the 0 to 1 range. The graphics
also show the result of outlier detection with the shape of the point indicating if the
outlier correctly matched the known outlier. Refer to outlierDistancePlotter.xml
for the process that can recreate these.

Outliers

[70]

The first of these shown in the next screenshot highlights 20 outliers detected with k
set to 1.

In the previous screenshot, triangles represent valid points being set as outliers,
diamonds represent outliers being classed as valid points, and squares represent
correctly identified outliers. The small points are the valid points correctly identified
as valid.

The screenshot shows four points (the triangles) incorrectly set as outliers when in
fact they are legitimately a part of a cluster. In addition, four points (the diamonds)
are counted as valid points.

Chapter 5

[71]

Changing k to a large value changes how points are classified. For example, the
following screenshot shows what happens when k is set to 137.

As explained before, the shapes of the points indicate what the outlier
detection has produced. This time a large number of points in a cluster are being
marked as outliers when they should not be. In addition, more genuine outliers are
being missed.

Outliers

[72]

Intuitively, there is a point somewhere between these two extremes that has the ideal
value of k, and only by empirical observation in the context of your data will it be
found. The following screenshot shows the case with k set to 2.

Now the number of incorrectly identified outliers and misclassified real points has
reduced to two each. In real life, of course, you do not have the luxury of knowing
which points are in fact outliers. Unfortunately, it is a case of trial and error to
understand why some points are being shown as outliers.

In passing, these graphics were produced using the advanced plotting capabilities
of RapidMiner Studio. The process uses the Generate Attributes operator on the
result of the outlier detection to create new attributes based on whether the outlier
was accurate or not. These new attributes were used to set the shape and colors
of individual points. The comments in the process file give instructions on how to
recreate these diagrams.

Chapter 5

[73]

A final point is that given an outlier is always found, it may be advisable to use
outlier detection during initial exploration. However, once in production, a different
approach should be used, and it is certainly not advised to use automated detection
and implied deletion.

Detect Outlier (Densities)
The Detect Outlier (Densities) operator is also relatively simple to use. The
operator requires two parameters, a distance and a proportion, which makes it
slightly harder to set up. Unlike the distances operator, it does not necessarily find
outliers and so may be more suited for use in a production environment. For a pair
of distance and proportion parameters, the operator marks a point as an outlier
if there are more than the proportion points further than the distance away from
it. Looked at another way, a multidimensional sphere is drawn around each point
corresponding to the distance parameter, and the number of other points that are
within the sphere is compared to the total outside points. If there is more than the
proportion outside the sphere, the point is an outlier. This corresponds to a density
measurement; points in less dense neighborhoods are outliers.

Generally the proportion parameter should be set to a number approaching 1
(note that the parameter is in the 0 to 1 range, representing 0 percent to 100 percent);
the closer the parameter is to 1, the fewer the number of outliers. The distance
parameter must be set somewhere between the maximum and minimum distance in
the data; the larger this value, the fewer the number of outliers. It always requires an
empirical investigation to determine the optimum values, and the determination will
usually include an iterative investigation to determine why there are outliers and
what rule is needed to deal with them.

The main weakness of the density approach is that the algorithm cannot cope
with regions of different densities. This leads us to the Local Outliers Factor (LOF)
operator.

Outliers

[74]

Detect Outlier (LOF)
The Detect Outlier (LOF) operator proposed by Breunig et al is able to cater for
different densities and therefore is able to find outliers from regions of different
densities within a dataset. The algorithm takes two simple parameters corresponding
to a minimum and maximum number of k nearest neighbors. A local density is
estimated from these neighbors and this allows regions of lower density to be
determined. Points in low density regions are outliers. The obvious question is what
values should you choose? As usual it depends, and empirical investigation is the
only way. Having said that, the values of k do not seem to have too much impact on
whether an example is indicated as an outlier. However, there is a drawback; the
operator does not give a Boolean flag to indicate whether an example is an outlier
and instead a numerical value is returned. The higher this is, the more likely it is that
the example could be an outlier. This means that a relative determination must be
made to decide whether an example is really an outlier. For example, by using the
data from the previous section that discussed the Detect Outliers (Distances)
operator and performing an LOF outlier determination for multiple different values
of the upper and lower bound for k and then aggregating the results, the following
graph is produced. The process to do this, called bestLOFFinal.xml, is available
with the files that accompany this book. The instructions for configuring the
advanced plotter to display this graph are included with this process.

Chapter 5

[75]

The graph in the previous screenshot differs from the previous screenshots because
att 1 is not plotted. Instead, the graph shows the average(outlier) factor produced
by the outlier detection (average(outlier) on the y axis) as the upper and lower k
values are changed. Recall that the original data contains 1,020 data points and
what is shown in the previous screenshot is the average outlier factor, for multiple
combinations of the lower and upper bounds. The upper and lower parameters are
not shown but the result on the average(outlier) factor can be seen. Using att2 gives
the opportunity to relate the graph to the real data as shown previously. As can be
seen, outliers, shown as larger points, are consistently above the main clusters of
points. It is also interesting to observe the minimum values where the clusters are
seem to form concave shapes. Local minima presumably correspond to the centers of
the clusters. By empirical observation, it is possible to select a threshold above which
a point is an outlier. In this case, a point with an outlier factor above 4 is a candidate
to be considered as an outlier, although that needs to be understood in the context of
the data.

The complexity of the operator can adversely affect performance for large datasets
and this is an additional point to bear in mind.

Detect Outliers (COF)
If the data has class labels, it makes intuitive sense that an outlier for one class would
have a different characteristic when compared with another class. The Detect
Outliers (COF) operator can be used in this case. This operator is complex in its
operation and the interested reader can research further by referring to A Comparative
Study of Outlier Mining and Class Outlier Mining by Motaz K.Saad and Nabil M.Hewahi.

The algorithm has straightforward parameters. The two important ones are the
number of neighbors and the number of class outliers. The number of neighbors
parameter must be chosen empirically, although experiments indicate that it is not
that critical. A very low value will presumably lead to oversensitivity to single points
and a very large value may include points that are in different classes.

Outliers

[76]

The number of outliers simply dictates how many outliers will be found. Note that
this is independent of the number of classes. For example, if this is set to 10 and
there are five classes, the process may determine two outliers from each class or
another combination. This means the operator always finds outliers, but, unlike the
distance operator, an outlier factor is also returned for all examples that are marked
as outliers. This allows a threshold to be used as an additional check for outliers.
All non-outliers have this outlier attribute set to infinity. Generally, the lower
this value, the more likely the example is an outlier. By performing an empirical
investigation similar to the local outlier factor method, it is possible to determine a
range for thresholds.

The algorithm is relatively expensive in operation and large datasets may require
more processing time, so this must be kept in mind when using it. In addition, if
there is no label in the input data, clearly the operator cannot be used. This means
that unlabeled test data cannot be checked for outliers and one of the alternatives
must be used.

Summary
Outliers must be considered while exploring real data, and this chapter has given
some techniques for spotting them as a part of a recommended systematic process
that allows the root cause behind the creation of the outlier to be determined. In
addition, automated handling could be implemented while bearing in mind that
it may be dangerous to give complete autonomy to a system because it may delete
perfectly good data. It is better perhaps to implement automated checking to
highlight outliers in unseen data so as to allow a human to get involved.

Bear in mind that real data never behaves as well as fake data. What matters is being
able to quickly determine what data could be an outlier, then work out whether it is
or not. This chapter has given some tools to help you with this.

Another big issue with real data is missing values. As we shall see in the next
chapter, it is important to determine some rules to handle these.

Missing Values
Very often, the values of attributes within examples do not have a value. This is
missing data. It normally arises in many ways and is very important to deal with
since some algorithms suffer profoundly even with a small percentage of missing
data. There are different types of missing data, and these can affect the approach
used to deal with it.

Deleting the examples with missing data is not a good strategy. Not only is all the
data potentially valuable, but it is also entirely possible that the missing data is
correlated to the predictions, which might be the whole point of the data mining
process. It is also a bad idea to manually fill in the missing values. Not only is this
not scalable, but this also risks introducing a bias that can ruin subsequent modeling
activities. Instead, a systematic approach based on an understanding of how the
missing data arises is better.

RapidMiner allows investigations to be performed quickly, and this chapter
gives some very detailed explanations of the exploratory processes available using
various looping operators.

Missing or empty?
Before starting, it is important to be clear on the distinction between missing and
empty data. They are very different. Missing data may have a value, whereas empty
data may not. It is unfortunate that they both look the same, and sometimes, only
a domain expert can tell them apart. A good analogy is to compare the journey of a
commuter train and an express train, where attributes are the times when they stop
at stations along the route. The commuter train stops at many intermediate stations,
whereas the express train stops at far fewer stations for the same length of track. The
absence of attribute values for stopping times at the intermediate stations for the
express train is not missing data. Domain knowledge of trains is needed to know
this, but it is quite clear to all train users that inventing a value for stopping times at
the intermediate stations for the express train is wrong.

Missing Values

[78]

Having got this distinction clear, the next step is to understand what the different
types of missing data are. This is important because it dictates how the missing
values should be handled.

Types of missing data
Little and Rubin, the authors of the book, Statistical Analysis with Missing Data (Second
edition, 1987), categorized missing data in three ways. They represent three different
mechanisms, which cause missing data to arise and are described in more detail in
the following sections. Understanding the type can help us take an informed decision
about how to deal with missing values.

Missing completely at random
This is the situation where the missing data neither depends on the value of
available data nor on missing data itself. Another way to think of this is to imagine
how missing completely at random (MCAR) data could be synthesized. Imagine
a dataset consisting of 100 attributes and 10,000 examples starting with no missing
values. Randomly select an attribute from the 100 available and then randomly select
an example from the 10,000 available examples. Set the value to missing and repeat
this process to obtain the desired amount of missing data. The missing values in this
case are MCAR.

Missing at random
Missing at random (MAR) is the situation where the missing values are dependent
in some way on the values of the other attributes (including potentially the label if
it is present) but not on the values of the missing data itself. To synthesize data like
this, return to the consideration of the 100 attributes and 10,000 examples dataset
mentioned in the previous section. Choose one of the attributes to potentially be
missing, then for each example use the values of the other attributes to decide if
it really should be missing. For example, if we consider attribute1 to be missing, a
simple rule could be to look at the value of attribute2, and if this is greater than a
threshold, set attribute1 as missing.

An example of this might be a situation where some test equipment fails to record
a value. A closer examination of the data shows that the failure coincides with the
equipment being powered off for routine maintenance and this is indicated by some
other attribute in the data. The measurement of values, which are available to be
gathered, is not affected at all by whether the equipment is available or not.

Chapter 6

[79]

Not missing at random
This is the situation where the missing values depend on the value of the missing
data itself. An example of this might be a computer that measures, once a minute,
the average CPU load that it experiences. When the computer is busy and the CPU
is very loaded, values are more likely to be missing. This happens because the
computer cannot keep up and record a measurement, as it is too busy. It is observed
that the data will contain fewer values for the CPU load at the high end. This
illustrates the importance of understanding the mechanism that leads to missing
values. Ignoring the missing values in this case will bias any investigation, so that it
will appear that the computer is not loaded, and this may lead to a failure to spot a
major problem.

To synthesize not missing at random (NMAR) data using the previous 100 attributes
and 10,000 examples dataset, it is necessary to choose an attribute to be missing,
observe its value and then apply a rule to decide if it should be marked as missing.

Note that we are using the value itself to decide if it should be missing and this, of
course, raises an interesting issue. In real life, the data is missing and you do not
have the value before it was missing. You can speculate about the mechanism that
leads to the missing values but fundamentally there is no way to be sure. Discussing
this further is out of the scope of this book, so we can settle on the mechanism for
creating the data and from there, see if there are ways to detect it.

Categorizing missing data
Having settled on the types of missing data, the question that arises is what are the
approaches for categorizing it?

This section gives a detailed set of worked examples using synthetic data and
a RapidMiner Studio process that is available with the files that accompany
this book. These are intended to be followed with the text. The process is called
MCARDetection.xml.

The first step is to make some synthetic data containing missing data of each type.
In order to illustrate the key points, it is necessary to reduce the size of the synthetic
data, so it can be easily displayed and understood. Of course, real data will not be
like this, but the techniques are usable with high-dimension data.

Missing Values

[80]

The RapidMiner Studio process to be used is shown in the following screenshot:

This generates a simple example set with 10,000 examples and two attributes
named att1 and att2 (the operators labeled 1 and 2 in the screenshot). The label is
generated from the values of att1 and att2 using the sign of the result to dictate the
label. The following screenshot shows a plot using RapidMiner Studio, where the
two attributes are placed on the x and y axes and the color is dictated by the label,
which corresponds to the sign of the sum of the attributes.

Chapter 6

[81]

The RapidMiner process then generates a new attribute for att1 using MCAR, MAR,
and NMAR rules. In other words, some of the values of att1 are set to missing based
on these rules, but rather than change att1, a new attribute is created to hold the
value. In addition, another attribute is generated that contains a simple true or false
flag to indicate whether the new att1 attribute is missing or not in each of the three
cases (operators 3 to 10 included in the process screenshot).

Simple rules are given here for the three cases:

•	 Firstly, for MCAR, the attribute att1MCAR is missing based on the following
expression in the RapidMiner Generate Attributes operator:
if (rand() > 0.1,false,true)

•	 For the MAR case, the attribute att1MAR is missing as seen from the
following expression:
if (att2 > 2 && att2 < 6,true,false)

•	 Finally, for the NMAR case, the following expression is used to generate
att1NMAR:

if (att1 > 3 && att1 < 7,true,false)

Missing Values

[82]

A small fragment of the data in tabular form is shown in the following screenshot:

In real life, all the examples in the att1 column will not be available. All that is
available is only one of either the att1MCAR, att1MAR, or att1NMAR columns.
Furthermore, the underlying mechanism that generates the missing data is also
not available. The point of this exercise is to see if it is possible to determine the
mechanism which leads to the missing data using various techniques that, in turn,
will drive the best method to handle them.

In the table view shown earlier, the status columns have been generated from the
missing values and true means the value is missing. The status columns are useful
when plotting the data.

Chapter 6

[83]

Given this data, the next step is to see whether the mechanism that generated the
missing data can be determined. Two approaches will be taken. First, the use of
correlation to determine if the attributes depend on one another, and second, manual
inspection. Operators 11 to 16 perform the correlation calculations for the three
missing attribute generation regimes. Operators 12, 14, and 16 are the Correlation
Matrix operators, which use squared correlation.

Finding MCAR data
The MCAR correlation matrix, which is the output of operator 12, within the process
screenshot is shown in the following table:

Bear in mind that the attributes att2, att1MCAR, and label are all that will be
available, and the att1MCARStatus attribute is derived from att1MCAR. The
correlation operator determines how two attributes depend on one another. A
squared correlation is used in this case, and a value of 0 indicates no correlation,
while a value of 1 indicates correlation or anticorrelation.

As shown in the table, att2 is partially correlated with the label (the value is 0.328),
and for the non-missing values, att1MCAR is also partially correlated with the label
(the value is 0.344). The missing state of att1MCAR is shown by the attMCARStatus
attribute, and this shows no correlation between both att2 and the label attribute
(both the values are very close to 0). This is evidence that the missing values of
att1MCAR are MCAR but as we shall see, the attribute could still be NMAR.

Missing Values

[84]

Manual inspection of the data will give the opportunity to spot patterns. A histogram
generated using the plot capabilities within RapidMiner Studio on the example set
output from the Correlation Matrix operator, which displays the distribution of
attMCAR and att1 values, is shown in the following screenshot:

There are 10,000 examples and the values for the attributes range between -10 and
+10. The histogram has been set to have 10 bins and shows the count of the number
of values in that bin, and as can be seen, there are approximately an equal number of
values across all the bins for both attributes. If, as domain experts, we know that the
distribution of att1 follows a certain distribution, such as the one shown, and we see
that the distribution of att1MCAR is the same, then this is evidence that the missing
values for att1 have been generated completely at random. This gives us evidence
that the att1MCAR attribute has not been generated with an NMAR mechanism.
In real life, att1 has missing values, so we will not get the att1 histogram seen
previously. In this situation, we have to rely on domain knowledge.

Chapter 6

[85]

Finding MAR data
To find the MAR data, repeat the MCAR investigation. But in the case of MAR, it
results in a correlation matrix as shown in the following screenshot:

This differs from the MCAR case because there is now a correlation between att2
and the missing or present status of att1, as indicated by att1MARStatus. Note that
there is no correlation between att1MAR and att2.

There is some relationship between att2 and att1MAR, and this can clearly be seen
by plotting them together on a scatter plot as shown in the following screenshot:

Missing Values

[86]

The graph clearly shows that att1MAR is missing if att2 is between 2 and 6 (in
accordance with the formula in the Generate Attributes operator). This means
that the missing values of att1MAR follow the MAR mechanism.

Finding NMAR data
For the NMAR case, the correlation between the available attributes is shown in the
following figure:

Recall that NMAR means the missing status of att1NMAR depends on the value of
the attribute before it was missing. By definition, therefore, there is no value to see
because it is missing, so there is no way to prove that the underlying mechanism is
NMAR. The correlation matrix is also very similar to the MCAR case, and this can
lead to a mistaken conclusion that the data is MCAR, leading to an incorrect method
for handling the missing data.

There is one subtle difference, however, and it is the slight correlation between
the att1NMARStatus and label attributes. If we believe that att1 itself has
predictive powers for the label attribute and we can see that the corresponding
missing status attribute, which is either true or false, also has predictive power,
we may hypothesize that the missing status depends somehow on the value before
it was missing.

Chapter 6

[87]

If a histogram of att1NMAR is plotted, the result is shown as follows:

Compare this to the histogram for the MCAR case. If we expected an even
distribution for att1NMAR, we can see that it's missing if its value is between 3 and 7.
Of course, if we don't know, as domain experts, what the distribution of att1NMAR
should be, it is completely possible that the distribution represents the MCAR one.

A cautionary note
Real data will never be as easy to interpret, and you are very likely to find that the
missing attributes exhibit MAR, NMAR, and MCAR behavior at once. As it very
often happens, each has to be dealt with on a case-by-case basis.

Missing Values

[88]

Effect of missing data
Missing data can reduce the effectiveness of classification models in terms of
accuracy and bias.

To illustrate this point, the following graph shows the performance of a simple
decision tree classifier based on the data from the previous sections for different
amounts of MCAR data for att1:

As seen in the previous graph, the performance drops steadily as more missing data
is present. In this case, when there is no att1 value, the decision tree classifier uses
att2 values alone to make a prediction, which leads to the performance shown.
Different classifiers have different sensitivities to missing data, and furthermore,
the data itself and the influence of the missing values on the result will also affect
the performance. However, the conclusion remains that while exploring data,
identifying the missing data and finding ways to deal with it is important for a
successful outcome. This leads to the next section where various options are given to
handle the missing values.

Options for handling missing data
The exploration of data identifies missing data, and the overall process outside the
scope of the exploration needs to consider the options for handling it and how these
are affected by the type of missing data. Some guidelines are given in the following
sections to help you make your decisions.

Chapter 6

[89]

Returning to the root cause
It is obvious that missing data is a bad thing. So if it happens, it's always worth
stepping back and determining why it's missing in the first place. The time spent on
fixing the root cause of missing data will save time later and improve the quality of
the data exploration and mining process in general.

Ignore it
Some learning algorithms cope with missing values but some do not. An example
of one that is extremely sensitive to missing data is the support vector machine,
which will produce very poor results even with one missing attribute. For example,
using the LibSVM operator with the 10,000 examples from an earlier section in this
chapter, it is possible to achieve a 99.6 percent classification performance. Adding a
few missing values reduces this immediately to 50 percent and there is no warning
message given. It could easily happen that when processing unseen data, model
accuracy will be completely compromised if a few rogue missing values creep in.

Ignoring missing data in the sense of allowing it to happen without understanding
that it is there and additionally understanding what effect it could have is unwise.
The key point is to ensure that if missing data is to be allowed, an active decision
must be taken to do so.

Manual editing
Manual editing has some drawbacks. Not only is this not scalable as the amount of
missing data increases, but also it is error prone, leading to bias and furthermore, it
does not address the deployment problem when unseen test data is presented to a
model. In this case, the person doing the manual editing has to be available, has to
remember the rules used to edit the data, and may have to cope with missing values
that do not fit the manual rule.

Generally, it is not wise to perform manual editing. If you feel you are doing
it, ensure that whatever is done is turned into an automated rule that can be
applied later.

www.allitebooks.com

http://www.allitebooks.org

Missing Values

[90]

Deletion of examples
This is a common approach, also known as case deletion or list-wise deletion. Most
people do this, and it is acceptable if the number of examples to be deleted is small,
and more importantly, if the missing data has been determined to be MCAR.

If the missing data is NMAR, deleting examples may risk bias being introduced.
Deletion of examples also leads to a loss of all the other attributes in the example,
which are not missing. This loss of data is generally to be avoided since the data
is precious.

Deletion of attributes
This too is a common approach and is acceptable if the number of missing values
represents a large proportion of the whole. It is also acceptable if the attribute does
not have much influence on the final result. Clearly, such an attribute would be a
candidate for removal anyway. If it additionally turns out to have missing values
with an MCAR profile, this would be enough reason to remove it.

If the missing values are MAR or NMAR, deleting the attribute is likely to affect
model accuracy and more careful consideration would need to be given to deletion.

Imputation with single values
A simple approach to replacing missing values is to replace them with a value, for
example the value 0, or the mean of the non-missing attributes. If the missing data
is MCAR, this is acceptable and usually the mean is the best choice since it will have
the smallest impact on the characteristics of the data as a whole.

If the missing data is MAR, it depends on other attributes, and it is better in this case
to use a modeling technique to work out a value for the missing attributes. This is
discussed in the next sections.

If the data is NMAR, there is no easy way to choose a single value for a replacement
and case-by-case consideration is required. As an example, the NMAR data from an
earlier section in this chapter looked as though att1 was missing if its own value
was between 3 and 7. In this case, the average for the non-missing values of att1 is
approximately -1.3. Using this to replace the missing values of att1 may have an
adverse effect since we know that the value should be between 3 and 7. In this case,
it would be more sensible to use the value 5 for a single replacement. Of course, in
this case, we have the luxury of knowing how the data was generated. This will not
normally be the case.

Chapter 6

[91]

Modeling
If the data is MAR, it is sometimes possible to use modeling techniques to determine
a value for the missing data based on other attributes. In effect, the missing values
become labels to be predicted based on the values of the other attributes.

Using the 10,000 example data used earlier in this chapter, the missing values of
att1 can be predicted from the att2 and label attributes. Clearly, att2 by itself
can tell you nothing about att1, only the chance that it is missing but the addition
of the label allows some prediction to be made about what att1 would have been.
Using the label to predict a missing attribute value and then using this later will lead
to a problem, and so should be avoided. In practice, real data usually contains many
attributes and the values of the missing attributes will depend in some way on them.
This means that it should always be possible to construct a model to predict missing
attributes from others without needing the label.

Summary
This chapter introduced us to missing values and underlined the importance of
identifying and handling them in order to improve model accuracy.

A number of different mechanisms that underlie the creation of missing attributes
were discussed as well as some ways to detect them and then deal with them.
The underlying mechanism drives decisions about how to handle the missing values.
As with most data exploration techniques, all the situations must be handled on a
case-by-case basis, but the importance of missing data means that it is worth having
a basic framework to handle it.

Having reached this point, we imported data, cleaned it, and removed outliers and
missing values. The next step is to restructure it by transforming it into a different
format or by summarizing in new ways to suit the problem to be solved or gain new
insights into an overall understanding. This is the subject of the next chapter.

Transforming Data
Transforming data can often make it easier to mine. This chapter discusses some
common data transforms whose objective is to present data in the form of example
sets containing examples that have their own attributes. Typically one of these
attributes is predicted based on the values of the other attributes.

Once you get the idea of the example and example set clear, you will find that data
mining becomes a lot easier. When looking at new data for the first time, you will
find yourself mentally transforming it into an example set-like format. It is also good
discipline to produce all new data in an example set-like format so that future data
exploration and mining activities are made easier.

However, some learning and practice is required to get confident with the data
transformation operators. This chapter will cover some detailed examples that will
show you how to make example sets with some typical real data.

The first step is to revisit attribute creation to show how to create new attributes
based on other attributes in the same example as well as other values from the
example set as a whole.

Next, we will look at aggregation. This is a way of summarizing data that is also
useful for combining fragments of a transaction into a single example.

Pivoting and de-pivoting are then considered. Pivoting is useful when data is
available as rows of name-value pairs that should be considered together in single
examples. De-pivoting is useful when multiple attributes contain an implied
additional dimension that is better represented as a separate dimension.

Finally, windowing is covered. This is useful when consecutive examples
representing a time series need to be converted into single examples representing
a time period within the series.

Transforming Data

[94]

Creating new attributes
We have already covered attribute generation in a previous chapter, but there are
some additional techniques to allow new attributes to be generated from attributes in
the same example as well as from values in other examples.

Consider the simple example set shown in the following screenshot (see the process
readFruitAndVeg.xml in the files that accompany this book to recreate this):

The previous screenshot describes the count of each item for a number of
transactions. If we want to calculate the total number of fruits and the total number
of vegetables, we can use the Generate Aggregation operator (apple and banana
are fruits and carrot and daikon are vegetables).

The following screenshot shows typical parameters that could be used to generate
such a set of totals (refer to the process manipulateFruitAndVeg.xml to see this):

Chapter 7

[95]

The attribute name field is set to the name of the field to be created. The attribute
filter type parameter is set to regular_expression, and in this case it is set to
apple|banana to select the two items of fruit in the example set. The aggregation
function parameter is set to sum in order to add the attribute values for apple
and banana together and the keep all check box is cleared, which has the effect of
deleting the apple and banana attributes from the example set. A second operator
would be needed to do the equivalent for vegetables, and in this case the regular
expression would be carrot|diakon. After applying these operators, the example
set appears as shown in the following screenshot:

Transforming Data

[96]

To obtain the mean and standard deviations for the fruit and vegetable attributes,
the Extract Macro operator can be used. This operator allows various summary
statistics about the example set to be placed into a macro. It should be noted that the
sample standard deviation is calculated and not the population. For example, the
following screenshot shows the parameters needed for the Extract Macro operator
to determine the average for the fruit attribute and place the value into a macro
called averageFruit.

The macro name (macro shown in the screenshot we just saw) is set to averageFruit
and macro type is set to statistics from the drop-down list (a number of other
options are available and the interested reader is encouraged to experiment with
them), the statistics option is set to average and the fruit attribute must be chosen so
that the average for this is calculated.

To calculate the standard deviation of the fruit attribute, a second Extract
Macro operator is needed with macro set to standardDeviationFruit and the
statistics parameter set to deviation. Two more operators are needed for the same
calculations on the vegetable attribute (refer to the manipulateFruitAndVeg.xml
process to see these).

Once this is done, the Generate Attributes operator can be used to calculate the
z-score—the number of standard deviations an attribute is away from the mean. This
is shown in the following screenshot:

Chapter 7

[97]

Various macros are used with the attribute's name to calculate the value for the new
attribute for each example.

The final example set is shown in the following screenshot:

By checking this manually, we find that the average for the fruit column is 1.364 and
for the sample standard deviation is 1.362. For a value of 1, the z-score would be
-0.267, which agrees with the numbers in the screenshot.

Transforming Data

[98]

Aggregation
Aggregation combines examples with the intention of reducing their number and
uses aggregation rules to combine these attributes and make single new attributes.
For example, the data shown in the previous screenshot has multiple entries for
the same ID. If these were the transactions in a day, aggregation would be used to
combine them to get a daily view. The following screenshot represents a picture of
what is required:

The id attribute is used as the column to group examples by (similar to the idea
of grouping in SQL). For each example with the same ID, the sum of the fruit and
vegetable attributes is calculated to create a new attribute in one example of the final
example set.

The operator that can carry out this aggregation is Aggregate. The parameters for
this operator to implement the required aggregation are shown in the following two
screenshots. The first is shown in the following screenshot of the group by dialog
box and handles the grouping of examples. Here, the selection of the id attribute will
group all examples with the same ID together.

Chapter 7

[99]

The aggregation within a group is then controlled by the aggregation attributes
dialog box for this operator. This is shown in the following screenshot:

Transforming Data

[100]

The values for aggregation attribute and aggregation functions are chosen. Because
of this, all examples in the group have the function applied to the attribute; the final
result will be stored in a new attribute. The name of the new attribute is derived
from the aggregation attribute and the aggregation function. In this case, sum is used
so the attribute will be called sum(fruit) and sum(vegetable).

An important general point about aggregation is that missing values are often
present in the data to be aggregated. The parameters of the operator allow these
missing values to be handled.

Using pivoting
The best way to understand how pivoting works is by looking at an example.
Refer to the process pivoting.xml provided with this book. This is used to
produce the result shown in the following screenshot. It displays an example
set containing name-value pairs for a specific id, which in this case could be
regarded as an identifier:

Chapter 7

[101]

The pivot result shows how new attributes have been created for each ID based on
the content of the name attribute in the example set input. The number of examples
in the result is equal to the number of unique identifiers in the id column (in this
case, three), and the number of new attributes created is equal to the number
of unique values in the name column (in this case, it is four). The names of the
attributes in the result are derived from joining the name of the value column
and the values in the name column. Clearly, there can be empty values shown by
question marks and these must be handled. In the case earlier, they would probably
be set to 0 as a step following the pivot operation.

The parameters required for the Pivot operator to create this result are shown in the
following screenshot:

As can be seen in the screenshot, these parameters are very simple. The id attribute
is used as the value for group attribute to group examples together, and the index
attribute is used to create new attributes whose names are based on the value of the
attribute within the group. For example, in the pivoted data, the attribute value_
carrot for id 3 has the value 1. This means that in the original data, there is a row
where id is 3, name is carrot, and value is 1.

If other attributes are present in the example set before pivoting, they are also
included. This can make the result complex, so it is worth considering the
elimination of extra attributes by using Select Attributes or by setting their roles
to be special using the Set Role operator.

Transforming Data

[102]

If there are duplicate entries in the input example set, the pivot
operation will take the last one it encounters and ignore the rest
up to that point. To handle this, some aggregation must be done
first to create a unique ID for the Pivot operator to handle.

The names produced by the Pivot operator can get quite complicated and you may
find yourself having to rename them using the various Rename operators.

Using de-pivoting
As with pivoting, de-pivoting is best understood by looking at a picture. The
previous screenshot showed how pivoting works, and de-pivoting, as its name
implies, can be seen as a reverse operation. Refer to the pivoting.xml process
provided with this book.

Refer to the screenshot in the Using pivoting section and reverse the operation.
The result contains data that has multiple values in a single example set, perhaps
recorded over a period of time. What de-pivoting will do is to turn the example set
back into name-value pairs with one example for each in the original example set. So
if the original example set contains four attributes in addition to an id that ties them
together, the de-pivoted result will contain four examples for each id. Each of these
examples will have a common id, an attribute with a value based on the name of the
original attribute, and a value derived from the intersection of the original attribute
and the common id.

The parameters needed to make the De-Pivot operator work are shown in the
following screenshot:

Chapter 7

[103]

The index attribute is the name of an attribute that will be created as a result of
the de-pivot operation. The attribute name parameter is set to value, and this will
be the name of an attribute that will be created in the de-pivot result. A regular
expression is used to select the attributes to include in the result; in this case the
expression is value.* (in simple English, this means match an attribute that begins
with value and has zero or more arbitrary characters after it). This selects the four
attributes beginning with value.

This results in the example set are as shown in the following screenshot:

The only difference between this and the original example set are the values for
the name attributes. These are all preceded with value_ because this is a faithful
reproduction of the source attributes. This can be resolved by using a Replace
operator, which can be seen in the pivoting.xml process.

The following points should be noted for the parameters to the De-Pivot operator:

•	 The create nominal index checkbox must be checked if the values of the
index attribute are going to be nominal (which they are in this case).

•	 The index attribute field itself (in this case, name) has as many unique values
as there are attributes that match the expression contained within the list
for the attribute name. For the example given, there are four attributes that
match the expression, hence there are four unique values for the attribute.

•	 Each matched attribute from the attribute name list creates a name in the
index column, and the corresponding value is created from the intersection
of the matched attribute and the ID.

Practice makes perfect and the best way to get to grips with this operator is to try it.

Transforming Data

[104]

Windowing data
Windowing is typically used to turn time series data into example sets containing
examples with multiple attributes corresponding to sequential points. These example
sets can then be used for model building, classification, or predictive analysis.
Windows can also be used to visualize data.

The best way to explain this operator is to use real data to illustrate its main features.
Some real sunspot data is shown in the following screenshot (the process to recreate
this is available in readSunspot.xml, which accompanies this book):

This data is a yearly count of the number of dark spots visible on the sun and
follows a number of cycles of which the 11-year one is the most well known.
Applying the Windowing operator with a window size of 11 and a step size of 11
to an example set containing a single attribute called sunspots yields the data
shown in the following screenshot (the year attribute has been made into an ID
using the Generate Id operator):

Chapter 7

[105]

The parameters set for the Windowing operator to achieve this is shown in the
following screenshot:

Transforming Data

[106]

The parameters window size and step size are both set to 11 in this case.
The window size value has the effect of creating 11 new attributes with names
ranging from sunspots-10 to sunspots-0. The step size value dictates how many
values to step forward to start each new window.

The first row corresponds to the first 11 entries in the input example set, which in
this case are the years 1700 to 1710 (both inclusive). Close examination of the data
reveals that the year 1700 had five sunspots and this corresponds to the value for
sunspots-10 in row one. The second row corresponds to the years 1711 to 1721 (both
inclusive). The year 1711 had zero sunspots, and this corresponds to the value for
sunspots-10 in row 2.

A label attribute can be added to the windows by checking the create label check
box. This allows the value of another attribute to be used as a label, and the horizon
parameter that appears in this case allows the value of the label to be chosen from an
arbitrary point in the future.

The end result of this activity is an example set with examples corresponding (in this
case) to the 11-year solar cycle. The process that does this is manipulateSunspots.
xml and is available with the files that accompany this book.

Summary
This chapter has introduced some more advanced techniques for transforming data
into a format more suited to exploration and data mining. These included generating
attributes based on other attributes in the same example as well as attributes in other
examples through the use of macros. In addition to this, aggregation, pivoting, de-
pivoting, and windowing were all discussed.

In my experience, a great deal of time is spent transforming data using these
techniques, and it is worthwhile investing time learning how to use them.

The next chapter considers how to reduce data size by simple sampling methods or
more complex model-based approaches. While on the face of it this may seem like a
bad idea, the reality of real data is that there can be too much of it and it would take
too long to process unless some reductions are done.

Reducing Data Size
One definition of Big Data states that it is big if it is just at or beyond the edge of the
capabilities of an organization to process it. There is always too much data, and human
nature, being what it is, makes it inevitable that the boundaries of what is possible
will be reached. The main problem is that more data takes more time to process. To a
certain extent, more money, more computing power, and a more sophisticated parallel
approach can help, but some data mining processes scale as the second, third, or worse
power of the number of examples and attributes. Doubling the data size quadruples
the runtime and there comes a point where there is not enough money or time to finish
the job. Using techniques that scale linearly is possible for certain types of problems.
However, it still costs money and effort to get there.

An important activity is to recognize this and find ways to reduce both the number
of examples and attributes, while balancing this against the accuracy of predictions
or modeling requirements. This chapter, therefore, discusses methods for reducing
data size.

The chapter starts with methods for removing examples using the Sample operator
and its variants. From there, the chapter progresses to methods to remove attributes,
including removal of useless attributes and attribute weighting, and also illustrates
model-based approaches.

Removing examples using sampling
The Sample operators allow example subsets to be chosen, and there are a number of
different techniques to use depending on what is required and the characteristics of
the data.

A very common use of the operator is to simply reduce the size of data to test the
flow of a complex process. If the full data consists of millions of rows, the execution
time may be immense and it is annoying to find a bug right at the end of a long run.
Reducing the data size to a few percent of the total allows bugs to be found early.

Reducing Data Size

[108]

The Sample operator allows a proportion of an example set to be selected.
There are three possible options. First, an absolute size of the result; second, a
proportion of the example set; and third, a probability that an example will appear.
The absolute size is useful when a fixed number of examples is required, while
the proportion is useful if a fixed percentage of the whole is required. Probability
is similar to the proportion option but considers each example, and based on
the probability, causes it to be filtered, which can lead to a different number of
examples when compared to the proportion case. If the data contains a label, it is
possible to balance the proportion of labels in the generated data and specifically
choose the proportion of examples within the filtered example for different values
of the label. This is useful if you have data where one label dominates, leading
to class imbalances; the sampling can even up the class distribution. The Sample
(Stratified) operator can also be used to create a sample where the proportion of
label values in the sampled data matches the original data.

The Sample (Bootstrapping) operator is used to build datasets that are larger than
the original dataset. It does this by sampling with replacement. At first sight, this
may seem pointless but when faced with a dataset with a large class imbalance, it is
often important to build training sets that have an equal class balance. This is done
by bootstrapping the original data to increase it in size until the desired number
of examples of one class are present. From there, the example set is sampled, so
different label proportions appear in the result.

A process called sampleExamples.xml is provided with the files that accompany
this book. This contains examples of all the sample operators described in the
previous paragraphs.

Sampling inevitably introduces errors. The size of the error will be driven completely
by the data exploration and mining processes that are being performed, and
investigation and analysis will be needed to estimate or measure errors.

Removing attributes
Three different techniques for removing attributes are illustrated in the following
sections. These are as follows:

•	 Remove useless attributes by employing simple statistical techniques.
•	 Weighting, which determines how much influence or weight an individual

attribute has on the label. The assumption in this case is that the data is being
used for a classification problem and the removal of attributes will speed up
the modeling process but reduce the accuracy.

•	 Model-based, which uses a classification model to determine the most
predictive attributes of the label. As with weighting, the assumption is that
the data is being used for classification.

Chapter 8

[109]

Removing useless attributes
The Remove Useless Attributes operator is well named but it is
worth understanding how it works to ensure that useful attributes are
not accidently removed.

The following screenshot shows Statistics View for the first few attributes
of a document vector containing 24176 attributes (refer to the process,
reduceLargeDocumentVector.xml).

Each attribute is a real number and the average and standard deviation of 20
examples in the example set are shown in the previous screenshot. The numerical
min deviation parameter of the Remove Useless Attributes operator causes
an attribute to be removed if its standard deviation is less than or equal to the
parameter. For example, in the previous screenshot, if the parameter is set to 0.5, of
the first six attributes, the aa, abaht, and abandoning attributes would be removed
while aback, abandon, and abandoned would not.

Reducing Data Size

[110]

The result of applying this to the example set is shown in the following screenshot:

The total number of attributes has reduced to 10467. The rationale behind this
approach is that an attribute with a smaller relative standard deviation has less
variation when compared to the other attributes. Therefore, it is more likely to be
less influential if the data is being used for classification. This approach is likely to
be invalid if the attributes are not normalized. This can be understood by
considering two attributes. The first attribute has a range between 0 and 1 and the
second, a copy of the first, is scaled by a factor of 1,000. The standard deviation of the
scaled attribute will be 1,000 times larger than the original, and the Remove Useless
Attributes operator will choose to keep the scaled version in preference to the
original. Extending this to different attributes, we can see that attributes with larger
ranges will have larger absolute standard deviations and will consequently not be
marked as being useless.

One important point is that if the standard deviation of an attribute is 0, there is no
variation and the attribute has the same value for all the examples. In this case, the
attribute will not have an impact on the result of a classification, adds nothing to
understanding differences between examples, and can safely be deleted. This is the
default setting for the operator.

Chapter 8

[111]

When the data contains nominal attributes, the nominal useless above and
nominal useless below parameters can be used. For each attribute, the operator
determines the proportion of the most frequent nominal value. If this proportion
is greater than or equal to the nominal useless above parameter, the attribute is
deleted. This gives the possibility that attributes with one dominant nominal value
can be deleted since they are less likely to be predictive. When this parameter is set
to 1, the default attributes that have only a single nominal value are deleted.

The nominal useless below parameter allows attributes with too many nominal
values to be deleted. If the most common attribute is present in fewer examples than
the proportion given by the parameter, it is likely that the different nominal values are
too numerous. For example, if there are 100 examples and one particular attribute has
100 different nominal values, the proportion of the most common nominal value will
be 0.01. Setting the nominal useless below parameter to this will cause the attribute
to be deleted. The nominal remove id like parameter is a shortcut to this.

Generally speaking, this operator is difficult to use because of the difficulty of
knowing the impact of setting the various thresholds incorrectly. A feedback loop
would be required to check the impact. Nonetheless, the default behavior is very
useful and, additionally, the ability to quickly remove attributes that do not vary
greatly can be a useful way of understanding the data.

Weighting attributes
When building classifiers or performing unsupervised clustering, the number
of attributes can profoundly affect the processing time required. Weighting is
a technique to rank attributes that have the most influence on the label or are
most correlated with the principal components that explain the variation within
the data. The attributes with the most weight can then be retained and the effect
on model accuracy can be measured, and this can be balanced against processing
time. In some cases, elimination of low-weight attributes can even improve the
performance of classification.

In addition, it can be very difficult to see which attributes are predictive of the class
label when building classifiers. This is especially difficult if there are thousands of
attributes in the example set. Some classifiers such as the various types of decision
trees or rule induction produce a model that can be read by a person. Many others
don't and weighting gives the possibility to eliminate attributes that appear not to
be important while determining their effect on model accuracy. More predictive
attributes can then be seen and this gives a domain expert the opportunity to focus
on these as part of the route to a greater understanding of the data.

Reducing Data Size

[112]

Refer to weightLargeLabelledDocumentVector.xml for an initial example process
that performs a simple weighting using correlation as well as a select by weight
operator (explained later) to reduce the number of attributes.

There are a number of different weighting algorithms, and the precise details of
how they work are beyond the scope of this book. It is important, however, to
understand how much time some of the operators need because some are quicker
than others.

Of the most commonly used weighting methods, weighting by correlation and
chi-squared statistics is usually the quickest. Weighting by information gain and
information gain ratio are slightly slower, and weighting by Principal Component
Analysis (PCA) is usually the slowest.

This is illustrated in the following screenshot that shows the time required for the
Weight by Information Gain operator to run, as the number of attributes is
varied (the number of examples is fixed at 20; the process and method is described in
Chapter 9, Resource Constraints). The bands on the graph represent the minimum and
maximum performance for multiple runs. This is because in general, performance
measurements vary between runs as a result of differences in the computing
environment. It is important to provide enough results to ensure a degree of
statistical significance.

The results are plotted on a log-log plot and show that k = 10,000 (10 raised to the
fourth power) attributes require about 200,000 ms (10 raised to the power 5.3) to
process, which is about 3 minutes 20 seconds. This would obviously be different if
a different computer was used and the number of examples differed.

Chapter 8

[113]

Given the straight line, we can estimate the time needed for a larger number of
attributes. When the number of attributes is 100,000, the estimated time would be
about 7 hours. At 1 million attributes (assuming we could even process this number
with the resources available), the time would be of the order of 1 month.

A comparison between three different weighting methods is shown in the following
graph, which shows the number of attributes along the x axis and the time in
milliseconds along the y axis.

As seen in the previous screenshot, the correlation method is the most rapid
and PCA is the slowest. Projecting the graphs forward, it is possible to infer that the
PCA approach would require 11 days for 10,000 attributes, 65 years for 100,000, and
141,000 years for 1 million. Clearly, PCA must be handled with care because it will
quickly become difficult to use for fairly normal-sized example sets.

Having produced a set of weights, they can be used to select attributes through the
use of the Select by Weight operator. This operator requires a weight relation to
be chosen by the user, and it uses this to select attributes within the example set. The
possible values for the weight relation are given as follows (this text has been copied
from the online help, the RapidMiner GUI):

•	 less_equals: Attributes with weights equal to or less than the weight
parameter are selected

•	 less: Attributes with weights less than the weight parameter are selected
•	 top_k: The k attributes with the highest weights are selected

Reducing Data Size

[114]

•	 bottom_k: The k attributes with the lowest weights are selected
•	 all_but_top_k: All attributes other than the k attributes with the highest

weights are selected
•	 all_but_bottom_k: All attributes other than the k attributes with the lowest

weights are selected
•	 top_p%: The top p percent attributes with the highest weights are selected
•	 bottom_p%: The bottom p percent attributes with the lowest weights are

selected

The typical method of using of this operator when building classifiers is to choose
the top k, where k is a small number, and then to investigate how this affects
accuracy as k is varied.

Selecting by weight is also useful when eliminating attributes from the test data,
which were not used to build a model based on the training data. The basic
approach is to create a set of weights using the Data to Weights operator based
on the training data. This creates a set of weights set to 1 for all the attributes. These
weights can then be used with the Select by Weight operator to eliminate any new
attributes that may happen to find their way into the data mining operation.

Selecting attributes using models
Weighting by the PCA approach, mentioned previously, is an example where the
combination of attributes within an example drives the generation of the principal
components, and the correlation of an attribute with these generates the attribute's
weight.

When building classifiers, it is logical to take this a stage further and use the potential
model itself as the determinant of whether the addition or removal of an attribute
makes for better predictions. RapidMiner provides a number of operators to facilitate
this, and the following sections go into detail for one of these operators with the
intention of showing how applicable the techniques are to other similar operations.
The operator that will be explained in detail is Forward Selection. This is similar
to a number of others in the Optimization group within the Attribute selection and
Data transformation section of the RapidMiner GUI operator tree. These operators
include Backward Elimination and a number of Optimize Selection operators.
The techniques illustrated are transferrable to these other operators.

Chapter 8

[115]

A process that uses Forward Selection is shown in the next screenshot.
This process is optimize.xml and is available with the files that accompany
this book.

The Retrieve operator (labeled 1) simply retrieves the sonar data from the
local sample repository. This data has 208 examples and 60 regular attributes
named attribute_1 to attribute_60. The label is named class and has two
values, Rock and Mine.

The Forward Selection operator (labeled 2) tests the performance of a model on
examples containing more and more attributes. The inner operators within this
operator perform this testing.

The Log to Data operator (labeled 3) creates an example set from the log entries
that were written inside the Forward selection operator. Example sets are easier to
process and store in the repository.

The Guess Types operator (labeled 4) changes the types of attributes based on their
contents. This is simply a cosmetic step to change real numbers into integers to make
plotting them look better.

Reducing Data Size

[116]

Now, let's return to the Forward Selection operator, which starts by invoking
its inner operators to check the model performance using each of the 60 regular
attributes individually. This means it runs 60 times. The attribute that gives the best
performance is then retained, and the process is repeated with two attributes using
the remaining 59 attributes along with the best from the first run. The best pair of
attributes is then retained, and the process is repeated with three attributes using
each of the remaining 58. This is repeated until the stopping conditions are met. For
illustrative purposes, the parameters shown in the following screenshot are chosen to
allow it to continue for 60 iterations and use all the 60 attributes.

The inner operator to the Forward Selection operator is a simple cross validation
with the number of folds set to three. Using cross validation ensures that the
performance is an estimate of what the performance would be on unseen data. Some
overfitting will inevitably occur, and it is likely that setting the number of validations
to three will increase this. However, this process is for illustrative purposes and
needs to run reasonably quickly, and a low cross-validation count facilitates this.

Chapter 8

[117]

Inside the Validation operator itself, there are operators to generate a model,
calculate performance, and log data. These are shown in the following screenshot:

The Naïve Bayes operator is a simple model that does not require a large runtime to
complete. Within the Validation operator, it runs on different training partitions of
the data. The Apply Model and Performance operators check the performance of the
operator using test partitions. The Log operator outputs information each time it is
called, and the following screenshot shows the details of what it logs.

Reducing Data Size

[118]

Running the process gives the log output as shown in the following screenshot:

It is worth understanding this output because it gives a good overview
of how the operators work and fit together in a process. For example,
the attributes applyCountPerformance, applyCountValidation, and
applyCountForwardSelection increment by one each time the respective operator
is executed. The expected behavior is that applyCountPerformance will increment
with each new row in the result, applyCountValidation will increment every
three rows, which corresponds to the number of cross validation folds, and
applyCountForwardSelection will remain at 1 throughout the process. Note that
validationPerformance is missing for the first three rows. This is because the
validation operator has not calculated a performance yet. The first occurrence
of the logging operator is called validationPerformance; it is the average of
innerPerformance within the validation operator. So, for example, the values for
innerPerformance are 0.652, 0.514, and 0.580 for the first three rows; these values
average out to 0.582, which is the value for validationPerformance in the fourth row.
The featureNames attribute shows the attributes that were used to create the various
performance measurements.

Chapter 8

[119]

The results are plotted as a graph as shown:

This shows that as the number of attributes increases, the validation performance
increases and reaches a maximum when the number of attributes is 23. From there, it
steadily decreases as the number of attributes reaches 60.

The best performance is given by the attributes immediately before the maximum
validationPerformance attribute value. In this case, the attributes are:

attribute_12, attribute_40, attribute_16, attribute_11, attribute_6,
attribute_28, attribute_19, attribute_17, attribute_44, attribute_37,
attribute_30, attribute_53, attribute_47, attribute_22, attribute_41,
attribute_54, attribute_34, attribute_23, attribute_27, attribute_39,
attribute_57, attribute_36, attribute_10.

The point is that the number of attributes has reduced and indeed the model
accuracy has increased. In real-world situations with large datasets and a reduction
in the attribute count, an increase in performance is very valuable.

Summary
This chapter has covered the important topic of reducing data size by both the
removal of examples and attributes. This is important to speed up processing time,
and in some cases can even improve classification accuracy. Generally though,
classification accuracy reduces as data reduces.

The next chapter continues the performance theme from a different angle and
gives some methods for measuring and estimating the performance of processes
containing sequences of operators.

Resource Constraints
Processing large amounts of data requires a lot of physical processing power and
memory, to say nothing of the amount of time needed for the processing. Sometimes,
it is not possible to process the data using the available resources, and in this
situation, some techniques can be adopted to induce the process to complete.

This becomes particularly important when building models where the processing
time can depend exponentially on the number of attributes, the number of examples,
and the model itself. It is therefore important to know how long something will take
by doing a measurement on a smaller sample of the data. From there an estimate can
be made of what performance will be for all the data, and then steps can be taken to
improve performance if needed. This chapter is therefore structured as follows:

•	 Measuring and estimating performance
•	 Splitting data into batches
•	 Parallel processing

Measuring and estimating performance
Often, when building a model or eliminating correlated attributes, I find that more
than 10 minutes have elapsed, and out of frustration I stop the process. In reality,
I may have no idea whether another 1 minute is needed or whether it will take a
month. In fact, this is an important general point because large data and complex
processing inevitably takes time. So, it is not an unreasonable question to ask how
much processing time and what resources are needed in a production context. For
example, a classification process might occasionally require that the classification
model be recreated. It will be important to know how long this will take, so
appropriate plans can be made.

Given that we have a data mining product in front of us, we can use it to predict how
long something will take if we take some measurements.

Resource Constraints

[122]

Measuring performance
It is very straightforward to measure how long an operator takes to execute. One
simple approach is to use the Log operator to record time using the built-in values
recorded by all operators. An example is shown in the following screenshot:

The dropdown has the following possible values that are relevant for time
measurements:

•	 cpu-execution-time
•	 cpu-time
•	 execution-time
•	 looptime
•	 time

Of these, looptime and time are measured in milliseconds and give a measure of
how much time elapsed since the last time the operator was called. The execution-
time measure is the time required to execute the operator itself, also measured in
milliseconds, and is the one that is most useful.

Chapter 9

[123]

By logging this data and converting it into an example set, calculations can be
performed to see how an operator is performing. This is straightforward to
implement and is potentially very accurate. For measurements where sequences of
operators are involved and an approximate view of performance is acceptable, an
alternative is possible. This alternative is to create a macro containing a timestamp
immediately before the part of the process of interest and another immediately after.
By subsequently using the Generate Macro operator, calculations can be done to
determine a delta time between the start and stop timestamps.

In addition to logging timings, it is important to record some starting environmental
information—such as the number of attributes and number of examples being
processed—that will potentially drive the elapsed time. By repeating the process for
different starting conditions, a full set of training data can be obtained; this can be
used to make a prediction about what performance would be with different numbers
of attributes and examples.

An example process that can form the basis of such an investigation is shown in the
following screenshot (the process is called measurePerfBookVersion.xml and is
available with the files that accompany this book; note that the downloadable version
has a few bonus features):

The Loop Parameters operator contains inner operators and is configured with
lists of parameters for these inner operators. The loop operator iterates as many
times as there are possible combinations of the inner operator parameters. The
inner operators output example sets corresponding to the initial environment and
to the time required for execution. The result of the Loop Parameters operator is a
collection of example sets that can be combined into one using the Append operator.

Resource Constraints

[124]

To help understand the Loop Parameters operator, its parameters are shown in the
following screenshot:

The top-left pane shows all the inner operators that are within the loop operator
(these will be shown in the next screenshot). The top-right pane shows that one of the
operators has been selected, and the bottom right pane shows the list of Parameters
that will be applied in combination with the other parameters to produce a single
run of the inner operators. In the example, the SetExamples.value operator has 11
possible values starting at 10, 20, and 30, as does the SetAttributes.value operator.
The combination of 11 and 11 leads to 121 combinations—by simple multiplication—
and this will be the number of times the loop will execute the inner operators.

Chapter 9

[125]

Let's move on to the inner operators; these are shown in the following screenshot:

The first two of these—named SetExamples and SetAttributes—are Set Macro
operators, and these Set Macro operators are used by the operator named Execute
Process. The macros are called NumberOfExamples and NumberOfAttributes and
the values for these are set by the loop operator. The Performance operator is simply
present to provide a performance vector for the loop operator so that it functions
properly. The performance vector is ignored and can be any convenient operator. I
typically use the Attribute Count performance operator.

The macros used by the Execute Process operator and the parameters for this are
shown in the following figure:

Resource Constraints

[126]

The Execute Process operator runs another process that has previously been
created using RapidMiner and has been saved in the repository (the process is
dataGeneratorAndModel.xml). This ability to execute processes is a very powerful
and modular technique that facilitates the building up of libraries of processes to be
used in different situations. Such a process can take named macros as parameters.
The names of the macros that will be used inside the Execute Process operator are
shown on the right-hand side of the preceding figure and their values are shown on
the left. The values are taken from the current value of the macros defined within the
loop operator. By virtue of being inside the loop operator, the process is executed
multiple times with different parameters (in this case 121 times).

The process that is executed takes care of performing the modeling or other time
consuming processes, and this example returns an example set with one row
that contains an attribute for the number of examples, another for the number of
attributes, and one more for the measured elapsed time.

The operators at the heart of the whole process are shown in the
following screenshot:

In this example, the operator performing the time consuming task is called
Validation. The other three are Generate Macro operators and are extremely
simple. The StartTheClock operator creates a macro called startTheClock as shown
in the following image:

Chapter 9

[127]

The function calculates the difference in milliseconds between the present time and
the time at the beginning of the UNIX epoch.

The operator called StopTheClock creates a macro—creatively called
stopTheClock—using the same function expression, and finally, the calculation of
the elapsed time is done in the operator CalculateElapsedTime by generating a
macro called elapsed, which simply subtracts the two macros. This is shown in the
following image:

All macros can be recorded in the log by first using the Provide Macro as Log
Value and then simply logging the macro's value from this operator. The log file can
then be converted to an example set using the Log to Data operator.

Resource Constraints

[128]

The end result of this is an example set that looks something similar to the
following table:

Visual inspection is often revealing, and this data can be plotted as a block plot as
shown in the following figure:

Chapter 9

[129]

This data shows the time performance of a neural network as it models data of
different sizes. The color of a block is a measure of the elapsed time for the execution
of a neural network as a function of NumberOfAttributes and NumberOfExamples.
A darker shade means more elapsed time, and the range is 219 ms at the bottom-left
and 7,920 ms at the top-right.
From here, it is quite simple to estimate the performance as the number of attributes
or examples increases. Of course, it would also be possible to fit some sort of function
to the data to make a prediction. It is beyond the scope of this book to go into these
details, but from the data we just saw, a model I made predicted 94 seconds to
process 100 attributes and 100 examples, 3,910 seconds to process 200 attributes and
200 examples, and 1.5 million years to process 1,000 attributes and 1,000 examples.
The model turned out to be inaccurate because when I re-ran it with training data
that explicitly had 100 examples and 100 attributes, the actual time was near 55
seconds and the prediction for 1,000 by 1,000 was near 10,000 years. Nonetheless, this
is still a long time and there is enough accuracy to illustrate the main point.

Adding memory
Adding more memory often speeds things up and allows some processes to
complete. It is always worth checking to ensure that you are using the maximum
amount of memory that is available.

The first thing to say is that 32-bit operating systems can generally address a
maximum of 4 GB, so it is always worth getting a 64-bit version where this limit
is much higher. A suitable processor on which the operating system can be run is
also required. The general rule is to go for the 64-bit architecture; however, you can
consult an expert to get clarity. Secondly, RapidMiner Studio can be run in a number
of ways. I generally launch the GUI from a batch file because this gives more control,
particularly in a Windows environment, where a separate console is launched. The
log information is written to this console. This can be very useful if things become
unresponsive. The file to launch the GUI is called RapidMiner-Studio.bat on
Windows machines and is located in the scripts folder where RapidMiner is
installed. In Linux environments, it is called RapidMiner-Studio.sh.

By defining the JAVA environment variable MAX_JAVA_MEMORY, it is possible to
change the amount of memory RapidMiner uses. For example, to get 4 GB of
memory, this variable would be set to 4,096 via the Control Panel in Windows
or an appropriate configuration change in UNIX. If you find that processes are
running slowly and the system monitor in the GUI shows memory getting low in
RapidMiner, it is always worth setting the upper limit to the highest value that you
can. Buying more memory is also a good option.
However, there will always be a time when you won't have enough memory and the
question will arise as to what to do then.

Resource Constraints

[130]

Parallel processing
If faced with a process that is simply taking too long, clearly more memory can
help—as already discussed. If that fails, a more powerful processor is obviously
something to consider. If there is not enough money to do that or if it simply
does not work, a parallel approach can be considered. Some operators can be run
in parallel, and RapidMiner Studio allows this to be done where the processor
has two cores. To take advantage of this, it is necessary to download the parallel
processing extension available from the Rapid-I Marketplace. Once this is done, a
new configuration option checkbox appears on some operators; it allows them to be
executed in parallel. Affected operators include the main process operator, looping
operators, the subprocess operator, the branch and select operators, and the process
evaluation operators. Typically, an operator that contains a loop or an implied
subprocess can be made to run in a parallel fashion. Operators such as those in the
Modeling and Data Transformation groups do not have this option.

For example, the X-Validation operator allows the partitions containing training
and testing to be run in parallel. This is possible because the cross validation
operation is inherently parallel as the individual partitions are self-contained and do
not depend on each other.

Examples of processes that could not be carried out in parallel would include ones
where calculations that require all the data are being performed. For example,
normalizing an attribute within an example set requires all the data to be processed
to determine various statistics to then apply to the individual examples.

In the context of exploring data, some activities could be carried out in parallel.
For example, if multiple files are to be read in and processed so that the processing
of one file depends only on the contents of that file, it would be possible to take
advantage of parallel execution. The simplest possible process would be two Read
CSV operators reading two files. If these are placed in the main process and the
parallelize main process option is set to true, RapidMiner will execute the file
reading across the available CPUs.

A word of caution about parallel processing. Even if the process can
be done in a parallel fashion, there is still a risk that one instance will
interfere with another. Perhaps macros are shared between instances,
or it could be that the data is shared. Either way, this can cause
processes to fail, so be careful.

Chapter 9

[131]

Restructuring processes
It is also always worth seeing whether the process can be restructured to be more
efficient. A review of a process may reveal that expensive operations are being
performed repeatedly and unnecessarily. In this situation there are some operators
that can help.

The Store and Retrieve operators allow objects to be stored in the repository.
Objects such as example sets, models, and weights can be stored and retrieved in
this way. Typically, a process will perform an expensive operation once and store
it in the repository. Subsequent operators can retrieve the object whenever it is
needed. These operators can also be used to implement a checkpoint regime within
a big process. This is relatively complex to set up, but it may be worth having the
process determine where it reached in a long processing step so that it starts up
where it left off.

The Recall and Remember operators are similar except they do not persist data to the
repository. These can be used in a way similar to the Store and Retrieve operators
except that the type of the object must be specified, and when using the Recall
operator, the option to remove it from the store can be specified. These operators will
consume memory but are likely to be relatively quicker than those that interact with
the repository.

Summary
It is part of human nature to always push the limits of what is possible, and so it is
inevitable that you will encounter performance problems. This chapter has given
some insight into ways to measure performance and some basic approaches to
improve it.

The next chapter gives some tips to help debug processes when things aren't going
your way.

Debugging
When things aren't going your way, it is very important to have good tools to debug
processes and their interaction with external entities, as well as have powerful
supporting tools to mimic parts of the process execution.

This chapter will cover details of the tools, resources, and techniques that I have
found to be very useful.

Breakpoints in RapidMiner Studio
The RapidMiner Studio GUI has a very easy-to-use debugging facility. It is possible
to add a breakpoint to any operator that will display results on completion of the
operation. A breakpoint is enabled by selecting the operator and pressing the F7
key. A right-click brings up a menu as an alternative way of doing this and it can be
accessed from the Edit menu of the main GUI. When the process execution reaches
the breakpoint, all the outputs from the operator can be examined to determine what
is happening.

It is also possible to set a breakpoint before the execution of the operator. Again,
select the operator and now press Shift + F7 to set this type of breakpoint. This time
all the inputs to the operator can be examined.

To continue from a breakpoint, press the Run button, or press F1, or use the Process
menu from the main GUI.

A neat feature is the ability to change the value of a macro when a breakpoint has
been reached so that the subsequent operators can use this value. This is done by
displaying the Macros view and simply making the change to the macro value at
the breakpoint and resuming the process. It is also possible to make changes to
the process itself by selecting the operator that is to be executed and changing the
parameters and even connections; however, this can get difficult to follow.

Debugging

[134]

Logging data in RapidMiner Studio
RapidMiner Studio provides the Log operator, which we have already seen being
used in the previous chapters. Of all the operators, this is the one that I use a great
deal, both for debugging and for creation of data.

Dealing with logging first, the Log operator can be inserted anywhere in a process
and is configured to output the parameters or values associated with another
operator somewhere in the process. For example, the screenshot that follows shows
some example parameters for the Log operator:

The left-most column becomes the column name in the log, the second column is
the name of the operator within the process, the third column is the type of
information (either value or parameter), and the final column is the name of
the information to log, which is filled in automatically with valid options by the
RapidMiner Studio GUI. The value option is used to log the result of the execution
of an operator, whereas the parameter option is used to log the parameters to the
operator that controls its working.

Chapter 10

[135]

The values of macros can be output using the Provide Macro as Log Value
operator and this operator is then referred to by its name in the Log operator.
An example of the output produced from the preceding screenshot is shown in
the next table. The operator called Loopy is providing the value of a macro and
this is accessed in the Log operator by the selection of the macro value. The other
entries are all derived from the parameters for various operators.

The value of a specific example of an attribute within an example set can be output
using the Extract Log Value operator and as with the Provide Macros as Log
Value operator, this is then accessed in the Log operator.

The resulting log can be converted to an example set if a more permanent record
needs to be kept for further analysis or if the example set needs to be used later as
part of the normal processing being done by the process.. This is done using the Log
to Data operator.

RapidMiner Studio console printing
RapidMiner Studio provides the Print to Console operator. This is a very simple
operator that outputs a value to the Log view (enabled from the GUI View menu).
This value can be a macro or a string. As a process executes, its progress can be
monitored by observing the Log view.

Debugging

[136]

The following screenshot shows a small portion of a logfile corresponding to the
output from two Print to Console operators. The first operator logs the value of a
macro, whereas the second operator outputs the text directly:

The text Hello world in a macro is the content of a macro, whereas Hello world
directly is the text entered into the Log to Console operator. The process to do this
is called consoleLog.xml and is available with the files that accompany this book.

Groovy scripts
RapidMiner comes with Groovy already installed. This is a scripting language
that is extremely close to Java in syntax and a process can run Groovy scripts by
using the Execute Script operator. Groovy is very powerful and there are times
when nothing else would do. Groovy can be used to output detailed information
about anything in the RapidMiner Studio environment and this can be very useful
when debugging.

Chapter 10

[137]

Outputting macros example
The following Groovy script outputs the values of all the macros defined in the
process to the console. This is extremely valuable for debugging. A recent release of
RapidMiner Studio provide a neat GUI interface that provides the same information;
however, it may still be valuable to have a more permanent record for detailed
diagnosis. The following code shows the Groovy script that would be used with the
Execute Script operator:

The line containing getDefinedMacroNames finds all the macros; the name-value
pairs are accessed in turn and are output to the operator console.

If this script runs and encounters a macro called M1 with the value M1Value, the Log
view would contain the following text:

Execute Script: Macro name | value: M1 | M1Value

The process that does this is groovyExample.xml, which is provided with this book.

Console logging with Groovy
Sometimes debugging Groovy is a problem and code instrumentation is the only
way out. The following fragment of Groovy prints the output to the console:

operator.logNote ("Macro name | value: " + macroName + " | " +
macroValue);

This is invaluable when getting Groovy scripts working in the RapidMiner Studio
environment. Note that this was shown in the example Groovy script in the
previous screenshot.

Debugging

[138]

Regex tools
Regular expressions (Regex) require hard work, but they make a huge difference
when working with RapidMiner Studio operators. They can be used in many ways
and the following list gives us a flavor:

•	 Extracting features from structured or unstructured data to create new
attributes

•	 Selecting attributes within an example set to form a set for a common
procedure such as deletion, renaming, looping, or type changing

•	 Defining how to change the names of attributes when renaming
•	 Selecting examples within an example set for filtering
•	 Replacing the values of attributes with replacement values
•	 Restructuring example sets with the Pivot and De-Pivot operators

Clearly, Regex is used in many places and to become proficient with its usage,
powerful tools and debugging facilities are needed.

An excellent free tool is Expresso available at http://www.ultrapico.com. Of
course, many other tools exist and there are many resources on the Internet that give
working examples for common regular expressions.

The interactive tool provided within the RapidMiner Studio GUI can also be
very helpful.

Using XPath effectively
XPath is extremely useful when parsing and extracting information from structured
data, which is encountered all the time when exploring real data. As with regular
expressions, it is important to become proficient and inevitably this means getting
access to powerful tools and debugging facilities.

Fortunately, there are many tools, editors, and online resources that can be used.

A good free editor that I use is Notepad++ available at http://notepad-plus-
plus.org/. This has a number of plugins including an XPath evaluator.

In addition, Google spreadsheets provide a way to build real-time XPath queries,
and W3Schools (http://www.w3schools.com) gives a good set of tutorials for XPath
and many other Web technologies.

Chapter 10

[139]

Summary
Debugging is a fact of life and the sharper the tools, the better. This chapter has given
a brief overview of some of the techniques that I have found useful.

The next chapter gives a summary of where we have got to, and also points out some
of the facts that are directly related to data mining that have not been covered, but
which could offer the reader a springboard into further reading or research.

Taking Stock
Let us take stock of where we are. One of the aims of this book was to give an
overview of the process of data exploration to demonstrate that there is a lot to it, but
this need not be daunting especially if the explorer is armed with sharp yet flexible
tools, and has the ability and confidence to use them.

The methodology first mentioned in Chapter 1, Setting the Scene shows how a typical
data mining activity is an iterative process, but with a general direction starting
from the requirements and ending with the benefits. By its nature, a book has to
present things in a linear order but I hope it is clear that the chapter ordering will not
generally apply when real-world data is handled. Indeed, all the stages do not have
to happen at all; for example the requirements could be met simply by importing and
visualizing data.

Another aim is to provide real examples in sufficient detail to download with the
processes. This allows them to be re-used without having to invent them first. While
it is not necessarily time consuming to create RapidMiner Studio processes (the clue
is in the name), sometimes a helping hand or a Hello World example to start from
can save a lot of time. The product is huge, so knowing everything is a challenge
and knowing how all the operators fit together is another. What is perhaps missing
is context about what to do when a certain type of activity needs to be performed.
This context, in the form of the exploration of data is one route into the book, and the
processes and techniques that are shown should allow easier re-use.

The final aim is to show what could be possible. Sometimes seeing something being
done in a different or unexpected way leads to new ideas and can certainly save time.
I am certain there will be new examples invented as well as new approaches since I
am by no means the only RapidMiner Studio practitioner; there are plenty of creative
people out there. This is in fact one of the very desirable things about RapidMiner.
Once you have arrived at a certain state of knowledge and confidence, all processes
become extremely easy and in fact almost second nature. This frees the mind from
having to worry about whether something is possible and allows the problem itself to
be solved. This is the best bit about data exploration and data mining; no two problems
are the same and there are tremendous opportunities to be creative.

Taking Stock

[142]

Exploring new techniques
Of course, there is more to RapidMiner in general than this book has covered and
there is certainly more to data exploration. The interested reader is encouraged to
keep finding more because, in my experience, new techniques lead to new insights
and results in a self propelling virtuous circle. If only there was more time in a day.

The following sections give you a short list of areas that are well worth looking into.

Time series
There are many examples of time series in the real world. Examples include stock
prices, tree ring data, temperature records, sunspots, and audio files. RapidMiner
Studio has an extension for series data and in fact, the Window operator is a part of it.
This book has only scratched the surface of time series.

Web mining
Text mining was briefly touched upon but there is a great deal that could be done to
explore data derived from web pages or feed APIs. There will never be a shortage of
data from the web.

Using R
RapidMiner Studio integrates with R, the de facto standard package for statistical
analysis in the academic world and increasingly outside it. R has a fantastic range of
packages covering a huge array of subject areas with new ones right at the leading
edge being added all the time. An R script can easily be integrated into RapidMiner
Studio, so if there is something missing from RapidMiner Studio (and there is
sometimes) it is almost certainly available in R.

R also has very good graphics and there is no reason not to use it as part of an
exploration process. There is a downside to this. R has a huge learning curve but the
value is so great you might as well start now.

Java or Groovy
RapidMiner Studio is built using Java, and given that the community edition is open
source, it would be completely possible to make changes to the software to solve a
particular problem as well as give back to the community so that everyone benefits.
This book has deliberately not looked at Java partly because I am not an expert but
mostly because it would have put people off.

Chapter 11

[143]

Having said that, this book does have some Groovy examples and there will be
times when only Groovy will do. So, I do encourage this to become one of your
areas of knowledge.

Third-party components
Rapid-I, the company behind RapidMiner, operates a market place where third-party
extensions are available. This is integrated with the RapidMiner GUI and it is worth
visiting this location to see if there is anything there that could prove useful.

RapidMiner Server
Rapid-I also produces RapidAnalytics. This is a server-based solution that provides
a repository location and an environment for remote execution of processes that
integrates with the RapidMiner Studio GUI. This can be very useful if you have
a powerful server available. RapidMiner Server allows a long running process to
be initiated on the server, which should complete more quickly; but while you are
waiting, you can work on something else.

There is a lot more to RapidMiner Server, such as scheduled process execution,
custom web-based reports, and user management; but it is beyond the scope of this
book to go into detail.

Where to go next
It is all very well reading things in a book. What really matters is to practice on real
data. A good step is to enter some data mining contests that appear on the Internet.
Your place of work will almost certainly have data; if you can add value to it to solve
a business problem you will get a lot of interest. The Internet itself has more sources
of data with more being added every day. Finding a new insight into public sources
of data, even through a simple visualization, may get you noticed.

In short, there is a lot of data out there just waiting to be explored. I earnestly hope
this book has whetted your appetite and given you the ideas, tools, and confidence to
get stuck in.

Index
Symbols
3D scatter plots 34, 35

A
aggregation 98-100
aggregation attributes dialog 99
attribute name field 95
attribute relationships

about 32
deviation plotter 35, 36
parallel plotter 35
Quartile color plot 38
Scatter 3D color 34, 35
scatter plot 32-34

attributes
about 14
generating 50, 51
Map operator, using 59
removing 108
renaming 59
Replace (Dictionary), using 60, 61
Replace operator, using 60
selecting, models used 114-119
weighting 111-114

attribute values
replacing 59
searching 59

B
Big Data 107
block plots

using 45, 46
Build SQL Query dialog 26
Business understanding 10

C
Charts View 29

D
data

cleaning 12
logging, in RapidMiner 134, 135
missing values, detecting 12
transforming 93
visualizing 13
windowing 104-106

databases
accessing 25

databases, accessing
Read Database operator 25, 27

data functions 52, 53
datatypes 11
data visualization

starting with 29
Statistics View 30

data volumes
increasing 68
measuring 10, 11

de-pivoting
using 102, 103

De-Pivot operator 102
Detect Outlier (Densities) operator 73
Detect Outlier (Distances) operator 69-72
Detect Outlier (LOF) operator 74, 75
Detect Outliers (COF) operator 75, 76
deviation plots 35, 36

[146]

E
Edit Enumeration dialog 26
example 14
example relations

about 43, 44
block plots, using 45, 46
histograms, using 44

example set 14
Execute Process operator 125, 126
Execute Script operator 137
Expresso 138
Extract Log Value operator 135
Extract Macro operator 30

F
file reading

about 17-19
complete lines, reading 21
field delimiter 20
large file, splitting 23, 24
multiple attributes, reading 21, 23
Read CSV, using 17

Forward Selection operator 115, 116

G
Generate Attributes operator

about 50, 51
data, extracting 54
date functions 51-53
regular expression functions 53, 54
regular expressions 54-57
XPath 57-59

Generate Extract operator 54
Generate Macro operator 24
Groovy scripts

about 136
macros example, outputting 137

Guess Types operator 115

H
handling options, missing data

attributes, deleting 90
examples, deleting 90
ignore option 89

manual editing 89
modeling 91
root cause 89
single values, imputating 90

histograms
using 44

I
ID 15
Import Configuration Wizard button 19

J
Java Database Connectivity (JDBC) 25

L
label 15
Local Outliers Factor (LOF) operator 73
Log operator 117, 135
Log to Data operator 115, 127
Loop Attributes operator 30
Loop Batches operator 24
Loop Parameters operator 124

M
macro name (macro) 96
macros

about 14
using 27, 28

manual inspection
about 63-67
data volume, increasing 68

Map operator 59
material

accompanying 15
memory

adding 129
Missing at random (MAR) 78
missing completely at random (MCAR) 78
missing data

about 77
categorizing 79, 83-87
effects 88
handling, options 88
types 78

[147]

missing data categorization
about 79-82
MAR data, finding 85, 86
MCAR data, finding 83, 84
NMAR data, finding 86, 87

missing data, types
Missing at random (MAR) 78
missing completely at random(MCAR) 78
not missing at random 79
not missing at random(NMAR) 79

N
Naïve Bayes operator 117
new attributes

creating 94-97
new techniques

exploring 142
Groovy 142
Java 142
RapidAnalytics 143
R, using 142
text mining 142
third party components 143
time series 142

nominal useless below parameter 111
Notepad++ 138
not missing at random (NMAR) 79

O
operator 14
outliers

about 63
handling, rules 68

P
parallel plots 35, 36
parallel processing 130
performance

estimating 121
measuring 121-129

Performance operator 125
pivoting

using 100, 101
Principal Component Analysis (PCA) 112
Print to Console operator 135, 136

process
about 14
restructuring 131

process framework
about 8, 9
Business understanding phase 9
evaluation 10
modeling, Evaluation, and Deployment

phases 10
modeling step 9, 10

Q
Quartile color plot 38

R
R

using 142
RapidMiner Server 143
RapidMiner Studio

about 7, 8
attribute 14
breakpoints 133
console printing 135, 136
databases, reading 25
data, loading into 17
data, logging in 134, 135
example 14
example set 14
Groovy scripts 136
ID 15
label 15
macro 14
operator 14
process 14
repository 14
role 15
type 14

Read Database operator 25
Recall operator 131
regular expression functions 53, 54
regular expressions 54, 55, 57
Regular expressions (Regex) 138
Reload data button 19
Remember operator 131
Remove Useless Attributes

operator 109, 110

[148]

Replace (Dictionary) operator 60, 62
Replace operator 60
repository 14
Retrieve operator 115
role 15

S
Sample (Bootstrapping) operator 108
Sample operator 107
sampling

used, for examples removing 108
scatter plots 29, 32-34
Select by Weight operator 113
SetAttributes.value operator 124
SetExamples.value operator 124
Simple Object Access Protocol (SOAP) 58
StartTheClock operator 126
statistics parameter 96
Statistics View

about 30
for Iris dataset 31, 32

Store operator 131

T
text mining 142
time series 142
time series data

about 39
series, plotting 39-41
survey plotter, using 42, 43

type 14

U
useless attributes

removing 109, 110
useless below parameters 111

V
Validation operator 117
visualization 29

W
windowing 104
Window operator 142
Write CSV operator 24

X
XPath

abou 57-59
using 138

X-Validation operator 130

Thank you for buying
Exploring Data with RapidMiner

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Pentaho Data
Integration Kitchen
ISBN: 978-1-849696-90-6 Paperback: 68 pages

Explore the world of Pentaho Data Integration
command-line tool which will help you use
the Kitchen

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Understand how to discover the repository
structure using the command line scripts

3.	 Learn to configure the log properly and how
to gather the information that helps you
investigate any kind of problem

IBM Cognos Insight
ISBN: 978-1-849688-46-8 Paperback: 142 pages

Take a deep dive into IBM Congos Insight and learn
how this personal analytics tool can be integrated
with other IBM Business Analytics products

1.	 Step-by-step, how to guide, for installing and
configuring IBM Cognos Insight for your needs

2.	 Learn how to build Financial, Marketing and
Sales workspaces in Cognos Insight

3.	 Learn how to integrate and collaborate with
IBM Cognos Business Intelligence

Please check www.PacktPub.com for information on our titles

Axure RP 6 Prototyping Essentials
ISBN: 978-1-849691-64-2 Paperback: 446 pages

creating highly compelling, interactive prototypes
with Axure that will impress and excite decision
makers

1.	 Quickly simulate complex interactions for
a wide range of applications without any
programming knowledge

2.	 Acquire timesaving methods for constructing
and annotating wireframes, interactive
prototypes, and UX specifications

3.	 A hands-on guide that walks you through the
iterative process of UX prototyping with Axure

Instant Weka How-to
ISBN: 978-1-782163-86-2 Paperback: 80 pages

Implement cutting-edge data mining aspects in Weka
to your applications

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 A practical guide with examples and
applications of programming Weka in Java

3.	 Start with the basics and dive deeper into the
more advanced aspects of Weka

4.	 Learn how to include Weka’s machinery in
your Java application

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting the Scene
	A process framework
	Data volume and velocity
	Datavariety, formats, and meanings
	Missing data
	Cleaning data
	Visualizing data
	Resource constraints
	Terminology
	Accompanying material
	Summary

	Chapter 2: Loading Data
	Reading files
	Alternative delimiters
	Reading complete lines
	Reading large numbers of attributes
	Splitting files into smaller pieces

	Databases
	The Read Database operator
	Large datasets

	Using macros
	Summary

	Chapter 3: Visualizing Data
	Getting started
	Statistical summaries
	Relationships between attributes
	Scatter plots
	Scatter 3D color
	Parallel and deviation
	Quartile color

	Time series data
	Plotting series
	Using the survey plotter

	Relations between examples
	Using histograms
	Using block plots

	Summary

	Chapter 4: Parsing and Converting Attributes
	Generating attributes
	Date functions
	Regular expression functions
	Generating extracts
	Regular expressions
	XPath

	Renaming attributes
	Searching and replacing attribute values
	Using the Map operator
	Using the Replace operator
	Using Replace (Dictionary)

	Summary

	Chapter 5: Outliers
	Manual inspection
	Increasing the data volume
	Rules for handling outliers

	Automated detection of example outliers
	Detect Outlier (Distances)
	Detect Outlier (Densities)
	Detect Outlier (LOF)
	Detect Outliers (COF)

	Summary

	Chapter 6: Missing Values
	Missing or empty?
	Types of missing data
	Missing completely at random
	Missing at random
	Not missing at random

	Categorizing missing data
	Finding MCAR data
	Finding MAR data
	Finding NMAR data
	A cautionary note

	Effect of missing data
	Options for handling missing data
	Returning to the root cause
	Ignore it
	Manual editing
	Deletion of examples
	Deletion of attributes
	Imputation with single values
	Modeling

	Summary

	Chapter 7: Transforming Data
	Creating new attributes
	Aggregation
	Using pivoting
	Using de-pivoting
	Summary

	Chapter 8: Reducing Data Size
	Removing examples using sampling
	Removing attributes
	Removing useless attributes
	Weighting attributes
	Selecting attributes using models

	Summary

	Chapter 9: Resource Constraints
	Measuring and estimating performance
	Measuring performance

	Adding memory
	Parallel processing
	Restructuring processes
	Summary

	Chapter 10: Debugging
	Breakpoints in RapidMiner
	Logging data in RapidMiner
	RapidMiner console printing
	Groovy scripts
	Outputting macros example
	Console logging with Groovy

	Regex tools
	Using XPath effectively
	Summary

	Chapter 11: Taking Stock
	Exploring new techniques
	Time series
	Web mining
	Using R
	Java or Groovy
	Third-party components
	RapidAnalytics

	Where to go next

	Index

